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Université Sorbonne Paris Cité
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toutes les personnes spéciales rencontrées pendant cette inoubliable première année

parisienne: Olivia, Enri, Onder, Giulia, Eli, Fede, Chiara... Grazie a Dudo: le feste,
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savez comment on fait la fête! Marco (trombonista) e Filippo, cercare di inserirmi

nella vostra pienissima agenda varrà sempre la pena.
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Abstract

In recent years, the field of quantum optics has thrived thanks to the possibility of

controlling light-matter interaction at the quantum level. This is relevant for the

study of fundamental quantum phenomena, the generation of artificial quantum sys-

tems, and for quantum information applications. In particular, it has been possible

to considerably increase the intensity of light-matter interaction and to shape the

coupling of quantum systems to the environment, so to realise unconventional and

highly nonclassical states. However, in order to exploit these quantum states for tech-

nological applications, the question of how to measure and control these systems is

crucial.

Our work is focused on proposing and exploring new protocols for the measure-

ment and the control of quantum systems, in which strong interactions and peculiar

symmetries lead to the generation of highly nonclassical states. The first situation

that we consider is the ultrastrong coupling regime in cavity (circuit) quantum elec-

trodynamics. In this regime, it becomes energetically favourable to have photons and

atomic excitations in the ground state, that is no more represented by the standard

vacuum. In particular, in case of parity symmetry, the ground state is given by a

light-matter Schrödinger cat state. However, according to energy conservation, the

photons contained in these exotic vacua are bound to the cavity, and cannot be emit-

ted into the environment. This means that we can not explore and control them by

simple photodetection. In our work we propose a protocol that is especially designed

to overcome this issue. We show that we can infer the photonic properties of the

ground state from the Lamb shift of an ancillary two-level system.

Another class of systems in which the fundamental parity symmetry leads to very

unconventional quantum states is given by two-photon driven-dissipative resonators.

Thanks to the reservoir engineering, it is today possible to shape the interaction with

the environment to stabilize the system in particularly interesting quantum states.

When a resonator (an optical cavity) exchanges with the environment by pairs of

photons, it has been possible to observe the presence of optical Schrödinger cat states

in the transient dynamics of the system. However, the quantum correlations of these

states quickly decays due to the unavoidable presence of one-photon dissipation. Pro-

tecting the system against this perturbation is the goal of the parity triggered feedback

protocol that we present in this thesis.

Key words: quantum physics; quantum optics; quantum measurement; quan-

tum trajectory; quantum feedback; ultrastrong coupling; Schrödinger’s cat; reservoir

engineering; light-matter interaction; atoms and photons.
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Résumé

Ces dernières années, les progrès réalisés dans le contrôle de l’interaction lumière-

matière au niveau quantique ont conduit à de nombreuses avancées en optique quan-

tique, en particulier dans l’étude de phénomènes quantiques fondamentaux, dans la

conception de systèmes quantiques artificiels et dans les applications en information

quantique. Il a notamment été possible d’augmenter considérablement l’intensité

de l’interaction lumière-matière et de contrôler le couplage de systèmes quantiques

à leur environnement, afin d’obtenir des états non conventionnels et fortement non

classiques. Cependant, pour exploiter ces états quantiques en vue d’applications tech-

nologiques, il est crucial de pouvoir mesurer et contrôler ces systèmes avec précision.

Dans ce contexte, ce travail de thèse est consacré à l’étude de nouveaux proto-

coles pour la mesure et le contrôle de systèmes quantiques dans lesquels des fortes

interactions et des symétries particuliers conduisent à la génération d’états fortement

non classiques. Nous nous intéressons dans un premier temps au régime de couplage

ultra-fort de l’électrodynamique quantique en cavité (et de circuit). Plus précisément,

l’état de fondamental n’est plus le vide standard, car il devient énergiquement favor-

able qu’il contienne des photons. Dans ce régime on peut même obtenir des chat de

Schrödinger comme état fondamental. En revanche, pour assurer la conservation de

l’énergie, les photons contenus dans ce vide exotique sont liés à la cavité et ne peu-

vent pas s’échapper dans l’environnement. Cela signifie qu’ils ne peuvent être mesurés

par simple photodétection. Nous proposons dans ce travail un protocole spécialement

conçu pour surmonter cette difficulté. Nous montrons qu’il est possible de déduire les

propriétés photoniques de l’état fondamental à partir du déplacement de Lamb d’un

système à deux niveaux auxiliaire.

Les résonateurs optiques à paires de photons constituent une autre classe de

systèmes dans lesquels la symétrie de parité conduit à des états quantiques non con-

ventionnels. Grâce à “l’ingénierie de réservoir”, il est aujourd’hui possible de contrôler

l’interaction d’un système avec son environnement, de façon à le stabiliser dans des

états quantiques particulièrement intéressants. En particulier, quand un résonateur

(une cavité optique) est couplé à l’environnement par échange de paires de photons,

il est possible de créer de chats de Schrödinger optiques dans la dynamique transi-

toire du système. Les corrélations quantiques de ces états sont par contre rapidement

perdues en raison de la présence inévitable de dissipation à un photon. Protéger le

système contre cette perturbation est le but du protocole de feedback basé sur la

parité que nous présentons dans cette thèse.

Mot clefs: physique quantique; optique quantique; mesure quantique; trajectoires

quantiques; feedback quantique; couplage ultrafort; chat de Schrödinger; ingénierie de

réservoirs; interaction lumière-matière; atomes et photons.
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Chapter 1

Introduction

When Neil Amstrong set his left foot on the lunar surface, he pronounced the following

famous words: “That’s one small step for [a] man, one giant leap for mankind”.

Today I look at my PhD thesis and I think the exact contrary: “This is a small step

for science, one giant leap for a young man (me)”. Indeed, these years working on

quantum physics represented a radical change in my vision of reality and science:

from a very realist vision of the world, I gradually developed a more subjective point

of view. As a young student in high school and later in my university studies, I

grew up with the idea that, with science, we are more and more approaching the

understanding of an absolute and unique reality. In this vision, reality is something

objective and independent from any cognitive being, and science is the description

of what we receive, as passive spectators, from this external world. This kind of

questions belong to a very long-standing philosophical debate that, in our occidental

culture, finds its roots in the ancient Greek thinking [1], and follows into the formalised

doctrines of modern epistemology. Probably conditioned by traditional philosophies,

science today is still largely dominated by the point of view of scientific realism [2].

However, the revolutionary developments of science in the 20th century, and quantum

physics in particular, are strongly challenging this vision of reality.

Quantum physics is probably the most influential theory for our contemporary life.

It allows to understand the world at the atomic scale and, by capturing the physics

of light and of the solid state, it determined the technological revolution that we are

living today. Mobile phones, computers, the internet: a very large part of human

wealth today is due to the knowledge of quantum physics.

Nevertheless and despite its enormous success, the ontological meaning of quan-

tum physics is still the matter of an intense debate [3–7]. It is enough to visit the

Wikipedia page for “Interpretations of quantum mechanics” to understand the level

of disagreement around this theory [8]. The table in Fig. 1.1 is extracted from this

page. It summarises the manifold of existing interpretations and their position on

various questions: in few words, “a map of madness” (quote from [9]).

The seventh column of this table is about “collapsing wave function”. In most

formulations of quantum physics, wave function collapse is a founding postulate of

quantum physics and is related to what happens when we perform a measurement on

a system. However, according to the table in Fig. 1.1, only half of the interpretations

consider it as fundamental, and among them every interpretation gives a different

meaning to the postulate. The way in which a measurement happens is one of the
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Figure 1.1 Table resuming the different positions of the known interpretations of

quantum physics. From the Wikipedia page for “Interpretations of quantum mechan-

ics” [8]. A more detailed description of physicist attitudes toward quantum mechanics

is given in Ref. [3].

most non-trivial aspects in interpriting quantum physics, indeed the “only mystery”

(quote of R. Feynman et al. [10])

What are the changes that quantum physics has brought about? And what does

quantum physics tell about the measurement? One of the biggest changes introduce by

quantum physics is the fact that any observable quantity must satisfy the Heisenberg’s

uncertainty principle [11]. In our classical conception of reality, one can determine all

the properties of a system, and once that this condition of total knowledge is reached,

it is in principle possible to predict the outcome of any future observation on the

system. This is the idea of Isaac Newton’s clockwork universe [12], where everything

follows precise laws and any prediction is easy if one knows the starting conditions.

Quantum physics, and precisely the Heisenberg’s uncertainty principle, tells that this

idea is an illusory misconception of our classical vision. Our predictions around the

observables quantities of any system have intrinsic limits that are not due to the

imperfection of our measurement, but are rather the expression of a fundamental

behaviour of nature.

In this thesis we will consider the measurement and control of quantum optics

systems in which the limits of Heisenberg’s principle are attained. At the risk of

boring some experts, and in an attempt to include the broadest audience to this

discussion, in Figure 1.2 we will try to illustrate this principle in a very simplified
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(a)

(e)

(f)

(g)

(h)

(b)

(c)

(d)

Figure 1.2 A very simplified illustration of the Heisenberg principle. The update of

probability distributions (the histograms) after the measurement of position (magenta

little boxes) and the direction (blue little boxes) for a large object (a ball) and a

microscopic object (an atom).

form and language. Let us consider a ball that can move left and right inside a box

that is ideally divided into two sectors. In this simplified model the ball can be in four

possible configurations (see Fig. 1.2 (a)): 1, left side moving to the right; 2, right side

moving to the right; 3, right side moving to the left; 4, left side moving to the left.

Imagine that the box is closed and that we do not know anything about the ball. The

only thing that we can say is that the ball has the same probability, 50%, of being in

the left or in the right side of the box. And the same probability is valid for the two

possible directions, label (b) in Figure 1.2.

By opening the box and sequentially measuring the position (c) and the direction

of the ball (d), we can update our knowledge about the ball, up to a condition of total

knowledge. We have indeed been able to determine the “real” configuration of the

ball (the first one listed in (a)), that in principle allows us to predict with absolute

certainty, the ball position and direction at every subsequent observation.

This reasoning, that works in our classical conception of reality, is not valid any-

more in the quantum world. Let us consider now an atom inside the box (Fig. 1.2(e)),
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and let us follow the same argumentation as for the ball. Starting from total ignorance

(f), and by measuring the atom position (g) and direction (h), we may think to know

everything about the atom. In particular, by measuring the position quickly again,

we are sure to find the atom in the same position as suddenly before. Here comes the

big surprise: in the quantum world we can not be sure about this anymore. Indeed

when we measured the direction we lost all certainty about the position (h) and if

we measure the position we lose all information about the direction (g). Either we

perfectly know the position or the direction, we can not know both.

This behaviour is at odds with our intuition, but we have no explanation for it:

this is a fact, something that we see and that we have to account for. Why do not

we have the same picture for the ball? Actually, something similar is happening for

the ball as well, but on large objects the effect is too small to be noticed. That we

can reach a condition of total knowledge, in which all the propriety of a system are

perfectly predictable, it is an illusion. And this illusion is due to the large size of the

objects composing our daily life experiences.

Since the condition of total knowledge is unaccessible, thinking in term of config-

urations for the atom is misleading. The only thing that we can do is to handle the

atom’s probability distributions, that are describing our knowledge about the atom

and defining the likelihood to observe a certain position or direction. In this regard,

quantum physics is a tool (a very sophisticated one) to handle our a priori knowledge

and our information of reality. And this idea can be indeed extended to science in gen-

eral. Atoms, particles, fields, equations of motion: all the concepts and elements of the

theories in science, are not a representation of something “out there”, they are rather

the abstract tools that we use to elaborate our knowledge about what we observed

in the past and what we are going to observe in the future. Indeed many modern

formulations of science are based on the concept of information (some examples in

mathematics [13, 14], in thermodynamics and physics [15–17], and in neuroscience

[18, 19]).

Translated into the language of quantum physicists, the idea is to interpret the

wave function as a description of the a priori information that an observer has on the

considered system. In other words, the wave function is more similar to a probability

distribution than to a configuration of the system. This represents a possible solution

to the long-standing debate around the measurement problem in quantum physics

[7, 20–23]. The wave function collapse is nothing else then the (Bayesian) update of

this probability distribution. A pure state is a state of maximal knowledge, quantum

entanglement is a particular class of correlations, and decoherence describes a peculiar

form of information losses.

As we have mentioned above: in the physical conditions of our “normal life”, the

consequences of the Heisenberg uncertainty principle are not apparent. Indeed, even

if quantum physics is needed to explain the nature of the most basic elements of our

reality (the colour of the sun, the structure of matter, etc.), the specific consequences
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of this principle are invisible to our “normal eyes”. Nevertheless, the advances in

experimental quantum optics allow today to approach the limits of the Heisenberg

principle. In this kind of experiments the role of the measurement becomes crucial.

Quantum optics has always been very central in the development of quantum

physics. It is indeed by studying the light that the use of a quantum description has

been necessary the first time. In order to explain the spectral shape of solar radiation

(or more general, of the black body radiation), Max Planck in 1899 suggested that

light energy was formed by discrete quantities called quanta [24]: the theory of quanta,

later renamed as quantum mechanics, was just born. Few years later, this new theory

had its first important successes by explaining the photoelectric effect (Einstein, 1905

[25]) and the structure of the hydrogen atom (Born, 1913 [26]).

Since its first stages, quantum physics has revolutionised our understanding of

light, matter, and of their interaction. One hundred years later, light-matter interac-

tion is still among the most important fields in which quantum physics is tested and

exploited. Indeed, by improving the control of light-matter interaction, it is possible

to reach regimes in which quantum physics is crucially at play, and in which we can

observe and exploit properties that are otherwise unaccessible. This is precisely the

aim of cavity Quantum Electrodynamics (cavity QED) [27]. In simple words, cavity

QED studies the physics of one or more atoms interacting with an electromagnetic

field that is confined inside an optical cavity. Even if the way to model this physics

in terms of two-level systems (for the atoms) and of bosonic modes (for the electro-

magnetic field) is known since more then fifty years [28–32], it is only in the last

decades that the technological advances have permitted to access these systems in a

controlled way. The big challenge has been to reduce the effects of dissipation, and

then, to reach regimes of increasingly large light-matter coupling [33, 34]. When the

interaction strength becomes larger than the dissipation, the system enters the so

called strong coupling regime. In this regime, the system energy spectrum is resolv-

able [35], and the relatively long lifetime of atom-cavity correlations allows to perform

accurate estimations of the system state [36].

In this audacious exploration of the quantum world, cavity QED has more recently

be joined by two relatively new disciplines of solid-state physics: semiconductor cavity

QED [37, 38], and superconducting circuit QED [39, 40]. Exploiting the quantized

degrees of freedom of a superconductive circuit, it is indeed possible to realise the

same physics of cavity QED [41–48]. On a superconducting chip, optical cavities are

replaced by transmission line resonators and the artificial two-level atoms are realised

by exploiting the nonlinearity of Josephson junctions [49, 50]. The high degree of

control in these systems makes these systems very promising candidates as quantum

information devices. In semiconductor microcavities [51, 52], the electromagnetic field

is confined between two semiconductor mirrors and the role of atoms is played by the

electronic transitions in semiconductor nanostructures [53, 54]. It is in that kind of

structures, that the so called field of quantum fluids of light was born [55]. In the strong
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light-matter coupling regime, intra-cavity photons are mixed to electronic excitations,

defining a new kind of quasiparticles, the polaritons [29]. It has been proved that

the effective interactions between polaritons are strong enough to generate collective

many-body phenomena, such as the Bose-Einstein condensation [56], or superfluidity

[57].

Another reason why superconducting circuit QED and semiconductor cavity QED

are particularly interesting is their suitability to reach the so called ultrastrong coupling

regime, in which the vacuum Rabi frequency (quantifying light-matter interaction

strength) is comparable to the bare transition frequencies of the atom and of the cavity.

This regime of intense interaction is attained in circuit QED experiments thanks to

the strong confinement of light in transmission lines [58–63], while in semiconductor

realisations the interaction with the many electronic transitions can be recast into a

very large effective interaction with a single collective transition momentum [64–67].

One of the reason why ultrastrong coupling regime has recently attracted a growing

interest, is that in this regime the ground state can contain non-trivial population

and correlation of light and matter. Indeed in this regime, it becomes energetically

favourable to have photons and light-matter correlations in the ground state. When

the number of artificial atoms becomes large, some ultrastrong coupling models even

predict the emergence of the so called superradiant phase transition [68–72]. According

to the particular symmetry of the model, the ground state can be for example a

Schrödinger cat state of correlated light and matter [73], or it can be a squeezed

vacuum [63].

The interest of Schrödinger cat states both for fundamental and for technological

developments, is witnessed by the literature [27, 74–77]. Another way to yield this

kind of states is through reservoir engineering. Indeed, recently it has been possible

to engineer the environment with precise tailored symmetries, and to let a system

relax to a target, non-trivial steady state [78–85].

Given the possibility to generate these highly nonclassical states, a question arises

rather naturally: how can we measure and control them? This important question,

finds today a renewed meaning. Indeed, in the past it was only possible to test the

ensemble properties of quantum systems. The advances in the protection of quantum

systems from decoherence, and in the precision of the measurements, allow today to

track the quantum state trajectory even on single shot experiments [86–89]. For this

reason quantum measurement and trajectories represent today a key topic for new

disciplines such as quantum control and quantum thermodynamics [90–93].

The work reported here is part of this field. This thesis presents original results

about: i) measurement protocols to detect exotic quantum optical ground states with

photons in the ultrastrong coupling regime; ii) a theory of quantum feedback for the

stabilisation of photonic Schrödinger cat states in driven-dissipative resonators.

The manuscript is structured as follows. In Chapter 2 we introduce the paradig-

matic models of quantum optics, that we will use along this manuscript. After a
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derivation of the electromagnetic field quantization, we introduce the paradigmatic

models of light-matter interaction. Chapter 3 presents the theoretical framework that

is necessary to include the out-of-equilibrium nature of the considered open quantum

system. In particular we derive and present in detail the master equation approach,

and discuss its validity in the ultrastrong coupling regime. In Chapter 4, we introduce

the basic elements of quantum measurement and trajectories. Starting with a pre-

sentation of interpretative framework of quantum mechanics, we derive the stochastic

equations of quantum trajectories, and discuss their relation with the master equation

approach. In Chapter 5 we present our proposal for a non-destructive measurement

of light-matter populations and correlations in the exotic vacua achieved in the ul-

trastrong coupling regime [94]. Finally, Chapter 6 presents our analysis of quantum

trajectories for a resonator with two-photon drive and dissipation [95]. Moreover we

present a parity-triggered feedback control protecting photonic Schrödinger cat states

against one-photon decoherence [96].





Chapter 2

Paradigmatic models in quantum

optics

This chapter is aimed at introducing the reader to the theoretical description of the

physical systems investigated in this thesis.

At the heart of our work is light and its quantum description. In all the systems

that we considered, the electromagnetic field plays the central role. For this reason

the chapter begins with a detailed derivation of the quantum description of light

(Sec. 2.1).

The second important ingredient of our investigation is light-matter interaction.

Recent advances in controlling light and matter degrees of freedom have allowed physi-

cists to reach new regimes in which a quantum model of light-matter interaction is

required. While in free space photons are mostly independent particles, in some partic-

ular realisations it has been possible to enhance significant matter-mediated effective

interaction between photons [55]. In Section 2.2.1 we describe the quantization of the

electromagnetic field in a dielectric medium, in which the nonlinearities can mediate

an effective interaction between hybrid light-matter particles, called polaritons.

The high level of control recently reached in the fields of cavity and circuit Quan-

tum Electrodynamics (QED), allows physicist to realise a variety of quantum mod-

els of interacting atoms and photons. Section 2.2.2 provides an introduction to the

paradigmatic cavity QED models, and Sec. 2.2.3 discusses their peculiar behaviour

when the regime of ultrastrong coupling is attained.

2.1 Quantum description of light

In this section we present the quantization of electromagnetic field, i.e. the formal path

from the classical to the quantum description of electrodynamics. The classical frame

of electrodynamics is basically defined by the real valued electric and magnetic vec-

tor fields governed by Maxwell’s equations. It turns out that the electromagnetic

field can be decomposed as a sum of independent harmonic oscillators. Furthermore,

the harmonic oscillator is a very convenient model to introduce the formal steps of

the quantization process. For these reasons, we start this section by reviewing the

canonical quantization of an harmonic oscillator (sec 2.1.1). In Sec. 2.1.2 and in

Sec. 2.1.3 we introduce the canonical description and the mode decomposition of the

23
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electromagnetic field, and in Sec. 2.1.4 we derive the final quantum description of the

electromagnetic field modes.

We point that this section is based on the very comprehensive textbooks in

Refs. [97–99] and on the lecture notes in Refs. [100, 101].

2.1.1 The harmonic oscillator

The aim of this section is to introduce, in the simplified framework of an harmonic

oscillator, the formal steps of canonical quantization that we will follow in the more

complicated situation of the electromagnetic field.

The harmonic oscillator is probably the most used dynamic model in physics.

Many physical system, such as the electromagnetic field, can be recast or approxi-

mated in terms of harmonic oscillators and, most importantly, it is a solvable model.

The dynamics of a classical harmonic oscillator in one dimension is described by the

following differential equation for the coordinate x:

mẍ = −kx (2.1)

where m is the mass of the system that is experiencing the elastic force F = −kx.

This dynamics is alternatively described by the system Lagrangian

L(x, ẋ) =
mẋ2

2
− kx2

2
, (2.2)

in its generalised coordinate x. The differential Equation (2.1) is easily regained

through the Euler-Lagrange equation

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 . (2.3)

The conjugate momentum p and the Hamiltonian H are determined from this

Lagrangian:

p =
∂L

∂ẋ
= mẋ , (2.4)

H(x, p) = pẋ− L =
p2

2m
+
kx2

2
=

p2

2m
+
m

2
ω2x2 , (2.5)

where ω =
√
k/m is the angular frequency of the oscillator.

To quantize the classical Hamiltonian, the first step is to formally substitute x and

p in Eq. (2.5) with some operators x̂ and p̂ on the system Hilbert space, playing the

role of their quantum counterparts. The expression Hamiltonian is therefore:

Ĥ =
p̂2

2m
+
m

2
ω2x̂2 . (2.6)
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The key point is now to determine x̂ and p̂. The operator x̂ and p̂ are now Hermitian

operators acting on the same Hilbert space. One can, in particular, express one in

terms of the other. Indeed, from the Heisenberg uncertainty principle, one can show

that [x̂, p̂] = i~ [102–104].

