
HAL Id: tel-02127065
https://theses.hal.science/tel-02127065v1

Submitted on 13 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

KerA : A Unified Ingestion and Storage System for
Scalable Big Data Processing

Ovidiu-Cristian Marcu

To cite this version:
Ovidiu-Cristian Marcu. KerA : A Unified Ingestion and Storage System for Scalable Big Data Pro-
cessing. Other [cs.OH]. INSA de Rennes, 2018. English. �NNT : 2018ISAR0028�. �tel-02127065�

https://theses.hal.science/tel-02127065v1
https://hal.archives-ouvertes.fr

i

Contents

1 Introduction 1

1.1 Context . 1
1.2 Objectives . 2
1.3 Contributions . 3
1.4 Publications . 5
1.5 Dissertation plan . 5

Part I — Background 7

2 Data ingestion and storage support for Big Data processing 9

2.1 The stream processing pipeline . 10
2.2 Motivating use cases: processing and data requirements 11
2.3 Requirements for stream ingestion and storage 12
2.4 Selection of distributed systems for data ingestion and storage 14

2.4.1 Stream-based ingestion systems . 14
2.4.2 Record-based storage systems . 15
2.4.3 HDFS . 15
2.4.4 Specialized stores . 15
2.4.5 Limitations of existing systems . 16

2.5 Conclusion . 17

Part II — Understanding performance in Big Data analytics frameworks 19

3 Stream-based versus batch-based execution runtimes 21

3.1 Background . 23
3.1.1 Apache Spark . 24
3.1.2 Apache Flink . 24
3.1.3 Zoom on the differences between Flink and Spark 24

3.2 Methodology . 26
3.2.1 Workloads . 26
3.2.2 The importance of parameter configuration 29
3.2.3 Experimental setup . 30

3.3 Evaluation . 30

ii Contents

3.3.1 Results . 30
3.3.2 Summary of insights . 38

3.4 Discussion . 40
3.4.1 Related work . 40
3.4.2 Fault tolerance trade-offs . 41

4 Exploring shared state for window-based streaming analytics 43

4.1 Background . 44
4.1.1 Context . 44
4.1.2 Problem statement . 45

4.2 Memory deduplication with shared state backend 46
4.2.1 Stateful window-based processing . 46
4.2.2 Deduplication proposal . 48

4.3 Synthetic evaluation . 49
4.3.1 Setup and Methodology . 49
4.3.2 Results . 50
4.3.3 Memory savings . 53
4.3.4 Summary of insights . 53

4.4 Discussion . 54
4.4.1 Comparison with existing approaches 54
4.4.2 Pushing processing to storage . 55

Part III — KerA: a unified architecture for stream ingestion and storage 57

5 Design principles for scalable data ingestion and storage 59

5.1 Data first: towards a unified analytics architecture 60
5.1.1 Processing engines should focus on the operators workflow 60
5.1.2 Ingestion and storage should be unified and should focus on high-

level data management . 61
5.1.3 Processing engines and ingestion/storage systems should interact

through stream-based abstractions . 61
5.2 Scalable data ingestion for stream processing 61

5.2.1 Dynamic partitioning using semantic grouping and sub-partitions . . 63
5.2.2 Lightweight offset indexing optimized for sequential record access . . 63

5.3 Handling diverse data access patterns . 64
5.3.1 Model stream records with a multi-key-value data format 64
5.3.2 Leverage log-structured storage in memory and on disk 64
5.3.3 Adaptive and fine-grained replication for multiple streams 66

5.4 Efficient integration with processing engines 66
5.4.1 Enable data locality support as a first class citizen 67
5.4.2 Distributed metadata management for un/bounded streams 67
5.4.3 Towards pushing processing to storage 67

6 High level architecture overview 69

6.1 Unified data model for unbounded streams, records and objects 70
6.2 Scalable data ingestion and processing . 73

Contents iii

6.2.1 Dynamic stream partitioning model . 73
6.2.2 Lighweight offset indexing . 74
6.2.3 Favoring parallelism: consumer and producer protocols 74

6.3 Global architecture . 75
6.3.1 Stream management: the coordinator role 75
6.3.2 Stream ingestion: the broker role . 76
6.3.3 Stream replication: the backup role . 76

6.4 Client APIs . 77
6.5 Distributed metadata management . 77
6.6 Towards an efficient implementation of fault-tolerance mechanisms in KerA . 80

7 Implementation details 83

7.1 Streaming clients: how reads and writes work 84
7.1.1 The RPC layer . 84
7.1.2 Streaming clients architecture . 84

7.2 Efficient management of online and offline operations 86
7.2.1 Persistence manager: high-performance ingestion 86
7.2.2 Real-time versus offline brokers . 87

7.3 Durable ingestion of multiple streams: adaptive and fine-grained replication 88
7.3.1 Motivation . 89
7.3.2 Our proposal: virtual logs . 91

7.4 Pushing processing to storage: enabling locality support for streaming 93
7.4.1 State-of-the-art architecture: pull-based consumers 93
7.4.2 Leveraging locality: push-based consumers 95

8 Synthetic evaluation 97

8.1 Setup and parameter configuration . 98
8.2 Baseline performance of a single client: peak throughput 100

8.2.1 Producers: how parameters impact ingestion throughput 100
8.2.2 Consumers: how parameters impact processing throughput 101

8.3 Impact of dynamic ingestion on performance: KerA versus Kafka 102
8.3.1 Impact of the chunk size: a throughput versus latency trade-off 103
8.3.2 Validating horizontal and vertical scalability 104
8.3.3 Impact of the number of partitions/streamlets 105
8.3.4 Discussion . 105

8.4 Understanding the impact of the virtual log replication 106
8.4.1 Baseline . 106
8.4.2 Impact of the configuration of the streamlet active groups 108
8.4.3 Impact of the replication factor . 108
8.4.4 Increasing the number of virtual logs 109
8.4.5 Discussion . 109

8.5 Going further: why locality is important for streaming 110

Part IV — Conclusion and Future Work 113

9 Final words 115

iv Contents

9.1 Achievements . 116
9.2 Future directions . 117

Part V — Appendix 131

v

List of Figures

2.1 The stream processing pipeline . 10

3.1 The MapReduce programming model (taken from [18]) 22
3.2 Lineage graph for a Spark query (taken from [120]) 24
3.3 Flink execution graph (taken from [113]) . 25
3.4 Parallelization contract - PACT (taken from [3]) 25
3.5 Flink iterate operator (taken from Apache Flink) 25
3.6 Flink delta iterate operator (taken from Apache Flink) 26
3.7 Word Count: Flink versus Spark with fixed problem size per node 31
3.8 Word Count: Flink versus Spark with fixed number of nodes and different

datasets . 31
3.9 Word Count: Flink versus Spark operators and resource usage 31
3.10 Grep: Flink versus Spark with fixed problem size per node 32
3.11 Grep: Flink versus Spark with fixed number of nodes and different datasets . 32
3.12 Grep: Flink versus Spark operators and resource usage 33
3.13 Tera Sort: Flink versus Spark with fixed problem size per node 33
3.14 Tera Sort: Flink versus Spark with fixed dataset and increasing number of nodes 33
3.15 Tera Sort: Flink versus Spark operators and resource usage 34
3.16 K-Means: Flink versus Spark with fixed dataset while increasing the cluster size 35
3.17 K-Means: Flink versus Spark operators and resource usage 35
3.18 Page Rank: Flink versus Spark for a Small Graph with increasing cluster size 35
3.19 Connected Components: Flink versus Spark for a Small Graph with increas-

ing cluster size . 35
3.20 Page Rank: Flink versus Spark for a Medium Graph with increasing cluster size 36
3.21 Connected Components: Flink versus Spark for a Medium Graph with in-

creasing cluster size . 36
3.22 Page Rank: Flink versus Spark operators and resource usage 38
3.23 Connected Components: Flink versus Spark operators and resource usage . . 38

4.1 State backend options for window-based streaming operations 47
4.2 Deduplication proposal for window-based streaming operators through

shared key-value store . 49
4.3 Event processing latency for fixed window size (heap) 51
4.4 Event processing latency for fixed event rate (heap versus shared) 51

vi List of Figures

4.5 Event processing latency for fixed event rate (off-heap versus shared) 51
4.6 Event processing latency for fixed event rate with increased parallelism . . . 52
4.7 Event processing latency for fixed (increased) event rate with increased paral-

lelism . 52

5.1 Data first envisioned approach . 60
5.2 Static partitioning in Kafka . 62
5.3 Multi-key-value data format for stream records 64
5.4 Stream records ingestion and replication with logs 65
5.5 Log-structured storage in memory and on disk 65

6.1 Representation of records, chunks, segments, groups and streamlets 71
6.2 Semantic partitioning of streams with streamlets 72
6.3 Example of stream partitioning with 3 streamlets 73
6.4 The KerA architecture . 75
6.5 Distributed metadata management and impact of streamlet migration 79

7.1 The dispatching-workers threading architecture 84
7.2 Broker management of logical and physical segments 89
7.3 The virtual log technique for adaptive and fine-grained replication 91
7.4 Current streaming architecture with pull-based consumers 94
7.5 Data locality architecture through shared in-memory object store 94

8.1 Producer architecture . 99
8.2 Consumer architecture . 99
8.3 Single producer throughput when increasing the chunk size and respectively

the number of streamlets . 101
8.4 Impact of source record checksum computation on producer throughput . . . 101
8.5 Single consumer throughput when increasing the chunk size and respectively

the number of streamlets . 102
8.6 Impact of source record checksum computation on consumer throughput . . 102
8.7 Evaluating the ingestion component when increasing the chunk/request size 103
8.8 Evaluating the ingestion component when increasing the number of partition-

s/streamlets . 103
8.9 Vertical scalability: increasing the number of clients 104
8.10 Horizontal scalability: increasing the number of nodes 104
8.11 Baseline: average throughput per client with replication disabled 107
8.12 Configuring more virtual logs for 16 clients with replication factor 1 108
8.13 Increasing the number of active groups brings increased throughput (replica-

tion factor 1) . 108
8.14 Increasing the replication factor (16 clients) . 108
8.15 Increasing the replication factor (32 clients) . 108
8.16 Increasing the number of virtual logs . 109
8.17 Baseline for locality: increased replication factor brings more interference . . 110

vii

List of Tables

2.1 How available ingestion and storage systems support the identified require-
ments. 17

3.1 Big Data operators for batch and iterative workloads 27
3.2 Word Count and Grep configuration settings: fixed problem size per node . . 31
3.3 Tera Sort configuration settings . 33
3.4 Graph datasets characteristics . 35
3.5 Small graph configuration settings . 36
3.6 Medium graph configuration settings . 36
3.7 Page Rank and Connected Components results 36

4.1 Memory utilization estimation . 53

6.1 Available KerA operations for managing streams or objects 78
6.2 Additional KerA operations for managing streams or objects 79

viii List of Tables

1

Chapter 1

Introduction

Contents

1.1 Context . 1

1.2 Objectives . 2

1.3 Contributions . 3

1.4 Publications . 5

1.5 Dissertation plan . 5

1.1 Context

BIG Data is now the new natural resource. In the last few years we have witnessed an
unprecedented growth of data that need to be processed at always increasing rates in

order to extract valuable insights (e.g., Facebook, Amazon, LHC, etc.). As data volumes con-
tinue to rise at even higher velocity, current Big Data analytics architectures face significantly
higher challenges in terms of scalability, fast ingestion, processing performance and storage
efficiency.

In order to cope with these massive, exponentially increasing amounts of heterogeneous
data that are generated faster and faster, Big Data analytics applications have seen a shift
from batch processing to stream processing, which can reduce dramatically the time needed
to obtain meaningful insights. At the same time, complex workflow applications forced
users to demand unified programming abstractions needed to simplify existing workloads
and to enable new applications. Processing architectures evolved and now support batch,
interactive and streaming computations in the same runtime [18, 120, 2], therefore optimiz-
ing applications by removing work duplication and resource sharing between specialized
computation engines.

2 Chapter 1 – Introduction

Current state-of-the-art Big Data analytics architectures are built on top of a three layer
stack: data streams are first acquired by the ingestion layer (e.g., Apache Kafka [46]) and
then they flow through the processing layer (e.g., Apache Flink [26], Apache Spark [98],
Twitter Heron [59]) which relies on the storage layer (e.g., HDFS [95]) for storing aggregated
data, intermediate checkpoints or for archiving streams for later processing. Under these
circumstances, data are often written twice to disk or sent twice over the network (e.g., as
part of a fault-tolerance strategy of the ingestion layer and of the persistency requirement of
the storage layer). Second, the lack of coordination between the layers can lead to I/O inter-
ference (e.g., the ingestion layer and the storage layer compete for the same I/O resources
when collecting data streams and writing archival data simultaneously). Third, in order
to efficiently handle the application state [107] (batch and streaming) during execution, the
processing layer often implements custom advanced data management (e.g., operator state
persistence, checkpoint-restart) on top of inappropriate basic ingestion and storage APIs,
which results in significant performance overhead.

Unfortunately, in spite of potential benefits brought by specialized layers (e.g., simpli-
fied implementation), moving large quantities of data through specialized systems is not
efficient: instead, data should be acquired, processed and stored while minimizing the num-
ber of copies. We argue that the aforementioned challenges are significant enough to offset
the benefits of specializing each layer independently of the other layers.

Moreover, the difficulty to maintain such complex architectures (i.e., robust and fault-
tolerant systems that are able to serve both online and offline data access patterns required
by modern streaming use cases) suggests the need for an optimized (unified) solution for
bounded (objects) and unbounded (streams) data ingestion and storage. The design and
implementation of such a dedicated solution is challenging: not only it should provide tra-
ditional storage functionality (i.e., support for objects), but it should also meet the real-time
access requirements of modern stream-based applications (e.g., low-latency I/O access to
data items or high throughput stream data ingestion and processing).

This thesis was carried out in the context of the BigStorage ETN with the goal of under-
standing the limitations of state-of-the-art Big Data analytics architectures and to design and
implement data processing and streaming models to alleviate from current limitations and
to optimize stream processing.

1.2 Objectives

This dissertation argues that a plausible path to follow to alleviate from previous limitations
is the careful design and implemention of a unified architecture for stream ingestion and
storage which can lead to the optimization of the processing of Big Data (stream-based) ap-
plications, while minimizing data movement within the analytics architecture, finally lead-
ing to better performance and to better utilized resources. Towards this general goal we
propose a set of objectives:

1. Identify a set of requirements for a dedicated stream ingestion/storage engine.

2. Explain the impact of the different Big Data architectural choices on end-to-end per-
formance and understand what are the current limitations faced by a streaming engine
when interacting with a storage system for holding streaming state.

1.3 – Contributions 3

3. Propose a set of design principles for a scalable, unified architecture for data ingestion
and storage.

4. Implement a prototype for a dedicated stream ingestion/storage engine with the goal
of efficiently handling diverse access patterns: low-latency access to stream records
and/or high throughput access to (unbounded) streams and/or objects.

1.3 Contributions

Towards the objectives previously mentioned, this thesis brings the following contributions:

Requirements for a dedicated stream ingestion and storage solution. We identify and dis-
cuss the application characteristics of a set of modern stream-based scenarios that fur-
ther inspired a set of challenging requirements for an optimized ingestion and stor-
age architecture. Then, we survey state-of-the-art ingestion and storage systems and
discuss how they partially meet our requirements. These systems served as an excel-
lent foundation and inspiration on which to build our proposed solution for a unified
architecture for stream ingestion and storage with the goal of optimizing processing
analytics.

Understanding performance in Big Data analytics frameworks

Stream-based versus batch-based execution runtime. Flink (stream-based) and
Spark (batch-based) are two Apache-hosted data analytics frameworks that fa-
cilitate the development of multi-step data pipelines using directly acyclic graph
patterns. Making the most out of these frameworks is challenging, because ef-
ficient executions strongly rely on complex parameter configurations and on an
in-depth understanding of the underlying architectural choices. To this end, we
develop a methodology for correlating the parameter settings and the operators
execution plan with the resource usage, and we dissect the performance of Spark
and Flink with several representative batch and iterative workloads on up to 100
nodes. Our key finding is that none of the two frameworks outperforms the other
for all data types, sizes and job patterns: we highlight how results correlate to
operators, to resource usage and to the specifics of the engine design and param-
eters.
Our experiments suggest that the state management function for Big Data pro-
cessing should be enabled by a dedicated engine like the one we propose. More-
over, designing a unified analytics architecture through stream-based interfaces
can be a compelling choice. Our intuition is the following: treating both in-
put/output data and respectively the (intermediate) state of the application op-
erators as streams can finally lead to a simplified, fault-tolerant and optimized
analytics architecture.

Exploring shared state for window-based streaming analytics. Big Data streaming
analytics tools enable real-time handling of live data sources by means of state-
ful aggregations through window-based operators: e.g., Apache Flink enables
each operator to work in isolation by creating data copies. To minimize mem-
ory utilization, we explore the feasibility of deduplication techniques to address

4 Chapter 1 – Introduction

the challenge of reducing memory footprint for window-based stream processing
without significant impact on performance (typically measured as result latency).
Our key finding is that more fine-grained interactions between streaming engines
and (key-value) stores need to be designed (e.g., lazy deserialization or pushing
processing functions to storage) in order to better respond to scenarios that have
to overcome memory scarcity. These insights contributed to our proposed design
principles.

Design principles for a scalable, unified architecture for data ingestion and storage.

Based on our experiences with Big Data analytics frameworks and considering the
identified requirements for a dedicated stream ingestion and storage solution, we
propose a series of design principles for building a scalable, unified architecture for
data ingestion and storage in support of more efficient processing analytics. First,
towards our vision for a unified analytics architecture, we propose that processing
engines should focus on the operator workflow (i.e., on the execution of stateful
and/or stateless operators) and leave the state management function to a unified
ingestion/storage engine that addresses high-level data management (e.g., caching,
concurrency control). Furthermore, processing and ingestion/storage engines should
interact through stream-based interfaces.

Next, for a scalable data ingestion we propose two core ideas: (1) dynamic partition-
ing based on semantic grouping and sub-partitioning, which enables more flexible and
elastic management of stream partitions; (2) lightweight offset indexing (i.e., reduced
stream offset management overhead) optimized for sequential record access. Then,
we propose a set of principles for handling diverse access patterns: low-latency access
to stream records and/or high throughput access to streams, records or objects. In
order to efficiently handle multiple streams, we propose a new method for adaptive
and fine-grained replication that allows durable ingestion of multiple streams. Finally,
we discuss two design principles (i.e., data locality support and distributed metadata
management) that can lead to an optimized integration of the ingestion/storage sys-
tems with processing engines.

Prototype implementation of a unified architecture for data ingestion and storage. Based
on the design principles previously mentioned, we introduce the KerA architecture for
an optimized ingestion/storage engine for efficient Big Data processing. We present
our unified data model for unbounded streams, records and objects, and then describe
the protocols of dynamic partitioning and lighweight offset indexing mechanisms for
scalable ingestion. We further describe the KerA architecture and present the role of
each component for stream ingestion and storage management, and then we charac-
terize the client interfaces (APIs) exposed by the unified ingestion/storage engine.
Finally, we comment on the design elements needed for a fault-tolerant architectural
implementation. We further describe the implementation of the KerA techniques that
we developed in a high-performance software prototype based on C++ and Java.
We zoom on the adaptive and fine-grained replication implementation, which uses
a zero-copy virtual log technique and we describe the architectural extension and
implementation of the data locality support for streaming operations. In the end, we
evaluate our implementation through synthetic workloads.

1.4 – Publications 5

1.4 Publications

International conferences

[ICDCS2018] Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, María Pérez,
Bogdan Nicolae, Radu Tudoran, Stefano Bortoli. KerA: Scalable Data Ingestion for
Stream Processing. In IEEE International Conference on Distributed Computing Sys-
tems, Jul 2018, Vienna, Austria, https://hal.inria.fr/hal-01773799.

[Cluster2016] Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, María Pérez.
Spark versus Flink: Understanding Performance in Big Data Analytics Frameworks.
In IEEE International Conference on Cluster Computing, Sep 2016, Taipei, Taiwan,
https://hal.inria.fr/hal-01347638v2.

Workshops at international conferences

[BigData2017] Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, María Pérez,
Radu Tudoran, Stefano Bortoli, Bogdan Nicolae. Towards a Unified Storage and Inges-
tion Architecture for Stream Processing. In Second Workshop on Real-time & Stream
Analytics in Big Data Colocated with the 2017 IEEE International Conference on Big
Data, Dec 2017, Boston, United States, https://hal.inria.fr/hal-01649207.

[CCGrid2017] Ovidiu-Cristian Marcu, Radu Tudoran, Bogdan Nicolae, Alexandru Costan,
Gabriel Antoniu, María Pérez. Exploring Shared State in Key-Value Store for Window-
Based Multi-Pattern Streaming Analytics. In Workshop on the Integration of Ex-
treme Scale Computing and Big Data Management and Analytics in conjunction with
IEEE/ACM CCGrid, May 2017, Madrid, Spain, https://hal.inria.fr/hal-01530744.

1.5 Dissertation plan

This thesis proceeds as follows. The first part (Chapter 2) describes the main requirements
of a unified ingestion and storage architecture for efficient Big Data processing and presents
limitations of state-of-the-art ingestion and storage systems for handling them. The second
part (Chapters 3 and 4) is focused on how current Big Data processing engines perform
when handling batch and streaming workloads. Chapter 3 provides a methodology for un-
derstanding the architectural differences between stream-based and batch-based execution
runtimes. Chapter 4 explores the feasibility of deduplication techniques to address the chal-
lenge of reducing memory footprint for window-based streaming operations. The third part
(Chapters 5, 6, 7 and 8) is focused on the design, implementation and evaluation of the
KerA’s unified architecture for optimized stream ingestion and storage. We design KerA
with the goal of efficiently handling diverse access patterns: low-latency access to stream
records and/or high throughput access to (unbounded) streams and/or objects. Based on
identified requirements and our experiences with Big Data processing architectures, Chapter
5 describes a set of design principles for a scalable data ingestion and storage architecture.
Chapter 6 presents a high-level description of the KerA architecture that implements these

https://hal.inria.fr/hal-01773799
https://hal.inria.fr/hal-01347638v2
https://hal.inria.fr/hal-01649207
https://hal.inria.fr/hal-01530744

6 Chapter 1 – Introduction

principles. Further, the implementation of the most challenging parts of the KerA architec-
ture is described in Chapter 7. Chapter 8 presents an evaluation of the KerA techniques. In
the last part (Chapter 9) we conclude and discuss future research directions.

7

Part I

Background

9

Chapter 2

Data ingestion and storage support for
Big Data processing

Contents

2.1 The stream processing pipeline . 10

2.2 Motivating use cases: processing and data requirements 11

2.3 Requirements for stream ingestion and storage 12

2.4 Selection of distributed systems for data ingestion and storage 14

2.4.1 Stream-based ingestion systems . 14

2.4.2 Record-based storage systems . 15

2.4.3 HDFS . 15

2.4.4 Specialized stores . 15

2.4.5 Limitations of existing systems . 16

2.5 Conclusion . 17

STREAM-based applications need to immediately ingest and analyze data and in many
cases combine live (unbounded streams) and archived (objects, i.e., bounded streams)

data in order to extract better insights. In this context, online and interactive Big Data
processing runtimes (e.g., Apache Flink [26], Apache Spark [121]) designed for both batch
and stream processing are rapidly adopted in order to eventually replace traditional, batch-
oriented processing models (such as MapReduce [18] and its open-source implementation
Hadoop [37]) that are insufficient to additionally meet the need for low-latency and high-
update frequency of streams [69, 105, 106, 5, 14].

The broad question we address in this thesis is how to build a general Big Data stream-
ing architecture that is able to efficiently handle very diverse stream applications, while
minimizing data movement for better resource utilization and improved performance? To

10 Chapter 2 – Data ingestion and storage support for Big Data processing

Figure 2.1 – The usual streaming architecture is composed of three layers: data streams are first
acquired by the ingestion layer and then they flow through the processing layer which relies on
the storage layer for storing aggregated data, intermediate results or for archiving streams for later
processing.

this end, we first present the state-of-the-art stream processing pipeline and then discuss
application requirements for a set of modern stream-based use cases.

2.1 The stream processing pipeline

A typical state-of-the-art online Big Data analytics runtime is built on top of a three layer
stack (as illustrated in Figure 2.1):

Ingestion: this layer serves to acquire, buffer and optionally pre-process data streams (e.g.,
filter) before they are consumed by the analytics application. The ingestion layer has
limited support for guaranteeing persistence: it buffers streams only temporarily (e.g.,
hours, days) and enables limited access semantics to them (e.g., it assumes a producer-
consumer streaming pattern that is not optimized for random access), having no sup-
port for object access.

Storage: unlike the ingestion layer, this layer is responsible for persistent storage of data
(i.e., objects or files) and can additionally be used to simply archive processed streams
(for later usage). This typically involves either the archival of the buffered data streams
from the ingestion layer or the storage of the intermediate/final results of stream an-
alytics, both of which are crucial to enable fault-tolerance or deeper, batch-oriented
analytics that complement the online analytics; the persistent storage layer is typically
based on HDFS [95], for interoperability reasons with previous developments in the
area of Big Data analytics, although it was not designed for streaming patterns and,
as such, it cannot provide the required sub-second performance (e.g., online access to
data repositories).

2.2 – Motivating use cases: processing and data requirements 11

Processing: this layer consumes the streaming data buffered by the ingestion layer and
sends the intermediate/final results to the ingestion layer in order to enable other
streaming applications in a real-time workflow scenario; additionally, the processing
layer may send intermediate/final results to the storage layer for ensuring a fault-
tolerant execution (enabling later recovery of stored checkpoints).

Current streaming architectures are designed with distinct components for ingestion and
storage of data streams. The difficulty to maintain such complex architectures (i.e., robust
and fault-tolerant systems that are able to serve a wide range of workloads, e.g., to sup-
port both online and offline data access patterns required by modern streaming use cases)
suggests the need for an optimized solution for (un)bounded stream data ingestion and
storage. Such a solution should of course keep providing traditional storage functionality
(i.e., support for persistent objects), but should also meet the real-time access requirements
of stream-based processing (e.g., low-latency I/O access to data items and high throughput
stream ingestion).

2.2 Motivating use cases: processing and data requirements

Stream processing can solve a large set of business and scientific problems, including net-
work monitoring, real-time fraud detection, e-commerce, etc. In short, these applications
require real-time processing of stream data in order to gather valuable insights that imme-
diately contribute with results for final users: data streams are pushed to stream ingestion
systems and queries are continuously executed over them [43]. We describe below examples
of modern stream-based scenarios that exhibit challenging requirements for state-of-the-art
ingestion and storage systems.

Monetizing streaming video content. Streaming video providers display video advertise-
ments and are interested in efficiently billing their advertisers [1]. Both video providers
and advertisers need statistics about their videos (e.g., how long a video is watched
and by which demographic groups); they need this information as fast as possible
(i.e., in real-time) in order to optimize their strategy (e.g., adjust advertisers budgets).
We identify a set of requirements associated with these applications: (1) stream items
are ingested as fast as possible and consumed by processing engines that are updat-
ing statistics in real-time; (2) stream items and aggregated results are durably stored
for future usage (e.g., offline analysis); (3) users interrogate streams (SQL queries on
streams, monitoring) to validate business quality agreements.

Distributed system/network monitoring. The log component is a first-class member of
many business or scientific applications because it can deliver a concise description
of the current status of a running application. There are many use cases [19, 16] related
to real-time log processing: monitoring server metrics (CPU, memory, disk, network)
in order to gain insights into the system health and performance; monitoring applica-
tion usage to gain insights into user activity and get real-time alerts and notifications
that help maintain the service level agreements. In most scenarios data is immediately
dropped after it gets filtered, while some cases require data to be durably retained
(archived) for a configurable amount of time. Real-time monitoring involves certain

12 Chapter 2 – Data ingestion and storage support for Big Data processing

steps: (1) stream logs are ingested, potentially indexed and/or archived in real time;
(2) monitoring systems run continuous queries on live and/or archived data and gen-
erate alerts if problems are identified; (3) long living stream analytics are deployed to
gather more insights post-ingestion; (4) dynamic partitioning techniques are necessary
to handle peak moments when data streams arrive with higher throughput.

Decision support for Smart Cities applications. Future cities will leverage smart devices
and sensors installed in the public infrastructure to improve the citizens’ life. In this
context, several aspects are important: (1) streaming data from sensors (pre-processed
at the edge) are initially ingested before delivering them to the streaming engines; (2)
massive quantities of data can be received over short time intervals, consequently in-
gestion components have to support a high throughput of streaming data; (3) stream-
based applications need to efficiently scale up and down based on data input, which
further introduces challenges for implementing dynamic data partitioning techniques.

Summary and discussion.

To sum up, stream-based applications strongly rely on the following features, not well sup-
ported by current streaming architectures:

1. Fast ingestion, possibly doubled by simultaneous indexing (often, through a single
pass on data) for real-time processing.

2. Low-latency storage with additional fine-grained query support for efficient filtering
and aggregation of data records.

3. Storage coping with events accumulating in large volumes over a short period of time.

A few general trends can be observed from the applications presented above. First, the
data access model is complex and involves a diversity of data sizes and access patterns (i.e.,
records, streams, objects). Second, the stream processing architectures need to enable ad-
vanced features for the applications, such as dynamic partitioning, distributed metadata
management, pre-preprocessing, flow control. In addition to these features, they need to
also address non-functional aspects such as high availability, data durability and control of
latency versus throughput. Based on these general trends, we synthetized the following
requirements for an optimized stream storage architecture.

2.3 Requirements for stream ingestion and storage

Current Big Data streaming architectures (Figure 2.1) rely on message broker solutions that
decouple data sources (i.e., how data streams are ingested) from applications (i.e., how
streams are processed) that further store (intermediate) results and input streams to stor-
age engines. Moving large quantities of data through specialized layers is not efficient and it
also forces users to handle very complex architectures. We claim that a unified architecture
for ingestion and storage would help overcome these limitations. Let us discuss the main
requirements that need to be addressed by a unified solution for data ingestion and storage
of stream-based applications.

2.3 – Requirements for stream ingestion and storage 13

Data access patterns: records, streams and objects. Stream-based applications dictate the
way data is accessed, with some of them (e.g., [36, 1]) requiring fine-grained record
access. Stream operators may leverage multi-key-value interfaces in order to optimize
the number of accesses to the data store or may access data items sequentially (batches
of stream records). Moreover, when coupled with offline analytics (post-ingestion), the
need for object (bounded streams) data access interfaces is crucial.

Dynamic stream partitioning. Partitioning for streaming [117, 31] is a recognized technique
used in order to increase processing throughput and scalability. It consists of logically
spliting a stream of records in multiple partitions (managed by distinct brokers) that
can be accessed in parallel by multiple producers and consumers. The ability of the
stream storage to handle increasing amounts of data, while remaining stable in front
of peak moments when high rates of bursting data arrive, is crucial. The main key
to a scalable stream storage is a dynamic stream partitioning model with advanced,
fine-grained support for application-level message routing [75].

Temporal persistence versus stream durability. Temporal persistence refers to the ability of
a system to temporarily store a stream of events in-memory or on disk (e.g., config-
urable data retention of a short period of time after which data is automatically dis-
carded). Big Data analytics engines may benefit from such support, specifically when
pushing processing to storage. Moreover, stream records may also need to be durably
stored for high availability and later processing. It is of utmost importance to be able
to configure a diverse set of retention policies in order to give applications the abil-
ity to replay historical stream events or to derive later insights by running continuous
queries over both old and new stream data.

Latency versus throughput. Some applications need low-latency access to streams of
records, while others can accommodate higher latencies, requiring high throughput
access to objects or streams. Specialized systems implement this trade-off through a
key-value data model for low-latency record access or by using a batching architec-
ture on streaming clients with support from storage systems [67]. For a unified inges-
tion and storage system the implementation of this feature could be more challenging,
since it must simultaneously satisfy both low-latency and high throughput application
requests.

Data locality support. Most batch analytics engines are optimized by scheduling operators’
tasks based on data locality (memory or disk). The locality feature can also be useful
for streaming workloads which are very sensitive to latency. Moreover, Big Data an-
alytics frameworks develop complex solutions for in-memory state management due
to lack of data locality support from a dedicated low-latency stream storage solution.
Even more, stream processing would greatly benefit from pushing user-defined aggre-
gate functions to storage (a popular technique to avoid moving large amounts of data
over the network and to reduce serialization and de-serialization overheads). The “in-
storage” procesing feature requires more fine-grained control over acquired data, yet
current ingestion/storage solutions do not offer native support for it.

14 Chapter 2 – Data ingestion and storage support for Big Data processing

2.4 Selection of distributed systems for data ingestion and storage

A Big Data stream processing architecture is tightly coupled with the data ingestion and
storage components. We make an overview of a set of systems that provide ingestion and
storage features for streaming and further discuss their limitations with respect to previous
requirements.

2.4.1 Stream-based ingestion systems

We first review state-of-the-art open source ingestion/storage systems that provide stream-
based access interfaces to producer and consumer clients.

Apache Kafka [49] is a distributed stream platform that provides durability and publish/-
subscribe functionality for data streams (making stream data available to multiple con-
sumers). It is the de-facto open-source solution used in end-to-end pipelines with
streaming engines like Apache Spark or Apache Flink, which in turn handle data
movement and computation. A Kafka cluster comprises a set of broker nodes that
store streams of records in categories called topics [46]. Each stream can be statically
split into multiple partitions, allowing to logically split stream data and parallelize
consumer access.

DistributedLog [96] is a strictly ordered, geo-replicated log service, designed with a two-
layer architecture that allows reads and writes to be scaled independently. Distribut-
edLog is used for building different messaging systems, including support for transac-
tions. A stream is statically partitioned into a fixed number of partitions, each partition
being backed by a log; a log’s segments are spread over multiple nodes managed by
Bookkeeper [48], which is a scalable, fault-tolerant storage service optimized for real-
time workloads. In DistributedLog there is only one active writer for a log at a given
time. The reader starts reading records at a certain position (offset) until it reaches the
tail of the log. At this point, the reader waits to be notified about new log segments or
records.

Apache Pulsar [91] is a pub-sub messaging system developed on top of Bookkeeper, with
a two-layer architecture composed of a stateless serving layer and a stateful persis-
tence layer. Compared to DistributedLog, reads and writes cannot scale independently
(first layer is shared by both readers and writers) and Pulsar clients do not interact
with Bookkeeper directly. Pulsar unifies the queue and topic models, providing exclu-
sive, shared and failover subscription models to its clients [73]. Pulsar keeps track of
consumer cursor position, being able to remove records once acknowledged by con-
sumers, simplifying memory management.

Pravega [89] is another open-source stream storage system built on top of Bookkeeper.
Pravega partitions a stream in a fixed number of partitions called segments with a
single layer of brokers providing access to data. It provides support for auto-scaling
the number of segments (partitions) in a stream, and based on monitoring input load
(size or number of events), it can merge two segments or create new ones. Producers
can only partition a stream by a record’s key.

2.4 – Selection of distributed systems for data ingestion and storage 15

These systems do not offer support for fine-grained record access and employ a static
partitioning model with no support for data locality.

2.4.2 Record-based storage systems

Next, we review two state-of-the-art key-value stores.

Redis [93] is an in-memory data structure store that is used as a database, cache and mes-
sage broker. Redis supports many data structures such as strings, lists, hashes, sets,
sorted sets, bitmaps and geospatial indexes. Redis implements the pub-sub messaging
paradigm and groups messages into channels with subscribers expressing interest into
one or more channels. Redis implements persistence by taking snapshots of data on
disk, but it does not offer strong consistency [112].

RAMCloud [86] is an in-memory key-value store that aims for low-latency reads and
writes, by leveraging high performance Infiniband-like networks. Durability and
availability are guaranteed by replicating data to remote disks on servers relying on
batteries. Among its features we can name fast crash recovery, efficient memory usage
and strong consistency. Recently it was enhanced with multiple secondary indexes
[50], achieving high availability by distributing indexes independently from their ob-
jects (independent partitioning).

These systems primarly optimize for low-latency fine-grained record access, with limited
support for high throughput stream ingestion.

2.4.3 HDFS

Streaming architectures evolve in large and complex systems in order to accommodate many
use cases. Ingestion tools are connected either directly or by streaming engines to the stor-
age layer. The Hadoop Distributed File System (HDFS) [95] provides scalable and reliable
data storage (sharing many concepts with GoogleFS [32]), and is recognized as the de-facto
standard for Big Data analytics storage. Although HDFS was not designed with streams in
mind, many streaming engines (e.g., Apache Spark, Apache Flink, etc.) depend on it (e.g., for
persistence they define HDFS sinks or for storing checkpoints). Among HDFS limitations,
we recall the metadata server (called NameNode) as a single point of failure and a source of
limited scalability, although solutions exist [79] to overcome the metadata bottleneck. Also,
there is no support for random writes as a consequence of the way the data written are
available for readers (only after the file is closed, data can be appended to files). In fact, in
[20] authors point out that HDFS does not perform well for managing a large number of
small files, and discuss certain optimizations for improving storage and access efficiency of
small files on HDFS. This is why streaming engines develop custom memory management
solutions to overcome limitations of HDFS.

2.4.4 Specialized stores

A few other systems (such as Druid and Kudu) are designed as an alternative to executing
queries over HDFS with columnar formats like Parquet.

16 Chapter 2 – Data ingestion and storage support for Big Data processing

Druid [116, 22] is an open-source, distributed, columnar-oriented data store designed for
real-time exploratory analytics on Big Data sets. Its motivation is straightforward:
although HDFS is a highly available system, its performance degrades under heavy
concurrent load and is not optimized for ingesting data and making data immediately
available for processing. A Druid cluster consists of specialized nodes: real-time nodes
(that maintain an in-memory index buffer for all incoming events, regularly persisted
to disk) provide functionality to ingest and query data streams; historical nodes give
the functionality to load and serve immutable blocks of data which are created by real-
time nodes; a set of broker nodes that act as query routers to historical and real-time
nodes (with metadata published to ZooKeeper [42]). Druid’s data model is based on
data items with timestamps (e.g. network event logs). As such, Druid requires a times-
tamp column in order to partition data and supports low-latency queries on particular
ranges of time.

Apache Kudu [56] is a columnar data store that integrates with Apache Impala [99], HDFS
and HBase [39]. It can be seen as an alternative to Avro [9]/Parquet [88] over HDFS
(not suitable for updating individual records or for efficient random reads/writes) or
an alternative to semi-structured stores like HBase or Cassandra [61] (not a fit for han-
dling mutable data sets, allowing for low-latency record-level reads and writes, but not
efficient for sequential read throughput needed by applications like machine learning
or SQL). Kudu’s cluster is a set of tables: each table has a well-defined schema and
consists of a finite number of columns; each column is defined by a type and defines a
primary key, but no secondary indexes. Kudu offers fast columnar scans (comparable
to Parquet, ORC [84]) and low-latency random updates.

These systems offer specialized support for querying streams, but rely on static stream
partitioning and do not offer support for objects.

2.4.5 Limitations of existing systems

Table 2.1 presents how the analyzed systems partially meet previous requirements. Since our
goal is to provide efficient access interfaces for records, streams and objects, one potential
approach would be to enhance one such system with the missing features. However, this is
difficult to achieve since considering the initial design choices of their developers, the other
remaining requirements would be difficult, if not impossible to support at the same time.
For instance, Kafka’s design is based on the OS cache, making it difficult to co-locate with
a processing engine; Redis does not offer strong consistency (which some use cases may re-
quire); Druid’s choice to differentiate real-time and historical nodes was similar to adopting
both Kafka and HDFS, in contrast to our goal of minimizing data copies. Although RAM-
Cloud was not designed for high throughput stream ingestion, its key-value data model
was a good start for a stream record representation. However, building streaming interfaces
on top of RAMCloud was not a choice since many workloads do not require fine-grained
record-level access. Therefore, while extending an existing system is not a solution, building
a new dedicated solution from scratch leveraging these systems or some of their core ideas
as building blocks is a good option.

2.5 – Conclusion 17

Requirement
/ System

Data
access
patterns

Stream
partitioning

Temporal
persistence
vs.
durability

Latency vs.
throughput

Data
locality
support

Apache
Kafka

streams static both both no

Apache Dis-
tributedlog

streams static durability both no

Apache
Pulsar

streams static both both no

Pravega streams dynamic durability both no

Redis
records,
streams

static both both limited

RAMCloud records static durability latency no

Druid
records,
streams

static durability both no

Apache Kudu records static durability throughput limited

HDFS
objects
(files)

static (fixed
block size)

durability throughput yes

Table 2.1 – How available ingestion and storage systems support the identified requirements.

