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ABSTRACT 

The mechanical behaviour of granular soils is an important aspect in geotechnical 

engineering. Current modelling approaches for the behaviour of granular soils employ 

phenomenological constitutive relations based upon classical continuum mechanics. This 

problem can be circumvented by using multiscale constitutive relations based on 

thermodynamic principles with internal variables. Using a multiscale approach, this thesis 

attempts to construct multiscale constitutive relations that account for the microstructure of 

granular soils and to demonstrate their capabilities in solving geotechnical problems at both 

small and large deformations. The thesis aims to: 1) construct a multiscale constitutive 

relation for dry granular soils based on a thermodynamic framework which requires fewer ad 

hoc assumptions; 2) extend the multiscale thermomechanical formulations for partially 

saturated granular soils for which a micromechanical model is formulated; 3) implement the 

model using an implicit integration algorithm in a finite element code; 4) apply the model to 

analyse the instability of granular soils for both localised and diffuse failures; and 5) 

demonstrate the capability of the multiscale approach in solving some typical geotechnical 

problems by implementing the model in an explicit finite element code. The proposed 

multiscale approach offers a simulation tool that provides valuable insights into engineering 

problems from the grain to the structure scale. 

Key words: granular soils, multiscale modelling, thermodynamic principles, integration 

algorithm, instability, geotechnical structures 
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RÉSUMÉ 

Le comportement mécanique des sols granulaires est un élément important à prendre en 

compte dans l'ingénierie géotechnique. Les approches de modélisation actuelles pour le 

comportement des sols granulaires utilisent des relations constitutives phénoménologiques 

basées sur la mécanique classique du continuum. Ce problème peut être contourné en utilisant 

des relations constitutives multi-échelles basées sur les principes thermodynamiques avec 

variables internes. En utilisant une approche multi-échelle, cette thèse tente de construire des 

relations constitutives multi-échelles qui tiennent compte de la microstructure des sols 

granulaires et les mettre en œuvre pour résoudre des problèmes géotechniques à la fois en 

petites et grandes déformations. La thèse vise à: 1) construire une relation constitutive multi-

échelle pour les sols granulaires secs à partir d'un cadre thermodynamique qui nécessite moins 

d'hypothèses ad hoc; 2) étendre les formulations thermomécaniques multi-échelles aux sols 

granulaires partiellement saturés pour lesquels un modèle micromécanique est formulé; 3) 

implémenter le modèle en utilisant un algorithme d'intégration implicite dans un code aux 

éléments finis; 4) appliquer le modèle pour analyser l'instabilité des sols granulaires dans les 

cas de ruptures localisées et diffuses; et 5) démontrer la capacité de l'approche multi-échelle à 

résoudre certains problèmes géotechniques typiques en mettant en œuvre le modèle dans un 

code aux éléments finis explicite. L'approche multi-échelle proposée aboutit à un outil de 

simulation qui fournit des informations précieuses sur les problèmes d'ingénierie depuis 

l'échelle des grains jusqu’à l’échelle de la structure. 

Mots clés : sols granulaires, modélisation multi-échelle, principes thermodynamiques, 

algorithme d'intégration, instabilité, structures géotechniques 
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GENERAL INTRODUCTION 

1.  Motivation 

Granular materials consist of solid particles with interparticle voids that can be fully or 

partially filled with fluids. The mechanical behaviour of granular materials is important in 

many branches of engineering and science, such as in pharmaceutical industry, agriculture, 

energy, and geotechnical and geophysical applications. Granular soils from clay to rockfill 

materials (with increasing of grain size) are very typical granular materials and construction 

fills in engineering practice. Although many efforts have been made to improve our 

understanding of the behaviour of granular soils, developing more physical and practical 

methods of geotechnical design is still an open issue.   

Based upon continuum mechanics, the finite element method (FEM) has been widely used to 

solve geotechnical problems, in which constitutive models are required to represent the 

behaviour of granular soils. Generally, these models are developed based upon classical 

continuum mechanics using the concept of representative element volume (REV) and some 

assumptions, such as the critical state theory and/or the dilatancy theory (Rowe, 1962; 

Schofield and Wroth, 1968). Due to the complexities of granular soils including pressure 

dependent modulus, loading path dependency, and induced fabric anisotropy etc., many ad 

hoc parameters are required to reproduce the behaviour of granular soils by constitutive 

models at the macro scale. In this phenomenological modelling, constitutive equations are 

proposed rather for mathematical fitting than with physics insight.  

To circumvent the shortcomings of constitutive models based on continuum mechanics, the 

discrete element method (DEM) has been used and, in some cases, combined with FEM to 

solve boundary value problems. In this approach, DEM samples were used to serve as the 

Gauss integration points in FEM. The applicability of the FEM×DEM approach was well 

demonstrated by Zhao and Guo (2014), Nguyen et al. (2017), etc. However, the experimental 

data on particle properties and on their contacts are difficult to obtain precisely. Hence, this 

method can be only qualitatively used for engineering problems. In addition, the demand of 
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computational cost is still an unsolved problem; consequently, the number of particles in one 

Gauss integration point is very limited even though parallel computing techniques have been 

used.  

Given the limitations of the phenomenological models and the huge computational cost of 

DEM, constitutive models based on micromechanics have been developed. In this approach, 

the stress-strain relations are obtained by defining interparticle contact laws and averaging the 

local variables to obtain the global ones with homogenization techniques. Micromechanical 

models have proved their efficiency in describing the behaviour of granular soils under 

various loading conditions with few parameters with physical meanings (Chang and Hicher, 

2005; Yin and Chang, 2009; Nicot and Darve, 2005, 2011; Xiong et al., 2017).  

From an energy perspective, the thermodynamic principles lead to a generally accepted 

framework. However, many heuristic models, including the original Cam-Clay model 

(Schofield and Wroth, 1968), do not satisfy this theory, so one may raise the question: do the 

micromechanical models satisfy the first and the second laws of the thermodynamic 

principles? If not, how to construct a thermodynamically consistent micromechanical model? 

For practical purposes, the micromechanical models should be accurately integrated into a 

finite element code to analyse boundary value problems. In particular, it is of interest to 

demonstrate that this numerical method can be widely used in geotechnical engineering 

practice. 

2.  Objectives  

The overall objective of this thesis is to develop a multiscale approach to describe the 

behaviour of granular soils in order to solve geotechnical problems. For this purpose, the 

thesis will focus on the following specific objectives:  

First, since the thermodynamic principles represent the general physical laws, it is important 

to develop the techniques of thermodynamics with internal variables (Houlsby and Puzrin, 

2007) for constructing micromechanical models. In doing so, the micromechanical models for 

granular soils are natural outcomes of both physical and energy conservation models. 
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Thermomechanical formulations for constructing micromechanical models for dry and 

partially saturated granular soils can then be derived and serve as theoretical bases for 

constructing thermodynamically constrained micromechanical models.  

Additionally, numerical techniques for integrating the developed micromechanical models to 

solve boundary value problems will be discussed and demonstrated. Numerical integration 

schemes will be proposed to accurately integrate micromechanical models. As an example, 

the CH model (Chang and Hicher, 2005) will be implemented into a finite element code to 

fulfil multiscale modelling of geotechnical problems. With this approach, the extent of grain 

scale instability to granular assembly failure will be investigated. Furthermore, this method 

will be used to solve some classical geotechnical problems at small and large deformations.  

3.  Outline of the thesis  

This thesis elaborates the objectives presented above in the following chapters:  

Chapter 1 reviews the basic theories of micromechanics of granular materials, the developed 

micromechanical models, and the development of multiscale approaches in geotechnical 

engineering.  

Chapter 2 answers the question: how to construct a thermodynamically consistent 

micromechanical model for dry granular materials. Thermodynamics with internal variables 

has been extended to the multiscale approach, based on which a micromechanical model for 

dry granular soils has been constructed.  

Chapter 3 develops the thermomechanical multiscale modelling approach to partially 

saturated granular soils. A micromechanical model for unsaturated granular soils based on the 

proposed framework has been constructed.  

Chapter 4 focuses on the implicit integration of the micromechanical models based on the 

static hypothesis through three levels of integration algorithms. The CH model has been 

selected as an example to be accurately integrated and has been implemented into an implicit 

finite element code for multiscale modelling of boundary value problems.   
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Chapter 5 introduces the capability of the CH model in describing the instability of granular 

assemblies. Consistent relations for the second-order work at the micro scale, the material 

point scale and the engineering scale have been obtained. With this method, localised and 

diffuse failures of granular assemblies have been analysed.  

Chapter 6 presents the applications of the CH model in solving geotechnical problems at 

small and large deformations. Four examples, including a square footing, the excavation of a 

tunnel, a retaining wall and the installation of a closed-ended displacement pile, have been 

analysed with an explicit finite element method to demonstrate that micromechanical models 

can be applied successfully to geotechnical engineering.  

Finally, a general conclusion summarizes the work presented in this thesis and discusses 

potential directions for future development.  
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CHAPTER 1 MULTISCALE MODELLING OF GRANULAR 

MATERIALS 

1.1 Introduction 

Granular materials are composed of a large number of grains and voids. To describe the 

behaviour of granular materials, heuristic models have been constructed based upon classical 

continuum mechanics (Kolymbas, 2012). In this kind of phenomenological modelling 

approach, many ad hoc parameters need to be calibrated in order to simulate the complex 

behaviour of granular materials under a wide range of loading conditions. In comparison, the 

multiscale modelling approach regards granular materials as assemblies of discrete grains and 

voids (Chang and Hicher, 2005; Yin and Chang, 2009; Nicot and Darve, 2005, 2011; Radjai et 

al., 2017), and thus accounts for more physics. Correspondingly, inter-particle contact laws 

have to be defined and localization and averaging operators need to be given, as shown in 

Figure 1.1 (Cambou et al., 2009, 2016). This chapter begins with recent developments of 

micromechanics in granular materials, in which the elastic and plastic contact laws, relations 

between micro-macro variables and the techniques used to construct multiscale models will 

be discussed. After that, attention is paid to constitutive relations developed on the basis of 

micromechanics of granular materials. Finally, the multiscale modelling approaches that have 

been used in solving geotechnical problems will be discussed.  

 

Figure 1.1 General framework of multiscale approach in granular materials (figure from 

Cambou et al., 2009) 
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1.2 Micromechanics of granular materials 

1.2.1 Interparticle contact laws 

The relations between two contacting particles depend on the characteristics of grains, such as 

stiffness and geometry. In terms of the grain stiffness, hard grains are such that deformation of 

the grain itself can be negligible, while soft grains can be deformed with or without time 

dependency. The geometry of the grain greatly affects the frictional behaviour between 

particle contacts. Therefore, different interparticle contact laws should be defined for different 

kinds of granular materials. Among these relations, elastic and plastic local relations for 

spherical grains have been widely adopted.  

1) Elasticity 

The expression of the stiffness between two contacting particles due to normal and shear 

forces can be dated back to Hertz and Mindlin (Mindlin and Deresiewicz, 1953), who 

considered two contacting elastic bodies as two rigid bodies connected by deformable springs. 

These springs are distributed in the normal direction to represent normal forces and in the 

tangential direction to describe shearing forces. For simplicity, the two springs are generally 

considered as uncoupled from each other. The normal stiffness depends on the normal force 

and the properties of grains, given as 

 1

c c

n nk C f


                                                           (1.1) 

where 
1C  and α are material parameters, c

nf  is the interparticle contact normal force. A 

general expression for shear stiffness was suggested as 
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                                                 (1.2) 

where 
2C  and β are material constants, c

rf  is the interparticle contact shear force and c

  is 

the friction angle between grains. 

Revised forms of Eqs. (1.1) and (1.2) have been widely adopted in literature. In DEM 

simulations as well as in the micromechanical models constructed by Nicot and Darve (2005, 
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2011), the normal and tangential stiffness are material constants. In comparison, Chang and 

Hicher (2005) adopted spherical particles to describe granular soils, in which the revised 

stiffness was adopted 
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where 
gG  is the elastic modulus of particles and l  is the branch length of two contacting 

particles, while the reference normal stiffness 
0

c

nk  is given by 
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                                                   (1.4) 

in which d is the particle diameter and vg being the Poisson’s ratio of the grains. 

2) Plasticity 

A Coulomb type plastic criterion has been extensively adopted to represent the frictional 

behaviour of granular materials. A general formulation of this type of criterion can be 

expressed as 

       
2 2

,c c c c c

i s t n iF f f f f                                         (1.5) 

in which κ is a function of the interparticle displacement c

i . If κ is a constant then Eq. (1.5) 

reduces to be a pure plastic function, which has been generally applied in DEM simulations 

(Cundall and Strack, 1979), in the  -D model (Nicot and Darve, 2005) and in the H-model 

(Nicot and Darve, 2011), see also section 1.3. By comparison, the CH model (Chang and 

Hicher, 2005) and its developing models consider displacement hardening yield criteria for 

sand, clay and other cohesive granular materials, which will be addressed in detail in section 

1.3. Note that for clay, a second compression type plastic criterion is needed (Yin and Chang, 

2009; Yin et al., 2009, 2010, 2011, 2013, 2014). 

1.2.2 Strain tensors 

In classical continuum mechanics, many definitions of a strain tensor can be found in the 

literature, such as the left or right Cauchy-Green strain tensor, Piola deformation tensor, 
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Green-Lagrange strain tensor, Euler-Almansi strain tensor etc. (Bagi, 2006; Cambou et al., 

2009, 2016). These tensors are expressed in terms of the translation gradient tensor. In 

micromechanics of granular materials, strain tensors are defined based on the granular 

assemblies which can be viewed as a REV. The global deformation of the assembly originates 

from displacements and rotations of particles. With these micromechanics-based strain 

tensors, discrete element simulation results can be explained and micromechanical models can 

be constructed. There are many ways to define strain tensors in terms of the interparticle 

displacements. Among them, most of the strain tensors were defined based on an equivalent 

continuum and a best-fit method (Bagi, 2006). 

1) Strains based on an equivalent continuum 

In these approaches, the granular assembly is replaced by a continuous field through a 

suitable translation field, which assigns the displacements of particle centres to the equivalent 

continuum. Strain tensors defined along this line can be found in the work of Bagi (1993, 

1996), Kruyt and Rothenburg (1996), Kuhn (1997, 1999), Cambou et al. (2000) and Kruyt 

(2003).  

2) Strains defined from the best-fit methods 

In these methods, the deviations between the theoretical displacement field and the actual 

displacement field should be minimum, hence the obtained displacement field is the best-fit of 

the actual displacement field. The difference between the strain tensors lies in the 

consideration of the local displacement field (Bagi, 2006; Cambou et al., 2016). For instance, 

the displacement of the centres of neighbouring grains was adopted in Cundall and Strack 

(1979). In contrast the relative displacement at the interparticle contacts was used in Liao et 

al. (1997), whereas the relative displacement of the centres of neighbouring particles was 

calculated in Cambou (2000).  

In this thesis, only the strain tensor conforming to the best-fit type proposed by Liao et al. 

(1997) will be presented, since it will be used as an assumption in the following chapters. In 

micromechanics of granular materials, if each particle would move exactly according to a 
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uniform translation gradient 
ij , then the deformation at contact c  would be 

c c

i ji jd l                                                            (1.6) 

Since the displacement fields of granular materials are strongly heterogeneous, for a general 

ij  we would find that 

0c c

i ji jd l                                                            (1.7) 

To find a strain tensor 
ij  which is closer to the actual displacement field, the square sum of 

the deviations in Eq. (1.7) should be the smallest, that is to say  

  
1

min
N

c c c c

i ji j i ji j

c

Z d l d l   


                                      (1.8) 

The condition for minimum of Z  can be obtained when 
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Solving Eq.(1.9) leads to  
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in which n , m  and i  can be 1, 2 or 3. Defining a fabric tensor as 
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and combining Eqs. (1.10) and (1.11), the strain tensor proposed by Liao et al. (1997) can be 

obtained 
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which states that the strain of a granular assembly is the volumetric summation of interparticle 

displacements with branch vectors and connection with fabric tensor.  

1.2.3 Effective stress tensors 

Instead of the total stress tensor, effective stress tensors have been widely used in granular 
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materials, in particularly in soil mechanics. For dry and fully saturated granular materials, the 

relation between total stress total

ij  and effective stress ij   can be generally written as 

total

ij ij wp                                                             (1.13) 

where 
wp  is the fluid pressure in fully saturated condition; 0   for dry state and 1   for 

the saturated condition. In both cases, the effective stress ij   has been well established in 

micromechanics of granular materials, which is equal to the so-called contact stress tensor ij  

given by interparticle contact force and branch vector connecting two contact particles. This 

formulation is also termed as the Love-Weber formula (Love, 1927; Weber, 1966), given as 
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1 N
c c

ij i j

c

f l
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
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                                                            (1.14) 

in which c

if  is the force at interparticle contacts. 

For partially saturated granular materials, the difficulty in using Eq.(1.13) lies in quantifying 

the coefficient χ. On one hand, it has been found that the parameter χ could not be generally 

expressed via a function of the degree of saturation, particularly under drying-wetting cyclic 

loadings (Gens et al., 2006). On the other hand, efforts also have been made to give the 

definition of the effective stress 
ij  . From recent results obtained by discrete element 

simulations, it seems that the Love-Weber formula could not be generally used as an effective 

stress tensor for unsaturated granular materials. This issue is a focal topic for researchers with 

interests in partially saturated granular materials (Duriez and Wan, 2016; Chalak et al., 2017). 

1.2.4 Fabric tensors 

To describe the internal structure of granular materials, fabric tensors have been introduced. 

Generally, the geometrical information on granular particles and their spatial arrangement can 

be described by a second-rank tensor. Various definitions of the fabric tensor have been 

proposed (Satake, 1982; Oda et al., 1985; Santamarina and Cascante, 1996; Kuganenthira et 

al., 1996; Pan and Dong, 1999; Li and Li, 2009; Fu and Dafalias, 2015). These tensors can be 



33 

classified as contact normal-based, particle orientation-based and void-based tensors (Wang et 

al., 2017). The former two types of tensors can be generally expressed as 

1

1

2

N
k k

kN 

 F v v                                                      (1.15) 

where N is the number of the entities being quantified; the superscript k is the kth entity; 
kv  is 

the directional entity which could be the unit contact normal or the unit particle orientation 

vector. The void-based fabric tensor was initially proposed by Li and Li (2009) and then 

developed by Fu and Dafalias (2015) for two-dimensional assemblies. The fabric tensor based 

on void cell system suggested by Li and Li (2009) can be written as 

 0

1

vN
k k k k

v v

kv

E
v E

N 

 F n n n                                             (1.16) 

where 
kv  is the length of the thk  void vector whose direction is k

n ;  k

vE n  is the directional 

distribution of the void vector density; 
vN  is the total number of void vectors; 

0E  is a 

normalization factor which can be derived from the statistics theory (Kanatani, 1984; Li and 

Yu, 2011) and is equal to 2  in 2D space and 4  in 3D space. From these definitions, we 

can see that the fabric tensor defined in Eq.(1.11) is a revised form of the contact-based fabric 

tensor and satisfies the unit volume requirement of the thermodynamically consistent fabric 

tensor (Li and Dafalias, 2015). 

Fabric tensors can be decomposed into an isotropic part and a deviatoric part. An isotropic 

material indicates that the same material response can be obtained if the loading direction is 

rotated. The deviatoric part, also termed as fabric anisotropy, includes inherent anisotropy and 

induced anisotropy. The former one refers to an initial anisotropy that is caused by previous 

loadings, such as the inherent anisotropy of granular soils caused by the gravity, while the 

latter one is induced by the subsequent loadings. 

It has been recognized that the non-coaxial behaviour of granular materials under proportional 

loading and continuous rotational shearing originates from their fabric anisotropy. Therefore, 

well considering the evolution of fabric anisotropy is crucial for describing the non-coaxial 
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deformation of granular materials. Discrete element simulations have found that the fabric 

anisotropy tends to reach a steady state even when the inherent anisotropy is different (Fu and 

Dafalias, 2011; Kruyt, 2012; Zhao and Guo, 2013; Kruyt and Rothenburg, 2014, 2016; Yang 

and Wu, 2016). According to these findings, Li and Dafalias (2012) extended the classical 

critical state theory (Schofield and Wroth, 1968) by involving a fabric item, which also 

reaches a critical value at the classical critical state. In this framework, constitutive models 

were constructed to simulate the non-coaxial deformation of granular soils (Li and Dafalias, 

2012; Gao et al., 2014; Gao and Zhao, 2017). 

1.2.5 Averaging and localisation operators 

The Love-Weber formula described by Eq. (1.14) has been proved to be a general expression 

for dry granular materials, it is therefore adopted as an averaging operator for 

micromechanical models (Chang and Hicher, 2005; Yin and Chang, 2009; Yin et al., 2009, 

2010, 2011, 2013, 2014; Nicot and Darve, 2005, 2011; Xiong et al., 2017). 

Two types of localisation operators: the kinematic method and the static hypothesis can be 

generally found in literature (Chang and Hicher, 2005; Nicot and Darve, 2005, 2011; Yin et 

al., 2009; Misra and Singh, 2014; Misra and Poorsolhjouy, 2015a; Xiong et al., 2017). The 

former one bridges global strains and inter-particle displacements, such as the widely-used 

expression in Eq.(1.6), based on which micromechanical models were constructed by Nicot 

and Darve (2005, 2011), Misra and Singh (2014), Xiong et al. (2017). The latter one gives 

inter-particle incremental forces from incremental global stresses, for instance the one 

adopted by Chang and Hicher (2005), rewritten as 

,   c c c c

i ij n jn i ij n jnf l A f l A                                             (1.17) 

where 
jnA  is given in Eq. (1.11). Based on Eq. (1.17), a family of micromechanical models 

has been constructed (Chang and Hicher, 2005; Yin and Chang, 2009; Yin et al., 2011, 2013, 

2014; Zhao et al., 2017). 

1.2.6 Homogenisation integration 
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The summation of local quantities over all interparticle contacts can be approximated by 

directional statistics theory. This theory was first proposed by Kanatani (1984) for directional 

orientations represented by unit vectors, and then was extended by Li and Yu (2011) for 

directional vectors in which both magnitude and direction are of significance. The distribution 

of both orientations and vectors along all directions can be approximated by a probability 

density function  f n . The approximation of the function  f n  can be obtained by a smooth 

function  F n , which can be expressed as a polynomial  

  i i ij i j ijk i j k ijkl i j k lF C C n C n n C n n n C n n n n     n                        (1.18) 

where n  is a unit vector. The integration of the function  F n  should satisfy  

   1 with 0F d F


   n n                                              (1.19) 

where dΩ is an elementary solid angle (Figure 1.2) and Ω represents the unit circle in 2D case 

and the unit sphere in 3D case. Let n(1), n(2),  and n(N) be unit vectors representing an 

observed number of N local directional data. An empirical distribution of the contact 

probability density f (n) is  

    
1

1 N
c

c

f
N




 n n n                                                   (1.20) 

where     is the Dirac delta function defined as  
,  x=0

0,    x 0



  


, which also satisfies the 

identity   1d



   .  f n  is nonnegative and automatically satisfies   1f d



  n .  

y

x

z





d sin d d   

o

 

Figure 1.2 Integration domain in a unit sphere  
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Eq.(1.18) can be approximated using the polynomial function as  

 
1 2 1 2 1 2 1 2 1 2 1 2

0 0

1 1
1

n n n ni i i i i i i i i i i i i i i iF F n n n D n n D n n n
E E

       n           (1.21) 

where 
0E d



  , which is equal to 2  in 2D space and 4  in 3D space; the tensor 

coefficients 
1 2 ni i iF  and 

1 2 ni i iD  can be determined by minimizing the least square error  

   
2

minE F f d


     n n n                                         (1.22) 

The most fundamental quantities of these directional data are their average values. The 

average of the nth order tensor product, also termed as the moment tensor of order n is given 

as 

 
1 2 1 2 1 2 1 2

1

1
n n n n

N
c c c

i i i i i i i i i i i i

c

N n n n n n n F n n n d
N  

    n n                (1.23) 

The directional tensor 
1 2 ni i iF  in Eq. (1.21) can be determined by minimizing the least square 

error criteria 

 
1 2 1 2 1 2 1 2 1 2

1 2

0  
n n n n n

n

i i i j j j j j j i i i i i i

i i i

E
F n n n d F n n n n n n N

F



   

  n n        (1.24) 

where the identity 
1 2 1 2

0

1
n ni i i i i in n n n n n d

E


  , which can be explicitly integrated, as 

expressed by Li and Yu (2011). By substituting the obtained direction tensor 
1 2 ni i iF  from Eq. 

(1.24) to Eq. (1.21), we obtain 

 
1 2 1 2 1 2 1 2 2 1 2 2n n n n ni i i i i i i i i i i i i i iF D n n n F n n n

 
                               (1.25) 

The coefficient tensor 
1 2 ni i iD  can be finally expressed as  

 

 
 

1 2 1 2 1 2 2 1 2 1 22

2

2 !1

2 !
n n n n ni i i i i i j j j j j j i i in

n

n
D N F n n n n n n

n 
                    (1.26) 

where the coefficient  
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n

C
D

D
n




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 
 
 

                                                        (1.27) 

in which n

kC  stands for the number of k-combinations of a n-element set. In view of the 

symmetry in 
1 2 ni i iF  and 

1 2 ni i iD , their relation can be expressed as  

1 2 1 2 1 2 2 1n n n n ni i i i i i i i i i iF D F 
 

                                             (1.28) 

For direction-dependent vectors with different magnitudes, Li and Yu (2011) gave the form of 

approximating the directional representative values as  

   
1 1 2 1 1 1 1 20 0 0n n n nji i i i i j ji i ji i i i im H n n n m G n G n G n n n     M n          (1.29) 

in which the direction tensors 
1 nji iH  and 

1 nji iG  can be determined by minimizing the least 

square error 

         minE d


            M n m n M n m n                         (1.30) 

where  m n  is the directional distribution of a representative vector. The procedure for 

solving Eq.(1.30) is the same as for solving Eq.(1.22).  

The described directional statistics theory has been widely applied in deriving the stress-

force-fabric relations (Rothenburg and Bathurst, 1989; Li and Yu, 2013; He et al., 2017; Wang 

et al., 2017), in analysing results of discrete element simulations (Li and Yu, 2011; Li et al., 

2013; Li, 2016), in experimental and numerical quantification of fabric tensors (Yang et al., 

2007, 2008; Yang and Wu, 2016; Xie et al., 2017), as well as in constructing micromechanical 

models (Chang and Hicher, 2005; Yin and Chang, 2009; Nicot and Darve, 2005, 2011; Misra 

and Singh, 2014, 2015; Misra and Poorsolhjouy, 2015a; Xiong et al., 2017; Zhao et al., 2017).  

1.3 Micromechanical models 

A variety of multiscale constitutive relations, also termed as micromechanical models, have 

been proposed based on micromechanics of granular materials. In this section, several typical 

micromechanical models will be reviewed. Specific attentions will be paid on the CH model 
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(Chang and Hicher, 2005) due to its good performance in describing the behaviour of granular 

soils and it will be a sound basis for the following chapters.  

1.3.1 CH model 

The CH micromechanical model (Chang and Hicher, 2005) was initially proposed for sand. 

Further developments by Yin and Chang (2009a, 2009b) and Yin et al. (2009, 2010, 2011, 

2013, 2014), demonstrated its good performance in modelling the mechanical behaviour of 

sand and clay. 

1.3.1.1 Inter-particle contact law 

The local law is defined in the local coordinates (n, s, t), in which n is the normal to the 

contact plane, and s and t are orientations within the contact plane. The relationship between 

the local and global coordinates can be defined by the angles β and γ, as shown in Figure 1.3, 

and any local quantity can be expressed globally through the transition matrix, expressed as 

1 2 3

1 2 3

1 2 3

cos sin cos sin sin

sin cos cos cos sin

0 sin cos

n n n

P s s s

t t t

    

    

 

  
  

     
     

                         (1.31) 

Soil specimens exhibit elastic and plastic behaviours which originate from the slip and 

rotation of the grains. Given that these elementary mechanisms control the global mechanical 

response, elasticity and plasticity are defined at the inter-particle contact. 

 

Figure 1.3 Local coordinate  , ,n s t  and global coordinate  , ,x y z  

1) Elasticity 

A non-linear elastic force-displacement relationship has been suggested, with the same 


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stiffness in directions s and t, which can be written as 

c c c

i ij jf k                                                             (1.32) 

The stiffness matrix is given as 

0 0

0 0

0 0

c

n

c c

ij r

c

r

k

k k

k

 
 

  
 
 

                                                     (1.33) 

where the normal stiffness c

nk  depends on the normal force with an initial value 
0

c

nk  which 

can be evaluated by Eq.(1.4), and the tangential stiffness c

rk  is proportional to c

nk  with a ratio 

rRk , expressed as 

1/2

0

c
c c n
n n

ref

f
k k

f

 
   

 

, c c

r rR nk k k                                              (1.34) 

where 
reff  is a reference force. 

2) Yield criterion and plastic flow 

To consider irrecoverable displacements between grains during loading, plasticity has been 

introduced in the local law. A Coulomb-type yield criterion has been adopted, expressed as 

       
2 2

,c c c c cp

i s t n rF f f f f                                         (1.35) 

where the hardening parameter  cp

r   is dependent on the tangential plastic displacement 

cp

r , written as 

 
tan

tan

c c cp

p p rcp

r c c c cp

n p p r

k

f k

 
 

 



 with    

2 2
cp cp cp

r s t                          (1.36) 

where c

pk  is a function of the normal contact stiffness c

nk  with the ratio 
pRk  as a material 

constant 

c c

p pR nk k k                                                          (1.37) 
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c

p  is the mobilized peak friction angle between particles in contact, function of the inter-

particle friction angle c

  and the state variable 
ce e  representative of the mesoscale, 

concordantly with the macro scale relation proposed by Biarez and Hicher (1994) 

tan tanc cc
p

e

e
 

 
  
 

                                                  (1.38) 

in which 
ce  is the void ratio at the critical state: 

logc ref

ref

p
e e

p


 
    

 

                                                (1.39) 

where 
refe  and refp  are values corresponding to a reference point on the critical state line; λ is 

the compression index; p' is the mean effective stress. 

