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Résumé étendu

La modélisation des images est un point clef important pour de nombreuses

tâches en traitement d’images, comme la super-résolution, la segmentation

ou la synthèse de texture. L’analyse et le traitement des différentes car-

actéristiques composant une image, nécessite la mise en place d’approches

adaptatives locales. Dans ce contexte, la définition de représentations lo-

cales efficaces est dédiée pour une application visée. Les approches par

l’apprentissage profond ont permis des avancées significatives en terme de

performance de traitement. D’un côté, cette approche se fond sur la no-

tion de relation entre les patches, et plus particulièrement en analysant

automatiquement les caractéristiques des patches pour les agréger par la

suite. D’un autre côté, les méthodes d’apprentissage profond reposent sur

une hypothèse de fonctionnement des neurones biologiques d’une représen-

tation de l’image par un ensemble de filtrage. Ces représentations ont été

introduites dans des modèles a priori dans le cadre de résolution de prob-

lèmes inverses.

L’objectif de cette thèse est d’étudier le comportement de différentes représen-

tations d’images, notamment par apprentissage profond, dans le contexte

d’application en imagerie médicale. Le but est de développer une méthode

unifiée efficace pour les applications visées que sont la super-résolution,

la segmentation et la synthèse. La super-résolution est un processus
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d’estimation d’une image haute-résolution à partir d’une ou plusieurs im-

ages basses-résolutions. Dans cette thèse, nous nous concentrons sur la

super-résolution unique, c’est-à-dire que l’image haute-résolution (HR) est

estimée par une image basse-résolution (LR) correspondante. Augmenter

la résolution de l’image grâce à la super-résolution est la clé d’une com-

préhension plus précise de l’anatomie. L’application de la super-résolution

permet d’obtenir des cartes de segmentation plus précises. Étant donné

que deux bases de données qui contiennent les images différentes (par ex-

emple, les images d’IRM et les images de CT), la synthèse est un processus

d’estimation d’une image qui est présentée dans la base de données de cible

à partir d’une image de la base de données de source. Parfois, certains con-

trastes tissulaires ne peuvent pas être acquis pendant la séance d’imagerie

en raison du temps et des coûts élevés ou de l’absence d’appareils. Une so-

lution possible est à utiliser des méthodes de synthèse d’images médicales

pour générer les images avec le contraste différent qui est manquée dans

le domaine à cible à partir de l’image du domaine donnée. L’objectif des

images synthétiques est d’améliorer d’autres étapes du traitement automa-

tique des images médicales telles que la segmentation, la super-résolution

ou l’enregistrement. Dans cette thèse, nous proposons les réseaux neurones

pour la super-résolution et la synthèse d’image médicale. Les résultats dé-

montrent le potentiel de la méthode que nous proposons en ce qui concerne

les applications médicales pratiques.

Un réseau de neurones convolutifs (en anglais CNN - Convolutional Neu-

ral Networks) est un type de réseau de neurones artificiels. Une archi-

tecture de réseau de neurones convolutifs est structurée par un ensemble

de couches de traitement, particulièrement les couches convolutives et les

fonctions d’activation. En outre, selon une application visée, nous pouvons
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rajouter les autre éléments comme la couche de pooling, la couche entière-

ment connectée (fully connected) ou la couche convolutifs transposée. Le

réseau de neurones convolutives, qui fut présenté il y a longtemps [LeCun

et al., 1998] a vraiment reçu l’attention de la communauté de recherche à

partir de 2012 par une méthode ayant gagné un challenge de classification

dans une conférence de vision par ordinateur. Ce réseau appelé Alexnet

[Krizhevsky et al., 2012] contient huit couches: cinq couches convolu-

tives et trois couches entièrement connectées. Ensuite, les architectures

de CNN sont devenues l’état de l’art pour de nombreuses tâches en traite-

ment d’images comme la super-résolution [Dong et al., 2016a, Kim et al.,

2016a], la segmentation [Kamnitsas et al., 2017, Ronneberger et al., 2015]

ou la classification [He et al., 2016a, Simonyan and Zisserman, 2014]. Par

la suite, plusieurs réseaux CNNs ont été améliorés afin d’augmenter leur

performance pour la classification, par exemple, en augmentant le nombre

de couches (e.g. VGGnet avec 19 couches [Simonyan and Zisserman, 2014],

Resnet avec 152 couches [He et al., 2016a]), en concaténant les filtres en

un bloc (e.g. GoogLenet [Szegedy et al., 2015]), ou par l’apprentissage

résiduel en bloc (e.g. Resnet [He et al., 2016b]), ou en connectant tous

les couches à forte densité (e.g. Densenet [Huang et al., 2017a]). Afin

de détecter l’objet dans les images avec CNNs, nous pouvons attacher la

boîte de délimitation parallèle à sa classification d’objet (R-CNN) [Gir-

shick et al., 2014] et sa segmentation (Mask R-CNN) [He et al., 2017].

Plusieurs méthodes de CNNs ont été proposées pour la segmentation de

l’imagerie médicale. On peut notamment citer U-Net [Ronneberger et al.,

2015] et DeepMedic [Kamnitsas et al., 2017]. U-net a une forme de la

lettre U avec les skip-connections entre les couches. DeepMedic combine

deux réseaux de CNNs afin d’augmenter la performance de segmentation

cérébrale: un chemin pour l’image original et une autre pour sa version de

vii



basse-résolution.

Les architectures CNN sont devenues l’état de l’art en super-résolution

(SR). Initialement, [Dong et al., 2016a] a proposé une architecture CNN à

trois couches. La première couche convolutionnelle extrait implicitement

un ensemble des caractéristiques pour l’image LR d’entrée, la deuxième

couche représente non-linéairement des caractéristiques de l’image basse-

resolution aux patches haute-résolution et la troisième couche reconstruit

l’image HR à partir de ces représentations de patchs. Et puis, les carac-

téristiques suivantes ont été rapportées pour améliorer la performance SR

tel que un réseau plus profond [Kim et al., 2016a], bloc résiduel [Ledig

et al., 2017], couche de sous-pixel [Shi et al., 2016], fonction de coût per-

ceptuelle (au lieu de fonctions de coût quadratiques moyennes)[Johnson

et al., 2016, Ledig et al., 2017, Zhao et al., 2017], réseaux récurrents [Kim

et al., 2016b], le réseau contradictoire générateur [Ledig et al., 2017], Très

récemment, [Chen et al., 2018b] ont proposé une version 3D de densenet

pour la SR des image IRM. Inspiré du travail de [Jog et al., 2016], [Zhao

et al., 2018] a étudié la super-résolution automatique pour l’IRM en util-

isant des réseaux résiduels profonds [Lim et al., 2017]. Récemment, un

réseau plus profond avec 20 couches [Kim et al., 2016a] inspiré par VG-

Gnet [Simonyan and Zisserman, 2014] est devenu une basé pour les méth-

odes suivantes [Timofte et al., 2017]. Cependant, en raison de la variété

des méthodes proposées et du nombre de paramètres pour l’architecture

des réseaux, il est actuellement difficile d’identifier les componants clés de

l’architecture CNN pour obtenir des bonnes performances pour la SR et

évaluer leur applicabilité dans le contexte de l’image IRM cérébrale 3D. De

plus, l’extension des architectures CNN aux images 3D, en tenant compte

des facteurs de mise à l’échelle anisotropes peut être intéressante pour
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s’adresser aux nombreux paramètres d’acquisition clinique possibles, tan-

dis que les architectures CNN classiques n’adressent qu’un facteur d’échelle

prédéfini. La disponibilité de l’imagerie multimodale pose également la

question sur la capacité des architectures de CNN à exploiter de telles

données multimodales pour améliorer la SR d’une modalité donnée.

Ce manuscrit est rédigé en anglais et structuré en cinq chapitres et une

annexe.

Le chapitre 1 correspond à une introduction générale où sont décrits le

contexte, la motivation, l’objectif et la méthodologie de cette thèse.

Le chapitre 2 décrit notre méthode de super-résolution en imagerie cérébrale

en utilisant les réseaux CNNs (convolutional neural networks). D’abord,

nous allons passer une bibliographie qui contient différents types de méth-

odes de super-résolution tel que la méthode basée sur les modèles et celle

basée sur l’apprentissage comprenant les réseaux de neurones convolutifs.

Et puis, la méthode de super-résolution est consacrée à l’imagerie médicale.

Ensuite, nous proposon l’application de la méthode de super-résolution

basée sur CNNs aux images cérébrales d’IRM. Il s’agit de l’application

des CNNs 3D afin d’obtenir la super-résolution à partir d’une seule image.

Huit paramètres principales du réseau 3D sont étudiés en détail avec des

expérimentations pour améliorer sa performance: méthodes d’optimisation,

initialisation des poids, apprentissage résiduel, profondeur du réseau, taille

du filtre, nombre de filtres, taille de patch d’apprentissage, nombre de su-

jets pour l’apprentissage. Pour exploiter la capacité du réseau, deux autres

applications sont proposées. Le premier est à mélanger plusieurs facteurs

échelles (par exemple, mis à échelle deux fois et trois fois par rapport d’une

basse résolution) dans le même ensemble de données d’apprentissage. Le
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réseau appris avec plusieur facteurs peut être appliqué pour des échelles ar-

bitraires tandis que celui appris une facteur est seulement utilisé pour une

résolution désirée. Le deuxième application vise à concaténer les images

haute-résolution référence pondérée et l’image bass-résolution interpolée

à l’entrée du réseau CNN. Par rapport à ces deux applications, la diver-

sité des bases de données d’apprentissage est également abordée. Enfin,

nous appliquons notre méthode de super-résolution aux images cérébrales

d’IRM des nouveau-nés et puist segmenter les images de haute résolution

obtenues afin d’évaluer la contribution de la méthode proposée. Nous

montons les résultats visuelles. Les illustrations contribute que la super-

résolution peut aider la segmentation d’image.

Le chapitre 3 décrit une approche pour une réalisation simultanée de la

superrésolution et de la segmentation à partir d’une seule image. Elle

est basée sur le réseau de neurones génératives contradictoires dit gener-

ative adversarial network (GAN). La superrésolution et la segmentation

sont souvent effectuées de manière séparée comme la section dernière du

chapitre 2. Dans cet chapitre, nous proposons réaliser ces deux opérations

en même temps. L’application est focalisée seulement sur des images IRM

néonatales du cerveau en T2 qui ont les résolutions basses, car les nouveau-

nés ne peuvent pas patienter allonger sur une machine d’acquisition dans

plusieurs cases clinques. Les résultats de la super-résolution sont comparés

avec la méthode proposée dans le chapitre précédent. Les images haute-

resolution estimées semblent légèrement inférieurs en termes des métriques

de qualité mais meilleurs visuellement. Concernant les résultats de la seg-

mentation qui sont évalués par DICE, notre méthode montre les meilleurs

résultats comparés avec deux méthodes de segmentation de littérature.

Le chapitre 4 introduit la synthèse d’images médicale. Une synthèse des
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méthodes existantes basées principalement sur l’apprentissage et sur le

réseau CNN est fait dans la première section. Ensuite, nous proposons

deux approches basées respectivement sur le réseau CNNs et sur le réseau

GAN. La première est directement appliquée du principe qui a été utilisé

pour la super-résolution décrit dans le deuxième chapitre pour synthétiser

des images couplées, c’est-à-dire, dans la base d’apprentissage, les deux

séquences d’images sont toutes appairées (paired cross-modal synthesis).

Les résultats rassemblent aux images vérité-terrain mais avec un peu de

floue et de bruit. En plus, nous considérons le deuxième cas plus difficile:

les deux séquences d’images sont toutes non appairées (unpaired cross-

modal synthesis). Cette méthode de synthèse d’images est basée sur le

réseau GAN. Afin de resoudre le problème de synthèse d’image non ap-

pariée, nous proposons utiliser trois fonctions de coût: adversarial loss,

cycle consistency loss et total variation. Cependant, il reste la difficulté

pour choisir un coefficient optimal de pondération pour total variation qui

controle le compromis entre la réduction des artéfacts de haute fréquence

et le flou induit. Malgré cela, nous croyons que notre nouvelle approche

peut amener de nouvelles perspectives très intéressantes pour beaucoup

d’applications.

Le chapitre 5 conclut notre thèse et ouvre des perspectives.
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Chapter 1

Introduction

Contents

1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Medical single image super-resolution: an approach to generate

high-resolution images . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Medical image cross-modal synthesis: an approach to generate

synthesized images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Context and motivation

MRI is a medical imaging technique used to visualize the anatomy and the physiological

processes of the body. MRI scanners are based on the interaction of a nuclear spin with an

external magnetic field. The rotation of a particle around some axis as an intrinsic form of

angular momentum is called spin. An MRI scanner forms a strong magnetic field around the

area of a subject to be imaged. The protons of hydrogen atoms from biological organisms are

excited by a radio frequency (RF) pulse and then emit energy in the form of RF signal when

returning to the original state. By applying different types of the sequence of RF pulses,

different types of modality are created. Two important terms of the acquisition process are

repetition time (TR) and time to echo (TE). TR denotes the period between successive pulse

sequences at the same slice, TE denotes the period between the emission of the RF pulse

and the reception of the echo signal. Common anatomical MRI sequences are T1-weighted

(T1w) images, T2-weighted (T2w) images and fluid-attenuated inversion recovery (FLAIR).

T1w, T2w MRIs and FLAIR are generated by using respectively short TE and TR, long TR

and TE, and very long TR and TE times. A modality shows up different physical properties

of tissue, that induces different contrasts between them. Thus, each modality has a specific

range of applications in medical diagnosis.

1



1.1.1 Medical single image super-resolution: an approach to generate

high-resolution images

Acquisition time of MRI data and signal-to-noise ratio are two parameters that drive the

choice of an appropriate image resolution for a given study. The accuracy of further analysis

such as brain morphometry can be highly dependent on image resolution. A typical image

resolution of a current MRI is desired for greater than or equal to 1mm. However, imaging

with desired resolutions costs of low signal to noise ratio and long scan time. For example,

MR images with an isotropic resolution of 1mm and 0.7mm are respectively shown in Figure

1.1 and Figure 1.2. Visually, the image with higher resolution of 0.7mm visualizes better

the anatomy of a brain. In addition, the objective of medical imaging systems is aimed at

increasing the resolution to create true isotropic 3D imaging. Isotropic 3-D MRI images

with high resolution are a key role for visualization of 3D volumes and for early medical

diagnosis. Nevertheless, in many clinical cases, radiology procedures do not allow to achieve

possibly isotropic resolutions such as neonatal brain scan. Figure 1.3 shows an example of real

anisotropic 3-D images. These reasons raise a question that finding a post-processing method

which can augment the resolution of low-resolution images or enhance them to achieve an

isotropic high-resolution images.

(a) T1w axial slice (b) T1w coronal slice (c) T1w sagittal slice

(d) T2w axial slice (e) T2w coronal slice (f) T2w sagittal slice

Figure 1.1: Adult brain MRI (Subject: 01011-t1w of the dataset NAMIC). The voxel
size of the images is 1× 1× 1mm.

Super-Resolution (SR) aims to enhance the image resolution using single or multiple data

acquisitions [Milanfar, 2010]. Increasing image resolution through super-resolution is a key to

more accurate understanding of the anatomy [Greenspan, 2008]. The applications of super-

resolution have been shown that applying super-resolution techniques leads to more accurate
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(a) Axial slice (b) Coronal slice (c) Sagittal slice

Figure 1.2: Adult brain MRI (Subject: 100307 of the dataset HCP100). The voxel size
of the images is 0.7× 0.7× 0.7mm.

segmentation maps of brain MRI data [Rueda et al., 2013] or cardiac data [Oktay et al.,

2016].

Recently, a series of papers suggested the successful application of deep learning, leading

to state-of-the-art results in many practically tasks of computer vision [Dong et al., 2014,

Kim et al., 2016a, Krizhevsky et al., 2012, Shi et al., 2016] and medical image processing

[Charron et al., 2018, Chen et al., 2018b, Kamnitsas et al., 2017, Meyer et al., 2018, Oktay

et al., 2016, Pham et al., 2017a, Ronneberger et al., 2015]. In this thesis, the architectures of

convolutional neural networks are investigated for MRI super-resolution. The performance of

a given architecture depends on several parameters such as the filter size, the number of filters,

the number of layers, etc. Understanding how these parameters affect the reconstruction of

the HR image with respect to the considered application setting (e.g., number of training

samples, image size, scaling factor) is a key issue, which remains poorly explored. For instance,

regarding the number of layers, it is commonly believed that the deeper the better [Kim

et al., 2016a, Simonyan and Zisserman, 2014]. However, adding layers increases the number

of parameters and can lead to overfitting. Previous works [Dong et al., 2016a, Oktay et al.,

2016], have shown that "a deeper structure does not always lead to better results" [Dong

et al., 2016a].

Specifically focusing on MRI data, the specific objectives of this study are:

• Are 2D or 3D networks relevant to brain MRI SR ?

• the evaluation and understanding of the effect of key elements of CNN for brain MRI

SR

• How can networks handle different scaling factors ?

• Investigating multimodality-guided SR using CNN ?

• Can a pre-trained model apply to different data ?

• How do networks apply to a real data ?
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• Does the application of super-resolution improve automatic segmentation algorithms ?

• Two steps for the 3D isotropic segmentation of anisotropic MRI images are: increasing

the image resolution using interpolation techniques or SR and then isotropic image

segmentation. Do we have a method for simultaneous super-resolution and segmentation

?

1.1.2 Medical image cross-modal synthesis: an approach to generate syn-

thesized images

The pulse sequences in the acquisition process influence strongly the performance of MRI

analysis algorithms. Medical image analysis techniques, which optimally learned with data

from one specific modality, could not apply to data of a different modality because each

modality expresses particular tissue contrast of the body anatomy. For example, neonatal

brain T2w MRIs are appropriate to reconstruct brain surface while the T1w scans lack suf-

ficient tissue contrast [Leroy et al., 2011]. Sometimes, certain tissue contrasts may not be

acquired during the imaging session because of time-consuming, expensive cost or lacking

of devices. One possible solution is to use medical image cross-modal synthesis methods to

generate the missing subject-specific scans in the desired target domain from the given source

image domain. The objective of synthetic images is to improve other automatic medical image

processing steps such as segmentation, super-resolution or registration.

In this thesis, convolutional neural networks are applied to cross-modal synthesis in the con-

text of supervised learning. In addition, an attempt to apply generative adversarial networks

for unpaired cross-modal synthesis brain MRI is described. The specific objectives of this

study are:

• Can CNN-based methods be applied to solve cross-modal synthesis problem ?

• Is there a method which can generate the synthetic image of a specific subject given

unpaired training dataset ?

1.2 Thesis overview

In this thesis, our motivation is dedicated to studying the behaviours of different image

representations and developing a method for super-resolution, cross-modal synthesis and seg-

mentation of medical imaging.

Chapter 2 introduces single image super-resolution. Firstly, single image super-resolution

is first modelled by the image acquisition process. Several methods for super-resolution

of natural images are discussed from model-based to learning-based approaches. Since the

observation model is assumed unknown or hard-defined, "blind super-resolution" is then
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(a) T1w axial slice (b) T1w coronal slice (c) T1w sagittal slice

(d) T2w axial slice (e) T2w coronal slice (f) T2w sagittal slice

Figure 1.3: Neonatal brain MRI (Subject: S00007 of the dataset MAIA). The voxel sizes
of the T1w image and the T2 image are respectively about 0.2679 × 0.2679 × 1.2mm and

0.4464× 0.4464× 3mm.

mentioned to estimate the point spread function of the acquisition process. However, many

example-based super-resolution methods rely on an external database. When a training

set is not available, zero-shot learning super-resolution algorithms are proposed to exploit

the internal cross-scale patches internally within the testing image. After the review of 2D

natural super-resolution methods, the applications of learning-based and model-based super-

resolution in medical imaging are reviewed. Secondly, chapter 2 introduces convolutional

neural networks approaches for brain MRI super-resolution. Experiments demonstrate the

need of 3D networks for 3D data generation instead of 2D networks due to the ability of 3D

representations of pre-trained filter set of 3D layers. Next, performance analysis of the network

architecture with respect to various algorithmic design choices such as: optimization methods,

weight initialization, residual learning, the depth of networks, filter size, number of filters,

training patch size and training subject number. A multi-scale training approach is then

proposed to handle arbitrary magnification factors. Moreover, the convolutional networks

are extended to leverage information of multimodal input for improved SR reconstructions.

In addition, two datasets are used to verify the transferable ability of the pre-trained networks.

Furthermore, our method is applied to low-resolution in-vivo neonatal brain MR images so

as demonstrates the qualitative performance.

Chapter 3 introduces an approach to simultaneous super-resolution and segmentation using

a generative adversarial network. Generative adversarial networks have been investigated to
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estimate realistic super-resolved images and efficient semantic segmentation. However, super-

resolution and segmentation are usually processed separately. Firsly, an end-to-end generative

adversarial network for simultaneous high-resolution reconstruction and segmentation of brain

MRI data is proposed. This joint approach is first assessed on the simulated low-resolution

images of the high-resolution neonatal dataset. Then, the learned model is used to enhance

and segment real clinical low-resolution images.

Chapter 4 introduces cross-modal medical image synthesis. Two main approaches of medical

image synthesis are summed up relied on the property of training dataset: paired and unpaired

images. Next, two approaches for brain MRI synthesis are proposed. The first approach

applies the most performing convolutional neural networks in Chapter 2 for paired dataset.

The second approach lies on the application of generative adversarial networks for unpaired

image synthesis.

Chapter 5 concludes the thesis and draws future works.

Appendix A brings up a brief introduction of deep learning. This part consists of the definition

of a neural network, the different architectures of neural networks such as convolutional neural

networks, activation functions, residual networks and densely connected networks. Next,

an application of convolutional neural networks to style transfer and generative adversarial

networks are described in detail. The last section introduces the optimization methods of

neural networks.
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Brain MRI super-resolution using 3D

convolutional neural networks
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2.2.2.6 Residual learning . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.2.7 Depth, filter size and number of filters . . . . . . . . . . . . 34

2.2.2.8 Training patch size and subject number . . . . . . . . . . . 36
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2.1 Introduction to single image super-resolution

If you are a fan of fiction films, you sometimes watch the scenes in which the main characters

use a computer to verify a video surveillance to track a crime and then they say: "Hold

on. Use an enhancement program. Zoom in right here !". Welcome to the "Let’s enhance

!" club. It is no longer with fiction but a very active research areas nowadays: super-

resolution reconstruction. Many methods have been proposed for super-resolution [Borman

and Stevenson, 1998, Park et al., 2003] since the first work by [Tsai and Huang, 1984].

A digital image is composed of elements called pixels. Image spatial resolution, which refers to

line pairs per unit distance or pixels (dots) per unit distance, describes the details contained

in an image [Gonzalez and Woods, 2006]. For example, a two-dimensional (2D) image with

the resolution of 0.1 × 0.1 mm2 has 5 line pairs per unit distance (mm) for each direction.

High-resolution image can improve the quality of image for human interpretation and machine

perception due to the representation of more details. However, imaging acquisition device,

which consists of imaging sensors, or imaging acquisition procedure (e.g. the purpose of users)

can limit the image resolution. Theoretically, the higher density of the sensors in a digital

imaging device may induce higher resolution image. In fact, it is not easy to increase the

number of the sensors on a fixed area of the device because of the increase in cost of products

and the limitations of current integrated circuit. The post-processing approaches as super-

resolution (SR) can overcome physical constraints and also improve the image resolution.

Super-resolution is the process of estimating high-resolution (HR) images from one or several

low-resolution (LR) images. The unknown HR image can be reconstructed by multi-image

super-resolution methods using several interrelated LR images involved with a determined

equation set (e.g. linear constraints) [Milanfar, 2010]. In this work, we focus on single image

super-resolution (SR) that estimates the HR image from one corresponding LR image. A

closely related method with SR to address this problem is to use the single-image interpolation

[Hou and Andrews, 1978, Thévenaz et al., 2000] as a weighted average of the LR pixels yj :

8






xi = yj i = j

xi =
1
M

∑M
i=1wijyj otherwise

(2.1)

where xi is HR pixels, the weights w are calculated as a function that changes over the

distance between the new pixel and M LR ones. The result of the single-image interpolation

approach is too smooth because there is no additional information that compensates for the

lost of high-frequency components [Milanfar, 2010]. An example of SR results is illustrated in

Figure 2.1. The most common up-sampling method, which is image interpolation in Figure

2.1 (b), shows a blurred reconstruction, while the SR start-of-the-art methods such as A+

[Timofte et al., 2014] and SRCNN [Dong et al., 2016a] preserve edges and provide higher

visual quality.