2.5 Conclusion

As the need for more complex online/offline data manipulations arises, so does the need
to enable better coupling between the ingestion, storage and processing layers. Current
(three layer) streaming architectures do not efficiently support our identified requirements.
Moreover, emerging scenarios emphasize complex data access patterns, (optionally) requir-
ing fault-tolerance and archival of streaming data for deeper analytics based on batch pro-
cessing. Under these circumstances, data are often written twice to disk or sent twice over
the network (e.g., as part of a fault-tolerance strategy of the ingestion layer and the per-
sistency requirement of the storage layer). Second, the lack of coordination between the
layers can lead to I/O interference (e.g., the ingestion layer and the storage layer compete
for the same I/O resources, when collecting data streams and writing archival data simul-
taneously). Third, the processing layer often implements custom advanced data manage-
ment (e.g. operator state persistence, checkpoint-restart) on top of inappropriate basic in-
gestion/storage API, which results in significant performance overhead. We argue that the
aforementioned challenges are significant enough to offset the benefits of specializing each
layer independently of the other layers.

18 Chapter 2 – Data ingestion and storage support for Big Data processing

19

Part II

Understanding performance in Big
Data analytics frameworks

21

Chapter 3

Stream-based versus batch-based
execution runtimes

Contents

3.1 Background . 23

3.1.1 Apache Spark . 24

3.1.2 Apache Flink . 24

3.1.3 Zoom on the differences between Flink and Spark 24

3.2 Methodology . 26

3.2.1 Workloads . 26

3.2.2 The importance of parameter configuration 29

3.2.3 Experimental setup . 30

3.3 Evaluation . 30

3.3.1 Results . 30

3.3.2 Summary of insights . 38

3.4 Discussion . 40

3.4.1 Related work . 40

3.4.2 Fault tolerance trade-offs . 41

IN the last decade, MapReduce (“a programming model and an associated implementation
for processing and generating large data sets” [18]) and its open-source implementation,

Hadoop [37], were widely adopted by both industry and academia, thanks to a simple yet
powerful programming model that hides the complexity of parallel task execution and fault-
tolerance from the users. This very simple API comes with the important caveat that it
forces applications to be expressed in terms of map and reduce functions (“users specify a
map function that processes a key/value pair to generate a set of intermediate key/value

22 Chapter 3 – Stream-based versus batch-based execution runtimes

Figure 3.1 – The MapReduce programming model (taken from [18]). “The Map invocations are dis-
tributed across multiple machines by automatically partitioning the input data into a set of M splits.
The input splits can be processed in parallel by different machines. Reduce invocations are dis-
tributed by partitioning the intermediate key space into R pieces using a partitioning function (e.g.,
hash(key) mod R). The number of partitions (R) and the partitioning function are specified by the
user” [18].

pairs, and a reduce function that merges all intermediate values associated with the same
intermediate key” [18], see Figure 3.1).

However, most applications do not fit this model and require a more general data orches-
tration, independent of any programming model. For instance, iterative algorithms used in
graph analytics and machine learning, which perform several rounds of computation on the
same data, are not well served by the original MapReduce model. Moreover, rising data
volumes and the online dimension of data processing require streaming models in order to
enable real-time handling of live data sources.

To address these limitations, a second generation of analytics platforms emerged in an
attempt to unify the landscape of Big Data processing. In this chapter we focus on two com-
petitors, state-of-the-art Big Data processing engines: Spark [98] (batch-based) introduced
Resilient Distributed Datasets (RDDs) [120], a set of in-memory data structures able to cache
intermediate data across a set of nodes, in order to efficiently support iterative algorithms,
and Flink [26] (stream-based), that with the same goal, proposed more recently native closed-
loop iteration operators [24] and an automatic cost-based optimizer, that is able to reorder
the operators and to better support low-latency streaming execution.

Making the most out of these frameworks is challenging because efficient executions
strongly rely on complex parameter configurations and on an in-depth understanding of the
underlying architectural choices. In order to identify and explain the impact of the different

3.1 – Background 23

architectural choices and the parameter configurations on the perceived end-to-end perfor-
mance, we develop a methodology for correlating the parameter settings and the operators
execution plan with the resource usage. We use this methodology to dissect the performance
of Spark and Flink with several representative batch and iterative workloads on up to 100
nodes.

In this chapter, our goal is to assess whether using a single engine for all data sources,
workloads and environments [78] is efficient or not, and also to study how well frameworks
that depend on smart optimizers work in real life [10]. Moreover, understanding the advan-
tages and limitations of a stream-based execution engine (i.e., Flink) versus a batch-based
execution engine (i.e., Spark), when running batch and iterative workloads, provides the
needed insights for better defining the requirements of a dedicated stream ingestion/stor-
age solution.

The remainder of this chapter is organized as follows. Section 3.1 describes Spark and
Flink, highlighting their architectural differences. Section 3.2 presents our methodology, pro-
viding a description of the batch and iterative workloads (subsection 3.2.1), emphasizing the
impact on performance of parameter configuration (subsection 3.2.2), and finally describing
our experimental setup (subsection 3.2.3). Section 3.3 mentions the results alongside a de-
tailed analysis and lists our insights. Finally, in Section 3.4 we survey the related work and
we discuss final remarks regarding fault-tolerance trade-offs.

Listing 3.1 – Spark word count program (taken from Apache Spark)

val lines = sc.textFile("data.txt")

val pairs = lines.map(s => (s, 1))

val counts = pairs.reduceByKey((a, b) => a + b)

Listing 3.2 – Flink word count program (taken from Apache Flink)

val counts = text.flatMap { _.toLowerCase.split("\\W+") filter {_.nonEmpty} }

.map {(_, 1)}

.groupBy(0)

.sum(1)

3.1 Background

Spark and Flink extend the MapReduce model in order to facilitate the development of
multi-step data pipelines using directly acyclic graph (DAG) patterns. At a higher level,
both engines implement a driver program that describes the high-level control flow of the
application, which relies on two main parallel programming abstractions: (1) structures to
describe the data and (2) parallel operations on these data.

While the data representations differ, both Flink and Spark implement similar dataflow
operators (e.g., map, reduce, filter, distinct, collect, count, save), or expose an API that can
be used to obtain the same result. For instance, Spark’s reduceByKey operator (called on a
dataset of key-value pairs to return a new dataset of key-value pairs where the value of each
key is aggregated using the given reduce function - see Listing 3.1) is equivalent to Flink’s
groupBy followed by the aggregate operator sum or reduce (see Listing 3.2).

24 Chapter 3 – Stream-based versus batch-based execution runtimes

Figure 3.2 – Lineage graph for a Spark query (taken from [120]). “Boxes represent RDDs and arrows
represent transformations” [120].

3.1.1 Apache Spark

Spark is built on top of RDDs (read-only, resilient collections of objects partitioned across
multiple nodes) that hold provenance information (referred to as lineage) and can be rebuilt
in case of failures by partial recomputation from ancestor RDDs (Figure 3.2). Each RDD is
by default lazy (i.e., computed only when needed) and ephemeral (i.e., once it actually gets
materialized, it will be discarded from memory after its use). However, since RDDs might
be repeatedly needed during computations, the user can explicitly mark them as persistent,
which moves them in a dedicated cache for persistent objects.

The operations available on RDDs seem to emulate the expressivity of the MapReduce
paradigm overall, however, RDDs can be cached for later use, which greatly reduces the
need to interact with the underlying distributed file system in more complex workflows that
involve multiple reduce operations.

3.1.2 Apache Flink

Flink is built on top of DataSets (collections of elements of a specific type on which opera-
tions with an implicit type parameter are defined), Job Graphs and Parallelisation Contracts
(PACTs) [113]. Job Graphs represent parallel data flows with arbitrary tasks, that consume
and produce data streams and are further translated into execution graphs (see Figure 3.3).
PACTs (see Figure 3.4) are second-order functions that define properties on the input/out-
put data of their associated user defined (first-order) functions (UDFs); these properties are
further used to parallelize the execution of UDFs and to apply optimization rules [3]. Flink
executes a batch program as a special case of streaming (considering bounded streams as
input data to programs). For recovery, Flink batching relies on fully replaying the original
streams.

3.1.3 Zoom on the differences between Flink and Spark

In contrast to Flink, Spark’s users can control two very important aspects of the RDDs: the
persistence (i.e., in-memory or disk-based) and the partition scheme across the nodes [120].

3.1 – Background 25

Figure 3.3 – Flink execution graph (taken from [113]). The execution graph defines the mapping of
subtasks to instances and the communication channels between them.

Figure 3.4 – Parallelization contract - PACT (taken from [3]). “PACT consists of exactly one second-
order function which is called Input Contract and an optional Output Contract. An Input Contract
takes a first-order function with task-specific user code and one or more data sets as input parameters.
The Input Contract invokes its associated first-order function with independent subsets of its input
data in a data-parallel fashion. Input Contracts can be seen as MapReduce map and reduce functions
with additional constructs to complement them” [3].

Figure 3.5 – Flink iterate operator (taken from Apache Flink). “It consists of the following steps: (1)
Iteration Input: Initial input for the first iteration taken from a data source or from previous operators.
(2) Step Function: The step function will be executed in each iteration. It is an arbitrary data flow that
consists of operators like map, reduce, join, etc. and that depends on specific tasks. (3) Next Partial
Solution: In each iteration, the output of the step function will be fed back into the next iteration. (4)
Iteration Result: The output of the last iteration is written to a data sink or it is used as input to the
next operators” (Apache Flink).

26 Chapter 3 – Stream-based versus batch-based execution runtimes

Figure 3.6 – Flink delta iterate operator (taken from Apache Flink). “It consists of the following steps:
(1) Iteration Input: The initial workset and solution set are read from data sources or previous op-
erators as input to the first iteration. (2) Step Function: The step function will be executed in each
iteration. It is an arbitrary data flow consisting of operators like map, reduce, join, etc. and depends
on specific tasks. (3) Next Workset/Update Solution Set: The next workset drives the iterative com-
putation, and will be fed back into the next iteration. Furthermore, the solution set will be updated
and implicitly forwarded (it is not required to be rebuilt). Both data sets can be updated by different
operators of the step function. (4) Iteration Result: After the last iteration, the solution set is written
to a data sink or used as input to the next operators” (Apache Flink).

For instance, this fine-grained control over the storage approach of intermediate data proves
to be very useful for applications with varying I/O requirements.

Another important difference relates to iterations handling. Spark implements iterations
as regular for-loops and executes them by loop unrolling. This means that for each iteration a
new set of tasks/operators is scheduled and executed. Each iteration operates on the result
of the previous iteration which is held in memory. Flink executes iterations as cyclic data
flows. This means that a data flow program (and all its operators) is scheduled just once and
the data are fed back from the tail of an iteration to its head. Basically, data are flowing in
cycles around the operators within an iteration. Since operators are just scheduled once, they
can maintain a state over all iterations. Flink’s API offers two dedicated iteration operators
to specify iterations: 1) bulk iterations, which are conceptually similar to loop unrolling
(see Figure 3.5), and 2) delta iterations, a special case of incremental iterations in which
the solution set is modified by the step function instead of a full recomputation (see Figure
3.6). Delta iterations can significantly speed up certain algorithms because the work in each
iteration decreases as the number of iterations goes on.

Considering the above, the main question we aim to answer is: how do these different
architectural choices impact performance and what are their limitations?

3.2 Methodology

3.2.1 Workloads

Although they were initially developed to enhance the batch-oriented Hadoop with efficient
iterative support, currently Spark and Flink are used conversely for both batch and iter-

3.2 – Methodology 27

Operators Batch (one pass) Iterative (caching)

WC G TS KM PR CC

map � � � �

flatMap � � �

mapToPair (S) �

groupBy → sum (F) �

reduceByKey (S) � �

collectAsMap (S) �

filter → count �

distinct � �

repartitionAndSort - WithinPartitions (S) �

partitionCustom → sortPartition (F) �

Graph specific operators � �

coalesce, mapPartitionsWithIndex (S) � �

DeltaIteration, join, groupBy, aggregate
(F)

�

BulkIteration, groupBy, reduce,
withBroadcastSet(F)

�

save � � � � �

Table 3.1 – Big Data operators for batch and iterative workloads. Selected operators used in each
workload: Word Count (WC), Grep (G), Tera Sort (TS), K-Means (KM), Page Rank (PR), Connected
Components (CC). Operators annotated with F or S are specific only to Flink or Spark respectively,
the other ones are common for both frameworks.

ative processing. Recent extensions brought SQL [40, 7] and streaming [67, 121] support,
providing general architectures for Big Data processing.

For the batch category we have selected three benchmarks implementing the one-pass
processing: Word Count, Grep and Tera Sort. These are representative workloads used in
several real-life applications, either scientific (e.g., indexing the monitoring data at the Large
Hadron Collider [63]) or Internet-based (e.g., search algorithms at Google, Amazon [34, 51]).
For the iterative category we have opted for three benchmarks that are mainly used to evalu-
ate the effectiveness of the loop-caching: K-Means, Page Rank and Connected Components.
These workloads are frequent in machine learning algorithms [76] and social graphs pro-
cessing (e.g., at Facebook [25] or Twitter [109]). Table 3.1 lists the use of the most important
operators by each workload, including basic core operators and specific ones implemented
by the graph libraries of each framework.

Word Count is a simple metric for measuring article quality by counting the total number
of occurences of each word. It is a good fit for evaluating the aggregation component
in each framework, since both Spark and Flink use a map-side combiner to reduce
the intermediate data. In Flink, the following sequence of operators is applied to the
DataSets: flatMap (map phase) → groupBy → sum (reduce phase) → writeAsText. In
Spark, the following sequence is applied to RDDs: flatMap → mapToPair (map phase)
→ reduceByKey (reduce phase) → saveAsTextFile.

Grep is a common command for searching plain-text data sets. Here, we use it to evaluate

28 Chapter 3 – Stream-based versus batch-based execution runtimes

the filter transformation and the count action. Both Flink and Spark implement the
following sequence of operators applied on their specific datasets: filter → count. For
both Word Count and Grep, Spark’s RDDs and Flink’s DataSets are built by reading
Wikipedia text files from HDFS.

Tera Sort is a sorting algorithm suitable for measuring the performance of the two engines
core capabilities. We have chosen the implementation described in [104] on 100-byte
records, with the first 10-bytes representing the sort key. The input data is generated
using the TeraGen [103] program with Hadoop and the same range partitioner has
been used in order to provide a fair comparison. A number of equally sized partitions
is generated and a custom partitioner is used based on Hadoop’s TotalOrderParti-
tioner. Spark is creating two RDDs: the first one by reading from HDFS and perform-
ing a local sort (newAPIHadoopFile) and the second one by repartitioning the first
RDD according to the custom partitioner (repartitionAndSortWithinPartition). Flink
first creates a DataSet from the given HDFS input and then applies a map to create
key-value tuples. These are stored using an OptimizedText binary format in order to
avoid deserialization when comparing two keys. Next, Flink’s algorithm partitions the
tuple DataSet (partitionCustom) on the specified keys using a custom partitioner and
applies a sortPartition to locally sort each partition of the dataset. Finally, the results
are saved using the same Hadoop output format.

K-Means is an unsupervised method used in data mining to group data elements with a
high similarity. The input is generated using the HiBench suite [41] (training records
with 2 dimensions). In each iteration, a data point is assigned to its nearest cluster
center, using a map function. Data points are grouped to their center to further obtain
a new cluster center at the end of each iteration. This workload evaluates the effective-
ness of the caching mechanism and the basic transformations: map, reduceByKey (for
Flink: groupBy → reduce), and Flink’s bulk iterate operator.

Page Rank is a graph algorithm which ranks a set of elements according to their references.
For Flink we evaluated the vertex-centric iteration implementation from its Gelly [24]
library (iteration operators: outDegrees, joinWithEdgesOnSource, withEdges), while
for Spark we evaluated the standalone implementation provided by its GraphX [33]
library (iteration operators: outerJoinVertices, mapTriplets, mapVertices, joinVertices,
foreachPartition).

Connected Components gives an important topological invariant of a graph. For Flink we
evaluated the vertex-centric iteration implementation (iteration operators: mapEdges,
withEdges), while for Spark we evaluated the ConnectedComponents implementation
(iteration operators: mapVertices, mapReduceTriplets, joinVertices) as provided by
their respective libraries. In Flink’s case, we evaluated a second algorithm expressed
using delta iterations in order to assess their speedup over classic bulk iterations.
Both Page Rank and Connected Components are useful to evaluate the caching and
the data pipelining performance. For these two workloads, we have used three real
datasets (small, medium and large graphs) to validate different cache sizes.

3.2 – Methodology 29

3.2.2 The importance of parameter configuration

Both frameworks expose various execution parameters, pre-configured with default values
and allow a further customization. For every workload, we found that different parameter
settings were necessary to provide an optimal performance. There are significant differences
in configuring Flink and Spark, in terms of ease of tuning and the control that is granted over
the framework and the underlying resources. We have identified a set of 4 most important
parameters having a major influence on the overall execution time, scalability and resource
consumption. They manage the task parallelism, the network behaviour during the shuffle
phase, the memory and the data serialization.

Task parallelism. The meaning and the default values of the parallelism setting are differ-
ent in the two frameworks. Nevertheless, this is a mandatory configuration for each
dataflow operator in order to efficiently use all the available resources. Spark’s default
parallelism parameter (spark.def.parallelism) refers to the default number of partitions
in the RDDs returned by various transformations. We set this parameter to a value pro-
portional to the number of cores per number of nodes multiplied by a factor of 2 to 6
in order to experience with a various number of partitions in RDDs for distributed
shuffle operations like reduceByKey and join. Flink’s default parallelism parameter
(flink.def.parallelism) allows to use all the available execution resources (Task Slots).
We set this parameter to a value proportional to the number of cores per number of
nodes. Therefore, in Flink the partitioning of data is hidden from the user and the par-
allelism setting can be automatically initialized to the total number of available cores.

Shuffle tuning. One difference in configuring Flink and Spark lies in the mandatory settings
for the network buffers, used to store records or incoming data before transmitting or
respectively receiving over a network. In Flink these are the flink.nw.buffers and rep-
resent logical connections between mappers and reducers. In Spark, they are called
shuffle.file.buffers. We enabled Spark’s shuffle file consolidation property in order to
improve filesystem performance for shuffles with large numbers of reduce tasks. The
default buffer size is pre-configured in both frameworks to 32 KB, but it can be in-
creased on systems with more memory, leading to less spilling to disk and better re-
sults. In all our experiments we initialize the Spark shuffle manager implementation
to tungsten-sort, a memory efficient sort-based shuffle. This is to provide a fair com-
parison to Flink, which is using a sort-based aggregation component.

Memory management. In Spark, all the memory of an executor is allocated to the Java heap
(spark.executor.memory). Flink allows a hybrid approach, combining on- and off-heap
memory allocations. When the flink.off-heap parameter is set to true, this hybrid mem-
ory management is enabled, allowing the task manager to allocate memory for sort-
ing, hash tables and caching of intermediate results outside the Java heap. The total
allocated memory is controlled in Flink by the flink.taskmanager.memory parameter,
while the flink.taskmanager.memory.fraction indicates the portion used by the JVM
heap. In Spark, the fractions of the JVM heap used for storage and shuffle are statically
initialized by setting the spark.storage.fraction and spark.shuffle.fraction parameters
to different values so that the computed RDDs can fit into memory and ensure enough
shuffling space.

30 Chapter 3 – Stream-based versus batch-based execution runtimes

Data serialization. Flink peeks into the user data types (by means of the TypeInformation
base class for type descriptors) and exploits this information for better internal serial-
ization; hence, no configuration is needed. In Spark, the serialization (spark.serializer)
is done by default using the Java approach but this can be changed to the Kryo serial-
ization library [55], which can be more efficient, trading speed for CPU cycles.

3.2.3 Experimental setup

In order to understand the impact of the previous configurations on performance and to
quantify the differences in the design choices, we devised the following approach. For both
Flink and Spark we plot the execution plan with different parameter settings and correlate
it with the resource utilisation. As far as performance is concerned, we focus on the end-
to-end execution time, which we collect using both timers added to the frameworks source
code and by parsing the available logs, and analyze the performance in the context of strong
and weak scalability.

We deploy Flink (version 0.10.2) and Spark (version 1.5.3) on Grid’5000 [11], a large-scale
versatile testbed, in a cluster with up to 100 nodes. Each node has 2 CPUs Intel Xeon E5-2630
v3 with 8 cores per CPU and 128 GB RAM. All experiments use a single disk drive with a
capacity of 558 GB. The nodes are connected using a 10 Gbps ethernet.

For every experiment we follow the same cycle. We install Hadoop (HDFS version 2.7)
and we configure a standalone setup of Flink and Spark. We import the analyzed dataset
and we execute on average 5 runs for each experiment. For each run we measure the time
necessary to finish the execution excluding the time to start and stop the cluster and at the
end of each experiment we collect the logs that describe the results. We make sure to clear
the OS buffer cache and temporary generated data or logs before a new execution starts. We
plot the mean and standard deviation for aggregated values of all nodes for multiple trials
of each experiment. We dissect the resource usage metrics (CPU, memory, disk I/O, disk
utilization, network) in the operators plan execution.

3.3 Evaluation

3.3.1 Results

In this section we describe our experience with both frameworks and interpret the results
taking into account the configuration settings and the tracked resource usage. For the batch
workloads, our goal was to validate strong and weak scalability. For the iterative workloads,
we focused on scalability, caching and pipelining performance.

Word count: evaluating the aggregation component

We first run the benchmark with a fixed problem size per node (Figure 3.7) with the param-
eter configuration detailed in Table 3.2 and then with a fixed number of nodes and increased
datasets (Figure 3.8).

3.3 – Evaluation 31

Number of nodes 2 4 8 16 32

spark.def.parallelism 192 384 768 1536 1024
flink.def.parallelism 32 64 128 256 512

spark.executor.memory (GB) 22 22 22 22 22
flink.taskmanager.memory (GB) 4 4 4 4 11

Table 3.2 – Word Count and Grep configuration settings for the fixed problem size per node (24 GB).
Other parameters: HDFS.block.size = 256 MB, flink.nw.buffers = Nodes × 2048, buffer.size = 64 KB.

 0
 100
 200
 300
 400
 500
 600
 700

2 4 8 16 32

T
im

e
(s

e
c
)

Nodes

Spark
Flink

Figure 3.7 – Word Count - fixed problem size per
node (24 GB).

 0
 100
 200
 300
 400
 500
 600
 700
 800

24 27 30 33

T
im

e
(s

e
c
)

GB/node

Spark
Flink

Figure 3.8 – Word Count - 16 nodes, different
datasets.

DC
GR
DS

 0 100 200 300 400 500 600

O
p

e
ra

to
rs

Time(sec)

Flink (total execution is 543 seconds).
 DC=DataSource->FlatMap->GroupCombine, GR=GroupReduce, DS=DataSink.

538.712
510.121
3.703

FM

S

 0 100 200 300 400 500 600

O
p

e
ra

to
rs

Time(sec)

Spark (total execution is 572 seconds).
 FM=FlatMap->MapToPair->ReduceByKey, S=SaveAsTextFile.

560.463

11.045

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

C
P

U
 %

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

C
P

U
 %

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

D
is

k
 u

ti
l%

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

D
is

k
 u

ti
l%

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

I/
O

 M
iB

/s

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

I/
O

 M
iB

/s

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

N
e

tw
o

rk
 M

iB
/s

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

N
e

tw
o

rk
 M

iB
/s

Figure 3.9 – Word Count operators and resource usage. Flink (left) versus Spark (right), 32 nodes and
768 GB dataset. Similar memory usage, growing linearly up to 30%.

32 Chapter 3 – Stream-based versus batch-based execution runtimes

 0

 100

 200

 300

 400

2 4 8 16 32

T
im

e
(s

e
c
)

Nodes

Spark
Flink

Figure 3.10 – Grep - fixed problem size per node
(24 GB).

 0

 100

 200

 300

 400

 500

24 27 30 33

T
im

e
(s

e
c
)

GB/node

Spark
Flink

Figure 3.11 – Grep - 16 nodes, different datasets.

Weak Scalability. We observe in Figure 3.7 that both frameworks scale well when adding
nodes, sharing a similar performance for a small number of nodes (2 to 8), but for a
larger number (16, and 32), Flink performs slightly better. This happens even though,
for fairness, we configured Spark with more memory because of its use of the Java
serializer.

Strong Scalability. This observation is further confirmed for large datasets and a fixed num-
ber of nodes (Figure 3.8) with Flink constantly outperforming Spark by 10%. Spark’s
behaviour is influenced by the configured parallelism: the transformation reduce-
ByKey that merges the values for each key, locally on each mapper before sending the
results to the reducer, hash-partitions the output with the number of partitions (i.e.,
the default parallelism). In fact, for a similar cluster setup (8 nodes) we experimented
with a decreased parallelism for Spark (double the number of cores) and obtained an
execution time increased by 10%. Flink showed an improved execution when config-
ured with 2 Task Slots for each available core. We further analyze the resource usage
in order to understand this gap in performance.

Resource Usage. Figure 3.9 presents the correlation between the operators execution plan
and the resource usage for 32 nodes. For this workload, both Flink and Spark are CPU
and disk-bound. For Flink, we notice an anti-cyclic disk utilization (i.e., correlated to
the CPU usage: the CPU increases to 100% while the disk goes down to 0%), which
is explained by the use of a sort-based combiner for grouping, collecting records in a
memory buffer and sorting the buffer when it is filled. CPU-wise, Flink seems more
efficient than Spark and also takes less time to save the results with the corresponding
action, contributing to the reduced end-to-end execution time. Flink is currently inves-
tigating the introduction of a hash-based strategy for the combine and reduce functions,
that could yield further improvements (to overcome the anti-cycling effect).

Grep: evaluating text search

The next benchmark is evaluated in the same scenario: a fixed problem size per node (Fig-
ure 3.10) and a fixed number of nodes for increasing datasets (Figure 3.11), with the same
parameters from Table 3.2.

Weak and Strong Scalability. When increasing the number of nodes, we notice an im-
proved execution for Spark, with up to 20% smaller times for large datasets (16, and 32
nodes). Spark’s advantage is preserved over larger datasets as well.

3.3 – Evaluation 33

DM
DS

 0 100 200 300 400O
p

e
ra

to
rs

Time(sec)

Flink (total execution is 331 seconds).
 DM=DataSource->Filter->FlatMap, DS=DataSink.

330.443
113.484 FC

 0 100 200 300 400O
p

e
ra

to
rs

Time(sec)

Spark (total execution is 275 seconds).
 FC=Filter->Count

 0

 20

 40

 60

 80

 100

 0 100 200 300 400

C
P

U
 %

 0
 20
 40
 60
 80

 100

 0 100 200 300 400

C
P

U
 %

Time(sec)

 0

 30

 60

 90

 120

 0 100 200 300 400

I/
O

 M
iB

/s

 0

 30

 60

 90

 120

 0 100 200 300 400

I/
O

 M
iB

/s

 0

 20

 40

 60

 80

 100

 0 100 200 300 400

N
e

tw
o

rk
 M

iB
/s

 0

 20

 40

 60

 80

 100

 0 100 200 300 400

N
e

tw
o

rk
 M

iB
/s

Figure 3.12 – Grep operators and resource usage. Flink (left) versus Spark (right), 32 nodes and 768
GB dataset. Similar memory usage, growing linearly up to 30%.

 0

 500

 1000

 1500

 2000

17 34 63

T
im

e
(s

e
c
)

Nodes

Spark
Flink

Figure 3.13 – Tera Sort - fixed problem size per
node (32 GB).

 0

 1000

 2000

 3000

 4000

 5000

55 73 97

T
im

e
(s

e
c
)

Nodes

Spark
Flink

Figure 3.14 – Tera Sort: adding nodes, fixed
dataset (3.5 TB).

Resource usage. In order to understand this performance gap, we zoom on the main differ-
ences in network and disk usage observed in Figure 3.12. Flink’s current implementa-
tion of the filter → count operators is leading to inefficient use of the resources in the
latter phase. While in the first stage, Spark’s disk usage is almost similar compared
to Flink’s, the absence of network transfers during both phases (compared to the net-
work usage during second stage in Flink) makes it compensate and further reduce the
execution time.

Number of nodes 17 34 63 55 73 97

spark.def.parallelism 544 1088 1984 1760 2336 3104
flink.def.parallelism 134 270 500 475 580 750

Table 3.3 – Tera Sort configuration settings. Both Flink and Spark use 62 GB memory. The number of
partitions is equal to the Flink parallelism number. Other parameters: HDFS.block.size = 1024 MB,
flink.nw.buffers = Nodes × 1024, buffer.size = 128 KB.

Tera Sort: shuffle, caching, and the execution pipeline

We ran this benchmark with a fixed data size per node (32 GB) up to 64 nodes and then for
a fixed dataset (3.5 TB) with up to 100 nodes (parameter settings in Table 3.3).

Weak Scalability. In Figure 3.13 we notice that although Flink is performing on average bet-
ter than Spark, it also shows a high variance between each of the experiments results,

34 Chapter 3 – Stream-based versus batch-based execution runtimes

DM
P

SM
DS

 0 1000 2000 3000 4000 5000

O
p

e
ra

to
rs

Time(sec)

Flink (total execution is 4669 seconds).
 DM=DataSource->Map, P=Partition, SM=Sort-Partition->Map, DS=DataSink.

1040.058
1163.463

4644.298
3617.653

RS

SSW

 0 1000 2000 3000 4000 5000

O
p

e
ra

to
rs

Time(sec)

Spark (total execution is 5079 seconds).
 RS=Read->Sort, SSW=Shuffling->Sort->Write.

1458.807

3619.769

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

C
P

U
 %

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

C
P

U
 %

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

D
is

k
 u

ti
l%

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

D
is

k
 u

ti
l%

 0

 30

 60

 90

 120

 150

 0 1000 2000 3000 4000 5000

I/
O

 M
iB

/s Total

Read

 0

 30

 60

 90

 120

 150

 0 1000 2000 3000 4000 5000

I/
O

 M
iB

/s Total

Read

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000 4000 5000

N
e

tw
o

rk
 M

iB
/s

Total

Read

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000 4000 5000
N

e
tw

o
rk

 M
B

/s

Total

Read

Figure 3.15 – Tera Sort operators and resource usage of Flink and Spark for 55 nodes and 3.5 TB
dataset (similar memory usage).

when compared to Spark. This variance may be explained by the I/O interference
in Flink’s execution due to its pipeline nature. We wanted to check whether Flink’s
speedup is preserved for a larger dataset processed at each node and we experimented
with sorting 75 GB per node using a cluster of 27 nodes (432 cores) and increasing the
memory quota for both up to 102 GB). Again, Flink showed 15% smaller execution
times.

Strong Scalability. As seen in Figure 3.14, Flink’s advantage is increasing with larger clus-
ters, which can be explained by less I/O interference caused by a reduced dataset to
sort by each node.

Resource usage. Figure 3.15 presents the correlation between the operators execution plan
and the resource usage for sorting 3.5 TB of data on a cluster with 55 nodes. Flink’s and
Spark’s default parallelism settings were initialized to 1760 (twice the number of cores,
following Spark’s recommendation) and 475 respectively (half the number of cores in
order to match the number of custom partitions, otherwise Flink fails due to insuffi-
cient task slots), and the number of custom partitions to 475 (i.e., Flink’s parallelism,
for a fair comparison). A few important observations differentiate Flink and Spark ex-
ecutions. First, Flink pipelines the execution, hence it is visualized in a single stage,
while in Spark the separation between stages is very clear. Next, a virtual second stage
is observable in both sides which is triggered by the separation of disk I/O read and
write processes defined by one process domination along the time axis. Finally, Spark
uses less network in this case due to the map output compression.

K-Means: bulk iterations

We evaluated the loop support in both platforms (Figure 3.16) for a fixed dataset of 51 GB (1.2
billion edges) needing 10 iterations to stabilise. While both Spark and Flink scale gracefully

3.3 – Evaluation 35

 0
 100
 200
 300
 400
 500
 600
 700
 800

8 14 20 24

T
im

e
(s

e
c
)

Nodes

Spark
Flink

Figure 3.16 – K-Means: increasing cluster size, fixed dataset (1.2 billion edges).

DM
B

MM
R

RM
SBI
FM
DS

 0 100 200 300

O
p

e
ra

to
rs

Time(sec)

Flink (total execution is 244 seconds).
 DM=DataSource->Map, B=BulkPartialSolution, MM=Map->Map, R=Reduce,

 RM=Reduce->Map, SBI=Sync Bulk Iteration, FM=FlatMap, DS=DataSink.

176.932
241.638
241.388
239.008
92.726
64.816
0.339
0.346

M
C

MC
MC
MC
MC
MC
MC
MC
MC
MC

 0 100 200 300

O
p

e
ra

to
rs

Time(sec)

Spark (total execution is 278 seconds).
 M=map, C=collectAsMap, MC=map->collectAsMap.

200.167
1.323

10.883
8.219

7.633
8.142

8.004
7.729

7.729
8.147

7.932

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

C
P

U
 %

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

C
P

U
 %

Figure 3.17 – K-Means operators and resource usage of Flink and Spark for 24 nodes, 10 iterations
and 1.2 billion samples dataset. Resource usage elements not shown for similarity reasons: memory
and disk utilization are less than 10%, total disk I/O (r+w) is less than 20 MB/s, and total network
(r+w) is less than 30 MB/s.

 0
 100
 200
 300
 400
 500

8 14 20 27

T
im

e
(s

e
c
)

Nodes

Spark
Flink

Figure 3.18 – Page Rank: Small Graph with in-
creasing cluster size.

 0
 50

 100
 150
 200
 250

8 14 20 27

T
im

e
(s

e
c
)

Nodes

Spark
Flink

Figure 3.19 – Connected Components: Small
Graph with increasing cluster size.

when adding nodes (up to 24), we notice that Flink’s bulk iterate operator and its pipeline
mechanism outperform by more than 10% the loop unrolling execution of iterations imple-
mented in Spark. As seen in Figure 3.17, both frameworks have a similar resource usage,
CPU-bound when loading the data points and processing the iterations.

Graph type Small [97] Medium [30] Large [114]

Nodes / Edges 24.7 M / 0.8 B 65.6 M / 1.8 B 1.7 B / 64 B
Size 13.7 GB 30.1 GB 1.2 TB

Table 3.4 – Graph datasets characteristics.

Page Rank and Connected Components: graph processing

We have selected 3 representative graph datasets (Small [97] and Medium [30] social graphs
from Twitter and Friendster respectively, and a Large [114] one, the largest hyperlink graph
available to the public) as detailed in Table 3.4. We executed Page Rank and Connected
Components with each graph type and specific parameter configuration, as discussed below.

36 Chapter 3 – Stream-based versus batch-based execution runtimes

Parameter Formula

spark.def.parallelism [nodes × cores × 6]
flink.def.parallelism [nodes × cores]
spark.edge.partition [nodes × cores]

flink.nw.buffers [cores × cores × nodes × 16]

Table 3.5 – Configuration settings for the Small Graph where nodes equals the total number of nodes
and cores=16. Other parameters: HDFS.block.size = 128 MB, flink.taskmanager.memory.fraction =
0.8, spark.storage.fraction = 0.5, spark.shuffle.fraction = 0.3.

Nodes 24 27 34 55

spark.def.parallelism 1440 1620 1632 2640
flink.def.parallelism 288 297 442 715

spark.executor.memory(GB) 22 96 62 62
flink.taskmanager.memory(GB) 18 18 62 62

spark.edge.partition 1440 256 320 480

Table 3.6 – Configuration settings for the Medium Graph. Other parameters: HDFS.block.size = 128
MB, flink.nw.buffers = Nodes × 2048, flink.taskmanager.memory.fraction = 0.8, buffer.size = 128 KB,
spark.storage.fraction = 0.4, spark.shuffle.fraction = 0.4.

 0
 100
 200
 300
 400
 500
 600
 700

24 27 34 55

T
im

e
(s

e
c
)

Nodes

Spark
Flink

Figure 3.20 – Page Rank: Medium Graph with in-
creasing cluster size.

 0

 100

 200

 300

 400

27 34 55

T
im

e
(s

e
c
)

Nodes

Spark
Flink

Figure 3.21 – Connected Components: Medium
Graph with increasing cluster size.

Small Graph. With the settings detailed in Table 3.5, we notice a slightly better performance
of Flink both for Page Rank (Figure 3.18) and Connected Components (Figure 3.19). For
Page Rank this was rather surprising, considering that Flink’s implementation will first
execute a job to count the vertices, reading the dataset one more time in order to load
the graph. We experimented with various values of the Spark’s spark.edge.partition
parameter and we obtained a drop in performance when this value is increased (more
files to handle) or decreased (inefficient resource usage) for both algorithms. Flink’s
better performance is mainly backed by its bulk iteration operator and its pipeline

Nodes 27 44 97

Large Graph Load Iter. Load Iter. Load Iter.

Flink PR no no no no 1096s 645s
Spark PR 3977s no 667s no 418s 596s
Flink CC no no no no 580s 1268s
Spark CC 3717s 3948s 798s 978s 357s 529s

Table 3.7 – Page Rank (PR) and Connected Components (CC) with 5 and 10 iterations (Iter.) respec-
tively. Flink’s load graph (Load) stage includes the vertices count.

3.3 – Evaluation 37

nature.

Medium Graph. With the configuration in Table 3.6 and a larger graph we executed Page
Rank (Figure 3.20) and Connected Components (Figure 3.21). For Flink we experi-
mented with a decreased parallelism setting in order to test the pipeline execution
implementation and we observed that during the iteration computation we can ob-
tain a similar performance, but in the load graph phase (including vertices count for
Page Rank) the performance drops due to inefficient resource usage. For Spark with 27
nodes and more we had to decrease the number of edge partitions because we experi-
mented with larger values (proportional to the number of cores per number of nodes)
for a configuration of 24 nodes and we found a large drop in performance (up to 50%).
Flink’s Connected Components outperforms Spark by a much larger factor than in the
case of Small Graphs (up to 30%) mainly because of its efficient delta iteration opera-
tor.

Large Graph. We experimented with the large graph dataset on 3 clusters of 27, 44 and 97
nodes respectively, as shown in Table 3.7. Flink’s execution with 27 and 44 nodes failed
because of the CoGroup operator’s internal implementation which computes the solu-
tion set in memory. For Spark’s Page Rank and Connected Components with 27 and 44
nodes we were able to process correctly the graph load stage only when we doubled
the number of edge partitions from a value equal to the total number of cores. The
execution of Page Rank and Connected Components with 97 nodes was successful for
both frameworks. Flink is less efficient because the parallelism is reduced. In Flink’s
case, we set the parallelism to three quarters of the total number of cores in order to
allocate more memory to each CoGroup operator so that the execution does not crash.
Setting the parallelism to the total number of cores causes a failure. We suspect two
problems: one with the pipeline execution and the I/O interference and second with
the inefficient management of a very large number of network buffers.

Resource Usage. As seen in Figure 3.22 we identified two processing stages for Page Rank:
the first one is necessary to load the edges and prepare the graph representation, while
the second one consists of the iterative processing. In the first stage, both Flink and
Spark are CPU- and disk-bound, while in the second stage they are CPU- and network-
bound. Spark is using disks during iterations in order to materialize intermediate
ranks and we observe that the memory increases from one iteration to another, while
for iterations in Flink there is no disk usage in case of Page Rank and some disk usage
for the first iterations in the case of Connected Components, while the memory re-
mains constant. Flink uses more network during the iterative process and, because of
its pipeline mechanism and its bulk iterator operator, it is able to reduce the execution
time. Overall, for Connected Components we observe a similar resource usage (Figure
3.23). However, although Flink’s delta iterate operator makes a more efficient use of
CPU, it is still forced to rely on disk for iterations on large graphs, hence Spark’s better
results.

38 Chapter 3 – Stream-based versus batch-based execution runtimes

CV
LD

WCG
IT

DS

 0 100 200 300

O
p

e
ra

to
rs

Time(sec)

Flink (total execution is 192 seconds).
 CV=DC+GM+DS (count vertices), DC=DataSource->FlatMap->GroupCombine, DS=DataSink,

 GM=GroupReduce->Map->FlatMap, LD=DM+FC+Gm+CG (load graph), W=Workset,
 DM=DataSource->FlatMap, FC=FlatMap->GroupCombine, Gm=GroupReduce->Map,

 CG=CoGroup, WCG=W+CG, IT=Iterations.

39.508
25.12

131.561
116.388

3.262

LD

MF1

MFr

SV

 0 100 200 300

O
p

e
ra

to
rs

Time(sec)

Spark (total execution is 232 seconds).
 LD=Map->Coalesce->Load Graph, MF=mapPartitions->foreachPartition,

 SV=mapPartitions->saveAsTextFile, MF1 (first iteration), MFr (rest of 19 iterations)

39.088

33.222

157.955

1.665

 0

 20

 40

 60

 80

 100

 0 100 200 300

C
P

U
 %

 0

 20

 40

 60

 80

 100

 0 100 200 300

C
P

U
 %

 0

 20

 40

 60

 80

 100

 0 100 200 300

I/
O

 M
iB

/s

 0

 20

 40

 60

 80

 100

 0 100 200 300

I/
O

 M
iB

/s

 0
 200
 400
 600
 800

 1000
 1200

 0 100 200 300

N
e

tw
o

rk
 M

iB
/s

 0
 200
 400
 600
 800

 1000
 1200

 0 100 200 300

N
e

tw
o

rk
 M

iB
/s

Figure 3.22 – Page Rank operators and resource usage of Flink and Spark for 27 nodes, 20 iterations,
and small graph. Disk utilization is similar to disk I/O, memory is 40%.

