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Quantum mechanics has many intriguing properties that have no-classical analogs. These properties are at the heart of many quantum information protocols which offer the possibility to outperform their classical counterparts. This thesis is devoted to an investigation of two of the fundamental properties of quantum mechanics: nonlocality and contextuality. The goal of this thesis is twofold. Firstly we will study how known results for discrete systems can be extended to continuous variables systems. Secondly, we will investigate how these properties can be tested in quantum systems characterized by continuous variables.

Our work starts with an investigation of the set of local and no-signaling probability distributions. We develop a formalism for generic no-signaling black-box measurement devices with continuous outputs in terms of probability measures. We introduce the continuous-variable version of the famous Popescu-Rohrlich boxes and show that they violate the Tsirelson bound of an adequate continuous-variable Bell inequality. Finally, we perform a characterization of the geometry of the set of continuous-variable nosignaling correlations. More precisely, we show that the convex hull of those boxes is dense in the no-signaling set.

We then study the contextuality of Quantum Mechanics in a state independent formulation. In particular, we study the Peres-Mermin state independent non-contextuality inequality, and show how it is possible to generalize the Peres-Mermin inequality to scenarios involving observables with an arbitrary number of outcomes. Specifically, we identify general conditions on the spectral decomposition of observables demonstrating state independent contextuality of quantum mechanics in this scenario.

Lastly, we explore the non-local properties of entangled cat states, made of superpositions of coherent states stored in two spatially separated cavities. We show that even when taking into account the experimental imperfections such as the losses, a violation of local-realism is still possible, in the form of a violation of an appropriate Bell inequality.

Résumé

La mécanique quantique présente des propriétés étonnantes qui n'ont pas d'équivalent en physique classique. Ces propriétés sont au coeur des applications possibles de la mécanique quantique. Le thème principal de cette thèse est l'étude de deux des propriétés fondamentales de la mécanique quantique: la non-localité et la contextualité. Dans ce cadre, nous poursuivrons deux objectifs: premièrement, nous étudierons comment certains résultats obtenus pour les systèmes discrets peuvent être étendus aux systèmes décrits par des variables continues; deuxièmement nous étudierons comment il est possible de tester ces deux propriétés dans les systèmes quantiques décrits par des variables continues.

Dans une première partie, nous étudions l'ensemble des distributions de probabilités locales et "no-signaling", c'est à dire qui ne permettent pas de transmettre d'information. Nous commençons par traduire le problème en terme de contraintes sur des espaces de mesures de probabilité. Nous introduisons ensuite un ensemble de mesures de probabilité qui sont les analogues en variables continues des probabilités découvertes par Popescu et Rohrlich dans le cas discret. Enfin, nous caractérisons l'ensemble des mesures de probabilité "no-signaling". Plus précisément, nous montrons que les mesures introduites sont des points extrémaux de l'ensemble des mesures de probabilité "no-signaling" et que leur enveloppe convexe est dense dans l'ensemble des mesures de probabilité "no-signaling".

Dans une seconde partie nous nous intéressons à une preuve de la contextualité de la mécanique quantique dans une formulation qui ne dépend pas de l'état. Plus particulièrement, concernant l'inégalité de non-contextualité de Peres-Mermin, nous montrons qu'il est possible de la généraliser pour des observables définies sur des espaces de Hilbert de dimension arbitraire, voire infinie. Cette généralisation nous permet d'identifier les propriétés communes des observables qui conduisent à une violation maximale de l'inégalité de Peres-Mermin.

En dernier lieu, nous nous intéressons à des états intriqués du champ électromagnétique de deux cavités. Ces états sont non-locaux et violent une inégalité de Bell formée de mesures de la parité déplacée. Nous étudions comment ces états peuvent être préparés et mesurés expérimentalement. Enfin, nous analysons l'effet des imperfections expérimentales et des pertes.

Mots clés: information quantique, variables continues, contextualité, non-localité, intrication, variables modulaires

I. Introduction

General Relativity and Quantum Mechanics are certainly the two greatest physical discoveries of the 20th century. Quantum Mechanics is an extremely successful theory. It accounts for a large variety of phenomena, from the atomic structure to microelectronics. Its predictions have always been confirmed and it has a countless number of practical applications. Although the mathematical foundations of Quantum Mechanics are well understood, the physical meaning of the mathematical entities requires an interpretation. This becomes clearer if we compare Quantum Mechanics to General Relativity. The discovery of the latter permitted to solve a problem raised by Newton himself: the intriguing fact that interactions take place instantaneously [START_REF] Janiak | Correspondence with Richard Bentley [1692-3[END_REF]. On the other hand, the physical interpretation of Quantum Mechanics is difficult and raises a lot of questions. The founders of Quantum Mechanics themselves questioned its validity. Planck, for instance, when he presented his new results for the first time and explained the law of black-body radiation, had not yet accepted all the implications of his discovery. He regarded the quantization of energy merely, as he puts it, as "a formal assumption". Even a hundred years after Quantum Mechanics was born, physicists are still discussing such apparently simple questions as: what is a measurement? The difficulty in the interpretation of this theory is exemplified by the number of gedankenexperimente that accompanied the creation of Quantum Mechanics and are still an active subject of experimentation [START_REF] Nogues | Seeing a single photon without destroying it[END_REF]. Even though the mathematical formalism of Quantum Mechanics accurately predicts the results of those experiments, their physical interpretation remains sometimes controversial.

More particularly, the probabilistic nature of Quantum Mechanics challenges our whole conception of the world. Einstein himself, who swiftly accepted the quantization of energy and introduced the theory of light quanta, questioned its "completeness". Together with Podolski and Rosen, they rejected the idea that a measurement on one particle -part of what is now called an entangled pair -could affect the state of the other, however distant it may be. A decisive argument for the understanding of this peculiar property was put forward by Bell. He showed that the assumptions of locality and reality are not compatibles with Quantum Mechanics. Practically, he proved that the correlations obtained by measurements on classical systems have to satisfy inequalities that can be violated by quantum correlations. The non-local nature of Quantum Mechanics has now been experimentally established in a conclusive way [START_REF] Hensen | Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres[END_REF]. What is remarkable about this result is that it does not only impact our understanding of Quantum Mechanics but of the world itself. Indeed, the fact that the strength of classical correlations is bounded, is only a consequence of assumptions on the properties satisfied by classical systems. Were Quantum Mechanics to be overrun by a deeper physical theory, the conclusion would remain: Nature is not local-realistic.

The fact that Nature has been proved to be non-local definitely reinforces the need to find more intuitive or physical explanations of the properties of Quantum Mechanics.

Following this line of inquiry, a lot of studies tried to establish the physical principles from which we can derive Quantum Mechanics [START_REF] Masanes | A derivation of quantum theory from physical requirements[END_REF][START_REF] Popescu | Quantum nonlocality as an axiom[END_REF]. A fruitful way of approaching this question is to study what are the implausible consequences of another theory. For instance, it has been shown that a non-linear variation of the Schrödinger equation would yield unphysical predictions, such as faster than light signaling [START_REF] Gisin | Stochastic Quantum Dynamics and Relativity[END_REF], or a dramatic increase in computational power [START_REF] Abrams | Nonlinear Quantum Mechanics Implies Polynomial-Time Solution for NP -Complete and #P Problems[END_REF]. Besides, the strong links with information theory suggest that a derivation of Quantum Mechanics from reasonable axioms is possible. On the one hand it has been shown that Quantum Mechanics can be used to improve certain communication protocols. On the other hand, a theory that would be more non-local than Quantum Mechanics would render certain communication complexity problems trivial [START_REF] Brassard | Limit on Nonlocality in Any World in Which Communication Complexity Is Not Trivial[END_REF][START_REF] Buhrman | Nonlocality and communication complexity[END_REF].

Questioning the physical interpretation of Quantum Mechanics is not merely interesting on a pure fundamental level. Since Bell's work, a lot of progress has been made in the understanding of the non-local aspect of Quantum Mechanics. This theoretical investigation established the role of non-locality as a resource for several applications such as secure communication protocols, quantum computation or quantum teleportation. Non-locality is by no means the only intriguing property of Quantum Mechanics. Steering, coherence and discord are concepts that have no classical analogs, and their role in some of the possible applications of Quantum Mechanics is still under debate [START_REF] Wiseman | Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox[END_REF][START_REF] Lanyon | Experimental Quantum Computing without Entanglement[END_REF].

It is no surprise that benefits offered by quantum information can often be traced back to some non-classical features of Quantum Mechanics. Identifying and characterizing where Quantum Mechanics differs from classical theories will certainly lead to a better understanding of its possible applications. Quantum Mechanics notably differs from classical physics in that it is not possible to measure at the same time the velocity and the position of a particle. As a consequence of the non-commutativity of observables, Quantum Mechanics is contextual: observables cannot have pre-determined outcomes, independently of the context they are measured in. Studies suggest that the contextuality of Quantum Mechanics is strongly linked with the computational power of a particular quantum computation scheme [START_REF] Howard | Contextuality supplies the magic for quantum computation[END_REF].

Studying the foundations of Quantum Mechanics also means exploring the frontier between the classical world and the quantum world. In the measurement theory of Quantum Mechanics, it is said that macroscopic objects, such as measurement pointers, have definite properties and cannot be in superposition of states. The definition of macroscopic objects, however, is left to interpretation. In order to build a Quantum computer, one needs to be able to create superpositions and to entangle of a huge number of qubits, i.e. to create superpositions and entanglement between macroscopic objects. A better characterization of this frontier would certainly shed light on the challenges that have to be overcome to create a quantum computer. An attractive way of studying the decoherence process, responsible for the transition from quantum to classical states, is to observe the evolution of superpositions of large coherent states, that can be seen as classical pointer states [START_REF] Deleglise | Reconstruction of non-classical cavity field states with snapshots of their decoherence[END_REF].

To sum up, the study of the foundations of Quantum Mechanics is an active field that offers not only the possibility to expand the understanding of Quantum Mechanics, but also the prospect of promising applications. The present thesis is devoted to a study of two fundamental properties of Quantum Mechanics: contextuality and non-locality. These two properties have been originally studied in the case of finite dimensional systems. This led to the formulation of a plethora of non-locality of non-contextuality tests, and to a complete characterization of non-local correlations for discrete systems. In this manuscript, we will mostly be focused on the study of non-locality and contextuality for systems of arbitrary dimensions. One goal of this work is to study how known results for discrete systems are modified for continuous variable systems. Another direction is to study how these two properties can be tested in quantum systems described by continuous variables.

Outline of this thesis

The first chapter is an introduction to some elementary notions of Quantum Mechanics that will be used throughout this work. We start by recalling the mathematical description of discrete and continuous systems. We then discuss the theory of measurement in Quantum Mechanics. Finally, the formalism of modular variable as an alternative representation of continuous variables systems is reviewed.

The second chapter is devoted to the study of quantum and post quantum nonlocality. The chapter starts with an introduction to the concept of local hidden variable model. Further on, we show that Quantum Mechanics is non-local and that quantum correlations are only a specific example of no-signaling correlations. We then review the characterization of the set of local and no-signaling correlations when measurements have only a finite number of outcomes. Finally we characterize the set of local and no-signaling correlations for an infinite number of outcomes. Specifically, we show that no-signaling probability distributions with a finite number of outcomes are dense in the set of no-signaling probability distributions.

The third chapter explores another fundamental property of Quantum Mechanics: contextuality. After a brief introduction to contextuality, introducing the concept of state independent contextuality, we discuss the specific case of the Peres-Mermin inequality. In particular, we generalize known methods for its detection using observables with discrete outcomes to more general measurement settings. We also discuss several examples, including the case of modular variables for state-independent detection of contextuality.

The fourth chapter deals with an experimental proposal to prove non-locality in cavity quantum electrodynamic. We start by reviewing the usual methods for the detection of non-locality in infinite dimensional Hilbert space. Then, we introduce a Bell inequality that can be expressed in terms of the two modes displaced parity operator, and show how it can be measured in this context. Further on, we address the question of experimental imperfections. The analysis focuses on two main experimental imperfections: finite detuning and decoherence.

The last chapter contains a summary of this thesis and a brief outlook.

In this second chapter, we go through a few basic concepts of Quantum Mechanics. This chapter does not aim at providing a full review of Quantum Mechanics but rather at introducing the concepts and tools that will be used throughout the manuscript, and to set some notations along the way. It starts with a description of quantum states and their manipulation for both discrete and continuous systems. Further on, in order to have the necessary tools to describe quantum states of light in different experimental contexts, we consider the quantization of the electromagnetic field. It ends with a description of the modular variable formalism as an alternative representation of continuous variable systems.

II.1. Elements of quantum information theory

II.1.1. Discrete systems

Qubit In classical information theory the information is encoded in a binary variable that can take the value 0 or 1. Modern computers usually encode this information in the electrical voltage or the current pulse that can take two distinct values. By analogy with the classical bit, we define a qubit in quantum information as a system that lives in a two dimensional Hilbert space H (2) . Let |0 and |1 denote a basis of this Hilbert space. Contrary to a classical bit, a qubit is not limited to only two values but can be in a superposition state of |0 and |1 . In general the state of a qubit is given by:

|ψ = a |0 + b |1 , (II.1)
where a and b have to satisfy the normalization condition |a| 2 + |b| 2 = 1. The possibility of preparing qubits in arbitrary superposition of two states leads to a variety of effects. First, when measuring qubits (or more generally states in quantum mechanics), the outcome of measurements is intrinsically random. One might think that this randomness can be problematic and that it renders quantum computation intractable but it is not the case. In fact, being able to prepare qubits in certain states in a deterministic manner makes quantum computation at least as powerful as classical computation. Moreover, taking advantage of the possibility of preparing qubits in a superposition of states, a quantum computer would outperform a classical computer on specific computational tasks1 . Qubits can be encoded in the polarization state of a photon (e.g. horizontal and vertical polarization) or two isolated energy levels of an atom, ion, or molecule.

Qudit It is possible to generalize the qubits to higher dimensional systems; this generalization is known as qudits. A qudit is a system living in a d-dimensional Hilbert space 6 II. Preliminary notions H (d) . If we denote an orthonormal basis of this Hilbert space by {|0 , • • • , |d -1 }, a state living in this Hilbert space can be expressed as:

|ψ = d-1 n=0 c n |n , (II.2)
where the coefficients c n satisfy the normalization condition d-1 n=0 |c n | 2 = 1. Usual experimental realizations of qudits are done with spin S particles which have d = 2S + 1 degrees of freedom, or using the orbital angular momentum of single photons [START_REF] Allen | Optical Angular Momentum[END_REF].

II.1.2. Continuous variables systems

A natural generalization of qudits consists in considering the limit when d goes to infinity. In this case one obtains an infinite dimensional Hilbert space H. We denote an orthonormal basis of this space by {|n , n ∈ N}. A state living in this Hilbert space can be expressed as:

|ψ = ∞ n=0 c n |n , (II.3)
where the c n have to satisfy the normalization condition ∞ n=0 |c n | 2 = 1. This Hilbert space is used to describe a system made of a variable or unknown number of identical particles and is known as the Fock space. In particular we will see that it conveniently describes a system made of harmonic oscillators such as the electromagnetic field.

In the case of an harmonic oscillator, it is well known that the state of the system can be expanded on the Fock basis. Even though the Fock basis can be very useful, it is not necessarily the most convenient. In particular, it is sometimes useful to describe the state of the system using a representation in terms of its position or momentum or for the electromagnetic field, in terms of its quadratures. To this end, we consider a continuous basis made up of eigenstates of the position or momentum operator x and p. These eigenstates are defined through the following relations:

x |x = x |x , (II.4a) p |p = p |p .
(II.4b)

These are not strictly eigenstates in the sense that they are non-normalizable and do not belong to the Hilbert space L 2 (R). Nevertheless they are orthogonal and satisfy the following normalization condition:

x|x = δ(x -x ), (II.5a) p|p = δ(p -p ), (II.5b)
where δ denotes the Dirac distribution. One has to understand |x and |p as ideal states corresponding to states whose position or momentum is perfectly well known. These states are nonphysical as you need an infinite amount of energy to create them. Nonetheless, these states are very useful as a mathematical tool and form a complete where the wave functions of the state, ϕ and ψ, are square integrable functions of norm one. Because the position operator x and the momentum operator p are not commuting and satisfy the commutation relation [x, p] = i 1, the description in the position basis and momentum basis are not independent2 . Using the commutation relation, one can prove that ϕ and ψ are the Fourier transform of one another:

ψ(p) = 1 √ 2π ∞ -∞
dxe ixp ϕ(x) (II.8a)

ϕ(x) = 1 √ 2π ∞ -∞
dpe -ixp ψ(p).

(II.8b)

An important consequence is that it is impossible to know both the position and the momentum with arbitrary precision. This is known as the Heisenberg uncertainty principle. Mathematically it is expressed as a bound on the product of root the mean square deviation of the position and momentum of a state:

σ x σ p ≥ 1 2 .
(II.9)

A simple example of a continuous state is obtained by considering the case where ϕ is a Gaussian function centered at the origin and of width σ. In this case, using Eqs (II.8a) and (II.8b), one obtains:

ϕ(x) = 1 (2πσ 2 ) 1/4 e -x 2 4σ 2 (II.10a) ψ(p) = (2σ 2 ) 1/4 π 1/4 e -p 2 σ 2 . (II.10b)
It is easy to calculate the mean square deviation of such a state. One finds that σ x = σ and σ p = 1/(2σ) and that such a state saturates the Heisenberg uncertainty relation (II.9). We note that when σ is smaller, meaning that we have less uncertainty in the position, then the uncertainty in the momentum increases. As a limiting case, when σ goes to zero, ϕ converges towards the Dirac distribution, and there is no uncertainty in the position while the uncertainty in the momentum is infinite.

It is important to note that the two approaches in term of Fock basis or in terms of positions or momentum eigenstates are totally equivalent. In fact it is possible to find a discrete basis of the Hilbert space L 2 (R). Examples are given by the eigenvectors of the harmonic oscillator Hamiltonian operator which are proportional to the Hermite polynomials. Mathematically, this is because the Hilbert space L 2 (R) is separable.

II.1.3. Density matrix

So far we have described the set of states in quantum mechanics using the formalism of state vectors. There is another completely equivalent approach known as the density operator which proves particularly useful in some scenarios. In this formulation, a system living in a Hilbert space H is described by a density operator, that is an element of S(H), which is defined through: S(H) = {ρ ∈ Herm(H)|ρ ≥ 0, Tr(ρ) = 1}, (II.11)

where Herm(H) denotes the set of hermitian over H. It is easy to see that to any element ρ corresponds an ensemble of probabilities p i and states |ψ i such that:

ρ = i p i |ψ i ψ i | .
(II.12)

A natural interpretation of this description consists in saying that the system is in state |ψ i with probability p i3 . The formulation in terms of density operator is especially useful to account for our ignorance concerning the preparation of a system, or to describe systems whose evolution is not perfectly isolated from the environment and thus subject to decoherence.

Another more technical reason to use density operators instead of state vectors is that the set of density operators is a convex set. Indeed, for α ∈ [0, 1] and ρ, τ ∈ S(H), it follows that for all |ψ ∈ H: proving that αρ + (1α)τ ∈ S(H). The convexity of the set of states has a natural physical interpretation: if we prepare one state or another at random, the state that we obtain is still a valid state. The extreme points of S(H) are the pure states, i.e. the density operators ρ of the form ρ = |ψ ψ|. In the case where H is a two-dimensional Hilbert space, a convenient geometrical picture is given by the Bloch ball (see Fig. II.1) which is clearly a convex set. The extreme points of the space of state, the pure state, lie on the surface of the ball.

II.1.4. Composite systems

We are often interested in systems that are made up of more than one distinct physical system. Let us consider a system composed of n particles, with particle i living in the Hilbert space H i . The composite system lives in the Hilbert space given by the tensorial product of all these Hilbert spaces H = ⊗ n i=1 H i . A basis of this system is given by all the tensorial products of the basis states of each subsystem. Given a composite system, the state of one of its subsystems, considered independently, is described by the reduced density operator. Given a density operator ρAB acting on a Hilbert space H A ⊗ H B , the reduced density operator for system A, ρA , is an operator acting on H A , defined through:

ρA = Tr B [ρ AB ] = i (1 ⊗ i| B )ρ AB (1 ⊗ |i B ), (II.14)
where |i B is an arbitrary basis of system B. The reduced density operator for system B is defined similarly.

II.1.4.1. Entanglement

Similarly to qubits or other simple systems, a composite system can be in a superposition of different states. For example, a system made of two qubits, can be in the following state:

|ψ = |01 + |10 √ 2 , (II.15)
where |01 is to be understood as the tensorial product of the state |0 for qubit one and state |1 for qubit two. It is easy to see that this state cannot be written as the tensorial product of states of its component system. This state is said to be entangled.

Let us now consider a system made up of n subsystems living in Hilbert H i . A pure 

|ψ = |ψ 1 ⊗ |ψ 2 • • • ⊗ |ψ n = n i=1 |ψ i . (II.16)
This condition can be extended to mixed states described by density operators. A state ρ is said to be separable if and only if it can be written as a convex sum of product states:

ρ = k p k n i=1 ρi,k , (II.17)
where {p k } is a probability distribution and ρi,k is density operator acting on the Hilbert space of subsystem i. Conversely, any state ρ that cannot be written in the form given by (II.17) is said to be entangled. Famous examples of entangled states are given by the Bell states:

|Ψ ± = |01 ± |10 √ 2 (II.18a) |Φ ± = |00 ± |11 √ 2 . (II.18b)
It has been proven that entanglement plays a crucial role in many areas of quantum information such as quantum computation [START_REF] Grover | A Fast Quantum Mechanical Algorithm for Database Search[END_REF][START_REF] Shor | Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer[END_REF], quantum teleportation [START_REF] Bennett | Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[END_REF], quantum dense coding [START_REF] Bennett | Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states[END_REF] or quantum key distribution [START_REF] Ekert | Quantum cryptography based on Bell's theorem[END_REF]. It is thus very interesting to be able to detect states that are entangled. From the convexity of the set of separable states and the hyperplane separation theorem it follows that it is always possible to find a hyperplane such that a given entangled state lies on one side of the hyperplane, while all separable states are on the other side [START_REF] Horodecki | Separability of mixed states: necessary and sufficient conditions[END_REF]. This hyperplane is a so-called entanglement witness. It is theoretically possible to characterize the whole set of separable states using entanglement witnesses. This however requires an infinite number of witnesses in general [START_REF] Gühne | Entanglement detection[END_REF]. It also possible to quantify the amount of entanglement in a given state using entanglement measures [START_REF] Plenio | An Introduction to Entanglement Measures[END_REF]. We will see later on that entanglement also manifests itself by correlations that cannot be explained classically.

II.1.5. Evolution of a state

In the previous section we have seen different ways of encoding the information in quantum mechanics: qubits, qudits or continuous variables. In this section we will see how it is possible to use this encoding to perform computation. We will see that there are essentially two ways for a state to evolve: the natural evolution, given by the Schrödinger equation and measurements.

Before turning to the quantum case, let us first review the basics of classical information processing. For doing so, we will consider the simple circuit model. In this model, the information is encoded in terms of 0's and 1's carried by wires. To perform some computations you start with a certain number n of bits and perform some logical operations, by applying gates, to end up with an ouput made of m bits. Mathematically, we have a function f : {0, 1} n → {0, 1} m , known as the logic gate. In this setup, it is well known that if you are able to perform the logical operations AND, OR and XOR, then, applying a sufficient number of gates, one can compute any function f for arbitrary input.

In the case of quantum computation, the information is usually encoded using a composite system, made, for example, of many qubits. In the same way that we perform gates in the circuit model to perform computation, we want to act on the qubits to modify the state of the system. A first way of doing this operation consists in using the natural evolution of the system.

II.1.5.1. The Schrödinger equation

The time evolution of a closed quantum system is determined by the Schrödinger equation:

i ∂ |Ψ ∂t = Ĥ |Ψ , (II.19)
where Ĥ is a Hermitian operator, known as the Hamiltonian of the system and |Ψ is the state of the system. An equivalent way of expressing the Schrödinger equation is to say that if the system is at t 0 in the state |Ψ 0 , then at time t 1 , the system will be in a state |Ψ 1 given by:

|Ψ 1 = Û (t 0 , t 1 ) |Ψ 0 , (II.20)
where Û is a unitary operator describing the evolution of the system. It is important to note that the evolution is unitary and so, starting from a normalized state, the state remains normalized at all times. Using the Schrödinger equation, it is easy to prove that it is related to the Hamiltonian of the system through the following equation:

Û (t 0 , t 1 ) = exp(-i Ĥ(t 1 -t 0 )). (II.21)
Qubit Let us now return to the question of gates. We shall first consider the problem of the evolution of a qubit. Since the evolution of the system is bound to bring a normalized state into another normalized state, it is described by a unitary operator. To be able to generate any possible transformations on a qubit, one must be able to perform every possible unitary transformation. The set of all possible unitary transformations on a two dimensional space is a group known as the unitary group U(2). The subgroup of U(2) consisting in all the unitary transformation with determinant equal to one, is the special unitary group SU(2):

SU(2) = α -β β α : α, β ∈ C, |α| 2 + |β| 2 = 1 . (II.22)
Up to a global phase, SU(2) is made of all the possible unitary transformations that one can apply to a qubit. Knowing that the natural evolution of a system is given by the unitary evolution of Eq. (II.21), a question directly arises: how is it possible to generate all possible transformations, i.e. what are the Hamiltonian Ĥ that will exponentiate to SU(2)? This question is answered by considering the Lie-Algebra su(2). A basis of su(2) is

II. Preliminary notions

given by the celebrated Pauli matrices:

σ1 = σx = 0 1 1 0 (II.23a) σ2 = σy = 0 -i i 0 (II.23b) σ3 = σz = 1 0 0 -1 , (II.23c)
which fulfill the following relation:

σi σj = i ijk σk + δ ij 1, (II.24)
where ijk is the Levi-Civita symbol. Let us note that the Pauli matrices themselves are elements of U(2). The following relation gives the link between the elements of su(2) and the elements of SU(2):

Rn = exp -i ϕ 2 (n • σ) = cos ϕ 2 1 + i sin ϕ 2 (n • σ), (II.25)
where n = (n x , n y , n z ) is a unit vector and σ = (σ x , σy , σz ) is a vector whose components are the Pauli matrices. It is easy to check that all elements of Eq. (II.22) can be recovered from Eq. (II.25) for some angle ϕ.

Having defined the set of all possible transformations, we can see how it is possible to implement a gate. From Eq. (II.21) and Eq. (II.25) we see that a possible way, up to a global phase, is to let the system evolve under a Hamiltonian Ĥ = n • σ during a time t 1t 0 = ϕ/2. Examples of important gates include the Pauli matrices σx and σz . They act on the computational basis |0/1 as follows:

σx |0/1 = |1/0 (II.26) σz |0/1 = ± |0/1 . (II.27)
These equations show that σx acts exactly as a NOT gate in classical computing. The gate σz is known as a PHASE gate. Another important gate that will be useful later on is known as the Hadamard gate Ĥ. Its matrix representation is given by:

Ĥ = 1 √ 2 1 1 1 -1 . (II.28)
The Hadamard gate transform computational basis states into superpositions of states with equal weights:

Ĥ |0/1 = 1 √ 2 (|0 ± |1 ).
So far we have focused on the evolution of a single qubit. As in a classical computer, for various task, it is essential to be able to make qubits evolve in a conditional manner. Two particularly important examples are the controlled-NOT and controlled-PHASE gates which have the following matrix representation:

ĈX =     1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0     , ĈZ =     1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 -1     , (II.29)
where the matrix representation is in the basis {|00 , |01 , |10 , |11 }. It is easy to verify that when ĈX acts on a state of two qubits, it flips the state of the second qubit when the first qubit is in state |1 , and does nothing when the first qubit is in state |0 . Similarly the controlled-PHASE gate will apply a phase to the second qubit when the first qubit is in state |1 , and does nothing when the first qubit is in state |0 . One often refers to the first qubit as the control qubit and to the second as the target qubit. More generally speaking, we can consider controlled unitary operations. Controlled unitary operations are defined as gates applying a unitary transformation Û to the target qubit if the control qubit is in state |1 and doing nothing if the control qubit is in state |0 . These controlled unitary operations will be useful later on when describing generalized measurements.

One important thing to mention at this point is that if one is able to implement one of the controlled operations in (II.29) together with all the single-qubit rotations (II.25), one can implement any unitary operation on n-qubits [START_REF] Nielsen | Quantum Computation and Quantum Information: 10th Anniversary Edition[END_REF]. In practice we only want to be able to approximate all the unitary operations. In this case, it is possible to show that any unitary operation acting on n-qubits can be approximated efficiently using only gates from a finite set. We call such a set a universal set. An example of an universal set is given by { P , Ĥ, ĈZ }, where the π/8 gate P is defined by: P = 1 0 0 e iπ/4 .

(II.30)

Qudit We now review some important operations for qudits. It is possible to define operations similar to (II.23a) and (II.23c) for qudits through:

σ(d) x = d-1 n=0 |n + 1 n| (II.31) σ(d) z = d-1 n=0 w n |n n| , (II.32)
with w = e 2πi/d . These operators are often referred to as Heisenberg-Weyl operators [START_REF] Asadian | Heisenberg-Weyl Observables: Bloch vectors in phase space[END_REF][START_REF] Vourdas | Quantum systems with finite Hilbert space[END_REF] and can be used to define displacement operators for discrete systems through:

D(l, m) = σl z σm x e -iπlm/d . (II.33)
These displacement operators form a complete non-Hermitian orthogonal basis made of unitary operators.

We can also define rotations for qudits using the spin operators, whose components II. Preliminary notions are given by:

j| Ŝx |k = 2 jk(d + 1)(i + j -1)/2(δ j,k+1 + δ j+1,k ), (II.34) j| Ŝy |k = 2 jk(d + 1)(i + j -1)/2(δ j,k+1 + δ j+1,k ), (II.35) j| Ŝz |k = 2 (d + 1 -2j)δ j,k , (II.36)
where δ is the Kronecker symbol. These spin operators satisfy the commutation relation [ Ŝi , Ŝj ] = i ijk Ŝk and form a su(2) algebra in a d-dimensional space. An arbitrary rotation is given by: R(α, β, γ) = e -iα Ŝz e -iβ Ŝy e -iγ Ŝz , (II.37)

where α, β and γ are the Euler angles.

As for qubits, we can also introduce controlled operations for qudits and find finite universal sets (see [START_REF] Campbell | Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes[END_REF] for instance).

Continuous variable systems

We now turn to the case of continuous variables. As we have seen in Sec. II.1.2 it is possible to describe a system both in terms of position or momentum, the two representations being related by a Fourier transform. It is thus natural to introduce the Fourier transform operator [START_REF] Tasca | Continuous-variable quantum computation with spatial degrees of freedom of photons[END_REF]: If r > 0, then by applying the squeezing operator, one obtains a state that is said to be squeezed in momentum. Its uncertainty in momentum is decreased by a factor of e -r and its uncertainty in position is increased by a factor of e r so as to satisfy the uncertainty principle.

F = e iπ/4(x 2 +p 2 ) = 1 √ 2π ∞ -∞ dxdx e ixx |x x
We can also define controlled operations for continuous variables operators. Two possible controlled operations are the controlled SHIFT or PHASE, which implement a shift of position or phase of the target system depending on the position of the control system:

ĈX = e -ix⊗p , (II.44) ĈZ = e -ix⊗x .
(II.45)

We can also define universality for continuous variables and it turns out that it is possible to approximate any unitary which is a polynomial function of the position and momentum operators by a finite number of gates [START_REF] Lloyd | Quantum Computation over Continuous Variables[END_REF][START_REF] Braunstein | Quantum information with continuous variables[END_REF]. In the course of this thesis however, we will mainly consider controlled operations on composite systems made of a continuous variables subsystem together with a discrete ancilla, often a qubit.

II.1.5.2. Measurements

So far we have described the evolution of closed systems which do not interact with the rest of the world. Of course, if one is to perform some computation, one must sometimes read the state of the system in order to get the result of the computation, i.e perform a measurement. In this case the system is not closed anymore and the evolution of the system is not governed by the Schrödinger equation.

Projective measurements

The first kind of measurement that one can perform on a state is known as projective measurement. Let us consider a system living in a Hilbert space H. In quantum mechanics all physical observables are represented by Hermitian operators Ô on this Hilbert space. Any Hermitian operator can be diagonalized:

Ô = i o i Pi , (II.46)
where o i are the eigenvalues of Ô and Pi the associated projection operators Generalized measurements The projective measurement just described is a specific case of a measurement in quantum mechanics. Sometimes it is not possible to describe the measurement by a projective measurement. For example, when measuring a system made of photons, the system is often destroyed after the measurement. It may also happen that the set of outcomes is bigger than the size of the Hilbert space. In this case, it is clear that such measurements cannot be described solely by projectors.