A local dilatancy law has been defined by the ratio between the normal plastic displacement 

increment and the tangential plastic displacement increment, which is a function of the 

dilatancy angle at inter-particle contacts: 

   
2 2

tan

c c
cp

s tcn
d ccp

nr

f f
D

f







                                         (1.40) 

where c

d  depends on the state variable 
c

e e  and on the inter-particle friction angle  

tan tanc c

d

c

e

e
 

 
  
 

                                                 (1.41) 

1.3.1.2 Micro-macro relationship 

Stress and strain can be obtained by volumetrically averaging the inter-particle force and 

displacement. The CH model has adopted the kinematic relation based on the best-fit 

hypothesis suggested by Liao et al. (1997), expressed by Eq.(1.12). For the relation between 

force and stress, the Love-Weber formula in Eq.(1.14) has been adopted. The micro-macro 

relations in Eqs.(1.12) and (1.14) are averaging operators. To integrate the local force-

displacement relation, we need to define a localization operator. Based on energy 

conservation, the relationship between force and stress increments is given by Eq.(1.17). This 
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expression is denoted as a static hypothesis since the force increment is calculated from the 

stress increment. This is different from the kinematic hypothesis in which the local 

displacement is derived from the global strain. 

1.3.1.3 Stress-strain relationship 

Using the definition of the best-fit hypothesis (Eq.(1.12)) and combining the local law with 

the static hypothesis (Eq.(1.17)), one can write the incremental stress-strain relationship based 

on elasticity as 

   
1 1

1 1 1

1 1 1N N N
c c c c c c c c

ij i n jn ij m im ij n jn ij ij m n im jn

c c c

l A l A k l A k l l A A
V V V

   
 

  

 
    

 
           (1.42) 

from which the elastic compliance matrix 
ijklS  can be expressed as 

 
1

1

1 N
c c c

ijkl ij m n km ln

c

S k l l A A
V





                                             (1.43) 

It should be mentioned that Eq.(1.43) is expressed in the local coordinates (n, s, t). The global 

stiffness matrix can be obtained by using Eq.(1.31). If plastic displacement occurs, the local 

elastic stiffness has to be replaced by a local elastoplastic stiffness. A predictor-corrector 

procedure is then needed to integrate the non-linear stress-strain relationship, which will be 

discussed in chapter 4. 

1.3.1.4 Homogenisation integration 

To obtain the stress-strain relation, it is necessary to sum up the local variables over all 

particle contacts. Based on the aforementioned statistics theory proposed by Kanatani (1984), 

Chang and Misra (1990) applied the statistical theory for calculating the summation of 

N
c

c

F , based on the Eqs.(1.19) and (1.23), the integration can be calculated by  

   
2

0 0
1

1
, , sin

N
c

c

F F d d
N

 

       


                                 (1.44) 

where cF  is the quantity defined between interparticle contact; N is the total number of inter-

particle contacts. The directional distribution density function ξ (γ, β) satisfies 



42 

 
2

0 0
1 , sin d d

 

                                                  (1.45) 

To integrate the random granular packing, we can write the directional distribution density 

function as a spherical harmonics expansion 

      0

2 1

1
, 1 cos cos cos sin

4

k
m

k k k km km

k m

a P P a m b m      




 

  
     

  
     (1.46) 

where  coskP   is the kth Legendre polynomial;  cosm

kP  is the associated Legendre 

function; 0ka , kma  and kmb  are fabric parameters. For an isotropic packing, these fabric 

parameters are equal to zero, therefore the density function can be written as  

 
1

,
4

  


                                                      (1.47) 

To calculate the integration of the right-hand side of Eq.(1.44), we can adopt the Gauss 

integration method proposed by Bažant and Oh (1986), in which the integration of the 

function  , ,u x y z  over a unit sphere can be calculated as  

       
2

2

0 0
1

1 1
, , , , sin , ,

4 4

NP

S

u x y z ds u x y z d d u x y z w
 



   
  

             (1.48) 

where NP is the number of integration points, as shown in Figure 1.4. By combining 

Eqs.(1.44) and (1.48), and by considering an isotropic fabric packing, we obtain 

     
2

0 0
1 1

1 1
, sin

4

N NP
c

c

F F d d F w
N

 
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      
 

                         (1.49) 

The volumetric average of the micro variables can be calculated by 

   
1 1

1 N NP
c

c

N
F F w

V V 

 
 

                                             (1.50) 

in which V is the volume of the assembly and N is the number of inter-particle contacts. The 

number of contacts per unit volume N/V for a packing of spheres can be estimated from the 

void ratio, the coordination number and the particle size (Chang et al., 1990) 

 3

3

4 1

nCN

V r e



                                                     (1.51) 

Based on the experimental data, the relationship between the void ratio e  and the 
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coordination number 
nC  can be approximated by  

13.28 8nC e                                                         (1.52) 

where e is the void ratio of granular assembly. 

x

y

zo

Integration point

 

Figure 1.4 A distribution of integration points in half space of a unit sphere 

Chang and Hicher (2005) investigated the influences of the number of integration points on 

the stress-strain relations and found that 74 integration points, as proposed by Bažant and Oh 

(1986), were sufficient to obtain accurate results. As shown in Figure 1.5, the CH model can 

well describe the behaviour of Toyoura sand with different initial void ratios under a wide 

range of confining pressures.  
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Figure 1.5 Experimental data and simulations of triaxial tests on Toyoura sand: (a) deviatoric 

stress versus mean effective stress for loose sand under undrained condition; (b) deviatoric 

stress versus axial strain for loose sand under undrained condition; (c) deviatoric stress versus 

axial strain for dense sand under drained condition; (d) deviatoric stress versus void ratio for 

dense sand under drained condition (figure from Chang et al., 2011) 

1.3.2 Models developed based on the CH model 

The CH micromechanical model has been further developed to describe the behaviour of 

unsaturated granular soils (Hicher and Chang, 2007), the behaviour of clays (Chang et al., 

2009; Chang and Yin, 2010, 2011) and the effect of inherent anisotropy of sands and clays 

(Yin and Chang, 2009, 2010, 2011, 2013; Chang and Bennett, 2015). Generally, four kinds of 

contact laws that depend on the properties of particle contacts have been suggested. For 

saturated sand and clay, only mechanical forces were considered between the inter-particle 

contacts (Chang and Hicher, 2005; Chang and Hicher, 2009; Chang and Yin, 2009a, 2009b; 

Yin and Chang, 2009, 2010, 2011, 2013; Chang and Bennett, 2015); for unsaturated soils, 

both capillary forces and mechanical forces were considered (Hicher and Chang, 2007; Hicher 

and Chang, 2008); for cohesive soils, the chemical forces and mechanical forces are the main 

forces (Hicher et al., 2008a, 2008b; Hattab and Chang, 2015), while for lunar soils, the 

surface energy forces that include van der Waals forces, as well as the mechanical forces, 

were taken into account (Chang and Hicher, 2009). 

1)  Mechanical force in clayey materials 
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The same nonlinear elasticity that has been used for sand is adopted, while for plasticity two 

yield criteria are used: one for shear loading and another one for compression, as shown in 

Figure 1.6. The form of shearing yield criterion 
1 1( , )iF f   is the same with sand, as shown by 

the following equations 

   
2 2

1 1 1( , ) ( )c c c c cp
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Figure 1.6 Hardening rule for clay in the CH model 

A local dilatancy D1 is defined by normal plastic displacement increment divided by 

tangential plastic displacement increment, which is a function of friction angle, state variable 

ce e  and current force ratio tan c

m , written as 
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in which, a and b are material constants, state variable 
ce e  is defined as previous Eq.(1.39). 

Given that clays exhibit distinct deformation under the compression with constant stress ratio, 

a cap yield criterion is introduced, which depends on normal force and normal displacement 

2 2 2( , ) ( )c c cp

i n nF f f                                                   (1.57) 
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/

2( ) 10
cp
n pCcp

n reff


                                                      (1.58) 

in which Cp. is a material constant that can be calibrated from the compression curve plotted 

in  logcp c

n nf   plane. For the case of c

nf  smaller than 
reff , only elasticity takes place. 

2) Capillary force  

To simulate the behaviour of partially saturated granular materials, capillary forces were 

introduced between interparticle contacts (Hicher and Chang, 2007), which can be expressed 

as 

max expcap

n

d
f f c

R

 
  

 
                                               (1.59) 

where c is a material constant, d is the distance between two grains that are not necessarily in 

contact, R is the mean grain radius, maxf  is the value of the capillary force at contact, given by 
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where Sr is the degree of saturation; 
0f  and S0 are material constants. 

0f  can be evaluated 

from the particle size distribution curve. An empirical expression proposed by Wu et al. 

(1984) was adopted to obtain the value of S0, given as 

  0 100.62log 1.5 /100S d                                           (1.61) 

where d10 is the effective grain size in mm.  

3)  Chemical force in grouted sand 

Adhesive forces were added at interparticle contacts to consider the effect of cement grout in 

the pores of granular materials by Hicher et al. (2008). A damage law was introduced to 

consider the amplitude of chemical force, expressed as 

  0 exp  for ad ad b b bf f                                           (1.62) 
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where 0

adf  is the initial adhesive force, 
b  is a parameter which controls the degree of 

damage, ρ is a function of displacements, given by  

   
2 2

ct c

n r                                                       (1.63) 

in which ct

n  represents the normal interparticle displacement in elongation, c

r  is the 

tangential displacement, and β is a material parameter. 

4)  Surface energy force 

To investigate the behaviour of lunar soils, the van der Waals force was considered between 

two particles in contact by Chang and Hicher (2009), written as  

2

3 26 12

c

suf

A AR
f a

D D
                                                   (1.64) 

where A is the Hamaker coefficient which was estimated to be 4.310-20J for lunar soils and 

1.510-20J for terrestrial quartz sand. D represents the thickness of the molecules layer 

between two particles and R is the mean radius of the particles. 

By using the above four kinds of interparticle contact forces and the procedure described in 

the CH model, the behaviour of various granular materials under specific environment has 

been well described. 

1.3.3 μ-D model  

Different from the aforementioned CH model, the μ-D model (Nicot and Darve, 2005) adopts 

the strain tensor, Eq.(1.6), as a localization operator. The scheme of the μ-D model is shown 

in Figure 1.7. In this approach, the strain-displacement in Eq.(1.6) has been used as the 

localization operator, while the Love-weber formula described in Eq.(1.14) has been taken as 

the averaging operator. An elastic purely plastic relation was given as the interparticle force-

displacement relation, as shown in Eq.(1.5), which can be rewritten as  

c c c

n n nf k                                                              (1.65) 
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where c

nk  is the normal stiffness, c

rk  is the tangential stiffness. For the integration scheme, the 

density function is equal to 1/4π thus only an isotropic fabric condition was considered in this 

model. A total of three parameters, c

nk , c

rk  and 
g , with physical meanings need to be 

calibrated. 

ij
c

i
c

if ij

Macroscopic law

Kinematical 

localization
Local law

Stress 

averaging

 

Figure 1.7 Scheme of the μ-D model based on a kinematic hypothesis 

This model has demonstrated its efficiency in describing the behaviour of dry granular 

materials. However, as discussed by Nicot and Darve (2011), due to the choice of the 

kinematic assumption expressed in Eq.(1.6), the model could not correctly simulate the 

mechanical response of a granular specimen along a drained triaxial loading path (Figure 1.8). 

To improve the performance of this model, an adaptation was incorporated, by removing all 

contacts oriented along the directions within a cone, characterized by an ad hoc parameter θe. 

Alternatively, a meso-scale structure was introduced to enrich the relation between strain and 

inter-particle displacement (Nicot and Darve, 2011; Xiong et al., 2017). 
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Figure 1.8 Validation stage along an axisymmetric drained triaxial loading path 
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1.3.4 H model  

A hexagonal cluster was introduced to consider the mesoscale of granular material in the μ-D 

model, which was referred to as H model (Nicot and Darve, 2011). The H model shows a 

good performance in describing the typical behaviour of granular materials, as demonstrated 

by Nicot and Darve (2011) in a two-dimensional version and by Xiong et al. (2017) in a three-

dimensional description, shown in Figure 1.9. 

x

y

n

t



         

Figure 1.9 Hexagonal set of contacting particles (a) 2D; (b) 3D 

To construct the H model, two levels of compatible equations should be considered. The 

deformation of each hexagon derived from global strain is given as  

n n ij i jl l n n                                                          (1.67) 

t t ij i jl l t t                                                            (1.68) 

where ln and lt are dimensions of the hexagon along the direction n and t, as shown in Figure 

1.9. To describe the relation between the meso-scale and the micro-scale, two kinds of 

interparticle contacts are considered. As shown in Figure 1.10, there are both normal and 

shear forces between particles 1 and 2, whereas only normal force exists between particles 2 

and 3. The deformation of the hexagon can be calculated by 

2 12 cosnl d d                                                         (1.69) 

12 sintl d                                                            (1.70) 

where α is a parameter describing the degree of opening of the hexagon, d1 and d2 are 

distances between two neighboring particles. By using the elastic and pure plastic local law 
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expressed in Eqs.(1.65) and (1.66) and invoking the force equilibrium equation between 

particles, force increments can be computed. To integrate the forces in order to obtain the 

global stresses, the Love-Weber formula described in Eq.(1.14) has been adopted. Since the 

density function for isotropic fabric, i.e. 1/2π in 2D and 1/4π in 3D, has been adopted, this 

model in its present form cannot capture the non-coaxial deformation of granular materials 

under rotational shearing. 

 

Figure 1.10 Geometrical description, external forces applied to each hexagon, and contact 

forces 
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Figure 1.11 Evolution of the deviatoric ratio versus the axial strain at different initial 

confining pressures (Nicot and Darve, 2011) 

The ability of the H model to reproduce the behaviour of granular materials has been 

demonstrated, in particular for the diffuse failure that cannot be well described by the µ-D 

model, as shown in Figure 1.11. Whereas the H model exhibits many interesting features, it 
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still has some limitations. 

1.3.5 Other micromechanical models  

Based upon the micromechanics of granular materials, many micromechanical models have 

been suggested for different purposes. To simulate the time-dependent behaviour of polymers, 

Misra and Singh (2015) suggested a viscous-elasto-plastic micromechanical model based on 

the kinematic assumption described in Eq.(1.6). Similarly, a higher-order micromechanical 

model has been constructed for capturing the strain localization of granular materials (Yang 

and Misra, 2012). From the scope of the meso-scale, a micromechanical model was suggested 

by Cambou et al. (2016) for granular materials by defining six phases which are sets of meso-

domains with similar elongation degrees and orientations. In the light of Rowe’s dilatancy 

theory (Rowe, 1962), Wan and Guo (2001) constructed a micromechanical model by 

extending the dilatancy function in order to consider fabric anisotropy. Based on energy 

conservation at various scales, Zhang and Buscarnera (2014, 2017) and Zhang et al. (2016) 

constructed micromechanical models for unsaturated granular materials by combining 

micromechanics and breakage mechanics. 

1.4 Multiscale modelling of geotechnical problems  

1.4.1 Discrete element method 

DEM has been significantly developed since its first application to simulate the behaviour of 

granular materials by Cundall and Strack (1979). In this method, granular materials are 

regarded as the assembly of individual spherical particles. The relation between two contact 

particles is generally described by an elastic purely plastic contact law, as shown in Figure 

1.12. An explicit displacement driven procedure has been implemented to solve the 

equilibrium equations of each particle (O’Sullivan, 2011).  

This method has proved to be an efficient tool to investigate the microscopic and macroscopic 

behaviours of granular materials (O’Sullivan, 2011; Barreto et al., 2012; Belheine et al., 2009; 

Scholtès et al., 2009; Zhu et al., 2016; Jiang et al., 2007; Yang et al., 2012; Zhao and Guo, 

2013). With the rapid development of computational techniques, this approach has been 
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recently applied to solve boundary value problems (Jiang et al., 2006, 2008; Jiang and Yin, 

2012, 2014; McDowell et al., 2012; Wang and Zhao, 2014). However, the parameters used in 

these calculations compared to realistic interparticle contacts are still questionable. In 

addition, the calculations require a lot of computational efforts, even if parallel computational 

techniques have been used. 

 

Figure 1.12 Interparticle contact in DEM 

1.4.2 FEM×DEM coupling approaches 

Given that FEM is an efficient technique for solving complex problems, whereas DEM gives 

more insight into the physics of particulate materials, they have been coupled to solve 

boundary value problems. Generally, two types of coupling methods can be found in the 

literature, i.e. contact coupling and Gauss integration point coupling. 

1) Contact coupling 

In this approach, the numerical model is composed of a FEM part and a DEM part, as shown 

in Figure 1.13. The granular materials with large deformations are replaced by DEM particles, 

whereas the domain that has small deformations is computed with FEM technique. The 

interface between FEM and DEM is a surface contact coupling for two-dimensional models 

and is volumetric contact coupling for three-dimensional models. The effectiveness of this 

approach has been proved by the work of Cai et al. (2007), Elmekati and El Shamy (2010), Li 

et al. (2015), etc.  
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Figure 1.13 Physical and numerical models: (a) system layout; (b) FEM×DEM model 

2) Gauss integration point coupling 

This method takes the advantages of FEM for large-scale boundary conditions and the benefit 

of DEM to represent the material behaviour with only a few parameters with physical 

meaning instead of complicated constitutive models requiring a large set of constitutive 

parameters. This approach adopts the FEM to discretize the calculation domain into elements 

in which the Gauss integration points consist of DEM samples, as shown in Figure 1.14. For 

each Gauss point, strain increment and state variables are given to the attached DEM sample. 

After equilibrium iterations, DEM returns the updated stress and tangent operator to the Gauss 

point. The differential equations can be solved by a Newton-Raphson method in the implicit 

FEM. To reduce the time cost, parallel computational techniques have been used and the 

number of particles in the DEM simulations should be as small as possible. 

This method has been successfully applied to geotechnical investigations, from elementary 

tests to classical geotechnical problems. The strain localization of granular materials has been 

investigated by Guo and Zhao (2014), Nitka et al. (2011) and Nguyen et al. (2017). With this 

approach, it has been found that the fabric anisotropy can be a method to break the symmetry 

of biaxial test with smooth boundaries and inside the shear band the material can reach a 

critical state. Additionally, the classical geotechnical problems including a retaining wall and 

a strip footing were analyzed. It was found that the solution was comparable with the 

analytical solutions (Guo and Zhao, 2016). 
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Figure 1.14 The procedure of hierarchical multiscale modelling (from Guo and Zhao, 2014) 

1.4.3 FEM×micromechanical model  

To overcome the shortcomings brought by DEM, implementing micromechanical models into 

FEM can be a good option to solve geotechnical problems more efficiently and accurately. 

The two-dimensional H model has been successfully implemented into FLAC by Veylon 

(2017). Its capability in describing the liquefaction of granular soils has been demonstrated. 

Given the good performance of the CH model in predicting granular soil behaviour, it will be 

implemented into FEM to investigate localized and diffuse failures of granular soils, and 

furtherly applied to solve geotechnical problems. 

1.5 Concluding remarks  

This chapter first briefly reviewed the basic theories of micromechanics of granular materials, 

including interparticle contact laws, strain, stress and fabric tensors as well as homogenization 

methods. Then, the constitutive relations constructed on the basis of micromechanics of 

granular materials were introduced and their performances in capturing the behaviour of 

granular soils were discussed. It was concluded that the CH model demonstrated its capacity 

in describing the mechanical behaviour of soils. Finally, the multiscale modelling approaches 

that can be applied to solve geotechnical problems were discussed. Since the computational 

cost as well as the difficulties in calibrating the parameters used in DEM simulations are still 
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significant, implementing micromechanical models into a finite element code could be an 

alternative direction in multiscale modelling of geotechnical problems. 
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CHAPTER 2 THERMOMECHANICAL FORMULATION FOR 

MICROMECHANICAL PLASTICITY IN GRANULAR SOILS 

2.1 Introduction 

Constitutive modelling is one of the most important research tasks in the field of the 

mechanics of materials. Based upon classical continuum mechanics, a variety of ways could 

be used to construct mathematical models for simulating the mechanical behaviour of soils. 

Among them many models were built based on various assumptions such as critical state soil 

mechanics (Li and Dafalias, 2011; Shen et al., 2012; Gao and Zhao, 2017), dilatancy 

functions (Fern et al., 2016) and particle crushing (Yin et al., 2016; Hyodo et al., 2017). Since 

thermodynamics is a basic law of physics, it has attracted much attention and was 

alternatively used to construct constitutive models. Ziegler and Wehrli (1987) pioneered the 

introduction of thermodynamics into constitutive modelling. Collins and Houlsby (1997) 

followed this path with a comprehensive analysis of the isothermal thermomechanics of 

geomaterials, while Collins and Hilder (2002) provided the framework for constructing 

elasto-plastic phenomenological models. Based upon the procedure of thermodynamics, Li 

(2007) and Coussy et al. (2010) extended the thermomechanical framework to unsaturated 

soils. Through this approach, once the free energy and the dissipative potential function are 

given, elasticity and plasticity (yield function, flow rule and hardening law) can be deduced 

correspondingly. Conversely, given an elastoplastic model, free and dissipative energies can 

be calculated to verify whether the laws of thermodynamics are respected. It can be found that 

this method has been successfully employed in elastoplastic constitutive models for 

describing soil behaviour (Collins et al.,2010; Coussy et al., 2010; Lai et al., 2016; Li et al., 

2017; Zhang, 2017). 

From yet another perspective, soils are composed of many individual grains and the evolution 

of the granular structure has a significant effect on the behaviour at the macro scale. The 

failure of a specimen is triggered by the slip and the rotation of grains in contact as well as the 

collapse of force-chains. To address these issues, micromechanics-based constitutive models 
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have been formulated to simulate soil behaviour (Chang and Hicher, 2005; Nicot and Darve, 

2005, 2011; Xiong et al., 2017). In all these models, elastic and plastic relations between force 

and displacement are defined at inter-particle contacts and the overall stress-strain relations 

are obtained by integrating the local law onto all particle contacts. To formulate these 

micromechanical models, different assumptions are made between strain and displacement. 

The best fit hypothesis and the Voigt hypothesis are usually adopted for building relations 

between the macro strain and the local displacement (Cambou et al., 2009). Micromechanical 

models based on the best fit hypothesis proposed by Liao et al. (1997) can be found in Chang 

and Hicher (2005), Hicher and Chang (2005, 2007), Yin and Chang (2009a, 2009b) and Yin et 

al. (2009, 2011, 2013, 2014), in which the force increment is calculated from the stress 

increment. These models are also called static hypothesis based models. Other models, called 

kinematic hypothesis based models, in which displacement increment are calculated from 

strain increment, are based on the Voigt hypothesis (Nicot and Darve, 2005, 2011; Misra and 

Singh, 2014; Xiong et al., 2017). 

Although the physical meanings of thermodynamics and micromechanics are attractive for 

geomaterials, few efforts have been made for constructing models based upon the 

combination of these approaches (Zhu and Shao, 2016; Radjai et al., 2017). Recently, Zhu et 

al. (2008) introduced thermodynamics to discrete system based on weak sliding plane concept 

and applied this theory for modelling anisotropic coupled plastic-damage behaviour of 

cohesive geomaterials (Zhu et al., 2010). Misra and Singh (2014) and Misra and Poorsolhjouy 

(2015a) discussed a rate-dependent micromechanical model from the thermomechanical basis 

with kinematic hypothesis. However, the general procedure for constructing a 

thermodynamically consistent micromechanical model for granular soils has not been 

thoroughly addressed, especially considering that energy can be stored at particle contacts. In 

addition, the relation between dissipative energy distribution and material failure plane is also 

not investigated. For granular soils, if we do not consider the deformation of the grain itself, 

the energy can only be stored and dissipated at inter-particle contacts. The energy at the 

macro scale is the summation of the energy at all inter-particle contacts. Therefore, by 
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considering the energy dissipated through friction at the inter-particle contacts during loading, 

one can apply the principles of thermodynamics to micromechanical modelling.  

To answer the question: how to construct a thermodynamically consistent micromechanical 

model, this chapter presents a thermomechanical framework for constructing 

micromechanical models for granular materials, in which elasto-plastic local laws can be 

defined at inter-particle contacts. Within this framework, free and dissipative energies are 

directly defined from force and displacement at the particle contact, based on which the yield 

criterion, the flow rule and the hardening law can be deduced by Legendre transformation. To 

demonstrate the applicability of this thermomechanical framework, on one hand, the static 

hypothesis suggested in the CH micromechanical model (Chang and Hicher, 2005) was 

derived from an energy perspective, which greatly enhanced the understanding of the 

micromechanical models based on this assumption. On the other hand, a thermodynamically 

consistent elasto-plastic micromechanical model has been constructed based on the static 

hypothesis. The model was then calibrated with the energy conservation and dissipation under 

loading analyzed at both micro and macro scales. For simplicity, we focused on dry granular 

materials under isothermal condition. The effective stress concept used in soil mechanics has 

been adopted throughout this chapter. 

2.2 Thermomechanical framework 

2.2.1 Thermodynamic preliminaries  

Thermodynamics with internal variables has been adopted in this study, following the 

concepts elaborated in various studies (Rice, 1971; Ziegler and Wehrli, 1987; Collins and 

Houlsby, 1997; Collins and Hilder, 2002; Houslby and Puzrin, 2007; Li, 2007; Collins et al., 

2010). The first law of thermodynamics states that the changes of internal energy, heat and 

work increments satisfy the following equation  

W Q du                                                            (2.1) 

in which δW is the work increment, δQ is the heat increment and du is the internal energy 

increment. All these thermomechanical variables are defined per unit volume. Note that dx 
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denotes an exact differential while δx denotes an inexact one which represents an infinitesimal 

change of x. The Clausius-Plank inequality, as a form of the second law of thermodynamics 

for a soil element, states that the entropy increment should be non-negative, which can be 

written as  

/ 0d Q T                                                           (2.2) 

where γ is the entropy production increment, η is the entropy density, and T is the absolute 

temperature. Combining Eqs.(2.1) and (2.2), the energy conservation can be rewritten as  

 W du Td T                                                       (2.3) 

The Helmholtz free energy   defined in terms of internal energy, entropy density and 

temperature, can be expressed as 

u T                                                               (2.4) 

Differentiating Eq.(2.4), we obtain  

 d du Td dT                                                       (2.5) 

The dissipative energy increment per unit volume ϖ is defined as 

0T                                                                (2.6) 

which should be non-negative (Collins and Houlsby, 1997). Inserting Eqs.(2.5) and (2.6) into 

Eq.(2.3), the energy conservation relation can be expressed as 

W d dT                                                           (2.7) 

For the isothermal case with dT=0, Eq.(2.7) can be simplified as  

W d                                                             (2.8) 

where the work increment δW is the product of stress and strain increments 

:W d  σ ε                                                            (2.9) 

Inserting Eq.(2.9) into Eq.(2.8), the relation between stress work increment, Helmholtz free 

energy increment, and dissipative energy increment, becomes 

: d d  σ ε                                                       (2.10) 

In this study, only rate independent displacements of soil particles under isothermal condition 

are investigated.  
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2.2.2 Thermodynamics at micro scale 

The Helmholtz free energy increment at inter-particle contact is noted as cd , where 

superscript c is used to represent contact. The micro Helmholtz free energy is a function of 

state variables, e.g. particle displacements. Since the macro energy quantities are expressed 

per unit volume, the macro Helmholtz free energy is calculated as the volumetric average of 

all contact summation, and the relation can be expressed as 

 
1

1 N
c c

c

d d
V

 


  δ                                                   (2.11) 

Similarly, the dissipation increment at the macro scale is the volumetric average of all contact 

summation of the dissipation energy at the micro scale, 

 
1

1 N
c c

cV
 



  δ                                                       (2.12) 

The macro work increment is also the volumetric average of all work increment at inter-

particle contacts (Misra and Singh, 2014) 

 
1

1 N
c c

c

W W
V

 


  δ                                                    (2.13) 

in which, the micro work increment is defined by the product of force and displacement 

increments 

c c cW d  f δ                                                          (2.14) 

The energy conservation of Eq.(2.8) can be expressed by combining Eqs.(2.11), (2.12) and 

(2.13), 

     
1 1 1

1 1 1N N N
c c c c c c

c c c

W d
V V V

  
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   δ δ δ                              (2.15) 

Assuming that energies are conserved at particle contacts, Eq.(2.15) can be satisfied for any 

number of grain-pair interactions, and the equality can be written in a term-by-term manner 

c c cW d                                                          (2.16) 
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Eq.(2.16) cannot be adapted to real particle contact since particles are deformable and kinetic 

energy and heat exchange take place during mechanical loading. For small or infinitesimal 

deformation, the displacement increment can be decomposed into an elastic part and a plastic 

part  

c ce cpd d d δ δ δ                                                       (2.17) 

By substituting Eqs.(2.14) and (2.17) into Eq.(2.16) the micro Helmholtz free energy can be 

formulated as 

   
0

c

c

c c c c c ce cp c c ce c cp c c cp c

d

d d d d d d d


                 

χ

f δ f δ δ f δ α δ f α δ   (2.18) 

in which the back force αc and the dissipative force χc are introduced. From Eq. (2.18), one 

can see the Helmholtz free energy can be decomposed into elastic and plastic parts (Collins 

and Hilder, 2002; Houlsby and Puzrin, 2007), in which the plastic part  2

cp cpd δ  is referred 

to as micro stored energy. When strain hardening occurs, the Helmholtz free energy can be 

decomposed into an elastic part that is equal to the elastic strain energy and the stored energy 

which cannot be recovered during the unloading process and is frozen by plastic hardening. 