LD
WGR

JJC
DI

DS

 0 100 200 300 400

O
p

e
ra

to
rs

Time(sec)

Flink (total execution is 267 seconds).
 LD=DM+DC+GR+Map, DM=DataSource->FlatMap->FlatMap,

 DC=DataSource->FlatMap->GroupCombine, GR=GroupReduce, WGR=W+GR,
 W=Workset, JJC=JC+J, JC=Join->GroupCombine, J=Join, DI=DeltaIterations, DS=DataSink.

60.348
217.798
262.805
175.833
1.167

LD
MR1
MR2
MR3
MR4
MRr
SV

 0 100 200 300 400

O
p

e
ra

to
rs

Time(sec)

Spark (total execution is 388 seconds).
 LD=Map->Coalesce->Load Graph, MRi=mapPartitions->reduce (i=1 to 4 iterations),

 SV=mapPartitions->saveAsTextFile, MRr (rest of 19 iterations).

58.437
61.674

26.438
21.934

22.789
184.166
1.513

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450

C
P

U
 %

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450

C
P

U
 %

 0
 20
 40
 60
 80

 100

 0 50 100 150 200 250 300 350 400 450

M
e

m
o

ry
 %

 0
 20
 40
 60
 80

 100

 0 50 100 150 200 250 300 350 400 450

M
e

m
o

ry
 %

 0

 200

 400

 600

 800

 0 50 100 150 200 250 300 350 400 450

N
e

tw
o

rk
 M

iB
/s

 0

 200

 400

 600

 800

 0 50 100 150 200 250 300 350 400 450

N
e

tw
o

rk
 M

B
/s

Figure 3.23 – Connected Components operators and resource usage of Flink and Spark for 27 nodes,
23 iterations, and medium graph.

3.3.2 Summary of insights

Our key finding shows that neither framework overperforms the other for all data types,
sizes and job patterns: Spark is about 1.7x faster than Flink for large graph processing,
while the latter outperforms Spark up to 1.5x for batch and small graph workloads using
sensitively less resources and being less tedious to configure. This behaviour is explained by
different design choices that we recall below.

Memory management plays a crucial role in the execution of a workload, particularly for
datasets larger than available memory. For instance, Flink’s aggregation component
(sort-based combiner) appears more efficient than Spark’s, building on its improved
custom managed memory and its type oriented data serialization. With its DataSet
API [44] for structured data, Spark aimed for a similar approach.

3.3 – Evaluation 39

While common wisdom on processing lots of data in a JVM means storing them as
objects on the heap, this approach has a few notable drawbacks, as also mentioned
in [47]. First, as seen in the Large graph case from Section 3.3.1, memory overalloca-
tion will immediately destroy the JVM. Moreover, large sized JVMs (multiple GBs),
overwhelmed with 1000s of new objects, can suffer from the overhead of garbage col-
lection. Finally, on most JVM platforms, Java objects increase the space overhead. In
order to avoid use-case specific tuning of the system parameters, necessary to optimize
memory setups so that we avoid overallocation and garbage collection issues, analyt-
ics engines should architect with efficient memory as a first-class concern. During our
experiments we noticed that, as opposed to Spark, Flink does not accumulate lots of
objects on the heap but stores them in a dedicated off-heap memory region, to avoid
memory issues. However, hybrid setups of memory (on- and off-heap) are difficult
to tune and the memory fraction setting should (ideally) be automatically configured
by the system and dynamically changed at runtime. In Flink, most of the operators
are implemented so that they can survive with very little memory (by spilling to disk
when necessary). We also observed that although Spark can serialize data to disk, it
requires that (significant) parts of the data to be on the JVM’s heap for several opera-
tions; if the size of the heap is not sufficient, the job dies. Recently, Spark has started to
catch up on these memory issues with its Tungsten [90] project, highly inspired from
the Flink model, for the explicit custom memory management aiming to eliminate the
overhead of the JVM object model and garbage collection.

The pipelined execution brings important benefits to Flink, compared to the staged one in
Spark. For example, Flink’s Tera Sort evaluation emphasizes the importance of the ex-
ecution pipeline implemented by its smart optimizer (reordering the operators enables
more efficient resource usage and drastically reduces the execution time). There are
several issues related to the pipeline fault tolerance, but Flink is currently working in
this direction [27]. For instance, due to Flink’s pipeline nature, we had to increase the
number of buffers in order to avoid failed executions. In Flink there is a correlation
between the number of network buffers, the parallelism and the workflow’s operators.
As such, users need to pay attention to the correct configuration (i.e., operators tasks
configured with the required number of network buffers for communication between
them).

Optimizations are automatically built in Flink for the whole application workflow, while
Spark optimizes at the stage level (although for SQL jobs, SparkSQL [7] uses an op-
timizer that supports both rule-and cost-based optimizations). Spark batch and iter-
ative jobs have to be manually optimized and adapted to specific datasets through
fine-grained control of partitioning and caching. For grep-style workloads we have
already seen Spark overperforming Flink due to poor implementation of the filter op-
erator. For more complex workflows with multiple filter layers applied on the same
dataset, Spark can take more advantage of its persistence control over the RDDs (disk
or memory) and further reduce the execution times. This important feature is missing
in the current implementation of Flink.

Parameter configuration proves tedious in Spark, with various mandatory settings related
to the management of the RDDs (e.g., partitioning, persistence). Flink requires less
configuration for the memory thresholds, parallelism and network buffers, and none

40 Chapter 3 – Stream-based versus batch-based execution runtimes

for its serialization (as it handles its own type extraction and data representation). For
instance, for graph-based workloads Spark needs a careful parameter configuration
(for parallelism, partitions, etc.), which is highly dependent on the dataset, in order to
obtain an optimal performance. In Flink’s case, one needs to make sure that enough
memory is allocated so that its CoGroup operator that builds the solution set in mem-
ory could be successfully executed. Applications handling a solution set built with
delta iterations should consider the development of a spillable hash table in order to
avoid a crash, trading performance for fault tolerance. For such workloads, in which
the execution consists of one stage to prepare the graph (load edges) and another one
to execute a number of iterations, an optimal performance can be obtained by configur-
ing the parallelism setting of the operators separately for each stage. Backed by these
experiments we can argue for the importance of the delta iterate operator feature and
a pipeline execution which can bring improved performance.

3.4 Discussion

3.4.1 Related work

While extensive research efforts have been dedicated to optimize the execution of MapRe-
duce based frameworks, there has been relatively little progress on identifying, analyzing
and understanding the performance issues of more recent data analytics frameworks like
Spark and Flink.

Execution optimization. Since the targeted applications are mostly data-intensive, a first
approach to improving their performance is to make network optimizations. In [118]
the authors provide the best parameter combination (i.e., parallel stream, disk, and
CPU numbers) in order to achieve the highest end-to-end throughput. Storage opti-
mizations try either to better exploit disk locality [108] or simply to eliminate the costly
disk accesses by complex in-memory caches [120, 64]. In both cases, the resulting ag-
gregated uniform storage spaces will lag behind in widely distributed environments
due to the huge access latencies. In [24] the authors analyze the changes needed by
the optimizer and the execution engine of Flink in order to support bulk and incre-
mental (delta) iterations. Similarly to us, they consider graph processing algorithms
like Page Rank when comparing to Spark, but the cluster size is small (hence no intu-
ition about scalability) and they ignore recent improvements in Flink, like the memory
management.

Performance evaluation. The vast majority of research in this field focuses on the Hadoop
framework, since, for more than a decade, this has become the de-facto industry stan-
dard. The problem of how to predict completion time and optimal resource configu-
ration for a MapReduce job was proposed in [15]. To this end, the work introduces
a methodology that combines analytical modelling with micro-benchmarking to esti-
mate the time-to-solution in a given configuration. The problem of disproportionately
long-running tasks, also called stragglers, has received considerable attention, with
many mitigation techniques being designed around speculative execution [4]. Other
studies focus on the partitioning skew [60] which causes huge data transfers during

3.4 – Discussion 41

the shuffle phases, leading to significant unfairness between nodes. More recent per-
formance studies specifically target Spark [94]. The authors analyze three major ar-
chitectural components (shuffle, execution model and caching) in Hadoop and Spark.
Similarly to us, they use a visual tool to correlate resource utilization with the task
execution; however, they do not evaluate the operator parallelism and do not consider
Flink with its own cost-based optimizer. Blocked time analysis has been introduced in
[87] in order to understand the impact of disk and network and to identify the cause of
stragglers. The authors show that in Spark SQL this is due to the Java Garbage Collec-
tor and the time to transfer data to and from the disk. This technique could be applied
to Flink as well, where stragglers are caused by the I/O interference in the execution
pipelines, as seen in the Tera Sort workload from our study.

Overall, most of the previous work typically focuses on some specific low-level issues of
big data frameworks that are not necessarily well correlated with the higher level design. It
is precisely this gap that we aim to address in this chapter by linking bottlenecks observed
through parameter configuration and low level resource utilization with high-level behavior
in order to better understand performance.

3.4.2 Fault tolerance trade-offs

MapReduce systems (e.g., Spark) adopt the bulk-synchronous model (BSP [110]) in which
the computation consists of two phases that continuously repeat: a computation (map) phase
during which all nodes of a distributed system perform some computation, followed by a
blocking barrier that enables a communication (reduce) phase during which nodes commu-
nicate. To implement fault-tolerance, such systems implement a barrier snapshot: intermedi-
ate results are materialized (through checkpoints) or, more efficiently, the processing lineage
is recorded (e.g., RDDs). However, since Big Data applications can be composed of many
map and reduce phases, the user is forced to decide when is best to materialize intermediate
results or simply to rely on lineage recovery techniques.

Dataflow systems (e.g., Flink) adopt the continuous (long running) operator model in
which operators are scheduled once as long running tasks. While the execution model is
more flexible compared to BSP, these systems rely on costly distributed checkpointing algo-
rithms during normal execution; in order to handle node failures, all nodes are rolled back
to the last available checkpoint and each continuous operator is recovered serially [111].

We argue that with proper support from a low-latency stream storage, continuous
stream-based operators can additionally implement lineage techniques in order to optimize
processing by, e.g., leveraging techniques such as parallel recovery [121]. In this case, each
dataflow operator could asynchronously store a lineage stream of its task’s computations
along with offsets of input and output streams for each deployed task; the execution driver
could then recover each operator task independently while back-pressure techniques could
help maintain a consistent computation. With such a powerful feature, dataflow systems
could become more attractive for both batch and streaming executions at very large scale
where faults occur more often. For this to happen, a fundamental shift of approach is neces-
sary: unbounded (stream-based) data processing engines should be designed to rely for state
management on fine-grained, dynamic ingestion/storage systems as the one we propose in
this thesis.

43

Chapter 4

Exploring shared state for
window-based streaming analytics

Contents

4.1 Background . 44

4.1.1 Context . 44

4.1.2 Problem statement . 45

4.2 Memory deduplication with shared state backend 46

4.2.1 Stateful window-based processing . 46

4.2.2 Deduplication proposal . 48

4.3 Synthetic evaluation . 49

4.3.1 Setup and Methodology . 49

4.3.2 Results . 50

4.3.3 Memory savings . 53

4.3.4 Summary of insights . 53

4.4 Discussion . 54

4.4.1 Comparison with existing approaches 54

4.4.2 Pushing processing to storage . 55

WHile the previous chapter explores the architectural differences between batch-based
and stream-based execution runtimes when running batch and iterative workloads

characterized by offline data sources (i.e., previously stored in a distributed file system be-
fore computation), in this chapter we complement our previous study with understanding
the performance of (window-based) streaming operators when the dataflow engine keeps
the streaming state internally (on-heap) or within an external store (off-heap).

44 Chapter 4 – Exploring shared state for window-based streaming analytics

Stream-oriented engines [1, 67, 121] typically process live data sources (e.g., web services,
social and news feeds, sensors, etc.) using stateful aggregations (called operators) defined
by the application, which form a directed acyclic graph through which data flows. In this
context, it is often the case that such stateful aggregations need to operate on the same data
(e.g., top-K and bottom-K entries observed during the last hour in a stream of integers).
Current state-of-the-art approaches create data copies that enable each operator to work in
isolation, at the expense of increased memory utilization. However, with increasing number
of cores and decreasing memory available per core [38], memory becomes a scarce resource
and can potentially create efficiency bottlenecks (e.g., underutilized cores), extra cost (e.g.,
more expensive infrastructure) or even raise the question of feasibility (e.g., running out of
memory). Thus, the problem of minimizing memory utilization without significant impact
on performance (typically measured as result latency) is crucial.

In this chapter, we explore the feasibility of deduplication techniques in order to address
this challenge. What makes this context particularly difficult is the complex interaction and
concurrency introduced by the operators as they compete for the same data, which is not
originally present in the case when operators work in isolation. We design a deduplication
method specifically for window-based operators that relies on key-value stores to hold a
shared state and we experiment with a synthetically generated workload while considering
several deduplication scenarios. Our goal is to understand what are the current limitations
faced by a streaming engine when interacting with a storage engine for holding streaming
state. The main intuition is the following: if the shared state approach is generally feasible
with current state-of-the-art streaming engines, our stream storage design will have to in-
tegrate the design principles lying at the core of this work. Otherwise, a new approach is
needed to alleviate from identified limitations.

4.1 Background

This section discusses the general context of this work, targeted use cases and the main
working assumptions. Based on this we introduce the problem statement.

4.1.1 Context

Stream processing window functions such as aggregates and UDF (user defined functions,
i.e., patterns) are more challenging than typical streaming patterns (e.g., filtering, projecting,
data structure or event enhancements) as they pre-require buffering the data over some peri-
ods of times (i.e., these functions are typically applied over the window contents). The func-
tions that are applied are quite generic and range from mathematical functions (e.g., com-
puting statistics, histograms) to extracting data features for machine learning or for business
intelligence (e.g., min, max, summations, metrics over partitions) to binary or multivariate
functions (e.g., labeling items as relevant or irrelevant in a specific context). To exemplify,
one can consider the example of gaming specific scenarios [28], which puts in evidence Ter-
abytes of state generated by billions of events per day. The processing focuses on computing
revenue streams in real time (e.g., summations – total revenue, metrics over partitions –
computing average revenues per country) and on determining user activities (i.e., labeling
functions – which levels make user quit; histograms – hourly activities for games), etc.

4.1 – Background 45

Listing 4.1 – Two patterns on a shared input data stream

DataStream<EventType> input = env.readParseSource(params);

DataStream<ResultType1> patternOne = input

.keyBy(<first key selector>)

.window(<first window assigner>)

.<window transformation>(<first window function>);

DataStream<ResultType2> patternTwo = input

.keyBy(<second key selector>)

.window(<second window assigner>)

.<window transformation>(<second window function>);

Multi-Patterns. We consider the general case of applying such aggregations and UDFs
(two or more patterns) over partial or full common stream data, and without focusing on
a particular domain. We consider how the underlying stream operator (i.e., the window)
can better support these concurrent analysis and make resource usage more efficient (e.g.,
decrease memory footprint) without leveraging properties (e.g., associativity) of the pat-
terns’ functions that are applied. This raises additional challenges with the cases where no
specific assumptions can be made, other than the ones that are generally considered by the
stream paradigm; on the other hand the approaches considered need to be transparently en-
capsulated within the stream framework without altering the stream paradigm or the API
semantics.

4.1.2 Problem statement

We define the working scenario as follows: we have a rate of new events (typically a few
thousand events per second – half a billion events per day). This is a general assumption
on the event workload that applies across the aforementioned domains: IoT, banks, gaming
companies, e-commerce sites have events in the range of million to tens of millions per day
(e.g., a large game company will have about 30 million events per day). We consider analysis
history up to 12 months of historical events. This can cover analysis from instant metrics to
complex machine learning algorithms that aim to learn user behavior, which require large
time-spans. In terms of domain parallelism, we build millions of windows (each event can
be associated to one or multiple windows) that we keep as state in memory in order to
process multiple patterns (that correspond to window-based UDF or aggregations). The
choice for this granularity is motivated by the fact that banking or ecommerce have millions
of users. Furthermore, the specific analysis can require various partitions (e.g., computing
averages per user, per country or per currency) which drive the need to associate each event
with multiple windows to support the corresponding processing. Each event value size is
significant (hundreds of bytes) and corresponds to multiple attributes that are possibly used
in each pattern’s computations. The arity of the tuples can range from tens (e.g., data specific
to financial markets) to hundreds of attributes (data in e-commerce is large and augmented
with metadata from various cookies).

The computation will thus contain multiple window processing operators (N) running
concurrently within the stream engine, in order to process windows built from the same in-
put of infinite events. In Listing 4.1 (Flink’s API) we give an example of building a topology

46 Chapter 4 – Exploring shared state for window-based streaming analytics

with two patterns running window functions on the same data stream: after creating an
input DataStream by parsing events from one source (readParseSource), we subsequently
define two patterns as window operators. Current implementations are based on duplicat-
ing stream events in memory, leading to inefficient memory usage and potentially increased
processing event latency. Consequently, the memory footprint is equal to the sum of the
states of all processed windows. One can imagine that if the number of pattern analysis that
run in parallel grows, we can end up with a several ten-folded multiplication factors over the
entire data. e.g., consider the implementation of fraud detection, e-banking and other his-
torical/analytics services over card transaction data that span over one year for hundreds of
millions of users. If we consider on average 1000 transactions per second each of 1 KB, then
in one year we have 29 TB of state to store in memory without considering additional copies.

Our goal is to explore the possibility to store the shared state in an external key-value
store in order to efficiently deduplicate memory corresponding to events that are common
to multiple (overlapping) window-based operators.

4.2 Memory deduplication with shared state backend

In this section, we briefly introduce the concept of stateful window-based stream processing
and propose a deduplication approach specifically designed for this context.

4.2.1 Stateful window-based processing

At its basis, an infinite data stream is a set of events or tuples that grows indefinitely in time
[69]. An infinite data stream is divided (based on event timestamp or other attributes) into
finite slices called windows [29]. The properties of a window are determined by a window
assigner: it specifies how the elements of the stream are divided into windows. The main
categories are:

Global windows: each element is assigned to one single per-key global window;

Tumbling windows: elements are assigned to fixed length, non-overlapping windows of a
specified window size;

Sliding windows: elements are assigned to overlapping windows of fixed length equal to
the window size, the size of the overlap is defined by the window slide; and

Session windows: windows are defined by features of the data themselves and window
boundaries are adjusting to incoming data.

Stateful operators implemented as (sliding) window-based aggregations are working
over a state that defines the confines of the (sliding) window. The window state is a set
of M recent tuples and is usually persisted as a list structure in heap memory or off-heap
embedded key-value store. The implementation can also be hybrid, as we propose, with
references (hash over tuple key/value) of tuples stored in heap memory and actual values
stored in an external key-value store.

To build and modify a window state, the (evicting) window operator is using a List-
State interface that gives access to various methods to add a tuple to the state, remove a

4.2 – Memory deduplication with shared state backend 47

Figure 4.1 – State backend options for window-based streaming operations.

tuple from the state or retrieve all the tuples of the state. ListState methods can be defined
for both generic tuples and serialized (byte array) ones, depending on the method used to
persist state in memory. For instance, storing tuples in a serialized format helps reduce
the memory footprint, at the cost of increased CPU usage. The window state backend ab-
straction is hidden from the developer, but can be parametrized in order to use different
implementations.

State backend options for window-based processing. Apache Flink gives two ways of
storing state for window-based operators (see Figure 4.1):

In-heap (memory or file) state backend: it stores its data in heap memory with/out
capabilities to spill to disk (backed by a file system);

Off-heap embedded (key-value store RocksDB) state backend: it stores its data in
RocksDB with capabilities to spill to disk.

We choose Apache Flink [67] to develop a proof of concept of our techniques, as it is
today the most advanced open-source streaming engine. Flink adopts most of the Dataflow
window model as described in [66], being the state-of-the-art for windowing semantics. We
further discuss the buffering options we can consider for window state backends. While
some of the options are currently implemented (heap and RocksDB), some other states are
proposed by us and used in our evaluation (heap+Redis, RocksDB+Redis).

Object state in JVM heap memory. By default Flink stores data internally as objects on
the Java heap in a memory state backend which has strong limitations: (1) the size of
each individual state is limited to a few Megabytes (for in-heap memory state); (2) the
aggregate state must fit into the configured job heap memory.

In our window-based scenarios (i.e., jobs with large state, many large windows) we
are required to save each window operator’s instance states on the local task manager

48 Chapter 4 – Exploring shared state for window-based streaming analytics

heap memory. For this situation we can configure Flink to a file state backend, which
is characterized by holding data in the task manager heap memory and further check-
pointing the state into a file system (e.g., HDFS) in order to ensure consistency guar-
antees. To configure this state we have to initialize two parameters: 1) state.backend
to value filesystem and 2) state.backend.fs.checkpointdir to the HDFS path for check-
pointing state. Each operator window’s state is a list of Java objects and it is updated
every time a new element arrives.

Serialized objects state in off-heap memory. Similar to the heap object state, Flink offers
an option to configure an operator state to off-heap and it implements an embedded
key-value store state interface (i.e., RocksDB). The main difference is that objects are
serialized before they are persisted in the off-heap state and every time objects are ac-
cessed the cost of deserialization adds to the processing latency of corresponding op-
erator’s user defined function. Another difference consists in the fact that the RocksDB
database is using local task manager data directories and, as such, the state size is
limited by the amount of disk space available.

4.2.2 Deduplication proposal

Before we try to find an efficient way of reducing the pressure on memory for persisting
window states, it is important to understand what properties of user-defined functions can
enable a reduction of the state and thus reduced memory utilization.

As discussed in [102], if the aggregation function is associative (not necessary to be com-
mutative or invertible), then a general incremental approach could possibly avoid buffering
window states. It can help to achieve much better event latency for large windows, while
the memory footprint for storing partial aggregates is much lower than in the case of storing
entire windows. For small windows, it provides almost the same event latency. However,
in some cases, there is a need to access the elements of a window after the aggregation was
executed, so although incremental aggregation can be efficient, a window state may still be
necessary. If we consider that not all the aggregation functions are associative, then we are
forced to re-aggregate from scratch for each window update.

Existing approaches do not consider sharing a window’s state elements. The analyzed
framework (Apache Flink) is caching buffers in either JVM heap (leading to increased mem-
ory footprint because of Java representation overhead) or to an embedded key-value store
(RocksDB), possibly wasting memory resources because of duplicated stream events. As
such, our approach is worth being explored in order to respond to critical situations where
memory usage needs to be reduced.

Next, we describe the implementation of the proposed shared-state backend and we de-
tail the necessary enhancements added to Flink’s interfaces.

Memory deduplication with shared key-value store (illustrated in Figure 4.2). Our ap-
proach for window states memory deduplication is based on the following: for each element
(event value) of a stream we calculate and associate a key (event reference). Each window’s
buffer is defined as a list of references to the assigned events as follows: WindowKey →

ListStruct<EventReference>

Based on the properties of the windows (how elements are arriving, ordering, eviction
policies), ListStruct may be implemented as a simple list or as a more complex structure.

4.3 – Synthetic evaluation 49

Figure 4.2 – Deduplication proposal for window-based streaming operators through shared key-
value store.

Each event value with its associated reference (i.e., event key) will be stored once in a key-
value store and accessed every time a window aggregation is activated.

For each new object that is assigned to an operator’s window, we calculate a key by
hashing the value of the event. We implement a new interface SharedListState that is con-
figurable by setting the parameter state.backend to sharedfilesystem. When we add a value
to the shared state we make the following operations: 1) we append the reference key to a
list and we store this list in JVM heap memory; 2) we store the <key, serialized value> pair
in the external key-value store. When an operator’s window execution is triggered because
a new event arrived, we retrieve the list of keys from heap in order to make a call (multi-get)
to the external key-value store in order to obtain all the serialized values. We subsequently
deserialize each value and further trigger the user defined function that computes the win-
dow aggregation. Our approach is not only effective for memory deduplication, but will
also be useful for moving computation to other nodes (separating state from the streaming
execution) if we consider that our key-value store is configured to replicate its data.

4.3 Synthetic evaluation

This section describes the experimental setup, methodology and results.

4.3.1 Setup and Methodology

We implemented an event generator that is capable of streaming events through a socket.
As a motivating scenario, the event generator is designed to emulate user transactions in a
banking system, which are used in a fraud detection scenario. Specifically, the user transac-
tions are strings (events) composed of relevant attributes (type of transaction, date, merchant
name, value of transaction, type of card, name of customer). Their content is generated ran-
domly, according to the following distribution (in order to draw one real scenario where

50 Chapter 4 – Exploring shared state for window-based streaming analytics

events arrive uniformly): an equal number of twelve events in a number of steps propor-
tional to 1000 milliseconds (e.g., 60 events are streamed as 12 events every 200 milliseconds).
The user transactions are consumed by a Flink application that operates on some of the
parameters through a user-defined aggregation operator. The operators we implemented
perform two low-CPU metrics (sum, min).

For every experiment we follow a similar cycle. We installed Redis 3.2.4 [93] and we
configured a standalone Flink (version 1.1 modified with our shared state backend approach)
to use it as the state backend, on a single node which has an Intel Xeon CPU E5-2630 v3 @
2.40GHZ X 16, Ubuntu 16.04 LTS 64-bit, 31 GB RAM and 512 GB disk. We start the event
generator as a Java socket program that listens to a configured port. First, it generates strings
(events) until they fill the window state. Then, it generates strings for five iterations, each of
one minute, keeping the same rate of new events. At the same time, the Flink application
uses the socketTextStream method of the StreamExecutionEnvironment in order to create
a new data stream that contains the strings received from the configured socket. We parse
each event with a flatMap operation, assigning it a timestamp. After applying a user-defined
function (as mentioned in the previous section), the timestamp is used to obtain the event
latency, defined as the time seen at the end of the aggregation minus the initial time of the last
event of a window. We collect each aggregated value and write it as text with the operator
writeAsText.

We measure only the event latencies corresponding to the five iterations and we compute
the aggregated upper bound of latencies experienced by 99% of events. We make sure to
clear the OS buffer cache and temporary data or logs before a new execution starts. After
each execution ends we clear the Redis cache and we collect logs that hold the event latency
percentiles.

For each experiment we fix the values for the following parameters (while keeping all
other parameters at their default): (1) window_size – is the size of the window for which
we execute an user defined function aggregation, window slide is fixed to 1 (in order to
put pressure on window evaluation); (2) window_keys – gives the number of windows that
are processed in parallel, equals the number of cores; (3) events_rate – is the rate of new
events that are streamed by the socket program each second according to the distribution
mentioned in the previous section. Other parameters: (4) the size of event reference (key) is
16 bytes (to avoid colisions for one year worth of data); (5) the size of each event value is 100
bytes (estimated size for a typical user transaction).

4.3.2 Results

Impact of heap size on event latency

Our first series of experiments aim at understanding the overhead of operating under low
memory constraints, which leads to frequent invocation of the garbage collector and thus de-
creased performance. To this end, we use a variable heap memory size for the task manager,
while keeping the other parameters constant. We choose to evaluate a low-CPU aggregation
operator over a sliding window of size 10240 (slide equal one) with the rate of new events
set at 480 events per second. The number of processed windows is two and we only use one
task slot (parallelism one). The window state is configured to use the heap.

4.3 – Synthetic evaluation 51

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

128 144 160 176 192 208 224 240 256 512 1024

9
9
 %

 E
v
e
n
t
L
a
te

n
c
y
 (

m
s
)

Task Manager JVM Heap Memory (MiB)

Heap Objects

Figure 4.3 – Event processing latency (99% percentile) for fixed window size and event rate when
varying the Task Manager Heap Size.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

1024 2048 4096 8192

9
9
 %

 E
v
e
n
t
L
a
te

n
c
y
 (

m
s
)

Window Size

Heap Objects
Heap Redis Shared State

Figure 4.4 – Event processing latency (99%
percentile) for fixed event rate when varying
the window size (heap versus shared). Rate
of new events is 60. Heap size is 1 GB. Par-
allelism is one: all events correspond to the
same window.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

128 256 512

9
9
 %

 E
v
e
n
t
L
a
te

n
c
y
 (

m
s
)

Window Size

Rocksdb
Rocksdb Redis Shared State

Figure 4.5 – Event processing latency (99%
percentile) for fixed event rate when vary-
ing the window size (off-heap versus shared).
Rate of new events is 36. Heap size is 1 GB.
Parallelism is one: all events correspond to
the same window. Heap event latency is 5
milliseconds.

We observe that the CPU usage decreases as a consequence of a reduced garbage col-
lector overhead, which leads to a decrease in measured event latency of up to ten times (as
observed in Figure 4.3). This emphasizes the importance of avoiding running stream pro-
cessing operators under low memory constraints.

Impact of window size on event latency

Next, we evaluate the impact of the window size on the perceived event latency, which is
the main indicator of performance in a stream processing application.

In Figure 4.4 we observe that with larger windows the effect of queueing on the event
latency increases. Specifically, the event latency breaks down as follows: event queueing

52 Chapter 4 – Exploring shared state for window-based streaming analytics

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4

9
9
 %

 E
v
e
n
t
L
a
te

n
c
y
 (

m
s
)

Number of Cores (Parallelism)

Heap Objects One OP
Heap Redis Shared State One OP

Heap Objects Two OPs
Heap Redis Shared State Two OPs

Figure 4.6 – Event processing latency (99%
percentile) for fixed event rate when varying
parallelism. Rate of new events is 60 per core
every second. Heap size is 1GB. Window size
is 2048.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

1 2 3 4

9
9
 %

 E
v
e
n
t
L
a
te

n
c
y
 (

m
s
)

Number of Cores (Parallelism)

Heap Objects One OP
Heap Redis Shared State One OP

Heap Objects Two OPs
Heap Redis Shared State Two OPs

Figure 4.7 – Event processing latency (99%
percentile) for fixed event rate when varying
parallelism. Rate of new events is 120 every
second. Heap size is 1GB. Window size is
4096.

(how much time an event is buffered before it got its chance to be processed), overhead to
add an event to state, overhead to retrieve the whole window from the state, time to process
aggregation and framework overhead.

We also evaluate the off-heap object serialization option using RocksDB as the state back-
end (assuming default configuration in Flink of the embedded key-value store) for the same
rate of 60 new events per second. We do not plot these numbers as they show much higher
latencies: 111 milliseconds for windows of size 1024, 310 milliseconds for windows of size
2048 and hundreds of seconds for a window of 4096 events.

To facilitate a feasible comparison between “Redis-dedup” using RocksDB and plain
RocksDB, we decreased the rate of new events to 36 and we also reduced the window size.
The results in Figure 4.5 show that although the size of the windows is much smaller com-
pared with the previous experiment, the overhead of using RocksDB as a state backend is
much higher. Nevertheless, the effect of event queueing follows a similar trend.

One versus two operators using shared events

The next experiment evaluates the event processing latency when increasing the number of
operators sharing the same events from one to two. To this end, we fix the problem size per
core as follows: for each core we generate 12 events every 200 milliseconds, considering that
events are all part of the same window. We evaluate up to four windows corresponding to
the same parallelism of each operator.

In Figure 4.6 we plot four benchmarks: two correspond to the application of one operator
having state in heap (Heap Objects One OP) or sharing state in Redis (Heap Redis Shared
State One OP) and the other two correspond to the application of two operators having
state in heap (Heap Objects Two OPs) or sharing state in Redis (Heap Redis Shared State
Two OPs). While for the heap state we observe similar latencies, for the shared state we
observe an almost constant gap between each execution. This gap is related to the increased
pressure on the key-value store, trying to access the same data concurrently, in addition to
Java serialization costs.

4.3 – Synthetic evaluation 53

As we can see in Figure 4.7, this experiment evaluates the same problem (events rate of
120 per second, window size of 4096 events) while increasing the parallelism from one to
four (each core will process an equal number of elements) for the same four benchmarks like
in the previous section. It is clear that with larger windows and increased throughput, rely-
ing on an external key-value store for memory deduplication of window-based processing
may be unfeasible due to large overheads of Java serialization.

Scenario Experimental Use Case Large Use Case

Heap Only 800 KB 4.7 TB
Deduplicated 592 KB 1.3 TB

Table 4.1 – Estimating the memory utilization for the use case presented in the previous section (N is
2, M is 4096) and a potential large use case at scale (N is 10, M is one month worth of 2000 events per
second) with and without deduplication.

4.3.3 Memory savings

Although there is significant performance overhead when using deduplication (as detailed
in the previous section), such a technique may lead to large memory savings. While we did
not measure the memory utilization directly (which is inherently difficult due to garbage
collection), we estimate it as M ∗ N ∗ EventSize for the heap-only case and, respectively M ∗

EventSize+ (N + 1) ∗ M ∗KeySize for the deduplicated case. In these formulas, N is the total
number of concurrent operators, M is the total number of events, EventSize is fixed at 100
bytes, KeySize is fixed at 16 bytes. All operators are assumed to consume the same events
(i.e., full window overlap).

The results of our estimation, both for the use case from our experiments as well as for
a larger hypothetical use case at scale are summarized in Table 4.1. For the case where only
two operators share common data, it can be observed that deduplication leads to a consistent
memory saving of 26% compared with the heap-only case, while for a large scale use case
with ten operations sharing data we estimate that deduplication leads to higher memory
savings of up to 72% compared with the heap-only case. However, using a shared state
approach can possibly lead to increased event processing latency, making difficult to rely on
external storage for keeping the streaming state.

4.3.4 Summary of insights

Based on this study, we draw three conclusions. First, under low memory constraints,
window-based operators tend to perform poorly due to frequent invocations of the garbage
collector. In this case, the latency needed to process 99% of the events is up to 10x higher
compared for the case when there is no memory pressure. Thus, deduplication has potential
to improve latency. Second, deduplication leads to higher performance degradation for an
increasing window size compared to the case when copies are used. Thus, careful selection
of the window size is needed. Third, deduplication has a large potential to save memory:
already for two operators that share the same state there is a 25% reduction, which continues
to grow proportionally with the number of operators sharing the same state.

54 Chapter 4 – Exploring shared state for window-based streaming analytics

4.4 Discussion

4.4.1 Comparison with existing approaches

Deduplication is a common technique used in a variety of scenarios, both obvious (e.g.,
saving space in file systems [122, 23] or reducing the size of large scale memory dumps [82])
and less obvious (e.g., detection of natural replicas to reduce the cost of replication-based
resilience [81]).

In the context of stream computing, recent research efforts have concentrated on the
problem of sharing the state for overlapping sliding windows over event streams. How-
ever, as described below, they focus on very specific issues, which they alleviate in isolation,
in most cases trading performance for expressivity.

Exploiting data redundancy. In [72], the authors introduce a buffer management algorithm
that exploits the access pattern of sliding windows in order to efficiently handle mem-
ory shortages. The idea is that sliding-window operators are most of the time manip-
ulating only a small fraction of their data set and are doing so in a very predictable
pattern: once a tuple is stored on the window, it is not going to be accessed by the
sliding-window operator until it is time to expire it. Hence, they implement a shared
operator working over multiple windows, consisting of tuples in a shared tuple repos-
itory.

However, they only consider time-based windows and it is not clear how tuples are
referenced from a window. Also, the total space of the shared repository is the largest
window. This means that the algorithm only works for the particular case of windows
that overlap in a deterministic way (with a coarse granularity of one hour), all included
in a larger, containing window. In contrast, our approach also supports fragmented
intersections of windows and that with a finer granularity (i.e., an event).

Tuples referencing. The idea of using pointers to the data tuples was introduced in the Con-
tinuous Query Language (CQL) [5], an SQL-based declarative language for registering
continuous queries against streams and updatable relations. In CQL, windows are im-
plemented by non-shared arrays of pointers to shared data items, so that a single data
item might be pointed to from multiple windows. To minimize copying and prolifer-
ation of tuples, all tuple data is stored in synopses (i.e., in-memory hash tables) and
is not replicated. Synopses are used at runtime to compile the query plans, which are
merged whenever possible, in order to share computation and state.

Similarly to us, CQL uses the same idea of pointers to shared data items, yet the effects
of serialization/deserialization as well as the heap buffer limitations are not assessed.
Deduplication only works as a side-effect of merging various query plans. Queues
contain references to tuple data within synopses, along with tags containing a times-
tamp and an insertion/deletion indicator. Our contribution is the generalization of
synopses into shared state as key-value stores.

Incremental event processing. Sliding-window aggregation is a key operation in stream
processing and incremental aggregations help to avoid re-aggregating from scratch af-
ter each window change. In order to exploit this incremental processing, the targeted
functions need all to be associative (e.g., count, sum, max, min, mean, etc.). Without

4.4 – Discussion 55

the associativity, one can only handle insertions one element at a time at the end of
the window. Hence, associativity enables breaking down the computation in flexible
ways. Reactive Aggregator [102] is an example of such a framework for incremental
sliding-window aggregation. It stays competitive (10% higher throughput than from-
scratch re-computation) on small windows (1 to 100 events), but its true performance
is shown for large windows (thousands of events), when it delivers at least one order
of magnitude higher throughput compared to re-executions. Orthogonal to Reactive
Aggregator is Cutty [13], a project that is considering more general non-periodic win-
dows (punctuations and sessions, custom deterministic windows) which are expressed
as user-defined operators. Cutty relies on a technique to discretize a stream into a min-
imal set of slices for efficient aggregate sharing of user-defined windows. Shared data
fragments [54] focus on various techniques for aggregation sharing without the need
of optimizing queries upfront. Our work is orthogonal to these solutions, considering
the more general user defined functions that are not associative.

Aggregate computation optimizations. In [65] the authors introduce the panes technique to
evaluate sliding-window queries by pre-/sub-aggregating and sharing computations.
The problem of efficiently computing a large number of sliding-window aggregates
over continuous data streams was introduced for the first time in [6]. The authors
put forward three cost parameters that need to be considered: a) memory required to
maintain state (space); b) the time to compute an answer (lookup time) is proportional
to the window size; c) the time to update the window state when a new tuple arrives
(update time) is composed of the time to evict old tuples as well. While their focus
is on pre-aggregating values that are eventually shared, our approach maintains full
window-state in memory. As opposed to the case of associative functions, for which
incremental processing was a good option, this is no longer the case in the general
(non-associative) scenario. In this context, our aggregation functions are able to re-
consider all tuples of a window for each evaluation and to gracefully compute from
scratch.

4.4.2 Pushing processing to storage

Streaming runtimes develop complex mechanisms to manage internally the windowing
state. As can be seen from previous experiments, it can be difficult to rely on an external
storage for keeping the streaming state. However, for fast crash recovery and fast adapt-
ability this state should also be kept (and incrementally updated) inside a distributed stor-
age engine (operations realized through incremental checkpoints). This complexity could
be avoided at the processing level if the required support for keeping the windowing state
was developed within a unified ingestion/storage layer. With such support, pushing user-
defined aggregate functions to storage (in order to avoid moving large amounts of data over
the network, and also to avoid de/serialization overheads) could help to reduce the latency
of window-based operations and further increase processing throughput (see also [58]).

One possible solution is to rely on highly specialized platforms for in-memory data like
Apache Arrow [8]. Apache Arrow is a columnar memory format for efficient analytics oper-
ations on modern memory hardware, providing zero-copy streaming messaging and inter-
process communication. Apache Arrow can be backed by Apache Parquet [88], a columnar

56 Chapter 4 – Exploring shared state for window-based streaming analytics

storage format built to support efficient compression and encoding schemes. Apache Ar-
row provides high-performance interfaces and could be natively integrated with our unified
storage and ingestion architecture. To enable “in-storage” processing, a shift in the overall
mindset is necessary: processing engines should focus on how to transform data and avoid
complicated mechanisms to handle state at this level (as currently done). We argue it is
more efficient to leave this function to a specialized stream storage engine such as the one
we propose.