In a general theory of measurement, measurements are described by a set of measurement operators { Mi }. To each of these measurement operators is associated a corresponding outcome m i . The probability to obtain outcome m i when measuring the state |ψ is given by:

p i = ψ| M † i Mi |ψ . (II.49)
After the outcome m i has been measured, the state of the system is

Mi |ψ √ p i . (II.50)
The measurement operators Mi satisfy the completeness relation:

i

M † i Mi = 1, (II.51)
ensuring that the sum of all probabilities p i is equal to one. Generalized measurements are not just a mathematical tool and have practical implications. For instance, it can be proven that for state discrimination, generalized measurements perform better than projective ones [START_REF] Paris | Quantum State Estimation[END_REF]. An important property of generalized measurements, known as Neumark's dilation theorem, is that a generalized measurement can always be seen as a projective measurement on a (possibly) bigger Hilbert space. Physically this can be implemented by coupling the system that one wishes to measure with an ancillary system of suitable dimension.

A famous specific case of the general theory of measurement is known as the Positive Operator-Valued Measure (POVM) formalism. In the POVM formalism we introduce a set of positive operators { Êi }, the POVM elements, satisfying the normalization condition i Êi = 1.

(II.52)

To each POVM element corresponds a measurement outcome. Since the POVM ele-ments are positive operators, it is always possible to realize this measurement. One possible realization is given by Mi = Êi . POVM are especially useful when one is not interested in the state after the measurement but only in the probability of obtaining a certain outcome.

Û Ĥ | i |0i | 0/1 i Ĥ p 0/1 Figure II.2.:
Example of a possible POVM measurement using an ancilla. Ĥ depicts an Hadamard gate, Û is a controlled unitary operation, applied when the ancilla is in state |0 . After measuring the ancilla in state 0 (1), the system is projected into the state |ψ 0 (|ψ 1 ), with probability p 0 (p 1 ).

To illustrate the theory of generalized measurement, we consider the system represented in Fig. II.2. The quantum circuit represented here consists of an Hadamard gate followed by an application of a unitary gate on system |ψ , conditioned on the state of the qubit, and a last application of an Hadamard gate on the qubit. Starting with a state |ψ ⊗ |0 , one ends up with

1 2 (1 + Û ) |ψ |0 + 1 2 (1 -Û ) |ψ |1 . (II.53)
Now, if one measures the state of the qubit in the computational basis, a straightforward calculation shows that one obtains the result 0/1 with probability p 0/1 = ψ| 1±Re[ Û ] 2 |ψ . Conditioned on the result of the measurement, the state of the system is now

|ψ 0/1 = 1 √ p 0/1 1 ± Û 2 |ψ . (II.54)
This shows that by measuring the ancilla qubit, one can implement the measurement operators M0/1 = 1± Û 2 on the system |ψ . Such measurements can be experimentally realized using a variety of physical systems, for example in cavity QED [START_REF] Sayrin | Realtime quantum feedback prepares and stabilizes photon number states[END_REF], micro-mechanical oscillators [START_REF] Asadian | Probing Macroscopic Realism via Ramsey Correlation Measurements[END_REF] or single photons [START_REF] Ketterer | Quantum information processing in phase space: A modular variables approach[END_REF]. In Chapter V we will consider a particular realization of the quantum circuit represented in Fig II .2 for the measurement of the displaced parity operator.

II.2. Quantum theory of light

II.2.1. Quantization

The quantization of the electromagnetic field started in 1900 when Planck computed the spectrum of the blackbody field. In doing so he assumed that energy exchange can only happen in multiples of h, the Planck constant. This hypothesis was later confirmed by Einstein in his work on the thermal equilibrium of the field. This famous work shed new light on the photoelectric effect and marked the beginning of quantum theory.

The goal of this section is to briefly recall quantization procedure for the electromagnetic field. The method presented here is largely inspired by [START_REF] Grynberg | Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light[END_REF].

II.2.1.1. Maxwell's equations

To properly quantize the electromagnetic field, we start by the set of Maxwell's equations:

∇ • E(r, t) = 0, (II.55a) ∇ • B(r, t) = 0, (II.55b) ∇ × E(r, t) = - ∂ ∂t B(r, t), (II.55c) ∇ × B(r, t) = 1 c 2 ∂ ∂t E(r, t), (II.55d)
which describes the electromagnetic field in vacuum. This set of equations couples an infinite continuous number of variables. In order to quantize the field we will first determine a set of decoupled variables. To this end, we now suppose that the system of interest is finite and enclosed in a cube of side length L. Since L is finite, we can decompose E(r, t) into a Fourier series, with components:

Ẽn (t) = 1 L 3 V d 3 rE(r, t)e -ikn•r ), (II.56)
where n = (n x , n y , n z ) ∈ N 3 and k n is a three dimensional vector, with components where = (n x , n y , n z ; s) and = 1, 2 represents the polarization. The polarization vector satisfies the conditions:

(k n ) x,y,z = n x,
• k = 0, (II.61a) • = δ , . (II.61b)
The electromagnetic field can also be described in terms of vector and scalar potentials, A(r, t) and U (r, t). When working in the Coulomb gauge ∇ • A(r, t) = 0, it can be shown that U (r, t) = 0 and that the electromagnetic field is related to the vector potential through:

E(r, t) = - ∂ ∂t A(r, t), (II.62) B(r, t) = ∇ × A(r, t). (II.63)
In this case, following the same procedure as for the electromagnetic field, it is easy to show that the Fourier expansion of the vector potential reads:

A(r, t) = Ã (t)e ik •r . (II.64)
Further on, using Eq. (II.63), we obtain:

B (t) = i|k | Ã (t). (II.65)
This last equation, combined with Maxwell equations, yields the following dynamical system:

d dt à (t) = -Ẽ (t), (II.66a) d dt Ẽ (t) = w 2 l à (t), (II.66b)
with w l = c|k |. This system is almost fully decoupled. Because the electric field and the vector potentials are real we have the constraints Ã-= Ã * and Ẽ-= Ẽ * . To fully decouple the system we introduce the normal variables,

α = 1 2E (w à (t) -i Ẽ (t)), (II.67a) β = 1 2E (w à (t) + i Ẽ (t)), (II.67b)
where E is a constant to be set later. A simple calculation shows that the normal variables are solutions to this set of differential equations:

dα dt + iw α = 0, (II.68a) dβ dt -iw β = 0, (II.68b)
whose solutions are α (t) = α (0)e -iw t and β (t) = β (0)e -iw t . If we then impose that the electric field and vector potentials are real, we get β * (t) = α -(t). Putting everything together, we obtain the expressions of the vector potential, electric field and magnetic field:

A(r, t) = E w α e -iw t+ik l •r + α * e iw t-ik •r , (II.69a) E(r, t) = E iα e -iw t+ik l •r -iα * e iw t-ik •r , (II.69b) B(r, t) = E c α e -iw t+ik l •r + α * e iw t-ik •r . (II.69c)

II.2.1.2. Mode basis

Throughout the preceding section we have decomposed the field over the set of polarized, traveling plane-waves. This decomposition is not the only possible one and it is possible to find other decompositions of the field into dynamically independent components. Decompositions decoupling the different components of the field are referred to as normal mode decompositions. Mathematically, it is possible to prove that the solutions of the Maxwell equations can always be decomposed onto some orthogonal basis, with basis vectors of the form, f (r)e -iw t , (II.70)

where the amplitude f obeys the Helmholtz equation:

∆f + w 2 c 2 f = 0. (II.71)
Here the index denotes the countable elements of the basis. The basis vectors are orthogonal and satisfy the condition:

L 3 d 3 rf * (r) • f (r) = δ , . (II.72)
Given such a basis, we can expand the electric field as follows:

E(r, t) = E (0)e -iw t f (r) + E * (0)e iw t f * (r). (II.73)
Given two set of basis vectors f and g p , there exists a unitary operator linking the two mode representations:

f = p U p g p , (II.74)
where U p is given by the scalar product between f and g p :

U p = L 3 d 3 rf • g * p .
(II.75)

The use of one mode basis depends on the particular setup considered. Plane waves constitute a good choice when the space is unbounded. When there are boundary conditions imposed, for instance by mirrors, one can use a basis of standing waves.

Other example of mode basis includes Gaussian modes, vectorial spherical harmonics or multipolar waves. In Chapter V we will consider a setup where an atom interacts with a specific mode of the electromagnetic field of a microwave cavity.

II.2.1.3. Field quantization

Now that the field is expressed as a sum of uncoupled modes it can be quantized. To this end, we express the energy of the electromagnetic field in a normal mode basis: (II.80b)

H = 0 2 L 3 d 3 r E 2 (r, t) + c 2 B 2 (
We now introduce the operators,

â = x + ip √ 2 , (II.81a) â † = x -ip √ 2 , (II.81b)
that annihilate or create a photon in mode . They satisfy the commutation relations:

â , â † = δ , , (II.82a) [â , â ] = 0. (II.82b)
Using the above introduced creation and annihilation operators, the quantum operator associated to the Hamiltonian reads:

Ĥ = â † â + 1 2 = â † â , (II.83)
where in the second equality we have removed the diverging part, since it does not affect the dynamic of the observables. Similarly, we obtain for the vector potential and fields:

Â(r) = E w â e ik •r + â † e -ik •r , (II.84a) Ê(r) = i E â e ik •r -â † e -ik •r , (II.84b) B(r) = i k × w E â e ik •r -â † e -ik •r . (II.84c)
The eigenstates of the Hamiltonian (II.83) are given by the Fock states |n 1 , n 2 , • • • , n , • • • formed by the tensorial product of the eigenstates of the number operator n = â † â for each mode . They are obtained by successive applications of the creation operator on the ground or vacuum state |0 :

|n 1 , n 2 , • • • , n , • • • = ( â1 † ) n 1 ( â2 † ) n 2 ...( â † ) n ... √ n 1 !n 2 !...n !... |0 , (II.85)
and are interpreted as states containing n photons in mode . In the course of this thesis we will mostly consider states containing photons in only one mode and denote a corresponding basis by {|n } n∈N .

II.2.2. Wigner function

Phase space distributions are particularly importance in classical physics. They represent states by some probability distributions from which we can compute the average value of any observable. It is possible to find similar phase space representations in quantum mechanics. In this section we will discuss one of them: the Wigner function [START_REF] Wigner | On the Quantum Correction For Thermodynamic Equilibrium[END_REF]. The idea is to associate with each state ρ a quasiprobability distribution on R 2 , W ρ. More generally speaking, for a Hermitian operator4 ρ the Wigner function is defined through [START_REF] Leonhardt | Measuring the Quantum State of Light. Cambridge Studies in Modern Optics[END_REF]:

W ρ(x, p) = 1 π ∞ -∞ ds x -s|ρ|x + s e -2ips , (II.86)
or equivalently, using a momentum representation:

W ρ(x, p) = 1 π ∞ -∞ ds p -s|ρ|p + s e 2ixs .
(II.87)

The Wigner function is a real function and it is possible to show that it is in one to one correspondence with the Hermitian operator ρ. Furthermore it satisfies the normalization condition:

∞ -∞ dxdpW ρ(x, p) = 1, (II.88)
and the marginals give the probability distributions for the conjugate variable:

P (x) = x|ρ|x = ∞ -∞
dpW ρ(x, p), (II.89)

P (p) = p|ρ|p = ∞ -∞
dxW ρ(x, p).

(II.90)

Given the Wigner function, one can compute the expectation value of any observable Ô with respect to some quantum state ρ, in the same fashion as we do for classical observables in classical statistical physics:

Ô = ∞ -∞ dxdpO(x, p)W (x, p), (II.91)
where O(x, p) = 2πW Ô is proportional to the Wigner function of the observable Ô.

It thus provides a quantum analogue of the classical phase space formalism. There is however a striking difference in that the Wigner function can assume negative values, and thus cannot be interpreted as a true probability distribution. Here appears a fact that will be central for this thesis, namely, that it is impossible to see the value of x and p as coming from an underlying probability distributions. It is possible to do so only when the Wigner function is everywhere positive. We can use this fact to classify states: the states which have a positive Wigner functions are seen as classical whereas the others are called quantum. It turns out that this boundary is not artificial and is related to the usefulness of states for quantum computation. Indeed, it was proven II. Preliminary notions that quantum computation using states and operations represented by positive Wigner functions can be simulated efficiently by classical computers [START_REF] Mari | Positive Wigner Functions Render Classical Simulation of Quantum Computation Efficient[END_REF].

At this point we would like to mention that it is also possible to introduce a Wigner function for discrete systems of dimension d. In such a case the phase space representation is defined on a d × d array. Unfortunately it is not possible to do so for systems of any dimension. In [START_REF] Gibbons | Discrete phase space based on finite fields[END_REF] it was proven that it is possible to do so only when d is a power of a prime. This representation can also be used to draw a line between quantum and classical states. In [START_REF] Cormick | Classicality in discrete Wigner functions[END_REF] it was proven that quatum computation with states and operations having a positive Wigner function can be efficiently simulated. When the system is a power of an odd prime number, it is possible to prove that the states that have a positive Wigner function are contextual [START_REF] Howard | Contextuality supplies the magic for quantum computation[END_REF], a property that will be reviewed in Chapter IV.

II.2.3. Useful quantum states of light

In this Section we present some quantum states of light that will be relevant for the further reading of this manuscript. We will also take this opportunity to represent them using the previously introduced Wigner function. where α = (ν + iµ)/ √ 2. The Wigner function of a coherent state is the Wigner function of the vacuum displaced in phase space by (ν, µ):

Fock states

W |α α| (x, p) = 1 π e -(x-ν) 2 -(p-µ) 2 .
(II.97)

The coherent states are easy to produce experimentally and corresponds to the light emitted by a single mode laser source.

Squeezed states So far we have only seen states which have a Wigner function with a rotational symmetry. A famous example of states that do not belong to this class is given by the so-called squeezed states. A squeezed state |α, r fulfills the eigenvalue equation:

â cosh r + â † sinh r |α, r = α |α, r , (II.98)
where α ∈ C and r ∈ R. Coherent states can be obtained by applying the squeezing operator (II.43) followed by a displacement on the vacuum:

|α, r = D(α) Ŝ(r) |0 . (II.99)
The Wigner function of squeezed states reads:

W |α,r α,r| (x, p) = 1 π e -(x-ν) 2 /e -2r -(p-µ) 2 /e 2r , (II.100) with α = (ν +iµ)/ √ 2. As mentioned earlier, squeezed states correspond to states which have their variance reduced in one quadrature while increased in their orthogonal one (see Fig. II.3). Though having a Wigner function that is everywhere positive, they can be seen as truly quantum states as they allow to beat the classical shot noise limit in metrological tasks [START_REF] Aasi | Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light[END_REF].

Cat states Even and odd Schrodïnger cat states are defined as coherent superpositions of coherent states:

|cat ± = 1 N α,± (|α ± |-α ), (II.101)
where N α,± = 2 1 ± e -2|α| 2 is a normalization constant. Using the Wigner function of coherent states and vacuum states, the Wigner function of a cat state of amplitude α reads: As can be seen in Fig. II.4, there is a striking difference between the Wigner function of a mixture of two coherent states |α and |-α and a coherent superposition, in the sense that the latter exhibits fringes that assume negative values, a signature of quantum effects. Let us notice that even though the Wigner distribution of the cat state assumes negative values, the marginals for x and p are always positive as required for probability distributions.

W cat ± (x, p) = 1 N 2 α,± W |α α| (x, p) + W |-α -α| (x, p) ± W |0 0| (x,
For large enough values of α, the even and odd states are almost orthogonal and can be used to encode a qubit in a cavity mode in a way that may be easier to protect from decoherence [START_REF] Leghtas | Hardware-Efficient Autonomous Quantum Memory Protection[END_REF]. It is possible to generate optical cat states by subtracting a photon to a squeezed vacuum state, generating an even cat state. This protocol can however generate only cat states of small amplitude α < 1 [Ourjoumtsev06, Neergaard-Nielsen06]. Probabilistic protocols exist for cat states with larger amplitudes [START_REF] Ourjoumtsev | Generation of optical /'Schrodinger cats/' from photon number states[END_REF]. Chapter V focuses on the possible experimental preparation and detection of non-local states made of two entangled cat states.

II.3. Modular variables formalism

In this section we introduce the formalism of modular variables that we will use later on when discussing contextuality. The term modular variables first appeared in [START_REF] Aharonov | Modular variables in quantum theory[END_REF] when Aharonov et al. studied the quantum effects of electromagnetic potentials and in particular non-locality. Modular variables can be used to find an alternative representation of continuous variables systems, known as the modular representation. This representation was already introduced in the context of solid state physics by Zak [START_REF] Zak | Finite Translations in Solid-State Physics[END_REF]. It was later reintroduced in order to define logical qubits in continuous variables systems and ways to manipulate them [Vernaz-Gris14, Ketterer16b]. Using this modular representation, one can adapt protocols, such as non-locality test or entanglement criteria, that were initially designed for discrete variables systems to continuous variables systems [START_REF] Ketterer | Testing the Clauser-Horne-Shimony-Holt inequality using observables with arbitrary spectrum[END_REF].

In this section we will first define mathematically what we call modular variables and then discuss how we can use them to find a new representation of continuous variables systems.

II.3.1. Modular variables

Throughout this section we will always consider continuous variables systems which are described by a pair of conjugate observables that we will denote by x and p. As mentioned in II.1.2, we can express a state indifferently in both these bases. It is well known that because they are not commuting observables, it is not possible to find a common eigenbasis for these two observables. The idea of modular variables is to find two functions, F and G of the position and momentum operator x and p, such that:

[F (x), G(p)] = 0. (II.103)
The set of solutions is not trivial, as the following proposition shows:

Proposition 1. The set of non-trivial solutions of (II.103) are the functions F and G, fulfilling:

F (x) = F (x + nl), (II.104a) G(p) = G p + 2πkn l , (II.104b)
with n = 1, 2, ... and k ∈ Z, i.e. the set of periodic functions, whose product of periodicities is equal to 2πk.

II. Preliminary notions

Proof. We start by proving that such functions are indeed solutions. Because F is a periodic function, it can be expanded as a Fourier series: where we used the fact that e 2πinx/l implements a displacement in momentum by 2πn/l.

F (x) = n∈Z f n e 2πinx/
For the uniqueness we refer to [START_REF] Busch | To what extent do position and momentum commute?[END_REF][START_REF] Busch | Quantum observables: Compatibility versus commutativity and maximal information[END_REF].

Because the two observables F (x) and G(p) are commuting we can find a common eigenbasis, which in turn will define a new representation: the modular representation. For any observable Ô that is a periodic function of the position or the momentum, the previous result shows that we can find another observable, a periodic function of the conjugate variable, that will be commuting with Ô. For this reason, we will refer to periodic observables as modular variables.

Examples of modular variables are given by the real or imaginary part of the displacement operator D(ν, µ) = e iµx-iν p:

Re( D(ν, µ) = 1 2 D(ν, µ) + D † (ν, µ) = cos(µx -ν p), (II.111) Im( D(ν, µ) = 1 2i D(ν, µ) -D † (ν, µ) = sin(µx -ν p).
(II.112) Such modular variables have been considered for non-locality tests [START_REF] Ketterer | Testing the Clauser-Horne-Shimony-Holt inequality using observables with arbitrary spectrum[END_REF][START_REF] Arora | Proposal for a macroscopic test of local realism with phase-space measurements[END_REF], entanglement detection [START_REF] Gittsovich | Nonclassicality tests and entanglement witnesses for macroscopic mechanical superposition states[END_REF] or to demonstrate state independent contextuality [START_REF] Asadian | Contextuality in Phase Space[END_REF].

II.3.2. Modular position and momentum

We have seen in the above section that it was possible to find commuting observables that are functions of the position and momentum operators x and p. In this section we consider a specific example obtained by splitting the position and momentum operators II.3. Modular variables formalism 29 in an integer part and a modular one:

x = N + x, (II.113a) p = 2π M + p, (II.113b)
where is an arbitrary length-scale and N and M are two discrete operators which have integer eigenvalues. This idea was first applied to systems with a well defined length scale or periodicity, such as multiple slit experiments, where slits are separated from one another by a length , but this method can be applied to any system. The modular position and modular momentum operators are defined as: It is clear that the modular operators defined as such are periodic functions of two conjugate observables, and that the product of their periodicities is equal to 2/π. The result is that x and p commute and can be used to define a common eigenbasis, which we will denote by |x, p . From the preceding discussion, it is clear that x ∈ [-/4, 3 /4[ and p ∈ [-π/ , π/ [. It may be surprising at first that one should be able to measure at the same time x and p, since we know that Heisenberg uncertainty relation prevents one from measuring the position and the momentum at the same time. However the modular position and modular momentum give only partial information about the position and momentum. To measure the position and momentum one would also need to measure N and M . These two operators have a non zero commutator with the modular position and modular momentum, enforcing the Heisenberg uncertainty relations. For a full discussion of the properties of the integer and modular part, including their commutator, we refer to [START_REF] Ketterer | Modular variables in quantum information[END_REF].

x = (x -x ) mod + x , ( 

II. Preliminary notions

II.3.3. Modular representation

The common eigenvectors |x, p of the modular position and modular momentum operators can naturally be expressed in the usual position and momentum basis. Their expression these two basis reads: We can go from the momentum or position basis to the modular basis using:

|x, p = 2π ∞ n=-∞ e ipn |x + n x , = 1 e -ipx
`2⇡/x p • • • • • • • • • • • •
|x x = |x + n x = 2π π/ -π/ dpe -ipn |x, p ,
(II.117a)

|p p = |p + m 2π p = 1 3 /4 -/4
dxe ixp e i2πmx/ |x, p .

(II.117b)

The complete derivation of these expressions can be found in [START_REF] Ketterer | Modular variables in quantum information[END_REF]. The completeness of the modular basis enables us to represent every state uniquely as:

|ψ = 3 /4 -/4 π/ -π/ dxdpψ(x, p) |x, p , (II.118)
where the wave function ψ is related to the wave function in the position representation ψ x , or in the momentum representation ψ p , through:

ψ(x, p) = 2π ∞ n=-∞ ψ x (n + x)e -inp , (II.119a) ψ(x, p) = 1 ∞ m=-∞ ψ p (m2π/ + p)e 2πimx/ .
(II.119b)

The modular wave function satisfies the normalization condition:

3 /4 -/4 π/ -π/ dxdp|ψ(x, p)| 2 = 1. (II.120)
Similarly we can expand any observable on modular basis. In the next section we will discuss the case of the displacement operator that will be of particular interest for us when studying contextuality.

II.3.4. Displacement operators in the modular representation

Because the modular basis is complete, any observable Ô can be expressed using the modular representation as follows: The analytical expression of the matrix elements x, p| Ô|x , p is difficult to obtain in general and can be very complex. In the case of a displacement operator it turns out that we can find a simple expression. To obtain the modular representation of the displacement operator (II.41), we first calculate its action on a modular eigenstate (II.115):

Ô = 3 /4 -/
D(ν, µ) |x, p = e -i νµ 2 e -ipx √ ∞ m=-∞ e -i(p+m 2π )ν e -i2πmx/ |p + m2π/ + µ = e -i νµ 2 e i(p+µ)(x+ν) e -ip(x+ν) |x + ν, p + µ , (II.122)
where we have used (II.117b) and m=∞ m=-∞ e i2/pim(x -x-ν)/ = ∞ n=-∞ δ(xxνn ), in which the overline denotes the modular part over the overlined values. In the end, we find that:

D(ν, µ) = e -i νµ 2 3 /4 -/4 dx π/ -π/ dpe i(p+µ)(x+ν) e -ip(x+ν) |x + ν, p + µ x, p| . (II.123)
We see that a phase space displacement by (ν, µ) not only displaces the modular position and momentum but also adds a phase to each element of the basis. This expression can be further simplified by considering specific displacement operators. In particular, if we II. Preliminary notions consider the displacements by (0, 2π/ ), ( /2, 0) and (-/2, -2π/ ), we obtain: The operators σ x,y,z (x, p) define a Pauli algebra on each of the two dimensional subspaces parametrized by x and p. Consequently, their commutation and anti-commutation relations read: similarly to the Pauli matrices. Yet, because operators X, Ŷ and Ẑ are not Hermitian, they do not form a Pauli algebra, as can been infered from the commutation relation:

Ẑ = e 2πix/ = /4 -/
[ X, Ŷ ] = 2iZ † , [ Ŷ , Ẑ] = 2iX † and [ Ẑ, X] = 2iY † .
It is however possible to a two dimensional subspace on which these operators act as Pauli operators, which justifies the notation X, Ŷ and Ẑ. This subspace is spanned by the states |x = 0, p = 0 and |x = /2, p = 0 . These states are known as the Gottesman, Kitaev and Preskill (GKP) states, and are at the heart of the demonstration that fault-tolerant quantum computation with continuous variables cluster state is possible [START_REF] Menicucci | Fault-Tolerant Measurement-Based Quantum Computing with Continuous-Variable Cluster States[END_REF]. For more details we refer to [START_REF] Ketterer | Quantum information processing in phase space: A modular variables approach[END_REF] and [START_REF] Gottesman | Encoding a qubit in an oscillator[END_REF].

III. Quantum and postquantum non locality

The present Chapter is devoted to the study of another fundamental property of quantum mechanics: non-locality. We start by introducing non-locality and most of the concepts that will be used throughout the Chapter. Following this introduction we review in detail the case of two observers and two measurements with a finite number of outcomes. Specifically, we show that the sets of local and no-signaling joint probability distributions are a polytope that can be fully characterized by their extreme points, known as Popescu-Rohrlich (PR) boxes. We then turn to the study of post quantum non-locality with an infinite number of outcomes. In particular, we introduce a continuous-variable version of the PR boxes that we identify as extreme points of the no-signaling set. Finally, we perform a characterization of the geometry of the set of continuous-variable no-signaling correlations. Namely, we show that the convex hull of the PR boxes is dense in the nosignaling set. Finally, based on some evidence, we conjecture that they are the only extreme points of the no-signaling set.

III.1. Introduction to non-locality

In this Section we will start by introducing the concept of non-locality and show that quantum mechanics is non-local. We will then present a brief overview of the experimental demonstration of Bell non-locality and of the possible applications of non-locality.

Finally we introduce the concept of postquantum non-locality.

III.1.1. Non-locality in Quantum Mechanics

III.1.1.1. EPR argument

It is one of the first postulates of quantum mechanics that the results of measurements are fundamentally random. The nature of this randomness is very different from the one experienced in statistical physics. In statistical physics the probabilistic description derives from a lack of knowledge of the initial state or interactions between the system and the environment. In principle, in classical physics, if one had a complete knowledge of the state and interactions, then one could predict perfectly the result of a measurement. On the other hand, in Quantum Mechanics, it is in general not possible to predict the result of a measurement. Einstein was not satisfied with the probabilistic nature of Quantum Mechanics and argued, together with Podolski and Rosen, that Quantum Mechanics was not "complete" [START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF]. He thought that in a complete description of reality one should be able to predict the result of a measurement perfectly.

In their paper, Einstein, Podolski and Rosen consider a system made of two particles 36
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A and B in the state:

|ψ = ∞ -∞ dx |x A |x B = ∞ -∞ dp |p A |-p B , (III.1)
now known as the Eistein, Podolski and Rosen (EPR) state. They argue that since the two particles may be far from each other, and in particular are not interacting anymore, a measurement of the position or momentum on the first particle A cannot influence the state of the second particle B. Furthermore, they note that measurements of the position or momentum on particles A and B are always perfectly correlated or anticorrelated respectively. Thus, from the measurement of the position or momentum of one particle, one can perfectly predict the result of the same measurement carried out on the second particle. From this they concluded that the results must be predetermined and that the properties of the system exist independently of the measurements.

III.1.1.2. Local hidden variables x 2 {0, 1} y 2 {0, 1} a 2 { 1, +1} b 2 { 1, +1}

S

Bob Alice Alice and Bob each perform 2 measurements on their subsystems with observables A 0/1 and B 0/1 , respectively. Each measurement can yield 2 different outcomes a and b in {-1, 1}.

It was Bell who laid the ground to the mathematical and experimental investigation of the completeness of Quantum Mechanics by mathematically formalizing the notion of Local Hidden Variables models (LHV).

To introduce this idea, let us consider the simple scenario represented in Fig. III.1. In this scenario, two observers, Alice (A) and Bob (B), perform measurements on two systems that are spatially separated. Alice can choose between two measurements x ∈ {0, 1} and for each measurement she obtains two possible outcomes that are denoted by a ∈ {-1, 1}. Similarly Bob can choose between two measurements y ∈ {0, 1} with possible outcomes b ∈ {-1, 1}. The outcomes of the measurements are distributed according to a joint probability distribution p(a, b|x, y), denoting the probability that Alice obtains outcome a given that she measured x and that Bob obtains outcome b given that he measured y. This probability can be experimentally estimated by repeating the experiment a sufficient number of times.

Even if the measurements are made in space-like separated regions it may very well The variable λ represents the possible common cause of the correlation. For each run of the experiment the value of λ can be different and is distributed according to some (possibly unknown) probability distribution q(λ) defined over Λ, hence the name hidden variable. We say that the joint probability distribution p(a, b|x, y) can be explained by a local hidden variable model if it is of the form:

p(a, b|x, y) = Λ dq(λ)p(a|x, λ)p(b|y, λ). (III.4)
As we will see later, for any local hidden variable model, it is possible to define λ in such a way that the outcome a and b are deterministic, i.e. that p(a|x, λ) and p(b|y, λ) take only values in {0, 1} [START_REF] Fine | Hidden Variables, Joint Probability, and the Bell Inequalities[END_REF]. This shows that the notion of local hidden variable model is indeed equivalent to the idea of pre-determined properties as developed in the EPR paper.

III.1.1.3. Bell's theorem

From the joint probability distribution p(a, b|x, y), one can compute the average value of any function of the different observables. To prove that there is a difference between joint probability distributions described by local hidden variable model or obtained from quantum measurements, the idea is to use the specific form of (III.4) to put bounds on well chosen combinations of observables, usually correlations of observables. A well known inequality is due to Clauser-Horne-Shimony-Holt (CHSH) [START_REF] Clauser | Proposed Experiment to Test Local Hidden-Variable Theories[END_REF], which states that Proposition 2 (CHSH inequality). Any system described by a local hidden variable model will satisfy the following inequality:

B = A 0 B 0 + A 1 B 0 + A 0 B 1 -A 1 B 1 ≤ 2, (III.5)
where A 0 , A 1 , B 0 and B 1 are observables with possible outcomes -1 and 1.

Proof. Supposing that the measurement outcomes come from a LHV model, each correlator in the CHSH inequality can be computed as follows:

A x B y = Λ dλq(λ) a,b=±1
ab p(a|x, λ)p(b|y, λ).

(III.6)

As mentioned in the last section, we can always consider that p(a|x, λ) and p(b|y, λ) are deterministic functions of λ. Doing so and denoting by A(x, λ) and B(y, λ) the outcomes obtained by Alice and Bob respectively, for a given value of λ, the correlator reads:

A x B y = Λ dλq(λ)A(x, λ)B(y, λ). (III.7)
The local bound of the CHSH can be computed as follows:

B = Λ dλq(λ)(A(0, λ)B(0, λ) + A(0, λ)B(1, λ) + A(1, λ)B(0, λ) -A(1, λ)B(1, λ)) B = Λ dλq(λ)(A(0, λ)(B(0, λ) + B(1, λ)) + A(1, λ)(B(0, λ) -B(1, λ))) B ≤ 2, (III.8)
where we have used in the last equality the fact that for a given value of λ, since B takes value in {-1, 1}, either B(0, λ)

+ B(1, λ) = 0 or B(0, λ) -B(1, λ) = 0.
We can now state the following theorem:

Theorem 1 (Bell (1964)). No local hidden variable theory can reproduce all the predictions of quantum mechanics.

Proof. To prove Bell theorem it is sufficient to find a state together with some local measurements which violates the local bound. To this end, we consider the following Bell state:

|ψ = 1 √ 2 (|01 + |10 ). (III.9)
We set the observables on Alice's side to be A 0 = σx and A 1 = σz and on Bob's side

B 0 = (σ x + σz )/ √ 2 and B 1 = (σ z -σz )/ √ 2.
It yields:

A 0 B 0 + A 1 B 0 + A 0 B 1 -A 1 B 1 = 4 √ 2 = 2 √ 2 > 2. (III.10)
Let us mention that it is possible to prove the non-local nature of quantum mechanics without resorting to inequality. Those proofs demonstrate a logical inconsistency between the local realism hypothesis and quantum mechanics [START_REF] Hardy | Nonlocality for two particles without inequalities for almost all entangled states[END_REF][START_REF] Kafatos | Bell's Theorem, Quantum Theory and Conceptions of the Universe[END_REF].