The relation can be written as 

   1 2 1 2= +c ce cp ce ce cp cpd d d d d      δ δ                                 (2.19) 

Combining Eqs.(2.16) and (2.19), the micro work can be decomposed into an elastic work 

which is equal to the elastic free energy  

 1

1 =

ce ce

ce ce ce

ce
W d d


 






δ
δ

δ
                                           (2.20) 

and plastic work, which is the summation of the micro stored energy and the dissipation 

energy 

 2

2 =

cp cp c
cp cp c cp cp

cp cp
W d d d

 
  

 
  

 

δ
δ δ

δ δ
                             (2.21) 

Based on Eq.(2.21), the dissipative force and the back force can be defined as 

c
c

cp





χ
δ

 and 
 2

cp cp

c

cp






δ
α

δ
                                          (2.22) 
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From Eq.(2.18), by using Legendre transformation, the yield criterion at the inter-particle 

contacts can be expressed in the dissipative force space by 

 
1

0c c cp c

c
F d 


     χ χ δ                                           (2.23) 

in which λc is a plastic multiplier defined at the inter-particle contact, and the yield function 

can also be formulated in the force space after defining the back force 

    0

c

c c c cF F    
 

χ

f f α f                                              (2.24) 

In the dissipative force space, the associated flow rule is obtained by adopting Ziegler’s 

orthogonality condition (Ziegler and Wehrli, 1987), and the plastic displacement increment 

can be obtained by differentiating Eq.(2.23), given as 

 c

cp c

c

F
 






χ
δ

χ
                                                      (2.25) 

By using the consistency condition and replacing the back force by the inter-particle force, the 

flow rule in the force space can be deduced. It should be mentioned that the obtained flow 

rule can be either associated or non-associated.  

2.2.3 Application of the thermomechanical formulation  

For constructing a thermodynamically consistent model based on micromechanics, the micro-

macro relations and the inter-particle contact law should be defined. For the micro-macro 

relations, a localization operator and an average operator should be given; these relations 

should satisfy the Hill-Mandel condition (Hill, 1963; Mandel, 1971; Geers et al., 2010; 

Nguyen et al., 2011). Additionally, the energy conservation conditions have to be taken into 

account in the local law. The procedure for defining the local law consists of: defining a 

Helmholtz free energy function cd  for elastic and plastic displacements, and a dissipation 

function ϖc which depends on the plastic displacement increment; obtaining the elastic part 

from the free energy by using Eq.(2.20); deducing the back force from the free energy by 

using Eq.(2.22); using Eq.(2.23) to obtain the yield criterion in the dissipative space and then 

using Eq.(2.24) to obtain the yield criterion in the force space; deducing an associate flow rule 
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in the dissipative space by Eq.(2.25); and lastly, differentiating the yield criterion to obtain the 

consistency equation.  

From another perspective, if the elasto-plastic micromechanical model has already been 

constructed, its free energy and dissipation energy can be evaluated by using the inverse of 

the above procedure. Undoubtedly, the dissipation energy increment has to be non-negative. 

In the following section, a micromechanical model based on the thermomechanical 

formulation described above will be constructed, which will demonstrate the applicability of 

this framework for multi-scale modelling. 

2.3 A thermomechanical micromechanical model 

In this section, a micromechanical model has been constructed based on the proposed 

thermomechanical formulation. At first, inter-particle hyper-elasticity and hyper-plasticity are 

addressed in detail. Then, based on the strain tensor, the stress tensor is derived from 

Helmholtz free energy conservation relation. In addition, the static hypothesis is derived from 

the free energy, followed by an analysis of its connection to the Love-Weber micro-macro 

relation. A homogenization scheme is also presented.    

2.3.1 Inter-particle contact law 

Since the macro elastic and plastic behaviours originate from inter-particle contacts, the inter-

particle displacement can be divided into two parts: elastic and plastic. To define elasticity 

and plasticity, a local coordinate system (n, s, t) has been defined, as shown in Figure 1.3, in 

which n is the normal to the contact plane, whereas s and t are orientations within the contact 

plane. The relationship between local and global coordinates can be defined by the angles β 

and γ, which can be expressed as by Eq.(1.31). With this relation, the quantities defined at 

inter-particle contacts can be expressed globally. 

1) Inter-particle hyperelasticity  

The hyper-elastic part is the means to guarantee the granular material obeys the first law of 

thermodynamics. The behaviour of the hyper-elastic granular material can be defined by the 
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Helmholtz free energy function (Collins et al., 2010; Misra and Singh, 2014). The Helmholtz 

free energy potential at the micro scale can be defined as 

     
2 21 1

2 2

c c c ce c ce

n n r rk k                                           (2.26) 

where c

nk  and c

rk  are stiffness in normal and tangential directions. By differentiating Eq.(2.26) 

with respect to displacements, the elastic inter-particle contact force-displacement relation can 

be obtained  

c c ce

i ij jf k                                                           (2.27) 

where 
c

ijk  is the elastic stiffness with the same tangential behaviour for each particle contact, 

given by Eq.(1.33).  

2) Inter-particle hyperplasticity 

Irrecoverable displacement between grains in contact during loading requires the mechanism 

of plasticity to be introduced at the local level. To define the hyper-plastic part of the local 

law, a dissipative energy potential at the micro scale should be given. However, the absence 

of experimental results at this scale makes it difficult to formulate this local law. Considering 

that the model proposed by Chang and Hicher (2005) has the ability to simulate with accuracy 

the soil response to various mechanical loadings and that only a few parameters need to be 

calibrated by elementary tests, its inter-particle plastic equations will be retained and its 

energy dissipation will be evaluated by the inverse procedure presented in section 2.2. 

For examining the hyper-plasticity condition, the plastic work and the dissipative energy 

should be calculated. According to its definition in Eq.(2.21), the micro-scale plastic work can 

be written as 

cp c cp c cp

n n r rW f d f d                                              (2.28) 

From the expression of the yield criterion in Eq.(1.35), we can write its partial derivatives as  
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               (2.29) 
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Since an associated flow rule has been adopted in the tangential direction, while a non-

associated flow rule expressed by Eq.(1.40) has been adopted in the normal direction, the 

partial derivatives of the potential function can be expressed as  

c c

s s

G F

f f

 


 
, 

c c

t t

G F

f f

 


 
, 

c c c c

n r s t

G G G G
D D D

f f f f

      
      

      
                (2.30) 

where G is the potential function defined at the inter-particle contacts. Additionally, the 

plastic displacement increment can be calculated by  

cp c

i c

i

G
d

f
 





                                                   (2.31) 

Combining Eqs.(2.29) and (2.30), we obtain 

2 2

1
c c c

r s t

G G G

f f f

     
     

     
                                         (2.32) 

Thus from Eqs.(2.31) and (2.32) 

c cp

rd                                                       (2.33) 

Inserting the dilatancy relationship assumed by Eq.(1.40) and Eq.(2.33) into Eq.(2.28), we 

obtain 

tan tan
c

cp c cp c cp c cp c cp c c cp c c cpr
i i n n r r n r d r r n d rc

n

f
W f d f d f d f d f d f d

f
        

  
         

  
 (2.34) 

The normal force c

nf  at particle contact is always compressive and, therefore, positive; tan c

d

can be proved to be positive from Eq.(1.41) and cp

rd  being the tangential plastic increment is 

also positive, as shown in Eq.(1.36). Therefore, the plastic work increment calculated from 

Eq.(2.28) is non-negative. Thus, the dissipation energy increment is non-negative at both 

micro and macro scales, expressed as   

 
1

= tan 0

1
= 0

c cp c c cp

n d r

N
c c

c

W f d

V

   

 


  






 δ
                                    (2.35) 

As shown in Eq.(2.21), the stored energy is a part of the plastic work increment and is a 

function of the state variables, so the integration of the stored energy increment over a closed 
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loading loop should be equal to zero. The stored energy increment should be positive for 

loading and negative for unloading condition (Collins and Hilder, 2002; Li, 2007). However, 

the plastic work is not integrable and is always positive; it prevents negative stored energy 

increment to exist. Consequently, the stored energy increment is equal to zero and the 

Helmholtz free energy depends only on the elastic displacement increment, which is 

consistent with the Helmholtz free energy potential given by Eq.(2.26) 

1 2 1= ( )c ce cp ce ced d d d     δ                                         (2.36) 

Thus, the elastic work increment is equal to the free energy 

 1

ce c ce ce ce

i iW f d d    δ                                           (2.37) 

From Eq.(2.35), the second law of thermodynamics is satisfied at the macro and micro scales, 

whereas Eq.(2.36) and Eq.(2.37) satisfy the condition of energy conservation. Hence, we can 

say that the micromechanical model is thermodynamically consistent. 

2.3.2 Micro-macro relations  

1) Strain and stress tensors  

The micro-macro relations connect the local force and displacement to the overall stress and 

strain. For the relation between strain and relative displacement at contacts, the formulation 

based on the best-fit hypothesis suggested by Liao et al. (1997) has been adopted, expressed 

by Eq.(1.12). According to the definition of the strain energy, the stress can be derived as  
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1 1 1

1 1 1
e c ce ce ceN N N
ij i c c ci i

ij i i je ce e e
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It is found, therefore, that the stress is obtained by integrating the contact forces over the 

volume, which is consistent with the Love-Weber formula.  

2) Localization and averaging operators  
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The stress tensor defined in Eq.(2.38) can be seen as an averaging operator; in addition, a 

localization operator is needed. From the micro-macro relations defined by Eqs.(1.12) and 

(2.38), however, the local variables are difficult to obtain since there is an innumerable 

number of contacts in the representative element volume. A localization operator, which can 

be deduced from the strain energy conservation and the complementary energy conservation, 

is needed to integrate the local law. Based on the thermomechanical analysis presented 

previously, the localization operator can be obtained by the Helmholtz free energy combined 

with the Gibbs free energy. The Helmholtz free energy at the macro scale is defined by the 

strain, ψ(ε), which is also called strain energy. The complementary energy, known as Gibbs 

energy, ϕ, can be defined by the following Legendre transformation of the Helmholtz free 

energy 

   :  σ σ ε ε                                                  (2.40) 

From the definition of the Helmholtz free energy and the Gibbs free energy, stress and strain 

can be expressed as 

 ij

ij

ij

 








, 

 ij

ij

ij

 








                                           (2.41) 

Similarly, the Helmholtz free energy at the micro scale is defined by the displacement, which 

can be used to compute the Helmholtz free energy at the macro scale, as shown in Eq.(2.11). 

Additionally, the Gibbs energy can also be integrated from the micro to macro scales, 

expressed as  
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Thus, force and displacement at the micro scale can be defined as  

 c c

c

i c

i

f
 







, 

 c c

c

i c

i

f

f








                                         (2.43) 

According to the previous discussion, the stored energy increment is equal to zero at the 

micro scale. Therefore, the Helmholtz free energy and the Gibbs free energy at the macro 

scale are equal to the volumetric average of the free energy at the micro scale:   
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By inserting Eqs.(1.12) and (2.38) into Eq. (2.44), we obtain the localization operator 

expressed in Eq.(1.17) , which is referred to as the static hypothesis since the local force is 

calculated from the global stress as compared with the kinematic method in which the 

displacement is calculated from the strain (Nicot et al., 2005; Nicot and Darve, 2011; Misra 

and Singh, 2014, Xiong et al., 2017).  

Since the derivation of the static hypothesis is based on free energy, the forces calculated 

from the stress increments are elastic. The plastic part of the inter-particle contacts implies the 

existence of an unbalanced force after the integration of the Love-Weber formula. Therefore, 

to make the global stress and the local force consistent, an iteration scheme is needed. The 

iterations force the first plane reaching the limit state to have the maximum dissipative energy, 

which will be demonstrated by the simulation of triaxial tests in Section 2.4. 

2.3.3 Homogenization method  

As demonstrated previously, the summation over all the contacts, for a given function Fc 

defined at inter-particle contact (any variable at contact level), should be performed. But, too 

many particle contacts in a representative elementary volume make it impossible to perform 

this summation. In this model, the integration method suggested in the CH model was adopted.  

2.3.4 Implementation scheme 

If the loading is under strain or mixed mode control, as shown in Figure 2.1, the linearization 

technique proposed by Bardet and Choucair (1991) is useful for obtaining the stress increment 

from which an elastic predictor can compute the displacement increment, then the stress can 

be obtained through the integration of the local law. To assure that the static hypothesis is 

consistent with the Love-Weber formula, an iteration process is needed until the unbalanced 

force increments dip below a given tolerance. Implicit or explicit integration methods, such as 

the closest point projection method or the cutting plane algorithm, can be adopted for 
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implementing the local law. This important point has not been well addressed in the previous 

version of the CH micromechanical model. The details of the implementation scheme for a 

micromechanical model based on static hypothesis will be discussed in detail in Chapter 4.  
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Figure 2.1 Implementation procedure of a micromechanical model based on static hypothesis 

2.4 Numerical validation of the energy conservation 

The thermodynamically consistent micromechanical model can be calibrated by simulating 

drained triaxial tests on loose and dense Hostun sand samples. The parameters used in this 

model can be divided into two categories: either macro or micro parameters, as shown in 

Table 2.1, in which d50 is taken as the diameter of the particle. The mean particle size of the 

tested Hostun sand is d50=1.3mm. The inter-particle elastic constant kn0=80N/mm was 

calibrated from an isotropic compression test. The macro parameters corresponding to the 

position of the critical state line in the e-logp' plane are: λ=0.06, pref =0.1MPa and eref =0.81. 

The inter-particle contact friction angle is c

 =33º. The ratio 
pRk =0.4 representing the plastic 

stiffness was calibrated based on the stress-strain curves. Both experimental and simulated 

results are presented in Figure 2.2 for both loose and dense samples of Hostun sand. All the 

comparisons demonstrate a good performance of the model in describing the typical 

mechanical behaviour of a granular material. 
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Table 2.1 Parameters used in micromechanical model for Hostun sand 

Macro Micro 
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Figure 2.2 Experimental data and simulations for Hostun sand: triaxial drained testes (a) 

deviatoric stress versus axial strain for loose sand, (b) void ratio versus axial strain for loose 

sand, (c) deviatoric stress versus axial strain for dense sand, (d) void ratio versus axial strain 

for dense sand. (experimental data from Biarez and Hicher, 1994) 

The force path at the micro level depends on the contact orientation, as shown in Figure 2.3(a). 

The 54° contact orientation contained the maximum force ratio and was the first one to reach 

the maximum strength condition at the micro scale. This angle comes closest to the 

macroscopic failure plane angle (45°+ϕμ/2=61.5°) among the selected angles of all the 
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integration points. Figure 2.3(b) shows clearly that the 54° direction underwent large 

displacement. 
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Figure 2.3 Local behaviour of dense sand ( 0 800p  kPa): (a) tangential force versus normal 

force; (b) tangential force versus tangential displacement 
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Figure 2.4 Total work and plastic work of dense sand ( 0 800p  kPa): (a) total work in macro 

scale and micro scale during loading, (b) plastic work evolution for various integration 

directions 

As shown in Figure 2.4(a), the work input at the macro scale is equal to the volumetric 

average of the total work at the micro scale, which indicates that the energy dissipation is 

consistent at the two scales. At the micro scale, the evolution of the plastic work shows that 

the local plastic work is the highest in the 54° contact orientation, as shown in Figure 2.4(b). 

Figure 2.5(b)-(e) shows the distribution of the dissipative energy along each direction during 
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shearing. The maximum micro dissipation energy was found in the 54° direction, in 

agreement with the intensity of the tangential displacement in that direction. The direction of 

the failure plane corresponds to the direction of the maximum dissipation.  

The isotropic compression stage was also simulated to evaluate the free energy in the 

micromechanical model. As shown in Figure 2.5(a), the increase of the free energy at micro 

scale is isotropic, whereas the dissipation energy is always zero. This is in agreement with the 

fact that the Helmholtz free energy depends only on elasticity but not on back force.  
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Figure 2.5 Free energy and dissipation energy evolution at the micro scale of dense sand 

under drained compression (
0 0.549e  , 0 800p  kPa): (a) free energy under isotropic 

compression, (b) dissipation energy at axial strain 2.14%, (c) dissipation energy at axial strain 

4.94%, (d) dissipation energy at axial strain 10.14%, (e) dissipation energy at axial strain 20% 

The evolution of the dissipation energy at the micro level under undrained triaxial conditions 

was also investigated by imposing the condition of a constant volumetric strain during loading. 

Figure 2.6(a) shows that at small strain levels, all the directions had a similar degree of 

dissipation. With the increase of the shearing strain, the maximum dissipation developed also 

in the 54° direction, as shown in Figure 2.6(b)-(e).  
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Figure 2.6 Dissipation energy evolution at the micro scale of loose sand under undrained 

compression (
0 0.9e  , 

0 800p  kPa): (a) dissipation energy at axial strain 1%, (b) dissipation 

energy at axial strain 3%, (c) dissipation energy at axial strain 6%, (d) dissipation energy at 

axial strain 12%, (e) dissipation energy at axial strain 20% 

2.5 Concluding remarks  

This chapter has presented a thermomechanical framework for micromechanical constitutive 

models of elastic-plastic granular materials, which can be applied to construct 

thermodynamically consistent models and to re-examine the existing micromechanical 

models, more specifically to clarify the assumptions in the derivations of the model suggested 

by Chang and Hicher (2005). The main achievements and conclusions of this chapter are as 

follow: 

1) A thermomechanical framework for elasto-plastic micromechanical models has been 

presented. Based on conventional thermodynamics, energy conservation, free energy and 

dissipation potentials were formulated at the micro scale. Elasticity and plasticity at inter-

particle contacts could be deduced from the two energy functions. The micro state 

variables, elastic and plastic displacements, were used to formulate the micro Helmholtz 
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free energy and the dissipation energy. Back force and dissipative force were defined 

from energy functions. The relationship between elastic work, free energy, plastic work, 

dissipation energy and stored energy were analysed at the micro scale. By using Legendre 

transformation, the micro yield criterion in the dissipative space could be deduced from 

the dissipative potential. This criterion could also be transferred into the force space after 

the back force was defined. Accordingly, the micro flow rule and the hardening law could 

be deduced from the dissipative potential. 

2) Based on the thermomechanical formulation, a thermodynamically consistent 

micromechanical model for granular soils was constructed. The local laws of elasticity 

and plasticity, the micro-macro relationships, the micromechanical integration method 

and the implementation scheme were presented. The plastic work at the micro scale was 

computed, from which the micro stored energy increment was shown to be zero, i.e., all 

the plastic work is dissipated and the elastic work is equal to the free energy. The 

dissipation energy proved to be greater than zero, which shows that the micromechanical 

model satisfies thermodynamics. The validity of the static hypothesis adopted in this 

micromechanical model was also demonstrated through the expressions of the Helmholtz 

free energy and of the Gibbs free energy. The relation between the static hypothesis and 

the Love-Weber formula has also been analysed and an unbalanced iteration process was 

required for their consistence.  

3) Isotropic compression and triaxial tests were simulated by the micromechanical model in 

order to analyse the energy conservation and dissipation during mechanical loading. The 

total input work is conserved both at the micro and macro scales. At the isotropic 

compression stage, the material remained in the elastic domain and, as a consequence, the 

plastic work in all directions was equal to zero. However, it increased significantly in the 

direction of 54  under shearing, whereas other directions showed a significantly smaller 

amount of plastic work. The micro free energy developed isotropically under isotropic 

loading, whereas the micro dissipation energy reached its maximum value in the 54  

direction under shearing. The maximum micro dissipation energy was in agreement with 
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the static hypothesis which, if one direction reaches the limit state, predicts a global 

failure at the macro scale.   
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CHAPTER 3 MULTISCALE MODELLING OF UNSATURATED 

GRANULAR SOILS BASED ON THERMODYNAMIC PRINCIPLES 

3.1 Introduction 

The slope instability largely caused by precipitation and infiltration is strongly related to the 

behaviour of unsaturated granular soils (e.g., Ng and Shi, 1998; Cho and Lee, 2001; Fredlund 

et al., 2012). Unsaturated granular soils are three-phase granular materials composed of soil 

particles, water and air. Thus, the macroscopic behaviour of unsaturated granular soils is 

highly dependent on the characteristics of the components and on their interactions. Usually, 

solid particles and fluid are assumed to be incompressible, conversely air is compressible. 

Three interaction pairs, i.e. the interactions between solid and fluid, solid and air, as well as 

fluid and air exist. The cause of these interactions is typically understood from the capillary 

forces exerted by the water menisci between particles. The magnitude of the capillary forces, 

which relates to the degree of saturation, can cause significant changes in volume, shear 

strength and hydraulic properties of granular soils (Gens, 2010; Sheng, 2011).  

For simulating the behaviour of unsaturated soils, phenomenological models have been 

developed in the last three decades (Alonso et al., 1990; Wheeler and Sivakumar, 1995; Cui 

and Delage, 1996; Sheng et al., 2004; Gens, 2010; Sheng, 2011; Fredlund et al., 2012). The 

earlier developments tended to adopt net stress and suction as independent stress variables 

and to extend the available elastoplastic models for saturated soils by introducing suction-

dependent compressibility and yield surface (for instance, Alonso et al., 1990; Cui and Delage, 

1996; Sheng et al., 2004). One result of this approach is the Barcelona Basic Model (BBM) 

suggested by Alonso et al. (1990), in which a suction-dependent loading collapse curve (LCC) 

was introduced based on the modified Cam-clay model. Alternatively, many attempts have 

been made to define an effective stress in order to represent the deformation of the soil 

skeleton for unsaturated soils (Bishop and Blight, 1963; Zhao et al., 2010; Buscarnera and 

Einav, 2012; Li et al., 2017). By using the effective stress concept, the hydraulic hysteresis 
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phenomenon and the transitional behaviour from the unsaturated to the saturated state can be 

effectively captured. 

From a physical point of view, the formation of water menisci located between neighbouring 

grains produces capillary forces on the grains. Based on this observation, the CH 

micromechanical framework for saturated granular soils was extended to study the hydro-

mechanical behaviour of unsaturated granular materials (Hicher and Chang, 2007). In this 

model, the capillary forces between inter-particle contacts are assumed to be dependent on the 

degree of saturation and integrated with the same homogenization method as for the 

mechanical forces. The Love-Weber formula that was adopted for the soil skeleton was also 

used to sum the capillary forces as a tensor-type capillary stress, meanwhile the same static 

hypothesis based localisation operator was used in the hydraulic part (Hicher and Chang, 

2007; Scholtès et al., 2009). However, recent DEM simulations show that it is questionable to 

use the Love-Weber formula to determine a capillary stress tensor (Duriez and Wan, 2016; 

Chalak et al., 2017; Wang et al., 2017). In addition, the relation between the capillary force 

and the degree of saturation was given by an empirical formulation with several ad hoc 

parameters.  

It should be mentioned that the capillary stress tensors were suggested as a stress state 

variable to replace the suction to represent the effect of water menisci since there are some 

limitations in using the suction (Li, 2003; Hicher and Chang, 2007; Lu, 2008; Scholtès et al., 

2009; Duriez and Wan, 2016; Jiang et al., 2017). One of the limitations is that the microscale 

capillary forces are directional vectors which could not be always globally described by the 

scalar quantity suction. For instance, an initially isotropic unsaturated granular soil becomes 

anisotropic under shearing, thus the distribution of the capillary forces may also be 

anisotropic. However, it is difficult to measure the tensor-type capillary stress in laboratory 

tests and currently it is only possible to quantify it in discrete element simulations by using 

the Young-Laplace equation to describe the behaviour of capillary bridges in the pendular 

regime (Scholtès et al., 2009; Chalak et al., 2017; Wang et al., 2017). 
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Since the thermodynamics with internal variables (Houlsby and Puzrin, 2007) forms a 

coherent framework within which constitutive relations can be developed with few ad hoc 

assumptions and procedures, various studies have produced constitutive models which are 

thermodynamically consistent (Li, 2007; Coussy et al., 2010; Dangla and Pereira, 2014). By 

analysing the work input on an unsaturated representative volume element, the effective stress 

could be derived and conjugated to the deformation of the solid skeleton (Houlsby, 1997; 

Zhao et al., 2010; Coussy et al., 2010; Li et al., 2017). However, current thermodynamically 

consistent models for unsaturated granular soils are phenomenological (Sheng, 2004; Coussy 

et al., 2010; Li et al., 2017). 

Given the described limitations of current constitutive relations for unsaturated granular soils, 

this chapter aims to construct a micromechanical model for unsaturated granular soils based 

on thermodynamic principles. For this purpose, the thermodynamic approach with internal 

variables has been developed to multiscale modelling of unsaturated granular soils by 

considering that the only source of energy dissipation is through friction at the inter-particle 

contacts during loading. The energy conservation at the micro and macro scales is first 

presented, before discussing the separation of the energy into a mechanical and a hydraulic 

part. The thermodynamically consistent micromechanical model constructed in Chapter 2 is 

adopted for the mechanical deformation of the solid skeleton, while a particle size dependent 

potential function is introduced for the hydraulic part. 

3.2 Review of application of thermodynamic principles to unsaturated granular soils 

At the continuum level, thermodynamic principles involving internal variables have been 

applied to construct constitutive relations for partially saturated granular soils (Houlsby, 1997; 

Zhao et al., 2010; Zhang, 2016; Li et al., 2017). In this study, the following assumptions used 

in these models are adopted: (1) solids and water are incompressible; (2) the RVE is subjected 

to small deformation; (3) capillary forces represent the effect of interactions between the 

components. For simplicity, this study considers only the RVE under iso-thermal boundary 

condition, as shown in Figure 3.1. 
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Figure 3.1 RVE of unsaturated granular soil as a closed thermodynamic system 

3.2.1 The rate of work input 

There are several derivations of work input in literature, each of which has the purpose of 

establishing the work conjugacy between effective stresses and strains (for instance, 

Hassanizadeh and Gray, 1980; Lewis and Schrefler, 1987; Houlsby, 1997; Sheng et al., 2004; 

Li, 2007; Coussy et al., 2010; Zhao et al., 2011; Li et al., 2017; Jiang et al., 2017). In this 

subsection, we will follow the formulation suggested by Houlsby (1997) with the tensor 

notations used by Zhang (2016). After denoting the porosity of RVE as n and its degree of 

saturation as Sr, the volume of solid, water and air can be expressed as 1-n, nSr and (1-Sr)n, as 

shown in Figure 3.2. At the continuum scale, the total stresses in the RVE originate from the 

solid stress s, from the air pressure ua, from the water pressure uw and from the water-air 

interactions T. 

Water pressure: 

Air pressure: 

Stress in soil grain: 

Average stress in 

contractile skin: 

s

au

wu

T

Solid volume: 

Water volume: 

Air volume: 

1 n

rS n

 1 rS n

 

Figure 3.2 Total stresses in a RVE of unsaturated granular soils (figure from Zhang, 2016) 
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The total stress in the RVE can be obtained by adding the stresses in the described four 

components, expressed as 

   1 1r w r an S u S u n       σ I s T                                      (3.1) 

Similarly, the density of the RVE can be written as: 

   1 1r w r a sn S S n                                                (3.2) 

in which s , w  and a  are densities of the solid, water and air. Using the expressions of 

Eqs. (3.1) and (3.2), the equilibrium equation for the RVE can be given as   

0  σ g                                                           (3.3) 

where g is the gravitational acceleration vector. 

The mass balance equations for solid, water and air can be expressed as 

   1 1s s

V A

d
n dV n dA

dt
       v n                                         (3.4) 

w r w r

V A

d
nS dV nS dA

dt
     wf n                                            (3.5) 

   1 1a r a r

V A

d
n S dV n S dA

dt
       af n                                   (3.6) 

in which v is the velocity vector for the solids; wf  and af  are the average velocities of the 

water and air phases; V is the volume of the RVE and A is the bounding area of the RVE; n is 

the outward normal to the surface A, as shown in Figure 3.1. Applying the Gauss divergence 

theorem, and noting that both s  and w  are constant (under the assumption of the 

incompressibility of the solids and water), and making use of the fact that V is arbitrary, we 

obtain  

1

n

n
 


v                                                           (3.7) 

r

r

S n

S n
   wf                                                         (3.8) 
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 1

ar

r a

S n

S n




    


af                                                 (3.9) 

The power input for the RVE can be written as: 

    

    

1 1

                1 1

r w r a

V A

r w r a s

V

WdV n S u S u n dA

n S S n dV



  

            

      

 



w a

w a

f f v s v T n

f f v g
         (3.10) 

in which the four terms included in the surface integral are the power input driven by water, 

air, solids and contractile skin, whereas the three terms included in the volume integral are 

power input due to gravitational forces in connection with the mass flow of water, air and 

solids. Inserting Eqs. (3.1) and (3.2) into Eq. (3.10), we obtain 

      

      

1

                1

r w r a

V A

r w r a

V

WdV n S u S u dA

n S S dV



  

           

       

 



w a

w a

f v f v v σ n

f v f v v g
           (3.11) 

It is assumed that the spatial variations of n and Sr are negligible and that the seepage 

velocities of water and air phases can be defined as: 

    ;  1r rnS n S    w w a aw f v w f v                             (3.12) 

Substituting Eq. (3.12) into Eq. (3.11) leads to: 

   w a a w a a

V A V

WdV u u dA dV              w ww w v σ n w w v g          (3.13) 

Eq. (3.13) can be written in the local form by using the divergence theorem: 

     w w a a w aW u u u u                w a w aw g w g v g w w v σ   (3.14) 

Eq. (3.14) can be simplified by inserting the equilibrium equation of Eq. (3.3): 

    :w w a a w aW u u u u             w a w aw g w g w w σ v          (3.15) 

The gradients of seepage velocities of water and air phases in Eq. (3.15) can be replaced by 

inserting Eqs.(3.7), (3.8) and (3.9) into Eq. (3.12) and considering  tr  v ε , given as 

       tr ;  1 tr 1 a
r r r r r

a

nS S nS S n S



         w aw ε w ε               (3.16) 



82 

By substituting Eq. (3.16) into Eq. (3.15), and given that   v ε , the work input of RVE can 

be obtained  

   1 :e e a
w a r a r a r

a

W u u n S u nsS u sS





          w aw w σ I I ε            (3.17) 

in which e

w w wu u    g  and e

a a au u    g  are gradients of excess pore pressure; s is 

the matric suction computed by a ws u u  . Eq. (3.17) indicates that several work-conjugate 

pairs of external variables exist. The first two terms are the relative flow velocities and are 

work conjugated with the gradients of excess pore pressures. The third term demonstrates that 

the smeared air pressure  1 r an S u  is conjugated with the volumetric strain of air a a  . 

The fourth term is the smeared suction ns  work-conjugated with the rate of the degree of 

saturation 
rS . The last one displays that the quantity which is work conjugate with the strains 

is a stress term 
a ru sS σ I I . This term is an expression of the effective stress tensor 

net

a r ru sS sS     σ σ I I σ I                                         (3.18) 

which corresponds to Bishop’s expression (1963) of the effective stress with χ=Sr. It should 

be mentioned that Eq. (3.18) does not imply that unsaturated soils can be simply described by 

Bishop’s effective stress tensor with χ=Sr, since it states that the mechanical behaviour of an 

unsaturated soil is also governed by the suction (Houlsby, 1997).  