57

Part III

KerA: a unified architecture for stream
ingestion and storage

59

Chapter 5
Design principles for scalable data

ingestion and storage

Contents

5.1 Data first: towards a unified analytics architecture 60

5.1.1 Processing engines should focus on the operators workflow 60

5.1.2 Ingestion and storage should be unified and should focus on high-
level data management . 61

5.1.3 Processing engines and ingestion/storage systems should interact
through stream-based abstractions . 61

5.2 Scalable data ingestion for stream processing 61

5.2.1 Dynamic partitioning using semantic grouping and sub-partitions . 63

5.2.2 Lightweight offset indexing optimized for sequential record access . 63

5.3 Handling diverse data access patterns . 64

5.3.1 Model stream records with a multi-key-value data format 64

5.3.2 Leverage log-structured storage in memory and on disk 64

5.3.3 Adaptive and fine-grained replication for multiple streams 66

5.4 Efficient integration with processing engines 66

5.4.1 Enable data locality support as a first class citizen 67

5.4.2 Distributed metadata management for un/bounded streams 67

5.4.3 Towards pushing processing to storage 67

BAsed on previous ingestion and storage requirements (Chapter 2) and considering our
experience with current Big Data processing architectures (Chapters 3 and 4), we argue

that a fundamental shift is necessary in Big Data analytics: the state management function
(for input un/bounded streams and intermediate operators execution) should be handled

60 Chapter 5 – Design principles for scalable data ingestion and storage

Figure 5.1 – Data first envisioned approach: unified ingestion/storage engine with data ingestion,
processing, and storage (DIPS) stream-based interfaces.

by a dynamic ingestion/storage engine, while a dataflow system should focus on how to
transform data (through stream-based interfaces that subsume the standard batch models)
and avoid complicated mechanisms to handle state at its level. Therefore, we propose a set
of design principles for a scalable, unified architecture for ingestion and storage that can
optimize (un/bounded) Big Data processing.

5.1 Data first: towards a unified analytics architecture

We first discuss a set of design principles for streaming that we envision future Big Data
analytics architectures will rely on (we present our approach in Figure 5.1).

5.1.1 Processing engines should focus on the operators workflow

Stream processing engines should model the computation. They should focus on how to
transform data through a workflow composed of stateful and/or stateless stream-based op-
erators. The main focus should be the computation: how to define the computation, when
to trigger the computation and how to combine the computation with offline analytics. Pro-
cessing engines should offer the necessary APIs and semantics for user-defined computation
flows and optimizations of the execution flow. Processing engines could follow a dataflow
graph-like execution, a natural choice for handling streams of records (subsuming batch ex-
ecution) and should avoid complicated mechanisms to store (large) processing state at this
level. We argue it is more efficient to leave the state management function to a special-
ized unified ingestion and storage system for un/bounded data (as previously discussed in
Chapter 3 subsection 3.4.2 and Chapter 4 subsection 4.4.2).

5.2 – Scalable data ingestion for stream processing 61

5.1.2 Ingestion and storage should be unified and should focus on high-level
data management

Both ingestion and storage are exposed through a common engine that is capable of lever-
aging synergies to avoid I/O redundancy and I/O interference arising when using indepen-
dent solutions for the two aspects. This engine handles caching hierarchy, de-duplication,
concurrency control, etc. Furthermore, all high-level data management currently imple-
mented in the processing engine (fault-tolerance, persistence of operator states, etc.) should
be handled natively by the unified layer. Storage systems should represent data state
through an interface capable of fast ingestion of streams of records, storing data and pro-
viding efficient access for streams and objects data to the processing engines.

5.1.3 Processing engines and ingestion/storage systems should interact through
stream-based abstractions

Ingestion/Storage systems and processing engines should understand native, stream-based
interfaces for data ingestion, processing, and storage of streams of records that can subsume
the standard batch models:

The data ingestion interface is leveraged by stream producers that write input streams but
also by processing engine workers that store processing state to local storage instances.

The data storage interface is handled internally by the storage system, being used to per-
manently store input streams when needed: this action can be done asynchronously
based on stream metadata and hints sent by the processing engine.

The data process interface is bidirectionally exposed: first, it can be leveraged by the pro-
cessing engine to pull data from the stream storage; second, we envision future pro-
cessing workflows sending process functions to storage whenever possible.

Moreover, to respond to previously identified requirements, we envision that on top
of the (stream-based) unified ingestion/storage architecture are built key-value interfaces
(e.g., put/get, multi-write/multi-read) necessary to provide fine-grained access to ingested
streams. Enhancing storage solutions with ingestion capabilities will also help, on the one
hand, developing complex stream-based workflows (i.e., by allowing to pass intermedi-
ate/final aggregated stream results to other streaming applications) and, on the other hand,
better supporting stream checkpointing techniques (i.e., by efficiently storing temporary re-
sults).

5.2 Scalable data ingestion for stream processing

State-of-the-art stream ingestion systems (e.g., [49, 91, 96]) employ a static partitioning
scheme where the stream is split among a fixed number of partitions, each of which is an
unbounded, ordered, immutable sequence of records that are continuously appended. Each
broker is responsible for one or multiple partitions. Producers accumulate records in fixed-
sized batches, each of which is appended to one partition. To reduce communication over-
head, the producers group together multiple batches that correspond to the partitions of a

62 Chapter 5 – Design principles for scalable data ingestion and storage

Figure 5.2 – Static partitioning in Kafka (taken from [49]). Fixed partitioning can be a source of
imbalance. Each partition is exclusively processed by one consumer.

single broker in a single request. Each consumer is assigned to one or more partitions. Each
partition is assigned to a single consumer. This eliminates the need for complex synchroniza-
tion mechanisms but has an important drawback: the application needs a priori knowledge
about the optimal number of partitions.

However, in real-life situations it is difficult to know the optimal number of partitions
a priori, because this depends on a large number of factors (number of brokers, number
of consumers and producers, network size, estimated ingestion and processing throughput
target, etc.). In addition, the producers and consumers can exhibit dynamic behavior that
can generate large variance between the optimal number of partitions needed at different
moments during the runtime. Therefore, users tend to over-provision the number of par-
titions to cover the worst case scenario where a large number of producers and consumers
need to access the records simultaneously. However, if the worst case scenario is not a norm
but an exception, this can lead to significant unnecessary overhead. Furthermore, a fixed
number of partitions can also become a source of imbalance: since each partition is assigned
to a single consumer, it can happen that one partition accumulates or releases records faster
than the other partitions if it is assigned to a consumer that is slower or faster than the other
consumers.

Furthermore, streaming brokers assign to each record of a partition a monotonically in-
creasing identifier called the partition offset, allowing applications to get random access
within partitions by specifying the offset. The rationale of providing random access (despite
the fact that streaming applications normally access the records in sequential order) is due
to the fact that it enables failure recovery. Specifically, a consumer that failed can go back to
a previous checkpoint and replay the records starting from the last offset at which its state
was checkpointed. Furthermore, using offsets when accessing records enables the broker
to remain stateless with respect to the consumers. However, support for efficient random
access is not free: assigning an offset to each record at such fine granularity degrades the ac-
cess performance and occupies more memory. Furthermore, since the records are requested
in batches, each batch will be larger due to the offsets, which generates additional network
overhead.

In order to address previous issues, we introduce a set of design principles for scalable
stream ingestion and efficient processing.

5.2 – Scalable data ingestion for stream processing 63

5.2.1 Dynamic partitioning using semantic grouping and sub-partitions

In a streaming application, users need to be able to control partitioning at the highest level
in order to define how records can be grouped together in a meaningful way. Therefore,
it is not possible to eliminate partitioning altogether (e.g., by assigning individual records
directly to consumers). However, we argue that users should not be concerned about per-
formance issues when designing the partitioning strategy, but rather by the semantics of
the grouping. Since state-of-the-art approaches assign a single producer and consumer to
each partition (see Figure 5.2), the users need to be aware of both semantics (e.g., logical
partitioning) and performance issues when using static partitioning. Therefore, we propose
a dynamic partitioning scheme where users fix the high level partitioning criteria from the
semantic perspective, while the ingestion system is responsible to make each partition elas-
tic by allowing multiple producers and consumers to access it simultaneously. To this end,
we propose to dynamically split each logical partition into fixed-size sub-partitions, each of
which is independently managed and attached to a potentially different producer and con-
sumer. Therefore, each logical partition corresponds to multiple physical sub-partitions that
are created and filled in order by producers and dynamically discovered and processed in
order by consumers.

5.2.2 Lightweight offset indexing optimized for sequential record access

Since random access to the records is not the norm but an exception, we argue that ingestion
systems should primarily optimize sequential access to records at the expense of random
access. To this end, we propose a lightweight offset indexing that assigns offsets at coarse
granularity at sub-partition level rather than fine granularity at record level. Additionally,
this offset keeps track (on client side) of the last accessed record’s physical position within
the sub-partition, which enables the consumer to ask for the next records. Moreover, random
access can be easily achieved when needed by finding the sub-partition that covers the offset
of the record and then seeking into the sub-partition forward or backward as needed.

For certain streaming applications that handle stream records with multiple versions (i.e.,
each record has a key and possibly multiple values), users may be interested in compacting
the stream (i.e., preserving only the last value of a given record). This feature is called in
Apache Kafka the log compaction and it is handled by a log cleaner (each log represents
one partition of a stream). For these situations, the partition offset (associated with each
record) helps to decouple application consumers from storage implementations. Since our
lightweight offset is associated by consumers with the record’s physical position, we need
an efficient way to additionally handle the stream compaction. We propose to leverage the
fixed sub-partitions of a stream partition as follows. Applications normally define check-
points that are based on the lighweight offset that corresponds to one sub-partition. There-
fore, we propose to enable stream compaction only for sub-partitions that correspond to old
checkpoints that become obsolete (i.e., not anymore used by applications in the process of
recovery). Since our goal is to provide a unified architecture for ingestion and storage, the
unified engine also stores application checkpoints and therefore has enough knowledge to
transparently handle stream compaction if needed.

64 Chapter 5 – Design principles for scalable data ingestion and storage

Figure 5.3 – Multi-key-value data format for stream records: Version, StreamID, and EntryHeader
are optional, being necessary only for enabling key-value put/get interfaces for fine-grained access
(based on [50]).

5.3 Handling diverse data access patterns

A unified ingestion/storage engine should efficiently provide interfaces for both online
(records or streams) and offline (objects) access patterns. Moreover, the system should ef-
ficiently support access to a large number of streams and objects. Therefore, in order to
efficiently tackle these diverse data access patterns, we propose the following set of design
principles.

5.3.1 Model stream records with a multi-key-value data format

Streaming queries or SQL on streams have recently emerged as a convenient abstraction to
process flows of incoming data, inspired by the deceptively simple decades-old SQL ap-
proach. However, they extend beyond time-based or tuple-based stream models [45]. Given
the complexity of stream SQL semantics and the support they require for handling state for
such operations, it is important to understand how a stream storage system can sustain and
optimize such applications. For instance, computing aggregate functions on streams is pos-
sible using various windowing constructs (e.g., tumbling, sliding windows) which require
fine-grained access to data. Moreover, storage for streaming needs to be flexible and detect
and then dynamically adapt to the observed stream access patterns [12, 68]: ranging from
fine-grained per record/tuple access to group queries (multi get/put) or scan-based.

Stream records are traditionally modelled with a simple key-value format, where value
is an uninterpreted blob of data (e.g., in Kafka). In order to have secondary indexes, required
to efficiently search for records by their attributes (including the primary key), clients and
servers have to agree on where the secondary keys are located in the record. To efficiently
index a stream’s records, we want to avoid parsing the record’s value. We propose to repre-
sent a record with a primary key, optionally multiple secondary keys, and a variable-length
uninterpreted value blob (allowing for other attributes, e.g., as done in [50]), in order to give
more flexibility to an enhanced ingestion/storage architecture (see Figure 5.3). Our goal is to
build a data model flexible enough to allow the sequential efficiency access to streams/ob-
jects and a low-latency fine-grained access to records of a stream.

5.3.2 Leverage log-structured storage in memory and on disk

This is a decision that comes naturally, being emphasized by the structure of a stream: data
arrives in a record-by-record fashion and it is processed and archived/replicated similarly
(see Figure 5.4). Moreover, leveraging sequential access to streams in-memory or on disk can

5.3 – Handling diverse data access patterns 65

Figure 5.4 – Stream records ingestion and replication with logs. The Master (also called broker) is
the process managing the stream ingestion while Backups are responsible to store stream replicas.
Maintaining the order of ingested records in consistent, uniform segments part of a log (e.g., one log
per stream). Step 1: Records A and B are replicated on backups in memory. Then, a producer asks to
write record C. Step 2: During the time a Master is replicating C on its backups, new requests to write
records D and E arrived. Step 3: C is acknowledged, while D and E are copied to the active uniform
segment. Step 4: D and E are batched in a single replication operation. Step 5: Producers of D and E
are acknowledged [figure taken from RAMCloud].

Figure 5.5 – Log-structured storage in memory and on disk. The Master server consists primarily of
a hash table and possibly one or more in-memory logs for each stream. The hash table can optionally
represent the indexed records as a requirement for ensuring the state management function of local
processing. Each new record of a stream is appended to the stream log’s active segment (i.e., buffer)
associated to the record’s stream and is a/synchronously replicated to volatile (i.e., DRAM) buffers
on backups. Client writes are acknowledged once all backups have buffered the new addition to the
active segment. Stream logs are replicated across several backup disks for durability.

66 Chapter 5 – Design principles for scalable data ingestion and storage

maximize performance (i.e., ingestion/processing throughput and latency) for both online
and offline access patterns. We argue that an ingestion/storage system should implement a
(unified) log-structured approach for both data in memory and on disk that could serve well
under changing access patterns for both real-time data serving and batch analytics (see Fig-
ure 5.5). This is very similar to the log-structured techniques developed in the RAMCloud
project [86]. However, while in RAMCloud the access patterns are record-oriented thus have
a random nature, we propose to primarily optimize for the sequential access pattern of dy-
namic streams and objects. As such, each broker (providing direct access to streams) can or-
ganize the sub-partitions of a stream with one or multiple logs, with its data similarly stored
in memory and on disk. Likewise, backups leverage log-structured storage and maintain
the replicated data in-memory and then flushes it (asynchronously) to disk to ease access at
recovery time.

5.3.3 Adaptive and fine-grained replication for multiple streams

Replication [115] is the standard solution used for ensuring fault-tolerant stream data in-
gestion/storage. We propose that each stream (ingesting data into multiple sub-partitions)
is further logically organized into one or multiple virtual logs that continuously aggregate
producer requests containing multiple chunks, at least one for each partition of a stream, in
order to durably replicate the chunks. Backup entities responsible to durably store replicated
(virtual) logs can continue to see both in-memory and on disk data as structured logs.

A scalable ingestion and storage system has to efficiently accommodate multiple tenants
each pushing multiple streams of data with different requirements for ingestion throughput
and read/write access latency: for instance, it should efficiently support the ingestion of tens
of very large streams (i.e., having tens of thousands of partitions) or the ingestion of millions
of very small streams (i.e., having a few partitions). We propose to add support for cus-
tomizing the replication throughput of a single stream by allowing the system/users to tune
the replication capacity, i.e., how many replicated virtual logs can be created for a single
stream. Replication should be possible in both synchronous and asynchronous modes. e.g.,
for applications that require faster ingestion with weaker consistency requirements, data
should be replicated asynchronously; for applications that prefer strong durability over re-
laxed consistency, data should be replicated durably and synchronously before producers
are acknowledged and consumers pull data for processing.

5.4 Efficient integration with processing engines

Towards minimizing data movement for efficient data ingestion and processing, a unified
architecture for ingestion and storage should efficiently handle applications with a diverse
set of access patterns. Using an extensible, modular architecture could provide the flexibility
needed to handle not only online applications requiring low-latency access to unbounded
streams, but also offline/interactive applications needing scalable, high throughput access
to multiple bounded streams (e.g., consider a large application with tens of thousands of
operators, each one managing its data through a stream). To enable an efficient integration
with processing engines we propose the following design principles.

5.4 – Efficient integration with processing engines 67

5.4.1 Enable data locality support as a first class citizen

Offline/batch analytics engines developed a series of optimizations based on data locality
support [119, 120], that also have to be enabled by a unified ingestion and storage architec-
ture. Moreover, recent (near) real-time applications requiring low-latency data access may
also benefit from data locality support (i.e., bypassing the network and reducing the com-
munication interference between reads and writes, consuming data directly from memory
whenever possible). To this end, we propose that the ingestion/storage system should have
a fine-grained control over acquired streams and avoid leveraging third parties for persis-
tence of data (e.g., as done by Kafka leveraging the operating system kernel cache). Then,
the co-location of the processing engines with the ingestion/storage nodes should leverage
a shared memory buffer approach while streaming consumers could be implemented with a
push-based approach (versus a pull-based approach in state-of-the-art streaming), thus im-
proving throughput and reducing considerably the processing latency. We argue that current
hardware trends (i.e., multi-core nodes, up to tens or hundreds of cores per node with 100s of
GB of memory) encourage the implementation of a unified model, allowing when possible
the co-location of stream ingestion/storage and processing engines for better cooperation
towards handling huge volumes of streams of data while minimizing data movement.

5.4.2 Distributed metadata management for un/bounded streams

We refer to stream metadata as the small data describing a stream and its partitions. A scal-
able ingestion/storage system should not rely on a single node for handling metadata (e.g.,
as done in HDFS with the NameNode or by Kafka’s Zookeeper for metadata management).
We propose to handle metadata on the brokers providing access to their corresponding data:
in this way metadata are distributed naturally over the whole cluster of (broker and back-
ups) nodes. Metadata should be allowed to be queried independently of data. In order to
boost performance, stream partition metadata should be stored along the data it character-
izes: in this way metadata can be easily and dynamically rebuilt when data is recovered or
migrated on other brokers. Moreover, when needed to scale up and down the ingestion/s-
torage engine, in order to efficiently handle different stream workloads, we should only
migrate metadata describing their data (on current brokers) and avoid moving stream data.

5.4.3 Towards pushing processing to storage

We describe in the next chapters the prototype implementation of the KerA architecture that
illustrates the majority of the previous principles, without considering major enhancements
to Big Data processing frameworks, such as pushing processing functions to storage, and the
required support from the ingestion/storage engine that we leave for future work. However,
we do leverage the locality and metadata techniques in order to efficiently integrate our in-
gestion/storage engine with a state-of-the-art Big Data stream processing framework as a
first step towards “in-storage” processing. Recent work [58] proves the importance (and
performance impact) of pushing “code” to storage systems, while discussing the oportunity
brought by low-latency networking and in-memory storage. One future problem is under-
standing which (batch/streaming) workloads can benefit most from pushing processing to
storage and when it is best to leverage such technique?.

69

Chapter 6
High level architecture overview

Contents

6.1 Unified data model for unbounded streams, records and objects 70

6.2 Scalable data ingestion and processing . 73

6.2.1 Dynamic stream partitioning model 73

6.2.2 Lighweight offset indexing . 74

6.2.3 Favoring parallelism: consumer and producer protocols 74

6.3 Global architecture . 75

6.3.1 Stream management: the coordinator role 75

6.3.2 Stream ingestion: the broker role . 76

6.3.3 Stream replication: the backup role . 76

6.4 Client APIs . 77

6.5 Distributed metadata management . 77

6.6 Towards an efficient implementation of fault-tolerance mechanisms in
KerA . 80

THis chapter presents a high level description of the KerA architecture, a large-scale uni-
fied ingestion and storage system that illustrates the majority of the design principles

introduced in the previous chapter. We recall the reader three critical objectives that drove
the current architecture of KerA:

1. To enable support for fine-grained access to ingested/intermediate streams managed
by streaming applications (i.e., enable state management through the ingestion/stor-
age engine);

2. To better respond to streaming applications that need faster responses than what cur-
rent state-of-the-art ingestion systems (such as Apache Kafka) offer;

70 Chapter 6 – High level architecture overview

3. To reduce the storage and network utilization significantly, which can contribute to
reduced times for stream processing and archival.

For the first objective, as opposed to current systems (e.g., Kafka) that rely on the oper-
ating system for handling streams, we propose to directly manage ingestion and persistence
of acquired streams through a custom memory management (we explore the implemen-
tation of this topic in the next chapter). Stream records are represented with a simplified
multi-key-value data model in order to enable both first and second level indexing mech-
anisms (e.g., as the ones developed by RAMCloud). The second objective can be achieved
by relaxing jump forward/backward at random offsets while still enabling elimination of
earlier values (certain streaming use cases may require deduplication by record key), if re-
quired, and by enabling data locality support whenever possible. The third objective can be
achieved by unifying the ingestion and storage components and exposing a set of common
online/offline interfaces for data ingestion (i.e., producers writing streams), data process-
ing (i.e., consumers reading streams), and data storage (i.e., the archival/storage function is
handled internally based on additional hints from applications – such as consumer offsets).

After introducing the data model used for record and stream representations, we de-
scribe the dynamic partitioning model and our lightweight offset indexing technique. Then,
we describe the system architecture, specifying the roles of each component and their inter-
actions towards ensuring the ingestion and storage functions. After we present the client
interfaces exposed by KerA for managing streams and objects, we describe our proposal for
efficient distributed metadata management. Finally, we discuss the necessary techniques
towards a fault-tolerant architectural implementation. The next chapter discusses in more
detail other technical aspects regarding data locality and adaptive replication support.

6.1 Unified data model for unbounded streams, records and ob-

jects

A stream is an unbounded sequence of records that are not necessarily correlated with each
other. An object is simply represented as a bounded stream. Figure 6.1 illustrates the con-
ceptual representation of records, chunks, segments, groups and streamlets that we describe
below.

Stream records. Each record of a stream is represented by an entry header which has a
checksum covering everything but this field; the record is defined by a number of
keys (possibly none) and its value, similar to the multi-key-value data format used
in RAMCloud [50]. The record’s entry header contains an attribute to optionally de-
fine a version and a timestamp field that are necessary to efficiently enable key-value
interfaces.

Chunks. Record entries are further grouped by producers into chunks (a chunk has a con-
figurable fixed size of up to 8-16 MB). A request contains multiple chunks. The chunk
aggregation is useful for three reasons. First, it gives clients the chance to efficiently (for
metadata purposes) batch more records in a request in order to trade-off latency and
throughput. Second, since each chunk is tagged with the producer identifier and with
a dynamically assigned partition offset identifier (we explore offset details in the next

6.1 – Unified data model for unbounded streams, records and objects 71

Figure 6.1 – Representation of records, chunks, segments, groups and streamlets: we illustrate how
producers aggregate records into requests and push them to brokers. Each request (of configurable
request size) contains one or multiple chunks (each chunk with a configurable size). We exemplify
with a stream composed of two streamlets (a streamlet is a logical partition that contains multiple
fixed-size sub-partitions called groups, see next section). Each streamlet holds up to Q active groups
where chunks are appended. Each producer is responsible for one or multiple streamlets (based on
the partitioning strategy each producer can be configured to push records to one or all streamlets).
Assuming we have Q distinct producers identified by identifiers 1 to Q, each producer’s request is
appended to the active group corresponding to the entry calculated as producer identifier modulo Q.
As such, producer 1 writes into group 1 of each streamlet, producer Q writes into group Q of each
streamlet.

section), this helps ensuring exactly once semantics and ordering semantics necessary
for consistent ingestion and processing. Third, as described in the next chapter, the
replicated virtual log keeps references to a set of chunks, aggregating them in virtual
segments in order to avoid another copy before replicating the chunks.

Segments. A producer client prepares and writes a request containing a set of chunks. Each
chunk is acquired by the ingestion/storage system and appended into a physical seg-
ment representing a buffer managed by the broker. A segment has a customizable fixed
size (8-16 MB) necessary for efficiently moving data from memory to disk and back-
wards (on brokers, processes handling data access, segments have the same structure
on both disk and memory). A stream is composed of a set of uniform segments contain-
ing chunks of records of the same stream. Virtual segments aggregate chunks (through
chunk references) from possibly various physical segments and replicate them on back-
ups that store them on disk.

Groups of segments. In order to reduce the metadata necessary to describe the unbounded
set of segments of a stream, we further logically assemble a fixed number of seg-
ments into a group. In this way, each stream can be logically represented by a smaller,

72 Chapter 6 – High level architecture overview

Figure 6.2 – Semantic partitioning of streams with streamlets. A stream (also called distributed topic)
is logically composed of a set of streamlets. At its turn, each streamlet is composed of an unbounded
set of fixed-size sub-partitions called groups of segments.

unbounded set of groups of segments. Each group is further assigned to one con-
sumer/producer to better load balance data (higher parallelism) and increase process-
ing/ingestion throughput. An object is composed of a fixed number of groups.

Streamlets. A streamlet is a container for fixed-size sub-partitions (groups of segments),
with each group created dynamically (active groups are created as needed while closed
groups suffer no appends). A stream has up to M number of streamlets that are ini-
tially created on a set of N, N ≤ M, number of brokers (a broker is the entity offer-
ing pub/sub interfaces for handling streams). M represents the maximum number
of nodes that can ingest and store a stream’s records (ensuring horizontal scalability
through migration of streamlets to new brokers). Each streamlet can contain an un-
limited number of groups of segments that can be processed in parallel by multiple
consumers (ensuring vertical scalability) of which up to Q active groups correspond to
physical sub-partitions that allow appends from multiple producers.

Objects. An object can be seen as a distributed, immutable bounded stream, that allows
read/append operations (see [71] for handling distributed, mutable objects that ad-
ditionally support update/modify operations). In KerA, the object is naturally repre-
sented by a fixed number of groups (e.g., we can think about the group as an equal
representation of the HDFS file’s block). In order to reduce the metadata overhead for
ingesting large (unstructured) objects (i.e., only for read/append operations, objects
do not benefit from the fine-grained record model), producers create chunks having a
single record with a large value (8-16 MB). Since groups are split into small segments,
this can help batch analytics to load balance the processing of the groups segments
in order to solve the straggler issues common in Big Data analytics. We argue that

6.2 – Scalable data ingestion and processing 73

Figure 6.3 – Stream topic partitioning illustrated with 3 streamlets and 5 brokers. Zookeeper is re-
sponsible for providing clients the metadata of the association of streamlets with brokers. Streamlets’
groups and their segments are dynamically discovered by consumers querying brokers for the next
available groups of a streamlet and for new segments of a group. Replication in KerA can leverage
its fine-grained partitioning model (streamlet-groups-segments) by replicating each group (i.e., its
segments) on distinct brokers or by fully replicating a streamlet’s groups on another broker.

our fine-grained representation of an object is a fair trade-off (due to small metadata
overhead represented by chunks and segments) required to enable the efficient man-
agement of streams and objects by the unified ingestion/storage system. However,
objects in KerA could additionally support (in-place) update operations by leveraging
the fine-grained record-based representation. This would require support for transac-
tions and versioning [80], that we leave to future work.

6.2 Scalable data ingestion and processing

6.2.1 Dynamic stream partitioning model

KerA implements dynamic partitioning based on the concept of streamlet (Figure 6.2),
which corresponds to the semantic high-level partition that groups records together. Each
stream is therefore composed of a fixed number of streamlets. In turn, each streamlet is
dynamically split into groups, which correspond to the sub-partitions assigned to one pro-
ducer and one consumer. A streamlet can have an arbitrary number of groups created as
needed, each of which can grow up to a maximum predefined size. To facilitate the manage-
ment of groups and offsets in an efficient fashion, each group is further split into fixed-sized
segments (as we describe later in the lightweight offset indexing mechanism). Moreover,
since segments are fixed-size in-memory buffers (e.g., 8-16 MB), the segment metadata man-
agement is crucial for ensuring consistent processing. The maximum size of a group is a

74 Chapter 6 – High level architecture overview

multiple of segment size P ≥ 1. To control the level of parallelism allowed on each broker,
for each streamlet only Q ≥ 1 groups can be active at a given moment.

As can be seen in Figure 6.3, elasticity is achieved by assigning an initial number of
brokers N ≥ 1 to hold the streamlets M, M ≥ N. As more producers and consumers access
the streamlets, more brokers can be added up to M. The streamlet configuration allows the
user to reason about the maximum number of nodes on which to partition a stream, each
streamlet providing an unbounded number of fixed-size sub-partitions (groups) to process.

6.2.2 Lighweight offset indexing

In order to ensure ordering semantics, each streamlet dynamically creates groups (and their
segments, initially one) that have unique, monotonically increasing identifiers; a streamlet
can have groups uniquely identified starting from 1, e.g., 1 to 1000, with each group having
up to a fixed number of logical segments with identifiers starting from 1, e.g., 1 to 16. Each
logical segment is associated with a physical segment (custom memory management) that is
uniquely identified on each broker by a monotonically increasing identifier.

Brokers expose metadata information through RPCs to consumers that dynamically cre-
ate an application offset defined as: [streamId, streamletId, groupId, segmentId, position]
based on which they issue RPCs to pull data. The position is the physical offset at which a
record can be found in a segment. Since segments are immutable, the position field does not
change. The consumer initializes it to 0 (the broker understands to iterate to the first record
available in that segment) and the broker responds with the last record position for each new
request, so the consumer can update its latest offset to start a future request with. Using this
dynamic approach (as opposed to the static approach used by explicit offsets per partition,
in which clients have to query brokers to discover groups and segments), we implement
lightweight offset indexing optimized for sequential record access.

Stream records (grouped in chunks at the client side) are appended in order to the seg-
ments of a group, without associating an offset, which reduces the storage and processing
overhead. Each consumer exclusively processes one group of segments. Once the segments
of a group are filled (the number of segments per group is configurable), a new one is created
and the old group is closed (i.e., no longer enables appends). A group/segment can (option-
ally) be closed (and its memory released) after a configurable timeout if it was not appended
in this time: since segments are represented by managed in-memory buffers, releasing them
when not used could help efficiently create more active streams. We plan as future work to
study the efficiency of a garbage collector for such metadata.

6.2.3 Favoring parallelism: consumer and producer protocols

Producers only need to know about streamlet metadata when interacting with KerA. The
input chunk is always ingested to the streamlet active group computed deterministically on
brokers based on the producer identifier and parameter Q of given streamlet (each producer
request has a header with the producer identifier with each chunk tagged with the streamlet
id). Producers writing to the same streamlet synchronize using a lock on the streamlet (also
required to ensure streamlet migration) in order to obtain the active group (or create one if
needed) corresponding to the Qth entry based on the producer identifier. The lock is then
released and a second-level lock is used to synchronize producers accessing the same active

6.3 – Global architecture 75

Figure 6.4 – The KerA architecture: similar to RAMCloud, the coordinator manages storage nodes on
which live brokers and/or backups. Clients mainly interact with brokers while backups are simply
used for storing stream’s replicas.

group. Thus, two producers appending to the same streamlet, but to different groups, may
proceed in parallel for data ingestion.

Consumers issue RPCs to brokers in order to first discover streamlets’ new groups and
their segments. Only after the application offset is defined, consumers can issue RPCs to pull
data from a group’s segments. Initially each consumer is associated (non-exclusively) to one
or many streamlets from which to pull data. Consumers process groups of a streamlet in
the order of their identifiers, pulling data from segments also in the order of their respective
identifiers. Brokers maintain for each streamlet the last group given to streaming consumers
identified by their consumer group id (i.e., each consumer request header contains a unique
application id). A group is configured with a fixed number of segments to allow fine-grained
consumption with many consumers per streamlet in order to better load balance groups to
consumers. As such, each consumer has a fair access chance since the group is limited in size
by the segment size and the number of segments. This approach also favors parallelism. In-
deed, in KerA a consumer pulls data from one group of a streamlet exclusively, which means
that multiple consumers can read in parallel from different groups of the same streamlet.

6.3 Global architecture

As represented in Figure 6.4, KerA’s architecture contains a single layer of brokers that serve
producers and consumers. On each node it is possible to install a broker service (each broker
has an ingestion component offering pub/sub interfaces to stream clients) and/or a backup
service that is used for storing stream’s replicas that are only read during crash recovery. The
current architecture allows (if required) for separation of nodes serving clients from nodes
serving as backups. Brokers also expose through RPCs the metadata describing the stream’s
partitions (i.e., the streamlet’s groups of segments). The implementation of the coordinator,
broker and backup services (e.g., process instantiation and their communication through the
RPC system) is based on RAMCloud.

6.3.1 Stream management: the coordinator role

The ingestion/storage coordinator is a single service that handles the configuration of the
cluster (e.g., adding or removing nodes, management of live or crashed brokers/backups)
and the management of brokers stream-streamlet metadata (i.e., which broker is responsi-
ble for each streamlet of a stream). Clients first query the coordinator in order to obtain

76 Chapter 6 – High level architecture overview

and cache the association of brokers and streamlets for a given stream. To avoid being a
single point of failure, the coordinator can be built using a fault-tolerant distributed con-
sensus protocol similar to the implementation of the master processes of Hadoop, Spark,
Flink or RAMCloud (e.g., the coordinator state is replicated through a log-based system
such as Zookeeper). The coordinator should also be responsible for the recovery of failed
broker/backup services and for the migration of streamlets to other brokers when necessary
to respond to higher or lower ingestion load.

6.3.2 Stream ingestion: the broker role

A broker manages the main memory of a server and handles multiple streams by ingesting
stream chunks into the active segment of the streamlet’s active group (if one exists, otherwise
a new group/segment is created). The broker handles requests (for data and metadata) from
both producers and consumers through RPCs.

To facilitate the in-memory management of stream metadata, a broker implements the
stream manager component responsible to handle a map structure that associates to a stream
identifier a Stream object that manages the access to its local streamlet partitions. The stream
manager is also responsible to provide physical segments and manage their associated in-
memory buffers.

The stream object maintains a list of Streamlets objects that manage the metadata struc-
tures regarding their groups of segments. Furthermore, it provides a stream lock to facilitate
consistent ingestion, migration and processing. Broker APIs are defined through the Stream
and Streamlet interfaces. Each streamlet provides a number of active (open) groups (up to Q)
and their corresponding active logical segments associated to physical segments (i.e., point-
ers to memory buffers) into which the next writes are appended. Once a logical segment is
closed (it suffers no more appends), the segment manager provides a new segment.

The broker also implements the persistence manager that is responsible to asyn-
chronously move data from memory to disk and back to memory at the segment granularity.
We associate a physical segment id with the logical segment id that is part of the streamlet
group metadata. If a client sends a request with an offset corresponding to a logical segment
for which its physical segment is not loaded into memory (with the offset valid), we send
back a retry error and we trigger the persistent manager to load to memory that particular
segment and its successive segments/groups in order of their identifiers (catch-up reads).

6.3.3 Stream replication: the backup role

The backup service is responsible to store a stream’s replicas. A backup is configured with
a limited number of in-memory segments (e.g., 256 segments of 8 MB each) in order to ac-
knowledge as fast as possible the replication RPCs. A backup is installed on servers backed
by batteries in order to survive power failures. A backup manages the storage provided by
multiple disks in order to store segments (in a log-structured fashion) in multiple log files,
one log for each disk device. The backup maintains in memory the association of replicated
streams with local segments through virtual logs; this metadata is later useful for the recov-
ery or migration of a stream’s chunks.

Since the number of in-memory segments managed by a backup is limited, this setting

6.4 – Client APIs 77

pushes a restriction on the number of streams that can be efficiently and durably created
and replicated. Moreover, the dynamic partitioning of a stream (up to the number of active
groups multiplied by the number of streamlets) puts further pressure on this limitation. To
maximize the number of active streams that can be created at a given time, we associate with
a stream a set of virtual logs, with each virtual log managing replicated virtual segments.
Each virtual segment contains references to chunks of a stream’s partitions (that were ac-
quired consecutively) and is replicated into a backup’s in-memory segment. The backup
eventually writes the segment on storage to ensure durability. As such, the backup’s seg-
ments contain chunks from possibly various groups of different streamlets of a stream. At
recovery time, backups read segments from disk and issue writes to the new brokers re-
sponsible to recover the lost data of a crashed broker. Each of these requests is handled
as a normal producer request (i.e., chunks are ingested into their respective groups) while
metadata is safely reconstructed.

6.4 Client APIs

We describe in Table 6.1 the main operations that KerA’s streaming clients can leverage to
manage streams. Batch analytics processing objects need additional metadata support. Since
an object has its groups of segments already filled, batch clients can reduce the number of
RPCs required to fill consumer offsets by leveraging the operations described in Table 6.2.
Multiread/write operations issue multiple RPCs in parallel to a set of brokers.

For a production-ready system, other APIs are necessary to fulfill the user needs. Al-
though we do not develop operations for deleting or migrating streams, the current imple-
mentation provides needed support (e.g., locking, metadata management). We discuss in the
next chapter more details about our implementation prototype and the necessary integration
techniques needed to employ efficient access to data for both online and offline analytics.

6.5 Distributed metadata management

As previously mentioned, stream partitions metadata are dynamically created at ingestion
time and are made available through RPCs by each broker. If a broker crashes, its local
stream’s partitions are recovered on other brokers that recreate the corresponding metadata
at recovery time. Another important issue is how migration impacts metadata management.
Initially, a stream is created on a smaller number of brokers than the number of streamlets.
When the ingestion throughput is higher than what current brokers can sustain, the coor-
dinator can decide that some streamlets should be migrated to other brokers. However, we
only want to migrate the streamlet’s metadata (e.g., last groups identifiers) and leave the
current data (groups of segments) on their current brokers.

Considering that stream processing sequentially pulls data in order to always process
latest stream records, we consider the following design. For each streamlet, we associate
current groups with their broker and save this metadata on the new broker (this information
is also replicated on backups that associate the current broker identifiers with replicated
data). If clients ask for any of these groups, we redirect the requests to their brokers. The
same mechanism is used when scaling down, i.e., migrating streamlets towards a smaller

78 Chapter 6 – High level architecture overview

RPC method Description

createStream
(streamName, N, M) →
streamId

Creates a new stream named streamName if it does not
already exist and returns a 64-bit stream identifier to be
used by read and write operations. N is the initial
number of brokers, on each broker a subset of the M
streamlets is created and associated, a streamlet being
exclusively managed by a single broker.

getStreamId
(streamName) →
streamId

Resolve the stream named streamName and return its
64-bit idendifier.

multiWriteChunks
(requests, countRequests,
streamId, clientId) →
status

Used by producers to write a number of chunks. Each
request contains a set of chunks; each chunk has a
header and a set of stream records. Each chunk
corresponds to a single streamlet. Based on the chunk’s
streamletId, we identify the broker node responsible for
its groups. The streamId field is used to further identify
the stream object that is responsible for the streamlet
metadata. The producerId field is used to identify the
corresponding active group into which the chunk is
appended.

getNextGroups (streamId,
streamletId,
applicationId, q) →
[groupId]

Used by consumers to obtain the next available groups
for given [streamId, streamletId]. The applicationId is
used by multiple consumers from an application. Since
a streamlet’s groups are potentially shared by multiple
consumers, the broker uses the applicationId in order to
cache the last given groupId. The parameter q, 1 ≤ q ≤

Q, can be used to tell the broker the maximum number
of groups that can be returned in a single request.

getNextSegments
(streamId, streamletId,
groupId) → [segmentId]

Used by consumers to obtain the next available
segments for a given sub-partition represented by
[streamId, streamletId, groupId]. A group has a
configurable fixed number of segments, initially one.
While producers append more data, new segments are
created until the group gets filled and eventually a new
group is also created. This RPC could be pipelined with
a multiReadChunks request in order to reduce the
number of RPCs.

multiReadChunks
(requests, countRequests,
buffer, params) → status

Used by consumers to pull one or more chunks, given
the offset specified by each request object. Each offset is
specified as [streamId, streamletId, groupId, segmentId,
position]. The params field is used to pass other
attributes (e.g., chunk size, request size, applicationId).
The buffer is filled with pulled chunks corresponding to
each request and metadata to be used for the next
request (e.g., next position to be used by the next
request if the current segment is not fully processed,
else next available groups and/or segments).

Table 6.1 – Available KerA operations for managing streams or objects.

6.5 – Distributed metadata management 79

RPC method Description

getAvailableGroups
(streamId, streamletId) →
[firstGroupId, lastGroupId]

Used by batch consumers to obtain the available
groups for given [streamId, streamletId]. Because a
streamlet’s groups are created in order and assigned
a monotonically increasing identifier, the client can
build offsets for groups with identifiers starting at
firstGroupId and ending at lastGroupId.

getAvailableSegments
(streamId, streamletId,
groupId) → [firstSegmentId,
lastSegmentId]

Used by batch consumers to obtain the available
segments for given [streamId, streamletId, groupId].
Because a group’s segments are created in order and
assigned a monotonically increasing identifier, the
client can build offsets for segments with identifiers
starting at firstSegmentId and ending at
lastSegmentId.

Table 6.2 – Additional KerA operations for managing streams or objects.

Figure 6.5 – Distributed metadata management and impact of streamlet migration. We illustrate the
metadata management for a stream having 4 streamlets before and after migration.

80 Chapter 6 – High level architecture overview

number of brokers. Eventually, the coordinator builds an updated map of which broker
keeps which interval of groups of a certain streamlet. This design in which groups of a
streamlet can possibly be managed by different brokers allows for the minimization of data
movement at the expense of the retry of the first client request for older groups. However,
only one broker is actively ingesting data for associated streamlets, while other brokers could
serve readers the data corresponding to old groups.