(a) Ground truth (b) Bicubic interpolation

(c) A+ [Timofte et al., 2014] (d) SRCNN [Dong et al., 2016a]

Figure 2.1: The examples of single SR methods for a LR image of dataset Set5. LR
image "bird" is reconstructed using the following methods: (b) bicubic interpolation, (c)
A+ [Timofte et al., 2014], (d) SRCNN [Dong et al., 2016a] using the available code from

authors.
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2.1.1 Image observation model

The image acquisition device can be affected by various factors such as: digital sampling, the

relative motion of scene and the camera, optical blur, decimation and noise. Mathematically,

let X and Y denote the desired HR and the observed LR image, the acquisition process can

be modelled as follows:

Y = HX +N = D↓BFX +N (2.2)

where Y ∈ Rn, X ∈ Rm, H ∈ Rm×n is the observation matrix (m > n) and N denotes an

additive noise. D↓ represents the downsampling operator, B is the blur matrix and F encodes

the motion information. B is also called the point spread function (PSF). The purpose of SR

methods is to estimate X from the observations Y. SR is an ill-posed inverse problem where

there may be many solutions (i.e. not unique) for one observed input, expressing that the

dimension of the observed data always is less than those of the latent HR image. In fact, the

observation matrix may be unknown due to the complexity of real imaging systems. Even if

the matrix is known, SR is still ill-posed. Thus, many solutions from two main categories:

model-based and learning-based methods that can be proposed for this problem. In the next

sections, we will introduce some basic techniques proposed in the literature.

2.1.2 Model-based methods

Given an observation model as Equation (2.2), the SR image can be estimated by minimizing

a least-square cost function as:

X̂ = argmin
X

φ(X,Y) = argmin
X

‖Y −HX‖2. (2.3)

where φ(X,Y) denotes the fidelity term. The linear least squares method gives the solution

of this equation as:

X̂ = (HTH)−1HTY (2.4)

However, there are many possible solutions since H is ill-conditioned. Based on the observa-

tion model, the iterative back-projection (IBP) method [Irani and Peleg, 1991] proposes to

calculate the residual between a simulated LR image with the LR observation Y and then

sum the reconstruction error back to the estimated HR image X̂ as:





X̂
0
= S↑Y

X̂
t+1

= X̂
t
+ S↑(HX̂

t − Y)
(2.5)

where t is the current iteration, S↑ is a upscaling operation (e.g. nearest-neighbor interpola-

tion). The contrast along edges is better recovered than interpolation method. However, the

IBP technique which depends the initialized results, is highly sensitive to noise and outliers.
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In these cases, the result may contain high frequency artifacts because of ignoring the vi-

sual complexity of the ill-posed problem [Milanfar, 2010, Rousseau et al., 2010c]. Thus, this

limitations raise the importance of regularizations. A regularizer can be added into the cost

function to stabilize the problem as:

X̂ = argmin
X

‖Y −HX‖2 + λR(X) (2.6)

where λ is a global weight and R(X) is a regularization term. The most commonly used

method for regularization of ill-posed problems is Tikhonov regularization as:

R(X) =
∑

p

∫

Ω
Cp | X(p) |2 (2.7)

where Cp is a positive parameter, Ω is the searching zone and X(p) denotes the pth order

derivative of X. Another regularization is total variation as:

R(X) =
∑

p

∫

Ω
Cp | X(p) | (2.8)

These approaches assume smooth regions of natural images separated by sharp edges. [Sun

et al., 2008] propose gradient profile prior which is fitted by a general exponential generalized

Gaussian distribution as:

R(X) =
λα(λ)

2σΓ( 1
λ
)
exp

{
−
[
α(λ)

X

σ

]λ}
(2.9)

where Γ denotes Gamma function and α(λ) =
√

Γ( 3
λ
)�Γ( 1

λ
) denotes the scaling factor which

makes the second moment of the distribution equal to σ2. λ is the trade-off parameter. [Kim

and Kwon, 2010, Tappen et al., 2003] propose natural image prior as Markov random field

model:

Pr(x | y) =
∏

s

φ(xs)
∏

r

φ(xr,y) (2.10)

where φ() can be a function (e.g. ℓ2-norm). x and y denote the HR and LR patches.

Each regularizer assumes a specific image model as data distribution. The minimization of

the equation (2.6) with different regularizations on X usually leads to different solutions.

The choice of image prior is crucial for solving the SR problem. In addition, adding prior

knowledge on the image solution (such as piecewise smooth image) may lead to unrealistic

solution. The work in [Efrat et al., 2013] investigates that an accurate estimate of the PSF is

more influenced than a sophisticated prior. Thus, the parameterized prior of the model-based

methods is inadequate for the general solution of the SR problem, that requires an approach

can learn locally the prior by samples.
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2.1.3 Learning-based methods

2.1.3.1 Learning methods for SR

Another approach is to find out the relationship of HR images and corresponding LR images

by assuming available external data. Given a set of extracted patch pairs {(xi,yi)}Ni=1, a

method is to learn a direct mapping [Freeman et al., 2002] from the LR patches yi to the HR

patches xi, connected by the observation model as Equation (2.2):

yi = Hxi +N (2.11)

The relationship between these training pairs is denoted as a mapping φ(xi,yi). The HR

patches x̂ of a testing LR patch y are reconstructed based on Markov random field by counting

the neighbour searching zone and the trained mapping as:

P (x̂ | y) = 1

Z

∏

m,n∈ΩI

θmn(x̂m, x̂n)
∏

m∈ΩI

φ(x̂m,ym) (2.12)

where Z is a normalization constant, ΩI denotes the image space and the node matrix

θmn(x̂m, x̂n) is calculated as:

θmn(x̂m, x̂n) = exp

{
−
∑

j(x̂m,j − x̂n,j)
2

2σ

}
(2.13)

where j denotes the pixel of patches and σ is a noise parameter. This method is impacted

by the patch size. Small patches infer the mapping very fragile but larger patches need large

training images. The assumption of two corresponding manifolds of paired patches called

neighbour embedding for SR [Chang et al., 2004], which can be used to decrease the amount

of training pairs thanks to nearest neighbours search. The method estimates an HR patch x

from k-nearest neighbours Ωk in the training set of LR testing patches y:

α̂i = argmin
αi

‖y −
∑

yi∈Ωk

αiyi‖ s.t.
∑

yi∈Ωk

αi = 1

x̂ =
∑

yi∈Ωk

α̂ixi

(2.14)

One disadvantage of this method is difficult to choose an effective number of k, for example,

a large k can lead to overfitting. An effective method is based on the assumption of an

over-complete dictionary and searching for sparse representation which can combine linearly

the atoms of the dictionary (called the sparse coding method). For the SR problem, the

sparse-coding-based method [Yang et al., 2008] proposes to train dictionaries between HR

patches and LR patches. The objective is to find the coefficients α as:

α̂ = argmin
α

‖α‖1 s.t. ‖FDlα− Fy‖22 ≤ ǫ (2.15)
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where the LR dictionary Dl and the HR dictionary Dh consist of training LR and correspond

HR patches respectively. F denotes feature extractions as follows:





F1 = [−1, 0, 1]

F2 = F T
1

F3 = [1, 0,−2, 0, 1]

F4 = F T
3

(2.16)

where T denotes transpose. After finding the optimal coefficients, the HR patches are esti-

mated as x̂ = Dhα̂. An improved version of this work [Yang et al., 2010] proposes to train

joint dictionaries Dl and Dh instead of one single constraint on the LR dictionary to enforce

the similarity of the representation of image pairs as:

α̂ = argmin
α

‖α‖1 s.t. ‖FDlα− Fy‖22 ≤ ǫ1, ‖PDhα− m‖22 ≤ ǫ2 (2.17)

where P denotes the overlapped patch extraction and m denotes overlapped reconstructed

HR values. The sparse representation method for SR is extended in many works by different

training approaches and dimensionality reduction [Zeyde et al., 2012], anchored neighbor-

hood embedding [Timofte et al., 2013, 2014] or network-based approximation [Wang et al.,

2015]. A sparse-coding-based network for SR is proposed in [Wang et al., 2015] (SCN) by

using the learned iterative shrinkage and thresholding algorithm (LISTA)[Gregor and LeCun,

2010]. The method SCN approximates the coefficients by using a multi-layer network Φ as:

α = Φ(y,W ), where W denotes network parameters. The HR dictionary Dh and network

parameters is optimized by minimizing the loss function as:

L(W,Dh) =
∑

i

‖DhΦ(yi,W )− xi‖2 (2.18)

where the training pairs (yi,xi). While the sparse-coding method in [Yang et al., 2010]

proposes to use first- and second-order derivatives per one image dimension as the feature (i.e.

4 operators). The method in [Gu et al., 2015] decomposes the whole image into several features

by learned convolutional filters (more than 4 as in [Yang et al., 2010]) and then uses the sparse

representation to match the LR-HR patches of each feature. In order to accelerate the speed of

sparse representations (searching the coefficients), anchored neighborhood regression (ANR)

[Timofte et al., 2013] proposes to use nearest neighbours of dictionaries. The ANR method

replaces ℓ1-norm by ℓ2-norm in Equation 2.15 in order to take advantage of a least squares

regression as:

min
α

‖FNlα− Fy‖22 + λ ‖α‖2 (2.19)

where Nl, which corresponds to local neighbourhood of LR dictionary Dl, can be computed

as in the case neighbour embedding [Chang et al., 2004]. The solution of α is now given by:

α = (NT
l Nl + λI)−1NT

l Fy (2.20)
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where I denotes identity matrix and λ is a constant. The testing HR patches is then calculated

through the neighborhood Nh of the HR dictionary as:

x̂ = Nhα = Nh(N
T
l Nl + λI)−1NT

l Fy = PjFy = PjyF (2.21)

Here, Pj is called stored projection matrix and yF denotes the input feature. The work of

[Timofte et al., 2014] (A+), which develops ANR, proposes to finding K training samples

which have the same cluster with the input patch y instead of the nearest neighbors of LR

space, leading to more accurate results and faster estimation. In order to cluster LR patches

before the dictionary training, A+ adopts the method of regressions in [Yang and Yang, 2013]

as:

x̂ = Ĉk

[
y

1

]
, Ĉk = argmin

Ck

∥∥∥∥∥yk − Ck

[
xk

1

]∥∥∥∥∥

2

2

(2.22)

where the transformation matrix Ck is found by training patch pairs (yk,xk) for kth cluster

and 1 denotes the vector filled with ones. However, each group of patches learns a single

regressor where the estimation hardly yields satisfactory results. [Dai et al., 2015] proposes

to optimize jointly regressors as:

Ĉk, P̂j = argmax
Ck,Pj

K∑

k=1

M∑

j=1

Ck,j‖xk − PjFyk‖2 (2.23)

Then, the expectation–maximization (EM) algorithm is used to optimize the cost function.

Several approaches have been investigated to improve the sparse-coding-based method by

analysing the sensitivity of principal components such as dictionary size, augmentation of

data or combining other techniques [Timofte et al., 2016].

Other family of learning-based approaches relies on clustering the patches by feature extract-

ing and then matching HR-LR patches by random forest [Huang et al., 2015b, Salvador and

Perez-Pellitero, 2015, Schulter et al., 2015]. Instead of implicitly figuring out patch regres-

sions based on the dictionaries as Equation (2.17), the method in [Schulter et al., 2015] (RFL)

proposes to use a random forest regressor:

x̂ = Pj(yF )yF = T (yF ) (2.24)

where Pj(yF ) denotes locally linear regressions and T is tree ensembles. By averaging the

linear model Tr of each tree j, the estimated HR image is modelled as:

x̂ =
1

J

J∑

j=1

Tr(j)(yF ) (2.25)

where r represents the leaf in tree Tr(j) aligned to the feature input yF . RFL uses 4 filters

for the feature extractions as ANR and A+ (shown in Equation (2.16)). The work in [Huang

et al., 2015b] finds that there are four main edge-based patterns in which patches are grouped.

Then, four random forest can be used to train the linear regressions of each pattern class. For
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fast inference and adaptively feature extraction, Local Naive Bayes framework is propose for

random-forest-based SR in [Salvador and Perez-Pellitero, 2015]. The optimal regressor from

tree Tr(j) for a patch x̂ is estimated by Naive Bayes derivation as:

Tr
(j⋆)
i = argmax

Tr
(j)
i

p(Tr
(j)
i | x̂) = argmax

Tr
(j)
i

log p(x̂ | Tr(j)i ) (2.26)

Assuming that we have M features on which the clusters are grouped as yFi(1 ≤ i ≤ M),

feature independence results in the log likelihoods as:

Tr
(j⋆)
i = argmax

Tr
(j)
i

log2(M)∑

i

log p(yFi | Tr(j
)

i ) (2.27)

However, these approaches depend crucially on the feature extractions based on pre-defined

filters. In addition, because of patch regressions, these methods need optimally global op-

timization when applying on a testing image, that takes computation costs for each patch

reconstruction. In the next section, the methods, which use convolutional neural networks,

attempt to learn implicitly necessary features in the networks.

Another approach for SR problem defines matrix H−1 as a combination of a restoration

matrix R ∈ Rm×m and a upscaling interpolation operator S↑ : Rn → Rm with respect to the

interpolated LR (ILR) image Z ∈ Rm (Z = S↑Y). Given a set of HR images Xi and their

corresponding LR images Yi, the restoration operator R can be estimated by minimizing the

following loss function:

R̂ = argmin
R

k∑

i

‖Xi −R(S↑Yi)‖2 = argmin
R

k∑

i

‖Xi −R(Zi)‖2 (2.28)

Once R̂ is estimated, given a LR image Y, the computation of an HR image X is straightfor-

ward: X = R̂(S↑Y). In order to model the restoration operation R, the first deep learning

method (SRCNN) proposes to use 3 convolutional layers [Dong et al., 2014] for LR feature

representation, LR-HR feature matching and image reconstruction. This method does not

require any feature descriptions and outperforms the previous hand-crafted methods. The

first convolutional layer called R1 implicitly extracts a set of feature maps for the input LR

image as:

R1(Z) = max(0,W1 ∗ Z +B1) (2.29)

where W1 and B1 represent the filters and biases respectively, and "∗" denotes the convolution

operation. A rectified linear unit (ReLU) is applied on the filter responses. The second layer

maps these feature maps nonlinearly to HR patch representations:

R2(Z) = max(0,WL−1 ∗R1(Z) +B2) (2.30)
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Finally, the third layer reconstruct the HR image from these patch representations:

RL(Z) = WL ∗R2(Z) +BL (2.31)

where L denotes the number of weight layers of networks (i.e. L = 3 with SRCNN). In

order to optimize the network, SRCNN uses the stochastic gradient descent with momentum

algorithm. However, SRCNN attempts to add more than 4 weighted layers but deeper models

give lower performance. An illustration of SRCNN is shown in Figure 2.2. After SRCNN,

deep learning methods have become a dramatic leap in the SR problem. Several studies

have further investigated CNN-based architectures for image SR. An increased depth of the

network [Kim et al., 2016a] (VDSR) is proposed up to 20 fully convolutional layers, that

rewrites Equation 2.30 as:

Rj(Z) = max(0,Wj ∗Rj−1(Z) +Bj) j ∈ [2, L− 1] (2.32)

In this case, L is equal to 20. The networks of VDSR are proposed to learn the mapping

from the interpolation LR images to the residual between the interpolation LR images and

the corresponding HR images as:

R̂ = argmin
R

k∑

i

‖(Xi − Zi)−R(Zi)‖2 (2.33)

Due to residual learning, effective weight initialization and gradient-clipping optimization

scheme, VDSR can build more layers than SRCNN, leading to more accurate performance.

Recursive neural networks are first proposed in [Kim et al., 2016b] (DRCN). This network

replaces the mapping function as the series of convolutional layers in Equation 2.32 by the

recursive convolutional layers as:

R2(H) = (g ◦ g ◦ ...◦)g(H) = gD(H) (2.34)

where ◦ denotes a function composition and gD denotes the D-fold product of g. Assuming

H0 = R1(Z), a recurrent relation g as:

Hd = g(Hd−1) = max(0,W ∗Hd−1 + b) (2.35)

DRCN can improve performance by increasing recursion depth, that does not add new pa-

rameters for additional convolution layers. A common point of these methods is that they use

interpolated images as the input of the networks. The use of interpolation operator consumes

of memory (i.e. larger weights storage of each filter per layer). A new layer called sub-pixel

layer proposed in [Shi et al., 2016] or a deconvolution layer in [Dong et al., 2016b], inside

which the LR image is upscaled, allows the networks independent of interpolation techniques

as:

R̂ = argmin
R

k∑

i

‖Xi −R(Yi)‖2 (2.36)
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Figure 2.2: Pipeline of the method SRCNN [Dong et al., 2016a].

These layers are proposed to be attached at the end of the networks:

RL(Y) = WL ∗ S↑RL−1(Y) (2.37)

Instead of learning one scale factor, laplacian pyramid networks in [Lai et al., 2017] propose

to train simultaneous several factors through a set of progressive upscaling layers. A network

with more than 16 residual blocks (a block consists of two convolutional layers with batch

normalization, ReLU and skip connection) is proposed in [Ledig et al., 2017] (SRResnet).

The recursive blocks and the residual blocks are then combined in the work of [Tai et al.,

2017] to build more layers but still maintain the efficiency. Although, the deeper networks

(more than 20 weight layers) such as SRResnet have very accurate quantitative metrics, the

methods give less perceptual reconstructions [Ledig et al., 2017]. The investigation of other

effective functions instead of mean squared error-based cost functions has been proposed such

as ℓ1-norm loss [Zhao et al., 2017], Charbonnier loss [Lai et al., 2017], perceptual loss [Johnson

et al., 2016, Ledig et al., 2017]. The objective function in Equation 2.36 can be rewritten as

a ℓ1-norm:

R̂ = argmin
R

k∑

i

‖Xi −R(Yi)‖ (2.38)

or a robust Charbonnier loss function as:

R̂ = argmin
R

k∑

i

√
‖Xi −R(Yi)‖2 + ǫ2ρ (2.39)

where ǫρ is set to 1e − 3. [Johnson et al., 2016] propose to train the restoration network R

to generate the output R(Y) which has the perceptual content of the HR image X based on
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the perceptual loss as:

Lperceptual(X, R(Y)) =
∑

k

(F l
k(R(Y))− F l

k(X))2 (2.40)

where F l is the feature maps of the lth layer of a pre-trained network (e.g. VGG-net [Simonyan

and Zisserman, 2014]). Generative adversarial networks [Ledig et al., 2017] (SRGAN) improve

the idea of the perceptual loss by adding an adversarial loss. SRGAN consists of two networks:

a network called the generator R generates super-resolved images and another discriminates

the generated images and the true ones as the discriminator D. The adversarial objective of

SRGAN can be described as:

Ladversarial = min
R

max
D

EX∼PX
[logD(X)] + EY∼PY

[log(1−D(R(Y)))] (2.41)

The total objective of SRGAN is formulated as the weighted losses:

LSRGAN = Lperceptual + 10−3Ladversarial (2.42)

We have reviewed several learning-based image super-resolution algorithms using statistical

approaches, sparse coding, random forest and CNNs. One of the main benefits of learning-

based methods is the potential for non linear representation between HR and LR pairs.

Furthermore, the methods are capable to learn a substantial amount of regressors which

observes and generalizes relationships inside the data. However, not all the information in

the training set may be relevant to observed LR images. The feature extractions are crucial to

some learning-based methods such as sparse coding or random forest. Since the first success

of SRCNN, the number of convolutional neural networks based methods are numerous, thanks

to the ability of feature learning inside the networks and the support of GPU computational

power (that reduces the training time). On the other hand, the CNN-based techniques are

lacking of mathematical theories because they can optimize considered non-convex functions.

But we can not deny that SR methods using CNNs work extremely well.

2.1.3.2 Blind super-resolution

Most methods assume a known PSF of imaging systems for the observation model. Then, the

models are trained based on this assumption. However, the pre-trained model significantly

decreases the quality of results when applying to real LR images acquired with a different

PSF. Blind super-resolution methods attempt to estimate the appropriate PSF of the ob-

served LR image instead of using a pre-defined kernel. In order to estimate the PSF, these

approaches assume stochastic reconstruction steps initialized by a random PSF for an optimal

reconstruction. Every patch yi extracted from the LR image (i = 1, ...,M) can be expressed

from the observation model as:

yi = Hxi +N (2.43)
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where xi denotes the patches of the HR image, H is the observation matrix. Some methods

[He et al., 2009, Wang et al., 2005] propose to simultaneously estimate the HR image and the

PSF parameter using the a joint maximum a posteriori (MAP) of probabilistic combination

models p as:

p(xi, h | yi) ∝ p(yi | xi, h)p(xi)p(h) (2.44)

where p(xi) and p(h) are prior terms and p(yi | xi, h) is the data likelihood. Assuming that

the term N of Equation 2.43 stands for a white Gaussian noise with a zero-mean and the

standard deviation of σ, the data likelihood can be expressed by image formation model as:

p(yi | xi, h) =
M∏

i=1

1

N

M∑

i=1

exp

{
−‖yi −H(h)ixi‖2

2σ2

}
(2.45)

Here, the HR image prior p(xi) can be computed by the learning methods [Freeman et al.,

2002] and the PSF prior p(h) can be assumed to be a uniform distribution over a pre-

defined range because of no prior knowledge on it [Wang et al., 2005]. H(h)i is the estimated

observation model during the generation of yi. However, these assumptions may lead to

inaccurate estimation [Michaeli and Irani, 2013] because the methods attempt to estimate

simultaneously the prior of the HR image xi and the kernel h. Instead, [Michaeli and Irani,

2013] only computes the MAP estimate of the kernel h:

ĥ = argmax
h

p(h)

M∏

i=1

p(yi | h)

= argmax
h

p(h)

M∏

i=1

∫

xi

p(yi | xi, h)p(xi)dxi

(2.46)

where p(xi) is a prior term. Similarly, we can express the estimation as :

ĥ = argmax
h

p(h)
M∏

i=1

∫

xi

exp

{
−‖yi −Hxi‖2

2σ2

}
p(xi)dxi (2.47)

Given N HR training patches xi, the prior term can be approximated by empirical mean as:

ĥ = argmax
h

p(h)
M∏

i=1

1

N

N∑

j=1

exp

{
−‖yi −Hxj‖2

2σ2

}
(2.48)

where p(h) is a nonparametric prior. This is in contrast to [Wang et al., 2005] which assumes a

parametric prior. [Michaeli and Irani, 2013] emphasize that the term Hxj can be equivalently

written as Xjh because of the dependence of Equation (2.48) on h, where Xj is a matrix

corresponding to convolution with xi and a down-sampling operator. Equation (2.48) can be

solved by taking the log as:

ĥ = argmin
h

1

2
‖Ch‖ −

M∑

i=1

log




N∑

j=1

exp

{
−‖yi − Xjh‖2

2σ2

}
 (2.49)
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where C can be a chosen matrix to penalize for non-smooth kernels. The blind SR meth-

ods can be used to approximate the real PSF of observed LR images using principled MAP

estimations. The use of blind SR based on learning methods is very potential for real ap-

plications such as enhancing the historical image. However, the current algorithms for blind

SR are based on several assumptions, that may reduce the generalization of the observation

model.

2.1.3.3 Zero-shot learning

If external training datasets are not available, one approach called zero-shot learning proposes

to exploit the similarity of patches inside the image. Assuming that the observation model

in Equation 2.2 with noise free as:

Y = D↓BX (2.50)

The method in [Glasner et al., 2009] attempts to find the HR of a LR image by exploiting

cross-scale patch redundancy called internal examples. A set of several downscaled versions

from the LR one Y can be generated as I−i = D×−i
↓ BY. The strategy first finds the nearest

neighbours of a patch y in the LR image from several downscaled versions and then copies to

upscaled versions Ii. Then, the method combines these upscaled versions to reconstruct the

HR image by the multi-image methods as [Milanfar, 2010]. Instead of 2D transformation as

in [Glasner et al., 2009] (i.e. translation), [Huang et al., 2015a] propose a transform matrix to

find the self-similarity between internal recurrence of patches inside the testing image. The

method in [Shocher et al., 2018] exploits the kernel estimation in [Michaeli and Irani, 2013]

and the powerful representation of CNN-based technique for training the internal example

patches by assuming the testing LR image as HR patches and its lower-resolution versions as

LR cross-scale patches.