For rate-independent problems, the seepage velocities of the water and air phases are 

negligible, so the first two terms of Eq. (3.17) become zero. During conventional 

experimental loadings, air pressure is usually equal to atmosphere pressure, thus the air 

pressure can be further assumed to be constant, which implies that the third term of Eq. (3.17) 

can be neglected. With these hypotheses, Eq. (3.17) can be simplified as 

: rW nsS  σ ε                                                      (3.19) 

in which the first term represents the mechanical work input due to the deformation of the 

solid phase and the second term takes into account the hydraulic work input by means of 

changes in the water content (Houlsby, 1997; Zhang, 2016). 
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3.2.2 The Helmholtz free energy potential function 

As discussed by Coussy et al. (2010), the free energy can be split into three parts: the 

recoverable elastic energy stored in the soil skeleton, the locked-in energy stored in the soil 

skeleton during an irreversible mechanical process and the hydraulic energy stored in the soil-

water interface. In this study, we further assume that the locked-in energy is negligible and 

thus the Helmholtz free energy function is reversible and only depends on the elastic strain 

and on the degree of saturation. As suggested by Buscarnera and Einav (2012), this function 

can be further decomposed in a mechanical part and a hydraulic part, expressed as: 

     ,e M e H

r rd S d d S   ε ε                                        (3.20) 

where d  is the differential of the Helmholtz free energy; Md  represents the free energy 

held by the soil skeleton; Hd  is the free energy stored in the water menisci. The mechanical 

part M  is given as: 

 
1

: :
2

M e e e e eK G  ε ε ε e e                                         (3.21) 

in which K and G are the effective bulk and shear moduli, whereas the elastic deviatoric strain 

is defined as 
1

3

e e e

ij ij ij kke     . In addition, a quadratic form of the hydraulic part, expressed as 

   
21

1
2

H

r w rS K S                                                (3.22) 

was compared with a logarithmic form: 

   ln 1H

r w r rS K S S                                              (3.23) 

where wK  is a retention curve parameter associated with the value of the air entry suction 

(Buscarnera and Einav, 2012). It was found that the logarithmic form is closer to the 

experimental data, whereas they both share the same property of zero suction 0s   at a fully 

saturated state 1rS  . 

Another direction for defining a free energy function is to analyse the energy of the 

constructed constitutive model. For instance, based on the analysis of the work input equation, 
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Sheng et al. (2004) suggested a stored energy potential under triaxial loading condition, given 

as 

 
1

 or 
2

p p p

c v I r D rd p d ns dS ns dS                                    (3.24) 

where 
cp  is the pre-consolidation pressure; 

Is  and 
Ds  are the suction increase and decrease 

during loading; p

vd  is the plastic volumetric strain increment; p

rdS  is the plastic increment of 

rS .  

3.2.3 The dissipative rate function 

Since it is difficult to define a dissipative function to incorporate the frictional behaviour of 

granular soils, researchers attempted to construct constitutive models and then proved them to 

satisfy the thermodynamic principles. For example, to verify the satisfaction of the second 

law of thermodynamics of the constitutive models constructed by Sheng et al. (2004), 

dissipative rate functions were deduced. Sheng et al. (2004) obtained a dissipation function 

expressed as 

   

   

2
2 2

2
2 2

1
0

2

p p

v

c

p p

v

M
d d

p
M

d d





 




 




 



                                     (3.25) 

where M and ζ are model parameters, pd   is the increment of deviatoric plastic strain. 

Similarly, Coussy et al. (2010) derived the dissipative rate function of the well-known 

Barcelona Basic Model (BBM), given as 

  0 0 0B

sd p p p p                                           (3.26) 

in which dλ is the plastic multiplier thus it is always positive; sp  is the tensile strength which 

is a function of Sr; pB is the extended Bishop’s stress which is always less equal to the pre-

consolidation pressure 
0p . Therefore, the dissipative energy is always positive or null.  
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Given the difficulties in defining a dissipative rate function, the CH micromechanical model 

(Chang and Hicher, 2005) is modified to describe the deformation of the skeleton and it is 

proved that this model satisfies the thermodynamic principles, as described in Chapter 2. 

3.3 A thermomechanical model for unsaturated granular soils 

Since the deformation of a soil specimen originates from the relative displacement and 

rearrangements at the inter-particle contacts, the energy is dissipated and stored between these 

contacts. Given these considerations, it seems reasonable to construct a micromechanical 

model which is thermodynamically consistent at both the inter-particle contact and the 

representative volume levels. 

3.3.1 A multiscale thermodynamic framework 

3.3.1.1  Macroscopic energy conservation  

In the following subsections, the aforementioned assumptions that soil particles and water are 

incompressible and that relative movement between grains and water menisci can be 

neglected, are also adopted. Additionally, the rate of work input, Eq.(3.19), introduced by 

Houlsby (1997) is adopted. 

These assumptions imply that the dissipation related to the change of saturation is considered 

as negligible. In other words, the hydraulic energy appears only in the formulation of the 

Helmholtz free energy. Generally, the hyper-elastic expression is based on two kinematic 

state variables, i.e., the macro strain and the degree of saturation, and can be decomposed into 

two additive parts, as described by Eq. (3.20). In comparison, the dissipation energy 

increment is assumed to be a homogeneous function of degree 1 in terms of the increment of 

plastic strains: 

    0p  ε ε                                                  (3.27) 

By substituting the work input Eq.(3.19), the Helmholtz free energy function Eq. (3.20) and 

the dissipative rate function Eq. (3.27) into the energy conservation δW = dψ + ϖ, one can 

obtain 
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Since Eq. (3.28) is satisfied for the whole representative volume, the relationship between ns 

and the degree of saturation is given by: 

 H

r

r r

S
ns

S S

 
   

 
                                              (3.29) 

And the effective stress can be obtained by: 

 e

e


 



ε
σ

ε
                                                     (3.30) 

3.3.1.2 Micro-macro energy relations 

In order to derive the inter-particle contact law from thermomechanical considerations, the 

relations between the work input, the free energy and the dissipation energy at the micro and 

macro scales should be constructed. To this purpose, the volumetric techniques for relating 

energy at different scales used by Chang and Ma (1990) and Misra and Singh (2015) have 

been adopted. The macro energy quantities are assumed to be volumetric averages of micro 

energy quantities 
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cV
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

                         (3.31) 

in which c is the interparticle contact defined as contacts between particles with or without the 

presence of liquid bridges; N is the number of particle contacts in a volume V of RVE. 

Table 3.1 Micro-macro relations of energetic quantities 

Work input Helmholtz free energy Dissipative energy 
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Since the strain tensor can be calculated from the displacements at the inter-particle contacts, 

the displacement at the microscale level should be considered as an internal variable. Its 

work-conjugate is then the inter-particle contact force. According to experimental studies and 

analytical theories that are consistent with the Young-Laplace equation for capillary bridges 

between spheres of equal radii, capillary bridge forces depend on the capillary bridge volume 

and the distance between two particles, hence the two quantities can be used as hydraulic 

internal variables at the microscale. The relations of the work input, Helmholtz free energy 

and dissipative energy at the microscale and at the macroscale are shown in Table 3.1. 

3.3.1.3 Microscopic energy conservation 

In comparison to the macroscopic mechanical free energy that depends only on elastic strain, 

the microscopic mechanical elastic work input is equal to the microscopic mechanical 

Helmholtz free energy, expressed as 

 
=

cM ce

cMe c ce cM ce

i i ce
W f d d


  


 



δ
δ

δ
                                (3.32) 

in which δce is elastic displacements at the interparticle contacts. Also at the micro scale, the 

plastic work input is equated to the dissipative energy, since the free energy does not depend 

on plastic displacements 

( )
=

cM cp
cMp c cp cM cp

i i cp
W f d


  


 



δ
δ

δ
                               (3.33) 

where δcp is plastic displacement at the interparticle contacts.  

Given the capillary bridge volumes and the distances between particles, the capillary bridge 

forces can be calculated. Therefore, a potential expression for the hydraulic work input can be 

given as 

cH cap cap cap cap

d vW f f v                                                (3.34) 

in which cap  is the distance between two particles; 2/cap capv V r  with capV  being the 

capillary bridge volume and r  is the mean radius of particles which is a material constant; 

cap

df  and cap

vf  are capillary bridge forces due to the change of the particle distance and of the 
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capillary bridge volume. Based on the adopted hypothesis that the change of amount of water 

will not dissipate the energy, the microscopic hydraulic work input is hence equal to the 

microscopic hydraulic free energy, given by 

( , ) ( , )
( , )

cH cap cap cH cap cap
cH cH cap cap cap cap

cap cap

V V
W d V d dV

V

   
   



 
  

 
       (3.35) 

Substituting Eqs.(3.32), (3.33), (3.34) and (3.35) into the energy conservation δWc = dψc + ϖ c 

at the microscale, we obtain 
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Since Eq.(3.36) is satisfying for any interparticle displacement, capillary bridge volume and 

particle distance, it follows that  
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It should be noted that there is no available hydraulic free energy function ( , )cH cap capV   for a 

liquid bridge between two spherical particles of equal size in the literature. From an 

experimental perspective, measuring this hydraulic energy function is particularly difficult 

because the hysteresis in the contact angle arises from surface roughness and heterogeneity. 

Since the geometry of a steady capillary bridge surface can be described by the Young-

Laplace equation, the hydraulic free energy ( , )cH cap capV   can be obtained by solving 

numerically the Young-Laplace equation with prescribed capillary bridge volume and particle 

distance. Because the numerical integration of the Young-Laplace equation for various 

capillary bridge volumes and particle distances is time-consuming, a simplified method to 

define the hydraulic free energy at the microscale will be used in the following section. 

The procedure for constructing micromechanical models following the described multiscale 

thermomechanical framework include: (1) defining microscopic Helmholtz free energy 

potentials for both mechanical part and hydraulic part, and the dissipative rate function for the 

mechanical part; (2) deriving elastic/plastic relations from the energy potentials (it is worth 

mentioning that the Ziegler’s orthogonality condition (Houlsby and Puzrin, 2007), according 
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to which the dissipative force is outward normal to the dissipation surface, has been adopted 

as a way of relating the dissipative variables to the dissipation potential, and to deduce the 

interparticle yield criterion and flow rule from the microscopic dissipative rate function; (3) 

establishing the micro-macro relation of strain in terms of the interparticle displacements; (4) 

deriving the effective stress tensor which is the work conjugate to the total strain tensor. In the 

following subsections, a micromechanical model will be constructed as an example to 

demonstrate the usefulness of this multiscale thermomechanical framework. 

3.3.2 Mechanical potentials at the micro scale 

The thermodynamically consistent microscopic free energy and dissipative energy 

constructed in Chapter 2 is adopted here to represent the mechanical behaviour of unsaturated 

granular soils. It should be mentioned that the stored energy is assumed to be zero, as a result, 

an increment of the elastic work is equal to the increment of the Helmholtz free energy 

whereas an increment of plastic work is equal to the dissipative energy. 

3.3.3 Hydraulic potential at the micro scale 

Assuming that the water bridges are isotropically distributed within the material, we can use 

the degree of saturation as a scalar quantity to describe the change of the capillary bridge 

volume. In addition, considering that the interparticle normal displacements and the capillary 

bridge separations are both distances between particles, the separations between particles can 

be approximated by the interparticle normal displacements. Therefore, the hydraulic free 

energy at the microscale ( , )cH cap capV   can be equivalently replaced by ( , )cH c

r nS  . As a 

result, the globally isotopic hydraulic behaviour of unsaturated granular soils can be captured 

by the change of the degree of saturation rS , while the local anisotropic hydraulic property 

can be described by the distribution and evolution of the interparticle normal displacements. 

Several attempts have been made to define the hydraulic energy potential for unsaturated soils 

at the macro scale using the soil water retention curve (SWRC) (Coussy et al., 2010; 

Buscarnera and Einav, 2012; Zhang and Buscarnera, 2014). Considering that the capillary 
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forces between two grains are represented by a decreasing function of the distance between 

the grains (Hicher and Chang, 2007), the following function can be retained for the hydraulic 

free energy at the inter-particle scale:  

   
2

, expcH c cH

r n r r

L r
S S

r
  

 
  

 
                                       (3.38) 

where L is the distance between the centres of two neighbouring particles, r is a representative 

radius of the particles, taken as r=d50/2, as shown in Figure 3.3. The value of 2L r  (also 

equal to cap ) is represented by interparticle displacements in normal direction c

n  with an 

initial value of 0.1r .   

L

c

il

 

Figure 3.3 Branch vector and distance vector 

The hydraulic potential  cH

r rS  at the microscale can be considered as equal to a reference 

hydraulic potential  H

r rS  at the macroscale, since it has been assumed that the water 

bridges are isotropically distributed in the specimen. The hydraulic potential  H

r rS  

corresponds to the SWRC, which is usually expressed by empirical expressions (Brooks and 

Corey, 1964; van Genuchten, 1980; Fredlund and Xing, 1994). In this study, the simple 

logarithmic form introduced by Buscarnera and Einav (2012) has been adopted since it is a 

continuous and integrable function, given as: 

      
1

ln 2 ln 2
2

cH

r r w r r r rS K S S S S                               (3.39) 

in which Kw is a retention curve parameter associated with the value of the air entry suction. 

Based on Eq. (3.39), the reference free energy with respect to the degree of saturation is 
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comparable with the water retention curve, as shown in Figure 3.4(a). By inserting Eq. (3.39) 

into Eq. (3.29), we can obtain the relation between the smeared suction ns  and the degree of 

saturation, as shown in Figure 3.4(b). 
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Figure 3.4 Performance of the reference hydraulic potential function 

With the use of the principle of energy conservation, the behaviour of unsaturated granular 

soils can be obtained from two energy potentials, i.e. the mechanical part and the hydraulic 

part at inter-particle contacts. Accordingly, the constructed micromechanical model for 

unsaturated granular materials obeys the principles of thermodynamics. 

3.3.4 Stress and strain tensors 

The strain tensor suggested by Liao et al. (1997) is adopted to represent the relation between 

microscopic displacements and macroscopic strain, which represents the deformations of 

granular assemblies related to the displacements at interparticle contacts and the micro-

topologies of particle clusters. Substituting Eq.(2.39) into the definition of the effective stress 

tensor based on the Helmholtz free energy, Eq. (3.30), and using the work input at the micro 

scale, we obtain 
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1 1 1

, 1 1 1
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ε ε δ δ δ
σ

ε ε δ ε ε
    (3.40) 

Eq. (3.40) indicates that the effective stress in unsaturated granular soils can be computed 

through the contact stress tensor, i.e. the Love-Weber formula, which is consistent with the 

stress tensor derived in Chapter 2. It should be mentioned that Eq. (3.40) is obtained on the 
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basis of the kinematic assumption of Eq.(1.12). The generalisation of Eq. (3.40) to be an 

effective stress tensor for partially saturated soils is a topic of current interest, which has been 

recently investigated through DEM simulations (Duriez and Wan, 2016; Chalak et al., 2017; 

Wang et al., 2017). 

3.3.5 Homogenization method 

In this model, the local variables of granular materials are random directional data, thus the 

statistics theory (Kanatani, 1984; Li and Yu, 2011) proposed to characterize the probability 

density distribution of such directional data is adopted. The summation of any local quantity 

over all interparticle contacts is computed using the same integration method as for dry 

granular materials based on the statistics theory (Kanatani, 1984; Li and Yu, 2011), as 

described in Chapter 2. 

3.3.6 Implementation scheme  

One of the difficulties in implementing the constitutive models for unsaturated soils expressed 

by the effective stress tensor is that the experiments usually consider other forms of stress 

variables such as the net stress tensors; therefore, the constraints imposed on laboratory 

specimens cannot be directly specified numerically. In addition, experiments with different 

combinations of net stress tensors and hydraulic controls, such as suction control, drying and 

wetting paths and constant water content require algebraic efforts in numerical simulations. A 

general approach to circumvent these difficulties is to express these constraints using the 

linearized integration method suggested by Bardet and Choucair (1991). This method has 

been successfully applied to integrate an effective tensor based model for partially saturated 

soils with the capability of imposing various loading programs (Zhang and Buscarnera, 2016), 

and has been adopted in this thesis to integrate the constructed micromechanical model. The 

integration of the local law, the micro-macro relations and the convergence criteria of the 

micromechanical model will be discussed in detail in Chapter 4. 
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3.4 Performance of the developed model for unsaturated granular soils  

For saturated and dry conditions, the developed micromechanical model will be reduced to 

the one developed in Chapter 2. Its performance in describing the behaviour of granular 

Hostun sand has been well demonstrated. In order to demonstrate its capability in capturing 

the behaviour of unsaturated granular soils, the developed micromechanical model will be 

calibrated from triaxial compression test at constant water content on a partially saturated 

silica sand, the Chiba sand described by Fern et al. (2016).  

3.4.1 Chiba sand 

According to Fern et al. (2016), Chiba sand is a poorly graded silica sand with the particle 

size ranging from 0.01 to 1.00mm. It has a coefficient of uniformity of 2.1 and a coefficient of 

curvature of 1.1. The grain size distribution was obtained by sieving and sedimentation, as 

shown in Figure 3.5(a). The minimum and maximum void ratios are 0.500 and 0.946 

respectively, and its specific gravity is 2.72. Its critical state friction angle was found to be 

33 , which is a typical value for silica sand. 
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Figure 3.5 Chiba sand: (a) grain size distribution; (b) water retention curve 

The water retention curve was obtained for the drying path with three different densities using 

the axis translation technique (Fern et al., 2016). The specimens were subjected to matric 

suctions of 2 to 60 kPa. Pressures ranging from 2 to 10 kPa were applied by means of 

negative water head and the 60 kPa with a pressure plate. Complimentary investigations were 

carried out on a loose specimen and the air entry value Kw, which was found to be 0.5kPa, the 
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residual degree of saturation around 20%, and a very small hysteresis was observed, as shown 

in Figure 3.5(b).  

3.4.2 Triaxial compression tests with constant water content on Chiba sand  

A series of triaxial tests at constant water contents were conducted on Chiba sand under 

vertical strain rates of 0.1%/min and 5.0%/min (Fern et al., 2016). In this study, the long 

duration tests that can be viewed as quasi-static loading tests will be adopted to calibrate the 

aforementioned micromechanical model. The specimens with various densities and 

gravimetric water contents of 10% and 17% were sheared until reaching an axial strain of 

20%. For each water content, three tests were carried out with an initial net mean pressure of 

20kPa, 40kPa and 80kPa, respectively. The detailed loading program is shown in Table 3.2.  

Table 3.2 Initial condition of constant water content triaxial compression tests on Chiba sand 

Group  %w   
0e    %rS    0 kPanetp   

Loose 

10 0.842 32 20 

10 0.818 33 40 

10 0.808 34 80 

17 0.845 55 20 

17 0.830 56 40 

17 0.820 56 80 

Medium 

dense 

10 0.742 37 20 

10 0.738 37 40 

10 0.725 38 80 

17 0.745 62 20 

17 0.734 63 40 

17 0.719 64 80 

Dense 

10 0.656 41 20 

10 0.659 41 40 

10 0.653 42 80 

17 0.657 70 20 

17 0.648 71 40 

17 0.641 72 80 

3.4.3 Simulations of constant water content triaxial compression tests  

The maximum effective stress ratio q/p' was found to be 1.455 (Figure 3.6(a)), which 

corresponds to a critical state friction angle of 33º. Accordingly, the friction angle at 



95 

interparticle contacts is assumed to be 33º. The critical state line was calibrated from the 

loge p  plot (Figure 3.6(b)), which gave eref =1.23, λ=0.25 and 0.2   with the reference 

pressure of 10refp  kPa. The radius of the particles r is half of the diameter d50=0.16mm. The 

air entry value for the hydraulic free energy Kw is 0.5 kPa. The parameters at the interparticle 

contact 0

c

nk , 
rRk  and 

pRk  were calibrated from the constant water content triaxial compression 

tests. A total of eight parameters were required in the micromechanical model for Chiba sand, 

as summarized in Table 3.3. 
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Figure 3.6 Critical state of Chiba sand in (a) p q   plane and (b) loge p  plane 

Table 3.3 Parameters used in the micromechanical model for Chiba sand 

refe      0(N/mm)c

nk   ( )c

    
50 (mm)d   

rRk   pRk    kPawK   

1.23 0.25 800 33 0.16 1.0 2.0 0.5 

The constraints used to simulate the constant water content triaxial compression tests are: 

2 3 0net net     , 
1 20%  , and 0we   with 

we  being the void ratio of water which is 

given as  

w re eS                                                          (3.41) 

With Eq. (3.41), the constant water content ∆w=0 is equivalently controlled by ∆ew=0. The 

net stress term 
2 3 0net net      was rewritten as 

2 3 0r rsS sS        , thus the 
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effective stress can be obtained. With these boundary conditions, the model was integrated 

through the linearized integration method suggested by Bardet and Choucair (1991).   
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Figure 3.7 Simulation of the constant water content triaxial compression tests on unsaturated 

Chiba sand ( 10%w  ) 
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Figure 3.8 Simulation of the constant water content triaxial compression tests on unsaturated 

Chiba sand ( 17%w  ) 

The simulation results are presented with experimental data in Figures 3.7 and 3.8. The strain 

hardening and dilative behaviour, the peak strength and the softening behaviour are well 

captured by the micromechanical model. In terms of the plots of the shearing stress with 

respect to the axial loading, the model demonstrates a very good predictive capability over 
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wide ranges of densities, confining pressures and water contents (Figure 3.7(a, c, e) and 

Figure 3.8(a, c, e)). In contrast, the model reproduces the volumetric deformation with 

acceptable differences between the simulation results and the experimental data. As explained 

by Fern et al. (2016), the differences obtained for the dense sample are largely due to the 

occurrence of strain localization. In comparison with the elasto-plastic models based upon 

classical continuum mechanics (Wheeler and Sivakumar, 1995; Sheng et al., 2004; Fern et al., 

2016), only few parameters are required in this model and all of them have a physical basis. 

It should be noted that both the current model and the model of Hicher and Chang (2007) 

have adopted the strain tensor of Liao et al. (1997) and the same Coulomb type yield criterion 

at the interparticle scale. The main differences between these two models are: (1) the 

interparticle elastic relation; (2) the scalar suction s  with the current model instead of the 

capillary stress tensor capσ in Hicher and Chang (2007); (3) a free energy function for the 

hydraulic behaviour instead of an empirical function of the degree of saturation rS  in Hicher 

and Chang (2007). Consequently, thermodynamic principles are satisfied by the current 

model. 

3.5 Concluding remarks 

This chapter reviewed briefly the application of the thermodynamic approach with internal 

variables for constitutive modelling of unsaturated granular soils. Particular attention has been 

given to the work input derived by Houlsby (1997) and the Helmholtz free energy functions 

related to the water retention curve, which were the basis of the multiscale model constructed 

by extending the thermodynamic principles to the micromechanical modelling of unsaturated 

granular soils.  

A micromechanical model for unsaturated granular soils was constructed based on the 

suggested multiscale thermodynamic framework. The energy quantities defined at the micro 

and macro scales were analysed, and then the Helmholtz free energy at the microscale was 

defined as the sum of a mechanical part and a hydraulic part. The free energy is dependent on 

the elastic strains and on the degree of saturation at the macro scale, and it is related to the 
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elastic displacements and the degree of saturation at the micro scale. The dissipation energy is 

of frictional origin and is a function of the plastic displacements at the micro scale and of the 

plastic strains at the macro scale. For the mechanical part, the micromechanical model 

constructed in Chapter 2 was adopted, since it has been proved to be consistent with 

thermodynamic principles. A particle-size dependency function has been suggested to 

consider the water retention in the hydraulic free energy potential at the micro scale. The 

model was calibrated and its satisfactory performance in capturing the behaviour of 

unsaturated Chiba sand under constant water content triaxial compression was demonstrated.  
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CHAPTER 4 INTEGRATING A MICROMECHANICAL MODEL 

FOR MULTISCALE MODELLING OF GRANULAR SOILS 

4.1 Introduction 

One of the most rewarding tasks in geomechanics is to be able to construct an efficient 

constitutive model. Until now, the favoured models are the ones that reveal soil physics and 

are capable of predicting soil behaviour with a limited number of parameters. Based on 

continuum mechanics, phenomenological models have been widely used to describe soil 

behaviour obtained from elementary tests. Quite recently, however, there has been a growth of 

micromechanical models that consider the force-displacement relationships at the inter-

particle contacts. These models (Chang and Hicher, 2005; Nicot and Darve, 2005; Yin and 

Chang, 2009; Nicot and Darve, 2011) have the advantage of treating the fundamentals of 

granular physics and to reproduce the main aspects of soil behaviour. It seems beneficial, 

therefore, to implement these models into finite element codes in order to analyse 

geotechnical problems on the basis of multi-scales. 

Two types of micromechanical models, based on either a kinematic or a static hypothesis, can 

be increasingly found in the literature. The models based on the latter (Chang and Hicher, 

2005; Yin and Chang, 2009; Yin et al., 2009; Yin et al., 2010; Yin et al., 2011; Yin et al., 

2013; Yin et al., 2014) have proved to perform well in predicting soil behaviour. This chapter, 

therefore, will discuss the numerical implementation of the static hypothesis into finite 

element codes. Under the static hypothesis, the micro-macro relationship can be derived by 

linking the force increments to the stress increments. The force-displacement relations defined 

at inter-particle contacts are displacement driven contact laws. After the forces at each contact 

have been updated, the stress can then be integrated with the Love-Weber expression.  

One of the difficulties in implementing these models is how to calculate the displacement 

increment in the case of strain softening. Since the displacement cannot be directly calculated 

by the strain increment but only through the relations between force and stress increments, it 

is therefore not easy to calculate the stress increment for any given loading constraint or to 
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ensure the consistency of the static hypothesis with the stress integration formula, in an effort 

to maintain the static equilibrium at both the local and the global levels. Until now, these 

issues have not been thoroughly addressed. 

Besides an effective algorithm for assuring the micro-macro balance, the local force-

displacement laws need to be accurately integrated. The local laws driven by displacement are 

force-displacement ordinary differential equations (ODEs) resembling strain increment 

controlled stress-strain ODEs. For solving these ODEs, two categories: the explicit forward 

Euler and the implicit backward Euler integration schemes have been developed. The former 

belongs to one of a large family of explicit methods and is often used with automatic sub-

stepping methods (Sloan 1987; Sloan et al., 2001; Lloret-Cabot et al., 2016). But since the 

single step forward Euler method is not highly accurate, it has been necessary to develop 

high-order procedures such as the Modified Euler and the Runge-Kutta methods. The implicit 

backward Euler schemes attract usage because they do not require calculating the stress 

intersection with the yield surface and permit the calculated stress to automatically satisfy the 

yield criterion under a specified tolerance. The closest point projection method (CPPM) 

suggested by Simo and Taylor (1985) has proven to be effective in the case of complex 

models. However, as the Newton-Raphson procedure is currently used to solve these 

equations iteratively, it is necessary to derive a consistent tangential modulus, which is 

difficult to obtain in the case of complex models. To circumvent this problem, it has been 

suggested to use the cutting-plane algorithm (CPA) for calculating the plastic corrector (Ortiz 

and Simo, 1986). For the implicit integration of the micromechanical model, CPPM and CPA 

can both be used at the micro level, and their efficiency readily tested. 

In this chapter, the Chang and Hicher micromechanical model (2005) based on a static 

hypothesis is first briefly reviewed. The linearized control constraints solved by a predictor-

corrector iterative procedure can also be used with homogeneous stress and strain fields to 

simulate laboratory tests. A trial stress driven scheme has been proposed for implementing the 

micro-macro relations, which will guarantee the consistency of the static hypothesis with the 

integrated stress tensor. Two return mapping algorithms (CPPM and CPA) have been 
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alternatively adopted to integrate the inter-particle force-displacement relations. Several 

conventional loading paths, i.e. drained and undrained triaxial compression tests, have been 

simulated to probe the accuracy and efficiency of the numerical approaches. Finally, the 

model was implemented into a finite element code and the numerical procedure validated by 

elementary tests. Two typical boundary value problems: a biaxial test and a square footing 

were numerically analysed to evaluate how the micromechanical model can be applied to 

multiscale modelling. 

4.2 A static hypothesis based micromechanical model 

The CH model (Chang and Hicher, 2005) was initially proposed for sand. Further 

developments by Yin and Chang (2009) and Yin et al. (2009, 2010, 2011, 2013, 2014) 

demonstrated its good performance in modelling the mechanical behaviour of sand and clay. 

In this chapter, it is used as an example of integrating a micromechanical model into a finite 

element code. 

4.3 Implicit multiscale integration methods 

Three levels of implicit integration methods for obtaining the stress increment, consistent with 

the stress-force relation and the local inter-particle contact law, are presented in this section. 

4.3.1 Global mixed control  

As mentioned previously, the difficulty of implementing a micromechanical model based on a 

static hypothesis is how to obtain the stress increment under general loadings. For this, it is 

necessary to adopt a strategy which combines the implicit algorithms with a general loading 

control. To achieve these goals conveniently, we can express the loading control by means of 

linearized constraints. The expression suggested by Bardet and Choucair (1991) can be 

deployed, in which a loading condition can be expressed as 

1 1 1n n n      S σ E ε X                                               (4.1) 

where S and E are constraint matrices given by elementary tests, as shown in Table 4.1 for 

typical loading paths, whereas  1 1 2 n 1
= , , ,

T

n ix x x 
   X  is the imposed driving vector, and 
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i is the number of freedoms. Since there are 12 unknowns in Eq. (4.1) but only 6 equations, 

the relation between strain and stress increments has to be added, expressed as  

1 1 1

ep

n n n    σ D ε                                                      (4.2) 

where 
1

ep

nD  is the elastoplastic matrix. To solve Eqs.(4.1) and (4.2), two separate levels of the 

Table 4.1 Constraint matrices for mixed controls 

Type of tests S   E   n+1ΔX  

ISO: Stress controlled isotropic 

compression 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
 
 
 
 
 
 
 
  

 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 
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 
 
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x

 
 

 
 
 
 
 
 
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ASO: Stress controlled anisotropic 

compression 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
 
 
 
 
 
 
 
  

 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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 
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TXD: Strain controlled drained 

triaxial 

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0
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TXU: Strain controlled undrained 

triaxial 

0 0 0 0 0 0

0 1 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0
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
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 
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x
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FE: Finite element implementation 

0 0 0 0 0 0
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0 0 0 0 0 0

0 0 0 0 0 0
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  

 

Newton iteration have been proposed by Zhang and Buscarnera (2015); the first one solves 

the control condition, whereas the other solves the constitutive equations. However, this 
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procedure is not well adapted to a micromechanical model, because of the difficulty in 

obtaining a consistent matrix. This study suggests two different levels of predictor-corrector 

algorithms to solve Eqs.(4.1) and (4.2). To solve the equation of the linearized constraints, 

Eq.(4.1) can be rewritten as 

1 1 1 1n n n n       R S σ E ε X                                      (4.3) 

where the residual Rn+1=0 contains the same solution as in Eq.(4.1). For each increment, 6 

unknown stress increments and 6 unknown strain increments need to be solved by Eq.(4.3).  

