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Notations

Constants
~ reduced constant of Planck h/2π

ε0 vacuum permittivity

e elementary charge

me electron mass

Definitions
Ô operator associated to observable O

Ô† adjoint operator of Ô

δij Kronecker constant


1 if i = j

0 if i 6= j

1n unity matrix of rank n (adapted to the context when n is omitted)

O matrix representation of Ô in a basis

Ot transposed matrix of O

O† adjoint matrix of O

Oij elements of indices i, j of the matrix O

|. . . 〉 state vector, element of an Hilbert space

〈r| dual of |r〉

r representation of ~r as a column vector in a basis

ri element of index i of r
Indices i, j, k, l,m, n are integers except when explicitely mentionned otherwise.

We will not use tensor notations, so a(n) represents an object a numbered n and ai is

an object a to power i.

For a position vector in the euclidian space, we denote r(i,a) the element of coordinate
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a of atom i with a ∈ x, y, z and r[(i)] the vector

r[(i)] =


r(i,x)

r(i,y)

r(i,z)
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0.1. Light harvesting and energy transfer

0.1 Light harvesting and energy transfer

Organic semiconductors are photo- and electroactive materials that are able to transduct

an energy flux via their π-system, and can also be used for the production and conduction

of an electric current generated from light absorption (or conduction and release of energy

through light emission) [1–7]. They are designed as new generations of electronic and op-

toelectronic devices with applications in photovoltaics, electroluminescence, and artificial

photosynthesis: organic solar cells [7], organic transistors [8], organic light-emitting diodes

(OLEDs) [9], and biomimetic light-harvesting antennae [10–14]. Within this perspective,

the Nobel Prize in Chemistry 2000 was awarded for the discovery and development of

conductive polymers [15–18].

In this context, understanding the mechanisms involved in energy transfer is crucial

for the synthesis of compounds showing such properties. To do so, the so-called nanostar

happens to be a system of choice, which exhibits a particularly efficient (around 98%)

and fast (about a few picoseconds according to the literature) energy transfer (see below)

[19,20].

The nanostar is a dendritic polyphenylene ethynylene (PPE) macromolecule termi-

nated by a perylene, see figure 0.1, initially designed to mimic natural photosythesis, and

first synthesized by J. S. Moore and al. in 1994 [21], thus often viewed as a biomimetic,

photosynthetic “nanoleaf” or “nanotree”.

PPEs are complex, yet hierarchical, π-conjugated organic macromolecules that present

a huge potential in the context of organic nano-optoelectronics [8, 13]. Among them

(see examples in figure 0.2), the dendritic ones are often classified between the compact

and the extended dendrimers, both exhibiting a tree-branched architecture that makes

them remarkably efficient synthetic light-harvesting antennae, able to collect photons

from several peripheral points [22].

Compact dendrimers are constituted of same length para-building blocks, so part of the

energy transfers are due to entropic reasons [11, 23–26]. On the other hand, extended

dendrimers (such as the nanostar) are constituted of building blocks of increasing lengths

from the periphery to the core, which yields an energy gradient at the origin of the efficient

energy transfer [19, 27,28].

The present thesis is focused on the study of energy transfer within photoexcited

3
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Figure 0.1: The "nanostar".

Figure 0.2: Various PPEs.
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0.2. State of the art and general objectives

PPEs, so as to understand, rationalize, and simulate the mechanisms involved in this

process, in relationship with the properties of their constitutive units.

0.2 State of the art and general objectives

Lots of efforts were made these last thirty years, and are still made currently, to unravel

the mechanisms governing the behavior of PPEs at the microscopic and molecular levels.

Yet, identifying systematic and transferable relations between the structure and properties

of such macromolecules from those of their subunits still raises a number of open issues

for both experiments and theory, as recently stated [29].

Such a description requires to correctly account for various effects acting on various

length, time, and energy scales, which appears challenging at first sight.

We summarize in the following the elements of answers raised in the literature along

with the current open issues and technical barriers to be lifted.

Historically, the first insight into the electronic structure of PPEs came from steady-

state spectroscopy experiments [27, 30]. The authors highlighted that the absorption

spectrum of the nanostar is almost additive and dominated by individual contributions

of π → π∗ locally excited (LE) electronic states on “sticks”. This was later confirmed by

other experimental [20, 28, 31–33] and theoretical studies [34–42] on other types of meta-

PPEs. Thus, quantitative descriptions are required to rationalize the structure-property

relations, in particular the fact that meta-substitution partially disrupts π-conjugation in

PPEs [34,43–45].

The occurence of dark charge-transfer states and their possible effect on the energy

transfer is still an open question, since their description is sensitive to the level of theory

used in calculations [46]. Such states are likely to trap the excitation, thus quenching the

transfer and should thus be studied with special care [47].

From a dynamic point of view, the energy transfer in the nanostar is actually an ultra-

fast and unidirectional excitation transfer occuring via a cascade of internal conversions

among “sticks” of increasing lengths within the dendritic structures [19, 27, 30, 41, 42, 48–

53]. Peripheral chromophores absorb light at high energies so the excitation is transducted

5



from a chromophore to the adjacent one along the energy gradient created by the differ-

ent lengths of the chromophores (shishiodoshi effect) [42]. For now, it is assumed that

this ideal mechanism involves conical intersections which remain to be fully characterized,

experimentally and computationally, along with the effect of non-adiabatic couplings.

Approximate calculations (mixed quantum-classical dynamics with semiempirical po-

tential energies) on linear meta-PPEs indicated that the energy is vibronically mediated

through in-plane high-frequency skeletal C≡C modes [42, 48, 49, 51–53]. To evaluate the

contribution of these nuclear modes and others in the relaxation through conical in-

tersections, it is crucial to have access to the evolution of electronic state populations

and coherences with respect to time. This still awaits for higher-level simulations and

confrontation to experiments involving ultrafast femtosecond and two-dimensional (2D)

spectroscopy.

Finally, specific issues may arise from the macromolecular structure of PPEs such

as the nanostar. First, even though through-bond interactions (intramolecular regime)

are assumed to dominate in the excitation transfer process, through-space interactions

(intermolecular regime) among not-covalently-bonded para-fragments may also contribute

[40, 44]. The competition between these two effects can only be rationalized confronting

2D spectroscopy with multiscale/multimethod simulations based on system-bath models

[29,54,55].

Then, ramified meta-junctions are points of meeting for excitations arriving from dif-

ferent para-fragments, which may cause local exciton blockades [56]. Such situations

require to be addressed with simulations and transport models adapted to multibranched

networks [25].

In large-enough dendrimers, conformational disorder is also to be taken into account.

In particular, torsions and soft vibrational modes extending over the whole range of the

macromolecules may be crucial upon modulating oscillator strengths and inducing line

broadening in samples at room temperature [41, 57, 58]. Torsions do not disrupt the π-

conjugation as dramatically as for double bonds (due to the cylindric topology of the

triple bond), and may tune optical-path lengths [59], thus preventing exciton blockade.

Rationalizing the effect of torsions upon optical-path lengths is then of particular interest

for the global description of the excitation transfer [60, 61].

6



0.3. Objectives of the thesis

0.3 Objectives of the thesis

The present thesis manuscript starts with a general presentation of the relevant for-

malisms, methods, and concepts. Results and discussion are essentially divided into two

parts; the first one is dedicated to the electronic structure of PPEs, whilst the second

one proposes a first step toward the construction of a quasidiabatic model of “coupled”

potential-energy surfaces, aimed at being generalizable to any PPE dendrimer.

The electronic structure of meta-PPEs is rationalized with respect to the electronic

structure of their constitutive para-fragments. Both are characterized with DFT or

TDDFT calculations performed at the ground state and relevant first few excited states

with the Gaussian package [62].

The reliability of the level of theory we used (DFT and TDDFT; CAM-B3LYP/6-

31+G*) is assessed in the first place [63]. Our work confirms the additivity in the absorb-

tion spectra of meta-PPEs already raised in the literature, along with the local character

of the excited states. More precisely, we show that the first relevant excited states are

each dominated by a single transition between near frontier orbitals (HOMO, LUMO,

HOMO-1, LUMO+1,...) and that all the properties we studied show the same additive

behavior as the absorption spectra, in particular at the orbital level.

From these results, a clear hierarchy appears in the electronic structure of PPEs,

and we define pseudo-fragments, which carry molecular orbitals of molecular “fragments”

sharing common atoms within meta-substituted benzene rings.

Accessible conical intersections are identified in the case of a symmetric meta-PPE,

giving credit to the ideal mechanism proposed in the literature. The implication of the

C≡C bonds in the internal conversion process is also confirmed, and other modes are

identified as coordinates of the branching spaces. Tightly avoided crossings proving the

proximity of conical intersections and the possibility of internal conversion processes are

also identified for a more complex system.

Considering the hierarchy highlightened in the study of the electronic structure, a

multiscale model is proposed to express the energies of the electronic states of meta-

PPEs in terms of relevant local nuclear coordinates. Intermediate energies are considered:

electronic energies of para-PPEs, frontier-orbital energies of para-PPEs, orbital energies

7



of basic units, which define the different steps of the model. The interactions to account

for at each step of the model are described upon considering concepts inspired from tight-

binding formalisms.

An effective model is proposed to express the energies of the frontier orbitals of para-

PPEs in terms of effective Hückel-type parameters of benzene and acetylene, and vali-

dation of the underlying approximations is performed. Preliminary work to express the

dependence of the energy in terms of local nuclear coordinates is performed.

8
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Conceptual development
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The present thesis has two objectives. The first one is to rationalize the exciton trans-

fer in meta-PPEs and also serves the second objective, which is to construct a novel

diabatic representation for the electronic energies of PPEs with respect to the nuclear

coordinates.

With such a diabatic representation, two points are addressed. First, diabatic states

ease the chemical interpretation of the variation of the electronic energies between two

different geometries. Then, it provides potential energy surfaces that can be used to

perform dynamics simulations beyond the Born-Oppenheimer approximation. A diabatic

representation for the electronic energies with respect to the nuclear coordinates can also

be termed a vibronic (Hamiltonian) model.

The usual method for building a vibronic model is based on a second-order Taylor

expansion along the 3N − 6 vibrational modes (N is the number of atoms) and requires

to evaluate Hessian matrices. The nanostar counts around 500 atoms, which yield around

1500 nuclear modes, and thus more than a million elements of Hessian matrix to de-

termine2. The task is even more formidable considering that there is no way to fully

automatize the diabatization procedure.

This is where the interest of our model resides. We identified diabatic states that we

describe as resulting from simple interactions between local frontier orbitals thanks to the

strong hierarchy existing in PPEs. The hierarchy leads to a simple expression of the total

energies (electronic Hamiltonian matrix elements) in terms of the frontier orbitals of the

basic units. On the other hand, the locality of the frontier orbitals yields a simplified

dependence with respect to a reduced number of local nuclear coordinates.

All together, this enable us to express the total electronic energy (more specifically,

each element of the vibronic Hamiltonian matrix) in an unusual and simple way, in the

form of a functional of only a few functions, themselves depending on a limited type of

nuclear coordinates, see figure 0.3.

2The Hessian matrix is symmetric, so M(M + 1)
2 parameters are required to determine a Hessian

matrix of rank M .
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Figure 0.3: Structure of the vibronic model; a reduced number of parameters.

Nomenclature of PPEs

For all aspects presented in this manuscript, we used the following notations for the PPEs.

n-ring para-PPE (“para” may be omitted) will be named pn, where n is the number

of rings.

We define the building blocks of meta-PPEs as the ensembles of rings and acetylenes

connected in para. The simplest meta-PPEs are constituted of two building blocks. For

reasons that will be justified later on, a meta-phenylene is considered as part of each of

two building blocks. As an example, the meta-PPE presented in figure 0.4 is constituted

of two building blocks, of two and three rings respectively. This will be denoted (2,3)-

meta-PPE, or m23 for a more compact notation. Meta-PPEs constituted of building

blocks with different numbers of rings may be termed as “mixed”.

Figure 0.4: 3-ring para-PPE named p3 (left) and (2,3)-meta-PPE named m23 (right).

If the PPE presents several meta-junctions (figure 0.5, the notation still accounts for

the number of rings of each building block. It starts from the terminal building block with

12



0.4. A hierarchical system

the smallest number of rings and goes on along the meta-connections. The meta-PPE

constituted of the succession of 2-,3-, and 4-ring building blocks is thus named (2,3,4)-

meta-PPE (which is different from (3,2,4)-meta-PPE), or m234 in compact notation.

In the case where three building blocks share a common meta-phenylene, the “star”

(or “s”) label is used instead of “meta” (or “m”); example given: (2,2,2)-star-PPE, also

named s222.

Figure 0.5: (2,3,4)-meta-PPE also named m234 (left), and (2,2,2)-star- PPE also named s222 (right).

Building blocs sharing a meta-phenylene will also be termed meta-building blocks.

0.4 A hierarchical system

We prove in Part IV that the electronic structure of the PPEs is highly hierarchical, see

figure 0.6. Indeed, the frontier orbitals of the building blocks of a meta-PPE correspond

to a small pertubation of the frontier orbitals of the corresponding para-PPEs. In other

words, the interactions between two building blocks coupled in meta are perturbative with

respect to the interactions inside each building block.

This also stands for the interactions between the rings and the acetylenes inside a

building block (a para-PPE): the frontier orbitals of benzene and acetylene clearly stand

out in the frontier orbital of para-PPEs, see figure 0.7 (and thus in the ones of building

blocks), meaning that the interactions defining the rings and the acetylenes dominate over

the interactions between them.

We rely on this hierarchy to set up a model for expressing electronic energies for

the PPEs from the energies of the frontier orbitals of benzene and acetylene. Within

this model, we aim to combine the accuracy of TDDFT calculations with the physical

interpretation of extended-Hückel (XH) calculations into a new model, providing high-

quality energies that can be interpreted in terms of hierarchical interactions.
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Figure 0.6: Hierarchy in the electronic interactions in meta-PPEs.

Figure 0.7: HOMO of tolane (left) and LUMO of tolane (right).

0.5 Multiscale approach

Within this perspective, we build a multiscale vibronic model, the structure of which is in-

spired by the Hubbard approach, see figure 0.8. We illustrate our approach on the example

of m23. In a first step, we do not consider the energy E0 of the ground state and focus on

the description of transition energies ∆E between the ground state and the excited states.

The construction of the model (and of any other model) relies on two different tasks.

One consists in chosing the framework within which interactions will be described, that

is actual modeling (vertical steps in figure 0.8). The other one consists in ensuring that

the model “works” and provides suitable results with respect to a reference, that is fitting

(horizontal steps).

The hierarchy in the electronic structure of PPEs is the key that allows the bottom-up

construction of the electronic energies based on perturbative interactions. Thanks to this,

the description of each interaction can be done separately.

We start by exposing the modeling strategy, which is presented in figure 0.8.

As proved in Part IV, the electronic states of p2 and p3 can be seen as quasi-diabatic
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0.5. Multiscale approach

Figure 0.8: Structure of the vibronic model. Decomposition of the transition energy.FO = HO of LU.

states of m23. For this reason, the electronic energies in m23 will be considered as the

result of a weak coupling W between the S1 state of p2 (|S1(p2)〉) and the S1 state of p3

(|S1(p3)〉).

Thus, the corresponding Hubbard matrix HHub(Q) in terms of the nuclear coordinates

(see figure 0.11) is the representation of the electronic Hamiltonian Hel(Q) in the local-

ized basis (|S1(p3)〉,|S1(p2)〉). The latter constitutes a quasi-diabatic basis for m23, while

it is the adiabatic basis for p2 and p3 when they do not interact.

The potential couplingW between them has a somewhat similar meaning to the resonance

integral β of the Hückel model and to the hopping integral t of the Hubbard model.

Expressing ∆E in terms of ∆ε is not trivial at all. Indeed, this step is the bridge

between the one-electron problem and the many-electron one, which is basically the central

problem of all quantum chemistry methods. To make this bridge, we could brutally set

up a mapping from orbital energies to state energies. Doing so, we would basically create

another parametrization to get the energy from a given geometry, that is a new semi-

empirical method. Yet, this is not what we aim for.

TDDFT energies are assumed to be quantitative (at least in our case, see refer-
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ence [63]). On the other hand, in XH methods (and other methods derived from the

Hückel theory), the electronic energy is calculated by considering the weak intramolecu-

lar interactions arising from the layout of the system. Then, even if the results are not

quantitative, they account for the physics of this type of system.

As a matter of fact, we have observed that the energy gap between the frontier or-

bitals (XH calculations) correlates linearly with the S0 − S1 transition energy (TDDFT

calculations) for various geometries and numbers of rings, see figure 0.9.

This linear correspondance between TDDFT and XH results can thus be interpreted in

two ways. First, the evolution of the TDDFT results follows the evolution of the physics of

the PPEs, so the TDDFT results do have a physical meaning in our case. Then, it shows

that the S0 − S1 transition energy can be qualitatively (quantitatively up to a mapping)

reduced to the gap between the two frontier orbitals provided by XH calculations.

Figure 0.9: Transition energy ∆E (TDDFT) between S0 and S1 as a function of the gap ∆ε (XH)
between the frontier orbitals of the 2- (blue), 3- (red), and 4- (green) ring para-PPEs.

Now, the transitions between the frontier orbitals of para-PPEs are representative of

the S0–S1 transition, so we express the transition energy between the electronic states

∆E in terms of the energy required to promote one electron from the HO to the LU, see
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0.5. Multiscale approach

figure 0.10. In the frame of the Hubbard model, the energies of the ground state and first

excited state read

E0 = 2εHO + U (1)

E1 = εHO + εLU (2)

where U > 0 is the electronic repulsion between two electrons in the HOMO. Then the

transition energy reads

∆E = ∆ε− U (3)

where ∆ε = εLU − εHO is the energy difference between the frontier orbitals.

We only consider the repulsion between two eletrons in the same orbital and neglect the

Figure 0.10: Representation of the electronic configurations associated with the ground state (left) and
first excited state (right) from an excitonic point of view.

one between two electrons in different orbitals.

Finally, the energies εFO,pn (FO = HO, LU) of the frontier orbitals of the para-PPEs

are expressed in terms of effective energies of the frontier orbitals of benzene and acety-

lene (αFO,B and αFO,A) within the framework of a Hückel-type model with fragment sites.

This will be fully exposed in the next chapter. We consider the energies of the orbitals of

benzene (B) and acetylene (A) provided by extended-Hückel calculations.

To ensure the validity of the model, reference energy values are used along the bottom-

up construction. We start the actual construction of the model with the molecular orbitals

of benzene and acetylene, whose energies are calculated at the extended-Hückel level and

constitute our reference. The model energies εFO,pn (FO = HO, LU) of the frontier or-

bitals of the para-PPEs are fitted to extended-Hückel values εrefFO,pn. The model transition

energies for the electronic excited states ∆Epn are fitted using TDDFT values as targets

∆Eref
pn (figure 0.11).
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This strategy can be applied to anymeta-PPE considering the relevant building blocks,

as will be derived in the last part of the manuscript.

In principle, such a strategy should be relevant for any photoactive supramolecule

built from the repetition of basic units.

0.6 Methodological relevance

0.6.1 A smart decomposition of the energy

In quantum chemistry, the Coulomb potentials are fully defined for a set of charged

particles at given positions.

In contrast, the practical difficulty of quantum dynamics is that the effective potential

acting on the nuclei depends on the system and is unknown. Then, for a given system,

fitting is the only way to access the PES without computing the energy at each useful

point, which is neither possible, nor wanted, especially for large systems3. Yet, fitting is

a formidable task on its own, which was not our objective here.

This drawback is tremendously reduced in molecular dynamics thanks to the use of

force fields (most often based on molecular mechanics) that are supposed to be transfer-

able. The universality of force fields comes from the fact that they decompose the energy

into individual and universal contributions (spring forces, interactions between charges,

dipole moments, etc.), which are eventually summed up according to the geometry of the

system to be studied.

The key-points of our model are that, (i) as a function of the nuclear position that

interpolates the energy, the PES can also be interpreted as an internal potential field,

(ii) PPEs are quite similar to conjugated polyenes, so the same physical principles should

apply to both. Then, Hückel-type models provide us with the tools to decompose the

electronic energy into universal contributions, thus enabling the model we propose to be

transferable, at least in principle.

Finally, this novel vibronic model is a smart decomposition of the electronic energy

in terms of orbital energies, orbital occupations, and repulsion terms, which can thus be
3This is even worse considering non-adiabatic or diabatic representations since they cannot be accessed

straightfowardly.
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0.6. Methodological relevance

physically interpreted, as opposed to the commonly used Taylor expansions. Each fitted

parametrization performed can be rationalized according to those terms.

0.6.2 A simplified expression for the electronic energy

Let us now analyze how this decomposition allows to simplify the expression of the total

energy in terms of the nuclear coordinates. A schematic representation is presented in

figure 0.11.

Figure 0.11: Structure of our vibronic model. Dependence with the nuclear coordinates.

The energies of the frontier orbitals εFO,n (FO = HO or LU) of the para-PPEs are

considered as functionals of the energies α of the frontier orbitals of benzene and acetylene,

and the resonance integral β; it also depends parametrically on the number of rings n:

εFO [αB,FO, αA,FO, βFO;n]. Those parameters depend in turn on the nuclear coordinates

of benzene (αB,FO(qB)), acetylene (αA,FO(qA)), and on the distance between adjacent

benzene and acetylene (βFO(qAB)), respectively. We ignore the out-of-plane motions in

this work. Hence

εFO,n [αB,FO(qB), αA,FO(qA), βFO(qAB);n] = εFO (qB, qA, qAB;n) (4)

and

∆εn [αB,FO(qB), αA,FO(qA), βFO(qAB);n] = ∆εn (qB, qA, qAB;n) . (5)
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The expression of U is not trivial and will be discussed in the last part of this

manuscript. For now, it may depend on any of the local nuclear coodinates qB, qA,

and qAB, and parametrically on n: U = Un(qB, qA, qAB).

We express the transition energy ∆Epn in pn in terms of ∆ε and U . Thus, they

are also functionals of the parameters αB,FO(qB), αA,FO(qA) and βFO(qAB). Considering

equation 5, this leads to

∆Epn [∆εn, Un] = ∆Epn [αB,FO(qB), αA,FO(qA), βFO(qAB);n] (6)

= ∆Epn (qB, qA, qAB;n) (7)

Finally, we express the energies of S1 and S2 in the meta-PPE mkl (k 6= l) in terms of

the energies of S1 in pk and pl and the coupling W between the building blocks. Consid-

ering the local character of S1 and S2, their energies only depend on nuclear coordinates

associated to the l- (qpl) and k- (qpk) ring building blocks, respectively. Also, we consider

that the coupling between S1 and S2 is mediated through the meta-phenylene, so the

coupling W depends on its internal nuclear coordinates qmeta-Ph, hence

∆Emkl = ∆Emkl [∆Epk(qpk), ∆Epl(qpl),W (qmetaPh)] . (8)

Combining equations 7 and 8 reveals the possibility to express the electronic energy

in terms of a few type of local nuclear coordinates.

∆Emkl = ∆Emkl ({qB, qA, qAB; k}k, {qB, qA, qAB; l}l, qmetaPh) (9)

= ∆Emkl
(
qkB, q

k
A, q

k
AB, q

l
B, q

l
A, q

l
AB, qmetaPh; k; l

)
(10)

This equation highlights the fact that our vibronic models can provide an expression

for the electronic energy involving only the local nuclear coordinates and two indices, for

any meta-PPE constituted of two building blocks.

It is important to note that within this framework, the expression of ∆Emkl depends

on all the local nuclear coordinates, that is 4n − 3 modes on each n-ring building block

plus qmetaPh. This is a first simplification with respect to considering all the nuclear

modes of the molecule. By providing expressions of the Hückel parameters in terms of the

local coordinates αi(qi) , we do not reduce the number of variables qi or their accessible

values. But since αi(qi) is determined and can be repeated as many times as necessary, we

reduce the actual number of parameters on which the models depends. This constitutes

a tremendous simplification compared with the usual Taylor expansions.
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0.7. Conclusion

In principle, only one parameter j and one set of local coordinates
{
qjB, q

j
A, q

j
AB, q

lj
metaPh

}
must be added for each extra meta-junction PPEs, that correspond to the number of

rings of the extra building block and the collective nuclear mode over its common meta-

phenylene, see figure 0.12.

Figure 0.12: Sets of local nuclear coordinates to consider for m234 in the vibronic model.

0.7 Conclusion

In this thesis manuscript, we present the work that was achieved to characterize the PPEs

(Part IV), and which justifies the energetical decomposition ofmeta-PPEs at several levels.

The data collected during this characterization have then been used for the construction

of the vibronic model (Part V).

The construction of some steps of the model is still in progress, but the results pre-

sented here are promising.
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Part III

Theory
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The essential concepts (first two chapters) and methods (last three chapters) that were

used along this thesis are recalled in the present part.

One of the two objectives of this project is the description of the electronic excitation

transfers in PPEs. According to the literature [42, 49], such processes correspond to a

sequence of internal conversions mediated through conical intersections (see chapter 2).

Conical intersections are specific points of contact between potential energy surfaces.

Their effect on the molecular dynamics cannot be described correctly within the frame of

the adiabatic approximation. Indeed, in the vicinity of conical intersections, the couplings

between the electronic and nuclear motions (non-adiabatic couplings) are too strong to

be neglected, which yields non-adiabatic processes.

Chapter 1 introduces the general formalism associated with the description of non-

adiabatic processes, and recalls the essential concepts and possible approximations. Chap-

ter 2 is dedicated to the representation of conical intersections.

The electronic structure (ground state and first few excited states) and vibrations

of PPEs containing up to 54 carbon atoms were studied in detail. To do so, DFT and

TDDFT calculations were performed, as the best compromise between accuracy and com-

putational cost for such large systems. Generalities about those computational methods

are presented in chapters 3 and 4.

The second objective of this project is the construction of a vibronic model for the

electronic energies of PPEs. Along this construction, and because PPEs present a con-

jugated π-system, the interactions we must account for (correlation, exchange, Coulomb)

are essentially governed by π-orbital overlap. Thus, effective orbital-based models derived

from the Hückel formalism are expected to be relevant. We recall the formalisms on which

our model will rely in chapter 5.
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Chapter 1

General formalism

The essential references for this chapter are: [64–70].

The wavefunctions that are the solutions of the molecular Schrödinger equation de-

pend on both the electronic and nuclear coordinates. In most cases, the typical energy

and time scales of electrons (light particles) and nuclei (heavy particles) differ by a few

orders of magnitude. It is thus often valid to consider that the electronic states adjust

instantaneoulsy to the nuclear motion, which is the adiabatic approximation.

The full problem is then treated in two steps: first, the resolution of the electronic

Schrödinger equation with fixed nuclei (quantum chemistry); second, the resolution of the

Schrödinger equation for the nuclei in the mean field of the electrons (quantum dynam-

ics), which may be achieved within the framework of the (adiabatic) Born-Oppenheimer

approximation. Beyond the adiabatic approximation, the nuclear motion actually induces

non-adiabatic couplings (also called vibronic couplings) between the electronic states. The

two-step resolution must then be generalized upon taking those non-adiabatic couplings

into account. Thereafter, we focus on singlet electronic states, except when explicitly

mentioned.

1.1 The molecular Hamiltonian

The investigations carried out within the present thesis exclude relativistic effects. We

define R = (R1, ...,RN) and r = (r1, ..., rn), the nuclear coordinates of the N nuclei

and n electrons within a molecular system, respectively. The corresponding molecular
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1. General formalism

Hamiltonian is defined as

Ĥmol(r,R) = T̂ n(R) + T̂ el(r) + V̂ nn(R) + V̂ ee(r) + V̂ ne(r,R) (1.1)

with

T̂ n(R): the nuclear kinetic energy operator;

T̂ el(r): the electronic kinetic energy operator;

V̂ nn(R): the electrostatic potential between the nuclei;

V̂ ee(r): the electrostatic potential between the electrons;

V̂ ne(R, r): the electrostatic potential between the nuclei and the electrons.

The corresponding time-independent Schrödinger equation reads

Ĥmol(r,R)Ψmol
i (r,R) = Emol

i Ψmol
i (r,R) (1.2)

where the eigenvalue Emol
i is the energy associated with the ith eigenvector Ψmol

i . The cou-

ples (Ψmol
i ,Emol

i ) are the stationary solutions of the following time-dependent Schrödinger

equation:

Ĥmol(r,R, t)Ψmol(r,R, t) = i~ ∂
∂t
Ψmol(r,R, t) (1.3)

The non-stationary solutions can be decomposed over the basis of the stationary eigen-

vectors:

Ψmol(r,R, t) =
∑
i

ci(t)Ψmol
i (r,R) (1.4)

where the time-dependence is contained in the expansion coefficients.

1.2 Separation of the molecular Hamiltonian

1.2.1 The electronic problem

The resolution of the full Schrödinger equation 1.2, for many-body systems can only be

achieved numerically.

In most situations, it is legitimate to consider that the electrons move much faster

than the nuclei (due to the ratio of their masses). This leads to the following approximate
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1.2. Separation of the molecular Hamiltonian

picture: (i) The electrons can be viewed as evolving in the field created by the fixed nuclei;

(ii) Should the nuclei move, the electrons would respond/relax instantly, that is that the

electronic structure adiabatically follows the nuclear motion. This is called the adiabatic

or Born-Oppenheimer approximation (discussed later on). We will show first that such a

description still provides a convenient starting point for a more general description, even

beyond the adiabatic approximation.

As mentioned in the introduction, the first step to solve the time-independent equation

1.2 consists in dealing with the electronic part, independently of the nuclear motion. The

electronic Hamiltonian Ĥel is thus defined by removing the nuclear kinetic energy T̂ n:

Ĥel(r;R) = T̂ el(r) + V̂ nn(R) + V̂ ee(r) + V̂ ne(r,R) (1.5)

Ĥmol(r,R) = T̂ n(R) + Ĥel(r;R) (1.6)

and the corresponding electronic time-independent Schrödinger equation reads1

Ĥel(r;R)φelα(r;R) = Eel
α (R)φelα(r;R) . (1.7)

The eigenvectors φelα(r;R) are the adiabatic electronic states of the system. As well as

the electronic Hamiltonian, they characterize the electronic structure at a given nuclear

geometry R (often termed “fixed nuclei” Hamiltonian). Thus, the Hamiltonian and the

eigenvectors depend explicitly on the electronic coordinates r and parametrically on the

nuclear coordinates R. One can note that the energy Eel
α (R) (or eigenvalue) associated

with an electronic state also depends parametrically on the nuclear coordinates.

As they are solutions of an eigenvalue problem, the adiabatic states form a complete

orthonormal basis set
{
φelα(r;R)

}
α
(see equation 1.8).

∀R,
〈φelα ;R|φelβ ;R〉 = δαβ∑
α

|φelα ;R〉〈φelβ ;R| = 1̂
(1.8)

Quantum chemistry methods are designed to solve the electronic Schrödinger equation

1.7 (with further approximations), and thus to compute the electronic states and their

energies (along with other properties) for a chosen geometry of the system. This procedure

has to be repeated for each geometry that has to be considered.
1In this notation, the operator and its eigenvectors depend parametrically on the variables written

after the symbol “;” (here the nuclear coordinates R).
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1. General formalism

1.2.2 The adiabatic expansion

To solve the time-dependent Schrödinger equation, the total wavefunction Ψmol can be

conveniently expanded over the basis of the adiabatic states, which are now assumed to

be known

∀R,


Ψmol(r,R, t) = ∑

α χ
n
α(R, t)φelα(r;R)

χn
α(R, t) =

〈
φelα ;R|Ψmol(R, t)

〉 (1.9)

where we use Dirac’s bracket notation for the electronic coordinates r only.

This constitutes the Born or adiabatic expansion. One of the interests of this for-

mulation is that the total wavefunction is expanded on a set of well-defined stationary

functions (electronic part), and the time-dependence only appears in the expansion coef-

ficients, which constitute the nuclear part.

Considering the basis of the adiabatic states, the electronic degrees of freedom are at-

tached to α, which is discrete, instead of r, which is continuous. In contrast, the nuclear

degrees of freedom are attached to the continuous coordinate R in this representation.

The expansion 1.9 provides an ansatz for solving the full Schrödinger equation 1.3 (see

below). It is exact as long as the
{
φelα(r;R)

}
α
basis set is complete, but becomes an ap-

proximation as soon as the basis is truncated. In particular, under the Born-Oppenheimer

approximation the basis is reduced to only one electronic state (usually the ground-state);

for descriptions beyond the Born-Oppenheimer approximation, the basis set is usually lim-

ited to a subset of strongly interacting electronic states (this is sometimes referred to as

the bloc- or group-Born-Oppenheimer approximation).

1.2.3 Non-adiabatic couplings (NACs)

As mentioned in introduction, the nuclear motion may induce couplings between elec-

tronic states. Such couplings cause the involved electronic states to influence each other

response to the nuclear motion. Since one can no longer consider that a single electronic

state follows adiabatically the nuclear motion, these couplings are termed “non-adiabatic”.

Let Ψmol(r,R, t) describe a solution of equation 1.3. Separating the molecular Hamil-
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1.2. Separation of the molecular Hamiltonian

tonian (equation 1.1) and using the Born expansion 1.9, equation 1.3 becomes

[
T̂ n(R) + Ĥel(R)

]∑
β

χn
β(R, t)|φelβ ;R〉 = i~ ∂

∂t

∑
β

χn
β(R, t)|φelβ ; (R)〉

where the dependence of Ĥel(R) with r is now implicit according to the ket representation

for the electronic part.

We consider the expression 3.10 for the nuclear kinetic energy operator2.

T̂ n(R) = −~2

2
∑
K

1
MK

∆K (1.10)

After projection on an adiabatic state φelα(r;R) and integration over the electronic

coordinates r, the previous equation can be recast as

∑
β

[
δαβ

(
T̂ n(R) + Eel

α (R)
)

+ ~2Λ̂αβ(R)
]
χn
β(R, t) = i~ ∂

∂t
χn
α(R, t) (1.11)

By definition, the non-adiabatic coupling operators Λ̂αβ(R) result from the action of

the kinetic energy operator of the nuclei on the adiabatic electronic states. With respect

to the gradient operator ∇K , this action leads to first order terms, also called “derivative

couplings”, and of second order terms, also called “scalar couplings”.

Λ̂αβ(R) = −
∑
K

( 1
MK

DK
αβ(R) ·∇K + 1

2MK

CK
αβ(R)

)
(1.12)

where the derivative couplings read

DK
αβ(R) = 〈φelα ;R|∇Kφ

el
β ;R〉 (1.13)

and the scalar couplings read

CK
αβ(R) = 〈φelα ;R|∆Kφ

el
β ;R〉 . (1.14)

Inserting the closure relationship into the divergence of the derivative couplings allows

to express the scalar couplings in terms of the derivative ones

CK
αβ(R) =∇K ·DK

αβ(R) +
∑
γ

DK
αγ(R) ·DK

γβ(R) . (1.15)

2We use simplified notations for the differentiation operators: ∆K ≡ ∆RK
and ∇K ≡ ∇RK

, where
RK is the Kth component of the collective nuclear coordinate R. MK denote the corresponding nuclear
mass.
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1. General formalism

When two electronic states are near degenerate, the corresponding nuclear wavefunc-

tions obey coupled equations and are no longer independent, which corresponds to large

values of the NACs. This appears formally in the off-diagonal Hellmann-Feynman theo-

rem [71,72], which gives another expression for the derivative couplings

DK
αβ(R) =

〈φelα ;R|∇KĤ
el(R)|φelβ ;R〉

Eel
β (R)− Eel

α (R) . (1.16)

The amplitude of the non-adiabatic couplings (NACs) increases as the energy dif-

ference decreases, until they diverge when the electronic states are degenerate, namely

at conical intersections. Those strong couplings around conical intersections reflect a

strong interdependence between the electronic and vibrational motions. Thanks to these,

electronic excitation energy may be transfered through vibrational modes, allowing the

system to change its electronic state without light emission, on timescales usually less

than a picosecond.