The consequence of Bell theorem is that one is forced to abandon the notion of reality or locality (or both). Interestingly it is possible to design models where the results of measurements are pre-determined. As a consequence the theory must be non-local. A well known example is Bohmian mechanics where particles have a definite position at all times [START_REF] Bohm | A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. I[END_REF][START_REF] Bohm | The Undivided Universe: An Ontological Interpretation of Quantum Theory[END_REF]. Other interpretations of Bell's theorem chose to drop the assumption of reality, such as in the many world interpretation [START_REF] Everett | Relative State" Formulation of Quantum Mechanics[END_REF]. Another interesting approach is the Ghirardi-Rimini-Weber spontaneous collapse model where non-local collapse effects are responsible of the localization of particles on the macroscopic level [START_REF] Bassi | Dynamical reduction models[END_REF]. These non-local effects would explain why we cannot see superpositions at the macroscopic scale. It thus defines a limit between the quantum and classical worlds that can be experimentally tested [START_REF] Bassi | Models of wave-function collapse, underlying theories, and experimental tests[END_REF].

III.1.2. Experimental tests of non-locality

Bell's proof of non-locality was experimentally not very practical [START_REF] Bell | On the Einstein Podolsky Rosen Paradox[END_REF] and it was the discovery of the CHSH inequality that made experimental tests possible. Even though the first experimental evidence of the non-local nature of quantum mechanics came rather quickly, in the form of a violation of the CHSH inequality by six standard violation [START_REF] Freedman | Experimental Test of Local Hidden-Variable Theories[END_REF], it took nearly forty years to obtain a rigorous proof [START_REF] Hensen | Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres[END_REF][START_REF] Shalm | Strong Loophole-Free Test of Local Realism[END_REF][START_REF] Giustina | Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons[END_REF].

The first difficulty encountered by many experiments is known as the locality loophole. When writing the joint probability distribution as in Eq. (III.4), we assume that the outcome of a measurement made by one party is independent of the setting of the other party. If that was not the case then it would be possible to design a local hidden variable model accounting for the correlations in the measurements. To enforce this condition Alice (Bob) must choose her (his) measurement setting in a region that is space-like separated from the measurement carried by Bob (Alice). Then special relativity tells us that no signal can travel from one to another before the measurements have been done. Let us note that, since the measurements are carried out after choosing the setting, it also implies that the measurements are space-like separated. This loophole was first closed by Aspect et al. [START_REF] Aspect | Experimental Test of Bell's Inequalities Using Time-Varying Analyzers[END_REF]. In their experiment they measure the polarization of an entangled pair of photons using polarizers whose orientations were changed while the photons were in flight. The orientation was changed by using a quasi-periodic random number generator. Later experiments, using quantum random number generators to control the orientation of the polarizers, confirmed the violation of the CHSH inequality [START_REF] Weihs | Violation of Bell's Inequality under Strict Einstein Locality Conditions[END_REF]. Note that, strictly speaking, it is mathematically impossible to certify the randomness of a source and consequently, to close the locality loophole.

The second loophole faced by experimentalists is that in many experiments, especially the ones involving photons, the detection efficiency is very low. In general, it is possible that the probability of detecting depends on the measurement settings, opening the detection loophole. If the detection efficiency is too small, it is possible to construct local models reproducing the observed data [START_REF] Pearle | Hidden-Variable Example Based upon Data Rejection[END_REF][START_REF] Clauser | Experimental consequences of objective local theories[END_REF]. The idea is that the detected events correspond only to events that lead to a violation, and had the undetected events been detected, we would not observe a violation anymore. The detection loophole is usually dealt with by assuming a fair sampling, i.e. that the detected events are representative of the whole sample. Another possible approach is to assume that the overall detection efficiency is lower bounded by a strictly positive value. In that case it is possible to derive Bell inequalities which have been experimentally tested [START_REF] Pütz | Quantum Nonlocality with Arbitrary Limited Detection Efficiency[END_REF]. To close the detection loophole one must have a setup with a detection efficiency above 2/3 for the CHSH inequality. Until recently single photon detectors could not reach this detection threshold and so experiments closing the detection loophole have been primarily done with ions [START_REF] Matsukevich | Bell Inequality Violation with Two Remote Atomic Qubits[END_REF][START_REF] Rowe | Experimental violation of a Bell's inequality with efficient detection[END_REF] as a result they did not close the locality loophole. Experiments using entangled photon pairs closing the detection loophole have only been done very recently [START_REF] Giustina | Bell violation using entangled photons without the fair-sampling assumption[END_REF][START_REF] Christensen | Detection-Loophole-Free Test of Quantum Nonlocality, and Applications[END_REF].

III.1.3. Applications of non-locality

There are several applications to non-locality, the best known being, perhaps, Quantum Key Distribution (QKD). In a QKD setup, two partners, Alice and Bob, want to generate a private key using a public (quantum) channel. This private key can be later used to encode a private message that Alice wants to send to Bob. Interestingly quantum mechanics allows us to do this in a provably secure way. The idea is to use a similar scheme as the one depicted in Fig. III.1. By performing a Bell experiment a sufficient number of times, Alice and Bob can compare a sample of their result and compute the expectation value of B. A sufficiently high violation of the CHSH inequality ensures that no eavesdropper has had access to the qubits. They can then use the rest of their result to compute a shared private key [START_REF] Ekert | Quantum cryptography based on Bell's theorem[END_REF]. This can be done in an unconditionally secure way, given that information travels at a finite speed [START_REF] Barrett | No Signaling and Quantum Key Distribution[END_REF]. This idea led to the development of device independent cryptography.

Another possible application of non-locality is randomness generation, or more precisely, randomness expansion. There, the violation of a Bell inequality is used as a certificate of true randomness [START_REF] Pironio | Random numbers certified by Bell's theorem[END_REF][START_REF] Colbeck | Private randomness expansion with untrusted devices[END_REF]. Indeed, if the outcome of a Bell experiment came from a deterministic model, then it would either not violate any Bell inequality or it could be used to transmit information faster than light [START_REF] Brunner | Bell nonlocality[END_REF].

A perhaps lesser known application of non-locality is communication complexity. In the context of communication complexity, two observers, Alice and Bob, receive each a n-bit string x and y respectively. The goal is for one of them to compute a given function f (x, y) with as little communication as possible. In this setup, using non-local resources can prove advantageous in that it is sometimes possible to reduce the amount of communication needed to compute f [START_REF] Buhrman | Nonlocality and communication complexity[END_REF].

The possibility to find application to non-locality has led people to see non-locality as a possible resource. As such several quantities have been defined to measure or quantify it [START_REF] Brunner | Bell nonlocality[END_REF]. It is also possible to define a resource theory of non-locality [START_REF] De Vicente | On nonlocality as a resource theory and nonlocality measures[END_REF].

III.1.4. The Tsirelson bound and postquantum non-locality

III.1.4.1. Tsirelson bound

In order to prove Bell theorem it was sufficient to find a state and two measurements for Alice and Bob such that the expectation value of the CHSH inequality was strictly above 2. An interesting question that was raised by Tsirelson is: what is the maximum value that one can obtain for a given inequality using quantum correlations? In [Cirel'son80] he proved that quantum correlations satisfy similar inequalities as the one obeyed by local correlations such as (III.4). In particular, it is possible to prove that:

Proposition 3 (Tsirelson bound). The quantum value for the CHSH scenario is bounded by 2 √ 2, i.e.: B ≤ 2 √ 2 (III.11)
Here, we present a simple proof derived by Landau [START_REF] Landau | On the violation of Bell's inequality in quantum theory[END_REF]:

Proof. The Bell operator can be rewritten as:

B = A 0 (B 0 + B 1 ) + A 1 (B 0 -B 1 ). (III.12)
Taking the square of the Bell operator, we obtain that:

B 2 = 41 -[A 0 , A 1 ][B 0 , B 1 ], (III.13)
where we have used that A 2 i = B 2 i = 1 since A i and B i are ±1 valued observables. Further on, we have

[A 0 , A 1 ] ≤ 2 A 0 A 1 = 2 and [B 0 , B 1 ] ≤ 2 B 0 B 1 = 2,
where • is the spectral norm. It yields:

B 2 ≤ B 2 ≤ 4 + [A 0 , A 1 ][B 0 , B 1 ] ≤ 8. (III.14) It follows that B ≤ 2 √ 2. The state |ψ = (|01 + |10 )/ √ 2 together with the measurements A 0 = σx , A 1 = σz , B 0 = (σ x + σz )/ √ 2 and B 1 = (σ z -σz )/ √
2 thus yield a maximum violation of the CHSH inequality and saturates the Tsirelson bound. In the two qubits case, it is possible to show that all maximally entangled states maximally violate the CHSH inequality for some measurement operators. It is usually a hard task to determine the Tsirelson bound of a given inequality.

III.1.4.2. Postquantum non-locality

Bell's theorem shows that quantum measurements can be more correlated than those obtained from local realistic theories. It is important to stress that even though the correlations obtained using quantum mechanics are stronger than correlations from local realistic theories, they do not allow to communicate faster than light. It means that if Alice and Bob were supplied an infinite number of perfectly two qubits entangled states, they could not use them to transmit information to one another. It could certainly be used in some communication complexity problems as mentioned in Sec. III.1.3 but it is on top of some classical communication: it only reduces the amount of communication needed. Correlations which do not permit to transmit information are called no-signaling.

We have seen that the strength of the quantum correlations are limited by the Tsirelson bound. A natural question arising in this context is: what is the physical principle that limits the violation of the CHSH inequality, or more generally of any Bell inequality? From the preceding discussion, one might think that it is the no-signaling principle. This is not the case. This can be shown by considering the following set of joint probability distributions, represented in Fig.

III.3: p(a, b|x, y) = 1 2 δ(a + (-1) xy b)(δ(a + 1) + δ(a -1)), (III.15)
where δ represents a Kronecker delta. These joint probability distributions where discovered by Popescu and Rohrlich [START_REF] Popescu | Quantum nonlocality as an axiom[END_REF] and are often referred to as PR-boxes. They are no-signaling and if Alice and Bob had two boxes described by such a probability distribution they could not use it to transmit some information, yet they could use it to violate the CHSH inequality up to the algebraic bound of 4. The Tsirelson bound shows that PR-boxes cannot be reproduced within quantum theory, hence such correlations are referred to as postquantum correlations. Even though correlations stronger than quantum correlations have never been observed in experiments, their mere theoretical existence enable us to explore the boundaries between quantum and postquantum correlations [START_REF] Popescu | Nonlocality beyond quantum mechanics[END_REF]. On the one hand, PR-boxes (and non-local boxes introduced later) fulfill certain properties that are very much alike those of entanglement, such as monogamy or no-cloning [Masanes06b], and they have been shown to allow for secure key-distribution [START_REF] Barrett | No Signaling and Quantum Key Distribution[END_REF]. Thus, a better understanding of the properties of non-local boxes may shed light on quantum phenomenon. On the other hand, the existence of PR-boxes shows that there could be other no-signaling theories and that Quantum Mechanics is just a specific example. It raises the question of why the quantum correlations are so limited? Theoretically, it is always possible to recover the Tsirelson bound from the axioms of Quantum Mechanics, but it lacks some explanatory power. In particular, we would like to find some physical underlying principle that explains the Tsirelson bound, in the same way that we can derive special relativity from the physically reasonable assumption that there is a maximum speed for signal propagation (together with the equivalence of inertial frames of reference) [START_REF] Popescu | Nonlocality beyond quantum mechanics[END_REF]. Some results suggest that it might be the case by putting constraints on communication complexity. For example, W. van Dam proved that if Alice and Bob were supplied with an unlimited number of non-local boxes, all communication complexity problems would become trivial [van Dam05,van Dam00]. Hence, the bare knowledge that there are nontrivial communication complexity problems gives a partial characterization of the set of all non-local correlations obtained from local measurements on entangled particles. More generally, one way to understand what limits the quantum correlations is to study the implausible consequences of more non-local correlations than quantum correlations. This endeavor naturally starts by a characterization of the set of correlations that one can obtain from different models. This is the subject of the next section.

III.2. Finite dimensional case

Even though our final goal is to study (post)quantum non-locality with an infinite, possibly continuous, number of outcomes, we will start by introducing the main mathematical concepts used to characterize bipartite correlations for measurements that yield a finite number of possible outcomes. Multipartite settings were considered as well but will not be studied in this thesis [START_REF] Barrett | Popescu-Rohrlich Correlations as a Unit of Nonlocality[END_REF]. Bob. Thus, we are not interested in the particular implementation of the measurements performed and in the nature of the system measured and outcomes obtained by Alice and Bob can be seen as coming from two black boxes from which they input x (y) and obtain a (b).

III.2.1. Probability space

x 2 {0, 1} y 2 {0, 1} S Bob Alice a 2 {0, • • • , d 1} b 2 {0, • • • , d 1}
The joint-probability distribution p(a, b|x, y) can be experimentally estimated by repeating the measurements a sufficient number of times. We thus have 4d 2 joint probabilities that completely characterize the Bell experiment. The probabilities for each of the possible settings and outcomes can be viewed as coordinates in the space R 4d 2 . As such, these probabilities are often expressed in a vector notation p = {p(a, b|x, y)} and referred to as correlations (or behaviors). A given p corresponds to a set of four joint probability distributions, each of them corresponding to a possible setup, characterized by x, y. Accordingly, we will sometimes denote the correlations by p = (p 1 , p 2 , p 3 , p 4 ) where each p i is a vector of R d 2 , or equivalently a matrix in M d 2 (R), corresponding to a joint probability for a given setting. Obviously, the set of joint probabilities p(a, b|x, y) must obey the positivity and normalization conditions:

p(a, b|x, y) ≥ 0, ∀a, b, x, y, (III.16) a,b
p(a, b|x, y) = 1 ∀x, y.

(III.17)

The set of possible joint probability distributions P is thus a (4(d 2 -1))-dimensional manifold living in R 4d 2 .

III.2.2. Correlations

In what follows we will give a precise mathematical definition of concepts already introduced in Section III.1. This will allow us to characterize mathematically what are the possible probability distributions that can be obtained when performing such an experiment for different descriptions of reality.

III.2.2.1. No-signaling

The vector space P of all normalized joint-probability distributions is very large and, a given physical model used to calculate the probabilities p(a, b|x, y), will in general impose constraints on the correlations p which then live in a subspace of P. The remaining correlations p fulfilling the no-signaling constraints are elements in a subset N S of the whole space P. The N S set is a convex set: if p 1 and p 2 are both elements of N S, then γp 1 + (1γ)p 2 is also an element of N S for every γ ∈ [0, 1].

III.2.2.2. Local correlations

We now introduce the set L of local correlations. The local correlations correspond to measurements where the outcomes a and b are governed by a local hidden variable (LHV) theory. Such correlations can be expressed in a compact way by the following locality constraint:

p(a, b|x, y) = Λ dλq(λ)p(a | x, λ)p(b | y, λ), (III.19)
where λ represents the hidden variable and takes value in the space Λ according to the probability distribution q(λ). Equation (III.19) represents a concise definition of locality imposed on the joint probabilities calculated within the context of local hidden variable theories (or local realistic theories). It is easy to see that the local joint probabilities always satisfy the no-signaling constraints (III.18a) and (III.18b):

d-1 b=1 p(a, b | x, y) = Λ dλq(λ)p(a | x, λ) = p(a | x), (III.20a) d-1 a=1 p(a, b | x, y) = Λ dλq(λ)p(b | y, λ) = p(b | y), (III.20b)
making the set of local correlations L a subset of the set of no-signaling correlations N S. We also define the set of deterministic local correlations. They consist of probability distributions that have a predetermined output for each of the possible settings. Let λ = (a 0 , a 1 ; b 0 , b 1 ) ∈ {0, . . . d -1} 4 be the deterministic assignment of outputs a x and b y for each of the settings x = 1, 2 and y = 1, 2. The corresponding local deterministic correlation vector d reads:

d λ (a, b | x, y) = 1 if a = a x and b = b y , 0 otherwise . (III.21)
As noted by Fine [START_REF] Fine | Hidden Variables, Joint Probability, and the Bell Inequalities[END_REF] it turns out that any element p, of the set of local correlations, III. Quantum and postquantum non locality can be seen as a convex mixture of local deterministic correlations, i.e. that:

p = λ q λ d λ , (III.22)
where q λ is a probability distribution over the possible values for λ. Using this last definition, it is clear that the set of local correlations L is also a convex set.

III.2.2.3. Quantum correlations

Finally, the set of quantum correlations Q consists of all joint-probability distributions that can be expressed as a result of a quantum mechanical measurement:

p(a, b | x, y) = Tr ( Êa|x ⊗ Êb|y )ρ AB (III.23)
where ρAB is the joint density matrix on Alice's and Bob's tensor product space H = H A ⊗ H B , and { Êa|x } x=0,1 and { Êb|y } y=0,1 are sets of POVMs on H A and H B , respectively, characterizing their local measurement strategies. The properties of quantum measurements ensure that any element p ∈ Q is also an element of N S:

d-1 a=1 p(a, b | x, y) = Tr (1 ⊗ Êb|y )ρ AB = p(b | y), (III.24a) d-1 b=1 p(a, b | x, y) = Tr ( Êa|x ⊗ 1)ρ AB = p(a | x). (III.24b)
It was proven by Pitowsky that Q is a convex set and that all local correlations admit a representation according to Eq. (III.23), thus making the local set L a subset of the quantum set Q [START_REF] Pitowsky | The range of quantum probability[END_REF]. Furthermore, since we know that there exists quantum correlations which violate some Bell inequalities, we know that L is a proper subset of Q. As shown in the introduction, there are joint probability distributions, such as the PR-Boxes, that satisfy the no-signaling constraints and are more non-local than the quantum correlations. This implies that the inclusion relations L ⊂ Q ⊂ N S are strict. At this point we note that any behavior p obtained from measurements on a separable state ρ = λ p λ ρλ A ⊗ ρλ B must be local. Indeed the joint probability distribution obtained using any measurement strategy can be written in the form (III.4):

p(a, b | x, y) = Tr ρ( Êa|x ⊗ Êb|y ) = λ p λ Tr ρλ A Êa|x Tr ρλ B Êb|y = λ p λ p(a | x, λ)p(b | y, λ). (III.25)
Hence we can conclude that all non-local quantum states are entangled. One may wonder if for every entangled state there exists a measurement strategy for which the state display a non-local behavior. For pure states it has been proven that entan-glement is equivalent to non-locality [START_REF] Gisin | Bell's inequality holds for all non-product states[END_REF]. For mixed states the situation is less clear [START_REF] Popescu | Bell's Inequalities and Density Matrices: Revealing "Hidden" Nonlocality[END_REF]. For example it was shown in [START_REF] Barrett | Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality[END_REF] We have seen that the two sets N S and L are convex sets. Clearly, because they are defined by inequalities on R 2d 2 , the no-signaling and local sets are also compact. It turns out that convex and compact sets are fully characterized by their extreme points:

Theorem 2 (Minkowski). Any compact convex subset of a finite dimensional affine space is the convex hull of its extreme points.

This theorem was first demonstrated by Minkowski in finite dimension but is often referred to as the Krein-Milman theorem [START_REF] Borwein | Convex Functions: Constructions, Characterizations and Counterexamples[END_REF]. Formally it means that if we know all the extreme points S = {x 1 , . . . , x n } of a compact convex set X, we can reach any point x ∈ X with a convex combination of points in S:

x = α 1 x 1 + . . . + α n x n , (III.26) with (α 1 , . . . , α n ) ∈ R n + and i α i = 1.
This motivates the search for the extreme points of the local and no-signaling sets. Moreover, since both sets are defined by linear inequalities and are clearly bounded as a result of the normalization and positivity constraints, they are polytopes. Polytopes are completely characterized by a finite number of extreme points. This idea was extremely fruitful in order to better understand Bell inequalities and derive new ones, as illustrated by the plethora of papers [Barrett05b, Pironio05, Almeida10, Pütz16].

III.2.3.2. Doubly stochastic matrices

In what follows, we describe the extreme points of the local and no-signaling sets. However, before doing so, we will introduce the concept of doubly stochastic matrices. This will allow us to derive the extreme points in a new way and to make a connection with another field in mathematics.

III. Quantum and postquantum non locality

Definition 1. We say that a matrix (p i,j ) i,j≤d is doubly stochastic if:

0 ≤ p i,j ≤ 1 ∀i, j (III.27a) i p i,j = 1 ∀j (III.27b) j p i,j = 1 ∀i. (III.27c)
We can see a doubly stochastic matrix as corresponding to the joint probability obtained by Alice and Bob for a specific setting of x and y. They correspond to a specific case where the marginals for Alice and Bob are uniform. Furthermore, if (p i,j ) i,j≤d and (q i,j ) i,j≤d are doubly stochastic, then (tp i,j + (1t)q i,j ) i,j≤d is doubly stochastic for all 0 ≤ t ≤ 1 and so the set of doubly stochastic is a convex set. It is also clearly compact and since it is defined by a finite set of linear inequality, it is also a polytope, known as the Birkhoff polytope Where a permutation matrix is a square matrix that has exactly one entry of 1 in each row and each column and 0s elsewhere. To each permutation matrix p is associated a permutation σ. They are related to one another through the following relation: the permutation matrix p = (p ij ) is obtained by permuting the columns of the identity matrix, that is, for each i, p ij = 1 if j = σ(i) and 0 otherwise.

Having introduced the main mathematical tools we can now turn to the description of the local and no-signaling polytopes.

III.2.3.3. Local polytope and Bell inequalities

In Sec. III.2.2.2 we have seen that local correlations can always be written as a convex mixture of local deterministic correlations. This shows that the polytope L has the local deterministic correlations for vertices. Those vertices completely characterizes the set of local correlations. Any behavior p which cannot be decomposed according to Eq. (III.21) is non-local. It turns out that verifying this property can be done efficiently (as long as the number of settings does not increase) as it is an instance of a linear programming problem [START_REF] Brunner | Bell nonlocality[END_REF].

Practically, one is often interested in Bell inequalities to check the non-local character of the correlations. Any polytope can also be characterized in terms of its facets. To each facet labeled by i ∈ I ⊂ N, we can associate a vector b i perpendicular to it, and the set of all facets can be expressed as a set of linear inequalities as: The two descriptions in terms of vertices or facets are completely equivalent and it is possible to go from one to the other (and vice versa). However, determining the facets of a polytope given its vertices is an NP-complete problem in general [START_REF] Pitowsky | Correlation polytopes: Their geometry and complexity[END_REF] and has been solved only in some specific cases. In particular it has been done in the d = 2 case where it was demonstrated that the CHSH is the only facet inequality.

L = p ∈ R 4d 2 | b i • p ≤ S i L ,

III.2.3.4. No signaling polytope

Due to the linearity of the normalization and the no-signaling constraints, (III.18a) and (III.18b), the no-signaling set N S forms a polytope that is characterized by a finite number of extreme points. In particular, we have 4d linearly independent equations which constrain the whole (4d 2 )-dimensional probability space P, yielding: dimN S = 4(d -1)d. The vertices of N S are then given by the solutions of these linear set of equations, with 4(d -1)d components of the whole 4d 2 -dimensional vector p ∈ P set to zero.

The no-signaling polytope has two sorts of vertices: the extreme points of the local polytope which are also extreme points of the no-signaling polytope, and non-local vertices that do not belong to the local polytope. The next result characterize the non-local vertices:

Theorem 4 (PR-Boxes). The nonlocal vertices of N S for two input settings and d outputs for Alice and Bob are equivalent to

p(a, b|x, y) = 1/k if (b -a) mod k = xy, 0 otherwise , (III.29)
for all k ∈ {2, . . . , d}.

Here equivalent means that all other extreme vertices can be reached from the introduced ones by performing local relabelling operations on the inputs and outputs on Alice's and Bob's sides, respectively. For instance, Alice (Bob) may relabel her (his) input, x → l A (x) (y → l B (y)), where l A (l B ) is a binary function that is either equal to the identity or to the addition modulo 2, or conditionally relabel her (his) output,

a → κ A (x, a) (b → κ B (y, b)), where κ A (κ B ) : {0, 1} × {0, . . . , d -1} → {0, . . . , d -1}.
Because the non-local vertices correspond to boxes that are a generalization and include the previously introduced PR boxes, we will refer to the non-local vertices of the no-signaling set as the PR boxes.

This result was already demonstrated in [START_REF] Barrett | Nonlocal correlations as an information-theoretic resource[END_REF]. Here we provide a different proof making a link with the previously introduced set of doubly stochastic matrices. The general idea of the proof, is to show that if p is extreme then the joint probability distributions for each setting must be permutation matrices and that they are equivalent to the PR boxes by local relabelings.

Proof. The extreme no-signaling probability distributions for d possible outcomes are made of the extreme no-signaling probability distributions which assign a non-zero probability to strictly less than d outcomes for one party and the ones that assign a non-zero probability to the d outcomes for both parties. Let us denote by d A

x and d B y the number of outcomes with non zero probability associated to settings x and y.

We can see the extreme no-signaling probability distributions with strictly less than d outcomes as extreme points of the no-signaling polytope with d A x < d or d B y < d possible outcomes for Alice and Bob respectively. Conversely, if we look at an extreme point of a no-signaling polytope with less than d outcomes for one party and one setting as a point of the d outcomes polytope with just zero probability for certain outcomes, it is easy to see that it remains extreme [START_REF] Pironio | Lifting Bell inequalities[END_REF]. Further on, it is possible to show by a counting argument that the extreme probability distributions must assign a non-zero probability to the same number of outcomes for Alice and Bob for each settings. We will not go into the details of this argument for this proof and refer to the first part of Theorem 1 in [START_REF] Barrett | Nonlocal correlations as an information-theoretic resource[END_REF]. Thus the extreme points of a given no-signaling polytope can be constructed iteratively by considering the extreme points of the no-signaling polytope with exactly k outcomes for both party for k ∈ {2, . . . , d}, lifted to the d outcomes polytope. We will thus concentrate on the extreme points with exactly d outcomes.

Let p = (p 1 , p 2 , p 3 , p 4 ) be a no-signaling set of joint probability. Following the above discussion we suppose that each outcome has a non-zero probability, i.e. that the marginals of every joint probability distributions p i is strictly positive. By a symmetry argument it is clear that each possible outcome for Alice or Bob is equivalent. Thus we can expect that each probability distribution has uniform marginals when p is a vertice of N S. Joint probability distributions with uniform marginals are proportional to doubly stochastic matrices, i.e. p i = λ i p i with p i a doubly stochastic matrix for i = 1 . . . 4.

We now proceed to show that p 1 , . . . , p 4 are proportional to extreme points of the set of doubly stochastic matrices. Suppose that p 1 is not proportional to an extreme point of the set of doubly stochastic matrices. We have p 1 = λp 1 with p 1 not extreme. It follows that p 1 = λ (γq + (1γ)r) with γ ∈]0, 1[ and q, r two doubly stochastic matrices. It yields: p = (p 1 , p 2 , p 3 , p 4 ) = γ(λq, p 2 , p 3 , p 4 ) + (1γ)(λr, p 2 , p 3 , p 4 ).

(III.30)

Clearly (λq, p 2 , p 3 , p 4 ) and (λr, p 2 , p 3 , p 4 ) are both elements of N S. This shows that p is not extreme. Consequently, and since p 1 plays no particular role, p 1 , p 2 , p 3 , and p 4 must be proportional to vertices of the doubly stochastic matrices polytope, i.e. permutation matrices.

It remains to show that the no-signaling correlations are indeed equivalent to (III.29). By local relabeling we can set p 1 , p 2 and p 3 to be proportional to the identity matrix. It is easy to see that if p 4 is also proportional to the identity matrix, or if p 4 is not a cyclic permutation, then the set of distributions p is not an extreme point of the no-signaling set. For example consider the case where:

p 1 = p 2 = p 3 = 1 3   1 0 0 0 1 0 0 0 1   , p 4 = 1 3   0 1 0 1 0 0 0 0 1   , (III.31)
and the following decomposition:

p 1 = p 2 = p 3 = 2 3 × 1 2   1 0 0 0 1 0 0 0 0   q 1 + 1 3 ×   0 0 0 0 0 0 0 0 1   r 1 , p 4 = 2 3 × 1 2   0 1 0 1 0 0 0 0 0   q 4 + 1 3 ×   0 0 0 0 0 0 0 0 1   r 4
, (III.32) q 1 and q 4 have same marginals (sum of rows and columns). As do r 1 and r 4 . The decomposition p = 2 3 (q 1 , q 1 , q 1 , q 4 ) + 1 3 (r 1 , r 1 , r 1 , r 4 ) is thus a decomposition into two no-signaling behaviors. Thus p is not an extreme point of the no-signaling set. This example can easily be extended to show that p 4 must be a cyclic permutation matrix different from the identity. For the specific case where p 4 = (p 4 ij ) satisfy the relation

p 4 ij = 1 if j = i + 1 or i = j = d we recover the PR box of Eq. (III.29).
This proof is not completely satisfying. Indeed, we argued that the non-local vertices with d outcomes must correspond to probability distributions with uniform marginals for each outcome. In full generality, it might not be the case. Even so, this argument gave us an expression for the non-local vertices and by counting the number of vertices found and comparing it to the number of vertices we would recognize that we have them all. Still, it would be interesting to understand why the marginals have to be uniform.

Similarly to the local polytope, we can characterize the no-signaling polytope by its factets. To each facet labeled by i ∈ I ⊂ N, we can associate a vector b i perpendicular to it, and the set of all facets can be expressed as a set of linear inequalities as:

N S = p ∈ R 4d 2 | b i • p ≤ S i N S , ∀i ∈ I . (III.33)
that have to be satisfied by all no-signaling behaviors. To each of these facets is associated a no-signaling bound S i N S . The no-signaling set together with the other sets is depicted in Fig. III.5. One should note that the extreme points of the local set are also extreme points of the no-signaling set and that the local and no-signaling set share some facets.

III.2.3.5. The quantum set

As mentioned earlier, the quantum set Q is defined as the set of correlations that can be obtained from measurements on a quantum state. This set is a convex set but it is not a polytope and is strictly included in the no-signaling set (see Fig. (III.5)). It can still be defined using a (possibly) infinite number of linear inequalities, which define a quantum bound, also known as the Tsirelson bound. Except in some simple cases, such as the CHSH case, this bound is generally hard to compute. A possible way to estimate this bound is to use a hierarchy of correlations defined by Navascues, Pironio and Acín which is bigger than the set of quantum behaviors and converges to the quantum set III. Quantum and postquantum non locality [START_REF] Navascués | Bounding the Set of Quantum Correlations[END_REF][START_REF] Navascués | A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations[END_REF]. That a given behavior belongs to a certain set in the hierarchy can be established by solving a semidefinite program.

We have seen in Sec. III.2.2.3 that violation of locality is closely related to entanglement. A natural question to ask is then whether Bell inequalities are maximally violated by maximally entangled states. This has a practical importance since many quantum information protocols rely on maximally entangled states. Evidence suggests that it is not the case. For example, the Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequality [START_REF] Collins | Bell Inequalities for Arbitrarily High-Dimensional Systems[END_REF] has been proven to be a facet of the local-polytope. However, numerical evidence suggests that this inequality is not maximally violated by maximally entangled states [START_REF] Zohren | Maximal Violation of the Collins-Gisin-Linden-Massar-Popescu Inequality for Infinite Dimensional States[END_REF]. As a result, methods have been designed to construct Bell inequalities that are maximally violated by maximally entangled states [START_REF] Salavrakos | Bell inequalities for maximally entangled states[END_REF]. We now turn to the main part of this work, i.e. non-locality with continuous variables. Throughout this section we will consider a similar experiment as before except that the set of possible outcomes is infinite. Most of the time we will consider outcomes in R but we will sometimes restrict our reasoning to outcomes in a compact set (usually [0, 1]) for the sake of simplicity. This is illustrated in Fig. (III.6).

III.3.1. Basic concepts of probability theory

As in the discrete case, we start by defining the mathematical objects that we will manipulate.

III.3.1.1. Probability spaces and distributions

In order to rigorously treat the continuous outcome measurement scenario we have to introduce the notion of a probability space.