In a more rigorous and general way this was postulated by Born [105] and later

generalised by Dirac [98, 106, 107]: the commutator of two quantum observables ô1

and ô2 is related to the Poisson bracket of their classical counterparts via:

[ô1, ô2] = i~ {o1, o2} , (2.7)

where {o1, o2} is the Poisson bracket between two classical observables.1 In the partic-

ular case in which o1 and o2 are the conjugate generalised coordinate and momentum

(like x and p) the relation (2.7) reduces to

[ô1, ô2] = i~ . (2.8)

Once that the quantum description of the harmonic oscillator is settled, we are

interested in diagonalising its Hamiltonian, since its eigenvalues and eigenvector al-

lows to solve the system dynamics. The common way to do so is by recasting the

Hamiltonian through the annihilation and creation operators, respectively

â
def
=

√
mω

2~

(
x̂+

i

mω
p̂

)
, â†

def
=

√
mω

2~

(
x̂− i

mω
p̂

)
. (2.9)

Employing the commutation relation of x̂ and p̂ it is straightforward to prove that

[â, â†] = 1 . (2.10)

Inverting the definitions in Eqs. (2.9), one attains:

x̂ =

√
~

2mω
(â† + â) , p̂ = i

√
~mω

2
(â† − â) . (2.11)

These expressions can be inserted in the Hamiltonian Equation (2.6), obtaining the

following expression:

Ĥ = ~ω
(
â†â+

1

2

)
= ~ω

(
N̂ +

1

2

)
, (2.12)

1In the canonical coordinates qi and pi, the Poisson bracket between two observables o1(qi, pi, t)

and o2(qi, pi, t) is defined as

{o1, o2} =

N∑
i=1

(
∂o1
∂qi

∂o2
∂pi
− ∂o1
∂pi

∂o2
∂qi

)
.

It follows that {qi, pj} = δij .
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where N̂
def
= â†â is called the number operator. From the commutator of â and â† one

can show that

[N̂ , â†] = â† and [N̂ , â] = −â . (2.13)

Using this commutation relation it can be proved that the spectrum of N̂ is given by

the positive natural numbers n, and that â and â† allow to climb down and up the

corresponding eigenstates |n〉:

N̂ |n〉 def
= n |n〉 ; â† |n〉 =

√
n+ 1 |n+ 1〉 ; â |n〉 =

√
n |n− 1〉 . (2.14)

The observable N̂ represents the number of energy quanta contained in the system.

In this regard â and â† are called the annihilation and creation operators, coherently

with the relations (2.14).

2.1.2 Canonical quantization of the electromagnetic field

In the previous section we saw that the main ingredients to define a quantum system

are the Hamiltonian and the commutation relations between the operators intervening

in its expression. We also saw that the commutator between two canonical conjugate

variables is postulated equal to i~. In the case of the harmonic oscillator, it was

easy to recognise the two canonical conjugate variables are x and p. However for the

electromagnetic field this is not so direct. That is the reason why in this section we

will take the time to review the Lagrangian description of the electromagnetic field,

and to retrace the steps of its canonical quantization.

The dynamics of the electromagnetic field in vacuum and absence of charges is

encoded by the four Maxwell’s equations:

∇ ·E = 0 ,

∇ ·B = 0 ,

∇×E = −∂B
∂t

,

∇×B =
1

c2

∂E

∂t
.

(2.15)

The electric and magnetic fields E and B are typically described through the electric

scalar potential φ and the magnetic vector potential A as

E = −∇φ− ∂A

∂t
and B = ∇×A . (2.16)

These two potentials define the so called four-potential Aµ
def
= (φ/c,−A), whose com-

ponents are typically chosen as generalised coordinates in the Lagrangian description

of electrodynamics. They completely define the electromagnetic field and, contrary to

the 6 components of the electric and magnetic fields (E and B) that are constrained
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by the Maxwell’s equations, the components of the four-potential only have to respect

a minimal set of constraints that depend on the chosen gauge.

In the covariant formulation of electrodynamics, the Lagrangian density in vacuum

and absence of external charges reads (we use the Einstein notation for indices):

L(Aµ, ∂tAµ) = − 1

4µ0

F µνFµν , (2.17)

where the electromagnetic tensor Fµν is a covariant antisymmetric tensor defined as:

Fµν
def
= ∂µAν − ∂νAµ and F µν = ηµα Fαβ η

βν . (2.18)

Here ηµν is the Minkowsky metric tensor and the time-space derivatives ∂µ are defined

as:

xµ = (ct,x) = (ct, x, y, z) and ∂µ =
∂

∂xµ
=

(
1

c

∂

∂t
,∇
)
.

Note that the potentials φ and A are unique only after a gauge choice. The most

comfortable choice for the quantization of the electromagnetic field is the Coulomb

gauge, defined by the condition

∇ ·A = 0 . (2.19)

In this gauge and in absence of charges, φ can be fixed to an arbitrary constant and

Eq. (2.16) simplifies to

E = −∂A
∂t

and B = ∇×A . (2.20)

Through these relations we can now express the tensor Fµν as a function of E and B:

Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0

 (2.21)

and

F µν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

 . (2.22)

The validity of the Lagrangian density (2.17) is proved by its invariance with

respect to Lorentz transformations and by the fact that it reproduces the Maxwell’s

equations through the use of the Euler-Lagrange equations:

∂ν

[
∂L

∂(∂νAµ)

]
− ∂L
∂Aµ

= 0 . (2.23)
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With the target of defining the Hamiltonian and the commutators, the first thing to

do is to identify the canonical coordinates, i.e. to determine the conjugate momenta

Πµ of the coordinate Aµ. They can be computed from the Lagrangian density in

Eq. (2.17):

Πµ def
=

∂L
∂(∂tAµ)

=
1

c

∂L
∂(∂0Aµ)

. (2.24)

Note that

∂(FαβFαβ)

∂(∂νAµ)
= 2Fαβ ∂Fαβ

∂(∂νAµ)

= 2Fαβ

(
∂(∂αAβ)

∂(∂νAµ)
− ∂(∂βAα)

∂(∂νAµ)

)
= 2Fαβ(δναδ

µ
β − δνβδµα)

= 2F νµ − 2F µν

= 4F νµ

(2.25)

Using equations (2.25), (2.21) and (2.22) it is thus possible to show that:

Πµ = − 1

cµ0

F 0µ = ε0(0,E) . (2.26)

The fact the Π0 = 0 is not unimportant: it means that A0
def
= φ/c is not an independent

field. Indeed as we already reminded above, in the Coulomb gauge, the absence of

charges implies that the electric scalar potential φ is an arbitrary constant, and it can

be fixed to zero.

Using Eq. (2.8) and reminding that Aµ, Πµ and Ei are space-dependent fields, one

might be tempted to introduce the following canonical commutation relations for the

quantum observables of the problem:[
Âµ(r), Π̂ν(r′)

]
?
= i~ δµνδ3(r − r′) ,

i.e.
[
Âi(r), Êj(r

′)
]

?
= −i~

ε0
δijδ

3(r − r′) .
(2.27)

Unfortunately these relations are wrong! The Coulomb gauge imposes an additional

constraint to the electromagnetic field. Equation (2.19) implies that not all the com-

ponents of A and E are independent and for this reason the correct commutation

relations for the corresponding quantum operator are:[
Âµ(r), Π̂ν(r′)

]
= i~ δ(tr)

µν (r − r′) ,

i.e.
[
Âi(r), Êj(r

′)
]

= −i~
ε0
δ

(tr)
ij (r − r′) ,

(2.28)
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where we have introduced the so-called “transverse delta function”, which has the

same effect as the usual delta function on transverse fields and which is defined as

δ
(tr)
ij (r) =

∫
d3k

2π
eik·r

(
δij −

kikj
k2

)
. (2.29)

Note that here and above Latin letter indexes refer to the components of 3-dimensional

space fields such as the vector potential A and the electric field E, while the Greek

letter indexes refer to covariant four-vectors or matrices such as Aµ or F νµ. The

function δ
(tr)
µν (r−r′) that we use in the first of Eqs. (2.28) is only defined for µ, ν 6= 0 .

The complete justification for the use of the traverse delta function and the complete

derivation of these commutation relations go beyond the aim of this section. The

target here is to provide an idea of the formal steps to follow for a rigorous quantization

of the electromagnetic field, according to the postulates of quantum mechanics. For

more details on the traverse delta function and on the derivation of this commutation

relations we address the reader to the paragraph 7.7 of Ref. [97] in which one can

find a very complete description of this derivation.

The next step toward the quantization of the electromagnetic field is to determine

its Hamiltonian. The Hamiltonian density is defined through the Legendre transfor-

mation

H def
= Πµ(∂tAµ)− L . (2.30)

Using equations (2.26), (2.21) and (2.22) one can show that

H(Aµ,Π
µ) = − 1

µ0

F 0µ∂0Aµ +
1

4µ0

F µνFµν

= − 1

µ0

F 0µ(F0µ + ∂µA0) +
1

4µ0

(
2B2 − 2

E2

c2

)
= − 1

µ0

F 0µF0µ +
1

2µ0

(
B2 − E

2

c2

)
=

1

µ0

E2

c2
+

1

2µ0

(
B2 − E

2

c2

)
=

1

2

(
B2

µ0

+ ε0E
2

)
(2.31)

where we used the fact that, since A0 is fixed to zero then also ∂µA0 = 0. This

expression coherently corresponds to the usual formula of the energy density for the

electric and magnetic field. Using Eq. (2.20), we can now expres the Hamiltonian as

a function of the only field A, or as a function of its canonical conjugate fields A and

Π:

H(Aµ,Π
µ)

def
=

∫
d3rH =

ε0
2

∫
d3r

[(
∂A

∂t

)2

+ c2(∇×A)2

]

=
1

2ε0

∫
d3r

[
Π2 +

1

µ0

(∇×A)2

] (2.32)
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Here the parallelism with the harmonic oscillator is nearly settled. In Eq. (2.5)

we have a quadratic form of the Lagrangian generalised coordinates A and of its

conjugate momentum Π
def
= ε0E, that commute according to the commutation relation

in Eq. (2.28). It can be shown that this Hamiltonian can be diagonalised in a structure

very similar to that of the harmonic oscillator. In order to achieve this diagonalisation

we first need to introduce the mode decomposition of the electromagnetic field. This

is the topic of the next section.

2.1.3 Mode decomposition

In this section we will show that the electromagnetic field can be expressed as a linear

superposition of wave modes. This will suggest the right variable change leading to

the diagonalisation of the electromagnetic field Hamiltonian. First of all we recall the

3rd and 4th Maxwell’s equation in absence of charges:

∇×E = −∂B
∂t

and ∇×B =
1

c2

∂E

∂t
. (2.33)

From this last equation and replacing the fields E and B with the expressions given

by equations (2.20) one finds

∇× (∇×A) = − 1

c2

∂2A

∂t2
(2.34)

Given that∇× (∇×A) = ∇(∇ ·A)−∇2A and that∇ ·A = 0 (see Eq. (2.19)), it is

straightforward to show that the vector potential A evolves according to the following

wave equation:
1

c2

∂2A

∂t2
−∇2A = 0 . (2.35)

The solution of this differential equation depends on the initial condition and

on the boundary conditions. Without loss of generality, we will consider here the

simplest situation in which the field is confined in a cubic box of size L and satisfies

periodic boundary conditions. Under these conditions the electromagnetic field can

be expressed as a sum of plane-wave modes:

A(r, t)
def
=
∑
k,ε

√
~

2ε0L3ωk

[
αk,ε ε e

ik·r−ωkt + α∗k,ε ε
∗e−ik·r+ωkt

]
, (2.36)

where the sum runs over the possible wave vectors k and polarisation complex unit

vectors ε. In order to fulfill the wave Equation (2.34), the wave frequency ωk is

a function of the wave vector: ωk = c|k|. According to the box confinement and

boundary condition the allowed wave vectors are k = 2πn/L, where n is a set of

three integers n = (nx, ny, nz). For every wave vector we have two possible orthogonal
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unit vectors ε, they are orthogonal and they lay on the plane orthogonal to the wave

vectors, such ε · k = 0.

Every couple of k and ε defines a wave mode that evolves independently to the

others at the frequency ωk. The complex coefficients α(k,ε) define the amplitude of

the mode and depend on the initial and boundary conditions, the field A(r, t) is

completely defined by these coefficients.

2.1.4 Quantum description of the electromagnetic field

The mode decomposition given by Eq. (2.36) suggests the change of variables that

can diagonalise the electromagnetic Hamiltonian. Let us recast the quantum field

operator Â(r) of the vector potential field as:

Â(r)
def
=
∑
k,ε

√
~

2ε0L3ωk

[
âk,ε ε e

ik·r + â†k,ε ε
∗e−ik·r

]
. (2.37)

Using Eq. (2.36) and Eqs. (2.20) the mode decomposition of quantum field operators

Π̂(r), Ê(r) and B̂(r) reads

Π̂(r) = −ε0Ê(r) = −i
∑
k,ε

√
~ωkε0
2L3

[
âk,ε ε e

ik·r − â†k,ε ε∗e−ik·r
]

(2.38a)

B̂(r) = i
∑
k,ε

√
~

2ε0L3ωk

[
âk,ε (k × ε) eik·r − â†k,ε (k × ε∗)e−ik·r

]
. (2.38b)

By using these expressions for the operators of the electromagnetic field we can

rewrite the Hamiltonian (Eqs. (2.31) and (2.32)) in the following diagonalised form:

Ĥ =
∑
k,ε

~ωk

(
â†k,εâk,ε +

1̂

2

)
=
∑
k,ε

~ωk

(
N̂k,ε +

1̂

2

)
, (2.39)

where we have defined the mode number operator Nk,ε
def
= â†k,εâk,ε, in perfect analogy

with what we did for the harmonic oscillator.

The last ingredient to define our quantum system are the commutation relations.

One can prove that the canonical commutation relations postulated for the conjugate

variables of the electromagnetic field, equations (2.28), imply that the mode operators

âk,ε and â†k,ε respect the following commutation relations:

[âk,ε, â
†
k′,ε′ ] = δkk′δεε′ . (2.40)

The proof of this equivalence is a simple calculation: see Section 7.7 of Ref. [97] or

Chapter 3 of Ref. [99] for more details.
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As a consequence of the commutator Eq. (2.40)

[N̂k,ε, â
†
k,ε] = â†k,ε , [N̂k,ε, âk,ε] = −âk,ε , (2.41)

and the action of âk,ε and â†k,ε on the eigenstates of N̂k,ε are given by the following

equations:

N̂k,ε |nk,ε〉 def
= nk,ε |nk,ε〉 ,

â†k,ε |nk,ε〉 =
√
nk,ε + 1 |nk,ε + 1〉 , âk,ε |nk,ε〉 =

√
nk,ε |nk,ε − 1〉 .

(2.42)

The eigenvalues of N̂k,ε are the positive integers and its eigenstates are the so called

Fock states |nk,ε〉. This observable quantifies the number of quanta in the considered

mode of the electromagnetic field. These quanta are called photons, and âk,ε, â
†
k,ε are

the photon annihilation and creation operators,

âk,ε =

√
ε0

2~L3

∫
d3r e−ik·rε

[√
ωk Â(r)− i√

ωk
Ê(r)

]
(2.43)

Troughout this thesis we will study the electromagnetic field confined inside optical

cavities. The fact of confining the light in a small space (combined with the very good

quality of the confining mirrors) results in a large frequency spacing. This allows to

discern the different modes and most of the times it is possible to work in a condition

in which only one cavity mode enters in the field dynamics. Using this assumption

the quantum description take the very simplified form

Ĥc = ~ωc â†â and [â, â†] = 1̂ , (2.44)

where we introduced the frequency ωc of the relevant cavity mode and where we fixed

to zero the energy of the vacuum state. This Hamiltonian is the first brick of all the

systems that we will consider along this manuscript.

2.2 Light-matter interaction

In this section we will introduce some important models of light-matter interaction. In

Section 2.2.1 we derive the Hamiltonian of the effective photon-photon interaction that

is mediated by a generic dielectric medium. Section 2.2.2 provides an introduction to

the most important Hamiltonians modelling the interaction of atoms with the cavity

electromagnetic field. Finally, Sec. 2.2.3 introduces to the fundamental peculiarities

of cavity (circuit) QED in the regime of the ultrastrong coupling.

2.2.1 Interacting photons

Even if photon-photon interactions have been predicted to occur even in vacuum via

virtual excitation of electron-positron pairs [108], the cross section of this process is too
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small to play any significant role in realistic optical systems. For this reason photons

in vacuum are typically considered independent. However, an effective interaction

between photons can arise as mediated by interaction of light with matter. The most

simple situation in which light-matter interaction happens is in the presence of a

dielectric medium.

The effect of the electric field on a dielectric medium is quantified by polarisation

P , that is the dipole momentum created in the medium per unit volume. When the

field is weak the response of the medium can be assumed to be linear, i.e.

Pi = ε0χ
(1)
ij Ej , (2.45)

where χ
(1)
ij is the linear susceptibility tensor of the medium (repeated indexes are

summed). If the electric field is strong enough, then the linear response is not sufficient

anymore to describe the response of the dialectic medium, and nonlinear susceptibility

must be considered:

Pi = ε0

[
χ

(1)
ij Ej + χ

(2)
ijkEjEk + χ

(3)
ijklEjEkEl + . . .

]
. (2.46)

Here the susceptibility tensors χ(n) define the expansion of the response function.

In absence of external charges or currents, the electromagnetic field is governed

by the following Maxwell’s equations:

∇ ·D = 0 ,

∇ ·B = 0 ,

∇×E = −∂B
∂t

,

∇×B = µ0
∂D

∂t
,

(2.47)

where D = ε0E + P is the displacement vector. Very similarly to what we did in

the previous section, these fields and dynamics can be translated to the quantum

description through the canonical quantization. We will only consider here the most

simple case in which the medium response is homogeneous and non-dispersive, i.e.

the tensors χ(n) do not depend on the space position and on the field frequency.

Under these assumptions an appropriate Lagrangian density is

L(Aµ, ∂tAµ) =
ε0
2

(
E2 − c2B

)
+ ε0

[
1

2
χ

(1)
ij EiEj +

1

3
χ

(2)
ijkEiEjEk +

1

4
χ

(3)
ijklEiEjEkEl + . . .

]
, (2.48)

that can then be recast in the generalised coordinates Aµ
def
= (φ/c,−A), by substitut-

ing E and B with their expression as a function of the potentials A and A0 = φ/c:

E = −∂A
∂t
− c∇A0 and B = ∇×A . (2.49)
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This Lagrangian density reproduces Maxwell’s Equation (2.47) through the Euler-

Lagrange equations and it allows to define the conjugate momenta of Aµ:

Πµ def
=

∂L
∂(∂tAµ)

= (0,D) . (2.50)

Once again the momentum Π0 is zero, meaning that A0 is not an independent field.

On the other hand, contrary to the case of vacuum, we can not fix A0 to zero, see

Ref. [109] for more details.

The Hamiltonian can then be defined using the Legendre transformation in

Eq. (2.30):

H(Aµ,Π
µ) =

∫
d3r

ε0
2

(
E2 + c2B2

)
+

∫
d3rε0

[
1

2
χ

(1)
ij EiEj +

2

3
χ

(2)
ijkEiEjEk +

3

4
χ

(3)
ijklEiEjEkEl + . . .

]
+

∫
d3rD · ∇A0 .

(2.51)

Integrating by parts and using the fact that ∇ ·D = 0 allows to eliminate the last

term. Since E is no longer the canonical momentum, it is useful to express the

Hamiltonian as a function of D:

H(Aµ,Π
µ) =

∫
d3r

1

2µ0

(∇×A)2

+

∫
d3r

[
1

2
β

(1)
ij DiDj +

1

3
β

(2)
ijkDiDjDk +

1

4
β

(3)
ijklDiDjDkDl + . . .

]
, (2.52)

where we introduced the tensors β(n) allowing to express E as a function of D,

β(1) =
[
ε0
(
1 + χ(1)

)]−1

β
(2)
ijk = −ε0 β(1)

il β
(1)
jmβ

(1)
kn χ

(2)
lmn

β
(3)
ijkl = −ε0 β(1)

imβ
(1)
jn β

(1)
kp β

(1)
lq χ

(3)
mnpq .

(2.53)

We suggest again the Ref. [109] for more details on these last expression.

Now we are ready to quantize these fields, first of all we introduce the canonical

commutation relation: [
Âµ(r), Π̂ν(r′)

]
= i~ δ(tr)

µν (r − r′) ,

i.e.
[
Âi(r), D̂j(r

′)
]

= −i~ δ(tr)
ij (r − r′) ,

(2.54)

where δ
(tr)
ij (r) is defined in Eq. (2.29). Similarly to what we did in the case of the free

field, it is useful to introduce the annihilation and creation operators, âk,ε and â†k,ε:

âk,ε =
1√

2~L3

∫
d3r e−ik·rε

[√
ε0ωk Â(r)− i√

ε0ωk
D̂(r)

]
, (2.55)
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where the usual commutation relations Eq. (2.40) also hold for these operators. Note

that, contrary to the free-field case (see Eq. (2.43)), these operators contain both light

and matter degree of freedom. They define an hybrid light-matter excitation that is

a sort of “dressed” photon.

Only a few more assumptions allow to show a very simplified expression of the

matter-madiated interaction between these “dressed” photons. Let us assume that

the medium is not only non-dispersive and homogeneous, but also symmetric under

spatial inversion (r → −r). Spatial inversion symmetry implies that χ(2) is negligible.2

The second assumption is to reduce the problem to a single mode. This is valid

provided that the frequency spacing of the modes is large compared to the nonlinear

frequency shift, that is typically true when the field is confined in an optical cavity.

At this point it is just a formal calculation to prove that the 3rd order susceptibility

can be accounted through the so called Kerr Hamiltonian interaction term

ĤKerr/~ =
U

2
â†â†ââ , (2.56)

where U is a scalar proportional to |χ(3)|, quantifying the strength of the interactions

between the “dressed” photons.

2.2.2 Interacting photons and atoms

As we have mentioned in the introduction, cavity QED studies the physics of atoms

interacting with an electromagnetic field that is confined inside an optical cavity.

We also have mentioned that this physics is efficiently modeled in terms of two-level

systems (for the atoms) and of bosonic modes (for the electromagnetic field) [28–32],

Here we introduce the microscopic origin of these paradigmatic models of interacting

atoms and photons.

Let us consider the most simple case of a single atom interacting with the electro-

magnetic field. Neglecting relativistic corrections, such a system is described by the

following Hamiltonian [27, 110–112]:

Ĥ =

Nel∑
j=1

[
p̂j − qÂ(r̂j)

]2

2m
+ φ(r̂1, ..., r̂Nel) +

∑
i

~ωi

(
â†i âi +

1̂

2

)
, (2.57)

where q and m are the charge and the mass of the Nel electrons of the atom, whose

momenta and positions are depicted by the operator p̂j and r̂j. The first two terms

of the Hamiltonian describe respectively the kinetic and the electric potential energy

2For a medium presenting such a symmetry the susceptibility tensors χ(n) are invariant under

spatial inversion (r → −r). This means that under spatial inversion χ(2) → χ(2), P (r, t)→ −P (r, t)

and E(r, t)→ −E(r, t). But P → −P implies χ(2)EE → −χ(2)EE, which can be satisfied if and

only if χ(2) = 0.
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of the electrons. The operator â†i (âi) describes the creation (annihilation) of the

cavity field mode with frequency ωi, and Â(r̂j) is the vector potential at the electron

position, that we assume to be of the form

Â(r̂j) =
∑
i

√
~

2ε0V ωi
fi(r̂j) εi

(
âi + â†i

)
. (2.58)

This expression is an analog of Eq. (2.37), where plane waves have been replaced by

real cavity-mode functions fi(r) depending on the specific geometry of the cavity. We

choose the normalisation of this function to be equal to the cavity total volume, i.e.∫
d3r |fi(r)|2 = V , moreover, from the wave equation (Eq. (2.35)) we have that

∇2fi(r) +
ωi
c2
fi(r) = 0 . (2.59)

Note from the expression of Â(r̂j) in Eq. (2.58), that this operator acts on both the

spaces of the atomic electrons and of the cavity field.