1.3 Born-Oppenheimer approximation

The Born-Oppenheimer approximation is equivalent as neglecting the non-adiabatic cou-

plings Λ̂αβ in the molecular Hamiltonian. Since their amplitude is inversely proportional

to the masses of the nuclei (see above), which are heavy particles, the approximation is

reasonable in most cases.

Doing so, equation 1.11 reveals the Schrödinger equation for the nuclei and the nuclear

Hamiltonian Ĥn
α(R) for each electronic state

Ĥn
α(R)χn

α(R, t) = i~ ∂
∂t
χn
α(R, t) (1.17)

Ĥn
α(R) = T̂ n(R) + Eel

α (R) (1.18)

The nuclear wavefunctions (vibrational states) are determined by the potential part of the

Hamiltonian, which is actually the energy of the corresponding adiabatic states. Then,

nuclear wavefunctions on different electronic states are not coupled, and we are back to

electrons adjusting instantaneously to the nuclear motion while the nuclei move in the

adiabatic potential created by a single electronic state (principle of the PESs).
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1.4. One-electron approximation

This is reasonable only as long as the electronic states involved in the study are

energetically different enough, which is usually the case for ground-state reactivity. Un-

fortunately, the approximation is no longer valid when the electronic states get close in

energy, which is the case around conical intersections, as already pointed out. Thus, the

description of conical intersections is a typical beyond-Born-Oppenheimer problem.

1.4 One-electron approximation

Let us come back to the electronic problem. We now consider the “fixed nuclei” Hamilto-

nian and present the so-called one-electron approximation, which is the fondation of most

methods in quantum chemistry, from the semi-empirical ones (derived from the Hückel

model) to ab initio wavefunction and DFT methods.

As mentioned above, the electronic Schrödinger equation can be solved exactly only

for one electron and one nucleus, which yields the so-called hydrogenoid orbitals. The

orbitals of a polyelectronic atom or of a molecule are derived from the one-electron (or

mean-field) approximation. In a system with N electrons, this assumes that each electron

evolves in a mean potential accounting for the average repulsion of the other N − 1

electrons. Consequently, the polyelectronic hamiltonian Ĥ (dropping the label “el” here

for simplicity) can, first, be approximated as the separated sum of N effective one-electron

Hamiltonians ĥ(ei), sharing identical expressions (indistinguishable particles), and that

depending only on the position of the electron ei (Hückel, Fock, or Kohn-Sham operators).

Usually, molecular orbitals ϕi are expressed using the so-called linear combination of

atomic orbitals (LCAO) expansion over a basis set of N atomic orbitals χµ.

ϕi =
N∑
µ

ciµχµ (1.19)

The LCAO expansion would be exact provided that the basis set of atomic orbitals were

complete. In practice, the summation runs over extended bases for calculations, or is

limited to the valence atomic orbitals for qualitative descriptions.

The product of a one-electron space function φi(rk) and a one-electron spin function

ξi(σk), ψi(rk, σk) = φi(rk)ξi(σk), is called a spin-orbital. Since electrons are fermions, the

Pauli exclusion principle requires the total wavefunction Ψ(r,σ) describing the N -electron

system (N > 1) to be antisymmetric with respect to the exchange of any two electrons.
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1. General formalism

To ensure this property, the simplest type of ansatz for an N -electron wavefunction is

a linear combination of N ! identical Hartree products of N spin-orbitals, built to be

antisymmetric with respect to the N ! possible exchanges among the N electrons, namely

a Slater determinant. In the case of a two-electron system, this reads

Ψ(r1, σ1, r2, σ2) = ψ1(r1, σ1)ψ2(r2, σ2)− ψ1(r2, σ2)ψ2(r1, σ1)√
2

(1.20)

= 1√
2

∣∣∣∣∣∣∣
ψ1(r1, σ1) ψ2(r1, σ1)

ψ1(r2, σ2) ψ2(r2, σ2)

∣∣∣∣∣∣∣ (1.21)

= |ψ1ψ2| (1.22)

Each molecular orbital ϕi is characterized by the LCAO coefficients of equation 1.19,

and is associated with the energy εi. They are determined by solving the following equa-

tion

ĥϕi = εiϕi (1.23)

The projection of the equation on the atomic orbitals χµ (where µ = 1, ..., N) and the

expansion of ϕ in the LCAO approach lead to the secular equations

N∑
ν=1

(hµν − εSµν)cν = 0 (1.24)

where hµν = 〈χµ|ĥ|χν〉 (ĥ is the one-electron Hamiltonian operator, for example the Fock

operator in the Hartree-Fock method) and Sµν = 〈χµ|χν〉. The secular equations are

N coupled equations, linear with respect to the coefficients cν , and characterized by the

secular determinant:
∣∣∣∣h− εS∣∣∣∣ (1.25)

where h and S are the Hamiltonian and idendity matrix representations in the basis of

the atomic orbitals {χν}ν=1,...,N . S is also called the overlap matrix.

The set of coefficients cν that is solution of the secular equations only defines a molec-

ular orbital if the secular determinant vanishes (otherwise cν = 0).
∣∣∣∣h− εS∣∣∣∣ = 0 (1.26)
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1.4. One-electron approximation

The ε that are solutions of this linear system are the N values of the orbital energies εl,

each one of them corresponding to a molecular orbital ϕl.

Within this approach, the total wavefunction is expressed as a single determinant.

To improve the description of the system, the post-Hartree-Fock wavefunction can be

expanded over several Slater determinants, which leads to the so-called configuration

interaction or multiconfiguration methods.

35





Chapter 2

Representation of conical

intersections

The conceptual bases for this chapter can be found in references [67, 68,73,74].

The formalism relative to non-adiabatic couplings was presented, highlighting the di-

vergence of the kinetic couplings at points of degeneracy, which correspond to an infinite

probability of changing from an electronic state to another. This reveals that this repre-

sentation of the electronic states is not adapted to describe the electronic structure around

such points of degeneracy.

The adiabatic representation is based on electronic states that are solutions of the

electronic Schrödinger equation. In this representation, the adiabatic electronic states are

labelled according to their relative energies. For interpreting thermal reactivity, chemists

must study the ground state (lowest adiabatic state, most often a singlet, denoted S0).

For an elementary act, the reaction pathway directly connects the reactants and products

through the transition state, which is the highest energy point along the pathway.

On the other hand, in photochemistry the reactant is excited upon light absorption to

one of its excited state Sn (n > 0), and relaxes along the Sn PES until it eventually fluo-

resces back to S0 in the region of the product or undergoes radiationless decay processes

such as internal conversion.

When a photochemical process is thermally forbidden, the potential energy surface of

the adiabatic ground state shows a significant transition barrier between the reactant and

the product. This transition barrier actually corresponds to the amount of energy that
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2. Representation of conical intersections

is required for adjusting the electronic states of the reactant to the ones of the product.

One may notice that in the framework of Marcus theory for electrochemical processes,

this barrier is very aptly named “rearrangement energy” [75,76].

Provided this, it is obvious that the electronic states of the reactant are different from

the electronic states of the product (chemical bonds and lone pairs, hence the electronic

cloud, have been rearranged and do not concern the same nuclei). In the adiabatic repre-

sentation, the electronic states relax along the reaction coordinate in order to compensate

for the perturbation due to the nuclear motion (further details are given in section 2.2).

This alteration of the nature of the adiabatic states is not explicit though, due the way

the electronic states are labelled.

Along the same line, Walsh diagrams [77–86] enable us to make a correlation between

the electronic states of the reactant and product following their respective natures (figure

2.1), which is usually justified in textbooks from symmetry considerations [87]. This

representation is implicitely based on diabatic states, labelled according to their electronic

nature, and is formally defined as the representation in which non-adiabatic couplings

vanish. In this representation, the nature of each electronic state is conserved from the

excited reactant to the product, so the PES is regular and the energy gradient is always

defined.

Figure 2.1: Avoided crossing. In dashed lines, diabatic states; in full lines, adiabatic states.
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2.1. Two-state electronic Hamiltonian matrix

2.1 Two-state electronic Hamiltonian matrix

The essence of conical intersections can be understood within a two-state model. Let

|Φad
1 ;R〉 and |Φad

2 ;R〉 be two electronic adiabatic states, with energies E1(R) and E2(R).

The matrix representing the electronic Hamiltonian is diagonal in this basis of eigenstates

Had(R) =

E1(R) 0

0 E2(R)

 (2.1)

Let us assume another arbitrary orthonormal basis {|Φ1;R〉, |Φ2;R〉} spaning the same

Hilbert space as the adiabatic states |Φad
1 ;R〉 and |Φad

2 ;R〉. The two bases can be related

by a rotation characterized by the so-called mixing angle θ(R) that statisfies:
|Φad

1 ;R〉 = cos θ(R)|Φ1;R〉+ sin θ(R)|Φ2;R〉

|Φad
2 ;R〉 = − sin θ(R)|Φ1;R〉+ cos θ(R)|Φ2;R〉

(2.2)

In the arbitrary basis, the electronic Hamiltonian matrix is not necessarily diagonal. For

real-valued states, the matrix is real and symmetric and reads

H(R) =

H11(R) H12(R)

H21(R) H22(R)

 = S(R)1 +

−D(R) W (R)

W (R) D(R)

 (2.3)

with

Hij(R) = 〈Φi;R|Ĥel(R)|Φj;R〉 (2.4)

where we introduced

S(R) = H11(R) +H22(R)
2 = E1(R) + E2(R)

2 (2.5)

D(R) = H22(R)−H11(R)
2 (2.6)

W (R) = H12(R) = H21(R) (2.7)

The decomposition 2.3 of the Hamiltonian matrix brings out a diagonal part and a

residual symmetric matrix with vanishing trace and opposite eigenvalues. The Hamil-

tonian matrices expressed in the arbitrary and adiabatic bases are related through a

similarity transformation involving the same rotation matrix U(R) that characterizes the

rotation 2.2 between the corresponding states:
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2. Representation of conical intersections

U(R) =

cos θ(R) − sin θ(R)

sin θ(R) cos θ(R)

 (2.8)

Had(R) = U †(R)H(R)U(R) (2.9)

Diagonalizing the residual matrix using the rotation U(R) allows us to define ex-

plicitely the mixing angle

tan 2θ(R) = −W (R)
D(R) (2.10)

Finally, the adiabatic energies can be recast as:

E1,2(R) = S(R)∓∆(R)

∆(R) =
√
D2(R) +W 2(R)

(2.11)

2.2 Conical intersections

Conical intersections are points of degeneracy between two (or more [88–90]) adiabatic

states. They may be accidental or due to symmetry. Let us first express the conditions

for a conical intersection.

Let R0 be the locus of a conical intersection between two adiabatic states, then

E1(R0) = E2(R0) = S(R0) (2.12)

and

D(R0) = W (R0) = 0 (2.13)

The degeneracy requires both D(R0) and W (R0) to vanish. Reciprocally, the direc-

tions associated with the greatest increase of D(R) and W (R), namely their gradients,

are the most efficient for lifting the degeneracy at the first order from a conical intersection

(see figure 2.2). The plane defined by those gradients is the so-called branching space.

Then, in the space of the 3N − 6 internal degrees of freedom for the nuclei (N being the
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2.3. Diabatic basis

Figure 2.2: Degeneracy lifting from a conical intersection.

number of atoms of the system), a conical intersection between two same-spin states lives

in a space of 3N − 8 degrees of freedom, called “the seam”.

The PESs of the two adiabatic states are not regular because of the square-root func-

tion (equation 2.11). In particular, they touch at the conical intersection (of coordinates

R0) which is the locus of a singular point for the surface. This singularity comes with a

discontinuity for the energy gradients 2.11 and a divergence of the non-adiabatic couplings,

which also appear in equation 1.16.

These are pathological for the theoretical description for two reasons. First, a singular

point is always a huge complication for the fitting of analytical surfaces. Then, the energy

gradients and couplings are required, and thus are expected to be determined, to evaluate

the transfer of population between the two states around the conical intersection.

2.3 Diabatic basis

To tackle the issues in describing the area around conical intersections, a suitable set of

electronic states is needed, which evolve smoothly with the geometry.

The so-called diabatic states are defined such that the corresponding NACs vanish.

Since this condition is actually rarely fulfilled, in practice we call “diabatic states” the

states minimizing the amplitude of the NACs. They correspond to electronic states that

are labelled according to their chemical nature (which sometimes turns out to be their

symmetry) by opposition to the adiabatic states which are labelled with respect to their

energy. One may recognize in this the same considerations involved in the construction of

Walsh diagrams used to demonstrate the Woodward-Hoffman rules for pericyclic reactions

[91–97]. Consequently, diabatic states generally provide a suitable support for chemical
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2. Representation of conical intersections

interpretation.

The direct consequence of this definition is that the diabatic states are regular and do

not change much with the geometry, even in the vicinity of conical intersections. Then,

contrarily to the adiabatic energies, the diabatic ones actually cross while moving through

a conical intersection1.

Provided that the diabatic and adiabatic states form complete bases of the same

Hilbert space, they are similar up to a geometry-dependent rotation. Unfortunately,

there is no way to access the diabatic states straightfowardly, making it very difficult

to automatize the transformation from the adiabatic ones (known) to the diabatic basis

(unknown).

2.4 Branching space

Both vectors of the branching space can be derived from first-order degenerate pertur-

bation theory in the crude adiabatic representation. We denote xad,(1) and xad,(2) the

tuning (or half gradient of the energy difference) and the (derivative) coupling vectors,

respectively. Their components satisfy2

x
ad,(1)
j = 〈Φ

ad
2 ;R0|∂jĤel(R0)|Φad

2 ;R0〉 − 〈Φad
1 ;R0|∂jĤel(R0)|Φad

1 ;R0〉
2

x
ad,(2)
j = 〈Φad

1 ;R0|∂jĤel(R0)|Φad
2 ;R0〉

(2.14)

where R0 is the locus of a conical intersection. It is worth to notice that this set of vectors

is attached to the choice made for the degenerate adiabatic states. Indeed, let us consider

another set of degenerate electronic states |Φ1;R0〉 and |Φ2;R0〉 related to the original

states through the mixing angle θ(R0). Inserting equation 2.2 into 2.14, the branching

space vectors associated to |Φ1;R0〉 and |Φ2;R0〉 satisfy

x
(1)
j = cos 2θ(R0)xad,(1)

j − sin 2θ(R0)xad,(2)
j

x
(2)
j = sin 2θ(R0)xad,(1)

j − cos 2θ(R0)xad,(2)
j

, (2.15)

which proves that even though they span the same branching space, the definition of

the vectors is attached to the two states specifically chosen within the twice-degenerate

subspace.
1Since the adiabatic states are labelled according to their relative energies, their labels are preserved

from one side to the other of a conical intersection, so the adiabatic energies actually touch and do not
cross.

2Details of the derivation can be found in reference [67].
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2.4. Branching space

Figure 2.3: Diabatic potential energy surfaces.

As can be noted, the vectors rotate twice as fast as the states, considering a given set

of electronic states (here the adiabatic states) as a reference. A direct consequence is that

for a mixing angle θ(R0) = π/4, the role of the gradient of the energy difference and of

the coupling directions are inverted.

This point is illustrated more vividly when considering diabatic states in the form of

so-called crude adiabatic states. Let |Φdia
α ;R〉 and |Φdia

β ;R〉 be two diabatic states assumed

to be degenerate eigenstates at R0. They are associated with x(1) and x(2) as the tuning

and coupling modes, respectively, see figures 2.3 and 2.6.

We recall that the electronic Hamiltonian matrix is no longer diagonal (except at R0)

in this basis, and the corresponding couplings between the diabatic states read

Hdia
αβ (R) = 〈Φdia

α ;R|Ĥel(R)|Φdia
β ;R〉 . (2.16)

Those are called “potential couplings”, by opposition to the kinetic couplings arising in

the adiabatic representation, and vanish at the conical intersection (at R = R0). For a

displacement from R0 along the coupling mode x(2), the value of the coupling is related

to the amplitude of the degeneracy lifting of the conical intersection, that is the splitting

of adiabatic states at an avoided crossing3.

In the example of cyclobutadiene, the ground state (adiabatic) presents two wells

corresponding to the two equivalent deformations (horizontal and vertical) of the square,

which is the minimum of the second excited state, see figure 2.5. The diabatic potentials
3The difference between the eigenvalues of the electronic Hamiltonian matrix in the diabatic basis

reads ∆V = 2

√(
Hββ −Hαα

2

)2
+ (Hαβ)2
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2. Representation of conical intersections

Figure 2.4: Diabatic potentials (left), diabatic potentials and the potential couplings (middle), and
adiabatic potentials (right) around a conical intersection.

Figure 2.5: Avoided crossing in cyclobutadiene.

follow the evolution of the molecular orbitals corresponding to each deformation, while

the adiabatic potentials switch from one to another across the avoided crossing.

Remembering that the choice of diabatic states is not unique, we perform a π/4-rotation

yielding a set of diabatic states |Φdia
+ ;R〉 and |Φdia

− ;R〉 that are the normalized sum and

difference of the diabatic states |Φdia
α ;R〉 and |Φdia

β ;R〉. As mentioned above, the tuning

and coupling modes are exchanged between these two sets of states, so x(1)
+ = x(2) and

x
(2)
− = −x(1).

In the example of cyclobutadiene, the new states correspond to symmetrized combi-

nations of the diabatic states associated with the deformations. Then, in the direction

discriminating the deformations (tuning), the coupling between the symmetrized states
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2.4. Branching space

evolves and the corresponding diagonal potentials stay parallel, see figure 2.6.

Figure 2.6: Electronic potentials along the mode x(1) at a point displaced from the conical intersection
along x(2) (avoided crossing). Adiabatic potentials are in full line, diabatic potentials are in dashed
line. x(1) (x(2)) is the tuning (coupling) mode for the diabatic states |Φdia

α ;R〉 and |Φdia
β ;R〉 that tend

asymptotically to the adiabatic states. At the avoided crossing, the adiabatic states are identical to the
π/4-rotated diabatic states |Φdia

+ ;R〉 and |Φdia
− ;R〉 (pink dashed lines).
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Chapter 3

Density functional theory (DFT)

This chapter is based on the following references: [98–100]

Density functional theory (DFT) encompasses a family of quantum mechanics methods

among the most used when it comes to the electronic structure of the ground state, would

it be in physics, chemistry, material sciences, etc.

Contrarily to wavefunction methods, which rely on the 3N -variable wavefunction, DFT

makes use of the one-electron density, which is only a 3-variable object. The scaling of

DFT (in N) is thus more advantageous than the one of wavefunction methods (in powers

of N or N !). In addition, the accuracy of DFT methods is comparable to the accuracy of

post-Hartree-Fock methods, which, along with the scaling, causes its popularity.

The original idea is due to Thomas and Fermi, who realized in the 1920s that the

electron distribution in an atom could be approximated by the electron density, using

a statistical model. The formalism of DFT we use nowadays was established later by

Hohenberg, Kohn, and Sham.
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3. Density functional theory (DFT)

3.1 A density method

The objective is to determine the ground-state energy of the electronic Hamiltonian Ĥel,

considering a N -electron system without relativistic effects.

Removing the labels “el” in equations 1.7 and 1.5 for simpler notations, the electronic

Schrödinger equation reads1

Ĥ|Ψ〉 = E|Ψ〉 (3.1)

Ĥ = T̂ + V̂ee + V̂ne . (3.2)

The basis of density functional theory (DFT) is to use the one-electron density n(r)

instead of the N -electron wavefunction ΨN(r1, · · · , rN) to solve the electronic problem.

Doing so, one solves the electronic problem considering the 3-variable density instead

of the 3N -variable wavefunction. In addition, the density is an observable that can be

measured experimentally, contrarily to the wavefunction. In the present paragraph, we

introduce the basic quantities used in density theory that will be required later on.

The density matrix γN in the space of the space-spin coordinates xi = (ri, σi) for N

particles reads

γN(x1, ...,xN ,x
′
1, ...,x

′
N) = ΨN(x1, ...,xN)Ψ ∗N(x′1, ...,x′N) . (3.3)

Reduced densities and density matrices give access to the expectation values of op-

erators upon considering explicitly some among N electrons and integrating over the

others. Non-local operators require density matrices while densities are sufficient for local

operators. The order corresponds to the number of bodies that interact together.

In particular, the one-electron (or 1st-order) reduced density matrix γ1(r1, r
′
1) charac-

terizes one among N electrons of arbitrary spin, irrespectively of the other N−1 electrons.

γ1(r1, r
′
1) = N

∫
ΨN(x1, ...,xN)Ψ ∗N(x′1, ...,x′N)dσ1dx2, ..., dxN (3.4)

This quantity is required to evaluate the effect of non-local one-electron operators (for

example, the electron kinetic energy).
1One may note that the electronic Hamiltonian presented in chapter 1 also contained the Coulomb in-

teraction between the nuclei. Since the electronic Hamiltonian is considered for fixed nuclei, the Coulomb
interaction between the nuclei is a constant and does not affect the electronic eigenstates. It can be added
afterwards to the electronic eigenvalues as an energy shift.
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3.2. Hohenberg-Kohn theorems

For local one-electron operators (for example, the electron-nucleus potential energy),

the one-electron density at one point, n(r1) = γ1(r1, r1), is enough. It is the diagonal

of γ1(r1, r
′
1) and corresponds to the density of probability of finding one electron at

position r1 with an arbitrary spin σ1, independently of the positions and spins of the

other electrons. It can be obtained from the N -electron wavefunction ΨN(x1, · · · ,xN) as

n(r1) = N
∫
· · ·

∫
|ΨN(x1,x2, ...,xN)|2dσ1dx2, ..., dxN (3.5)

and it is normalized to the number of electrons:
∫
n(r)dr = N .

Consistently with the one-electron reduced density matrix γ1(r1, r
′
1), the electron-pair

reduced density matrix γ2(r1, r2, r
′
1, r
′
2) is defined as

γ2(r1, r2, r
′
1, r
′
2) = N(N − 1)

2

∫
ΨN(x1,x2, ...,xN)Ψ ∗N(x′1,x′2...,x′N)dσ1dσ2dx3, ..., dxN .

(3.6)

The diagonal of γ2(r1, r2, r1, r2) corresponds to the electron-pair density n2(r1, r2),

that is the density of probability of finding any two electrons at positions r1 and r2 with

arbitrary spins σ1 and σ2. It can be obtained from the N -electron wavefunction as

n2(r1, r2) = N(N − 1)
2

∫
· · ·

∫
|ΨN(x1,x2, ...,xN)|2dσ1dσ2dx3, ..., dxN (3.7)

and integrates to the number of distinct unordered pairs within N electrons:∫ ∫
n2(r1, r2)dr1dr2 = N(N − 1)

2 . This quantity is required to evaluate the effect of local

two-electron operators (for example, the electron-electron potential energy).

3.2 Hohenberg-Kohn theorems

The Hohenberg and Kohn theorems prove that all the ground-state properties of a system

can be obtained from the knowledge of its ground-state density [101].

For a given number of electrons, the actual nature of the system is determined by the

so-called external potential vne(r), which corresponds to the attraction that the nuclei (at

given positions) exert on any electron. It thus determines the ground-state density n0(r).

The corresponding energy Vne[n] reads

Vne[n] =
∫
n(r)vne(r)dr (3.8)
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3. Density functional theory (DFT)

The first theorem states that the ground-state density also determines the external

potential (up to a constant)2 , which ensures the existence of a one-to-one mapping

between both quantities, and the existence of a universal density functional FHK[n] such

that

Evne [n] =
∫
n(r)vne(r)dr + FHK[n] (3.9)

where FHK[n] = T [n] + Vee[n] and

T [n] = 〈ΨN [n]|T̂ |ΨN [n]〉 (3.10)

Vee[n] = 〈ΨN [n]|V̂ee|ΨN [n]〉 (3.11)

The second part of the theorem allows the calculation of the ground-state energy

variationally with respect to the density3.

E0,vne = min
n
E[n] = min

n

{∫
n(r)vne(r)dr + FHK[n]

}
(3.12)

where the minimization runs over the N -electron densities that are ground-state densities

associated to an external potential. The energy of the ground-state is reached for the

density n0 associated to the external potential of the system.

Applying the variational principal requires a functional expression of the universal

density functional FHK[n] in terms of the density. This can be obtained using the one-

electron density matrix and the electron-pair density introduced above (equations 3.4 and

3.7, respectively), here in atomic units:

T [n] = −1
2

∫ [
∇2γ1(r1, r

′
1)
]
r′

1=r1
dr1 (3.13)

Vee[n] = 1
2

∫ ∫ n2(r1, r2)
|r1 − r2|

dr1dr2 (3.14)

Yet, γ1(r1, r
′
1) and n2(r1, r2) are unknown for the correlated system, so T [n] and Vee[n]

are also unknown.

3.3 Kohn-Sham equations

With the Kohn-Sham equations, one solves a simpler auxiliary problem involving N non-

interacting electrons instead of the real N -interacting electron problem [102]. This is
2“The external potential vne(r), and hence the total energy, is a unique functional of the electron

density n(r).”
3“The electron density that minimizes the energy of the overall functional is the true electron density

corresponding to the full solution of the Schrödinger equation.”
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3.3. Kohn-Sham equations

relevent only if the Kohn-Sham orbitals yield a density nS(r) identical to the exact

ground-state density n0(r) of the real system, which is ensured thanks to the Kohn-

Sham potential vKS(r).

Within this perspective, the auxiliary wavefunction ΨS(x1,x2, ...,xN) is defined as a

single Slater determinant ΨS(x1,x2, ...,xN) = |φ1φ2 · · ·φN | yielding the density

nS(r) =
N∑
i=1
|φi(r)|2 (3.15)

The functions φi(r) that yield the ground-state density of the system are termed Kohn-

Sham spin-orbitals. The kinetic energy of the auxiliary system is exact and reads

TS[n] =
N∑
i=1
〈φi| −

1
2∇

2
i |φi〉 (3.16)

In addition, the bielectronic contribution Vee[n] can be expressed as

Vee[n] = 1
2

∫ ∫ n(r1)ñ(rr1
2 )

|r1 − r2|
dr1dr2 (3.17)

where ñ(rr1
2 ) is the conditional probability to find an electron at position r2 considering

another electron occupies the position r1.

The conditional probability accounts for the fact that the existence of a first electron

“prevents” the second one to be at any position in space. This is equivalent to considering

that the first electron creates a hole around itself that the second electron must avoid

(exchange-correlation hole), and leads to

n(r1)ñ(rr1
2 ) = n(r1)

[
n(r2) + nhole(r1, r2)

]
. (3.18)

The bielectronic energy Vee[n] can thus be recast as

Vee[n] = J [n] + εholexc [n] (3.19)

where

J [n] = 1
2

∫ ∫ n(r1)n(r2)
|r1 − r2|

dr1dr2 (3.20)

and

εholexc [n] = 1
2

∫ ∫ n(r1)nhole(r1, r2)
|r1 − r2|

dr1dr2 (3.21)
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3. Density functional theory (DFT)

Finally, the energy can be expressed in terms of the density as follows

E[n] = TS[n] + J [n] +
∫
n(r)vne(r)dr + Exc[n] (3.22)

where Exc[n] = T [n]− TS[n] + εholexc [n] is the exchange-correlation energy.

Thus, within the Kohn-Sham decomposition, only the exchange-correlation energy is left

to approximate for calculating the total electronic energy functional.

After some derivation, the minimization using the method of Lagrange multipliers

yields the Kohn-Sham equations.
{
−1

2∇
2 + vKS(r)

}
φi(r) = εiφi(r) (3.23)

We define the Kohn-Sham one-electron Hamiltonian ĥKS and the Kohn-Sham potential

vKS(r) such as

ĥKS(r) = −1
2∇

2 + vKS(r)

vKS(r) = vH(r) + vne(r) + vxc(r)
. (3.24)

where vxc(r) = δExc[n]
δn(r) is the exchange-correlation potential and vH(r) =

∫ n(r′)
|r − r′|

dr′ is

the Hartree potential.

The local potential vxc(r) is a functional of the density defined as the functional deriva-

tive of the Hartree-exchange-correlation energy4. Since vxc(r) depends on the density, the

one-electron Kohn-Sham equations form a set of N coupled self-consistent equations.

vxc(r) can be seen as the most important term of the expansion since it contains the

corrections to the kinetic energy and Coulomb interaction, yet we can only approximate

it. Provided that vxc(r) is known exactly, the minimization leads to the exact density and

energy for the ground state.

4The functional derivative, also called kernel, corresponds to the quantity that has to be integrated
to recover a variation of the functional. In this case, the energy Exc is a functional of the density n, and
δExc[n] =

∫
dr
δExc[n]
δn(r) δn(r)
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Chapter 4

Time-dependent density functional

theory (TDDFT)

This chapter uses the following references: [68, 103–107].

In principle, the wavefunctions for the excited states can be obtained combining the

variational principle together with orthonormalization with respect to the lower states,

which is precisely the drawback of the procedure: the calculation of the n lower states

is required prior to the calculation of state Sn. State-average methods enable to obtain

a set of states by optimizing them altogether. This may be quite efficient in the case of

states that are close enough in energy. Yet, common DFT methods remain quite limited

to access the excited states straightfowardly.

To circumvent this limitation, DFT can be extended to a time-dependent version. In

time-dependent density functional theory, the system undergoes a time-dependent per-

turbation likely to cause a transition from the ground state to an excited state. The

time-dependent Schrödinger equation takes the non-stationary character of the pertur-

bation into account, and the “reaction” of the system is described with the so-called

“response theory”.

Several kinds of time-dependent density functional theory (TDDFT) methods exist

and are discriminated according to the approximations they rely on. In this thesis, we

focus on the method we used for our own calculations, which is the most common linear-

response TDDFT.
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4. Time-dependent density functional theory (TDDFT)

4.1 Time-dependent Kohn-Sham equations

The principle of TDDFT is to access the energies of the excited states of an N -interacting

electron system, initially in its ground state, by analyzing its reaction and relaxation to a

perturbation (excitation) Ŵ (t). This can be achieved upon studying the linear response

of the ground state to the time-dependent perturbation Ŵ (t). A general derivation of

linear-response theory is presented in Appendix B, which will be the guide line to the

present derivation. Using the previous notations, the Schrödinger equation reads

i~ d
dt
|Ψ(t)〉 =

[
T̂ + V̂ee + V̂ne + Ŵ (t)

]
|Ψ(t)〉

The transitions induced by an ideal monochromatic LASER result from the interaction

between the system and a sinusoidal electric field such that

E(t) = ε cosωtez (4.1)

For the sake of simplicity, we choose to align the electric field with the z-axis of a

frame attached to the molecular system.

The perturbation of the system is the corresponding electric potential,

Ŵ (t) = εz cosωt = εŴ cosωt (4.2)

As presented in chapter 3, the Kohn-Sham equations for DFT rely on the Hohenberg

and Kohn theorem and the Kohn-Sham decomposition for the universal density functional.

In a time-dependent context, the Kohn-Sham decomposition is still valid but the proof of

the Hohenberg and Kohn theorem must be adjusted.

The Runge-Gross theorem [108] is the transposition of the Hohenberg theorem to the

time-dependent case. It ensures the mapping from the density to the external potential

and the existence of the three-variable universal density functional, all of them being

time-dependent. As a consequence, the time-dependent Kohn-Sham potential is time-

dependent in two ways: (i) directly, because it contains the time-dependent perturbation,

(ii) indirectly, through the evolution of the exchange-correlation term which is a functional

of the time-dependent density.
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4.1. Time-dependent Kohn-Sham equations

We thus consider a time-dependent system, characterized by time-dependent KS or-

bitals and a time-dependent KS potential. Consequently, the time-dependent Kohn-Sham

equations read

d

dt
ϕi(r, t) =

[
−1

2∇
2 + vKS[n](r, t)

]
ϕi(r, t) (4.3)

where vKS[n](r, t) = vne[n](r) + Ŵ (r, t) + vxc[n](r, t).

It is worth to note that the external and Hartree potentials only depend on time

through the density, contrarily to the exchange-correlation potential, which is unknown

and may depend on time both directly and through the density.

Considering equation 3.24, the time-dependent KS equations can be recast as

d

dt
ϕi(r, t) =

[
ĥKS(r) + Ŵ (r, t) + δvxc[n](r, t)

]
ϕi(r, t) (4.4)

where δvxc[n](r, t) = vxc[n](r, t) − vxc[n](r) is the variation of the potential vxc[n](r, t)

with time. As mentioned in note 4, δvxc[n](r, t) is related to the functional derivative of

vxc with respect to the density n.

The eigenfunctions ϕi(r, t) are the time-dependent Kohn-Sham orbitals. The Kohn-

Sham wavefunction Φ(r1, ..., rN , t) is a N -electron time-dependent Slater determinant

built from the N time-dependent Kohn-Sham orbitals and is expected to reproduce the

exact time-dependent electron density n(r, t) of the system. Thus, the excitation poles

of the Kohn-Sham densities should also be poles for the real density of the molecule and

give its exact excitation energies.

By analogy with response theory (section B.3), a time-dependent Kohn-Sham orbital

ϕ(r, t) is expanded over the basis of the stationary orbitals ϕi=0,1,2...(r), associated to the

energies εi=0,1,2....

ϕ(r, t) =
∑
i

e−iωitci(t)ϕi(r) (4.5)

with ωi = εi/~.

All it takes to describe the evolution of the Kohn-Sham system is the knowledge of the

linear coefficients ci(t). This requires to express the perturbation of the Kohn-Sham

system, at any time t. In particular, the variation of the exchange-correlation potential
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4. Time-dependent density functional theory (TDDFT)

δvxc[n](r, t) is a priori dependent on time explicitely but also through the time-dependent

density. The exact formulation of its variation from time t = 0 is then pretty complicated,

and shows a dependence with the frequency ω.

4.2 Adiabatic approximation

Here, the adiabatic approximation consists in the instantaneous adjustement of the density

to time. In this framework, the exchange-correlation potential is approximated to the

ground-state potential evaluated at the time-dependent density n(r, t),

vxc[n](r, t) ' vxc[n(t)](r)

this is also valid for their variations

δvxc[n](r, t) ' δvxc[n(t)](r) . (4.6)

Considering equation 3.23, the functional derivative of vxc[n(t)](r) with respect to the

density reads

δvxc[n(t)](r) =
∫
dr′fxc(r, r′)δn(r′, t) (4.7)

where fxc(r, r′) = δ2Exc[n(t)]
δn(r, t)δn(r′, t) .

One may notice that the kernel fxc(r, r′) is local in time 1 so no memory effects are

taken into account. In addition, the Fourier transform becomes frequency-independent,

which is the reason why TDDFT can only describe mono-excited electronic states (see

below).

1In the general case, δvxc[n](r, t) =
∫
dr′ ∫ dt′ δ2Exc[n(t)]

δn(r, t)δn(r′, t′)δn(r′, t′). If n adjusts instan-

taneously to t, the time-dependent kernel fxc(r, r′, t, t′) is approximated to fxc(r, r′, t, t′) ' δ(t −

t′) δ2Exc[n(t)]
δn(r′, t′)δn(r, t) .
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4.3. Casida equations

4.3 Casida equations

By analogy with linear response theory, the linear response coefficients for TDDFT satisfy:
d

dt
cn(t) = − iWn0

2~

[
ei(∆ωn + ω)t + e−i(ω −∆ωn)t

]

− N i
~
∑
m>0

e−i(∆ωm −∆ωn)tc(1)
m (t)〈n0|fxc|0m〉

− N i
~
∑
m>0

e−i(∆ωm +∆ωn)tc(1)∗
m (t)〈nm|fxc|00〉

(4.8)

where 〈ij|fxc|kl〉 =
∫
dr
∫
dr′ϕ∗i (r)ϕ∗j(r′)fxc(r, r′)ϕk(r)ϕl(r′). N is the number of elec-

trons. Since the Kohn-Sham orbitals are real, the notation of the kernel term may be

simplified as follows:

〈n0|fxc|0m〉 = 〈nm|fxc|00〉 = fnmxc (4.9)

By analogy with linear response theory again, we impose that integration provides the

linear response coefficients under the form

cn(t) = X̃n(ω)ei(∆ωn + ω)t + X̃n(−ω)e−i(ω −∆ωn)t (4.10)

where X̃n(ω) and X̃n(−ω) are to be determined.