Figure 6.5 illustrates how we propose to manage metadata for a stream with 4 streamlets
before and after migration. Initially the stream is created on 2 brokers, with each broker
associated with 2 streamlets (e.g., Broker 1 is associated with streamlets 1 and 2). Brokers are
uniquely identified with monotonically increasing identifiers that are never reused. Each
streamlet is associated with a virtual log that is replicated on 2 backups. e.g., streamlet 1
is associated with virtual log 1 and is replicated on backups 1 and 2. Each streamlet has
a set of closed groups (suffer no more appends) and a set of active groups for ingesting
data. We then add 2 more brokers into the cluster and decide to migrate streamlets 1 and 4
since they have the most number of groups on each broker. When we migrate a streamlet,
we close current active groups and retain the next active group identifier to be associated
on the newly associated broker. We also keep metadata on migrated streamlets to identify
older groups. e.g., streamlet 1 associates broker 1 with groups 1 to 516 and creates active
groups starting with group id 517. The coordinator updates the association of streamlets
1 and 4 with brokers 3 and 4. New producer requests are redirected to the new brokers.
Consumer requests for older groups (e.g., streamlet 4 groups 1–2064 are managed by broker
2) first reach the new brokers in order to find the brokers responsible for them and cache this
information for next requests. As such, brokers are actively responsible for new groups of
a streamlet while other brokers can be responsible for older groups of the same streamlet.
For crash recovery, we consider the scenario in which broker 1 is crashed. The coordinator
queries backups in order to find who is responsible for its streamlets virtual logs. Then,
based on broker id, virtual log id and stream id, it recovers streamlet’s groups on another
broker. The brokers actively responsible for a stream’s streamlets need also to update their
metadata references to older groups.

We leave to future work other implementation implications that may be necessary to cor-
rectly recover data of a crashed broker that holds additional groups of a streamlet, although
it is responsible for other streamlets.

6.6 Towards an efficient implementation of fault-tolerance mecha-

nisms in KerA

Fault-tolerant (storage) systems are able to continuously perform their function in spite of
errors. Users of stream-based applications require low-latency (milliseconds to seconds) an-
swers in any conditions. In order to guarantee such strict requirements, we need to employ
techniques that are recognized to recover data as fast as possible. To implement fast crash
recovery for low latency continuous processing, we should rely on techniques similar to the
ones developed by RAMCloud [83], and leverage the aggregated disk bandwidth in order to
recover the data of a lost node in seconds. KerA’s fine-grained partitioning model favors this
recovery technique. However it cannot be used as such: producers should continuously ap-
pend records and not suffer from broker crashes, while consumers should not have to wait

6.6 – Towards an efficient implementation of fault-tolerance mechanisms in KerA 81

for all data to be recovered (thus incurring high latencies). Instead, recovery can be achieved
by leveraging consumers’ application offsets.

Similar to the migration technique previously described, we propose that in case of bro-
ker crashes we immediately recover the streamlet’s metadata (based on backup’s metadata)
and re-enable producers to push the next stream chunks. In parallel, we proceed with the
recovery of data as follows. Based on the last consumer offsets (e.g., every second, for each
consumer group, we store the last offsets used in read requests – the consumer hints), we
first recover the unprocessed groups. Then we proceed with the recovery of the other pro-
cessed groups. In this way, readers continue to pull data for processing (although limited by
recovery speed).

83

Chapter 7
Implementation details

Contents

7.1 Streaming clients: how reads and writes work 84

7.1.1 The RPC layer . 84
7.1.2 Streaming clients architecture . 84

7.2 Efficient management of online and offline operations 86

7.2.1 Persistence manager: high-performance ingestion 86
7.2.2 Real-time versus offline brokers . 87

7.3 Durable ingestion of multiple streams: adaptive and fine-grained repli-
cation . 88

7.3.1 Motivation . 89
7.3.2 Our proposal: virtual logs . 91

7.4 Pushing processing to storage: enabling locality support for streaming . . 93

7.4.1 State-of-the-art architecture: pull-based consumers 93
7.4.2 Leveraging locality: push-based consumers 95

IN this chapter we dive into the details of the most challenging components of the KerA
architectural implementation. First, we present the producer and consumer streaming

architectures that leverage the client APIs previously described (Section 7.1). KerA builds
atop RAMCloud’s [86] RPC framework in order to leverage its network abstraction that en-
ables the use of other network transports (e.g., UDP, DPDK, Infiniband), thus offering an
efficient RPC framework on top of which we develop KerA’s client RPCs. Moreover, this al-
lows KerA to benefit from a set of design principles like polling and request dispatching [57]
that help boost performance (e.g., kernel bypass and zero-copy networking are possible with
DPDK and Infiniband). Second, we describe the implementation of the persistence manager
component that mediates both online and offline accesses (Section 7.2) and we comment on
the threading architecture implementation of brokers, differentiating in time (i.e., switching

84 Chapter 7 – Implementation details

Figure 7.1 – The dispatching-workers threading architecture [taken from [86]].

between different broker process implementations) between real-time brokers (used for both
stream/real-time and object/batch operations) and dedicated offline brokers (used for ob-
ject operations needed for batch processing). Third, we describe the implementation of our
virtual log replication mechanism necessary to efficiently handle multiple streams (Section
7.3). Finally, we describe the data locality support for streaming operations and the integra-
tion of KerA with Apache Flink as a first step towards pushing processing to storage in Big
Data analytics.

7.1 Streaming clients: how reads and writes work

7.1.1 The RPC layer

An important challenge when building a system such as KerA, suitable for efficiently han-
dling both online and offline access patterns, is the low-level management of read/write
client interfaces. Simple remote procedure calls such as reading a set of small objects (few
KBs) should finish in a few (tens) of microseconds, while bulk transfers (a few MBs) should
be efficiently supported as well. Even more, KerA’s clients should easily benefit from more
recent networking equipments such as Infiniband, thus KerA should additionaly leverage
multiple networking transports (e.g., TCP or DPDK).

Fortunately, this problem was intensively investigated by the RAMCloud project. RAM-
Cloud [86] achieves very low end-to-end latencies when reading or writing small objects
(e.g., 5-10 microseconds) by leveraging high-speed networking such as Infiniband. More-
over, it additionally implements support for UDP, TCP and DPDK through a low-level net-
working transport design. RAMCloud employs a dispatching architecture (Figure 7.1) with
a single dispatch thread handling all network communication. As such, each incoming RPC
request is passed by the dispatch thread to one of the worker threads for its handling; once a
response is built, the worker thread passes it to the dispatch thread for transmission. RAM-
Cloud built a general and efficient RPC framework that KerA leverages in order to imple-
ment the client RPCs detailed in the previous chapter. Each RPC can manage up to a config-
urable amount of data (e.g., up to 8-16 MB per request).

7.1.2 Streaming clients architecture

First, we introduce the management of chunks and physical segments by producers and
brokers: this is necessary to further understand how each chunk is finally replicated on

7.1 – Streaming clients: how reads and writes work 85

backups.

Building producer requests: management of chunks

Figure 6.1 illustrates how producers organize stream records into requests that contain mul-
tiple chunks. Being able to send more chunks in a request helps mitigating latency and
throughput tradeoffs. A chunk is appended to the open segment of corresponding active
group (the group is computed at the broker side based on producer and streamlet identifiers
that are found in the request header). The broker only uses the portion of the request starting
with the chunk header (including subsequent records) and appends it as such to a group’s
open segment. Each append operation can lead to the creation of a new segment or even
the creation of a new group. The chunk header (reference) contains attributes for the corre-
sponding [group, segment] of a streamlet that are updated at append time: these attributes
are important at recovery time in order to consistently reconstruct each group (additionally,
each segment is tagged with the stream and streamlet identifiers).

Each producer implements two threads that communicate through shared memory (a set
of empty chunks are reused for next requests). For each new stream record the first thread
identifies an available chunk where the record is appended according to the partitioning
strategy (round-robin or by record’s key, which is hashed to identify a streamlet). For each
streamlet, a set of chunks is dynamically created in the shared memory. The second thread
creates the next requests: it gathers a set of chunks up to the request size, one for each
streamlet, and manages the RPC invocations.

Replicating chunks after broker appends. Each producer request is characterized by the
stream and producer identifiers and a set of chunks, each one characterized by its
length and a streamlet identifier. The broker identifies the stream object corresponding
to the stream identifier and then for each chunk identifies the streamlet active group
based on the producer identifier and parameter Q (how many active groups a streamlet
is configured with). The chunk buffer is appended to the active group (this operation
internally creates a new segment and/or a new group if necessary) and then a chunk
reference is appended to the replicated virtual log corresponding to the streamlet of
the active group entry. Once all chunks of a request are appended, the correspond-
ing replicated (virtual) logs are synchronized on backups in order to replicate physical
chunks to backups.

Building consumer requests: management of streamlet offsets

Similar to the producer, the consumer implements two threads that communicate through
shared memory (a set of empty, reusable in-memory chunks). The first thread (source) builds
the streamlet offsets (based on getStreamId, getNextGroups, getNextSegments RPCs previ-
ously detailed) and invokes the multiReadChunks RPC in order to pull the next set of chunks
(one or more chunks for each streamlet associated to the consumer up to the request size).
The second thread implements the user defined function and processes chunks records one
by one.

Broker reads. By default, the broker responds to consumer requests only with stream data
that is durably replicated: each logical segment (part of a group of a streamlet) main-

86 Chapter 7 – Implementation details

tains a durable head attribute for reads and another head attribute for where the next
writes should go.

7.2 Efficient management of online and offline operations

KerA should be able to efficiently serve both online operations (i.e., serve real-time clients
with high throughput and/or low-latency data accesses to streams of records) and offline
operations (i.e., serve batch-based clients with high throughput data accesses to objects).
Therefore, data should be efficiently served from memory, avoiding whenever possible disk
accesses. At the same time, KerA should acquire the next data as fast as possible (i.e., data
not needed should be moved to disk, while the next required data should be loaded back
to memory). KerA proposes a unique set of read/write APIs for both stream and object
accesses. To mediate clients accesses to data, KerA implements a persistence manager com-
ponent similar to the operating system page cache, but optimized for streaming workloads
(sequential data access). Moreover, KerA proposes two different roles for the broker im-
plementation: the real-time broker is dedicated to both online/offline operations, while the
offline broker is dedicated only to offline operations.

7.2.1 Persistence manager: high-performance ingestion

Each broker implements a segment manager component that associates a physical segment
with an in-memory buffer. The physical segment is uniquely identified by a monotonically
increasing identifier, and maintains other important attributes:

The header points to the next available offset for new appends.

The durable header points to what is currently durably replicated.

A set of references to virtual segments that replicate the segment chunks.

The closed attribute which denotes if the segment is closed or not.

A physical segment can be safely released when it is durably closed, i.e., it can suffer no
appends and the durable header corresponds to the header attribute, and virtual segments
that replicate the segment chunks are also durably closed. The last validation step is neces-
sary since we do not want to invalidate the reference to the physical segments kept by the
virtual segment: in this way reads and replicas are implemented lock-free. Writes and reads
are also lock-free since each active group keeps a reference to the open physical segment
associated to the open segment of each group (open segments are always available).

We next describe the implementation of the persistence manager component that man-
ages the movement of closed physical segments from memory to disk and back (internally
it also manages the in/validation of the references of the physical segments that may be
required by next client operations). Therefore, the persistence manager needs to:

• identify the physical segments that are durably closed and that can be safely persisted
on disk and finally release them;

7.2 – Efficient management of online and offline operations 87

• load the required physical segments from disk back into memory and make them avail-
able to readers as needed.

The persistence manager keeps a hashmap with 1024 buckets, for each bucket another
map keeps the association of the physical segment with its pointer to the in-memory buffer.
For each bucket a set of physical segment references are associated. Since a streamlet keeps
the association of the logical segment with the physical segment id, for each read from a
logical segment we calculate the bucket corresponding to the associated physical segment
(physical segment id modulo 1024) and then we take the bucket lock, and a copy from the
in-memory buffer to the RPC buffer is made before responding to the client RPC. Since the
virtual segment caches references to physical segments of respective aggregated chunks, the
replication RPCs are implemented lock-free with reader RPCs.

The persistence manager takes into account the current reader offsets (i.e., last physical
segment accessed by a consumer request) ordered by streams and streamlets. In this way
the persistence manager flushes to disk physical segments that are durably closed and pro-
cessed. The segment manager associates different statuses to the physical segment. When a
new segment is created its status is HEAD (open, available for next writes), if the previous
segment in that group exists then it is closed and its status is updated to GROUP (closed, it
suffers no appends). Each read request that pulls the last record of a segment will then up-
date the segment status to PROCESSED. The persistence manager queries the PROCESSED
segments and writes them to disk starting with the oldest physical segments (in addition,
it updates the segment status to CLOSED, i.e., stored on disk, not available for in-memory
operations). Catch up reads are handled as follows: if the associated physical segment is
in memory, we serve the read, otherwise we trigger the persistence manager to reload that
physical segment back to memory from disk. The persistence manager obtains from the
streamlet object the metadata about the next physical segments that should be loaded back
to memory. We plan in future work to expose to users different persistent manager policies
optimized for various use cases, taking additionally hints from applications (e.g., pre-fetch
data for a stream with certain priority versus other streams).

7.2.2 Real-time versus offline brokers

In order to achieve low-latency responses, the dispatch thread employs the polling technique
(busy waiting) to wait for events (in order to avoid interrupts which can add microseconds
to each request). This means one core is always dedicated to polling the network for new re-
quests. While this is comfortable for KerA’s brokers serving low-latency streaming (online)
workloads, it can also become a bottlenech for such read/write intensive workloads (cer-
tain RDMA-based technique manages to reduce the replication CPU overhead [101], that
alleviate the dispatcher bottlenecks due to backup RPCs). However, with recent hardware
advancements we can assume tens of cores could be assigned to worker threads in order
to process higher volumes (increased throughput). This further increases the chance for the
dispatcher-worker thread architecture to become a bottleneck.

One important issue concerns the management of offline/batch analytics that need to
read archived streams at large granularity with higher throughput and having less con-
straints on latency. Having one dedicated core for dispatching such operations can be inef-
ficient (recall that the broker exposes interfaces for read/write accesses to bounded streams

88 Chapter 7 – Implementation details

and handles all the stream partitioning metadata). For such offline operations the crash
recovery operations do not additionally impact batch operations (e.g., pings to identify
crashed brokers) since latency is not an issue.

To avoid the dispatcher inefficiency we propose to differentiate in time between real-
time brokers that handle both online and offline operations (i.e., real time streaming and
batch accesses) from offline brokers that eventually become dedicated only to offline oper-
ations (thus optimized for high throughput operations). The implementation of the broker
process should leverage Arachne [92], a recent extension of RAMCloud: “Arachne is a user-
level implementation of threads that provides both low latency and high throughput for
applications with short-lived threads” [92]. Thus, the offline broker does not employ the
busy waiting technique for polling the network, instead it leverages interrupts which can
be easily absorbed by batch workloads. This transition can be done naturally observing the
streaming evolution: some streams are both ingested and archived while other streams are
created either temporary or configured with a quota (e.g., keep data acquired the previous
day).

Moreover, a broker has a limited amount of disk storage, thus once this space is filled,
we have to add new brokers to handle more data. Once a broker disk storage is filled up to a
certain threshold, the broker informs the coordinator that it should be labeled for batch oper-
ations (thus avoiding this broker in future real-time streaming operations); then, the broker
restarts in order to: (1) switch to a dispatcher implementation that avoids busy waiting for
polling new requests (similar to HDFS and other storage systems) and (2) reduce the mem-
ory dedicated for ingesting streams to only what is needed by the persistence manager and
leave the rest for offline analytics. Broker’s computational resources (CPU, memory, local
storage) can still be used for further offline analytics. Later, a broker’s stream data can be
moved to long term archival storage (e.g., manually or through robots replacing local disks
to avoid pushing through the network tens of TBs of data) and be re-enabled for both online
and/or offline operations.

To further alleviate from previous issues, we propose two techniques (we describe their
implementation in the next sections):

• first, based on adaptive replication we aim to reduce the number of write RPCs used
for replication (additionally, this technique is also useful in absence of high-end net-
working hardware that offers support for efficient remote direct memory access oper-
ations such as RDMA);

• second, we leverage locality support whenever possible in order to allow KerA to re-
duce the interference of read and write RPCs. This helps reduce or completely remove
the read RPCs necessary to pull data for processing (i.e., for both data source operators
and intermediate streaming operations that keep their state as streams inside KerA).

7.3 Durable ingestion of multiple streams: adaptive and fine-

grained replication

This section describes the replication design and implementation in KerA, suitable for the
efficient and durable ingestion of multiple streams. First, we motivate the need for sim-
plified metadata management for stream replication operations by backups: the replication

7.3 – Durable ingestion of multiple streams: adaptive and fine-grained replication 89

Figure 7.2 – Broker management of logical and physical segments. Each broker has a segment man-
ager that provides a physical log with physical segments uniquely identified (monotonically assigned
identifiers). The persistence manager role is to move the closed physical segments from memory to
disk and back. The streamlet is composed of Q entries in order to ensure reads and writes parallelism.
Streamlet groups are dynamically created and are uniquely identified (monotonically assigned iden-
tifiers). A group is composed of a configurable (fixed) number of logical segments that are associated
with physical segments (distinct logical segment id – logSeg, and physical segment id – phySeg).

design highly impacts ordering consistency and how streamlet groups (and their segments)
are identified by clients. Second, in order to efficiently manage multiple streams (durably
replicated) we discuss the memory limitations of backups that lead to the design and imple-
mentation of our proposal: the virtual log technique.

7.3.1 Motivation

The need for simplified metadata management

As illustrated in Figure 7.2, streamlet groups are fixed-size sub-partitions that can be con-
figured with a fixed number of (logical) segments. Each streamlet can possibly have an
unlimited number of groups: most groups are closed, suffering no appends, and only up
to Q open active groups per streamlet allowing appends. Each group of segments has to
be replicated over a set of backups. Each broker should efficiently manage multiple repli-
cated streams, thus the replication metadata impact (on brokers and backups) should be
minimized. Moreover, some streams could be configured to have a higher ingestion priority

90 Chapter 7 – Implementation details

over other streams, thus, an efficient way to throttle replication per stream should also be
implemented.

The main challenge is to answer the question: how to organize streamlet groups so
that we can efficiently (i.e., achieve high throughput ingestion) and consistently (i.e., en-
able group order per streamlet and record order ingestion) replicate them?

The first option is to independently replicate each streamlet group but this implies back-
ups should maintain explicit metadata for each replicated group and their association with
streamlet owner.

The second option is to consider log-structured storage similar to systems such as Apache
Kafka that organize a stream into multi-logs (i.e., one replicated log for each partition). Since
a streamlet has Q entries, groups being created in-order (a monotonically identifier being
associated with each group), each of the Q entries can be naturally seen as a log. Thus, the
streamlet concept can be backed by a multi-log (as illustrated in Figure 7.2), with ordered
groups of an entry part of a log.

The implementation of the multi-log was carried out in the framework of the PhD thesis
of Yacine Taleb [100]. However, although this option simplifies the implementation of crash
recovery (relying on fault-tolerant techniques implemented in RAMCloud), for use cases
where a large number of streams (and partitions) is needed, this technique needs higher in-
memory storage support, being limited by hardware power settings (see next subsection).
Moreover, the multi-log implementation did not consider the persistence requirements of
brokers: each physical segment has to be uniquely identified in order to correctly store it
on disk or in memory. Although Apache Kafka uses similar log-structured storage, because
it depends on the operating system cache for persistence of data, it does not suffer from
the previous limitations. Since KerA uses a customized memory management, it can offer
better replication performance compared to Kafka. Moreover, KerA’s streamlets offer higher
parallelism compared to Kafka’s partitions.

Constraint: limited backup memory for fast replication

Each backup holds a limited set of in-memory segments (e.g., 256 segments of 8 MB each)
that can acquire data from replication RPCs. For instance, considering a setup with 100 bro-
kers, 1000 streams replicated with factor 3, i.e., 2 backups replicating streams, the segment
size 8 MB, each stream having 8 streamlets with Q configured to 4 (up to 4 producers/con-
sumers per streamlet), backups would require 1000 × 8 × 4 × 2 × 8MB = 500GB to manage
two open segments for each replicated log. Large streaming use cases (e.g., Twitter [96]) may
require to ingest even more streams.

This limitation is imposed by the capacity of the servers batteries to safely flush this data
to disk in case of power failures. While a replicated segment is filled, the backup writes it
efficiently and asynchronously to disk, with minimal impact on the replication performance.
Finally, the backup releases closed replicated segments. Each backup organizes replicated
(physical) segments into logs, with one log file for each storage device. Backups maintain in
memory the metadata necessary to identify the segments location in the backup logs. Each
segment is equally striped over multiple disks in order to increase read/write IOs.

Replicating each group individually would dramatically reduce the number of streams
that could actively, efficiently and durably ingest data. As such, we need a way to aggregate

7.3 – Durable ingestion of multiple streams: adaptive and fine-grained replication 91

Figure 7.3 – The virtual log technique for adaptive and fine-grained replication. In this example a
stream with 2 streamlets is created and managed by one broker, with one backup used to replicate
the stream. We create and maintain in-memory a log-based data structure to represent our virtual
log that aggregates chunks of different groups of streamlets of a single stream. Optionally, the stream
can be configured with more virtual logs that can be associated to its streamlets.

the chunks of a stream’s groups before replicating them in order to: (1) increase the number
of active streams the system can efficiently support (reducing the number of utilized backup
segments) and (2) increase the ingestion throughput for small streams by replacing small
IOs with large ones on backups.

Our proposal is to aggregate acquired chunks at the stream level and organize them into
one or multiple virtual logs per stream. Therefore, in order to simplify metadata manage-
ment we leverage the chunk metadata that already is present when appending the chunk to
the group’s open segment (such metadata is also necessary for handling producer crashes
and avoiding appending the same chunk twice or ordering inconsistencies). Each replication
RPC should also replicate chunks atomically, not necessarily in the order of their creation.
As such, backups should not be aware of the streamlet groups that are replicated in order
to reduce the metadata overhead: instead, the backup is provided with a virtual log identi-
fier along the broker and stream identifiers. To this end, we next introduce the virtual log
technique.

7.3.2 Our proposal: virtual logs

In order to alleviate from previous limitations we introduce the concept of virtual log. Each
stream (composed of a number of streamlets) can be associated with one or multiple virtual
logs that are responsible to organize stream’s chunks for replication. Therefore, each virtual

92 Chapter 7 – Implementation details

log is composed of an increasing number of virtual segments. The virtual segment keeps
references to chunks that are physically part of different streamlets. The virtual log replicates
its virtual segments to possible different backups.

An example is illustrated in Figure 7.3: a virtual log with 2 virtual segments is used to
replicate one stream. The virtual log is composed of virtual segment 1 that is closed and
fully replicated on the backup (see replicated virtual segment 1) and a virtual segment 2
that is open and has a reference to a chunk (see pointer to segment 1 of the group Q under
streamlet 2) with its corresponding data already replicated on the backup (see replicated
virtual segment 2). Assume we have a new chunk of data to be appended to the group
Q of the streamlet 2. Since the segment 1 has no remaining space for this chunk, a new
segment 2 is created and the chunk is physically appended to it. Then a reference to this
chunk is appended to the virtual log: since the virtual segment 2 is open and has enough
space (virtually) to hold this chunk, the chunk reference is saved. Perhaps, in parallel there
are other chunk references saved by segment 2; one of the write requests will trigger the
replication of the available chunks and will store them on backup’s replicated segment 2.
The virtual segment only stores chunk metadata and calculates its remaining virtual space
based on the accumulated chunk lengths (the virtual log could allocate a buffer similar to
the physical segment for the storage of a large set of virtual segments).

On each broker we associate each stream with one or multiple virtual logs (this configu-
ration is exposed to users). Since each stream is logically partitioned into multiple stream-
lets, in case we want to maximize the replication throughput of very large (high throughput)
streams, each streamlet can be associated with one or more virtual logs, up to Q logs. There-
fore, the virtual log technique generalizes the multi-log approach with one important dis-
tinction: streamlets and virtual logs are distinct entities being represented by different data
structures for two reasons. First, the streamlet can have one or more virtual logs or even
share a virtual log with other streamlets. Second, in order to efficiently ensure elasticity we
may decide to move streamlet metadata to other brokers and reference old stream data to
initial brokers (see previous chapter).

For small streams (low ingestion throughput) users can configure a single virtual log per
stream (per broker) that is shared by all streamlets. In contrast to the multi-log approach,
we provide users a customized approach which can reduce backup storage requirements,
enabling the support of more streams, at the cost of little metadata (chunk references). More-
over, the virtual log technique can be leveraged to efficiently implement throttling mecha-
nisms for certain streams. For instance, in the context of enabling state management for Big
Data analytics, operator sub-tasks seen as a stream can benefit from such aggregation under
the virtual log implementation.

Each virtual log is composed of a set of virtual segments to be replicated, always a sin-
gle open virtual segment (the replication of the virtual log resembles the RAMCloud log
implementation). Each virtual segment contains references to the chunks appended to the
group’s physical segments. We only store the chunk header with a reference to the physical
segment containing the chunk’s records. The virtual segment has a header with the stream
id and a checksum that covers the chunk’s checksums. This information is used by backups
for recovery and data integrity. The virtual segment also keeps two attributes to denote the
next available/free offset (called header) and an attribute that points to what was already
durably replicated (called durable header) – similar attributes are kept for each physical seg-
ment. The virtual segment does not hold any data but keeps a list of references to chunks

7.4 – Pushing processing to storage: enabling locality support for streaming 93

to be replicated; for each chunk a reference to the physical segment is kept along with the
chunk’s offset and length. Since the reference to the physical segment can be updated (by
the persistence manager), we store it once in an array and keep the position associated with
its chunk. The replication implementation ensures that each chunk is atomically replicated
thus the durable header points to the next chunk to be replicated. After a chunk is repli-
cated, the virtual log implementation updates the durable head of the physical segment so
that consumers can pull records up to the durable head.

The broker associates physical segments with logical segments part of a group of a
streamlet. Each closed physical segment can be possibly written to disk and released by
the persistence manager in order to reuse its space. However, before removing a physical
segment from memory, we must ensure its chunks are already replicated in order to avoid
an invalid reference to this segment stored by the virtual segment handling at least one of
its chunks. Thus, after replicating a chunk through a virtual segment, we also update the
durable head offset of the physical segment. We use this field to decide when it is safe to
push this physical segment to disk and release its space. We always keep in memory the
virtual log metadata (i.e., chunk references maintained by virtual segments): if the broker
crashes, another broker recreates lost groups, including the virtual log metadata, based on
the chunk’s metadata stored on backup’s segments.

Since backups may crash, brokers may need to re-replicate virtual segments. A virtual
segment points to multiple physical segments that may not be available in memory. As such,
we need a way to handle invalid references to physical segments. For each physical segment
we maintain a list of references to the virtual segments that replicate their chunks. Recall that
a virtual segment may replicate chunks from multiple physical segments corresponding to
different groups of a stream. When we write a physical segment to disk and release its
memory, we invalidate its reference kept by each associated virtual segment (however, the
physical segment id does not change). Later, if a virtual segment needs to be re-replicated,
we read back corresponding physical segments and update their references. Each streamlet
maintains the metadata necessary to identify its groups. For each logical segment a physical
segment identifier is kept. However, streamlets do not keep references to physical segments
(except for managing the head segments of the active groups).

7.4 Pushing processing to storage: enabling locality support for

streaming

In this section we describe the implementation of an architectural extension based on shared
memory techniques that allow streaming source operators to leverage data (in-memory) lo-
cality support and access stream data at lower latency and potentially higher throughput.
We first present the current architecture for managing streaming source operators and de-
scribe its potential performance limitations that can further lead to higher latency and lower
throughput.

7.4.1 State-of-the-art architecture: pull-based consumers

Big Data real-time stream processing typically relies on message broker solutions that de-
couple data sources from applications. This translates into a three-stage pipeline described

94 Chapter 7 – Implementation details

Figure 7.4 – Current streaming architecture with pull-based consumers: records are collected at event
time and made available to consumers earliest at ingestion time, after the events are acknowledged
by producers; processing consumers continuously pull these records and buffer them at buffer time,
and then deliver them to the processing operators, so results are available at processing time.

Figure 7.5 – Data locality architecture through shared in-memory object store. On the same node live
three processes: the streaming broker (KerA), the processing worker (Flink) and the shared object
store (Arrow Plasma). Source tasks coordinate to launch one RPC request (step 1). The worker
thread is responsible to fill shared objects with next stream data (step 2). Source tasks are notified
for object updates (step 3) and process new stream data. The worker thread is notified (step 4) after
each source processed all objects, so a new ‘iteration’ for that source can be started. This flow executes
continuously.

7.4 – Pushing processing to storage: enabling locality support for streaming 95

in Figure 7.4. First, in the production phase, event sources (e.g., smart devices, sensors, etc.)
continuously generate streams of records. Second, in the ingestion phase, these records are
acquired, partitioned and pre-processed to facilitate consumption. Finally, in the process-
ing phase, Big Data engines consume the stream records using a pull-based model. Since
users are interested in obtaining results as soon as possible, there is a need to minimize the
end-to-end latency of the three stage pipeline. This is a non-trivial challenge when records
arrive at a fast rate (from producers and to consumers) and create the need to support a high
throughput at the same time.

To this purpose, Big Data streaming engines are typically designed to scale to a large
number of simultaneous pull-based consumers, which enables processing for millions of
records per second [111, 74]. Thus, the weak link of the three stage pipeline is the ingestion
phase: it needs to acquire records with a high throughput from the producers, serve the
consumers with a high throughput, scale to a large number of producers and consumers,
and minimize the write latency of the producers and, respectively, the read latency of the
consumers to facilitate low end-to-end latency. Since producers and consumers commu-
nicate with message brokers through RPCs, there is inevitably interference between these
operations which can lead to increased processing times. Moreover, since consumers (i.e.,
source operators) depend on the networking infrastructure, its characteristics can limit the
read throughput and/or increase the end-to-end read latency. One simple idea is to co-locate
processing workers (source and other operators) with brokers managing stream partitions.
We further describe the implementation of our approach.

7.4.2 Leveraging locality: push-based consumers

We illustrate in Figure 7.5 our proposal for adding locality support for streaming opera-
tions. A Big Data source operator can be scheduled on a set of worker nodes and configured
with a parallelism that allows one or more source tasks to run on each worker. Other Big
Data operators (including sinks) are similarly scheduled and connected with sources. Each
source task is implemented with one thread responsible to build the first request according
to its parameter settings (that include initial stream offsets) and process next chunks of data.
We implement a shared-memory object-based store based on Apache Arrow Plasma [77], a
framework that allows the creation of in-memory buffers and their manipulation through
shared pointers.

Our sharded object store is leveraged by all local source tasks of a worker as follows.
We partition the object-based store into objects that give access through a pointer to their
memory. The object pointer is used by both broker and sources based on notifications. Local
sources synchronize so that only one RPC request is sent to the broker and one worker thread
implements the request as a normal consumer source (managing offsets internally). The
broker then pushes chunks through shared objects and notifies sources when each object is
updated (object buffers are reused). Once a local source processes its objects, it notifies the
broker to push more chunks.

Integration of KerA and Flink. Kera consists of about 10K lines of C++ code for client
and server side implementations and 3K lines of Java code for the integration with Apache
Flink. Although the current KerA prototype does not implement crash recovery nor migra-
tion techniques to support elasticity, its design and current implementation efficiently allow
the implementation of such features (as described in previous chapter) that are left for future

96 Chapter 7 – Implementation details

work.

97

Chapter 8
Synthetic evaluation

Contents

8.1 Setup and parameter configuration . 98

8.2 Baseline performance of a single client: peak throughput 100

8.2.1 Producers: how parameters impact ingestion throughput 100

8.2.2 Consumers: how parameters impact processing throughput 101

8.3 Impact of dynamic ingestion on performance: KerA versus Kafka 102

8.3.1 Impact of the chunk size: a throughput versus latency trade-off . . . 103

8.3.2 Validating horizontal and vertical scalability 104

8.3.3 Impact of the number of partitions/streamlets 105

8.3.4 Discussion . 105

8.4 Understanding the impact of the virtual log replication 106

8.4.1 Baseline . 106

8.4.2 Impact of the configuration of the streamlet active groups 108

8.4.3 Impact of the replication factor . 108

8.4.4 Increasing the number of virtual logs 109

8.4.5 Discussion . 109

8.5 Going further: why locality is important for streaming 110

IN this chapter we focus on the evaluation of our KerA prototype: we evaluate the impact
of dynamic ingestion, replication and locality techniques on the performance of produc-

ers and consumers running concurrently over multiple brokers. We first execute a set of
synthetic micro-benchmarks by tuning a set of important parameters in order to assess the
baseline performance (measured as ingestion and processing throughput) of a single pro-
ducer and single consumer. Then, in a distributed setup with multiple brokers and concur-
rent producers and consumers, we compare KerA and Kafka while focusing on the ingestion

98 Chapter 8 – Synthetic evaluation

component (with replication disabled) in order to show the effectiveness of KerA’s dynamic
stream partitioning model and the lightweight offset indexing techniques. Further, we ex-
plore the efficiency of the virtual log replication implementation and evaluate the impact of
various configurations on ingestion and processing throughput. Finally, we evaluate how
the locality architecture impacts performance of streaming reads and durable writes due to
reduced interference between read, write and replication RPCs.

8.1 Setup and parameter configuration

We ran all our experiments on Grid5000 Paravance cluster [35]. Each node has 16 cores and
128 GB of memory. We recall the reader the KerA architecture: as illustrated in Figure 6.4,
a single layer of brokers serve producers and consumers. In our experiments we install on
each node a broker service (each broker has an ingestion component offering RPC interfaces
to stream clients) and/or a backup service that is used for storing stream’s replicas. Since
the current architecture allows the separation of nodes serving clients from nodes serving as
backups, we leverage this feature to isolate backups from brokers when studying the replica-
tion impact. Brokers also expose through RPCs the metadata describing stream’s partitions
(i.e., streamlet’s groups of segments).

Each broker is configured with 16 threads that correspond to the number of cores of
a node and holds one copy of the streamlet groups. In each experiment we run an equal
number of concurrent producers and consumers. The number of streamlets is configured
to be a multiple of the number of clients, at least one for each client. When replication is
enabled, we configure one or more virtual logs that manage the streamlets replication while
consumers only pull durably replicated data.

Unless specified, we configure in KerA the number of active groups to 1 (i.e., streamlets
are configured similar to partitions in systems such as Apache Kafka) and the number of
segments to 16 (the segment size is configured to 8 MB, the total size of a closed group
being 128MB, similar to the default block size in HDFS; this parameter is configurable and
can be leveraged in production systems to allow more consumer parallelism). A request is
characterized by its size (i.e.., request.size, in bytes) and contains a set of chunks, one for each
streamlet, each chunk having a chunk.size in kilobytes. We use Kafka 0.10.2.1 since it has a
similar data model with KerA (the newest release introduces batch entries for exactly-once
processing, a feature that we plan to enable and evaluate also in KerA based on RAMCloud
linearizability technique [62]). A Kafka segment has 512 MB, while in KerA it is configured
to 8 MB (i.e., record size is bounded by this configuration), a configuration that supports a
large number of streams. This means that the creation of a new segment (needed by streamlet
groups /sub-partitions in order to ingest more data) happens more often and may impact
performance (also because KerA’s clients need to discover new segments before pulling data
from them). Each experiment further details additional parameters necessary to understand
their implications on performance.

In each experiment the source thread of each producer (as illustrated in Figure 8.1) cre-
ates up to 100 million non-keyed records of 100 bytes, and partitions them in a round-robin
way in chunks of a configurable size. The source waits no more than 1ms (parameter named
linger.ms in Kafka) for a chunk to be filled, after this timeout the chunk is sent to the bro-
ker. Another producer thread aggregates chunks in requests (one request for each broker)

8.1 – Setup and parameter configuration 99

Figure 8.1 – Producer architecture. The Source thread appends records to in-memory chunk
buffers. The Requests thread batches one chunk for each streamlet (if the chunk is filled or
a configurable timeout per chunk passed) in requests and pushes them to brokers.

Figure 8.2 – Consumer architecture. The Requests thread builds one request for each broker
and pulls one chunk for each streamlet associated to the consumer. The Source thread
consumes in-order one chunk per streamlet: it iterates the chunk and creates records. The
source could push these records to other streaming operators for further processing.

and sends them to the broker (one or multiple synchronous TCP requests). Similarly (as
illustrated in Figure 8.2), each consumer pulls chunks of records with one thread and sim-
ply iterates over serialized records on another thread. Each client has a cache of up to 1000
chunks. In the client’s main thread we measure ingestion/processing throughput (e.g., mil-
lion records per second) and log it after each second. Producers and consumers run on
different nodes. We calculate the average ingestion/processing throughput per producer/-
consumer for 60 seconds worth of experiments, with 50 and 95 percentiles computed over
all clients measurements taken when concurrently running all producers and consumers
(without considering the first and last five seconds measurements of each client).

Producers are configured as proxy clients and share the streamlets: they compete when
producing stream records (since each request contains a chunk for each streamlet). When the
number of active groups is higher than 1, appends on brokers can happen in parallel. Proxy-
based producers represent the worst-case scenario and most streaming use cases are imple-
mented similarly (each RPC request contains one chunk for each partition in order to target
similar record latencies). Another option is to configure one producer for each streamlet:

100 Chapter 8 – Synthetic evaluation

this brings no competition between producers and can be used by certain HPC simulations
where each simulation core is configured to produce data partitioned by its number.

We choose the first option since it represents real-world scenarios (e.g., streaming sink
operators are similar to proxy-based producers) while it brings more pressure on broker
implementation (e.g., due to competition between RPCs, concurrency between appends).
Moreover, producers aggregate chunks in a single request in order to reduce the overhead
due to TCP requests, while reducing latency processing of records part of different stream-
lets living on the same broker. One alternative for the producer is to issue one request with
one chunk for each streamlet. Now imagine the producer is configured to manage multiple
streams each with tens of streamlets. Obviously, sending hundreds more RPCs could in-
crease the latency of certain records that arrive at the producer at the same time with records
already pushed to brokers (worst case most RPCs will suffer a latency penalty equal to the
previous RPCs due to reduced broker resources). Thus, we batch more chunks in a request,
up to a certain size that we evaluate in different experiments. Consumers are configured to
pull data exclusively from their associated streamlets. Consumers also pull more chunks in
a request if there are more streamlets on a broker.

8.2 Baseline performance of a single client: peak throughput

We first run a set of micro-benchmarks to assess the performance of a single producer and
single consumer running (standalone or concurrently) over a single broker while we vary a
set of important parameters that can impact ingestion and processing throughput:

The number of streamlets associated to one producer/consumer impacts the inges-
tion/processing throughput due to higher request size and increased concurrency.

The chunk size is important to understand the ingestion throughput limitations, being an
important bottleneck of the producer source (it is also used by clients to trade-off
throughput versus latency).

The checksum computation over records values can largely impact the producer source
throughput.

The number of in-flight RPCs (TCP requests) is characteristic to high-performance
pipelined producers.

While in this section we experiment with all four parameters to show the performance
peak of our implementation, in the next sections we only consider the first three parameters.
Increasing the number of in-flight RPCs can bring better ingestion throughput at the cost of
losing record ordering. We leave the evaluation of pipelined producers to future work as it
depends on specific use cases.

8.2.1 Producers: how parameters impact ingestion throughput

As illustrated in Figure 8.3, we experiment with a single producer running TCP requests over
one broker, considering the parameters previously introduced. We observe that increasing

8.2 – Baseline performance of a single client: peak throughput 101

5.0*10
5

1.5*10
6

2.5*10
6

3.5*10
6

4.5*10
6

5.5*10
6

6.5*10
6

7.5*10
6

1 2 4 8 16 32

C
lie

n
t

T
h

ro
u

g
h

p
u

t
(r

e
c
o

rd
s
/s

)

Streamlets Number

Chunk 1 KB
Chunk 2 KB
Chunk 4 KB
Chunk 8 KB
Chunk 16 KB
Chunk 32 KB
Chunk 64 KB

Figure 8.3 – Single producer throughput (measured in million records per second) when in-
creasing the chunk size and respectively the number of streamlets. The request size equals
the chunk size multiplied by the number of streamlets. The pipelined producer (5 TCP
requests) does not compute the record checksum.