Let us spend a few words on the atom kinetic energy, to explain why the usual

expression p̂2
j/2m has been replaced by [ p̂j−qÂ(rj)]

2/2m. The dynamics of a charged

particle in an electromagnetic field is described by the differential equation

m r̈ = F = q(E + ṙ ×B) (2.60)

that is equivalently generated by the Lagrangian

L = m ṙ2/2 + q(A · ṙ − φ) . (2.61)

The resulting conjugate momentum of the generalised coordinate r is

p =
∂L

∂ṙ
= m ṙ + qA . (2.62)

Thus the kinetic energy is

Ek = mṙ2 = (p− qA)2/2m. (2.63)

Once the square in the kinetic energy of the electrons is expanded, it is possible

to distinguish three terms composing the Hamiltonian, Ĥ = Ĥat + Ĥph + Ĥint + ĤA2 :

Ĥat =

Nel∑
j=1

p̂j
2

2m
+ φ(r̂1, ..., r̂Nel) ,

Ĥph =
∑
i

~ωi

(
â†i âi +

1̂

2

)
,

Ĥint = − q

m

Nel∑
j=1

p̂j · Â(r̂j) ,

ĤA2 =
q2

2m

Nel∑
j=1

Â2(r̂j) .

(2.64)
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The first two terms are respectively referred to the atom and the cavity field degrees

of freedom. The third and the fourth terms represent the light-matter interaction.

The first term Ĥat is the usual Hamiltonian of an atom, with its characteristic spec-

trum {Ek} and eigenstates |k〉, the atomic orbitals. In these terms the Hamiltonian

can be recast into

Ĥat =
∑
k

Ek |k〉〈k| . (2.65)

The third term describing the interaction between the atom and the cavity field has

been obtained by considering that p̂j commutes with Â(r̂j), which follows from the

Coulomb gauge condition ∇ ·A = 0. Let us make use of the so called electric-dipole

approximation, assuming that the wave lengths of the significant cavity modes are

much larger than the atom size, λ � a0. In this approximation, the space depen-

dence of the electromagnetic field can be neglected, and Â(r̂j) ' Â(r0), where r0

is the position of the atom inside the cavity. The matrix elements of the interaction

Hamiltonian on the atomic eigenstates read:

〈k|Ĥint|k′〉 = − q

m
Â(r0) ·

Nel∑
j=1

〈k|p̂j|k′〉

=
iq

~
Â(r0) ·

Nel∑
j=1

〈k|
[
r̂j, Ĥat

]
|k′〉

=
iq

~
Â(r0) ·

Nel∑
j=1

(Ek′ − Ek)〈k|r̂j|k′〉 ,

(2.66)

where we have used the relation [r̂j, Ĥat] = i~ p̂j/m, which follows from the canonical

commutation relations [r̂i, p̂j] = i~δi,j. Note from the last line that on the basis of

the atomic eigenstates the diagonal elements of Ĥint vanish.

Another very important simplification is to reduce the problem to only two states

of the atom, and to only one cavity field mode, as illustrated in Fig. 2.1. Let us call

|g〉 the ground state and |e〉 the excited state. The interaction matrix element reads

〈g|Ĥint|e〉 =
iq

~
Â(r0) ·

Nel∑
j=1

(Ee − Eg)〈g|r̂j|e〉

= i ωaA(r0) · 〈g| q
Nel∑
j=1

r̂j|e〉
(
â+ â†

)
= ~ g

(
â+ â†

)
,

(2.67)

where ~ωa = Ee − Eg > 0 quantifies the atomic transition frequency, and where

A(r0)
def
=

√
~

2ε0V ωc
fc(r0) εc , (2.68)
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ωc

ωa
|g〉

|e〉

Figure 2.1 The simplified model of an electromagnetic field mode interacting with

a resonant two-level system, corresponding to an electronic atomic transition.

follows from the expression in Eq. (2.58) of the vector potential for the selected cavity

mode of frequency ωc and the ladder operators â and â†. In the last line we have

introduce the real parameter

g
def
=
iωa
~
A(r0) · dge , (2.69)

where dge = 〈g| q ∑Nel
j=1 r̂j|e〉 is the electric dipole of the considered transition. Note

that g is in general a complex number, however we can always choose the relative

phase between |e〉 and 〈g|, in such a way that g becomes real and positive.

By neglecting the term ĤA2 , we obtain a very simplified model, the Rabi Hamil-

tonian:

ĤRabi/~ = ωc â
†â+

ωa
2
σ̂z + g(â+ â†)(σ̂+ + σ̂−), (2.70)

where we have introduced the atomic operators, defined as

σ̂z = |e〉〈e| − |g〉〈g| ,
σ̂− = σ̂†+ = |g〉〈e| .

(2.71)

Note that the interaction strength g is proportional to fc(r0)/
√
V . This means that

in order to reach a stronger interaction, in experimental realisation it is important to

position the atom at the maximum of the cavity-mode function fc(r), and to reduce

the volume V in which the electromagnetic field is confined.
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When the interaction strength is weak, this Hamiltonian can be approximated to

a further simplified form. Let us perform the product in the interaction term

g(â+ â†)(σ̂+ + σ̂−) = g(â σ̂+ + â†σ̂− + â σ̂− + â†σ̂+) . (2.72)

The first two terms of the right side conserve the excitation number

N̂exc = â†â+ (σ̂z + 1̂)/2 . (2.73)

Instead, the last two terms, also called anti-resonant terms, do not conserve N̂exc since

they respectively annihilate and create pairs of atomic and photon excitations. The

first two processes are energetically more favourable than the two others. Indeed, by

considering the Rabi Hamiltonian in the interaction picture we get

Ĥ ′Rabi(t) = ~ g
(
â σ̂+e

i(−ωc+ωa)t + â†σ̂−e
i(ωc−ωa)t + â σ̂−e

−i(ωc+ωa)t + â†σ̂+e
i(ωc+ωa)t

)
,

(2.74)

we see that it contains both slowly (ωc − ωa) and quickly (ωc + ωa) oscillating terms.

In a regime of weak coupling in which g, |ωc − ωa| � (ωc + ωa), when integrating the

system time evolution, the contribution of the quickly oscillating terms averages to

zero.

In this approximation, that is typically referred to as the rotating wave approxi-

mation (RWA), the anti-rotating terms of the Rabi model can be neglected, and we

obtain the so called the Jaynes-Cummings Hamiltonian:

ĤJC/~ = ωc â
†â+

ωa
2
σ̂z + g(â σ̂+ + â†σ̂−). (2.75)

Despite its simplicity, this Hamiltonian provides an accurate description of a large

range of cavity QED experiments, explaining its broad exploitation in this field [33,

34].

Symmetries and conserved quantities

Note that these Hamiltonians have some conserved quantities. From what was dis-

cussed above, it is clear that the Jaynes-Cummings Hamiltonian ĤJC conserves the

total number of excitations N̂exc, that is in contrary not conserved in the Rabi Hamil-

tonian ĤRabi, due to the presence of the anti-resonant terms in the interaction. On the

other hand, the anti-resonant terms act by creating or annihilating pairs of excitation,

so that ĤRabi conserves the excitation parity

P̂exc = eiπN̂exc . (2.76)

Dispersive regime

Let us consider the Jaynes-Cummings Hamiltonian ĤJC in the dispersive regime in

which the atom and cavity are largely detuned compared to the coupling strength, i.e.



40 Chapter 2. Paradigmatic models in quantum optics

g � |ωc − ωa|. In this regime, the exchanges of excitations between the atom and the

cavity are energetically unfavourable. The bare spectra of the atom and the cavity

are only perturbatively shifted by the interaction.

Under these conditions, one can approximate the Hamiltonian in a form that

commutes with both â†â and σ̂z. This is concretely done by applying the unitary

transformation

Û(ξ) = eξX̂− , (2.77)

where we introduced the operator X̂− = (â†σ̂− − â σ̂+) and the small parameter

ξ =
g

ωa − ωc
. (2.78)

Note that an unitary transformation leaves the spectrum of the Hamiltonian un-

changed: ĤJC and its transformed Û †(ξ)ĤJCÛ(ξ), have the same spectrum. By ex-

panding Û †(ξ)ĤJCÛ(ξ) to the second order in ξ, we obtain an effective Hamiltonian

that has approximatively the same spectrum of ĤJC :

Ĥ
(disp)
JC = Û †(ξ)ĤJCÛ(ξ) ' ĤJC + ξ

[
ĤJC , X̂−

]
+
ξ2

2

[[
ĤJC , X̂−

]
, X̂−

]
. (2.79)

By performing the commutators in this expansion, one obtains the effective Hamil-

tonian of the Jaynes-Cummings model in the dispersive regime

Ĥ
(disp)
JC /~ ' ωc â

†â+
ωa
2
σ̂z +

g2

2(ωa − ωc)
(â†â+ 1̂) σ̂z . (2.80)

The unitary transformation that we used is the so called Schrieffer-Wolff transforma-

tion, and it is explicitly chosen to eliminate the interaction term to first order in g 3.

Let us spend a few words on the validity boundaries of this effective Hamiltonian.

First of all, we recall that the Jaynes-Cummings Hamiltonian has been obtained using

the RWA, that is valid for |ωc − ωa| � ωc + ωa. Combined with the definition of the

dispersive regime, this implies that Ĥ
(disp)
JC is only valid for g � |ωc − ωa| � ωc + ωa.

If the detuning |ωc − ωa| is comparable to the excitation frequencies ωc and ωa for

instance, the RWA breaks down and the approach outlined above is not valid anymore.

However the dispersive effective Hamiltonian beyond the RWA has been derived in

detail in Section 5.2.1 and in Ref. [115]. In Figure 2.2 we compare the spectra of ĤRabi,

ĤJC and of Ĥ
(disp)
JC , in the case of out-of-resonance tuning, ωa/ωc = 1.5. The three

models have exactly the same spectra for g � ωc, but as g increases, the error of

the approximations in the dispersive approach becomes quickly significant. For large

values of g, also the Rabi and the Jaynes-Cumming models disagree significantly.

3Given the unitary transformation Û(g) that diagonalises the Jaynes-Cummings Hamiltonian

ĤJC , the Schrieffer-Wolff unitary transformation Û(ξ) corresponds to the first order expansion of

Û(g)[113, 114].
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Figure 2.2 The spectra of ĤRabi (green), ĤJC (magenta) and of Ĥ
(disp)
JC (blue), for

ωa/ωc = 1.5.

The dispersive coupling described by Ĥ
(disp)
JC , has a very important role in experi-

mental circuit QED [41–43, 88]. In the dispersive limit it is indeed possible to extract

information about the cavity field state from the measured value of the resonance

frequency of the two-level system and vice versa. This is more apparent by rewriting

Ĥ
(disp)
JC in the following forms:

Ĥ
(disp)
JC '

[
ωc +

g2

2(ωa − ωc)
σ̂z

]
â†â+

[
ωa
2

+
g2

2(ωa − ωc)

]
σ̂z (2.81a)

' ωc â
†â+

[
ωa
2

+
g2

2(ωa − ωc)
â†â+

g2

2(ωa − ωc)

]
σ̂z . (2.81b)

From the first line we see that the two-level atom induces a state-dependent shift

of the cavity resonance frequency. In the same way, the resonance frequency of the

atom linearly depends on the number of photons inside the cavity, and precisely its

frequency shift is

δωn =
g2

2(ωa − ωc)
(n+ 1) (2.82)

where n labels the considered number state of the cavity, as illustrated in the left

panel of Fig.2.3. This means that a spectroscopic analysis on the atom would give

information on the cavity state. For instance, in Ref. [88] Sun et al. used this kind of
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estimate of the maximum number of peaks that could possibly be
resolved, 2x/k 5 70, and determines the contrast of a qubit measure-
ment by the cavity. These values of our parameters place the system
well into the strong dispersive regime.

The photon-number-dependent frequency shift of the qubit is
detected by performing spectroscopy on the qubit–cavity system
(Fig. 2e). The cavity is coherently excited by applying a microwave
signal (the cavity tone) at a frequency (vrf) near the cavity resonance
(Fig. 2e). A spectrum is taken by sweeping the frequency (vs) of a
second microwave signal (the spectroscopy tone), which probes the
qubit absorption without significantly populating the resonator as it
is detuned by many linewidths (vs – vr? k). The detection is com-
pleted by exploiting the dual nature of the qubit–photon coupling,
reusing the cavity photons as a measure of cavity transmission,
demonstrated previously1,2,16,18 to measure the qubit excited state
population. The measured transmission amplitude (Figs 3 and 4) is
an approximate measure of the actual qubit population, which could
in principle be measured independently. For clarity, the transmission

amplitude in Figs 3 and 4 is plotted from high to low frequency. In
order to reduce nonlinearities in the response, the cavity tone was
applied at a small detuning d=2p~ vrf {vg

r

! "#
2p~2 MHz from the

resonator frequency when the qubit is in the ground state. This also
slightly modifies the peak splitting24 (Fig. 2e).

The measured spectra reveal the quantized nature of the cavity
field, containing a separate peak for each photon number state
(Fig. 3)24,25. These peaks approximately represent the weight of each
Fock state in a coherent field with mean photon number !nn, which is
varied from zero to 17 photons. At the lowest photon powers, nearly
all of the weight is in the first peak, corresponding to no photons in
the cavity, and confirming that the background cavity occupancy is
nth , 0.1. As the input power is increased, more photon number
peaks can be resolved and the mean of the distribution shifts pro-
portional to !nn. The data agree well with numerical solutions at low
powers (solid lines in Fig. 3) to the markovian master equation4,24

with three damping sources, namely the loss of photons at rate
k/2p5 250 kHz, energy relaxation in the qubit at rate c/2p5
1.8 MHz and the qubit dephasing rate cw/2p5 1.0 MHz. However,
adequate numerical modelling of this strongly coupled system at
higher photon numbers is quite difficult and has not yet been
achieved.

In earlier work17,18 in the weak dispersive limit (x/c , 1), the mea-
sured linewidth resulted from an ensemble of Stark shifts blurring the
transition, whereas here in the strong limit (x/c . 1) each member of
the ensemble is individually resolved. In the spectra measured here
(Fig. 3), the linewidth of a single peak can be much less than the
frequency spread of the ensemble, but changes in photon number
during a single measurement can still completely dephase the
qubit. Taking this into account yields a predicted photon-number-
dependent linewidth, cn~c=2zcwz !nnznð Þk=2 for the nth peak24.
The lowest power peak (in the !nn 5 0.02 trace) corresponds to zero
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Figure 3 | Direct spectroscopic observation of quantized cavity photon
number. Shown are qubit spectra with coherent cavity drive at different
average cavity occupations !nnð Þ. The spectra have resolved peaks
corresponding to each photon number. The peaks are separated by 2 | xeff | /
2p5 17 MHz. Approximately ten peaks are distinguishable. The data (blue)
are well described by numerical simulations (red) with all parameters
predetermined except for a single frequency offset, overall power scaling,
and background thermal photon number (nth 5 0.1) used for all traces.
Computational limitations prevented simulations of photon numbers
beyond ,3. At the lowest power nearly all of the weight is in the | 0æ peak,
meaning that the cavity has a background occupation less than (nth , 0.1).
Peaks broaden as nz!nnð Þk=2 plus some additional contributions due to
charge noise. At higher powers the peaks blend together and the envelope
approaches a gaussian shape for a coherent state. As xeff , 0, spectra are
displayed from high to low frequency, and also have been normalized and
offset for clarity.

R
ed

uc
tio

n 
of

 tr
an

sm
itt

ed
 a

m
pl

itu
de

 (%
)

a

b

6.95 6.85 6.75

Coherent

Thermal

|n=0〉
|1〉

|2〉

|3〉

|4〉

|5〉

|6〉

0

3

6

0

6

12

Spectroscopy frequency, νs (GHz) 

Figure 4 | Qubit spectrum distinguishes between coherent and thermal
distributions. a, Reduction in transmitted amplitude is plotted as a proxy
for qubit absorption for the case of a coherent drive with !nn~3 photons.
b, Spectrum when cavity is driven with gaussian white noise approximating a
thermal state also with !nn~3. The coherent spectrum is clearly non-
monotonic and qualitatively consistent with the Poisson distribution,
P nð Þ~e{!nn!nnn=n!, while the thermal spectrum monotonically decreases in a
fashion consistent with the Bose–Einstein distribution
P nð Þ~!nnn= !nnz1ð Þnz1:
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Figure 2.3 The dispersive coupling. Left panel: the modification of the atom fre-

quency as a function of the cavity number state in the dispersive limit. Right panel:

the spectral response of the qubit for two differently populated cavity fields. The

relative area under the peaks quantifies the population of each cavity number state.

It allows to clearly distinguish the two different photon distributions of the cavity, a

coherent and a thermal state respectively. Figure extracted from Ref. [42].

coupling to repeatedly track the photon parity in a microwave cavity and in Ref. [42]

Schuster et al. resolved the photon number occupation of both a coherent and a

thermal state of the cavity, as shown in the right panel of Fig. 2.3.

Equation (2.81b) also suggests another important behaviour of atom-photon cou-

pling: the so called Lamb shift [116, 117]. Even in absence of photon, i.e. 〈â†â〉 = 0,

the atom resonance frequency is shifted to ωa + g2/(ωa − ωc). This shift is due to

vacuum fluctuations.

2.2.3 Ultrastrong coupling regime

The paradigmatic Hamiltonians presented above have proven to be very efficient to

describe most cavity QED realisations [33–36]. However, typical experiments in cavity

QED, are characterised by a relatively small interaction strength, more precisely g �√
ωc ωa. Whether these models also work for higher values of light-matter interaction

is a legitimate question. This explains the recent interest in exploring the ultrastrong

coupling regime, in which the vacuum Rabi frequency (quantifying the intensity of

light-matter interaction) is comparable to the bare transition frequencies of the atom
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and of the cavity [58–67].

Indeed, the Rabi and the Jaynes-Cumming Hamiltonians, predict some very pe-

culiar phenomena in the ultrastrong coupling regime. In this section, we will focus

on the highly nonclassical nature of their ground states, which are characterised by

a finite population of photons in the ultrastrong coupling regime. Importantly, the

precise form of these exotic ground states depends on the model that is considered.

Indeed, in the ultrastrong coupling regime, the precise properties of the system, dras-

tically depend on the model that is considered [118–120]. This is the reason why the

ultrastrong coupling regime is considered an important ground to test for validity of

light-matter interaction models.

In the previous section we have seen that in a regime of weak coupling, in which the

conditions g, |ωc − ωa| � (ωc + ωa) for the rotating wave approximation are satisfied,

the Rabi and the Jaynes-Cumming Hamiltonians produce comparable results. This

is no more the case in the ultrastrong coupling regime. Let us consider first the

Jaynes-Cumming Hamiltonian

ĤJC/~ = ωc â
†â+

ωa
2
σ̂z + g(â σ̂+ + â†σ̂−), (2.83)

in which the anti-resonant terms (â σ̂−+ â†σ̂+) of the Rabi model have been neglected.

Since this Hamiltonian conserves the total number of excitations N̂exc, it can be

diagonalised by blocks. Each block space is spanned by the basis {|n, g〉 , |n− 1, e〉},
where the first value labels the Fock states of the cavity. In this reduced space the

Jaynes-Cumming Hamiltonian reads

ĥ
(n)
J−C =

(
ωn− ω0/2 g

√
n

g
√
n ω(n− 1) + ω0/2

)
. (2.84)

Each block of the Hamiltonian can be diagonalised analytically, giving the following

eigenenergies

E
(n)
± = ω(n− 1/2)±

√
(ω − ω0)2/4 + g2n

E(0) = −ωa/2
(2.85)

and the associated eigenstates

|n,+〉 = cos θn |n, g〉+ sin θn |n− 1, e〉 ,
|n,−〉 = − sin θn |n, g〉+ cos θn |n− 1, e〉 ,
|0, g〉 .

(2.86)

where

tan θn = 2g
√
n/
[
ω − ω0 +

√
(ω − ω0)2 + 4g2n

]
. (2.87)

This spectrum is represented in Figure 2.4 for the case of perfect resonance ωc = ωa.

Interestingly, we see that in the Jaynes-Cumming model, for g/ωa > 1, the energy



44 Chapter 2. Paradigmatic models in quantum optics

0.0 0.5 1.0 1.5 2.0 2.5 3.0

g/ωa

3

2

1

0

1

2

3

E
ig

e
n
e
n
e
rg

ie
s/

ω
a

Figure 2.4 The spectrum of Jaynes-Cumming and of Rabi Hamiltonians (respec-

tively in magenta and green) for ωc = ωa.

of |1,−〉 is smaller then the energy of |0, g〉. This means that in this regime the

ground state is not represented by the standard vacuum |0, g〉, but it is a state |n,−〉
containing a finite number of photons that depends on the strength g of the interaction.

In Fig. 2.4 we also show the spectrum of the Rabi Hamiltonian

ĤRabi/~ = ωc â
†â+

ωa
2
σ̂z + g(â+ â†)(σ̂+ + σ̂−). (2.88)

By comparing the two spectra we see that, despite their agreement for small values of

g, the eigenenergies of the two models considerably diverge in the ultrastrong coupling

regime. Indeed, the role of the anti-resonant terms is crucial in this regime. These

terms couple the excitation-number blocks of the Jaynes-Cumming model, eventually

leading to the phenomenon of level anti-crossing.

Note that in the ultrastrong coupling regime, the two models considered here,

not only differ for their spectrum, but they also have drastically different eigenstates.

In Fig. 2.5 we compare the photon occupation of the ground states. The ground

state of the Rabi model contains photons for any finite value of light-matter coupling.

Furthermore, photon population of the Rabi ground state increases continuously, while

in the Jaynes-Cumming model it increases by steps as expected by the presence of

level crossing.
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Figure 2.5 The average number of photons in the ground state of the Jaynes-

Cumming and Rabi Hamiltonians (in magenta and green respectively) for ωc = ωa.