Table 4.2 Algorithm for mixed control 

1) Initialise 0k  , given the initial value of (0)

1n n σ σ , (0)

1n n ε ε  and (0)

1nX  

2) Set (k)

1 0n R  and solve equation 

 
 

(k) (k) (k) (k)

1 1 1 1

(k) (k)

1 11

n n n n

k
e

n nn

   

 

     



  

R S σ E ε X

σ D ε
 

3) Calculate force increment from stress increment 

   
(k) (k)

(k) (k)

1 11 1

c c

n nn n  
  f σ l A   

4) Use macro-micro algorithm to update stress (k 1)

1n



σ , calculate stress increment
(k 1) (k 1) (k)

1 1 1n n n

 

    σ σ σ , and strain increment (k 1) (k)

1 1n n



   ε ε   

5) Calculate residual constraints 

 (k 1) (0) (k 1) (k 1)

1 1 1 1n n n n

  

        R X S σ E ε   

IF 

(k 1)

1

(k 1)

1

n

n

RTOL










R

σ
, THEN: EXIT 

6) Set 

(k 1) (k 1)

1 1n n

 

  X R   

Set 1k k   and GO TO step 2. 

Combining Eqs.(4.2) and (4.3), the strain or stress increments can first be predicted through 

the use of the elastic matrix De. The obtained stress increments, used to calculate the force 

increments, are then corrected to take into account the plastic condition by the local corrector 

which will be presented in the following section. At the end of the thk  elastic prediction, the 

residuals need to be calculated 
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 (k 1) (0) (k 1) (k 1)

1 1 1 1n n n n

  

        R X S σ E ε                                    (4.4) 

The relative error (k 1) (k 1)

1 1n n RTOL 

  R σ  is computed at the end of each iteration to 

guarantee that the constraints are fully imposed. The relative error should satisfy the given 

tolerance RTOL set as 10-4. If this is not the case, the residuals, viewed as correctors, are 

imposed as new constraints 

(k 1) (k 1)

1 1n n

 

  X R                                                    (4.5) 

Stress and strain are also updated after each iteration. The flowchart of the mixed control 

programme is given in Table 4.2. For a displacement driven finite element code, the strain 

increments at each Gauss point are given. Under this condition, S is null in Eq.(4.1), the 

constraints are strain increments; thus, no iteration is needed to solve Eq.(4.1). 

4.3.1 Micro-macro integration 

The micro-macro relation is the bridge connecting the behaviour at inter-particle contacts to 

the behaviour of the representative elementary volume. This relation consists of a localisation 

operator and an averaging operator. In the CH model, the localisation operator is based on the 

static hypothesis, whereas the averaging operator is based on the Love-Weber formula. Given 

that the two operators are relations between stress and force, they should be consistent with 

each other during the calculation process. For isotropic loading, no plastic displacement 

occurs according to the local law, and the stress integration is the inverse of the static 

expression. However, plastic displacements under shearing lead the updated forces to be 

smaller than are the forces calculated by the static hypothesis. The difference causes the static 

hypothesis and the Love-Weber formula to be inconsistent. Therefore, an iteration procedure 

needs to be conducted.   

Since the static expression has been deduced from the best-fit hypothesis, which can be used 

as a predictor for calculating the trial force increments, the trial displacement increments can 

be calculated by the force increments, written as 

   +1 +11 1

c c

n nn n 
  f σ l A ,       

1

1 1
1

c c c

n n
n



 


  δ k f              (4.6) 
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where c
k  is the elastic stiffness tensor defined at the inter-particle contacts. If there is a 

deviatoric loading, it will be necessary to conduct an out-of-balance force iteration process. 

Noting the force after the thk  iteration in local law as  
k

cf , the stress integrated by Eq.(1.14) 

is correspondingly denoted as kσ . Meanwhile, the force  
1k

c


f  could be calculated by the 

expression of Eq.(1.17). If the updated force  
k

cf  is equal to the force  
1k

c


f , the 

integration procedure will be terminated. Otherwise the out-of-balance force 

     
1 1k k k

c

n

c

u b

c
 

 f ff                                             (4.7) 

will be imposed on the (k+1) th iteration until the out-of-balance force drops below the given 

tolerance. The following relative error is proposed to evaluate the magnitude of the out-of-

balance force: 

    
2 26

1
( )

1 1

1 1

6

NP
k

c k

unb

i i

UFTOL
NP



 

 f σ                          (4.8) 

in which the unbalanced force tolerance UFTOL is chosen between 10-3 and 10-6, depending 

on the non-linearity of the local law. The procedure for the micro-macro integration can be 

found in Table 4.3. 

Table 4.3 Implicit integration of macro-micro relation 

1) Calculate force increment and displacement increment  

   +1 +1+1 +1

c c

n nn n
  f σ l A ,       

1

+1 +1
+1

c c c

n n
n



  δ k f  

2) Return mapping algorithm to update force  
+1

c

n
f   

3) Initialise 0k  , integrate force to obtain stress 

   
(k) (k)

(k)

1 1 1
1

1 N
c c

n n n
cV

  


 σ f l  

4) Calculate force from updated stress 

   
(k) (k)

(k) (k)

1 11 1

c c

n nn n  
f σ l A  

5) Calculate unbalance force 

     
(k) (k)

1 1

c c c

unb n n 
 f f f ,       

(k) 1 (k)

1
1

c c c

n unb
n






 δ k f  



107 

And check the convergence criterion 

    
2 26

(k)
( )

1 1

1 1

6

NP
c k

unb
i i

UFTOL
NP  

 f σ  

IF above equation is satisfied, THEN: EXIT 

6) Return mapping algorithm to update force  
(k)

1

c

n
f   

Set 1k k   and GO TO step 4. 

4.3.2 Implicit integration of the local law 

The displacement driven local law can be similarly integrated by the strain driven ordinary 

differential equations. The single step backward Euler can be used to integrate the incremental 

stress-strain equations, but its accuracy depends on the amplitude of the loading increments 

because the plastic corrector is very elementary. To solve this problem, we have proposed 

return mapping schemes to find more accurately the plastic corrector. The calculations are 

performed essentially as a two-step process: the increment is first considered as elastic and the 

trial variables are calculated as an elastic predictor; the trial variables will then be relaxed on 

the yield surface and referred to as the plastic corrector. Within the return mapping 

framework, several algorithms to calculate the plastic corrector have been suggested: among 

them, the Closest Point Projection Method (CPPM) developed by Simo and Taylor (1985) and 

the cutting plane algorithm (CPA) suggested by Ortiz and Simo (1986) have been widely 

used.  

Each implicit integration method carries its specific advantages. However, the integration of 

only a limited number of models has been subjected to comparison through the two above 

mentioned methods. Additional comparisons should be made to assess the efficiency of these 

two methods for a specific micromechanical model. 

4.3.3.1 Closest point projection method (CPPM) 

CPPM solves the plastic multiplier equation in conjunction with Newton’s iterative technique. 

Consequently, a consistent tangential modulus needs to be derived to obtain the quadric 

convergence speed. For complex models, it is not easy to derive the second gradients, but for 
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a Coulomb type inter-particle contact law, it is possible to determine the first and the second 

derivatives. Since the yield criterion is plastic displacement dependent, the residual can be 

expressed as 

   
( ) ( )

( )

1 11 1

k k
k cp c k

n nn n
R   

    δ b                                        (4.9) 

where the first order derivatives of the potential function b are defined in Eq.(A2). If the yield 

point satisfies the condition ( )

1 1

k

nF TOL   and the residual satisfies the condition 

( )

1 2

k

nR TOL  , it will not be necessary to calculate the plastic corrector. Otherwise, the 

consistent tangential modulus is computed by 

 
( )

( )
( )

1 11
1

k
k

k c ce

n nn
n

 


  
       

b
C I k

f
                                      (4.10) 

in which 
1

ce

nk  is the force-displacement elastic matrix, as shown in Eq.(1.43), and the second 

derivatives of the potential function c b f  can be found in Appendix A. The consistency 

parameter increment can be obtained by 

 
( ) ( ) ( ) ( )

( )
2 1 1 1 1

( ) ( ) ( )1
1 1 1

k k k k
k

c n n n n

k k kn
n n n

F R
    


  


 

a C

a C b
                                         (4.11) 

The force increments can be obtained by 

   
( ) ( )

( ) ( ) 2 ( ) ( )

1 1 1 11 1

k k
c k k c k k

n n n nn n
R     

     aC Cf                                (4.12) 

Then, the plastic multiplier can be updated by 

     
( 1) ( ) ( )

2

1 1 1

k k k
c c c

n n n
  



  
                                           (4.13) 

The incremental plastic displacements can be calculated by 

      
( )

( 1) ( )

1

1

1
1

k
k

cp c c

n
n

k

n

 




   k fδ                                      (4.14) 

Finally, the forces can be updated by 

     
( +1) ( ) ( )

1 1 1
+

k k k
c c c

n n n  
 f f f                                            (4.15) 

The flowchart for implementing the local law by CPPM is presented in Table 4.4. 
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Table 4.4 Closest point projection method (CPPM) for local law 

1) Initialise: 0k  ,  
 

 
0

1

cp cp

n n
δ δ ,  

( )

1
0

k
cp

n
 δ ,  

( )

1
0

k
c

n



  . 

2) Compute yield condition and evaluate hardening law residuals, 

        ( ) ( ) ( )

1 1 1 1

k k k
c c c cp

n n n n   
    f k δ δ ,      

( ) ( )

1 1

k k
c c c

n n n 
  f f f   

    ( ) ( )
( )

1 1 1
,

k k
k c c

n n n
F F  

 f δ   

       
( ) ( )

( )

1 11 1

k k
k cp c k

n nn n
R   

    δ b  

IF: ( )

1

k

nF FTOL  and ( )

1

k

nR RTOL  , THEN: EXIT. 

3) Compute consistent tangent moduli 

    
( )

( )
1 ( )

1 ( )

1 11
1

k
k

k
c c k

n nn
n






 


  C k b  

4) Obtain increment to consistency parameter 

 
( ) ( ) ( ) ( )

( )
2 1 1 1 1

( ) ( ) ( )1
1 1 1

k k k k
k

c n n n n

k k kn
n n n

F R
    


  


 
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5) Calculate force increments 

    
( ) ( )

( ) ( ) 2 ( ) ( )

1 1 1 11 1

k k
c k k c k k

n n n nn n
R     

    f C C a  

6) Obtain incremental plastic strains and internal variables 

     
( 1) ( ) ( )

2

1 1 1

k k k
c c c

n n n
  



  
      

7) Incremental plastic displacements 

        
( 1)

( )
(

1 1
1

1 )
k

k
c

n

p c

n
n

k
c

 





   fδ k   

8) Update forces at inter-particle contact 

     
( +1) ( ) ( )

1 1 1
+

k k k
c c c

n n n  
 f f f  

Set 1k k   and GO TO step 2. 

4.3.3.2 Cutting plane algorithm (CPA) 

Alternatively, the CPA proposed by Ortiz and Simo (1986) has been selected and its 

performance compared to CPPM. The CPA is convivial to use since it does not require the 
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evaluation of moduli based on internal variables. The plastic multiplier can be calculated by 
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 
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( )1 ( ) ( )
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                                     (4.16) 

where ( )

1

k

nH 
 can be calculated by 

( )

1

cp
k r

n cp c

r

F
H



 



 

 
                                                 (4.17) 

The detailed calculations of Eqs.(4.16) and (4.17) are given in Appendix B. The plastic 

displacement can be updated by 

     
( 1) ( ) ( )

( )

11 1 1

k k k
cp cp c k

nn n n




  
    δ δ b                                (4.18) 

The flowchart of this method is presented in Table 4.5. 

Table 4.5 Cutting-plane algorithm (CPA) for local law 

1) Initialise: 0k  ,    
(0)

1

cp cp

n n
δ δ ,  

( )

1
0

k
cp

n
 δ . 

2) Compute the force increment, hardening moduli, and yield function 

        ( ) ( ) ( )

1 1 1 1

k k k
c c c cp

n n n n   
    f k δ δ ,      

( ) ( )

1 1

k k
c c c

n n n 
  f f f   

IF     ( ) ( )

1 1
,

k k
c c

n n
F FTOL

 
f δ , THEN: EXIT. 

ELSE 

3) Compute the plastic multiplier 

 
 

( )

( )
( )

1

( )1 ( ) ( )

1 1 11

k

k
k

c n

kn k T c k

n n nn

F

C
 



  

 
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4) Update force and plastic displacement 

     
( 1) ( ) ( )

( )

11 1 1

k k k
cp cp c k

nn n n




  
  δ δ b  

Set 1k k   and GO TO step 2. 

ENDIF  

Overall, the micromechanical model based on a static hypothesis can be integrated with three 
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levels of implicit integrations. The accuracy and efficiency of the described scheme will be 

evaluated based on elementary tests and boundary value problems. The implemented 

micromechanical model will be further applied for multiscale analyses. 

4.4 Accuracy and efficiency of the integration scheme 

To assess the performances of the implicit algorithms for integrating the micromechanical 

model, a series of loading constraints from single element tests to boundary value problems 

were conducted. The analyses focused on the accuracy and convergence speed for different 

loading increments. The numerical simulations were performed on an Intel Core i5-4590 at 

3.30 GHz processor with internal memory of 8.0 GB. To evaluate the accuracy of the implicit 

algorithms, we defined the relative error as 

       * * * *

* * * *

: :
,

: :
ERR ERR ERR

   
  σ ε

σ σ σ σ ε ε ε ε

σ σ ε ε
                   (4.19) 

where ERRσ  and ERRε  are relative errors for stress and strain, respectively; σ and ε are the 

results obtained by using the implicit algorithm, whereas σ* and ε* are the exact solutions 

corresponding to the specified stress or strain increments. The exact values were obtained by 

decreasing the given tolerance and the incremental size up to a point where the numerical 

results no longer changed.  

4.4.1 Elementary test simulations 

To investigate the efficiency and accuracy of the proposed numerical schemes, two kinds of 

elementary tests were simulated to observe the strength softening behaviour using the 

parameters calibrated by drained triaxial test results on Hostun sand (Table 2.1). First, triaxial 

drained compression tests were conducted to check the performance of the proposed 

integration schemes under mixed control loading conditions. The samples with an initial void 

ratio of 0.515 were isotropically compressed up to 800kPa and then subjected to an axial 

strain-controlled loading under a constant confining stress. The exact solutions were obtained 

by a sub-increment of strain equal to 0.002%. The drained triaxial test simulations for dense 

sand integrated by CPA (Figure 4.1 (a)-(b)) and by CPPM produced a good agreement (Figure 
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4.2(a)-(b)). It should be noted that CPPM required less computational cost and showed even 

more accuracy in the case of an imposed strain increment of 2%, as presented in Table 4.6. 

Undrained triaxial tests in compression were also conducted by full strain controlled 

constraints with no iteration for the mixed control procedure, which is a useful example of 

testing the efficiency of the micro-macro iterations and of the local integration schemes. The 

samples with an initial void ratio of 0.818 were isotropically compressed up to 800kPa, and 

then an axial strain-controlled loading at a constant void ratio was performed; the exact 

solution was obtained by a sub-increment of strain equal to 0.002%. The undrained triaxial 

test simulations for loose sand both integrated by CPA, shown in Figure 4.1(c) and (d), and by 

CPPM, shown in Figure 4.2(c) and (d), demonstrated that the methods are hardly different in 

terms of accuracy, but CPPM is superior in terms of computational cost efficiency.  
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Figure 4.1 Performances of CPA for dense sand and loose sand under drained and undrained 

compressions: (a) deviatoric stress versus axial strain, (b) void ratio versus axial strain for 

dense sand, (c) deviatoric stress versus axial strain for loose sand, (d) deviatoric stress versus 

mean effective stress for loose sand 
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Figure 4.2 Performances of CPPM for dense sand and loose sand under drained and undrained 

compressions: (a) deviatoric stress versus axial strain, (b) void ratio versus axial strain for 

dense sand, (c) deviatoric stress versus axial strain for loose sand, (d) deviatoric stress versus 

mean effective stress for loose sand 

Table 4.6 Performances of implicit algorithms on triaxial drained and undrained tests 

Test information CPA CPPM 

Test 

no. 

Initial 

void 

ratio 

Strain 

increment

s 

Iteration

s 

CPU 

time (s) 

ERR 

(%) 

Iterations CPU 

time 

(s) 

ERR 

(%) 

TXD 0.515 0.002% 311258 81.734 Exact 313912 70.984 Exact 

TXD 0.515 0.02% 111231 26.406 0.178 112004 22.453 0.178 

TXD 0.515 0.2% 27441 6.328 1.459 27658 5.438 1.454 

TXD 0.515 2% 5102 1.25 3.787 5092 1.172 5.533 

TXU 0.721 0.002% 261504 65.328 Exact 263003 56.821 Exact 

TXU 0.721 0.02% 38648 9.328 5.000 38898 8.219 5.000 

TXU 0.721 0.2% 4737 1.29 77.659 4785 1.125 77.661 

TXU 0.721 1% 1048 0.391 233.490 541 0.219 233.492 
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4.4.2 Iso-error maps 

The accuracy of the implicit integration scheme can be evaluated by iso-error maps as 

proposed by Krieg and Krieg (1977), Ortiz and Simo (1986) and Simo and Taylor (1986). The 

numerical errors due to different loading step increments in various loading directions can be 

analysed by plotting these iso-error maps. An iso-error map, corresponding to a specific stress 

state, can be generated by plotting the relative errors calculated by Eq.(4.19) for all the 

integrations performed by imposing different step increments upon the selected constraints. 

The remaining degrees of freedom can be kept either constant or equal to the prescribed 

increments. 

 

Figure 4.3 Isoerror maps plotted under mixed controls and strain controls: (a) CPA for drained 

triaxial test, (b) CPPM for drained triaxial, (c) CPA for undrained triaxial test, (d) CPPM for 

undrained triaxial test 

To obtain the distribution of errors under mixed control and strain control, respectively, the 
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aforementioned triaxial drained and undrained tests with an initial void ratio of 0.515 and a 

confining pressure of 800kPa were performed for a second time. Given the performances of 

the implicit schemes with CPA and CPPM shown in Figure 4.1 and Figure 4.2, the stress state 

at the softening stage was selected to generate the iso-error maps. Figure 4.3(a) presents the 

iso-error map calculated with CPA by the mixed control at the state of p'=1545kPa, 

q=2331kPa and εd =11%, and Figure 4.3(b) shows the iso-error map computed by CPPM 

under the same condition. The obtained relative errors are in the same range as those obtained 

by typical return mapping schemes, with smaller loading increments leading to lower errors 

(Simo and Taylor, 1986; Zhang and Buscarnera, 2015). The proposed two schemes have the 

same performance with the changes of the vertical strains and the lateral stresses, and are 

much more sensitive to strain increments than to stress step sizes.  

The iso-error maps for the undrained triaxial loading path were obtained, as shown in Figure 

4.3(c) and (d), by imposing different strain step sizes at the state of p'=320.7kPa, q=393.2kPa 

and εd =1.5%. Compared to the mixed control case, the strain controlled integration contains 

larger errors since there is no global iteration; thus, the macro variables such as the void ratio 

were not updated during the iterations of the local law. The differences between the two iso-

error maps plotted by using CPPM and CPA can hardly be distinguished.   

4.5 Application to boundary value problems  

This section discusses the use of the CH model, implemented in the form of a user subroutine, 

in finite element simulations. The efficiency of the procedure has been validated by single-

element tests, multi-element tests and boundary value calculations. 

4.5.1 Finite element implementation 

The micromechanical model has been implemented into Abaqus/Standard 6.11 as a user 

material (UMAT) and the implementation has been validated by simulating single element 

tests with the implicit integration schemes along various loading paths. Under a given loading 

condition, the results were the same as the ones obtained by direct simulations of the model 

coded in the previous section, which demonstrated the success of the implementation into the 
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finite element code. 

4.5.2 Biaxial test simulation 

The implicit integration schemes were further verified by simulating biaxial tests, in which 

the strain increments inside and outside the shear band are not the same. The simulated biaxial 

test was performed on dense sand as its behaviour is highly dilative with strain softening 

occurring rapidly under a small range of strain. The influence of the mesh size was 

investigated, and a reasonable mesh size was generated. The specimen was composed of 2501 

elements and 2583 nodes with the dimension of 200mm 100mm 10mm, as shown in 

Figure 4.4. The specimen was first isotropically compressed up to a pressure of 800kPa and 

then loaded with different vertical displacement increments, maintaining a constant lateral 

stress. An accurate result was obtained for a maximum vertical displacement increment of 

0.02mm (Table 4.7). The integration schemes with CPPM and CPA had a similar 

performance, as shown in Figure 4.5(a) for CPPM and Figure 4.5(b) for CPA. 

 

Figure 4.4 Biaxial test simulation: (a) meshes and boundary conditions, (b) distribution of 

equivalent plastic strain 

(a) (b) 
q
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Figure 4.5 Biaxial tests by various increments using (a) CPPM, (b) CPA to integrate force-

displacement relations 

 

Figure 4.6 Evolution of interparticle contact forces of the selected element: (a) normal forces 

(N), (b) tangential forces (N) 

A shear band was observed from the distribution of the deviatoric plastic strain. To understand 

the formation of the shear band, it was decided to undertake a multiscale analysis by 

examining the evolution of the inter-particle normal and tangential force distributions for a 

central element inside the shear band. During the development of the shear band, the normal 

force pointed its maximum value in the vertical direction, whereas the shear force pointed its 
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maximum value towards the direction of the shear band, as shown in Figure 4.6(a) and (b). 

Note that this study is focused on the predictive performances of the numerical integrations; 

other problems such as instability, bifurcation, strain localization regulation, etc., will be 

studied at a later stage. 

Table 4.7 Performances of implicit algorithms in biaxial drained test simulations 

Test information CPPM CPA 

Test no. Initial 

void ratio 

Maximum 

increments  

CPU 

time (s) 

ERR 

(%) 

CPU 

time (s) 

 

 

ERR 

(%) 

BXD 0.6 0.02mm 6921.3 Exact 7980.5 Exact 

BXD 0.6 0.2mm 1997.7 4.420 2056.4 4.580 

BXD 0.6 2mm 1833.7 3.898 1944.8 4.012 

Table 4.8 Performances of implicit algorithms in finite element analysis of square footing 

Test information CPPM CPA 

Test no. Initial void 

ratio 

CPU time 

(s) 

ERR 

(%) 

CPU time 

(s) 

ERR 

(%) 

FT1 0.5 83273 Exact 1.068E5 Exact 

4.5.3 Finite element analysis of a square footing 

The ultimate bearing capacity of a rigid footing is a typical problem for numerical validation, 

due to the complex loading stress paths inside the soil foundation. During loading, the values 

of the strain increments span a very large range within the soil volume beneath the footing, 

which requires solid constitutive integration schemes over all the Gauss points. To assess each 

performance of the implicit integration of the micromechanical model, we performed a finite 

element analysis of a square footing. As shown in Figure 4.7(a), the finite element model is 

composed of 8819 C3D8R elements and 9261 nodes, and only a quarter of the volume is 

considered for the calculation, due to the symmetry of the problem. The dimensions of the 

soils are 10m 10m 10m, whereas the bottom of the footing is 1m 1m. The lower 

boundary of the soil is fixed in the directions x, y and z, whereas the lateral soil boundaries 

are only fixed in the y and z directions. As for the boundary of the footing, only the vertical 

displacement has not been prevented. The model parameters used in the previous example 

were selected with an initial void ratio of 0.5 and 0.7, respectively. Considering that the 
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footing can be regarded as a rigid body, a single element can be used to represent the footing, 

which prevents the influence of the soil-footing interaction on the performance of the studied 

algorithms. 
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Figure 4.7 Finite element model of a square footing: (a) equivalent plastic strain of dense 

sand, (b) reaction force and vertical displacement of the square footing 

 

Figure 4.8 Evolution of interparticle contact forces of the selected element: (a) normal forces 

(N), (b) tangential forces (N) 
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At first, the soil underwent a geostatic loading in order to simulate the in-situ gravity and, 

then, a 50kPa surcharge was imposed on the ground surface to avoid the singularities at the 

edge of the footing. The footing was then loaded by imposing a vertical displacement with 

different maximum increments of 0.15mm, 1.5mm, 15mm and 150mm. The distribution of 

the deviatoric plastic strain, shown in Figure 4.7(a) for dense sand, is quite similar to the 

results obtained in the literature (Gourvenec et al., 2006; Lyamin et al., 2007). Since most of 

the incremental loadings were very small and under the tolerance requirements of the finite 

element code, the same force-displacement curves were obtained for different methods of 

integration (CPPM, CPA) and different loading increments, as shown in Figure 4.7(b). 

However, the CPPM procedure needed less computational time than the CPA procedure, as 

shown in Table 4.6. To demonstrate that the approach could perform multiscale analyses, one 

element inside the shear band of the soil with an initial void ratio of 0.5 (Figure 4.8(a)) was 

selected to show the evolution of the normal and tangential force distributions. As shown in 

Figure 4.8(a) and (b), the normal and tangential forces were non-symmetric, which agrees 

with the existence of principal stress rotations during loading.  

4.6 Concluding remarks 

This chapter has presented an implicit method for integrating the micromechanical models 

based on a static hypothesis. A predictor-corrector method was proposed to solve linearized 

constraint equations under mixed controls. An iterative scheme was constructed to implement 

the stress-driven micro-macro relations. Two return mapping algorithms, i.e., the closest point 

projection method (CPPM) and the cutting plane algorithm (CPA) with the backward Euler 

method, were alternatively adopted to implement the local law at the micro level. The model 

was then implemented into a finite element code in order to perform multiscale analyses of 

boundary value problems. The main findings can be summarised as follows: 

1) The predictor-corrector method is efficient for solving linearised mixed control constraint 

equations. The effectiveness of this method has been validated by simulating drained 

triaxial compression tests, in which the boundary conditions consisted in imposing the 

vertical strain and the lateral stresses. 
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2) The static hypothesis was implemented consistently with the stress homogenisation 

formula by an out-of-balance iteration scheme, which rendered consistent the localisation 

and averaging operators. 

3) The local force-displacement relations were integrated by CPPM and CPA, respectively. 

Consistent results were obtained by using the two integration schemes with small strain or 

stress increments. In comparison to CPA, CPPM provided a better computational cost 

efficiency without any loss of accuracy, either for elementary tests or boundary value 

problems.  

4) The CH model was implemented into a finite element code and firstly validated by 

elementary tests. Then, two typical boundary value problems, i.e., a biaxial test and a 

square footing, were simulated, and the applicability of this method for multiscale 

analyses was demonstrated. 

The CH model belongs to the family of micromechanical models which use the static 

approach. This work could, therefore, provide guidance for similar attempts on 

micromechanical models of the same type. 
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CHAPTER 5 MULTISCALE STUDY OF INSTABILITIES IN 

GRANULAR ASSEMBLIES 

5.1 Introduction  

The phenomenon of failure at various scales has been widely observed in geotechnical 

engineering. Much effort has been devoted to understanding this mechanism in granular 

materials (Vardoulakis et al., 1978; Vardoulakis, 1980; Gudehus, 1986; Tejchman and Wu, 

1993; Nova, 1989, 1994; Desrues et al., 1996; Tejchman 1997; Oda and Kazama, 1998; Lade, 

2002; Desrues and Viggiani, 2004; Nicot et al., 2007; Chang et al., 2011; Daouadji et al., 

2011, 2013; Ando et al., 2012; Sze and Yang, 2013; Bouscarnera and Mihalache, 2014; 

Desrues and Ando, 2015). Experimental studies have shown that global failure can depend on 

various elements such as material density, degree of saturation, mechanical state and loading 

history, etc. (Desrues and Viggiani, 2004; Gudehus and Nübel, 2004; Mirone and Corallo, 

2010; Daouadji et al., 2011, 2013; Ando et al., 2012; Gao and Zhao, 2013; Bouscarnera and 

Mihalache, 2014; Misra and Poorsolhjouy, 2015b). Micromechanical investigations have 

demonstrated that global instabilities in granular materials originate from the rearrangements 

of grain-loops and the collapses of force-chains (Nicot et al., 2007; Radjai, 2008; 

Rechenmacher, 2006; Tordesillas et al., 2009; Welker and McNamara, 2009; Rechenmacher 

et al., 2010; Ando, 2012; Desrues and Ando, 2015; Ardeljan et al., 2015; Hadda et al., 2013, 

2015, 2016). Given these findings, two questions can be raised: what criterion can be used to 

characterise the instabilities at various scales and how is the extent of global instability related 

to elementary and microstructural instabilities in granular materials? 