Inserting the decomposition 13.9 into the time-dependent KS equation 4.4, identifica-

tion of terms for m > 0 gives the equations of Casida

(∆ωn − ω) X̃n(−ω) = −Wn0

2~ −N
∑
m>0

fnmxc
(
X̃m(−ω) + X̃∗m(ω)

)
(∆ωn + ω) X̃∗m(ω) = −W

∗
n0

2~ −N
∑
m>0

fnmxc
(
X̃m(−ω) + X̃∗m(ω)

) (4.11)

which can be summarized under matrix form [109]
A B

B∗ A∗

− ω
1 0

0 −1



X̃(−ω)

X̃∗(ω)

 = −

V
V∗

 (4.12)

where Vj = Wj0

2~ , Aij = δij∆ωi +Nf ijxc and Bij = Nf ijxc 6= 0.

This represents a system of non-linear coupled equations which are to be solved it-

eratively. The number of eigensolutions admitted by the Hessian matrix operator of the

left-hand side is maximized by the dimension of the matrix, which prevents from describ-

ing more than single excitations. In contrast, beyond the adiabatic approximation, the

kernel f ijxc and thus the Hessian matrix are frequency-dependent, which allows to explore

a larger space of eigensolutions, in particular multiexcitations.
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4. Time-dependent density functional theory (TDDFT)

4.3.1 Tamm-Dancoff approximation (TDA)

A common approximation is the so-called Tamm-Dancoff approximation (TDA). In this

approximation, excitations and de-excitations are turned independent by setting B = 0

[110]. The equation 4.12 reduces to the system
(A− ω) X̃(−ω) = V

(A∗ + ω) X̃∗(ω) = V∗
(4.13)

The formalism is then equivalent to a configuration interaction singles (CIS) method.

4.4 Practical considerations

4.4.1 Expansion over a basis

In practice, the orbitals are expanded over a basis set of atomic functions {χµ(r)} (see

LCAO in section 1.4). Gaussian-type functions, localized on each atom µ, are often used

for molecular studies due to their convenient integration properties.

φi(r) =
M∑
µ=1

cµiχµ(r) (4.14)

The whole resolution consists in calculating the expansion coefficients cµi of the Kohn-

Sham orbitals φi(r) over the atomic functions with a self-consistent procedure. The

expression of the Kohn-Sham orbitals is then injected into equation 3.23 to obtain the

energy of the ground-state.

It is worth to notice that the Kohn-Sham determinants are single determinants that

should not be assimilated to the Hartree-Fock single determinant. Indeed, the auxiliary

and the Hartree-Fock problem are both expressed within the one-electron approximation

and thus satisfy the equation 1.23 but the Hamiltonians involved are different. Conse-

quently, the Kohn-Sham (KS) and HF orbitals are different, and so are the determinants

that are built over them.

4.4.2 Functionals

Along the years, various functionals were parametrized to approximate the exchange and

correlation energy. The functionals are classified according to the approximations they
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4.4. Practical considerations

rely on.

In the first generation of approximation, the density is assumed to be uniform (homo-

geneous electron gas) and is only computed locally, without considering the shape of the

density around. This constitutes the local density approximation (LDA).

The first improvement was to consider a (more realistic) non-uniform electronic den-

sity, and to account for its variations using the gradient of the density. Such non-

local approaches are termed generalized gradient approximations (GGA). The well-known

Becke88 [111], PW (Perdrew-Wang) [112], and PBE (Perdew-Burke-Ernzerhof) [113] ex-

chance functionals are built over this approximation.

Finally, hybrid exchange-correlation functionals are obtained by combining a part of

GGA functionals for exchange and correlation and a part of (exact) HF exchange. Among

these, the range-separated functionals combine different ratios between the GGA and HF

contributions at short range and long range.

The formulation of B3LYP was proposed by Becke in 1993 [114] and has been one of

the most-used functional for calculations on molecular system since then. It combines the

B88 gradient-corrected functional for the exchange energy and the LYP [115] functional

for the correlation energy.

The CAM-B3LYP functional was used for DFT and TDDFT calculations in this work.

As a range-separated functional, CAM-B3LYP allows a better long-range description by

distinguishing the expression of the exchange-energy kernel at short and long ranges, the

two of them being connected by a parametrized error function. It was built from the

famous hybrid functional B3LYP, augmented with the long-range correction for exchange

of Tawada [116] .

The accuracy of CAM-B3LYP is equivalent to the one of B3LYP for atomic ionization

energies and shows significant improvements for excitation energies, charge-transfer exci-

tations, and oscillator strengths [117]. These improvements make CAM-B3LYP suitable

for DFT and TDDFT calculations on molecular systems such as those studied in the

present work, as mentioned in the literature [118,119].
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4. Time-dependent density functional theory (TDDFT)

4.4.3 Vibronic spectra

In this paragraph, we briefly summarize the approach used for the calculations of vibrationally-

resolved electronic spectra with the Gaussian package [62,120].

The vibrationally-resolved electronic spectrum (transitions between vibronic states)

can be computed analytically under the harmonic approximation. This is usually done in

the framework of the Franck-Condon (FC) approximation, and requires the calculations

of the associated FC factors [121]. In this thesis, we only focus on optical absorptions.

The following notations will be used thereafter
′: placed next to a letter/symbol, refers to the initial state
′′: placed next to a letter/symbol, refers to the final state

N : represents the number of atoms in the molecule or system of interest

M : represents the number of normal modes in the molecule or system of

interest

The intensity in optical absorption spectra is proportional to the rate of photon ab-

sorption per molecule and unit of radiant energy

I(ω) ∝ σ(ω) = 4π2ω

3c
∑

′
ρ

′ ∑
”
|〈Ψ ′|µ|Ψ ”〉|2δ(E” − E ′ − ~ω) (4.15)

where ρ′ is the Boltzmann population of an initial state, 〈Ψ ′ |µ|Ψ ”〉 is the transient dipole

moment between an initial state |Ψ ′〉 and a final one |Ψ ”〉 and ω is the radiation angular

frequency.

For the values of ω corresponding to an energy of absorption, the intensity depends

only on the population of the initial state and on the transition dipole moment associated

with the transition.

Several approximations are made to get a convenient expression for the transition

dipole moment. First, we work in the framework of the Born-Oppenheimer approximation,

so the total wavefunction Ψ and dipole moment µ may be decomposed into an electronic

part and a nuclear one.

〈Ψ ′ |µ|Ψ ”〉 = 〈ψ′

eψ
′

n|µe|ψ”
eψ

”
n〉+ 〈ψ′

eψ
′

n|µn|ψ”
eψ

”
n〉 (4.16)

where the second term of the right-hand side vanishes due to orthogonal electronic states.

Then the rotation is separated from the vibration (Eckart condition [122,123]) and we

neglect the energetic contribution of the rotation with respect to the vibration. This will
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4.4. Practical considerations

appear in our notations by denoting the vibrational wavefunction |v〉 = |ψv〉 where the

vector v contains the quantum numbers defined below. Considering all these approxima-

tions, the transition dipole moment reads

〈Ψ ′ |µ|Ψ ”〉 ≈ 〈v′|µif |v”〉 (4.17)

where µif = 〈ψ′
e|µe|ψ”

e〉 is the electronic transition dipole moment.

Vibrations are assumed to be uncoupled under the harmonic approximation, which

allows to write the total vibrational wavefunction as a product of monodimensional wave-

functions ψvi
(Qi) where Qi is the normal coordinate describing the ith vibration of the

molecule. Under this approximation, the quantities vi are good quantum numbers de-

scribing the vibrational state |v〉.

|v〉 = |
M∏
i=1

ψvi
〉 (4.18)

Considering that the electronic transition is much faster than the nuclear motion,

the electronic transition dipole moment can be Taylor-expanded around the equilibrium

geometry of the final state. Finally, expanding up to the second order, the transition

dipole moment reads

〈Ψ ′|µ|Ψ ”〉 ≈µif (Q”
0)〈v′ |v”〉 (4.19)

+
M∑
k=1

(
∂µif
∂Q”

k

)∣∣∣∣∣
Q0

〈v′|Q”
k|v”〉

+
M∑

k,l=1

(
∂2µif
∂Q”

k∂Q
”
l

)∣∣∣∣∣
Q0

〈v′|Q”
kQ

”
l |v”〉

The overlap integral 〈v′|v”〉 is usually called FC integral (or FC factor). Indeed, the

zeroth-order term corresponds to a static electronic transition dipole, which is precisely

the FC principle (the electron transition happens too fast for the nuclei to move). When

transitions are allowed, µif (Q”
0)� 0 and this approximation provides very good results.

Yet, in case of forbidden electronic transitions, it is required to consider the evolution of the

transition dipole moment with nuclear coordinates to describe the vibrational progression

properly. This would be done by the first-order term, and corresponds to the Herzberg-

Teller (HT) approximation.
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4. Time-dependent density functional theory (TDDFT)

The transition dipole moment including the HT term can be expressed using only FC

integrals between different vibronic states.

〈Ψ ′ |µ|Ψ ”〉 ≈ µif (Q”
0)〈v′|v”〉

+
M∑
k=1

(
∂µif
∂Q”

k

)∣∣∣∣∣
Q0

√
~

2ω”
k

[√
v”
k〈v

′ |v” − 1”
k〉

+
√
v”
k + 1〈v′ |v” + 1”

k〉
] (4.20)

where |v” − 1”
k〉 represents the same vibrational state as |v”〉 except for one quantum of

energy in the ith vibrational mode. In practice, the second-order term is not evaluated in

the procedure implemented in G09. The first one is. We stopped at the FC order in this

thesis, as we considered allowed transitions.

With G09, all the evaluated transitions start from the vibrational ground state of the

initial electronic state. After some mathematical derivations, the FC integrals can be

expressed as

〈0′ |v”〉 = 1√
2v”

i

[
Di〈0

′ |v” − 1”
i 〉+

√
2(v”

i − 1)Cii〈0
′|v” − 2”

i 〉

+
M∑

j=1,j 6=i

√
2v”

jCij〈0
′ |v” − 1”

i − 1”
j〉
] (4.21)

The factors Di and Cij are elements of the following matrices:

C = 2Γ ′′1/2(JTΓ ′J + Γ ′′)−1Γ ′′1/2 − I

D = −2Γ ′′1/2(JTΓ ′J + Γ ′′)−1JTΓ ′K

where

J = L′−1L′′

K = L′−1M 1/2∆X

Γ is the diagonal matrix of the reduced frequencies (one per electronic state)

J is the rotation matrix between the two sets of normal modes, also called Duschinsky

matrix

K is the shift vector between the two minima

L is the transformation matrix from mass-weighted Cartesian coordinates to normal co-

ordinates (one per electronic state)
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4.4. Practical considerations

M is the diagonal matrix of atomic masses

∆X is the vector representing the shift of the Cartesian coordinates of the nuclei between

the two minima.

Finally these expressions show that the intensity of vibronic transitions, and thus the

absorption spectrum, mainly depends on the shift between the electronic wells and on the

mixing (rotation) of the vibrational modes during the transition.
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Chapter 5

Effective orbital-based models for

π-electrons

The references for this chapter are: [96, 97,124–126].

We use the common shortcut “π- (or σ-) electrons” to denote the electrons that occupy

π- (or σ-) orbitals, if the two systems are well separated.

In this chapter we recall the theoretical frameworks that will be used in the last part

of this manuscript for constructing our vibronic model.

The systems we are interested in are conjugated hydrocarbons, so their photochemical

properties are mainly governed by the frontier orbitals, which belong to the π-system (well

separated from the σ-system). The final objective of our model will be to reproduce the

photochemistry of meta-PPE (e.g. m23) that is divided in building blocks (e.g. p2 and

p3). In particular, one must be able to account for the process of electronic excitation

transfer that occurs from one block to another, using molecular orbitals of basic units

(benzene and acetylene) as a starting point, see figure 5.1.

The construction of the model will thus be based on a multiscale approach, where each

step will consist in accounting for a level of interaction within the system.

In a first step, we construct the frontier orbitals of the building blocks from the inter-

action between the frontier orbitals of the basic units. In such systems, the interaction

between two orbitals is mainly proportional to the overlap, yielding relative energies that

are correctly described through Hückel-type models. In addition, in the framework of

those models, the correlation, Coulomb, and exchange interactions contribute as an offset
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5. Effective orbital-based models for π-electrons

Figure 5.1: Scheme of the main steps of the vibronic model.

to the energy of the orbitals. This offset is almost equal for each orbital of the π-system,

and thus does not affect the relative energies of the π-orbitals.

In a second step, we define the electronic states of the building blocks as configurations

in terms of orbital occupations. The third step can be seen as an interaction between the

configurations previously defined. Both will be considered within the framework of the

Hubbard model.

5.1 Empirical models

In the the 1930s, Erich Hückel proposed several approximations aiming at studying the

electronic structure of conjugated hydrocarbon molecules, which constitute the Hückel

model [127]. Adapting some of the original approximations, Roald Hoffmann proposed

an extension to the Hückel model in 1963 [128].

The interest of those models is that the interactions between the π-orbitals (and thus

the corresponding energies of pertubation) are mainly proportional to their overlap S in

the degenerate case or S2

∆E
otherwise (∆E being here the difference between the energies

of the orbitals).

In these approaches, σ−π separation is assumed, which is fair provided that π-electrons

are more external and slower than σ electrons. Only the π-system, constituted of p atomic

orbitals that are perpendicular to the molecular plane, is considered.

The one-electron approximation is applied, so the system is characterized by the sec-
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5.1. Empirical models

ular determinant introduced in chapter 1, see equation 1.25. The treatment of the off-

diagonal terms of h and S discriminates the Hückel and extended-Hückel models.

Within the Hückel model, the interaction through the one-electron Hamiltonian is ne-

glected between non-adjacent atomic orbitals and the overlap between orbitals of different

atoms are neglected. This reads

hii = αi (5.1)

hij = βij


= 0 if ϕi and ϕj are not adjacent

6= 0 if they are
(5.2)

Sij = δij (5.3)

where αi corresponds to the ionization potential of the orbital χi (in a first approximation)

βij is the resonance integral between the electrons of atoms i and j

Sij is the overlap integral between the atomic orbitals χi and χj.

The approximation of non-overlap 5.3 comes from the fact that the lateral overlap

between π-orbitals is very small compared to the axial overlap between σ orbitals.

On the other hand, the overlap Sij is considered between each atom pair (not only first

neighbors) within the extended-Hückel model, and is used to define the interaction term

between two atomic orbitals χi and χj through the Wolfsberg-Helmholtz approximation

[129].

hij = KSij
hii + hjj

2 (5.4)

where K = 1.75 and is empirical.

In practice, the integrals αi and βij used in Hückel calculations are not calculated but

parametrized upstream. Thus, they have the same value for a given atom or pair of atoms

separated by the distance r.

On the contrary, the Wolfsberg-Helmholtz approximation allows an empirical approxi-

mation of the bielectronic integrals, which is a step afore the Hückel method. The overlaps

are calculated and vary with internuclear distances.

The validity of the results from the Hückel model is actually qualitatively comparable

to the accuracy of self-consistent calculations for fully conjugated hydrocarbon molecules.
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In particular, the Hückel models yield simple analytical results that reflect the main

physical phenomena at the origin of the chemical properties of the system. Consequently,

extended-Hückel calculations will also be presented later on as guides for the construction

of the vibronic model.

Yet, such models can only provide energies of orbitals, which differ from the energies

of the electronic states by the electronic correlation, see figure 5.2. To account for this

contribution, we will introduce in our model a penalty similar to the on-site repulsion U

of the Hubbard model (see Part V).

Figure 5.2: Representation of the electronic configurations associated with the ground state (left) and
first excited state (right) from an excitonic point of view.
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Electronic structure of PPEs
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Chapter 6

Introduction

To the best of our knowledge, the present part presents one of the most exhaustive theoret-

ical characterization performed on the vibronic structure of various para- and meta-PPEs.

We start by assessing the validity of TDDFT for describing the electronic structure

of the first excited states of PPEs. We show that, in this case, the calibration of com-

putational methods requires to compare the calculated, vibrationally resolved, electronic

absorption spectrum to the experimental one. The validity of the approximation that is

commonly used in this context is discussed.

In chapter 8, we investigate the electronic structure of some para- and meta-PPEs,

and put it in perspective with other typical molecular properties such as their equilibrium

geometries, frontier orbitals, excitation energies, and the frequencies of specific vibrational

modes. In particular, we enlighten that at the ground-state equilibrium geometry, typical

bond lengths are almost identical within PPEs and from one PPE to another, irrespec-

tively of the number of rings; this is less true at the equilibrium geometries of the first

excited states, which are more likely to undergo boundary effects.

The excited states of meta-PPEs are localized on the building blocks including the

common meta-phenylene, and the building blocks thus constitute chomophore units, sim-

ilar to the para-PPEs. The common meta-phenylene is thus involved in two electronic

states localized on each building block. In addition, the properties of the building blocks

are equivalent to the ones of the corresponding para-PPEs. This stands in particular for

the localization of the frontier orbitals, and leads to the introduction of the concept of
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pseudo-fragment.

A full characterization of the electronic structure and properties of the (2,2)-meta-PPE

(m22) is performed in chapter 9. Being the smallest meta-PPE, it is the simplest PPE

that is likely to present conical intersections that couple the electronic states localized on

different building blocks, and its symmetrical structure also imposes the symmetry of the

geometry at such conical intersections, which facilitates their investigation. Several conical

intersections are characterized, and components of the branching space are identified.

An explanation to the unidirectional energy transfer in non-symmetrical meta-PPEs is

proposed.

This analysis is in agreement with the literature [33, 42, 48–50, 52, 63], and supports

the assumption according to which the excitation transfer along a non-symmetrical meta-

PPE involves internal conversion via conical intersections between localized excited states.

The results of chapter 9 are used to investigate the unidirectional transfer in the non-

symmetrical (2,3)-meta-PPE (m23) in the last chapter of this part. Its electronic structure

along with typical properties are characterized at the equilibrium geometries of the first

few electronic states. We insist on the nature of the excited states in terms of single

transitions between molecular orbitals and on the topology (shape) of the latter. Weakly

avoided crossings are identified with an energy difference of about 0.1 eV.

Stationary points were optimized and characterized with calculations performed at

the CAM-B3LYP/6-31+G* level of theory, using the Gaussian09 package [62]. stationary

points were characterized with corresponding frequency calculations.
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Chapter 7

Validity of TDDFT approaches to

study PPEs

Details about the present chapter were published [63] and the corresponding article is

enclosed in Appendix A.

The vibrationally resolved absorption spectra of para-PPEs are computed with TDDFT

(CAM-B3YP/6-31+G*) and compared to the experimental spectra [33,41] recorded at 77

K. The excellent agreement between both validates the adequacy of the TDDFT method

to reproduce the electronic structure of PPEs. Our investigation lifts the disagreement

raised in the literature [59,118,130] about the ability of TDDFT to describe the electronic

structure of PPEs. In particular, we discuss the optimal conditions of the approximation

that consists in comparing the calculated energy of the 0− 0 transition to the experimen-

tal absorption maxima to calibrate a theoretical method, which is known to fail in some

cases. [118,131,132]

The vibrationally resolved absorption spectra thus computed are used for the assign-

ment of the experimental absorption bands. Three main vibrational modes are thus

identified as being involved in the S0 − S1 absorption process, and thus in the relaxation

of S1 after a Franck-Condon (FC) excitation. The most important one is the stretching

of the acetylene bonds, which was already pointed out in the literature [49, 118].
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Chapter 8

From para- to meta-PPEs

We investigate the electronic structure of the first few electronic states of some para- and

meta-PPEs, and put it in perspective with other typical molecular properties such as

their equilibrium geometries, frontier orbitals, excitation energies, and the frequencies of

specific vibrational modes.

In particular, we identify that the ground-state equilibrium geometry is homogeneous

in terms of bond lengths, both within a species and between different ones; this is less

true at the equilibrium geometries of the first excited states due to boundary effects.

The localization of the first few excited states of meta-PPEs on constitutive building

blocks including the common meta-phenylene is characterized from different perspectives.

The similarity between the properties of the building blocks and the corresponding para-

PPEs is highlightened.

From this, we introduce the concept of pseudo-fragments, whose molecular orbitals

may interact within the framework of fragment decomposition, but which may share

common atoms, here the common meta-phenylene.

8.1 Para-PPEs

8.1.1 Equilibrium geometries

The equilibrium geometries of the ground state, denoted minS0, and of the first excited

state, denoted minS1, of p2 to p7 are pictured in figures 8.1 and 8.2, respectively. Ac-

cording to these, several qualitative observations can be made.

75



8. From para- to meta-PPEs

Figure 8.1: Optimized geometries of p2 to p7 in their respective ground states.

Figure 8.2: Optimized geometries of p2 to p7 in their respective first excited states.

First, a bonding scheme with an alternation of single-triple-simple bonds between

aromatic rings seems to be typical ofminS0 whilst cumulene-type bonds between quinoidal

rings seem to be typical of minS1 (see representations of figure 8.4).

Then, the lengths of the acetylene bonds of a para-PPE are identical for minS0, but

vary slightly at minS1. The same observation also stands for the lengths of the quinoidal

bonds and the lengths of the internal bonds between a ring and an adjacent acetylene.

We confirm those observations by performing a quantitative analysis of the equilibrium

geometries. Based on the previous observation, we identify three types of bond lengths

that characterize the structure of PPEs. Those are the length of the quinoidal bonds

(dquin), the length of the acetylene bonds (dCC), and the length of the internal bonds

between a ring and an adjacent acetylene (dC-Ph), see figure 8.3.

Figure 8.3: Acetylene (CC) bonds (green), quinoidal (quin) bonds (blue), and internal bonds bewteen
acetylene and rings (C-Ph, in red).
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Their variations can be quantified through the standard deviations to the mean values,

which are reported for p2 to p7, in table 8.1 for minS0 and table 8.2 for minS1.

mean dC-Ph σ(dC-Ph) mean dCC σ(dCC) mean dquin σ(dquin)
p2 1.431 0* 1.210 0* 1.389 0*
p3 1.429 0.001 1.210 0* 1.387 0.002
p4 1.429 0.001 1.210 0.000 1.387 0.002
p5 1.429 0.001 1.210 0.000 1.386 0.002
p6 1.428 0.001 1.210 0.000 1.386 0.002
p7 1.428 0.001 1.210 0.000 1.386 0.002

all para 1.429 0.001 1.210 0.000 1.386 0.002

Table 8.1: Lengths and standard deviations (in Å) of the characteristic bonds of para-PPEs in their
ground state. * indicates a standard deviation that is zero for symmetry reasons.

mean dC-Ph σ(dC-Ph) mean dCC σ(dCC) mean dquin σ(dquin)
p2 1.374 0* 1.255 0* 1.377 0*
p3 1.391 0.008 1.233 0* 1.374 0.009
p4 1.399 0.013 1.229 0.008 1.378 0.008
p5 1.404 0.013 1.223 0.007 1.377 0.008
p6 1.408 0.013 1.223 0.007 1.379 0.007
p7 1.410 0.012 1.219 0.006 1.379 0.007

all para 1.404 0.015 1.227 0.011 1.377 0.008

Table 8.2: Lengths and standard deviations (in Å) of the characteristic bonds of para-PPEs in their
first excited state. * indicates a standard deviation that is zero for symmetry reasons.

At minS0, the bond lengths are very homogeneous in each molecule, that is that the

values of dC-Ph, dCC, and dquin are constant in the molecule. This is characterized by a

weak standard deviation, here of 0.001 Å (σ = 0 correponds to a perfect homogeneity).

The bonding scheme can thus be clearly identified as alternated single-triple-single bonds

between aromatic rings over which the double bonds are fully delocalized.

In addition, from a para-PPE to another, the mean value of the bond length is constant

up to 0.001 Å (dC-Ph = 1.43 Å, dCC = 1.21 Å, dquin = 1.39 Å), with variations that are

thus not significant. This property will be called transferability thereafter.

If finer tendancies were to be mentioned, we could notice that the mean value for in-

ternal and quinoidal bond lengths slightly decrease from the shortest PPEs to the largest

ones.
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8. From para- to meta-PPEs

Figure 8.4: Bonding scheme in the ground state (left) and first excited state (right) of diphenylacetylene
p2. Bond lengths are indicated in Å.

The bonding scheme at minS1 involves shorter quinoidal and internal bonds than

at minS0, along with longer acetylene bonds. Compared to minS0, this corresponds to

stronger quinoidal and internal bonds and weaker acetylene bonds, which is consistent

with the representation provided in figure 8.4.

Indeed, the strengthening of the quinoidal and internal bonds goes with an increase

of their double-bond character, which comes from the localization of double bonds of the

rings on the one hand, and the appearance of delocalization on the internal bonds on the

other hand. Complementarily to this, the weakening of the acetylene bonds comes from

a loss of electronic density on the triple bond that is no longer localized.

This can be understood reminding that the cumulenic bonding scheme in S1 is in fact

equivalent to a double-single-double bond alternation in the plane perpendicular to the

molecule, see figure 8.5 (actual π-system).

Figure 8.5: Orbital interaction of the alternated single-triple-single (top) and double-single-double
(bottom) bonding schemes.

In addition, bond lengths are less homogeneous at minS1 than at minS0, which is
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8.1. Para-PPEs

characterized by higher values for the standard deviation (0.006 < σ < 0.013 Å). More

specifically, the quinoidal and internal bonds are longer at the extremities than at the

center (the contrary for the acetylene bonds) in the same molecule, see figure 8.6. The

inhomogeneity in the molecules can thus be interpreted as boundary effects.

Figure 8.6: Main bond lengths at minS1 for the 3- and 4-ring PPEs. Values are given in Å.

Those boundary effects are not specific to the first excited state but their impact is

more important at minS1 than at minS0 due to their respective bonding schemes. Indeed,

at minS0, the rings and acetylenes are linked by single CC bonds. The π-system is thus

localized on the rings and acetylene, which do not communicate much together, preventing

the molecule from major deformations. On the contrary, minS1 present an alternated

double-single-double bonding scheme that carries the delocalization of the π-system all

over the molecule. The expanse of this delocalization facilitates the reorganisation of the

electronic density to adjust constraints such as border effects.

The transferability of the acetylene and internal bond lengths is also lost between

minS1 (dC-Ph goes from 1.37 Å to 1.41 Å, and dCC goes from 1.26 Å to 1.22 Å) from p2

to p7.

One may note that the evolution of the quinoidal length is not monotonous; we are

not able to rationalize this currently.

The configuration of the bonding scheme (up to boundary effects) is thus typical of

either the ground state or the first excited state of para-PPEs.

8.1.2 Transition energies and frontier orbitals

Energies for the vertical (or Franck-Condon) and adiabatic transitions between S0 and

S1 are reported in table 8.6. The adiabatic transition energies are the energy differences

between the bottom wells of the two electronic potential energy surfaces.

The transition energies decrease as the number of rings increases, in agreement with

the extension of the delocalization (organic chemistry approach) and the particule in a
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Type of transition p2 p3 p4
vertical 4.48 3.89 3.63
adiabatic 4.14 3.62 3.37

Table 8.3: Energies of the Franck-Condon (FC) and adiabatic S0 − S1 transitions in para-PPEs. Values
are given in eV.

box (quantum chemistry approach).

In PPEs, excited states mainly result from single excitations1 between the frontier

orbitals (π−π∗ transitions) thereafter named HO and LU, respectively. The other signif-

icant contribution comes from the transition between the second frontier orbitals HO−1

and LU+1. From p2 to p7, this contribution gets more important to the expense of the

HO–LU transition that still largely dominates, see table 8.4.

fosc HO–LU HO−1–LU+1
p2 0.9257 0.93
p3 1.9208 0.91 0.05
p4 2.8965 0.86 0.09
p5 3.8637 0.80 012
p6 4.8299 0.74 0.15
p7 5.7926 0.68 0.17

Table 8.4: Contributions of the transitions between the pairs of frontier and second frontier orbitals to
the first excited states of various PPEs at the minima of S0, and the corresponding oscillator strengths,
fosc.

Since the main contributions to the first excited state are single transitions, there is

no fundamental prescription against describing them with TDDFT (see also chapter 7).

From table 8.4, one can also note that the oscillator strengths associated with the

first excited states regularly increase from p2 to p7, reflecting an increase in the overlap

between the vibrational systems of the ground and first excited states in the matrix ele-

ments of the transition dipole.

1Coefficients ci associated to each single excitation are given in the outputs of G09 energy calculations.
Those coefficients are normalized over the transitions of α spins, which leads to

∑
i c

2
i = 1/2. The total

contributions (for α and β spins) correspond to twice the values of c2
i and sum up to one. In table 8.4, we

only present the main contributions associated with |ci| > 0.10 so the sum of the contributions is slightly
less than one.
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8.1. Para-PPEs

Since, at the minimum of the ground state, they largely dominate in the first excited

state, we focus our analysis on the frontier orbitals of para-PPEs. The representation of

the KS frontier orbitals is reported in figure 8.7 for p2 to p7.

Figure 8.7: KS frontier orbitals of p2 to p7.

As expected for such conjugated molecules, the frontier orbitals belong to the π-system

and are fully delocalized over the whole molecules (figure 8.7), except for boundary effects

that arise with the increase of the number of rings.

It is worth to note that the frontier orbitals provided by extended-Hückel (XH) cal-

culations (Caesar 2.0 software [133]) are similar to the KS ones from visual inspection,

except for the boundary effects that are more pronounced on the XH orbitals.

Figure 8.8: Frontier orbitals of p2 to p7 from extended-Hückel calculations performed with Caesar 2.0.

8.1.3 Vibrational frequencies

The minima are characterized with frequency calculations. As suggested in the literature

[49, 118] and from our geometric analysis, the stretching mode of the acetylenes all in

phase is characteristic of the electronic state.

In p2, p3 and p4, this mode is associated with values of the frequency at the equilibrium

geometry of the ground state (around 2360 cm−1) that are typical of the usual frequency
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8. From para- to meta-PPEs

of the CC triple bond stretching, see table 8.8. The frequency associated to this mode

at the equilibrium geometry of the first excited state is smaller (between 2185 and 2290

cm−1), in agreement with the softening of the acetylene bonds.

8.2 Mixed meta-PPEs

We now present the results of the study of some meta-PPEs. Since one of the principal

stakes of this thesis is to rationalize the unidirectional excitation transfer in PPEs, we

start by considering only mixed meta-PPEs: m23, m34 and m234.

In the present section, we show that the first excited states of the meta-PPEs are

localized on the constitutive building blocks, which mainly conserve the properties of the

corresponding para-PPEs. In other words, the building blocks can be excited selectively.

Then, for each meta-PPE, we must consider at least as many excited states as building

blocks. The electronic structure of a meta-PPE basically results from the addition of the

electronic structures of its constitutive building blocks, which correspond to the electronic

structures of the corresponding para-PPEs up to a perturbation.

We will present the manifestations of this in the orbital contributions, transition en-

ergies, geometric properties, and vibrational frequencies.

8.2.1 Frontier orbitals and pseudo-fragments

One of the most important aspects of the localization of the excited states is that is goes

together with the localization of the frontier orbitals on the building blocks, and that the

common meta-phenylene contributes to the orbitals localized on each building block [134].

In other words, meta-phenylenes must be considered as part and parcel of each building

block, and they break the conjugation between them. This justifies our nomenclature for

the meta-PPEs.

For a meta-PPE constituted of two building blocks, we consider the pair of frontier

orbitals HO–LU and the pair of second frontier orbitals HO−1–LU+1, see figure 8.11. We

use “near frontier orbitals” to term either the frontier or second frontier orbitals, or both.
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8.2. Mixed meta-PPEs

The two orbitals within a given pair are mainly localized on the same building block,

even if small contributions also exist on the rest of the molecule. These residual contribu-

tions actually ensure the orthogonality of the molecular orbitals and are not significant,

so they are similar to the orthogonalization tails that are known in valence-bond theory.

Consequently, the near frontier orbitals are basically analogous (in shape and energy)

to the frontier orbitals of the para-PPEs corresponding to the building block that on

which they are localized, see figures 8.9 and 8.11.

Figure 8.9: Frontier orbitals of m23 (left) and m34 (right), and schemes of principle of the additivity
of the electronic structures of the building blocks in meta-PPEs.

More specifically, the near frontier orbitals of a meta-PPE can be interpreted as the

result of the perturbative interaction between the frontier orbitals of para-PPEs localized

on the corresponding building blocks, see figure 8.10. The frontier orbitals of the relevant

para-PPEs can thus be seen as interacting as in the usual fragment method, except that

the building blocks here share common atoms (namely the meta-phenylene).

Hence the notion of pseudo-fragment, that is a fragmentation of a complex molec-

ular system according to orbital considerations. This fragmentation allows the pseudo-

fragments to share a subfragment of common atoms when such a subfragment involves

two orbitals together. In the present case, the pseudo-fragments of a meta-PPE are its

constitutive building blocks, and the frontier orbitals of the pseudo-fragment are the fron-

tier orbitals of the corresponding para-PPEs.

Of course, this also applies to meta-PPEs constituted of three (or more) building

blocks, see figure 8.11. Then three pseudo-fragments must be taken into account and
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8. From para- to meta-PPEs

Figure 8.10: Scheme of principle of the perturbative interaction between the frontier orbitals of consti-
tutive building blocks to form the near frontier orbitals of a meta-PPE.

yield three pairs of frontier orbitals. We term the pair HO−2,LU+2 the “third pair of

frontier orbitals”.
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8.2. Mixed meta-PPEs

Figure 8.11: Frontier orbitals of m234 and scheme of principle of the additivity of the electronic
structures of the building blocks in meta-PPEs.

8.2.2 Localized excitations and transition energies

Consistently with the definition of the pseudo-fragments, the first few excited states of

a meta-PPE are dominated by single-electron transitions between pairs of near frontier

orbitals (S1 ≡ HO–LU, S2 ≡ HO−1–LU+1, S3 ≡ HO−2–LU+2 if relevant), see table 8.5.

A given excited state is thus localized on a given pseudo-fragment (we may talk about

“the excited state of a pseudo-fragment”), according to the location of the near frontier

orbitals involved in the dominant transition, namely the location of the excitation is

typical of the excited state. In particular, the excited states localized on the pseudo-

fragments are ordered in the same way as the first excited state of each corresponding
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para-PPE (the larger the number of rings, the lower the excited state). Each localized

excited state can also be seen as a localized exciton, depicted as an excited electronic

configuration involving the frontier orbitals of the pseudo-fragments, see figure 8.12.

For example, state S1 mainly corresponds to the HO–LU transition, which is localized

on the largest building block, that is the 3-ring for m23 (see gray line of table 8.5). The

excitons associated to the first excited states of meta-PPEs are represented in figure 8.12.

Figure 8.12: Representation of the excitons corresponding to the first excited states of m23 (left), m34
(middle), and m234 (right).

One may note that transitions occuring between orbitals located on different sites

(HO−1–LU for example) also contribute to the excited states. Such transitions correspond

to charge transfers2, which are not well described with TDDFT calculations. If such small

contributions are not critical for the description of the excited states, one should still keep

an eye on them if they increase.

In addition, the oscillator strength associated to this excitation is fosc = 2.2183, which

is close in magnitude to the oscillator strength of the first excited state of the 3-ring para-

PPE, fosc = 1.9208 (see table 8.4), so the oscillator strengths also reproduce the local

character of the excitation.

We will see in the the next chapters that this analysis may become more complicated

at the minima of excited states.