Zero-shot learning is used to overcome difficulties where the external dataset is lacking. In

addition, these methods are very useful for LR images which contain redundant patches. How-

ever, since one LR image patch can construct several HR image patches, zero-shot learning

may ignore details which are missed in the testing image.

2.1.4 Applications of super-resolution in medical imaging

Previously, the techniques for 2D natural images have been reviewed. However, photo-realistic

images can not model specific 3D organs or the human body. In addition, medical imaging

modalities are very diverse. Each modality has specific features which can be used to medical

image analysis. Thus, SR methods for specific medical imaging are also studied. Besides, a

set of different 2D images could only represent the slices of 3D architectures, not connections

in 3D space, that raises the need of 3D models for 3D medical images. The study focused on

medical imaging supports better for other practical applications.
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Moreover, higher resolution medical image is the key to early detection of abnormalities or

pathologies. One of the tasks of medical imaging is to increase and to extent the possible res-

olution so as achieve true isotropic 3-D images. In practice, the maximal sampling frequency

of the imaging device detectors limits the captured range of radio frequencies from the imaged

object. A solution to increase resolution is to reduce detectors size, however, this increases

the noise, thus reduces SNR. Increasing image resolution through super-resolution is a key to

better understanding of the anatomy [Greenspan, 2008]. Medical image SR can be used to

improve the performance of image segmentation and image registration methods. A better

quality of an image can result more accurate segmentation and registration. Previous works

have shown that applying super-resolution techniques leads to more accurate segmentation

maps of brain MRI data [Jog et al., 2016, Rueda et al., 2013] or cardiac data [Oktay et al.,

2016].

The use of SR techniques has been studied in the context of medical analysis, specially of

brain images: anatomical MRI [Luo et al., 2017, Manjón et al., 2010a,b, Rousseau, 2008,

Rousseau et al., 2010a,b, Rueda et al., 2013, Shi et al., 2015], diffusion MRI [Fogtmann et al.,

2014, Poot et al., 2013, Scherrer et al., 2012, Steenkiste et al., 2016], spectroscopy MRI [Jain

et al., 2017], quantitative T1 mapping [Ramos-Llordén et al., 2017, Van Steenkiste et al.,

2017], fusion of orthogonal scans of moving subjects [Gholipour et al., 2010, Jia et al., 2017,

Kainz et al., 2015, Rousseau et al., 2010c]. In the next sections, we will focus on two families

of medical image SR: model-based methods and learning-based methods.

2.1.4.1 Applications of model-based methods

The non-local mean upsampling [Manjón et al., 2010b] (NMU) method performs first high

quality reconstructed image via the iteration patch-based filtering as:

x̂t+1 =
1

C

∑

∀k∈Ω
w(x̂t, x̂tk)x̂

t
k (2.51)

where x̂t is the voxel of the reconstructed HR image at the current iteration t, C is a constant

and Ω is the searching zone. The initialized image is supposed as X0 = S ↑ Y. The weighted

coefficient w is calculated based on the non-local mean (NLM) filter [Coupé et al., 2008] as:

w(x̂t, x̂tk) =




e

|x̂t−x̂
t
k
|2

h2 if | µt − µt
k |< 3h/

√
N

0 otherwise
(2.52)

where µ is the average of 3D patches x around the voxel x, h denotes a filtering parameter

and N is the number of voxel in the 3D patch. The second step of NMU exploits the IBP

method [Irani and Peleg, 1991] for ensuring consistency between the observation model and

the estimated high resolution.
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The medical image SR problem could be also solved by minimizing a objective function with

a regularization term as Equation 2.6. The objective function with a ℓ2-norm regularization,

which is proposed in [Gholipour et al., 2010, Rousseau et al., 2010c], can be written as:

X̂ = argmin
X

‖Y −HX‖2 + λ‖CX‖22 (2.53)

where C is a positive definite matrix. A combination of low-rank regularization [Liu et al.,

2013] and total-variation regularization [Rudin et al., 1992] proposed in [Shi et al., 2015]

(LRTV) transforms the SR problem as:

X̂ = argmin
X

‖Y −HX‖2 + λrankRank(X) + λtvTV (X) (2.54)

where Rank is the weighted sum of trace norms of all slices along each dimension of an

image and TV (total-variation) denotes the integral of the absolute gradients of data. The

regularizer Rank takes advantages of the similarity between the slices in different directions,

that can not happen in the 2D image cases. However, these priors assume that the image is

too smooth leading to lack of the details of the true image representation.

2.1.4.2 Applications of learning-based methods

The learning-based methods can not only find implicitly the parameters of prior energy

function via examples but also define a specific regularization expression. The work in

[Rousseau and Studholme, 2013] extends the NMU method for capturing more informa-

tion of a training dataset. Given a training dataset which consists of paired HR-LR images

D = {(Xi,Yi) | i = 1, ..., N}, we can reconstruct the HR image X of the testing LR image

Y as

X̂(x) =

∑N
i=1

∑
∀k∈Ωwi(x, xk)Xi(xk)∑N

i=1

∑
∀k∈Ωwi(x, xk)

(2.55)

where x is the current voxel with the neighbour searching zone Ω and wi(x, xk), which denotes

the weighted coefficients, is calculated by the similarity between Y and each LR sample from

the external set as:

wi(x, xk) =




e

|x−xk,i|
2

h2 if | µ− µk |< 3h/
√
N

0 otherwise
(2.56)

where the parameters of this equation are similar to Equation 2.52. This method also needs a

correction step in order to improve the robustness. Instead of using IBP as in [Manjón et al.,

2010b], the 3D patches x of the HR reconstruction are calibrated by the HR samples as:
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x̂(x) =
N∑

i=1

∑

∀k∈Ω
wi(x, xk)xi(xk) (2.57)

The extension of sparse representation methods [Yang et al., 2010, Zeyde et al., 2012] is

proposed in [Rueda et al., 2013] by using multi-scale Sobel filters. In this work, the authors

demonstrated the importance of 3D feature detectors within brain MRI data. The filter set,

which is proposed to analyse multi-scale edges of interpolated testing LR images, consists of

2 high-frequency filters with the patch size of 3 and 5 for each direction. Then, the HR image

is reconstructed by finding in the LR-HR sparse dictionaries and is then corrected by the IBP

method as [Irani and Peleg, 1991].

Recently, 3D convolutional neural networks for MRI SR, which have been investigated in

[Pham et al., 2017a], learn the feature representation automatically inside the networks. We

will discuss this approach in the Section 2.2. Later, [Chen et al., 2018b] proposed a 3D version

of densely connected networks (DenseNet) [Huang et al., 2017a] for brain MRI SR. Before

DenseNet, the residual networks in [He et al., 2016a] (ResNet) achieved the most performance

in image classification. ResNet can build up to 1000 convolution layers thanks to the residual

blocks [He et al., 2016b], that is impossible to the previous networks [Simonyan and Zisserman,

2014, Szegedy et al., 2015]. However, ResNet takes a lot of memory training. Densely

connected networks [Huang et al., 2017a] can achieve performance as good as deep networks

(e.g. ResNet [He et al., 2016a]) but reduces memory training thanks to feature concatenations

through all layers. Assuming that the external dataset is not available, inspired by the work

of [Jog et al., 2016], [Zhao et al., 2018] investigated self super-resolution for MRI using

enhanced deep residual networks [Lim et al., 2017]. [Zhao et al., 2018] relies on the fact that

a LR anisotropic 3D image has a in-plane high resolution (e.g. axial slice). Then, the LR

image is interpolated to generate an interpolated isotropic image as a HR reference image.

A simulated LR image is then generated from the HR reference. The deep network in [Lim

et al., 2017] is trained with the patches of simulated pairs and finally applied to the original

LR image.

2.1.5 Evaluation

For quantitative comparison, the peak signal to noise ratio (PSNR) in decibels (dB) and

Structural Similarity Index (SSIM) [Wang et al., 2004] are commonly used to evaluate the

performance of image reconstruction algorithms. Given a dynamic range d, the PSNR is

defined as:

PSNR = 10 log10(
d2

MSE
) (2.58)

where the mean squared error (MSE) is defined as:
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MSE =
∑

iǫΩ

(X(i)− X̂(i))2 (2.59)

where X̂ is the reconstructed image with respected to the ground truth X, Ω is the number

of pixels or voxels of images.

SSIM is used for measuring the image quality based on perceived similarity. SSIM is calculated

as:

SSIM =
(2µXµ

X̂
+ c1)(2σXX̂

+ c2)

(µ2
X + µ2

X̂
+ c1)(σ2

X + σ2
X̂
+ c2)

(2.60)

where µX , σ2
X are respectively the average and the variance of window X of image X, similarly

for X̂ and σ
XX̂

denotes the covariance of these windows. c1 and c2 are two constants.

However, in some cases, a higher PSNR or SSIM does not indicate that the reconstruction

is of higher quality because they do not correlate with human assessment of visual quality

[Johnson et al., 2016, Ledig et al., 2017, Wang and Bovik, 2009]. PSNR and SSIM rely only

differences between pixels which may not describe the high-level human visual perception

via feature representation. Thus, when comparing methods, the need of qualitative results

should be shown to have a general assessment.

2.1.6 Discussion

Major advances in the domains of computer vision indicated the ability of SR methods. The

most popular approach is based on solving the observation model. In order to constraint

the ill-posedness of model-based methods, the adding prior can bound the conditions of the

solution. The capacity of non linear representations which is used in the learning-based meth-

ods helps to capture the relationships of low-resolution images and high-resolution ones. In

contrast to other learning methods which strictly depend on the feature extractions, convolu-

tional neural networks with implicitly feature representation have become the state-of-the-art

models for SR. However, SR algorithms may face the fact that the point spread function of

observation model is not always ideally. Thus, several methods attempt to solve SR which

does not assume a fixed blurring function (blind SR). In addition, many techniques exploit the

redundant information of internal patches to increase the solution of low-resolution images.

The methods of two dimensional natural image SR, which have also mentioned, can be ex-

panded to 3D images. However, the medical image SR can not be viewed inseparable from 2D

photo-like techniques. In application of SR in medical imaging, we have introduced two main

categories: model-based and learning-based methods. The techniques based on the observa-

tion models, which depend on the assumptions of image priors, do not need to collect other

external data. However, they can lead to too smooth results due to crucial prior. In order

to exploit the missing information which can provided by a training set, the learning-based

methods can be used. Several learning-based techniques require feature extractions that can
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reduce the information of image representation. In addition, the better learning algorithms

will help us to better performance, augment the capacity of feature learning storage or faster

convergence. Convolutional neural networks is one of the methods which do not depend on

feature extraction because they can learn representation filters implicitly inside their layers.

2.2 Learning-based single super-resolution using convolutional

neural networks

CNN architectures have become the state-of-the-art for image SR. However, due to the variety

of the proposed methods and the high number of parameters for the networks architecture

design, it is currently difficult to identify the key elements of CNN architecture to achieve

good performance for image SR and assess their applicability in the context of 3D brain MRI.

In addition the extension of CNN architectures to 3D images, taking into account floating and

possibly anisotropic scaling factors may be of interest to address the wide range of possible

clinical acquisition settings, whereas classical CNN architectures only address a predefined

(integer) scaling factor. The availability of multimodal imaging setting also questions the

ability of CNN architectures to benefit from such multimodal data to improve the SR of a

given modality.

First of all, our work verifies the need of fitting data and network parameters for 3D brain

MRI. Then, this work presents a comprehensive review of deep 3D convolutional neural

networks, and associated key elements, for brain MRI SR. Following [Timofte et al., 2016],

who have experimentally showed several ways to improve SR techniques from a baseline

architecture, we study the impact of eight key elements on the performance of convolutional

neural networks for 3D brain MRI SR. We demonstrate empirically that residual learning

associated with appropriate optimization methods can significantly reduce the time of the

training step and fast convergence can be achieved in 3D SR context. Overall, we report better

performance when learning deeper fully 3D convolution neural networks and using larger

filters. Interestingly, we demonstrate that a single network can handle multiple arbitrary

scale factors efficiently, for example, from 2 × 2 × 2 mm to 2 × 2 × 1 mm or 1 × 1 × 1 mm,

by learning multiscale residuals from spline-interpolated image. We also report significant

improvement using a multimodal architecture, where a HR reference image can guide the

CNN-based SR of a given MRI volume.

Recall that single image SR is a typically ill-posed inverse problem that can be stated ac-

cording to the following linear formulation:

Y = HX +N = D↓BX +N (2.61)

where Y ∈ Rn is the LR observed image, X ∈ Rm is the HR image, H ∈ Rm×n is the obser-

vation matrix (m > n) and N denotes an additive noise. D↓ represents the downsampling

operator and B is the PSF. In a learning-based context where a set of image pairs (Xi,Yi)
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is available, the objective is to learn the mapping H−1 from the LR images Yi to the HR

images Xi, leading to the following formulation:

X̂ = argmin
X

‖X −H−1Y‖2. (2.62)

In this setting, the matrix H−1 can be modeled as a combination of a restoration matrix

F ∈ Rm×m and an upscaling interpolation operator S↑ : Rn → Rm. Given a set of K

HR images Xi and their corresponding LR images Yi, the restoration operator F can be

estimated as follows:

F̂ = argmin
F

K∑

i=1

‖Xi − F (S↑Yi)‖2 = argmin
F

K∑

i=1

‖Xi − F (Zi)‖2 (2.63)

where Z ∈ Rm is the interpolated LR (ILR) version of Y (i.e. Z = S↑Y). F is then a

mapping from the ILR image space to the HR image space.

2.2.1 Methodology

2.2.1.1 Restoration by convolutional neural networks : 2D or 3D models for 3D

data ?

The restoration matrix F corresponds to the mapping from Z to X. In SRCNN [Dong et al.,

2016a], this mapping is decomposed into three operations, described as follows:





F1(Z) = max(0,W1 ∗ Z +B1)

F2(Z) = max(0,W2 ∗ F1(Z) +B2)

F3(Z) = W3 ∗ F2(Z) +B3

(2.64)

where:

• Wi and Bi are the convolution parameters to learn, where i ∈ {1, 2, 3}. Wi corresponds

to ni convolution filters of support c × fi × fi × fi, where c is the number of channels

in the input of layer i, fi and ni are respectively the spatial size of the filters and the

number of filters of layer i,

• max(0, ·) refers to a ReLU applied to the filter responses.

Each of these operations is designed using one layer of the neural network. The first step,

called F1, extracts overlapping patches of the LR image and computes a set of feature maps.

F1 is similar to a popular strategy in image restoration by representing patches by a set of

pre-trained bases (such as PCA or DCT). In SRCNN, this step is performed by convolving

the image by a set of learned filters. The second operation, F2, which is mathematically very

close to F1, is a non-linear mapping from the LR feature maps to HR feature maps. Finally,

the third operation, F3, is a convolutional layer corresponding to the image reconstruction.
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W3 can be seen as the projection of HR feature maps onto the image domain and then patches

averaging.

SRCNN has been originally designed for 2D natural image processing. In [Dong et al., 2016a],

W1,W2 and W3 consist of n1 filters with 2D patch size f1×f1, n2 filters with patch size f2×f2

and one filter with patch size f3 × f3 respectively. In order to apply this restoration oper-

ator called F2D, we propose first a straightforward strategy consisting in averaging restored

versions of 3D ILR images Z3D for each direction to estimate a 3D HR image X̂3D:

X̂3D = F axial
2D (Z3D) + F coronal

2D (Z3D) + F sagittal
2D (Z3D) (2.65)

Using this strategy, it is possible to apply the model learned with natural images [Dong

et al., 2016a] (called here SRCNNF-Nat). In addition, a network is trained with a dedicated

learning image dataset (called SRCNNF-Brain).

In addition, we investigate the use of a 3D network which consists of n1 filters with voxel size

f1 × f1 × f1, n2 filters with voxel size f2 × f2 × f2 and one filter with voxel size f3 × f3 × f3

in Section 2.2.2.2. The 3D HR image is then computed as follows: X̂3D = F3D(Z3D).

2.2.1.2 Restoration by 3D residual-learning convolutional neural networks

Figure 2.3: 3D residual-learning convolutional neural networks for single brain MRI
super-resolution.

Instead of learning the mapping directly from the LR space to the HR one, it might be easier

to estimate a mapping from the LR space to the missing high-frequency components, also

called the residual between HR and LR data: R = X − Z or equivalently X = Z + R. This

approach can be modeled by a skip connection in the network. In such a residual-based

modeling, one typically assumes that R is a function of Z. The computation of HR data

is then expressed as follows: X = Z + F (Z) where F can be learned using the following

equation:

F̂ = argmin
F

K∑

i=1

‖(Xi − Zi)− F (Zi)‖2. (2.66)

Following [Kim et al., 2016a], mapping F from Z to (X − Z) is decomposed into nonlinear

operations corresponding to the combination of convolution-based and rectified linear unit

(ReLU) layers. The baseline deeper architecture used in this work can be described as follows:
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F1(Z) = max(0,W1 ∗ Z +B1)

Fi(Z) = max(0,Wi ∗ Fi−1(Z) +Bi) for 1 < i < L

FL(Z) = WL ∗ FL−1(Z) +BL

(2.67)

where L is the number of layers. This network architecture is depicted in Figure 2.3. Please

note that, for instance, the SRCNN model [Dong et al., 2016a] corresponds to a specific

parameterization of this baseline architecture (f1 = 9, f2 = 1, f3 = 5, n1 = 64, n2 = 32 and

with no skip connection).

2.2.2 Experimental setting

2.2.2.1 MRI dataset and LR simulation

To evaluate SR performances of CNN-based architectures, we have used two MRI datasets:

the Kirby 21 dataset and the NAMIC Brain Multimodality dataset.

The Kirby 21 dataset [Landman et al., 2011] consists of MRI scans of twenty-one healthy

volunteers with no history of neurological conditions. Magnetization prepared gradient echo

(MPRAGE, T1-weighted) scans were acquired using a 3-T MR scanner (Achieva, Philips

Healthcare, The Netherlands) with a 1.0 × 1.0 × 1.2 mm3 resolution over an FOV of 240 ×
204× 256 mm acquired in the sagittal plane. Flair data were acquired using 1.1 × 1.1 × 1.1

mm3 resolution over an FOV of 242 × 180 × 200 mm acquired in the sagittal plane. The

T2-weighted volumes were acquired using a 3D multi-shot turbo-spin echo (TSE) with a TSE

factor of 100 with over an FOV of 200 × 242 × 180 mm including a sagittal slice thickness

of 1 mm.

MR images of NAMIC Brain Multimodality 1 dataset have been acquired using a 3T GE at

BWH in Boston, MA. An 8 Channel coil was used in order to perform parallel imaging using

ASSET (Array Spatial Sensitivity Encoding techniques, GE) with a SENSE-factor (speed-

up) of 2. The structural MRI acquisition protocol included two MRI pulse sequences. The

first results in contiguous spoiled gradient-recalled acquisition (fastSPGR) with the follow-

ing parameters; TR=7.4ms, TE=3ms, TI=600, 10 degree flip angle, 25.6cm2 field of view,

matrix=256×256. The voxel dimensions are 1 × 1 × 1mm3. The second- XETA (eXtended

Echo Train Acquisition) produces a series of contiguous T2-weighted images (TR=2500ms,

TE=80ms, 25.6 cm2 field of view, 1 mm slice thickness). Voxel dimensions are 1×1×1mm3.

As in [Shi et al., 2015] and [Rueda et al., 2013], LR images have been generated from a

Gaussian blur and a down-sampling by isotropic scaling factors. In the training phase, a

set of patches of training images is randomly extracted. The training dataset comprises 10

subjects (3200 patches 25×25×25 per subject randomly sampled) and the testing dataset is

composed of 5 subjects. During the testing step, the network is applied on the whole images.

The peak signal-to-noise ratio (PSNR) in decibels (dB) is used to evaluate the SR results with

1NAMIC : http://hdl.handle.net/1926/1687
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respect to the original HR images. No denoising or bias correction algorithms were applied

to the data. Image intensity has been normalized between 0 and 1. The following figures are

drawn based on the average PSNR over all test images.

2.2.2.2 Results with respect to 2D and 3D networks
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Figure 2.4: The evolution of the mean PSNR of SRCNNF-Brain and SRCNN3D with
respect to the number of epochs c©[2017] IEEE.

First, we studied the impact of the number of epochs used for training for both SRCNNF-

Brain and SRCNN3D networks (see Figure 2.4). A strong improvement with respect to

spline interpolation can be noted with few epochs (less than 500). Then, the mean PSNR

increases slowly to reach substantial improvements around 2500 epochs. SRCNN3D seems to

lead to better performances than SRCNNF-Brain no matter what the number of epochs used.

Table 3.1 provides a summary of quantitative evaluation within isotropic scale factor 2 for the

following methods: cubic spline interpolation, non-local means upsampling (NMU) [Manjón

et al., 2010b], Low-rank total variation (LRTV) [Shi et al., 2015], SRCNNF-Nat [Dong et al.,

2016a], SRCNNF-Brain and SRCNN3D. The reported mean gain tends to show that CNN-

based approaches achieve better performance than spline interpolation, NMU or LRTV. For

NMU and LRTV, we used the code provided by the authors. Our experiments show that the

use of CNN-based approaches can lead to significant improvement over spline interpolation.

More specifically, it can be seen that training the networks using specific data provides better

results than using models trained over natural images. Moreover, the use of a 3D CNN-based

model achieves better performance than averaging 2D model outputs. Figure 2.5 shows

examples of reconstructed 3D images obtained from all the compared techniques. Visually,

HR estimation of SRCNN3D best preserves contours and has the best contrast compared

with the results of other methods.

Our experiments shows that better performance can be achieved by learning model parameters

on adequate data. 3D SR models for 3D data outperforms 2D counterparts thanks to the fact
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Image
Cubic Spline NMU LRTV SRCNNF-Nat SRCNNF-Brain SRCNN3D

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
KKI2009-01-MPRAGE 33.42 0.9234 33.60 0.9303 34.29 0.9458 34.47 0.9366 36.16 0.9616 36.61 0.9656
KKI2009-02-MPRAGE 31.27 0.9402 31.37 0.9465 31.88 0.9597 32.40 0.9500 34.19 0.9700 34.60 0.9727
KKI2009-03-MPRAGE 35.88 0.9541 36.19 0.9596 36.88 0.9688 37.11 0.9608 38.93 0.9783 39.57 0.9808
KKI2009-04-MPRAGE 34.49 0.9441 34.73 0.9499 35.48 0.9617 35.59 0.9526 37.43 0.9728 37.91 0.9756
KKI2009-05-MPRAGE 35.72 0.9392 36.08 0.9458 36.86 0.9583 36.72 0.9482 38.40 0.9695 38.88 0.9728
Mean 34.16 0.9402 34.40 0.9464 35.08 0.9585 35.26 0.9496 37.02 0.9704 37.51 0.9735
Standard deviation 1.90 0.0111 2.00 0.0106 2.09 0.0083 1.90 0.0088 1.90 0.0060 1.97 0.0053
Gain - - 0.24 0.0063 0.92 0.0183 1.10 0.0094 2.87 0.0302 3.36 0.0333

Table 2.1: The results of PSNR/SSIM for isotropic scale factor ×2 with the gain be-
tween compared methods and spline interpolation c©[2017] IEEE.

(a) Original HR (b) LR image (c) Spline Interpolation (d) NMU

(e) LRTV (f) SRCNNF-Nat (g) SRCNNF-Brain (h) SRCNN3D

Figure 2.5: Illustration of SR results (KKI2009-02-MPRAGE) with isotropic voxel up-
sampling (scale factor is 2). LR data (b) with voxel size 2.4 × 2 × 2mm3 is up sampled to

size 1.2× 1× 1mm3 c©[2017] IEEE.

that 3D architecture directly learns the 3D structure of MRI volumetric images. In the next

sections, we will focus on improving the performance of 3D networks based on the sensitivity

analysis of baseline 3D architectures.

2.2.2.3 Baseline and benchmarked for 3D architectures

The network architecture that is used as a baseline approach in this study is illustrated

in Figure 2.3. The baseline network is a 10 blocks (convolution+ReLU) network with the

following parameters: 64 convolution filters of size (3 × 3 × 3) at each layer, mean squared

error (MSE) as loss function, weight initialization by [He et al., 2015] (MSRA filler), Adam

(adaptive moment estimation) method for optimization [Kingma and Ba, 2015], 20 epochs

on Nvidia GPU and using Caffe package [Jia et al., 2014], batch size of 64, learning rate

set to 0.0001, no regularization or drop out has been used. The learning rate multipliers

of weights and biases are respectively 1 and 0.1. For benchmarking purposes, we consider
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two other state-of-the-art SR models: low-rank total variation (LRTV) [Shi et al., 2015] and

SRCNN3D [Pham et al., 2017a]. SRCNN3D [Pham et al., 2017a], which is an extension in

3D of the method described in [Dong et al., 2016a], has 3 convolutional layers with the size

of 93, 13 and 53 respectively. The layers of SRCNN3D consist respectively of 64 filters, 32

filters and one filter.