Definition 2 (Probability space). Formally a probability space is described by the following triplet (Ω, A, µ), where Ω denotes a sample space, A the σ-algebra of events on Ω, and µ : A → R a probability measure.

In our case, of measurements with real outcomes on a bipartite system, the sample space is given by a product space Ω = R × R and A becomes the Borel σ-algebra B R×R on R × R. The probability measure µ is required to satisfy the Kolmogorov axioms meaning that it has to be normalized µ(R × R) = 1, it yields nonnegative values 0 ≤ µ(B) ≤ 1, for all B ∈ B R×R , and any countable sequence of disjoint sets

B i ∈ B R×R fulfills µ( ∞ i=1 B i ) = ∞ i=1 µ(B i ).
The probability of an event B ∈ B R×R is then given by P (B) = µ(B). We denote the set of all probability measures on R × R as M R×R . In order to formalize the measurements performed by Alice and Bob, we introduce the concept of a random vector. Definition 3 (Random vector). A random vector X is a vector-valued function, X : Ω → R k , whose components X i : Ω → R are scalar-valued random variables on the same probability space. Random variables themselves are measurable functions meaning that for all B ∈ B R we also have

X -1 i (B) ∈ A.
Again, in the particular case discussed above with Ω = R×R, we have andX -1 i (B) ∈ B R×R , for all B ∈ B R . The components of the vector X refer to the measurements performed on each subsystem individually. For instance, if Alice and Bob perform each a measurement of a single observable we have X = (X A , X B ). Furthermore, if we choose a generating set of B R , such as {(-∞, x]|x ∈ R}, we can define the cumulative joint-probability distribution of X as: The random vector X has a joint-probability density p X (x) if the distribution function F X (x) can be expressed in the following way:

X i : R×R → R,
F X (a, b) = µ(A (a,b) ) = µ({(x a , x b ) ∈ R × R|X A (x a , x b ) ≤ a, X B (x a , x b ) ≤ b}), (III.34) where A (a,b) = {(x a , x b ) ∈ R × R|X A (x a , x b ) ≤ a, X B (x a ,
F X (a, b) = a -∞ b -∞ p X (a , b )da db , (III.35)
where da db refers to an integration according to the Lebesgue measure on R 2 . Conversely, given a joint-probability density p X (a, b) of a random vector X, one can define a probability measure µ, through:

µ X (A × B) = A×B dF X (a, b) = A B p X (a , b )da db , (III.36)
for all A × B ∈ B R×R . However, note that, according to the Radon-Nikodym theorem, the existence of a probability density p X (a, b) is only guaranteed if F X (a, b) is an absolutely continuous function. Working with measures is thus more convenient since one does not have to worry about the existence of a probability density.

We thus arrive at the novel definition of a behavior.

Definition 4 (Behaviors). A behavior is a four dimensional vector µ = (µ (x,y) ) x,y∈{0,1} , with entries given by probability measures µ (x,y) ∈ M R×R . The set of all behaviors is denoted by M 4 R×R .

In the finite dimensional case, the above definition is equivalent to the usual description of behaviors as vectors containing all conditional joint-probabilities of a given discrete measurement scenario. Of course, in any practical laboratory experiment, due to the finite resolution of realistic measurements, one can ultimately only deduce an approximate version of the actual joint-probability density. Nevertheless, here we will investigate the ideal theoretical situation of real continuous-variable measurements without assuming any finite resolution restrictions.

III.3.1.2. Weak topology and convexity

In order to make geometric statement about sets which contain measures with different properties we need to introduce an appropriate topology on the considered space. When dealing with a finite dimensional space, this was not a relevant question since all the distances are equivalent. While in the field of measure theory various notions of convergence for measures do exist, for our purpose we will choose the weak convergence. Weak convergence can be introduced as follows.

Definition 5 (Weak convergence). Let (µ n ) n∈N be a sequence of probability measures in M R×R . We say the µ n converge weakly towards µ ∈ M R×R , with n → ∞, if

R×R f dµ n → R×R f dµ, (III.37)
for all f : R × R → R which are bounded and continuous. We denote the set of all bounded continuous functions with domain Ω as C b (Ω).

A sequence of behaviors µ n is said to be convergent to a behavior µ if µ (x,y) n → µ (x,y) for all x and y.

In what follows we will always implicitly assume the use of the weak topology without stating it explicitly at each step. Other, possibly stronger, notions of convergence do exist but are not required unless the complexity of the considered argument one wants to prove demands it. One of the motivations to use weak convergence is that the sequence δ 1/n of Dirac measures weakly converges to the Dirac measure δ 0 . This is not true for the strong convergence which requires that the measure of each measurable set converges:

µ n (B) → µ(B), ∀B ∈ B R×R .
(III.38)

Physically the weak convergence can be interpreted as looking at the average value of bounded observables.

Further on, we recap the basic definitions of convex combinations and extremality:

Definition 6 (Convex hull). The convex hull Conv(M) of an arbitrary (finite or infinite) set M of behaviors is the set of all finite convex sums of elements of M:

Conv(M) = n i=1 q i µ i | µ i ∈ M q i ≥0, n i=1 q i =1, n∈N . (III.39)
In turn, if M contains an uncountably infinite number of elements, continuous convex combinations (i.e., convex integrals) of infinitely many elements can be considered too but are not contained in Conv(M).

Clearly, any behavior that admits a decomposition in terms of a convex integral of uncountably infinitely many behaviors admits also a decomposition in terms of a convex sum of finitely many behavior. Similarly, any behavior that admits a decomposition in terms of a convex sum of an arbitrary finite number of behaviors admits also a decomposition in terms of a convex sum of two behaviors. This leads us to the same definition of extreme no-signaling behaviors as in discrete variables.

Definition 7 (Extreme no-signaling behaviors). We call µ an extreme point of M NS if, for all µ * , µ ∈ M NS and 0 ≤ q ≤ 1,

µ = q µ * + (1 -q) µ (III.40)
implies µ * = µ = µ , q = 1 and µ * = µ, or q = 0 and µ = µ.

In the finite dimensional case the Minkowski theorem (Theorem 2) shows that we can characterize a convex set entirely by determining its extreme points. We have seen that this approach is very fruitful to characterize probability distributions with a finite number of outcomes because the set of local and no-signaling correlations are polytopes with a finite number of extreme points. It would thus be interesting to have a similar result in the infinite dimensional case. It turns out that in infinite dimension things are a bit more subtle. For example there exists closed space with no extreme points [START_REF] Simon | Convexity: An Analytic Viewpoint[END_REF]. Nevertheless it is possible to generalize Minkowski's theorem in the following way [START_REF] Krein | On extreme points of regular convex sets[END_REF]:

Theorem 5 (Krein-Milman theorem). Let A be a compact convex subset of a locally convex vector space X. Then A is the closed convex hull of its extreme points.

Stated differently, the Krein-Milman theorem ensures that the convex hull of the extreme points is dense in A. Determining extreme points of an infinite dimensional space is thus not a vain endeavor. Let us now illustrate these concepts with a theorem: Theorem 6. The probability measures with finite support are dense in M R .

Where M R denotes the set of all probability measure on R. For a proof of this classic result, we refer to [START_REF] Bogachev | Measure Theory. Number vol. 1 in Measure Theory[END_REF][START_REF] Topsøe | Topology and measure[END_REF]. The idea of this theorem, illustrated in Fig. III.7, is that for any probability measure µ on R, it is possible to construct a sequence

µ n = n k=1 c k δ x k , (III.41)
that weakly converges to µ. Here c k ∈ [0, 1] such that n k=1 c k = 1 and δ x k denotes the Dirac measure located at point x k . This is essentially the same idea as looking at an integral as a sum of the area of rectangles.

Theorem 6 shows that you can approximate any probability measure with a measure with a finite number of outcomes. In the next section, we will obtain a similar result for the no-signaling set. Namely that we can find approximate any no-signaling set of measures1 with a no-signaling set of measures with a finite number of outcomes. It is clear that we can always approximate any no-signaling set of probability measures with probability measures with a finite number of outcomes: this is Theorem 6 applied to a set of four probability measures. The tricky point is that we want to do it with no-signaling measures.

III.3.2. Characterization of the set of no-signaling behaviors

Having introduced the main mathematical notions we now turn to the characterization of the no-signaling set. We will start this description by introducing the notion of no-signaling measures. We then introduce the continuous-variable version of the (PR) boxes that we show to be extreme points of the no-signaling set. Furthermore, we find that the convex hull of this set of boxes is dense in the no-signaling set. Motivated by this result and some evidence, we conjecture that these boxes are the only extreme points of the no-signaling set.

III.3.2.1. No-signaling measures and CV PR boxes

We defined the set of possible behaviors as the ensemble of sets of four probability measures on R × R. As in the discrete case, a given physical theory puts constraints on the set of behaviors µ. As discussed above, the most natural constraint that we expect to be fulfilled is the no-signaling constraint. In this new measure theoretic formulation it reads:

µ (x,y) (A × R) = µ (x,y ) (A × R), ∀ x, y, y ∈ {0, 1}, (III.42a) µ (x,y) (R × B) = µ (x ,y) (R × B), ∀ x, x , y ∈ {0, 1}, (III.42b)
with arbitrary A, B ∈ B R . Condition (III.42a) and (III.42b) imply that Alice's and Bob's marginal distributions µ (x,y) (A × R) = µ (x) (A) and µ (x,y) (R × B) = µ (y) (B) are independent of each others measurement setting, hindering a direct and instantaneous communication between the subsystems A and B. Since the latter would lead to a violation of relativity the no-signaling constraints (III.42a) and (III.42b) are a reasonable physical assumption. The remaining behaviors µ are elements of the subset M N S ⊂ M 4 R×R . As in the finite dimensional case the no-signaling set is also a closed set:

Proposition 4. M N S is closed in the weak topology.

Proof. Let µ n → µ be a weakly converging sequence of behaviors. We want to prove that µ is also no-signaling, i.e. that it fulfills the constraints (III.42a) and (III.42b).

We will only prove (III.42a), since the proof is similar for (III.42b). Let μ(x,y) denote the first marginal of µ (x,y) . For all n ∈ N and A ∈ B R , we have that: Since the marginal measures are equal for all n and are converging, they are converging to the same measure. It follows that µ satisfies (III.42a) and thus that µ is no-signaling.

µ (x,y) n (A × R) = µ (x,y ) n (A × R), ∀ x, y, y ∈ {0, 1} ( 
Local deterministic behaviors Next, we want to characterize all possible behaviors that are obtainable within a local-realistic theory. Before doing so, we have to introduce the deterministic behaviors which can be expressed as µ det = (δ (ax,by) ) x,y=0,1 , where δ (a,b) denotes the Dirac measure in the point (a, b), defined as:

δ (a,b) (A × B) = 1 a ∈ A and b ∈ B 0 otherwise . (III.46)
In a local-realistic theory we assume that all outcomes are deterministic but can depend on possible hidden variables λ which take values in a parameter space Λ and is distributed according to some probability measure ν : B Λ → R + . Averaging over the hidden parameter space then yields the following expression for the components of all local-realistic behaviors:

L CV = µ | µ (x,y) = Λ δ (a (λ)
x ,b

(λ) y ) dν(λ), (a, b) ∈ R 2 , ∀x, y . (III.47)
We thus find that the set of all local-realistic behaviors M L is generated by the deterministic behaviors through a convex integral according to the measure ν. Also, one can easily verify that all local-realistic behaviors fulfill the no-signaling constraints, yielding

M L ⊂ M N S .
At this point we stress that, in contrast to the finite dimensional case, the set M L is not a polytope since it is generated by a set that contains infinitely many elements, i.e. the deterministic behaviors. It follows that M L has no facets and thus cannot be characterized by a finite set of linear Bell inequalities.

CV PR Boxes We now introduce a set of behaviors that we will show later on to be extreme points of the set of no-signaling behaviors M N S . In finite dimensions these extreme points are the PR boxes and are, up to local relabeling, equivalent to (III.29).

Here, we will present their continuous-variable generalizations.

To do so, we first introduce two real vectors a := (a 0 , . . . , a k-1 ) and b := (b 0 , . . . , b k-1 ), with different components, i.e., such that a 0 = a 1 = . . . a k-1 and b 0 = b 1 = . . . b k-1 . The vectors a and b determine a finite set of k discrete outcomes among all possible real outcomes of Alice's and Bob's measurements, respectively. In terms of such a pair of finite outcome vectors we define the analog versions of the known discrete PR boxes in the continuous-variable regime as:

µ (k,a,b) x,y := 1 k k-1 j=0 δ a j ,b [j+x y] k . (III.48)
where the [ ] k denotes the summation modulo k with k ∈ N, and refers to them as CV PR boxes. The latter are easily verified to fulfill the no-signaling constraints (III.42a) and (III.42b).

Let us note that the CV PR boxes (III.48) represent only a particular case of a whole class of CV PR boxes that can be reached from Eq. (III.48) via reversible local relabeling transformations. For instance, Alice (Bob) may relabel her (his) inputs, x → l A (x) (y → l B (y)), where l A (l B ) is a binary function that is either equal to the identity or to the addition modulo 2, or conditionally relabel her (his) outputs, a → κ A (x, a)

(b → κ B (y, b)), where κ A (κ B ) : {0, 1} × R k → R k is an injective function.
While the former only amounts to a shuffling of the components of the corresponding behaviors, which does not lead to CV PR boxes different from that in Eq. (III.48), the latter needs to be taken into account in the definition of the set of all CV PR boxes by accounting for input dependent outputs a (x) and b (y) . This leads us to the following definition.

Definition 8 (The class of CV PR boxes). We define the class M PR ⊂ M NS as the (uncountably infinite) set

M PR = µ = (µ (k,a (x) ,b (y) )
x,y

) x,y∈{0,1} : k ∈ N; a (x) , b (y) ∈ R k (III.49)
of behaviors µ, with components (III.48) that account for input dependent outputs

a (x) , b (y) ∈ R k .
Let us note that the above defined CV PR Boxes include the local deterministic behaviors as a particular case (k = 1).

One immediately perceives that, contrary to the finite regime, the set M PR is infinite, which will have an impact on its geometrical structure which is no-longer that of a polytope. However, as we will prove in Sec. III.3.2.2, the elements in PR CV are still extreme points of the set of CV no-signaling correlations M N S . Proof. To see this note that the boxes (III.48), even in the continuous regime, have a finite number of outcomes with non-zero probability. If we further assume that these boxes are not extreme we can conclude from the finite dimensional case that they can be built as a convex mixture of other no-signaling boxes. In this case, the latter would also have a finite number of outcomes in contradiction to the fact that we know already that these boxes are extreme in finite dimensions. Hence, the CV PR boxes (III.48) must also be extreme in the continuous case. This result is just the generalization to an infinite number of outcomes of previously known results in the discrete case. Indeed, in [START_REF] Barrett | Nonlocal correlations as an information-theoretic resource[END_REF][START_REF] Pironio | Lifting Bell inequalities[END_REF] it was shown that the extreme points of the no-signaling set remain extreme if we increase the number of possible outcomes. From this observation it follows directly that the set of CV nosignaling behaviors does not form a polytope since M PR is clearly infinite. On the other hand, the fact that M NS contains behaviors with infinitely many outcomes with non-zero probability automatically implies that M N S ⊆ Conv(M PR ), in remarkable contrast with the finite-dimensional case. This is due to the fact that every behavior in Conv(M PR ) necessarily has only finitely many outcomes with non-zero probability. Having this in mind we proceed and show how every element in M N S can be approximated arbitrarily closely by elements of M PR . Or equivalently that the no-signaling measures with a finite number of outcomes are dense in the no-signaling set. This is a generalization of Theorem 6 for no-signaling measures.

Theorem 7 (Approximation of M N S ). The convex hull of the set of CV PR boxes Conv(PR CV ) is dense in the set of no-signaling behaviors M N S .

In order to prove that Conv(M PR ) is dense in M N S we have to show that for all µ ∈ M N S it is possible to find a sequence of elements in Conv(M PR ) that converges to µ. Formally this shows that the closed convex hull of M PR is equal to M N S : Conv(M PR ) = M N S . For the sake of simplicity we present here a proof of Theorem 7 for the case of finite support Ω = [-1, 1] × [-1, 1] and provide a generalization to the case Ω = R × R in Appendix A.

Proof. Let µ ∈ M N S . The proof goes as follows. First, we define a sequence of measures µ n and show that it weakly converges to µ. Next, we show that all the measures in the sequence are no-signaling and that they can be written as a convex sum of CV PR boxes, i.e. that µ n ∈ Conv(M PR ). The general idea of the proof is the same as that of Theorem 6 except that we have to be careful in the construction of the sequence that each element of the sequence is a no-signaling behavior.

For n ≥ 1 we divide the interval [-1, 1] in n intervals of the same length and denote them as I n . Next, we define µ n as follows: , yields:

µ (x,y) n = n k,l=1 µ (x,y) (I k × I l )δ c kl ,
[-1,1] 2 f dµ (x,y) n = k,l f (c kl )µ (x,y) (I k × I l ).
(III.51)

The sum on the right-hand side of Eq. (III.51) can be bounded from below and above in the following way:

k,l µ (x,y) (I k × I l ) min I k ×I l f ≤ [-1,1]×[-1,1] f dµ (x,y) n ≤ k,l µ (x,y) (I k × I l )max I k ×I l f, (III.52)
where min

I k ×I l (max I k ×I l
) denotes the minimum (maximum) of the function f over the cell

I k × I l .
The same inequality holds if we integrate f with respect to µ (x,y) , and, since f is continuous, this proves that f dµ (x,y) n → f dµ (x,y) for all x, y. Since µ (x,y) n → µ (x,y) for all x, y, it follows that µ n → µ.

Let us now prove that µ n is no-signaling for all n. For a given n > 0 and x, y ∈ {0, 1} n , III. Quantum and postquantum non locality the marginal of µ (x,y) n on Bob's side is given by:

µ (x,y) n ([-1, 1] × B) = n k,l=1 µ (x,y) (I k × I l )δ c kl ([-1, 1] × B) = n k,l=1 µ (x,y) (I k × I l )δ a k ([-1, 1])δ b l (B) = l δ b l (B) k µ (x,y) (I k × I l ) = l δ b l (B)µ (x,y) ([-1, 1] × I l ), (III.53)
where δ a k (δ b l ) is the Dirac measure located at a k (b l ) in the kth (lth) interval. Since we know that µ is a no-signaling behavior it follows that µ (x,y) ([-1, 1] × I l ) does not depend on x (compare with Eq. (III.42a)). The same argument holds for the Alice's marginal and proves that the µ n 's are no-signaling behaviors.

To complete the proof we still have to show that µ n can be written as a sum of generalized PR boxes. For this we note that the µ n 's are no-signaling behaviors with a finite number of outcomes (the centers of the intervals I k,l ) and support [-1, 1] 2 . However, we know from the finite-dimensional case that all behaviors with only finitely many outcomes with non-zero probability can be expressed as a convex combination of finitely many PR boxes. Taking instead their continuous-variable generalizations (III.48), yields the desired decomposition.

In Appendix A we provide a generalization of the above proof to the case of measure with infinite support Ω = R × R. The idea in this case is essentially the same except that we have to define a sequence µ n on intervals of increasing size. In this way, as n goes to infinity, the union of the corresponding intervals covers all R.

At this point we note that this result, in the finite dimensional case, would show that the extreme points of the no-signaling set are included in M PR . Since we have shown that all elements of M PR are extreme points of the no-signaling set, it would follow that the set of extreme points of M N S is M PR . On the contrary, in the infinite dimensional case, even though M PR consists exclusively of extreme points in M N S , the fact that Conv(M PR ) is a strict subset of M N S in principle leaves room for other extreme points of M N S that are not contained in M PR . In the following, we approach this problem systematically by studying first the case of behaviors having compact support. In this case, a related problem was addressed by D. Milman who proved the following theorem [START_REF] Simon | Convexity: An Analytic Viewpoint[END_REF]:

Theorem 8 (Milman). Let A be a compact convex subset of a locally convex space, X. Let B ⊂ A so that the Conv(B) = A. Then it follows that the extreme points of A are included in the closure of B.

The no-signaling set is a closed subset of the set of behaviors. The set of behaviors with compact support is compact [START_REF] Billingsley | Convergence of probability measures[END_REF]. It follows that the no-signaling set is itself compact and that Milman's theorem can be applied to the present situation. For clarity, we will denote the corresponding sets of behaviors with a superscript K if their components consist of probability measures with support [-K, K]. Consequently, we arrive at the corollary:

Corollary 1 (Characterisation of M (K) N S ). Every extreme point of M (K) N S belongs to the closure of M (K) PR .
Further on, it is interesting to investigate if the closure of M (K) PR contains behaviours that are extreme as well. If the latter was not the case, it would prove that all extreme points of the M

(K) NS are in M (K)
PR . We thus have to answer the question if PR boxes of infinite order, i.e. in the limit k → ∞ (see Eq. (III.48)), are also extreme. Below, we provide evidence suggesting that this is not the case. More precisely, we provide an example of a sequence of PR boxes whose limiting behavior is not extreme:

Proof. Here we prove that the limit of a specific CV PR box is not an extreme behaviour. Suggesting that one cannot obtain extreme points of the no-signaling set as limits of a sequence of CV PR boxes when k goes to infinity. We will restrict ourselves to measures on [0, 1] 2 but it can be straightforwardly extended to R 2 .

In what follows, we prove that there is a sequence µ n ∈ (M PR ) N that converges to an element µ that is outside M PR . Let µ be the set of measures where the two outcomes are always perfectly correlated for all settings: µ (x,y) (a, b) = δ(ab) for all x, y. µ is clearly no-signaling, but not extreme.

We define µ n as follows:

µ (x,y) n =    1 n n k=0 δ k n , k n , for x • y = 0, 1 n n-1 k=0 δ k n , k+1 n + δ 1,0 , for x • y = 1. (III.54)
Let f be a continuous bounded function on [0, 1] 2 . We have:

[0,1] 2 f (a, b)µ (x,y) n (a, b) = 1 n n k=0 f k n , k n , for x • y = 0, 1 n n-1 k=0 f k n , k+1 n + f (1, 0) , for x • y = 1, (III.55)
Now, by applying standard integration theory it follows that:

1 n n-1 k=0 f k n , k + 1 n + f (1, 0) → [0,1] f (a, a) = [0,1] 2 f (a, b)µ (x,y) (a, b). (III.56)
And consequently, that µ n converges to an element that is outside M PR (since µ has an infinite number of outcome contrary to all elements of M PR ).

The fact that the limiting behavior is not an extreme behavior suggests that one cannot obtain extreme points of the no-signaling set as limits of a sequence of CV PR boxes when k goes to infinity (see Eq. (III.48)). This evidence leads us to the following conjecture:

Conjecture 1 (Characterisation of M (K) NS ). Every extreme point of M (K) NS belongs to M (K) PR .
Even though, the preceding discussion was restricted to behaviors with outcomes on a compact set, there are reasons to believe that the conjecture holds also in the general case of unbounded support. Namely, in probability theory it is a rather standard result that all extreme points of the set of probability measures are given by Dirac measures (see Eq. (III.46)). In particular, this is the case for probability measures with unbounded support on R. Similarly, the extreme no-signaling behaviours may have also only finite support, thus supporting our Conjecture 1 also in the case of general behaviors defined on R.

The relations between the local, quantum and no-signaling set are illustrated in 

III.3.3. CV Bell inequalities

As we have seen, compared to the discrete case, the situation changes drastically if one allows for more complex measurement scenarios involving observables with infinite, possibly continuous outcomes. The set of local as well as no-signaling correlations have an infinite number of extreme points, which revokes the polytope structure and its characterization in terms of finitely many linear inequalities. As a consequence, many common techniques to derive Bell inequalities in finite dimensions, such as semidefinite programming [START_REF] Kaszlikowski | Violations of Local Realism by Two Entangled N -Dimensional Systems Are Stronger than for Two Qubits[END_REF], do not apply to the infinite dimensional case. Furthermore, if we consider the CHSH inequality and try to apply it naively to a scenario with an infinite number of outcomes which are not bounded, then it it possible to find a local hidden variable model explaining the observed behavior [START_REF] Barut | A classical model of EPR experiment with quantum mechanical correlations and bell inequalities[END_REF][START_REF] Aspect | Comment on "A classical model of EPR Experiment with Quantum Mechanical Correlations and Bell Inequalities[END_REF].

Nevertheless it is possible to resort to known inequalities for discrete variables by applying a binning or dichotomizing strategy to the continuous measurement. For example, starting with a probability defined on R 2 , we can obtain a probability on {-1, 1} 2 by mapping each positive outcome to 1 and negative ones to -1. This defines a dichotomic observable from which we can test the CHSH inequality [START_REF] Munro | Optimal states for Bell-inequality violations using quadrature-phase homodyne measurements[END_REF][START_REF] Wenger | Maximal violation of Bell inequalities using continuous-variable measurements[END_REF]. More generally, we can always test a CHSH like inequality as long as the observables are bounded [START_REF] Ketterer | Testing the Clauser-Horne-Shimony-Holt inequality using observables with arbitrary spectrum[END_REF][START_REF] Arora | Proposal for a macroscopic test of local realism with phase-space measurements[END_REF]. In particular, we can derive a CHSH inequality from the Wigner function, as we will see in Chapter V.

This approach has several drawbacks. First, it may be difficult to know for a particular state which binning procedure (and corresponding POVM) one should use to reveal its non-locality. Secondly, by binning the results, we don't take into account the full information we have access to. Intuitively, this loss of information can erase or hide the non-locality. This argument has the following mathematical interpretation: binning is a local mapping (Alice and Bob can do it without communication). Moreover, a state which has a positive partial transpose is transformed under a local mapping in a state with a positive partial transpose. It is known that there are non-local states with a positive partial transpose [START_REF] Yu | Family of nonlocal bound entangled states[END_REF][START_REF] Vértesi | Disproving the Peres conjecture by showing Bell nonlocality from bound entanglement[END_REF]. After a (dichotomic) binning procedure, these states are mapped on states defined on a 2 × 2 Hilbert space. Moreover, because the mapping is local, they are mapped on states with a positive partial transpose. However, for 2-qubits states it is known that all entangled states have a negative partial transpose. Thus we cannot reveal the non-locality character of non-local states which have a positive partial transpose by a dichotomization strategy.

Because of above mentioned difficulties, Bell inequalities for measurements with real continuous outcomes are rare and have been introduced only recently by Calvalcanti, Foster, Reid and Drummond (CFRD) [START_REF] Cavalcanti | Bell Inequalities for Continuous-Variable Correlations[END_REF][START_REF] Shchukin | Quaternions, octonions, and Belltype inequalities[END_REF].

III.3.3.1. The CFRD inequality

In a local hidden variable theory one consider that all local observables A x and B y , with x, y ∈ {0, 1}, on Alice' and Bob's subsystem, respectively, depend on the same hidden variable λ. In this way the locality assumption is enforced because the local choice of observables A 1 and A 2 (B 1 and B 2 ) cannot influence the correlations between the two subsystems. Furthermore, the hidden variable λ might itself be distributed according to an unknown ensemble q(λ), which leads to the following expression allowing to calculate the expectation value of arbitrary functions F of the above observables:

F = dλq(λ)F (A 1 (λ), A 2 (λ), B 1 (λ), B 2 (λ)).
(III.57)

Based on this observation, it was shown in Ref. [START_REF] Cavalcanti | Bell Inequalities for Continuous-Variable Correlations[END_REF] that a very general way of deriving Bell inequalities is by making use of the fact that the variance of any function of random variables is positive:

| F | 2 ≤ |F | 2 .
(III.58)

Hence, clever choices of the function F can lead to different Bell inequalities. In general F might contain terms with incompatible observables which cannot be measured simultaneously in a real experiment. To circumvent this problem one can replace the right-hand side of the inequality (III.58) by a weaker bound |F | 2 sup , where sup denotes the supremum, in which all products of incompatible observables are exchanged by their maximum values. However, because products of incompatible observables with continuous outcomes are often unbounded, it is desirable to find a function F which leads to no such terms in the inequality (III.58).

In particular, by choosing F

= (A 1 + iA 2 )(B 1 + iB 2 ), one can show that Re[F ] 2 + Im[F ] 2 ≤ (A 2 1 + A 2 2 )(B 2 1 + B 2 2 ) (III.59) whereas the relation |F | 2 = |(A 1 + iA 2 )(B 1 + iB 2 )| 2 = (A 2 1 + A 2 2 )(B 2 1 + B 2
2 ) on the right-hand side (RHS) of Eq. (III.59) is known from the multiplication of two complex numbers. Generalizations of the latter exist only for the case of quaterionen and octoionen, and thus limit the number of settings of this type of inequalities to eight on each subsystem. For the multipartite case we refer to [START_REF] Cavalcanti | Bell Inequalities for Continuous-Variable Correlations[END_REF].

By writing out explicitly Eq. (III.59) we obtain the inequality

A 1 B 1 -A 2 B 2 2 + A 1 B 2 + A 2 B 1 2 ≤ A 2 1 B 2 1 + A 2 1 B 2 2 + A 2 2 B 2 1 + A 2 2 B 2 2 , (III.60)
to which we will refer to in the following as CFRD inequality. Note that the CFRD inequality is not a linear inequality with respect to the involved expectation values and thus cannot be expressed as in Eq. (III.28). Nevertheless, one can observe certain similarities between the CFRD and the CHSH inequality. In particular, if one assumes the particular case of binary measurements, Eq. (III.60) reduces to a nonlinear generalization of the CHSH inequality [START_REF] Uffink | Quadratic Bell Inequalities as Tests for Multipartite Entanglement[END_REF].

In [START_REF] Salles | Quantum Nonlocality and Partial Transposition for Continuous-Variable Systems[END_REF] it was shown that in the case of arbitrary quadratures measurements the left hand side of inequality (III.60) is always smaller or equal to zero and thus the inequality (III.60) cannot be violated in this case. Later on, this result was generalized to arbitrary measurements on Alice's and Bob's side showing that the Tsirelson bound S Q of the CFRD inequality coincides with its local bound S L = 0 [START_REF] Salles | Bell inequalities from multilinear contractions[END_REF]. Hence, in the presently considered measurement scenario, consisting of two parties and two inputs for each party, the CFRD inequality cannot be used to detect non-locality of continuous-variable quantum states. It is rather a witness of post-quantum non-locality. A representation of the CFRD inequality is shown in Fig. III.10.

III.3.3.2. CV post-quantum non-locality

In order to study continuous-variable postquantum correlations we first rewrite Eq. (III.60) in terms of the conditional joint-probability densities p(a, b|x, y) of the random variables A x and B y on Alice's and Bob's side, respectively. Now, we can write the cross-moments contained in Eq. (III.60) as:

A na x B n b y = ∞ -∞ da ∞ -∞ db a na b n b p(a, b | x, y) (III.61)
and thus obtain the following form of the CFRD inequality:

∞ -∞ da ∞ -∞ db ab x=y p(a, b | x, y) 2 + ∞ -∞ da ∞ -∞ db ab x =y p(a, b | x, y) 2 ≤ ∞ -∞ da ∞ -∞ db a 2 b 2 x,y=0,1 p(a, b | x, y). (III.62)
Now, let us first study the violation of the CFRD inequality (III.62) with respect to the nonlocal boxes (III.48). In order to study the nonlocality of the above introduced CV PR boxes more quantitatively we first focus on CV PR boxes with binary outcomes (k = 2) and set a = ( , -) and b = ( , -). This leads to the following expression:

p (a, b | x, y) = 1 2 δ(a -)δ(b -(-1) xy ) + δ(a + )δ(b + (-1) xy ) , (III.63)
and to a violation 8 2 ≤ 4 2 of the CFRD inequality (III.62). We thus see that the violation (4 2 ) depends quadratically on the parameter which determines the outcomes of the CV PR box (III.63).

Note that Eq. (III.63) reflects the limiting case of perfectly localized measurement outcomes in a continuous-variable setting. For a slightly more realistic account we can replace the Dirac deltas in Eq. (III.63) by Gaussian functions

f a,b (x) = 1 √ 2π∆ a,b exp -x 2 /(2∆ 2 a,b ) , (III.64)
with widths ∆ a,b on Alice's and Bob's side, respectively. In this case the violation of the CFRD inequality reads:

λ(∆ a , ∆ b , ) = 8 4 -4 ∆ 2 a + 2 ∆ 2 b + 2 , (III.65)
showing its additional dependency on the widths ∆ a and ∆ b . In Still, we have found that the above introduced CV PR boxes violate the quantum bound of a real continuous-variable Bell inequality without resorting to any kind of dichotomization or binning procedure. The latter proves the existence of postquantum correlations in a true continuous-variable measurement scenario. ) with widths ∆ a = ∆ b = /5 for the inputs (x, y) = (0, 0), (0, 1) or (1, 0) (left) and (x, y) = (1, 1), respectively. Note that the projection on the horizontal as well as vertical axes coincide for both plots, reflecting the fact that the behavior is no-signaling. Each center point may also have a different width (or squeezing), but we do not consider that here for the sake of simplicity. (b) Plot of the rescaled violation of the CFRD inequality as a function of the width ∆ = ∆ a = ∆ b .