In terms of energy, we verify that the transition energies of excited states of the pseudo-

fragments are basically the same as the transition energies of S1 in the corresponding
2The difference in the orbitals location can be examined through attachment and detachment matrices

[135–137].
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Contributions to S1
fosc HO–LU HO−1–LU+1 HO−1–LU HO–LU+1

d23 2.2183 0.82 0.04 0.04
d34 3.7141 0.65 0.03 0.09 0.08
d234 3.9857 0.64 0.03 0.07 0.10

Contributions to S2
fosc HO–LU HO−1–LU+1 HO−1–LU HO–LU+1

d23 0.8100 0.05 0.61 0.16 0.10
d34 1.3474 0.12 0.68 0.04 0.05
d234 1.4231 0.13 0.60 0.05 0.03

Contributions to S3
fosc HO1–LU1 HO2–LU2 HO2–LU1 HO1–LU2 HO2–LU3

d234 0.7968 0.05 0.55 0.05 0.11 0.04

Table 8.5: Contribution of the transitions between the near frontier orbitals to the first excited state of
the PPEs at the minimum of S0, and the corresponding oscillator strengths fosc. Dominant contributions
are reported in purple.

para-PPEs, which was already suggested in the literature [27,33,42,63]. This stands both

at the electronic level with the vertical and adiabatic transition energies (calculated with

the TDDFT method and reported in table 8.6), and at the molecular level with the gaps

between the pairs of near frontier orbitals (calculated with the extended-Hückel method

and reported on figures 8.9 and 8.11).

FC transition energies
p2 m23 p3 m34 p4 m234

S0–S1 4.48 3.88 3.89 3.59 3.63 3.59
S0–S2 4.45 3.90 3.89
S0–S3 4.37

Adiabatic transition energies
p2 m23 p3 m34 p4 m234

S0–S1 4.14 3.61 3.62 3.36 3.37 3.36
S0–S2 4.17 3.73 3.72
S0–S3 4.17

Table 8.6: FC and adiabatic transition energies in PPEs, and first excited states of meta-PPEs. The
excitations are localized on 2-ring (blue), 3-ring (green) and 4-ring (red) building blocks, respectively.
Values are given in eV.
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8. From para- to meta-PPEs

8.2.3 Geometric properties

For m23 and m34, the equilibrium geometry of the ground state is homogeneous and

presents the same bond lengths as in the para-PPEs (see figure 8.13 table 8.7).

Figure 8.13: Optimized geometries of m23, m34, and m234 in their respective ground states.

Figure 8.14: Optimized geometries of m23, m34, and m234 in their respective first excited states.

As for the relaxed excited states, the geometries of the building blocks are typical of

a given electronic state in the same way as does the location of the pairs of near frontier

orbitals (that is the larger the building block, the lower the excited state).

At the equilibrium geometry of S1 in m23, the bond lengths of the 2-ring building

block (the smallest one) are equal to the bond lengths of p2 at minS0 (in particular for

the alternated single-triple-single bonds between two rings), while the bond lengths of the

3-ring building block (the largest one) are equal to the bond lengths of p3 at minS1 (in

particular for the cumulene-type bonds between two rings).

This characterizes the location of the excitation on the 3-ring building block. This

scheme is reversed at the equilibrium geometry of S2 of m23, in agreement with the loca-

tion of the excitation on the 2-ring building block. This point is schematically represented

in figures 8.15, 8.16, and 8.17, and is valid for any meta-PPE.
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Figure 8.15: Representation of principle of the geometric localization of the excitation in m23.

Figure 8.16: Representation of principle of the geometric localization of the excitation in m34.
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8. From para- to meta-PPEs

Figure 8.17: Representation of principle of the geometric localization of the excitation in m234.
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8.2. Mixed meta-PPEs

2-ring building block
meta-
PPE

eq.
geom.

mean dC-Ph σ(dC-Ph) mean dCC σ(dCC) mean dquin σ(dquin)

m23
minS0 1.431 0.000 1.210 0* 1.389 0.000
minS1 1.430 0.000 1.210 0* 1.391 0.003
minS2 1.384 0.001 1.245 0* 1.380 0.000

m234

minS0 1.431 0.000 1.210 0* 1.389 0.000
minS1 1.431 0.000 1.210 0* 1.389 0.000
minS2 1.430 0.000 1.210 0* 1.391 0.002
minS3 1.385 0.001 1.245 0* 1.380 0.000

3-ring building block
meta-
PPE

eq.
geom.

mean dC-Ph σ(dC-Ph) mean dCC σ(dCC) mean dquin σ(dquin)

minS0 1.429 0.001 1.210 0.000 1.388 0.000
m23 minS1 1.391 0.008 1.233 0.000 1.377 0.009

minS2 1.423 0.002 1.214 0.001 1.389 0.006

m34
minS0 1.429 0.001 1.210 0.000 1.388 0.002
minS1 1.428 0.001 1.211 0.000 1.388 0.003
minS2 1.404 0.005 1.225 0.001 1.381 0.007
minS0 1.429 0.001 1.210 0.000 1.388 0.002

m234 minS1 1.428 0.001 1.210 0.000 1.388 0.003
minS2 1.405 0.006 1.224 0.001 1.384 0.010
minS3 1.423 0.002 1.214 0.001 1.387 0.006

4-ring building block
meta-
PPE

eq.
geom.

mean dC-Ph σ(dC-Ph) mean dCC σ(dCC) mean dquin σ(dquin)

minS0 1.429 0.001 1.210 0.000 1.387 0.002
m34 minS1 1.399 0.012 1.226 0.007 1.378 0.008

minS2 1.419 0.005 1.215 0.002 1.385 0.005
minS0 1.429 0.001 1.210 0.000 1.387 0.002

m234 minS1 1.400 0.012 1.226 0.007 1.378 0.008
minS2 1.419 0.005 1.216 0.003 1.385 0.005
minS3 1.429 0.001 1.210 0.000 1.387 0.005

Table 8.7: Mean lengths and standard deviations (in Å) of the characteristic bonds at the equilibrium
geometries of the first few electronic states, observed building block by building block, for different
meta-PPEs. A gray line indicates that at the equilibrium geometry of state SX , of the meta-PPE, the
excitation is localized on the n-ring building block. * indicates a standard deviation that is zero for
symmetry reasons.

8.2.4 Vibrational frequencies

Finally, the local character of the first few excited states of the meta-PPEs also appears in

specific vibrational frequencies. More specifically, the frequency of a local vibration mode

is essentially governed by the number of rings of the entity (building block or para-PPE)
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8. From para- to meta-PPEs

and whether or not it is locally excited electronically.

The stretching modes of the acetylenes, denoted AA-modes, are the most represen-

tative for this. At minS0, the first electronic states show several AA-modes localized on

different building blocks, for which all the bonds stretch in phase.

The frequency of the AA-mode in pn is typical of n (within 1 cm−1 in S0 or 10 cm−1

in S1) and of the electronic state; it is preserved for the AA-mode localized on the n-ring

building block of a meta-PPE, in the relevant electronic state. For example, ν̄ ranges

from 2359 to 2361 cm−1 for any 3-ring entity in its local ground state.

Then, for a given excited state of a meta-PPE, the frequency of the AA-mode localized

on the excited n-ring building block is similar to its frequency in S1 of pn, whilst the

frequencies of the AA-modes localized on the other building blocks are similar to their

frequency in S0 of the corresponding para-PPEs. For example, in m23, S1 is localized

on the 3-ring building block; the frequency of the AA-mode localized on that block is

ν̄ = 2267cm−1 (2268 in the first excited state of the 3-ring para-PPE), and the frequency

of the AA-mode localized on the 2-ring building block is ν̄ = 2357cm−1 (similar to the

frequency in the ground state of the 2-ring para-PPE).

At the ground-state minimum
location p2 m23 p3 m34 p4 m234
2-ring BB 2365 2367 2367
3-ring BB 2360 2359 2360 2361
4-ring BB 2356 2354 2356

At the first-excited-state minimum
location p2 m23 p3 m34 p4 m234
2-ring BB 2185* 2357 2367
3-ring BB 2267* 2268* 2344 2344
4-ring BB 2285* 2290* 2285*

Table 8.8: Frequencies of the in-phase elongation of the acetylene bonds in the ground state of para-
PPEs, and first excited states of meta-PPEs; the first column indicates the location of the normal mode.
The excitations are localized on 2-ring (blue), 3-ring (green) and 4-ring (red) building blocks, respectively.
Values are given in cm−1. The exponent * indicates that the frequency is associated with a mode localized
on a building block (or para-PPE) that is excited.
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Chapter 9

Conical intersections in a

symmetrical meta-PPE

The guideline of the present chapter is to identify and characterize conical intersections

in meta-PPEs. To do so, we study the (2,2)-meta-PPE, denoted m22, being the small-

est entity expected to present conical intersections between localized excited states. As

will be shown below, the symmetry of m22 also helps in the search for conical intersections.

We start by a characterization of m22 at the equilibrium geometry of the first elec-

tronic state, S1, which reveals a symmetrical double well (two lower-symmetry equivalent

minima). Consistently with the previous part, those minima correspond to a localization

of the excitation, either on one or the other building block, thus reflecting the properties

previoulsy highlighted.

In addition, two transition states are characterized that are associated with electronic

states of different irreducible representations within the high-symmetry group C2v. Both

connect the two S1 equivalent minima and provide useful information to locate conical

intersections.

Conical intersections are identified that are energetically accessible and components

of the associated branching space are characterized below.
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9. Conical intersections in a symmetrical meta-PPE

9.1 Localized excited states

We start by proving that meta-junctions hinder conjugation and thus are at the origin

of the localized excited states, even in a symmetrical meta-PPE. The existence of such

localized excited states, even in symmetrical meta-PPEs, confirms that pseudo-fragments

can be used to interprete the electronic structure of any meta-PPE, which will be a key-

point for the vibronic model we will present later on.

Pseudo-fragmentation is equivalent to dividing the total π-system of m22 into two

local, superimposed π-subsystems on each building block. Thus, the evolution of the

energy of the first excited state of p2 along the stretching of the acetylene bond is compared

to the evolution of the first excited states of m22 along the stretching of one acetylene

bond (the other one being frozen to the equilibrium distance at the ground state).

Along these cuts, it appears that the equilibrium geometry of the ground state yields

an avoided crossing between S1,meta and S2,meta for m22. In addition, the first excited state

S1,para of p2 follows S2,meta for a contracted acetylene bond and S1,meta for an elongated

bond. Thus, S1,para (which is a pseudo-fragment excited state) represents a prototype of

diabatic state for m22 that is localized on a building block.

Figure 9.1: Evolution of the energies of the first two excited states along the elongation of one acetylene
bond of m22 from its ground-state minimum (full lines). Evolution of the energy of the first excited state
along the elongation of the acetylene bond of diphenylacetylene (dashed line). The bond lengths of both
molecules are the same in the ground state up to 0.0001 Å.
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9.2. Stationary points

9.2 Stationary points

The stationary points of m22 are now identified and characterized.

The study of the equilibrium geometries proves that all the properties of mixed meta-

PPEs enlightened in the previous chapter also apply to the symmetrical m22, even though

it is not obvious at first sight. In particular, the existence of localized excited states is

assessed despite the higher symmetry of the molecule, considering the properties of the

degenerate orbitals of benzene.

The analysis of the transition states, especially their geometries and vibrational fre-

quencies, proves the role of the common meta-phenylene in lifting the degeneracy from

conical intersections.

9.2.1 At the equilibrium geometries

The m22 species belongs to the C2v point group of symmetry at the equilibrium geometry

of the ground state minS0, see figure 9.2, which is consistent with standard chemical

considerations. As expected from the analysis achieved in the previous chapter, the

geometric characteristics of the building blocks are identical to the ones of the 2-ring

PPE, see table 9.1. In particular, we easily recognize the alternation of single-triple-single

CC bonds between two rings.

S1 presents two equivalent equilibrium geometries minS1 and minS′
1 that break the

C2v symmetry, see figure 9.2. Then, at minS1 and minS′
1, m22 is similar to any of the

mixed meta-PPEs we studied in the previous chapter, and shows all the characteristics

of localized excitations. In terms of geometry, this appears with the alternation of single-

triple-single CC bonds on one building block and the cumulenic bonding scheme on the

other one, see table 9.1.

dCC,l dC-Ph,l dCC,r dC-Ph,r dquin ES0 ES1 ES2 ES3

minS0 (B2) 1.210 1.431 1.210 1.431 1.402 0 4.43 4.47 4.61
TSB2 1.233 1.401 1.233 1.401 1.419 0.18 4.25 4.33 4.52
TSA1 1.230 1.398 1.230 1.398 1.447 0.19 4.29 4.30 4.53

minS1 (Cs) 1.210 1.430 1.254 1.375 1.415 0.32 4.12 4.66 4.74

Table 9.1: Characteristic lengths (in Å) and energies (in eV) of the first electronic states of m22 at
different stationary points. Indices "l" and "r" stand for "left hand side" and "right hand side", respctively.
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9. Conical intersections in a symmetrical meta-PPE

Figure 9.2: Optimized geometries at the minimum of the ground (left) and first excited (right) states.

Orbital analysis

We now show how the near frontier orbitals of the symmetrical m22 carry the same lo-

calization properties as the ones of mixed meta-PPEs. The near frontier orbitals were

computed with both TDDFT and extended-Hückel methods, providing similar topolo-

gies. The energies we present come from the extended-Hückel calculations.

This analysis is not as trivial as expected at minS0, since the molecular orbitals are

delocalized over the whole molecule for symmetry reasons. Again, we consider the two

pairs of near frontier orbitals of m22; their shapes and the corresponding energies are

reported in figure 9.3.

Figure 9.3: Pairs of molecular orbitals at the equilibrium geometry of the ground state. HO/HO−1 (left)
and LU/LU+1 (right). Orbitals were calculated with TDDFT; the energies are provided by extended-
Hückel calculations.

The shapes of the HO and HO−1 (LU and LU+1, respectively) is identical except on

the central phenylene. The HO and LU are of symmetry a2 whilst the HO−1 and LU+1

are of symmetry b1 (in the C2v point group), see figure 9.3.
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9.2. Stationary points

For the occupied orbitals, the contribution on the central phenylene corresponds to

the degenerate pair of HOs of benzene, sligthly deformed. Considering the properties of

the degenerate orbitals of benzene, the contributions on the central phenylene can be seen

as the sum and difference of two benzene HOs orientated along each building block, see

figure 9.4.

Figure 9.4: Rotation between two equivalent bases for the degenerate orbitals of benzene (occupied on
the left, unoccupied on the right). The orbitals aligned with the building blocks form a non-orthogonal
basis.

Consequently, one can also see the pair of HOs as the sum and difference of the HOs

that are localized on the pseudo-fragments (figure 9.5), that is symmetrized orbitals.

Contrarily to the pseudo-fragment orbitals, the symmetrized orbitals are not degenerate,

so they are not eigenvectors. This lifting of degeneracy is due to (weak) through-space

interactions in the orbitals, see figure 9.5. The orbital diagram illustrating this lifting of

degeneracy is depicted in figure 9.6.

All this also stands for the unoccupied orbitals: the contribution on the central pheny-

lene corresponds to the degenerate pair of LUs of benzene, sligthly deformed. Then, the

contributions on the central phenylene can be seen as the sum and difference of two ben-

zene LUs orientated along each building block, see figure 9.4.

At minS1 and minS′
1, the localization of the orbitals actually shows up. Indeed, minS1

and minS′
1 are non-symmetrical, so the two pseudo-fragments are not equivalent and the

two pairs of near frontier orbitals are localized, as well as at the equilibrium geometries

of mixed meta-PPEs, (see figure 9.7).

The energy order of the orbitals in a pair is consistent with their localization, see figure

9.8. Indeed, for the occupied orbitals, the interaction scheme on the CC bonds in terms
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9. Conical intersections in a symmetrical meta-PPE

Figure 9.5: Decomposition of the near frontier orbitals (occupied on the bottom, unoccupied on the top)
of m22 in terms of symmetrized orbitals coming from the sum and difference of orbitals localized on the
building blocks. The orbitals aligned with the building blocks form a non-orthogonal basis. Secondary
interactions are depicted on the right hand side.

Figure 9.6: Composition diagram describing the interaction between the frontier orbitals of the pseudo-
fragments of m22 by analogy with an orbital diagram.
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9.2. Stationary points

Figure 9.7: Pairs of molecular orbitals at the equilibrium geometry of the first excited state. HO/HO-
1 (left) and LU/LU+1 (right). Orbitals were calculated with TDDFT; the energies are provided by
extended-Hückel calculations.

of atomic orbitals between consecutive benzenes is: antibonding-bonding-antibonding.

Considering that bonding interactions goes with shorter bonds and that antibonding

interactions goes with larger bonds, this interaction scheme associated with the alternated

bonding scheme yields lower energy.

Figure 9.8: Bonding schemes and interpretation in terms of interaction between the orbitals; alternated
bonding scheme (left), cumulenic-type bonding scheme (right). B stands for bonding interactions and
AB stands for antibonding interactions.

On the contrary, the interaction scheme for the unoccupied orbitals is: bonding-

antibonding-bonding and suits better with a cumulenic bonding scheme.

The energy difference between the two occupied (unoccupied) orbitals at minS1 is

greater than the one at minS0 because the pseudo-fragment orbitals are no longer degen-

erate.
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9. Conical intersections in a symmetrical meta-PPE

Transition analysis

At minS0, the first two excited states result mainly from two transitions involving the

four near frontier orbitals, see table 9.2.

The HO–LU transition can be considered as predominant in S2 but two transitions

contribute equivalently (and highly) to S1, which was not expected in a first stage.

At minS0 At minS1
Transition Contribution Transition Contribution

S1 (B2 at minS0)
HO−1 / LU 0.51 HO / LU 0.82
HO / LU+1 0.43 HO−1 / LU 0.07

HO / LU+1 0.05

S2 (A1 at minS0)
HO / LU 0.76 HO−1 / LU 0.43

HO−1 / LU+1 0.16 HO / LU+1 0.29

Table 9.2: Contributions of the main transitions to the first two excited states of m22 at minS0 and
minS1.

This situation actually arises for symmetry reasons. Indeed, S1 is of symmetry B2,

which discriminates the left from the right hand sides (provided the current orientation

of our representations). Then, since this discrimination does not appear directly in the

shape of the molecular orbitals (for symmetry reasons), it has to appear in the transitions

involved and their contributions.

As an example, the simultaneous transitions HO-1→LU and HO→LU+1 with their

respective contributions w1 and w2 are equivalent to a single transition between two

mixed orbitals {w1HO-1 + w2LU} and {w1HO + w2LU+1}. In the case of equivalent

contributions (w1 = w2), the mixed orbitals turn out to be the local orbitals, see figure

9.9.

In the present case, the contributions of these transitions to S1 are not equal, yielding

residual contributions analogous to orthogonalization tails.

This is the reverse situation to the one presented on figure 9.5, and thus proves that

the two transitions contributing to S1 are only due to symmetry, see figure 9.9.

At the minimum of S1, no left-right symmetry constraints have to be fulfilled. Since

both sides are not equivalent, it is important to notice that expansion of the transition

orbitals is the larger on the side of the molecule presenting the alternated pattern.
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9.2. Stationary points

Figure 9.9: Combination of the symmetrized near frontier orbitals (occupied on the top, unoccupied on
the bottom) of m22 into orbitals localized on the building blocks.

First, it is in agreement with the previous conclusion that the molecular orbitals are

always localized on building blocks, the symmetrical structures being the only exceptions.

This also stands for the corresponding transitions, provided that they imply orbitals

located on the same building block.

Then, the HO–LU transition dominates in S1 at its minimum (consistently with the

observations made for mixed meta-PPEs), but no transition dominates in S2 at this ge-

ometry (contrarily to what happens in mixed meta-PPEs), see table 9.2.

This simply comes from the fact that S2 is not actually relevant as a “local excited

state” of m22. Indeed, since the nature of the pseudo-fragments is the same, they yield

similar transitions in terms of energy (typical of a 2-ring entity), see figure 9.6. In m23,

S1 and S2 correspond to transitions in pseudo-fragments with different numbers of rings,

which thus yield two non-symmetrical potentials (see figure 9.10). In m22, the two build-

ing blocks have the same number of rings so the excited states that are localized on them

(allegedly S1 and S2) are associated with equivalent potentials. In other words, in m22,

the two transitions that are localized on a building block are equivalent and thus lead to S1.

It is worth to note that the transitions occuring between orbitals located on different
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9. Conical intersections in a symmetrical meta-PPE

Figure 9.10: Scheme of the symmetrization of the first two localized excited states from m23 to m22.
Full lines represent the adiabatic potentials of S1 and S2 whilst dashed lines represent the potential of
localized excited states.

sites correspond to charge transfers1, which are not well described with TDDFT calcula-

tions.

9.2.2 Transition states

Two transitions states are identified for S1, that occur to be apparent minima within the

C2v symmetry point group. Both of them are directly connected to the two equivalent

minima of S1, along vibrational modes represented in figure 9.11. They are denoted TSB2

and TSA1 , respectively, according to the symmetry of S1 at these geometries.

The transition frequency of TSA1 is particularly intense: ν̄(TSA1) = i14875cm−1. As

we will show later on, this is due to the vicinity of a conical intersection.

Since they connect minS1 and minS′
1, some of the geometric characteristics of TSB2

and TSA1 appear as a mix of the ones of minS1 and minS′
1. In particular, the length of

acetylene bonds in the transition states is the average of the lengths of each side of minS1

(or minS′
1), see table 9.5.

The main difference between TSB2 and TSA1 resides in the meta-phenylene geometry,

in particular the length of its quinoidal bonds, which is shorter for TSB2 . They can be

represented in terms of Lewis structure as a biradical quinoidal ring for TSB2 , and a

combination of two allyl-radicals in TSA1 , see figure 9.12.
1The difference in the orbitals location can be examined through attachment and detachment matrices

102



9.3. Exploration of the PES

Figure 9.11: Transition mode of TSB2 (left) and TSA1 (right). The associated frequencies are ν̄(TSB2) =
i4892cm−1 and ν̄(TSA1) = i14875cm−1.

Figure 9.12: Lewis representations of the bonding schemes of the metaphenylenes of TSB2 (left) and
TSA1 (right). Bond lengths are given in Å.

Then, it is expected (and confirmed right after) that the quinoidal bond play a crucial

role in the vicinity of conical intersections.

One may note that such transitions states may have been studied as apparent minima

in the C2v subspace for their photochemical and physicochemical properties [44].

9.3 Exploration of the PES

Now, we explore the PES of m22 in search for conical intersections.

The potential energies of the relevant diabatic states cross between TSB2 and TSA1

by construction, which indicates that conical intersections energetically accessible can be

found in the C2v-space, especially between those two points. Thus, the first step is to

explore the PES around the C2v stationary points, following directions that preserve C2v

symmetry.

Other directions of the branching space are expected to break this symmetry, that

is to particularize the sides of the molecule (see the discussion about symmetrized and

localized orbitals). This is consistent with the fact that the minima of the first excited

state were characterized within Cs symmetry.

[135–137].
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9. Conical intersections in a symmetrical meta-PPE

To identify such components of the branching space, we rely on the literature [49, 63,

118] and the characterizations presented above to identify directions that could belong to

the branching space.

9.3.1 Linear interpolations

Conical intersections

We know that a crossing has to happen between TSB2 and TSA1 so we start by exploring

the PES between those two geometries, performing linear interpolations (and extrapola-

tions).

Figure 9.13: Evolution of the energies of the first three diabatic states of symmetry 1B2 (blue), 1A1
(yellow), 2B2 (green) along the linear interpolations between TSA1 (point 0) and TSB2 (point 10) on the
left; between minS0 (point 0) and TSA1 (point 10) on the right.

The linear interpolation between the transition states shows that TSA1 stands right

next to a conical intersection (in terms of geometry) which confirms the previous assump-

tion. A strong probability of population transfer is thus expected at this geometry.

Another conical intersection is met along the linear interpolation between minS0 and

TSA1 .

Then, those two interpolation coordinates lift the degeneracy at a conical intersec-

tion. Consequently, their main components constitute valuable objects to qualitatively

characterize the branching space.

Avoided crossings

Other linear interpolations from the transition states illustrate the fact that they corre-

spond to avoided crossings between S1 and S2.
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9.3. Exploration of the PES

Figure 9.14: Evolution of the energies of the first three adiabatic states S1 (red), S2 (yellow), S3 (blue)
along the linear interpolations between TSA1 (point 0) and minS1 (point 10) on the left; between TSB2

(point 0) minS1 (point 10) in the center; between minS0 (point 0) and minS1 (point 10) on the right.

The geometries of the two transition states are quite similar, so their deformation,

and thus the interpolation coordinate, is also similar when going to minS1. Thus, the

evolution of the energy of the electronic states is alike in those two cases.

On the other hand, the transition states are geometrically quite different from minS0,

which explains the topological differences along the path to minS1.

9.3.2 A1 components of the branching space

We search for conical intersections that belong to the C2v symmetry. Spontaneously, we

start by analyzing the influence of the elongation of the acetylene, for several reasons.

First, because its importance was suggested in the literature [49, 118] and confirmed by

our geometric study. Then because it is the main contribution to the transition modes

of the transition states (figure 9.11). On the other hand, the length of the quinoidal

bonds changes the most between those two geometries, which provides another direction

to explore.

Scans along the symmetric elongation of the acetylene bonds, named mode 1, are

performed from the C2v stationary points (see figure 9.15); the other typical geometric

parameters constitute the environment at each stationary point and are frozen along the

scans.

Along this mode (and all the modes preserving the symmetry of the molecule), the

electronic states can be refered either according to their energy (adiabatic perspective)

or to their symmetry (diabatic perspective). Thus, for each point of the scan, the same

value of the potential can be associated to a diabatic or adiabatic state, depending on the
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9. Conical intersections in a symmetrical meta-PPE

Figure 9.15: Mode 1: symmetric (a1) elongation of the acetylene bonds (left); mode 2: symmetric (a1)
elongation of the quinoidal bonds (middle); mode 3: antisymmetric (b2) elongation of the acetylene bonds
(right).

purpose. In other words, each diabatic state is identical to an adiabatic state provided

no crossing is met.

As mentionned in the characterization, the first three excited states are (very) close in

energy around minS0 (figure 9.16), TSB2 (figure 9.17), and TSA1 (figure 9.18), and even

cross one with another along the mode. The diabatic state 1B2 corresponds to S1 at minS0

and TSB2 , and to S2 at TSA1 ; at these geometries, the diabatic state A1 corresponds to

S2 and S1 respectively, and the diabatic state 2B2 corresponds to S3. In this study, the

oscillators strengths will be used as a criterion for the characterization of the diabatic

states (when it is possible).

Around minS0, B2 states are characterized by their oscillator strengths, so the states

can easily be labelled according to their own symmetry. Zooms in the appropriate intervals

show that 2B2 passes through 1B2 and 1A1, and that 1B2 and 1A1 cross each other at

two points.

On the contrary, around the TS the oscillators strengths of the two diabatic states

B2 are inverted along the elongation mode, which is typical of a mixture between the

two states. This does not happen in the FC environment, probably due to the different

characteristics of the environment, that is the unchanged nuclear coordinates.

For each of the C2v stationary points, crossings are met between the first three excited

states, and particularly between the diabatic states 1B2 and 1A1. For reasons that will

become more explicit in the following, we focus on the conical intersections between

the diabatic states 1B2 and 1A1. The characteristics of the lowest conical intersection

associated to each stationary point are gathered in table 9.3.

We will refer to those as the conical intersections “in the environment of the corre-

sponding stationary point” to underline that their geometric structure is identical to the

corresponding stationary point, except for the length of the acetylene bonds. Thus, the
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Figure 9.16: Evolution of the energies (left) and oscillator strengths (right) of the diabatic states of
symmetry 1B2 (blue), 1A1 (yellow), 2B2 (green) around minS0, along the symmetric (a1) elongation of
the acetylene bonds.

Figure 9.17: Evolution of the energies (left) and oscillator strengths (right) of the first three adiabatic
states S1 (red), S2 (yellow), S3 (blue) around TSB2 , along the symmetric (a1) elongation of the acetylene
bonds.

symmetric elongation of the acetylene bonds is indeed a significant component of the

branching space.

The conical intersections in the environments minS0 and TSB2 are almost three-state

intersections. Since S3 is B2, it could a priori mix with S1 and influence the evolution

of the system at the conical intersection. This is particularly true in the environment of

TSB2 , in which oscillator strengths of S1 and S3 switch near this zone.

Yet, those intersections are about 1 eV above the lowest ones so they are not the most

relevant intersections that could be found.
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9. Conical intersections in a symmetrical meta-PPE

Figure 9.18: Evolution of the energies (left) and oscillator strengths (right) of the first three diabatic
states of symmetry 1B2 (blue), 1A1 (yellow), 2B2 (green) around TSA1 , along the symmetric (a1) elon-
gation of the acetylene bonds.

Environment space explored dCC / Å dquin / Å ES0 ES1 = ES2 ES3

minS0
mode 1 1.1518 1.402 0.45 5.25 5.28
C2v seam 1.2358 1.4361 0.13 4.34 4.56

TSB2
mode 1 1.1186 1.419 1.17 5.95 5.97
C2v seam 1.2266 1.4615 0.27 4.32 4.56

TSA1
mode 1 1.2394 1.447 0.26 4.30 4.55
C2v seam 1.2294 1.4422 0.18 4.29 4.53

Table 9.3: Characterization of the lowest conical intersections of each environment. Energies are given
in eV, with respect to the energy at the minimum of the ground state. Avoided crossings are considered
as conical intersections for energy differences less than 0.001 eV.

On the other hand, the CC bond length at the conical intersection found right next to

TSA1 is typical of triple CC bonds. In addition, it is also very close to the minima of both

S1 and S2 (see figure 9.18), which means that it is one of the lowest conical intersections

of the whole C2v-space. Finally, the energy barrier between the bottom wells and the

intersection is reasonable (about 0.1 eV). Thus, this is a conical intersection of particular

interest and will be denoted CIA1 thereafter.

Mode 1 was expected to lift the degeneracy because of its typical role for going from

minS0 to the TS and its contribution to the transition modes of the TSs. Now, considering

the previous characterization, the main difference between those two structures is the

length of the quinoidal bond. The scan along this mode, named mode 2, around CIA1

is presented in figure 9.19. Not only is it indeed another component of the branching

space, but it also appears to be more efficient than mode 1 to lift the degeneracy at the
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conical intersection. One may note that along this mode, the diabatic state A1 is the

lowest energy one at the conical intersection.

Figure 9.19: Evolution of the energies of the diabatic states 1B2 (blue) and 1A1 (yellow) along the
symmetric elongation of the acetylene bond (left) and the quinoidal bond on the central benzene (right)
in the environment TSA1 . The figure on the left was resized to overcome scaling issues when being
compared to the figure on the right.

9.3.3 B2 components of the branching space

Now, we look for vectors of the branching space that will break the left-right symmetry

of the molecule.

The first natural choice for this is the antisymmetric elongation mode of the acetylene,

called mode 3, for several reasons. First, it has the right symmetry (b2) and is the com-

plementary mode to mode 1. In addition, this mode is one of the main modes involved

in the nuclear coordinate connecting minS1 and minS′
1.

Scans are performed along mode 3 from the lowest three conical intersections identified

above.

As shown in figure 9.20, this mode is by far the most efficient to lift the degeneracy

at the conical intersection. It yields double-well potential curves corresponding to two

equivalent (local) minima, similar to minS1 and minS′
1.

Similarly to cyclobutadiene (see section 2.4), diabatic states can be associated to the

adiabatic potentials. Contrarily to the previous diabatic states that were based on sym-
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9. Conical intersections in a symmetrical meta-PPE

Figure 9.20: Evolution of the energies of the first three adiabatic states S1 (red), S2 (yellow), S3 (blue)
along the antisymmetric (b2) mode of elongation of the acetylene around CIFC (left), CIB2 (middle),
and CIA1 (right).

metry, these ones are localized on each building block, so they are named “left” and

“right” diabatic states, respectively, see figure 9.21.

Going through the conical intersection CIA1 is the “favored” way to transfer the ex-

citation from one side to another. Since m22 is symmetrical, the two wells are equivalent

and the excitation can go back and forth through the conical intersection, provided an

adequate amount of kinetic energy.

This interpretation in terms of diabatic states localized from either side of the meta-

junction can be extrapoled to non-symmetrical structures, in particular to mixed meta-

PPEs. We illustrate this point taking m23 as an example.

In m23, the wells are no longer equivalent. The well of S2 (localized on the 2-ring

building block) is higher in energy than the well of S1 (localized on the 3-ring building

block); see previous chapter. Then, the barrier to transfer the excitation from the 2-ring

building block to the 3-ring building block is lower than the reverse barrier, see figure

9.21, thus explaining the unidirectional transfer mentioned in references [42, 49]. One

may note that the three coordinates considered on figure 9.21, which lift degeneracy at

different conical intersections, are necessarily different.

One may note that we do not try to predict the characteristics of the mode equivalent

to mode 3 in m23. This will be addressed in the next chapter.

Since it is complementary to mode 2, the antisymmetric elongation of the quinoidal

bonds is also expected to lift degeneracy at the conical intersection. We have not inves-

tigated this path yet, though.
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9.3. Exploration of the PES

Figure 9.21: Evolution of the energies of the excited states along the antisymmetric mode of elongation
of the acetylene bond in terms of left-right diabatic states (left) and extrapolation to a shishiodoshi
(Japanese bamboo fountain) cascade (right).

9.3.4 Seams

We identified three modes lifting degeneracy at the conical intersection between the first

two excited states of m22. In order to get a more global representation of the PES around

the lowest conical intersections, we scanned simultaneously along modes 1, 2, and 3, two

by two.

C2v seam

We start by scanning the C2v space along modes 1 and 2. It is important to note that

the surfaces that are plotted here do not represent the whole seam. Indeed, provided C2v

symmetry, one vector of the branching space is supposed to be A1 whilst the other one is

supposed to be B2. Here, we only analyze the evolution of the seam along two components

of the A1 vector.

Figure 9.22: Evolution of the energies of the diabatic states 1B2 (purple) and 1A1 (blue) along the
symmetric elongations of acetylene and quinoidal bonds of TSA1 .
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9. Conical intersections in a symmetrical meta-PPE

Figure 9.23: Evolution of the energies of the adiabatic states S1 (green/purple) and S2 (yellow/blue)
around the lowest conical intersection along the symmetric elongations of acetylene and quinoidal bonds
of TSA1 .

A clear picture of the locus of conical intersections is provided by the representation

of the diabatic states defined with respect to symmetry, see figure 9.22. Indeed, the

two corresponding constrained PES in the C2v space cross along the diagonal of the

scanned space. The ensemble of the crossing points are conical intersections, so it defines

a submanifold within the seam.

Owing to the scale of the figure, which corresponds to deformations that are energet-

ically acceptable, the lifting of degeneracy is small with respect to the evolution of the

energies across the surfaces. In the scanned space, the energy of the seam varies so a

minimum can be located that corresponds to the lowest conical intersection within this

space, see figure 9.23.

The same 2D-scan was also computed around the conical intersections in environments

minS0 and TSB2 . The shape/behavior of the seam in these environments is similar to

the one we just presented. The corresponding lowest conical intersections were identified,

about 1 eV below the ones that were identified in the first place. This justifies a posteriori

that we did not focus on them in the previous paragraph.

We identified that the two symmetric elongations of the acetylene bonds both belong

to the branching space. Then it is expected that the independent evolution of the lengths

of each bond also lifts the degeneracy at the conical intersection.

This choice of coordinates naturally brings out the two symmetrical diabatic states

through the oscillator strengths. Indeed, the sudden inversion of the oscillator strengths

going through TSA1 along the seam is typical of the change in diabatic states that are

coupled along a mode that preserves the symmetry (see the figures and discussion below).

One may note that localized quasi-diabatic states stand out on the central view of figure

9.24.
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9.3. Exploration of the PES

Figure 9.24: Evolution of the energies of the adiabatic states S1 (green/purple) and S2 (yellow/blue)
along the independent elongations of the acetylene bonds of TSA1 .