The next sections present the impact of the key parameters studied in this work: optimization

method, weight initialization, residual-based model, network depth, filter size, filter number,

training patch size and size of training dataset.

2.2.2.4 Optimization method
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Figure 2.6: Impact of the optimization methods onto SR performance: SGD-GC, NAG,
RMSProp and Adam optimisation of a 10L-ReCNN (10-layer residual-learning network
with f = 3 and n = 64). We used Kirby 21 for training and testing with isotropic scaling
factor ×2. The initial learning rates of SGC-GC, NAG, RMSProp and Adam are set re-
spectively to 0.1, 0.0001, 0.0001 and 0.0001. These learning rates are decreased by a factor
of 10 every 20 epochs. The momentum of these methods, except RMSProp, is set to 0.9.
All optimization methods use the same weight initialization described in [He et al., 2015].

Given a training dataset which consists of pairs of LR and HR images, network parameters

are estimated by minimizing the objective function using optimization algorithms. These

algorithms play a very important role in training neural networks. The more efficient and

effective optimization strategies lead to faster convergence and better performance. More

precisely, during the training step, the estimation of the restoration operator F corresponds

to the minimization of the objective function L in Equation (2.66) over network parameters

θ = {Wi, Bi}i=1,...,L.

Most optimization methods for CNNs are based on gradient descent. A classic method

applies a mini-batch stochastic gradient descent with momentum (SGD) [LeCun et al., 1998]

as used in [Dong et al., 2016a, Pham et al., 2017a]. However, the use of fixed momentum
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causes numerical instabilities around the minimum. Nesterov’s accelerated gradient (NAG)

[Nesterov, 1983] was proposed to cope with this issued.

The use of small learning rates induces slow convergence. By contrast, high learning rates

may lead to exploding gradients [Bengio et al., 1994, Glorot and Bengio, 2010]. In order to

address this issue, [Kim et al., 2016a] proposed the stochastic gradient descent method with

an adjustable gradient clipping (SGD-GC) [Pascanu et al., 2013] to achieve an optimization

with high learning rates (e.g. α = 0.1). The predefined range over which gradient clipping

is applied may still cause SGD-GC not to converge quickly or make difficult the tuning of

a global learning rate. Recently, methods have been proposed to address this issue through

an automatic adaption of the learning rate for each parameter to be learned. RMSProp

(root-mean-square propagation) [Tieleman and Hinton, 2012] and Adam (adaptive moment

estimation) [Kingma and Ba, 2015] are the two most popular models in this category.

The results of four optimization methods (NAG, SGD-GC, RMSProp and Adam) for the

baseline network are illustrated in Figure 2.6. Firstly, regardless the method used, the base-

line network shows better performance than LRTV [Shi et al., 2015] and SRCNN3D [Pham

et al., 2017a]. Secondly, it can be observed that the baseline network can converge very

fast and stably. Concretely, the proposed optimization scheme needs only 20 epochs with

small learning rate of 0.0001 to converge while the SRCNN3D shown in Figure 2.4 takes 2500

epochs. Finally, in these experiments, the most efficient and effective optimization method is

Adam as regards both PSNR metric and convergence speed. Hence, in the next sections, we

use Adam method with β1 = 0.9 and β2 = 0.999 to train our networks with 20 epochs.

2.2.2.5 Weight initialization

The optimization algorithms for training a CNN are typically initialized randomly. Inap-

propriate initialization can lead to long time convergence or even divergence. Several stud-

ies [Dong et al., 2016a, Oktay et al., 2016, Pham et al., 2017a] used a normal distribution

N (0, 0.001) to initialize the weights of convolutional filters. However, because of too small ini-

tial weights, the optimizer can be stuck into a local minimum especially when building deeper

networks. Both [Dong et al., 2016a] concluded that deeper networks do not lead to better per-

formance, and [Oktay et al., 2016] confirmed that the addition of extra convolutional layers to

the 7-layer model is found to be ineffective. Uniform distribution U(−
√

3/(nf3),
√

3/(nf3))

(called Xavier filler) [Glorot and Bengio, 2010] was also proposed to initialize the weights

of deeper networks. In order to add more layers to networks, [He et al., 2015] suggested an

initial training stage by sampling from the normal distribution N (0,
√

2/(nf3)) (called here

Microsoft Research Asia - MSRA filler).

Overall, we evaluate here the weight initialization schemes described in [Glorot and Bengio,

2010] and [He et al., 2015], a normal distribution N (0, 0.001) as in [Dong et al., 2016a,

Oktay et al., 2016] and a normal distribution N (0, 0.01) for the considered SR architecture.

Experiments with a deeper architecture were also performed, more precisely for a 20-layer
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(b) : 20-layer residual-learning networks (20L-ReCNN)

Figure 2.7: Weight Initialization Scheme vs Performance (residual-learning networks
with the same filter numbers n = 64 and filter size f = 3 using Adam optimization
and tested with isotropic scaling factor ×2 using Kirby 21 for training and testing, 32000

patches with size 253 for training).

architecture, which is the deepest architecture that could be implemented for the considered

experimental setup due to GPU memory setting. As shown in Figure 2.7, the initialization

with normal distributions N (0, 0.001) failed to make the training of both 10-layer and 20-layer

residual-learning networks converge. In addition, the 20-layer network also does not converge

when initialized with normal distributions N (0, 0.01). By contrast, MSRA and Xavier filler

schemes make the networks converge and reach similar reconstruction performance. For the

rest of this chapter, we use MSRA weight filler as initialization scheme.

2.2.2.6 Residual learning

The CNN methods in [Dong et al., 2016a,b, Shi et al., 2016] use the LR image as input and

outputs the HR one. We refer to such approach as a non-residual learning. Within these

approaches, low-frequency features are propagated through the layers of networks, which may

increase the representation of redundant features in each layer and in turn the computational

efficiency of the training stage. By contrast, one may consider residual learning or normalized

HR patch prediction as pointed out by several learning-based SR methods [Kim et al., 2016a,

Timofte et al., 2013, 2014, Zeyde et al., 2012]. When considering CNN methods, one may

design a network which predicts the residual between the HR image and the output of the first
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transposed convolutional layer [Oktay et al., 2016]. Using residual blocks, a CNN architecture

may implicitly embed residual learning while still predicting the HR image [Ledig et al., 2017].
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Figure 2.8: Non-residual-learning vs Residual-learning networks with the same n = 64
and f3 = 33 and the depths of 10 and 20 (called here 10L-CNN vs 10L-ReCNN and 20L-
CNN vs 20L-ReCNN) over 20 training epochs using Adam optimization with the same
training strategy and tested with isotropic scale factor ×2 using Kirby 21 for training and

testing.

Here, we perform a comparative evaluation of non-residual learning vs. residual learning

strategies. Figure 2.8 depicts PSNR values and convergence speed of residual vs non-residual

network structures with 10 and 20 convolutional layers. The residual-learning networks con-

verge faster than the non-residual-learning ones. In addition, residual learning leads to im-

provements in PSNR (+0.4dB for 10 layers and +1.2dB for 20 layers). It might be noted

that these experiments do not support the common statement that the deeper, the better

for CNNs. Here, the use of additional layers is only beneficial when using residual modeling.

Deeper architectures even lower the reconstruction performance with non-residual learning.

2.2.2.7 Depth, filter size and number of filters

As shown by the previous experiment, the link between network depth and performance

remains unclear. Besides, it is hard to train deeper networks because gradient computation

can be unstable when adding layers [Glorot and Bengio, 2010]. For instance, [Oktay et al.,

2016] tested extra convolutional layers to a 7-layer model but achieved negligible performance

improvement. As mentioned above, SRCNN [Dong et al., 2016a] was also tested with deeper

architectures but no improvement was reported. However, [Kim et al., 2016a] argue that the

performance of CNNs for SR could be improved by increasing the depth of network compared

to neural network architectures in [Dong et al., 2016a, Oktay et al., 2016].

The previous section supports that deeper architectures may be beneficial when considering

a residual learning. We further evaluate here the reconstruction performance as a function of

the number of layers. Results are reported in Figure 2.9. They stress that increasing network

depth with residual learning improves the quality of the estimated HR image (e.g. +1.6dB

increasing of the depth from 3 to 20 or +0.5dB increasing of the depth from 7 to 20).
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Figure 2.9: Depth vs Performance (residual-learning networks with the same filter num-
bers n = 64 and filter size f = 3 over 20 training epochs using Adam optimization and
tested with isotropic scale factor ×2 using Kirby 21 for training and testing, 32000 patches

with size 253 for training).

The parameterization of the convolutional filters is also of key interest. Inspired by the VGG

network designed for classification [Simonyan and Zisserman, 2014], previous CNN methods

for SR mostly focused on small convolutional filters of size (3×3×3) in [Kamnitsas et al., 2017,

Kim et al., 2016a, Oktay et al., 2016]. Small filter size can build deeper networks but reduces

the memory for computation cost [Simonyan and Zisserman, 2014]. [Oktay et al., 2016] even

argued that such architecture can lead to better non-linear estimations. Regarding the number

of filters for each layer, [Dong et al., 2016a] reported greater reconstruction performance when

increasing the number of filters. But these experiences were not reported in other CNN-based

SR studies [Kim et al., 2016a, Oktay et al., 2016]. Here, we both evaluate the effect of the

filter size and of the number of filters.
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Figure 2.10: Impact of convolution filter parameters (sizes f × f × f = f3 with n filters)
on PSNR and computation time. These 10-layers residual-learning networks are trained
from scratch using Kirby 21 with Adam optimization over 20 epochs and tested with the

testing images of the same dataset for isotropic scale factor ×2.

Figure 2.10 shows that a 10-layer network with a filter size of 53 shows results as well as

a 20-layer network with 33 filters. Besides reconstruction performance, the use of a larger
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filter size decreases the training speed and significantly increases the complexity and memory

cost for training. For example, it took us 50 hours to train a 10-layer network with a filter

size of 53. By contrast, a deeper network with smaller filters (i.e. 20-layer network with 33

filters) involves a smaller number of parameters, such that it took us only 24 hours to train.

These experiments suggest that deeper architectures with small filters can replace shallower

networks with larger filters both in terms of computational complexity and of reconstruction

performance. In addition, the increase in the number of filters within networks can increase

the performance. However, we were not able to use 128 filters with the baseline architecture

due to the limited amount of memory. This stresses out the need to design memory efficient

architectures for 3D image processing using deeper CNNs with more filters.

2.2.2.8 Training patch size and subject number

In the context of brain MRI SR, the acquisition and collection of large datasets with ho-

mogeneous acquisition settings is a critical issue. We here evaluate the extent to which the

number of training subjects affects SR reconstruction performance. As the training samples

are extracted as patches of brain MRI images, we also evaluate the impact of the training

patch size onto learning and reconstruction performance.
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Figure 2.11: First row: Training patch size vs Performance. Second row: Patch size
vs Training Time. Third row: Patch size vs Training GPU Memory Requirement. These
networks with the same n = 64 and f3 = 33 are trained from scratch using Kirby 21
with batch of 64 and tested with the testing images of the same dataset for isotropic scale

factor ×2.

The size of training patches should be larger or equal to the size of the receptive field (the

region of the input space affects a particular layer) of the considered network [Kim et al.,

2016a, Simonyan and Zisserman, 2014], which is given by ((f−1)D+1)3 for a D-layer network

with filter size f3. Figure 2.11 confirms that better performance can be achieved using larger
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training patches (from 113 to 313 with the 10-layer network and from 113 to 293 with the

12-layer network). However, if the patch size is larger than the receptive field (e.g. 213 within

the 10-layers network and 253 within the 12-layers network), the improvement is very little

while we consume considerably more GPU memory and training time.

We stressed previously that the selection of the network depth involves a trade-off between

reconstruction performance and GPU memory requirement and training time increase. A

similar result can be drawn with respect to the patch size. Figure 2.11 illustrates that

larger training patch sizes also require more memory for training. It may be noted that

the performance of the 10-layer networks may reach a performance similar to 12-layer and

20-layer networks when using larger training patches but it takes more time and more GPU

memory for training.
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Figure 2.12: Number of Subjects vs Performance (10-layer residual-learning networks
with the same filter numbers n = 64 and filter size f = 3 over 20 training epochs using
Adam optimization and tested with isotropic scale factor ×2 using Kirby 21 for training

and testing, 3200 patches per subject with size 253 for training).

Regarding the number of training subjects, Figure 2.12 points out that a single subject is

enough to reach better performance than spline interpolation. This has also been discovered

in the work of [Shocher et al., 2018, Zhao et al., 2018] in which a super-resolution pipeline

using the right testing image (self SR) is proposed. Interestingly, reconstruction performance

increases slightly when more subjects are considered, which appears appropriate for real-

world applications. However, in fact, more training dataset takes more time within the same

experience settings. In the next sections, for saving training time, we propose to use 10

subjects for learning.

2.2.2.9 Handling arbitrary scales

In some CNN-based SR approaches, the networks are learned for a fixed and specified scaling

factor. Thus, a network built for one scaling factor cannot deal with any other scale. In

medical imaging, [Oktay et al., 2016] have applied CNNs for upscaling cardiac image slices

with the scale of 5 (e.g. upscaling the voxel size from 1.25× 1.25× 10.00mm to 1.25× 1.25×
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2.00mm). Typically, their network is not capable of handling other scales due to the use of

fixed deconvolutional layers. In brain MRI imaging, the variety of the possible acquisition

settings motivates us to explore multi-scale settings.

Test / Train

Full-training
Same training samples Double samples

×(2,2,2) ×(3,3,3) ×(2,2,2),(3,3,3) ×(2,2,2),(3,3,3)
PSNR PSNR PSNR PSNR

×(2,2,2) 39.01 35.25 37.35 38.80

×(2,2,3) 36.80 35.11 36.47 37.24
×(2,2.5,2) 37.71 35.41 36.91 37.93
×(2,3,3) 35.23 35.13 35.75 36.20

×(2.5,2.5,2.5) 35.47 35.52 36.09 36.63
×(3,3,3) 33.43 35.01 34.89 35.20

Table 2.2: Experiments with multiple isotropic scaling factors with the 20-layers net-
work using the training and testing images of Kirby 21. Bold numbers indicate that the
tested scaling factor is present in the training dataset. We test two conditions of same

training data and double training data

Following [Kim et al., 2016a], we investigate how we may embed multiple scales in a single

network. It consists in creating a training dataset within which we consider LR and HR

image pairs corresponding to different scaling factors. We test two cases: the first condition

where the learning dataset for combined scale factors (×2,×3) has the same number as a

single scale factor and the second one where we double the learning dataset for multiple scale

factors. To avoid a convergence towards a local minimum of one of the scaling factors, we

learn network parameters on randomly shuffled dataset.

Table 2.2 summarizes experimental results. First, when the training is achieved for the

scaling from (2×2×2) on a dataset of (2×2×2) scale, it can be noticed that reconstruction

performances decrease significantly when applied to other scaling factors (there is a drop from

39.01dB to 33.43dB when testing with (3 × 3 × 3)). Second, it can be noticed that when

the training is performed on multi-scale data within the same training samples, there is no

significant performance change compared to training from a single-scale dataset. Third, the

more training dataset leads to a better performance. Training from multiple scaling factors

leads to the estimation of a more versatile network. Overall, these results tend to show that

one single network can handle multiple arbitrary scaling factors.

2.2.2.10 Multimodality-guided SR

In some clinical cases, it is common to acquire one isotropic HR image and LR images with

different modalities (different contrasts) in order to limit the acquisition time. Hence, a

coplanar isotropic HR image might be considered as a complementary information source

to reconstruct HR MRI images from LR ones [Rousseau et al., 2010a]. To address this

multimodality-guided SR problem, we add a concatenation layer as the first layer of the

network as illustrated in Figure 2.13. This layer concatenates the ILR image and a registered

38



Figure 2.13: 3D deep neural network for multimodal brain MRI super-resolution using
intermodality priors. Skip connection computes the residual between ILR image and HR

image.

HR reference along the channel axis. The registration step of HR reference ensures that the

two input images share the same geometrical space.
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(a) Multimodal experiments using Kirby dataset for training and testing.
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(b) Multimodal experiments using NAMIC dataset for training and testing.

Figure 2.14: Multimodality-guided SR experiments. The LR T1-weighted images are up-
scaled with isotropic scale factor ×2 using respectively monomodal network (10L-ReCNN
for LR T1w), HR T2w multimodal network, HR Flair multimodal network and both HR

Flair and T2w multimodal images.

We experimentally evaluate the relevance of the proposed multimodality-guided SR model

according to the following setting. We investigate whether the complementary use of a Flair or
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a T2-weighted MRI image might be beneficial to improve the resolution of a LR T1-weighted

MRI image. Concerning the Kirby dataset, we apply an affine transform estimated using FSL

[Jenkinson et al., 2012] to register images from the same subject into a common coordinate

space. We assume here that the affine registration can compensate motion between two scans

acquired during the same acquisition session since here an organ does not undergo significant

deformation between two acquisitions. The registration step has been checked visually for

all the images. Data of the NAMIC dataset are already in the same coordinate space so no

registration step is required.
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Figure 2.15: Depth vs Performance (multimodal SR using residual-learning networks
with the same filter numbers n = 64 and filter size f = 3 over 20 training epochs using
Adam optimization and tested with isotropic scale factor ×2 using NAMIC for training

and testing).

Figure 2.14 shows the results of the multimodality-guided SR compared to the monomodal

SR for both Kirby dataset (a) and NAMIC datasets (b). It can be seen that multimodality

driven approach can lead to improved reconstruction results. In these experiments, the overall

upsampling result depends on the quality of the HR image used to drive the reconstruction

process. Thus, adding high resolution information containing artifacts limits reconstruction

performance. This is especially the case for the Kirby dataset. For instance, when considering

T2w images, no improvement is observed for Kirby dataset and an improvement greater than

1dB is reported for NAMIC dataset. As the T2w image resolution is lower than T1w modality

in Kirby dataset, these results may emphasize the requirement for HR information source to

expect significant gain with respect to the monomodal model. Figure 2.16 shows visually

that edges in the residual image between the ground truth and the reconstruction by the

multimodal approach are reduced significantly compared to interpolation and monomodal

methods (e.g. the regions of lateral ventricles). This means that the multimodal approach

brings the reconstructions which are the most similar to the ground truth. These qualitative

results highlight the fact that the proposed multimodal method provides a more favorable

performance than other compared methods.

In addition, we explore the impact of the network depth augmentation with regard to the

performance of multimodal SR approach. The experiments shown in Figure 2.15 indicate

that the deeper structures do not lead to better results within the multimodal method.
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(a) Original HR T1-weighted (b) LR T1-weighted image (c) HR T2-weighted reference

(d) Spline Interpolation (e) Monomodal 10L-ReCNN (g) Multimodal 10L-ReCNN

Figure 2.16: Illustration of the axial slices of monomodal and multimodal SR results
(01018, pathological case) with isotropic voxel upsampling using NAMIC for training and
testing. LR T1-weighted image (b) with voxel size 2 × 2 × 2mm3 is upsampled to size
1 × 1 × 1mm3. Multimodal network 10L-ReCNN uses the HR T2-weighted reference (c)
to upscale LR image. The different between ground truth image and reconstruction results

are at the bottom. Their zoom version are at the right.

2.2.2.11 How transferable are learned features?

Training a CNN from scratch requires an amount of training data and may take a long time.

Moreover, to avoid overfitting, the training dataset has to reflect the appearance variability

of the images to reconstruct. In the context of brain MRI, part of image variability comes

from acquisition systems. Hence, we investigate the impact of such image variability onto SR

performance by evaluating transfer learning skills among different datasets corresponding to

the same imaging modality.

In order to characterize such generalization skills, we evaluate the extent to which the selection

of a given training dataset affects the reconstruction performance of the network. We proceed

as follows: We train from scratch two 20L-ReCNN networks separately for a 10-image NAMIC

T1-weighted dataset and a 10-image Kirby T1-weighted dataset, and we test the trained

models for the remaining 10-image NAMIC and Kirby T1-weighted datasets. The considered

case-study involves a scaling factor of (2 × 2 × 2). For quantitative comparison, the PSNR

and the structural similarity (SSIM) (the definition of SSIM can be found in [Wang et al.,

2004]) are used to evaluate the performance of each model in Table 2.3. For benchmarking

purposes, we also include a comparison with the following methods: cubic spline interpolation,

low-rank total variation (LRTV) [Shi et al., 2015], SRCNN3D [Pham et al., 2017a]. The use

of 20-layer CNN-based approaches for each training dataset can lead to improvements over

spline interpolation, LRTV method and SRCNN3D (with respect to both PSNR and SSIM).

Although, we lose a little gain (e.g. PSNR: 0.55dB for testing Kirby and 0.74dB for NAMIC,

41



SSIM: 0.003 for Kirby and 0.0019 for NAMIC) when using different training and testing

dataset (i.e. different resolution), our proposed networks have better results than compared

methods.

For qualitative comparison, Figures 2.17 and 2.18 show the results of reconstructed 3D images

obtained from all the compared techniques. The zoom version of the reconstructions 20L-

ReCNN shows sharpen edges and a grayscale intensity which are closest to the ground truth.

In addition, the HR reconstruction of the 20L-ReCNN model shows that its differences from

the ground truth are less than other methods (i.e. the contours of the residual image of the

20L-ReCNN method are less occurrences than those of others). Hence, we can infer that

our proposed method best preserves contours, geometrical structures and better recovers the

image contrast compared with the other methods.

Testing dataset
Spline Interpolation LRTV SRCNN3D 20L-ReCNN

Kirby (10 images) Kirby (10 images) NAMIC(10 images)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Kirby (5 images ) 34.16 0.9402 35.08 0.9585 37.51 0.9735 38.93 0.9797 38.06 0.9767
Standard deviation 1.90 0.0111 2.09 0.0083 1.97 0.0053 1.87 0.0044 1.83 0.0045
Gain - - 0.92 0.0183 3.36 0.0333 4.77 0.0395 3.9 0.0365

NAMIC (10 images) 33.78 0.9388 34.34 0.9549 36.72 0.9694 37.73 0.9762 38.28 0.9781
Standard deviation 1.82 0.0071 1.79 0.0044 1.76 0.0035 1.81 0.0031 1.78 0.0029
Gain - - 0.56 0.0161 2.94 0.0306 3.95 0.0374 4.5 0.0393

Table 2.3: The results of PSNR/SSIM for isotropic scale factor ×2 with the gain be-
tween compared methods and the method of spline interpolation. One network 20L-

ReCNN trained with 10 images of Kirby and one trained with NAMIC

2.2.3 Practical applications of super-resolution

There are many practical situations, including infant brain MRI scans [Makropoulos et al.,

2018], rapid emergency scans [Walter et al., 2003], where the LR images with an anisotropic

voxel size are typically acquired due to patient comfort (e.g. infants can not lie on bed

for a long time, emergency). These images usually have a high in-plane resolution and a

low through-plane resolution. Interpolation is commonly used to upsampled these LR image

to isotropic digital resolution. However, interpolated LR images may lead partial volume

artifacts that affect segmentation [Ballester et al., 2002]. In such cases, motion correction

and multi-image super-resolution can be used to achieve HR isotropic images [Makropoulos

et al., 2018]. If these methods are not always available, investigators and clinicians have no

choice to process these LR images. For example, the MAIA dataset has the T2w images

which acquired with the voxel size of 0.4464× 0.4464× 3 mm. In this section, we attempt to

use our single image SR method to enhance the resolution of these clinical data and improve

the segmentation methods applied to these images.

2.2.3.1 Super-resolution of clinical neonatal data

The idea is to use convolutional neural networks to transfer the rich information available

from high-resolution experimental dataset to lower-quality image data. The procedure first
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(a) Original HR (b) LR image (c) Spline Interpolation

(d) LRTV (e) SRCNN3D (g) 20L-ReCNN

Figure 2.17: Illustration of SR results (KKI2009-02-MPRAGE, non-pathological case, of
dataset Kirby) with isotropic voxel upsampling. LR data (b) with voxel size 2×2×2.4mm3

is upsampled to size 1 × 1 × 1.2mm3. The difference between the ground truth image and
the reconstruction results are in the right bottom corners. Both network SRCNN3D and

network 20L-ReCNN are trained with the 10 last images of Kirby.

uses CNNs to learn mappings between real HR images and their corresponding simulated LR

images with the same resolution of real data. The LR data is generated by the observation

model decomposed into a space-invariant blurring model and a downsampling operator. The

two most popular choices for MRI PSF approximation for SR evaluation are a rectangular

pulse Box-PSF with the box width of slice width [Manjón et al., 2010b], a Gaussian kernel

[Greenspan, 2008, Rueda et al., 2013, Shi et al., 2015]. However, the most accurate represen-

tation is the use of a Gaussian kernel with the full-width-at-half-maximum (FWHM) equal

to slice thickness [Greenspan, 2008]. Once models learned, these mappings enhance the LR

resolution of unseen low quality images.