III.4. Conclusion

In this Chapter, we have studied one of the most intriguing properties of quantum mechanics: non-locality. We started by reviewing some known results in the case of measurements with a finite number of outcomes. In such a case local and no-signaling sets are polytopes which can be easily characterized in terms of extreme points or linear inequalities. On our way, by using previously known results on the set of doubly stochastic matrices we are able to retrieve the expression of the non-local vertices. A first interesting line of inquiry raised by this work would be to see if it is possible to make similar connections when considering slightly different scenarios. One possibility would be to change the number of settings or to look at a multipartite scenario. In the tripartite scenario, the non-local vertices have been determined using numerical methods [START_REF] Barrett | Nonlocal correlations as an information-theoretic resource[END_REF]. It would be interesting to see if we can derive them analytically using a similar method.

We then turned to the investigation of the set of no-signaling correlations for mea-
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surements with continuous outcomes in a bipartite scenario. To do so, we devised a mathematical framework based on conditional probability measures that allowed us to conveniently express the existing local and non-local no-signaling behaviors. We then introduced a set of non-local boxes that are closely related to the Popescu-Rohrlich boxes known from the finite dimensional measurement regime. By extending a previous result in finite dimension, we were able to prove that these boxes are extreme points of the no-signaling set. Furthermore, we demonstrated that the convex hull of the set of continuous-variable Popescu-Rohrlich boxes is dense in the set of no-signaling behaviors. This lead us to an intriguing conjecture: they might be the only extreme points of the no-signaling set. Finally, we proved that postquantum correlations in the continuous-variable regime do exist, by presenting a class of no-signaling behaviors that violate the Tsirelson bound of an appropriate continuous-variable Bell inequality. Interestingly, the set of CV no-signaling correlations can be approximated arbitrarily closely by behaviors that have a finite support and thus correspond to measurement scenarios with finitely many outcomes. It means that we can always detect non-locality by using a binning procedure, for a large enough number of bins. A similar result was demonstrated for entanglement in [START_REF] Sperling | Verifying continuous-variable entanglement in finite spaces[END_REF]. In this paper it was shown that we can detect the entanglement of any bipartite continuous variable state by considering only a finite dimensional subspace.

That the CV no-signalling set contains no extreme point with an infinite number outcomes with non-zero probability, as suggested by Conjecture 1, appears as a surprising possibility. On the one hand it might not seem surprising, since one can always approximate any no-signaling behavior with arbitrary precision. On the other hand, it is known that in quantum theory there exist extreme behaviors which have infinite, even uncountably infinite, support. The latter are defined with respect to a set of extreme measurement operators (so-called positive operator valued measurements) that have a continuous spectrum [START_REF] Holevo | Statistical definition of observable and the structure of statistical models[END_REF][START_REF] Pellonpää | Complete characterization of extreme quantum observables in infinite dimensions[END_REF][START_REF] Heinosaari | Canonical phase measurement is pure[END_REF]. This raises the question why the structure of quantum mechanics is different as compared to general probabilistic no-signaling theories -a question that was also considered previously in a different context [START_REF] Kleinmann | Quantum Correlations Are Stronger Than All Nonsignaling Correlations Produced by n-Outcome Measurements[END_REF]. There the authors demonstrated that there are quantum correlations which cannot be obtained in terms of no-signaling correlations with fewer outcomes.

Hence, with the present work we provide the first characterization of the set of nosignaling correlations in an infinite dimensional measurement setting. In this regime, where efficient tools, such as semi-definite programming, do no longer apply, the characterization of correlations is a usually much harder task, as compared to finite dimensional situations. Our findings might thus prove useful for future investigations such as the derivation of novel Bell inequalities that account for measurements with continuous outcomes and allow for a violation within quantum mechanics in the bipartite scenario.

The first line of inquiry that we would like to pursue is to prove (or disprove) Conjecture 1. One way to prove this conjecture would be to prove that limiting behaviors are always not extreme as the simple example presented suggests. It might also require more sophisticated mathematical tools. In parallel, future work could involve extending these results to different scenarios. In particular we could consider Bell scenarios with more settings or more parties. In the case of a finite number of outcomes, we know, because the constraints involved are linear, that the local and no signaling sets are poly-III. Quantum and postquantum non locality topes and have a finite number of vertices. It might certainly be possible to generalize those vertices to a setup with an infinite number of outcomes in the same way that we introduced a continuous variable version of the PR boxes. These boxes could then be used to demonstrate a similar result as Theorem 7. The proof of Theorem 7 is constructive, and does not particularly rely on the expression of the no-signaling vertices, but rather on showing that it is always possible to find a sequence with a finite number of outcomes that converges towards the behavior that we want to approximate. Thus, it should be possible to prove a similar result for scenarios with an infinite number of outcomes but more parties and measurement settings.

In this Chapter we study another fundamental properties of quantum mechanics: contextuality. The concept of (non)contextuality is first introduced by explaining the notion of compatible observables. We then discuss a few proofs of the contextual nature of quantum mechanics and in particular the Peres-Mermin square as an example of state independent proof of non-contextuality. Further on, we discuss the generalization of the Peres-Mermin scenario to Hilbert spaces of arbitrary dimension and demonstrate our findings through examples, including the case of modular variables.

IV.1. Introduction to contexuality

IV.1.1. Compatible observables and contexuality

We have seen in Chapter II that quantum mechanics has an intrinsic random character: when a measurement is perfomed on a system, the measurement result is distributed according to the Born rule. As seen in Chapter III, a core result by Bell states that no local hidden variable model can reproduce the predictions of quantum mechanics [START_REF] Bell | On the Einstein Podolsky Rosen Paradox[END_REF]. When looking at local hidden variable models we are interested in observables that are defined on (possibly space like) separated systems. This assumption, when deriving the concept of hidden variable model seemed logical: we don't want interactions explaining the correlations between the measurements.

Observables defined on separated systems are just a special case of a more general class of observables: commuting observables. Commuting observables have peculiar properties. For example, they can be jointly measured together. Moreover, if we measure sequentially a set of commuting observables we will observe that they do not disturb each other: a sequence of measurements of compatible observables will always yield the same result for the same observable. For these reasons we call commuting observables compatible observables. A set of such compatible observables defines what we call a context. Given a system in a certain state, we can measure it with different sets of commuting observables defining different contexts. In general, a given observable can belong to more than one context.

In a non-contextual theory, the result of a measurement ν(A) depends only on the state of the system and the observable A being measured. Additionally, measurement outcomes can depend on some (possibly hidden) variable λ describing the state of the system. If one knows λ, then one can predict the outcome of any measurement: we can thus say that measurement outcomes are pre-determined. This corresponds to the classical view in which every system is in a well defined state. In particular, in a noncontextual theory measurement outcomes do not depend on the compatible observables that are measured together with A: the context. Clearly, because a Bell experiment is a particular case of a contexuality test where observables are compatible because they are performed on spatially separated systems, quantum mechanics is contextual.

IV.1.2. Contexuality of quantum mechanics

To prove that quantum mechanics is contextual we suppose that we are given a hidden variable model. For a given value of the hidden variable λ ∈ Λ, the values of all the observables are pre-determined. We denote the pre-determined value of observable A by ν(A). In a hidden variable model this value is always pre-determined and is only revealed by a measurement. In particular, the value of the observable does not depend on the measurement.

In particular, if we consider an observable that is given by a projector P , we have ν(P ) ∈ {0, 1}. This value represents the classical intuition that the system is in the state represented by P or not. For a given set of orthogonal projectors P 1 , . . . , P n corresponding to a decomposition of the identity n P n = 1, we must have

n ν(P n ) = 1. (IV.1)
This condition ensures that the system is always in one state for all possible descriptions, corresponding to different decompositions of the identity.

To prove that quantum mechanics is contextual, the idea is to find well chosen sets of projectors so that it is impossible to assign a definite value to each of the projectors. Usually we represent such a set of projectors (or vectors with the identification |v i → P i = |v i v i |) by a graph or Kochen-Specker diagram. In this graph the vertices correspond to vectors and two vertices are connected by an edge if the corresponding vectors are orthogonal. In this representation, two vertices connected by an edge correspond to two observables that are compatible. A set of vertices that are all linked to each other (a clique in graph terminology) defines a context.

The initial argument by Kochen-Specker to show the contextuality of quantum mechanics used a set of 117 vectors in a 3-dimensional space [START_REF] Kochen | The Problem of Hidden Variables in Quantum Mechanics[END_REF]. Since then many attempts have been made to find simpler proofs. The contextuality of quantum mechanics was proved for a particular state and a Hilbert space of dimension 4 by Peres [START_REF] Peres | Incompatible results of quantum measurements[END_REF]. Mermin showed that this argument could be recast to find a state independent proof of contextuality [START_REF] Mermin | Simple unified form for the major no-hiddenvariables theorems[END_REF].

It is possible to find a simple proof of the contextuality of quantum mechanics by considering a set of eighteen vectors in a four dimensional space [START_REF] Cabello | Bell-Kochen-Specker theorem: A proof with 18 vectors[END_REF]. This set of eighteen vectors can be grouped into nine sets of four orthogonal projectors represented by colored edges in Fig. IV.1(a). Note that a given projector belongs to two different sets. A set corresponds to four compatibles observables and defines a context. In a non-contextual theory, for a given state, we want to assign a pre-determined outcome to each of these projectors, corresponding to the measurement result that we would get if we measured the corresponding observable. To satisfy the constraint (IV.1), we have to do this in such a way that in a set of orthogonal vectors only one of them is assigned the value 1.

Examples of such pre-determined outcomes are represented in Fig. IV.1(b) by black dots covering the vertices of some projectors. It is easily observed that it is impossible to assign one and only one pre-determined outcome to each of the observable. This contradiction demonstrates the contextual nature of quantum mechanics.
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IV.1.3. Non-contextuality inequalities

Arguments such as the ones presented in the preceding paragraph are particularly beautiful. It is easy to see the impossibility of non-contextual assignment of values for each observable. In many cases however it is difficult to find such a set of vectors in a systematic way. Therefore, other methods have been developed to demonstrate the contextual nature of quantum mechanics and turn it into an experimentally testable property. One of them is to derive non-contextuality inequalities.

One way to derive non-contextuality inequalities is to use graphs to bound the expectation value of the sum of the projectors [START_REF] Cabello | Graph-Theoretic Approach to Quantum Correlations[END_REF][START_REF] Cabello | Simple Hardy-Like Proof of Quantum Contextuality[END_REF]. In particular, given a graph G, a non-contextual hidden variable model will satisfy the inequality:

i P i ≤ α(G), (IV.2)
where α(G) is the independence number of the graph G (i.e. the maximum number of vertices that are not connected to each other). On the contrary, the quantum expectation value, for a system in state |ψ is given by:

i P i = i | v i |ψ | 2 . (IV.3)
The maximum of this quantity is known as the Lovasz function of the graph [START_REF] Lovasz | On the Shannon capacity of a graph[END_REF], and is often denoted ϑ(G). For a given graph, we have in general that:

i P i ≤ α(G) ≤ ϑ(G). (IV.4)
Graphs that can be used to derive (useful) non-contextuality inequalities are those for which α(G) < ϑ(G). (IV.5)

This inequality can be violated up to √ 5 -2 ≈ 0.236 for the state |ψ = (1, 0, 0) and vectors |v i = (cos(θ), sin(θ) cos(i4π/5), sin(θ) sin(i4π/5) for i ∈ {0, . . . , 4} and cos 2 (θ) = cos(π/5)/(1 + cos(π/5)).

As a final comment, let us note that it is also possible to show the contextual nature of quantum mechanics through logical contradictions with the existence of non-contextual models [START_REF] Cabello | Simple Hardy-Like Proof of Quantum Contextuality[END_REF][START_REF] Sohbi | Logical and inequality-based contextuality for qudits[END_REF].

IV.1.4. Experimental demonstrations and possible applications

Contextuality inequalities are particularly attractive from an experimental point of view, and have been experimentally tested with trapped ions [START_REF] Kirchmair | Stateindependent experimental test of quantum contextuality[END_REF], nuclear spin ensembles [START_REF] Moussa | Testing Contextuality on Quantum Ensembles with One Clean Qubit[END_REF] and photons [D'Ambrosio13, Amselem12, Amselem09]. All of these experiments have been done using a state independent non-contextuality inequality known as the Peres-Mermin square that we will describe below. We want to stress that contrary to experimental tests of Bell inequality these experimental demonstrations are inevitably subject to loopholes. Indeed, when testing contextual inequality, we are performing a sequence of measurements on the same system. It is thus possible that the interaction with one measurement apparatus disturbs the state of the system and so subsequent measurement results. It is thus possible to find classical models explaining the violation of contextuality inequalities [La Cour09].

Nevertheless, if one believes in quantum mechanics, contextuality has been proven to be a useful resource for several tasks. For example it has been proven that contextu-ality (in a state dependent formulation) is a critical resource for quantum computing [START_REF] Raussendorf | Contextuality in measurement-based quantum computation[END_REF][START_REF] Veitch | Negative quasiprobability as a resource for quantum computation[END_REF][START_REF] Howard | Contextuality supplies the magic for quantum computation[END_REF]. In these papers it is proven that states that can be used for quantum computation within the framework of magic state distillation are contextual1 . Contextuality has also been identified as a resource for cryptographic applications [START_REF] Spekkens | Preparation Contextuality Powers Parity-Oblivious Multiplexing[END_REF]. Lastly we want to mention that it is also possible to use noncontextuality as a dimension witness [START_REF] Gühne | Bounding the quantum dimension with contextuality[END_REF]. This result is based on the observation that certain inequalities cannot be violated by systems living in Hilbert space of too small dimension (one can always find a hidden variable model for systems of dimension two for example).

IV.2. State independent non-contextuality

We have just seen with the KCBS example that it is possible to derive non-contextuality inequality. This inequality is very similar to the CHSH inequality that we saw in Chapter III: it is violated by some specific quantum states. Those sates demonstrate the contextual nature of quantum mechanics. As we will now see, contextuality displays a very peculiar feature in that we can find inequalities which are violated by all quantum states.

IV.2.1. The Peres-Mermin square

There have been several derivations of state independent non-contextuality inequalities (i .e., that can be violated by any state if non-contextuality does not hold) [START_REF] Cabello | Experimentally Testable State-Independent Quantum Contextuality[END_REF][START_REF] Kleinmann | Optimal Inequalities for State-Independent Contextuality[END_REF][START_REF] Yu | State-Independent Proof of Kochen-Specker Theorem with 13 Rays[END_REF]. Here we focus on a particularly simple example derived from the so-called Peres-Mermin square (PMS) [START_REF] Mermin | Simple unified form for the major no-hiddenvariables theorems[END_REF].

Classical:

Quantum: In order to recall the principles of the PMS, let us consider a set of nine dichotomic observables {A jk }, i, j = 1, 2, 3 as depicted in Fig. IV.3(left). The observables are chosen in such a way that they are compatible when they share a common subscript. It is thus possible to measure the products of observables in the same row or in the same column. From these measurements one can construct the following quantity:

A ij j = 1 j = 2 j = 3 i = 1 ˆ x ⌦ 1 1⌦ ˆ x ˆ x ⌦ ˆ x i = 2 1 ⌦ ˆ z ˆ z ⌦ 1 ˆ z ⌦ ˆ z i = 3 ˆ x ⌦ ˆ z ˆ z ⌦ ˆ x ˆ y ⌦ ˆ y A jk k = 1 k = 2 k = 3 j = 1 A 11 A 12 A 13 j = 2 A 21 A 22 A 23 j = 3 A 31 A 32 A 33
X = A 11 A 12 A 13 + A 21 A 22 A 23 + A 31 A 32 A 33 (IV.6) + A 11 A 21 A 31 + A 12 A 22 A 32 -A 13 A 23 A 33 .
In a non-contextual theory, for each state, all of these observables are assigned predetermined values -1 or 1. One can show, by testing every possible combination of outcomes for the {A jk }, that the maximum value of X is 4 in a non-contextual theory [START_REF] Cabello | Experimentally Testable State-Independent Quantum Contextuality[END_REF].

In contrast, in quantum mechanics, the observables {A ij } are given by hermitian operators with a binary spectrum. We now consider the particular case represented in Fig. IV.3(right) where observables are given by a product of Pauli operators. A simple calculation shows that the observables in the same row or column are mutually commuting (compatible). However, because the product of operators along each row or column is 1, except for the last row where it is -1, one finds that for every quantum state the expectation value of (IV.6) is given by X QM = 6. This particular example thus violates the classical bound of 4. This proves that measurement outcomes predicted by quantum mechanics can not be reproduced by a non-contextual model. Moreover, this violation holds independently of what state the system is prepared in. In particular, even "classical" states such as the maximally mixed state display some non-classical features. This shows that contextuality is a fundamental property of quantum mechanics, intimately linked to its mathematical foundations.

Even though the study of contextuality was originally focused on discrete variable systems, such as qubits and qudits, it is also possible to find state independent noncontextuality inequalities for continuous variables in the PMS [START_REF] Plastino | State-independent quantum contextuality for continuous variables[END_REF][START_REF] Asadian | Contextuality in Phase Space[END_REF]. In this case, one notes that the operators used to derive the inequalities have a bounded spectrum. This last property ensures that their expectation values can be expressed as the ones of dichotomic observables defined in an extended space [START_REF] Horodecki | Mean of continuous variables observable via measurement on a single qubit[END_REF]. The bounded observables used in [START_REF] Plastino | State-independent quantum contextuality for continuous variables[END_REF][START_REF] Asadian | Contextuality in Phase Space[END_REF] can be obtained by measuring bounded functions of observables with an arbitrary spectrum, as considered in the protocols described in [START_REF] Asadian | Contextuality in Phase Space[END_REF] and [START_REF] Plastino | State-independent quantum contextuality for continuous variables[END_REF]. Similar techniques were used in [START_REF] Ketterer | Testing the Clauser-Horne-Shimony-Holt inequality using observables with arbitrary spectrum[END_REF][START_REF] Arora | Proposal for a macroscopic test of local realism with phase-space measurements[END_REF] to test Bell inequalities, which is a particular case of non-contextuality inequalities where, in addition, locality is enforced. Ruling out local realism in experiments requires satisfying more stringent constraints that are not necessary to prove the contextuality of quantum mechanics per se. As shown above, the contextuality of quantum mechanics can be proven, in principle, by measuring well chosen observables, independently of the system's particular state [START_REF] Badziąg | Universality of State-Independent Violation of Correlation Inequalities for Noncontextual Theories[END_REF]. It is thus of interest to characterize what general properties observables must have for testing contextuality and to maximally violate experimentally testable non-contextuality inequalities.

So far, the contextuality of quantum mechanics has been shown for specific observables defined by continuous or discrete variables. In addition, according to the considered case, the border between contextual and non-contextual theories varies. It is natural to seek to identify the common features of the existing results and try to formalize the general conditions quantum observables must fulfill in order to demonstrate state independent contextuality irrespectively of their dimensionality. Such understanding would potentially enable the state independent test of this essential property of quantum mechanics in any quantum system. In other words, what are the common/distinctive properties and features of non-contextuality inequalities? How can one build a suitable inequality from arbitrary observables permitting the demonstration of state independent contextuality in quantum mechanics? IV.2.2. Peres-Mermin square for arbitrary unitary operators IV.2.2.1. Classical limit Here we study these questions in the PMS approach, which is, as mentioned, a particularly experimentally attractive formulation of the Kochen-Specker theorem. Using the PMS we can prove that the non-contextuality inequality To this end, we show that it is possible to obtain a generalized version of the PMS using complex functions (continuous or discrete) of modulus one instead of the above real binary observables A ij . We will see that these observables lead to inequalities involving measurements of the real and imaginary part of such functions. Typically, in quantum mechanics it can correspond to the modular part of the position and momentum operator as we will see later. Enlightening results that will be used here as a guideline were obtained by Asadian et al. [START_REF] Asadian | Contextuality in Phase Space[END_REF], where the particular case of contextuality tests using phase space displacements operators was studied. There, the authors obtain many interesting conditions and constraints for testing contextuality using displacement operators that can be well understood in the light of the general framework we devise here.

X = A 11 A 12 A 13 + A 21 A 22 A 23 + A 31 A 32 A 33 + A 11 A 21 A 31 + A 12 A 22 A 32 -A 13 A 23 A 33 ≤

Classical:

Quantum: To derive a non-contextuality inequality from observable of modulus one, we consider that the quantities inside the PMS are no longer binary observables but rather a complex quantity

Ûij j = 1 j = 2 j = 3 i = 1 Û † 1 ⌦ 1 1⌦ Û † 1 Û1 ⌦ Û1 i = 2 1 ⌦ Û † 2 Û † 2 ⌦ 1 Û2 ⌦ Û2 i = 3 Û1 ⌦ Û2 Û2 ⌦ Û1 Û3 ⌦ Û3 U ij k = 1 k = 2 k = 3 j = 1 U 11 U 12 U 13 j = 2 U 21 U 22 U 23 j = 3 U 31 U 32 U 33
U ij = A R ij + iA I ij , with |A R ij | 2 + |A I ij | 2 = 1
, where R and I denote the real and imaginary parts, respectively. Similarly we suppose that observables sharing a common subscript are compatibles. In quantum mechanics the complex functions U ij become unitary operators Ûij that we chose to define on a bipartite system as illustrated in Fig. IV.4(right). For the sake of clarity, we used here a similar reasoning and notation as the one in [START_REF] Asadian | Contextuality in Phase Space[END_REF], with the important difference that while [START_REF] Asadian | Contextuality in Phase Space[END_REF] was restricted to the specific case of displacement operators, here we consider that operators Ûj can be arbitrary unitaries defined in a Hilbert space of arbitrary dimension. The description made so far is general and encompasses both the case of displacement operators and the original Peres-Mermin square with Pauli operators as particular cases.

By multiplying the rows and columns of the classical Peres-Mermin square in Fig. IV.4(left), we are left with a quantity involving complex functions. It can be transformed in a real quantity by taking its real or imaginary parts. We will consider here its real part:

Re(X) = R 1 + R 2 + R 3 + C 1 + C 2 -C 3 , (IV.8)
where R i and C j denote the real parts of a product of operators contained in a row or a column respectively. This quantity can be expressed in terms of the real and imaginary part of the complex function U ij , yielding:

R i = (A R i1 A R i2 -A I i1 A I i2 )A R i3 -(A I i1 A R i2 + A R i1 A I i2 )A I i3 , (IV.9) C j = (A R 1j A R 2j -A I 1j A I 2j )A R 3j -(A I 1j A R 2j + A R 1j A I 2j )A I 3j .
(IV.10)

In order to derive the classical bound on the quantity (IV.8), we assign to each quantity A R ij and A I ij a deterministic outcome with value in [-1, 1]. In this case, the quantity R i and C j take values between -2 and 2 and it is easy to show that we can reach the algebraic maximum 12 of quantity (IV.8). This maximum value is much higher than the quantum bound of 6.

To recover a lower classical bound we need to enforce additional constraints. In particular, we use the fact that the complex functions U ij are of modulus one. To see that no deterministic assignment of complex quantities of modulus one can reach the quantum bound we associate to each quantity A ij a number a ij through A ij = e iπa ij . It yields for the quantity X : X =e iπ(a 11 +a 12 +a 13 ) + e iπ(a 21 +a 22 +a 23 ) + e iπ(a 31 +a 32 +a 33 ) + e iπ(a 11 +a 21 +a 31 ) + e iπ(a 12 +a 22 +a 32 )e iπ(a 13 +a 23 +a 33 ) .

(IV.11)

This quantity is clearly bounded by 6 in absolute value. Moreover, to get the value 6, we must have that:

3 i=1 a ij = 0 mod 2, ∀j and 
3 j=1
a ij = 0 mod 2, ∀i, (IV.12) except for j = 3 where we must have 3 i=1 a i3 = 1 mod 2. By summing over rows and columns, we see that in one case the sum over all a ij must be equal to zero modulo two and in the other case it must be equal to one. Because of this contradiction and since X is continuous with respect to a ij it is clear that (IV.8) must be bounded by a value strictly smaller than 6.

This analysis can be carried out mathematically, and in [START_REF] Plastino | State-independent quantum contextuality for continuous variables[END_REF] it was proven that for non-contextual theories where the condition

(A R ij ) 2 + (A I ij ) 2 ≤ 1 is assumed, Re(X) ≤ 3 √ 3.
This condition is indeed realized in quantum mechanics when we consider unitary operators. This constraint imposes however some additional assumptions on the observables contained in Eq. (IV.8) which open a loophole that might be exploited to fake the violation of the classical bound 3 √ 3. In fact, it is not necessary to assume that (A R ij ) 2 + (A I ij ) 2 ≤ 1. Indeed, it has been proven in [START_REF] Asadian | Contextuality in Phase Space[END_REF] that one can also probe contextuality for continuous variables without any assumptions, albeit with a slightly modified inequality. There they proved that the quantity

Re(X) (aux) = Re(X) -λ ij |(A R ij ) 2 + (A I ij ) 2 -1|, (IV.13)
is bounded by 3 √ 3 for λ ≥ 2. The term with λ as a factor "punishes" observables that do not respect the normalization condition, and so a violation of the non-contextual bound can only be explained because the theory is contextual.

IV.2.2.2. Quantum violation

We now move to the quantum description of the PMS using unitary operators. Unitary operators are, in general, not observables, but can be measured in terms of their real and imaginary Hermitian parts, ÂR ij and ÂI ij , which are observables. In the following lemma we show that these observables will maximally violate the non-contextuality inequality Re( X) ≤ 3 if the unitary operators obey specific commutation and anti-commutation relations.

Lemma 1 (Maximal state-independent contextuality). The operators Û1 , Û2 and Û3 will lead to a state independent maximal violation of the non-contextual bound if and only if they satisfy the following commutation and anti-commutation relations:

[ Ûi , Ûj ] = ±2i ijk Û † k , (IV.14) { Ûi , Ûj } = 2δ ij Û 2 i , (IV.15)
where ijk is the Levi-Civita symbol.

Proof. From the PMS in Fig. IV.4(right), we can see that, in order to maximally violate the non-contextual bound, the product of the three operators in each row and column must be 1 except in the last column where it must be -1. Also, unitaries in the same row or column must be compatible, leading to the constraints on the commutator [ Û1 , Û3 ] = 0 or on the anti-commutator { Û1 , Û3 } = 0 and the same for Û2 and Û3 . These conditions cannot be verified at the same time, and the only possibility to obtain a state independent maximal violation of the non-contextual bound is to enforce { Û1 , Û3 } = 0 and { Û2 , Û3 } = 0. All the above ingredients combined lead to the following conditions for maximal violation of non-contextuality inequalities based on the PMS: Û1 Û2 Û3 = ±i1 and Û2 Û1 Û3 = ∓i1, which are equivalent to:

±i Û † 2 Û † 1 = Û3 , (IV.16) { Û1 , Û2 } = 0. (IV.17)
From the conditions (IV.16) and (IV.17) we see that for state independent maximal violation of the PM inequality the operators U 1 and U 2 must be anti-commuting and that they completely determine the operator U 3 that completes the set. Thus, if the unitary operators in the PMS fulfill the commutation relations (IV.14) and (IV.15) the expectation (IV.8) maximally violates the non-contextuality inequality with Re(X) = 6, for all states ρ.

The conditions (IV.14) and (IV.15) are general, and to our knowledge, have not been established so far. Previous results showing the possibility of violation of the noncontextuality inequalities are particular cases obeying these conditions. Examples are state independent contextuality using two-level systems [START_REF] Cabello | Experimentally Testable State-Independent Quantum Contextuality[END_REF] and displacement operators [START_REF] Asadian | Contextuality in Phase Space[END_REF].

We now go a step further beyond the relations (IV.14) and (IV.15), and answer the following question: given a unitary operator Û1 , what are the necessary and sufficient conditions for finding two other operators Û2 and Û3 so that (IV.14) and (IV.15) are satisfied and thus lead to a maximal violation of noncontextuality inequalities derived from the Peres-Mermin square? The answer to this question is addressed to by the following result:

Theorem 9 (Anti-commutation of unitary operators). A unitary operator Û1 , acting on a Hilbert space H, admits an anti-commuting partner if and only if for each eigenvalue λ of Û1 , we find a corresponding eigenvalue -λ whose eigenspace has the same dimension K as the one of λ.

Proof. To prove the above statement we assume first that Û1 fulfills the above condition on the spectrum and prove that it admits an anti-commuting partner. We restrict ourselves here to a proof in the finite dimensional case. Let's define the set of eigenvalues of Û1 as {λ 1 , . . . , λ k , -λ 1 , . . . , -λ k }, and the set of eigenvectors associated to each of the eigenvalues ±λ i as {|e ± i,j }, with possible degeneracy j ∈ {1, . . . , K i }. Since Û1 is a unitary operator, we know that the set of eigenvectors {|e ± i,j } represents an orthonormal basis of the Hilbert space. Further on, we define an operator Û2 through:

Û2 |e ± i,j = λ i |e ∓ i,j
, where λ i are arbitrary complex numbers with absolute value 1, which maps an orthonormal basis to another orthonormal basis thus providing a unitary operator. A simple calculation yields:

( Û1 Û2 + Û2 Û1 ) |e ± i,j = λ i Û1 |e ∓ i,j ± λ i Û2 |e ± i,j = ∓λ i λ i |e ∓ i,j ± λ i λ i |e ∓ i,j = 0. (IV.18)
showing that Û1 and Û2 are anti-commuting.

To prove the converse statement let's assume that we have two unitary operators Û1 and Û2 satisfying { Û1 , Û2 } = 0. We denote by λ an eigenvalue of Û1 with the corresponding eigenvectors |{e i } , where i = 1 . . . K. Using the anti-commutation relation we can prove that Û2 |e i is an eigenvector of Û1 with eigenvalue -λ:

( Û1 Û2 + Û2 Û1 ) |e i = Û1 Û2 |e i + Û2 λ |e i . (IV.19) Hence: {U 1 , U 2 } = 0 ⇒ Û1 Û2 |e i = -λ Û2 |e i . (IV.20)
Since {|e i } is an orthonormal set and Û2 is a unitary operator, { Û2 |e i } is also an orthonormal set, which proves that -λ is an eigenvalue of Û1 of dimension larger or equal to K. The same reasoning applied to the set of eigenvectors of Û1 with eigenvalue -λ to show that the dimension of the eigenspace associated to λ is higher or equal to the dimension of the eigenspace associated to -λ and thus equal.

Note that the above theorem must hold for all unitary operators in the PMS, Û1 , Û2 and Û3 . As a consequence of the previous lemma and theorem, we find the following characterization of the operators contained in the PMS:

Corollary 2 (Structure of anti-commuting operators). Unitary operators Û1 , Û2 and Û3 , which lead to a state-independent maximal violation of the Peres-Mermin inequality, can be expressed in some basis as:

Û1 = N i=1 λ i σ(i) z (IV.21) Û2 = N i=1 λ i σ(i) x , (IV.22) Û3 = ± N i=1 (λ i λ i ) * σ(i) y , (IV.23)
where ±λ i are the eigenvalues of Û1 , σ(i) z = K i j=1 σz is a direct sum of Pauli operators acting on the eigenspace associated to the eigenvalue ±λ i with degeneracy K i , and N is an arbitrary, possibly infinite, integer value that is smaller than the Hilbert space dimension.

σ(i) x = K i j=1 σx and σ(i) y = K i j=1 σy are defined similarly.

Proof. An operator that fulfills the above theorem can be expressed in some basis as a direct sum:

Û1 = N i=1 λ i σ(i) z . (IV.24)
where ±λ i are the eigenvalues of Û1 . Let us denote by |e ± i,j the eigenvectors associated to ±λ i . As shown before, Û2 |e ± i,j is an eigenvector of Û1 with eigenvalue ∓λ i and so the only non zero elements of Û2 are e ± i,j | Û2 |e ∓ i,j = λ i . From this it follows directly that Û2 can be expressed in the following form:

Û2 = N i=1 λ i σ (i)
x , (IV.25) where σ(i)

x = K i
j=1 σx is a direct sum of Pauli operators defined on the same two dimensional space as σz . Finally, we can simply use Eq. (IV.17) to calculate

Û3 = ± N i=1 (λ i λ i ) * σ(i) y . (IV.26)
Note that, consequently, the diagonalization of a set of unitary operators, Û1 , Û2 and Û3 , which leads to a state-independent violation of the Peres-Mermin inequality, will always yield the same binary form, as shown in Eq. (IV.21). This shows that maximal state-independent contextuality in the PMS is a very peculiar property related to the spectrum of operators whose spectral decomposition, continuous or discrete, can be written in terms of finite or infinite direct sums of Pauli matrices weighted by complex numbers of modulus one.