The 2D-plot allows to compare vividly the efficiency of the lifting of degeneracy along

the two modes. In particular, we can see that it is almost too small to be seen along mode

1 whilst very marked along mode 3.

9.3.5 Comments about the branching space

The diagonal and antidiagonal of the graph correspond to the symmetric and antisym-

metric modes of elongation, respectively. As previously mentioned, mode 1 lifts the

degeneracy between the delocalized diabatic states determined with respect to symme-

try (symmetric and antisymmetric combinations of local states), while mode 2 lifts the

degeneracy between the localized diabatic states (left or right local excitations). Figure

9.24 provides a vivid example of the properties of the two complementary diabatic bases

exposed in section 2.4.

Considering the localized states as the states of reference, mode 2 is the tuning mode

along which the gradient of the energy difference is the largest. Along the perpendicular

direction, that is mode 1, the localized diabatic states get coupled but stay degenerate in

the corresponding diabatic representation.

Considering the delocalized states (labelled according to symmetry), they are tuned

along mode 1 and coupled along mode 2. The direct consequence of this is the mixture

of the oscillator strengths of the electronic states that basically tend to their mean value

along mode 2, and the switch in the oscillator strengths of S1 and S2 along mode 1, see

figure 9.25.

Finally, it is worth to mention that the modes identified so far do not span the entire

branching space at CIA1 , but are supposed to be qualitatively representative of it. The

complete branching space at a given conical intersection has to be searched for automat-

ically, through gradient techniques for example [138], which is currently under investiga-
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9. Conical intersections in a symmetrical meta-PPE

Figure 9.25: Evolution of the oscillator strengths of the adiabatic states S1 (green/purple) and S2
(yellow/blue) along the independent elongations of the acetylene bonds of TSA1 .

Figure 9.26: Evolution of the energies of the two first diabatic excited states along the independent
elongations of the acetylene bonds of TSA1 .

tion.
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Chapter 10

Weakly avoided crossings in a

non-symmetrical meta-PPE

The previous two chapters allowed the main properties of PPEs to be identified in terms of

geometry, along with the characteristics of their first few electronic states. In particular,

this interpretation provided an additional rationale justifying the unidirectionality of the

excitation transfer in meta-PPEs, thus suggesting that the sequential process occurs via

a sequence of conical intersections.

The aim of this chapter is to identify and characterize conical intersections in the (2,3)-

meta-PPE (m23), which is the smallest PPE that is likely to exhibit non-symmetrical

conical intersections mediating the excitation transfer between two unequivalent building

blocks.

Stationary points were optimized and characterized with calculations performed at

the CAM-B3LYP/6-31+G* level of theory with the Gaussian09 package [62].
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10. Weakly avoided crossings in a non-symmetrical meta-PPE

10.1 Nature of the excited states at stationary

points

Information about the typical lengths at the minima of the first three excited states are

recalled in table 10.1, and the corresponding energies are given in table 10.2.

eq.geom. mean dC-Ph σ(dC-Ph) mean dCC σ(dCC) mean dquin σ(dquin)
2-ring
building
block

minS0 1.431 0.000 1.210 0* 1.389 0.000
minS1 1.430 0.000 1.210 0* 1.391 0.003
minS2 1.384 0.001 1.245 0* 1.380 0.000

3-ring
building
block

minS0 1.429 0.001 1.210 0.000 1.388 0.000
minS1 1.391 0.008 1.233 0.000 1.377 0.009
minS2 1.423 0.002 1.214 0.001 1.389 0.006

Table 10.1: Characteristic mean lengths (in Å) at the equilibrium geometries of the first three electronic
states of m23.

ES0 ES1 ES2 ES3

minS0 0 3.88 4.45 4.56
minS1 0.27 3.61 4.61 4.68
minS2 0.23 3.99 4.17 4.52

Table 10.2: Energies (in eV) of the first electronic states at the minima in m23.

At the stationary points, S2 is closer in energy from S3 than from S1. Thus, spanning

the space of geometries, it is probable that conical intersections between S2 and S3 are

met while searching for conical intersections between S1 and S2.

The stationary point are characterized by frequency calculations, also providing pieces

of information about the localization of the excited states (see chapter 8). In addition, the

minimum of S2 appears to be almost a transition state for S1, due to an intense vibration

mode involving mainly acetylene stretchings, see figure 10.1. Then, the minimum of S2

is a maximum for S1 in the direction associated with this mode, resulting in an avoided

crossing between S1 and S2.

The nature of the excited states can be characterized by the transitions between the

molecular orbitals and the oscillator strengths.
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10.1. Nature of the excited states at stationary points

Figure 10.1: Vibration mode of S1 at the minimum of S2 associated to the frequency ν̄ = i1489cm−1

and scheme of principle of the avoided crossing at minS2 along this mode.

Oscillator strengths may vary within 0.1 due to the mixture of different states. Thus,

for orders of magnitude within 1.0 they can be used to discriminate states, but have to

be manipulated carefully in case of smaller variations and values.

The magnitude of the oscillator strengths allows to discriminate the two diabatic states

associated with S1 and S2 at the ground-state minimum, corresponding to fosc > 2.0 and

0.5 < fosc < 0.8 (see table 10.3), and denoted D1 and D2, respectively (here, D stands for

diabatic, not for doublet). The diabatic state D1 corresponds to the adiabatic state S1 at

each minimum and D2 corresponds to S2 at all the minima but S1. There, D2 corresponds

to S3, which suggests that a crossing occurs between this minimum and the other ones.

The decomposition in terms of transitions suggests that the last diabatic state, denoted

D3 corresponds to S3 at minS0, minS2, minS3, and to S2 at minS1. Considering only the

oscillator strengths, one may think that the diabatic state at minS1 is different from the

diabatic state at the other minima. To some extent, this is not totally wrong. Actually,

the diabatic state D3 has been affected by the presence of another diabatic state nearby

(here D2), and the mixture between both states results in opposite variations of their

oscillator strengths.

Considering only those three states, D3 will always be associated to the smallest os-

cillator strength.

Thus, diabatic state D4 crosses with D2 and D3 along the coordinates connecting

minS1 to the other minima, and the adiabatic state S2 changes its nature along those

coordinates. Yet, it is worth to note that the nature of diabatic state D2 is not the same
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10. Weakly avoided crossings in a non-symmetrical meta-PPE

at all minima, which stands out particularly, considering the contribution of the HO−1–

LU+1 transition. Pieces of answers can be provided by the analysis of the near frontier

orbitals involved in D2.

The near frontier orbitals are similar at minS0, minS1, and minS3. At the minimum of

S2, the near frontier orbitals present unexpected delocalization and shapes, see figure 10.2.

A linear interpolation and extrapolation is performed along the coordinate connecting

minS1 and minS2 (presented later on). At the furthest point of extrapolation on the side

of minS2, denoted extraS1S2, the shape of the orbitals is similar to the one at the previous

minima, except for the energy order. Considering this energy order, the adiabatic state

S1 (corresponding to the HO–LU transition) is localized on the 2-ring building block, and

the adiabatic state S2 (corresponding to the HO−1–LU+1 transition) is localized on the

3-ring building block.

Figure 10.2: From bottom to top, HO−1, HO, LU, and LU+1 of the (2,3)-meta-PPE at the minimum
of S1 (left), minimum of S2 (middle), last point (20) along the interpolation between both (right).

This can be interpreted qualitatively considering a diagram of correlation of the or-

bitals along the same line as Walsh diagrams, see figure 10.3. The localization of the

near frontier orbitals switches from minS1 to extraS1S2, along a coordinate that passes by

minS2, thus confirming that the diabatic states corresponding to S1 at these geometries

are different. As it happens, minS2 is midway between minS1 and extraS1S2 along the
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10.1. Nature of the excited states at stationary points

path, see figure 10.4. Thus, its geometry is intermediate between both, as well as its

orbitals, which explains their unexpected shapes.

Figure 10.3: Correlation diagram between the near frontier orbitals of m23 from minS1 to extraS1S2,
passing through minS2.
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10. Weakly avoided crossings in a non-symmetrical meta-PPE
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10.2. Exploration of the PES

10.2 Exploration of the PES

10.2.1 Linear interpolations

The assumptions proposed above can be verified upon analyzing the evolution of the

adiabatic states along linear interpolations between the stationary points.

We start by analyzing what happens between the minima of S1 and S2, which are

supposed to be involved in the excitation transfer.

Figure 10.4: Evolution of the first three excited states along the linear interpolations and extrapolations
from minS1 to minS2 (left), and representation of the corresponding diabatic states (right). Adiabatic
states S1 (red), S2 (yellow), and S3 (blue) are represented in full lines, diabatic states D1 (red), D2
(yellow) and D3 (blue) are represented in dashed lines. The minimum of S2 is projected along the bold
pink line.

First, it appears that the minimum of S2 is located right next to an avoided crossing

with S1, which explains the interaction between the electronic states and confirms the

assumption about the unusual shapes of the frontier orbitals at minS2.

As mentioned when analyzing the decomposition of the excited states, this avoided

crossing is the locus of an actual crossing between the diabatic states D1 and D2, which

are localized on the 3- and 2-ring building blocks, respectively. In addition, other avoided

crossings occur around minS1, this time between S2 and S3; we consider the one between

the two minima. This avoided crossing makes D2 cross with D3, which is why D2 corre-

sponds to S3 at minS1.

Following the adiabatic states and their avoided crossings, one can represent the cor-

responding diabatic states (see figure 10.4). In particular, diabatic states D1 and D2 offer

a first evidence in the sense of the shishiodoshi (Japanese bamboo fountain) excitation
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10. Weakly avoided crossings in a non-symmetrical meta-PPE

transfer in non-symmetrical meta-PPEs [42, 48, 49, 51]. Indeed, keeping in mind that the

interpolation coordinate is not the actual coordinate for the transfer, it still proves that

the relaxation of D2, that corresponds to an adiabatic Sn with n > 1, eventually leads to

a crossing point with D1 that corresponds to S1.

Figure 10.5: Evolution of S1 (red), S2 (blue), S3 (purple) along the linear interpolations and extrapo-
lations from minS0 to minS3 (left), minS1 (middle), and minS2 (right). Point 0 corresponds to minS0,
point 10 corresponds to minS3, minS1 and minS2, respectively.

The oscillator strengths and contributing transitions for the first three excited states

are very similar at minS0 and minS3, suggesting that the nature of the excited states is

preserved between these two geometries. This is confirmed by the linear interpolation

(figure 10.5), along which the evolution of the energies is very smooth and shows no

(avoided) crossing point.

On the contrary, between minS0 and minS1, the nature of S2 and S3 clearly changes

(oscillator strength and decomposition). S2 and S3 are indeed involved in a a weakly

avoided crossing between the minima, leading to a sharp switch in the energy order and

a mixture of the corresponding diabatic states, as assumed above.

Similarly, between minS0 and minS2, the oscillator strengths of S1 and S2 vary by

about 0.3, and the contribution of the transitions change. The avoided crossing actually

occurs after minS2 (along the coordinate of linear interpolation), and before that, the

states interact only weakly.

It is worth noting that the changes in the nature of the second excited state arise

from different causes. First, S2 is involved with S3 on the first case and S1 in the second

case. Then, between minS0 and minS1, the diabatic states D2 and D3 do cross, so the two

adiabatic states are associated with different diabatic states at the two different minima.

Between minS0 and minS3, the diabatic states D1 and D2 do not cross but get close

enough to interact strongly.
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10.2. Exploration of the PES

10.2.2 Local modes

In the previous chapter, we identified the stretching modes of acetylene and quinoidal

bonds as being of particular interest to lift the degeneracy at conical intersections. Con-

sidering the normal modes at the stationary points, we define three modes combining the

stretching of the acetylene bonds, see figure 10.6.

Figure 10.6: From left to right, the scanning vibration modes 1, 2, and 3 for the acetylene bonds.

Modes 1 and 2 affect the energy difference between S2 and S3 more than the energy

difference between S1 and S2 (figures 10.9 and 10.10). In particular, S1 and S2 stay

parallel along mode 1, which is not what we are interested in. Mode 2 actually decreases

the energy difference between S1 and S2, suggesting that crossings may happen out of the

scanning interval, at energies that are too high to be reasonable (more than 10 eV above

the ground-state minimum).

On the contrary, mode 3 allows to get to avoided crossings between S1 and S2, meaning

that it is a component lifting the degeneracy at the conical intersection. The minimal

energy differences for the three environments are of about 0.1 eV, which is too large to

talk about conical intersections. In order to find one, new scans are performed from

the identified avoided crossing but no conical intersection could be found this way. The

identification of “actual” conical intersections is an ongoing work, as well as the exploration

along quinoidal modes of vibrations.

Figure 10.7: Definition of the
scanning modes of vibration for
the acetylene bonds.

Bond 1 Bond 2 Bond 3 ES1 ES2

minS0 1.210 1.210 1.210
minS1 1.210 1.233 1.233
minS2 1.245 1.215 1.213

minS0 AC 1.253 1.185 1.166 4.48 4.61
minS1 AC 1.296 1.147 1.146 4.87 5.02
minS2 AC 1.255 1.204 1.203 4.21 4.34

Figure 10.8: Characteristic lengths of the acetylene bonds (in
Å) at the minima of the first electronic states of (2,3)-metaPPE
and at the avoided crossings (AC) identified along mode 3 from
the minima.
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10. Weakly avoided crossings in a non-symmetrical meta-PPE

Figure 10.9: Evolution of the energy of S1 (red), S2 (blue), S3 (purple) along mode 1 from minS0 (left),
minS1 (middle), and minS2 (right). The length difference is reported with respect to the length of bond
1 at the corresponding minimum.

Figure 10.10: Evolution of the energy of S1 (red), S2 (blue), S3 (purple) along mode 2 from minS0
(left), minS1 (middle), and minS2 (right). The length difference is reported with respect to the length
of bond 1 at the corresponding minimum.

Figure 10.11: Evolution of the energy of S1 (red), S2 (blue), S3 (purple) along mode 3 from minS0
(left), minS1 (middle), and minS2 (right). The length difference is reported with respect to the length
of bond 1 at the corresponding minimum.
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Chapter 11

Conclusions and future prospects

The present part was dedicated to the static study of para- and first generation meta-

PPEs.

The first chapter of this part assessed the validity of TDDFT as a method to compute

the excited states of the PPEs. This was based on the ability of the method to repro-

duce the electronic absorption spectra along with the correct vibrational progression with

respect to UV absorption experiments.

This point answered an open question raised in the literature [118,130] due to the use

of the usual approximation that consists in calibrating a computational method by com-

paring the calculated 0–0 transition energy with the experimental absorption maximum.

The optimal conditions of validity of this approximation were discussed at this occasion.

The assignment of the vibrational contribution allowed to identify the nuclear coordi-

nates that dominate along the relaxation of S1 after an FC absorption.

A static characterization of the PPEs was performed at the ground state and first few

excited states, from different points of view (geometric, energetic, orbital, vibrational).

The characteristics of meta-PPEs have been put in perspective with the ones of the para-

PPEs, which highlighted the possibility to see the meta-PPEs in terms of almost additive

pseudo-fragments that can be excited selectively. This result was also verified for the

symmetrical PPE m22.

Our results are in agreement with the literature, which states that the excitation

transfer is mediated through the CC triple bond elongation. We also went further by
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11. Conclusions and future prospects

comparing the properties (geometries, energies, orbitals, vibrations) of a given PPE in

different excitations states, and proved that they are typical of each electronic state.

This characterization will serve to study another point raised in the literature [20,

42, 48], that is that the excitation transfer occurs through a conical intersection. In par-

ticular, geometric characteristics at the equilibrium geometries of different excited states

were used to search for conical intersections and identify their respective branching spaces.

The symmetrical meta-PPE m22 serves as the simplest prototype to identify and

characterize conical intersections likely to mediate the excitation transfer in PPEs.

A full characterization of the electronic states as single transitions between pairs of near

frontier orbitals allows to interprete the evolution of their energies in terms of localized

diabatic states.

Several conical intersections were identified that are energetically accessible, in partic-

ular one that is close to a transition state for S1. The lifting of degeneracy from a conical

intersection was interpreted in terms of different sets of diabatic states according to the

component followed. In particular, the coordinate that breaks the left-right symmetry

of m22 particularizes the two pseudo-fragments, and is thus involved in the process of

excitation transfer.

Exploration of the PES along relevant coordinates allows to identify a C2v component

of the seam, which supports a discussion about the branching space of one of the lowest

conical intersections identified.

Coordinates of their respective branching spaces were identified thanks to the static

study, that is the assignment of the absorption spectra (chapter 7) and the geometric

characteristics of PPEs at the relaxed geometries of the electronic states (chapters 8 and

9). The interpretation of the lifting of the degeneracy along those coordinates in terms

of localized diabatic states is in agreement with the shishiodoshi cascade proposed in the

literature [42] to rationalize the excitation transfer in PPEs. The characterization of the

exact branching space using an automated procedure is still in progress.

On the other hand, we focused on studying planar PPEs despite excited states may

also relax along out-of–plane motions. In addition, we considered the linearity of the

bonding scheme between the benzene rings, which is not ensured in principle. Indeed, it
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was recently showed that accessible conical intersection occur along a path to the trans

structure of the CC bonds connecting the rings of p2 [139].

Information collected for m22 were reinvested for the characterization of the electronic

states of m23 and the research for conical intersections.

Avoided crossings were identified along coordinates that are likely to be involved in the

excitation transfer. In particular, the equilibrium geometry of S2 corresponds to a tight

avoided crossing between S1 and S2. This suggests that after being excited, the relaxation

of S2 towards its minimum will efficiently cause a population transfer to S1, with no risk

for the wavepacket to get trapped.

Those are tight enough (about 0.15 eV) to yield population transfer between the ex-

cited states, though we did not succeed to identify real conical intersections yet. The

search for actual conical intersections using a systematic algorithm following the gradient

of the energy difference is in progress.

The information collected in the present part provides better understanding of the

mechanism of the excitation transfer in PPEs. Such knowledge should serve as a basis

for the elaboration of a vibronic model for the energy of the electronic states in terms of

nuclear coordinates.
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Part V

Construction of the vibronic model
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Chapter 12

Introduction

DFT and TDDFT calculations are in principle capable of providing static insight into the

electronic structure of PPEs. Yet, frequency calculations for example, applied to species

with, say, seven rings, already require about a hundred days (cpu time), which constitutes

a real, practical issue, especially because we aim to study larger PPEs in the future.

In addition, such large computational time may be perceived somewhat as a waste for

systems that are not that complicated in terms of structure. Indeed, for any number of

rings, a PPE merely is just a regular alternation of similar benzene and acetylene units,

with only three possible local arrangements for benzene (either ortho-, which we did not

consider in this work, meta-, or para-). For DFT and TDDFT calculations, this regularity

cannnot be made useful directly, since the computation time depends eventually on the

number and nature of nuclei and electrons, with no account of the repetition of identical

fragments.

Along the same line, such calculations do not allow to rationalize the electronic ener-

gies with respect to the hierarchical architecture of the systems, hence the relevance of a

novel approach exploiting it.

In the previous part, the electronic structure of PPEs has been investigated and char-

acterized in detail. In particular, the multilevel hierarchy of meta-PPEs was highlighted,

leading us to introduce the notion of pseudo-fragments, according to the localization of

the π-molecular orbitals on the building blocks.

Based on this and other information collected in the previous part, a vibronic model

could be constructed, following a multiscale approach allowed by the hierarchy of the
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12. Introduction

molecule and facilitated by the use of pseudo-fragments, see figure 12.1.

Figure 12.1: Structure of the vibronic model. Decomposition of the transition energy. FO = HO or
LU.

We start upon proposing an effective Hückel-type model to describe the bottom part

of our model, which corresponds to a one-electron system. This assumes, in particular,

that the interaction between the frontier orbitals of benzene and acetylene, which are

considered as basic fragments (fragment frontier orbitals), dominate in the frontier orbitals

of para-PPEs. The interactions between the frontier orbitals are explicit whilst the other

ones are only taken into account implicitely through the effectiveness of the model. This

yields effective expressions for the energies of the frontier orbitals of para-PPEs in terms

of the energies of the frontier orbitals of benzene and acetylene. The same methodology,

with some adjustments, is also used to provide effective expressions for the energies of the

frontier orbitas of meta-PPEs.

The validity of our approach is assessed according to two steps. First, for the para-

PPEs, we compare the effective (optimized) values of the Hückel-type parameters to their

non-effective (reference) values. Then, we inject these effective values into the effective

expressions of the energies for the meta-PPEs, and compare them to the energies obtained
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from direct calculations.

Figure 12.2: Structure of our vibronic model. Dependence with the nuclear coordinates.

On the other hand, we also address the dependence of the energy with the geometry,

that is the parametrization of the model. To do so, we consider as local coordinates the

deformations of benzene, acetylene, and the internal distance between both. We propose a

functional (affine) expression of the electronic energies with respect to the orbital energies,

and prove that the evolution of both the electronic and orbital energies with respect to

local nuclear coordinates can be expressed as an affine equation.

The expression of the effective orbital energies (in the frame of the model described

in chapter 13) in terms of effective Hückel-type parameters are then introduced in the

parametrization. Thus, the effective electronic energies can be expressed in terms of the

local nuclear coordinates of the orbital energies, themselves expressed in terms of effective

parameters, each one being linearly dependent on the local coordinates, which leads to a

final expression of the electronic energies in terms of the local nuclear coordinates.
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Chapter 13

FFO model

We address the construction of the bottom part of our vibronic model.

The objective is to build an effective Hückel-type matrix (first-neighbor approach) that

reproduces the energies of the frontier orbitals of a para-PPE, using orbitals of molecular

fragments (benzene and acetylene “superatomic” orbitals) as basic units instead of pz
carbon “atomic” orbitals. In addition, to reduce the number of parameters on which the

model depends, we only take into account the frontier orbitals of benzene and acetylene

explicitly, the remaining ones being taken into account implicitly.
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13. FFO model

This implies considering fragments constituted of frontier orbitals of benzene on the

one hand and of acetylene on the other hand, the occupied and unoccupied systems being

treated separately.

For constructing the model, we consider as a first approximation that the length of

the acetylene bonds is the same both along a para-PPE and from a para-PPE to another

(homogeneity and transferability at the equilibrium geometry of the ground state, see

chapter 8). The same assumption is made for the geometry of benzene and the internal

distance between adjacent benzene and acetylene.

13.1 Derivation on diphenylacetylene

We here present the part of the model connecting the energies of the frontier orbitals (FOs)

of the sites (acetylene and benzene) to the energies of the FOs of the chromophores (para-

PPEs; here, p2). To do so, we focus on the π-system and use the common notations α

and β introduced in Part III; the sites A (acetylene) or B (benzene) will be indicated by

the corresponding indices.

We build a Hückel-type matrix to express the energies of the frontier orbitals of p2 in

terms of the interaction between the frontier orbitals of benzene and acetylene.

To do so, we use the approximations of the Hückel model in an unusual way: instead of

considering the pz orbitals of carbon atoms (atomic sites), we consider the frontier orbitals

of molecular fragments (superatomic sites) that play the role of basic units (fragment

sites), namely benzene and acetylene. In particular, the overlaps and resonance integrals

between orbitals of non-ajdacent sites will be neglected. In practice, the distance between

two non-adjacent sites is of about 5 Å, so this approximation is justified.

First, we consider the linear combinations of symmetry of the molecular orbitals of

both benzene rings with respect to the center of inversion (see figure 13.1). Among

the six π- and π∗- orbitals of each benzene ring, two can be ignored since they do not

interact with the two π- and π∗-orbitals on acetylene for symmetry reasons. Those are

the antisymmetric orbitals with respect to the plane that is perpendicular to the molecule

and contains the main axis along the acetylene fragment.
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13.1. Derivation on diphenylacetylene

Figure 13.1: Qualitative representation of the interactions between the symmetrized π-orbitals of acety-
lene and benzene.

The complete Hückel-type matrix for p2 thus reads

HHuck
p2 =

αB,1 0 0 0 βgp2,1

0 αB,6 0 0 βgp2,6

0 0 αB,HO 0 βgp2,HO 0

0 0 0 αB,LU βgp2,LU

βgp2,1 βgp2,6 βgp2,HO βgtol,LU αA,LU

αA,HO βup2,HO βup2,LU βu1 βu6

βup2,HO αB,HO 0 0 0
0 βup2,LU 0 αB,LU 0 0

βup2,1 0 0 αB,1 0
βup2,6 0 0 0 αB,6





.

(13.1)

One may note that, since we consider combinations of two orbitals of benzene interacting

with the orbital of acetylene, βsym
p2,orb =

√
2βorb where βorb corresponds to the interaction

of one orbital of benzene with the orbital of acetylene 1 , see figure 13.2.

As mentioned in the previous chapter, we want the energies of the HO (LU) of p2 in

terms of the main contribution, that is the interaction between the HOs (LUs) of benzene

1〈ϕA|ĥ|ϕB,p2〉 = 〈ϕA|ĥ|
ϕB,left + ϕB,right√

2
〉 = 2√

2
〈ϕA|ĥ|ϕB〉 =

√
2β
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13. FFO model

Figure 13.2: Normalization of the resonance integral in the interaction involving symmetrized orbitals
with respect to the interaction between two orbitals. Example of the HO of benzene with the π-orbital
of acetylene.

and acetylene (square in dashed line).

Yet, we do not want to approximateHHuck
p2 with a brute truncature. Instead, we apply

the theory of effective Hamiltonians: the complete space describing the system is reduced

to a subspace accounting for the main contribution(s), which will be optimized so that the

effective Hamiltonian reproduces the same eigenvalues as the complete Hamiltonian [140].

In our case, this comes to considering that the interactions between the frontier orbitals

(square in dashed lines) dominate, which thus constitutes a good zeroth-order Hamiltonian

Ĥ0 for the effective Hamiltonian. The latter will be obtained eventually upon fitting the

energies and resonance integrals (see below). This naturally discriminates the occupied

and unoccupied systems. Under these conditions, the effective Hamiltonian for p2 reads

Heff
p2 =

αeff
B,LU βeff

p2,LU 0

βeff
p2,LU αA,LU

αA,HO βeff
p2,HO

0 βeff
p2,HO αeff

B,HO




(13.2)

where we remove the symmetry labels g and u since there is no ambiguity.

Since all the contributing orbitals of acetylene are taken into account in our effective

model, the frontier orbitals of acetylene will not be altered with respect to the original

XH solutions. On the contrary, the energies of the frontier orbitals of benzene (and the

resonance integral) have to be optimized to account for the contributions of all benzene

orbitals in an effective manner.

Including the energies of the acetylene orbitals in the set of parameters to be optimized

would, of course, give more flexibility to the model. Yet, doing so, the acetylene orbitals

would change to account for contributions of benzene orbitals, for no good reason from a
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13.1. Derivation on diphenylacetylene

chemical point of view.

Finally, Heff
p2 describes two independent systems, the occupied one (pink) and the

unoccupied one (blue), under the form of two 2 × 2 symmetric matrices. For a 2 × 2

symmetric matrix, M =

a1 b

b a2

, the eigenvalues read

ε± = a1 + a2

2 ±
√(

a1 − a2

2

)2
+ b2 (13.3)

where ε− < ε+.

The energies of the HO (LU) of p2 have the form of ε+ and (ε−), respectively, consis-

tently with the antibonding (bonding) interaction between the symmetrized HO (LU) for

the pair of benzenes and the π- (π∗-) orbitals of acetylene, see figure 13.3.

Figure 13.3: Interactions between the symmetrized FOs of the combination of two benzenes and the
FOs of acetylene in p2.

Finally, the effective energies for the frontier orbitals read
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13. FFO model

εeffp2,HO =
αeff
B,HO + αA,HO

2 +

√√√√(αeff
B,HO − αA,HO

2

)2

+
(
βeff
p2,HO

)2
(13.4)

εeffp2,LU =
αeff
B,LU + αA,LU

2 −

√√√√(αeff
B,LU − αA,LU

2

)2

+
(
βeff
p2,LU

)2
(13.5)

where βeff
p2,LU =

√
2βeff.

The effective energies are analytical and will thus be used later on for the fit.

13.2 Generalization to para-PPEs

In the present paragraph, we expose how the previous results can be generalized to any

para-PPE with n rings.

13.2.1 Fragment frontier orbital (FFO) decomposition

To do so, we divide the molecule into two fragments constituted of all benzenes (benzene

fragment) and all acetylenes (acetylene fragment), respectively, see figure 13.4. We recall

that we count two orbitals on each site (HO/LU for each benzene, π/π∗ for each acetylene),

and that the occupied and unoccupied systems will be treated separately.

Figure 13.4: Decomposition of p4 into a benzene fragment and an acetylene fragment.

The energies of the FOs of any pn depend on the energies of the molecular orbitals of

benzene (B) and acetylene (A), and on the interactions between the orbitals of an A-B

pair of sites. From geometrical considerations, we assume here for simplicity that the

energies of the molecular orbitals and the interactions between the pairs are conserved

along a molecule (homogeneity) and from a para-PPE to another (transferability). Thus,

the para-PPEs only differ by the value of n (number of rings) in this approach.
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13.2. Generalization to para-PPEs

Considering this, we choose to describe the system upon relying on a first-neighbor

approach, in which each site interacts with its neighbor through the same resonance

integral βFO (FO = HO, LU) 2. The treatment of the interaction between both fragments

is thus equivalent to the treatment of the interaction in a carbon polyene, see figure 13.5.

Figure 13.5: Interactions between the frontier orbitals in a para-PPE (left) and in a polyene (right)
within the tight-binding approach.

The resulting resonance integral βn,j between the fragment orbitals leading to the

jth molecular orbital of an n-ring para-PPE is then related to the resonance integral β

between two adjacent sites through a Coulson-type relation (see figure 13.5)

βn,j = 2 cos jπ2nβ = γn,jβ (13.6)

where j ∈ J1; 2n− 1K. 2n− 1 is the number of sites in the n-ring para-PPE, and thus the

number of molecular orbitals for the occupied (unoccupied) system. This formula can be

verified analytically with the Mathematica software [141] for instance.

The Hamiltonian (matrix) Hn,FO, which will yield the frontier orbitals of para-PPEs,

expressed in terms of the energies and interactions of the frontier orbitals (HO or LU,

respectively) of benzene and acetylene is tridiagonal, much as the Hamiltonian describing

polyenes
2Note that this βFO is also the resonance integral between benzene and acetylene in phenylacetylene.
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13. FFO model

Hn,FO =



αB,FO βFO

βFO αA,FO βFO 0
. . . αB,FO

. . .
. . . . . . . . .

0 . . . αA,FO βFO

βFO αB,FO


. (13.7)

It is important to note that this Hamiltonian is conceptually really different from the

Hamiltonian Hp2 previously introduced.

When defining the Hamiltonian Hp2, in the previous section, we considered the com-

bination of orbitals with respect to the inversion center. Now, in the HamiltonianHn,FO,

we list the sites in the order in which they appear in pn (B1 A2 B3 A4 · · · ), and report

the corresponding FOs along with their first-neighbor interactions. Thus, the eigenvec-

tors of Hn,FO correspond to linear combinations of benzene HOs (LUs) and acetylene π-

(π∗-) orbitals. They are not the eigenvectors of the exact Hamiltonian but the energies

(eigenvalues) of the two “model” FOs will be fitted to reproduce the energies of the two

“target” FOs of pn (effective model).

The HamiltonianHn,FO is a square matrix of rank 2n− 1 corresponding to the 2n− 1

sites of an n-ring para-PPE. Its eigenvalues satisfy

εn0,FO = αB,FO (13.8)

εn±j,FO = αA,FO + αB,FO

2 ±
√(

αA,FO − αB,FO

2

)2
+
(

2 sin jπ2nβFO
)2

(13.9)

where j ∈ J1;n − 1K. The structure of the expression of εn±j,FO definitely reminds of the

expressions of the eigenvalues of 2 × 2 symmetric matrices. This is due to the fact that

the Hamiltonian Hn,FO can always be block-diagonalized into 2 × 2 blocks. Again, this

can be verified analytically with Mathematica for example.

Strikingly enough, each of these energies depends on three Hückel-type parameters

only: αA,FO, αB,FO, and βFO. The latter are always the same, irrespectively of the

number of rings n. The energies depend parametrically on n via the pre-factor in front of
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13.2. Generalization to para-PPEs

βFO. As a result, only six values of parameters are needed to calculate the HO–LU gap

of any pn, for any n (with FO = HO or LU). The energies and parameters of equation

13.9 will become effective when performing the fit of the model to the target; this will be

indicated by the exponent “eff”.

The values of the sine pre-factor are reported in table 13.1.
HHH

HHHn
j 1 2 3 4 5 6

2
√

2
3 1

√
3

4
√

2−
√

2
√

2
√

2 +
√

2

5
√

3−
√

5
2

√
5−
√

5
2

√
3 +
√

5
2

√
5 +
√

5
2

6
√

2−
√

3 1
√

2
√

3
√

2 +
√

3

Table 13.1: Values of 2 sin jπ2n for n ∈ J2; 6K and j ∈ J1;n − 1K. Radical expressions obtained with
Mathematica.

13.2.2 Focus on the frontier orbitals

The HO (LU) results from a fully antibonding (bonding) interaction between all the pairs

B-A of sites within the molecule (see figure 13.6), and is thus associated with the value

j = n− 1.

Figure 13.6: Interactions between the LUs (left) or the HOs (right) of benzene and acetylene in p4.

Consequently, the Coulson-type pre-factor in front of βFO reads 2 sin (n− 1)π
2n =

2 cos π

2n , which leads to

|γn,LU| = γn,HO = 2 cos π

2n (13.10)

owing to the following relationship

cos (2n− 1)π
2n = cos

(
2π − (2n− 1)π

2n

)
= − cos π

2n . (13.11)
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13. FFO model

The effective Hamiltonian can thus be generalized as

Heff
pn,FO =

αA,FO βeff
n,FO

βeff
n,FO αeff

B,FO

 (13.12)

and the effective energies of the frontier orbitals satisfy

εeffn,HO =
αeff
B,HO + αA,HO

2 +

√√√√(αeff
B,HO − αA,HO

2

)2

+
(

2 cos π

2nβ
eff
HO

)2

εeffn,LU =
αeff
B,LU + αA,LU

2 −

√√√√(αeff
B,LU − αA,LU

2

)2

+
(

2 cos π

2nβ
eff
LU

)2

(13.13)

where βn,FO = 2 cos π

2nβFO and FO = HO or LU.

One may note that for p2, βeff
2,FO = 2 cos π4β

eff
FO =

√
2βeff

FO, as we obtained from nor-

malization reasons. We recall that the acetylene FOs do not require to be fitted in our

model.

The effective values of the Hückel-type parameters are then fitted so that εeffn,FO repro-

duces εexactn,FO as much as possible (see below).

13.3 Validation

Questioning the validity of the FFO approximation is equivalent to questioning the phys-

ical meaning of the effective parameters. Thus, even if every secondary interactions are

taken into account implicitly through the effective formalism, it is important to confirm

that the main interaction we consider actually is predominant.

The values of the four effective parameters αeff
B,FO and βeff

FO (FO = HO, LU) are fitted

according to equation 13.13 for several values of n (further details are given below). Pro-

vided that the approximation is based on solid physical grounds, the effective Hamiltonian

can be considered as the sum of the zeroth-order Hamiltonian (see equation 13.12 before

optimizing the parameters) and a small perturbation. The values of the four effective

parameters are thus expected to be close to original values, which are the values of the

parameters αB,FO and βFO (FO = HO, LU) in H0.

We evaluate numerically the consequences of the optimization of αB,FO and βFO. The

procedure is performed at oversymmetrized geometries close to the equilibrium geometries
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13.3. Validation

of the ground state and the first excited state, to avoid any effect due to inhomogeneities

in the molecules; note that these values will not be used further because, eventually, every

parameter will depend on the nuclear coordinates.

The optimization is performed separately for the occupied and unoccupied systems.