Various criteria have been proposed to characterise global and local failures (Rudnicki and 

Rice, 1975; Darve and Laouafa, 2000; Lade, 2002; Staron et al., 2005; Nicot et al., 2007, 

Prunier et al., 2016; Nicot et al., 2017; Wan et al., 2017). In engineering practice, the factor 

of safety used to design geo-structures is based on the plastic limit condition. However, this 

method is inoperative in certain situations where material failure may occur before the plastic 

limit state is attained. A most typical example is that of the diffuse failure observed before the 
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Mohr-Coulomb plastic limit (Darve and Laouafa, 2000; Darve et al., 2004; Desrues and 

Viggiani, 2004; Nicot et al., 2007; Daouadji et al., 2011; Daouadji et al., 2013; Wan et al., 

2013). Therefore, it is of crucial importance to improve understanding of the mechanism of 

material instability in order to improve the safety of geotechnical structures. Several 

researchers have attempted to give precise definitions of material failure (Lyapunov, 1907; 

Hill, 1958; Rudnicki and Rice, 1975; Nova, 1994; Nicot et al., 2007; Nicot and Darve, 2007; 

Prunier et al., 2016; Nicot et al., 2017). Lyapunov (1907), in particular, was a pioneer in 

defining instability in solid mechanics within a mathematical framework. Under his definition, 

a rate-independent mechanical system subjected to a given loading path reaches failure state if 

the loading path is limited to a given load level for at least one control mode. However, this 

definition is difficult to apply in engineering practice. By contrast, Hill’s sufficient condition 

of stability (Hill, 1958) is a criterion easier to manipulate. It states that a given material at an 

equilibrium state is reputedly unstable if, under a prescribed strain increment dε, the second-

order work d2w=dσ:dε≤0 for at least one stress increment dσ. Based on elastoplasticity theory, 

Nova (1994) suggested a convenient framework referred to as the loss of controllability which 

describes the existence of a unique solution for a mechanical system under a prescribed 

loading program. What are the physical meanings of Hill’s stability criterion and the approach 

consisting of the loss of controllability? Nicot et al. (2007) answered this question from the 

perspective of energy and, in so doing, demonstrated that, for a quasi-static system, the 

second-order work can be a uniform quantity in capturing the bifurcation point in granular 

materials (Nicot et al., 2009). More recently, the second-order work criterion has been applied 

to investigate material instability from the particle scale to boundary value problems (Nicot et 

al., 2009; Nicot et al., 2011; Prunier et al., 2016; Wan et al., 2017; Kakogiannou et al., 2016; 

Nicot et al., 2017).  

The microstructure of a granular material has a significant impact on its macroscopic 

behaviour. When an external force is applied on the boundary of a specimen, it is transmitted 

from the particles at the boundary to the inside of the sample through a network of inter-

particle contact forces. These forces are the main ingredient that governs the kinematics of 
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particles through local laws, which leads to the macroscopic strain. Once grain loops collapse, 

the force chain will be broken and significant displacements will appear (Nicot et al., 2007; 

Radjai, 2008; Rechenmacher, 2006; Tordesillas et al., 2009; Welker and McNamara, 2009; 

Rechenmacher et al., 2010; Ando, 2012; Desrues and Ando, 2015; Ardeljan et al., 2015). 

Therefore, the failure of the sample is triggered by the instability of the grain loops. However, 

a local failure may not destabilise the whole system. For instance, a soil sample extracted 

from a local failed slope is in a failed state, while the whole slope remains stable. Following 

the development of the micromechanics of granular materials, the extent of global instability 

arising from microstructural instability was recently examined by the discrete element method 

(Rechenmacher, 2006; Nicot and Darve, 2007; Sibille et al., 2007; Hall et al., 2010; Nguyen, 

2016; Zhao et al., 2016). It was found that micro instabilities precede a global failure. 

However, the relation between local instability and global failure has not been explicitly 

considered with computational models (Chang et al., 2010; Daouadji et al., 2011). To this 

purpose, a micromechanical model describing the behaviour of granular materials at both the 

micro and macro scales is necessary. Furthermore, the criterion of instability at different 

scales should be consistently quantified in accordance with the micromechanical model.  

Micromechanical models have been developed through the definition of inter-particle contact 

laws and homogenisation schemes (Chang and Hicher, 2005; Nicot and Darve, 2005, 2011; Li 

et al., 2009; Yin and Chang, 2009; Yin et al., 2011, 2013, 2014; Xiong et al., 2017). Discrete 

features of granular materials are embedded within these models which describe the stress-

strain relations of granular assemblies. In terms of a homogenisation scheme, the Love-Weber 

formula has been widely used as the average operator thanks to its effectiveness in 

aggregating inter-particle forces to assembly stresses. However, various localisation operators 

have been suggested to compute local variables from global ones. Two types of localised 

operators: the kinematic method and the static hypothesis can be found in the literature. The 

kinematic method relates global strains to inter-particle displacements, based on which 

micromechanical models were constructed by Nicot and Darve (2005, 2011), Misra and Singh 

(2014), Misra and Poorsolhjouy (2015a) and Xiong et al. (2017). The static hypothesis 
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deduces inter-particle forces from global stresses, which gives rise to a family of 

micromechanical models (Chang and Hicher, 2005; Yin and Chang, 2009; Yin et al., 2011, 

2013, 2014). Among these models, the CH model has proved to be effective in predicting the 

overall behaviour of granular materials (Chang and Hicher, 2005).   

This chapter focuses on the second-order work criterion to characterise failure at various 

scales. The CH micromechanical model has been adopted because it is one of the few models 

that can accurately reproduce the behaviour of granular materials at both the representative 

volume and the inter-particle contact levels. The chapter, divided into three parts, will present 

the following discussion: first, the second-order work is defined at different scales and its 

relations between these different scales are derived. Then, the rationality of the 

micromechanical model expressed by the Cauchy stresses and the Euler strains to calculate 

the second-order work is tested. Finally, simulations of triaxial tests as REV scale problems 

and biaxial tests as boundary value problems are conducted to demonstrate that this method is 

capable of describing the extent of global failure originating from microstructural instabilities.  

5.2 Second-order work as a failure criterion  

5.2.1 Loss of sustainability 

Failure modes of granular materials and their different mechanisms have been widely studied 

(see for example: Chambon et al., 2004; Welker and McNamara, 2009; Sze and Yang, 2013; 

Hadda et al., 2015). Generally, two specific failure modes: localised and diffuse failures have 

been observed (Darve and Laouafa, 2000; Darve et al., 2004; Nicot et al., 2007). In localised 

failure, the strain is concentrated in shear bands; the displacement field is highly 

heterogeneous and organised. The diffuse failure is characterised by the absence of a specific 

failure pattern; the displacement field is chaotic, without any apparent organisation. The 

present study investigates localised and diffuse failures in non-viscous granular materials at 

small deformations. Neither the geometric nor the divergence instability will be discussed. 

Failure occurs with an outburst of kinetic energy (Hadda et al., 2016; Nguyen et al., 2016). 

From this energy perspective, Nicot and Darve (2007) suggested that the sign of the second-
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order work can be used to detect the transition from a quasi-static to a dynamic system. Using 

the Lagrangian description, the kinetic energy increment can be expressed as 

 
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where δEc(t) represents the current change in kinetic energy of the system; Fi is the surface 

density of the forces applied to the boundary; u is the displacement field imposed along the 

boundary; b0 is the density of the body force in the volume; Π  denotes the first Piola-

Kirchhoff stress tensor; the operator iX    denotes spatial differentiation whereas δ 

represents particulate time derivative; Γ0 is the boundary of the volume V0. The differentiation 

with time of Eq.(5.1) results in 
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in which N is the normal to the boundary. The kinetic energy can be expressed by a two-order 

Taylor expansion  

        2 31
( )

2
c c c cE t t E t E t t E t t o t                               (5.3) 

Noting that 

0

2

0 0( )c

V

E t dV  u  and the system is in an equilibrium state at a time t, then 

( ) 0cE t  , similarly 

0

0 0( )c

V

E t dV  u u  at time t satisfies ( ) 0cE t  . Therefore, Eq.(5.3) can 

be expressed as  
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Ignoring the third-order terms, then     22 c cE t t E t t   . The system evolves if and only if 

the kinetic energy is greater than zero, i.e.   0cE t t  . Thus by combining with Eq.(5.2), 

it follows that 
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For non-viscous materials, the external second-order work 2

extW  is zero during a quasi-static 

loading. Therefore, the kinetic energy bursts out only if the internal second-order work 
int

2W  is 

negative. In other words, the instability of the system can be detected by a change of sign of 

the second-order work.  

5.2.2 Lagrangian and Euler description 

The second-order work can be expressed with a material and spatial description. A given 

material, with a volume V0 and a surface boundary S0, initially in a configuration C0, is 

considered. Under a loading history, the system is in a strained configuration C, with a 

volume V and a boundary surface S, in equilibrium under a prescribed external load. Each 

material point in volume V0 is transformed into a material point in volume V. All the material 

points in volume V0 are displaced along with pure strain induced by stretching and spinning 

deformations. If large deformations take place, the initial configuration C0 and the current 

configuration C cannot be merged. The second-order work defined in configuration C0 is 

obtained by a Lagrangian description, whereas when defined in configuration C it is obtained 

by a Euler description (see details in Nicot et al., 2007). Based on a Lagrangian description, 

the stability of elastoplastic solids has been defined by Hill (1958): 

0

2 0 0
j

ij

iV

U
W s dV

x


 

                                               (5.6) 

in which ijs  is the rate of the nominal stress tensor, which is the transposed form of the non-

symmetric Piola-Kirchhoff stress tensor; 
j iU x   is the kinematic velocity field conjugated 

with 
ijs . Nicot et al. (2007) have clarified the link between the violation of Hill’s criterion and 

an increase of kinetic energy. The expression of the internal second-order work by a 

Lagrangian description can be rewritten as 

0

2 0ij ij

V

W F dV                                                   (5.7) 
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in which F is the deformation tensor in a Lagrangian description. For the case of small 

deformations and negligible geometrical effects, the second-order work can be equivalently 

expressed by a Euler description 

2 ij ij

V

W dV                                                    (5.8) 

where σ is the Cauchy stress tensor and ε is the Euler strain tensor.  

5.2.3 Definitions of second-order work at various scales  

At the inter-particle contact level, the second-order work for non-viscous materials can be 

expressed as (Nicot and Darve, 2007; Nicot et al., 2007)  

2

c c c c c

i i i iW f l M w                                                  (5.9) 

in which c

if  is the interparticle force increment, c

il  is the change of branch length for two 

connecting grains, c

iM  is the increment of the contact couple, and c

iw  is the radian of 

particle rotation. The first term considers the relative displacement of the particle, whereas the 

second term describes the effects of particle rotation. Since the CH micromechanical model 

does not consider the interlocking effect directly but only through global corrections, the 

second-order work at the inter-particle contacts can be expressed as (Chang et al., 2010) 

2

c c c

i iW f                                                       (5.10) 

where c

i  is the displacement increments defined at the inter-particle contacts. 

At the material point (or REV) level, the second-order work expressed by the Euler 

description is given by 

2 :el

ij ijW                                                        (5.11) 

Hence, the global second-order work can be integrated over all elements and can be adopted 

as an indicator to characterise the stability in boundary value problems. With the finite 

element method, the global second-order work can be calculated as  
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where elk  is the elementary consistent tangent stiffness matrix. Once all the meshes are 

assembled, we obtain 

2

t t t

V

W d d dV dQ KdQ dQ dF                                      (5.13) 

in which dQ and dF are the global nodal incremental displacement and force, K is the global 

consistent tangent matrix (Prunier et al., 2016; Nicot et al., 2017). 

5.3 Multiscale approach and the second-order work 

To analyse the instability occurring at various scales, a multiscale approach is necessary. 

Through this approach, the second-order work can be defined at different scales and linked up 

and down the scales. The efficiency of the multiscale analysis of the second-order work for 

capturing instability will be evaluated by a directional analysis. 

5.3.1 Micromechanical model 

In this study, the CH model (Chang and Hicher, 2005) has been adopted to describe the 

granular material behaviour. Details of this model can be found in Chapter 1. The model could 

be calibrated by simulating drained triaxial tests on loose and dense Hostun sand samples. The 

parameters used in this model are given in Table 2.1.  

5.3.2 Directional analysis 

For a given material at an equilibrium state, a small perturbation can be imposed to detect 

whether this state is sustainable. A convenient method for conducting the perturbation is the 

directional analysis proposed by Gudehus (1979). Incremental stress probes or strain probes 

are imposed along all loading directions, and their conjugate incremental strains or stresses 

are calculated (Figure 5.1(a-b)). If there is a loading direction for which the second-order 

work is negative, a loss of sustainability will occur under this loading program, otherwise the 

equilibrium is unconditionally sustainable. 
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Figure 5.1 Rendulic plane: (a) triaxial probe, (b) strain probe circle 

We began by imposing a strain probe of a magnitude 1% on a dense sample at different stages 

of a drained triaxial test. Four points A, B, C and D, at axial strains of 1%, 4%, 6.5% and 12%, 

respectively, were selected to analyse the second-order work in the Rendulic plane, shown in 

Figure 5.2(a) and (b). At point A, the second-order work is positive in all loading directions, 

whereas at point B the second-order work vanishes in the 150 loading direction while 

remaining positive in all the other directions (Figure 5.3(a-b)). This explains that in certain 

loading schemes the material is stable despite the existence of latent instability. Point C 

corresponds to the peak stress state where instability occurs around the direction of 150, 

which is consistent with the directional analysis by Nicot et al. (2007). After the peak, the 

instability zone becomes wider, as shown at point D (Figure 5.3(c-d)).  
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Figure 5.2 Stress-strain relation with confining pressure of 800kPa: (a) deviatoric stress 

versus axial strain of dense sand (e0=0.5), (b) deviatoric stress versus mean effective pressure 

of dense sand (e0=0.5), (c) deviatoric stress versus axial strain of loose sand (e0=0.885), (d) 

deviatoric stress versus mean effective pressure of loose sand (e0=0.885) 
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Figure 5.3 Second-order work calculated by Piola-Kirchhoff stress and Cauchy stress, and its 

volumetric part and geometrical parts at point A, B, C and D by Rendulic strain probe   

The above directional analysis was also conducted at different stages for a loose specimen 

under undrained triaxial compression. The second-order work was calculated at axial strains 

of 1%, 2%, 2.42% and 6%, noted as points A', B', C' and D', respectively. The latent 

instability at point B' was also detected and was followed by a diffuse failure at point C'. Most 

interestingly, the transition from diffuse to localised failure was well captured by the second-

order work, and the localised direction was included within the range formed by all the 

directions of instability (Figure 5.3(e-h)). Based on these analyses, it can be confirmed that 

the CH model is capable of detecting instability in granular materials based on the second-

order work criterion. 

5.3.3 Comparing Lagrangian and Euler descriptions 



133 

The expression of the second-order work was given by a Lagrangian description (Hill, 1958; 

Nicot et al., 2007; Nicot and Darve, 2009). However, since the Cauchy stress tensor and the 

Euler strain tensor are widely adopted in constitutive models and finite element codes, it is 

useful to express the second-order work by a Eulerian description. With the use of Nanson’s 

formula (Nicot et al., 2007), the second-order work in a Lagrangian description can be 

expressed by a Eulerian description. The second-order work calculated through the Piola-

Kirchhoff stress tensor can be written as  

 
22

2

2 : : :
Cauchy V

G

Piola

WW
W

W V V V       σ ε σ ε σ ε ε                           (5.14) 

in which, on the right-hand side, the first term is the second-order work in a Eulerian 

description, denoting as 
2

CauchyW ; whereas the second term 
2

VW  is related to the change of 

volume and the third term 
2

GW  is treating geometrical changes. It is necessary to calculate the 

difference between these two definitions, since the Eulerian description has been adopted 

within the CH micromechanical model. 

The contributions of the different terms 
2

PiolaW , 
2

CauchyW , 
2

VW  and 
2

GW  are analysed in Figure 

5.3. The difference in the second-order work expressed by a Lagrangian or by a Eulerian 

description was investigated under the same loading procedure as the one conducted in the 

directional analysis. As shown in Figure 5.3, the contributions of both terms 2

VW  and 2

GW  are 

negligible at the selected points A(A'), B(B'), C(C') and D(D'), which demonstrates that the 

difference between the two descriptions is very small. Therefore, we can use the Eulerian 

instead of the Lagrangian description to compute the second-order work in the following 

analyses. 

5.3.4 Micro-macro relation of the second-order work 

As previously described, the second-order work can be seen as an ideal indicator for detecting 

material instability at the specimen scale. To investigate the role of microstructural 

instabilities on the global failure of granular materials, a consistent indicator should be 
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constructed at different scales. Based on the adopted micromechanical model, we inserted the 

static expression of Eq.(1.17) into Eq.(5.10) and made a summation over all inter-particle 

contacts, expressed as 

 
1 1 1

N N N
c c c c c c

i i ij n jn i ij i n jn

c c c

f l A l A    
  

                               (5.15) 

in which the stress increment is a common denominator and can be taken out of the 

summation since the calculation is based on the REV. By volumetrically averaging Eq.(5.15) 

and taking into account the best-fit hypothesis expressed by Eq.(1.12), the relation between 

the second-order work at micro and macro scales can be obtained   

1 1

1 1
:

N N
c c c c

i i ij i n jn ij ij

c c

f l A
V V

    
 

 
  

 
                               (5.16) 

According to the definition of the second-order work at various scales, Eq.(5.16) can be 

further written as 

2 2

1

1 N
el c

c

W W
V 

                                                       (5.17) 

which indicates that the instability of the specimen originates from the instability of the inter-

particle contacts. Note that Eq.(5.17) cannot be generalised to all kinds of micromechanical 

models since the previous derivations are based on the best-fit hypothesis adopted within the 

CH model. Other kinds of micromechanical models should be carefully investigated when 

this connection is being considered. 

0 90 180 270 360

0

100

200

300

400

 

 

(a)

S
e
c
o
n
d
-o

rd
e
r 

w
o
rk

 (
J
)

Direction of strain probe (
c
)

 W
Micro

2

 W
Macro

2

TXD: Point A

0 90 180 270 360

0

100

200

300

400

 

 

TXD: Point B

S
e

c
o

n
d

-o
rd

e
r 

w
o

rk
 (

J
)

Direction of strain probe (
c
)

 W
2

Micro

 W
2

Macro

(b)

 



135 

0 90 180 270 360

0

100

200

300

400

 

 
S

e
c
o
n
d
-o

rd
e
r 

w
o
rk

 (
J
)

Direction of strain probe (
c
)

 W
2

Micro

 W
2

Macro

(c) TXD: Point C

0 90 180 270 360

0

100

200

300

400

 

 

S
e
c
o
n
d
-o

rd
e
r 

w
o
rk

 (
J
)

Direction of strain probe (
c
)

 W
2

Micro

 W
2

Macro

(d) TXD: Point D

 

0 90 180 270 360
-10

0

10

20

30

40

50

60

 

 

S
e

c
o

n
d

-o
rd

e
r 

w
o

rk
 (

J
)

Direction of strain probe (
c
)

 W
Micro

2

 W
Macro

2

(e) TXU: Point A'

0 90 180 270 360
-10

0

10

20

30

40

50

60

 

 

S
e
c
o
n
d
-o

rd
e
r 

w
o
rk

 (
J
)

Direction of strain probe (
c
)

 W
Micro

2

 W
Macro

2

(f) TXU: Point B

 

0 90 180 270 360
-10

0

10

20

30

40

50

60

 

 

S
e

c
o

n
d

-o
rd

e
r 

w
o

rk
 (

J
)

Direction of strain probe (
c
)

 W
Micro

2

 W
Macro

2

(g) TXU: Point C

0 90 180 270 360
-10

0

10

20

30

40

50

60

 

 

S
e
c
o
n
d
-o

rd
e
r 

w
o
rk

 (
J
)

Direction of strain probe (
c
)

 W
Micro

2

 W
Macro

2

(h) TXU: Point D'

 

Figure 5.4 Second-order work calculated by stress-strain and summation of microscale 

second-order work at points A, B, C and D by Rendulic strain probe 

The consistency between the second-order works calculated by macro scale stress and strain 

increments, on one hand, and by the summation of all micro scale second-order works 

computed by force and displacement increments, on the other hand, is demonstrated in Figure 

5.4. By imposing the same strain increments as previously done during the directional 
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analysis at the selected stress states A(A'), B(B'), C(C') and D(D'), in the Rendulic plane, it 

was possible to obtain a consistent second-order work. With the help of consistent expressions 

of the second-order work at various scales, the extent of particle instability to global 

instability can be quantitatively analysed. 

5.4 Analyses of the influence of microstructural instabilities on global failure 

The effectiveness of the micromechanical approach in characterising the mechanism of 

granular material failure will be illustrated at the specimen scale and for boundary value 

problems. At each scale, both localised and diffuse failures will be analysed.   

5.4.1 Instability of material points 

5.4.1.1 Drained triaxial test on dense sand 

A conventional drained triaxial compression test was first performed on a dense sand sample 

with an initial void ratio of 0.5 under a confining pressure of 800 kPa (Figure 5.2(a) and (b)). 

As expected, a strain softening behaviour was obtained, accompanied by a localised failure of 

the specimen. To better understand the occurrence of failure, Figure 5.5 presents the evolution 

of the inter-particle contact forces, of the displacements, and of the force ratios at the selected 

stress states A, B, C and D. At these specific points, the normal forces reached maximum 

values along the x-axis with an isotropic distribution in the y-z plane, whereas the tangential 

forces reached their maximum values in the direction of =45 (Figure 5.5(a-b)). The normal 

displacements showed a distribution similar to the one obtained for the normal forces, except 

at stage D where the normal displacements were affected by large tangential deformations. 

Indeed, the plastic deformations were relatively small before the bifurcation point (stage C), 

compared to the ones in the post failure stage, such as at point D. Moreover, the plastic 

behaviour of the granular material was described by a non-associated local law which leads to 

a different distribution of the normal displacements, compared to the distribution of the 

normal forces. Unlike the normal displacements, the tangential displacements revealed 

maximum values along the direction of =60 with an isotropic distribution in the y-z plane 

(Figure 5.5(d)). Again, this direction was not the one corresponding to the maximum 
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tangential force since a non-associated inter-particle flow rule has been adopted. Force ratios, 

given as tangential forces over normal forces, were also computed at these four stages. Their 

maximum values were obtained along the direction of =45 with an isotropic distribution in 

the y-z plane (Figure 5.5(e)).  
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(e)  x-y plane (β=0) x-z plane (β=90) y-z plane (=90) 

   

Figure 5.5 Force, displacement and force ratio distributions of triaxial drained test at initial 

stage and stages A, B, C and D: (a) normal forces on x-y plane, x-z plane and y-z plane (N); 

(b) tangential forces on x-y plane, x-z plane and y-z plane (N); (c) normal displacements on x-

y plane, x-z plane and y-z plane (mm); (d) tangential displacements on x-y plane, x-z plane 

and y-z plane (mm); (e) force ratios on x-y plane, x-z plane and y-z plane 

(a)  x-y plane (β=0) x-z plane (β=90) y-z plane (=90) 

   

(b)  x-y plane (β=0) x-z plane (β=90) y-z plane (=90) 
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(c)  x-y plane (β=0) x-z plane (β=90) y-z plane (=90) 

   

(d)  x-y plane (β=0) x-z plane (β=90) y-z plane (=90) 

   

(e)  x-y plane (β=0) x-z plane (β=90) y-z plane (=90) 

   

Figure 5.6 Force, displacement and force ratio distributions of triaxial undrained test at initial 

stage and stages A, B, C and D: (a) normal forces on x-y plane, x-z plane and y-z plane (N); 

(b) tangential forces on x-y plane, x-z plane and y-z plane (N); (c) normal displacements on x-

y plane, x-z plane and y-z plane (mm); (d) tangential displacements on x-y plane, x-z plane 
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and y-z plane (mm); (e) force ratios on x-y plane, x-z plane and y-z plane 

With the CH model, the second-order work can be used to detect material instability. At the 

macro scale, the specimen was always stable before reaching the peak stress with a positive 

value of the macroscale second-order work. At point C, the second-order work vanished and 

then took negative values, which denoted the instability of the specimen (Figure 5.2(a)). In 

fact, if the loading had been stress-controlled, sudden collapse of the specimen would have 

occurred and the system would have evolved from a static to a dynamic regime. As expected, 

the second-order work calculated at the macro scale is equal to the volumetric summation of 

the second-order work at the micro scale (Figure 5.7(a)). The macroscale instability can, 

therefore, be explained by the magnitude of the instabilities at the inter-particle contacts. The 

failure plane of the specimen calculated by the Coulomb failure criterion, with 

α=45+33/2=61.5, is consistent with the direction of the plane where the second-order work 

reaches its highest negative value (Figure 5.8(b)). 
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Figure 5.7 Macro and micro second-order work: (a) second-order work calculated by stress-

strain and summation of microscale second-order work of dense sand (e0=0.5); (b) second-

order work calculated by stress-strain and summation of microscale second-order work of 

loose sand (e0=0.885) 
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Figure 5.8 Micro second-order work at stages A, B, C and D on x-y plane, x-z plane and y-z 

plane 

5.4.1.2 Undrained triaxial test on loose sand   

To demonstrate the effectiveness of this approach in describing diffuse failure, a conventional 

undrained triaxial compression test on a loose sand sample with an initial void ratio of 0.885 

under a confining pressure of 800 kPa (Figure 5.2(c)-(d)) was also performed. Before 
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analysing the instability at micro and macro scales, the evolution of the inter-particle forces, 

displacements and force ratios at the selected stages A', B', C' and D' were studied. The 

normal forces were isotropically distributed at the end of the consolidation stage, and then 

decreased anisotropically under shearing, whereas the tangential forces increased from zero to 

the maximum values obtained along the direction =45, as shown in Figure 5.6(a-b). Normal 

and tangential displacements had small values before the bifurcation point C', where diffuse 

failure would have occurred under stress control (Figure 5.6(a-b)). Due to the non-associated 

inter-particle flow rule, the normal displacements at point D' reached their maximum values in 

the direction =60, concordantly with the tangential displacements. During shearing, the 

specimen lost its homogeneity gradually, particularly from a diffuse state at point C' to a 

localised state at point D' (see also Wan et al., 2013). This feature was well characterised via 

the CH micromechanical model, as demonstrated by the distribution of normal and tangential 

displacements (Figure 5.6(a-b)). The distribution of the force ratios also showed maximum 

values along the direction =45 (Figure 5.6(e)).  

At the specimen scale, the diffuse failure at point C' was well captured by the vanishing of the 

macroscale second-order work (Figure 5.7(b)). Before point C', the specimen was stable and 

the macroscale second-order work was positive, whereas after this point the second-order 

work became negative. Since the macroscale second-order work is equal to the volumetric 

summation of all the microscale second-order works (Figure 5.7(b)), the particulate origin of 

the macroscale instability can be analysed by observing the evolution of the microscale 

second-order work in all local directions. Before the peak stress point C', instability could be 

observed for certain directions even though the whole specimen remained stable. Moreover, a 

high degree of negative second-order work occurred at point D', corresponding to a localised 

state. The direction of the localised zone predicted by the maximum negative second-order 

work was around =60, consistent with the Coulomb failure direction.  

5.4.2 Failure in boundary value problems 

The above analysis was then extended from the material point scale to boundary value 

problems. With the finite element method, instability at the grain scale can be linked to the 
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failure of engineering geo-structures through the material points, i.e. the Gauss integration 

points. The biaxial test as a boundary value problem was chosen to demonstrate the 

predictability of this method for cases of localised and diffuse failures.  

The CH model was implemented into the finite element code Abaqus/Standard 6.14-1. For 

one element, the second-order work can be calculated by the incremental node displacements 

and the consistent stiffness matrix by Eq.(5.11). The global second-order work can also be 

computed by the incremental node displacements and forces by Eq.(5.13). Therefore, the 

global second-order work can be obtained by connecting elementary second-order works at 

the grain scale. 

 

Figure 5.9 Drained biaxial tests of dense sand (e0=0.5): (a) mesh and boundary conditions; (b) 

deviatoric plastic strain at stage A; (c) deviatoric plastic strain at stage C; (d) deviatoric plastic 

strain at stage D 

5.4.2.1 Biaxial test under drained condition on dense sand  

A biaxial test on dense sand under drained condition was first conducted. The dimension of 

the finite element model was 200mm×100mm×10mm. The FEM model did not consider any 

regularisation technique, since the current study focuses mainly on the outset of the instability 

condition. A preliminary study of the influence of the mesh size on the computational cost 

and on the thickness of the shear band led to the choice of the discretisation of the problem by 

1600 three-dimensional eight-node trilinear displacement elements with reduced integration 

q q

No. 821 

(a) Mesh and boundary (b) Point A (c) Point C (d) Point D 

q
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C3D8R, as shown in Figure 5.9(a). The imposed boundary conditions were the following: the 

left and right sides were constrained with a constant pressure of 800 kPa; the bottom and top 

were restricted in x, y and z directions; the front and back surfaces were fixed in the y 

direction. The boundaries were referred to as rough boundaries, since the bottom and top 

surfaces were limited in the x, y and z directions (Guo and Zhao, 2014). The material 

parameters were the same as the ones used in the aforementioned triaxial drained test. All 

elements were initiated with an isotropic stress of 800 kPa, corresponding to the confining 

pressure. Then, a vertical displacement was imposed at the top surface.  
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Figure 5.10 Drained biaxial tests of dense sand (e0=0.5): (a) vertical reaction force versus 

vertical displacement; (b) global second-order work 
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Figure 5.11 Stress-strain of the selected element of biaxial test during loading (e0=0.5): (a) 

deviatoric stress versus axial strain, (b) deviatoric stress versus mean effective pressure 

After a 20mm vertical displacement at the top surface, a distinct shear band could be observed, 
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as shown by the deviatoric plastic strain field in Figure 5.9(d). This localised behaviour was 

characterised by the vertical force-displacement curve, in which a softening stage could be 

noticed. Concordantly, the global second-order work, positive before the peak force point G, 

vanished at that point (Figure 5.10). This result demonstrates that the global second-order 

work can be an efficient indicator for detecting localisation in boundary value problems. The 

element 821, placed near the centre of the specimen, was selected due to its significant plastic 

deformation developed in the course of loading. Its micro quantities were closely analysed 

throughout the loading. The stress-strain behaviour was obtained (Figure 5.11), and the 

evolution of forces, displacements and force ratios were plotted at the selected stress stages E, 

F, G and H (see Figure 5.12). Distributions similar to those in the previous drained triaxial 

test were obtained. However, these variables have much larger values on the x-z plane if 

compared to the x-y plane, since the boundary conditions are non-symmetric (Figure 5.12).  