IV.2.3. State independent violation of contextuality

We will now study some examples of operators satisfying the presented conditions and show how they relate to the known Peres-Mermin scenario. In this respect, we will first focus on the finite dimensional case and show how to demonstrate state-independent contextuality in terms of spin systems. Subsequently, we turn to the case of infinite dimensional Hilbert spaces for which we discuss two prominent examples of unitary operators that allow to rule out non-contextuality.

IV.2.3.1. Finite dimensional case

The decompositions (IV.21) and (IV.22) reveal the binary structure of the spectrum of the unitary operators Ûi , with i = 1, 2, 3, which is at the heart of a maximal violation of the Peres-Mermin non-contextuality inequality for finite N . Thus, state independent maximal violation of contextuality in a Peres-Mermin scenario is only possible in a Hilbert space of even dimension and formed by two parties which are themselves also of even dimension. In [START_REF] Asadian | Contextuality in Phase Space[END_REF], the authors reached a similar conclusion for the case of discrete displacements in phase space. Thanks to the generality of the conditions obtained here, we can analyze in a more detailed way a scenario containing measurements of finite discrete dimensional quantum systems, so-called qudits.

To begin with let's consider the simplest case of qubit measurements, corresponding to N = 1 in Eq. (IV.21) and (IV.22), for which we recover the Peres-Mermin scenario discussed in Sec. IV.2.1 with the Peres-Mermin squares depicted in Fig. IV.3. When moving to higher dimensional systems, for instance, a pair of spin S particles, contextuality can be demonstrated using the following rotation operators:

R1 = e i Ŝxt1 , R2 = e i Ŝyt2 , R3 = e i Ŝzt3 , (IV.27)
where Ŝx , Ŝy and Ŝz are the three vector components of the spin S operator Ŝ, generating the group SU(2) of all unitary rotations in a d = 2S + 1 dimensional Hilbert space. In order to build a Peres-Mermin square, one must choose t 1 , t 2 and t 3 such that R 1 , R 2 and R 3 verify (IV.21). The matrix elements of the z-component of Ŝ read (S z ) ab = (S + 1b)δ a,b , and the eigenvalues of R 1 are exp(i(S + 1b)t 1 ), for b = 1, . . . , d -1. Hence, conditions (IV.21) and (IV.22) are only satisfied if t 3 = π and, since S x and S y are unitarily equivalent to S z , if t 1 = t 2 = π. In this case, R 1 , R 2 and R 3 lead to a maximal violation of the Peres-Mermin inequality in terms of rotations of half-integer spins, generalizing the qubit case.

IV.2.3.2. Infinite dimensional case

In this Section we study observables which are defined in infinite dimensional Hilbert spaces. We start by the famous photon-number parity operator and later on turn to the case of modular variable measurements. The latter provides an example of a contextuality test involving measurements of observables with continuous outcomes.

Measurements of the photon-number parity For instance, if one considers the Hilbert space of a single mode of the electromagnetic field spanned by the single mode Fock basis {|n |n = 0, 1, . . . , ∞}, one can define the photon number parity operator as P = (-1) n, where n is the photon number operator fulfilling n |n = n |n . The parity operator has two eigenvalues ±1 which are both infinitely degenerate and thus can be expressed as in Eq. (IV.21) with N = 1, λ 1 = 1 and K 1 = ∞. To see this, we write it in the Fock basis P = ∞ n=0 |2n 2n| -|2n + 1 2n + 1| which is equivalent to ∞ j=1 σz and thus to Eq. (IV.21). According to Eqs. (IV.22) we can define two anti-commuting partners of the parity operator P = Pz , which read:

Px = ∞ j=1 σx , (IV.28) Py = ∞ j=1
σy .

(IV.29)

These kinds of parity-pseudospin operators were also used to show that the EPR state can lead to a maximal violation of nonlocality in terms of the CHSH inequality [START_REF] Chen | Maximal Violation of Bell's Inequalities for Continuous Variable Systems[END_REF]. Since they are hermitian and form a real Pauli algebra one can consider the present case as an application of the ordinary PMS for qubits (see Fig.

IV.4(right)) to Hilbert spaces of infinite dimensions. In the following, we will discuss an example where this is not the case since the considered unitary operators do not form a real Pauli algebra.

Measurements of modular variables

We can use the results of Sec. IV.2.2.2 to demonstrate state independent contextuality for measurements of observables with continuous spectrum. In particular, we want to formulate a contextuality test that involves measurements of modular variables, as used previously for the demonstration of Bell nonlocality and state-independent contextuality [Plastino10, Asadian15, Ketterer15, Arora15, Massar01]. A suitable way of doing so is by using the eigenbasis of the modular position and momentum operators and the formalism developed in [START_REF] Ketterer | Quantum information processing in phase space: A modular variables approach[END_REF] that we introduced in Chapter II. We start by considering the logical Pauli operations (II.124a), (II.124b) and (II.124c) which are equal to three displacement operators and have the following modular repre-IV. Contextuality sentation:

Ẑ = e i2πx/ = /4 -/4 dx π/ -π/ dpe 2πix/ σz (x, p), (IV.30a) X = e -ip /2 = /4 -/4 dx π/ -π/
dpe -ip /2 σx (x, p), (IV.30b)

Ŷ = e -2πix/ +ip /2 = /4 -/4 dx π/ -π/ dpe ip /2-2πix/ σy (x, p). (IV.30c)
It is easy to verify that displacement operators defined by Eqs. (IV.30a), (IV.30b) and (IV.30c) satisfy the relations (IV.14) and (IV.15) and thus lead to a maximal stateindependent violation of the Peres-Mermin inequality. For example, we have:

e i2πx/ , e -ip /2 = /4 -/4 dxdx π/ -π/ dpdp e 2πix/ e -ip /2 σz (x, p), σx (x , p ) = /4 -/4 dx π/ -π/ dpe 2πix/ -ip /2 2iσ y (x, p) =2ie -2πx/ +ip /2 , (IV.31)
and:

e i2πx/ , e -ip /2 = /4 -/4 dxdx π/ -π/
dpdp e 2πix/ e -ip /2 {σ z ( A similar result has been obtained in [START_REF] Asadian | Contextuality in Phase Space[END_REF], where it was shown that for a phase space displacement operator D(α 1 ) = e α 1 â † -α * 1 â, with α 1 = (ν 1 + iµ 1 )/ √ 2, one can always find two other displacement operators D(α 2 ) and D(α 3 ), such that they satisfy the relations (IV.16) and (IV.17). The condition for this to hold is that α 1 , α 2 and α 3 fulfill the relations Im(α i α * j ) = ±π/2 and α 1 + α 2 + α 3 = 0. However, it is the modular representation which allows us to write the displacements (IV.30a), (IV.30b) and (IV.30c), namely those displacements that form a rectangular triangle with area π/2 in phase space, as a continuous superposition of Pauli operators σβ (x, p), with β = x, y, z (see Eqs. (IV.30b), (IV.30c) and (IV.30a)). Hence, we find that Eqs. (IV.30a), (IV.30b) and (IV.30c) are equivalent to the general unitary operators Ûi , with i = 1, 2, 3, defined in Eqs. (IV.21), (IV.22) and (IV.23), with eigenvalues: λ(x, p) = e 2πix/ , (IV.33a) λ (x, p) = e ip /2 , (IV.33b) (λ(x, p)λ (x, p)) * = e ip /2-2πix/ , (IV.33c)
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for Û1 , Û2 and Û3 , respectively. Remember that according to our remarks in Sec. IV.2.2 also -λ(x, p), -λ (x, p) and -(λ(x, p)λ (x, p)) * are eigenvalues of the three unitary operators, respectively. Hence, we find that Û1 , Û2 and Û3 are completely determined by the functions λ(x, p) and λ (x, p). In contrast to the case of the parity operator, here all eigenvalues are nondegenerate, i.e. K(x, p) = 1, and we can read the integrals in Eqs. (IV.30a), (IV.30b) and (IV.30c) equivalently as a continuous direct sum over Pauli matrices σβ , with β = x, y, z, weighted by the functions λ(x, p), λ (x, p) and (λ(x, p)λ (x, p)) * , respectively. Finally, in order to perform a non-contextuality test we have to measure the real and imaginary parts of the displacement e 2πx/ , e -ip /2 and e 2πx/ -ip /2 , according to Eqs. (IV.9) and (IV.10), yielding the modular variables cos (2πx/ ), cos (-ip /2), cos (2πx/ip /2), sin (2πx/ ), sin (-ip /2) and sin (2πx/ip /2).

Each of these modular variables can be measured indirectly by coupling the considered system to an ancilla qubit and measuring the ancilla state. Possible implementations of such measurements using the transverse degrees of freedom of photons, ions or micro-mechanical oscillators have been proposed in [START_REF] Asadian | Contextuality in Phase Space[END_REF][START_REF] Ketterer | Testing the Clauser-Horne-Shimony-Holt inequality using observables with arbitrary spectrum[END_REF][START_REF] Asadian | Probing Macroscopic Realism via Ramsey Correlation Measurements[END_REF]. Sequences of such interferometric measurements can thus be used to measure the correlations contained in Eq. (IV.8).

IV.3. Conclusion

In this Chapter we have studied another fundamental aspect of quantum mechanics: its contextuality. We first recalled the principles of the Peres-Mermin square. We then showed how it is possible to generalize the PMS to systems of arbitrary dimension. Further on, we derived general conditions for an operator to maximally violate non-contextuality inequalities in the Peres-Mermin scenario. A consequence of these results is that it is not possible to maximally violate such inequalities for any state using bipartite systems where one of the systems is in an odd dimensional Hilbert space. Nevertheless, we show how contextuality can be demonstrated using systems of arbitrarily high dimensional subsystems and in continuous variables. In both the discrete and continuous cases we find a characterization in terms of their spectrum of observables that can be used to maximally violate the non-contextual bound in the Peres-Mermin inequality. This characterization allows us to find a natural decomposition of the observables in terms of Pauli matrices. Perspectives of our results are implementation of contextuality tests using a wide range of observables in both the discrete and continuous regime and relating the obtained conditions to the possibility of implementing quantum information protocols with continuous variables. It would also be interesting to see if it is possible to extend this approach to other non-contextuality inequalities.

Future work could involve a study of how the violation of Peres-Mermin inequality is affected by noise. For example, for Bell inequality, it was shown that in realistic scenarios it is important to carefully choose the measurement settings [START_REF] Sohbi | Decoherence effects on the nonlocality of symmetric states[END_REF]. Conversely, if we trust quantum mechanics, because the violation of the inequality is supposed to be state independent, a less than maximal violation can only be due to noise or imperfect compatible measurements. We can thus envision to use a state independent non-contextuality inequality to characterize the noise of some channel or the compatibility of some measurements. More generally, one of the flaws in the derivation of non-contextuality inequalities is that we suppose that measurements have a deterministic outcome. Even in classical theory this assumption is never fulfilled. As such a lot of work has been dedicated to define non-contextuality inequalities which are robust to noise [START_REF] Spekkens | Contextuality for preparations, transformations, and unsharp measurements[END_REF][START_REF] Mazurek | An experimental test of noncontextuality without unphysical idealizations[END_REF].

Another interesting line of inquiry raised during this work is: why is it possible to derive another non-contextuality inequality from the PMS by using complex functions? What makes it special? Indeed, when looking at other non-contextuality inequality or Bell inequality, by replacing observables by complex functions of modulus one, one often recovers the quantum bound.

V. Experimental test of non-locality

The following Chapter is devoted to an investigation of the non-local properties of entangled cat states, made of superpositions of coherent states stored in two spatially separated cavities. We first show how we can derive a Bell inequality using the two mode Wigner function and study its violation in terms of cat amplitude. We then review the experimental procedures to prepare these entangled cat states and measure their Wigner function. Finally we discuss some effects of experimental imperfections, decoherence and finite detuning, through numerical simulation.

V.1. Non-locality test in Cavity Quantum Electrodynamic

We have seen in Chapter III that a system composed of two subsystems can have nonlocal correlations. In this section we will see how it is possible to test non-locality in a setup composed of two cavities using a parity measurement. We will start by introducing the system and then explore the different ways to test non-locality in the considered setup. The basic experimental setup that we will consider throughout this chapter is the one depicted in Fig. V.1. We have two cavities, C 1 and C 2 . In each of this cavity is a field that is described by a quantum state ρ1/2 . In what follows we will identify cavity 1 as belonging to Alice and cavity 2 as belonging to Bob. As discussed in the preceding chapters, the state of the system |ψ composed of the two cavity may very 87 well be entangled: |ψ = |ψ a ⊗ |ψ b . If the system is in a pure state, we know that entanglement is equivalent to non-locality, and that for well chosen measurements, we can demonstrate the non-local nature of this state [START_REF] Gisin | Bell's inequality holds for all non-product states[END_REF].

V.1.1. Introduction R 2 R 1 C 1 C 2 Detector â † 1 , â1 â † 2 , â2
In the system that we are considering, the states of each cavity live in an infinite dimensional Hilbert space. There are several possible strategies available to demonstrate non-locality of state in infinite dimensional spaces. For example, if one uses homodyne detection, which is appealing in a number of experimental setups because of it's high efficiency, one obtains a joint probability distribution p(a, b|θ, φ) where a (b) denotes the outcome of a measurement of the quadrature x θ (x φ ) on cavity 1 (2). The measurement results obtained on both sides are not bounded and can be used to test a true continuous variable Bell inequality such as the inequalities derived by E. G. Cavalcanti et al. discussed in Chapter III. This approach poses two problems. First, it is not possible to perform homodyne detection in the setup that we will consider. Secondly, it was proven that quantum mechanics can only violate the derived inequalities if three or more parties are involved [START_REF] Salles | Bell inequalities from multilinear contractions[END_REF]. The bipartite case can only be violated by post-quantum probability distributions. In the setup that we are considering, there are two cavities corresponding to two parties. One would have to use a continuous Bell inequality for two parties. However, to the best of our knowledge, there is no continuous variable Bell inequality for setups with two parties with quantum violations.

Alternatively, Alice and Bob can test a Bell inequality defined for discrete systems. This can be done by defining a binning procedure and by means of post-processing on a continuous quantity or by measuring a discrete quantity such as the photon number. Experimentally it is much more relevant since one always measures quantities which are binned. In what follows we will explore such strategies for the considered setup.

V.1.2. CHSH inequality

Arguably, the simplest Bell inequality that one can use to demonstrate non-locality is the CHSH inequality (III.5):

B = A 0 B 0 + A 1 B 0 + A 0 B 1 -A 1 B 1 ≤ 2 (V.1)
The CHSH inequality is defined for binary measurements A i and B i with outcomes -1 and 1. Since the system that we are considering lives in an infinite dimensional space, we need to consider measurements which define a dichotomization of the Hilbert space.

A naive way to demonstrate non-locality in this setup is to use precisely the state and measurements that we have used in the demonstration of Bell's theorem. We define a two level system in our infinite dimensional system by considering only the first two Fock states of each cavity |0 and |1 . The maximally entangled state used to violate the CHSH inequality reads:

|ψ = 1 √ 2 (|00 + |11 ), (V.2)
where |00 (|11 ) is the state where there is zero (one) photon in the two cavities. It is a photon number entangled state of the two cavities. One could then violate the CHSH inequality by measuring the Pauli operators A 0 = σx and A 1 = σz and B 0 = (σ x + σz )/ √ 2 and B 1 = (σ zσz )/ √ 2. Although it has been shown that one can prepare a photon number state in one of the cavities using different methods [START_REF] Sayrin | Realtime quantum feedback prepares and stabilizes photon number states[END_REF][START_REF] Domokos | Photon-number-state generation with a single twolevel atom in a cavity: a proposal[END_REF], the preparation of the entangled state (V.2) is much more difficult since it needs to be a coherent superposition in each cavity. It is possible to do so by preparing each cavity in a superposition (|0 + |1 )/ √ 2 using the resonant interaction of an atom with a cavity (see Sec. V.2.2.1). One could then measure the parity of the whole system, projecting the system in the even ((|00 + |11 )/ √ 2) or odd ((|01 + |10 )/ √ 2) eigenstates, depending on the measurement result. Also, it is in principle possible to measure the operators A 0 , A 1 , B 0 and B 1 using the resonant interaction of an atom with a cavity in a Ramsey interferometry setup. This would however require to use two atoms, one for each cavity. It would also requires to use a different coupling regime for the preparation and the measurement.

In the next Section we derive a CHSH inequality that is better adapted to the considered setup. It uses only one atom to prepare and measure the system at the cost of introducing a loophole in the experiment.

V.1.3. A Bell inequality from parity measurement

Another possible approach is to measure directly a binary quantity from which we can test the CHSH inequality. A natural choice of binary measurement is the parity operator P = e iπn , where n = â † â is the photon number operator of the corresponding cavity.

The parity operator has two eigenvalues 1 and -1 corresponding to the space spanned by the Fock states containing an even and odd number of photons, respectively. In order to test the CHSH inequality, we need to define different measurement settings for Alice and Bob. This is done by considering the displaced parity operator:

Π(α) = D(α) P D(-α), (V.3)
where D(α) = D(ν, µ) is the phase space displacement operator with α = (ν + iµ)/ √ 2. Since D is a unitary operator, it does not change the spectrum of the parity operator. Thus Π(α) has a binary spectrum. From the discussion of Chapter III, it follows that any local description of reality should lead to measurements satisfying [START_REF] Banaszek | Testing Quantum Nonlocality in Phase Space[END_REF][START_REF] Jeong | Quantum nonlocality test for continuous-variable states with dichotomic observables[END_REF]:

B = Π(α) ⊗ Π(β) + Π(α) ⊗ Π(β ) + Π(α ) ⊗ Π(β) -Π(α ) ⊗ Π(β ) ≤ 2 (V.4)
Interestingly, it was shown that using the displace parity, one can demonstrate the non-locality of states having a strictly positive Wigner function [START_REF] Chen | Maximal Violation of Bell's Inequalities for Continuous Variable Systems[END_REF].

At this point, we note that the expectation value of the displaced parity operator of a state is directly related to its Wigner function W (α) through: Π(α) = π 2 W (α). Similarly, the expectation value of the tensorial product of two displaced parity operators is related to the two mode Wigner function of the state. This will be of practical importance in the considered setup as we will see that the Wigner function can be directly measured.

V.1.4. Theoretical violation of the CHSH inequality

Before studying the violation of the CHSH inequality, we recall the expression of the single mode cat state introduced in Chapter II:

|cat ± = 1 N α,± (|α ± |-α ), (V.5)
where N α,± = 2 1 ± e -2|α| 2 is a normalization factor and |α a coherent state. Expressed in the Fock basis their expression reads:

|cat + = 2 N α,+ e -|α| 2 /2 ∞ n=0 α 2n (2n)! |2n (V.6a) |cat -= 2 N α,- e -|α| 2 /2 ∞ n=0 α 2n+1 (2n + 1)! |2n + 1 . (V.6b)
The single mode cat states |cat + and |cat -are thus eigenvectors of the parity operator with eigenvalue 1 and -1, respectively. They are thus good candidates to form states that will violate the CHSH inequality. Following this idea, we consider an entangled state of the two cavities of the following form:

|Ψ ± = 1 N Ψ ± |cat + , cat + ± |cat -, cat -, (V.7a) |Φ ± = 1 N Φ ± |cat + , cat -± |cat -, cat + . (V.7b)
The outcome of a measurement of the parity on the first cavity when the system is in state |Ψ + will always be perfectly correlated with the outcome of a measurement of the parity on the second cavity. This state thus exhibits similar properties to that of the maximally entangled state of two qubits with respect to the Pauli operators. We can thus expect to use it to violate the CHSH inequality (V.4) for some sampling points in phase space.

Before investigating the violation of the inequality, it is useful to note that the states (V.7a) and (V.7b) can be re-expressed by a simple expansion as:

|Ψ ± = 1 N Ψ ± (|±α, α + |∓α, -α ) , (V.8a) |Φ ± = 1 N Ψ ± (|±α, -α -|∓α, -α ) . (V.8b)
In what follows we will keep the state under study to be |Ψ + but most of our discussions apply to the three other states. We can get an idea of a clever choice of sampling points by plotting the two modes Wigner function W (α, β). In Chapter III we saw that we can violate the CHSH inequality using a system made of two entangled spins one-half and measurements of Pauli operators. Spin one-half are typical quantum systems for which we expect to see a non-classical behavior. On the other hand, the cat states considered here are made of a superposition of coherent states |α and |-α . When α becomes large, these states capture the idea expressed by Schrödinger [START_REF] Schrödinger | Die gegenwärtige Situation in der Quantenmechanik[END_REF]: a superposition of two macroscopic (classical) objects. They are thus very appealing candidates to test how the quantum properties behave when moving from a microscopic to a macroscopic system, i.e. to explore the boundaries of quantum mechanics.

Cat states are not the only states leading to a violation of the inequality (V.4). It can be violated using the two mode squeezed states |r TMS = √ 1λ 2 ∞ 0 (-λ) n |n a |n b . However the maximum value is 8/3 ( 9 8 ) even in the limit of infinite squeezing [START_REF] Chen | Maximal Violation of Bell's Inequalities for Continuous Variable Systems[END_REF].

V.2. Experimental implementation

The experimental implementation of this Bell test in the context of cavity quantum electrodynamic was extensively discussed in [START_REF] Milman | A proposal to test Bell's inequalities with mesoscopic non-local states in cavity QED[END_REF]. More particularly, Milman et al. In this section we review the most important results concerning the description of the experimental setup presented in [START_REF] Milman | A proposal to test Bell's inequalities with mesoscopic non-local states in cavity QED[END_REF]. One of the key ingredients consists in using atoms to both prepare the cat states and to measure the Wigner function. Thus, after describing the elements of the experimental setup, we introduce some tools that allow us to describe the interaction of an atom with a quantum field. We then review the preparation and measurement procedures and explore the effects of some experimental imperfections, as in [START_REF] Milman | A proposal to test Bell's inequalities with mesoscopic non-local states in cavity QED[END_REF]. At the end of the section, we extend the original analysis performed in [START_REF] Milman | A proposal to test Bell's inequalities with mesoscopic non-local states in cavity QED[END_REF] and show that the effects of the finite detuning can be mitigated, by changing the basis for the measurement of the atom.

V.2.1. Description of the experimental setup

The general setup is sketched in figure. V.1. There are two main elements: circular Rydberg atoms and Fabry-Pérot cavities, that we describe below. For a more detailed description of the setup, we refer to [START_REF] Sayrin | Preparation and stabilisation of a non-classical field in cavity by quantum feedback[END_REF] and [START_REF] Deléglise | Reconstruction of non-classical states of light in cavity quantum electrodynamics[END_REF] V.2.1.1. Circular Rydberg atoms Rydberg atoms are atoms for which the single valence electron has been excited close to the ionization limit [START_REF] Gallagher | Rydberg Atoms. Cambridge Monographs on Atomic[END_REF][START_REF] Hulet | Rydberg Atoms in "Circular" States[END_REF]. Thus, the principal quantum number n is large. Since the valence electron is far from the core, the electric dipole of the atom is very large. This is a desirable property since we will use the atom to manipulate the field of the cavity and the coupling between the field and the atom is proportional to the electric dipole. Circular Rydberg atoms are Rydberg atoms for which the orbital and magnetic m quantum numbers satisfy:

l = |m| = n -1. (V.9)
We denote these states |nC . In the experiment, atoms come out of an oven with velocity ranging from 150m/s to 600m/s. The atoms are prepared in the circular state by laser excitations and radiofrequency transitions [START_REF] Nussenzveig | Preparation of high-principalquantum-number "circular" states of rubidium[END_REF]. The velocity of the atom is then selected by Doppler-resolved optical pumping with a resolution of the order of 4m/s [START_REF] Pinard | Velocity-selective optical pumping and Doppler-free spectroscopy[END_REF][START_REF] Raimond | Manipulating quantum entanglement with atoms and photons in a cavity[END_REF]. The combination of a pulsed preparation and velocity selection allows to know the position of the atom with a ±1mm precision, a crucial condition for the control of the atomic system. For this experiment, it is essential that the atomic beam does not contain more than one atom. The average number of atoms per beam is controlled by the duration of the pulse of the laser used in the preparation procedure. To avoid beams with two atoms, the duration of the pulse must be short, so that an atomic beam should on average contain less than one atom.

The atoms are measured using a field ionization detector. The difference of energy ionization for the state |e and |g allows to discriminate between the two states by using an ionization field whose amplitude varies spatially.

V.2.1.2. Fabry-Pérot cavity

The cavities will interact with two circular Rydberg atoms, one to prepare the state and one to measure it. Since the atoms are used to manipulate the field the cavities must have a decay rate that is small with respect to the coupling strength, corresponding to the strong coupling regime. This is achieved by using superconducting cavities.

The cavities are open Fabry-Pérot resonators [START_REF] Kuhr | Ultrahigh finesse Fabry-Pérot superconducting resonator[END_REF]. They are made of two 50mm diameters niobium mirrors separated by roughly 28mm and with a radius of curvature of the order of 40mm. They sustain a Gaussian TEM 900 mode at frequency w 51, 1GHz. It is possible to choose the regime of the coupling between the atoms and the cavity by tuning the resonance frequency by mechanical translation of the mirror. By coupling the mirror to the classical source S, it is possible to inject a coherent field inside the V. Experimental test of non-locality cavities.

When the atoms cross the cavity horizontally, they are subject to a Gaussian field amplitude E(r) = E(r, z), where r and z are the polar coordinates of the atom, with respect to the center of the cavity:

E(r) = E 0 f (r) = E 0 f T (z)e -r 2 w(z) 2 . (V.10) f T (z)
is the transverse profile of the cavity mode, w(z) is the cavity mode waist of the Gaussian mode:

w(z) = w 0 1 + λz πw 2 0 , (V.11)
with λ = 5.87mm, the wavelength of the field mode and w 0 = 6mm, the cavity mode waist at the center of the cavity.

Cavities can have a lifetime up to T c = 130ms [START_REF] Kuhr | Ultrahigh finesse Fabry-Pérot superconducting resonator[END_REF], much shorter than the time needed for an atom to cross a cavity (120µs for an atom velocity of 100m/s).

V.2.2. Jaynes-Cummings hamiltonian

When an atom is put inside a cavity, it interacts with the field and becomes entangled with it. The atom and the field cannot be described anymore as two separate entities and we must use the so called dressed states to describe the system.

To describe the interaction between an atom and a field, we introduce the creation (σ + ) and annihilation (σ -) operators of atomic excitation, defined as:

σ+ = |e g| , (V.12a) σ-= |g e| . (V.12b)
We also introduce the dipole operator of the atom d:

d = d( a σ-+ * a σ+ ), (V.13)
with d being the dipole matrix element of the atomic transition (assumed to be real without loss of generality) and a describing the atomic transition polarization. The coupling between an atom and a field inside a cavity can be described, in the dipole approximation, by the following Hamiltonian:

Ĥint = -d • Ê Ĥint = -dE(r)( a σ-+ * a σ+ ) • ( â + * â † ), (V.14)
where E, and â (â † ) are the field amplitude, polarization and annihilation (creation) operators, respectively. We now apply the rotating wave approximation (RWA) and neglect terms whose phase vary rapidly in the interaction picture defined from the free Hamiltonian Ĥ0 = Ĥfield + Ĥatom [START_REF] Haroche | Exploring the Quantum: Atoms, Cavities, and Photons[END_REF]. They correspond to terms where both the field and the atom lose an excitation or gain an excitation. It yields:

Ĥint = Ω 0 2 (σ + â + σ- â † ))f (r), (V.15)
with:

Ω 0 = - 2E 0 d a • , (V.16)
and where f (r) = E(r)/E 0 is the spatial mode of the electric field in the cavity (see V.10). Ω 0 , the vacuum Rabi frequency, characterizes the coupling between the atom and the cavity.

The total Hamiltonian of the system, known as the Jaynes-Cummings Hamiltonian, is thus [START_REF] Jaynes | Comparison of quantum and semiclassical radiation theories with application to the beam maser[END_REF]:

Ĥ = w c â † â + 1 2 + w a σz 2 + Ω 0 2 (σ + â + σ- â † )f (r), (V.17)
where w c and w a are the frequency of the cavity and the atom, respectively. In order to diagonalize this Hamiltonian, we note that each subspace {|e, n , |g, n + 1 } is invariant under the action of the Hamiltonian. In each subspace the Hamiltonian takes the form:

Ĥn = w c (n + 1) + δ/2 Ω n f (r)/2 Ω n f (r)/2 w c (n + 1) -δ/2 , (V.18)
with δ = w aw c the detuning between the atom and the cavity and Ω n = Ω 0 √ n + 1. Considering for now that f (r) = 1, the eigenstates of this Hamiltonian are:

|+, n = cos θ n 2 |e, n + sin θ n 2 |g, n + 1 , (V.19a) |-, n = sin θ n 2 |e, n -cos θ n 2 |g, n + 1 , (V.19b)
with tan(θ n ) = Ωn δ . These eigenstates are known as the dressed states and are associated to the eigenvalues:

E ±,n = w c (n + 1) ± 2 Ω 2 n + δ 2 . (V.20)
In the next two sections we explore two regimes of coupling, namely the resonant and dispersive regime.

V.2.2.1. Resonant coupling

The resonant coupling is obtained when δ = 0. In this case the eigenstates read:

|+, n = 1 √ 2 (|e, n + |g, n + 1 ) (V.21a) |-, n = 1 √ 2 (|e, n -|g, n + 1 ). (V.21b)
They correspond to an entangled state of the atom-cavity system. Their energy is:

E ±,n = w c (n + 1) ± 2 Ω n . (V.22)
Suppose that initially the atom starts in state |e and the cavity in state |n . By inverting the relations (V.21a) and (V.21b), we can write the initial state of the atomcavity as:

|Ψ(t = 0) = |e, n = 1 √ 2 (|+, n + |-, n + 1 ). (V.23)
The Hamiltonian evolution, up to a global phase, is:

|Ψ(t) = cos Ω n t 2 |e, n -i sin Ω n t 2 |g, n + 1 . (V.24)
During the evolution of the system there is a coherent exchange of energy between the atom and the field: the system oscillates between the initial state |e, n and the state |g, n + 1 . These oscillations are referred to as quantum Rabi oscillations.

In practice, the excited states of the atom and the cavity have a finite lifetime and decay with rates γ and κ, respectively. Experimentally, in order to be able to entangle the cavity and the atom we need to be able to perform a Rabi oscillation before the atom or the cavity decay. This is possible if we are in the strong coupling regime, characterized by Ω 0 > κ and Ω 0 > γ. This regime has been used to prepare deterministically Fock states and arbitrary quantum states in superconducting circuits [START_REF] Hofheinz | Synthesizing arbitrary quantum states in a superconducting resonator[END_REF][START_REF] Hofheinz | Generation of Fock states in a superconducting quantum circuit[END_REF].

V.2.2.2. Dispersive coupling

We now turn to the description of the dispersive coupling regime. It is obtained when δ Ω n . In this case the eigenenergies of the system (V.20) are almost unchanged with respect to the eigenenergies of the uncoupled system. It is thus reasonable to perform a perturbative treatment, keeping only lower order terms in Ω n /δ. At first order, the eigenstates of the system are almost equal to the eigenstates of the uncoupled system:

|+, n |e, n , (V.25a) |-, n -|g, n + 1 . (V.25b)
Their energies are displaced according to:

E +,n = E 0 e,n + Ω 2 0 4δ (n + 1), (V.26a) E -,n = E 0 g,n - Ω 2 0 4δ (n + 1), (V.26b)
where E 0 e/g,n denote the energies of the uncoupled system. Up to a constant, the Hamiltonian of the whole system can be re-expressed as:

Ĥ = w c â † â + 1 2 + 2 w a + Ω 2 0 2δ â † â + 1 2 σz . (V.27)
In the dispersive coupling, the effect of the cavity on the atom is to change the frequency of the atom. If there are n photons in the cavity, the shift in the frequency of the atom is equal to:

∆w a (n) = Ω 2 0 2δ n + 1 2 . (V.28)
The 1/2 term, corresponding to the shift of the frequency of the atom when the cavity is empty is known as the Lamb shift [START_REF] Lamb | Fine Structure of the Hydrogen Atom by a Microwave Method[END_REF][START_REF] Bethe | The Electromagnetic Shift of Energy Levels[END_REF].