It consists in minimizing the root-mean-square deviation (RMSD) between the effective

(model) energies εeffn,FO, expressed as in equation 13.13, and the reference (target) energies

εexactn,FO, keeping the energies of the acetylene orbitals (see equation 13.14), in order to get

optimal values of the effective parameters (FO = HO, LU).

The reference energies are obtained by direct calculations using the extended-Hückel

method (Caesar 2.0 software). We chose this method because, in addition to the orbital

energies, it provides the values of the integrals Hii, Hij, and Sij for the fragment orbitals,

that is the original values that are required to verify the validity of the model. Those

quantities will also be used in the next chapter for the parametrization according to the

nuclear modes. 
√

1
6
∑7
n=2

(
εeffn,FO − εexactn,FO

)2

αA,FO is unchanged
(13.14)

where FO = HO or LU.

The procedure is performed over a sample composed of the chromophores p2 to p7 at

an oversymmetrized geometry close to the equilibrium geometry of the ground state, see

figure 13.7.

Figure 13.7: Geometrical characteristics of the oversymmetrized geometries considered for the valida-
tion. At the oversymmetrized minS0 (left), benzenes are assimilated to regular hexagons with same bond
lengths; at the oversymmetrized minS1 (right), quinoidal bonds are shorter than the other bonds of the
rings. In both cases, the planar angles of benzene are set to 120◦. Bond lengths are given in Å.

This ensures that the original values for the energies or interactions among orbitals

are equivalent from a site or pair of sites to another, both in a molecule and between the

different molecules of the sample (p2 to p7).

145



13. FFO model

As mentioned before, the value of each parameter is the same for any number of rings

in the chromophore. We impose this equality by running the optimization simultaneously

for all the molecules of the sample. The result of this optimization is presented in Table

13.2.

Finally, the original values of the parameters are extracted from extended-Hückel cal-

culations that explicitly account for the overlap Sij between two orbitals localized on sites

i and j, respectively. On the contrary, this overlap is only taken into account implicitly

in our model, through the optimization. In other words, the optimized parameters are

expressed in an implicitly orthonormal basis whilst the original parameters are not.

Thus, the extended-Hückel basis must be orthonormalized prior to comparing the

optimized effective values of the parameters to the original ones (to compare comparable

quantities).

In the orthonormalized basis (Schmidt), the extended-Hückel matrix reads

Hortho
XH =


αA

HBA − αAS√
(1− S2)

HBA − αAS√
(1− S2)

αB − 2HBAS + αAS
2

1− S2

 . (13.15)

The details of the derivation and discussion about the basis choice are provided in

Appendix C. In addition, the closest Heff and H0, the smallest the perturbation, so we

define the criterion for validating the main-interaction approximation by identification


βeff ≈ HAB − αAS√

(1− S2)

αeff
B ≈

αB − 2HABS + αAS
2

1− S2

. (13.16)

The results at the minimum of the ground state are presented in table 13.2. The same

order of magnitude between the optimized and original parameters proves the relevance

of the FFO approximation.

The same analysis is carried out at an oversymmetrized geometry close to the equi-

librium geometry of S1 and leads to the same observations and conclusions, see table

13.3.
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HO LU
Model Effective FFO extended-Hückel Effective FFO extended-Hückel
αA / eV -13.53 -7.00
αB / eV -12.95 -12.68 -8.37 -8.15
β / eV -0.76 -0.60 -0.96 -1.36

Table 13.2: Comparison between the optimized values of the tight-binding parameters in the FFO
model and the original values of the extended-Hückel parameters projected in an orthonormal basis set,
at minS1.

HO LU
Model Effective FFO extended-Hückel Effective FFO extended-Hückel
αA / eV -13.41 -7.61
αB / eV -12.97 -12.51 -8.64 -8.38
β / eV -0.91 -0.69 -0.99 -1.45

Table 13.3: Comparison between the optimized values of the tight-binding parameters in the FFO
model and the original values of the extended-Hückel parameters projected in an orthonormal basis set,
at minS1.

The main approximation of the FFO model is to consider that one FO of the chro-

mophore comes from a single main interaction. Thus, the optimization implicitly accounts

for secondary interactions between the orbitals of the benzene fragment and orbitals of

the acetylene fragment. For the HO (LU) of pn, this concerns in particular all the in-

teractions involving the non-HO (LU) orbitals of benzene. Basically the optimization of

the energies of the FOs of benzene is equivalent to taking the three other orbitals on an

average manner.

13.4 Extension to meta-PPEs

The idea of the last step (see figure 13.8) is to describe the first two excited states of

meta-PPEs in terms of a coupling between the first excited state of each building block,

along the line of excitonic models that are proposed in literature [60,142,143]. The energy

of the electronic states depends on both the orbital energies and their occupations.

Thus, in a first step, we examine the coupling between the frontier orbitals, which

will be reflected in the coupling between the electronic states. We examine the possibility

of using the FFO formalism to describe the interaction between the frontier orbitals of
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13. FFO model

Figure 13.8: Structure of the vibronic model.

meta-PPEs.

13.4.1 Pseudo-fragments

The derivation is presented on m22.

As mentioned in Part IV we consider the building blocks of a meta-PPEs as pseudo-

fragments. Since they share a common benzene, see figure 13.9, building blocks cannot be

considered as proper fragments within the theory of fragment orbitals. Yet, their orbitals

overlap and interact as any usual fragment orbitals, yielding the molecular orbitals of the

meta-PPE.

Figure 13.9: Pseudo-fragment decomposition of m22.

We recall the shapes of the near frontier orbitals of m22 in figure 13.10, along with

the implication of the properties of the degenerate orbitals of benzene.
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13.4. Extension to meta-PPEs

Figure 13.10: Near frontier orbitals of m22 by increasing energy from bottom to top (left), properties
of the degenerate orbitals of benzene (right).

The superimposition of the pseudo-fragment orbitals yields new couplings between the

orbitals of one building block and the orbitals of the other building block. In particular,

the HO (LU) of benzene for the l.h.s. building block interacts with the π- (π∗-) orbital

of acetylene for the r.h.s. building block, see figure 13.12. These two interactions will be

termed meta-couplings.

Figure 13.11: Illustration of the meta-couplings arising around the meta-junction. Example with the
scheme of the HO around the common phenylene of m22.

We define the energies of interaction due to meta-couplings in terms of the energy

of interaction due to the common para-couplings in an A–B pair, that is βFO, see figure

13.12. The two superimposed orbitals (HOs or LUs, respectively) are identical except for

the angle between the pseudo-fragments (about 120◦), and thus form a non-orthogonal
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13. FFO model

basis of the space of the degenerate orbitals 3.

Consequently, the meta-coupling interaction is proportional to the common para-

coupling interaction through the overlap between the non-orthogonal orbitals. We con-

sider the ideal case of an angle of π/3 between the two building blocks, and thus between

the two superimposed orbitals of benzene, see figure 13.12.

Hence the relation between the meta-coupling interaction βmeta
FO and the common para-

coupling interaction βFO

βmeta
FO = −1

2βFO (13.17)

with FO = HO or LU.

Thus, we write the matrices Hn,m,FO containing the frontier orbilals of a meta-PPE

as the reunion of the Hückel-type matricesHn,FO of the building blocks with extra meta-

couplings. Considering the example of m22, that would beH2,FO andH2,FO, see equation

13.19.

H2,2,FO =

 H2,FO couplings

couplings H2,FO

 (13.18)

=



αB,FO βFO 0 0 0 0

βFO αA,FO βFO −1
2βFO 0 0

0 βFO αB,FO 0 −1
2βFO 0

0 −1
2βFO 0 αB,FO βFO 0

0 0 −1
2βFO βFO αA,FO βFO

0 0 0 0 βFO αB,FO



. (13.19)

3In the orthonormal basis (ϕx, ϕy), the pseudo-fragment orbitals read
ϕl = −

{
cos
(
−π3

)
ϕx + sin

(
−π3

)
ϕy

}
= −1

2ϕx +
√

3
2 ϕy

ϕr = −
{

cos
(π

3

)
ϕx + sin

(π
3

)
ϕy

}
= −1

2ϕx −
√

3
2 ϕy

Thus, 〈ϕl|ϕr〉 = −1
2 .
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A drawback remains though. Since the left/right superimposed orbitals are not or-

thogonal, the overlap matrix of the basis must be considered while solving the eigenvalue

problem, which thus does not reduces to the diagonalization ofH2,2,FO (see Appendix C).

To tackle this issue, we write the interaction Hamiltonian Hortho
2,2,FO in the basis con-

taining the orthogonalized FOs of benzene (that appear on the common phenylene in the

near FOs of m22) instead of the left/right ones, see figure 13.13. The off-diagonal terms

corresponding to the interaction of the π- (π∗-) orbital of acetylene with the orthogonal-

ized HOs (LUs) of benzene can be obtained by expanding the orthogonalized orbitals in

the basis of the left/orbitals, see figure 13.12.

Figure 13.12: Interaction of the π∗-orbital of the acetylene of the l.h.s. building block with the
superimposed LUs on the common phenylene (top); Interaction of the π-orbital of the acetylene of the
l.h.s. building block with the superimposed HOs on the common phenylene (bottom).

Figure 13.13: Bases of the orbitals over which are written H2,2,FO (left) and Hortho
2,2,FO (right). Bases

with the left/right FOs of benzene are on the left, basis with orthogonal FOs of benzene are on the right.
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13. FFO model

Hortho
2,2,FO =



αB,FO βFO 0 0 0 0

βFO αA,FO
1
2βFO

√
3

2 βFO 0 0

0 1
2βFO αB,FO 0 1

2βFO 0

0
√

3
2 βFO 0 αB,FO −

√
3

2 βFO 0

0 0 1
2βFO −

√
3

2 βFO αA,FO βFO

0 0 0 0 βFO αB,FO



(13.20)

This can be generalized to any coupling between the n- and m-ring building blocks of

mnm. The corresponding Hamiltonian Hn,m,FO reads

Hn,m,FO =

αB,FO βFO 0 0 0 0 0 0 0 0

βFO αA,FO
. . . 0 0 0 0 0 0 0

0 . . . . . . . . . 0 0 0 0 0 0

0 0 . . . αA,FO
1
2βFO

√
3

2 βFO 0 0 0 0

0 0 0 1
2βFO αB,FO 0 −1

2βFO 0 0 0

0 0 0
√

3
2 βFO 0 αB,FO −

√
3

2 βFO 0 0 0

0 0 0 0 1
2βFO −

√
3

2 βFO αA,FO
. . . 0 0

0 0 0 0 0 0 . . . . . . . . . 0

0 0 0 0 0 0 0 . . . αA,FO βFO

0 0 0 0 0 0 0 0 βFO αB,FO


(13.21)

and its eigenvalues satisfy

εn,m0±,FO = αB,FO (13.22)

εn,m±j,FO = αA,FO + αB,FO

2 ±
√(

αA,FO − αB,FO

2

)2
+
(
γn,mj βFO

)2
(13.23)

where j ∈ J1;n+m−2K. Once again, this can be verified with Mathematica for example.

The values of γn,mj are analytical and we report them in table 13.4.
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13.4. Extension to meta-PPEs

PPPPPPPPP(n,m)
j 1 2 3 4 5 6

(2,2)
√

3
2

√
5
2

(2,3)
√

2−
√

5
2

√
2

√
2 +
√

5
2

(3,3)

√
7−
√

17
2

√
9−
√

17
2

√
7 +
√

17
2

√
9 +
√

17
2

(3,4) 1√
2

1
√

2
√

3
√

7
2

(4,4)

√
xI1

2

√
xII1

2

√
xI2

2

√
xII2

2

√
xI3

2

√
xII3

2
≈ 0.66 ≈ 0.83 ≈ 1.33 ≈ 1.50 ≈ 1.82 ≈ 1.89

Table 13.4: Values of γn,mj for n,m ∈ J2; 4K and j ∈ J1;n+m− 2K. Formal expressions obtained with
Mathematica.

xIk and xIIk (k = 1, 2, 3) are the roots of the following polynomials

P I(x) =
3∏

k=1
(x− xIk) = x3 − 22x2 + 128x− 160

P II(x) =
3∏

k=1
(x− xIIk ) = x3 − 26x2 + 192x− 352 .

13.4.2 Validation

To verify the validity of our proposition, the energies of the orbitals calculated using our

model are compared to the energies obtained from direct XH calculations (consistently

with the procedure applied for para-PPEs).

The effective parameters optimized over the sampling of para-PPEs (presented in

table 13.2) are injected into the expressions for the energies of the orbitals of meta-PPEs

(equations 13.23). The energies of the frontier orbitals are associated with the value

j = n + m − 2, the ones of the second frontier orbitals are associated with the value

j = n+m− 3.

The energies of the near frontier orbitals of m22, m23, m33, m34, and m44 are pre-

sented in table 13.5, for direct calculations and our model.

The energies of the HO–1 and LU+1 of m22, m33 and m44 are presented, yet we

will not discuss them. Indeed, our point is to propose a model that would reproduce the

transition energies to local excited states that correspond to transitions between (near)

frontier orbitals. Yet, as mentioned in Part IV section 9.2 , the HO–1–LU+1 transition
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13. FFO model

model FO m22 m23 m33 m34 m44

XH calculation EXH

LU+1 -9.09 -9.19 -9.41 -9.45 -9.54
LU -9.30 -9.48 -9.51 -9.58 -9.60
HO -12.05 -11.90 -11.87 -11.81 -11.79
HO-1 -12.21 -12.13 -11.95 -11.91 -11.84
HO–LU gap 2.74 2.42 2.36 2.23 2.19
HO-1–LU+1 gap 3.12 2.95 2.54 2.46 2.29

FFO model EFFO

LU+1 -9.04 -9.20 -9.42 -9.48 -9.56
LU -9.35 -9.51 -9.55 -9.60 -9.62
HO -12.00 -11.87 -11.83 -11.79 -11.77
HO-1 -12.27 -12.13 -11.94 -11.89 -11.83
HO–LU gap 2.66 2.36 2.28 2.19 2.15
HO-1–LU+1 gap 3.22 2.92 2.52 2.41 2.27

EFFO − EXH

LU+1 0.04 -0.02 -0.02 -0.03 -0.01
LU -0.04 -0.03 -0.04 -0.02 -0.02
HO 0.04 0.03 0.04 0.02 0.02
HO-1 -0.05 0.01 0.01 0.02 0.01
HO–LU gap -0.09 -0.07 -0.08 -0.04 -0.04
HO-1–LU+1 gap 0.10 -0.02 -0.03 -0.05 -0.02

Table 13.5: Energies of the near frontier orbitals in some meta-PPEs (in eV).

does not yield such local excited states in symmetrical meta-PPEs, for symmetry reasons

(plus and minus delocalized states), see figure 13.14.

Figure 13.14: Illustration of the transitions betwen frontier and second frontier orbitals in symmetrical
(left) or mixed (right) meta-PPEs.

The difference between the energies calculated with our model and the reference ones is

within 0.01 eV and 0.04 eV in absolute value, which is decent considering the simplicity of

the model. The energies for the occupied (vacant) system are systematically overestimated

(underestimated) by a similar amount. This reflects the fact that our model overestimates
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13.4. Extension to meta-PPEs

the interactions between the benzene and acetylene fragments, since the HO and HO–

1 (LU and LU+1) result from an ideal fully antibonding (bonding) interaction among

identical site orbitals.

The errors in the energies of occupied and unoccupied orbitals cumulate in the energy

gaps, so our model underestimates the energy gaps by amounts within 0.02 and 0.09 eV.

Again, this error is acceptable considering our level of approximation.

This confrontation confirms that our model accounts for the physics of meta-PPEs,

and thus validates its relevance to express the energies of frontier orbitals of meta-PPEs.

We cannot go further, from a vibronic perspective, without considering the relationship

between parameters along with their dependence with respect to the nuclear coordinates.

Consequently, the values of the parameters presented in the present chapter will be further

refined later on. In particular, the coupling between building blocks will be refined in the

last step of the construction to be applied to electronic states and energies.
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Chapter 14

Parametrization

One of the ultimate objectives of this project is to set up a strategy for building a quasi-

diabatic vibronic model of the potential energy surfaces of PPEs, that is an expression

of the electronic energy matrix in terms of nuclear modes. Within this perspective, we

will see that one of the key-points is to determine the relative evolution of the TDDFT

S0−S1 transition energies ∆E and the XH HO−LU energy gaps ∆ε for para-PPEs. This

basically reduces to a mapping of the potential energy surface to an effective model. A

similar strategy was already proposed considering an effective Frenkel Hamiltonian for a

polymer constituted of a single type of monomer [144].

We are now interested in the variations of the (effective) parameters, namely how

they are affected by the nuclear motions. Remembering that we are using a tight-binding

formalism, it is decent to consider that the energy of a local orbital attached to a site

will only depend on the deformation of this site, that is the length of the acetylene bond

or various deformations of the benzene rings, see figure 14.1. Similarly, the resonance

interaction between a benzene and an acetylene will only be affected by the distance

between them.

Figure 14.1: Local deformations of a PPE.

It must be noted that the relative torsions between adjacent benzenes should play

a role by affecting the interactions between sites. In the present work, we focus on the
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14. Parametrization

planar behavior of PPEs and ignore the influence of torsions. Yet, this contribution could

be added later on. It should account for the fact that the torsions never disrupt totally

the conjugation (due to the cylindric triple bonds) and could take the form of a periodic

function.

14.1 Functional expression of ∆E

14.1.1 General empirical affine relation

We start by examining the relative variations of ∆E and ∆ε upon plotting them for

various numbers of rings n and geometries (which will be defined later on), see figure

14.2. From this plot, we notice that ∆E and ∆ε are connected via a near-affine relation,

which leads to the following empirical relation: ∆E ∼ A∆ε+∆U .

Figure 14.2: TDDFT S0 − S1 transition energies ∆E vs. XH HO − LU energy gaps ∆ε for various
geometries of p2 (blue circles), p3 (red triangles), p4 (green squares). The linear regression for p2, with
energies in eV, gives y = 1.2450 x + 0.9032 with R2 = 0.9899; for p3, y = 1.2855 x + 0.8391 with
R2 = 0.9962; for p4, y = 1.3561 x + 0.6953 with R2 = 0.9964.

It appears in the parameters of the linear regression that the amplification factor A
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14.1. Functional expression of ∆E

and the shift ∆U slightly change with the number of rings n. As a matter of fact, they

may also depend on the coordinates Q and slightly change between two given geometries,

see table 14.1.

Q vertex p2 p3 p4
A(2)(Q) ∆U (2)(Q) A(3)(Q) ∆U (3)(Q) A(4)(Q) ∆U (4)(Q)

[100]

(000) 1.5139 0.1391 1.4074 0.5532 1.4687 0.4541
(001) 1.5422 0.1700 1.4119 0.5896 1.4975 0.4371
(010) 1.5023 0.1981 1.4003 0.5686 1.4799 0.4319
(011) 1.5312 0.2261 1.4041 0.6027 1.5067 0.4227

[010]

(000) 1.3544 0.5957 1.4128 0.5405 1.4654 0.4609
(001) 1.3702 0.6223 1.4403 0.5282 1.4795 0.4728
(100) 1.3448 0.6019 1.4071 0.5540 1.4700 0.4511
(101) 1.3616 0.6242 1.4334 0.5452 1.4829 0.4652

[001]

(000) 1.0654 1.4234 1.1819 1.0883 1.2399 0.9488
(010) 1.0707 1.3589 1.1875 1.0486 1.2487 0.8992
(100) 1.0555 1.3942 1.1819 1.0660 1.2451 0.9244
(110) 1.0623 1.3269 1.1874 1.0279 1.2528 0.8778

Table 14.1: Values of the amplification factor A(n)(Q) and the shift∆U (n)(Q) along the different nuclear
coordinates Q and passing by different vertices for p2, p3, and p4. All the determination coefficients R2

involved are equal to 1.0000.

Considering this, we propose the following expression

∆E(n)(Q) = A(n)(Q)∆ε(n)(Q) +∆U (n)(Q) (14.1)

where Q = (Qk) are linear variations of the nuclear coordinates with respect to the

equilibrium geometry of S0 (Q0 = 0).

This expression is actually a mere recasting and remains general until further con-

straints are applied on A(n)(Q) and ∆U (n)(Q).

It is important to note that ∆U (n) is different from the on-site repulsion U of the

Hubbard model. In the Hubbard model, no repulsion between the electrons is accounted

for before U is introduced, which is not the case in the XH energies of orbitals. In the XH

methods, electronic repulsion is implicitly considered through the inital parametrization

of the method. Then, ∆U (n) would be a correction to the electronic repulsion, adapted

to each species we consider.

14.1.2 Simplifications

First, both ∆E and ∆ε vary almost linearly along each coordinate, see figure 14.3.
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14. Parametrization

Figure 14.3: TDDFT S0 − S1 transition energies ∆E (left) and XH HO − LU energy gaps ∆ε (right) as
functions of the nuclear modesQ for p2 (blue circles), p3 (red triangles), p4 (green squares). Here are pre-
sented the interpolations passing by the equilibrium geometry of S0. All the corresponding determination
coefficients are greater than 0.9998.

Relying on this, we assume that ∆E, ∆ε, and ∆U are all multidimensional affine

functions of Q 

∆ε(n)(Q) = ∆ε
(n)
0 +∑

k a
(n)
k Qk

∆U (n)(Q) = ∆U
(n)
0 +∑

k b
(n)
k Qk

∆E(n)(Q) = ∆E
(n)
0 +∑

k c
(n)
k Qk

(14.2)

where ∆ε0 = ∆ε(0), ∆U0 = ∆U(0), and ∆E0 = ∆E(0).

This allows to determine a(n)
k and c(n)

k . Then A must be constant with respect to Q.

If not, ∆E would vary to second order at least with respect to Q. In addition, as ∆E

and ∆ε, ∆U must be a multidimensional affine function of Q and may depend on n. This

leads to the following relations at zeroth and first orders

∆E
(n)
0 = A(n)∆ε

(n)
0 +∆U

(n)
0 (14.3)

c
(n)
k = A(n)a

(n)
k + b

(n)
k . (14.4)

Second, A and ∆U0 do not vary with n. Indeed, the behavior of ∆E(n)
0 with respect to

∆ε
(n)
0 reveals an affine relationship, see figure 14.4. Plots were performed for an extended

(p2 to p7) and a reduced (p2 to p4) sample, which leads to A ∼ 1.2 and ∆U0 ∼ 1.0 eV.

To the best of our knowledge, literature rarely reports studies involving more-than-

four-ring para-PPEs or meta-PPEs composed of such building blocks. Thus, we will
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14.1. Functional expression of ∆E

Figure 14.4: TDDFT S0 − S1 transition energies ∆E vs. XH HO − LU energy gaps ∆ε at the
equilibrium geometries of p2 to p7. The linear regression on the full sample gives y = 1.2198 x + 0.9877
(for energies in eV) with R2 = 0.9998; the linear regression on the reduced sample (p2, p3, p4) gives y =
1.2013 x + 1.0364 with R2 = 0.9998.

use the values fitted on the reduced sample in the following, that is A = 1.2013 and

∆U0 = 1.0364 eV.

Consequently, equation 14.4 becomes

c
(n)
k = Aa

(n)
k + b

(n)
k (14.5)

and b(n)
k is fully determined by a(n)

k and c(n)
k (which can be evaluated from the variation

of ∆ε(n) and ∆E(n) with respect to Qk since A is now known).

Those two simplifications arise from the relative behavior of the energy differences

along the deformations Qk. No further simplification can be obtained unless specific

dependences or relationships involving n can be found.

Expressing ∆E as a functional of ∆ε, it comes

∆E [∆ε,Q;n] = ∆E(n)(Q) (14.6)

= A∆ε+∆U0 +
∑
k

b
(n)
k Qk (14.7)

where ∆ε = ∆ε(n)(Q) shows that ∆E as a function of ∆ε is almost affine (as observed

on figure 14.2) because the typical contribution of b(n)
k Qk stays small compared to typical

variations of ∆E with ∆ε.
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14.2 Determination of the first-order parameters

14.2.1 Nuclear coordinates

For each PPE of the sample, we define a reduced set of three local nuclear coordinates

that connect the equilibrium geometries of S0 and S1. Those are the stretching of the

acetylene bonds (Q1), the stretching of the internal bonds between benzene and acetylene

(Q2), and the global deformation of the rings (Q3), see figure 14.5.

We associate these coordinates with the edges of a cube connecting the equilibrium

geometries of S0 and S1.

Figure 14.5: Representation of the nuclear coordinates as the egdes of a cube.

We recall that the equilibrium geometries of S1 are not homogeneous from a para-PPE

to another (see table 14.2), so the coordinates Q actually depends parametrically on n.

For each mode, we normalize the difference of Qk between minS0 and minS1 to 1 in order

to be able to compare the displacements in the different para-PPEs.

n mean dC-Ph σ(dC-Ph) mean dCC σ(dCC) mean dquin σ(dquin)
2 1.374 0* 1.255 0* 1.377 0*
3 1.391 0.008 1.233 0* 1.374 0.009
4 1.399 0.013 1.229 0.008 1.378 0.008
5 1.404 0.013 1.223 0.007 1.377 0.008
6 1.408 0.013 1.223 0.007 1.379 0.007
7 1.410 0.012 1.219 0.006 1.379 0.007

all n 1.404 0.015 1.227 0.011 1.377 0.008

Table 14.2: Lengths and standard deviations (in Å) of the characteristic bonds of para-PPEs in their
first excited state. * indicates a standard deviation that is zero for symmetry reasons.

Scans are performed along each edge (12), ascending face diagonal (6), and the as-

cending space diagonal of the cube for p2, p3, and p4 to generate test sets that will be

162



14.2. Determination of the first-order parameters

used for the fitting (next paragraph). The so-called ascending diagonals correspond to

increments of +1 along two coordinates of Q, for example we will consider the diagonal

from (000) to (011) (denoted [011]) but not the diagonal from (001) to (010) (denoted

[01-1]).

We performed linear interpolations along each edge and ascending face diagonal, with

a normalized step value of 0.1 for ||Q|| ∈ [−0.5; 1.5], that is 21 geometries along each

direction. Along the space diagonal, the interpolation runs for ||Q|| ∈ [−1; 2] that is

31 geometries. Overall, we generated 409 geometries for each test set associated with

n = 2, 3, 4. Among a test set, all the vertices are represented four times (three edges,

one ascending face diagonal), except minS0 and minS1 which are represented seven times

(three edges, three face diagonals, the space diagonal). Since the coordinates are scaled to

unity along the shift between the S0 and S1 minima, the values of the expansion coefficients

introduced further can be compared directly.

Variations of ∆ε(n)(Q) with respect to Q are linear (the values of the coefficient of

determination R2 lie between 0.9999 and 1.0000) along the edges of the cube and the [110]

diagonal, which correspond to a concerted motion along the coordinates Q1 (streching of

the acetylene bonds) and Q2 (stretching of the internal bonds). They are almost linear in

a few cases, in particular along the diagonal associated with concerted motions involving

the benzene modes, see table 14.3.

diagonal going through n R2

[101] minS0 2 0.9996
[101] minS1 2 0.9995
[011] minS0 3 0.9998
[011] minS1 3 0.9997
[111] minS0 and minS1 2 0.9993
[111] minS0 and minS1 3 0.9996

Table 14.3: Values of the coefficients of determination R2 of ∆ε(n)(Q) along some diagonals of the cube
for n = 2, 3.

Variations of ∆E(n)(Q) along the same directions are almost linear too (R2 lies within

0.9997 and 1.0000). For both ∆ε(n)(Q) and ∆E(n)(Q), deviations from linearity are

slightly larger along diagonal cuts where Q3 (localized on benzene) varies together with

either Q1, Q2, or both. They reflect a small “coupling” between Q3 and the other two
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coordinates.

From the determination coefficients, we can consider that the behavior of ∆E(n)(Q)

and ∆ε(n)(Q) is linear with respect to each Qk, which allows to neglect quadratic terms

quite safely. Yet, this does not prevent from a multilinear behavior.

14.2.2 Multilinear parameters

The contributions of the coupled nuclear modes can be accounted for using the following

multilinear expansions

∆ε(n)(Q) = ∆ε
(n)
0 + a

(n)
1 Q1 + a

(n)
2 Q2 + a

(n)
3 Q3

+ a
(n)
12 Q

1Q2 + a
(n)
13 Q

1Q3 + a
(n)
23 Q

2Q3 + a
(n)
123Q

1Q2Q3 (14.8)

∆E(n)(Q) = ∆E
(n)
0 + c

(n)
1 Q1 + c

(n)
2 Q2 + c

(n)
3 Q3

+ c
(n)
12 Q

1Q2 + c
(n)
13 Q

1Q3 + c
(n)
23 Q

2Q3 + c
(n)
123Q

1Q2Q3 (14.9)

Applying an eight-point formula to the eight parameters of equations 14.8 and 14.9

with the eight vertices of the cube provides exact values for the expansion parameters

(slopes are simple differences between the energies at two different vertices). The so-

called vertex parameters are summarized in table 14.4.

Let us now verify that the values of the parameters allow to reproduce reasonably the

values of ∆ε(n)(Q) and ∆E(n)(Q) for other geometries.

First, we inject the values of the expansion parameters into equations 14.8 and 14.9,

and evaluate the values of ∆ε(n)(Q) and ∆E(n)(Q) thus calculated and compare them to

the exact ones for the three test sets of 409 geometries. Proceeding this way, we obtain

small values of the RMSD (see table 14.5), which confirms that overall our energetic

description is relevant.

Second, we re-optimize the expansion parameters over the test sets (409 points for

each pn). The values of the re-fitted parameters are very close to the values of the vertex

parameters (see table 14.4), so the latter can be used in the framework of our model. This

is confirmed by the values of the RMSD (see table 14.5).

In addition, in both cases, the values of the multilinear parameters are small compared

to the linear ones (at least by one order of magnitude). The largest multilinear coefficients

are a(2)
13 and a(3)

23 , or c
(2)
13 and c(3)

23 , in agreement with the deviations from linearity reflected

in the values of R2 (table 14.3). This confirms that the linear contribution dominates
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Vertex param. Re-fitted param.
n = 2 n = 3 n = 4 n = 2 n = 3 n = 4

∆ε
(n)
0 2.8646 2.3724 2.1621 2.8640 2.3721 2.1616

a
(n)
1 -0.1264 -0.0989 -0.0580 -0.1256 -0.0983 -0.0573
a

(n)
2 -0.1737 -0.1170 -0.1401 -0.1727 -0.1166 -0.1393
a

(n)
3 -0.2352 -0.2043 -0.1762 -0.2349 -0.2039 -0.1756
a

(n)
12 0.0015 0.0004 -0.0001 -0.0002 -0.0005 -0.0012
a

(n)
13 0.0123 0.0020 0.0031 0.0118 0.0014 0.0024
a

(n)
23 0.0050 0.0081 0.0020 0.0044 0.0077 0.0011
a

(n)
123 -0.0005 -0.0001 0.0001 0.0011 0.0010 0.0014

∆E
(n)
0 4.4748 3.8924 3.6295 4.4737 3.8913 3.6282

c
(n)
1 -0.1913 -0.1392 -0.0851 -0.1887 -0.1377 -0.0837
c

(n)
2 -0.2354 -0.1653 -0.2053 -0.2324 -0.1641 -0.2034
c

(n)
3 -0.2507 -0.2415 -0.2184 -0.2485 -0.2403 -0.2170
c

(n)
12 0.0037 0.0013 -0.0008 -0.0001 -0.0006 -0.0031
c

(n)
13 0.0154 0.0024 0.0029 0.0128 0.0009 0.0015
c

(n)
23 0.0042 0.0085 0.0009 0.0013 0.0073 -0.0012
c

(n)
123 -0.0009 -0.0002 0.0004 0.0020 0.0015 0.0025

Table 14.4: Values of the coefficients of the multilinear expansions of∆ε(n)(Q) and∆E(n)(Q) calculated
from the vertices of the cube (left) or fitted from the 409-point samples (right).

From vertex param. From re-fitted param.
n = 2 n = 3 n = 4 n = 2 n = 3 n = 4

RMSD ∆ε(n) 0.0013 0.0007 0.0008 0.0010 0.0004 0.0005
RMSD ∆E(n) 0.0029 0.0009 0.0004 0.0017 0.0008 0.0011

Table 14.5: RMSD (in eV) for ∆ε and ∆E in p2, p3, p4 obtained with vertices parameters or re-fitted
parameters.

in the behavior of ∆ε and ∆E with respect to Q1, Q2, and Q3, as assumed above. We

recall that the values of the linear and multilinear coefficients can be compared because

all displacements were normalized to one.

14.2.3 Purely linear parameters

Since the multilinear contribution is small compared to the linear one, we neglect it, and

thus almost divide the number of expansion parameters by two.

Let us now determine the values of the first-order parameters, a(n)
k , b(n)

k , and c(n)
k .

To do so, we consider the linear expansions of ∆ε(n), ∆E(n), and ∆U (n) with respect
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to the nuclear coordinates

∆ε(n)(Q) = ∆ε
(n)
0 + a

(n)
1 Q1 + a

(n)
2 Q2 + a

(n)
3 Q3 (14.10)

∆E(n)(Q) = ∆E
(n)
0 + c

(n)
1 Q1 + c

(n)
2 Q2 + c

(n)
3 Q3 (14.11)

∆U (n)(Q) = ∆U0 + b
(n)
1 Q1 + b

(n)
2 Q2 + b

(n)
3 Q3 (14.12)

For each value of n, the four parameters of the linear expansion of ∆ε(n)(Q) and

∆E(n)(Q) can be determined by a fit over equations 14.10 and 14.11, respectively. The

fit is performed using the energies at the geometries corresponding to the eight vertices

of the cube, that is Q1, Q2, Q3 = 0 or 1. The results are summarized in table 14.6.

n = 2 n = 3 n = 4
∆ε

(n)
0 2.8600 2.3698 2.1608

a
(n)
1 -0.1196 -0.0977 -0.0564
a

(n)
2 -0.1706 -0.1128 -0.1391
a

(n)
3 -0.2267 -0.1993 -0.1737

∆E
(n)
0 4.4702 3.8894 3.6286

c
(n)
1 -0.1820 -0.1374 -0.0839
c

(n)
2 -0.2317 -0.1604 -0.2051
c

(n)
3 -0.2411 -0.2361 -0.2164

exact ∆ε(n)
0 2.8646 2.3724 2.1621

exact ∆E(n)
0 4.4758 3.8924 3.6295

Table 14.6: Values of the coefficients of the linear expansions of ∆ε(n)(Q) and ∆E(n)(Q); Values of
∆ε

(n)
0 and ∆E(n)

0 from direct XH calculations (two bottom lines).

Injecting these values of the linear coefficients into equations 14.10 and 14.11, re-

spectively, one can evaluate ∆ε(n) and ∆E(n) for each geometry Q. We term these values

“model values” for both quantities. The difference between the model and the exact values

lies within 0.003 eV for both ∆ε(n)
0 (Q) and ∆E(n)(Q)0, which is a more than acceptable

error.

As for the multilinear coefficients in the previous paragraph, the transferability of the

linear coefficients determined from the data at the eight vertices of the cube can also

be assessed by two procedures. First, we compare the model values to the exact ones;

the RMSD are 0.007, 0.004, and 0.002 eV, for both ∆ε(n)(Q) and ∆E(n)(Q). Then, a

further re-fitting is performed over the test sets, which does not improve the quality of

the description.
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14.2. Determination of the first-order parameters

The b(n)
k coefficients can now be obtain directly using equation 14.5, the values of the

linear coefficients in table 14.6 and A = 1.2013 (previously defined), see table 14.7.

n = 2 n = 3 n = 4
b

(n)
1 -0.0383 -0.0200 -0.0162
b

(n)
2 -0.0267 -0.0250 -0.0380
b

(n)
3 0.0312 0.0033 -0.0078

Table 14.7: Values of the b(n)
k coefficients from equation 14.5.

Using these values of b(n)
k , we can now generate model values of ∆E at two levels.

The first one ensures the validity of the linear expression of ∆U (n). To do so, we inject

the exact (calculated) values of ∆ε along with the fitted values of b(n)
k into equation 14.7.