5.0*10
5

1.5*10
6

2.5*10
6

3.5*10
6

4.5*10
6

5.5*10
6

6.5*10
6

7.5*10
6

1 2 4 8 16 32 64

C
lie

n
t
T

h
ro

u
g
h
p
u
t
(r

e
c
o
rd

s
/s

)

Chunk Size (KB)

1 TCP w Checksum
5 TCP w Checksum
1 TCP no Checksum
5 TCP no Checksum

Figure 8.4 – Impact of source record checksum computation on producer throughput
(stream configured with 16 streamlets, thus, the request size is 16x the chunk size).

the request size (either by increasing the chunk size for a single streamlet or by increasing
the number of streamlets) brings substantially higher throughput. With more streamlets we
also observe a slight decrease in throughput since the source is not able to fill chunks with
more records due to the 1ms timeout in which chunks can be filled before sending them to
brokers. Additionally the chunk headers contribute to less batched records. These experi-
ments also show that the source can be highly limited when enabling the record checksum
computations (see Figure 8.4): the source generates in real-time the stream of records and ap-
pends records one by one to the streamlet chunks; then, once chunks are filled or after a 1ms
timeout (for lower latency), the producer aggregates chunks in requests and sends them to
the broker. Another important aspect is pipelining the producer (i.e., allowing more requests
over the same broker that may execute in parallel) since it allows continuously appending to
the broker. However, when checksuming is enabled, the source limits the producer through-
put by a factor of 3 and pipelining is less important with a single source thread.

8.2.2 Consumers: how parameters impact processing throughput

As illustrated in Figure 8.5, we experiment with a single consumer running in parallel with
one producer and sending TCP requests over the same broker, considering the parameters
previously introduced. Each consumer (not pipelined) issues one synchronous TCP request

102 Chapter 8 – Synthetic evaluation

5.0*10
5

1.5*10
6

2.5*10
6

3.5*10
6

4.5*10
6

5.5*10
6

6.5*10
6

7.5*10
6

1 2 4 8 16 32

C
lie

n
t

T
h

ro
u

g
h

p
u

t
(r

e
c
o

rd
s
/s

)

Streamlets Number

Chunk 1 KB
Chunk 2 KB
Chunk 4 KB
Chunk 8 KB
Chunk 16 KB
Chunk 32 KB
Chunk 64 KB

Figure 8.5 – Single consumer throughput (measured in million records per second) when
increasing the chunk size and respectively the number of streamlets. The request size
equals the chunk size multiplied by the number of streamlets. The pipelined producer
(5 TCP requests) does not compute the record checksum.

5.0*10
5

1.5*10
6

2.5*10
6

3.5*10
6

4.5*10
6

5.5*10
6

6.5*10
6

7.5*10
6

1 2 4 8 16 32 64

C
lie

n
t
T

h
ro

u
g
h
p
u
t
(r

e
c
o
rd

s
/s

)

Chunk Size (KB)

1 TCP w Checksum
5 TCP w Checksum
1 TCP no Checksum
5 TCP no Checksum

Figure 8.6 – Impact of source record checksum computation on consumer throughput (one
producer with one consumer running in parallel).

in order to pull one chunk for each streamlet (the consumer chunk size is five times the
producer chunk size to better manage the pipelined producer sending more data). The con-
sumer creates a set of records by parsing and iterating the chunk records. The producer
throughput results are similar to measurements previously presented. Although the con-
sumer is not pipelined, it can pull up to 5.9 million records per second compared to max-
imum 7.8 million records per second obtained by a pipelined producer. When records are
checksumed, the consumer is able to keep up with the producer (see Figure 8.6).

8.3 Impact of dynamic ingestion on performance: KerA versus

Kafka

While Kafka provides a static offset-based consumer access by maintaining and indexing
record offsets (at append time), KerA proposes dynamic access through application defined
offsets that leverage the [streamlet,group,segment] metadata, therefore, avoiding the over-
head of offset indexing on brokers. In Kafka each partition is composed of a set of segments.
Kafka maintains for each segment an index file (memory mapped) that maps offsets to their
record position in the segment log file. In Kafka, the index file is updated for each partition
append. Kafka’s consumers also have to go through the index file in order to pull data at

8.3 – Impact of dynamic ingestion on performance: KerA versus Kafka 103

1.0*10
5

3.0*10
5

5.0*10
5

7.0*10
5

9.0*10
5

1.1*10
6

1.3*10
6

1.5*10
6

1.7*10
6

1.9*10
6

2.1*10
6

2.3*10
6

1 2 4 8 16 32 64

A
v
e

ra
g

e
 A

g
g

re
g

a
te

d

 C
lie

n
t

T
h

ro
u

g
h

p
u

t
(r

e
c
o

rd
s
/s

)

Chunk Size (KB)

KeraProd
KeraCons
KafkaProd
KafkaCons

Figure 8.7 – Evaluating the ingestion component when increasing the chunk/request size.
Parameters: 4 brokers; 16 producers running concurrently with 16 consumers; number
of partitions/streamlets is 16, 1 active group per streamlet; request.size equals chunk.size
multiplied by 4 (number of partitions/streamlets per broker). On X we represent producer
chunk.size (KB), for consumers we configure a value 16x higher.

1.0*10
5

3.0*10
5

5.0*10
5

7.0*10
5

9.0*10
5

1.1*10
6

1.3*10
6

1.5*10
6

1.7*10
6

1.9*10
6

2.1*10
6

2.3*10
6

16 32 64 128 256 512 1024

A
v
e

ra
g

e
 A

g
g

re
g

a
te

d

 C
lie

n
t

T
h

ro
u

g
h

p
u

t
(r

e
c
o

rd
s
/s

)

Partitions Number

KeraProd
KeraCons
KafkaProd
KafkaCons

Figure 8.8 – Evaluating the ingestion component when increasing the number of partition-
s/streamlets. Parameters: 4 brokers; 16 producers and 16 consumers; request.size = 1 MB;
chunk.size equals request.size divided by the number of partitions per broker.

a specified offset. In KerA there is no offset overhead like in Kafka. Streamlet groups and
segments are created in order and their identifiers are part of the consumer logical offsets.
Consumers remember the last record position (in a given logical segment) and specify it to
the next RPC request. Therefore, consumers and producers in KerA do not have to interact
through any additional offset indexing mechanism like in Kafka. In order to understand the
application offset overhead in Kafka and KerA, we evaluate different scenarios, as follows.

8.3.1 Impact of the chunk size: a throughput versus latency trade-off

Batching more data is a well known technique for increasing ingestion/processing through-
put. At the same time it represents a good trade-off between throughput and latency (since
producers may have to wait for more records to fill-up chunks before pushing the next re-
quests). By increasing the chunk (batch) size we observe smaller gains in Kafka than in KerA
(Figure 8.7). KerA provides up to 7x higher throughput when increasing the batch size from
1KB to 32KB, after which the throughput is limited by that of the producer’s source. For
each producer request, before appending a chunk to a partition, Kafka iterates at runtime
over chunk’s records in order to update their offset, while KerA simply appends the chunk
to the group’s active segment. To build the application offset, KerA’s consumers query bro-
kers (issuing RPCs that compete with writes and reads) in order to discover new groups and
their segments. These operations could further be pipelined with read RPCs (eliminating
interference with normal requests) or simply eliminated as we later discuss in the locality

104 Chapter 8 – Synthetic evaluation

1.0*10
5

3.0*10
5

5.0*10
5

7.0*10
5

9.0*10
5

1.1*10
6

1.3*10
6

1.5*10
6

1.7*10
6

1.9*10
6

2.1*10
6

4 8 16 32

A
v
e

ra
g

e
 A

g
g

re
g

a
te

d

 C
lie

n
t

T
h

ro
u

g
h

p
u

t
(r

e
c
o

rd
s
/s

)

Clients Number

KeraProd
KeraCons
KafkaProd
KafkaCons

Figure 8.9 – Vertical scalability: increasing the number of clients. Parameters: 4 brokers;
32 partitions/streamlets, 1 active group per streamlet; chunk.size = 16KB; request.size =
128KB.

1.0*10
5

3.0*10
5

5.0*10
5

7.0*10
5

9.0*10
5

1.1*10
6

1.3*10
6

1.5*10
6

1.7*10
6

1.9*10
6

2.1*10
6

4 8 12 16

A
v
e

ra
g

e
 A

g
g

re
g

a
te

d

 C
lie

n
t

T
h

ro
u

g
h

p
u

t
(r

e
c
o

rd
s
/s

)

Nodes Number

KeraProd
KeraCons
KafkaProd
KafkaCons

Figure 8.10 – Horizontal scalability: increasing the number of nodes (brokers). Parameters:
32 producers running concurrently with 32 consumers; 256 partitions, 32 streamlets with 8
active groups per streamlet; chunk.size = 16KB; request.size = chunk.size multiplied by the
number of partitions/active groups per node.

evaluation section.

8.3.2 Validating horizontal and vertical scalability

Adding clients: vertical scalability. Having more concurrent clients (producers and con-
sumers) means possibly reduced throughput due to more competition on partitions and less
worker threads available to process the requests. As illustrated in Figure 8.9, when running
up to 64 clients on 4 brokers (full parallelism), KerA is more efficient in front of higher num-
ber of clients, up to one order of magnitude better throughput due to KerA’s more efficient
application offset indexing. Producers appends execute faster (no need to maintain offsets)
allowing for more ingestion requests. Consumers pull data faster due to reduced indexing
overhead. Overall, we observe more efficient broker resource utilization resulting in higher
ingestion and processing throughput.

Although the number of brokers is limited to 64 clients, the aggregated throughput
obtained with KerA’s clients is about 30 million records/s concurrently acquired and pro-
cessed. This is more than enough to respond to most critical Big Data applications. Since we
are limited by the number of nodes in our cluster we could not test with larger configurations
(e.g., 16/32 brokers with 256/512 clients) as clients are deployed separately. However, if we
consider that producers are configured similarly (sharing all streamlets), then, in a larger
distributed setup, although the number of RPCs would increase, the request size would be
smaller. In this situation KerA would benefit even more from its architecture designed for
serving fast a large number of small requests. More consumers would equally share stream-

8.3 – Impact of dynamic ingestion on performance: KerA versus Kafka 105

lets, with similar impact on performance (as number of RPCs per broker). We leave this
evaluation to future work as it depends on real use cases datasets that would benefit from
such large setups.

Adding nodes: horizontal scalability. Since clients can leverage multi-TCP (over a set of
brokers), distributing partitions/streamlets on more nodes (1 broker process per node) helps
increasing throughput. As presented in Figure 8.10, even when Kafka uses 4x more nodes,
it only delivers half of the KerA performance. Similarly to Kafka, KerA producers prepare a
set of requests from available chunks (those that are filled or those with the timeout expired)
and then submit them to brokers, polling them for answers. Only after all requests are ex-
ecuted, a new set of requests is built. As seen in the baseline experiments, pipelining the
producer helps to further optimize throughput and allows the submissions of new requests
while older ones are processed. However, the pipelined implementation makes it difficult to
ensure record ordering (since streamlet chunks may be acquired by different worker threads
of the same broker which may execute in different order). We leave this setup exploration
for future work.

8.3.3 Impact of the number of partitions/streamlets

Finally, we seek to assess the impact of increasing the number of partitions/streamlets on
the ingestion throughput. When the number of partitions is increased we also reduce the
chunk.size while keeping the request.size fixed (1MB) in order to maintain the target max-
imum latency an application needs. We configure KerA similarly to Kafka: the number of
active groups is 1 so the number of streamlets gives a number of active groups equal to the
number of partitions in Kafka (one active group for each streamlet to pull data from in each
consumer request). We observe in Figure 8.8 that when increasing the number of partitions
the average throughput per client decreases (as expected). Kafka’s drop in performance (up
to 30x for 512 and 1024 partitions) is mainly due to its offset-based implementation, having
to manage one offset index file for each partition segment. Producer appends additionally
result in offset operations (for each partition segment) that have to synchronize, reducing
considerably the ingestion throughput. Offset-based (lookup) operations are also needed by
consumers before serving each pull request. In fact, Kafka’s users over-configure the num-
ber of partitions by choosing a large number of brokers to host them upfront. However,
each Kafka broker can optimally host a number of partitions per stream proportional to the
number of cores (2x-3x).

With KerA users can leverage the streamlet concept (which semantically subsumes the
Kafka partition) in order to provide applications an unlimited number of fixed-size sub-
partitions (groups of segments) for better performance. Therefore, KerA provides higher
parallelism to producers and consumers resulting in higher ingestion/processing through-
put than in systems such as Apache Kafka.

8.3.4 Discussion

Apache Kafka and other similar ingestion systems (e.g., Amazon Kinesis [52], MapR Streams
[70]) provide publish/subscribe functionality for data streams by statically partitioning a
stream with a fixed number of partitions. To facilitate future higher workloads and better
consumer scalability, streams are over-provisioned with a high enough number of partitions.

106 Chapter 8 – Synthetic evaluation

In contrast, KerA’s ingestion component enables resource elasticity by means of streamlets,
which enables storing an unbounded number of fixed-size sub-partitions. Furthermore, to
alleviate from unnecessary offset indexing, KerA’s clients dynamically build an application
offset based on streamlet-group metadata exposed through RPCs by brokers. None of the
state-of-the-art ingestion systems is designed to leverage data locality optimizations as con-
sidered by KerA. Moreover, thanks to its network agnostic implementation [86], KerA can
benefit from emerging fast networks and RDMA, providing more efficient reads and writes
than using TCP/IP.

Lower-level measurements. KerA’s implementation (we mostly refer to the dynamic
ingestion component) benefits not only from its high-level design that proposes dynamic
partitioning and lighweight offset indexing, but also from its high-performance C++ im-
plementation. Although KerA relies on a dispatcher threading architecture optimized for
low-latency requests [86], our experiments prove that throughput-oriented workloads can
also benefit from this design principle: in comparison with Kafka, KerA brings up to one or-
der of magnitude better performance under high-load (due to increased clients parallelism).
However, Kafka’s implementation is based on Java/Scala, relying on expensive offset-based
operations, while its underlying architecture leverages the operating system kernel cache.
Moreover, Kafka’s clients are implemented in Java, therefore, Java serialization can impact
performance, resulting in reduced ingestion throughput (although Java’s garbage collector
can help better manage the creation and destruction of millions of objects). In order to better
understand previous (possible) bottlenecks, in future work we will consider in KerA the im-
plementation of Kafka-like offset management (broker and client) interfaces. In parallel, we
aim to add low-level instrumentation to both KerA and Kafka implementations in order to
better understand the impact of different components (e.g., network transport, record serial-
ization). Since KerA implements a customized memory management, we hope to learn from
these one level deeper measurements [85] and then improve our KerA prototype implemen-
tation, while better emphasizing different design principles that should be considered by
system designers in their work.

8.4 Understanding the impact of the virtual log replication

In this section we explore the efficiency of the virtual log replication under different config-
urations.

8.4.1 Baseline

For the next experiments the producer source does not compute the record checksum before
pushing chunks to brokers in order to put more pressure on replication. Producers are not
pipelined in order to observe the replication impact. An equal number of consumers run
in parallel with producers in order to pull durably replicated data. For each configuration
we plot the average throughput per client. A stream is configured with 16 streamlets on 4
brokers backed by 8 backups each (the backup is configured with 1 HDD disk on cluster
paravance). We leave backups separated from brokers to effectively isolate the interference
between normal client requests and replication RPCs, so we can better observe the replica-
tion impact.

8.4 – Understanding the impact of the virtual log replication 107

5.0*10
5

1.0*10
6

1.5*10
6

2.0*10
6

2.5*10
6

3.0*10
6

3.5*10
6

4.0*10
6

4.5*10
6

5.0*10
6

5.5*10
6

6.0*10
6

6.5*10
6

7.0*10
6

7.5*10
6

4 8 16 32 64

C
lie

n
t

T
h

ro
u

g
h

p
u

t
(r

e
c
o

rd
s
/s

)

Chunk Size (KB)

4 Clients
8 Clients
16 Clients
32 Clients

Figure 8.11 – Baseline: average throughput per client with replication disabled. The configuration
with 16 clients (8 producers running in parallel with 8 consumers) corresponds to maximum bro-
ker requests parallelism. Increasing the number of clients results in increased competition between
producers thus reduced ingestion and processing throughput per client.

We vary the chunk size, the number of active groups of a streamlet and the number of
virtual logs shared by all streamlets. Our goal is to understand the impact of these configura-
tions while increasing the replication factor (up to 3 copies including the broker). Producers
share all streamlets, building requests that contain one chunk for each streamlet. Therefore,
each producer submits a number of requests equal to the number of brokers over multi-TCP
connections. In parallel, the same number of TCP requests is executed by each consumer,
competing on broker resources.

We first run a set of experiments with replication disabled. Experiments configured with
16 clients (8 producers and 8 consumers) correspond to the maximum parallelism. We dou-
ble the number of clients to 32 in order to put more pressure on brokers, trying to understand
how the system behaves for more critical workloads. These situations normally trigger
streamlet migration and it is important for brokers to efficiently respond to higher work-
loads before scaling the system. As illustrated in Figure 8.11, doubling the number of clients
results in less-than-half decreased throughput, while consumers (not shown in figure) man-
age to keep up with producers. The aggregated throughput is about 40 million records/s
acquired and concurrently processed by 16 and respectively 32 clients running requests over
TCP with 4 brokers (64 cores). Considering that producers compete when appending data,
these results correspond to a worst case scenario (we configure 1 active group per streamlet
which corresponds to maximum concurrency on producer appends).

For the next experiments we increase the streamlet active groups and the number of
virtual logs, while increasing the replication factor, and then we compare results with the
baseline for 16 and 32 clients. While we expect to obtain reduced performance (i.e., lower
ingestion and processing throughput), it is important to understand the impact of these pa-
rameters on performance. First, we expect the streamlet active groups configuration would
bring better throughput due to higher parallelism (faster broker appends). Second, we seek
to understand how replication performance can be improved with more virtual logs (and
how many we actually need for peak performance).

108 Chapter 8 – Synthetic evaluation

5.0*10
5

1.0*10
6

1.5*10
6

2.0*10
6

2.5*10
6

4 8 16 32 64

C
lie

n
t

T
h

ro
u

g
h

p
u

t
(r

e
c
o

rd
s
/s

)

Chunk Size (KB)

1 vLog
2 vLogs
4 vLogs

Figure 8.12 – Configuring more virtual logs
(shared by streamlets) brings no advantage when
16 clients compete on streamlets with single ac-
tive group (with replication factor 1).

5.0*10
5

1.0*10
6

1.5*10
6

2.0*10
6

2.5*10
6

4 8 16 32 64

C
lie

n
t

T
h

ro
u

g
h

p
u

t
(r

e
c
o

rd
s
/s

)

Chunk Size (KB)

1 Group
4 Groups

Figure 8.13 – Increasing the number of active
groups brings increased throughput (replication
factor 1). 16 clients compete on streamlets config-
ured with 1 and 4 active groups, while 4 virtual
logs are used for replication.

5.0*10
5

1.0*10
6

1.5*10
6

2.0*10
6

2.5*10
6

3.0*10
6

3.5*10
6

4.0*10
6

4.5*10
6

4 8 16 32 64

C
lie

n
t

T
h

ro
u

g
h

p
u

t
(r

e
c
o

rd
s
/s

)

Chunk Size (KB)

Repl 0
Repl 1
Repl 2

Figure 8.14 – Increasing the replication factor (16
clients).

5.0*10
5

1.0*10
6

1.5*10
6

2.0*10
6

2.5*10
6

4 8 16 32 64

C
lie

n
t

T
h

ro
u

g
h

p
u

t
(r

e
c
o

rd
s
/s

)

Chunk Size (KB)

Repl 0
Repl 1
Repl 2

Figure 8.15 – Increasing the replication factor (32
clients).

8.4.2 Impact of the configuration of the streamlet active groups

In order to understand the impact of the configuration of the streamlet active groups on
performance, we experiment with a single active group per streamlet while increasing the
number of virtual logs for replication factor 1. As illustrated in Figure 8.12, when stream-
lets are configured similar to Kafka (no parallelism) there is no performance advantage in
configuring an increased number of replicated logs (since producers are bottlenecked due to
append synchronization). To further show the benefit of streamlets higher parallelism, we
increase the number of active groups to correspond to the number of virtual logs used for
replication. As can be seen in Figure 8.13, aggregated clients throughput increases from 16
to 20 million records per second due to reduced broker appends contention.

8.4.3 Impact of the replication factor

Further, we seek to understand how does the replication factor impact performance? We
configure each streamlet with 4 active groups while using 4 virtual logs for replicating them.
As illustrated in Figure 8.14, for smaller chunks we obtain similar results although we in-
crease the replication factor from 1 to 2. Since producers are not pipelined, each client request
has to wait for the replication requests to finish, reducing ingestion throughput. Overall, in-
creasing the chunk size brings better throughput as expected. Increasing the replication
factor brings lower throughput due to replication synchronization on logs. These effects are
kept even when doubling the number of clients (Figure 8.15).

8.4 – Understanding the impact of the virtual log replication 109

5.0*10
5

1.0*10
6

1.5*10
6

2.0*10
6

2.5*10
6

3.0*10
6

3.5*10
6

4.0*10
6

1 2 4 8 16

C
lie

n
t
T

h
ro

u
g
h
p
u
t
(r

e
c
o
rd

s
/s

)

Virtual logs

Repl 0
Repl 1
Repl 2

Figure 8.16 – Increasing the number of virtual logs (16 clients, 8 streamlets, 4 brokers). 16 virtual logs
correspond to the total number of active groups on a broker (2 streamlets per broker multiplied by 8
active groups)

8.4.4 Increasing the number of virtual logs

Impact of backups configuration. The virtual log keeps (for each additional replica) a ran-
domly selected open segment on one of the backups. Backups continuously and asyn-
chronously write on disk data acquired by open segments. Since our experiments leverage
HDDs, the disk may impact results (although they are scheduled with low priority, disk
IOs may compete with in-memory appends). To understand the disk impact we run similar
experiments for a stream configured with 8 streamlets each having 8 active groups, while
increasing the number of virtual logs from 1 to 16 (we show the configuration of chunk size
being 64 KB, the other configurations from 1 KB to 32 KB look similar). As illustrated in Fig-
ure 8.16, although more virtual logs may boost replication throughput, the backup disk can
also be a bottleneck (configurations with 2, 8 and 16 virtual logs are similar, being slightly
slower than the peak one with 4 virtual logs).

8.4.5 Discussion

Backed by these experiments, we emphasize the importance of streamlet configuration un-
der replication settings: more active groups per streamlet bring higher parallelism leading to
increased throughput. Moreover, being able to tune the replication settings (e.g., by adding
more virtual logs for stream replication) allows users to increase the performance at the
cost of additional in-memory storage on backups. Our experiments are configured so that
they describe worst-case scenarios that are usually encountered in production systems (e.g.,
client and replication requests are built over TCP with backups configured with HDDs; non-
pipelined producers that compete on all partitions when producing data).

In parallel with our work, an evaluation of KerA in a high-performance scenario was
done by our colleague Yacine Taleb [100]. To this end, KerA was integrated with Tail-
wind [101], a high-performance replication protocol that uses one-sided RDMA instead of
RPCs in order to leave more CPU resources to request processing. Tailwind was initially
implemented and tested on top of RAMCloud, a high-performance low-latency key-value
store; KerA leverages RAMCloud’s RPC framework and its support for multiple networking
transports (e.g., TCP, DPDK, Infiniband). Moreover, the replication was implemented with
streamlets backed by multi-logs (i.e., one replicated log for each entry corresponding to one

110 Chapter 8 – Synthetic evaluation

5.0*10
5

1.0*10
6

1.5*10
6

2.0*10
6

2.5*10
6

3.0*10
6

3.5*10
6

4.0*10
6

4.5*10
6

5.0*10
6

4 8 16 32 64

C
lie

n
t
T

h
ro

u
g
h
p
u
t
(r

e
c
o
rd

s
/s

)

Chunk Size (KB)

Repl 0
Repl 1
Repl 2
Repl 2 Local

Figure 8.17 – Baseline for locality: increased replication factor brings more interference. Producers
and consumers are running on separated nodes.

of the active groups, up to Q logs) in order to simplify fault-tolerance based on RAMCloud
crash recovery techniques. Therefore, each streamlet (replicated) log is composed of a set
of physical segments that also represent the logical segments of groups. The log replication
is similar to that used by RAMCloud, except the fact that in this KerA setup there are mul-
tiple logs per broker. Experiments carried over Infiniband (leveraging RDMA-based repli-
cation), focused only on data writes, prove KerA can efficiently leverage high-performance
networking hardware. Therefore, if data arrives very fast, the stream ingestion can be possi-
bly bottlenecked by disk bandwidth, unless network bandwidth dominates. In future work,
in order to better understand the impact of disk and network efficiency in KerA, we will
analyze data- and network-intensive applications for workloads with concurrent reads and
writes.

The virtual log technique generalizes the multi-log approach in order to provide users
flexibility in tuning the ingestion/replication setup, trading backups in-memory storage for
support for a larger number of streams, at the cost of little metadata (chunk references man-
aged by virtual logs) and possibly similar performance (as previously seen, although in-
creasing the number of virtual logs can bring higher throughput it can also lead to reduced
or similar performance). Therefore, users can configure the streamlet to hold one virtual log
for each entry, similar to the multi-log technique, at the cost of managing chunk references
through the virtual log segments. In a future work we aim to recognize this configuration
and rely on the multi-log simplicity by keeping in the virtual log segment a single reference
to the logical segment, reducing chunk references metadata overhead.

We think that the virtual log support is extremely important for Big Data analytics: many
large use cases (e.g., Netflix, Twitter, Facebook) require the management of a large number of
streams, while Volume and Velocity remain important streaming attributes to consider. Our
next steps are the integration of Tailwind with the virtual log technique and the evaluation
of pipelined producers and consumers for various HPC and Big Data real-time use cases.

8.5 Going further: why locality is important for streaming

Next experiments evaluate the impact of locality on streaming performance. We have two
configurations with local and remote consumers. The first configuration is similar to the one

8.5 – Going further: why locality is important for streaming 111

used in the previous experiments: consumers pull data through normal RPCs (consumers
are separated from producers and brokers/backups). The second configuration brings data
locality support: consumers and brokers share the same nodes and communicate through
shared memory (as explained in previous chapter). Backups and brokers also live on the
same nodes sharing resources between normal client requests and replication RPCs.

As illustrated in Figure 8.17, when running 16 concurrent clients through normal RPCs,
increasing the replication factor brings reduced throughput due to more competition be-
tween normal requests and replication RPCs. When deploying local consumers we observe
the average client throughput improves up to 60%. This is explained by the fact that con-
sumer RPCs are replaced by a single RPC at the beginning of the consumer creation, leaving
broker resources to normal producer requests and backups replication. Replacing consumer
RPCs with one dedicated worker thread that continuously pushes records to consumers
through shared memory helps reducing the interference with producer requests. These
improvements can be thought as similar to optimizations brought by techniques such as
Tailwind: less interference on dispatcher and worker threads leaves more CPU space for
executing producer and backup requests which translates into more processing throughput.

After integrating Tailwind and Arachne (a user-level thread implementation, see previ-
ous chapter), our future goal will be to understand how locality additionally impacts perfor-
mance. Our intuition is that with the implementation of the three techniques the remaining
CPU is enough to manage processing analytics without impacting normal ingestion, mak-
ing more effective the integration of analytics in a unified architecture for ingestion/storage
towards efficient processing. We leave this study for future work.

112 Chapter 8 – Synthetic evaluation

113

Part IV

Conclusion and Future Work

115

Chapter 9

Final words

Contents

9.1 Achievements . 116

9.2 Future directions . 117

LArge web applications (e.g., Facebook, Twitter, Amazon, Alibaba, etc.) have to deal with
an unprecedented growth of data that need to be acquired, stored and processed at

always increasing rates in order to extract valuable insights. In this context, modern applica-
tions (such as IoT) demand more efficient support for real-time data ingestion and persistent
storage.

In order to cope with these trends, Big Data processing architectures rapidly evolved
to support batch, interactive and streaming computations in the same runtime, optimizing
applications execution by removing work duplication and resource sharing between special-
ized engines. Processing engines depend on specialized ingestion and storage systems that
provide the required data access interfaces. Basically, the current trend in Big Data analytics
is to focus on stateful computations, implementing custom advanced state management on
top of inappropriate basic ingestion and storage APIs, leaving input/output data manage-
ment to other specialized systems. Therefore, application workflows are designed to pull
data from ingestion/storage systems and then transform and process the acquired data on
local computing nodes and finally write results (or even input data) to dedicated storage
systems. We argue that moving large quantities of data through specialized layers is not
efficient. We propose that future Big Data analytics architectures should instead focus on
data first: data should be acquired, transformed, processed and stored while minimizing
the number of copies.

This thesis makes a first step towards a data first approach by proposing and implement-
ing KerA: a unified data ingestion and storage system with support for online and offline
data accesses, by implementing dynamic partitioning, lightweight stream offset indexing,

116 Chapter 9 – Final words

adaptive and fine-grained replication, and data (“in-memory”) locality for streaming oper-
ations, techniques that are required for efficient and fault-tolerant “in-storage” stream pro-
cessing. Current hardware trends with increasing number of CPU cores per node and larger
memory (RAM) capacities can efficiently sustain this approach in which, e.g., stream pro-
cessing engines are co-located with ingestion/storage in order to further reduce data move-
ment.

9.1 Achievements

This thesis was carried out in the context of the BigStorage ETN and brings the following
contributions:

Requirements for dedicated stream ingestion and storage. After introducing a set of chal-
lenging requirements for an optimized ingestion and storage architecture, and then,
after surveying state-of-the-art ingestion and storage systems, we discuss how they
partially meet our requirements. These systems served as an excellent foundation and
inspiration on which to build KerA with the goal of optimizing processing analytics.
While Apache Kafka paved the way towards efficient (static) stream ingestion, recent
workloads need to dynamically handle higher volumes at increased velocity, an impor-
tant requirement that we considered in KerA’s design and implementation. In order
to provide low-latency accesses to high data volumes, we get inspired by RAMCloud,
which is a distributed key-value system with a simple multi-key-value data model.

A methodology for understanding performance in Big Data analytics frameworks. We
choose Flink (stream-based) and Spark (batch-based), two Apache-hosted data analyt-
ics frameworks, in order to identify and explain the impact of the different architectural
choices and the parameter configurations on the perceived end-to-end performance.
To this end, we develop a methodology for correlating the parameter settings and the
operators execution plan with the resource usage, and we dissect the performance of
Spark and Flink with several representative batch and iterative workloads on up to 100
nodes (1600 cores). Our key finding is that none of the two frameworks outperforms
the other for all data types, sizes and job patterns: we highlight how results correlate to
operators, to resource usage and to the specifics of the engines design and parameters.

Then, we focus on window-based streaming operators: Flink enables each stateful op-
erator to work in isolation by creating data copies. To minimize memory utilization, we
explored the feasibility of deduplication techniques to address the challenge of reduc-
ing memory footprint for window-based stream processing without significant impact
on performance (typically measured as result latency). Our key finding is that more
fine-grained interactions between streaming engines and (key-value) stores need to be
designed (e.g., lazy deserialization or push processing to storage) in order to better re-
spond to scenarios that have to overcome memory scarcity. Our experiments suggest
that the state management function for Big Data processing can be enabled through
stream-based interfaces exposed by a dedicated ingestion/storage engine like KerA.
Our intuition is the following: treating both input/output data and respectively the
(intermediate) state of the application operators as streams can finally lead to a sim-

9.2 – Future directions 117

plified, fault-tolerant and optimized processing analytics architecture. These insights
contributed to our proposed design principles.

Design, implementation and evaluation of KerA: a unified data ingestion and storage

system. Towards our vision of a unified analytics architecture, we propose that pro-
cessing engines should focus on the operator workflow and leave the state manage-
ment function to a unified ingestion/storage engine like KerA that addresses high-
level data management (e.g., caching, concurrency control). Furthermore, processing
and ingestion/storage engines should interact through stream-based interfaces. There-
fore, processing engines expose the workflow APIs necessary to define the application
semantics and orchestrate the scheduling and execution of stateless and stateful oper-
ators in cooperation with the ingestion/storage engine.

We describe KerA’s unified data model for unbounded streams, records and objects,
and then present the KerA architectural components. KerA was built on top of RAM-
Cloud’s framework in order to leverage its RPC framework and its support for mul-
tiple network transports (e.g., TCP, DPDK, Infiniband). KerA is integrated with Flink
(can be co-located) through a shared-memory approach based on an extension of the
Apache Arrow Plasma store. We evaluate the locality support and prove its impor-
tance for streaming analytics. We propose and implement in KerA two core ideas:
(1) dynamic partitioning based on semantic grouping and sub-partitioning, which en-
ables more flexible and elastic management of stream partitions; (2) lightweight offset
indexing optimized for sequential record access. Our evaluation of KerA versus Kafka
proves the importance and efficiency of these techniques.

Furthermore, in order to efficiently handle the durable ingestion of multiple streams,
we propose a new method for adaptive and fine-grained replication: the virtual log
technique provides a zero-copy replication framework which allows users/system to
tune the configuration of the number of replicated logs per stream. We think that the
virtual log support is extremely important for Big Data analytics: many large use cases
(e.g., Netflix, Twitter, Facebook) require the management of a large number of streams,
in addition to Volume and Velocity that remain important streaming attributes handled
by our previous techniques for dynamic ingestion.

9.2 Future directions

Stream migration and recovery. More work is needed to add support in KerA for stream
migration and recovery. This is extremelly challenging (research-wise) in the context
of real-time data processing. We hope to leverage our proposed ideas and finish soon a
KerA production-ready implementation. Then, we can work on integrating KerA with
Apache Spark and Apache Flink in order to be able to execute more workloads (e.g.,
batch-oriented, interactive and iterative processing) through KerA’s data stream inter-
faces. Finally, we can move to enabling real-time support for “in-storage” processing.
There are two challenges that we describe below.

Dynamic and fine-grained stream access. The first challenge is to dynamically enable and
evaluate fine-grained record access interfaces (e.g., multi-/put/get, as implemented
by RAMCloud) on top of KerA, as needed by different streaming applications. This

118 Chapter 9 – Final words

is challenging since brokers are designed out-of-core, being able to move data to disk
and back to memory as needed. Therefore, another research problem is understanding
the performance impact of these fine-grained extensions enabled dynamically on KerA
according to the applications needs. Other approaches leverage transient storage for
serverless computing [53], techniques we plan to compare with.

A real-time Big Data processing engine. The second challenge is to design and implement
a high-performance streaming engine (name it KerASP, stream processing on top of
KerA) that can benefit from existing techniques (e.g., data lineage for recovery) and
leverage KerA for handling state during processing. A challenge of KerASP is de-
signing a workflow processing model that treats (fault-tolerant) operators as streams.
KerASP should avoid multiple interfaces/APIs for the execution of different work-
flows (e.g., batch, iterative, streaming) in order to ease users work. KerASP coordi-
nates closely with KerA in order to efficiently schedule (stateless and stateful) opera-
tors. Therefore, an important research problem is understanding which (batch/stream-
ing) workloads can benefit most from pushing processing to storage and when is best
to leverage such technique? These problems further exacerbate in the context of data
distributed across multiple clusters or cloud data centers.

HPC-Big Data convergence at processing level by bridging in situ/in transit processing

with Big Data analytics. A future objective is to propose an approach enabling HPC-
Big Data convergence at the data processing level, by exploring alternative solutions
to build a unified framework for extreme-scale data processing. The architecture of
such a framework will leverage the extreme scalability demonstrated by in situ/in
transit data processing approaches originated in the HPC area, in conjunction with
Big Data processing approaches emerged in the BDA area (batch-based, streaming-
based and hybrid). The high-level goal of this framework is to enable the usage of a
large spectrum of Big Data analytics techniques at extreme scales, to support precise
predictions in real-time and fast decision making [17].

In the process of designing the unified data processing framework, we will leverage the
KerA architecture for high-performance ingestion and storage for stream processing
and the Damaris [21] framework for scalable, asynchronous I/O and in situ and in
transit visualization and processing.

119

Bibliography

[1] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,
Rafael J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills,
Frances Perry, Eric Schmidt, and Sam Whittle. “The Dataflow Model: A Practical
Approach to Balancing Correctness, Latency, and Cost in Massive-scale,
Unbounded, Out-of-order Data Processing”. In: Proc. VLDB Endow. 8.12 (Aug. 2015),
pp. 1792–1803. ISSN: 2150-8097. DOI: 10.14778/2824032.2824076. URL:
http://dx.doi.org/10.14778/2824032.2824076.

[2] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag,
Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl,
Felix Naumann, Mathias Peters, Astrid Rheinländer, Matthias J. Sax,
Sebastian Schelter, Mareike Höger, Kostas Tzoumas, and Daniel Warneke. “The
Stratosphere Platform for Big Data Analytics”. In: The VLDB Journal 23.6 (Dec. 2014),
pp. 939–964. ISSN: 1066-8888. DOI: 10.1007/s00778-014-0357-y.

[3] Alexander Alexandrov, Stephan Ewen, Max Heimel, Fabian Hueske, Odej Kao,
Volker Markl, Erik Nijkamp, and Daniel Warneke. “MapReduce and PACT -
Comparing Data Parallel Programming Models”. In: Proceedings of the 14th
Conference on Database Systems for BTW. Kaiserslautern, Germany: GI, 2011,
pp. 25–44. ISBN: 978-3-88579-274-1.

[4] Ganesh Ananthanarayanan, Michael Chien-Chun Hung, Xiaoqi Ren, Ion Stoica,
Adam Wierman, and Minlan Yu. “GRASS: Trimming Stragglers in Approximation
Analytics”. In: Proceedings of the 11th USENIX Conference on Networked Systems Design
and Implementation. NSDI’14. Seattle, WA: USENIX Association, 2014, pp. 289–302.
ISBN: 978-1-931971-09-6. URL: http://dl.acm.org/citation.cfm?id=2616448.2616475.

[5] Arvind Arasu, Shivnath Babu, and Jennifer Widom. “The CQL Continuous Query
Language: Semantic Foundations and Query Execution”. In: The VLDB Journal 15.2
(June 2006), pp. 121–142. ISSN: 1066-8888. DOI: 10.1007/s00778-004-0147-z. URL:
http://dx.doi.org/10.1007/s00778-004-0147-z.

[6] Arvind Arasu and Jennifer Widom. “Resource Sharing in Continuous
Sliding-window Aggregates”. In: Proceedings of the Thirtieth International Conference
on Very Large Data Bases - Volume 30. VLDB ’04. Toronto, Canada: VLDB Endowment,
2004, pp. 336–347. ISBN: 0-12-088469-0. URL:
http://dl.acm.org/citation.cfm?id=1316689.1316720.

https://doi.org/10.14778/2824032.2824076
http://dx.doi.org/10.14778/2824032.2824076
https://doi.org/10.1007/s00778-014-0357-y
http://dl.acm.org/citation.cfm?id=2616448.2616475
https://doi.org/10.1007/s00778-004-0147-z
http://dx.doi.org/10.1007/s00778-004-0147-z
http://dl.acm.org/citation.cfm?id=1316689.1316720

120 BIBLIOGRAPHY

[7] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi,
and Matei Zaharia. “Spark SQL: Relational Data Processing in Spark”. In:
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’15. Melbourne, Victoria, Australia: ACM, 2015, pp. 1383–1394. ISBN:
978-1-4503-2758-9. DOI: 10.1145/2723372.2742797. URL:
http://doi.acm.org/10.1145/2723372.2742797.

[8] Apache Arrow. 2018. URL: https://arrow.apache.org/ (visited on 2018-02-01).

[9] Apache Avro. 2018. URL: https://avro.apache.org/ (visited on 2018-10-01).

[10] Big Data Digest: How many Hadoops do we really need? 2018. URL:
http://www.computerworld.com/article/2871760/big-data-digest-how-many-hadoops-
do-we-really-need.html (visited on 2018-10-01).

[11] Raphaël Bolze, Franck Cappello, Eddy Caron, Michel Dayde, Frédéric Desprez,
Emmanuel Jeannot, Yvon Jégou, Stephane Lanteri, Julien Leduc, Nouredine Melab,
Guillaume Mornet, Raymond Namyst, Pascale Primet, Benjamin Quétier,
Olivier Richard, El-Ghazali Talbi, and Iréa Touche. “Grid’5000: A Large Scale And
Highly Reconfigurable Experimental Grid Testbed”. In: International Journal of High
Performance Computing Applications 20.4 (2006), pp. 481–494. DOI:
10.1177/1094342006070078.

[12] Irina Botan, Gustavo Alonso, Peter M. Fischer, Donald Kossmann, and
Nesime Tatbul. “Flexible and Scalable Storage Management for Data-intensive
Stream Processing”. In: Proceedings of the 12th International Conference on Extending
Database Technology: Advances in Database Technology. EDBT ’09. Saint Petersburg,
Russia: ACM, 2009, pp. 934–945. ISBN: 978-1-60558-422-5. DOI:
10.1145/1516360.1516467. URL: http://doi.acm.org/10.1145/1516360.1516467.

[13] Paris Carbone, Jonas Traub, Asterios Katsifodimos, Seif Haridi, and Volker Markl.
“Cutty: Aggregate Sharing for User-Defined Windows”. In: Proceedings of the 25th
ACM International on Conference on Information and Knowledge Management. CIKM ’16.
Indianapolis, Indiana, USA: ACM, 2016, pp. 1201–1210. ISBN: 978-1-4503-4073-1.
DOI: 10.1145/2983323.2983807. URL: http://doi.acm.org/10.1145/2983323.2983807.