In order to verify the applicability of our CNN-based methods, we have used two neonatal

brain MRI dataset: the dHCP dataset [Hughes et al., 2017] and the MAIA dataset. The

HR images are T2-weighted MRIs of the Developing Human Connectome Project (dHCP)

[Makropoulos et al., 2018], and provided by the Evelina Neonatal Imaging Centre, London,

UK. 40 neonatal data were acquired on a 3T Achieva scanner with the repetition (TR) of 12

000 ms and the echo times (TE) of 156 ms respectively. The size of voxels is 0.5× 0.5× 0.5

mm3. In-vivo neonatal LR images has a voxel size of 0.4464× 0.4464× 3 mm3.

The pipeline of this application is described as follows:
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(a) Original HR (b) LR image (c) Spline Interpolation

(d) Low-Rank Total Variation
(LRTV)

(e) 20L-ReCNN (trained with
Kirby)

(g) 20L-ReCNN (trained with
NAMIC)

Figure 2.18: Illustration of SR results (01011-t1w, pathological case, of dataset NAMIC)
with isotropic voxel upsampling. LR data (b) with voxel size 2 × 2 × 2mm3 is upsampled
to size 1×1×1mm3. The zoom versions of the axial slices are in the right bottom corners.

• The HR T2w images of the dHCP dataset are first filtered by a 3D Gaussian kernel

with the standard deviation (σx, σy, σz) calculated as :





FWHWx = 2
√
2 ln 2σx = STx

FWHWy = 2
√
2 ln 2σy = STy

FWHWz = 2
√
2 ln 2σz = STz

(2.68)

where (x, y, z) is image coordinates, ST denotes the slice thickness of new images.

Concretely, in this case, the slice thickness is calculated as SWx = 0.4464mm, SWy =

0.4464mm, SWz = 3mm. Then, the blurred HR images are downscaled by nearest-

neighbour interpolation to generate simulated LR images.

• The simulated LR images are then upscaled by the spline interpolation. HR and cor-

responding interpolated LR patches with the size of 25 in cube are cropped randomly

from 40 pairs of the HR and the interpolated LR images with 3200 patches per image.

• A convolutional neural networks with 20 layers, in which the parameters are described

in previous sections, learns the mapping between interpolated LR and HR patches.

Once the network learned, the model is stored for the next step.

44



(a) Original LR image (b) Spline interpolation

(c) NMU (d) 20L-ReCNN

Figure 2.19: Illustration of coronal SR results with isotropic voxel upsampling. Original
data with voxel size of 0.4464 × 0.4464 × 3 is resampled to size 0.5 × 0.5 × 0.5 mm3.

20L-ReCNN is trained with the dHCP dataset

• In order to apply our model, the real LR images are interpolated to have the voxel size

equal to the one of HR dataset. Finally, the set of learned convolutional layers applies

to the real interpolated LR images to obtain SR images.

Figures 2.19, 2.20 and 2.21 compares the qualitative results of HR reconstructions (spline in-

terpolation, NMU [Manjón et al., 2010b] and our method) of a LR image from MAIA dataset.

We also test LRTV [Shi et al., 2015] but do not achieve good reconstructions (shown in Figure

2.20 (c)). Note that we do not have the ground truth of real LR data for calculating quan-

titative metrics. The comparison reveals that the 20-layers CNNs-based proposed method

recovers shaper images and better defined boundaries. For example, the cerebrospinal fluid

(CSF) of the cerebellum of proposed method in Figure 2.19 is more visible than compared

methods. The cortex of 20L-ReCNN method is less blurry than others in Figure 2.21. The

ventricle

These results confirm qualitatively the efficacy of the approach. In addition, these results

could support cortex segmentation due to the visibility of cortex boundaries.
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(a) Original LR image (b) NMU [Manjón et al., 2010b]

(c) LRTV [Shi et al., 2015] (d) 20L-ReCNN

Figure 2.20: Illustration of sagittal SR results with isotropic voxel upsampling. Original
data with voxel size of 0.4464 × 0.4464 × 3 is resampled to size 0.5 × 0.5 × 0.5 mm3.

20L-ReCNN is trained with the dHCP dataset.

2.2.3.2 Super-resolution for segmentation

In this section, we would like to verify the contribution of SR to medical image segmentation.

"SR cannot be viewed as an isolated domain." [Greenspan, 2008]. SR has a strong relation-

ship with image segmentation. Indeed, super-resolution techniques are used to achieve more

accurate segmentation maps of brain MRI data [Jog et al., 2016, Rueda et al., 2013]. In order

to evaluate state-of-the-art segmentation algorithms in actual clinical settings with respect

to our SR results, we use morphologically adaptive neonatal tissue segmentation (MANTIS)

toolbox [Beare et al., 2016] to segment the cortex of MAIA SR T2w images. MANTIS pro-

poses a pipeline which combines unified tissue segmentation and morphological adaptation

to segment the neonatal brain. BET method of FSL toolbox [Jenkinson et al., 2012] is used

to strip skull before applying MANTIS. Figure 2.22 shows the result of segmentation method

MANTIS for spline interpolation and two SR technique: NMU [Manjón et al., 2010b] and

our proposed method (20L-SRReCNN). The cortex segmentation within our 20L-SRReCNN

is more fully connected than others. The outer boundary of cortex segmentation map of our

method is smoother than compared methods.

Although, we do not have the ground truth segmentation maps (with the resolution of 0.5×
0.5 × 0.5 mm3) of the clinical T2w images, there are the manual segmentations of these

subjects with respect to higher-resolution T1w images with voxel size of 0.268 × 0.268 ×
1.2 mm3 from a radiologist. We would like to evaluate the segmentation results with respect

46



(a) Original LR image (b) Spline interpolation

(c) NMU [Manjón et al., 2010b] (d) 20L-ReCNN

Figure 2.21: Illustration of sagittal SR results with isotropic voxel upsampling. Original
data with voxel size of 0.4464 × 0.4464 × 3 is resampled to size 0.5 × 0.5 × 0.5 mm3.

20L-ReCNN is trained with the dHCP dataset.

to upsampling methods by these higher-resolution manual segmentation maps. Because these

T1w images and T2w images are not paired, the estimated segmentation maps are then

mapped onto the original T1w images by a rigid registration between HR T2w and T1w data.

A threshold of 0.5 is applied to generate binary segmentation maps. Table 2.4 shows the dice

scores of the segmentation method MANTIS on the 2 images of the MAIA testing dataset with

respect to different approaches: original T1w images with voxel size of 0.268×0.268×1.2mm3,

interpolated T1w images with voxel size of 0.5×0.5×0.5mm3, original T2w images with voxel

size of 0.4464×0.4464×3 mm3, upsampling T2 images with voxel size of 0.5×0.5×0.5 mm3

using interpolation, NMU and 20L-SRReCNN. The Dice index is described as:

Dice =
2TP

2TP + FP + FN
(2.69)

where TP ,FP and FN denote true positive, false positive and false negative between the esti-

mated and the original segmentation. First, the segmentation results from isotropic-resolution

T2w images are better than higher-resolution T1w images and isotropic T1w images. Sec-

ondly, super-resolution methods, which generate better reconstructions, support more accu-

rate segmentation results. Finally, the segmentation method MANTIS for our estimated HR

images shows the best results compared to other approaches. These results come from the

fact that our SR method estimates more accurate HR reconstructions.
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(a) Original LR image (b) MANTIS for Spline interpolation

(c) MANTIS for NMU [Manjón et al., 2010b] (d) MANTIS for 20L-ReCNN

Figure 2.22: Illustration of coronal cortex segmentation results (red color) using MAN-
TIS toolbox [Beare et al., 2016] with isotropic voxel upsampling. Original data (a) with
voxel size of 0.4464 × 0.4464 × 3 is resampled to size 0.5 × 0.5 × 0.5 mm3. 20L-ReCNN is

trained with the dHCP dataset.

Subject T1w T2w
Original Interp. Original Interp. NMU 20L-SRReCNN

MAIA #1 0.6215 0.6205 0.7090 0.7052 0.7190 0.7330
MAIA #2 0.6746 0.6802 0.6694 0.7118 0.7182 0.7333

Table 2.4: Dice scores of the segmentation method MANTiS on the 2 images of the
MAIA testing dataset with respect to different approaches (columns): original T1w im-
ages, interpolated (Interp.) T1w images, original T2w images, upsampling T2 images

using interpolation, NMU and 20L-SRReCNN

2.2.4 Conclusion

The section 2.2 investigates CNN-based models for 3D brain MR image SR. Based on a com-

prehensive experimental evaluation, we would like to draw the following conclusions and rec-

ommendations regarding the setup to be considered. We highlight that eight complementary

factors may drive the reconstruction performance of CNN-based models. The combination of

1) appropriate optimization with 2) weight initialization and 3) residual learning is a key to
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exploit deeper networks with a faster and effective convergence. The choice of an appropriate

optimization method can lead to a PSNR improvement of (at least) 1dB. In this study, it

has appeared that Adam method [Kingma and Ba, 2015] provides significantly better re-

construction results than other classic techniques such as SGD, and a faster convergence.

Moreover, weights initialization is a very important step. Indeed, some approaches simply

do not achieve convergence in the learning phase. This study has also shown that residual

modeling for single image SR is a straightforward technique to improve the reconstruction

performances (+0.4dB) without requiring major changes in the network architecture. Appro-

priate weight initialization methods described in [Glorot and Bengio, 2010, He et al., 2015]

allow us to build deeper residual-learning networks. From our point of view, these three

aspects of SR algorithm are the first to require special attention for the implementation of a

SR technique based on CNN.

Overall, we show that better performance can be achieved by learning a 4) deeper fully 3D

convolution neural network, 5) adding more filters and 6) increasing filter size. In addition,

using 7) larger training patch size and 8) augmentation of training subject lead to increase

the performance of the networks. The adjustment of these 5 elements provides a similar

improvement (about 0.5dB). Although it seems natural to implement the deepest possible

network, this parameter is not always the key to obtaining a better estimate of a high-

resolution image. Our study shows that, depending on the type of input data (monomodal

or multimodal), network depth is not necessarily the main parameter leading to better image

reconstruction. In addition, it is necessary to take into account the time of the learning phase

as well as the maximum memory available in the GPU in order to choose the best architecture

of the network. For instance, for the monomodal SR case based on the simulations of Kirby

dataset, we suggest using 20-layer networks with 64 small filters with size of 33 regarding 10

training subjects of size 253 to achieve practicable results.

In CNN-based approaches, the upscaling operation can be performed by using transposed

convolution (so-called fractionally strided convolutional) layers in [Dong et al., 2016b, Oktay

et al., 2016] or sub-pixel layers [Shi et al., 2016]. However, the pre-trained weights of these

networks are totally optimized for a specified scale factor. This is a limiting aspect of CNN-

based SR for MR data since a fixed upscaling factor is not appropriate in this context. In

this study, we have presented a multi-scale CNN-based SR method for single 3D brain MRI

that is capable of learning multiple scales by training full all isotropic scale factors due to an

independent upsampling technique such as spline interpolation. Handling multiple scales is

related to multi-task learning. The lack of flexibility of learned network architecture raises

an open issue requiring further studies: how can we build a network that can deal with a

set of observation models (i.e. multiple scales, arbitrary point spread functions, non uniform

sampling, etc.)? For instance, when applying SR techniques in a realistic setting, the choice

of the PSF is indeed a key element for SR methods and it depends on the type of MRI

sequence. The shape of the PSF also depends on the trajectory in the k-space (cartesian,

radial, spiral). Making the network independent from the PSF model (i.e. blind SR) would

be a major step for its use in routine protocol. Further research directions could focus on
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making more flexible CNN-based SR methods for greater use of these techniques in human

brain mapping studies.

Evaluation of SR techniques is done on simulated LR images. However, one potential use

of SR techniques would be to improve the resolution of isotropic data acquired in clinical

routine. The Figure 2.23 shows upsampling results on isotropic T1-weighted MR images (the

resolution was increased from 1 × 1 × 1mm3 to 0.5 × 0.5 × 0.5mm3). In this experiment,

the applied network has been trained to increase image resolution from 2 × 2 × 2mm3 to

1 × 1 × 1mm3. Although quantitative results cannot be computed, visual inspection of

reconstructed upsampled images tend to show the potential of this SR method. No external

dataset has been used for these experiences. Thus, features learned at a lower scale (2mm in

this experiment) may be used to compute high-resolution images that could be used for fine

studies of thin brain structures such as the cortex. Further work is required to investigate

this aspect or self-super-resolution [Jog et al., 2016, Zhao et al., 2018] and more particularly

the link with self-similarity based approaches [Huang et al., 2015a].

(a) Nearest-neighbor (b) Spline interpolation

(c) LRTV [Shi et al., 2015] (d) 20L-ReCNN

Figure 2.23: Illustration of SR results (01018-t1w of dataset NAMIC) with isotropic
voxel upsampling. Original data with voxel size of 1 × 1 × 1 mm3 is upsampled to size

0.5× 0.5× 0.5 mm3. 20L-ReCNN is trained with the NAMIC dataset.

In this thesis, we have proposed a multimodal method for brain MRI SR using CNNs where a

HR reference image of the same subject can drive the reconstruction process of the LR image.

By concatenating these HR and LR images, the reconstruction of the LR one can be enhanced

by exploiting the multimodality feature of MR data. As shown in previous works [Manjón

et al., 2010a, Rousseau, 2008, Rousseau et al., 2010a], the use of HR reference can lead

to significant improvements of the reconstruction process. However, unlike the monomodal

setup, a deeper network does not lead to better performance within the experiments on
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NAMIC dataset. Experiments from our study show that future work is needed to understand

the relationship between network depth and the quality of HR image estimation.

Moreover, we have experimentally investigated the performances of CNN for generalizing on

a different dataset ("i.e. how a learned network can be used in another context"). More

specifically, our study illustrates how knowledge learned from one MR dataset is transferred

to another one (different acquisition protocol and different scales). We have used Kirby

and NAMIC datasets for this purpose. Although a slight decrease in performance can be

observed, CNN-based approach can still achieve better performance than existing methods.

These results tend to demonstrate the potential applications of CNN-based techniques for

MRI SR. Further investigations are required to fully assess the possibilities of transfer learning

in medical imaging context, and the contributions of fine-tuning technique [Tajbakhsh et al.,

2016].

Finally, future research directions for CNN-based SR techniques could focus on other elements

of the network architecture or the learning procedure. For instance, batch normalization (BN)

step has been proposed by [Ioffe and Szegedy, 2015]. The purpose of a BN layer is to normalize

the data through the entire network, rather than just performing normalization once in the

beginning. Although BN has been shown to improve classification accuracy and decrease

training time [Ioffe and Szegedy, 2015], we attempt to include BN layers into CNN for image

SR but they do not lead to performance increase. Similar observations have been made in a

recent SR challenge [Timofte et al., 2017]. From a geometrical point of view, BN does not

appear as an important "operation" for regression [Rousseau and Fablet, 2018]. Moreover,

while the classical MSE-based loss attempts to recover the smooth component, perceptual

losses [Johnson et al., 2016, Ledig et al., 2017, Zhao et al., 2017] are proposed for natural

image SR to better reconstruct fine details and edges. Thus, adding this type of layer (residual

block) or defining new loss functions may be beneficial for MRI SR and may provide new

directions for research.

In this study, we have investigated the impact of adding data (about 3200 patches per added

subject of Kirby dataset) on SR performances through PSNR computation. It appeared that

using more subjects sightly improves the reconstruction results in this experimental setting.

However, further work could focus on SR-specific data augmentation by rotation and flipping,

which is usually used in many works [Kim et al., 2016a, Timofte et al., 2016], and intensity

variation to handle different contrast and bias field for improving algorithm generalization.

The practical applications of SR are demonstrated in the studies presented: image quality

transfer from high-resolution experimental dataset to clinical neonatal low-resolution images

and augmenting the performance of segmentation methods. Our CNN-based SR method

shows clear improvements over interpolation, which is the standard technique to enhance

image quality from visualisation by a radiologist. SR method is therefore an ideal replacement

for interpolation.
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Simultaneous super-resolution and

segmentation using a generative

adversarial network: Application to

neonatal brain MRI
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3.1 Introduction

Long-term studies of the outcome of prematurely born infants have clearly documented that

the majority of such infants may have significant motor, cognitive, and behavioral deficits.

However, there is a limited understanding of the nature of the cerebral abnormality un-

derlying these adverse neurologic outcomes. Magnetic Resonance Imaging (MRI) provides

unique opportunities for in vivo investigation of the early developing human brain. How-

ever, the analysis of clinical neonatal brain MRI data remains challenging mainly due to low
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anisotropic image resolution. Improving morphological data processing such as image reso-

lution enhancement and brain segmentation, is a key-point to provide robust morphometry

analysis tools to the community.

One of the first key components of the processing pipeline of clinical MRI data is the up-

sampling image estimation. Super-resolution (SR) is a post-processing technique that aims

at enhancing the resolution of an imaging system [Greenspan, 2008]. SR is a challenging

inverse problem; in particular the estimation of texture and details remains difficult. Re-

cently, supervised deep learning-based techniques have shown great improvement over model-

based approaches. In this context, applying 3D convolutional neural networks (CNNs) yields

promising results for MRI data [Chen et al., 2018b, Pham et al., 2017a]. However, the use of

ℓ2-norm loss leads to smooth, unrealistic high resolution images [Johnson et al., 2016, Ledig

et al., 2017]. Generative adversarial networks (GANs) have thus been proposed to estimate

textured and sharper images [Chen et al., 2018a, Ledig et al., 2017].

Once the high resolution image reconstruction is performed, the implementation of an auto-

matic segmentation robust approach is crucial for fine brain structure analysis [Makropoulos

et al., 2017]. Segmenting thin structures such as the neonatal cortical gray matter remains

difficult and the segmentation step is always considered separately from image reconstruction.

In this chapter, we propose an end-to-end GAN-based approach which can generate both

the perceptually super-resolved image and a cortical segmentation map from a single low-

resolution (LR) image. The proposed approach called SegSRGAN is both assessed on simu-

lated data and real clinical data.

3.2 Method

3.2.1 Formulation of single image super-resolution

The objective of single image SR is to estimate a high-resolution (HR) image X ∈ Rm from

one observed LR image Y ∈ Rn. SR problem can be formulated using the following linear

observation model:

Y = H↓BX +N = ΘX +N (3.1)

where N is the additive noise, B ∈ Rm×m is a blur matrix (depending on the point spread

function), H↓ : Rm → Rn is a downsampling decimation and Θ = H↓B ∈ Rn×m(m > n).

A popular approach that solves SR problem defines the matrix Θ−1 as the combination of

a restoration operator F ∈ Rm×m and an upscaling interpolation operator S↑ : Rn → Rm

computing the interpolated LR image Z ∈ Rm (Z = S↑Y). In the context of supervised

learning, given a set of HR images Xi and their corresponding LR images Yi, the restoration
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operator F can be estimated by minimizing the following loss function:

F̂ = argmin
F

∑

i

‖Xi − F (Zi)‖22. (3.2)

However, it is known that the use of ℓ2-norm may lead to oversmoothing high resolution

images. In order to provide realistic HR images, perceptual loss function [Johnson et al.,

2016] have been used in a GAN [Ledig et al., 2017]. This is a paradigm shift since it is no

longer a question of minimizing only the reconstruction error but of estimating a realistic

image, i.e. a high resolution image that corresponds to the observation model with a realistic

texture aspect.

A perceptual loss can be formulated as the weighted sum of the content loss (based, e.g.,

on pixel-wise mean squared error loss) and an adversarial loss component. In GAN-based

approaches, the purpose is to train a generating network G that estimates for a given LR

input image Y a corresponding HR image G(Y). The goal of the discriminator network D is

to classify real images X and simulated HR images G(Y). The game between the generator

G and the discriminator D is expressed as an adversarial loss:

Ladv = min
G

max
D

EX∼PX
[logD(X)] + EY∼PY

[log(1−D(G (Y)))] (3.3)

where PX and PY denote the data distribution of X and Y respectively.

3.2.2 Formulation of image segmentation

In this work, image segmentation is viewed as a supervised regression problem:

SX = R (X) (3.4)

where R denotes a non-linear mapping from the upscaled image X to the segmentation map

SX. Similarly to the SR problem, assuming that we have a set of images Xi and corresponding

segmentation maps SXi
, a general approach for solving this segmentation problem is to find

the mapping R by minimizing the following loss function:

R̂ = argmin
R

∑

i

‖SXi
−R(Xi)‖22. (3.5)

Unlike the SR problem, the use of ℓ2-norm is less critical as it is expected to estimate smooth

segmentation maps.
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3.2.3 Joint mapping by generative adversarial networks

We propose the use of a GAN-based approach to estimate jointly a HR image and its corre-

sponding segmentation map from one LR image. To this end, a convolution-based generator

network G takes as input an interpolated LR image Z and computes a HR image X̂ and a

segmentation map ŜX by minimizing the following reconstruction loss:

Lrec = min
G

∑

i

ρ ((X,SX)i −G(Zi)) (3.6)

where (X,SX)i are concatenated along the feature channel. In this work, we use a robust

loss as Charbonnier loss [Charbonnier et al., 1997, Lai et al., 2017] :

ρ(x) =
√

x2 + ν2 (3.7)

where ν is set to 10−3.

The discriminator network D attempts to distinguish the real data (X,SX) and the generated

ones G (Z). The game between the generator G and the discriminator D is usually modeled

with a minimax objective as Equation (3.3).

However, using such loss function, GAN may be unstable or can suffer from mode collapse

during training. Thus, in this work, we propose to use Wasserstein GAN loss described in

[Gulrajani et al., 2017]:

Ladv = min
G

max
D

EX∼PX,SX∼PSX
[D((X,SX))]−

EZ∼PZ
[D(G (Z))] + λgpEX̂S

[(‖ (∇
X̂S

D(X̂S) ‖2 −1)2]
(3.8)

where X̂S is the interpolation of the true data and the generated one as (1 − ǫ)(X,SX) +

ǫG (Z), ǫ ∼ U [0, 1]. λgp and ∇ denote the gradient penalty coefficient and gradient operator,

respectively. The images X, SX and Z are extracted randomly from the data distributions

of HR images PX, HR segmentation maps PSX
and LR images PZ. The terms D((X,SX)),

D(G (Z)) and D(X̂S) are the responses of the discriminator with respect to the real data,

the generated data and the interpolated data, respectively. The full objective function is

expressed as:

Ltotal = Lrec + λadvLadv (3.9)

where λadv is a trade-off parameter between reconstruction loss and adversarial loss. Figure

3.1 illustrates our proposed GAN-based method for joint mapping of SR and cortex segmen-

tation.

3.2.4 Architecture of generator and discriminator networks

The generator network (see Figure 3.2 (a)) is a convolution-based network with residual

blocks. Let Ci
j-S

k be a block consisting of the following layers: a convolution layer of j filters
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Figure 3.1: The illustration of our proposed 3D SegSRGAN for joint mapping of SR and
segmentation.

of size i3 with stride of k, an instance normalization layer (InsNorm) [Ulyanov et al., 2017]

and a rectified linear unit (ReLU).

Rk denotes a residual block as Conv-InsNorm-ReLU-Conv-InsNorm that contains 33 convo-

lution layers with k filters. Uk denotes layers as Upsampling-Conv-InsNorm-ReLU layer with

k filters of 33 and stride of 1. After the last layer, we apply a sigmoid activation for the

channel of segmentation map and an element-wise sum of the channel of reconstruction and

the interpolated LR image (residual-learning as in [Kim et al., 2016a, Pham et al., 2017b]).

The generator architecture is: C7
16-S

1, C3
32-S

2, C3
64-S

2, R64, R64, R64, R64, R64, R64, U32,

U16, C
7
2 -S1.