The values of ∆E calculated this way are compared to the exact ones using the RMSD,

see table 14.9.

The b(n)
k parameters can also be re-optimized over each test set, using either calculated

(exact) or model values for ∆ε, which only slightly improves the description: RMSD =

0.003, 0.004, and 0.003 eV when using calculated values of ∆ε, and 0.007, 0.006, 0.003 eV

when using model values. The re-fitted parameters b(n)
k are summarized in table 14.8.

with calculated values of ∆ε with model values of ∆ε
n = 2 n = 3 n = 4 n = 2 n = 3 n = 4

b
(n)
1 -0.0392 -0.0177 -0.0177 -0.0383 -0.0171 -0.0174
b

(n)
2 -0.0275 -0.0227 -0.0395 -0.0265 -0.0222 -0.0391
b

(n)
3 0.0303 0.0056 -0.0093 0.0312 0.0063 -0.0089

Table 14.8: Values of the b(n)
k coefficients from different optimizations.

n = 2 n = 3 n = 4
From calculated b(n)

k 0.003 0.006 0.0004

From re-fitted b(n)
k

model ∆ε 0.007 0.006 0.003
exact ∆ε 0.003 0.004 0.003

Table 14.9: RMSD (in eV) for ∆E in p2, p3, p4 for different sets of b(n)
k and ∆ε; exact values of ∆ε

were obtained with XH calculations.

Both the values of b(n)
k and the RMSD of ∆E are similar whether the fitting is per-

formed using exact or model values of ∆ε. Considering the RMSD of ∆E, we also note
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14. Parametrization

that using fitted values of b(n)
k instead of the calculated ones does not improve much the

description of ∆E. This proves the self-consistency of our model so far.

At the second level, we prove that we are able to reproduce decently the reference

values of∆E(n) using only the values of the linear parameters and, of course, the geometry.

This is done by considering the following equation

∆E
(n)
lin (Q) = A

{
∆ε

(n)
0 +

3∑
k=1

a
(n)
k Qk

}
+∆U0 +

3∑
k=1

b
(n)
k Qk . (14.13)

We recall that the values of A and ∆U0 were determined above. This is rigourously equiv-

alent to injecting model values of ∆ε into equation 14.7.

Doing so for the 409 geometries of each test set gives a RMSD for ∆E of 0.007, 0.008,

and 0.004 eV for n =2, 3, and 4, respectively. This is the same order of magnitude as for

the first level, so both descriptions are of similar quality. The difference between ∆E(n)
lin

and exact values of ∆E(n) lies within 0.04 eV on the space diagonal, 0.01 eV elsewhere.

This again validates the global relevance and self-consistency of our model.

Equation 14.13 also allows the simultaneous optimization of all the linear parameters

including A and ∆U0 (see table 14.10). The RMSD for ∆E thus obtained are 0.007,

0.004, and 0.002 eV for p2, p3, and p4, respectively. Then, adding these two degrees of

freedom to the optimization does not improve the quality of the description significantly.

Consistently, the values of the parameters do not vary much with respect to tables 14.7

and 14.8.

n = 2 n = 3 n = 4
∆ε0 2.8596 2.3739 2.1596
a

(n)
1 -0.1187 -0.0988 -0.0557
a

(n)
2 -0.1696 -0.1139 -0.1383
a

(n)
3 -0.2258 -0.2004 -0.1728
b

(n)
1 -0.0389 -0.0168 -0.0166
b

(n)
2 -0.0271 -0.0217 -0.0311
b

(n)
3 0.0310 0.0069 -0.0078
A 1.2050
∆U0 1.0263

Table 14.10: Effective values of the linear coefficients for a simultaneous optimization.
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14.3. Parametrization of the FFO model

14.3 Parametrization of the FFO model

14.3.1 General framework

With equation 14.13, we express the transition energy∆E(n)
lin in terms of the nuclear modes

Q, the linear parameters A and ∆U0 previously determined and ∆ε(n)
0 . This expression

exclusively comes from graphic considerations and does not invoke any specific formalism

except for the linear expansion.

In particular, instead of linearly expanding the energy gap ∆ε in equation 14.7, one

can use its effective expression in terms of the Hückel-type parameters, that is equation

13.13. Considering this, the dependence of∆ε with the nuclear coordinates is now indirect

through the Hückel-type parameters.

Thus, we investigate in the present part the feasability of using such an expression for

∆E, which could be resumed as follows

∆E
(n)
FFO(Q) = A′∆ε

(n)
FFO +∆U ′0 +

3∑
k=1

b
′(n)
k Qk (14.14)

where

∆ε
(n)
FFO = εFFOLU,n − εFFOHO,n (14.15)

=
(αFFO,(n)

B,LU − αFFO,(n)
B,HO ) + (αFFO,(n)

A,LU − αFFO,(n)
A,HO )

2

−

√√√√√αFFO,(n)
B,LU − αFFO,(n)

A,LU

2

2

+
(

2 cos π

2nβ
FFO,(n)
LU

)2
(14.16)

−

√√√√√αFFO,(n)
B,HO − αFFO,(n)

A,HO

2

2

+
(

2 cos π

2nβ
FFO,(n)
HO

)2
. (14.17)

The evolution αA,FO (FO = HO,LU) with the length of the acetylene bond dCC of the

molecule of acetylene is almost linear, see figure 14.6. This also stands for the evolution

of βFO with the internal distance dC-Ph in phenylacetylene and for the evolution of αB,FO

with the length of the quinoidal bond dquin of the molecule of benzene. Consequently, we

assume that the Hückel-type parameters linearly depend on the local nuclear modes Qk

(k = 1, 2, 3) in p2, p3, p4. 

α
FFO,(n)
A,FO (Q1) = α

0,(n)
A,FO + d

(n)
FOQ

1

β
FFO,(n)
FO (Q2) = β

0,(n)
FO + e

(n)
FOQ

2

α
FFO,(n)
B,FO (Q3) = α

0,(n)
B,FO + f

(n)
FOQ

3

(14.18)
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14. Parametrization

Figure 14.6: Evolution of the Hückel-type parameters with local coordinates: αA,FO (FO = HO,LU)
with dCC in acetylene (left), αB,FO with dquin of benzene (right), and βFO with dC-Ph in phenylacetylene
(bottom). Data relative to the HO are represented in red, data relative to the LU are represented in blue.
The determination coefficients are R2 = 1.0000, R2 = 0.9987, R2 = 0.9996, R2 = 0.9997, R2 = 0.9997
and R2 = 1.0000 for αA,FO, βFO, and αB,FO with FO = HO,LU, respectively.

Several remarks must be made at this point.

We allow the linear coefficients in the Hückel-type parameters to depend parametrically

on n to compensate for the diffences in the equilibrium geometries of p2, p3, and p4

(see paragraph 14.2.1). If we considered oversymmetrized (and thus homogeneus) and

equivalent equilibrium geometries for the three structures, we would expect dFO, eFO,

and fFO to be independent of n.

Along the same line, the origins α0,(n)
A,FO, β

0,(n)
FO , and α0,(n)

B,FO have the meaning of effective

values at the equilibrium geometries of the ground state. In the ideal case of equivalent

equilibrium geometries for p2, p3, and p4, they are expected to be independant of n too.

Then, contrarily to the procedure used in section 13.3, the effective values of the

Hückel-type parameters will not be optimized directly but indirectly through the linear

expansion coefficients d(n)
FO, e

(n)
FO, f

(n)
FO, α

0,(n)
A,FO, β

0,(n)
FO , and α0,(n)

B,FO, which is the object of the

present paragraph.
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14.3. Parametrization of the FFO model

In the following, we consider the “original” value of the Hückel parameter for the

frontier orbitals of acetylene at the relaxed ground states (see section 13.3). Since the

length of the acetylene bonds is the same in p2, p3, and p4 (see chapter 6), we consider

the same value of this parameter for the three structures, that is

α
0,(n)
A,FO = α0

A,FO (14.19)

where FO = HO, LU.

Along the same line, we impose that the effective values of β0,(n)
FO and α

0,(n)
B,FO are the

same for p2, p3, and p4. Rigourously, this is an approximation since a deviation of the

corresponding local nuclear coordinates was observed in their relaxed structures, yet the

deviation is small enough (σ ≈ 0.001 Å) to be neglected, at least in a first stage.

β
0,(n)
FO = β0,eff

FO (14.20)

α
0,(n)
B,FO = α0,eff

B,FO (14.21)

where FO = HO, LU.

14.3.2 Linear Hückel-type parameters

In a first stage, we optimize the linear coefficients of the Hückel-type parameters in order

to minimize the RMSD of ∆ε, using constraint 13.14.

As for in section 14.2, we start by optimizing the values of β0,eff
FO , α0,eff

B,FO, d
(n)
FO, e

(n)
FO, and

f
(n)
FO (for FO = HO, LU and n = 2, 3, 4) over the geometries of the eight vertices of the

cube. Without further constraint, this leads to the results summarized in table 14.11.

α
0,(n)
A,FO is supposed to be exact, and the evolution of αFFO,(n)

A,FO depends only on the length

of the acetylene bond. Then we can also use the exact mean slope of αFFO,(n)
A,FO along the

edges [100] to determine the values of d(n)
FO. These values along with the corresponding

re-optimization are summarized in table 14.12.

In the first case (no extra constraint), the values of the RMSD stay small (less than

0.005 eV), which makes the description of ∆ε satisfying. On the contrary, using the exact

values of d(n)
FO reduces dramatically the quality of the description (most of the RMSD

values are above 0.010 eV), despite the physical ground of the constraint. This may be

due to the fact that the values of β0,eff
FO and α0,eff

B,FO at each vertex are effective and thus do
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14. Parametrization

HO LU
n = 2 n = 3 n = 4 n = 2 n = 3 n = 4

α0
A -13.53 -7.14

β0,eff
FO -0.75 -0.95

α0,eff
B,FO -12.89 -8.38
d
eff,(n)
FO 0.11 0.13 0.05 -0.28 -0.13 -0.12
e
eff,(n)
FO 0.07 0.03 0.05 0.06 0.04 0.04
f
eff,(n)
FO 0.10 0.10 0.10 -0.23 -0.20 -0.18

RMSD ∆ε / eV 0.001 0.004 0.002 0.001 0.003 0.002

Table 14.11: Effective values of the linear coefficients of the Hückel-type parameters using the eight
vertices of the cube.

HO LU
n = 2 n = 3 n = 4 n = 2 n = 3 n = 4

α0
A -13.53 -7.14

β0,eff
FO -0.75 -0.94

α0,eff
B,FO -12.88 -8.44
d

(n)
FO 0.04 0.05 0.02 -0.08 -0.04 -0.04

e
eff,(n)
FO 0.07 0.03 0.04 0.06 0.04 0.04
f
eff,(n)
FO 0.10 0.10 0.09 -0.23 -0.19 -0.17

RMSD ∆ε / eV 0.012 0.017 0.006 0.030 0.016 0.013

Table 14.12: Effective values of the linear coefficients of the Hückel-type parameters using the eight
vertices of the cube and exact values of d(n)

FO.

not behave as simply as we would expect (this depends on the evolution of the implicit

interactions) with respect to the local coordinates. In particular, their evolution may be

multilinear, and constraining the linearity requires to give more flexibility to the function

via α0,eff
B,FO.

Using the first set of parameters (table 14.11) for the 409-point test sets gives small

values for the RMSD of ∆ε: 0.002/0.005, 0.005/0.005, and 0.004/0.004 eV for the HO/LU

of p2, p3, and p4 respectively. Re-fitting over the whole test set does not improve the

global description.

The values of ∆ε obtained using the Hückel-type parameters optimized over the eight

vertices are associated to the values of A and ∆U(Q) presented in table 14.10 to calculate

∆E. Since the two sets of parameters are obtained from different methods, such an

evaluation is purely indicative. Yet, it gives decent values of RMSD for ∆E (0.007, 0.016,

and 0.010 eV for p2, p3, and p4, respectively).
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14.3. Parametrization of the FFO model

Re-fitting simultaneously the values of A′, ∆U ′0, b
′(n)
k , deff,(n)

FO , eeff,(n)
FO , f eff,(n)

FO over each

test sets slightly improves the description. The values are summarized in table 14.13.

HO LU
n = 2 n = 3 n = 4 n = 2 n = 3 n = 4

α0
A -13.53 -7.14

β0,eff
FO -0.75 -0.95

α0,eff
B,FO -12.89 -8.37
d
eff,(n)
FO 0.11 0.13 0.05 -0.27 -0.13 -0.12
e
eff,(n)
FO 0.07 0.03 0.05 0.06 0.04 0.04
f
eff,(n)
FO 0.10 0.10 0.10 -0.23 -0.20 -0.18

n = 2 n = 3 n = 4
A′ 1.1997
∆U ′0 1.0398
b

(n)
1 -0.0391 -0.0179 -0.0177
b

(n)
2 -0.0275 -0.0226 -0.0398
b

(n)
3 0.0306 0.0053 -0.0095

RMSD / eV 0.006 0.014 0.010

Table 14.13: Re-fitted linear parameters from the optimization over the 409-point test sets, with ∆E
values as targets.

The values of the RMSD for ∆E lie between 0.006 and 0.014 eV, which is acceptable

even though some improvements could be made. Yet, it is quite engouraging while con-

sidering the level of approximations involved at each step of the evaluation of ∆E. Thus,

we proved the validity of our decomposition of ∆E for para-PPEs, and the possibility of

providing a simple expression in terms of local nuclear coordinates.
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Chapter 15

Conclusions and future prospects

Chapter 13 introduces the FFO (frontier fragment orbitals) model along with effective

expression for the energies of the frontier orbitals of PPEs. Those expressions rely on: (i)

a first neighbor approach between the frontier orbitals of two different sites, that is benzene

and acetylene; (ii) the dominant character of the frontier orbitals of the constitutive sites

in the final frontier orbitals; (iii) a weak coupling between the frontier orbitals of the

pseudo-fragments (for meta-PPEs). The order of magnitude of the effective Hückel-type

parameters is similar as the one of the reference (extended-Hückel) parameters for both

para- and meta-PPEs. This legitimates assumptions (i) and (ii), though refinements are

welcome.

In addition, we reasonably reproduced the energies of the frontier and second frontier

orbitals of meta-PPEs, despite our rough approximation of the coupling. This confirms

assumption (iii) and suggests that the evaluation of the actual overlap between the pseudo-

fragment orbitals should improve our results for meta-PPEs.

These results confirm the relevance of an effective description of the energy of the

HO–LU gap of both para- and meta-PPE in terms of the frontier orbitals of benzene and

acetylene, which is an important result. Though, the effective values of the parameters

obtained in chapter 13 correspond to a static description of PPEs, and will thus not be

kept for the final vibronic model, they should be adapted to any nuclear coordinate.

We start to address this point in chapter 14, by investigating the possibility of parametriz-

ing the energy (of the frontier orbitals and electronic states) of para-PPEs in several ways,

in particular with respect to local nuclear coordinates.
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15. Conclusions and future prospects

Those involve the stretching of the acetylene bond, the stretching of the internal

bond between benzene and acetylene, and the collective deformation of benzene from the

ground-state equilibrium geometry to the first excited state one. We proved that both

the orbital and electronic energies are related through an affine relationship and that each

can be considered as linearly dependent with respect to the nuclear coordinates.

Due to the inhomogeneity of the coordinates both in a para-PPE and between two

different ones, deviations are introduced in the indirect optimization of the Hückel-type

parameters. Consequently, this work only represents a proof of principle of the validity

of our description, since we are able to reproduce the reference values of the electronic

energies within 0.05 eV, which is quite decent in any case.

The effects of the inhomogeneity of the coordinates in a para-PPE can be evaluated

considering cubes involving oversymmetrized equilibrium geometries of S0 and S1. The

bond lengths of those may differ from one para-PPE to another. Considering oversym-

metrized geometries with equal bond lengths for all para-PPEs, we can evaluate the effect

of inhomogeneity between para-PPEs. Most importantly, this will allow to proceed to the

parametrization without any bias due to inhomogeneity.

The final prospect hereby is to study the transferability of this decomposition to meta-

PPEs, and thus to consider the coupling between pseudo-fragments (which we started to

investigate form a static perspective) along with its geometry dependence.
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General conclusions and prospects
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15.1. Conclusions

15.1 Conclusions

The present thesis has focused on PPEs both as a study system on their own and as

a support for the construction of a novel type of vibronic model for similar hierarchical

π-conjugated macromolecules. The study of PPEs aimed to rationalize the unidirec-

tional excitation transfer that occurs after light absorption, whilst the vibronic model is

to provide functional expressions of the electronic energies in terms of nuclear coordinates.

We validated TDDFT as a quantitative method for the description of the electronic

structure of PPEs. TDDFT was then used to characterize para- and meta-PPEs at the

relaxed geometries of their first electronic states from geometric, energetic, orbital, and

vibrational perspectives. In the case of para-PPEs, the vibrationally resolved electronic

absorption spectra were also computed and the main contributions were assigned.

In para-PPEs from 2- to 7-rings, we showed that the lengths of three types of bonds

(acetylene, quinoidal, and internal), and vibrational frequencies are typical of the elec-

tronic states (S0 or S1). The S0–S1 transition energy, along with the energy gap between

the frontier orbitals are typical of the number of rings. The shape of the frontier orbitals

is preserved for any number of rings, and reveals the dominant involvement of the frontier

orbitals of benzene and acetylene.

The characterization of some meta-PPEs regarding the properties mentioned above

proves that each one of the first excited states is localized on a given building block de-

limited by (and including) meta-substituted phenylene(s). In particular, we insist on the

fact that the excited states mainly result from a single excitation between the frontier (or

second frontier) orbitals of the species, which are localized on the building blocks. This

conclusion comes from the fact that the building blocks of meta-PPEs present character-

istics that are highly similar to the ones of the corresponding para-PPEs, and are almost

additive in a meta-PPE. The selective localization of the excited states, and the shape

of the frontier orbitals inevidence a strong hierarchy in the intramolecular interactions

governing the behaviour of PPEs.

The PES of the smallest symmetric (2,2)-meta-PPE was explored along particular

nuclear motions, allowing to identify several conical intersections that are energetically

accessible. Doing so, we also identified components of their branching spaces. In par-
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ticular, we confirmed the role of the stretching of the acetylene bonds in the excitation

transfer, which was already suggested in the literature. This exploration also highlighted

the importance of the stretching of the quinoidal bonds on the common phenylene, which

had not been reported yet.

The localization of the excited states on the building blocks allows to rationalize the

lifting of degeneracy at the conical intersections in terms of coupled, local diabatic states.

This interpretation echoes the assumption of a shishiodoshi cascade mediating the energy

transfer in large meta-PPEs [42] and is confirmed by the exploration of the PES of the

mixed (2,3)-meta-PPE. In this prototypical species, tightly avoided crossings are identi-

fied between S1 and S2 that, at the relaxed ground-state geometry, localized on the 3- and

2-ring building blocks, respectively.

A strategy for building a novel vibronic model based on the energies of PPEs has been

proposed. Relying on the hierarchy of couplings governing the local interactions in PPEs,

this model was constructed step by step following a multiscale approach, see figure 15.1.

Each one of the steps consists in the description of an interaction due to either a coupling

between orbitals (or electronic states) or electronic repulsion. Since the photochemistry of

the PPEs is governed by the π-system, tight-binding formalisms are adapted to describe

each step of the model.

An effective Hückel-type Hamiltonian has been proposed that provides effective ex-

pressions for the energies of the frontier orbitals of para-PPEs from effective Hückel-type

parameters related to the frontier orbitals of benzene and acetylene, and their coupling

(FFO model). The effective values for the Hückel-type parameters and orbital energies

were obtained by an optimization procedure running over a sample of para-PPEs.

This formalism has been extended to meta-PPEs. The effective expressions for the

energy in meta-PPEs along with the effective energies of para-PPEs allow to reproduce

the HO–LU gap within 0.05 eV, which confirms that our effective Hamiltonian describes

the essential physics of both para- and meta-PPEs.

Then, we considered the evolution of the energy along the in-plane nuclear coordinates

that are known to be involved in the excitation transfer in PPEs. Those are localized

respectively on benzene, acetylene, and between both. We proved that the S0–S1 transi-
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15.2. Future prospects

Figure 15.1: Structure of the vibronic model. Decomposition of the transition energy. FO = HO or
LU.

tion energies (TDDFT calculations), the HO–LU gap energies and effective Hückel-type

parameters depend almost linearly on those local coordinates. In addition, we presented a

linear mapping between the S0–S1 transition energies and the HO–LU orbital gap energies

in para-PPEs.

This mapping involves an offset that can be interpreted as a correction to the correla-

tion energy, and which depends on both the number of rings of the PPE and the nuclear

motion considered, and a constant slope.

Following the multiscale approach, the mapping equation was combined with the ef-

fective expression of the energy gap of the FFO model, thus allowing to express the S0–S1

transition energy as a simple function of the local nuclear coordinates only. With this ex-

pression, we reproduced the transition energy of the three smallest para-PPEs at various

geometries within 0.05 eV, thus validating the overall procedure.

15.2 Future prospects

The static study of PPEs shall be completed by the identification of conical intersec-

tions in the non-symmetrical meta-PPE m23 and the characterization of exact branching
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spaces. This will provide the most efficient directions of relaxation of the system once the

electronic transfer occurs. To do so, we could use automated procedures that follow the

derivatives of the energy along the nuclear coordinates. This task is still in progress, and

has not been fully completed for technical reasons.

The final vibronic model also is still under construction. In particular, the linear

parameters for the para-PPEs have to be determined exactly using samples of oversym-

metrized geometries to avoid any bias, then exprapolated to varied geometries, and the

parametrization of the model has to be carried out for all sorts of meta-PPEs. The de-

termination of exact linear expansion parameters for the para-PPEs is not expected to be

an issue, but has to handled carefully.

The parametrization of the model for meta-PPEs requires to describe the dependence

of the coupling between the building blocks in terms of the collective motion of the meta-

phenylene. One of the main difficulties of this parametrization will come from the fact

that the deformation of the meta-phenylene not only affects the coupling but may also al-

ter the energies of the two building blocks, with a magnitude that is still to be determined.

Once the general vibronic model is set up, it will be expected to be able to be used

to perfom quantum dynamics using energies obtained at the TDDFT level, which is still

out of reach for larger PPEs if no such transferable procedure is used.
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Appendix A

Validity of TDDFT for studying

PPEs

Article reprint:

Vibronic properties of para-polyphenylene ethynylenes: TD-DFT insights, by Emme-

line Kim-Lien Ho, Thibaud Etienne, and Benjamin Lasorne, published in the Journal of
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The first singlet excited states of a series of para-polyphenylene ethynylenes (PPEs) are investigated
using time-dependent density functional theory (TD-DFT). Vibronic absorption spectra are calcu-
lated and show excellent agreement with the experiments, thus validating the adequacy of TD-DFT
for such systems. The vibronic structure is assigned to the excitation of a few typical stretching
and bending modes. The significant discrepancy between the simulated vertical-transition energies
and the experimental absorption maxima in PPEs is underlined and explained. The evolution of
the spectroscopic properties and of the electronic structure with the chain length is discussed and
characterized. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4981802]

I. INTRODUCTION

Dendrimers based on phenylene ethynylene have drawn
much attention during the last two decades because of
their remarkable properties in terms of light harvesting and
energy transfer.1–4 Their highly branched structure consists
of linear building blocks of para-polyphenylene ethynylenes
(linear PPEs) linked to each other through meta-substitutions
on phenylene nodes. Particular arrangements stand out as
molecular realizations of Cayley trees,5 in which all the build-
ing blocks present the same number of rings, and the extended
dendrimers, in which the number of rings increases from the
periphery to the core.

A well-known example of extended dendrimer is the so-
called nanostar. Both experimental2–4,6–9 and theoretical10–13

studies showed that the first three UV absorption bands corre-
spond to bright excited electronic states that are localized on
linear building blocks of increasing length. The energy of each
excited state is related to the number of rings of the building
block on which it is localized: the larger the number of rings,
the smaller the energy of the excited state. Sequences of build-
ing blocks with a different number of rings linked together thus
lead to an energy gradient. As a consequence, the peripheral
shorter blocks get the initial excitation, which is then trans-
ferred unidirectionally toward the core of the nanostar in a
sequential way.11,14–16 In addition, the absorption spectrum
of the nanostar is almost the simple sum of the absorption
spectra of linear PPEs because their optical properties are
barely affected by meta-substitution.17 Thus, describing quan-
titatively the electronic structure of linear PPEs is essential in
order to understand the energy transfer through the nanostar
and eventually design new molecules in which this transfer
could be optimized.

The present work is a computational study of the S0–S1

absorption process in the 2- to 7-ring linear PPEs. The most
popular electronic-structure method able to deal with the
excited states of such large molecules is time-dependent den-
sity functional theory (TD-DFT). Yet, different conclusions
were published about the ability of TD-DFT to describe PPEs

correctly.18,19 Here we show that TD-DFT, along with an
adequate level of theory, is perfectly able to describe the S1

states of linear PPEs. However, calculated vertical-transition
energies must not be compared to experimental absorption
maxima at low temperature.

Assessing the validity of a computational method upon
comparing the calculated vertical-transition energy to the
experimental absorption maximum is a common practice.
However, one should keep in mind that this approximation
may badly fail in some cases.19–21 Ethylene is a well-known
example for which the vertical-transition energy should not
be compared to the absorption maximum.20,21 In such a situ-
ation, a safer comparison can be made between the calculated
vibronic spectrum and the experimental absorption spectrum.
This is the case for linear PPEs whereby the experimental
absorption maximum at low temperature happens to be the
0–0 transition.2–4,6,8 TD-DFT calculations provide calculated
vertical-transition energies that are quite different from the
experimental absorption maxima for PPEs but the simulated
vibronic spectra are in excellent agreement with the exper-
imental ones. The latest point thus assesses the validity of
TD-DFT for such systems.

Vibronic spectra are also useful theoretical tools for
assigning the vibrational structure of an experimental absorp-
tion band. Here, three types of vibrational modes are involved
in the S0–S1 absorption process, the most important one being
the stretching of the acetylene bond, as already pointed out in
other studies.15,19

In addition, we present an analysis in terms of natural tran-
sition orbitals (NTOs)22 performed on the 2- to 7-ring PPEs.
Such an analysis is based on a unitary transformation of the
transition-density matrix produced by the excited-state calcu-
lation. It is often used to condensate the physical information
related to the electronic transition into one (sometimes two)
couple(s) of orbitals, which provides straightforward insights
into the nature of the transition. The transition may then be
pictured as a hole (occupied NTO) and a particle (virtual
NTO) wavefunction. Here, we show that the S0–S1 absorp-
tion is clearly dominated by a single bonding-to-antibonding

0021-9606/2017/146(16)/164303/6/$30.00 146, 164303-1 Published by AIP Publishing.
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transition and that the extent of border effects depends on the
number of rings.

II. COMPUTATIONAL DETAILS

All the calculations were performed with the Gaussian 09
package23 (revision D01) using DFT (ground states) and TD-
DFT (exited states) calculations at the CAM-B3LYP/6-31+G*
level of theory. This combination of range-separated hybrid
(RSH) functional and diffuse-containing basis set has already
been used to simulate the vibronic spectrum of diphenylacety-
lene (2-ring PPE) in good agreement with experiments.19

This level of theory is assumed to be adequate for describ-
ing extensively delocalized electronic states. Geometries were
optimized and minima were characterized with frequency cal-
culations for all members of the PPE series (from two to seven
rings) both in S0 and S1. The S0 and S1 normal modes were
used to calculate Franck-Condon factors and thus simulate
vibronic absorption spectra with the method implemented in
Gaussian 09.24 NTOs were produced with the NancyEX soft-
ware,25 which post-processes TD-DFT calculations obtained
with Gaussian 09.

III. RESULTS AND DISCUSSIONS
A. Electronic vs. vibronic spectra

In Ref. 18, vertical-transition energies are provided for
the 2- and 3-ring linear PPEs. These and the energies at the
absorption maxima17 are off by about 0.3–0.4 eV. It was con-
cluded that TD-DFT with the CAM-B3LYP/6-311G* level of
theory was unable to describe correctly the excited states of
PPEs. Surprisingly, the conclusion was the same for other high-
level multireference methods. However, in Ref. 19, TD-DFT
with the CAM-B3LYP/6-31+G* level of theory was used to
calculate the absorption spectrum of the 2-ring PPE, match-
ing successfully the experimental one. The basis sets used in
Refs. 18 and 19 are different but lead to almost identical results
(see Table S1 of the supplementary material). TD-DFT with
the CAM-B3LYP functional thus seems valid for such systems.
We show below the reason for this apparent paradox.

The vertical-transition energies of the 2-, 3-, and 4-
ring PPEs calculated with the CAM-B3LYP/6-31+G* level
of theory are given in Table I. Our calculations and those
reported in Refs. 18 and 19 produce equivalent values for
the vertical-transition energies and, indeed, these quantities
are substantially different from the experimental energies at
the absorption maxima; see Table I. A vivid illustration of this

TABLE I. E0: 0–0 transition energies; Ea: adiabatic-transition energies
(without vibrational contribution, i.e., well to well); Ev: vertical-transition
energies. All values are given in eV for the 2-, 3-, and 4-ring PPEs. TD-DFT
calculations were performed at the CAM-B3LYP/6-31+G* level of theory.
Experimental data at 77 K are courtesy of Kleiman, see also Ref. 17.

2-ring 3-ring 4-ring

E0 Ea Ev E0 Ea Ev E0 Ea Ev

Expt. 4.09 3.56 3.32
TD-DFT 4.05 4.14 4.48 3.54 3.62 3.89 3.29 3.37 3.63

FIG. 1. Experimental (full lines) and simulated (dashed lines) absorption
spectra for the 2- (blue), 3- (red), and 4-ring (green) PPEs. The calculated
spectra presented here are purely electronic, i.e., obtained upon convoluting
vertical-transition energies at the ground-state equilibrium geometries with a
Gaussian band shape. Experimental data at 77 K are courtesy of Kleiman, see
also Ref. 17.

discrepancy is shown in Figure 1 where the experimental spec-
tra are compared to the UV-visible electronic spectra obtained
with the standard procedure available in GaussView for
post-processing TD-DFT results calculated with, e.g.,
Gaussian 09.23

In fact, the absorption spectrum provided in Ref. 19 is a so-
called vibronic spectrum, simulated using the procedure based
on Franck-Condon factors24 implemented in Gaussian 09.23

This type of calculation requires the Hessians at both minima
in S0 and S1. It uses explicitly the geometrical shift vector
between both equilibrium structures and the Duschinsky rota-
tion matrix that accounts for the variation of the vibrational
normal modes between these points. In contrast, the spectra
shown in Figure 1 are vibrationless electronic spectra obtained
upon mere convolution of the vertical-transition energy calcu-
lated at the ground-state equilibrium geometry with a Gaussian
band shape. We thus calculated the vibronic absorption spectra
of the 2-, 3-, and 4-ring PPEs with the CAM-B3LYP/6-31+G*
level of theory. These are shown in Figure 2. We now observe
almost perfect agreement with the experimental ones. This

FIG. 2. Experimental (full lines) and simulated (dashed lines) absorption
spectra for the 2- (blue), 3- (red), and 4-ring (green) PPEs. Vibronic spec-
tra were calculated using a Gaussian broadening with a half-width at half-
maximum (HWHM) of 200 cm�1 and blue-shifted by about 2-3 nm to fit
the experimental 0–0 absorption maxima on the figure (homogeneous shift
applied in the energy domain and data further converted to the wavelength
domain). Experimental data at 77 K are courtesy of Kleiman.
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FIG. 3. Absorption spectra of the 2- (blue), 3- (red), and 4-ring (green) PPEs.
Experimental data at 77 K (full lines) are courtesy of Kleiman. The energies of
vertical transitions, Ev (dashed-dotted lines), and 0–0 transitions, E0 (dashed
lines), were computed at the CAM-B3LYP/6-31+G* level of theory.

unequivocally proves the validity of TD-DFT to describe the
excited states of linear PPEs.

Assessing the validity of a computational method upon
comparing calculated vertical-transition energies to experi-
mental energies at the absorption maxima is a common pro-
cedure. Despite the fact that the absorption process is hardly
vertical,19–21 this approximation of the absorption maximum
(AAM) is fair as long as the difference between both values
does not exceed 0.1 eV (≈800 cm�1), which is the expected
order of magnitude of the accuracy of (high-level) excited-state
quantum chemistry methods. Some of the factors influenc-
ing the validity of the AAM were previously discussed by
one of the authors of this paper.21 In any case, it is essen-
tial to keep in mind that the AAM is only an approximation
and one that may badly fail under some circumstances. As
a rule of thumb, for molecules such as a linear PPE pre-
senting an absorption spectrum with a non-trivial shape and
vibrational structure, the adequacy of a computational method
should not be assessed from the vertical-transition energy only.
When frequency calculations are tractable for both ground and
excited states, simulating the vibronic spectrum is a much safer
option.

In particular, TD-DFT was thought unable to describe
PPEs correctly in Ref. 18 because the AAM was used referring
to experimental spectra at 77 K. The latter are highly nonsym-
metrical (see Figure 2) and the absorption maxima happen
to correspond to 0–0 transition energies, i.e., vibrationless
band origins.2–4,6,8 In other words, vertical-transition energies
were compared to 0–0 transition energies. Such quantities are
expected to be quite different (except in situations where the
equilibrium geometries of both electronic states are similar,
which is not the case here). For the 2-, 3-, and 4-ring PPEs,

TABLE II. Energies of the secondary absorption maxima in eV (one quan-
tum in the main vibrational progression involving the acetylene stretching
mode). Eexp comes from the experimental spectrum, and Esim from the
vibronic spectrum simulated using the results of TD-DFT frequency calcu-
lations (CAM-B3LYP/6-31+G*). Experimental data at 77 K are courtesy of
Kleiman.

2-ring 3-ring 4-ring

Eexp 4.34 3.81 3.57
Esim 4.32 3.83 3.58

the discrepancy lies within a range of about 0.35–0.40 eV
for TD-DFT calculations (see Table I and Figure 3). In con-
trast, the calculated 0–0 transition energies are in excellent
agreement with experimental data (E0: difference lower than
0.04 eV; see Table I). Note that this still holds for the adiabatic-
transition energies, for which zero-point energies are not taken
into account (Ea: difference lower than 0.06 eV; see Table I). It
thus happens that most of the computational methods tested in
Ref. 18 are actually better than originally expected, including
TD-DFT.

Yet, Ref. 18 addresses a crucial point for studying the
excitation transfer in PPE dendrimers. Even though meta-
substitution does not affect the optical properties of the linear
building blocks (which allows one to consider that the first
transition energies of the (2,3)-ring meta-substituted PPE are
almost equal to those of the 2- and 3-ring linear PPEs), it may
induce the appearance of charge-transfer states between lin-
ear units. If so, it is correct to point out that TD-DFT may
not be the most adequate treatment for such states. How-
ever, charge-transfer states are not optically active (dark states)
and are not directly responsible for the excitation transfer
in meta-substituted PPEs. In contrast, the excited states that
are optically active (bright states) are expected to dominate
this process and TD-DFT thus seems adequate for computing
them.

Now, let us note that the AAM may be adapted upon com-
paring the calculated vertical-transition energy to the second-
most-intense band of the experimental spectrum (see Table II
for the 2-, 3-, and 4-ring PPEs). The second band corre-
sponds to one quantum in the main vibrational progression
(see below). The calculated energies then remain only 0.1 eV
greater than the experimental ones on average, right within
the acceptable limit. As pointed out in Ref. 20, another and
safer option is to compare the vertical-transition energy to
the average-transition energy of the transition. In the 2-ring
PPE, for example, the former is equal to 4.48 eV and the lat-
ter to 4.49 eV. In addition, for PPEs, the relative intensities
of the two absorption maxima are swapped when rising the

FIG. 4. First couple of NTOs for PPEs
with two rings (left) and seven rings
(right). For each couple, the occupied
(virtual) NTO is at the bottom (top).
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temperature,17 which means that the AAM becomes valid
at room temperature. More generally, rising the experimen-
tal temperature may help for this smoothes the vibrational
structure and causes the experimental spectrum to be more
symmetrical; the AAM may then be applied with better results
but vibrational information is then lost. This effect can be sim-
ulated upon increasing the convolution width (see Fig. S2 of
the supplementary material).