(a)  x-y plane (β=0) x-z plane (β=90) y-z plane (=90) 

   

(b)  x-y plane (β=0) x-z plane (β=90) y-z plane (=90) 

   

(c)  x-y plane (β=0) x-z plane (β=90) y-z plane (=90) 
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(d)  x-y plane (β=0) x-z plane (β=90) y-z plane (=90) 

   

(e)  x-y plane (β=0) x-z plane (β=90) y-z plane (=90) 

   

Figure 5.12 Force, displacement and force ratio distributions at initial stage and stages E, F 

and G of selected element of biaxial test: (a) normal forces on x-y plane, x-z plane and y-z 

plane (N); (b) tangential forces on x-y plane, x-z plane and y-z plane (N); (c) normal 

displacements on x-y plane, x-z plane and y-z plane (mm); (d) tangential displacements on x-

y plane, x-z plane and y-z plane (mm); (e) force ratios on x-y plane, x-z plane and y-z plane 

For the selected element, the second-order works have the same values calculated, on the one 

hand, from macro stress and strain increments and, on the other hand, by the integration of the 

micro force and displacement increments (Figure 5.13(a)). Before point G, the second-order 

work was positive and, after this point, it became negative, which corresponds to strain 

softening behaviour (Figure 5.11(a)). The instability of the material can be further explained 
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by the instability at inter-particle contacts. It was found that the direction of the shear band 

(around 60) was the direction of the inter-particle second-order work having the maximum 

negative value (Figure 5.13(c) and Figure 5.19 (a)). The simulation results are consistent with 

DEM simulations of a drained biaxial compression test on a dense sample by Nicot et al. 

(2013) and Nguyen (2016), which demonstrated that the multiscale approach does explain the 

localised failure of granular assemblies. 
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Figure 5.13 Macro and micro second-order work of selected element during loading and 

failure plane of biaxial test (e0=0.5): (a) second-order work calculated by stress-strain and 

summation of microscale second-order work; (b-d) micro second-order work at stages E, F 

and G on x-y plane, x-z plane and y-z plane 

5.4.2.2 Biaxial test under undrained condition on loose sand  

To determine if the proposed method is capable of predicting diffuse failure, a biaxial test 

under undrained condition was conducted. 1600 elements with C3D8RP mesh were used to 
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simulate soil-water interaction. The rough boundary conditions previously used in the biaxial 

drained test were imposed. Darcy’s law with an intrinsic permeability of 1.0×10-4 m/s, as 

suggested by Feia et al. (2016), was adopted to describe the flow of water inside the granular 

assembly. The initial void ratio of the loose Hostun sand was 0.885. The material was first 

subjected to an isotropic stress of 800 kPa. Then, a displacement of 15mm was imposed on 

the top surface along the x axis. 

(a) Point A' (b) Point B' (c) Point C' (d) Point D' 

 

 
   

Figure 5.14 Undrained biaxial tests of loose sand (e0=0.885): (a) deviatoric plastic strain at 

stage A'; (b) deviatoric plastic strain at stage B'; (c) deviatoric plastic strain at stage C'; (d) 

deviatoric plastic strain at stage D' 

q q q q

https://en.wikipedia.org/wiki/Permeability_%28fluid%29
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Figure 5.15 Biaxial tests of dense sand (e0=0.885): (a) vertical reaction force versus vertical 

displacement; (b) global second-order work 
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Figure 5.16 Stress-strain of the selected element of biaxial test during loading (e0=0.885): (a) 

deviatoric stress versus axial strain, (b) deviatoric stress versus mean effective pressure 

The granular assembly reached its maximum strength at point B' (Figure 5.15(a)), where a 

diffuse failure occurred (Figure 5.14(b)). Very close to this stage, at point A', the material was 

homogeneous if the boundary effects were neglected. However, diffuse failure transited 

towards a localised failure under a continuing vertical displacement (Figure 5.14(c) and (d)). 

The sequence of the occurrence of instability can be explained by the order of the instability 

criteria. As discussed by Wan et al. (2013), with the increment of shear loading, the loss of 

positive definiteness where diffuse failure can be observed is first encountered, and then the 

singularity of the acoustic tensor, which represents the occurrence of a shear band, follows. 

As for the biaxial test under undrained condition, the second-order work demonstrated also its 



150 

ability to predict diffuse failure (Figure 5.15). The diffuse failure condition can be well 

understood by examining the stress-strain behaviour of element 821, in which failure occurred, 

obviously, before the plastic limit. The evolutions of forces, displacements and force ratios 

were presented at the selected stages E', F', G' and H' (Figure 5.17). Distributions similar to 

those of the previous triaxial undrained test were obtained. However, these variables have 

much larger values on the x-z plane if compared to the x-y plane, since the boundary 

conditions are non-symmetric. 

(a)  x-y plane (β=0) x-z plane (β=90) y-z plane (=90) 

   

(b)  x-y plane (β=0) x-z plane (β=90) y-z plane (=90) 

   

(c)  x-y plane (β=0) x-z plane (β=90) y-z plane (=90) 

   

(d)  x-y plane (β=0) x-z plane (β=90) y-z plane (=90) 
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(e)  x-y plane (β=0) x-z plane (β=90) y-z plane (=90) 

   

Figure 5.17 Force, displacement and force ratio distributions at initial stage and stages E, F 

and G of selected element of biaxial test: (a) normal forces on x-y plane, x-z plane and y-z 

plane (N); (b) tangential forces on x-y plane, x-z plane and y-z plane (N); (c) normal 

displacements on x-y plane, x-z plane and y-z plane (mm); (d) tangential displacements on x-

y plane, x-z plane and y-z plane (mm); (e) force ratios on x-y plane, x-z plane and y-z plane 

Likewise, consistent second-order work values were obtained for the selected element (Figure 

5.18(a)). Before point G', the second-order work was positive, whereas after this point it 

became negative (Figure 5.16(b)). The instability of the material can be further explained by 

the instability at the inter-particle contacts. It was found that the direction of the shear band 

(around 55) was close to the direction of the maximum negative value of the inter-particle 

second-order work (Figure 5.18(c) and Figure 5.19 (b)). The simulation demonstrated that the 

multiscale approach could explain the occurrence of diffuse failure in a granular assembly. 
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Figure 5.18 Macro and micro second-order work of selected element during loading and 

failure plane of biaxial test (e0=0.885): (a) second-order work calculated by stress-strain and 

summation of microscale second-order word; (b-d) micro second-order work at stages E, F 

and G on x-y plane, x-z plane and y-z plane 

        

Figure 5.19 Direction of strain localisation at the end of biaxial tests: (a) dense sand (e0=0.5) 

under drained condition; (b) loose sand (e0=0.885) under undrained condition 
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5.4.2.3 Effect of boundary condition on the failure mode 

Since failures of granular materials are strongly related to boundary conditions, it is of no 

slight interest to compare the failure modes in biaxial tests with different boundary conditions. 

For comparison, the constraints in the z direction of the aforementioned rough boundaries 

were relieved, whereas the other conditions were kept the same, a condition corresponding to 

the so-called smooth boundaries. For the biaxial test with smooth boundaries, the symmetry 

should be broken through a random initial void ratio (Andrade and Borja, 2006; Andrade et 

al., 2008), artificial imperfections or material inherent fabric anisotropy (Gao and Zhao, 2013; 

Guo and Zhao, 2014).  
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Figure 5.20 Force-displacement of biaxial tests with smooth boundaries: (a) dense sand 

(e0=0.5) under drained condition; (b) loose sand (e0=0.885) under undrained condition 

In this study, an initially homogeneous granular assembly was considered and the central 

element 821 was set as a weak element with an initial void ratio of 0.6 (compared to 0.5 for 

the whole assembly) for drained condition and of 0.9 (compared to 0.885 for the whole 

assembly) for undrained conditions. The shape of the localised contour was apparently very 

different from the one obtained with rough boundaries (Figure 5.9 and Figure 5.21). Only one 

branch of the shear band could be observed at the end of the loading, in agreement with the 

results obtained by DEM simulations (Guo and Zhao, 2014) and finite element modelling 

(Gao and Zhao, 2013). Under undrained condition (Figure 5.14 and Figure 5.22), the 

assembly was homogenous at point A' and continued to be homogeneous until point B', where 

a diffuse failure occurred. This bifurcation point B' can be clearly observed throughout the 
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evolution of the plastic strain and the pore water pressure of the selected elements and nodes, 

as shown in Figure 5.23. Afterwards, the failure mode became localised at stages C' and D'. 

Given this comparison, it can be concluded that the boundary conditions have significant 

effects on the failure mode of granular materials.  

(a) Point A (b) Point B (c) Point C (d) Point D 

 

Figure 5.21 Drained biaxial tests of dense sand (e0=0.5) with smooth boundary: (a) deviatoric 

plastic strain at stage A; (b) deviatoric plastic strain at stage B; (c) deviatoric plastic strain at 

stage C; (d) deviatoric plastic strain at stage D 

(a) Point A' (b) Point B' (c) Point C' (d) Point D' 

 

 

Figure 5.22 Undrained biaxial tests of loose sand (e0=0.885) with smooth boundary: 

q q q q

q q q q
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deviatoric plastic strain and pore pressure at (a) stage A'; (b) stage B'; (c) stage C'; and (d) 

stage D' 
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Figure 5.23 Deviatoric plastic strain and pore water pressure of selected elements of the 

undrained biaxial tests with smooth boundary: (a) plastic strain; (b) pore water pressure 

5.4.2.4 Influence of the porosity field on the failure mode 

The stress paths have significant impact on the failure mode of granular materials. A specimen 

tends towards a diffuse failure if the stress path is inclined to approach the origin of the p'-q 

plane, whereas its tendency is to localise if the stress path is far away from the origin, as 

discussed by Nicot et al. (2009). In addition to the previously investigated loading programs 

with different stress paths, the porosity of the assembly inherently influences the evolution of 

the stress path. This has been confirmed by the evidence that a loose sand sample is more 

likely to contract, whereas a dense one is prone to dilate (Wan et al., 2017). Accordingly, one 

can infer that the porosity field of a granular assembly influences, at least to some extent, its 

failure mode.   

A limited number of studies devoted to examining the effect of the porosity field on the 

failure mode of granular assemblies is available in the literature. Andrade and Borja (2006) 

adopted a truncated exponential density function, whereas Andrade et al. (2008) used a 

probability density function to describe the non-uniformity of the granular assemblies. Their 

studies present the strain localisation of specimens under plane strain compressions. The 

results indicate that the strength of the specimen was affected by both the degree of 
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heterogeneity and the orientation of the anisotropy of the porosity field, while distinct shear 

bands were observed at the peak strength point. Wan et al. (2017) generated granular 

assemblies with non-uniform initial void ratios using the Gauss distribution. The average void 

ratios were the same as in the homogeneous ones, whereas the standard deviation was set at a 

small value of μ=0.01. Localised and diffuse failures at the peak strength point were obtained, 

in agreement with the homogeneous cases. However, the range of the void ratios in these 

simulations was small and all the void ratio values were largely close to the average value. 
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Figure 5.24 Distribution of random initial void ratio of granular assembly: (a) dense; (b) loose 
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Figure 5.25 Force-displacement of biaxial tests on dense sand (e0=0.45-0.55): (a) rough 

boundary; (b) smooth boundary 

To examine the influence of a given range of void ratios on the failure mode of granular 

materials, it was decided to use a uniform distribution function to generate randomly 

distributed void ratios in granular assemblies. The same average values as previously used 
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were maintained, i.e. 0.5 for drained tests and 0.885 for undrained tests, with the range of 

0.45-0.55 for drained tests and 0.8-0.97 for undrained tests. Same simulation results were 

obtained by using different randomly distributed initial void ratios within the given range. We 

present here only one example of the simulation results based on the initial void ratios given 

in Figure 5.24. Both drained and undrained simulations were conducted with the 

aforementioned rough and smooth boundary conditions. For the drained test with rough 

boundaries, a shear band was formed, similar to the one obtained in the homogenous case; the 

force-displacement relationship was also similar to the one obtained in the homogenous case, 

see Figure 5.25(a) and Figure 5.26. For a drained test with smooth boundaries, only one shear 

band developed at peak point B, unlike the localised pattern obtained for the homogenous 

assembly (Figure 5.21). In addition, the peak strength of the assembly was slightly smaller 

than in the homogenous case, as indicated in Figure 5.25(b) and the stress-strain relationship 

differed from the one obtained in the homogeneous granular assembly. 

(a) Point A (b) Point B (c) Point C 

 

Figure 5.26 Drained biaxial tests of dense sand (e0=0.45-0.55) with rough boundary: (a) 

deviatoric plastic strain at stage A; (b) deviatoric plastic strain at stage B; (c) deviatoric 

plastic strain at stage C 
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(a) Point A (b) Point B (c) Point C 

 

Figure 5.27 Drained biaxial tests of dense sand (e0=0.45-0.55) with smooth boundary: (a) 

deviatoric plastic strain at stage A; (b) deviatoric plastic strain at stage B; (c) deviatoric 

plastic strain at stage C 

Diffuse failures were obtained in the undrained cases with both rough and smooth boundaries. 

The peak strength with the rough boundaries was about the same as in the homogenous 

assembly, whereas for the smooth boundaries it was found to be lower. In the case of rough 

boundaries for a non-uniform initial void ratio, only one shear band developed at point C', 

which was not the case for a homogenous void ratio. However, the ‘X-shape’ shear band that 

developed in the homogenous case also occurred at point D' (Figure 5.29), which indicates 

that the boundary condition controls the failure mode highly. For the undrained test with 

smooth boundaries, only one shear band developed after the diffuse failure point B', which is 

consistent with the results obtained in the uniform case. However, the location and direction 

of the shear band differed from the ones observed in the homogenous case (Figure 5.21 and 

Figure 5.30). The results demonstrate that the heterogeneity of the initial void ratio within the 

granular assembly can affect the failure behaviour of granular materials. In the studied cases, 

the peak strengths were not highly influenced by the heterogeneity of the initial void ratio, but 

this heterogeneity had significant impact on the shape and direction of the shear bands. 
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Figure 5.28 Force-displacement of biaxial tests on loose sand (e0=0.80-0.97): (a) rough 

boundary; (b) smooth boundary 

(a) Point A' (b) Point B' (c) Point C' (d) Point D' 

 

 

Figure 5.29 Undrained biaxial tests of loose sand (e0=0.80-0.97) with rough boundary: 

deviatoric plastic strain and pore pressure at (a) stage A'; (b) stage B'; (c) stage C' 
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(a) Point A' (b) Point B' (c) Point C' (d) Point D' 

 

 

Figure 5.30 Undrained biaxial tests of loose sand (e0=0.80-0.97) with smooth boundary: 

deviatoric plastic strain and pore pressure at (a) stage A'; (b) stage B'; (c) stage C' 

5.5 Concluding remarks 

This chapter investigated the influence of microstructural instabilities on the global failure of 

granular materials through the use of second-order work as the instability criterion. Based on 

the above analyses, the following conclusions can be drawn: 

1) Adopting the vanishing of the second-order work as the condition for the effective 

failure of a granular material is a more rigorous approach than any other one which 

considers the traditional factor of safety based on the material plastic limit. To examine 

the extent to which inter-particle contact instability has upon the influence of the 

macroscale material instability, the second-order work at different scales was defined. 

The relation between the second-order work at the micro and macro scales was derived, 

qq q
q
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based on the CH model, and extended to the scale of boundary value problems via the 

finite element method. 

2) The effects of volumetric and geometric changes on the second-order work calculated by 

the CH model were examined. The results show that there was no significant influence in 

the studied problems, which justifies the adoption of the Cauchy stress and the Euler 

strain for calculating the second-order work. 

3) Drained and undrained triaxial tests were simulated to validate the consistency of the 

second-order work computed at micro and macro levels. The particulate origin of the 

specimen instability was well captured, which demonstrates the validity of this method 

for predicting localised and diffuse failures in a granular material. 

4) The extent of the global material failure originating from microstructural instabilities 

was analysed. The second-order work in boundary value problems was computed for the 

case of drained and undrained biaxial tests. Localised failure in dense specimens and 

diffuse failure in loose specimens were obtained and analysed. It has been shown that the 

suggested method was adequate for predicting the instability of a granular assembly 

subjected to homogeneous and inhomogeneous loading conditions. 

5) The influence of the boundary conditions as well as the heterogeneity of the initial 

porosity on the failure mode was examined. Results show that these two aspects can 

have significant effects on the failure mode of granular materials.   

The suggested approach has contributed in describing the instability in granular assemblies, 

and can now be further applied to investigate the stability of geotechnical structures. 
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CHAPTER 6 MICROMECHANICS-BASED FINITE ELEMENT 

ANALYSIS OF GEOTECHNICAL PROBLEMS 

6.1 Introduction 

The performance of geotechnical structures such as dams, structural fills, earth retaining 

structures, and solid waste landfills are vital to human’s activities. To improve the safety of 

the geo-structures and to predict their long-term performances after construction, reliable 

computational methods should be used to accurately and efficiently calculate their bearing 

capacity under various loadings. The current design methods including the empirical 

equations, the finite element method, the finite difference method and the discrete element 

method have been used in scientific research as well as in engineering practice. Among these 

approaches, the finite element method based upon the classical continuum mechanics has 

been widely adopted. In this method, the constitutive model controls the physics of the 

problem which requires a model reliable enough for describing the behaviour of granular 

soils. 

A large number of constitutive models have been proposed to describe various aspects of soil 

behaviour. However, many advanced models require many parameters that are difficult to 

calibrate and thus they are difficult to use in engineering practice. With the increasing 

constructions of underground, the planed engineering facilities are required to have small 

enough imperfections on the constructions, which demands more sophisticated meanwhile 

applicable models to be used. 

Typically, problems involving small and large deformations of granular soils need to be 

solved in engineering practice. The former ones can be solved by the classical finite element 

method. However, this method may encounter huge mesh distortions in large deformation 

problems which results in non-convergence of the numerical simulations. One method to 

solve this problem is to re-mesh the computational domain with the Arbitrary Lagrangian 

Eulerian (ALE) technique (Tolooiyan and Gavin, 2011; Zhang et al., 2014). However, the 

new meshes are highly dependent on the initial mesh size. Alternatively, the Coupled Eulerian 
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Lagrangian (CEL) based finite element method sticks granular soils that have large 

deformations as Euler mesh, while taking the structures as Lagrangian mesh. The efficiency 

of this approach has been demonstrated in simulating the closed-ended displacement piles 

(Qiu et al., 2011; Zhang et al., 2014; Wang et al., 2015; Ko et al., 2016). Other methods in 

solving large deformation problems based on the FEM include the Material Point Method 

(Soga et al., 2015) and the Smoothed Particle Hydrodynamics (SPH) method (Bui et al., 

2008, 2011; Liu and Liu, 2010).  

Regarding the multiscale nature of granular soils, it is preferable to use a constitutive model 

that can well consider the characteristics of granular soils with physical insights and fewer ad 

hoc assumptions in finite element modelling (Schweiger, 2008). In this study, some classical 

geotechnical problems will be revisited through implementing the aforementioned CH (Chang 

and Hicher, 2005) micromechanical model into the FEM code Abaqus/Explicit 6.14-2. The 

applicability of the CH micromechanical model to engineering applications will be 

demonstrated by solving geotechnical problems that involve both small and large 

deformations. 

6.2 Implementation of the CH model into Abaqus/Explicit 

As demonstrated in Chapter 4, the CH model was successfully implemented into the implicit 

finite element code Abaqus/Standard 6.11. In comparison with the Abaqus/Standard that uses 

an implicit method to solve the weak form of the FEM differentiating equations, 

Abaqus/Explicit employs an explicit scheme to solve these equations. Therefore, there is no 

convergence problem in Abaqus/Explicit often encountered in the implicit FEM and hence it 

can be used to solve large deformation problems. In this chapter, the CH model is 

implemented in the Abaqus/Explicit 6.14-2 in the form of a user subroutine VUMAT. 

According to Hibbitt et al. (2001), the numerical scheme of Abaqus/Explicit is presented in 

Figure 6.1. The equilibrium condition is expressed by the inertial force, the internal force and 

the external force:  

     t t t
Mu P I                                                           (6.1) 
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where M is the mass matrix; u  is the acceleration; P is the applied external force vector, and I 

is the internal force vector. For each time increment, the accelerations and velocities at a 

material point due to external loads are assumed to be constant. The equations of motion for 

the body are then integrated using the explicit time central-difference integration algorithm, 

expressed as 

   

 

     

2 2
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t t t

t t t
t t

t t t t t t
t

t t
u u u

u u t u



    
    

   

   
 

 

  
 



   


                                    (6.2) 

where u  is the displacement and u  is the velocity; the subscript t  refers to the time in an 

explicit dynamic step and Δt is the time increment. To guarantee the stability of the 

calculation, the time increment Δt should be smaller than a critical value Δtcritical =Lmin/cd with 

Lmin is the smallest mesh size and cd =[(λ+2μ)/ρ]0.5 where λ and μ are the Lamé elastic 

constants, and ρ is the material density. The incremental displacements Δu are used to 

calculate the incremental strain by the compatibility equations, which will be used to drive the 

constitutive model to update the stresses and the internal forces, until reaching a new 

equilibrium state. Using VUMAT in ABAQUS/Explicit, the strain increment in the element at 

time t is first solved by ABAQUS using the presented explicit time central-differential 

integration method, and then the stress increments are updated through VUMAT. 

 

Figure 6.1 Flow chart of explicit finite element analysis based on the ABAQUS/Explicit 

To verify the validity of the implementation, three triaxial drained compression tests were 

conducted at the elementary levels. Since there is no available element with pore pressure in 

the module of Abaqus/Explicit, only drained tests were modelled. In addition, the biaxial tests 

Equilibrium equation 

VUMAT

For t
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and the settlement of a square footing conducted in Chapter 4 were simulated with the 

Abaqus/Explicit 6.14-2 solver to further demonstrate the success of the implementation in 

calculating boundary value problems. 
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Figure 6.2 Simulations of drained triaxial compression tests using IPP, UMAT and VUMAT 

6.2.1 Drained triaxial compression tests  

Drained triaxial compression tests on dense Hostun sand were simulated for which a strain 

softening behaviour could be observed. The simulations were conducted on a single element 

with the dimension of 1m×1m×1m by using Abaqus/Explicit 6.14-2. The material was 

represented by VUMAT with the material parameters calibrated in Chapter 2 and with an 

initial void ratio of 0.5. The samples were isotropically compressed up to 200kPa, 500kPa and 

800kPa and then axial velocity-controlled loadings were imposed under constant confining 

stresses. As shown in Figure 6.2, the simulation results are consistent with the ones obtained 

by UMAT and IPP (Integration Point Program that was described in Chapter 4). The same 

responses were obtained by the three methods, which demonstrate the correctness of the 

implementation for single element tests. 

6.2.2 Biaxial test on dense sand 

In biaxial test on dense sand, the strain increments inside and outside the shear band are not 

the same. The simulation of a biaxial test was performed on dense sand as its behaviour is 

highly dilative with strain softening occurring rapidly under a small range of strain. The 

specimen was composed of 2501 eight-node trilinear displacement elements with reduced 
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integration (C3D8R) and 2583 nodes with the dimension of 200mm×100mm×10mm, as 

shown in Figure 6.3(a). The material parameters used for the single element test were adopted 

again, with the initial void ratio of 0.5. The specimen was first isotropically compressed up to 

a pressure of 800kPa and then loaded with different vertical displacement increments, 

maintaining a constant lateral stress. The hardening and softening behaviour of the granular 

assembly was well captured, accompanying with the localisation of the specimen, as shown in 

Figure 6.3(b-c). A shear band was observed from the distribution of the deviatoric plastic 

strain, which is comparable to the results obtained from literature (Gao and Zhao, 2013; Guo 

and Zhao, 2016).  
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Figure 6.3 Simulation of biaxial test: (a) mesh and boundary condition (b) distribution of 

deviatoric strain 

6.2.3 Settlement of a square footing under vertical loading 

The ultimate bearing capacity of a rigid footing is a typical problem for numerical validation, 

q q q q

(a) 
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due to the complex loading stress paths inside the foundation soil. During loading, the values 

of the strain increments span a very large range within the soil volume beneath the footing, 

which requires a solid constitutive integration scheme over all the Gauss points. To assess the 

performance of the implemented CH model in Abaqus/Explicit 6.14-2, a finite element 

analysis of a square footing was analysed. 

 

Figure 6.4 Dimension of the FE model: (a) foundation and (b) square footing area 

The FE model used in Chapter 4 was adopted again. As shown in Figure 6.4, the finite 

element model is composed of 8819 C3D8R elements and 9261 nodes, and only a quarter of 

the volume is considered for the calculation, due to the symmetry of the problem. The 

dimensions of the soils are 10m10m10m, whereas the bottom of the footing is 1m1m. 

The lower boundary of the soil is fixed in the directions x, y and z, whereas the lateral soil 

boundaries are only fixed in the y and z directions. As for the boundary of the footing, only 

the vertical displacement has not been prevented.  

The model parameters used in the previous example were adopted with an initial void ratio of 

0.42. Considering that the footing can be regarded as a rigid body, a single element can be 

used to represent the footing, which prevents the influence of the soil-footing interaction on 

the performance of the studied problem. At first, the soil underwent a geostatic loading in 

order to simulate the in-situ gravity and, then, the footing was loaded by imposing a vertical 

velocity at the speed of 0.05mm/s, which is slow enough to ensure that the loading 

corresponds to a static condition. The distribution of the deviatoric plastic strain, shown in 
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1.0m 

1.0m 
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Figure 6.5(b), is quite similar to the results obtained in the literature (Gourvenec et al., 2006; 

Lyamin et al., 2007). A typical p-s curve obtained in the field test and in other numerical 

simulations is also obtained in this simulation, as shown in Figure 6.6. 

 

Figure 6.5 Settlement of a square footing: (a) total displacement and (b) accumulated 

deviatoric shear strain 
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Figure 6.6 Force-displacement relation of the square footing 

Overall, based on the analyses of drained triaxial compression tests, a biaxial test and a square 

footing, one can conclude that the CH micromechanical model has been successfully 

implemented into Abaqus/Explicit 6.14-2. In the following subsections, this multiscale 

approach will be applied to solve some engineering problems with small and large 

deformations by comparing the numerical results to experimental results as well as to 

analytical solutions.  

(a) u (mm) (b)  q 
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6.3 Tunnel excavation  

Tunnelling is one of the major construction methods to sustain the increasing demand on 

construction of highways and metros in cities. Improper excavations may endanger human 

life and cause catastrophic damage to the structures within the influence zone. Over the 

decades, numerous theoretical and experimental studies have been performed for the 

prediction of the ground surface settlement during and after tunnelling (Fang et al., 1994; 

Mair, 2008; Kirsch, 2010; Marshall and Mair, 2011; Jiang et al., 2012; Wong et al., 2012; Li 

et al., 2014; Jiang et al., 2014; Shen et al., 2014; Wu et al., 2015; Cui et al., 2016; Zhang et 

al., 2017). On one hand, very large settlement of ground surface destroys the constructed 

roads, pipelines and high-rises. On the other hand, the displacements largely originating from 

the non-equilibrium pressure at the excavation face of tunnel may arise risks for the workers. 

Therefore, it is of importance to predict the settlement of ground surface after tunnelling by 

the finite element analysis that has demonstrated its priority in engineering design. However, 

only relatively simple constitutive models have been used in the engineering practice. In view 

of this, this study adopts the aforementioned CH micromechanical model to compute the 

excavation of a shallow tunnel in sand. The obtained ground settlement curve was compared 

with the classical analytical solution, i.e. the Peck’s method (Peck, 1969). By doing so, it can 

be inferred that the CH micromechanical model can be potentially used in the design of tunnel 

excavation in granular soils. 

6.3.1 Model calibration on Hostun sand 

The CH micromechanical model was calibrated on Hostun sand over a wide range of densities 

and confining pressures with a total of 8 parameters, and demonstrated a good performance in 

reproducing the behaviour of Hostun sand, as described in Chapter 2. 

6.3.2 Finite element analysis  

A two-dimensional finite element model was built by using the Abaqus/Explicit 6.14-2 by 

considering that the tunnel excavation is a plane strain problem. The dimension of the soil 

domain is in the length of 80m and in the height of 40m, as shown in Figure 6.7. A total of 

1680 four-node bilinear displacement CPE4 elements were generated for the soil. The 
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distance from the top of the tunnel to the earth ground is 10.5m. The bottom of the soil 

domain is fixed in all directions while the lateral boundaries are only constrained in the x 

direction. After the soil underwent a geo-static process, a tunnel with the radius of 3.135m 

was excavated by deactivating the soil elements within the tunnel, meanwhile keeping the 

displacements of the tunnel boundary as zero. In order to simulate the ground settlement due 

to the excavation, the tunnel boundary was shrunk towards the centre of the tunnel with the 

radium displacement of 0.035m, which corresponds to the volume loss rate of 2%. After that, 

a lining with an inner radius of 2.75m and an outer radius of 3.1m was added to support the 

soil. 

 

Figure 6.7  Finite element model of soil and tunnel lining 

The distribution of the total displacement at the end of the construction is shown in Figure 

6.8(a). One can see that the top of the tunnel displays the largest displacement; above this 

point the displacement reduces with a funnel-shaped distribution. Interestingly, the upheaved 

behaviour of the soil under the tunnel after the excavation was well captured, as demonstrated 

in Figure 6.8(b). In addition, the typical vertical displacement distribution observed in the 

field was also obtained. After adding the lining, the largest shear strains were distributed 

mainly around the lining, whereas the other elements displayed relatively smaller deviatoric 

shear strains (Figure 6.8(c)).  
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Figure 6.8 Distributions of the (a) displacement (m); (b) vertical displacement (m); (c) shear 

strain at the end of lining  

6.3.3 Comparison with Peck’s method 

The ground settlements caused by an excavation obtained by using the CH micromechanical 

model were compared with the Peck analytical solution (Peck, 1969) since it has been proved 

to have the ability to describe the ground settlement after excavation, as discussed by Dang 
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and Meguid (2008). Based on field data, Peck (1969) suggested that the surface settlement 

over a single tunnel could be approximated by the following expression: 

 
2

max 2
exp

2

y
S y S

i

 
  

 
                                                     (6.3) 

in which S(y) is the settlement at the offset distance y from the tunnel centre line, Smax is the 

maximum settlement above the tunnel centre line, and i  is the distance from the inflection 

point of the trough to the tunnel centre line, which is commonly used to represent the width of 

the settlement trough, as shown in Figure 6.9(a). According to the computed results, the value 

of Smax is taken to be 20.12mm, while the parameter i is equal to 4.24m. As shown in Figure 

6.9(b), the numerical simulation results fit well with the analytical solution, which indicates 

that the CH micromechanical model has the capability to capture the settlement of 

geotechnical excavations.  
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Figure 6.9 Ground settlement: (a) Peck’s method and (b) CH model and Peck’s prediction 

6.4 Deformation of retaining walls under various loadings 

The deformation of the soil behind a retaining wall is a typical large deformation problem 

which involves strain localisation of granular soils. This problem has been widely investigated 

in the literature, such as the classical Rankine and Coulomb theories, and more recently 

studied by X-rays tomographic (Niedostatkiewicz et al., 2011), finite element analysis with 

elasto-plastic models (Hicks et al., 2001) and micro-polar hypo-plastic constitutive relations 
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(Tejchman et al., 2007) and by DEM simulations (Tejchman et al., 2011; Guo and Zhao, 

2016). 