In order to better know the nature of the Rabi ground state, we explore the limit in

which g � ωa. Indeed, in this limit, an analytic expression for the ground state of the

Rabi model can be obtained by neglecting the only bound term of the Hamiltonian,

i.e. ωaσ̂z/2:

ĤRabi/~ ' ωc â
†â+ g(â+ â†)(σ̂+ + σ̂−). (2.89)

Since the only atomic operator in this approximated Hamiltonian is σx = σ̂+ + σ̂−,

we search for a ground state of the form |α〉 |η〉, where α is a state of the cavity mode

and |η〉 is an eigenstate of σx, more precisely σx |η〉 = η |η〉 with η = ±1. We can thus

rewrite the Hamiltonian as

ĤRabi/~ ' ω

(
â† +

g

ωc
η

)(
â+

g

ωc
η

)
− g2

ωc
η2

= ωc b̂
†b̂− EG ,

(2.90)

where we have introduced the operator b̂ = â + gη/ωc and defined the ground state

energy EG = −g2η2/ωc. From the last expression of the Hamiltonian, we see that

finding the ground state is equivalent to determining the state |α〉 such that b̂ |α〉 = 0.

This expression is equivalent to â |α〉 = −gη/ωc |α〉, that is precisely the definition of

a coherent state. This means that the ground state of this approximated Hamiltonian
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is of the form |η〉 |−gη/ωc〉, in which we note that the two values of η = ±1 lead

to two state with the same energy EG = −g2/ωc, meaning that the ground state is

double degenerate. However, this degeneracy can be lifted by reintroducing the term

ωaσ̂z/2 as a perturbation. We consider the action of the complete Rabi Hamiltonian

in Eq.(2.89) in the subspace spanned by {|+〉 |−g/ωc〉 , |−〉 |g/ωc〉}:

ĥ
(G)
Rabi =

( −g2/ωc
ωa
2
e−2g2/ω2

c

ωa
2
e−2g2/ω2

c −g2/ωc

)
. (2.91)

By diagonalising this reduced Hamiltonian we obtain the ground state and for the

first excited state (respectively |G−〉 and |G+〉)

|G±〉 =
1√
2

(|+〉 |−g/ωc〉 ± |−〉 |g/ωc〉), (2.92)

and the associated energies

E±/~ = −g
2

ωc
± ωa

2
e−2g2/ω2

c . (2.93)

From these energies we obtain the energy gap between the ground state and the first

exited state

∆E/~ = ωae
−2g2/ω2

c , (2.94)

which decays to zero for g � ωc. We conclude that the ground state of the Rabi

model is a, so called, Schrödinger cat state [27], in which light and matter are corre-

lated in a highly nonclassical state. In the ultrastrong coupling regime, both the Rabi

and the Jaynes-Cumming Hamiltonian have non-trivial light-matter populations and

correlations in the ground states. Unfortunately, because of energy conservation, the

photons and the atomic excitations contained in these exotic vacua are bound to the

cavity, meaning that it is not possible to explore their property by simple photodetec-

tion. Hence, alternative protocols of measurement are required (Chapter 5)[121–123].

In Sec. 3.1.3, we will discuss in more detail the stability of ground state photons.

Superradiant phase transition

So far, we have considered the models of only one atom coupled to the cavity. However

one could be interested in considering an arbitrary number of atoms interacting with

the same cavity mode. This is for example the case in the microcavity semiconductors,

in which the cavity field interact with the many intra-cavity electronic transitions

that play the role of the atoms [53, 54, 64–67]. In this case an often studied model is

represented by the Dicke Hamiltonian:

ĤDicke/~ = ωcâ
†â+

ωa
2

∑
i

σ̂(i)
z +

λ√
Nat

∑
i

(σ̂
(i)
+ + σ̂

(i)
− )(â+ â†) , (2.95)
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where the Pauli matrices here refer to each two-level atom. This model simply gen-

eralises the Rabi Hamiltonian to an arbitrary number of atoms N , in which we have

recast the coupling strength of a single atom as g = λ/N . The Dicke Hamiltonian

is most conveniently rewritten by considering the collective spin associated to the N

two-level systems, namely

Ĵz =
1

2

N∑
i=1

σ̂(i)
z , Ĵ± =

N∑
i=1

σ̂
(i)
± . (2.96)

We can thus write

ĤDicke/~ = ωcâ
†â+ ωaĴz +

λ√
N

(
â† + â

) (
Ĵ+ + Ĵ−

)
. (2.97)

From the rules of combining angular momenta, we know that the total spin quantum

number here, can range over all the half-integers from 0 to N/2. However, since the

Hamiltonian commutes with the operator of total spin magnitude Ĵ2, we can reduce

the problem to only one eigenspace of Ĵ2. In particular we choose the space with

maximal total spin, since it is the one in which the ground state is contained (this is

straightforward for λ = 0 and for λ→∞). This means that the operators defined in

Eq.(2.96) represent collective spin of size N/2. Note that by doing so we considerably

reduce the dimension of the atomic Hilbert space from 2N to N .

Similarly to the Rabi model, this Hamiltonian is characterised by parity symme-

try, defined by the operator Π̂ = exp {iπ(â†â+ Ĵz +N/2)}. In the thermodynamical

limit N → ∞ the system is characterised by a phase transition that is associated

to the breaking of this discrete symmetry. A detailed description of this quantum

phase transition is provided by C. Emary and T. Brandes in Ref. [73], here we only

briefly use their results to describe this transition and the relation with the finite size

properties. It is indeed possible to show that at zero temperature and thermodynamic

limit the Dicke model undergo a quantum phase transition at λ = 0.5. In the bro-

ken symmetry phase, also called superradiant phase, the system has two degenerate

eigenstates |Ψ±〉 = |±α〉 |±β〉, where |±α〉 is a coherent state of the cavity mode and

|±β〉 is a polarised state of the atoms. The latter is defined as a coherent state on the

bosonic operator introduced with the Holstein-Primakoff transformation [124] that is

used in Ref. [73] to describe the superradiant phase transition. We have that

α = ∓λ
√
N

ωc

√
1−

(
ωc ωa
4g2

)2

,

β = ±
√
N

2

√
1− ωc ωa

4g2
.

(2.98)

However, the degeneracy of the ground state mathematically only holds in the limit

of an infinite number of atoms. For any finite N the two states are coupled, leading
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to a lift of the degeneracy [62]. Similarly to what we did to determine the ground

state of the Rabi model, we can consider the action of the Hamiltonian in Eq. (2.97)

on the two states |Ψ±〉. Diagonalising this reduced Hamiltonian, one obtains a good

approximation of the ground and of the first excited state (respectively |G−〉 and

|G+〉) for a finite number of atoms. Without going into the details of the calculations,

we have

|G±〉 '
|α〉 |β〉 ± |−α〉 |−β〉

N±
, (2.99)

where N± ensures the right normalisation of the state. Again the ground and first

excited states are Schr̈odinger cat states with a nonclassical correlation between light

and matter.

No-go theorem for superradiant quantum phase transitions in cavity QED

It is important to mention that a no-go theorem for superradiant quantum phase

transitions has been predicted for cavity QED realisations [63]. Indeed the Â2 term

in Eq. (2.64), that we have neglected to derive the Rabi Hamiltonian, can become

crucial in the ultrastrong coupling regime. Adding the contribution of this term to

the Dicke model, one obtains the Hamiltonian

Ĥ/~ = ωcâ
†â+ ωaĴz +

λ√
N

(
â† + â

) (
Ĵ+ + Ĵ−

)
+D

(
â† + â

)2
, (2.100)

and when D = λ2/ωa one obtains the Hopfield model, well known in semiconductor

optics [29, 64]. It can be proven [63] that in cavity QED the sum rule implies D ≥
λ2/ωa. For these values of D, the quadratic renormalisation introduced by the Â2

term inhibits the superradiant phase transition at zero temperature. This shows

that the way in which we model light-matter interaction is importantly tested in

the ultrastrong coupling regime. Indeed, while the contribution of the Â2 term is

unimportant in typical regimes of cavity QED realisations, in the ultrastrong coupling

regime it can drastically modify the physics of the system.

Note that this no-go theorem only applies in the precise conditions of cavity QED

system. In circuit QED, however, the systems can be tailored to make the Â2 term

negligible [63], or to realise the physics of most atom-cavity models [48, 72].



Chapter 3

Open quantum systems and

Lindblad master equation

An aspect that intrinsically distinguishes the physics of photons from other branches

of physics is its out-of-equilibrium nature. Despite the efforts to isolate the electro-

magnetic field in more and more efficient cavities, the coupling to the environment is

typically non-negligible. The photons generally escape through the optical mirrors of

the cavities and dissipate in the infinite modes of the external electromagnetic field.

More general, in open quantum systems, the environment is represented by a

second system with infinite degrees of freedom. Due to its large size, it is in principle

impossible to have total control of the environment. Thus, except in specific cases,

in which the environment is in a precisly known and controlled state, the coupling

to an environment represents a loss of information on the system. In Section 3.1 we

introduce a microscopical model of the coupling to the environment that allows to

describe the system evolution in the form of a Lindblad master equation.

Since the photons tend to escape the cavity, in order to have a non-negligible

population we need to constantly replace them. This is the role of the driving, which

can for example be a laser field, that injects photons inside the cavity. In Section 3.2

we provide a simple microscopic description of this process.

3.1 Coupling to the environment and Lindblad

master equation

The coupling to the environment is associated with some very important processes

in quantum physics. It is responsible for the loss of quantum information, commonly

called decoherence, impeding the control and exploitation of quantum systems, and

it also explains the loss of energy, generally called dissipation.

In order to consider these processes, the Lindblad master equation often is a very

convenient description [125, 126]. In its general form, a Lindblad master equation

describes the time evolution of the density operator as

∂tρ̂ = − i
~

[
Ĥ , ρ̂

]
+

N2−1∑
i

(
2Âiρ̂Â

†
i − Â†i Âiρ̂− ρ̂Â†i Âi

)
(3.1)

49
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where Ĥ is an Hermitian operator, and Âi are operators acting on the system Hilbert

space of dimension N . The first term of Eq. (3.1) describes a unitary evolution, where

Ĥ is typically the Hamiltonian of the system. The second term is associated to the

coupling of the system to the environment, it produces a non-unitary dynamics, and

is determined by the so called jump operators Âi.

In Section 3.1.1, we provide a detailed derivation of the Lindblad master equa-

tion. This will allow us to describe the dissipation and decoherence of atoms and

cavities (Sec. 3.1.2), and, importantly, to derive a master equation consistent with

the ultrastrong coupling regime (Sec. 3.1.3). In Sec. 2.2.3 we have indeed seen, that

when cavity QED systems reach the ultrastrong coupling regime, their ground state

contains a finite population of photons and of atom excitations. In order to prop-

erly describe the stability of these ground state photons, a careful description of the

environment coupling is needed.

3.1.1 Microscopic derivation of Lindblad master equation

In this subsection we provide a microscopic derivation of the Lindblad master equa-

tion based on Refs.[125–127]. From a mathematical point of view, the coupling to

the environment can be described by considering the total Hamiltonian of the quan-

tum system and the environment, that determines the dynamics of the total density

operator. Here we follow a standard procedure, that permits to obtain an effective

dynamics for only the system density operator, by tracing out the degrees of freedom

of the environment degrees. The total Hamiltonian of the system S and the coupled

environment B is

Ĥ = ĤS + ĤB + ĤI , (3.2)

where ĤS and ĤB are respectively the free Hamiltonian of the system and the environ-

ment and ĤI describes the interaction between them. We assume all the Hamiltonian

terms to be time independent.

A simple model of the environment is given by a bath of harmonic oscillators

ĤB =
∑
k

~ωk b̂†kb̂k ,
[
b̂k, b̂

†
k′

]
= δk,k′ , (3.3)

where ωk is the frequency of the kth mode of the bath. The bath of harmonic oscillator

can represent, for instance, the extra-cavity modes of the electromagnetic field, or it

can describe the phonon modes of a solid environment. Here we consider the bath at

thermal equilibrium

ρ̂
B

=
e−βĤB

ZB
=
∏
k

(
1− eβ~ωk

)
eβ~ωk b̂

†
k b̂k , (3.4)

where ρ̂
B

is the density operator of the bath and ZB is its partition function. The
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thermal equilibrium implies the following relations:

〈b̂k〉T = 〈b̂†k〉T = 0 , 〈b̂kb̂k〉T = 〈b̂†kb̂†k〉T = 0 ,

〈b̂†kb̂k〉T = δk,k′NT
(ωk) with N

T
(ωk) =

1

eβ~ωk−1
,

(3.5)

where 〈 · 〉
T

= TrB{ · ρ̂B} represent the thermal equilibrium average at temperature T

and where we have introduced the bosonic average occupation number N
T
(ωk) of the

kth mode.

A quite general assumption is to consider the following form for the interaction

term

ĤI/~ = Ŝ ⊗ B̂ , (3.6)

where Ŝ is a generic Hermitian operator acting on the system degrees of freedom,

while B̂ is an Hermitian operator acting on the bath, and that we choose to be of the

form

B̂ =
∑
k

(
gkb̂k + g∗k b̂

†
k

)
. (3.7)

In the Schrödinger picture, the time evolution of the total density operator for the

system and environment is

∂tρ̂ = − i
~

[
ĤS + ĤB + ĤI , ρ̂

]
. (3.8)

The derivation of the Lindblad equation is most easily performed in the interaction

picture, in which ρ̂ is mapped into

ρ̂′(t)
def
= e

i
~ (ĤS+ĤB)tρ̂(t)e−

i
~ (ĤS+ĤB)t . (3.9)

In the interaction frame, the equation of motion for ρ̂′ reads:

∂tρ̂
′ = − i

~

[
Ĥ ′I(t), ρ̂

′(t)
]
, (3.10)

where

Ĥ ′I(t)
def
= e

i
~ (ĤS+ĤB)tĤIe

− i
~ (ĤS+ĤB)t . (3.11)

This equation can be formally integrated as

ρ̂′(t) = ρ̂′(0)− i

~

∫ t

0

dt′
[
Ĥ ′I(t

′), ρ̂′(t′)
]
, (3.12)

and injected again in Eq. (3.10) allowing to write the following time evolution:

∂tρ̂
′ = − i

~

[
Ĥ ′I(t), ρ̂

′(0)
]
− 1

~2

∫ t

0

dt′
[
Ĥ ′I(t),

[
Ĥ ′I(t

′), ρ̂ ′(t′)
]]

. (3.13)

At this point we have to do the first important assumption of the approach, the

so called Born approximation. We assume that the interaction term ĤI is too weak
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to create a significant correlation between the system and the bath. Furthermore,

one should keep in mind the large size of the bath. The effects of the interaction are

dispersed on the many degrees of freedom of the bath, and we can assume that its state

remains mostly unperturbed. This allows us to consider the following approximate

factorised expression:

ρ̂(t) ' ρ̂
S
(t)⊗ ρ̂

B
. (3.14)

Injecting this expression in Eq. (3.13) and tracing out the bath degrees of freedom

we find the time evolution of the reduced system density operator ρ̂′
S

(in the interaction

picture):

∂tρ̂
′
S

= − 1

~2

∫ t

0

dτ TrB

{[
Ĥ ′I(t),

[
Ĥ ′I(t− τ) , ρ̂′

S
(t− τ)⊗ ρ̂

B

]]}
, (3.15)

where we have introduced the variable τ = t − t′ and where we have used the fact

that ρ̂′
B

(t) = ρ̂
B

, since ρ̂
B

commute with ĤB and ĤS. The fact that the first term in

Eq. (3.13) vanishes is proven by noting that ĤI/~ = Ŝ⊗∑k(gkb̂k + g∗k b̂
†
k) and that at

thermal equilibrium 〈b̂k〉T = 0.

In order to expand the Eq. (3.15) we first need to decompose the operator Ŝ.

Supposing a discrete spectrum, let us denote the eigenvalues and eigenstate of ĤS by

ε and |ε〉 respectively. Then we can define the operators

Ŝ(ω)
def
=

∑
ε′−ε= ~ω

〈ε |Ŝ|ε′〉 |ε 〉〈ε′| , (3.16)

where the sum in this expression is extended over all the eigenvalues ε′ and ε of ĤS

with a fixed energy difference ~ω. This means that the operators Ŝ(ω) only couples

energy levels with a difference in energy equal to ~ω. They are not Hermitian, but

they satisfy the relation Ŝ†(ω) = Ŝ(−ω), and in the interaction picture frame they

read

e
i
~ ĤSt Ŝ(ω) e−

i
~ ĤSt = e−iωt Ŝ(ω)

e
i
~ ĤSt Ŝ†(ω) e−

i
~ ĤSt = e+iωt Ŝ†(ω) .

(3.17)

Summing over all the energy differences ω (positive and negative) and employing the

completeness relation we get∑
ω

Ŝ(ω) =
∑
ω

Ŝ†(ω) = Ŝ . (3.18)

This allows us to recast the interaction Hamiltonian term into the form

ĤI/~ =
∑
ω

Ŝ(ω)⊗ B̂ =
∑
ω

Ŝ†(ω)⊗ B̂ . (3.19)
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This is translated in the interaction picture as

Ĥ ′I(t)/~ =
∑
ω

e−iωtŜ(ω)⊗ B̂′(t) =
∑
ω

e+iωtŜ†(ω)⊗ B̂′(t) (3.20)

where

B̂′(t) = e
i
~ ĤBt B̂ e−

i
~ ĤBt =

∑
k

(
gk e

−iωt b̂k + g∗k e
+iωt b̂†k

)
. (3.21)

Injecting the expression of Ĥ ′I(t) into the Equation (3.15) we obtain the following

expression for the time evolution of ρ̂′
S
:

∂tρ̂
′
S

=
1

~2

∫ t

0

dτ TrB

{
Ĥ ′I(t− τ)

[
ρ̂′
S
(t− τ)⊗ ρ̂

B

]
Ĥ ′I(t)

}
− 1

~2

∫ t

0

dτ TrB

{
Ĥ ′I(t) Ĥ

′
I(t− τ)

[
ρ̂′
S
(t− τ)⊗ ρ̂

B

]}
+ h.c.

=
∑
ω, ω′

ei(ω
′−ω)t Ŝ(ω)

[∫ t

0

dτeiωτ ρ̂′
S
(t− τ)〈B̂′(t)B̂′(t− τ)〉

T

]
Ŝ†(ω′)

−
∑
ω, ω′

ei(ω
′−ω)t Ŝ†(ω′) Ŝ(ω)

[∫ t

0

dτeiωτ ρ̂′
S
(t− τ)〈B̂′(t)B̂′(t− τ)〉

T

]
+ h.c. .

(3.22)

To simplify the integral in the square brackets we need to spend some words on the

bath correlation 〈B̂′(t)B̂′(t− τ)〉
T
. First of all, we notice that the bath correlations

are homogeneous in time, which implies that 〈B̂′(t)B̂′(t− τ)〉
T

= 〈B̂′(τ)B̂′(0)〉
T
.

We can express this bath correlation by injecting the expression for B̂′(t) in Eq (3.21):

〈B̂′(τ)B̂′(0)〉
T

= TrB

{
ρ̂
B

∑
k

(
gk e

−iωkτ b̂k + g∗k e
+iωkτ b̂†k

)∑
k′

(
gk′ b̂k′ + g∗k′ b̂

†
k′

)}
=
∑
k

(
|gk|2 e−iωkτ 〈b̂kb̂†k〉T + |gk|2 e+iωkτ 〈b̂†kb̂k〉T

)
=
∑
k

|gk|2
{

[1 +N
T
(ωk)] e

−iωkτ +N
T
(ωk) e

+iωkτ
}

(3.23)

where we exploited the thermal equilibrium averages in Eqs. (3.5). It can be

shown [125, 126], that for the typical models of thermal bath, this correlation decays

to zero for large τ . This is heuristically explained by considering that, for τ larger

then a characteristic decay time that we call τB, the oscillation of the different expo-

nentials e±iωkτ from the different modes are dephased and interfere destructively. This

destructive interference is more and more effective as the number of populated modes

is large, requiring the bath to be “large” enough and implying that τB decreases as

the temperature of the bath increases.
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This analysis on the bath correlation function now allows us to simplify the integral

in the square brackets in Eq. (3.22). To do so, we need to introduce the so called

Markov approximation. We assume that the time scale τ
B

is much shorter than the

time scale τ
S

in which the interaction picture density operator of the system changes

significantly. It means that in the time in which 〈B̂′(t)B̂′(t− τ)〉
T

has a significant

value, the density operator nearly is constant and we can approximate it as ρ̂′
S
(t−τ) '

ρ̂′
S
(t). The validity of this approximation is based on the large size of the thermal

bath, which implies a small τ
B

, and on the weakness of the interaction ĤI , that

determines the time scale of the density operator ρ̂′
S
(t) relaxation. This is called the

Markov approximation because the fast decay of bath correlation, implies that the

time evolution is local in time. It means that the system time evolution at a certain

time does not depend on the past states of the system and of the bath: this defines a

Markovian memoryless evolution.

Applying the approximations introduced above, we can now simplify the integral

inside the square brackets in Eq. (3.22):∫ t

0

dτ eiωτ ρ̂′
S
(t− τ)〈B̂′(t)B̂′(t− τ)〉

T
= ρ̂′

S
(t)

∫ t

0

dτ eiωτ 〈B̂′(τ)B̂′(0)〉
T
. (3.24)

Considering that for t � τ
B

the bath correlation function is negligible, we can send

the upper limit of the integral to infinity

ρ̂′
S
(t) Γ(ω) = ρ̂′

S
(t)

∫ ∞
0

dτ eiωτ 〈B̂′(τ)B̂′(0)〉
T
, (3.25)

where we have introduced the Fourier transform of the bath correlation function

Γ(ω) =

∫ ∞
0

dτ eiωτ 〈B̂′(τ)B̂′(0)〉
T
. (3.26)

Using this expression to simplify the time evolution in Eq. (3.22) we obtain

∂tρ̂
′
S

=
∑
ω, ω′

ei(ω
′−ω)t Γ(ω)

[
Ŝ(ω)ρ̂′

S
(t) Ŝ†(ω′)− Ŝ†(ω′) Ŝ(ω)ρ̂′

S
(t)
]

+ h.c. . (3.27)

At this point we introduce the last important approximation toward the derivation

of the Lindblad master equation: the secular approximation. The exponential factor

is assumed to rotate rapidly compared to the time scale τ
S

of the system relaxation.

Once again, this is justified by assuming that the interaction ĤI is much weaker then

the system typical energy differences ε′ − ε, where the {ε} are the eigenvalues of ĤS.