Finally, in order to get more detailed insight into the nature
of the first excited states of linear PPEs, we analyzed the NTOs
corresponding to the S0–S1 transition for each of the 2- to 7-
ring PPEs. The first couple of NTOs is plotted in Figure 4 for
the 2- and 7-ring PPEs. Their relative weights are reported in
Table S3 of the supplementary material together with those
of the 3- to 6-ring PPEs. Figure S4 of the supplementary
material depicts the first NTO couples for the 3- to 6-ring
PPEs. In every case, we see that the transition is of bonding-
to-antibonding nature, essentially between frontier orbitals.
Figure 4 and Figure S4 of the supplementary material show
that when the number of rings increases, the external rings of
the molecular system are less and less involved in the first
electronic transition. One also sees in Table S3 of the
supplementary material that the composition of the electronic
transition, in terms of number of pairs of molecular orbitals or
in terms of NTO couples, increases from one to two when the
number of rings grows (considering relative weights greater
than ten percent). Accordingly, the relative weight of the sec-
ond couple of NTOs increases with the size of the system,
but no more than two NTO couples are necessary to describe
the transition. For each linear PPE, the frontier MOs are very
similar to the first couple of NTOs, as proved by the sim-
ilar values of the relative weights in both pictures. Figure
S5 of the supplementary material depicts the second cou-
ple of NTOs with significant weights (for the 4- to 7-ring
PPEs). One can notice that the correction provided by the
second couple of NTOs consists of a transfer of the most
important location of the transition from the central ring(s)
to the ring(s) between the center and the extremities of the
PPEs.

FIG. 5. Experimental absorption spectrum at 77 K (blue) and simulated
absorption stick spectrum (green) of the 2-ring PPE.

B. Vibrational assignment

A vibronic treatment also proves to be a useful tool for
rationalizing experimental spectra upon providing the assign-
ment of the peaks and the identification of the corresponding
photoactive modes. Figure 5 confronts the simulated stick
spectrum with the experimental spectrum recorded at 77 K
for the 2-ring PPE in order to assign the vibrational structure
of the electronic transition. As aforementioned, the simulated
spectrum agrees nicely with the experimental one with respect
to the position of the peaks (the simulated 0–0 transition wave-
length is only 3 nm greater than the experimental maximum)
and their relative intensities.

The vibrational structure of the experimental spectrum
at 77 K is characterized by five main bands involving four
vibrational modes (see Figure 6). The maximum-absorption
band at 303 nm is the 0–0 transition (ω0−0 = 33 003 cm�1).
From our analysis, the 293 nm band (1126 cm�1 vs. 0–0)
is assigned to overlapping transitions with one quantum in
either of the bending modes 33 and 38; the 290 nm shoulder
(1479 cm�1 vs. 0–0) and the 285 nm band (2084 cm�1 vs.
0–0) correspond to one quantum in the stretching modes 55
and 56, respectively. The band and shoulder between 276 nm

FIG. 6. Photoactive vibrational modes
of the 2-ring PPE.
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FIG. 7. Characteristic lengths at the S0 (left) and S1 (right) minima.

(3229 cm�1 vs. 0–0) and 273 nm (3627 cm�1 vs. 0–0) are
overtones between mode 56 on the one hand and modes 33,
38, and 55 on the other hand; finally the 269 nm band (4171
cm�1 vs. 0–0) is due to two quanta in mode 56.

Modes 33 and 38 are centrosymmetric combinations of
the triangular bending mode of benzene, different with respect
to the relative orientations of the triangles in the dimer. In mode
33 the triangles head toward the extremities of the molecule;
in mode 38 they head toward the center, altering the bond-
ing scheme between the four central carbons. Mode 55 is a
symmetric stretching of the quinoidal carbons of the two rings
while mode 56 is the stretching of the acetylene bond.

The intensity of each band increases with the magni-
tude of the displacement along the corresponding mode. This
agrees with the optimized geometries in the S0 and S1 states
(see Figure 7) that mainly differ by the bonding scheme on
the four central carbons (bond alternated in the S0 minimum
and of cumulene type in the S1 minimum) and the length
between the quinoidal carbons (shorter distance for the S1

minimum). Those four photoactive modes thus reflect how
the 2-ring PPE relaxes its geometry after the S0–S1 vertical
absorption.

Figure 8 shows the normalized vibronic spectra of the
PPEs from two to seven rings; for clarity, the spectra are pre-
sented with the same origin taken at the 0–0 transition energy.
As the number of rings grows, the shape, relative energies,
and relative intensities of the bands are essentially preserved,
confirming that the bonding schemes of both states and the
photoactive vibrational modes are similar for all members in
the series.

On the other hand, at the 0–0 band origin (absorption
maximum), the energy decreases and the absolute intensity
increases by an order of magnitude from the shorter to the
longer PPE (see Table S2 of the supplementary material).

FIG. 8. (Normalized) simulated absorption spectra shifted to the 0–0 transi-
tion energy for the 2- (blue), 3- (red), 4- (green), 5- (orange), 6- (purple), and
7-ring (yellow) PPEs.

This behavior is in agreement with extending the conjuga-
tion through the system.26,27 Note that simulations of the
whole vibronic absorption spectra for the PPEs from two to
seven rings were performed with the same convolution width
(HWHM = 200 cm�1) and can be found in Fig. S3 of the
supplementary material.

The bands of simulated spectra for the 3- to 7-ring PPEs
are assigned to centrosymmetric combinations of vibrational
modes already identified for the 2-ring PPE: ∆ω = 1000-
1200 cm�1 triangular bending modes, ∆ω = 1600-1800 cm�1

quinoidal stretching modes, ∆ω = 2200-2300 cm�1 acetylene
stretching modes, with ∆ω = ω − ω0−0. As the chain grows,
the emergence of new modes causes enlargement of the bands
for two reasons: (i) increasing the number of rings increases
the number of combinations allowed for each type of bend-
ing and stretching modes (e.g., there are as many acetylene
stretching modes as acetylene bonds and a certain number of
combinations are centrosymmetric); (ii) increasing the chain
length also increases its flexibility and thus the importance of
anharmonic low-frequency modes (such as torsions), which
will induce a broad background that cannot be accounted for
by our harmonic simulations. Such modes will generate con-
formational disorder when the temperature increases and may
modify the interactions between PPEs and their environment
in dendrimers.

In summary, linear PPEs are characterized by only
three types of vibrational modes defining the very particular
structure and shape of their absorption spectra for the S0–S1

transition. All the geometrical parameters of the ground
(respectively, excited) states are unchanged with the number
of rings, leading to tight (≈200 cm�1) wavenumber domains
that are characteristic of each type of photoactive vibrations.

IV. CONCLUSIONS

Calculations of vertical-transition energies and vibronic
absorption spectra were performed for the 2- to 7-ring lin-
ear PPEs and compared to experimental spectra for the three
shorter ones. The calculated spectra present the same shapes
and vibrational structures as the experimental ones and per-
fectly match the experimental 0–0 transition energies. The
good agreement of our calculated spectra with the experimen-
tal ones proves that TD-DFT along with an RSH functional
(CAM-B3LYP) is a reliable approach for describing the optical
properties of linear PPEs. Confronting vibronic spectra with
vertical-transition energies, we showed that applying the com-
mon approximation of the absorption maximum to PPEs may
lead to wrong conclusions regarding the validity of computa-
tional methods. Other procedures for assessing the adequacy
of a computational method using experimental spectra were
discussed.

The simulated stick vibronic spectra were calculated and
used to assign the main bands of the experimental spectra.
Three types of vibrations were identified as photoactive for all
members of the series: the triangular bending and quinoidal
stretching modes of each benzene ring and the stretching mode
of each acetylene bond. Those vibrational modes are consis-
tent with the geometrical deformations occurring between the
S0 and S1 minima. Comparison of the vibronic spectra for
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different numbers of rings shows that the geometrical proper-
ties at the S0 and S1 minima, the respective electronic structure
of each state, and the type of vibrations excited by the elec-
tronic transition are essentially the same in all members of the
series of linear PPEs.

The NTO analysis provided a clear picture of the transi-
tion nature and showed that it simply consists of a bonding-
to-antibonding population transfer, essentially between
frontier orbitals. Such an analysis also revealed that when
the size of the system increases, border effects for the elec-
tron redistribution become more significant. This observation
was consistent between the Kohn-Sham orbitals and NTO
analyses.

The present work provides a basis for investigating the
optoelectronic properties of meta-substituted PPEs. TD-DFT
was shown to be valid for describing the first bright state
of each linear PPE. Yet, as pointed out in Ref. 18, meta-
substitution potentially induces the appearance of dark charge-
transfer states between two linear units, which may no longer
be correctly handled unless a more sophisticated strategy is
considered.

SUPPLEMENTARY MATERIAL

See supplementary material for further information about
the calculations, as well as the Cartesian coordinates of the S0

and S1 minima of the 2-, 3-, and 4-ring PPEs.
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Appendix B

Linear response theory

The conceptual bases for this chapter can be found in reference [103]

B.1 The time-dependent problem

We consider a physical system described by the Hamiltonian Ĥ0. Its eigenvalues and

eigenvectors are denoted En and ϕn, respectively, and the corresponding eigenstates are

stationary provided that Ĥ0 does not depend on time.

At time t = 0, the system undergoes a perturbation turning the total Hamiltonian

into

Ĥ(t) = Ĥ0 + λŴ (t) (B.1)

where λ is a real parameter, satisfying λ � 1, and Ŵ (t) represents the action of the

time-dependent perturbation on the system, of similar amplitude as Ĥ0.

Continuity considerations impose that at time t = 0 when the perturbation is applied,

the system is in the same state as for t < 0, that is a stationary eigenstate ϕi of Ĥ0. Since

the eigenstates of the two Hamiltonians Ĥ(t) and Ĥ0 are different, the system starts

evolving as soon as it is perturbed, namely transitions occur from the initial stationary

state ϕi to other ones. At time t > 0, the system is in the state |Ψ(t)〉, a wavepacket

solution of the time-dependent Schrödinger equation, which can be expanded over the

complete basis of the stationary eigenstates.
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i~ d
dt
|Ψ(t)〉 =

[
Ĥ0 + λŴ (t)

]
|Ψ(t)〉 (B.2)

|Ψ(t)〉 =
∑
f

C̃f (t)|ϕf〉 (B.3)

∀f, C̃f (t) = e
−iEf t/~cf (t) (B.4)

Equation B.4 constitutes an interaction representation: the expansion coefficients are

conveniently factorized into a time-dependent part cf (t) due to the time-dependent per-

turbation and a phase factor e−iEf t/~ due to the time-independent Hamiltonian Ĥ0. If the

time-dependent perturbation is actually small before Ĥ0, the factor cf (t) will evolve far

much slowly than the phase factor. In the limit of a vanishing time-dependent perturba-

tion, the expansion coefficient is constant up to the phase factor and the system stays in

its initial state.

lim
λ→0

C̃f (t) = e
−iEf t/~cf (B.5)

The probability for a system, initially in the state |Ψ(t = 0)〉 = |ϕi〉 to undergo a transition

to the state |ϕf〉 is given by

Pif (t) = |〈ϕf |Ψ(t)〉|2 = |cf (t)|2 (B.6)

and the elements Wnk(t) of the perturbation matrix in the basis of the stationary states

read

Wnk(t) = 〈ϕn|Ŵ (t)|ϕk〉 (B.7)

Finally, introducing equations B.3 and B.4 into the time-independent Schrödinger

equation B.2 and projecting over the stationary state |ϕn〉, we obtain

i~ d
dt
cn(t) = λ

∑
k

ei∆ωnktWnk(t)ck(t) (B.8)

where ∆ωnk = En − Ek
~

is the Bohr angular frequency related to the levels En and Ek.

The group of equations B.8 for all values of n is a system of coupled differential

equations of first order with respect to time, the coupling being exclusively due to the

perturbation λŴ (t).
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B.2. First-order resolution

B.2 First-order resolution

The system of equations B.8 is perfectly equivalent to the time-dependent Schrödinger

equation B.2, and we are generally not able to get to its exact solutions cn(t). Provided

that λ� 1, expanding the solutions cn(t) in powers of λ is a decent approximation.

cn(t) = c(0)
n (t) + λc(1)

n (t) + λ2c(2)
n (t) + · · · (B.9)

This expansion reflects how the system reacts to the perturbation and, thus, is also

called response theory. The complete expansion is exact. The 0th order corresponds to the

unperturbed time-dependent system, the 1st order to a linear response to the perturbation,

and so on.

Using this expansion in the time-dependent Schrödinger equation, we have at the 0th

order:

i~ d
dt
c(0)
n (t) = 0 (B.10)

that is that c(0)
n (t) is a constant of time. This also implies that for λ = 0, the unperturbed

system is described by a time-dependent Schrödinger equation and the static Hamiltonian

Ĥ0. The coefficient cn(t) for the unperturbed system is also a time constant and the

eigenstate |Ψ(t)〉 at time t is identical to the initial stationary state |ϕi〉 up to a phase

(determined by initial continuity conditions, i.e., boundary conditions).

c(0)
n (t) = δni (B.11)

cn(t)|λ=0 = cn(t = 0−) = δni (B.12)

|Ψ(t)〉 = e−iωit|ϕi〉 (B.13)

For the 1st order, it comes:

i~ d
dt
c(1)
n (t) =

∑
k

ei∆ωnktWnk(t)c(0)
k (t) (B.14)

which simplifies considering equation B.11 into:

i~ d
dt
c(1)
n (t) = ei∆ωnitWni(t) (B.15)
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B. Linear response theory

using the previous boundary condition, this integrates as

c(1)
n (t) = 1

i~

∫ t

0
dt′ei∆ωnit

′
Wni(t′) (B.16)

Finally the probability to find the system in the state |ϕf〉 at time t, after a transition

from the state |ϕi〉 (the states are supposed to be different) due to the perturbation λŴ

reads

Pif (t) = λ2|c(1)
n (t)|2 = λ2

~2

∣∣∣∣∫ t

0
dt′ei∆ωnf t

′
Wnf (t′)

∣∣∣∣2 (B.17)

The cn(t) are called linear response coefficients and are the quantities that define the

wavefunction at time t, and so the transitions that occured between the stationary states

of the unpertubed system. In the particular case where the initial state is the ground-state

ϕ0, the perturbation can only generate transitions to the excited states (those that are

accessible according to transition selection rules, which are governed by the values of the

perturbation matrix elements).

In particular, linear response theory for TDDFT takes an external electric field times

the electric dipole moment of the molecular system as the perturbation, and the resolution

corresponds to the specific case of a sinusoidal perturbation. Electronic selection rules

are determined by the values of the transition dipole between electronic states.

B.3 Sinusoidal perturbation and linear response

theory

We consider the transitions from the ground-state |ϕ0〉 to the excited states |ϕn〉, n > 0.

Let us write the perturbation under a sinusoidal form

Ŵ (t) = Ŵ cos (ωt) (B.18)

where Ŵ is a time-independent observable the magnitude of which is small before the one

of Ĥ0, ω is a constant angular frequency.

The elements Wn0(t) of the perturbation matrix inducing a transition from ϕ0 to ϕn
then read

Wn0(t) = Wn0 cos (ωt) = Wn0

2
(
eiωt + e−iωt

)
(B.19)
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whereWn0 is a complex time-independent number. Inserting this into equation B.16 gives

the expression of the coefficient c(1)
n (t).

c(1)
n (t) = Wn0

2~

1− ei(∆ωn + ω)t
∆ωn + ω

+ 1− ei(∆ωn − ω)t
∆ωn − ω

 (B.20)

where ∆ωn = ∆ωn0 = En − E0

~
Within linear response theory, the latter usually is recast as

c(1)
n (t) = Xn(ω)

[
ei(∆ωn + ω)t − 1

]
+Xn(−ω)

[
e−i(ω −∆ωn)t − 1

]
(B.21)

where Xn(ω) = − Wn0

2~(ω +∆ωn) .

For convenience, we now use a matrix form to describe the problem. The frequency-

dependent linear response coefficientsXn(ω) andX∗n(ω) are gathered into a linear response

column vector such as



X1(−ω)
...

Xn(−ω)
...

X∗1 (ω)
...

X∗n(ω)
...



=

X(−ω)

X∗(ω)

 (B.22)

Considering the definition of the frequency-dependent coefficients Xn(−ω) (excita-

tions) and X∗n(ω), it appears that the linear response vector is solution of the linear

response equation B.23.

A B

B∗ A∗


︸ ︷︷ ︸

E[2]

−ω

1 0

0 −1



X(−ω)

X∗(ω)

 = −

V
V∗


︸ ︷︷ ︸
V [1]

(B.23)

where Vj = Wj0

2~ , Aij = δijωj, Bij = 0.

We usually call E[2] the energy Hessian matrix and V [1] the gradient property vector.

This represents a system of non-linear coupled equations which are to be solved iteratively.
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B. Linear response theory

The excitation energies previously defined are obtained by solving the generalized di-

agonalization problem associated to the linear response equation.A B

B∗ A∗

Λ(ω) = ω

1 0

0 −1

Λ(ω) (B.24)

The positive-valued solutions correspond to absorption while the negative-valued solutions

correspond to emission.

In the exact theory, which requires the exact wavefunction, the Hessian is diagonal

and the excitation energies are exact. This is not true anymore while using approximate

wavefunctions.

The probability for the transition from ϕ0 to an excited states ϕn then reads

Pn0(t, ω) = |Wn0|2

4~2

∣∣∣∣∣∣1− e
i(∆ωn + ω)t
∆ωn + ω

+ 1− ei(∆ωn − ω)t
∆ωn − ω

∣∣∣∣∣∣
2

(B.25)

For a fixed time t, the probability is now only a function of the pulsation ω. In particular,

the probability diverges for ω → ∆ωn and ω → −∆ωn. These are resonances that

formally correspond to the absorption from the ground state and the emission from the

excited state respectively. The corresponding transitions can only happen for a nonzero

coupling Wn0. While nonzero, the amplitude of this coupling also gives an indication of

the intensity of the transition through the oscillator strength.

fn = 2ωn0|Wn0|2 (B.26)

Divergence of Pn0(t, ω) and c(1)
n (t) can be avoided introducing a damping parameter to

the linear response coefficients.1

Even though sinusoidal functions are a specific case for the resolution, they are actu-

ally of great use in physics, since all time-resolved signals can be decomposed spectrally

in terms of sinusoids2. In particular, electromagnetic fields are usually handled through

this formalism.
1In damped response theory, the perturbation reads Ŵ (t) = Ŵeiγ cos (ωt) were 1/γ can be interpreted

as the lifetime of the perturbation.
2discrete decomposition in Fourier series for periodic signals or continuous Fourier transform for

non-periodic ones.
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Schmidt orthogonalization

In the simplest case of phenylacetylene, the matricesHeff (effective FFO model) andHXH

(extended Hückel model) read, respectively,

Heff =

αA β∗

β∗ α∗B

 (C.1)

HXH =

〈ϕA|ĤXH|ϕA〉 〈ϕA|ĤXH|ϕB〉

〈ϕB|ĤXH|ϕA〉 〈ϕB|ĤXH|ϕB〉

 =

 αA HAB

HAB αB

 (C.2)

where ϕA and ϕB are the orbitals of the benzene and acetylene fragments respectively, over

which is developed the extended-Hückel model. We showed above that all the following

developments are valid for any length of the n-ring chromophore.

Since the extended-Hückel basis (ϕA, ϕB) is non-orthogonal, the overlap matrix S is

defined as

S =

〈ϕA|ϕA〉 〈ϕA|ϕB〉

〈ϕB|ϕA〉 〈ϕB|ϕB〉

 =

1 S

S 1

 . (C.3)

We look for a unitary transformation from HXH to HL
XH where HL

XH is a Hermitian

matrix involving the energy αA of the fragment orbital of acetylene (same form as Heff)

HL
XH =

αA x

x y

 (C.4)

where x and y depend on αA, αB, HAB and S.

Let (ϕ0
1,ε1) and (ϕ0

2,ε2) be two couples of solutions of an eigenvalue problem related

to the extended-Hückel operator ĤXH. Then (ϕ0
1,ϕ0

2) is an orthonormal basis allowing to
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C. Schmidt orthogonalization

define the eigenvalue matrix ε

ε =

〈ϕ0
1|ĤXH|ϕ0

1〉 〈ϕ0
1|ĤXH|ϕ0

2〉

〈ϕ0
2|ĤXH|ϕ0

1〉 〈ϕ0
2|ĤXH|ϕ0

2〉

 =

ε1 0

0 ε2

 . (C.5)

In the non-orthogonal basis (ϕA,ϕB), the eigenfunctions ϕ0
1 and ϕ0

2 read
ϕ0

1 = c1,AϕA + c1,BϕB

ϕ0
2 = c2,AϕA + c2,BϕB

(C.6)

leading to the coefficient matrix c

c =

c1,A c2,A

c1,B c2,B

 . (C.7)

The extended-Hückel matrix satisfies a generalized eigenvalue problem

HXHc = Scε (C.8)

which is equivalent to the eigenvalue problem

(
S−1HXH

)
c = cε . (C.9)

Since S and so S−1 are positive definite, S−1 can be decomposed as

S−1 = LL† (C.10)

where L is an invertible matrix. Then Eq. C.9 becomes

LL†HXHLL
−1c = cε

⇔ L†HXHL
(
L−1c

)
=
(
L−1c

)
ε

and the new eigenvalue problem reads

HL
XHC = Cε (C.11)

where


HL

XH = L†HXHL

C = L−1c

. (C.12)

The matrix HL
XH in the new base is Hermitian by construction, and L appears to be the

passage matrix from the non-orthogonal basis (ϕA,ϕB) to a new basis that we want to be
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orthogonal. The last condition, which is that ϕA is common to both the non-orthogonal

and the orthogonalized basis set, imposes that L is up-triangular. To satisfy all the

aforeconditions, a Gram-Schmidt orthonormalization procedure is used.

The vectors ψGS
1 and ψGS

2 built from the Gram-Schmidt orthogonalization read
ψGS

1 = ϕA

ψGS
2 = −SϕA + ϕB√

1− S2

(C.13)

leading to the orthogonalization matrix LGS and its adjoint matrix
(
LGS

)†

LGS =


1 − S√

(1− S2)

0 1√
(1− S2)

 (C.14)

(
LGS

)†
=

 1 0

− S√
(1− S2)

1√
(1− S2)

 . (C.15)

Then, the extended-Hückel matrix in the orthogonalized basis set reads

HL
XH = HGS

XH =
(
LGS

)†
HXHL

GS (C.16)

HL
XH =


αA

HAB − αAS√
(1− S2)

HAB − αAS√
(1− S2)

αB − 2HABS + αAS
2

1− S2

 . (C.17)

199





Appendix D

Résumé substantiel

D.1 Contexte

Les semi-conducteurs organiques sont des matérieux photo et electroactifs capables de

transporter un flux d’énergie via leur système π. Ils peuvent aussi être utilisés pour la

production et la conduction d’un courant électrique généré par l’absorption de lumière (ou

à l’inverse, la conduction puis restitution d’énergie par émission de lumière) [1–7]. Ces

composés sont conçus comme la nouvelle génération des composés électroniques et op-

toélectroniques appliqués aux domaines de la photovoltaïque, de l’électroluminescence et

de la photosynthèse artificielle: cellules solaires organiques [7], transistors organiques [8],

diodes à émission de lumière organiques (OLEDs) [9], et antennes biomimétiques collectri-

ces de lumière [10–14]. C’est dans ce contexte que le prix Nobel de Chimie a été attribué

en 2000 à la découverte au développement de polymères conducteurs [15–18].

Ainsi, il est crucial de comprendre les mécanismes impliqués dans le transfert d’énergie

dans de tels composés. La nanostar est un système de choix pour cela, dans lequel le

transfert d’énergie est à la fois particulièrement efficace (rendement d’environ 98%) et

rapide (quelques picosecondes) [19,20].

La nanostar est un dendrimère macromoléculaire de polyphénylène éthynylène (PPE)

terminé par un pérylène, synthétisée pour la première fois par l’équipe de J. S. Moore en

1994 [21] pour imiter la photosynthèse naturelle.

Les PPEs sont des molécules organiques π-conjuguées complexes mais hiérarchisées

qui présentent un grand potentiel en tant que composés organiques nanomoléculaires pour
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Figure D.1: The "nanostar".

des applications optoélectroniques [8,13]. Parmi les PPEs, ceux présentant une structure

dendritiques peuvent être classés en deux catégories, compacts et étendus. Dans les deux

cas, le dendrimère est une antenne collectrice de lumière rendue particulièrement efficace

grâce à sa structure ramifiée semblable à un arbre, le rendant capable de collecter des

photons au niveau de différents points périphériques.

Les dendrimères compacts sont constitués de briques para de même longueur, donc

l’entropie y est responsable d’une partie des transferts d’énergie [11,23–26]. A l’inverse, les

dendrimères étendus (comme la nanostar) sont constitués de briques de longueur crois-

sante à partir de la périphérie, ce qui engendre un gradient d’énergie à l’origine d’un

transfert d’énergie efficace [19,27,28].

Dans cette thèse, nous nous intéressons au transfert d’énergie au sein de PPE photo-

excités, en cherchant à le mettre en lien avec les propriétés de leurs unités constitutives,

afin de comprendre et rationaliser les mécanismes mis en jeu, puis de le simuler.

Quantités d’efforts ont été fait au cours des 30 dernières années pour comprendre

les mécanismes gouvernant le comportement des PPEs aux niveaux moléculaire et mi-

croscopique. Pour autant, identifier les relations structure/propriété dans des macro-

molécules tout en considérant ces mêmes relations au sein de leurs entités constitutives

soulève des problèmes à la fois théoriques et expérimentaux [29].
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Figure D.2: Various PPEs.

Ce genre de description nécessite de prendre en compte correctement des effets divers,

agissant à des échelles de longueur, de temps et d’énergie différentes, ce qui n’est pas

simple à première vue.

Les premières informations sur la structure électronique de PPE sont venues d’expériences

de spectroscopie des états stationnaires [27, 30]. Les auteurs ont alors mis en évidence

l’additivité du spectre d’absorption de la nanostar ainsi que les contributions dominantes,

dues à des transitions π → π∗ entre états excités localisés sur des “sticks”. Ces éléments

ont ensuite été confirmés par des études aussi bien expérimentales [20, 28, 31–33] que

théoriques [34–42] sur d’autres meta-PPEs. Une description quantitative de la relation

entre les structures électronique et géométrique est nécessaire, en particulier pour ratio-

naliser la rupture partielle de la conjugaison π au niveau des jonctions meta [34, 43–45].

D’un point de vue dynamique, le transfert d’énergie dans la nanostar est un transfert

ultrarapide et unidirectionel d’excitation se produisant via une cascade de conversions in-

ternes entre des “sticks” de longueur croissante [19,27,30,41,42,48–53]. Les chromophores

en périphérie absorbent la lumière à haute énergie et transfèrent ensuite l’excitation au

chromophore adjacent en suivant le gradient d’énergie induit par la différence de longueur
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des chromophores (effet shishiodoshi) [42]. Pour le moment, il est admis que ce mécanisme

idéal implique des intersections coniques qui n’ont pas encore pu être caractérisées.

Des calculs approchés (dynamique mixte quantique-classique sur des surfaces d’énergie

potentielle semi-empiriques) ont montré que le transfert est médié vibroniquement le long

de modes de vibrations des C≡C dans le plan [42,48,49,51–53]. Une étude plus complète

recquiert d’avoir accès à l’évolution des populations entre les états électroniques impliqués

et des cohérences en fonction du temps. De telles informations nécessitent d’effectuer des

simulations à plus haut niveau et des expériences de spectroscopie ultra-rapide.

D.2 Travail effectué

Dans cette thèse, nous nous sommes intéressé à des PPE à la fois en tant que molécules

à étudier et supports pour la construction d’un nouveau modèle vibronique. L’étude des

PPE visait à permettre la rationalisation du processus de transfert d’excitation unidirec-

tionnel suivant l’absorption lumineuse, tandis que modèle vibronique avait pour but de

fournir une expression fonctionnelle de l’énergie électronique en fonction des coordonnées

nucléaires (en d’autres termes de fournir une représentation de la surface d’énergie poten-

tielle).

Nous avons commencé par vérifier la validité de la méthode utilisée pour la description

de la structure électronique des PPEs, à savoir la TDDFT (CAM-B3LYP/6-31+G*) [63].

Par cette vérification, nous avons levé un désaccord posé dans la littérature au cours

des dernières années [118, 130]. La TDDFT a ensuite été utilisée pour caractériser des

para et meta-PPE aux géométries d’équilibre de divers états électroniques, des points de

vue géométrique, énergétique, orbitalaire et vibrationnel. Pour les para-PPEs, le spectre

d’absorption électronique résolu vibrationnellement a été simulé et les principales contri-

butions vibrationnelles ont été attribuées.

Nous avons montré que l’état électronique (S0 ou S1) des para-PPE (de deux à sept

cycles) pouvait être caractérisé par certaines longueurs de liaison (acetylene, quinoidal,

internes) ou par les fréquences de vibration associées à des modes particuliers. De même,

l’énergie de transition S0-S1, ainsi que le gap entre orbitales frontières, permettent quant à

eux de discriminer des para-PPE de longueurs différentes. La forme des orbitales frontières
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est similaire quelle que soit la longueur du para-PPE et laisse clairement apparaitre la

forme des orbitales frontières du benzene et de l’acetylene.

La caractérisation des meta-PPE vis-à-vis des propriétés mentionnées ci-dessus a

prouvé que chacun des premiers états excités était localisé sur un “stick” particulier,

l’énergie de l’état excité augmentant à mesure que la longueur de chaine diminue. Nous

avons particulièrement insisté sur le fait que chaque état excité résulte majoritairement

d’une mono-excitation entre une paires d’orbitales frontières (ou HO-1/LU+1 etc), elles-

mêmes localisées sur des “sticks”. La localisation des états excités dans les meta-PPE

ainsi que la forme des orbitales frontières dans les para témoignent d’une forte hiérarchie

entre les interactions gouvernant les propriétés photochimiques des PPE.

La surface d’énergie potentielle du (2,2)-meta-PPE a été explorée le long de modes

nucléaires particuliers, ce qui nous a permis d’identifier plusieurs intersections coniques

accessibles en terme d’énergie. De fait, les modes en question sont donc des composantes

de l’espace de branchement. Nous avons ainsi confirmé le rôle, déjà mentionné dans

la littérature, de l’élongation des liaisons acetylène dans le transfert d’excitation. Nous

avons également mis en évidence l’importance de l’élongation des liaisons quinoidales sur

le phénylène coquin, ce qui n’avait pas encore rapporté.

L’interprétation que nous avons proposée de la levée de dégénérescence à l’intersection

conique en termes d’états diabatiques localisés sur les sticks fait écho au mécanisme de

transfert par cascade shishiodoshi présenté dans la littérature. Nous avons également

pu confirmer cette hypothèse par l’identification dans le (2,3)-meta-PPE de croisements

faiblements évités entre S1 et S2, états localisés au minimum de l’état fondamental.

Nous avons proposé une stratégie visant à construire un nouveau modèle vibronique

pour l’énergie de PPE. En s’appuyant sur la hiérarchie gouvernant les interactions dans

les PPE, nous avons construit le modèle étape par étape en suivant une approche multi-

échelle. Chaque étape correspond à la description d’une interaction due soit à un couplage

(entre orbitales ou états électroniques) soit à la répulsion électronique. La photochimie

des PPE étant gouvernée par le système π, les formalismes de type tight-binding sont

adaptés à la description de chaque étape.

Nous avons donc proposé un Hamiltonien effectif de type Hückel permettant d’exprimer
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Figure D.3: Structure of the vibronic model. Decomposition of the transition energy. FO = HO or
LU.

les énergies des orbitales frontières des para-PPEs en fonction de paramètres effectifs

décrivant les orbitales frontières du benzène, de l’acétylène, et leur interaction (modèle

FFO). Les valeurs effectives de ces paramètres de type Hückel et des énergies des orbitales

frontières ont été optimisées en considérant plusieurs para-PPEs.

Ce formalisme a été étendu aux meta-PPE, permettant de reproduire un gap HO-LU

de référence (calcul Hückel étendu) à 0.05 eV près. De tels résultats sont particulière-

ment encourageants considérant le niveau d’approximations utilisées dans l’élaboration

du modèle.

Nous avons également vérifié la possibilité de décrire l’évolution des paramètres du

modèle et des énergies des orbitales frontières comme des fonctions linéaires des coordon-

nées locales précédemment identifiées, avec succès. Un travail de mapping a été effectué

entre les énergies de transitions entre états électroniques et les énergies de transition

entre orbitales frontières dans divers PPE. Ce mapping a permis d’établir empirique-

ment une relation affine entre ces deux grandeurs. La combinaison du mapping et de

l’expression fonctionnelle des orbitales frontières nous a permis d’aboutir à une expression

pour l’énergie de transition électronique en fonction d’un nombre réduit de coordonnées

nucléaires locales.
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Glossary

BB building block

CIS configuration interaction singles

Coin conical intersection

DFT density functional theory

FC Franck-Condon

FO frontier orbital

HF Hartree-Fock

HT Herzberg-Teller

KS Kohn-Sham

LDA local density approximation

LCAO linear combination of atomic orbitals

MO molecular orbitals

NAC non-adiabatic coupling

PES potential energy surface

PPE polyphenylene ethynylene

RMSD root-mean-square deviation

TDA Tamm-Dancoff approximation

TDDFT time-dependent density functional theory
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Glossary

CTMM Team "Chimie Théorique, Méthodologies, Modélisation" in the Institut

Charles Gerhardt de Montpellier

XH extended-Hückel
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Résumé

Cette thèse s’intéresse à la rationalisation du mécanisme de transfert d’excitation dans des

polyphénylènes éthynylènes (PPE). Une étude statique approfondie a été réalisée en util-

isant la TDDFT, permettant de confirmer la localisation des états excités de méta-PPE

sur des fragments para, ainsi que la hiérarchie des interactions régissant les propriétés

photochimiques des PPE. Des intersections coniques ont été identifiées, de même que les

principales composantes de l’espace de branchement. Leur étude a soutenu l’hypothèse

d’un transfert d’énergie par conversion interne entre états excités localisés sur des frag-

ments para.

D’autre part, nous avons proposé un modèle vibronique multiéchelles pour l’énergie des

états électroniques. En particulier, nous avons exprimé les énergies des orbitales frontières

de PPE en fonction des énergies des orbitales frontières du benzène et de l’acetylène via

un Hamiltonien effectif de type Hückel. Un travail de mapping et d’optimisation nous

a permis d’aboutir à une expression pour l’énergie de transition électronique en fonction

d’un nombre réduit de coordonnées nucléaires locales.

Abstract

The present work is focused on the rationalization of the excitation transfer mechanism in

polyphenylene ethynylenes (PPEs). A static study was performed using TDDFT, allow-

ing to confirm both the localization of the excited states of meta-PPEs on para building

blocks and the hierarchy in the interactions governing the photochemical properties of

PPEs. Conical intersections were identified, along with few components of their branch-

ing spaces. Studying those supported the assumption of an energy transfer proceeding

through internal conversion between excited states localized on different building blocks.

In addition, we proposed a multiscale vibronic model for the energy of the eletronic

states. In particular, we expressed the energies of the frontier orbitals of PPEs in terms of

the energies of the frontier orbitals of benzene and acetylene, using an effective Hückel-type

Hamiltonian. Perfoming different optimizations, we achieved to propose an expression for

the energy of the electronic transition in terms of a reduced number of local nuclear

coordinates.
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