The discriminator network (see Figure 3.2 (b)) contains five convolutional layers with an

increasing number of filter kernels, increasing by a factor of 2 from 32 to 512 kernels. Let
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(a) 3D generator

(b) 3D discriminator

Figure 3.2: The architecture of our proposed 3D SegSRGAN for joint mapping of SR
and segmentation.

Ck be a block consisting of the following layers: a convolution layer of k filters of size 43

with stride of 2 and a Leaky ReLU with a negative slope of 0.01. The last layer C2
1 is a

23 convolution filter with stride of 1. No activation layer is used after the last layer. The

discriminator consists of C32, C64, C128, C256, C512, C
2
1 .

3.3 Experiments and Results

3.3.1 Datasets and network training

To assess the ability to reconstruct HR volume and segment the cerebral cortex , we applied

the proposed method on T2-weighted (T2w) MR images of the developing Human Connec-

tome Project1 (dHCP). 40 T2w images were acquired using a 3T Achieva scanner with a

0.5× 0.5× 0.5 mm3 resolution with TR = 12 000 ms TE = 156 ms, respectively. 30 images

were used for training networks, whereas the other 10 were used as testing images. As in

[Greenspan, 2008], LR images were generated by using a Gaussian blur with the full-width-

at-half-maximum (FWHM) set to slice thickness before a downsampling step to obtain a

0.5× 0.5× 1.5 mm3 resolution.

We have also applied the proposed method onto clinical neonatal MRI data acquired in the

neonatology service of Reims Hospital. These LR images have a resolution of 0.446×0.446×3

mm3. 40 HR images of the dataset dHCP were filtered and downsampled as in [Greenspan,

2008] in order to generate LR images with a same resolution as clinical data. The network

was trained using 40 pairs of simulated data and then applied to real LR images for visual

evaluations. All data had bias correction and for network training, they were normalized

between 0 and 1. No subjects nor image patches appear twice in the different subsets.

1http://www.developingconnectome.org
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The 3D network was trained over 200 epochs with batch size of 16, using Adam method with

learning rate of 0.0001 and updates the discriminator 5 times before training the generator as

in [Gulrajani et al., 2017]. The parameters λadv and λgp were set to 0.001 and 10 respectively.

The training patch size is 643. At test time, the whole HR image and segmentation volume

were reconstructed by the weighted predictions of patches. A thresholding at 0.5 has been

performed to obtain binary segmentation maps.

(a) Original dHCP HR (b) Spline interpolation

(c) 20L-SRReCNN [Pham et al., 2017b] (d) Proposed approach

Figure 3.3: SR results for one dHCP subject: (a) original HR image; (b–d) SR recon-
struction of the LR image generated from (a) c©[2019] IEEE

3.3.2 Results

Peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) have been used to

evaluate the performance of SR reconstructions. Table 3.1 provides a summary of quantitative

evaluations for the following methods: cubic spline interpolation, a 20-layers CNN-based SR

approach (20L-SRReCNN) [Pham et al., 2017b] (described in Chapter 2) and our proposed
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(a) Original dHCP segmentation (b) IMAPA [Tor Díez et al., 2018]

(c) DrawEM [Makropoulos et al., 2014] (d) Proposed approach

Figure 3.4: Segmentation results for one dHCP subject: (a) segmentation ground-truth
of Figure 3.3 (a); (b,c) segmentation of Figure 3.3 (b); (d) HR segmentation from the LR

image using the joint SegSR-GAN method c©[2019] IEEE.

Table 3.1: Quantitative evaluation of SR methods on dHCP dataset c©[2019] IEEE.

Interpolation 20L-SRReCNN SegSRGAN
PSNR 30.70 35.84 31.75
SSIM 0.9492 0.9739 0.9624

Table 3.2: Quantitative evaluation of segmentation methods on dHCP dataset c©[2019]
IEEE.

IMAPA DrawEM SegSRGAN
Dice (mean) 0.788 0.818 0.886
Dice (standard deviation) 0.061 0.014 0.011

SegSRGAN. It can be seen that 20L-SRReCNN provides highest PSNRs as in [Johnson et al.,

2016, Ledig et al., 2017] since this approach minimizes a ℓ2-norm-based loss. However, while

the two CNN-based approaches (20L-SRReCNN and SegSRGAN) lead qualitatively to similar
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realistic results on dHCP dataset (see Figures 3.3 and 3.4), the proposed approach provides

best reconstructed HR images on clinical data with better contrast on cortical gray matter

(see Figure 3.5).

The Dice index is used to evaluate the cortical segmentation maps obtained by the follow-

ing state-of-the-art methods: iterative multi-atlas patch-based approach (IMAPA) [Tor Díez

et al., 2018], DrawEM [Makropoulos et al., 2014] and the proposed SegSRGAN. As in a typical

clinical setting, the three methods have been applied on interpolated images. Table 3.2 shows

that quantitatively the proposed approach lead to the best cortical segmentation results with

significant improvement with respect to the two other methods. Moreover, as mentioned

in [Tor Díez et al., 2018], the use of IMAPA applied on original HR dHCP images leads to a

mean DICE of 0.887 (standard deviation of 0.011) that is very similar to the results obtained

with SegSRGAN (applied on interpolated images).

As indicated in Section 2.2.3.2, we would like to evaluate the impact of upsampling methods

for clinical LR T2w images with respect to segmentation methods. There are the manual HR

segmentations of T1w images (ground truths). The estimated segmentation maps applied

to SR results are mapped onto the original T1w images by a rigid registration between

estimated HR T2w and original T1w data. Table 3.3 shows the segmentation results of

the method MANTIS [Beare et al., 2016] for HR reconstructions of upsampling methods

following: interpolation, NMU, 20L-SRReCNN and our SR results of SegSRGAN. The mean

dice of the segmentation maps of MANTIS for our estimated HR image is better than the

ones of compared upsampling methods. Moreover, we apply the supervised segmentation

method (IMAPA) [Tor Díez et al., 2018] for the estimated isotropic T2w images using above

upsampling methods (show in Table 3.3). Our proposed method uses the same training

dataset of segmentation atlases as IMAPA. Table 3.3 shows that our SR results support other

segmentation methods better than compared SR methods. In addition, our segmentation

results also give comparable dice scores as the pipeline of 20L-SRReCNN and IMAPA. Results

on real LR data (see Figures 3.5 and 3.6, Tables 3.3 and 3.4) confirm the potential of the

proposed approach for fine analysis of clinical neonatal brain MRI.

Subject T1w T2w
Original Interp. Original Interp. NMU 20L-SRReCNN Our SR results

MAIA #1 0.6215 0.6205 0.7090 0.7052 0.7190 0.7330 0.7480
MAIA #2 0.6746 0.6802 0.6694 0.7118 0.7182 0.7333 0.7333

Table 3.3: Dice scores of the segmentation method MANTiS on the 2 images of the
MAIA testing dataset with respect to different approaches (columns): original T1w im-
ages, interpolated (Interp.) T1w images, original T2w images, upsampling T2 images
using interpolation, NMU, 20L-SRReCNN and our SR results of the proposed SegSRGAN
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(a) LR original image (b) Spline interpolation

(c) 20L-SRReCNN (d) Proposed SR result

(e) Proposed segmentation result (f) Proposed approach

Figure 3.5: Reconstruction (b–d) and segmentation results (e) on a real LR neonatal
brain image (a) (Subject S00059 of MAIA dataset) with voxel size of 0.446 × 0.446 × 3

mm3, re-sampled to 0.5× 0.5× 0.5 mm3.
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(a) LR original image (b) Spline interpolation

(c) 20L-SRReCNN (d) Proposed SR result

(e) Proposed segmentation result (f) Proposed approach

Figure 3.6: Reconstruction (b–d) and segmentation results (e) on a real LR neonatal
brain image (a) (Subject S00096 of MAIA dataset) with voxel size of 0.446 × 0.446 × 3

mm3, re-sampled to 0.5× 0.5× 0.5 mm3.
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Subject IMAPA Our proposed segmentation
Interp. NMU 20L-SRReCNN Our SR results

MAIA #1 0.6394 0.6551 0.6698 0.6945 0.6702
MAIA #2 0.6443 0.6497 0.6763 0.6943 0.6658

Table 3.4: Dice scores of the supervised segmentation method IMAPA (using the same
training dataset with our method, the same segmentation protocol) on the 2 images of the
MAIA testing dataset with respect to different approaches (columns): interpolated T2w
images, upsampling T2 images using NMU, 20L-SRReCNN and our SR results (SegSR-

GAN), and our proposed segmentation map of interpolated T2w images (SegSRGAN).

3.4 Discussion

In this chapter, we have presented a simultaneous super-resolution and segmentation method

for 3D brain MR images using a generative adversarial network. Our experiments on both

simulated and clinical data have shown that better performance can be achieved by this

joint approach compared to state-of-the-art techniques, opening up new perspectives in the

processing of clinical LR neonatal brain MRI data.

We have investigated that our proposed GAN-based method is more robust than the CNN-

based approach. The CNN-based method achieves the highest PSNR/SSIM because it at-

tempts to minimize the pixel-wise difference between super-resolved images and reference

HR images using ℓ2-norm cost function. This is reasonable as we have presented in Chapter

2. However, CNN-based methods are restricted to the predetermined condition of specific

training data and their performance is then decreased when testing real images, where these

conditions are not satisfied (also mentioned in [Shocher et al., 2018]). Meanwhile, the SR

method using GAN attempts to minimize the difference of the texture between generated

images and ground truth HR counterparts using the adversarial loss. This loss makes net-

works more robust to simulated training data. Future work is required to explore new quality

metrics to evaluate better the performance of SR methods.

Our proposed method illustrated that the learned model from high-resolution experimental

dataset can be transferred successfully to another low-resolution clinical dataset in order to

enhance the image quality. We have used dHCP and MAIA dataset for this purpose. These

results demonstrate the potential of GAN-based techniques for practical applications of med-

ical image processing. We believe that our proposed approach can be used to another tasks

such as medical image synthesis or other types of segmentation maps such as cerebrospinal

fluid or ventricles in brain MRI.

In this study, we assume the paired training dataset, where input images have output counter-

parts (e.g. LR images and corresponding HR images). In some clinical cases, paired couples

are not always available (e.g. T2w images with a specific resolution and the segmentation

maps of T1w images with another resolution), that raises the question of self-supervised

techniques for mapping of unpaired training dataset.
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4.1 Introduction

There are many medical imaging modalities in the clinical context such as: radiography, mag-

netic resonance imaging (MRI), computed tomography (CT) scan, ultrasound. Each modality

shows up the physical properties of tissue in organs and special abnormalities for detecting

different diseases. The diversity of medical image modalities is useful for diagnosticians but

can be a challenge for automated image analysis. In clinical scenarios, the number of tissue

contrasts that can be acquired is limited because of time consuming or expensive cost. Col-

lecting all medical images of one subject is impractical. Cross-modal synthesis without real

acquisition is considered as an intensity transformation applied to given input images of a

source modality to generate new images with a specific tissue contrast. Synthetic images are

not intended to be used for diagnostic purposes. Synthesis of a medical image can be used

for a preprocessing step before applying more complex image processing algorithms. The ob-

jective of cross-modal synthesis is to generate images that are close enough approximations

to real images so as to improve automated image processing. Cross-modality synthesis of

medical images is proposed for many application such as segmentation [Iglesias et al., 2013,

Roy et al., 2010], super-resolution [Pham et al., 2017b, Rousseau, 2008, Rueda et al., 2013],

and multimodal registration [Roy et al., 2013, Wein et al., 2008]. The thesis in [Cordier,

2015] shows a review of the annotated data, which can be used to augment the performance

of medical image analysis methods for pathological cases.
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Figure 4.1: 2D histogram of intensity correspondences between paired T1w and T2w
MRI over an entire image of the same subject form dataset NAMIC. Higher density re-
gions is indicated by brighter color. The figure shows that the relationship between two
modalities is not only non-linear but also not unique. It does not exist a function to trans-

form from one T1w image to one T2w image and vice versa.

A statistical model of cross-modal synthesis can be expressed as:

Y = RX +N (4.1)
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(a) Input T2w MRI image (b) Ground truth T1w MRI image

(c) REPLICA [Jog et al., 2017] (d) 20-layers SRReCNN [Pham et al., 2017b]

Figure 4.2: The examples (i.e. the axial slices of a brain MRI) of cross-modal synthe-
sis methods. The input T1w MRI image (a) is synthesized by the random-forest MRI

synthesis method REPLICA [Jog et al., 2017] and SRReCNN [Pham et al., 2017b].

where R is a mapping, Y and X denote images of source and target domains and N is an

additive noise. Figure 4.1 illustrates the intensity of a T1-weighted MR (T1w) image and

the corresponding T2-weighted MR (T1w) image (shown Figure 4.2 (a) and (b)) of the same

subject. These paired images of the same subject are acquired by the same imaging system

with the share the same resolution, orientation, coordinate and the same number of voxels.

Despite of paired images, the relation between the T1w and T2w tissue contrasts is totally

non-linear as several regions share the opposite gradients but some regions are otherwise.

One T2w intensity can be transformed from multiple T1w intensities and vice versa. Figure

4.2 shows synthesized T2 weighted MR (T2w) images (Figure 4.2 (c) and (d)) from a T1

weighted MR (T1w) image (Figure 4.2 (a)). The synthetic images are estimated as closely as
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possible to their ground truth.

4.1.1 Paired cross-modal synthesis

The synthesis techniques have been studied in the context of medical imaging analysis using

joint histogram [Kroon and Slump, 2009]. Given a dataset with the coupled images of source

domain and target domain {(Yi,Xi)}, the patch-based synthesis method [Iglesias et al., 2013]

finds k-nearest neighbor patches yk in the training base of the patch y of observed image Y

as:

(k̂, ŷk) = argmin
k,yk∈{Yi}

‖yk − y‖2 (4.2)

When the paired set {ŷk, x̂k} is found, the synthesized patch is the average of k optimal

patches x̂k as: x̂ =
∑

k x̂k. The patch-based method is improved by the iterative approach

[Ye et al., 2013] as:

(k̂t+1, ŷt+1
k ) = argmin

k,yt
k
∈{Yi},xt

k
∈{Xi}

(1− α)‖yt
k − yt‖2 + α‖x̂t

k − x̂t‖2 (4.3)

where, x̂t is the synthesized image by the optimal corresponding patches x̂t
k at the tth iteration,

α denotes the trade-off between two terms. Instead of ℓ2-norm patch-based approaches, the

regression tree method is proposed for synthesis MRI contrasts in [Jog et al., 2013] to find

the complex mapping between modalities. Similarly, the improved versions of this technique

as random forest decision can be found in [Huynh et al., 2016, Jog et al., 2014, 2017]. In

parallel, [Roy et al., 2013, Ye et al., 2013] adapts the sparse-coding-based methods for SR

as in [Yang et al., 2010] for synthesis MRI contrasts, assuming jointly dictionaries for T1w

and T2w MR images. The multi-layer neural network for cross-domain synthesis is first

proposed in [Van Nguyen et al., 2015] (LSDN) for mapping the intensity feature and the

spatial coordinates from the input domain to the intensity of target domain as:

min ‖Φ(FYi, PYi)− Xi‖2 (4.4)

where Φ represents the network, F and P denotes intensity-based feature extractions and

spatial informations respectively. Instead of pooling layers for spatial-based voxel connec-

tions as CNNs, the method LSDN proposes multiplication operations between layers and

the shrinking connection at each layer for reduced the computation cost. The 2D U-net ar-

chitecture [Ronneberger et al., 2015] (shown in Figure 4.3) is applied to generate CT from

discontinuous MRI slices in [Han, 2017]. [Nie et al., 2016] proposes to use fully 3D fully

convolutional neural networks inspired by [Dong et al., 2016a] for reconstructing CT scans

from MRI volumes. The improved versions of this network in [Nie et al., 2017, 2018] exploit

image gradient difference loss and adversarial loss with auto-context model. The process of

auto-context model (shown in Figure 4.4) is to refine the synthesized images via an itera-

tive process between input images and the estimated images at each iteration using different

training models. Recently, the work in [Xiang et al., 2018] synthesizes the MRI consecutive
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axial slices into CT scans using 2D embedding CNNs in which the reconstruction stage and

the transform stage are concatenated. The stages are expressed as:




Ftran,i = PReLU(Wtran,i ⋆ Ftran,i−1 +Btran,i)

Frec = Wrec ⋆ Ftran,j +Brec

(4.5)

where Frec and Ftran,i denotes the estimated synthesis and the response of the ith layer

respectively. Wtran,i,Btran,i, Wrec and Brec are network parameters and ⋆ denotes convolution

operation. Then, an embedding block is defined as a concatenation of these two stages before

a transform stage which maintains the number of response at each layer.

Figure 4.3: U-net architecture [Ronneberger et al., 2015]

Figure 4.4: The architecture for auto-context with generative adversarial networks [Nie
et al., 2018]
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4.1.2 Unpaired cross-modal synthesis

Coupled training set of one subject is not always available. Figure 4.5 shows an example

where the T1w and T2w images are unpaired. These unpaired images of different subjects

(of different datasets) are acquired with different resolutions. Thus, they do not share the

same general structure. This raises a question about the ability of synthesizing the T2w image

of the observed T1w image (e.g. shown in Figure 4.5 (a)) given an unpaired T2w image (e.g.

shown in Figure 4.5 (b)).

(a) T1w axial slice (Subject: 01011-t1w of the
dataset NAMIC). The voxel size of the images is

1× 1× 1mm.

(a) T2w axial slice (Subject: 100307 of the dataset
HCP100). The voxel size of the images is

0.7× 0.7× 0.7mm.

Figure 4.5: Adult brain MRIs of different subjects

Unpaired synthesis methods have recently investigated in [Huang et al., 2017b, 2018, Vem-

ulapalli et al., 2015]. The method in [Vemulapalli et al., 2015] proposes 3 steps to handle

unpaired data synthesis. Firstly, a set of patch-based nearest neighbour candidates of the

source image is generated using mutual information MI() of the source patches y and the

target patches x as:

MI(y;x) = H(x)−H(x) +H(y | x) (4.6)

where H(x) and H(y) are the marginal entropies and H(y | x) denotes the conditional

entropy. The second step attempts to synthesis the source image Y using best candidates by

maximizing the cost function as:

max
wvk

H(X)−H(X) +H(Y | X) + λSC(X,Y)

s.t.
∑

k

wvk = 1, v ∈ V
(4.7)

where SC(X,Y) is a regularization term that promote spatial consistency between the neigh-

bour candidates and V denotes two neighboring voxels. Finally, coupled sparse representation

of source modality image and the synthesized target modality image is calculated to refine

the result of the preceding steps as super-resolution problems [Wang et al., 2015, Yang et al.,

2010, Zeyde et al., 2012] as:

α̂ = argmin
α

‖α‖1 s.t. ‖Dyα− y‖22 ≤ ǫ1, ‖Dx̂α− x̂‖22 ≤ ǫ2 (4.8)
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where Dx̂ and Dy denote the joint dictionaries for the patches of synthesized and source

domains and α is the sparse support. Instead of learning dictionaries of synthesized and source

images as [Vemulapalli et al., 2015], improved sparse coding methods based on target/source

images for synthesis with convolution representation and regularizations can be found in

[Huang et al., 2017b, 2018]. The work in [Huang et al., 2018] proposes to synthesize MRI

contrasts using sparse representations and two regularizers as maximum mean discrepancy

and geometry preservation based on a few pairs of data. The unpaired couple dictionaries of

target and source domain are learned from the sparse representation as:

min
α,D

L(α,D,y,x) = min
α,D

‖Dyαy − y‖22 + ‖Dxαx − x‖22 + λ‖αy‖1 + λ‖αx‖1

+τF(αy, αx) + γMMD(αy, αx) + µGeo(αy, αx)
(4.9)

where Dx is now the dictionary of target domain, α = {αy, αx} denotes the sparse code,

and MMD and Geo denotes maximum mean discrepancy regularization and geometry co-

regularization. In order to ensure the identity of the sparse codes from the source to the

target, we assume the linear projection in the common feature space via a mapping function

as F(αy, αx). However, the method needs the pair training data to constraint the unpaired

image data by the fact that they must share the same high-frequency features. Equation

(4.9) is rewritten by adding the objective function on these few pairs:

min
α,D

L(α,D,y,x) + ‖FHFx − T̂FHFy‖22 (4.10)

where FHF is the high-frequency feature extractor and T̂ denotes the binary matrix which

consists of one element of 1 and other set to be 0. The 1 element is set to the maximum value

of an affinity matrix which consists of measured distances of paired patches.

4.1.3 Discussion

A brief review of cross-modal synthesis for medical imaging has been described. The learning-

based methods such as patch-based techniques, sparse coding, random forest and CNN-based

are commonly used for paired cross-modal synthesis. In the context of supervised learn-

ing, techniques proposed for image synthesis have the same point of view as example-based

learning SR methods. The availability of paired modalities of the same subject is some-

times lacking. Unpaired cross-modal synthesis are proposed to overcome this disadvantage.

However, the need of few paired training images is inevitable for the refinement of synthetic

results. In the next sections, our CNN-based methods for SR is applied to paired image syn-

thesis. Mostly, we attempt to propose an approach to totally unpaired MRI synthesis using

generative adversarial networks.
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4.2 Supervised synthesis with convolutional neural networks

4.2.1 Mathematical formulation

In the context of supervised learning, assuming that a training data set which consists of

pairs of images in a source modality Yj (e.g. T1w images) and the corresponding images

in the target modality Xj (e.g. T2w images), our objective is to find the mapping f that

optimize the cost function as:

f̂ = argmin
f

∑

j

ρ(f(Yj)− Xj) (4.11)

where ρ can be ℓ1 or ℓ2-norm for instance. The convolution neural networks, which are

described in the chapter 2, are directly applied to solve our synthesis problem. The mapping f

from Yi to the residual (Xj−Yj) is decomposed into nonlinear operations as the combination

of convolutional layers with the ReLU activation as:

f̂ = argmin
f

∑

j

‖f(Yj)− (Xj − Yj)‖2 (4.12)

Residual learning strategies make the convergence of CNNs faster. In principle, residual

connections induce the responses of layers to be close to zeros, making the network easier to

train. The interest of residual learning is also proposed in [Nie et al., 2018]. The architecture

of our networks can be described as follows:





f1(Y) = max(0,W1 ∗ Y +B1)

fi(Y) = max(0,Wi ∗ Fi−1(Y) +Bi) for 1 < i < L

fL(Y) = WL ∗ FL−1(Y) +BL

(4.13)

where L is the number of layers. Once the training step is done, the synthesized image of a

given image is estimated as X = f̂(Y) + Y.

4.2.2 Dataset and training parameters

We use T1w and T2w MR images of NAMIC Brain Multimodality 1 to assess the ability of

our CNN-based method (20L-SRReCNN). These data have been acquired using a 3T GE.

The T1w images are acquired in contiguous spoiled gradient-recalled acquisition (fastSPGR)

with the following parameters: TR=7.4ms, TE=3ms, TI=600, 10 degree flip angle, 25.6cm2

field of view, matrix=256×256. The contiguous T2-weighted images are acquired with the

following parameters: TR=2500ms, TE=80ms, 25.6 cm2 field of view, 1 mm slice thickness.

Voxel dimensions of these images are 1× 1× 1mm3.

1NAMIC : http://hdl.handle.net/1926/1687
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We use a series of 19 convolution layers of 3× 3× 3 with 64 filters and the ReLU activations.

The last layer is a 3 × 3 × 3 convolution layer with one filter. ADAM method is used to

optimize the network with 20 epochs (batch size of 64).

4.2.3 Experimental results

REPLICA [Jog et al., 2017] our 20L-SRReCNN
PSNR SSIM PSNR SSIM

Synthesized T1w 13.3255 0.9444 15.6848 0.9584

Synthesized T2w 17.8343 0.9542 20.5420 0.9528

Table 4.1: The results of PSNR/SSIM for cross-modal synthesis methods of subject-
specific scans. All methods using the training and testing images of NAMIC.

In this section, we study performances of the proposed CNN architecture of SR for supervised

synthesis of subject-specific scans. The baseline methods for comparison are random forest

regression for synthesis [Jog et al., 2017] (REPLICA). The metrics PSNR and SSIM with

respect to normalized results between 0 and 1 are used to evaluate the methods. The quan-

titative results are shown in Table 4.1. Our method has a gain of about 2.3dB (synthesizing

T1w images from T2w images) and 2.7dB (synthesizing T2w images from T1w images) with

respect to PSNR compared to REPLICA. Although, our CNN-based approach has a greater

SSIM when synthesizing T1w images from T2w images but lower SSIM when synthesizing

T2w images from T1w images than those of the random forest-based method.