[14] Guoqiang Jerry Chen, Janet L. Wiener, Shridhar Iyer, Anshul Jaiswal, Ran Lei,
Nikhil Simha, Wei Wang, Kevin Wilfong, Tim Williamson, and Serhat Yilmaz.
“Realtime Data Processing at Facebook”. In: Proceedings of the 2016 International
Conference on Management of Data. SIGMOD ’16. San Francisco, California, USA:
ACM, 2016, pp. 1087–1098. ISBN: 978-1-4503-3531-7. DOI: 10.1145/2882903.2904441.
URL: http://doi.acm.org/10.1145/2882903.2904441.

[15] Francisco J. Clemente-Castelló, Bogdan Nicolae, Kostas Katrinis,
M. Mustafa Rafique, Rafael Mayo, Juan Carlos Fernández, and Daniela Loreti.
“Enabling Big Data Analytics in the Hybrid Cloud Using Iterative Mapreduce”. In:
Proceedings of the 8th International Conference on Utility and Cloud Computing. UCC ’15.
Limassol, Cyprus: IEEE Press, 2015, pp. 290–299. ISBN: 978-0-7695-5697-0. DOI:
10.1109/UCC.2015.47. URL: https://doi.org/10.1109/UCC.2015.47.

https://doi.org/10.1145/2723372.2742797
http://doi.acm.org/10.1145/2723372.2742797
https://arrow.apache.org/
https://avro.apache.org/
http://www.computerworld.com/article/2871760/big-data-digest-how-many-hadoops-do-we-really-need.html
http://www.computerworld.com/article/2871760/big-data-digest-how-many-hadoops-do-we-really-need.html
https://doi.org/10.1177/1094342006070078
https://doi.org/10.1145/1516360.1516467
http://doi.acm.org/10.1145/1516360.1516467
https://doi.org/10.1145/2983323.2983807
http://doi.acm.org/10.1145/2983323.2983807
https://doi.org/10.1145/2882903.2904441
http://doi.acm.org/10.1145/2882903.2904441
https://doi.org/10.1109/UCC.2015.47
https://doi.org/10.1109/UCC.2015.47

BIBLIOGRAPHY 121

[16] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav Shkapenyuk.
“Gigascope: A Stream Database for Network Applications”. In: Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data. SIGMOD ’03.
San Diego, California: ACM, 2003, pp. 647–651. ISBN: 1-58113-634-X. DOI:
10.1145/872757.872838. URL: http://doi.acm.org/10.1145/872757.872838.

[17] HPC-Big Data convergence at processing level by bridging in situ/in transit processing with
Big Data analytics. 2018. URL:
https://team.inria.fr/kerdata/phd-position-hpc-bigdata-convergence/ (visited on
2018-10-01).

[18] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on
Large Clusters”. In: Commun. ACM 51.1 (Jan. 2008), pp. 107–113. ISSN: 0001-0782.
DOI: 10.1145/1327452.1327492. URL: http://doi.acm.org/10.1145/1327452.1327492.

[19] Peter J. Desnoyers and Prashant Shenoy. “Hyperion: High Volume Stream Archival
for Retrospective Querying”. In: 2007 USENIX Annual Technical Conference on
Proceedings of the USENIX Annual Technical Conference. ATC’07. Santa Clara, CA:
USENIX Association, 2007, 4:1–4:14. URL:
http://dl.acm.org/citation.cfm?id=1364385.1364389.

[20] Bo Dong, Qinghua Zheng, Feng Tian, Kuo-Ming Chao, Rui Ma, and Rachid Anane.
“An Optimized Approach for Storing and Accessing Small Files on Cloud Storage”.
In: J. Netw. Comput. Appl. 35.6 (Nov. 2012), pp. 1847–1862. ISSN: 1084-8045. DOI:
10.1016/j.jnca.2012.07.009. URL: http://dx.doi.org/10.1016/j.jnca.2012.07.009.

[21] Matthieu Dorier, Gabriel Antoniu, Franck Cappello, Marc Snir, Robert Sisneros,
Orcun Yildiz, Shadi Ibrahim, Tom Peterka, and Leigh Orf. “Damaris: Addressing
Performance Variability in Data Management for Post-Petascale Simulations”. In:
ACM Trans. Parallel Comput. 3.3 (Oct. 2016), 15:1–15:43. ISSN: 2329-4949. DOI:
10.1145/2987371. URL: http://doi.acm.org/10.1145/2987371.

[22] Apache Druid. 2018. URL: https://druid.apache.org/ (visited on 2018-10-01).

[23] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal Kaczmarczyk,
Wojciech Kilian, Przemyslaw Strzelczak, Jerzy Szczepkowski, Cristian Ungureanu,
and Michal Welnicki. “HYDRAstor: a Scalable Secondary Storage”. In: FAST ’09:
Proccedings of the 7th conference on File and storage technologies. San Francisco, USA:
USENIX Association, 2009, pp. 197–210.

[24] Stephan Ewen, Kostas Tzoumas, Moritz Kaufmann, and Volker Markl. “Spinning
Fast Iterative Data Flows”. In: Proc. VLDB Endow. 5.11 (July 2012), pp. 1268–1279.
ISSN: 2150-8097. DOI: 10.14778/2350229.2350245.

[25] Facebook. 2018. URL: https://www.facebook.com/ (visited on 2018-10-01).

[26] Apache Flink. 2018. URL: https://flink.apache.org/ (visited on 2018-10-01).

[27] FLINK-2250. 2018. URL: https://issues.apache.org/jira/browse/FLINK-2250 (visited on
2018-10-01).

[28] Flink Large State Use Case. 2018. URL:
https://www.slideshare.net/GyulaFra/rbea-scalable-realtime-analytics-at-king (visited on
2018-10-01).

https://doi.org/10.1145/872757.872838
http://doi.acm.org/10.1145/872757.872838
https://team.inria.fr/kerdata/phd-position-hpc-bigdata-convergence/
https://doi.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://dl.acm.org/citation.cfm?id=1364385.1364389
https://doi.org/10.1016/j.jnca.2012.07.009
http://dx.doi.org/10.1016/j.jnca.2012.07.009
https://doi.org/10.1145/2987371
http://doi.acm.org/10.1145/2987371
https://druid.apache.org/
https://doi.org/10.14778/2350229.2350245
https://www.facebook.com/
https://flink.apache.org/
https://issues.apache.org/jira/browse/FLINK-2250
https://www.slideshare.net/GyulaFra/rbea-scalable-realtime-analytics-at-king

122 BIBLIOGRAPHY

[29] FlinkWindows. 2018. URL:
https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/windows.html (visited on
2018-10-01).

[30] Medium Graph. 2018. URL: http://snap.stanford.edu/data/com-Friendster.html (visited
on 2018-10-01).

[31] Buğra Gedik. “Partitioning Functions for Stateful Data Parallelism in Stream
Processing”. In: The VLDB Journal 23.4 (Aug. 2014), pp. 517–539. ISSN: 1066-8888.
DOI: 10.1007/s00778-013-0335-9. URL: http://dx.doi.org/10.1007/s00778-013-0335-9.

[32] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google File
System”. In: Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles. SOSP ’03. Bolton Landing, NY, USA: ACM, 2003, pp. 29–43. ISBN:
1-58113-757-5. DOI: 10.1145/945445.945450. URL:
http://doi.acm.org/10.1145/945445.945450.

[33] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw,
Michael J. Franklin, and Ion Stoica. “GraphX: Graph Processing in a Distributed
Dataflow Framework”. In: Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation. OSDI’14. Broomfield, CO: USENIX Association,
2014, pp. 599–613. ISBN: 978-1-931971-16-4. URL:
http://dl.acm.org/citation.cfm?id=2685048.2685096.

[34] Google Algorithms and Theory.
http://research.google.com/pubs/AlgorithmsandTheory.html.

[35] Grid5000. 2018. URL: https://www.grid5000.fr/ (visited on 2018-10-01).

[36] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and
Marimuthu Palaniswami. “Internet of Things (IoT): A Vision, Architectural
Elements, and Future Directions”. In: Future Gener. Comput. Syst. 29.7 (Sept. 2013),
pp. 1645–1660. ISSN: 0167-739X. DOI: 10.1016/j.future.2013.01.010. URL:
http://dx.doi.org/10.1016/j.future.2013.01.010.

[37] Apache Hadoop. 2018. URL: https://hadoop.apache.org/ (visited on 2018-10-01).

[38] Hardware Trends in Keynote. http://www.pdsw.org/keynote.shtml.

[39] Apache Kudu. 2018. URL: https://hbase.apache.org/ (visited on 2018-10-01).

[40] Arvid Heise et al. “Meteor/Sopremo: An Extensible Query Language and Operator
Model”. In: Proceedings of the Int. Workshop on End-to-End Management of Big Data
(BigData) in conjunction with VLDB. 2012.

[41] HiBench Suite. 2018. URL: https://github.com/intel-hadoop/HiBench (visited on
2018-10-01).

[42] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
“ZooKeeper: Wait-free Coordination for Internet-scale Systems”. In: Proceedings of
the 2010 USENIX Conference on USENIX Annual Technical Conference. USENIXATC’10.
Boston, MA: USENIX Association, 2010, pp. 11–11. URL:
http://dl.acm.org/citation.cfm?id=1855840.1855851.

https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/windows.html
http://snap.stanford.edu/data/com-Friendster.html
https://doi.org/10.1007/s00778-013-0335-9
http://dx.doi.org/10.1007/s00778-013-0335-9
https://doi.org/10.1145/945445.945450
http://doi.acm.org/10.1145/945445.945450
http://dl.acm.org/citation.cfm?id=2685048.2685096
http://research.google.com/pubs/AlgorithmsandTheory.html
https://www.grid5000.fr/
https://doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1016/j.future.2013.01.010
https://hadoop.apache.org/
http://www.pdsw.org/keynote.shtml
https://hbase.apache.org/
https://github.com/intel-hadoop/HiBench
http://dl.acm.org/citation.cfm?id=1855840.1855851

BIBLIOGRAPHY 123

[43] Jeong-Hyon Hwang, Magdalena Balazinska, Alexander Rasin, Ugur Cetintemel,
Michael Stonebraker, and Stan Zdonik. “High-Availability Algorithms for
Distributed Stream Processing”. In: Proceedings of the 21st International Conference on
Data Engineering. ICDE ’05. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 779–790. ISBN: 0-7695-2285-8. DOI: 10.1109/ICDE.2005.72. URL:
http://dx.doi.org/10.1109/ICDE.2005.72.

[44] Introducing Spark Datasets.
https://databricks.com/blog/2016/01/04/introducing-spark-datasets.html.

[45] Namit Jain, Shailendra Mishra, Anand Srinivasan, Johannes Gehrke,
Jennifer Widom, Hari Balakrishnan, Uǧur Çetintemel, Mitch Cherniack,
Richard Tibbetts, and Stan Zdonik. “Towards a Streaming SQL Standard”. In: Proc.
VLDB Endow. 1.2 (Aug. 2008), pp. 1379–1390. ISSN: 2150-8097. DOI:
10.14778/1454159.1454179. URL: http://dx.doi.org/10.14778/1454159.1454179.

[46] Kreps Jay, Narkhede Neha, and Rao Jun. “Kafka: A distributed messaging system
for log processing”. In: Proceedings of 6th International Workshop on Networking Meets
Databases. NetDB’11. Athens, Greece, 2011.

[47] Juggling with Bits and Bytes.
https://flink.apache.org/news/2015/05/11/Juggling-with-Bits-and-Bytes.html.

[48] Flavio P. Junqueira, Ivan Kelly, and Benjamin Reed. “Durability with BookKeeper”.
In: SIGOPS Oper. Syst. Rev. 47.1 (Jan. 2013), pp. 9–15. ISSN: 0163-5980. DOI:
10.1145/2433140.2433144.

[49] Apache Kafka. 2018. URL: https://kafka.apache.org/ (visited on 2018-10-01).

[50] Ankita Kejriwal, Arjun Gopalan, Ashish Gupta, Zhihao Jia, Stephen Yang, and
John Ousterhout. “SLIK: Scalable Low-latency Indexes for a Key-value Store”. In:
Proceedings of the 2016 USENIX Conference on Usenix Annual Technical Conference.
USENIX ATC ’16. Denver, CO, USA: USENIX Association, 2016, pp. 57–70. ISBN:
978-1-931971-30-0. URL: http://dl.acm.org/citation.cfm?id=3026959.3026966.

[51] Keys to Understanding Amazon’s Algorithms.
http://www.thebookdesigner.com/2013/07/amazon-algorithms/.

[52] Amazon Kinesis. 2018. URL: https://aws.amazon.com/kinesis/data-streams/ (visited on
2018-10-01).

[53] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, and
Christos Kozyrakis. “Pocket: Elastic Ephemeral Storage for Serverless Analytics”. In:
13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
Carlsbad, CA: USENIX Association, 2018, pp. 427–444. ISBN: 978-1-931971-47-8. URL:
https://www.usenix.org/conference/osdi18/presentation/klimovic.

[54] Sailesh Krishnamurthy, Chung Wu, and Michael Franklin. “On-the-fly Sharing for
Streamed Aggregation”. In: Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’06. Chicago, IL, USA: ACM, 2006,
pp. 623–634. ISBN: 1-59593-434-0. DOI: 10.1145/1142473.1142543. URL:
http://doi.acm.org/10.1145/1142473.1142543.

[55] Kryo. 2018. URL: https://github.com/EsotericSoftware/kryo (visited on 2018-10-01).

[56] Apache Kudu. 2018. URL: https://kudu.apache.org/ (visited on 2018-10-01).

https://doi.org/10.1109/ICDE.2005.72
http://dx.doi.org/10.1109/ICDE.2005.72
https://databricks.com/blog/2016/01/04/introducing-spark-datasets.html
https://doi.org/10.14778/1454159.1454179
http://dx.doi.org/10.14778/1454159.1454179
https://flink.apache.org/news/2015/05/11/Juggling-with-Bits-and-Bytes.html
https://doi.org/10.1145/2433140.2433144
https://kafka.apache.org/
http://dl.acm.org/citation.cfm?id=3026959.3026966
http://www.thebookdesigner.com/2013/07/amazon-algorithms/
https://aws.amazon.com/kinesis/data-streams/
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://doi.org/10.1145/1142473.1142543
http://doi.acm.org/10.1145/1142473.1142543
https://github.com/EsotericSoftware/kryo
https://kudu.apache.org/

124 BIBLIOGRAPHY

[57] Chinmay Kulkarni, Aniraj Kesavan, Robert Ricci, and Ryan Stutsman. “Beyond
Simple Request Processing with RAMCloud”. In: IEEE Data Eng. (2017).

[58] Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian Zhang, Robert Ricci, and
Ryan Stutsman. “Splinter: Bare-Metal Extensions for Multi-Tenant Low-Latency
Storage”. In: 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). Carlsbad, CA: USENIX Association, 2018, pp. 627–643.
ISBN: 978-1-931971-47-8. URL:
https://www.usenix.org/conference/osdi18/presentation/kulkarni.

[59] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli,
Christopher Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and
Siddarth Taneja. “Twitter Heron: Stream Processing at Scale”. In: Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data. SIGMOD ’15.
Melbourne, Victoria, Australia: ACM, 2015, pp. 239–250. ISBN: 978-1-4503-2758-9.
DOI: 10.1145/2723372.2742788. URL: http://doi.acm.org/10.1145/2723372.2742788.

[60] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. “SkewTune:
Mitigating Skew in Mapreduce Applications”. In: Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data. SIGMOD ’12. Scottsdale,
Arizona, USA: ACM, 2012, pp. 25–36. ISBN: 978-1-4503-1247-9. DOI:
10.1145/2213836.2213840. URL: http://doi.acm.org/10.1145/2213836.2213840.

[61] Avinash Lakshman and Prashant Malik. “Cassandra: A Decentralized Structured
Storage System”. In: SIGOPS Oper. Syst. Rev. 44.2 (Apr. 2010), pp. 35–40. ISSN:
0163-5980. DOI: 10.1145/1773912.1773922. URL:
http://doi.acm.org/10.1145/1773912.1773922.

[62] Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Matsushita, and John Ousterhout.
“Implementing Linearizability at Large Scale and Low Latency”. In: 25th SOSP.
Monterey, California: ACM, 2015, pp. 71–86. ISBN: 978-1-4503-3834-9. DOI:
10.1145/2815400.2815416.

[63] Large Hadron Holider. 2018. URL: http://home.cern/topics/large-hadron-collider (visited
on 2018-10-01).

[64] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. “Tachyon:
Reliable, Memory Speed Storage for Cluster Computing Frameworks”. In:
Proceedings of the ACM Symposium on Cloud Computing. SOCC. Seattle, WA, USA:
ACM, 2014, 6:1–6:15. ISBN: 978-1-4503-3252-1. DOI: 10.1145/2670979.2670985.

[65] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. “No
Pane, No Gain: Efficient Evaluation of Sliding-window Aggregates over Data
Streams”. In: SIGMOD Rec. 34.1 (Mar. 2005), pp. 39–44. ISSN: 0163-5808. DOI:
10.1145/1058150.1058158. URL: http://doi.acm.org/10.1145/1058150.1058158.

[66] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker.
“Semantics and Evaluation Techniques for Window Aggregates in Data Streams”. In:
Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’05. Baltimore, Maryland: ACM, 2005, pp. 311–322. ISBN: 1-59593-060-4.
DOI: 10.1145/1066157.1066193. URL: http://doi.acm.org/10.1145/1066157.1066193.

https://www.usenix.org/conference/osdi18/presentation/kulkarni
https://doi.org/10.1145/2723372.2742788
http://doi.acm.org/10.1145/2723372.2742788
https://doi.org/10.1145/2213836.2213840
http://doi.acm.org/10.1145/2213836.2213840
https://doi.org/10.1145/1773912.1773922
http://doi.acm.org/10.1145/1773912.1773922
https://doi.org/10.1145/2815400.2815416
http://home.cern/topics/large-hadron-collider
https://doi.org/10.1145/2670979.2670985
https://doi.org/10.1145/1058150.1058158
http://doi.acm.org/10.1145/1058150.1058158
https://doi.org/10.1145/1066157.1066193
http://doi.acm.org/10.1145/1066157.1066193

BIBLIOGRAPHY 125

[67] Björn Lohrmann, Daniel Warneke, and Odej Kao. “Nephele Streaming: Stream
Processing Under QoS Constraints at Scale”. In: Cluster Computing 17.1 (Mar. 2014),
pp. 61–78. ISSN: 1386-7857. DOI: 10.1007/s10586-013-0281-8. URL:
http://dx.doi.org/10.1007/s10586-013-0281-8.

[68] Danelutto M., Kilpatrick P., Mencagli G., and Torquati M. “State Access Patterns in
Stream Parallel Computations”. In: International Journal of High Performance
Computing Applications (IJHPCA). 2017. DOI: 10.1177/1094342017694134. URL:
http://pages.di.unipi.it/mencagli/publications/preprint-ijhpca-2017.pdf.

[69] David Maier, Jin Li, Peter Tucker, Kristin Tufte, and Vassilis Papadimos. “Semantics
of Data Streams and Operators”. In: Proceedings of the 10th International Conference on
Database Theory. ICDT’05. Edinburgh, UK: Springer-Verlag, 2005, pp. 37–52. DOI:
10.1007/978-3-540-30570-5_3. URL: http://dx.doi.org/10.1007/978-3-540-30570-5_3.

[70] MapR Streams. 2018. URL: https://mapr.com/products/mapr-streams (visited on
2018-10-01).

[71] Pierre Matri. “Týr: Storage-Based HPC and Big Data Convergence Using
Transactional Blobs”. June 2018. URL: http://oa.upm.es/51431/.

[72] Marcelo R.N. Mendes, Pedro Bizarro, and Paulo Marques. “Overcoming Memory
Limitations in High-throughput Event-based Applications”. In: Proceedings of the 4th
ACM/SPEC International Conference on Performance Engineering. ICPE ’13. Prague,
Czech Republic: ACM, 2013, pp. 399–410. ISBN: 978-1-4503-1636-1. DOI:
10.1145/2479871.2479933. URL: http://doi.acm.org/10.1145/2479871.2479933.

[73] Messaging, storage, or both? 2018. URL:
https://streaml.io/blog/messaging-storage-or-both (visited on 2018-10-01).

[74] Hongyu Miao, Heejin Park, Myeongjae Jeon, Gennady Pekhimenko,
Kathryn S. McKinley, and Felix Xiaozhu Lin. “StreamBox: Modern Stream
Processing on a Multicore Machine”. In: USENIX ATC. Santa Clara, CA, USA:
USENIX Association, 2017, pp. 617–629. ISBN: 978-1-931971-38-6.

[75] Cherniack Mitch, Balakrishnan Hari, Balazinska Magdalena, Carney Donald,
Cetintemel Ugur, Xing Ying, and Zdonik Stan. “Scalable Distributed Stream
Processing”. In: First Biennial Conference on Innovative Data Systems Research. 2003.
URL: http://cs.brown.edu/research/aurora/cidr03.pdf.

[76] Tom M. Mitchell. “Machine Learning and Data Mining”. In: Commun. ACM 42.11
(Nov. 1999), pp. 30–36. ISSN: 0001-0782. DOI: 10.1145/319382.319388. URL:
http://doi.acm.org/10.1145/319382.319388.

[77] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw,
Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and
Ion Stoica. “Ray: A Distributed Framework for Emerging AI Applications”. In: 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
Carlsbad, CA: USENIX Association, 2018. URL:
https://www.usenix.org/conference/osdi18/presentation/nishihara.

[78] New directions for Apache Spark in 2015.
http://www.slideshare.net/databricks/new-directions-for-apache-spark-in-2015.

https://doi.org/10.1007/s10586-013-0281-8
http://dx.doi.org/10.1007/s10586-013-0281-8
https://doi.org/10.1177/1094342017694134
http://pages.di.unipi.it/mencagli/publications/preprint-ijhpca-2017.pdf
https://doi.org/10.1007/978-3-540-30570-5_3
http://dx.doi.org/10.1007/978-3-540-30570-5_3
https://mapr.com/products/mapr-streams
http://oa.upm.es/51431/
https://doi.org/10.1145/2479871.2479933
http://doi.acm.org/10.1145/2479871.2479933
https://streaml.io/blog/messaging-storage-or-both
http://cs.brown.edu/research/aurora/cidr03.pdf
https://doi.org/10.1145/319382.319388
http://doi.acm.org/10.1145/319382.319388
https://www.usenix.org/conference/osdi18/presentation/nishihara
http://www.slideshare.net/databricks/new-directions-for-apache-spark-in-2015

126 BIBLIOGRAPHY

[79] Salman Niazi, Mahmoud Ismail, Seif Haridi, Jim Dowling, Steffen Grohsschmiedt,
and Mikael Ronström. “HopsFS: Scaling Hierarchical File System Metadata Using
newSQL Databases”. In: Proceedings of the 15th Usenix Conference on File and Storage
Technologies. FAST’17. Santa clara, CA, USA: USENIX Association, 2017, pp. 89–103.
ISBN: 978-1-931971-36-2. URL: http://dl.acm.org/citation.cfm?id=3129633.3129642.

[80] Bogdan Nicolae. “BlobSeer: Towards efficient data storage management for
large-scale, distributed systems”. Theses. Université Rennes 1, Nov. 2010. URL:
https://tel.archives-ouvertes.fr/tel-00552271.

[81] Bogdan Nicolae. “Leveraging naturally distributed data redundancy to reduce
collective I/O replication overhead”. In: IPDPS ’15: 29th IEEE International Parallel
and Distributed Processing Symposium. Hyderabad, India, 2015, pp. 1023–1032.

[82] Bogdan Nicolae. “Towards Scalable Checkpoint Restart: A Collective Inline Memory
Contents Deduplication Proposal”. In: IPDPS ’13: The 27th IEEE International Parallel
and Distributed Processing Symposium. Boston, USA, 2013, pp. 19–28. DOI:
10.1109/IPDPS.2013.14.

[83] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and
Mendel Rosenblum. “Fast Crash Recovery in RAMCloud”. In: 23rd SOSP. Cascais,
Portugal: ACM, 2011, pp. 29–41. ISBN: 978-1-4503-0977-6. DOI:
10.1145/2043556.2043560.

[84] Apache Orc. 2018. URL: https://orc.apache.org/ (visited on 2018-10-01).

[85] John Ousterhout. “Always Measure One Level Deeper”. In: Commun. ACM 61.7
(June 2018), pp. 74–83. ISSN: 0001-0782. DOI: 10.1145/3213770. URL:
http://doi.acm.org/10.1145/3213770.

[86] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin Lee,
Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum,
Stephen Rumble, Ryan Stutsman, and Stephen Yang. “The RAMCloud Storage
System”. In: ACM Trans. Comput. Syst. 33.3 (Aug. 2015), 7:1–7:55. ISSN: 0734-2071.
DOI: 10.1145/2806887. URL: http://doi.acm.org/10.1145/2806887.

[87] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and
Byung-Gon Chun. “Making Sense of Performance in Data Analytics Frameworks”.
In: Proceedings of the 12th USENIX Conference on Networked Systems Design and
Implementation. NSDI’15. Oakland, CA: USENIX Association, 2015, pp. 293–307.
ISBN: 978-1-931971-218. URL: http://dl.acm.org/citation.cfm?id=2789770.2789791.

[88] Apache Parquet. 2018. URL: https://parquet.apache.org/ (visited on 2018-10-01).

[89] Pravega. http://pravega.io/.

[90] Project Tungsten. https://databricks.com/blog/2015/04/28/project-tungsten-bringing-
spark-closer-to-bare-metal.html.

[91] Apache Pulsar. 2018. URL: https://pulsar.apache.org/ (visited on 2018-10-01).

[92] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ousterhout. “Arachne:
Core-Aware Thread Management”. In: 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). Carlsbad, CA: USENIX Association,
2018. URL: https://www.usenix.org/conference/osdi18/presentation/qin.

http://dl.acm.org/citation.cfm?id=3129633.3129642
https://tel.archives-ouvertes.fr/tel-00552271
https://doi.org/10.1109/IPDPS.2013.14
https://doi.org/10.1145/2043556.2043560
https://orc.apache.org/
https://doi.org/10.1145/3213770
http://doi.acm.org/10.1145/3213770
https://doi.org/10.1145/2806887
http://doi.acm.org/10.1145/2806887
http://dl.acm.org/citation.cfm?id=2789770.2789791
https://parquet.apache.org/
http://pravega.io/
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://pulsar.apache.org/
https://www.usenix.org/conference/osdi18/presentation/qin

BIBLIOGRAPHY 127

[93] Redis. 2018. URL: https://redis.io/ (visited on 2018-10-01).

[94] Juwei Shi, Yunjie Qiu, Umar Farooq Minhas, Limei Jiao, Chen Wang,
Berthold Reinwald, and Fatma Özcan. “Clash of the Titans: MapReduce vs. Spark
for Large Scale Data Analytics”. In: Proc. VLDB Endow. 8.13 (Sept. 2015),
pp. 2110–2121. ISSN: 2150-8097. DOI: 10.14778/2831360.2831365. URL:
https://doi.org/10.14778/2831360.2831365.

[95] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. “The
Hadoop Distributed File System”. In: Proceedings of the 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST). MSST ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 1–10. ISBN: 978-1-4244-7152-2. DOI:
10.1109/MSST.2010.5496972. URL: http://dx.doi.org/10.1109/MSST.2010.5496972.

[96] Guo Sijie, Dhamankar Robin, and Stewart Leigh. “DistributedLog: A High
Performance Replicated Log Service”. In: IEEE 33rd International Conference on Data
Engineering. ICDE’17. San Diego, CA, USA: IEEE, 2017. URL:
http://ieeexplore.ieee.org/document/7930058/.

[97] Small Graph. http://an.kaist.ac.kr/~haewoon/release/twitter_social.

[98] Apache Spark. 2018. URL: https://spark.apache.org/ (visited on 2018-10-01).

[99] Apache Impala. 2018. URL: https://impala.apache.org/ (visited on 2018-10-01).

[100] Yacine Taleb. “Optimizing Distributed In-memory Storage Systems: Fault-tolerance,
Performance, Energy Efficiency”. Theses. ENS Rennes, Oct. 2018. URL:
https://hal.inria.fr/tel-01891897.

[101] Yacine Taleb, Ryan Stutsman, Gabriel Antoniu, and Toni Cortes. “Tailwind: Fast and
Atomic RDMA-based Replication”. In: ATC ‘18 - USENIX Annual Technical
Conference. Boston, United States, July 2018, pp. 1–13. URL:
https://hal.inria.fr/hal-01676502.

[102] Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-Lung Wu. “General
Incremental Sliding-window Aggregation”. In: Proc. VLDB Endow. 8.7 (Feb. 2015),
pp. 702–713. ISSN: 2150-8097. DOI: 10.14778/2752939.2752940. URL:
http://dx.doi.org/10.14778/2752939.2752940.

[103] Hadoop TeraGen for TeraSort. 2018. URL: https:
//hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/examples/terasort/package-
summary.html (visited on 2018-10-01).

[104] Tera Sort. 2018. URL:
http://eastcirclek.blogspot.fr/2015/06/terasort-for-spark-and-flink-with-range.html
(visited on 2018-10-01).

[105] The world beyond batch: Streaming 101.
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101.

[106] The world beyond batch: Streaming 102.
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102.

[107] Quoc-Cuong To, Juan Soto, and Volker Markl. “A Survey of State Management in
Big Data Processing Systems”. In: CoRR abs/1702.01596 (2017). arXiv: 1702.01596.
URL: http://arxiv.org/abs/1702.01596.

https://redis.io/
https://doi.org/10.14778/2831360.2831365
https://doi.org/10.14778/2831360.2831365
https://doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1109/MSST.2010.5496972
http://ieeexplore.ieee.org/document/7930058/
http://an.kaist.ac.kr/~haewoon/release/twitter_social
https://spark.apache.org/
https://impala.apache.org/
https://hal.inria.fr/tel-01891897
https://hal.inria.fr/hal-01676502
https://doi.org/10.14778/2752939.2752940
http://dx.doi.org/10.14778/2752939.2752940
https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/examples/terasort/package-summary.html
http://eastcirclek.blogspot.fr/2015/06/terasort-for-spark-and-flink-with-range.html
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
https://arxiv.org/abs/1702.01596
http://arxiv.org/abs/1702.01596

128 BIBLIOGRAPHY

[108] Radu Tudoran, Alexandru Costan, Gabriel Antoniu, and Hakan Soncu.
“TomusBlobs: Towards Communication-Efficient Storage for MapReduce
Applications in Azure”. In: Proceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (Ccgrid 2012). CCGRID ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 427–434. ISBN:
978-0-7695-4691-9. DOI: 10.1109/CCGrid.2012.104. URL:
https://doi.org/10.1109/CCGrid.2012.104.

[109] Twitter. https://twitter.com/.

[110] Leslie G. Valiant. “A Bridging Model for Parallel Computation”. In: Commun. ACM
33.8 (Aug. 1990), pp. 103–111. ISSN: 0001-0782. DOI: 10.1145/79173.79181. URL:
http://doi.acm.org/10.1145/79173.79181.

[111] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust,
Ali Ghodsi, Michael J. Franklin, Benjamin Recht, and Ion Stoica. “Drizzle: Fast and
Adaptable Stream Processing at Scale”. In: 26th SOSP. Shanghai, China: ACM, 2017,
pp. 374–389. ISBN: 978-1-4503-5085-3. DOI: 10.1145/3132747.3132750.

[112] Paolo Viotti and Marko Vukolić. “Consistency in Non-Transactional Distributed
Storage Systems”. In: ACM Comput. Surv. 49.1 (June 2016), 19:1–19:34. ISSN:
0360-0300. DOI: 10.1145/2926965. URL: http://doi.acm.org/10.1145/2926965.

[113] Daniel Warneke and Odej Kao. “Nephele: Efficient Parallel Data Processing in the
Cloud”. In: Proceedings of the 2nd Workshop on Many-Task Computing on Grids and
Supercomputers. Portland, Oregon: ACM, 2009. ISBN: 978-1-60558-714-1. DOI:
http://doi.acm.org/10.1145/1646468.1646476.

[114] Large Graph. 2018. URL: http://webdatacommons.org/hyperlinkgraph (visited on
2018-10-01).

[115] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. “Understanding
Replication in Databases and Distributed Systems”. In: Proceedings of the The 20th
International Conference on Distributed Computing Systems (ICDCS 2000). ICDCS ’00.
Washington, DC, USA: IEEE Computer Society, 2000, pp. 464–. ISBN: 0-7695-0601-1.
URL: http://dl.acm.org/citation.cfm?id=850927.851782.

[116] Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian Merlino, and
Deep Ganguli. “Druid: A Real-time Analytical Data Store”. In: Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data. SIGMOD ’14.
Snowbird, Utah, USA: ACM, 2014, pp. 157–168. ISBN: 978-1-4503-2376-5. DOI:
10.1145/2588555.2595631. URL: http://doi.acm.org/10.1145/2588555.2595631.

[117] Lei Yang, Jiannong Cao, Yin Yuan, Tao Li, Andy Han, and Alvin Chan. “A
Framework for Partitioning and Execution of Data Stream Applications in Mobile
Cloud Computing”. In: SIGMETRICS Perform. Eval. Rev. 40.4 (Apr. 2013), pp. 23–32.
ISSN: 0163-5999. DOI: 10.1145/2479942.2479946. URL:
http://doi.acm.org/10.1145/2479942.2479946.

[118] Esma Yildirim and Tevfik Kosar. “Network-aware end-to-end data throughput
optimization”. In: Proceedings of the first international workshop on Network-aware data
management. Seattle, Washington, USA, 2011, pp. 21–30. ISBN: 978-1-4503-1132-8.

https://doi.org/10.1109/CCGrid.2012.104
https://doi.org/10.1109/CCGrid.2012.104
https://twitter.com/
https://doi.org/10.1145/79173.79181
http://doi.acm.org/10.1145/79173.79181
https://doi.org/10.1145/3132747.3132750
https://doi.org/10.1145/2926965
http://doi.acm.org/10.1145/2926965
https://doi.org/http://doi.acm.org/10.1145/1646468.1646476
http://webdatacommons.org/hyperlinkgraph
http://dl.acm.org/citation.cfm?id=850927.851782
https://doi.org/10.1145/2588555.2595631
http://doi.acm.org/10.1145/2588555.2595631
https://doi.org/10.1145/2479942.2479946
http://doi.acm.org/10.1145/2479942.2479946

BIBLIOGRAPHY 129

[119] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy,
Scott Shenker, and Ion Stoica. “Delay Scheduling: A Simple Technique for Achieving
Locality and Fairness in Cluster Scheduling”. In: Proceedings of the 5th European
Conference on Computer Systems. EuroSys ’10. Paris, France: ACM, 2010, pp. 265–278.
ISBN: 978-1-60558-577-2. DOI: 10.1145/1755913.1755940. URL:
http://doi.acm.org/10.1145/1755913.1755940.

[120] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. “Resilient
Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing”. In: Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation. NSDI’12. San Jose, CA: USENIX Association, 2012,
pp. 2–2. URL: http://dl.acm.org/citation.cfm?id=2228298.2228301.

[121] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. “Discretized Streams: Fault-tolerant Streaming Computation at Scale”. In:
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles.
SOSP ’13. Farminton, Pennsylvania: ACM, 2013, pp. 423–438. ISBN:
978-1-4503-2388-8. DOI: 10.1145/2517349.2522737. URL:
http://doi.acm.org/10.1145/2517349.2522737.

[122] Benjamin Zhu, Kai Li, and Hugo Patterson. “Avoiding the disk bottleneck in the
data domain deduplication file system”. In: FAST’08: Proceedings of the 6th USENIX
Conference on File and Storage Technologies. San Jose, USA: USENIX Association, 2008,
18:1–18:14.

https://doi.org/10.1145/1755913.1755940
http://doi.acm.org/10.1145/1755913.1755940
http://dl.acm.org/citation.cfm?id=2228298.2228301
https://doi.org/10.1145/2517349.2522737
http://doi.acm.org/10.1145/2517349.2522737

130 BIBLIOGRAPHY

131

Part V

Appendix

133

Contexte

Le BIG DATA est devenu une nouvelle ressource naturelle. Les dernières années ont
connu une croissance sans précédent des données qui doivent être traitées avec

une vitesse toujours croissante afin d’en extraire des renseignements précieux (e.g., Face-
book, Amazon, LHC, etc.). Comme le volume des données augmente sans cesse, les archi-
tectures actuelles d’analyse de données massives doivent relever des défis de plus en plus
élevés en termes d’extensibilité, d’ingestion rapide, de rendement de traitement et d’effica-
cité de stockage.

Cette masse de données hétérogènes augmentent de manière exponentielle et surtout
sont produites de plus en plus vite. Les applications d’analyse des données massives sont
passées du traitement par lot (batch processing) au traitement par flux (stream processing), ce
qui peut réduire considérablement le temps nécessaire à l’extraction des renseignements pré-
cieux. En même temps, les applications complexes de gestion du flux de travail (workflow)
ont conduit les usagers à demander des modèles de programmation unifiés pour simplifier
les charges de travail existantes et pour favoriser l’émergence de nouvelles applications. Les
architectures de traitement ont évolué à tel point qu’elles sont capable de nos jours de sup-
porter des traitements par lot, des traitements interactifs et des traitements par flux dans le
même système [18, 120, 2]. Il est ainsi possible d’optimiser les applications en supprimant le
dédoublement de travail et le partage des ressources entre les moteurs de calcul spécialisés.

Les architectures actuelles (state-of-the-art) pour l’analyse des données massives sont
construites sur une pile à trois couches : premièrement les flux de données sont acquis par la
couche d’ingestion (e.g., Apache Kafka [46]) pour ensuite circuler à travers la couche de trai-
tement (e.g., Apache Flink [26], Apache Spark [98]) qui s’appuie sur la couche de stockage
(e.g., HDFS [95]) pour stocker des données agrégées, pour permettre des contrôles intermé-
diaires ou pour archiver des flux pour un traitement ultérieur. Dans ces circonstances, les
données sont souvent écrites deux fois sur le disque ou envoyées deux fois sur le réseau, par
exemple dans le cadre d’une stratégie de tolérance aux pannes de la couche d’ingestion ou
des exigences de persistance de la couche de stockage. Deuxièmement, le manque de coor-
dination entre les couches peut créer des interférences entre les différentes entrées-sorties ;
par exemple, la couche d’ingestion et la couche de stockage pourraient être en concurrence
pour les mêmes ressources d’entrées-sorties au moment de la collecte des flux de données
et de l’écriture simultanée des données des archives. Troisièmement, afin de gérer efficace-
ment l’état des données (state) par lot et en flux pendant l’exécution, la couche de traitement
met souvent en œuvre une gestion des données avancée et personnalisée (e.g., operator state
persistence, checkpoint-restart) sur des API d’ingestion et de stockage de base inappropriées,
ce qui a un impact significatif sur les performances.

Malheureusement, malgré les bénéfices potentiels apportés par les couches spécialisées
(e.g., une mise en œuvre simplifiée), déplacer des quantités importantes de données à tra-
vers des couches spécialisées s’avère peu efficace. Au lieu de cela, les données devraient être
acquises, traitées et stockées en minimisant le nombre de copies. Nous considérons que les
défis mentionnés ci-dessus sont assez significatifs pour compenser les bénéfices de la spécia-
lisation de chaque couche indépendamment des autres couches.

En outre, ces architectures sont de plus en plus complexes à maintenir. Ce sont des sys-
tèmes robustes et tolérants aux pannes qui sont aptes à servir des modèles d’accès aux don-
nées à la fois en ligne et hors ligne, demandées par des cas d’utilisation moderne des flux. Il

134

est donc nécessaire d’avoir une solution optimisée pour l’ingestion et le stockage des don-
nées, qu’elles soient limitées (objets) ou illimitées (flux). La conception et la mise en œuvre
d’une telle solution dédiée est un grand défi : elle devrait assurer non seulement la fonc-
tionnalité traditionnelle de stockage (i.e., support pour des objets), mais aussi le respect des
critères d’accès en temps réel des applications modernes basées sur les flux, par exemple des
latences d’accès aussi faibles que possibles pour les éléments des données, débit aussi haut
que possible pour l’ingestion et le traitement des flux de données, etc.

Cette thèse a été réalisée dans le cadre du projet européen BigStorage, avec comme but de
caractériser et comprendre les limites des architectures d’analyse Big Data les plus récentes et
pour concevoir et implémenter des modèles de traitement et de gestion en flux des données
pour dépasser les limitations actuelles et optimiser le traitement des flux.

Objectifs

Pour dépasser les limites mentionnées ci-dessus, cette thèse propose la conception et la
mise en œuvre de manière minutieuse d’une architecture unifiée pour la gestion des flux
(streaming), l’ingestion et le stockage, apte à optimiser le traitement des applications Big
Data de gestion des données en flux tout en minimisant le déplacement des données à tra-
vers l’architecture d’analyse, conduisant ainsi à une amélioration de la performance et de
l’utilisation des ressources. Cette proposition de décline dans les objectifs suivants.