Under this assumption the terms of the summation in Eq. (3.27) with ω 6= ω′ are

negligible in the time integration of the equation, and they can be neglected in the

equation for the time evolution:

∂tρ̂
′
S

=
∑
ω

Γ(ω)
[
Ŝ(ω)ρ̂′

S
(t) Ŝ†(ω)− Ŝ†(ω) Ŝ(ω)ρ̂′

S
(t)
]

+ h.c. . (3.28)
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In order to obtain the Lindblad master equation in its final form we need to

compute the complex function Γ(ω). First of all, it is convenient to decompose Γ(ω)

in its real and imaginary part

Γ(ω) =
1

2
γ(ω) + iΛ(ω) , (3.29)

where

Λ(ω) =
1

2i
[Γ(ω)− Γ∗(ω)] (3.30)

and

γ(ω) =
1

2
[Γ(ω) + Γ∗(ω)] =

∫ ∞
−∞

dτ eiωτ 〈B̂′(τ)B̂′(0)〉
T
. (3.31)

The imaginary part Λ(ω) induces a shift in the energy levels, it is also referred as the

Lamb shift induced by the system-bath coupling. In most circumstances this term

can be neglected [125, 126]. While the real part

γ(ω) =

∫ ∞
−∞

dτ eiωτ 〈B̂′(τ)B̂′(0)〉
T

=

∫ ∞
−∞

dτ eiωτ
∑
k

|gk|2
{

[1 +N
T
(ωk)] e

−iωkτ +N
T
(ωk) e

+iωkτ
}

=
∑
k

|gk|2
{

[1 +N
T
(ωk)]

∫ ∞
−∞

dτ ei(ω−ωk)τ +N
T
(ωk)

∫ ∞
−∞

dτ ei(ω+ωk)τ

}
=
∑
k

2π|gk|2 {[1 +N
T
(ωk)] δ(ω − ωk) +N

T
(ωk) δ(ω + ωk) } ,

(3.32)

Where we used
∫∞
−∞ dτ eiωτ = 2πδ(ω), the integral definition of the Dirac delta func-

tion. Injecting this expression of Γ(ω) into the time evolution Eq. (3.28), we get

∂tρ̂
′
S

=
∑
ω>0

∑
k

π|gk|2[1 +N
T
(ωk)] δ(ω − ωk)

[
2Ŝ(ω)ρ̂′

S
(t)Ŝ†(ω)−

{
Ŝ†(ω)Ŝ(ω), ρ̂′

S
(t)
}]

+
∑
ω>0

∑
k

π|gk|2NT
(ωk) δ(ω − ωk)

[
2Ŝ†(ω)ρ̂′

S
(t)Ŝ(ω)−

{
Ŝ(ω) Ŝ†(ω), ρ̂′

S
(t)
}]

,

(3.33)

where the negative frequencies have been excluded by the summation considering that

ωk > 0, while in the second term we used the property Ŝ(−ω) = Ŝ†(ω). Now we can

define the function

G(ω) =
∑
k

π|gk|2 δ(ω − ωk) , (3.34)
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and we obtain

∂tρ̂
′
S

=
∑
ω>0

G(ω)[1 +N
T
(ω)]

[
2 Ŝ(ω)ρ̂′

S
(t) Ŝ†(ω)−

{
Ŝ†(ω) Ŝ(ω) , ρ̂′

S
(t)
}]

+
∑
ω>0

G(ω)N
T
(ω)
[

2 Ŝ†(ω)ρ̂′
S
(t) Ŝ(ω)−

{
Ŝ(ω) Ŝ†(ω) , ρ̂′

S
(t)
}]

.
(3.35)

The function G(ω) depends on the spectral density of the harmonic oscillator bath

and on the system-bath interaction strength gk. Note that in most circumstances

the spectrum of the harmonic oscillator bath is a continuum, thus the summation is

replaced by an integral over ωk and gk is a continuous function g(ωk). The function

G(ω) is non-zero-valued only in correspondence of a bath mode frequency. Looking

Eq. (3.35), the physical meaning of G(ω) is clear: it only allows an exchange of energy

with the system if it is resonant with some frequency of the bath. The expression of

G(ω) in Eq. (3.34) is reminiscent of the Fermi’s golden rule, it quantifies the system

rate of emission in the environment. The two terms of Eq. (3.35) describe the two

directions of the system-bath energy exchange: the first term describes the system

loss of energy while the second one depicts the transfer of bath excitations toward the

system. Note that at zero temperature there are no excitations in the bath, indeed

N
T
(ω) = 0 and the second term vanishes. On the other hand the first term remains

finite, and the energy is only drained away from the system.

It can be convenient to recast the Eq. (3.35) as

∂tρ̂
′
S

=
γ
S

2

∑
ω>0

G̃(ω)[1 +N
T
(ω)]

[
2 Ŝ(ω)ρ̂′

S
(t) Ŝ†(ω)−

{
Ŝ†(ω) Ŝ(ω) , ρ̂′

S
(t)
}]

+
γ
S

2

∑
ω>0

G̃(ω)N
T
(ω)
[

2 Ŝ†(ω)ρ̂′
S
(t) Ŝ(ω)−

{
Ŝ(ω) Ŝ†(ω) , ρ̂′

S
(t)
}]

.
(3.36)

where we have introduced the dissipation rate γ
S

= 2G(ω
S
) and the dimensionless

spectral function G̃(ω) = G(ω)/G(ω
S
), with ω

S
the characteristic frequency of the

system: for instance the cavity mode frequency or atom transition frequency. It is

the time to go back to the Schrödinger picture in which

ρ̂
S

def
= e

i
~ ĤStρ̂′

S
e−

i
~ ĤSt . (3.37)

The two terms of Eq. (3.36) are invariant under this transformation and we obtain

the following expression for the time evolution of ρ̂
S
:

∂tρ̂S =
i

~

[
ĤS , ρ̂S

]
+
γ
S

2
D
T
(Ŝ)ρ̂

S
(3.38)

where D
T
(Ŝ) defines the dissipation superoperator at finite temperature T

D
T
(Ŝ)ρ̂

S
=
∑
ω>0

G̃(ω)[1 +N
T
(ω)]

[
2 Ŝ(ω)ρ̂

S
Ŝ†(ω)−

{
Ŝ†(ω) Ŝ(ω) , ρ̂

S

}]
+
∑
ω>0

G̃(ω)N
T
(ω)
[

2 Ŝ†(ω)ρ̂
S
Ŝ(ω)−

{
Ŝ(ω) Ŝ†(ω) , ρ̂

S

}]
.

(3.39)



3.1. Coupling to the environment and Lindblad master equation 57

Note that the dimensionless spectral function G̃(ω) depends on the kind of bath that

we are considering. For a 3D electromagnetic field, for instance, G̃(ω) ∝ ω3 and it

vanishes for ω → 0.

Let us go a few steps backward. Before applying the rotating wave approximation,

the time evolution of ρ̂′
S

was expressed by Eq. (3.27). If we follow the same steps

detailed above we find that ρ̂′
S

is evolving as

∂tρ̂
′
S

=
γ

2

∑
ω>0

∑
ω′

ei(ω
′−ω)t G̃(ω)[1 +N

T
(ω)]

[
Ŝ(ω)ρ̂′

S
(t)Ŝ†(ω′)− Ŝ†(ω′)Ŝ(ω)ρ̂′

S
(t)
]
+ h.c.

+
γ

2

∑
ω>0

∑
ω′

e−i(ω
′−ω)t G̃(ω)N

T
(ω)
[
Ŝ†(ω)ρ̂′

S
(t)Ŝ(ω′)− Ŝ(ω′)Ŝ†(ω)ρ̂′

S
(t)
]
+ h.c. .

(3.40)

Now we apply a kind of rotating wave approximation by neglecting only the negative

frequencies in the summation over ω′. This is justified by considering that, ω being

positive, the factor e−i(ω
′−ω)t rotates faster for those terms. At zero temperature,

with the assumption that G̃(ω) = 1 is a constant, and going back to the Schrödinger

picture we obtain that

∂tρ̂S =
i

~

[
ĤS , ρ̂S

]
+
γ

2

[
2 Ŝ−ρ̂S Ŝ

†
− −

{
Ŝ†−Ŝ− , ρ̂S

}]
(3.41)

where we have introduced the jump operator

Ŝ−
def
=
∑
ω>0

Ŝ(ω) =
∑
ω>0

∑
ε′−ε=~ω

〈ε |Ŝ|ε′〉 |ε 〉〈ε′| =
∑
ε′>ε

〈ε |Ŝ|ε′〉 |ε 〉〈ε′| , (3.42)

in which we recall that {ε} and {|ε〉} are the eigenvalues and eigenstates of ĤS respec-

tively. At T = 0, the bath can only absorb energy from the system, so only jumps

going downward in the system eigenstates are permitted (ε′ > ε).

3.1.2 Master equations for atoms and cavities

Let us apply the general Lindblad master equations that we have microscopically

derived above to the two elementary bricks of cavity QED models: linear cavities,

and two-level atoms. We will consider here the simplified case of zero temperature

and constant spectral function G(ω). In this conditions a very convenient description

is given by Equation (3.41).

Damped cavity master equation

Let us consider a single mode linear cavity, whose Hamiltonian is

Ĥc/~ = ωcâ
†â, (3.43)
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where â† and â are the creation and annihilation operator of a cavity field mode of

frequency ωc. We assume that the cavity is coupled to the environment through the

interaction Hamiltonian:

ĤI/~ = Ŝ ⊗ B̂ = (â+ â†)
∑
k

(
gkb̂k + g∗k b̂

†
k

)
. (3.44)

Let us compute the jump operator Ŝ−, using the eigenstates of Hc that are the Fock

states |n〉, i.e. Ĥc |n〉 = n ~ωc |n〉:

Ŝ− =
∑
n′>n

〈n|â+ â†|n′〉 |n〉〈n′| =
∑
n′>n

〈n|â|n′〉 |n〉〈n′| = â , (3.45)

where we have used that 〈n|â+ â†|n′〉 = 0 for any n′ > n. The resulting Lindblad

master equation for a damped cavity at zero temperature is

∂tρ̂ = −i
[
ωc â

†â , ρ̂
]

+
γc
2

(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
, (3.46)

where γc quantifies the intensity of the coupling to the environment, that depends on

the values of the gk and on the bath density of states (Eq. (3.34)). This equation

efficiently describes the dissipation of photons (and energy) into the bath. Indeed, by

considering the dynamics of the average number of photons N̂ , we get

∂t〈N̂〉 = Tr
{
â†â (∂tρ̂)

}
= −γc〈N̂〉 ⇒ 〈N̂〉(t) = 〈N̂〉(0)e−γct . (3.47)

Here, we see that the mean number of photons and the energy inside the cavity decays

exponentially to zero.

Dissipation and decoherence in a two-level atom

Let us now follow the same procedure for a two-level atom, whose Hamiltonian reads

Ĥa/~ =
ωa
2
σ̂z , (3.48)

and in which the interaction Hamiltonian between the system and the bath is chosen

to be

ĤI/~ = Ŝ ⊗ B̂ = (σ̂− + σ̂+)
∑
k

(
gkb̂k + g∗k b̂

†
k

)
. (3.49)

Here the σ̂ operators are the usual Pauli matrices operating on the space of a two-

level system with transition frequency ωa. We compute the jump operator Ŝ− for the

two-level atom by using its eigenstate |g〉 and |e〉:

Ŝ− = 〈g|σ̂− + σ̂+|e〉 |g〉〈e| = 〈g|σ̂−|e〉 |g〉〈e| = σ̂− , (3.50)
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where we used the equality σ̂+ |e〉 = 0. Using this result, we can now express the zero

temperature Lindblad master equation of a damped two-level atom as

∂tρ̂ = −i
[ωa

2
σ̂z , ρ̂

]
+
γa
2

(2σ̂−ρ̂σ̂+ − σ̂+σ̂−ρ̂− ρ̂σ̂+σ̂−) , (3.51)

where, as for the damped linear cavity, γa quantifies the intensity of the coupling to

the environment.

Two-level systems (also called qubits, as shortcut for quantum bits) are the ele-

mentary bricks of quantum computation. The idea is to store information in these

systems and to exploit their quantumness to improve the performances of certain

algorithms. However, the coupling to the environment is an obstacle to this exploita-

tion, since the uncontrolled bath degrees of freedom represent a loss of information.

Imagine to store the information in a superposition of |g〉 and |e〉, namely:

|Ψ(0)〉 = (|g〉+ |e〉)/
√

2 . (3.52)

This quantum information is gradually deteriorated by the presence of the environ-

ment. Indeed the superposition coherence 〈e|ρ̂|g〉 exponentially vanishes as

∂t〈e|ρ̂|g〉 = 〈e|∂tρ̂|g〉 = −(iωa + γa/2)〈e|ρ̂|g〉
⇒ 〈e|ρ̂(t)|g〉 = 〈e|ρ̂(0)|g〉 e−iωat−γat/2 .

(3.53)

This process of information loss in quantum systems is generally called decoherence.

3.1.3 Consistent master equation in the ultrastrong coupling

regime

In the previous section we have obtained the description of dissipation for a cavity

mode (Eq. (3.46)) and for a two-level system (Eq. (3.46)). At this point one could be

interested in determining the master equation of a generic cavity QED system ĤS in

which cavity and atom are coupled. A first guess could be to simply combine the two

dissipation terms of the cavity and the atom, into the following master equation:

∂tρ̂ = − i
~

[
ĤS, ρ̂

]
+
γc
2

(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
+
γa
2

(2σ̂−ρ̂σ̂+ − σ̂+σ̂−ρ̂− ρ̂σ̂+σ̂−) .

(3.54)

While this master equation, that is broadly used in quantum optics, is a good approx-

imation in the case of a weak coupling g � √ωcωa between the cavity and the atom,

however, it can lead to very pathological results in the ultrastrong coupling regime.

Indeed, as we have seen in Section 2.2.3, the ground state of cavity QED models

in the ultrastrong coupling regime contains a finite population of photons and atomic

excitations. What happens to these excitations when the dissipation is considered?

Are they going to be emitted in the environment? A näıve answer would be that,
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since the ground state contains photons and that the mirrors of the cavity are not

perfect, these photons should be able to escape the cavity. However this reasoning

leads to a wrong conclusion. Indeed, since these photons are part of the system ground

state, extracting a photon means to increase the state energy. At the same time, a

dissipated photon contributes to increase the environment energy. So, we finish with

the contradictory conclusion that the total energy of the system and the environment

is clearly not conserved.

In order to better illustrate this idea, let us consider the concrete case of the

resonant (ωc = ωa = ω) Jaynes-Cumming model

ĤJC/~ = ω â†â+
ω

2
σ̂z + g(â σ̂+ + â†σ̂−) . (3.55)

Considering the same cavity-to-environment coupling chosen in the previous section,

we have

ĤI/~ = (â+ â†)
∑
k

(
gkb̂k + g∗k b̂

†
k

)
. (3.56)

Let us compute the jump operator Ŝ− on the eigenstates of the Jaynes-Cumming

Hamiltonian that are presented in Section 2.2.3. For g � ω we get

Ŝ− '
∑
n′>n

∑
η,η′=±

〈n, η|â+ â†|n′, η′〉 |n, η〉〈n′, η′|

=
∑
n′>n

∑
ηη′=±

〈n, η|â|n′, η′〉 |n, η〉〈n′, η′| = â ,
(3.57)

where we used the fact that 〈n, η|â†|n′, η′〉 = 0 for any n′ > n. In a similar way, for

an atomic coupling to the bath of the form in Eq. (3.49), and in the limit of weak

coupling g � ω, one can find that the jump operator is σ̂−. This means that in this

limit the master equation in Eq. (3.54) is a valid description of dissipation for the

Jaynes-Cumming model.

However, this is no more the case in the ultrastrong coupling regime. Indeed, for

g > ω the state |0, g〉 is no more the ground state of the system, and, since we have

that â |0, g〉 = σ̂− |0, g〉 = 0, Eq. (3.54) predicts that this state is stable. That an

excited state is stable in absence of driving and for a bath at zero temperature is not

physical. Furthermore, since â |n,−〉 , σ̂− |n,−〉 6= 0, the ground state |n,−〉 of the

system for g > ω is never stable under the action of the bare cavity and atom jump

operators â and σ̂−.

Nevertheless, the general master equations that we have microscopically derived

in Section 3.1.1 (Eqs. (3.41) and (3.38)), are consistent with the ultrastrong coupling

regime and immune from the unphysical artefacts illustrated above.
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3.2 External driving

Most of the experiments in quantum optics, particularly those in cavity and circuit

QED, require the presence of an external driving, both to excite and to probe the

considered system. The driving can be of different forms, electric or optical, coherent

or incoherent.

Here we start by consider the microscopic description of cavity mode coherently

driven by a laser beam. Let us consider the full quantum description of the laser field

and cavity mode through the total Hamiltonian

Ĥtot/~ = ωc â
†â+ ωp b̂

†b̂+ g
(
â† + â

) (
b̂† + b̂

)
, (3.58)

where b̂ is the annihilation operator of the the laser field, ωp is its frequency, the

σ̂ operators describe the two-level system degrees of freedom, and g quantifies the

strength of the coupling, as detailed in Sec. 2.2.2.

The common assumption here, and in general whenever a system-environment

coupling is studied, is to consider the environment as unaffected by the system. Thus

the laser field stays in a coherent state and the total density matrix will be of the

form:

ρ̂tot(t) = ρ̂(t)⊗ |β(t)〉〈β(t)| . (3.59)

Here ρ̂(t) is the density operator of the cavity and |β(t)〉 is the coherent state of the

laser field that, neglecting the effect of the interaction with the cavity, evolves as:

|β(t)〉 = e−iωp b̂
†b̂ t |β0〉 = |β0e

−iωpt〉 . (3.60)

Injecting the density operator defined by Eqs. (3.59) and (3.60) into the Liouville-von

Neumann equation

∂tρ̂tot(t) = − i
~

[
Ĥtot, ρ̂tot(t)

]
, (3.61)

and tracing out the laser mode degrees of freedom we see that the density operator

of only the cavity evolves in time as

∂tρ̂(t) = − i
~

[
Ĥ(t), ρ̂(t)

]
, (3.62)

with

Ĥ(t)/~ = ωc â
†â+ Ωp cos(ωpt)(â+ â†) , (3.63)

and where we introduced the pumping strength Ωp = gβ0/2 (here we have chosen β0

to be real).

Note that one can obtain a different expression for the driving by using the rotat-

ing wave approximation (see Sec. 2.2.2) on the complete Hamiltonian in Eq. (3.58).

Neglecting the anti-resonant terms, and by following the same reasoning as above,

leads to obtain the following Hamiltonian for the driven cavity

Ĥpump(t)/~ = ωc â
†â+ Fe−iωptâ† + F ∗eiωptâ , (3.64)
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where we have introduced the complex pumping strength F = gβ0 (for an arbitrary

complex β0). Very similar expressions can be obtained to describe the driving of a

two-level atom, by simply replacing the creation and annihilation operators of the

cavity mode with the ladder operators σ±.

Note that here the coupling to an external environmental bosonic mode does not

represent a loss of knowledge. Indeed, since the environment is in a precisely known

state, it does not reduce our knowledge on the observables of the cavity mode. This

explains why it has been possible to describe the coupling to this environment through

an Hamiltonian term for the cavity. This will not be the case for other kind of

environments in which a non-unitary time evolution is necessary, see subsection 3.1.

Rotating frame

It is in general not desirable to have a time dependence in the Hamiltonian. In the

case of the Hamiltonian driving term in Eq. (3.64), it is possible to move to a rotating

frame in which the time dependence is removed. This is done through the unitary

transformation

Û(t) = ei ωp â
†â t . (3.65)

The cavity density operator in the rotating frame reads

ρ̂′ = Û ρ̂ Û † , (3.66)

and its time evolution is

∂tρ̂
′ = (∂tÛ)ρ̂Û † + Û ρ̂(∂tÛ

†) + Û(∂tρ̂)Û †

= iωp
[
â†â, ρ̂′

]
− i

~

[
Ĥ ′, ρ̂′

]
= − i

~

[
Ĥ ′ − ~ωpâ†â , ρ̂′

]
.

(3.67)

Thus the time evolution of the cavity density operator in the rotating frame is governed

by the relative Hamiltonian

Ĥ(rf) = Ĥ ′ − ~ωpâ†â = ÛĤÛ † − ~ωpâ†â
= −∆ â†â+ F â† + F ∗â .

(3.68)

where we introduced the frequency detuning ∆ = ωp − ωc and where

Û(t) â Û †(t) = e−i ωp t â . (3.69)

Note that the populations are unchanged by this transformation, this means that

computing the average of Hermitian operators, such as the number of photons â†â

does not requires to go back in the non-rotating frame.



Chapter 4

Theory of quantum measurement

and trajectories

The degrees of control that experimental quantum optics has reached nowadays gives

a renewed value to the question of quantum measurement. Indeed, while in the

past it was only possible to test the ensemble properties of quantum systems, the

improvements in reducing the decoherence, and the advances in the precision of the

measurements, today allow physicists to track the quantum state trajectory even on

single shot experiments [87–89]. This is paving the way to new physics, encompassing

feedback control [86, 128] and quantum thermodynamics [90–93].

In this chapter we introduce the most basic elements of the theory of quantum

measurement. Traditionally, quantum physics describes the measurement through

the projection postulate. However, since the very early stages of the quantum theory

this postulate has stimulated intense debates, whose relation with the foundations of

quantum physics is reported in Section (4.1). In particular, we will show that in the

framework of an informational interpretation of quantum mechanics, the projection

measurement can be seen as an information update. While the projection postulate

represents the most basic description of a quantum measurement, in Sec. 4.2 we will

present a more general theory of measurement, in which other kinds of information

updates can be considered. In particular we will consider the case of the continuous

measurement, in which the continuous extraction of information allows to reconstruct

the quantum state trajectory of the system. In Section 4.3 we will present the physics

of stochastic quantum trajectories, and in particular their relation with the Lindblad

master equation approach.

4.1 The measurement problem in the foundations

of quantum physics

The measurement problem in quantum mechanics, and the associated quantum state

collapse1, is one of the most intriguing – and often misunderstood – concept in physics.

1Note that for traditional reasons “quantum state collapse” is less used than “wave function

collapse”. In order to stay more general, here we preferred to use the first expression, however

there are no substantial differences between them. Furthermore this term is also an equivalent

denomination of the projection postulate.

63
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Since the origin of quantum mechanics, this problem has stimulated vivid debates,

formulation of gedanken experiments and paradoxes [21, 129].

In quantum physics, a system is described by its quantum state that evolves de-

terministically, according to the Schrödinger equation. When a certain observable is

measured, the quantum state collapses by projection into the eigenstate of the observ-

able operator that corresponds to the observed output value (this process is further

explained in section 4.2.1). This process, that is typically introduced as a postulate

of quantum physics, is characterised by some counterintuitive features.

• Randomness: even if the measurement apparatus and the system evolve deter-

ministically, the result of a measurement is in principle unpredictable. It is the

first time that a physical theory has an intrinsic randomness, which is generally

perceived as philosophically inconvenient. This unease is well expressed by the

famous sentence by Einstein: “God doesn’t play dice with the world” (p.58 of

Ref. [20]).

• Nonlocality: the quantum state collapse is instantaneous and it changes the

system description at a distance arbitrary large with respect to the place in

which the measurement occurred. This seems to be at odds with the speed-of-

light limit and is the subject of the largely debated EPR paradox [21].

• Two different evolution principles: there is no way to explain the random pro-

cess of quantum state collapse from the deterministic Schrödinger equation; the

origins of the quantum state collapse as a physical process are unclear.