Let us now study the evolution of an atom initially in the excited state |e interacting with a cavity in a coherent state |α . Expanding the coherent state on the Fock basis, the initial state of the system can be re-expressed as:

|Ψ(t = 0) e = |e |α = e -|α| 2 /2 ∞ n=0 α n √ n! |e, n . (V.29)
In the interaction picture, with respect to the Hamiltonian of the uncoupled system, the state of the system at time t reads:

|Ψ(t) e = e -|α| 2 /2 ∞ n=0 α n √ n! e -i Ω 2 0 (n+1/2)t 4δ |e, n = e -iΩ 2 0 t/8δ |e |αe -iΩ 2 0 t/4δ . (V.30)
Similarly, if the atom starts in the ground state |g , the same calculation can be carried out. One obtains that after an interaction of length t, the state of the system is: where φ = Ω 2 0 t/4δ. Likewise, we can see the dispersive interaction as a controlled operation conditioned on the state of an ancilla (the atom). The controlled unitary operation reads:

|Ψ(t) g = e iΩ 0 t
Û = e -iφ |e e| e -iφn + |g g| e iφn . (V.33)

This regime has been used to measure non destructively the number of photons [START_REF] Guerlin | Progressive fieldstate collapse and quantum non-demolition photon counting[END_REF] or to prepare Fock and single mode cat states [START_REF] Deleglise | Reconstruction of non-classical cavity field states with snapshots of their decoherence[END_REF]. In Sec. V.2.3 we will see how we can use this property to create a non-local Schrödinger cat state and to measure the two mode Wigner function introduced in Sec. V.1.4.

V.2.2.3. Effective time of interaction

When deriving the eigenstates and eigenenergies of Hamiltonian (V.18) we have neglected that in full generality, the Rabi frequency depends on the position through f (r). In the setup that we are considering, atoms are sent through the cavity with a velocity v. When the atom is far from the cavity, f = 0 and there is no coupling be-tween the atom and the cavity. The atom starts to couple to the cavity as it approaches it. In the cavity that we are considering, the spatial mode of the field is Gaussian and, provided that the velocity is small enough, we can consider that the coupling is turned on adiabatically (see Sec. V.2.5.2). When the atom is at position r = vt, the Rabi frequency is Ω 0 f (vt). During an interaction time dt, the coherent state will acquire a phase proportional to Ω 2 0 4δ f (vt)dt for each component |e and |g . The total phase for each components is thus proportional to:

φ = Ω 2 0 4δ f 2 (vt)dt (V.34)
In practice, we can define an effective interaction time

t d eff = π 2 w 0 v , (V.35)
where w 0 is the cavity mode waist, and carry every calculation as if the Rabi frequency was independent of the position.

We can apply the same reasoning in the resonant coupling. It yields for the effective interaction time:

t r eff = √ π w 0 v (V.36) V.2

.3. Preparation of a Schrödinger cat

We will now proceed to show that one can use the dispersive interaction between an atom and a cavity to create the Schrödinger cat state (V.7a) [START_REF] Brune | Manipulation of photons in a cavity by dispersive atomfield coupling: Quantum-nondemolition measurements and generation of "Schrödinger cat" states[END_REF]. The considered setup is sketched in Fig. V.1. It consists of two cavities C 1 and C 2 initially both in a coherent state α. We will use an atom to entangle the two cavities. The atom is first prepared in the excited state |e . It then interacts with a classical field resonant on the transition |e → |g . Setting the interaction time so that this interaction performs a π/2 pulse, the atom-cavities system is prepared in the state:

|Ψ in = 1 √ 2 (|e + |g ) |α, α . (V.37)
The atom is then sent through the two cavities. The frequencies of the cavities are chosen to be detuned by δ from the transition frequency of the atom. We will consider that the detuning is much larger than the Rabi frequency and that we are in the dispersive regime. The atom-cavity system will thus follow an evolution similar to (V.32). After crossing the two cavities, the state of the system reads: For the rest of the discussion, we will consider that the effective interaction time t is such that we are in the particular case where φ = Ω 0 t/4δ = π/2. Denoting β = iα, the state of the system reads:

|Ψ = 1 √ 2 e -2iφ
|Ψ out = 1 2 |e (|β, β + |-β, -β ) + |g (|β, β -|-β, -β ) . (V.40)
Lastly, the atom is detected using the field ionization detector. Measuring the atom in state |e , projects the state of the cavity in the Schrödinger cat state,

|Ψ + = 1 √ 2 (|β |β + |-β |-β ). (V.41)
We can thus use this scheme to generate a Schrödinger cat state with probability 1/2. This preparation procedure can be seen as a parity measurement of the field. When the atom is measured in |e we project the field on the even parity subspace. Similarly, when we measure the atom in |g , the field is projected onto the odd parity subspace.

The link with the parity will become clearer in the next section where we show how to measure the displaced parity operator. Similar schemes can be envisioned to create more complex superpositions of coherent states such as the one presented in [START_REF] Wenger | Maximal violation of Bell inequalities using continuous-variable measurements[END_REF].

V.2.4. Measurement of the Wigner function

We have seen that by sending an atom through the two cavities, we can entangle them and create a non-local Schrödinger cat state. As shown in Sec. V.1.4, we can demonstrate the non-locality of these states by measuring the two mode Wigner functions at well chosen points in phase space. We will see in this section that using a similar scheme as the one used for the preparation, we can measure the two mode Wigner function [START_REF] Lutterbach | Method for Direct Measurement of the Wigner Function in Cavity QED and Ion Traps[END_REF][START_REF] Santos | Probing entanglement in phase space: signature of GHZ states in the Wigner function[END_REF].

The two modes Wigner function is related to the displaced parity through:

W (α, β) = 4 π 2 Π(α) ⊗ Π(β) = 4 π 2 Tr ρ D1 (α) P1 D1 (-α) D2 (β) P2 D2 (-β) , (V.42)
where P1/2 and D1/2 are respectively the parity and displacement operators on mode 1/2. This expression shows that we can obtain the value of the Wigner function at point (α, β) by displacing the field in cavity 1 (2) by α (β) and then measuring the parity of the resulting fields. Let us suppose that the initial state of the two cavities is: |ψ . We start the measurement procedure by displacing the field in cavity 1 by -α and in cavity 2 by -β. This can be done using the classical source S. We then send an atom through the two cavities. It first undergoes a π/2 pulse, preparing the atom in the state (|e + |g )/ √ 2.

V. Experimental test of non-locality

After going through the two cavities, the state of the whole system reads: 

|Ψ = 1 √ 2 e -2iφ
|Ψ = 1 2 e iφn 1 D1 (-α)e iφn 2 D2 (-β) -e -2iφ e -iφn 1 D1 (-α)e -iφn 2 D2 (-β) |e D1 (-α)e iφn 2 D2 (-β) + e -2iφ e -iφn 1 D1 (-α)e -iφn 2 D2 (-β) |g |ψ .
From this we can compute the probability P e to measure the atom in the excited state |e and the probability P g to find it in the state |g :

P e = 1 4 ψ| 2 -e -2iφ D1 (α)e -i2φn 1 D1 (-α) D2 (β)e -i2φn 2 -e 2iφ D1 (α)e i2φn 1 D1 (-α) D2 (β)e i2φn 2 D2 (-β) |ψ (V.43) P g = 1 4 ψ| 2 + e -2iφ D1 (α)e -i2φn 1 D1 (-α) D2 (β)e -i2φn 2 D2 (-β) +e 2iφ D 1 (α)e i2φn 1 D1 (-α) D2 (β)e i2φn 2 D2 (-β) |ψ . (V.44)
Taking the difference of the two probabilities we obtain : For the specific case φ = π/2, we have that cos(2φn 1 ) = e iπn 1 = P1 and cos(2φn 2 ) = e iπn 2 = P2 . Straightforwardly extending this calculation to mixed states shows that this measurement procedure indeed measures the value of the two modes Wigner function (V.42).

We have seen that it is possible to measure the two mode Wigner function by measuring the state of an atom that crossed the two cavities. To test the CHSH inequality, we have to measure Π(α) ⊗ Π(β) for four sampling points α, α , β and β . This is done by repeating the experiment many times to obtain an estimate of the average value of the difference P e -P g for each setting. Note however that this specific scheme is clearly subject to the locality loophole. Indeed, the second atom crosses the two cavities one after the other. It is thus possible that the atom "carries" the information of the first measurement when crossing the second cavity. Violating the CHSH inequality using this scheme is thus only a demonstration of entanglement. Ideally, to demonstrate the non-locality of this state we would have to probe the two cavity fields separately. Theoretically it is possible to do so by following the method presented in [START_REF] Lutterbach | Method for Direct Measurement of the Wigner Function in Cavity QED and Ion Traps[END_REF]. This requires the use two atoms, each of them crossing one cavity, as illustrated in Fig. V.5. To close the locality loophole, the detection of the two atoms must be spacelike separated events. This may be experimentally challenging as the atomic beams typically contain less than one atom on average as discussed in Sec. V.2.1.1. 

V.2.5. Effects of the experimental imperfections

We have discussed so far the principle of an ideal experiment. In practice there are several sources of noise that will reduce the violation of the CHSH inequality. An important question concerning the experimental demonstration of non-locality is: to what extent is the theoretical violation robust to noise due to losses or measurement imperfections ? There are two main sources of noise: cavity relaxation and the fact that in a realistic implementation, the detuning δ will not be much bigger than Ω 0 . The effects of finite detuning and cavity relaxation have been studied in [START_REF] Milman | A proposal to test Bell's inequalities with mesoscopic non-local states in cavity QED[END_REF]. In this paper it was proven that under realistic conditions, a violation of the CHSH inequality (V.4) is possible. In what follows we review the effects of relaxation, in the same way as is done in [START_REF] Milman | A proposal to test Bell's inequalities with mesoscopic non-local states in cavity QED[END_REF]. Finally, for the case of the finite detuning, we extend the analysis performed in [START_REF] Milman | A proposal to test Bell's inequalities with mesoscopic non-local states in cavity QED[END_REF] and show that the effects of finite detuning can be compensated for by changing the measurement basis of the atom.

V.2.5.1. Relaxation of the cavities

Suppose that a cavity is prepared in a Fock state |n . Because of the coupling with the environment, the number of photons in the cavity will not stay constant. The photons inside the cavity can leak outside the cavity due to the coupling, or photons from the environment may enter the cavity.

In order to understand the effects of cavity relaxation we will first study its effect when we consider a single cavity. To describe the effect of the cavity relaxation, we must find a set of equations describing the evolution of the density matrix of the system. Such a description is provided by the Linblad equation [START_REF] Lindblad | On the generators of quantum dynamical semigroups[END_REF][START_REF] Barnett | Methods in Theoretical Quantum Optics[END_REF]. In the interaction picture, the evolution of the density matrix ρ satisfies the following differential equation:

dρ dt = κ(1 + n th ) âρâ † - 1 2 â † âρ - 1 2 ρâ † + κn th â † ρâ - 1 2 ââ † ρ - 1 2 ρââ † , (V.46)
where κ = 1/t cav is the cavity damping rate and n th is the average number of photons in the environment at temperature T , near the resonant frequency. At T = 0 temperature, the average number of photons in the environment is equal to zero (n th = 0) and Eq. (V.46) reduces to :

dρ dt = κ âρâ † - 1 2 â † âρ - 1 2 ρâ † . (V.47)
The derivation of this equation relies on the Markov approximation. Thus, this description is accurate when the typical timescale of the system is large compared to the timescale of the environment.

In order to study the phenomenon of dissipation, we introduce the normal ordered characteristic function:

C ρ N (λ, λ * , t) = Tr ρ(t)e λâ † e -λ * â . (V.48)
The characteristic function is a phase space distribution that completely characterizes the state of the field. Using this definition along with Eq. (V.47), it is easy to prove that the characteristic function obeys the partial differential equation [START_REF] Barnett | Methods in Theoretical Quantum Optics[END_REF][START_REF] Davidovich | Mesoscopic quantum coherences in cavity QED: Preparation and decoherence monitoring schemes[END_REF]:

∂ ∂t + κ 2 λ ∂ ∂λ + λ * ∂ ∂λ * C ρ(λ, λ * , t) = 0. (V.49)
It can be easily verified that

C ρ N (λ, λ * , t) = C ρ N (λe -κt/2 , λ * e -κt/2 , 0), (V.50)
is a solution of Eq. (V.49). When the environment is at zero temperature this expression allows us to calculate the characteristic function at any time, given the characteristic function at the initial time.

We will now use the Linblad equation to describe the evolution of a Schrödinger cat state under the influence of losses. We will use the Linblad equation obtained for an environment at zero temperature (V.47). This is a good approximation since the mean number of photons in the environment is small (n th ≈ 0.05). This approximation will allow us to derive an analytical solution that illustrates most of the consequences of relaxation. Let us consider the Shrödinger cat state:

|ψ(t = 0) = 1 N |αe iφ + |αe -iφ , (V.51)
where α is taken to be real. It corresponds to a cat state whose classical components are separated in phase space by a distance D = 2|α| sin φ. Its corresponding density matrix is:

ρ(t = 0) = 1 N 2 (|β β| + |β * β * | + |β β * | + |β * β|) , (V.52)
where we have introduced the notation β = αe iφ . A straightforward calculation shows V.2. Experimental implementation 103 that the normal ordered characteristic function at time t = 0 is given by :

C ρ N (λ, λ * , 0) = 1 N 2 e λβ * -λ * β + e -λ * β * +λβ +e (λ-λ * )β e -D 2 /2 (e iD 2 /(2 tan φ) + e -iD 2 /(2 tan φ) ) . (V.53)
Using Eq. (V.50) it is easy to see that the time evolution of the Schrödinger cat state in the presence of dissipation is:

ρ(t) = 1 N 2 |βe -κt/2 βe -κt/2 | + |β * e -κt/2 β * e -κt/2 | +e -D 2 (1-e -κt )/2 e iD 2 (1-e -κt )/(2 tan φ) |βe -κt/2 β * e -κt/2 | + h.c. (V.54)
The effects of the dissipation are twofold. First, the two classical components at β and -β decay towards the origin: after a long time the two cavities are empty. The timescale of this decay is 2/κ. This is due to the finite lifetime of the cavity and is a classical phenomenon. Secondly, due to the coupling with the environment, the system evolves into a statistical mixture ρ = (|β β| + |-β -β|)/2. The transition into a statistical mixture can be studied by looking at the coherence. The amplitude of the coherent terms decays rapidly due to the factor e -D 2 (1-e -κt )/2 . In the limit of small t, this factor reduces to e -D 2 κt/2 , defining a lifetime for the coherence equal to 2/(κD 2 ). The decoherence time is thus inversely proportional to the distance D 2 between the two components of the cat and becomes extremely small for large cats. This explains why one cannot see macroscopic Schrödinger cat states. The decoherence of single mode cat states has been observed by observing the evolution of their Wigner function through time [START_REF] Deleglise | Reconstruction of non-classical cavity field states with snapshots of their decoherence[END_REF]. The transition between a coherent superposition and a statistical mixture is illustrated in Fig. V.6: after a time evolution of the order of the decoherence time, the fringes have almost disappeared, there is no coherence anymore. A similar conclusion may be drawn when we consider a non-local cat state |ψ(t = 0) = (|αe iφ , αe iφ + |-αe iφ , -αe iφ )/N . Taking into account the dissipation of the system, the state of the system after a time t reads:

ρ = 1 N 2 |βe -κt/2 |βe -κt/2 βe -κt/2 | βe -κt/2 | + |β * e -κt/2 |β * e -κt/2 (V.55) e -D 2 (1-e -κt ) e iD 2 (1-e -κt )/ tan φ |βe -κt/2 |βe -κt/2 β * e -κt/2 | β * e -κt/2 | + h.c.
To violate the CHSH inequality, we must measure the displaced parity operator for 4 well chosen points in phase space. A violation of the CHSH inequality can happen only in a region where the Wigner function displays fringes. The fringes are a signature of coherence and Eq. (V.55) shows that because of the relaxation of the cavity the fringes are washed out exponentially fast, with a decay time constant of D 2 κ in the limit of small time. Thus the optimal B max value decreases rapidly with time as can be seen in Fig. V.7. Fig. V.7 shows that the maximum value of B also decays exponentially fast in the small time limit. When the time is of the order of the cavity lifetime divided by 4|α| 2 , the state of the system becomes a statistical mixture of the state |αe -κt/2 , αe -κt/2 and |-αe -κt/2 , -αe -κt/2 . There is no violation anymore and the maximum value is B = 1. In the large time limit, the cavities have completely leaked out and are in the vacuum

V.2.5.2. Adiabaticity condition

For the preparation and measurement procedures, it is crucial that during the interaction between the atom and the cavity, if the atom is initially in the ground state, it remains in the ground state when it leaves the cavity. And similarly if the atom is initially in the excited state. Otherwise the mixing between the ground and excited state will completely destroy the fringes. This condition is known as the adiabaticity condition. It is possible to show that, for a cavity in a Fock state |n , it is verified as long as [START_REF] Messiah | Quantum Mechanics[END_REF]:

v w 0 < δ 6 log 1/2 (Ω 0 √ n + 1/δ ). (V.56)
For w 0 = 6mm, Ω 0 /2π = 49kHz and δ/2π = 180kHz and for atoms having a velocity up to 300m/s, this condition if satisfied for photon numbers up to n ≈ 100 [START_REF] Haroche | Exploring the Quantum: Atoms, Cavities, and Photons[END_REF].

Following our discussion of the velocity selection scheme (see V.2.1.1), we will always consider that the setup satisfies the adiabaticity condition.

V.2.5.3. Finite detuning

The next source of noise that we want to discuss is the finite value of the detuning. So far we have assumed that we were in the perfect linear case obtained when the detuning δ between the atom and the cavity is infinite. In practice it is not the case. Eq. (V.32) shows that if we want the cat state to have opposite classical components in phase space, we must set the angle φ = π/2. φ is related to the speed of the atom through the effective interaction time t d eff :

φ = π 2 Ω 0 t d eff 4δ = π 2 Ω 0 4δ w 0 v . (V.57)
For a fixed angle, we see that the larger the speed is, the smaller the detuning must be. In the considered setup, the atom-field coupling is of the order of Ω 0 /2π = 49kHz [START_REF] Deleglise | Reconstruction of non-classical cavity field states with snapshots of their decoherence[END_REF][START_REF] Sayrin | Realtime quantum feedback prepares and stabilizes photon number states[END_REF]. Similarly, we consider a Gaussian field mode with a w 0 = 6mm waist. The smallest realistic velocity of the atoms is of the order of v = 100m/s corresponding to an effective interaction time of t i = 75µs. The φ = π/2 condition is thus met for an atom-field detuning of δ/2π = 180kHz which is of the order of the Rabi frequency Ω 0 . Due to the finite detuning, the Wigner function of the cat state is distorted with respect to the ideal shape discussed above. In Fig. V.8 we plot the Wigner function of a single mode cat state with a field amplitude α = 2.5, obtained by numerical integration of the Schrödinger equation, using the parameters discussed above. We see that in this case the two components of the cat are separated by an angle slightly smaller than π. Also, since the dephasing per photon is not linear, the field of the cavity will be squeezed. This effect manifests itself by the small distortion of the two classical components. As Figure . V.8 shows, the cat state produced has clearly a coherent superposition of two components. Since the maximum value of the bell operator B is linked to the distance between the two components of the cat state we could in principle demonstrate the non-local nature of this state.

In the limit where the field is classical (i.e. n ∆n), it is possible to obtain an analytical expression of the angle between the two components. To this end, we reconsider the interaction between the field and the atom. When the evolution is adiabatic, an atom-cavity system initially prepared in the state |e, n (|g, n + 1 ) will follow the evolution of the state |+, n (|-, n ). These states have energies given by Eq. (V.20):

E ±,n = w c (n + 1) ± 2 (n + 1)Ω 2 0 f 2 (r) + δ 2 . (V.58)
When the atom comes out of the cavity, the atom-cavity system comes back to its initial state |e, n (|g, n + 1 ), with a global phase shift taking opposite value for an atom in |e or |g . During a time dt, the system acquires a phase shift proportional to the difference between the energy of the coupled system and the energy of the uncoupled system. The global phase shift is thus:

φ(n) = ∞ -∞ (n + 1)Ω 2 0 f 2 (vt) + δ 2 -δ dt 2 . (V.59) V.2. Experimental implementation 107 
For the particular case of an atom-cavity system initially prepared in the state |e, α , after the crossing of the atom, the state reads:

|Ψ e = e -|α| 2 /2 ∞ n=0 α n √ n e -iφ(n) |e, n . (V.60)
Following [START_REF] Haroche | Exploring the Quantum: Atoms, Cavities, and Photons[END_REF], we expand the phase φ around n = |α| 2 the mean number of photons in the cavity:

φ(n) φ(n) + (n -n)φ (n). (V.61)
Since the photon number fluctuation nn is of the order of √ n and the ratio between successive derivatives of φ are of the order of n, the next term in this expansion is of the order of 1/n. Thus, this expansion is valid if the mean number of photon is large. Assuming that this is the case and separating the constant terms from the ones that are linear in n, we can re-express the system's state as:

|Ψ e = e -iψe(n) |e, αe -iΦ(n) , (V.62)
where

ψ e (n) = φ(n) -nφ (n), (V.63) and Φ(n) = φ (n) = ∞ -∞ Ω 2 0 f 2 (vt) (n + 1)Ω 2 0 f 2 (vt) + δ 2 dt 4 . (V.64)
Similarly, we can show that, starting from an atom in the ground state, the atom-cavity system evolves into the state

|Ψ g = e -iψg(n) |g, αe iΦ(n) , (V.65)
where ψ g (n) = -φ(n -1) + nφ (n -1). (V.66)

These equations show that after going through the cavity, the atom leaves the cavity in a cat state whose two components are separated by an angle θ 2Φ(n). (V.67)

For n = 9 and using the same parameters as above, we find that θ 0.8π.

If the geometry of the mode is not accounted for when setting the detuning, this effect can be detrimental for the measurement of the displaced parity operator. If we carry out the same calculations as in Sec. V.2.4, it is easy to see that the difference of the probabilities for detecting the atom in |e or |g is:

P e -P g = -ψ| cos (2(n 1 + n2 )Φ(n)) + 2(φ e -φ g )) |ψ (V.68)
In general, 2Φ(n) and 2(φ eφ g ) are different from π and so P e -P g will assume values that are strictly between -1 and 1 and the maximum value of B that we can obtain will be reduced accordingly.

In order to maximize the possible values for B it is thus important to set the detuning so that 2Φ(n) = π. Compared to the linear case, Eq. (V.64) imposes a different condition on the value of the detuning to get a π/2 rotation of the coherent part in phase space. For an atom with velocity v = 100m/s, we find an optimal detuning of the order of δ/2π = 165kHz. On the other hand, to remove the 2(φ eφ g ) part, we need to set the interaction with the second classical field so that it performs the state transformations: In principle the preceding discussion applies when the mean number of photons in the cavity is large. The next term in the expansion (V.61) is however very small. If we consider a coherent state with amplitude α = √ 2 and an atomic velocity v = 100m/s, a numerical integration shows that:

φ (n) ≈ -0.04. (V.70)
Setting up the detuning in order to obtain a π/2 phase and applying the right state transformations during the second classical interaction leads to an almost perfect cat state and a measurement of the displaced parity operator with very little disturbance. Numerical simulations of the preparation procedure show that the fidelity of the state obtained, using the parameters described above, with respect to the perfect cat state (V.8a) is of the order of 0.99.

Fig. V

.9 shows a plot of the optimal value of the Bell operator obtained for different values of the velocity, for an amplitude α = √ 2. It has been obtained by numerically simulating the creation and measurement of the cat state. Because the measurement simulation is computationally expensive, the optimal phase points are estimated after simulating the creation procedure by numerical optimization using a perfect displaced parity operator. Using this ansatz, we then simulate the measurement process by an atom. For low velocity one recovers the theoretical maximum obtained using a perfect displaced parity operator (compare with Fig. V.3(a) for α = √ 2). For large atomic velocities the maximum value of the Bell operator decreases rapidly. Yet, clear violations can be obtained for atomic velocities up to 150m/s. Since in an atomic beam the velocity of the atoms is never chosen perfectly, such a plot can be used to estimate the effect of the velocity dispersion on the Bell value.

Since the adiabaticity condition is verified for much larger velocities and photon numbers, one could expect that with further optimization it is possible to violate the CHSH inequality for larger velocities. The maximum atomic velocity is however limited by the validity of the first order expansion used in Eq. (V.61). When the velocity of the atom becomes large, then, in order to fulfill the condition 2Φ(n) = π, the detuning δ must be small. The second derivative of φ(n) is a decreasing function of δ and so the first order approximation (V.61) breaks down when δ becomes too small. Roughly, the first order expansion is valid for δ ≤ Ω 0 √ n. For n = 2, corresponding to a cat with amplitude α = √ 2, and Ω 0 /2π = 49kHz, it gives δ/2π 70kHz corresponding to atomic velocities of the order of 200m/s. 

V. Experimental test of non-locality

We finally include the effects of dissipation by including the relaxation of the two cavities in the numerical simulation. Fig. V.10 shows the optimal value of B over time, for α = √ 2 and v = 100m/s. The black dots are the result of a numerical simulation of the experiment whereas the blue line is an exponential decay of the first point (t = 0) with a time constant D 2 κ = 4|α| 2 κ obtained in Sec. V.2.5.1 in the perfect case. We see that there is a complete agreement between the predicted decay time for the perfect cat state and the one obtained from numerical simulation of the experiment. This is largely due to the fact that, once the phases φ e and φ g have been accounted for, the state created in the experiment is extremely close to the perfect cat state (F ≈ 0.99).

V.2.5.5. Comparison with previous results

t from the values features near the , are very sensitive ner function. We in the ideal case, e slight distortion e atom-cavity deect the observable effect to be taken lts into a diffusion se space. This difnce fringes at the -classical and nonal B value is thus e in a cavity with tion of both caviintegrate the full me parameters as s. Atom A 2 is sent lready mentioned, erimental timing, cement operation, We allow thus the distance between r than the cavity nteractions of the thus independent. s basically instan-. quantum informaich are very long-1 during the time 1 and C 2 thus do alue. This is parrealistic distance of 10 cm (cavity to T f ≈ 1 ms. We C 2 is exactly the time of flight T f . ues at short times Q = 10 10 , corre-30 ms (squares), 00 ms (disks). For n of the sampling imes, these amplihe contrast of the 1d], and hence the sion process, but arly constant. The the initial decay. and 40 ms, give This rapid decay stops when the B o value reaches 1, the value for a statistical mixture. This occurs, for the shortest cavity damping time, around T = 10 ms. The optimal sampling points are, from then on, in the real plane, sitting on the top of one of the components of the statistical mixture: α ′ = β ′ = α = β, all of them being real. These sampling values follow the slow decay of the amplitude of the two mixed states. [START_REF] Milman | A proposal to test Bell's inequalities with mesoscopic non-local states in cavity QED[END_REF]. Squares: computed values of the optimal Bell signal B for an initial twophoton field as a function of the delay T between the two atoms for t c = 30ms (Q = 10 10 ). Disks: B(T ) for t c = 300ms (Q = 10 11 ). The lines are exponential fits with decay time constants of 4.3 and 40 ms. Inset: long-time behavior of B(T ) for t c = 30ms.

As mentioned before, the experimental imperfections discussed in this section were already studied in [START_REF] Milman | A proposal to test Bell's inequalities with mesoscopic non-local states in cavity QED[END_REF]. The main differences between the scheme studied here and the one proposed in [START_REF] Milman | A proposal to test Bell's inequalities with mesoscopic non-local states in cavity QED[END_REF] lie in the measurement basis used for the detection of the atoms. In [START_REF] Milman | A proposal to test Bell's inequalities with mesoscopic non-local states in cavity QED[END_REF] the atoms are measured in the basis {|e , |g }. Here we have shown that by measuring the atoms in a rotated basis, it is possible to mitigate the effects of the finite detuning. Practically speaking, it amounts to applying slightly different rotations in R 2 (see Fig. The comparison shows that measuring the atom in the rotated basis leads to higher initial values for the Bell operator. Even though for both schemes the decoherence time scale is of the order of the decoherence time scale predicted for a perfect cat state, t c /D 2 (see Sec. V.2.5.1), they are slight differences. When the atom is measured in the rotated basis, Fig. V.10 shows that the decoherence time scale is in perfect agreement with the decoherence time scale predicted for a perfect cat state. On the contrary, in Fig. V.11, the decoherence time scale is estimated by an exponential fit and is of the order of the decoherence time scale for a perfect cat state. This gives us further evidence that the state prepared using measurements in the rotated basis is closer to the ideal cat state.

Given that when measuring the atoms in the rotated basis the initial values for the Bell operator are higher, and the decoherence time scale is of the same order, the violation of the CHSH inequality can be observed for a longer period of time. Fig V .10 shows that for the case α = √ 2 and t c = 30 ms a violation of the CHSH inequality is possible up to t 750 µs whereas in [START_REF] Milman | A proposal to test Bell's inequalities with mesoscopic non-local states in cavity QED[END_REF] a violation is obtained only up to t 600 µs. Nevertheless, as [START_REF] Milman | A proposal to test Bell's inequalities with mesoscopic non-local states in cavity QED[END_REF] showed, the main limitation for such an experiment is the decoherence process which severely constrains the timing between the two atoms.

V.3. Conclusion

In this chapter, we studied some experimental aspects of the demonstration of nonlocality in the context of cavity quantum electrodynamic with circular Rydberg atoms. We started by describing the interaction between atoms and light. We reviewed how the dispersive coupling of the atom with the field in the cavity can be used to create non-local cat states and measure their Wigner function. The non-local nature of those states can be demonstrated using an appropriate Bell inequality defined in terms of the two mode displaced parity operator. We then studied some of the main experimental imperfections: decoherence and finite detuning. Using numerical simulation, we have shown that it is possible to describe states created in realistic conditions very accurately using perturbation theory. Further on, we showed, through a complete numerical simulation of the experiment that one can obtain a clear violation of the CHSH inequality. This study shows that the finite detuning has a minor impact on the created state. It merely changes the phase of the two components of the cat state. The conclusion of [START_REF] Milman | A proposal to test Bell's inequalities with mesoscopic non-local states in cavity QED[END_REF] yet remains: because state preparation and readout take an incompressible amount of time, decoherence is a much more important issue. Nevertheless, numerical simulations show that it can be overcome in principle.

So far we have only estimated the optimal points for the violation of the Bell inequality by using a perfect displacement operator and then simulated the measurement process using this ansatz. It would be interesting to directly optimize the measurement process over all possible phase space displacements. We would then obtain violations of the Bell inequality for larger velocities. This is interesting for a practical implementation since the time needed for the state preparation and readout are directly linked to the velocity of the atoms: if we use faster atoms we directly reduce the time between preparation and measurement and thus the effects of decoherence. There is thus a trade-off on the choice of the velocity of the atoms. On the one hand using atoms with high velocities diminishes the effect of decoherence. On the other hand if the atoms being used are too fast, our perturbative analysis falls short.

Future work could involve studying other kind of experimental imperfections such as the effect of velocity dispersion, errors in the detection of the atoms and atomic beam with multiple atoms. Due to the velocity dispersion, the phase accumulated during the dispersive interaction will be distributed around Φ(n), the phase set for the mean value of the velocity. This will reduce the contrast of the fringes of the Wigner function and ultimately the optimal Bell value. Errors in the detection of the atoms will also reduce the contrast of the fringes. If there are more than one atom crossing a cavity at the same time, they can coherently exchange a photon through the cavity. This process completely destroys the fringes. the eigenmode basis, the twoa manifestation of quantum een two quasiclassical systems. can be tested against a CHSHity constructed from P J at four e space (16). We observe a Bell ± 0.01 for the state in Fig. 3, sical bound of 2. Without comration and fully independent modes, this violation should be considered a demonstration of the fidelity of the entanglement and the measurement rather than a true test of nonlocality. Nevertheless, various schemes exist to further separate the two modes, such as converting the cavity fields into itinerant microwave signals and/or optical photons (23).