The qualitative results are shown in Figures 4.6 and 4.7. Visually, our proposed method

reconstructs better contours and sharpener edges than the compared method. The cortex

(e.g. gray matter) of the result of 20L-SRReCNN shown in 4.6 is more visible and more

curvature than those of REPLICA. However, the white matter regions of this CNN-based

method is too smooth. In the case of synthesized T2w images of Figure 4.7, the result of our

CNN-based technique has salt-and-pepper noise, leading to lower SSIM than REPLICA. The

problem of noisy synthesis T2w images comes from the property that we use the residual for

training our networks and T1w images are not pre-denoised. The networks attempt to find

the mapping for the voxel-wise differences between paired training images without considering

their structure as in Equation (4.12).

4.2.4 Discussion

We have introduced an approach to synthesize one image of a target modality from an ob-

served image of a source modality. Although the results are sensible to the noise of data,

our proposed method could also generate synthesized images which are comparable to the

baseline method. Our approach shows the potential of CNN-based technique for cross-modal

medical image synthesis problem.
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(a) Input T2w MRI image (b) Ground truth T1w MRI image

(c) REPLICA [Jog et al., 2017] (d) 20L-SRReCNN

Figure 4.6: The examples (i.e. the coronal slices of a brain MRI) of cross-modal syn-
thesis methods. The input T2w MRI image (a) is synthesized by the method REPLICA
[Jog et al., 2017] and our proposed 20L-SRReCNN. The zoom versions are at the upper

corners.
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(a) Input T1w MRI image (b) Ground truth T2w MRI image

(c) REPLICA [Jog et al., 2017] (d) 20L-SRReCNN

Figure 4.7: The examples (i.e. the sagittal slices of a brain MRI) of cross-modal synthe-
sis methods. The input T2w MRI image (a) is synthesized by the method REPLICA [Jog

et al., 2017] and our proposed 20L-SRReCNN.

Evaluation of cross-modal techniques is done on the original images. However, the results

show blurry and noisy. The pre-processing steps such as pre-denoising and bias correction

should be applied before training networks. In addition, further works is required to investi-

gate the principal elements of networks with respect to the performance of networks such as:

depth of networks, non-residual-learning, the size of filters. Thus, a general pipeline will be

drawn based on these works.

Future research direction for supervised learning CNN-based cross-modal techniques could

focus on the other networks such as generative adversarial network [Isola et al., 2017, Nie et al.,

2018, Yang et al., 2018] or on other elements of the network architecture as the embedded

networks [Xiang et al., 2018]. Moreover, the perceptual losses of SR problem as in [Johnson

et al., 2016, Ledig et al., 2017] can be applied to reduce the noisy data and generate the

naturally synthesized images.
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4.3 Unpaired synthesis with generative adversarial networks

Recently, image-to-image translation using GANs have been receiving significant attention

from research community [Isola et al., 2017, Kim et al., 2017, Yi et al., 2017, Zhu et al.,

2017]. Recent work learns this task in an unpaired learning manner [Kim et al., 2017, Yi

et al., 2017, Zhu et al., 2017]. For instance, an architecture with two-block GANs and a

connection based ℓ1-norm cycle-consistent loss has been investigated for translating unpaired

images [Zhu et al., 2017]. Another work similar to [Zhu et al., 2017] but with ℓ2-norm

cycle-consistent loss has also proposed in [Kim et al., 2017]. A concurrent work [Yi et al.,

2017] with the same approach as cycleGAN has improved the stability of GANs but using

Wasserstein GAN [Arjovsky et al., 2017] instead of sigmoid cross-entropy loss used in the

original GANs. However, all these frameworks do not take advantage of the shared features

between modalities. In this section, we propose an approach to use GANs for unpaired

medical image synthesis.

4.3.1 Mathematical formulation

In this work, we propose an unsupervised learning technique for cross-modal synthesis of

brain MRI scans using generative adversarial networks. Our GAN consists of one single

discriminator and one single generator. Given the training dataset of unpaired images, we

assume the "class" of each tissue contrast corresponding to a non-negative integer number

(e.g. T1w images are the class "1" and T2w images are the class "2"). Our networks use the

embedding techniques described in [Gal and Ghahramani, 2016] to turn integer indexes into

dense vectors of the fixed size of class numbers : class → c. The embedding classes make

networks easier to train [Gal and Ghahramani, 2016]. In addition, they can separate different

classes but learn joint mappings into the same network.

4.3.1.1 Adversarial Loss

A generator G is trained to learn functions between multiple domains. The objective of the

generator is to fool the discriminator D by generating the images ytar, which are indistinguish-

able from real images of the target source xtar. The generator learns a mapping from input

images of a source domain xsrc with a target label cG,tar (embedded by G) to the generated

images as G : {xsrc, cG,tar} → ytar. We use cG,tar to control the desired mapping between

different domains. For example, G(xT1w, cG,T2w) estimates the synthesized T2w image yT2w

of the T1w image xT1w and G(xT1w, cG,F lair) estimates the synthesized Flair image yF lair of

this T1w input.

Meanwhile the discriminator D is trained to distinguish the generated images and the real

image xtar of the target domain. In order to support the discriminator to discriminate different

target domains, the discriminator is conditioned by the label cD,tar , which is embedded by

D, as D : {ytar, cD,tar} → D(ytar, cD,tar) and D : {xtar, cD,tar} → D(xtar, cD,tar). The
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training step of the discriminator is independent to those of the generator. Thus, we need

one embedding layer for each network in order to it can minimize its weights independently.

We express the objective of this adversarial learning as:

Ladv = Extar,cD,tar
[log(1−D(xtar, cD,tar))] + Exsrc,cD,tar,cG,tar

[log(D(ytar, cD,tar))]

= Extar,cD,tar
[log(1−D(xtar, cD,tar))] + Exsrc,cD,tar,cG,tar

[log(D(G(xsrc, cG,tar), cD,tar))]

(4.14)

Here, the generator G tries to minimize this cost function while the discriminator D tries to

maximize it. When the discriminator gets to local optimal, the use of logarithm term in the

adversarial loss is equivalent to minimizing the Jenson-Shannon divergence [Arjovsky et al.,

2017] between the real images and the synthetic images. If the real images and the synthetic

images share no support, Jenson-Shannon divergence implied by Equation (4.14) becomes

saturated (i.e. a constant). Optimizing Equation 4.14 suffers from due to the gradient-

vanishing effect. And sometimes, the model tends to the collapsing mode [Arjovsky et al.,

2017, Goodfellow et al., 2014, Salimans et al., 2016]. In order to effectively avoiding the mode

collapsing problem, [Arjovsky et al., 2017] propose to replace the logarithm cross-entropy loss

by Wasserstein distance (WGAN) as:

Ladv = −Extar,cD,tar
[D(xtar, cD,tar)] + Exsrc,cD,tar,cG,tar

[D(G(xsrc, cG,tar), cD,tar))]

s.t. ‖ D ‖L≤ 1
(4.15)

where ‖ D ‖L≤ 1 denotes 1-Lipschitz constraint. Here, the discriminator D becomes a

"critic" because it does not distinguish the true and the generated but attempts to minimize

the differences between them. In order to implement this constraint, [Arjovsky et al., 2017]

use the weight clipping method for the discriminator. However, the value of the clipping

threshold, which affects the interactions between the weight constraint and the cost function,

is hard to choose. An inappropriate value can induce either vanishing or exploding gradients.

An improved version of WGAN proposes to use gradient penalty [Gulrajani et al., 2017] for

Equation 4.14 as:

Ladv = −Extar,cD,tar
[D(xtar, cD,tar)] + Exsrc,cD,tar,cG,tar

[D(G(xsrc, cG,tar), cD,tar))]

+ λgpEx̂[‖ (∇x̂D(x̂, cD,tar) ‖2 −1)2]
(4.16)

where x̂ = ǫxsrc+(1−ǫ)G(xsrc, ctar) denotes the interpolation between the real image and the

generated image with a random number ǫ ∼ U [0, 1], and λgp controls the importance between

the objectives. [Gulrajani et al., 2017] investigate that the optimal critic has unit gradient

norm almost everywhere under the data distribution of the true images and the generated

images. Intuitively, the true image and the optimally generated image should share the same

gradient. Thus, this procedure makes the networks easily to train.
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4.3.1.2 Cycle Consistency Loss

The adversarial loss does not guarantee that learned mappings can induce a generated image

that matches exactly the target image because the networks map the same set of input images

to any random images in the target domain [Yi et al., 2017, Zhu et al., 2017]. Equation

(4.16) only optimizes the mapping between the domain part between domains. Thus, a cycle

consistence loss [Kim et al., 2017, Yi et al., 2017, Zhu et al., 2017] is applied to the generator

to preserve the identical content of the input images and the translated one, described as:

Lcyc = Exsrc,cG,tar,cG,src
[‖ xG,src −G(G(xsrc, cG,tar), cG,src) ‖l] (4.17)

where cG,src is the embedded source domain label and l is a norm. The generator translates

the input images into the output images and then reconstructs from translated ones to the

original images. [Isola et al., 2017] investigate that the use of ℓ1-norm is better than ℓ2-

norm for training GANs because ℓ1-norm encourages less blurring. Thus, [Choi et al., 2018,

Yi et al., 2017, Zhu et al., 2017] propose the cycle consistence loss with ℓ1-norm so as to

encourage low-frequency correctness. In this work, we propose to use a robust Charbonnier

loss function (a differentiable variant of ℓ1-norm) ρ(x) =
√

x2 + ǫ2ρ (ǫρ is set to 1e−3), which

achieves a better high-quality reconstruction than ℓ2-norm such as in the SR problem [Lai

et al., 2017]. The cycle loss can be now expressed as:

Lcyc = Exsrc,cG,tar,cG,src
[ρ (xsrc −G(G(xsrc, cG,tar), cG,src))] (4.18)

4.3.1.3 Total Variation Loss

The output image ytar may be generated with high-frequency artefacts, which are remarked

in several GAN methods [Choi et al., 2018, Yi et al., 2017, Zhu et al., 2017]. The TV

regularizer has been investigated in the neural style transfer domain [Gatys et al., 2016,

Johnson et al., 2016], super-resolution [Gatys et al., 2016, Johnson et al., 2016] and feature

inversion [Mahendran and Vedaldi, 2015]. Thus, we apply total variation (TV) regularization

to encourage spatial smoothness of the output. The TV loss for a 3D output is described as:

LTV (y) =
∑

i,j,k

(
(yi,j,k+1 − yi,j,k)

2 + (yi,j+1,k − yi,j,k)
2 + (yi+1,j,k − yi,j,k)

2
)β

2
(4.19)
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4.3.1.4 Full Objective

Our full objective is described as:

Ltotal = Ladv + λcycleLcycle + λTV LTV

= −Extar,cD,tar
[D(xtar, cD,tar)] + Exsrc,cD,tar,cG,tar

[D(G(xsrc, cG,tar), cD,tar))]

+ λgpEx̂[‖ (∇x̂D(x̂, cD,tar) ‖2 −1)2]

+ λcycleExsrc,cG,tar,cG,src
[ρ (xsrc −G(G(xsrc, cG,tar), cG,src))]

+ λTV LTV (G(xsrc, cG,tar))

(4.20)

where λcycle and λTV is parameters which denote the significance of the reconstruction process

and the TV regularization. In summary, the generator G is aimed at generating the synthetic

images G(xsrc, cG,tar), which are as similar as possible to the images of a target domain

xtar, from the images of a source domain xsrc. The images xtar and xsrc are unpaired. The

discriminator D distinguishes the true image xtar and the generated image G(xsrc, cG,tar),

which are conditioned by the embedded target domain cD,tar. Meanwhile, the generator G

attempts to fool the discriminator by setting the generated image as the true images of the

adversarial loss. In addition, the synthetic images are mapped backward to the source images

as G(G(xsrc, cG,tar), cG,src). Intuitively, the generated images of the synthetic images back

to the source domain must be the source images xsrc. The cycle consistency loss guarantees

this property of images. Besides, the TV regularizer is applied to the synthetic images

G(xsrc, cG,tar) so as to ensure their smoothness. Figure 4.8 illustrates our proposed GAN-

based method that generates synthetic T2w images from real T1w images of a specific subject

using other the T2w images of other subjects.

(a) 3D generator

Figure 4.8: Illustration of our proposed 3D GANs for unpaired cross-modal synthesis so
as to generate synthetic T2w images from T1w images
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4.3.2 Network architectures and training

The works in [Choi et al., 2018, Yi et al., 2017, Zhu et al., 2017] use instance normalization

(InsNorm) layers [Ulyanov et al., 2017] for their networks as:

InsNorm(xi) = γ
xi − µB√
σ2
B + ǫ

+ β (4.21)

where xi denotes values of ith batch of input x over the mini-batch m (i = 1, ...,m), µB and

σB are respectively the average and variance of ith batch and ǫ is a constant. β and γ are

respectively learned scale and shift parameters of the layer. However, the use of one β and one

γ for all domain-to-domain mappings limits the representation of a rich visual vocabulary for

the construction. Instead, we use conditional instance normalization (CondInsNorm) layers

[Dumoulin et al., 2017] as:

CondInsNorm(xi) = γctar
xi − µB√
σ2
B + ǫ

+ βctar

= (γ × ctar)
xi − µB√
σ2
B + ǫ

+ (β × ctar)
(4.22)

where βctar and γctar are respectively learned scale and shift parameters of the layer for the

mapping from the input image xsrc to the target domain ctar and × denotes multiplication.

The embedding layer in [Gal and Ghahramani, 2016] is used to create the embedded domains.

All our networks are based on 3D layers with training patch size of 128× 128× 128.

4.3.2.1 Generator architectures

We denote c7s1-k as 7× 7× 7 Convolution-CondInsNorm-ReLU layer and c7-k as 7× 7× 7

Convolution layer with k filters and stride 1. Let c3s2-k denotes a 3 × 3 × 3 Convolution-

CondInsNorm-ReLU layer with k filters, and stride 2. R-k denotes a residual block that

contains 3 × 3 × 3 Convolution-CondInsNorm-ReLU-Convolution-CondInsNorm layer with

the same number of filters of k on both convolution layers. u-k denotes 3×3×3 Upsampling-

Convolutional-InstanceNorm-ReLU layer with k filters and the scaling factor of ×2. After

the last layer, we apply a tanh activation. The generator architecture is: c7s1-16, c3s2-32,

c3s2-64, R-64, R-64, R-64, R-64, R-64, R-64, u-32, u-16, c7-1. The reflecting padding is used

to decrease the artefacts of the output. The illustration of the generator is shown in Figure

4.9 (a).

4.3.2.2 Discriminator architectures

The input of our discriminator is a Hadamard product of the input image and a bedded

domain/target class label. Wasserstein GAN [Gulrajani et al., 2017] suggests that normal-

ization layer should not be used in the discriminator. We use Leaky ReLU with a negative
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(a) 3D generator

(b) 3D discriminator

Figure 4.9: The architecture of our proposed 3D GANs for unpaired cross-modal synthe-
sis

slope of 0.01. Let c-k denote a 4 × 4 × 4 Convolution-LeakyReLU layer with k filters, the

stride of 2 and same padding. The last layer is a 2 × 2 × 2 convolution layer with stride of

1. No activation layer is used after the last layer. The discriminator consists of: c-32, c-64,

c-128, c-256, c-512, c-1024. The illustration of the discriminator is shown in Figure 4.9 (b).

4.3.2.3 Network training

The 3D network is trained over 20 epochs on GPU Titan X using Keras with batch size of 1.

Training uses Adam method [Kingma and Ba, 2015] with learning rate of 0.0001 and updates

the discriminator 5 times before training the generator as in [Gulrajani et al., 2017]. When

updating the generator, we freeze the weights of the discriminator. In our experiments, we

set λgp = 10, λcyc = 5000. At test time, the whole synthesized image is reconstructed by the

weighted predictions of patches of the testing image.

4.3.3 Experimental results

We show our qualitative results in Figures 4.10 and 4.11. Although, our approach is an unsu-

pervised learning method, it can generate the synthetic images which have the same contrast

to the ground truth images. The CSF, white matter and gray matter regions are recon-

structed as close as the ground truth. Synthesized images using our proposed unsupervised

approach capture most of the structural information.
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(a) Input T1w MRI image (b) 20L-SRReCNN

(c) Our proposed GANs with λTV = 0.001 (d) Ground truth T2w MRI image

Figure 4.10: The examples (i.e. the axial slices of a brain MRI) of cross-modal syn-
thesis methods. The input T2w MRI image (a) is synthesized by the supervised method

20L-SRReCNN and our unsupervised method GAN.

20L-SRReCNN
our GAN

λTV = 0.005 λTV = 0.001 λTV = 0
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Synthesized T1w 15.6848 0.9584 15.8333 0.9562 16.9957 0.9528 14.0984 0.8971

Synthesized T2w 20.5420 0.9528 15.3921 0.9419 16.3176 0.9401 14.6016 0.8925

Table 4.2: The results of PSNR/SSIM for our GAN-based cross-modal synthesis meth-
ods with respect to the parameter λTV . All methods using the training and testing images

of NAMIC with λgp = 10, λcyc = 5000.

The quantitative results are illustrated in Table 4.2. We use PSNR/SSIM metrics to evaluate

our method with respect to TV regularization (λTV ∈ {0, 0.001, 0.005}) and compared to the

supervised learning method 20L-SRReCNN (described in Section 4.2). When synthesising

T1w images from T2w images, the proposed GAN-based methods have comparable results

as 20L-SRReCNN. However, our unsupervised method shows worse PSNR/SSIM than the

supervised method. The reason relies on the fact that the GAN-based method attempts

to optimize two mappings inside one single network at the same time while two networks
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(a) Input T2w MRI image (b) 20L-SRReCNN

(c) Our proposed GANs with λTV = 0.001 (d) Ground truth T1w MRI image

Figure 4.11: The examples (i.e. the axial slices of a brain MRI) of cross-modal syn-
thesis methods. The input T1w MRI image (a) is synthesized by the supervised method

20L-SRReCNN and our unsupervised method GAN.

20L-SRReCNN are trained for one mapping.

The role of TV regularization is crucial to our method. TV regularization induces better

results than whose of no TV parameter. The lower λTV = 0.001 leads to higher PSNR but

lower SSIM than λTV = 0.005. The illustration of the role of TV regularization is shown in

Figure 4.12. No TV regularizer induces high-frequency artefacts. The reconstruction with

λTV = 0.005 leads to more smoothed results.

4.3.4 Discussion

In this section, we proposed a general unsupervised GAN-based method for cross-modal

synthesis of subject-specific scans. Our method works without paired training data from

source and target domains. Although the results are a little blurry, the technique shows

an approach to solve our cross-modal synthesis problem without the paired dataset. Our

method is effective for joint training between different domains thanks to the embedded
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(a) Ground truth T2w MRI image (b) Our proposed GANs with λTV = 0.005

(c) Our proposed GANs with λTV = 0.001 (d) Our proposed GANs with λTV = 0

Figure 4.12: The sensibility of TV regularization within our GAN-based method. The
zoom versions of ventricle regions are at the lower corners.
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labels of the target/source domains. We demonstrate that our conditional GAN can learn

mappings between multiple MRI tissue contrasts.

We investigate that better performance can be achieved by adding total variation regular-

ization. Our study shows that a small trade-off parameter for this regularizer is enough to

generate better results. A higher parameter can induce too smooth reconstructions. The

investigation of other regularizations will be considered in the future works such as ℓ2-norm

or Gaussian kernel.

The future research directions for GAN-based unpaired cross-modal synthesis could focus

on applying the synthetic images for CNN-based SR techniques. As shown in [Pham et al.,

2017b] that the multimodal method for brain MRI where a HR reference image can leverage

the SR results. We believe that the synthetic HR images instead of using the original HR

contrast can lead to better results.

Another application of cross-modal synthesis is to support segmentation methods. [Leroy

et al., 2011] shows that the cortex segmentation of neonatal brain can be drawn from T2w

images. However, the resolution of T2w images is usually lower than the corresponding

T1w images of the same subject. Unpaired cross-modal synthesis can generate the T2w

synthetic images from the HR T1 images. Then, segmentation methods may apply to these

HR synthetic T2w images for cortex segmentation.

"La prochaine révolution de l’IA sera non-supervisée"-Yann LeCun (2). More improved GANs

technique are growing up. In the future work, we will study more GAN-based techniques (e.g.

Fisher GAN [Mroueh and Sercu, 2017]) or other new layers of networks for better synthesis

reconstruction. Kernel methods for GAN in [Zhang et al., 2017] would allow to improve the

performance of adversarial networks.

2RFIAP2018 : https://rfiap2018.ign.fr/
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Chapter 5

Conclusions and Perspectives
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Conclusions

In this work, two intended applications of medical image representations have been presented:

single image super-resolution (SR) and cross-modal synthesis. SR and cross-modal synthesis

have been receiving attention from the research community for recent years. The desire for

SR in medical imaging stems from many applications: understanding of the anatomy, helping

accurate segmentation and registration, and overcoming the hardware limitations of medical

imaging devices. The motivation for cross-modal synthesis raises from many aspects: the

mutual support between multi-modality medical imaging, helping accurate segmentation and

super-resolution. Several methods for these problems have been introduced: patch-based

method, sparse coding, random forest and neural networks.

The first contribution presented, relies on the investigated of 3D convolutional neural net-

works for brain MRI super-resolution instead of classic 2D networks. Then, several principal

elements of networks are analysed to improve the performance such as the optimization

methods, the depth of networks, weight initialization schemes, residual learning, multiscale

learning. Next, an approach to take advantage of another HR reference image for improve

the MRI super-resolution process is proposed. Finally, the application of super-resolution

for enhancing the real clinical neonatal brain MRI and supporting segmentation methods is

investigated, which demonstrates our proposed networks with respect to practical medical

imaging applications.

The second contribution described an approach for joint mappings of high-resolution recon-

struction and segmentation using 3D generative adversarial networks. This method is not
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only assessed on the simulated low-resolution images of the high-resolution neonatal dataset,

but also used to enhance and segment real clinical anisotropic low-resolution images. Our

results demonstrate the potential of our GAN-based method with respect to practical medical

applications.

The third contribution proposes 3D convolutional neural networks for paired cross-modal

synthesis and 3D generative adversarial networks for unpaired cross-modal synthesis. Our

CNN-based network for SR applied directly to cross-modal synthesis shows comparable results

to the start-of-the-art methods. Moreover, we propose an approach to exploit 3D generative

adversarial networks for unpaired cross-modal synthesis. The results of our unsupervised

method are encourage. Further improvements of generative adversarial networks are required

to improve the performance.

Although, several researchers have proposed many methods to solve these two problems, many

challenges still constraint these techniques from wide applications. Firstly, handling a huge

number of training examples or complicated models can be induce computational cost. The

methods such as CNNs depend on GPU for accelerating the intensive computation. Secondly,

the observation model with a given point spread function can not be estimated perfectly,

leading the sensitivity of techniques with outliers or the dissatisfaction of ideal conditions.

Finally, the metrics such as PNSR or SSIM may not induce more appealing results. Better

measures or qualitative results are still needed for performance evaluation. Thus, future

researches continue to investigate better methods and more performance evaluation for the

developments of these two applications.

Perspectives

In this thesis, we considered MRI contrasts (T1w and T2w). The addition of other contrasts

such as FLAIR or dMRI or other modalities such as CT would be used to investigate the

robustness of neural networks-based techniques. In [Alexander et al., 2017], image quality

transfer (IQT) propagates information from rare or expensive high quality dMRI images to

abundant or cheap low quality dMRI images by machine learning technique. The method

raises the question of the potential of CNN in dMRI SR. We believe that our proposed

cross-modal synthesis can be used to generate MRI brain scans from CT and vice verso, or

diffusion-weight MRI or from low dose to high dose CT scan.

When applying CNN-based methods in a realistic setting, the choice of PSF is crucial. Thus,

the second future direction would involve blind SR [Michaeli and Irani, 2013, Wang et al.,

2005] instead of a simulated PSF so as to approximate better the PSF of observed LR im-

ages. On the other hand, the perceptual approaches can also be used to make the network

independent from the PSF model.

The objective function of neural networks is based on the differences between pixel-wise or

voxel-wise. Thus, this may lead to lack of texture information inside images. The future work
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would combine neural networks with nonlocal and statistical priors [Fablet and Rousseau,

2016] to preserve the consistency of high-resolution textured patterns, which are missed in

the observed low-resolution images.

Since the segmentation maps in Section 2.2.3 only focus on the cortex of brain, other regions

of MRI images such as CSF, WM and GM can also be segmented using our proposed methods.