Classically, through an ideal measurement, it is in principle possible to determine

with certainty the values of all the system variables. In this condition of complete

knowledge, the results of all subsequent measurements are perfectly predictable. Al-

though measurement and probability are crucial for practical applications, they are

completely irrelevant in the foundation of classical mechanics.

The picture is completely different in quantum physics. In this case, no matter

the perfection of the measurement or the degree of knowledge on the system, there is

always a measurement whose result is uncertain. The best one can do is to determine

the probability distribution of the physical system observables. One could interpret

this uncertainty as due to an incomplete knowledge of the considered quantum sys-

tem. This is the idea of “hidden” variable interpretations of quantum physics. They

attribute the randomness of quantum measurement to the existence of some “hidden”

variables whose knowledge is incomplete.

Although many of these interpretations are consistent (the most famous is prob-

ably the Bohm or pilot-wave theory [130, 131]) they are generally rejected by most

physicists. An important contribution in determining this rejection is probably due to

the result of Bell in 1964, who showed that any deterministic “hidden” variable theory

must be nonlocal [22]. The idea that a theory is based on nonlocal variables is indeed
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undesired. Less famous than the Bell’s result, another black mark for deterministic

“hidden” variable theories is represented by the quantum contextuality. In any theory

that explains quantum mechanics in deterministic terms, the result of an observable

measurement depends on the specific setup of the measurement [7, 23].

Another viable option to reconcile these controversial aspects, is to interpret quan-

tum mechanics in terms of the knowledge and the information that an observer has

of a physical system. Rather then an element of reality, the quantum state can be

seen as the description of observer’s knowledge about the system. In these terms, for

instance, the quantum state collapse is simply the update of the observer’s knowledge

due to the new information obtained by the measurement. Just like in the classical

theory of probability and information, a knowledge update can be random, it can be

nonlocal and instantaneous2, and it happens in a very different fashion compared to

the probability distribution time evolution.

Probably the first interpretation of quantum mechanics adopting this idea is due

to the Copenhagen school, and particularly to the original thinking of Bohr: “It is

wrong to think that the task of physics is to find out how nature is. Physics concerns

what we can say about nature” [132]. In the same vein, QBism, a very recent inter-

pretation of quantum physics, tries to extend the Bayesian conception of probability

to the quantum frame [5, 6]. In this view the quantum state is a representation of the

subjective degrees of belief of the observer, as defined by decision theory and the de

Finetti’s theorem [133, 134].

In the next sections, we will adopt this point of view. The quantum state is a

representation of the observer’s knowledge about the realisation of the measurement

outcomes. The quantum state collapse is the update of the information that the

observer has about the system. Only one more conceptual assumption is needed

to justify certain properties of quantum measurements: any kind of measurement

is always accompanied by an interaction between the measured and the measuring

system. The measurement is an act of interaction. At the end of Sec. 4.2.1, we will

show the importance of this last assumption in a concrete situation.

4.2 General theory of quantum measurement

In the previous section we have interpreted the quantum state collapse as an update

of the information that an observer has on a system. In Sec. 4.2.1 we describe this

information update, within the mathematical formalism of quantum mechanics, and

in the form of a projective measurement. The projective measurement is not the only

way to acquire information from a system. For this reason in Sec. 4.2.2 we present

2When one acquires new information about a system that is correlated to a second distant system,

the knowledge update is instantaneous, and concerns both systems even if they are separated by large

distances. It may seem to be a nonlocal process, however it is not the case, because no faster-than-

light transmission of information occurs.
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a more general description of quantum measurement. We point that this section is

inspired by Ref. [135].

4.2.1 Projective measurement

In its traditional description, quantum measurement is defined in terms of projective

measurements. Let us consider the measurement of the observable Λ̂. This operator is

Hermitian and can be written in a diagonal form, in terms of its eigenspace projectors

Π̂λ and the associated real eigenvalues λ:

Λ̂ =
∑
λ

λ Π̂λ . (4.1)

For simplicity, we will assume the ensemble {λ} to be discrete.

When a measurement of the observable Λ̂ is performed, one obtains as result one

of the eigenvalues {λ}. The probability pλ(t) to observe a particular eigenvalue λ at

time t, is provided by the Born rule [136]:

pλ(t) = Tr
{

Π̂λρ̂(t)
}

(4.2)

where ρ̂(t) represents the a priori knowledge of the system at time t.

We are interested in determining the a posteriori conditional state after the mea-

surement, i.e. the state ρ̂λ(t
+) that we deduce at a time t+ just after obtaining from

the measurement the result λ. This is determined by a projective update on the a

priori state ρ̂(t):

ρ̂λ(t
+) =

Π̂λρ̂(t)Π̂λ

pλ(t)
. (4.3)

If the system is in a pure state (a state of maximal knowledge) before the measurement,

i.e. ρ̂(t) = |ψ(t)〉〈ψ(t)|, the Eqs. (4.2) and (4.3) can be simplified as

pλ(t) = 〈ψ(t)| Π̂λ |ψ(t)〉 , (4.4)

|ψλ(t+)〉 =
Π̂λ |ψ(t)〉√

pλ(t)
. (4.5)

This is the mathematical formulation of the projection postulate or the quantum state

collapse, as we referred to in Section (4.1). If, in addition, the spectrum of Λ̂ is non-

degenerate, then the eigenspace projectors can be expressed as Π̂λ = |λ〉〈λ| (where |λ〉
are the eigenstates of Λ̂), and Equation (4.3) defines a von Neumann measurement.

Given Eqs. (4.2) and (4.3), it is possible to determine the unconditional state

ρ̂(t+), i.e. the state obtained when the measurement results are not retained:

ρ̂(t+) =
∑
λ

pλ(t)ρ̂λ(t
+) =

∑
λ

Π̂λρ̂(t)Π̂λ . (4.6)
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This implies that, if we do not keep track of the measurement results, an a priori

pure state will be in general updated to a mixed state, increasing the entropy of the

system.

From an information theory point of view, this is very strange: if one does not

receive any information on the outcomes of the measurement, then the state of knowl-

edge ρ̂ should remain unchanged. To get out of this impasse, we recall an assumption

on the nature of quantum measurement that we introduced at the end of Section (4.1):

any kind of measurement is always accompanied by an interaction between the mea-

sured and measuring system. This interaction must be accounted for in the time

evolution of the system, and this introduces a finite effect on the state of the mea-

sured system.

The picture is totally different in the classical conception, in which measurement

is seen as a passive reception of information. From this point of view, rejecting the

outcomes is equivalent to not performing any measurement, and in both cases it would

leave the system state of knowledge unchanged.

4.2.2 General description of measurement

In undergraduate courses, the projective measurement is typically the only kind of

quantum measurement to be introduced. However, this is not the most general kind

of measurement. It describes an ideal measurement, and it is inadequate when the

measurement extracts only partial information about the observable or when one

needs to include the effect of errors.

Indeed, there are many situations in which the a posteriori conditional state ρ̂λ(t
+)

is clearly not obtained through a projective update of the a priori state ρ̂(t). This is

for instance the case in photon counting. As we will see in detail later, when a photon

is detected the state of the system is update by annihilating a photon:

ρ̂
det

(t+) ∝ â ρ̂(t) â† (4.7)

where â is the photon annihilation operator and ρ̂
det

describes the system state con-

ditional to the detection of a photon. The non-Hermitian operator â is clearly not a

projector.

A more generalised description of quantum measurement is provided by the for-

malism of positive-operator valued measures (POVM). In this formalism every mea-

surement outcome r is associated to an operator M̂r. When a measurement returns

the value r the system state is updated as

ρ̂r(t+ tm) =
M̂rρ̂(t)M̂ †

r

pr(t)
, (4.8)

where tm is the measurement duration time that, contrary to the projective measure-

ment, is finite. The operators {M̂r} are called measurement operators, and they are

not required to be Hermitian.
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The probability to measure the value r given the a priori state of knowledge ρ̂(t)

is:

pr(t) = Tr
{
M̂ †

rM̂rρ̂(t)
}
. (4.9)

Positive probabilities imply that the operators {M̂ †
rM̂r} are positive semidefinite op-

erators. The fact that the probability must sum to 1 for any a priori state, the set of

operators {M̂r} must satisfy the completeness relation:∑
r

M̂ †
rM̂r = 1̂S , (4.10)

where 1̂S is the unit system operator. The set of operators {M̂ †
rM̂r} is POVM, defines

a set of semidefinite positive Hermitian operators respecting the completeness relation,

explaining the name of the formalism.

Note that this formalism includes the projective measurement, however, it is not

based on the concept of “observable”. The outcomes {r} are not necessarily eigen-

states of an observable Hermitian operator. They represent the possible results of

the measurement, but the kind of information that they bring (represented by M̂r)

depends on the circumstances. This idea will be more clear when considering concrete

situations. In section 4.3 we will use the formalism to derive the description of photon

counting and homodyne detection.

The POVM formalism in terms of projective measurements

It is important to know, that any POVM can be obtained as an interaction with

an ancillary quantum system followed by a projective measurement on the ancillary

system.

Let us consider a system in the initial state |ψ(t)〉. The system interacts with an

ancillary system whose initial state is |θ(t)〉. The initial uncorrelated state of the total

system is

|Ψ(t)〉 = |θ(t)〉 |ψ(t)〉 . (4.11)

After a time t−m the total system evolves into the state (~ = 1)

|Ψ(t+ t−m)〉 = e−iHI t
−
m |θ(t)〉 |ψ(t)〉 , (4.12)

where HI is the interaction between the two subsystems, which are now correlated.

Measuring one of them gives information on the other. The idea is now to recover

the measurement operator M̂r for the original system by performing a projective

measurement on the ancillary system.

Let us measure on the ancillary system the observable R̂, whose spectrum {r} is

assumed to be discrete and non-degenerate. The a posteriori state of the system,
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conditional to the observation of the outcome r is obtained by using the associated

projector Πr = |r〉〈r| ⊗ 1̂S:

|Ψ(t+ tm)〉 =
|r〉〈r| e−iHI t−m |θ(t)〉 |ψ(t)〉√

pr(t)
, (4.13)

where the probability of observing the value r is

pr(t) = 〈ψ(t)| 〈θ(t)| e+iHI t
−
m
[
|r〉〈r| ⊗ 1̂S

]
e−iHI t

−
m |θ(t)〉 |ψ(t)〉 . (4.14)

After the projective measurement the ancillary system is in the state |r〉, the total

state is factorisable and the total system state can be written as:

|Ψ(t+ tm)〉 = |r〉 M̂r |ψ(t)〉√
pr(t)

. (4.15)

Here we defined the measurement operator M̂r acting on the original system Hilbert

space, defined as

M̂r = 〈r| e−iHI t−m |θ(t)〉 . (4.16)

It can be proven that any set of measurement operators {M̂r} can be recast by the

suitable unitary evolution and a projective measurement [137]. This explains why only

the projective measurement is presented in undergraduate courses. Even if POVM

measurements are more general and useful for concrete applications, the projective

measurement is the fundamental description of measurement in quantum physics.

Imperfect measurement

It is important to note that the measurement formalism introduced above describe

the situation of an ideal measurement. On the other hand, one could be interested

in describing real measurements in which the role of experimental errors can not be

neglected. Referring to the previous subsection this can be explained for instance by

a mixed initial state of the ancilla or by imperfections in recording the projection

measurement results.

In this more general case the measurement description requires to introduce op-

eration superoperators. To every measurement outcome r is associated an operation

superoperator

Or ρ̂ =
∑
j

Ôr,j ρ̂ Ô
†
r,j (4.17)

acting on the space of the system density operators ρ̂.

After observing the outcome r the system state of knowledge is updated to the

conditional state

ρ̂r(t+ tm) =
Orρ̂r(t)
pr(t)

, (4.18)
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where tm is the measurement duration and

pr(t) = Tr{Orρ̂r(t)} = Tr

{∑
j

Ô†r,jÔr,j ρ̂

}
. (4.19)

Continuous weak measurement

Among the many kind of possible measurement, continuous monitoring plays a crucial

role, especially from an experimental point of view. Photon counting and homodyne

detection, are among the most used techniques in experimental quantum optics and

cavity QED [89, 126, 138–140]. In order to give a formal description of these mea-

surement (Sec. 4.3), we need to define a continuous weak measurement. In simple

words it consists of a measurement that continuously monitors the system, without

introducing important perturbations on the system. Within the POVM formalism it

is possible to give a precise definition of this kind of measurements.

In the POVM formalism the unconditional state of the system ρ̂(t + tm) is given

as

ρ̂(t+ tm) =
∑
r

pr(t)ρ̂r(t+ tm) =
∑
r

M̂r(tm)ρ̂(t)M̂ †
r (tm) , (4.20)

where we consider M̂r(tm) to depend on the measurement duration tm, that is indeed

justified by Equation (4.16).

Contrary to the case of projective measurement (Eq. (4.6)), it is now possible

to have a set of measurement operators {M̂r(tm)} such that Eq. (4.20) describes a

continuous evolution for any a priori state ρ̂(t). More precisely, it is possible to choose

the measurement operators {M̂r(tm)} such that

lim
tm→0

ρ̂(t+ tm)− ρ̂(t)

tm
=

dρ̂(t)

dt
(4.21)

defines a finite differential when tm goes to zero. This condition defines a special

subclass of POVM measurements: the continuous weak measurements.

In some situation one can be interested in monitoring the system continuously.

At all times one would have a result and a conditional state, defining a quantum

state trajectory. In other words a continuous measurement is a measurement in which

information is continually extracted from a system. The requirement in Eq. (4.21)

means that the amount of information extracted goes to zero as the duration of the

measurement goes to zero: the measurement is weak.

In section 4.3 we will study the quantum state trajectories arising from two con-

tinuous weak measurements that are crucially important in experimental quantum

optics: photon counting and homodyne detection.
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4.3 Quantum trajectories and stochastic

Schrödinger equations

In Chapter 3 we have seen that the information stored in a quantum system is generally

deteriorated by the coupling to the environment. Indeed, information is indeed lost

into the unmonitored degrees of freedom of the environment. Our knowledge of the

system is incomplete in this case, and the system is in general described through a

mixed-state density operator. However by performing a continuous measurement on

the environment it is possible to retrieve the lost information, and to track the quantum

trajectory of the maximal-knowledge pure state of the system. In this section we

consider two commonly used kinds of monitoring in quantum optics: photon counting

and homodyne detection. In particular we will derive a microscopical description of

photon counting in Sec. 4.3.1, and present the relation between stochastic evolutions

and the Lindblad master equation (Sec. (4.3.2)). Finally in Sec. 4.3.3 we briefly

report, the formal step that allows to define a diffusive stochastic evolution in the

case of homodyne detection.

We pointout that this section takes inspiration from Refs. [126, 135].

4.3.1 Photon counting: microscopic description

Let us consider a cavity QED system continuously monitored through photon count-

ing. The system is coupled to a bath represented by the modes of the extracavity

electromagnetic field. Assuming to be able to monitor all theses modes one could

detect all the photons that are released by the cavity QED system. This would allow

to track the state of the system at all times, i.e. to follow the quantum trajectory

of the system. The idea here is to model the system-bath energy exchanges and the

detection of these exchanges by continuously monitoring the environment.

Very similarly to what we did to derive the Lindblad master equation in Sec. 3.1.1,

we define the total Hamiltonian of the system S and the coupled environment B as

Ĥ = ĤS + ĤB + ĤI , (4.22)

where ĤS and ĤB are respectively the free Hamiltonian of the system and the en-

vironment, while ĤI describes the interaction between them. For this derivation we

find it convenient to use a bath of harmonic oscillators with a continuous spectrum:

ĤB =

∫ ∞
0

dω ~ω b̂†(ω)b̂(ω) ,
[
b̂(ω), b̂†(ω′)

]
= δ(ω − ω′) , (4.23)

where b̂(ω) is the annihilation operator of the bath mode with only positive energies

ω.

The interaction is modeled as

ĤI = i~
∫ ∞

0

dω g(ω)(â− â†)
[
b̂(ω) + b̂†(ω)

]
, (4.24)
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where g(ω) quantifies the interaction strength and â is an operator acting on the

Hilbert space of the cavity QED system. More precisely, for this derivation we need

â to be of the form

â =
∑

ε′−ε= ~ω0

cεε′ |ε 〉〈ε′| , (4.25)

where cεε′ are arbitrary complex coefficients and where the sum runs over all the

eigenvalues ε′ and ε of ĤS with an arbitrary energy difference ~ω0 > 0. Thus the

operator â encodes the loss of a precise amount of energy ~ω0 in the system (very

similarly to an annihilation operator for a linear cavity). Note that this choice for â is

quite general, indeed any interaction term can be decomposed in a sum of operators

like those assumed here.

In the interaction picture the evolution is determined by only the interaction

Hamiltonian term

Ĥ ′I(t) = i~
∫ ∞

0

dω g(ω)(â e−iω0t − â†eiω0t)
[
b̂(ω)e−iωt + b̂†(ω)eiωt

]
. (4.26)

Adopting the rotating wave approximation, we neglect the anti-resonant terms, giving

Ĥ ′I(t) = i~
∫ ∞

0

dω g(ω)
[
â b̂†(ω)ei(ω−ω0)t − â†b̂(ω)e−i(ω−ω0)t

]
. (4.27)

At this point we need to use the Markov approximation. Since the coupling is weak

we can assume that in the time scale of the system-bath interaction, the exponential

terms in Eq. (4.27) oscillate very rapidly. This means that only the modes that are

very close to ω0 give a significant contribution in the integral above. If g(ω) is smooth

enough, we can replace it by the constant value g(ω) = g(ω0)
def
=
√
γ/2π. For the

same reason we can also send the bottom limit of the integral to negative infinity.

After this approximation the interaction Hamiltonian reads

Ĥ ′I(t) = i~
√
γ
[
â b̂†(t)− â†b̂(t)

]
, (4.28)

where the time-dependent bath operators

b̂(t) =
1√
2π

∫ ∞
−∞

dω b̂(ω)e−i(ω−ω0)t , (4.29)

can be shown to be related by the following commutation relation[
b̂(t), b̂†(t′)

]
= δ(t− t′) . (4.30)

In section Sec. 4.2.2 we have shown that is possible to justify a general measure-

ment operator M̂r on the system, as a projective measurement on a coupled ancillary

system. Here the situation is pretty similar, the bath represents the ancillary system,
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and we will derive the photon-counting measurement operators of only the system

from a projective measurement on the bath mode.

Let us assume the bath at zero temperature, and in its vacuum state |0〉. The

bath and the system are initially in a uncorrelated state

|Ψ′(t)〉 = |ψ′(t)〉 |0〉 , (4.31)

where |ψ′(t)〉 and |Ψ′(t)〉 are respectively the a priori state of the system and of the

total system in the interaction picture (|0〉 is unchanged in this picture).

The evolution of this state after a small interval of time ∆t is obtained through

the following operator

Û(t+ ∆t, t) = e−
i
~
∫ t+∆t
t Ĥ′I(t1) dt1 = exp

{√
γ

∫ t+∆t

t

[
â b̂†(t)− â†b̂(t)

]
dt

}
. (4.32)

For small values of ∆t the evolution can be developed using a Dyson expansion. As

we will see below, due to delta function in the commutator in Eq. (4.30), we will need

to keep the second-order expansion of the time evolution operator:

Û(t+ ∆t, t) ' 1̂− i

~

∫ t+∆t

t

dt1 Ĥ
′
I(t1)− 1

~2

∫ t+∆t

t

dt1

∫ t1

t

dt2 Ĥ
′
I(t1)Ĥ ′I(t2) . (4.33)

Using this approximation and considering that b̂(t) |0〉 = 0 for all t we can compute

the state change |Ψ′(t+ ∆t)〉 − |Ψ′(t)〉:

|Ψ′(t+ dt)〉 − |Ψ′(t)〉 ' √γ
∫ t+∆t

t

dt1 â b̂
†(t1) |ψ′(t)〉 |0〉 (4.34a)

− γ
∫ t+∆t

t

dt1

∫ t1

t

dt2 â
†â b̂(t1)b̂†(t2) |ψ′(t)〉 |0〉 (4.34b)

+ γ

∫ t+∆t

t

dt1

∫ t1

t

dt2 â â b̂
†(t1)b̂†(t2) |ψ′(t)〉 |0〉 . (4.34c)

Even if the second term of this equation seems to be of second order in dt, it is not

the case. Indeed, since

b̂(t1)b̂†(t2) |0〉 =
[
b̂(t1), b̂†(t2)

]
|0〉 = δ(t1 − t2) |0〉 , (4.35)

the first integral in the term can be solved obtaining

− γ
∫ t+∆t

t

dt1

∫ t1

t

dt2 â
†â b̂(t1)b̂†(t2) |ψ′(t)〉 |0〉 = −γ

2

∫ t+∆t

t

dt1 â
†â |ψ′(t)〉 |0〉 . (4.36)

Going to the limit ∆t→ dt we find that
∫ t+∆t

t
dt1 → dt and so we can finally express

the first-order time evolution of the state

|Ψ′(t+ dt)〉 =

(
1̂− dt γ

â†â

2

)
|ψ′(t)〉 |0〉+

√
dt
√
γ â |ψ′(t)〉 |1(t)〉 (4.37)
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where we introduced |1(t)〉 def
=
√

dt b̂†(t) |0〉 that represents the one-photon state in the

bath mode labelled by t, and with the property

〈1(t)|1(t′)〉 = dt 〈0| b̂(t)b̂†(t′) |0〉 = dt δ(t− t′) (4.38)

Note that we dropped the third term in Eq. (4.34c), it is of order dt2 and thus negligible

(as we will see, it corresponds to the detection of two photons).

Let us now perform a projective measurement with a photon-detector that is able

to count the number of photons in the bath at time t. In other words a projective

measurement of the observable b̂†(t)b̂(t). By obtaining the result 0, the state of the

system is updated by projection on the bath vacuum |0〉

|Ψ′0(t+ dt)〉 =
1√

p0(t, dt)

(
1̂− dt γ

â†â

2

)
|ψ′(t)〉 |0〉 (4.39)

where

p0(t, dt) = 〈ψ′(t)|
(
1̂S − dt γ

â†â

2

)(
1̂S − dt γ

â†â

2

)
|ψ′(t)〉 〈0|0〉 , (4.40)

with 1̂S is the unitary operator of only the system. The same state update is described

by the measurement operator

M̂ ′
0 = 1̂S − dt γ

â†â

2
(4.41)

acting on the Hilbert space of only the system.