Compared with other experimentally realized quantum states of two harmonic oscillators, a striking property of the two-mode cat state is that its underlying compositions are highly distinguishable. Two-mode squeezed states in various physical implementations-e.g. ( 24)-show strong entanglement but are Gaussian states without the Wigner negativity and the phase space separation, as in a cat state. Generation of the "N00N" state, an entangled state in the discrete Fock state basis, typically requires quantum mag.org At this point we would like to mention that an experiment measuring the same Bell operator has been realized using superconducting circuit [START_REF] Wang | A Schrödinger cat living in two boxes[END_REF]. In this experiment they use the dispersive interation of two cavities with three energy levels of an artificial atom to prepare and measure the displaced parity operator of the non-local cat state. Using this interaction they are able to create a two mode cat state with α = 1.92 and to violate the CHSH inequality up to 2.17. A plot of the measured two mode Wigner functions is shown in Fig. V.12. The measured Wigner function is in excellent agreement with the theory. As the experiment that we considered throughout this chapter, this experiment suffers from the locality loophole, and is thus only a demonstration of entanglement between the cavities. Indeed, the measurement of the joint parity operator is done by measuring the state of the artificial atom and not two space-like separated systems.

VI. Conclusion

In this thesis we have explored the frontier between classical and non-classical phenomena. Specifically, we studied how it is possible to disprove the hypothesis that measurements have pre-determined outcomes. To do so we explored two classes of hidden variable models: non-local hidden variable models and non-contextual hidden variable models. These two types of models can be ruled out by considering inequalities involving measurement of well chosen observables. In a theoretical approach, we explored the properties of observables or probability distributions which display a non-classical behavior. We also explored the possible implementation of such tests of fundamental properties of Quantum Mechanics.

We devoted the first part of this work to the study of quantum and post quantum non-locality. This led us to review the concept of Bell non-locality and to see quantum correlations as part of a bigger picture: no-signaling correlations. Having recalled some notions about non-locality in finite dimension, we turned to our main object of study: correlations in the continuous regime. To this end, we devised a mathematical framework based on conditional probability measures. We then introduced a set of continuous PR boxes that we have shown to be extreme in the no-signaling set. Further on we showed that the convex hull of these CV PR boxes is dense in the no-signaling set. This, with the support of some evidence, led us to the following conjecture: extreme behaviours in the continuous regime have only a finite number of outcomes. The perspectives of this work are clear: to prove or disprove this conjecture.

We then investigated another fundamental property of Quantum Mechanics: contextuality. After a brief introduction to contextuality and how it can be detected in terms of inequalities, we reviewed one of the most famous approaches to state independent contextuality: the Peres-Mermin inequality. We investigated a generalization of the Peres-Mermin inequality to measurements of observables living in Hilbert spaces of arbitrary dimensions. From this analysis we derived general conditions for a state independent maximal violation of the Peres-Mermin inequality using arbitrary operators. These conditions reveal the common features shared by observables leading to maximal violation of the inequality. Finally we presented some examples of observables fulfilling these conditions, including the case of modular variables.

Finally, we investigated the properties of mesoscopic non-local states in cavity quantum electrodynamics. We first reviewed different measurement strategies that can be followed to demonstrate their non-local nature. We then explored a method using the dispersive coupling of an atom with a cavity which is particularly suited to this experiment. Using this method, it is possible to prepare those states using a single circular Rydberg atom interacting dispersively with two microwave cavities. The non-local nature of those states can later be probed using a second atom. Such an experiment is inevitably subject to some imperfections. In this thesis we focused on two of them, namely the finite detuning of the atom with the cavity and the decoherence process. For the former, we proved that, up to some phases, the non-local state created is very close to an ideal cat state. We also showed how these phases can be accounted for in an actual experiment by changing the basis for the measurement of the atom. This study shows that the decoherence process is much more detrimental for the detection of non-locality but that it can be overcome in principle by using fast enough atoms. This analysis relied on both an analytical and numerical study of the setup. The perspectives envisaged for this work would consist in enlarging the study of the imperfections affecting the setup in order to find the best possible regime for an experimental demonstration.

VII. Résumé

Cette thèse porte sur l'étude des fondements de la mécanique quantique. Plus précisément, cette thèse s'intérèsse à deux propriétés fondamentales de la mécanique quantique: la non-localité et la contextualité. Ces propriétés se caractérisent par l'existence de fortes corrélations entre les mesures locales effectuées sur deux particules spatialement séparées. Ces propriétés, qui ne peuvent pas s'expliquer dans un cadre classique, sont à la base de plusieurs applications possibles de la mécanique quantique comme le calcul quantique ou les télécommunications quantiques et ont donné naissance à l'information quantique.

Ces deux propriétés ont été très étudiées et caractérisées dans les systèmes discrets. Cependant, dans un certain nombre de cas, il n'est pas possible de décrire le système par un système avec des états discrets et le système est décrit par des variables continues. Par ailleurs, les systèmes décrits par des variables continues peuvent présenter un certain nombre d'avantages, notamment expérimentalement, par rapport aux systèmes discrets. C'est pour cela qu'il peut être intéressant des les étudier, et c'est dans ce contexte que s'inscrit cette thèse. Les contributions principales de cette thèse sont de généraliser différents résultats sur la non-localité et la contextualité connus dans les systèmes décrits par des variables discrètres aux systèmes décrits par des variables continues.

VII. Résumé

les « PR box » (voir Définition III.49). Cela permet d'obtenir une caractérisation de l'ensemble des mesures de probabilité « no-signaling ». Plus précisément, il est possible de montrer que les mesures introduites sont des points extrémaux de l'ensemble des mesures de probabilité « no-signaling » (voir Proposition 5) et que leur enveloppe convexe est dense dans l'ensemble des mesures de probabilité « no-signaling » (voir Théorème 7).

VII.2. Résumé du chapitre IV

La seconde partie de cette thèse porte sur l'étude de la contextualité de la mécanique quantique. Cette propriété de la mécanique quantique montre qu'il est impossible de décrire le résultat d'une mesure comme pré-determiné et indépendant des autres mesures effectuées sur le système. Cette propriété peut être mise en évidence par certaines inégalités qui sont violées par la mécanique quantique. De manière surprenante, il est possible de trouver certaines inégalité de non-contextualité qui sont violées par tous les états. L'une de ces inégalités, dites inégalités indépendantes de l'état, est basée sur le carré de Peres-Mermin et a été initialement formulée pour des systèmes formés de deux qubits.

L'objet du chapitre IV est de généraliser cette inégalité au cas d'observables définies sur des espaces de Hilbert de dimension arbitraire, voire infinie (voir la Section IV.2.2). Cette généralisation permet d'identifier les propriétés communes des observables qui conduisent à une violation maximale de l'inégalité de Peres-Mermin. En particulier, on peut montrer que les observables qui permettent une violation maximale de l'inégalité de Peres-Mermin pour tous les états sont telles que pour chaque valeur propre λ, -λ est également valeur propre avec la même multiplicité (voir Théorème 9). Une des conséquences immédiates est qu'il est impossible de construire une inégalité de noncontextualité indépendante de l'état qui est maximalement violée par tous les états en utilisant des observables décrivant des systèmes de dimension impaire (voir Corrolaire 2).

VII.3. Résumé du chapitre V

La dernière partie de cette thèse porte sur l'étude de tests expérimentaux permettant de mettre en évidence la non-localité de la mécanique quantique. Plus précisément, ce chapitre s'intéresse à l'implémentation de tests de non-localité dans des systèmes expérimentaux décrits par des variables continues. Les tests considérés dans le chapitre V utilisent des états intriqués du champ électromagnétique de deux cavités. Certains travaux ont déjà montré qu'il est théoriquement possible de violer une inégalité de Bell formée par les mesures locales des opérateurs de parité déplacée dans cette configuration. Cette expérience peut être réalisée par exemple en utilisant des cavités micro-ondes ainsi que des atomes de Rydberg. La mesure de la parité est réalisée par les atomes de Rydberg qui traversent les deux cavités. Cependant, en pratique cette violation est difficile a observer dans cette configuration expérimentale car les conditions idéales ne sont pas réunies. L'un des premiers problèmes est que dans les cavités micro-ondes il est impossible d'avoir un désaccord entre le champ et l'atome très élevé et donc d'atteindre le régime dispersif. Cela donne lieu à une mesure de la parité imparfaite. Un second problème est que les états intriqués sont fragiles et sont sensibles à la décohérence et VII.3. Résumé du chapitre V 119 aux pertes. L'objet de ce chapitre est d'étudier ces deux imperfections expérimentales et de proposer des modifications du protocole afin de le rendre plus robuste face à ces deux imperfections.

Ce chapitre commence par une présentation du protocole expérimental. Nous montrons ensuite comment il est possible de décrire les effets du désaccord fini sur l'évolution de l'état de l'atome qui traverse la cavité. En utilisant cette description nous montrons qu'il est possible d'obtenir une violation plus importante de l'inégalité de Bell en adaptant la base de mesure par rapport au niveau du désaccord (voir Section V.2.5.4). Enfin, nous montrons que cette base de mesure présente toujours un avantage lorsque les pertes sont également prises en compte.

  completeness relation, we can express any state in the position or momentum basis as:

  ψ|αρ + (1α)τ |ψ = α ψ|ρ|ψ + (1α) ψ|τ |ψ ≥ 0 (II.13a) Tr(αρ + (1α)τ ) = α Tr(ρ) + (1α) Tr(τ ) = 1,(II.13b)

Figure

  Figure II.1.: Bloch ball representation of qubits. Pure states |ψ lie on the surface of the ball and are characterized by the angles ϕ ∈ [0, 2π[ and θ ∈ [0, π[ according to |ψ = cos θ 2 |0 + e iϕ sin θ 2 |1 . Mixed states are associated to the points inside the ball.

  | , (II.38) which turns a position eigenstate into a momentum eigenstate and conversely: F |s x = |s p and F |s p = |s x . Another important class of operations are the position and momentum displacement operators: X(s) = e -isp (II.39) Ẑ(s) = e isx , (II.40) which are the continuous analogs of the Heisenberg-Weyl operators introduced in (II.31) and (II.32). They act on the position and momentum eigenstates by shifting it or applying a phase: X(s) |s x = |s + s x , Ẑ(s) |s x = e iss |s x , X(s) |s p = e -iss |s p , Ẑ(s) |s p = |s + s x . As we will see later, it is possible to choose s so that the position and momentum displacement operators X and Z form a Pauli algebra on a specific subspace (see Sec. II.3). This justifies the use of a similar notation as the one used for Pauli operators. A displacement operator implementing a displacement µ of the momentum and ν of the position can be defined through: D(ν, µ) = e iµx-iν p = e -iµν/2 e iµx e iν p, (II.41) where in the second equality we have used the Baker-Campbell-Hausdorff formula e Â+ B = e Âe B e [ Â, B]/2 , which applies when [ Â, B] commutes with both  and B. Other important continuous variables operations include the rotation operator R(θ) = e iθ(x 2 +p 2 )/2) which rotates the position and momentum operator [Tasca11]: R † (θ)x R(θ) = x cos(θ) + p sin(θ), R † (θ)p R(θ) = -x sin(θ) + p cos(θ), (II.42) and the squeezing operator Ŝ(r) = e -ir(xp+px)/2 , with r ∈ R, which acts as follows: Ŝ † (r)x Ŝ(r) = e r x, Ŝ † (r)p Ŝ(r) = e -r p. (II.43)
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  Figure II.3.: Plots of the Wigner function (II.93) for the four Fock states |0 (a), |1 (b), |2 (c). (d) Plot of the Wigner function (II.100) of a squeezed vacuum state |0, r , with a squeezing factor r = 0.5.
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  Figure II.4.: Plots of the Wigner function (II.102) of a cat state |cat + with an amplitude α = 2.5 (a), and of a mixture of coherent state with amplitude α = 2.5 and α = -2.5 (b).
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  Figure II.5.: (a) The spectrum of the position and momentum is divided into boxes of length and 2π/ respectively. (b) Schematic representation of the bounded spectra of the modular position and momentum as a box of area 2π.

Figure

  Figure II.6.: Wavefunction of the modular eigenstate |x, p in position (left) and momentum (right) representation. The arrows stand for Dirac peaks.

[

  σ α (x, p), σβ (x , p )] = 2i αβγ σγ (x, p)δ(xx )δ(pp ), (II.126) {σ α (x, p), σβ (x , p )} = δ αβ 1(x, p)δ(xx )δ(pp ), (II.127) where 1(x, p) = |x, p x, p|+|x + /2, p x + /2, p|, and α, β, γ = 1, 2, 3, representative for α, β, γ = x, y, z, respectively. Representation of the three displacement operators X, Ŷ and Ẑ. They form a triangle enclosing an area of π/2 in phase space. One can note that the previously introduced displacement operators X, Ŷ and Ẑ form a triangle in phase space enclosing an area of π/2 as illustrated in Fig. II.7. Such II.3. Modular variables formalism 33 displacement operators have vanishing anti-commutators [Asadian15]: { X, Ŷ } = { Ŷ , Ẑ} = { Ẑ, X} = 0, (II.128)
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  Figure III.1.: Scheme of a Bell experiment. A source (S) creates two physical systems and distributes them to two distant observers, referred to as Alice (A) and Bob (B).Alice and Bob each perform 2 measurements on their subsystems with observables A 0/1 and B 0/1 , respectively. Each measurement can yield 2 different outcomes a and b in {-1, 1}.

  Figure III.2.: Common cause λ source of correlations between the measurements carried out by Alice and Bob.

Figure

  Figure III.3.: Representation of the set of joint probability distributions of the PR-Boxes (III.15). Red (blue) dots represent the possible measurement outcomes for settings with x = 0 or y = 0 (x = y = 1). Each outcome happens with probability one half.

Figure III. 4 .:

 4 Figure III.4.: Scheme of a Bell experiment. A source (S) creates two physical systems and distributes them to two distant observers, referred to as Alice (A) and Bob (B). Alice and Bob each perform 2 measurements on their subsystems with observables A 0/1 and B 0/1 , respectively. Each measurement can yield d different outcomes a and b in {0, . . . , d -1}. Let us consider the Bell experiment, depicted in Fig. III.4, where a source (S) distributes two physical systems (for instance two particles) to two distant observers, Alice (A) and Bob (B). Each of the two observers then performs measurements of 2 different observables, labeled by A i and B j , respectively, with x, y = 0, 1, each yielding d possible

  B d . The extreme points of B d are characterized by the Birkhoff-von Neumann theorem: Theorem 3 (Birkhoff-von Neumann). The set of d×d doubly stochastic matrices forms a convex polytope whose vertices are the d × d permutation matrices.

  ∀i ∈ I . (III.28) The inequalities b i • p ≤ S i are called Bell inequalities and failure to satisfy one of them implies non-locality. A representation of the local set as well as a representation of a Bell inequality is given in Fig. III.5.

FigureFigure

  Figure III.5.: Sketch of the sets of the no-signaling (N S), quantum (Q), and local (L) behaviors produced by a Bell experiment as in (III.4). Note that the three sets are convex polytope and that they fulfill the strict inclusions L ⊂ Q ⊂ N S. The straight line represents a linear Bell inequality.

  x b ) ≤ b} denote the pre-images of the sets (-∞, a] × (-∞, b]. Equation (III.34) gives the probability that the random vector X takes values in the interval (-∞, a] × (-∞, b].

Figure

  Figure III.7.: As the number of Dirac peaks increases, we get a better and better approximation of p in the weak topology.

  III.43) It follows that the marginals measures μ(x,y) n satisfy: μ(x,y) n (A) = μ(x,y ) n (A), ∀ x, y, y ∈ {0, 1}, (III.44) and thus that they are equal. Let f be a continuous bounded function on R, the weak convergence of µ n implies the weak convergence of the marginals: A×R f (a)dµ (x,y) n (a, b) = A f (a)dμ (x,y) n (a) → A f (a)dμ (x,y) (a). (III.45)
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  Figure III.8.: Sketch of a particular realization of a CV PR box (III.49) for k = 2. Each dot represents a Dirac measure. Different colors indicate different settings for Alice or Bob. To satisfy the no-signaling condition, the set of possible outcomes for Alice (Bob) is the same when her (his) setting is unchanged. This is illustrated by the dashed black lines.
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  Figure III.9.: (color online) This figure illustrates the construction of the sequence µ n for n = 4 (left) and n = 8 (right). The red dots denote the positions of the Dirac measures. Note that all Dirac measures in the same intervals are aligned on a line such that the corresponding probability measures fulfill the no-signaling constraints (III.42a) and (III.42b).
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  Figure III.10.: Sketch of the sets of the no-signaling (M N S ), quantum (M Q ), and local (M L ) behaviors produced by a Bell experiment as in (III.4). Notice that the three sets are convex but not polytopes and they fulfill the strict inclusions N L ⊂ M Q ⊂ M N S . The straight and the curved lines represent a linear (LI) and nonlinear (CFRD) Bell inequality, respectively.

  Fig. III.11 we present a plot of the respective probability densities for different choices of the settings (x, y) and of the violation λ of the CFRD inequality for ∆ a = ∆ b = ∆. A violation occurs if the width ∆ of the Gaussians falls below the threshold width ∆ = √ 2 -1 ≈ 0.64 . If we interpret the joint-probability densities presented in Fig. III.11(a) as noisy versions of the perfect PR boxes (III.63), their violation of the CFRD inequality might not seem very surprising. Indeed one could verify the above postquantum correlations as well with the CHSH inequality in combination with an appropriate binning procedure [Chen02, García-Patrón04].

Figure

  FigureIII.11.: (color online) (a) Density plots of the finitely squeezed versions of the probability density (III.63) with widths ∆ a = ∆ b = /5 for the inputs (x, y) = (0, 0), (0, 1) or (1, 0) (left) and (x, y) = (1, 1), respectively. Note that the projection on the horizontal as well as vertical axes coincide for both plots, reflecting the fact that the behavior is no-signaling. Each center point may also have a different width (or squeezing), but we do not consider that here for the sake of simplicity. (b) Plot of the rescaled violation of the CFRD inequality as a function of the width ∆ = ∆ a = ∆ b .
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  Figure IV.1.: (a) Graph representing eighteen observables by vertices. The sets of compatible observables are defined by colored edges. (b) In a non-contextual theory each of these eighteen observables must have a pre-determined outcome. In this graph they are represented by black dots. At least one set of compatible observables will have two projectors assigned the value 1 in contradiction with (IV.1) (represented by a red star).
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  Figure IV.2.: Graph leading to the KCBS inequality. To vertex i is associated a projector |v i v i |. Two adjacent projectors are compatible. If we apply this approach to the pentagon graph depicted in Fig. IV.2, we can derive the Klyachko, Can, Binicioğlu, and Shumovsky (KCBS) [Klyachko08] non-contexuality inequality:

Figure IV. 3 .:

 3 Figure IV.3.: The Peres-Mermin square for measurements on classical binary observables A ij ∈ {±1} (left) and for measurements of tensor products of Pauli operators σx,y,z (right).

Figure

  Figure IV.4.: The Peres-Mermin square for measurements on classical complex observables A ij , with |A ij | = 1 (left) and for measurements of tensor products of arbitrary unitary operators Ûj , with j = 1, 2, 3 (right).

  , (IV.32) as expected by the relations (IV.14) and (IV.15). As discussed in Sec. IV.2.2, this is a direct consequence of the binary spectral decomposition of the displacement operators (IV.30a), (IV.30b) and (IV.30c) which have the form of Eqs. (IV.21), (IV.22) and (IV.23), respectively.

  Figure V.1.: Sketch of the general setup. The two cavities C 1 and C 2 are entangled by sending an atom initially prepared in a superposition (|e + |g )/ √ 2 through them. After detection of the atom in state |e , the state (V.8a) is prepared. The classical source S is used to displace the fields inside the two cavities.
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  Figure V.2.: Plot of the two modes Wigner function in the real (a) and imaginary (b) planes of the ideal two-mode cat state (V.8a) with α = 3. The central point in figure (a) and fringes in figure (b) are signatures of the coherence.
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  Figure V.3.: (a) Plot of the maximal CHSH value B max as a function of the size α of the entangled Cat State (V.8a). The dashed red line indicates the local realism threshold. The dashed black line indicates the Tsirelson bound of the CHSH inequality. (b) Density plot of the two mode Wigner function W (α, β) in the plane Re(α) = Re(β) = 0 including the sampling points α, α , β and β leading to the maximal violation of local realism.
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  Figure V.4.: Atomic levels of the circular Rydberg atoms used in this experiment.The atomic transition at 51, 099GHz is in the microwave domain.

P

  e -P g = -ψ| cos(2φ) D1 (α) cos(2φn 1 ) D1 (-α) ⊗ D2 (β) cos(2φn 2 ) D2 (-β)|ψ . (V.45)

  Figure V.5.: Sketch of the experimental setup to close the locality loophole. In this setup we use two atoms to measure the two mode Wigner function.
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  Figure V.8.: Plot of the Wigner function of the cat state, with a field amplitude α = 2.5, obtained by dispersive interaction between an atom and a cavity for a finite detuning. The state created is slightly distorted with respect to the perfect coherent superposition (seef Fig. V.6).

  Figure V.9.: Plot of the maximal CHSH value B max as a function of atom velocity (blue line) obtained by complete numerical simulation of the experiment, using an amplitude α = √ 2. The red line is the classical bound.
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 2 Figure V.10.: (a) Plot of the maximal CHSH value B max as a function of time for the entangled Cat State (V.8a) when decoherence is taken into account (black dots). The blue line is an exponential with a decay time constant of D 2 κ = 4|α| 2 κ.
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 56 Fig. 5. Timing of the proposed experiment. The time is along the horizontal axis, the position along the vertical one. The two cavity modes are represented by the shaded areas. The two atoms correspond to the parallel oblique lines. The field injection events are represented by the white rectangles on the cavity modes. The resonant mixing pulses R 1 and R 2 are represented by the horizontal gray rectangles.
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  Figure V.11.: Results of the complete numerical simulation of the experiment proposed in[START_REF] Milman | A proposal to test Bell's inequalities with mesoscopic non-local states in cavity QED[END_REF]. Squares: computed values of the optimal Bell signal B for an initial twophoton field as a function of the delay T between the two atoms for t c = 30ms (Q = 10 10 ). Disks: B(T ) for t c = 300ms (Q = 10 11 ). The lines are exponential fits with decay time constants of 4.3 and 40 ms. Inset: long-time behavior of B(T ) for t c = 30ms.

  V.1) before the measurement of the second atom. In Fig. V.11 we reproduce the results obtained in [Milman05] by numerical simulation of the proposed experiment. This figure should be compared with Fig. V.10.
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 3 Fig. 3. Joint Wigner tomography. (A and B) A 2D plane-cut along (A) axes Re(b A )-Re(b B ) and (B) axes Im(b A )-Im(b B ) of the calculated 4D scaled joint Wigner function P J ðb A ; b B Þ of the ideal odd-parity two-mode cat state jy -i with a = 1.92.The red features in (A) represent the probability distribution of the two coherent states components. The central blue feature in (A) and fringes in (B) demonstrate quantum interference between the two components. (C and D) The corresponding Re(b A )-Re(b B ) and Im(b A )-Im(b B ) planecuts of the measured P J ðb A ; b B Þ of jy -i, to be compared with the ideal results in (A) and (B), respectively. Data are taken in an 81 by 81 grid, where every point represents an average of about 2000 binary outcomes of joint parity measurements. (E) Diagonal line-cuts of the data shown in (A) and (C), corresponding to 1D plots of the calculated (black) and measured (purple) scaled joint Wigner function along Re(b A ) = Re(b B ) with Im(b A ) = Im(b B ) = 0. (F) Diagonal line-cuts of the data shown in (B) and (D), corresponding to 1D plots of the calculated (black) and measured (purple) scaled joint Wigner function along Im(b A ) = Im(b B ), with Re(b A ) = Re(b B ) = 0.

  II. Preliminary notions state |ψ is said to be in a separable state if and only if there exists |ψ 1 • • • |ψ n so that:

  and the result o i is obtained with probability p i = ψ| Pi |ψ . When measuring the result o i , the state of the system immediately after the measurement is:

		Pi |ψ p i	.	(II.47)
	It follows that the expectation value when measuring observable Ô with respect to the
	state |ψ is given by:	Ô = ψ| Ô|ψ .	(II.48)

. When measuring observable Ô with respect to the state |ψ , the possible results are the eigenvalues II. Preliminary notions of Ô,

  Ẽn and Bn are orthogonal to the wavevector k n . Such fields are called transverse fields. Hence, we can rewrite Eq. (II.56) as:

	we find that E(r, t) =	Ẽ (t)e ik •r ,	(II.60)
		y,z	2π L	.	(II.57)
					(II.58)
	Eq. (II.56) shows that any field can be decomposed into a countable superposition of
	plane waves. The same procedure can be applied to the magnetic field, yielding the
	Fourier components Bn . Using this decomposition, Maxwell equations are transformed
	into a set of algebraic equations. Using the first two Maxwell equations,
	k n • Ẽn = 0, k n • Bn = 0,			(II.59a) (II.59b)

Conversely, given the Fourier components, one can calculate the field at any point since

E(r, t) = n Ẽn (t)e ikn•r .

  The Fock states are obtained from vacuum |0 by successive applications of the creation operator â † :

		|n =	(â † ) n √ n!	|0 .	(II.92)
	Their Wigner function writes:			
	W |n n| (x, p) =	(-1) n π	e -(x 2 +p 2 ) L n (2(x 2 + p 2 )),	(II.93)
	where L n denotes the nth order Laguerre polynomial. In Fig. II.3 we represented the
	Wigner function of the Fock states with n = 0, 1, 2. We can see that, except for n = 0,
	they all have a negative part, a signature of their quantum nature.
	Coherent states Coherent states |α are defined as the eigenstates of the annihilation operator â:
		â |α = α |α ,	(II.94)
	where α ∈ C. They form an over-complete basis as illustrated by the closure relation:
	1 π	d 2 α |α α| = 1.	(II.95)
	A coherent state |α can be obtained from the vacuum by applying a displacement operator (II.41)
	|α = D(α) |0 = e αâ † -α * â |0 ,	(II.96)

  More specifically, Bell experiments are performed on space-like separated regions, and to comply with special relativity Alice and Bob should not be able to use their box to communicate. It means that when Alice (Bob) changes her (his) setting, it cannot change the statistics of the outcomes obtained by Bob (Alice). Mathematically, the non-signaling constraints are expressed as constraints on the marginals of Alice and

	Bob:				
	d-1		d-1		
	b=1	p(a, b|x, y) =	b=1	p(a, b|x, y ), ∀a, x, y, y	(III.18a)
	d-1		d-1		
	a=1	p(a, b|x, y) =	a=1	p(a, b|x , y), ∀a, x, x , y.	(III.18b)
	These constraints imply that Alice's and Bob's marginal distributions p(a|x, y) = p(a|x)
	and p(a|x, y) = p(b|y) are independent of each other measurement settings.	

  that there exists a class of mixed entangled quantum states (the Werner states) that admits a local hidden variable model for POVM measurements. Entanglement and non-locality are thus not equivalent resources. Still, any bipartite entangled state displays some form of non-locality or non-classical features. For example they can enhance the teleportation power of another state[START_REF] Masanes | All Bipartite Entangled States Are Useful for Information Processing[END_REF] or together with another state they can violate the CHSH inequality[START_REF] Masanes | All Bipartite Entangled States Display Some Hidden Nonlocality[END_REF]. In the context of non-local games it was proven that all bipartite entangled state can be detected[START_REF] Buscemi | All Entangled Quantum States Are Nonlocal[END_REF] 

	III.2.3. Polytopes

III.2.3.1. Krein-Milman theorem

  4, (IV.7) can be maximally violated irrespectively of the state of the system when we consider observables {A ij } which are products of Pauli operators. Those are specific examples of observables. In what follows we want to study what are the properties of Pauli operators that lead to a state independent violation of the inequality and in particular if it is possible to find other observables displaying similar features.

  |e |αe -iφ , αe -iφ + |g |αe iφ , αe iφ . iφ , αe iφe -2iφ |αe -iφ , αe -iφ ) + |g (|αe iφ , αe iφ + e -2iφ |αe -iφ , αe -iφ ) .

	It yields :		
	|Ψ out =	1 2	|e (|αe (V.39)
			(V.38)
	The atom then interacts with another classical field resonant on the |e → |g transition performing the state transformations |e → (-|e + |g )/ √ 2 and |g → (|e + |g )/ √ 2.

  e -iφn 1 D1 (-α)e -iφn 2 D2 (-β) |e +e iφn 1 D1 (-α)e iφn 2 D2 (-β) |g |ψ .

	Lastly, the atom undergoes a second π/2 pulse, performing the state transformation |e → (-|e + |g )/ √ √ 2, bringing the global state of the system 2 and |g → (|e + |g )/ into:

One example being Shor algorithm, allowing one to factorize numbers in a polynomial time[START_REF] Shor | Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer[END_REF].

In the following we use the convention = 1 unless stated otherwise.

The decomposition (II.12) is not unique in general and can lead to some difficulty in the interpretation of a measurement. See[START_REF] Bassi | Dynamical reduction models[END_REF] for an introduction to the "measurement problem".

This will allow us to define the Wigner function of an observable.

No-signaling set of measures are defined shortly after.

see[START_REF] Bravyi | Universal quantum computation with ideal Clifford gates and noisy ancillas[END_REF] for a description of the quantum computation protocol
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VII.1. Résumé du chapitre III

La première partie de cette thèse porte sur l'étude de la la non-localité. Bell a montré que la mécanique est incompatible avec les hypothèses de réalité et de localité. Cette incompatibilité se traduit par la violation d'inégalités dites de Bell. Cette violation montre que les corrélations dans les systèmes quantiques spatialement séparés peuvent être plus fortes que dans les systèmes classiques. Cependant ces corrélations respectent la relativité et ne permettent pas la transmission d'information plus vite que la vitesse de la lumière. Elles sont dites « no-signaling ». Cette observation a mené à l'étude des corrélations quantiques en tant que sous ensemble des corrélations « no-signaling ». L'intérêt principal de cette approche est qu'elle permet d'offrir une autre perspective sur les corrélations quantiques. Elle permet notamment de faire le lien entre l'étude des corrélations et l'étude des problèmes de compléxité de communication. Ces liens sont très fructueux puisqu'ils permettent d'apporter une réponse partielle à la limitation de la force des corrélations quantiques par rapport à certaines corrélations « no-signaling ».

Dans le cas où les résultats de mesures sont discrets l'ensemble des corrélations « nosignaling » a été l'objet de nombreux travaux. En particulier, on sait que c'est un polytope, dont les point extrémaux ont été complètement caractérisés. Ce chapitre porte sur le cas où les résultats des mesures sont à valeur dans un ensemble infini, voir continu. Dans ce cadre, on peut montrer qu'il est possible d'introduire un ensemble de mesures de probabilité qui sont les analogues en variables continues des points extrémaux discrets:

Re (α )

A. General proof of Theorem 1

A.1. General proof

Let µ ∈ PR N S . We want to prove that there exists a sequence µ n ∈ Conv(PR CV ) that weakly converges to µ. For n ≥ 1 we divide [-n, n] in 2n 2 intervals of length 1/n and denote the corresponding intervals I n as before. Furthermore, we define the components of µ n as follows:

where

The first term of Eq. (A.1) corresponds to the same construction as in the proof of Theorem 7 in the compact case, whereas the second term ν n is merely necessary to ensure the no-signaling conditions (III.42a) and (III.42b) on R × R. It reads as follows:

where ]a, b[ refers to an open interval bounded by a and b, respectively. We will now complete the proof of Theorem 7 by showing the weak convergence of this sequence in the general case. The other parts of the proof remain unchanged (see Sec. III.3.2).

Let f ∈ C b (R 2 ) and ∈ [0, 1], we want to prove that there exists an n 0 ∈ N such that | R 2 f dµ n -R 2 f dµ| < for all n > n 0 , where this inequality should be understood as component wise inequality. Since µ is a set of probability measures and f is a bounded function, there exists an n 1 ∈ N such that:

A. General proof of Theorem 1 for all (x, y) and all n > n 1 . It follows that:

While the first term on the right and side of inequality (A.4) becomes:

the second term contains an integration over a compact area, which allows us to use the proof of Theorem 7 on a compact. Hence, we can conclude that this term is smaller than for sufficiently large n. Note that the same proof does not apply directly here since the considered sequence of behaviors is not no-signaling on the compact domain [-n 1 , n 1 ] 2 , but rather on R 2 . However, dropping the no-signaling condition does not contradict with the convergence of this sequence. By combining inequalities (A.4) and (A.5) we finally arrive at for n sufficiently large. This quantity goes to zero as goes to zero and thus µ n weakly converges to µ.