1. Identifier un ensemble de critères pour un moteur dédié d’ingestion des flux (stream
ingestion) et stockage.

2. Expliquer l’impact des différents choix architecturaux Big Data sur la performance et
comprendre quelles sont les limitations actuelles d’un moteur de gestion des flux lors
de son interaction avec un système de stockage pour préserver l’état des flux de don-
nées.

3. Proposer un ensemble de principes de conception d’une architecture unifiée et évolu-
tive pour l’ingestion et le stockage des données.

4. Mettre en œuvre un prototype pour un moteur dédié de gestion de flux pour l’inges-
tion et le stockage dans le but de gérer efficacement divers modèles d’accès : accès à
latence faible aux enregistrements des streams (stream records) et/ou accès à débit élevé
aux flux (illimités) et/ou objets.

Contributions

Au vu des objectifs mentionnés précédemment, nous résumons les principales contributions
de cette thèse comme suit.

Critères pour une solution dédiée d’ingestion et de stockage de flux

Les applications basées sur les flux doivent ingérer et analyser immédiatement les données
et dans des nombreux cas combiner des données en direct (flux non liés) et archivées (objets,

135

i.e., les flux liés) afin d’extraire de meilleures informations. Dans ce contexte, les systèmes
de traitement Big Data en ligne et interactif (e.g., Apache Flink [26], Apache Spark [121])
conçus à la fois pour le traitement par lots et le traitement par flux sont rapidement adoptés
en vue de remplacer des modèles de traitement traditionnels orientés sur les lots seulement
(tels que MapReduce [18] et son implémentation à code source libre Hadoop [37]) qui ne
suffisent pas pour répondre aux besoins de latence faible et de fréquence élevée des flux [69,
105, 106, 5, 14]. La question centrale que nous abordons dans cette thèse est de construire
une architecture générale de traitement des flux Big Data capable de gérer efficacement des
applications de flux très diverses, tout en minimisant le mouvement de données pour une
meilleure utilisation des ressources et de meilleures performances.

Nous identifions et discutons les caractéristiques applicatives d’un ensemble de scéna-
rios basés sur les flux qui ont inspiré un ensemble de critères intéressants pour une architec-
ture optimisée d’ingestion et de stockage.

En résumé, les applications basées sur les flux reposent fortement sur les fonctionnalités
suivantes, mal supportées par les architectures de streaming actuelles.

1. Ingestion rapide, éventuellement doublée par indexation simultanée (souvent, par un
seul passage sur les données) pour le traitement en temps réel.

2. Stockage à latence faible avec un support de requête à granularité fine supplémentaire
pour le filtrage efficace et l’agrégation des enregistrements de données.

3. Stockage permettant de gérer des événements qui s’accumulent en grands volumes sur
une courte durée.

Quelques tendances générales peuvent être observées à partir des applications présen-
tées ci-dessus. Premièrement le modèle d’accès aux données est complexe et implique une
diversité de tailles de données et de modèles d’accès (i.e., enregistrements, flux, objets).
Deuxièmement, les architectures de traitement des flux doivent permettre des fonctionna-
lités avancées pour les applications, telles que le partitionnement personnalisé, la gestion
des métadonnées distribuées, le pré-prétraitement, le contrôle des flux. En plus de ces fonc-
tionnalités, elles doivent également tenir compte des aspects non fonctionnels tels que la
haute disponibilité, la durabilité des données et le contrôle de latence par rapport au rende-
ment. Sur la base de ces tendances générales, nous pouvons déduire les exigences suivantes
pour une architecture de stockage de flux optimisée.

Par la suite, nous étudions les systèmes d’ingestion et de stockage modernes afin d’éva-
luer la manière dont elles remplissent nos critères. Ce sont ces systèmes qui ont constitué une
excellente source d’inspiration et une base solide sur lesquelles nous avons pu construire la
solution proposée pour une architecture unifiée pour l’ingestion et stockage des flux dans le
but d’optimiser les systèmes d’analyse de traitement des données.

Notre objectif est de fournir des interfaces d’accès efficaces pour les enregistrements, les
flux et les objets. Une approche possible serait d’améliorer un tel système avec les fonction-
nalités manquantes. Cependant, cela est difficile à réaliser car, compte tenu des choix de
conception initiaux de leurs développeurs, les autres exigences restantes seraient difficiles,
voire impossibles à satisfaire en même temps. Par exemple, la conception de Kafka est basée
sur le cache OS, ce qui rend difficile la co-localisation avec un moteur de traitement ; Redis
n’offre pas la cohérence forte que certains cas d’utilisation peuvent nécessiter ; le choix de

136

Druid de différencier les nœuds historiques et temps réel conduit à l’adoption à la fois de
Kafka et HDFS, contrairement à notre objectif de minimiser le nombre de copies de don-
nées. Bien que RAMCloud n’ait pas été conçu pour une ingestion de flux à haut débit, son
modèle de données key-value constituait un bon point de départ pour la représentation d’un
enregistrement de flux. Toutefois, la création d’interfaces de diffusion en continu sur RAM-
Cloud n’était pas possible, car de nombreuses situations n’exigent pas un accès au niveau
des enregistrement à une granularité fine. Par conséquent, bien que l’extension d’un système
existant ne soit pas une solution, la création d’une nouvelle solution dédiée en s’appuyant
sur ces systèmes ou certaines de leurs idées fondamentales comme briques de base est une
bonne option.

Comprendre la performance dans les systèmes d’analyse Big Data

Temps d’execution basé sur les flux (stream-based) versus temps d’execution basé sur les

lots (batch-based)

Au cours de la dernière décennie, MapReduce (un modèle de programmation et une implémenta-
tion associée pour le traitement et la génération de grands ensembles de données [18]) et son implé-
mentation libre Hadoop [37] ont été largement adoptés tant par l’industrie que par le monde
universitaire. Ils fournissent en effet un modèle de programmation simple mais puissant qui
cache aux utilisateurs la complexité de l’exécution des tâches en parallèle et de la gestion de
la tolérance aux pannes. Cette API très simple est accompagnée d’une restriction importante
liée au fait qu’elle force les applications à être exprimées en termes de fonctions d’application
(map) et de réduction (reduce). Comme l’expliquent les concepteurs,

les utilisateurs spécifient une fonction d’application qui traite une paire clé/
valeur pour générer un ensemble de paires clé/valeur intermédiaires et une fonc-
tion de réduction qui fusionne toutes les valeurs intermédiaires associées à la
même clé intermédiaire [18].

Cependant, la plupart des applications ne correspondent pas à ce modèle et nécessitent
une orchestration de données plus générale, indépendante de tout modèle de programma-
tion. Par exemple, les algorithmes itératifs utilisés dans l’analyse des graphes et l’appren-
tissage automatique effectuent plusieurs cycles de calcul sur les mêmes données, ce qui ne
correspond pas au modèle MapReduce d’origine. En outre, l’augmentation des volumes de
données et la dimension en ligne du traitement des données nécessitent des modèles de
diffusion en continu afin de permettre le traitement en temps réel des sources de données.

Face à ces limitations, une deuxième génération de plates-formes d’analyse a vu le jour
dans le but d’unifier le paysage du traitement Big Data. Flink (stream-based) et Spark (batch-
based) sont deux environnement d’exécution d’applications d’analyse des données hébergés
par Apache. Ils facilitent le développement des pipelines de données multi-étapes en utili-
sant de manière directe des modèles de graphes acycliques.

Spark [98] considère le traitement de données par lots. Il introduit la notion d’ensemble
de données distribuées résilientes (Resilient Distributed Datasets ou RDD [120]). Un RDD est
un ensemble de structures de données en mémoire capables de mettre en mémoire-cache des
données intermédiaires sur un ensemble de nœuds, afin de prendre en charge efficacement
des algorithmes itératifs. Flink [26] considère le traitement de données par flux. Dans le

137

même but, a proposé plus récemment des opérateurs d’itération en boucle fermée natifs [24]
et un optimiseur automatique basé sur les coûts, capable de réorganiser les opérateurs et de
mieux prendre en charge l’exécution en continu par la réduction de la latence.

Tirer le meilleur parti possible de ces structures constitue un défi considérable car l’effica-
cité des exécutions dépend fortement de l’ajustement des configurations complexes des pa-
ramètres par une compréhension fine des choix architecturaux sous-jacents. Pour cela, nous
proposons une méthodologie qui permet de corréler le réglage des paramètres et le plan
d’exécution des opérateurs avec l’usage des ressources. Nous analysons les performances de
Spark et Flink avec plusieurs charges de travail qui sont représentatives à la fois du traite-
ment par lot (batch) itératif sur des plateformes jusqu’à 100 nœuds. La principale conclusion
de cette analyse est qu’aucune des deux structures ne surpasse l’autre pour tous les types
de données, les dimensions et les modèles d’emploi. Nous approfondissons la manière dont
les résultats sont corrélés avec les opérateurs, l’usage des ressources et les spécificités de la
conception du moteur et des paramètres.

La gestion de la mémoire joue un rôle crucial dans l’exécution d’une charge de travail,
en particulier pour les ensembles de données plus volumineux que la mémoire disponible.
Par exemple, le composant d’agrégation de Flink (combinateur basé sur le tri) semble plus
efficace que celui de Spark car il s’appuie sur une gestion personnalisée de la mémoire et
la sérialisation différenciée des données selon leur type (type oriented). Avec son API Data-
Set [44] pour des données structurées, Spark visait une approche similaire.

Le sens commun veut que le traitement de beaucoup de données dans une machine vir-
tuelle Java (JVM) conduise à les stocker en tant qu’objets sur le tas. Cette approche présente
des inconvénients notables, comme mentionné dans [47]. Tout d’abord, comme le montre le
graphique du cas de la grande taille de la section 3.3.1, une sur-allocation de mémoire dé-
truira immédiatement la machine virtuelle Java. En outre, les machines virtuelles de grande
taille (plusieurs Go), submergées par des milliers de nouveaux objets, peuvent souffrir de
la surcharge de la récupération des zones mémoire inutilisées (garbage collection). Enfin, sur
la plupart des plates-formes JVM, les objets Java augmentent la surcharge d’espace. Ceci
pourrait conduire à devoir régler les paramètres du système de manière spécifique à chaque
cas d’utilisation pour optimiser l’organisation de la mémoire, d’éviter la surallocation et les
problèmes de récupération de la mémoire inutilisée. Les moteurs d’analyse doivent donc
disposer d’une mémoire efficace. Au cours de nos expériences, nous avons remarqué que,
contrairement à Spark, Flink n’accumule pas beaucoup d’objets sur le tas, mais les stocke
dans une région de la mémoire dédiée en dehors du tas pour éviter les problèmes de mé-
moire. Ceci conduit à une configuration de mémoire hybride, dans le tas et en dehors du
tas, qui est difficile à régler. Le réglage des fraction de mémoire devrait (idéalement) être
fait automatiquement par le système et modifié dynamiquement à l’exécution. Dans Flink,
la plupart des opérateurs sont implémentés pour qu’ils puissent survivre avec très peu de
mémoire en utilisant le disque si nécessaire. Nous avons également observé que, bien que
Spark puisse sérialiser des données sur disque, il faut que des parties (significatives) de don-
nées soient placées dans le tas de la machine virtuelle Java pour plusieurs opérations ; si la
taille du tas n’est pas suffisant, le travail s’arrête. Récemment, Spark a commencé à corriger
ces problèmes de mémoire avec son projet Tungsten [90], fortement inspiré du modèle Flink.
Il permet la gestion personnalisée de la mémoire pour à éliminer la surcharge du modèle
d’objet JVM et la récupération des zones mémoire inutilisées.

Nos expériences suggèrent que la gestion des configurations pour le traitement Big Data

138

devrait être favorisée par un assistant dédié comme celui que nous proposons dans cette
thèse. En outre, la conception d’une architecture d’analyse unifiée par des interfaces orien-
tées flux apparaît comme un choix incontournable ; traiter les données d’entrée-sortie ainsi
que l’état (intermédiaire) des opérateurs d’application comme des flux permet obtenir une
architecture d’analyse simplifiée et optimisée.

Les systèmes MapReduce (e.g., Spark) adoptent le modèle synchrone par bloc (BSP [110])
dans lequel le calcul consiste en deux phases qui se répètent en continu : une phase de cal-
cul (application) au cours de laquelle tous les nœuds d’un système distribué effectuent des
calculs, suivie par une barrière de synchronisation qui permet une phase de communica-
tion (réduction) au cours de laquelle les noeuds communiquent. Pour mettre en œuvre la
tolérance aux pannes, ces systèmes implémentent un cliché de l’état à la barrière : les ré-
sultats intermédiaires sont sauvegardés (via des points de contrôle) ou, plus efficacement,
l’ensemble de l’étape traitement est enregistré (e.g., les RDD). Cependant, étant donné que
les applications Big Data peuvent être composées de nombreuses phases d’application et
de réduction, l’utilisateur est obligé de décider du meilleur moment pour sauvegarder les
résultats intermédiaires ou tout simplement pour activer les techniques de récupération de
l’étape de traitement.

Les systèmes de flux de données (e.g., Flink) adoptent le modèle d’opérateur continu
(long terme) dans lequel les opérateurs sont activés une seule fois pour s’exécuter comme des
tâches à long terme. Bien que ce modèle d’exécution soit plus flexible que BSP, ces systèmes
reposent sur des algorithmes de point de contrôle distribués coûteux lors d’une exécution
normale. Pour gérer la défaillance d’un nœud, tous les noeuds sont restaurés au dernier
point de contrôle disponible et chaque opérateur continu est rejoué séquentiellement [111].

Nous soutenons qu’avec le soutien approprié d’un stockage de flux à latence faible, les
opérateurs basés sur les flux continus peuvent en outre mettre en œuvre des techniques de
lignée afin d’optimiser le traitement, par exemple, en utilisant des techniques telles que la
récupération parallèle [121]. Dans ce cas, chaque opérateur de flux de données peut stocker
de manière asynchrone un flux de lignée des calculs de sa tâche ainsi que des compensa-
tions de flux d’entrée et de sortie pour chaque tâche déployée ; le pilote d’exécution pourrait
alors récupérer chaque tâche d’opérateur indépendamment tandis que les techniques de
contre-pression pourraient aider à maintenir un calcul cohérent. Avec une telle fonctionna-
lité puissante, les systèmes de flux de données pourraient devenir plus attrayants pour les
exécutions par lots et par flux à la fois. Pour que cela se produise, un changement d’approche
fondamental est nécessaire : les moteurs de traitement de données sans limites doivent être
conçus pour s’appuyer, pour la gestion des états, sur des systèmes d’ingestion/stockage dy-
namiques à granularité fine, comme celui que nous proposons dans cette thèse.

L’exploration de l’état partagé (shared state) pour la diffusion en continu des analyses à

base de fenêtres (window-based streaming analytics)

Les moteurs conçus pour la gestion de flux [1, 67, 121] traitent généralement des sources
de données en direct (e.g., services Web, flux de nouvelles et de réseaux sociaux, capteurs,
etc.) à l’aide d’agrégateurs à état (appelées opérateurs) définis par l’application qui forment
un graphe acyclique dirigé à travers lequel les données circulent. Dans ce contexte, il arrive
souvent que ces agrégateurs à états doivent analyser les mêmes données, par exemple les K
valeurs supérieures et des K valeurs inférieures observées au cours de la dernière heure dans

139

un flux d’entiers). Les méthodes les plus récentes créent des copies des données permettant à
chaque opérateur de travailler de manière isolée, au détriment d’une utilisation plus impor-
tante de la mémoire (e.g., Apache Flink permet à chaque opérateur de travailler isolément en
créant des copies des données). Cependant, avec l’augmentation du nombre de cœurs et la
diminution de la mémoire disponible par cœur [38], la mémoire devient une ressource rare
et peut potentiellement créer des goulots d’étranglement d’efficacité (e.g., des cœurs sous-
utilisés), des coûts supplémentaires (e.g., des infrastructures plus coûteuses) ou encore poser
des problèmes de faisabilité (e.g., manque de mémoire). Par conséquent, le problème de la
minimisation de l’utilisation de la mémoire sans impact significatif sur les performances (gé-
néralement mesuré en tant que latence des résultats) est crucial. Pour minimiser l’utilisation
de la mémoire, nous explorons la faisabilité des techniques de déduplication pour réduire
l’empreinte mémoire pour le traitement des flux à base de fenêtres, sans pour autant altérer
de manière signicative la performance (typiquement mesurée par la latence des résultats).

Sur la base de cette étude, nous tirons trois conclusions. Premièrement, en cas de
contrainte de faible mémoire, les opérateurs basés sur les fenêtres ont tendance à avoir des
performances médiocres en raison d’appels fréquents au ramassage miette (garbage collector).
Dans ce cas, la latence nécessaire pour traiter 99 % des événements est jusqu’à 10 fois supé-
rieure au cas où il n’y a pas de contraintes liées à la mémoire. La déduplication peut donc
améliorer la latence. Deuxièmement, la déduplication entraîne une dégradation accrue des
performances pour une taille de fenêtre croissante par rapport au cas où des copies sont uti-
lisées. Ainsi, une sélection minutieuse de la taille de la fenêtre est nécessaire. Troisièmement,
la déduplication peut considérablement réduire l’usage de la mémoire : dans le simple cas
où deux opérateurs partageant le même état, il y a une réduction de 25 %, qui continue de
croître proportionnellement avec le nombre d’opérateurs partageant le même état.

L’une des principales constatations est la nécessité de concevoir plusieurs interactions à
granularité fine entre les moteurs de traitement de flux (streaming) et les systèmes de sto-
ckage de données clé/valeur (key-value stores) (e.g., lazy deserialization ou push processing to
storage) afin de réagir au mieux lorsque la mémoire devient insuffisante.

Les moteurs de gestion de flux continus développent des mécanismes complexes pour
gérer en interne l’état de la fenêtre de traitement windowing. Comme le montrent les expé-
riences (chapitre 4), il peut être difficile de s’appuyer sur un stockage externe pour conserver
l’état de diffusion. Cependant, pour une récupération rapide après incident et une adaptabi-
lité rapide, cet état doit également être conservé (et mis à jour de manière incrémentale) dans
un stockage distribué ; ces opérations réalisées grâce à des points de contrôle incrémentaux.
Cette complexité pourrait être évitée pour le traitement si le support requis pour conserver
l’état de fenêtrage était développé au sein d’une couche d’ingestion et de stockage unifiée.
Avec une telle prise en charge, il serait possible de placer des fonctions agrégées définies
par l’utilisateur en mémoire afin d’éviter de déplacer de grandes quantités de données sur
le réseau et d’éviter les surcoûts de sérialisation et de désérialisation. Ceci pourrait aider à
réduire la latence des opérations basées sur les fenêtres et à augmenter le débit de traitement.

Pour permettre le traitement natif des requêtes, un changement d’approche est néces-
saire : les moteurs de traitement doivent se concentrer sur la manière de transformer les
données et éviter les mécanismes complexes de gestion d’état (operators state) à ce niveau
qui sont souvent utilisés actuellement. Nous pensons qu’il est plus efficace de laisser cette
fonction à un moteur spécialisé de stockage de flux tel que celui que nous proposons.

Ce sont toutes ces observations qui ont fondatementalement contribué à la définition de

140

l’ensemble de principes de conception.

Principes de conception d’une architecture unifiée et évolutive pour l’ingestion
de données et le stockage

En nous fondant sur nos expériences avec les environnements d’analyse Big Data et compte
tenu des critères identifiés pour une solution dédiée d’ingestion de flux et de stockage, nous
proposons un ensemble de principes de conception pour la construction d’une architecture
unifiée et évolutive pour l’ingestion des données et leur stockage pour rendre plus efficaces
les systèmes d’analyse Big Data. Dans un premier temps, en accord avec notre vision d’une
architecture d’analyse unifiée, nous proposons que les moteurs de traitement ne s’occupent
que du flux de travail des opérateurs afin qu’un moteur unifiée d’ingestion et de stockage
s’occupe de la fonction de gestion de l’état (operators state), tout en se concentrant sur la
gestion haut niveau des données (e.g., caching, gestion des accès concurrents où concurrency
control). De plus, les moteurs de traitement et ingestion/stockage devraient inteéragir par
des interfaces basées sur le stream.

Les systèmes d’ingestion et de stockage et les moteurs de traitement doivent comprendre
les interfaces natives à base de flux pour l’ingestion des données, leur traitement et le sto-
ckage de flux d’enregistrements d’une manière compatible avec les modèles standard de
traitement par lots.

1. L’interface d’ingestion de données est exploitée par les producteurs de flux qui écrivent
des flux d’entrée, mais également par les serveurs du moteur de traitement qui
stockent l’état de traitement (flux liés) dans des instances de stockage locales.

2. L’interface de stockage de données est gérée en interne par le système de stockage. Elle
est utilisée pour stocker en permanence les flux d’entrée en cas de besoin ; cette action
peut être effectuée de manière asynchrone en fonction des métadonnées de flux et des
indications envoyées par le moteur de traitement.

3. L’interface de traitement de données est exposée de manière bidirectionnelle : premiè-
rement, le moteur de traitement peut l’utiliser pour extraire des données du stockage
de flux ; deuxièmement, nous envisageons la possibilité future d’avoir des flux de tra-
vail envoyant autant que possible des fonctions de traitement au stockage.

De plus, pour répondre aux exigences identifiées précédemment, nous envisageons la
création, en plus de l’architecture unifiée d’ingestion et de stockage, d’interfaces de type
clé/valeur (key-value) (e.g., put/get, multi-écriture/multi-lecture) nécessaires pour fournir un
accès à granularité fine aux flux ingérés. L’amélioration des solutions de stockage avec des
capacités d’ingestion aidera également à développer des flux de travail complexes basés sur
les flux en permettant de transmettre les résultats de flux agrégés intermédiaires et finaux à
d’autres applications de gestion de flux. Elle permettra aussi de mieux prendre en charge les
techniques de point de contrôle de flux en stockant efficacement les résultats temporaires.

Les systèmes d’ingestion de flux les plus récentes [49, 91, 96] utilisent un schéma de par-
titionnement statique dans lequel le flux est divisé en un nombre fixe de partitions, chacune
étant une séquence illimitée, ordonnée et immuable d’enregistrements qui sont continuel-
lement ajoutés. Chaque courtier (broker) est responsable d’une ou de plusieurs partitions.

141

Les producteurs accumulent des enregistrements par lots de taille fixe, chacun étant ajouté
à une partition. Pour réduire les coûts de communication, les producteurs regroupent plu-
sieurs lots correspondant aux partitions d’un seul courtier dans une seule demande. Chaque
consommateur est affecté à une ou plusieurs partitions. Chaque partition est transmise à un
seul consommateur. Ceci élimine le besoin de mécanismes de synchronisation complexes,
mais présente un inconvénient important : l’application doit connaître a priori le nombre
optimal de partitions.

Cependant, dans les situations réelles, il est difficile de connaître a priori le nombre op-
timal de partitions, car celui-ci dépend de nombreux facteurs : nombre de courtiers, nombre
de consommateurs et de producteurs, taille du réseau, estimation de l’objectif de débit de
traitement et d’ingestion, etc. De plus, les producteurs et les consommateurs peuvent avoir
un comportement dynamique qui conduit à un écart important entre le nombre optimal de
partitions nécessaires à différents moments de l’exécution. Par conséquent, les utilisateurs
ont tendance à surestimer le nombre de partitions pour couvrir le pire des scénarios dans
lequel un grand nombre de producteurs et de consommateurs doivent accéder aux enregis-
trements simultanément, ce qui peut entraîner des dépenses inutiles. De plus, un nombre
fixe de partitions peut également devenir une source de déséquilibre : chaque partition étant
assignée à un seul consommateur, il est possible qu’une partition accumule ou libère des
enregistrements plus rapidement que les autres partitions si elle est assignée à un consom-
mateur plus rapide que les autres consommateurs.

En outre, les courtiers streaming attribuent à chaque enregistrement d’une partition un
identifiant croissant de façon monotone, appelé décalage de partition (partition offset). Il per-
met aux applications d’accéder de manière arbitraire au contenu d’une partition en spécifiant
le décalage. Les applications de diffusion en continu accèdent normalement aux enregistre-
ments dans un ordre séquentiel, mais l’accès arbitraire permet la récupération en cas d’er-
reur. Plus précisément, un consommateur qui a échoué peut revenir à un point de contrôle
précédent et revoir les enregistrements à partir du dernier décalage auquel son état a été
contrôlé. De plus, l’utilisation des décalages lors de l’accès à des enregistrements permet au
courtier de rester sans état vis-à-vis des consommateurs. Toutefois, la prise en charge d’un
accès aléatoire efficace n’est pas gratuite : l’attribution d’un décalage à chaque enregistre-
ment avec une granularité aussi fine dégrade les performances d’accès et occupe plus de
mémoire. De plus, étant donné que les enregistrements sont demandés par lots, chaque lot
sera plus volumineux en raison des décalages, ce qui produit une surcharge du réseau.

Nous proposons principalement deux idées en vue d’une ingestion des données évolu-
tive : (1) un partitionnement dynamique fondé sur un regroupement sémantique et sur le
sous-partitionnement, ce qui favorise une gestion plus flexible et élastique des partitions de
flux (stream partitions) ; (2) une indexation de compensation légère, optimisée pour un accès
aux séquentiel aux enregistrements. Par la suite, nous décrivons un ensemble de principes
pour la prise en charge des divers modèles d’accès : accès à faible latence aux enregistre-
ments de flux (stream records) et/ou accès à haut débit aux flux ou aux objets. Pour gérer
efficacement des flux multiples, nous proposons une nouvelle méthode pour une réplication
à granularité fine ayant une grande capacité d’adaptation et permettant l’ingestion durable
des flux multiples.

La réplication est la solution standard utilisée pour garantir une ingestion de données de
flux tolérante aux pannes. Chaque flux ingère des données dans plusieurs sous-partitions.
Nous proposons l’organisation logique de chaque flux en un ou plusieurs journaux virtuels

142

qui agrègent en permanence les demandes contenant plusieurs fragments des producteurs.
Il faut au moins un journal pour chaque partition d’un flux afin de les répliquer durablement.
Les entités de sauvegarde chargées de stocker durablement les journaux virtuels répliqués
peuvent continuer à voir les données en mémoire et sur disque sous forme de journaux
structurés.

Un système d’ingestion et de stockage évolutif doit pouvoir accueillir efficacement plu-
sieurs hôtes, chacun poussant plusieurs flux de données avec des exigences différentes en
termes de débit d’ingestion et de latence d’accès en lecture-écriture. Il doit pouvoir par
exemple prendre en charge l’ingestion de dizaines de flux très importants, c’est-à-dire ayant
des dizaines de milliers de partitions, mais aussi l’ingestion de millions de très petits flux,
c’est-à-dire ayant quelques partitions. Nous proposons de prendre en charge additionnelle-
ment la personnalisation du débit de réplication d’un flux unique en permettant au système
et aux utilisateurs d’ajuster la capacité de réplication, c’est-à-dire le nombre de journaux vir-
tuels répliqués pouvant être créés pour un flux unique. La réplication devrait être possible
en mode synchrone et asynchrone à la fois. Par exemple, pour les applications nécessitant
une ingestion plus rapide avec des exigences de cohérence plus faibles, les données doivent
être répliquées de manière asynchrone. Au contraire, pour les applications qui préfèrent une
grande durabilité à une consistance souple, les données doivent être répliquées de manière
durable et synchrone avant que les producteurs ne reçoivent confirmation de la bonne in-
gestion et que les consommateurs les récupèrent pour les traiter.

Enfin, nous discutons deux principes de conception : soutien local pour les données et
gestion distribuée des métadonnées. Ces principes peuvent mener à une intégration optimi-
sée du système d’ingestion et de stockage avec les moteurs de traitement.

À cette fin, nous proposons que le système d’ingestion et de stockage ait un contrôle
à granularité fine des flux acquis et évite de faire appel à des tiers pour la persistance des
données comme le fait Kafka en exploitant le cache du cœur du système d’exploitation. En-
suite, la co-localisation des moteurs de traitement avec les nœuds d’ingestion et de stockage
devrait utiliser des tampons mémoire partagés, tandis que les consommateurs de flux pour-
raient être implémentés avec une approche push, par opposition à une approche pull, amé-
liorant ainsi le débit et réduisant considérablement la latence de traitement.

Nous proposons de gérer les métadonnées sur le courtier fournissant accès à ses don-
nées correspondantes : nous distribuons ainsi les métadonnées de manière naturelle sur
l’ensemble du cluster de nœuds. Les métadonnées doivent pouvoir être interrogées indépen-
damment des données. Afin d’améliorer les performances, les métadonnées de partition de
flux doivent être stockées avec les données qu’elles caractérisent : de cette manière, les méta-
données peuvent être reconstituées facilement et de manière dynamique lorsque les données
sont récupérées ou migrées sur d’autres courtiers. En outre, lorsque cela est nécessaire pour
augmenter et réduire le moteur d’ingestion et de stockage afin de gérer efficacement des
différentes charges de travail, nous ne devrions que migrer les métadonnées décrivant les
données actuelles et éviter de déplacer des données de flux.

La réalisation d’un prototype pour une architecture unifiée pour l’ingestion des
données et le stockage

Sur la base des principes de conception mentionnés précédemment, nous présentons l’archi-
tecture KerA, un moteur optimisé d’ingestion et de stockage pour le traitement Big Data.

143

Nous rappelons au lecteur trois objectifs critiques qui ont été au cœur de l’architecture
actuelle de KerA.

1. Permettre un accès à granularité fine aux flux ingérés et intermédiaires gérés par des
applications de diffusion en continu ; c’est-à-dire, permettre la gestion de l’état via le
moteur d’ingestion et de stockage.

2. Améliorer le support des applications de diffusion en continu nécessitant des réponses
plus rapides que celles proposées par les systèmes actuels d’ingestion de pointe tels
qu’Apache Kafka.

3. Réduire considérablement le stockage des données et l’utilisation du réseau, ce qui
peut contribuer à réduire les délais de traitement et d’archivage des flux.

Nous exposons notre modèle de données unifié pour des flux illimités, enregistrements
et objets, puis nous décrivons les protocoles de partitionnement dynamique et les méca-
nismes légers d’indexation des décalages (offsets) pour l’ingestion évolutive. Nous détaillons
l’architecture KerA en décrivant le rôle de chaque composant de la gestion de l’ingestion des
flux et du stockage, puis nous décrivons les interfaces client exposées par le moteur unifié
d’ingestion et de stockage. Finalement, nous discutons les éléments de conception requis
pour une mise en œuvre architecturale tolérante aux pannes.

Les systèmes (de stockage) tolérants aux pannes sont en mesure de s’acquitter de leur
fonction en permanence, malgré les erreurs. Les utilisateurs d’applications basées sur des
flux requièrent des réponses à latence faible (quelques secondes) quelles que soient les condi-
tions. Afin de garantir le respect de ces exigences strictes, nous devons utiliser des techniques
reconnues pour récupérer les données aussi rapidement que possible. Pour mettre en œuvre
une récupération rapide après incident dans un traitement continu à latence faible, nous de-
vons nous appuyer sur des techniques similaires à celles développées par RAMCloud [83].
Elle permettent en effet de tirer parti de la bande passante agrégée du disque pour récupérer
en quelques secondes les données d’un nœud perdu. Le modèle de partitionnement à gra-
nularité fine de KerA favorise cette technique de récupération. Cependant, il ne peut pas être
utilisé en tant que tel ; les producteurs doivent ajouter en permanence des enregistrements
et ne pas subir les conséquences de la perte de courtiers, tandis que les consommateurs ne
doivent pas attendre que toutes les données soient récupérées car cela entraînerait des la-
tences élevées. Au lieu de cela, la récupération doit être obtenue en exploitant le décalage
des applications des consommateurs.

Nous nous inspirons de la technique de migration décrite précédemment. En cas erreur
d’un courtier, nous proposons de récupérer immédiatement les métadonnées du streamlet
à partir des métadonnées de la sauvegarde et de permettre à nouveau aux producteurs de
pousser les segments suivants du flux. En parallèle, nous procédons à la récupération des
données de la manière suivante. Toutes les secondes, pour chaque groupe de consomma-
teurs, nous stockons les derniers décalages utilisés dans les demandes de lecture et d’indi-
cation des consommateurs. Sur la base des dernièrs décalages de consommation, nous récu-
pérons d’abord les groupes non traités. Ensuite, nous procédons à la récupération des autres
groupes traités. De cette manière, les lecteurs continuent d’extraire des données à traiter,
même si ceci est limité par la vitesse de récupération.

Ensuite nous décrivons la mise en œuvre des techniques KerA que nous avons dévelop-
pées afin d’élaborer un prototype logiciel de haute performance basé sur C++ et Java. Nous

144

examinons plus en détail la mise en œuvre de la réplication qui utilise une technique sans
copie pour les bases de données en mémoire (zero-copy virtual log technique) et nous décri-
vons l’extension architecturale et la mise en œuvre du support local pour les données des
opérations de gestion de flux. Nous évaluons notre mise en œuvre par des charges de travail
synthétiques.

Nous évaluons l’impact des techniques d’ingestion dynamique, de réplication et de lo-
calisation sur les performances des producteurs et des consommateurs s’exécutant simul-
tanément sur plusieurs courtiers. Nous exécutons d’abord un ensemble de micro-tests syn-
thétiques en balayant un ensemble important de paramètres afin d’évaluer les performances
de base d’un producteur et d’un consommateur, mesurées en termes de débit d’ingestion
et de traitement. Ensuite, dans une configuration distribuée avec plusieurs courtiers et des
producteurs et consommateurs concurrents, nous comparons KerA et Kafka en nous concen-
trant sur le composant d’ingestion avec la réplication désactivée. L’objectif est de démontrer
l’efficacité du modèle de partitionnement de flux dynamique de KerA et des techniques al-
légées d’indexation des décalages. En outre, nous explorons l’efficacité de la mise en œuvre
de la réplication de journaux virtuels et nous évaluons l’impact de diverses configurations
sur le débit d’ingestion et de traitement. Enfin, nous évaluons l’impact de la localité de l’ar-
chitecture sur les performances des lectures et écritures en flux, grâce à la réduction des
interférences entre les lectures RPC d’un côté et les écritures et la réplication RPC de l’autre.

Apache Kafka et d’autres systèmes d’ingestion similaires (e.g., Amazon Kinesis [52],
MapR Streams [70]) fournissent une fonctionnalité de publication-souscription pour les flux
de données en partitionnant de manière statique un flux avec un nombre fixe de parti-
tions. Pour faciliter la prise en charge de futures charges de travail plus élevées et pour une
meilleure évolutivité du consommateur, ces systèmes surestiment le nombre de partitions
nécessaires. Au contraire, le composant d’ingestion de KerA permet une gestion élastique
des ressources au moyen de ruisseaux (streamlets) ce qui permet de stocker un nombre illi-
mité de sous-partitions de taille fixe. De plus, pour pallier le problème de l’indexation inutile
des décalages, les clients de KerA construisent de manière dynamique un décalage au niveau
de l’application en fonction des métadonnées du groupe de ruisseaux diffusés par les cour-
tiers via des RPC. Aucun des systèmes d’ingestion modernes n’est conçu pour tirer parti des
optimisations de la localité des données prises en compte par KerA. De plus, grâce à sa mise
en œuvre indépendante du réseau [86], KerA peut profiter des réseaux rapides émergents et
du RDMA, offrant des lectures et des écritures plus efficaces que l’utilisation de TCP/IP.

145

Publications

Publications dans des conférences internationales

[ICDCS2018] Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, María Pérez,
Bogdan Nicolae, Radu Tudoran, Stefano Bortoli. KerA: Scalable Data Ingestion for
Stream Processing. In IEEE International Conference on Distributed Computing Sys-
tems, Jul 2018, Vienna, Austria, https://hal.inria.fr/hal-01773799.w

[Cluster2016] Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, María Pérez.
Spark versus Flink: Understanding Performance in Big Data Analytics Frameworks.
In IEEE International Conference on Cluster Computing, Sep 2016, Taipei, Taiwan,
https://hal.inria.fr/hal-01347638v2.

Publications dans des workshops internationaux

[BigData2017] Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, María Pérez,
Radu Tudoran, Stefano Bortoli, Bogdan Nicolae. Towards a Unified Storage and Inges-
tion Architecture for Stream Processing. In Second Workshop on Real-time & Stream
Analytics in Big Data Colocated with the 2017 IEEE International Conference on Big
Data, Dec 2017, Boston, United States, https://hal.inria.fr/hal-01649207.

[CCGrid2017] Ovidiu-Cristian Marcu, Radu Tudoran, Bogdan Nicolae, Alexandru Costan,
Gabriel Antoniu, María Pérez. Exploring Shared State in Key-Value Store for Window-
Based Multi-Pattern Streaming Analytics. In Workshop on the Integration of Ex-
treme Scale Computing and Big Data Management and Analytics in conjunction with
IEEE/ACM CCGrid, May 2017, Madrid, Spain, https://hal.inria.fr/hal-01530744.

https://hal.inria.fr/hal-01773799
https://hal.inria.fr/hal-01347638v2
https://hal.inria.fr/hal-01649207
https://hal.inria.fr/hal-01530744

	Introduction
	Context
	Objectives
	Contributions
	Publications
	Dissertation plan

	Part I — Background
	Data ingestion and storage support for Big Data processing
	The stream processing pipeline
	Motivating use cases: processing and data requirements
	Requirements for stream ingestion and storage
	Selection of distributed systems for data ingestion and storage
	Stream-based ingestion systems
	Record-based storage systems
	HDFS
	Specialized stores
	Limitations of existing systems

	Conclusion

	Part II — Understanding performance in Big Data analytics frameworks
	Stream-based versus batch-based execution runtimes
	Background
	Apache Spark
	Apache Flink
	Zoom on the differences between Flink and Spark

	Methodology
	Workloads
	The importance of parameter configuration
	Experimental setup

	Evaluation
	Results
	Summary of insights

	Discussion
	Related work
	Fault tolerance trade-offs

	Exploring shared state for window-based streaming analytics
	Background
	Context
	Problem statement

	Memory deduplication with shared state backend
	Stateful window-based processing
	Deduplication proposal

	Synthetic evaluation
	Setup and Methodology
	Results
	Memory savings
	Summary of insights

	Discussion
	Comparison with existing approaches
	Pushing processing to storage

	Part III — KerA: a unified architecture for stream ingestion and storage
	Design principles for scalable data ingestion and storage
	Data first: towards a unified analytics architecture
	Processing engines should focus on the operators workflow
	Ingestion and storage should be unified and should focus on high-level data management
	Processing engines and ingestion/storage systems should interact through stream-based abstractions

	Scalable data ingestion for stream processing
	Dynamic partitioning using semantic grouping and sub-partitions
	Lightweight offset indexing optimized for sequential record access

	Handling diverse data access patterns
	Model stream records with a multi-key-value data format
	Leverage log-structured storage in memory and on disk
	Adaptive and fine-grained replication for multiple streams

	Efficient integration with processing engines
	Enable data locality support as a first class citizen
	Distributed metadata management for un/bounded streams
	Towards pushing processing to storage

	High level architecture overview
	Unified data model for unbounded streams, records and objects
	Scalable data ingestion and processing
	Dynamic stream partitioning model
	Lighweight offset indexing
	Favoring parallelism: consumer and producer protocols

	Global architecture
	Stream management: the coordinator role
	Stream ingestion: the broker role
	Stream replication: the backup role

	Client APIs
	Distributed metadata management
	Towards an efficient implementation of fault-tolerance mechanisms in KerA

	Implementation details
	Streaming clients: how reads and writes work
	The RPC layer
	Streaming clients architecture

	Efficient management of online and offline operations
	Persistence manager: high-performance ingestion
	Real-time versus offline brokers

	Durable ingestion of multiple streams: adaptive and fine-grained replication
	Motivation
	Our proposal: virtual logs

	Pushing processing to storage: enabling locality support for streaming
	State-of-the-art architecture: pull-based consumers
	Leveraging locality: push-based consumers

	Synthetic evaluation
	Setup and parameter configuration
	Baseline performance of a single client: peak throughput
	Producers: how parameters impact ingestion throughput
	Consumers: how parameters impact processing throughput

	Impact of dynamic ingestion on performance: KerA versus Kafka
	Impact of the chunk size: a throughput versus latency trade-off
	Validating horizontal and vertical scalability
	Impact of the number of partitions/streamlets
	Discussion

	Understanding the impact of the virtual log replication
	Baseline
	Impact of the configuration of the streamlet active groups
	Impact of the replication factor
	Increasing the number of virtual logs
	Discussion

	Going further: why locality is important for streaming

	Part IV — Conclusion and Future Work
	Final words
	Achievements
	Future directions

	Part V — Appendix