On the other hand, if the measurement returns the value 1 it means that a photon

has been detected in the bath and the a posteriori conditional state is updated as:

|Ψ′1(t+ dt)〉 =

√
dt
√
γ√

p1(t, dt)
â |ψ′(t)〉 |1(t)〉 , (4.42)

where p1 the probability to detect a photon

p1(t, dt) = dt γ 〈ψ′(t)| â†â |ψ′(t)〉 〈1(t)|1(t)〉 . (4.43)

In the reduced space of only the system, the same update of the state is produce by

the measurement operator

M̂ ′
1 =
√

dt
√
γ â . (4.44)

Note that, after the detection, the projective measurement is supposed to leave the

bath in the state |1(t)〉, while the approach is based on a initial vacuum state. In

reality, photon detection, at least at optical frequencies, is done by absorption, so the

bath is always left in the vacuum state. However, this consideration is not essential

to the validity of the approach presented. Indeed since the interaction with the bath

in assumed Markovian, at time t+ dt the system is not affected anymore by the bath

mode b̂(t). The fact that this mode contains a photon is unimportant because the

system is already interacting with other modes that are still in the vacuum state.

In conclusion this derivation allowed to determine the expression of the photon-

counting measurement operators from a microscopic description.
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Photon-counting description from a minimal measurement model

An alternative procedure to derive the equations that describe the system evolution

under photon-counting monitoring is by defining the minimal model fulfilling the

requirement in Eq. (4.21), namely

ρ̂(t+ dt)− ρ̂(t)

dt
=

∑
r M̂r(dt)ρ̂(t)M̂ †

r (dt)− ρ̂(t)

dt
(4.45)

must define a finite differential for every a priori state ρ̂(t).

A minimal model for a continuous monitoring is a measurement that at all times

t returns at least two possible outcomes, i.e. r = 0, 1. A general guess for M̂0(dt) is

a linear expansion in dt, namely

M̂0(dt) = 1̂S −
(
R̂

2
+ iĤ

)
dt (4.46)

where R̂ and Ĥ are Hermitian operators. Given this choice for M̂0(dt) the second mea-

surement operator M̂1(dt) is determined from the completeness relation in Eq. (4.10):

M̂0(dt)†M̂0(dt) + M̂1(dt)†M̂1(dt) = 1̂S . (4.47)

In order to satisfy this relation we have

M̂1(dt)†M̂1(dt) = 1̂S − M̂0(dt)†M̂0(dt) = R̂ dt . (4.48)

Then we conclude that a minimal model, fulfilling the requirements above (continu-

ous unconditional evolution and the completeness relation), is given by the following

measurement operators:

M̂0(dt) = 1̂S −
(
ĉ†ĉ

2
+ iĤ

)
dt , (4.49a)

M̂1(dt) =
√

dt ĉ , (4.49b)

where we introduce the arbitrary operator ĉ (replacing R̂ = ĉ†ĉ) and where Ĥ is an

Hermitian operator that allows to include the Hamiltonian evolution in our descrip-

tion.

The two measurement operators that we derived here from a minimal model of

continuous measurement are clearly equivalent to those we obtain by a microscopic

approach, under the replacement ĉ → √γ â. Except for absence of the Hamiltonian

that Ĥ (that is recovered by going back in the Schrödinger picture) the operator M̂ ′
0

in Eq. (4.41) is indeed equivalent to the measurement operator M̂0 that we derived

here.
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According to Eq. (4.20), the unconditional evolution of the state under the action

of this measurement is

ρ̂(t+ dt) =

[
1−

(
ĉ†ĉ

2
+ iĤ

)
dt

]
ρ̂(t)

[
1−

(
ĉ†ĉ

2
− iĤ

)
dt

]
+ dt ĉ ρ̂(t) ĉ† , (4.50)

which is importantly equivalent to the following Lindblad master equation

dρ̂(t)

dt
= − i

[
Ĥ, ρ̂(t)

]
+D(ĉ)ρ̂(t) , (4.51)

where we used the superoperator

D(ĉ)ρ̂ = ĉ ρ̂ ĉ† − 1

2

(
ĉ†ĉ ρ̂+ ρ̂ ĉ†ĉ

)
. (4.52)

Note that by replacing ĉ with
√
γ â in Equation (4.51) one recovers the damped-

cavity master equation derived in Sec. 3.1.2 (Eq. (3.46)), reinforcing the idea that

this minimal model is a good description of photodetection.

4.3.2 Photon counting: stochastic quantum jumps

Once that photon-counting monitoring is defined in the formalism of quantum mea-

surement we are interested in studying the conditional evolution of the system, when it

is submitted to this kind of monitoring. We will see that it is possible to describe this

evolution through an “adapted” Schrödinger equation based on stochastic Poissonian

increments.

Let us start by noting that the probability to obtain the result r = 1

p1(t, dt) = Tr
{
M̂1(dt)†M̂1(dt)ρ̂(t)

}
= dtTr

{
ĉ†ĉ ρ̂(t)

}
(4.53)

is infinitesimal. This means that for almost all times the result of the continuous

measurement will be r = 0, and that the system evolves according to M̂0(dt) in a

continuous (but non-unitary) evolution. At random times, and precisely at the rate

p1(t, dt)/dt, a result r = 1 occurs. These relatively rare events are called detections,

and they are accompanied by an abrupt discontinuous evolution, described by the

measurement operator M̂1(dt), and that are called quantum jumps. This stochastic

time evolution is illustrated in Fig. 4.1. It is important to have in mind the con-

text in which we defined this stochastic behaviour. The detections are the result of

a measurement, and quantum jumps are the conditional updates of the observer’s

knowledge of the system.

A convenient way to encode this kind of behaviour is through the so called stochas-

tic Schrödinger equation. First of all, we need to introduce the discontinuous function

N(t) denoting the number of photodetections counted up to time t. This function

allows to define the stochastic increment dN(t) = N(t + dt) − N(t), that is equal 1
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Figure 4.1 The quantum trajectories of a linear cavity relaxing from the three

photon Fock state to the vacuum state, where γ quantifies the coupling to the envi-

ronment. Top panel: three different realisations of quantum trajectories. The abrupt

jumps correspond to the detection of photons. Bottom panel: the average of an

increasing number of trajectories approaches the solution of the master equation.

when a photon is detected and 0 otherwise. From this definition it is straightforward

to recognise the following properties of dN(t):

dN(t)2 = dN(t) , (4.54a)

E[dN(t)] = p1(t, dt) = dt 〈ψc(t)|ĉ†ĉ|ψc(t)〉 , (4.54b)

where we are assuming that the system is in a maximal-knowledge pure state |ψc(t)〉
at time t, and where we introduced the ensemble expectation value E[·]. The subscript

c in the state |ψc(t)〉, stands for conditional. From now on all the states considered are

conditional on the result of the detection, and the brackets 〈 · 〉c(t) = 〈ψc(t)| · |ψc(t)〉
denote the average on these states.

The conditional evolution defined by the measurement operators in Eqs. (4.49a)
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and (4.49a) can alternatively be expressed as

d |ψc(t)〉 = dN(t)

(
ĉ√

〈ĉ†ĉ〉c(t)
− 1̂S

)
|ψc(t)〉

+ [1− dN(t)] dt

(〈ĉ†ĉ〉c(t)
2

− ĉ†ĉ

2
− iĤ

)
|ψc(t)〉 ,

(4.55)

where we used the expansion of the denominator in the state update associated to M̂0

to the first order in dt:

|ψc0(t+ dt)〉 =
M̂0 |ψc(t)〉√
〈M̂ †

0M̂0〉c
=

{
1̂S − dt

[
iĤ +

ĉ†ĉ

2
− 〈ĉ

†ĉ〉c(t)
2

]}
|ψc(t)〉 . (4.56)

The stochastic evolution in Equation (4.55) can be simplified further by considering

that dN(t) dt = o(dt):

d |ψc(t)〉 =

[
dN(t)

(
ĉ√

〈ĉ†ĉ〉c(t)
− 1̂S

)
+ dt

(〈ĉ†ĉ〉c(t)
2

− ĉ†ĉ

2
− iĤ

)]
|ψc(t)〉 .

(4.57)

This expression defines the stochastic Schrödinger equation for a photon-counting

monitoring. Note that the equation is nonlinear in |ψc(t)〉 due to the presence of the

averages 〈·〉c. The name of the equation comes from the fact that the equation acts

on and is solved by pure states.

As we have seen in Equation (4.51) the unconditional state of the system evolves

according to a Lindbladian master equation. In accordance with this, here we show

that the ensemble average of |ψc(t)〉 evolves through the same master equation. Let

us define the pure state density operator ρ̂c(t) = |ψc(t)〉〈ψc(t)|. Its time evolution is

given by (using the notation |dψc(t)〉 = d |ψc(t)〉)

dρ̂c(t) = |dψc(t)〉〈ψc(t)|+ |ψc(t)〉〈dψc(t)|+ |dψc(t)〉〈dψc(t)|
=
{

dN(t)G(ĉ)− dtH(iĤ + ĉ†ĉ/2)
}
ρ̂c(t)

(4.58)

where we introduced the nonlinear superoperators

G(r̂)ρ̂ =
r̂ρ̂r̂†

Tr{r̂†r̂ρ̂} − ρ̂ , (4.59a)

H(r̂)ρ̂ = r̂ρ̂+ ρ̂r̂ − Tr{r̂ρ̂+ ρ̂r̂} ρ̂ . (4.59b)

The ensemble average state of the system is defined as

ρ̂(t) = E[ ρ̂c(t)] =
∑
ρ̂c

ρ̂c(t)p(ρ̂c, t) , (4.60)



4.3. Quantum trajectories and stochastic Schrödinger equations 79

where the sum over all the possible ρ̂c and p(ρ̂c, t) is the probability to be in such ρ̂c
at time t. By using the relation

E[ dN(t)ρ̂c(t)] =
∑
ρ̂c

p1(t, dt) p(ρ̂c, t)ρ̂c(t) = dtE[ Tr
{
ĉ†ĉ ρ̂c(t)

}
ρ̂c(t)] , (4.61)

one can easily retrieve the same Lindbladian master equation in Eq. (4.51)

dρ̂(t)

dt
= −i

[
Ĥ, ρ̂(t)

]
+D(ĉ)ρ̂(t) . (4.62)

This basically means that if we take an infinite number of solution to the stochastic

Eq. (4.57), the average of them is a solution of the Lindbladian master equation, as

illustrated in the bottom panel of Fig. 4.1. The Monte Carlo wave function (MCWF)

method, one of the most used (numerical) method in the study of open quantum

system is based on this idea [141–144]. The next section is devoted to introduce this

method.

Furthermore, we would like to stress that this relation between quantum trajec-

tories and Lindblad master equation clarifies the physical meaning of the latter. The

Lindblad master equation describes the evolution of the density operator, represent-

ing our knowledge about the system, when we do not use any information about the

environment. Information from photodetection measurement on the environment al-

lows to infer a more precise estimation of the system state. In the ideal case in which

all the photons escaping a cavity QED system are detected, our knowledge about the

system can be described by a maximal-knowledge pure state at all times provided

that the system was in a pure state at the initial time.

Monte Carlo wave function method

The existence of a mathematical map between the Lindblad master equation and

stochastic state trajectories has been emphasised the first time in 1992 by Dalibard et

al. [141]. This mathematical map has been later developed [142, 143], and extensively

exploited for numerical approaches to open quantum system [144].

The idea is to approximate the solution of the Lindblad master equation by averag-

ing a large number of quantum state trajectories. The numerical advantage behind the

success of this method consists in the fact that, by simulating a stochastic Schrödinger

equation, one only has to deal with a state of dimension d (the Hilbert space dimen-

sion), while working with density operator requires a space of order d2. This means

that this stochastic techniques, require less memory than a direct numerical integra-

tion, permitting to solve a master equation for larger values of d. In addition, the

quantum trajectories can be sampled on different processors via parallel computing,

that can considerably reduce the computing time of the method.

Let us consider the following general form for the Lindblad master equation

dρ̂(t)

dt
= −i

[
Ĥ, ρ̂(t)

]
+
∑
µ

D(ĉµ)ρ̂(t) . (4.63)
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The stochastic Schrödinger equation whose average is equivalent to this master equa-

tion, is a generalised one in which the state of the system is conditional on different

distinguishable type of detections labeled by µ:

d |ψc(t)〉 =

dNµ(t)

 ĉµ√
〈ĉ†µĉµ〉c(t)

− 1̂S

+ dt

(
〈ĉ†µĉµ〉c(t)

2
− ĉ†µĉµ

2
− iĤ

) |ψc(t)〉 ,
(4.64)

with

E[dNµ(t)] = pµ(t, dt) = dt 〈ĉ†µĉµ〉c(t) , (4.65a)

dNµ(t)dNν(t) = dNµ(t)δµν . (4.65b)

The simplest method to solve this stochastic equation is to define a small time interval

δt, and to compute the infinitesimal state evolution by random generation of the

increments δNµ(t) = 0, 1.

However, since the increments δNµ(t) are most of the time equal to zero, this is

not the most efficient approach. A more efficient way to sample a quantum trajectory

is through an iterative method, whose steps are listed above.

1. We choose the initial normalised state |ψc(t0)〉 at times t0.

2. A real number r ∈ [0, 1] is randomly generated.

3. Given the unnormalised state |ψ̃c(t)〉, whose evolution

d |ψ̃c(t)〉
dt

= −
(∑

µ

ĉ†µĉµ

2
+ iĤ

)
|ψ̃c(t)〉 , (4.66)

is not unitary, we let evolve this state from |ψ̃c(t0)〉 = |ψc(t0)〉 up to the time

t1 in which the norm 〈ψ̃c(t1)|ψ̃c(t1)〉 = r. The time t1 is the time in which the

next detection occurs.

4. For the detection at time t1 we randomly generate its type µ1, according to the

following probabilities that are conditional on the detection occurrence:

p̄µ(t1) =
pµ(t1, dt)∑
µ pµ(t1, dt)

=
〈ĉ†µĉµ〉c(t1)∑
µ〈ĉ†µĉµ〉c(t1)

. (4.67)

Note that computing the averages 〈 · 〉c on the unnormalised state |ψ̃c(t1)〉 pro-

vides the good values for p̄µ(t1).

5. The normalised state of the system at time t1 is updated according to the

occurred type of detection:

|ψc(t1)〉 =
M̂µ1 |ψ̃c(t1)〉√

〈ψ̃c(t)| M̂ †
µ1M̂µ1 |ψ̃c(t1)〉

=
ĉµ1 |ψ̃c(t1)〉√

〈ψ̃c(t)| ĉ†µ1 ĉµ1 |ψ̃c(t1)〉
(4.68)
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ĉ
ĉ

β

Figure 4.2 The two schemes of detection. Photon counting on the right side and

homodyne detection on the left.

6. The method is iterated using |ψc(t1)〉 as the initial state.

At the end of this procedure, we finish with a set of couples {(µ1, t1); (µ2, t2); . . . ; (µn, tn)}
(with t1 < t2 < . . . < tn), reporting the times and the types of registered detections,

and that univocally defines a quantum trajectory.

The advantage of this method stays in the fact that since the detection are rare

events it is convenient to generate the time of the next detection rather then generating

the increments δNµ(t) at each interval of time δt. The main numerical weight is

represented by the integration in the step 3. However Eq. (4.66) is an ordinary linear

differential equation that is efficiently solved by standard numerical techniques, such

as Runge-Kutta integration.

Let us better clarify the meaning of step 3. The non-unitary evolution in Equa-

tion (4.66) is equivalently described by the (unnormalised) action of the non-detection

measurement operator M̂0(dt) = 1̂S−dt(
∑

µ ĉ
†
µĉµ/2+iĤ). The norm of |ψ̃c(t)〉 is then

equivalent to the probability of having no-detection up to time t. Thus it represents

the right probability distribution to use in generating the random time of the next

detection.

4.3.3 Homodyne detection: stochastic diffusive evolution

Beyond photon counting, another possible way to continuously monitor a quantum-

optical system is through homodyne detection. It consists in a widely-used experi-

mental technique which allows to access the cavity field quadratures [89, 138, 139].

The implementation of this kind of measurement is illustrated in Fig. 4.2. The

cavity output field is mixed to a coherent field of a reference laser through a beam

splitter. The mixed fields are then probed via (perfect) photodetectors. Assuming

the beam splitter to be of perfect transmittance and the coherent field to have a large
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amplitude, one can show that the measurement operator for the detection of this field

is

M̂1(dt) =
√

dt (ĉ+ β) (4.69)

where β is the coherent field amplitude [126, 135] . In order to fulfill the completeness

relation, the measurement operator for no-detection is required to be

M̂0(dt) = −dt

[
iĤ +

1

2

(
β∗ĉ− βĉ†

)
+

1

2

(
ĉ† + β∗

)
(ĉ+ β)

]
(4.70)

Note that these measurement operators can alternatively be obtained from the oper-

ators in Eqs. (4.49) through the transformation:

ĉ→ ĉ+ β , Ĥ → Ĥ − i1
2

(β∗ĉ− βĉ†) . (4.71)

Furthermore, the Lindblad master Equation (4.51) is invariant under this transfor-

mation. This means that the homodyne quantum trajectories generated by the mea-

surement operators in Eqs. (4.69) and (4.70) are an alternative unraveling of the same

master equation that describes the unconditional evolution of the system in the case

of photon counting, Eq. (4.51).

The ideal limit of homodyne detection is when the coherent field amplitude β

goes to infinity. In this case the number of detections per time unit is very large,

and a stochastic Schrödinger equation based on point process increments dN(t) (see

Eq. (4.57)), would not be the most convenient representation anymore. Indeed, a

numerical implementation in these terms would require a too small time interval δt

in order to ensure a negligible probability of multiple counting. The probability of a

detection is indeed very large, and equal to

p1(t, dt) = 〈(ĉ+ β)†(ĉ+ β)〉c(t) dt '
[
β2 + β〈ĉ+ ĉ†〉c(t)

]
dt , (4.72)

where the approximation is valid in the limit of β → ∞. Note that here, and in the

following, the amplitude β is for simplicity chosen to be real.

Even if detections are very frequent, the detected field is almost entirely due to

the coherent field, associated to the operators β. This means that a single detection

contains very little information about the system, and that the total jump operators

ĉ + β have a very small effect on its state. Indeed the action of the single detection

measurement operator M̂1

M̂1 |ψc(t)〉√
〈M̂ †

1M̂1〉c
' (ĉ+ β) |ψc(t)〉√

〈(ĉ+ β)†(ĉ+ β)〉c(t)
(4.73)

approaches the identity in the limit of β → ∞. In this limit, the occurrence of an

infinite number of jumps is counterbalanced by their infinitesimally small effect on the
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system. Indeed, it has been shown that the resulting effective dynamics is a stochastic

diffusive evolution of the system state [142, 145]. Without entering the details of the

calculations here we present the main concepts of this derivation.

Let us assume a small time interval δt with the precise scaling δt = O(β−3/2). From

Eq. (4.72), the number of detections within this time interval δN = O(β2δt) = O(β1/2)

is large, and the average change of the system, of O(δt) = O(β−3/2) is small. Under

this assumption, the average number of detections in the time interval δt reads

E[ δN(t) ] ' p1(t, δt) '
[
β2 + β〈x̂〉c(t)

]
δt . (4.74)

This is dominated by the contribution from the coherent field, and it is linear with

the average field quadrature 〈x̂〉c = 〈ĉ+ ĉ†〉c. Since the system evolution during the

time δt is small, the probability of a single detection per unit of time is constant. This

implies that the statistics of δN(t) is mostly Poissonian, thus we can conclude that

its variance is

Var[ δN(t) ] ' β2δt . (4.75)

Furthermore, since the average is very large we can consistently attribute to δN(t) a

Gaussian statistics, and write

δN(t) = β2δt+ β 〈x̂〉c(t) δt+ β δW (t) , (4.76)

where δW (t) are a Wiener increments with a Gaussian statistics characterised by

E[ δW (t) ] = 0 and E[ δW 2(t) ] = δt . (4.77)

These Wiener increments describe the fluctuation around the average value of the

homodyne photocurrent.

At this stage we can write the unnormalised evolution of the conditional state of

the system over the time interval δt as

|ψ̃c(t+ δt)〉 = N̂(t+ δt− tm)(ĉ+ β)N̂(tm− tm−1) · · · (ĉ+ β)N̂(t1− t) |ψc(t)〉 , (4.78)

where t1, t2, . . . , tm are the times of the m detections recorded in the time δt, and

where the time evolution between two detections is described by the operator

N̂(t1 − t) = exp

{
−
[
iĤ +

1

2

(
2βĉ+ ĉ†ĉ+ β2

)]
(t1 − t)

}
. (4.79)

Note that this operator is obtained from the repeated action of the no-detection

measurement operator M̂0(dt) in Eq. (4.70). Since the time interval δt is small,

the system change over this time is typically small as well. This implies that the

conditional state in Eq. (4.78) is approximatively independent on the detection times

t1, t2, . . . , tm [145]. This allows to move all the collapse operator at the beginning of

the evolution and to rewrite the unnormalised conditional state as

|ψ̃c(t+ δt)〉 = N̂(δt) (ĉ+ β)m |ψc(t)〉 , (4.80)
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Figure 4.3 Comparison between the photon-counting and homodyne-detection

quantum trajectories for a linear cavity relaxing from the three photon Fock state

to the vacuum state (γ quantifies the coupling to the environment). The homodyne

trajectories follow a diffusive evolution.

Since we are only considering the evolution of the unnormalised state we can drop the

factor exp(δt β2/2) βm and write

|ψ̃c(t+ δt)〉 = exp

[
−iĤδt− 1

2

(
2βĉ+ ĉ†ĉ

)
δt

](
1̂S +

ĉ

β

)m
|ψc(t)〉 . (4.81)

Expanding this expression and substituting m with the expression of δN in Eq. (4.76),

one obtains an approximated formulation for the conditional state that becomes exact

in the limit of β → ∞. In this continuous limit δt → dt, δW (t) → dW (t) and, after

renormalisation of the conditional state, it can be shown that the conditional time

evolution under homodyne monitoring is

d |ψc(t)〉 =

{
− iĤ dt − 1

2

[
ĉ†ĉ+ 2〈x̂/2〉c(t) ĉ+ 〈x̂/2〉2c(t)

]
dt

+ [ ĉ− 〈x̂/2〉c(t) ] dW (t)

}
|ψc(t)〉 .

(4.82)

This equation defines the stochastic Schrödinger equation of homodyne detection. By

this equation one can simulate the conditional quantum trajectory, taking a reasonably
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small dt and generating stochastic Wiener increments at each time step. The initial

state combined with the history of the occurred dW (t) completely define a singular

homodyne conditional state trajectory. Note in Eq. (4.82) that, by performing the

limit, we lost the dependence on the values of β. Even if the underlying measurement

is detection, the quantum jumps of photon counting have been reduced to a continuous

diffusive evolution, as illustrated in Fig. 4.3.

In a very similar way to what we did in Sec. (4.3.2) we can determine the stochastic

evolution of the conditional density matrix ρ̂c(t) = |ψc(t)〉〈ψc(t)|. Having in mind that

dW 2(t) = dt, it is easy to prove that

dρ̂c(t) = |dψc(t)〉〈ψc(t)|+ |ψc(t)〉〈dψc(t)|+ |dψc(t)〉〈dψc(t)|
= −i

[
Ĥ, ρ̂c(t)

]
dt+D(ĉ)ρ̂c(t) dt+H(ĉ)ρ̂c(t) dW (t),

(4.83)

where the superoperator H has been defined in Eq. (4.59b) and D is the usual dissi-

pation term of Lindblad master equation defined in Eq. (4.52).