In addition, other supervised learning segmentation algorithms such as atlas-based methods

[Rousseau et al., 2010b] or CNN-based methods [Ronneberger et al., 2015] would allow to

improve the accuracy of segmentation maps. 0ther organ imaging such as cardiac MRI or

other types of medical imaging such as CT could exploit the proposed methods. Moreover, an

end-to-tend network would be proposed for joint super-resolution and segmentation or even

joint super-resolution, segmentation and synthesis.
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Appendix A

Deep learning
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A digital image contains a number of pixels which are arranged in a array. The discontinuities

of the value range of pixels (a sudden increase in value) where these points are linked together

as a structure termed edges. The closed edges compose of contours of images which may form

certain shapes (e.g. a circle or a rectangular) or the pattern of a object. A set of some regular

pattern defines an image texture. The content of an image is represented by patterns and

textures. In image processing, a key role is to extract and detect these elements for image

representation. Before deep learning, classic methods used to extract features of images or

data which are the contours, edges or smoothness by a set of predefined filter such as Gaussian

filters, Sobel filter. The feature extraction is a fundamental tool in image representation.

Deep learning, which is a class of machine learning, aims to learn implicitly features via a set

of artificial neural networks. Artificial neural networks (ANNs) are systems for computing

inspired biological neural networks of human brain. ANNs have many different architectures.

One simple class of ANNs is a perceptron (a neuron), described as:

fneu(x) = g(W · x+B) (A.1)
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where x, fneu(x) ∈ R, g is an activation function, W is a weight and B is a bias. W ·x denotes

the dot product. For sake of clarity, we denote x and f(x) as the argument (or input) and

a model (or a function) respectively. The perceptron attempts to find the weight and bias,

which approximate the relation of given input and correspond output. The space of solution

of a perceptron is limited in the set of linear separability. In order to extend the solution

space, a multilayer perceptron (MLP) connects several perceptrons for higher dimension of x

and f(x) with hidden layers. A MLP with one hidden layer can be denoted as:

fMLP (x) = g2(W2 · g1(W1 · x+B1) +B2) (A.2)

where now x ∈ Rn and fMLP (x) ∈ Rm (n,m ≥ 1). gi,Wi, Bi denote the activation function,

weight and bias of the ith layer. The units of MLPs are fully connected, each node in one layer

connects every node in the following layer. A MLP consists of several fully-connected layers,

activation layers and a cost function (so-called an objective function). However, MLPs are

restricted for one-dimensional training set. In order to better represent higher dimensional

patterns (e.g. edges, contours), we can supplement our neural networks with the convolution

operation. In the next section, we will go in detail of convolutional neural networks, their

characteristics and how to optimize the training of networks.

(a) a neuron (b) a MLP with hidden layers

Figure A.1: The example of a computing neuron with input x and output f(x) as Equa-
tion A.1 and a MLP with hidden layers

A.1 Convolutional neural networks

Convolutional neural networks (CNN), which are variants of MLPs, consist of several layers,

especially convolutional layers for representing the features of input set. CNNs optimize the

weights and biases of their weight layers through the networks in order to find the relation of

given training dataset. A example of a CNN with two convolutional layers is decribed as:

fCNN (x) = g2(W2 ⋆ g1(W1 ⋆ x+B1) +B2) (A.3)

where ⋆ denote a convolution operation, Wi, Bi denote the weight and the bias of the ith

convolution layer. Mathematically, a convolution, which is a weighted sum of each element

of the input to its local neighbors by filters, between an image I and a filter F can be written
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as:

IF (k, l) =

m∑

i=1

n∑

j=1

I(i+ k − 1, j + l − 1)F (i, j) (A.4)

where I ∈ RM,N , F has a size of m× n and IF denotes the convoluted image. Depending on

our tasks, we could add more types of layers such as pooling layers, transposed convolution

layers, embedding layers [Gal and Ghahramani, 2016], batch normalization layers [Ioffe and

Szegedy, 2015] or sub-pixel layers [Shi et al., 2016], etc.

CNNs have been first studied in [Fukushima and Miyake, 1982, LeCun et al., 1998]. Never-

theless, these networks have been received the most attention from research community since

2014. A CNN called Alexnet has won a challenge of image classification [Krizhevsky et al.,

2012]. This network consists of eight layers (convolution and fully-connected layers which

need to be trained) and other in-place layers such as Maxpool (i.e. selecting the maximum

value of a pooling window), activation functions (e.g. rectified linear unit (ReLU), Softmax).

The architecture of AlexNet is drawn in Figure A.2 (a).

(a) Alexnet

(b) An architecture of VGG-nets

Figure A.2: The architecture of AlexNet [Krizhevsky et al., 2012] and VGG-net [Si-
monyan and Zisserman, 2014] for image classification (Recreating from [Krizhevsky
et al., 2012, Simonyan and Zisserman, 2014]). Conv and Dense are convolution and fully-
connected layers respectively. The block Conv/ReLU and Dense/ReLU denote respectivelt

a convolution layer and a fully-connected layer before a ReLU layer.

Later, VGG-nets, very deep CNNs [Simonyan and Zisserman, 2014] drawn in Figure A.2 (b),

has improved the performance of the predecessor. In parallel, InceptionNet, which consists of

several blocks of the concatenation of filters and pool layers [Szegedy et al., 2015], has more

performance than VGG-nets. Several architectures of CNNs have been proposed to many

computer vision tasks. In order to generalize CNNs to object detection, the work in [Girshick

et al., 2014, Ren et al., 2017] (R-CNN) aims to identify objects via a bounding box in the

image.
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A.2 Activation layers

The relationship between the input and the output of a problem may be nonlinear. So, they

raise the need of the layers which can model the nonlinearity. In order to extend a network

to represent nonlinear functions, we can apply nonlinear activation functions such as ReLU,

softmax, hyperbolic tangent activation function, etc. The ReLU fReLU (x) is an activation

function which only keeps the positive part of its input x as:

fReLU (x) = x+ = max(0, x) (A.5)

The ReLU layer is close to linear so as the gradient-based methods can easily optimize [Good-

fellow et al., 2016]. There are several versions of ReLU layers which extend the negative parts

such as: Leaky ReLU [Maas et al., 2013](i.e. retaining the negative part by a small fixed

scaling factor), Parametric ReLU [He et al., 2015] (i.e. the scaling factor for negative part is

learned). Instead of just scaling the negative part, an exponential function can be apply to

this part as ELU [Clevert et al., 2015]:

fELU (x) = max(0, x) +min(0, α(ex − 1)) (A.6)

where α is a scale factor. The purpose of these activation functions is to preserve the properties

of linear models for optimization but also model a nonlinear transformation. Another family of

nonlinear layers can be used at the end of the networks for predicting a probability, in other

word presenting a probability distribution such as sigmoid, softmax or hyperbolic tangent

function. The logistic sigmoid function approaches to zero or one when its input is very

negative or very positive, thus, it is commonly used for logistic regression as:

fsigmoid(x) =
1

1 + exp(−x)
(A.7)

In order to take advantage of sigmoid activation for multiple regression, we can use the

softmax function which decomposes the arguments into K distinct linear functions as:

fsoftmax(x)i =
exp(xi)∑K
j=1 exp(xj)

(A.8)

These above functions are often used for classification tasks. For a linear regression, the linear

function is the simplest choice as:

flinear(x) = x (A.9)

However, data is sometimes needed to be normalized into the range of [−1, 1] because of

the compatibility of different dataset and the computational cost. The hyperbolic tangent

function can be used for this purpose :

ftanh(x) = tanh(x) (A.10)
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Intuitively, the hyperbolic tangent function maintains the linear relationship of the argument

in the range of [−1, 1] and it saturates if otherwise. In addition, the property of this function

makes gradient-based optimization methods easily calculate the derivatives.

Figure A.3: Some activation functions

A.3 Some state-of-the-art CNN architectures

A.3.1 Residual networks

Afterward, an architecture CNN up to 100 layers has been proposed to use the residual blocs

(Resnet) [He et al., 2016a]. A residual bloc [He et al., 2016b] draw in Figure A.4, of the ith

and (i+ 1)thconvolution layer can be :

fRes(x) = gi+1(BNi+1{Wi+1 ⋆ gi[BNi(Wi ⋆ x)]}+ x) (A.11)

where BNi is the batch normalization (BN) function [Ioffe and Szegedy, 2015] of ith layer.

When the parameters of training networks are optimized, the distribution of activation func-

tions is changed, leading to internal covariate shift. BN layers propose to normalize the

response of convolution layers to produce activations with a stable distribution as:

BN(xi) = γ
xi − µB√
σ2
B + ǫ

+ β (A.12)

where xi denotes values of ith batch of input x over the mini-batch m (i = 1, ...,m), µB and

σB are respectively the average and variance of the mini-batch and ǫ is a constant. β and

γ are respectively learned scale and shift parameters of the layer to ensure network to avoid
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forward or backward signals vanish [He et al., 2016a]. Later, Mask R-CNN [He et al., 2017]

supplements R-CNN the possibility of object segmentation with Resnet.

Figure A.4: The architecture of a residual block [He et al., 2016b]. BN denotes a batch
normalization layer

A.3.2 Densely connected networks

Recently, [Huang et al., 2017a] have proposed to connect all layers in a block or in the

networks called Densenet. These latest networks not only decrease number of parameters but

also show good performance as the "ultra deep" Resnet. An example of densely connected

block is illustrated in Figure A.5. Densenet proposes to concatenate all preceding layers

x1, x2, ..., xi for the (i+ 1)th layer as:

fden,i+1(x) = gi+1(BNi+1[Wi+1 ⋆ Concat(x1, x2, ..., xi) +Bi+1]) (A.13)

where Concat denotes the concatenation of feature-maps of all preceding layers. Wi+1 and

Bi+1 are the parameters of the (i + 1)th layer. The intuition of this approach is that each

layers share all feature maps as "collective knowledge" [Huang et al., 2017a].

Figure A.5: The architecture of a densely connected block [Huang et al., 2017a]. A conv
block may consist of convolutional layers, padding layers, BN and ReLU layers

The concatenation technique is also proposed by another famous network called U-Net in

biomedical image processing [Ronneberger et al., 2015] (shown in Figure 4.3). However,

U-net concatenates the symmetric layers instead of the whole preceding layers, resulting a

U-form architecture.
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A.4 Application of CNN for neural style transfer

The work in [Gatys et al., 2016] investigated an interesting application of CNNs based on

[Simonyan and Zisserman, 2014] that is style transfer. Given a content image p, a style image

s and a random image x, we would like to generate x to have the content of p with the style

of s as the total loss as:

L(x, p, s) = αLcontent(x, p) + βLstyle(x, s) (A.14)

where Lcontent(x, p) and Lstyle(x, s) denote the content reconstruction loss and the style loss

respectively, and α and β are weights. The authors demonstrated visually that higher layers

lost detailed pixel information and capture the high-level content of the image. In order to

perverse the content for input image x, the feature reconstruction loss function is calculated

by element-wise squared error:

Lcontent(x, p) =
1

2

∑

i

(F l
i (x)− F l

i (p))
2 (A.15)

where F l is the feature maps of the lth layer of a pre-trained network (e.g. VGG-net [Simonyan

and Zisserman, 2014]). The second loss of Equation A.14 brings stylistic features to the input

image, described as:

Lstyle(x, s) =

L∑

l=1

wl

∑

i

(G(F l
i (x))−G(F l

i (p)))
2 (A.16)

where L is the number of chosen layers for style transfer, wl denotes weighting factors and

G corresponds the Gram matrix (i.e. inner products of the subsets). But this method slowly

finds the solution because of inference processes. [Johnson et al., 2016] propose to add a

independent transformation network Φ to transform an input image p to an generated image

ŝ = Φ(p) which have the style of image s based on the perceptual loss:

L(s, ŝ) = αΦLcontent(s, ŝ) + βΦLstyle(s, ŝ) (A.17)

where αΦ and βΦ are the trade-off coefficients. The first version of this method used batch

normalization layers [Ioffe and Szegedy, 2015] to encode the mapping ŝ = Φ(p). However,

this normalization applies to whole a batch of images leading to the slower optimization of

networks. The work in [Ulyanov et al., 2017] proposes another type of normalization called

instance normalization. The idea of this normalization layer is to calculate simply the mean

and the standard deviation of the input on the sum of a single batch instead of a whole.
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A.5 Generative adversarial networks

Since introduced in 2014, generative adversarial networks (GANs) [Goodfellow et al., 2014]

have applied for many tasks such as 3D object generation [Wu et al., 2016], super-resolution

[Ledig et al., 2017] and image translation [Isola et al., 2017], MRI one-domain synthesis

[Bermudez et al., 2018]. GANs consist of two networks in which one network learns how

to generate candidates mapped from a latent space while other discriminates them with

instances from the true data distribution. The generative possibility and the stability of

GANs can be improved by utilizing convolutional neural networks (DCGAN) [Radford et al.,

2016], conditioning these two networks with class labels (cGANs) [Mirza and Osindero, 2014],

adding auxiliary classifier (AC-GAN) [Odena et al., 2017].

Figure A.6: The diagram of generative adversarial networks. Generator and Discrimina-
tor consist of convolutional neural networks

The generator learns a mapping from a noise z of the noise distribution Pz to a image

x from the input distribution Px. Meanwhile the discriminator is trained to distinguish the

generated image G(z) and the real image. We express the objective of this adversarial learning

[Goodfellow et al., 2014] as:

min
G

max
D

L(D,G) = Ex∼Px
[logD(x)] + Ez∼Pz

[log(1−D(G(z)))] (A.18)

where the generator G tries to minimize this object while the discriminator D tries to max-

imize it. In order to improve the possibility of classification, conditioned GANs (cGAN)

[Mirza and Osindero, 2014] attempt to embed the class of images into the generator and the

discriminator as:

min
G,c

max
D,c

L(D,G, c) = Ex∼Px,c[logD(x, c)] + Ez∼Pz ,c[log(1−D(G(z, c), c))] (A.19)

where c is the embedded label of the real image x. Instead of feeding the discriminator with

the label information, another approach is to task the discriminator predict the class of image

(ACGAN). The former is now defined as :

minG,cmaxD,c L(D,G, c) = Ex∼Px
[logD(x)] + Ez∼Pz ,c[log(1−D(G(z, c)))]

+Ex∼Px,c[−logDc(c | x)]
(A.20)

where Dc(c | x) is a probability distribution over labels computed by D. However, the

use of logarithm term in the adversarial loss (known as Jensen-Shannon divergence) could
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be saturated and in other cases, the model tends to the collapsing mode [Arjovsky et al.,

2017, Goodfellow et al., 2014, Salimans et al., 2016]. In order to effectively avoid the mode

collapsing problem, [Arjovsky et al., 2017] (WGAN) adopt Wasserstein distance to replace

the logarithm cross-entropy loss as:

minGmaxD L(D,G) = Ex∼Px
[D(x)]− Ez∼Pz

[D(G(z))] s.t. ‖ D ‖L≤ 1 (A.21)

where ‖ D ‖L≤ 1 denotes the 1-Lipschitz constraint. The authors propose to use the weight-

clipping method to perform the constraint. Because of the difficulty of weight clipping on the

network optimization, [Gulrajani et al., 2017] alternates this constraint by a gradient penalty.

The objective function can be rewritten by an improved version of WGAN as:

min
G

max
D

L(D,G) = Ex∼Px
[D(x)]− Ez∼Pz

[D(G(z))] + λgpEx̂[‖ (∇x̂D(x̂) ‖2 −1)2] (A.22)

where λgp is a trade-off and ∇x̂ denotes the gradient of the interpolation x̂ between the real

input and the generated input as: ǫx + (1 − ǫ)G(z). ǫ is a random number from a uniform

distribution over an interval [0, 1].

Figure A.7: The diagram of cycle-consistent adversarial networks (cycleGAN) [Zhu
et al., 2017]. The method consists of two generators and two discriminators with a connec-

tion of cycle-consistent loss.

Recently, image-to-image translation using GANs has been receiving significant attention

from research community [Isola et al., 2017, Kim et al., 2017, Yi et al., 2017, Zhu et al.,

2017]. In the context of supervised learning, [Isola et al., 2017] investigated cGANs for paired

image-to-image translation. Recent works learn this task in an unpaired learning manner

[Kim et al., 2017, Yi et al., 2017, Zhu et al., 2017]. For instance, an architecture with two-

block GANs and a connection based ℓ1-norm cycle-consistent loss has been investigated for

translating unpaired images [Zhu et al., 2017], as demonstrated as Figure A.7. Another work

similar to [Zhu et al., 2017] but with ℓ2-norm cycle-consistent loss has also proposed in [Kim

et al., 2017]. A concurrent work [Yi et al., 2017] with the same approach as cycleGAN has

improved the stability of GANs but using Wasserstein GAN [Arjovsky et al., 2017] instead

of sigmoid cross-entropy loss used in the original GANs.
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A.6 Optimization of neural networks

Given a training dataset which consists of N pairs of input xi and corresponding output yi:

D = {xi, yi | i = 1, 2, ...N}, network parameters are estimated by minimizing the objective

function using optimization algorithms. The objective function of the MLP in Equation (A.2)

with two hidden layers can be expressed as:

L(θ) = argmin
θ

N∑

i

ρ(fMLP (xi, θ)− yi)

= argmin
θ

N∑

i

ρ(g2(W2 · g1(W1 · xi +B1) +B2)− yi)

(A.23)

where θ = {W1,W2, B1, B2} is the set of learned parameters and ρ denotes a loss function

(e.g. ℓ1-norm or ℓ2-norm). The role of optimization algorithms is very important in training

neural networks. The better optimization techniques result in faster convergence to global

minimum, which is the optimal solution of the objective function. One of the classic methods

for neural network optimization is a mini-batch stochastic gradient descent with momentum

(SGD) [LeCun et al., 1998]. SGD proposes to update the network parameters θ at iteration

t+1 using the negative gradient of the objective function ∇L(θt) at iteration t, described as:

Vt+1 = µVt − α∇L(θt)
θt+1 = θt + Vt+1

(A.24)

where Vt denotes the weight update, µ and α are respectively the momentum and learning

rate. However, when the optimization process gets closer to a minimum, an fixed momen-

tum causes numerical instabilities. Nesterov’s accelerated gradient (NAG) [Nesterov, 1983]

proposes to calculate the gradient with added momentum, using the following update:

Vt+1 = µVt − α∇L(θt + µVt)

θt+1 = θt + Vt+1

(A.25)

The gradient descent optimization with small learning rates could be lead to slow convergence.

On the other hand, high learning rates may lead to vanishing gradients [Bengio et al., 1994,

Glorot and Bengio, 2010]. In order to address this issue, the SGD method with an adjustable

gradient clipping (SGD-GC) [Pascanu et al., 2013] proposes to scale the gradients over a

threshold γ to achieve an optimization with high learning rates (e.g. α = 0.1) as follows:

∇L(θ) =




∇L(θ)/γ ‖ ∇L((θ) ‖> γ

∇L(θ) otherwise
(A.26)

SGD-GC may not converge quickly because of the predefined clipping range. One family

of optimization methods addresses this issue through an automatic adaption of the learning

rate for each parameter as RMSProp (root-mean-square propagation) [Tieleman and Hinton,
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2012] and Adam (adaptive moment estimation) [Kingma and Ba, 2015]. RMSProp method

proposes to rescale the gradients to update trainable weights by the root mean square of its

second moments u as:
ut = δut−1 + (1− δ)∇L(θt)2

θt+1 = θt − α∇L(θt)√
ut

(A.27)

where δ is called RMSProp decay. However, RMSProp, which does not take account of the

first moment of gradients and bias corrections, may induce divergence or very large step

sizes [Kingma and Ba, 2015]. Adam method uses a first-order stochastic gradient-based

optimization, which relies on adaptive estimates of both the first and second moments of the

gradients (m,u). The Adam method applies the following update:

mt = β1mt−1 + (1− β1)∇L(θt)
ut = β2ut−1 + (1− β2)∇L(θt)2

m̂t = mt/(1− (β1)
t)

ût = ut/(1− (β2)
t)

θt+1 = θt − α m̂t√
ût+ǫ

(A.28)

where β1 and β2 are the first and second moment decay rates, and α is a predefined parameter.

(m̂j)t and (v̂j)t are called respectively the moment bias corrections of the first and second

moment estimates. For further information of other optimization methods, we can refer to

[Goodfellow et al., 2016].

A.7 Discussion

Previously, we have introduced many different architectures of CNNs and the structure of each

model: from the simple perceptron to the convolutional neural networks. A perceptron may

be viewed as a neuron and then a set of this element composes a network. For many image

processing tasks, neural networks take advantage of the convolution operation in order to

better capture the features of higher-dimensional data. Then, deeper networks (e.g. residual

networks) may achieve better performance in many applications such as classification but

they need many parameters to train. The densely connected networks show the potential of

decreasing the depth of networks but also maintaining the good performance. On the other

hand, convolutional neural networks rely on the paired training set. The study of adversarial

networks is potential to solve unsupervised learning problems. In addition, the applications

of these networks have been provided in order to give readers a general look.
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Titre : Apprentissage profond pour la super-résolution et la segmentation d'images médicales. 

Mots clés :  Analyse d’images, Apprentissage profond, Super-résolution, Segmentation, IRM 

Résumé :  L'objectif de cette thèse est d'étudier 
le comportement de différentes représentations 
d'images, notamment apprentissage profond, 
dans le contexte d'application en imagerie 
médicale. Le but est de développer une 
méthode unifiée efficace pour les applications 
visées que sont la super résolution, la 
segmentation et la synthèse. La super-résolution 
est un procès d'estimation d'une image haute-
résolution à partir d'une ou plusieurs images 
basses résolutions. Dans cette thèse, nous nous 
concentrons sur la super-résolution unique, 
c'est-à-dire que l'image haute résolution (HR) 
est estimée par une image basse-résolution 
(LR) correspondante. Augmenter la résolution 
de l'image grâce à la super-résolution est la clé 
d'une compréhension plus précise de 
l'anatomie. L'application de la super résolution 
permet d'obtenir des cartes de segmentation 
plus précises.  Étant donné que deux bases de 
données qui contiennent les images différentes 
(par exemple, les images d'IRM et les images de  

CT), la synthèse est un procès d'estimation 
d'une image qui est approximative aux images 
dans la base de données de cible à partir d'une 
image de la base de données de source. 
Parfois, certains contrastes tissulaires ne 
peuvent pas être acquis pendant la séance 
d'imagerie en raison du temps et des coûts 
élevés ou de l'absence d'appareils. Une 
solution possible est à utiliser des méthodes de 
synthèse d'images médicales pour générer les 
images avec le contraste différent qui est 
manquée dans le domaine à cible à partir de 
l'image du domaine donnée. L'objectif des 
images synthétiques est d'améliorer d'autres 
étapes du traitement automatique des images 
médicales telles que la segmentation, la super-
résolution ou l'enregistrement. Dans cette 
thèse, nous proposons les réseaux neurones 
pour la super-résolution et la synthèse d'image 
médicale. Les résultats démontrent le potentiel 
de la méthode que nous proposons en ce qui 
concerne les applications médicales pratiques. 
 

 

Title : Deep learning for medical image super resolution and segmentation. 

Keywords :  Image Analysis, Deep Learning, Super-Resolution, Segmentation, MRI 

Abstract :  In this thesis, our motivation is 
dedicated to studying the behaviors of different 
image representations and developing a method 
for super-resolution, cross-modal synthesis and 
segmentation of medical imaging. Super-
Resolution aims to enhance the image 
resolution using single or multiple data 
acquisitions. In this work, we focus on single 
image super-resolution (SR) that estimates the 
high-resolution (HR) image from one 
corresponding low-resolution (LR) image. 
Increasing image resolution through SR is a key 
to more accurate understanding of the anatomy. 
The applications of super-resolution have been 
shown that applying super-resolution techniques 
leads to more accurate segmentation maps. 
Sometimes, certain tissue contrasts may not be  
acquired during the imaging session because of 

time-consuming, expensive cost or lacking of 
devices. One possible solution is to use 
medical image cross-modal synthesis methods 
to generate the missing subject-specific scans 
in the desired target domain from the given 
source image domain. The objective of 
synthetic images is to improve other automatic 
medical image processing steps such as 
segmentation, super-resolution or registration. 
In this thesis, convolutional neural networks are 
applied to super-resolution and cross-modal 
synthesis in the context of supervised learning. 
In addition, an attempt to apply generative 
adversarial networks for unpaired cross-modal 
synthesis brain MRI is described. Results 
demonstrate the potential of deep learning 
methods with respect to practical medical 
applications. 
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