 

Figure 6.10 Shear strain observed in the experiments on sand by moving a retaining wall: (a) 

translation, passive (b) translation, active (c) rotation about the top, passive (d) rotation about 

the top, active (e) rotation about the toe, passive (f) rotation about the toe, active (figures from 

Niedostatkiewicz et al., 2010) 

To demonstrate the ability of the CH micromechanical model in capturing the behaviour of 

strain localisation around retaining walls under various loading conditions, the experiments on 

dry cohesionless sand performed by Niedostatkiewicz et al. (2010) were simulated by the 

described FEM×CH numerical approach. Based on the experimental description of 

Niedostatkiewicz et al. (2010), the plane strain experiments were calculated by three-

dimensional finite element models undergoing passive and active movements: horizontal 

translation, rotation about the tops and rotation relative to the toes. In passive mode, the 

retaining walls were moved towards the backfill, whereas in an active mode they were moved 

away from it. 

6.4.1 Calibration of the CH micromechanical model with Karlsruhe sand 

The experimental results of drained triaxial compression tests on Karlsruhe sand conducted by 

Kolymbas and Wu (1990) and also reported by Widuliński et al. (2009) were chosen to 

calibrate the CH micromechanical model. Karlsruhe sand consists mainly of sub-round quartz 

particles, with minimum void ratio of 0.53 and maximum void ratio of 0.84. According to the 

(a) (b) (c) 

(d) (e) (f) 
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grain size distribution presented by Kolymbas and Wu (1990), d50 is equal to 0.4 mm. As 

conducted by Tejchman et al. (2011) in calibrating the DEM parameters, the dense sand with 

an initial void ratio of 0.53 was adopted in this calibration. The hardening and softening as 

well as the dilatant behaviour of the Karlsruhe sand was well captured by the CH 

micromechanical model, as shown in Figure 6.11, with a total of 8 parameters listed in Table 

6.1. 
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Figure 6.11 Calibration of the CH micromechanical model (data from Kolymbas and Wu, 

1990) 

Table 6.1 Parameters used in the CH micromechanical model for Karlsrule sand  

Macro Micro 

refe    0 ( / )c

nk N mm  ( )c

   
50( )d mm  rRk  pRk  

0.95 0.1 1000 33 0.40 0.5 0.5 

 

6.4.2 Finite element model 

The dimension of the finite element model is the same as the experimental set-up made by 

Niedostatkiewicz et al. (2010), which has been also used in the simulations of Tejchman et al. 

(2011) and Guo and Zhao (2016). As shown in Figure 6.12(a), the dimension of the simulated 

domain is 0.4m×0.2m×0.01m. The height of the wall is 0.17m and it was simulated by a set of 

surface elements, i.e. a virtual retaining wall with rough boundary, and hence there is no need 

to define the soil-wall interactions. The soil domain is discretised by a total of 800 eight-node 
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trilinear displacement elements with reduced integration elements, i.e. C3D8R. The boundary 

conditions are: the bottom is fixed in all directions; the top surface is free; the left side is fixed 

only in the x direction; the front and the back surfaces are fixed in the z direction and the right 

side is constrained in the x direction. Three kinds of loading modes of the virtual wall were 

conducted and for each loading, both active and passive modes were controlled, as shown in 

Figure 6.12(b).  

 

Figure 6.12 Simulation of the retaining wall: (a) the finite element model and (b) loading 

modes 

6.4.3 Patterns of shear zones 

1) Passive failure  

The passive strain localisation behaviour of the soil was observed by moving the wall towards 

the soil. The displacement u and the accumulated deviatoric shear strain q of the soil are 

presented in Figures 6.12, 6.13 and 6.14. For the case of a horizontal translation of the wall, 

as shown in Figure 6.13, two localised bands were observed at the end of the wall movement. 

In contrast, only one localisation band was developed from the top corner close to the wall 

after rotating the wall around the toe, whereas only one shear band was formed in the case of 

rotating the wall around the top. The shape of the contour agrees well with the ones of rough 

soil-wall boundaries obtained in experiments shown in Figure 6.10, in the finite element 

modelling with a micro-polar hypo-plastic model (Tejchman et al., 2007) and coupling with 

DEM (Guo and Zhao, 2016) as well as through the DEM simulations (Tejchman et al., 2011). 
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According to the Rankine’s passive earth pressure theory (Rankine, 1857), the failure angle of 

the passive failure slip line with respect to the horizontal plane is given as 45˚-φ'/2=28.5. 

Interestingly, the failure angle given by this simulation is about 30, as shown in Figure 6.13, 

which is very close to the value predicted by Rankine’s theory.  

 

Figure 6.13 Transition, passive  

 

Figure 6.14 Rotation about bottom, passive  

 

Figure 6.15 Rotation about top, passive 

2) Active failure 

Figures 6.15, 6.16 and 6.17 present the displacement u  and the accumulated shear strain q of 

the soil at the end of the displacement of the wall away from the soil. For the case of a 

horizontal translation of the wall, as shown in Figure 6.16, two localisation bands were also 

observed at the end of the wall movement. In comparison, on the one hand, large 

deformations in one area close to the wall were observed for the case of rotation around the 

qu

30
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bottom, as shown in Figure 6.17. On the other hand, the large deformation area was developed 

at the bottom in the case of rotating the wall around the top, as shown in Figure 6.18. Again, 

the distribution of both displacement and accumulated shear strain is consistent with the ones 

of rough soil-wall boundaries obtained in the experiments displayed in Figure 6.10, and the 

finite element modelling with a micro-polar hypo-plastic model (Tejchman et al., 2007) and 

coupling with DEM (Guo and Zhao, 2016) as well as through the DEM simulations 

(Tejchman et al., 2011). 

Based on the Rankine’s active earth pressure theory (Rankine, 1857), the failure angle of the 

active failure slip line with respect to the horizontal plane is given as 45˚+φ'/2=61.5. In 

comparison, as shown in Figure 6.16, the failure angle computed by this simulation is about 

67, which is close to the value predicted by Rankine’s theory.  

 

Figure 6.16 Transition, active  

 

Figure 6.17 Rotation about bottom, active  

 

Figure 6.18 Rotation about top, active  
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6.5 Closed-ended pile driven in sand 

Predicting the behaviour of piles driven in sand is important in major bridges, harbours and 

offshore engineering applications since it has significant effect on the practicality and 

construction costs. Axial capacity predictions are crucial to for example, tension leg, tripod or 

jacket offshore structures (Overy, 2007; Merritt et al., 2012; Jardine, 2013). Current design 

methods of axially driven piles include empirical equations based on field data and methods 

based on CPT experiments. The ‘Main Text’ method (API, 2014) dominates the former type 

of methods, whereas the widely used CPT based methods include the design methods of ICP-

05 (Imperial College London, Jardine et al., 2005), UWA-05 (University of Western Australia, 

Lehane et al., 2005), NGI-05 (Norwegian Geotechnical Institute, Clausen et al., 2005) and 

Fugro-05 (Kolk et al., 2005). Although these methods have demonstrated their capabilities in 

predicting the capacity of piles, there were, and still are, limitations in these methods 

particularly for the ‘Main Text’ method as indicated through the rigorous field test database 

presented by Yang et al. (2015a, 2015b). In addition, these methods roughly consider the 

stress distribution such as the h/R effect during pile installations, which has been 

experimentally found to be important for the pile capacity (Jardine et al., 2013a, 2013b). In 

order to improve the design method, the numerical simulation method is a suitable candidate 

by which the stress field during and after pile installation can be obtained. To this end, 

numerical simulations were conducted by using different constitutive models and 

computational techniques that have the potential to solve mesh distortion which may cause 

convergence problems. One type of these simulations is conducted by combining the finite 

element method with the Arbitrary Lagrangian Eulerian (ALE), such as in the work of Zhang 

et al. (2013, 2014) and Wang et al. (2015). Since the ALE method still possesses some 

limitations inherently presented in the initial meshes, the Coupled Eulerian-Lagrangian (CEL) 

approach has been alternatively utilized by Henke et al. (2010), Qiu et al. (2011), Wang et al. 

(2015) and Ko et al. (2016), etc.  

Besides these numerical methods, another important aspect is the adopted constitutive model. 

It is well known that the soil around the pile exhibits distinct strain localisation under 
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shearing. However, the models used in the aforementioned analyses cannot well describe the 

behaviour of sand. For instance, the Modified Cam-Clay (MCC) model which is a typical 

model for clay was used for sand by Sheng et al. (2005) and it failed to capture the non-

associated dilatancy behaviour of sand; a linear elastic breakage model was used for sand by 

Zhang et al. (2013) in order to investigate the effect of particle breakage on pile capacity 

during pile driving; the Mohr-Coulomb model which could not describe the softening 

behaviour of soils was adopted by Ko et al. (2016), etc. It is, therefore, of interest to use the 

CH micromechanical model that has the ability to capture accurately the soil behaviour 

combined with the finite element method to investigate the capacity of a closed-ended pile. 

In this study, the CEL method that has the advantages of both Lagrangian and Eulerian 

methods was adopted. The Eulerian domain can be used to describe the material with large 

deformations, whereas the Lagrangian domain is suitable for the material with small 

deformations, as demonstrated in Figure 6.19. Accordingly, the pile is simulated by 

Lagrangian meshes whereas the soil is partitioned by Eulerian meshes.   

 

Figure 6.19 Deformation of a continuum in a Lagrangian (left) and a Eulerian analysis (right) 

(figure from Qiu et al., 2011) 

6.5.1 Model calibration for Dog’s bay sand  

To simulate the capacity of a closed-ended pile driven in Dog’s bay sand (Klotz and Coop, 

2001; Kuwajima et al., 2009), the CH micromechanical model was calibrated from laboratory 

tests on Dog’s bay sand. According to Kuwajima et al. (2009), Dog’s bay sand is a carbonate 

sand from the west coast of Eire. Its specific gravity is 2.72, and its maximum and minimum 
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void ratios are 2.451 and 1.621 respectively. One can see that its d50 is 0.22mm from the 

particle size distribution curve shown in Figure 6.20. 

0,01 0,1 1 10
0

20

40

60

80

100

 

 

P
e
rc

e
n
ta

g
e
 f

in
e
r 

b
y
 w

e
ig

h
t 

(%
)

Particle size (mm)

Dog's bay sand

d
50

=0.22mm

 

Figure 6.20 Particle size distribution of Dog’s bay sand (data from Kuwajima et al., 2009)  

The critical state lines were obtained by Coop (1990) through constant mean effective stress 

tests, as shown in Figure 6.21. The critical state curve in the loge p  plane is given by the 

following expression 
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where the parameters can be calibrated as eref =3.35, λ=0.31, ξ=0.29 with pref =10 kPa. 

Through Eq.(6.4), the grain breakage mechanism can be considered implicitly introduced by 

simulating the curvilinear critical state line with pressure higher than 3000 kPa. The critical 

state line in the p'-q plane has a slope M =1.60, which corresponds to a friction angle of 39. 

100 1000 10000
0.0

0.5

1.0

1.5

2.0

p
ref

=10kPa

=0.31e
ref

=3.35

e
c
=e

ref
exp(-p/p

ref




 

 

V
o
id

 r
a
ti
o
, 
e

Mean effective pressure (kPa)

(a)

Critical state line

=0.29

  

0 200 400 600 800
0

200

400

600

800

1000

 

 

D
e

v
ia

to
ri
c
 s

tr
e

s
s
 (

k
P

a
)

Mean effective stress (kPa)

(b)

M=1.60

Critical state line

 

Figure 6.21 Critical state lines of Dog’s bay sand: (a) loge p  plane; (b) p q   plane 
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(experimental data from Coop, 1990)  

Given that the radius of the particles r is half of the diameter d50=0.22 mm, the parameters at 

the inter-particle contact 
0

c

nk , 
rRk  and 

pRk  were calibrated from drained triaxial compression 

tests performed by Kuwajima et al. (2009) on dense Dog’s bay sand with a relative density of 

90%. As shown in Figure 6.22, the CH model demonstrated good performance in simulating 

the behaviour of Dog’s bay sand at various confining pressures. A total of 8 parameters were 

required in the CH micromechanical model for Dog’s bay sand, as summarized in Table 6.2. 
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Figure 6.22 Simulations of drained triaxial compression tests on Dog’s bay sand: (a) 

deviatoric stress vs axial strain (b) volumetric strain vs axial strain (experimental data from 

Kuwajima et al., 2009)  

Table 6.2 Parameters used in the CH model for Dog’s bay sand 

Macro Micro 

refe    0 ( / )c

nk N mm  ( )c

   
50( )d mm  

rRk  pRk  

3.35 0.31 3000 39 0.22 0.6 0.4 

 

6.5.2 Finite element analysis  

To simulate the centrifuge tests of 100g on medium-dense Dog’s bay sand, only a quarter of 

the experimental set-up was calculated due to the symmetry of the problem. The radius of the 

soil domain was 15m and its height 49m, as show in Figure 6.23. The bottom of the FE model 

was fixed in all directions, and the lateral boundaries were constrained in horizontal 
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directions. The soil was represented by 62000 Eulerian EC3D8R elements, whereas 7448 

Lagrangian C3D8R elements were used for the 37m length pile. The soil behaviour was 

represented by the CH micromechanical model, whereas the pile was considered as a rigid 

body. The soil-pile interaction was defined by a Coulomb friction law, in which the effective 

friction angle was taken as 33º according to the ring shear test conducted by Klotz and Coop 

(2001). The soil firstly underwent a vertical gravity without any vertical settlement and then 

the pile was axially driven at a vertical velocity of 0.02m/s as in the experiments. As indicated 

by Klotz and Coop (2001), this loading rate is small enough to guarantee that the installation 

can be viewed as a quasi-static process.  
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Figure 6.23 Closed-ended pile driven in sand (a) finite element model and (b) base resistance 

With the penetration of the pile, the soil elements that are adjacent to the pile display large 

deformations, as shown in Figure 6.24 (a) and (c). It can be found that significant shear 

stresses developed around the pile tip while the shaft stresses are much smaller, as shown in 

Figure 6.24(d), which is consistent with the experimental observations by jacking a CPT 

probe into pressurised, air-pluviated Fontainebleau NE34 sand in the well instrumented INPG 

calibration chamber (Jardine et al., 2013). High stresses around the pile tip as shown in Figure 

6.24(b) may induce soil particle breakage and hence reduce the capacity of pile (Klotz and 

Coop, 2001; Yang et al., 2011; Zhang et al., 2013, 2014).  

15m 

37m 

D=1.6m 

49m 

Soil Pile 
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Figure 6.24 Finial state of the closed-ended pile: (a) total displacement (b) mean effective 

stress (c) deviatoric shear strain (d) deviatoric stress 

The base resistance calculated by this simulation was compared with the centrifuge test 

results conducted by Klotz and Coop (2001). As shown in Figure 6.23(b), the overall good 

agreement between the numerical results and the experimental data demonstrates that the CH 

micromechanical model can be used to compute the capacity of piles. With the increase of the 

penetration depth, the simulated base resistance shows a relatively slow softening behaviour 

compared with the experiments. This is largely due to the fact that the CH model does not 

consider the effect of particle breakage. It seems that using the critical state line of Eq.(6.4) 

calibrated at low stress level (less than 1 MPa) and applying it to high stress levels (more than 

5 MPa) is not sufficient.  

/u m(a) /p kPa(b) 

q(c) /q kPa(d) 
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6.6 Concluding remarks 

This chapter presented the modelling capability of the described multiscale approach, 

conducted by implementing the CH micromechanical model into an explicit finite element 

code Abaqus/Explicit, in solving classical geotechnical problems with small and large 

deformations. At first, the validity of this approach was verified through a single-element test, 

a biaxial test and the settlement of a square footing. Then, the small deformation problem, 

consisting in the excavation of a tunnel, was analysed. The ground settlement caused by the 

excavation agrees well with the analytical solution suggested by Peck (1969). Two large 

deformation problems were investigated in which significant strain localisations were 

observed. The retaining walls were moved with or without rotations, which corresponds to 

active and passive loading modes. The distributions of the localised shear bands were 

consistent with the results obtained in experiments, in DEM simulations and in finite element 

simulations using a micro-polar hypo-plastic constitutive model. Finally, an axially loaded 

closed-ended pile was analysed and the capacity of the pile was computed, which was in good 

agreement with the centrifuge experimental results. All these investigations demonstrate that 

the FEM×CH multiscale approach can be applied to geotechnical engineering designs. 
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CONCLUSIONS AND PERSPECTIVES 

1.  Conclusions  

This thesis presents an application of the thermodynamic principles for constructing 

micromechanical models for dry and unsaturated granular soils, and the implementation of 

these models in the finite element codes to fulfil multiscale modelling of geotechnical 

problems. The main contributions of this thesis can be summarised as follows.  

1) Thermodynamics with internal variables has been extended to construct micromechanical 

models by considering the energy stored and dissipated at the inter-particle contacts. In the 

suggested framework, the Helmholtz free energy and the dissipation energy at the macro 

scale are equated to the volumetric average of the Helmholtz free energy and the 

dissipation energy at the micro scale. Consequently, the elasto-plastic formulation at inter-

particle contacts can be obtained from the expressions of the micro free energy and the 

micro dissipation potentials. A thermodynamically consistent micromechanical model has 

been constructed on the basis of the static hypothesis. An isotropic compression and 

several triaxial tests were simulated with the model to analyse the energy conservation and 

dissipation under loading. Free energy and dissipation energy were computed at both 

micro and macro scales, and the orientations of the failure planes were explained by the 

evolution of the local dissipation energy. The maximum micro dissipation energy agreed 

with the static hypothesis for which, when one direction reaches the limit state, the rupture 

at the macro scale is obtained. 

2) A micromechanical model for unsaturated granular soils based on thermodynamic 

principles has been constructed. The energy quantities defined at the micro and macro 

scales were firstly analysed, and then the Helmholtz free energy at the microscale was 

defined as the sum of a mechanical part and a hydraulic part. The free energy is dependent 

on the elastic strains and on the degree of saturation at the macro scale, and it is related to 

the elastic displacements and the degree of saturation at the micro scale. The dissipation 

energy is of frictional origin and is a function of the plastic displacements at the micro 
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scale and of the plastic strains at the macro scale. For the mechanical part, the CH model 

has been modified and its satisfaction of thermodynamic principles has been verified. A 

particle-size dependency function has been suggested to consider the water retention in 

the hydraulic free energy potential at the micro scale. 

3) An implicit method for integrating the micromechanical models based on a static 

hypothesis has been presented. A predictor-corrector method was proposed to solve 

linearized constraint equations under mixed controls. An iterative scheme was constructed 

to implement the stress-driven micro-macro relations. Two return mapping algorithms, 

i.e., the closest point projection method (CPPM) and the cutting plane algorithm (CPA) 

with the backward Euler method, were alternatively adopted to implement the local law at 

the micro level. The model was then implemented into a finite element code in order to 

perform multiscale analyses of boundary value problems. It was found that the predictor-

corrector method is efficient for solving linearized mixed control constraint equations. The 

effectiveness of this method has been validated by simulating drained triaxial compression 

tests, in which the boundary conditions consisted in imposing the vertical strain and the 

lateral stresses. The static hypothesis was implemented consistently with the stress 

homogenisation formula by an out-of-balance iteration scheme, which rendered consistent 

the localisation and averaging operators. The local force-displacement relations were 

integrated by CPPM and CPA, respectively. Consistent results were obtained by using the 

two integration schemes with small strain or stress increments. In comparison to CPA, 

CPPM provided a better computational cost efficiency without any loss of accuracy, either 

for elementary tests or boundary value problems. The CH model was implemented into a 

finite element code and firstly validated by elementary tests. Then, two typical boundary 

value problems, i.e., a biaxial test and a square footing, were simulated, and the 

applicability of this method for multiscale analyses was demonstrated.  

4) The influence of microstructural instabilities on the global failure of granular materials 

has been investigated by using the second-order work as an instability criterion. Adopting 

the vanishing of the second-order work as a quantity to detect the effective failure of a 
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granular material is a more rigorous approach than the one considering the traditional 

factor of safety based on the material plastic limit. To investigate the extent of inter-

particle contact instabilities on the influence of the macroscale material instability, the 

second-order work at different scales was defined. The relation between the second-order 

work at the micro and macro scales was derived in connection with the CH model, and 

extended to the scale of boundary value problems via the finite element method. The 

effects of volumetric and geometrical changes on the second-order work calculated by the 

CH model were investigated. The results showed that there was no significant influence in 

the investigated problems, which validated the rationality of adopting the Cauchy stress 

and the Euler strain to calculate the second-order work. Drained and undrained triaxial 

tests were simulated to validate the consistency of the second-order work computed at 

micro and macro levels and the particulate origin of the specimen instability was well 

captured, demonstrating the validity of this method to predict localised and diffuse failures 

of a granular material. The extent of the global material failure originating from 

microstructural instabilities was analysed. The second-order work for boundary value 

problems was integrated into the case of drained and undrained biaxial tests, by which 

localised failure in dense specimen and diffuse failure in loose specimen were obtained 

and analysed. It was shown that the suggested method is adapted to predict the instability 

of a granular assembly subjected to homogeneous and inhomogeneous loading conditions. 

5) The modelling capability of the described multiscale approach conducted by 

implementing the CH micromechanical model into an explicit finite element code 

Abaqus/Explicit was demonstrated by solving several classical geotechnical problems at 

small and large deformations. First, the validity of this approach was verified through a 

single-element test, a biaxial test and the settlements of a square footing. The obtained 

results are consistent with the benchmark results obtained by using the implicit integration 

point program and the implicit finite element code Abaqus/Standard. Then, a small-

deformation problem, the excavation of a tunnel, was analysed. The ground settlement of 

the tunnel caused by excavation agrees well with the analytical solution of Peck (1969). In 
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addition, two large-deformation problems were investigated in which significant strain 

localisation were observed. Retaining walls were moved transitionally with or without 

rotations, corresponding to active and passive loading modes. The distributions of 

localisation bands were consistent with the results obtained in experiments, in DEM 

simulations and in finite element simulations using a micro-polar hypo-plastic constitutive 

model.  Finally, an axially loaded closed-ended pile was analysed and the capacity of the 

pile was computed, which was in good agreement with the results of centrifuge 

experimental tests. These investigations demonstrate that the FEM×CH micromechanical 

model multiscale approach is efficient in solving geotechnical problems. 

2.  Perspectives  

Although some efforts have been made on multiscale modelling of granular soils in this 

thesis, more studies should be done to further develop this multiscale approach. More 

specifically, on one hand the developed micromechanical models should be improved to 

simulate the behaviour of granular soils under more complex loading conditions. On the other 

hand, the developed models should be applied to solve more complicated boundary value 

problems in order to demonstrate their effectiveness and efficiency. The potential directions 

for further developments are suggested below. 

1) Throughout this thesis, the adopted density function is equal to 1/4π, which corresponds to 

an isotropic fabric of the granular soils. Since the internal structure has significant effect 

on non-coaxial deformation of granular soils, the evolution of the fabric tensor should be 

introduced to capture the phenomenon. With this feature, responses of granular soils under 

principal stress rotation could be naturally described. In addition, this thesis investigated 

only the behaviour of granular soils under quasi-static monotonic loadings. However, in 

engineering practice, it is more usual to encounter cyclic and dynamic loadings. 

Therefore, the described micromechanical approach should be developed to reproduce the 

behaviour of granular soils under cyclic and dynamic loadings.  



189 

2) Since the Euler strain tensor and the Cauchy stress tensor have been used in the 

micromechanical approach, the results obtained in finite element analysis with this 

method are dependent on the employed mesh size. To solve this problem, the models 

should be extended to high-gradient models accounting for the internal length of the 

granular soils.  

3) Natural soils have inherent anisotropy under the gravity field. The inherent anisotropy will 

evolve under shearing and this will influence the deformations of geotechnical structures 

constructed on soils. By using the micromechanical approach with fabric evolution, the 

deformations could be well predicted, which will improve the accurateness of the factor of 

safety that has been widely adopted in engineering designs. 

4) The high-gradient micromechanical models could be very useful to accurately capture the 

behaviour of granular soils after the bifurcation point. Hence studies are suggested to 

focus on the application of these models to calculate large deformation problems where 

strain localisation often occurs. 
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APPENDIX A: PARTIAL DERIVATIVES IN THE IMPLEMENTATION 

OF CPPM AND CPA 

A.1 First-order derivatives  

The first-order derivatives of the yield criterion a and the first order derivatives of the potential 

function b defined at inter-particle contacts can be written as 
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in which the partial derivations of the yield criterion can be expressed as 
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As a non-associated flow rule has been adopted for the normal direction, whereas an associated 

flow rule has been chosen for the tangential direction, the first order derivatives of the potential 

function can be obtained by 
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where D is the dilatancy coefficient defined in Eq.(1.40). 

A.2 Second-order derivatives 

The second-order derivatives of the potential function can be written as  
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in which the components of the matrix defined in Eq.(A5) can be derived from Eq.(A2),  
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APPENDIX B: CALCULATION OF THE PLASTIC MULTIPLIER BY 

CPA 

The plastic multiplier used in CPA, as shown in Eq. (4.16) and Table 4.5, can be rewritten as 
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in which 
c

ijk  is the elastic matrix defined by Eq.(1.33), and the derivatives of the tangential 

plastic displacements can be derived from Eq.(1.36) 
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Eq.(B2) will cause numerical difficulties at the beginning of the shearing loading, since the 

dominator is equal to zero. To circumvent this problem, we can rewrite the plastic multiplier 

as  
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where the following expression can be demonstrated: 
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Eq.(B4) can be expressed equivalently by 
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By considering  
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the left-hand side of Eq.(B5) can be expressed as 
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In Eq.(B7), the following equality can be proved 
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since 
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Accordingly, Eq.(B8) can be rewritten as 
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in which p

rW  is the plastic work in the tangential direction. Therefore, Eq.(B4) can be 

established, which is useful for calculating the evolution of the plastic displacements. On the 

right-hand side of Eq.(B3), the partial derivatives can be expressed as 
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By inserting Eqs.(B11) and (B12) into Eq.(B3), the hardening part can be calculated as  
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Chaofa ZHAO 

Modélisation multi-échelle des sols granulaires : de l’échelle des grains aux structures 

géotechniques  

Multiscale modelling of granular soils: from the grain to the structure scale 

 

Résumé 

 
Le comportement mécanique des sols granulaires est un 
élément important à prendre en compte dans l'ingénierie 
géotechnique. Les approches de modélisation actuelles pour 
le comportement des sols granulaires utilisent des relations 
constitutives phénoménologiques basées sur la mécanique 
classique du continuum. Ce problème peut être contourné en 
utilisant des relations constitutives multi-échelles basées sur 
les principes thermodynamiques avec variables internes. En 
utilisant une approche multi-échelle, cette thèse tente de 
construire des relations constitutives multi-échelles qui 
tiennent compte de la microstructure des sols granulaires et 
les mettre en œuvre pour résoudre des problèmes 
géotechniques à la fois en petites et grandes déformations. La 
thèse vise à: 1) construire une relation constitutive multi-
échelle pour les sols granulaires secs à partir d'un cadre 
thermodynamique qui nécessite moins d'hypothèses ad hoc; 
2) étendre les formulations thermomécaniques multi-échelles 
aux sols granulaires partiellement saturés pour lesquels un 
modèle micromécanique est formulé; 3) implémenter le 
modèle en utilisant un algorithme d'intégration implicite dans 
un code aux éléments finis; 4) appliquer le modèle pour 
analyser l'instabilité des sols granulaires dans les cas de 
ruptures localisées et diffuses; et 5) démontrer la capacité de 
l'approche multi-échelle à résoudre certains problèmes 
géotechniques typiques en mettant en œuvre le modèle dans 
un code aux éléments finis explicite. L'approche multi-échelle 
proposée aboutit à un outil de simulation qui fournit des 
informations précieuses sur les problèmes d'ingénierie depuis 
l'échelle des grains jusqu’à l’échelle de la structure. 
 
Mots clés 
 
Sols granulaires, modélisation multi-échelle, principes 
thermodynamiques, algorithme d'intégration, instabilité, 
structures géotechniques 

Abstract 

 
The mechanical behaviour of granular soils is an important 
aspect in geotechnical engineering. Current modelling 
approaches for the behaviour of granular soils employ 
phenomenological constitutive relations based upon classical 
continuum mechanics. This problem can be circumvented by 
using multiscale constitutive relations based on thermodynamic 
principles with internal variables. Using a multiscale approach, 
this thesis attempts to construct multiscale constitutive 
relations that account for the microstructure of granular soils 
and to demonstrate their capabilities in solving geotechnical 
problems at both small and large deformations. The thesis aims 
to: 1) construct a multiscale constitutive relation for dry 
granular soils based on a thermodynamic framework which 
requires fewer ad hoc assumptions; 2) extend the multiscale 
thermomechanical formulations for partially saturated granular 
soils for which a micromechanical model is formulated; 3) 
implement the model using an implicit integration algorithm in 
a finite element code; 4) apply the model to analyse the 
instability of granular soils for both localised and diffuse 
failures; and 5) demonstrate the capability of the multiscale 
approach in solving some typical geotechnical problems by 
implementing the model in an explicit finite element code. The 
proposed multiscale approach offers a simulation tool that 
provides valuable insights into engineering problems from the 
grain to the structure scale. 
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