As we mentioned at the beginning of the section, the unconditional evolution

under homodyne monitoring is the same as in photon counting, i.e. the master Equa-

tion (4.51). Indeed the Wiener increments dW (t) are uncorrelated to the state of the

system ρ̂c(t), then we have

E[H(ĉ)ρ̂c(t)dW (t)] = E[H(ĉ)ρ̂c(t)] E[ dW (t)] = 0 . (4.84)

This implies that the average state of the system ρ̂(t) = E[ ρ̂c(t)] is a solution of the

Lindblad master Equation (4.51)

dρ̂(t)

dt
= − i

[
Ĥ, ρ̂(t)

]
+D(ĉ)ρ̂(t) , (4.85)

Once again we have seen that the Lindblad master equation describes the evolution of

our knowledge about the system, when the information is lost in an unmonitored envi-

ronment. Homodyne detection allows to retrieve this information and to describe the

system in a state of maximal knowledge, a pure state. Note that the photon-counting

and the homodyne detection trajectories are very different. One is characterised by

quantum jumps, the other by a diffusive evolution, however both the evolution aver-

age to the same master equation. This means that the way in which we monitor the

same environment, drastically condition the evolution of the system quantum state.





Chapter 5

Ancillary qubit spectroscopy of

exotic vacua

In recent years, cavity quantum electrodynamics (QED) has thrived thanks to the

possibility of controlling light-matter interaction at the quantum level, which is rel-

evant for the study of fundamental quantum phenomena, the generation of artificial

quantum systems, and quantum information applications [27]. The field has more re-

cently blossomed in solid-state systems, particularly in superconducting circuit QED

[41, 74] and semiconductor cavity QED [52].

In conventional cavity QED, photons are present only in the excited light-matter

states of the system and can escape the cavity due to a finite transparency of the

mirrors. The situation changes drastically in the so-called ultrastrong light-matter

coupling regime[58, 61, 64–67], achieved when the light-matter interaction rate is

comparable or larger than the photon frequency. Indeed, it can become energetically

favorable to have photons in the ground state. However, such ground state photons

are bound to the cavity and cannot escape, since that would violate energy conserva-

tion[146].

In the ’thermodynamic’ limit where a large number N of two-level systems are

(ultra)strongly coupled to a single bosonic mode, phase transitions can occur with

non-trivial and degenerate vacua. The vacuum properties depend on the details of

the light-matter coupling and on the Hamiltonian symmetries. These phase transitions

are associated with symmetry breaking: it is a discrete Z2 symmetry for the phase

transition [68–70, 73] in the Dicke model [28] where the non-rotating wave terms of

light-matter interaction are considered; it is a continuous U(1) symmetry in the case

of the Tavis-Cummings model [30, 71] where non-rotating wave terms are absent.

Such symmetries can be controlled in models where the two-level systems are coupled

to both quadratures of the bosonic field [72]. On the other hand, in Hamiltonians

containing a strong enough quadratic renormalisation of the cavity photon frequency

(e.g., due to the squared electromagnetic vector potential term), the ground state

is a two-mode squeezed vacuum, but no phase transition occurs [63]. This is the

case for the Hopfield model [29], notably realised in semiconductor microcavities [64–

67]. The fundamental meaning and validity of cavity and circuit QED quantization

procedures is critically at play in the ultrastrong coupling regime, since different forms

of Hamiltonians lead to extremely different physical phenomena [118–120]. Protocols

to detect the properties of cavity vacua are therefore of strong significance, not only

87
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for a study of intriguing ground states, but also as a sensitive test of fundamental

microscopic theories.

In this context, a crucial question arises: how to detect ground state photon pop-

ulations and correlations without destroying them? In principle bound photons in

cavity (circuit) QED vacua can be released by a non-adiabatic, ultrafast modulation

of the Hamiltonian parameters [64, 121–123, 147, 148], which can convert a ground

state into an excited state. While non-adiabatic QED provides an interesting way of

observing nonclassical quantum vacuum radiation, finding a non-invasive and sensi-

tive probe of the ground state properties remains highly desirable. Some theoretical

work [149, 150] in circuit QED has suggested to study the coupling between a Dicke

system and an additional superconducting qubit, showing that Dicke criticality can be

observed via current transport measurements. However, in Ref. [149] the considered

effective dispersive interaction between the cavity system and the auxiliary qubit de-

pends only on the cavity photon population, and not on the intracavity light-matter

correlations; moreover the dissipation has not been treated with a master equation

which is valid in the ultrastrong coupling regime [151], which is essential to avoid

artifacts such as the instability of the ground state and the excitation of the system

in the absence of driving [146, 151].

In this chapter, we show that the spectroscopy of an ancillary qubit, moderately

coupled to a cavity QED system, depends sensitively on the type of vacuum. By

driving this ancillary qubit and analyzing its frequency response, we show that it

is possible to have distinct signatures of the ground state photon populations and

correlations without destroying them. We explore this protocol by considering three

different classes of systems described respectively by the Dicke, Tavis-Cummings and

Hopfield models, whose Hamiltonian are introduced in Sec. 5.1. Each of these models

has a ground state with different properties.

Sections 5.2 and 5.3 report our main results. We show numerically and analytically

that the Lamb shift of the ancillary qubit transition is very sensitive both to the

photon populations and correlations of exotic vacua. We explore the back-action of the

ancillary qubit on the cavity ground state and determine the key physical quantities

affecting the fidelity of the measurement, consistently including the dissipation effects

in the ultrastrong coupling regime.

Finally in Sec. 5.4 we show how the finite temperature affects our measurement

protocol and we provide a detailed derivation of effective Hamiltonians in the disper-

sive regime.

5.1 The model

As sketched in Fig. 5.1, we will consider an ancillary qubit M coupled to the bosonic

mode of a cavity (circuit) QED system S. In particular, we will deal with the following
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Figure 5.1 A sketch of a cavity (circuit) QED system S consisting of a single-

mode resonator coupled to N two-level (artificial) atoms. An ancillary qubit M is

also coupled to the resonator boson mode. The spectroscopy of the ancilla is used to

probe quantum ground state properties of S. Note that in experimental realisations,

also the ancillary qubit can be inserted inside the cavity.

time-dependent Hamiltonian (~ = 1),

Ĥ(t) = ĤS +
ωM
2
σ̂(M)
z + gM

(
â† + â

)
σ̂(M)
x + Ωp cos(ωpt)σ̂

(M)
x , (5.1)

where ĤS is the system Hamiltonian, gM is the coupling between the measurement

qubit and the boson field, whose boson annihilation operator is a. The σ̂
(M)
i Pauli

operators act on the Hilbert space of the qubit M , whose transition frequency is ωM ,

while Ωp is the amplitude of the driving field (see Sec. 3.2) with frequency ωp acting

on M .

In the following, ĤS will be one of the three Hamiltonians, describing respectively

the Dicke, Tavis-Cummings and Hopfield-like models (~ = 1):

ĤDicke = ωcâ
†â+ ωaĴz +

λ√
N

(
â† + â

) (
Ĵ+ + Ĵ−

)
, (5.2a)

ĤTC = ωcâ
†â+ ωaĴz +

λ√
N

(
â†Ĵ− + âĴ+

)
, (5.2b)

ĤHopfield = ĤDicke +D
(
â† + â

)2
, (5.2c)
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where ωc is the frequency of the bosonic mode, ωa is the transition frequency of each

of the N identical two-level atoms, λ is the collective coupling and D = λ2/ωa is

the strength of the boson renormalisation term in the Hopfield model. The Ĵi are

the angular momentum operators representing the collective pseudo-spin associated

to the N two-level systems, namely

Ĵz =
1

2

N∑
i=1

σ̂(i)
z , Ĵ± =

N∑
i=1

σ̂
(i)
± , (5.3)

where the Pauli matrices here refer to each two-level system. Sec. 2.2.3 and Sec. 2.2.2

provide a more detailed description of these models.

5.2 Spectrum analysis and Lamb shift

We start by considering the energy levels of ĤS+M , describing the system S coupled

to the measurement qubit M , namely:

ĤS+M = ĤS +
ωM
2
σ̂(M)
z + gM

(
â† + â

)
σ̂(M)
x . (5.4)

The eigenstates and their energies are defined by ĤS+M |ε〉 = ε|ε〉. System S will be

of the Dicke, Tavis-Cummings or Hopfield type, as shown in Figs. 5.2 and 5.3. We

consider a qubit transition frequency ωM detuned with respect to the boson frequency

ωc = ωa.

For gM = 0, the driving field term, proportional to the operator σ̂
(M)
x , induces a

transition from the ground state |GS〉⊗ |g〉 to the excited state |GS〉⊗ |e〉, being |GS〉
the ground state of S and |g〉 (|e〉) the ground (excited) state of the qubit M . For

finite gM , the coupling between S and M creates a mixing between states of the form

|ΨS〉 ⊗ |ψM〉 and the driving induces a transition from the ground state |GS+M〉 to

excited states of ĤS+M . Therefore, in the spectroscopy the relevant excited states |ε〉
are those having the largest values of |〈GS+M |σ̂(M)

x |ε〉|2. The colour scale of the levels

in Figs. 5.2 and 5.3 is proportional to the value of such matrix elements.

The results show that, due to the off-resonant coupling, there is only one dominant

spectroscopically-active level (black thick solid line), which originates from and has a

strong overlap with the state |GS〉 ⊗ |e〉. The right panels of Figs. 5.2 and 5.3, show

the Lamb shift of the qubit transition frequency.

For λ = 0 the system S is like a bare cavity, so the spectral renormalisation is

the standard Lamb shift [43] of the qubit due to the coupling to the normal vacuum

in the cavity. By increasing λ the vacuum is modified and the Lamb-shift changes.

It is apparent that the behaviour of the qubit shift is qualitatively different in the

three cases. For the Dicke model (top panels of Fig. 5.2), the Lamb shift increases

strongly with λ and becomes much bigger than in the case of the bare cavity (λ = 0).
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Figure 5.2 Left panels: excitation energies for the three considered systems S versus

the coupling λ between the boson field and the N atoms. Right panels: the Lamb shift

of the ancillary qubit transition. The red dashed lines are calculated via Eq. (5.5).

Top panels: Dicke system. with N = 3, ωc = ωa, ωM = 2.75ωc, gM = 0.1ωc. Bottom

panels: Tavis-Cummings system with N = 3, ωc = ωa, ωM = 2.75ωc, gM = 0.1ωc.

In the Tavis-Cummings case (bottom panels Fig. 5.2), the Lamb shift increases in a

step-like way as a function of λ. In the Hopfield model (Fig. 5.3), instead the Lamb

shift decreases with increasing value of λ.

As it will be detailed in Sec. 5.2.1, we have derived an analytical expression at the

second order in gM for the measurement qubit Lamb shift, namely

δω
(S)
M ' g2

M

(
1

ωM − ωc
+

1

ωM + ωc

)
〈(â†+â)2〉+g2

M

[
1

(ωM − ωc)2 −
1

(ωM + ωc)
2

]
〈V̂ (S)〉,

(5.5)
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Figure 5.3 Left and right panels like in Fig. 5.2, but for the Hopfield system with

N = 3, ωc = ωa, ωM = 6.75ωc (chosen to avoid level crossing), gM = 0.1ωc, D = λ2/ωa.

where

V̂ (Dicke) =
λ√
N

(â† + â)Ĵx , (5.6a)

V̂ (TC) =
λ√
N

(â†Ĵ− + âĴ+) , (5.6b)

V̂ (Hopfield) = V̂ (Dicke) + 2
λ2

ωa
(â† + â)2 . (5.6c)

Here the expectation values are calculated on the ground state |GS〉 of the target sys-

tem S. Importantly, the shift not only depends on the ground state photon population

〈â†â〉, but also on the anomalous expectation value 〈â†2 + â2〉 and on the correlation

between photon field and the N two-level systems. The red-dashed lines in the right

panels of Figs. 5.2 and 5.3 depict the shift predicted by Eq. (5.5). The agreement

between the numerical diagonalisation results and the analytical formula is excellent

in the considered range of values for λ/ωc, except for points where there are avoided

crossings with other levels, as expected from the pertubative nature of our formula.

Criticality

In Fig. 5.4, we present the behaviour of the qubit spectral shift as a function of N .

With increasing value of N , a critical point emerges for the Dicke Hamiltonian (left

panels), but not for the Hopfield case (right panels). The behaviour of the qubit Lamb

shift, already completely different for small values of N , becomes strikingly dissimilar.

Already for N = 30, the shift has a considerable jump around the critical coupling.
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Figure 5.4 Top panels: Lamb shift of the ancillary qubit (black dots) versus λ for

N = 1, 3, 10 and 30. Red-dashed lines are obtained via Eq. (5.5). Bottom panel:

ground state fidelity FG. Left panels: Dicke model with ωc = ωa, ωM = 2.75ωc,

gM = 0.1ωc. Right panels: Hopfield model with ωc = ωa, ωM = 6.75ωc, gM = 0.1ωc,

D = λ2/ωa.

The bottom panels shows the ground state fidelity

FG = TrS,M
{
|GS+M〉〈GS+M |(|GS〉〈GS| ⊗ 1̂(M))

}
, (5.7)

quantifying the change of the cavity system ground state in presence of the ancilla

qubit. In the considered conditions, FG can be close to 1. However, for large values

of λ/ωc the fidelity strongly decreases in the Dicke case above the critical coupling,

while it stays close to 1 for the Hopfield model. Since for gM → 0 the fidelity tends

to 1 and the qubit shift is proportional to g2
M , a trade-off between fidelity and size of

the qubit shift can be found depending on the degree of level broadening, as it will

be discussed later, when we will include the effect of dissipation.

5.2.1 Dispersive Hamiltonians and analytical derivation of

vacuum-dependent Lamb shift

In Sec. 2.2.2 we introduced the dispersive regime and its effective Hamiltonian for

atom-cavity interaction when the rotating wave approximation (RWA) is valid. Since

the ancillary qubit and the cavity are strongly detuned compared to the interaction

intensity gM , the same approach can be used to simplify the complete Hamiltonians
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ĤS+M . However, due to the presence of anti-resonant terms in the interaction between

the ancillary qubit and the cavity, our approach must be adapted to be valid beyond

the rotating wave approximation [115].

Let us start from the simple situation in which λ = 0. In this case our system

reduces to only the boson mode and the coupled ancillary qubit. This is equivalent

to the Rabi model whose Hamiltonian is:

ĤC+M = ωcâ
†â+

ωM
2
σ̂(M)
z + gM

(
â† + â

)
σ̂(M)
x . (5.8)

In the dispersive regime, i.e. |ωM − ωc| � gM , it is possible to derive an effective

Hamiltonian for this model. Let us define the operators X̂± and Ŷ±, exactly in the

same way as in Ref. [115] (except for the sign of Ŷ−):

X̂± = â†σ̂
(M)
− ± â σ̂(M)

+ , Ŷ± = â σ̂
(M)
− ± â†σ̂(M)

+ . (5.9)

Applying to ĤC+M the unitary transformation

Û(ξ, ξ̃) = eξX̂−+ξ̃Ŷ− , where ξ =
gM

ωM − ωc
and ξ̃ =

gM
ωM + ωc

,

and keeping only the terms up to the second order in the small parameters ξ and ξ̃,

the transformed Hamiltonian can be approximated as

Ĥ
(disp)
C+M 'Û †(ξ, ξ̃)ĤC+M Û(ξ, ξ̃)

'ĤC+M +
[
ĤC+M , ξX̂− + ξ̃Ŷ−

]
+
[[
ĤC+M , ξX̂− + ξ̃Ŷ−

]
, ξX̂− + ξ̃Ŷ−

]
.

(5.10)

The unitary transformation Û †(ξ, ξ̃) is a Schrieffer-Wolff transformation [113], and

this is explicitly chosen to eliminate the interaction term to first order in gM . As

we have mentioned in Sec. 2.2.2, the approach is based on the idea that a uni-

tary transformation leaves the spectrum of the Hamiltonian unchanged, thus ĤC+M

and its transformed Û †(ξ, ξ̃)ĤC+M Û(ξ, ξ̃), have the same spectrum. By expanding

Û †(ξ, ξ̃)ĤC+M Û(ξ, ξ̃) to the second order in ξ and ξ̃, we obtain an effective Hamilto-

nian that has approximatively the same spectrum of ĤC+M .

Indeed, using the following commutation relations,[
ωcâ

†â+
ωM
2
σ̂(M)
z , ξX̂− + ξ̃Ŷ−

]
= −(ωM − ωc)X̂+ − (ωM + ωc)Ŷ+,[

X̂+, X̂−

]
= (2â†â+ 1)σ̂(M)

z + 1,
[
Ŷ+, Ŷ−

]
= (2â†â+ 1)σ̂(M)

z − 1,[
Ŷ±, X̂∓

]
= ±(â†2 + â2)σ̂(M)

z ,
[
Ŷ±, X̂±

]
= ±(â†2 − â2)σ̂(M)

z ,

(5.11)

it is possible to obtain the effective dispersive Hamiltonian to the second order in ξ

and ξ̃:

Ĥ
(disp)
C+M ' ωcâ

†â+
ωM
2
σ̂(M)
z +

g2
M

2

(
1

ωM − ωc
+

1

ωM + ωc

)
(â+ â†)2σ̂(M)

z . (5.12)
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The resulting effective shift for the transition frequency of the qubit due to the cou-

pling to the cavity ground state reads:

δ(cav)
ωM
' g2

M

(
1

ωM − ωc
+

1

ωM + ωc

)
〈(â+ â†)2〉. (5.13)

Here and in the following, the expectation values are calculated on the ground state

|GS〉 of the target system S. In this case the system is the bare cavity, |GS〉 is the

standard vacuum and the last equation gives the standard Lamb shift.

Lamb shift for an exotic vacuum

On the other hand, when λ 6= 0 the vacuum is changed and correspondingly also the

Lamb shift changes. We start by considering the Dicke model, its complete Hamilto-

nian when it is coupled to the measurement ancilla qubit reads:

ĤDicke+M = ĤC+M + ωaĴz +
λ√
N

(
â† + â

)
Ĵx . (5.14)

We apply to this Hamiltonian the transformation Û(ξ, ξ̃) defined above. The Ĵi op-

erators commute with Û(ξ, ξ̃) (i.e. Û †(ξ, ξ̃)ĴiÛ(ξ, ξ̃) = Ĵi), and, at second order in ξ

and ξ̃, the cavity quadrature (â+ â†) transforms as

Û †(ξ, ξ̃)(â+ â†)Û(ξ, ξ̃) ' (â+ â†) + (ξ − ξ̃)σ̂(M)
x +

1

2
(ξ2 − ξ̃2)(â+ â†)σ̂(M)

z . (5.15)

The shift of the qubit M transition frequency due to coupling to the Dicke system, to

the second order in ξ and ξ̃ reduces to:

δω
(Dicke)
M ' δ(cav)

ωM
+ g2

M

λ√
N

(
1

(ωM − ωc)2 −
1

(ωM + ωc)
2

)
〈(â+ â†)Jx〉 . (5.16)

where we used the fact that 〈Ĵx〉 = 0. It can be proved by considering that ĤDicke

commutes with the parity operator P̂ = exp[iπ(â†â + Ĵz + N/2)]. Indeed, since

[ĤDicke, P̂ ] = 0, the eigenstates of ĤDicke are also eigenstates of P̂ , this means that

〈GS|Ĵ±|GS〉 = 〈GS|P̂ †Ĵ±P̂ |GS〉 = −〈GS|Ĵ±|GS〉 ⇒ 〈GS|Ĵ±|GS〉 = 0 , (5.17)

where we have used the fact that P̂ †Ĵ±P̂ = −Ĵ±. The same reasoning leads to prove

that 〈â〉 = 〈â†〉 = 0.

Let us consider now the Hopfield model, characterised by the quadratic renormal-

isation of the cavity photon frequency. The total Hamiltonian reads

ĤHopfield+M = ĤDicke+M + ωaĴz +
λ2

ωa

(
â+ â†

)2
. (5.18)
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Using the fact that Û †(ξ, ξ̃)(â+ â†)2Û(ξ, ξ̃) = (Û †(ξ, ξ̃)(â+ â†)Û(ξ, ξ̃))2, we obtain:

Û †(ξ, ξ̃)(â+ â†)2Û(ξ, ξ̃) '
[
(â+ â†) + (ξ − ξ̃)σ̂(M)

x +
1

2
(ξ2 − ξ̃2)(â+ â†)σ̂(M)

z

]2

.

(5.19)

Developing the square up to the second order in ξ and ξ̃, we get

Û †(ξ, ξ̃)(a+a†)2Û(ξ, ξ̃) ' (a+a†)2+2(ξ−ξ̃)(a+a†)σ(M)
x +(ξ2−ξ̃2)(a+a†)2σ(M)

z +(ξ−ξ̃)1̂ .
(5.20)

Since 〈â + â†〉 = 0, the shift of the ancilla transition due to coupling to the Hopfield

system, to the second order in ξ and ξ̃, is:

δω
(Hop)
M ' δ(Dicke)

ωM
+ 2g2

M

λ2

ωa

(
1

(ωM − ωc)2 −
1

(ωM + ωc)
2

)
〈(â+ â†)2〉 . (5.21)

Finally we consider the case of the Tavis-Cummings model, in this case the com-

plete Hamiltonian of the ancilla qubit plus the cavity system reads:

ĤTC+M = ĤC+M + ωaJz +
λ√
N

(
âĴ+ + â†Ĵ−

)
. (5.22)

Considering that

Û †(ξ, ξ̃)âÛ(ξ, ξ̃) = â+ (ξσ̂
(M)
− − ξ̃σ̂(M)

+ ) +
1

2
(ξ2 − ξ̃2)âσ̂(M)

z + o(ξ2, ξ̃2, ξξ̃), (5.23)

the action of the unitary transformation on the interaction term of Tavis-Cummings

model to the second order in ξ and ξ̃, is:

Û †(ξ, ξ̃)
(
âĴ+ + â†Ĵ−

)
Û(ξ, ξ̃) ' â Ĵ+ + â Ĵ− + (ξ − ξ̃)

(
σ̂

(M)
− Ĵ+ + σ̂

(M)
+ Ĵ−

)
+

1

2
(ξ2 − ξ̃2)

(
âĴ+ + â†Ĵ−

)
σ̂(M)
z .

(5.24)

Since 〈Ĵ−〉 = 〈Ĵ+〉 = 0, the second-order shift of the ancillary qubit transition due to

the coupling to the Tavis-Cummings system is:

δω
(TC)
M ' δ(cav)

ωM
+ g2

M

λ√
N

(
1

(ωM − ωc)2 −
1

(ωM + ωc)
2

)
〈(âĴ+ + â†Ĵ−)〉.

The three expressions obtained for the shift of the qubit M transition can finally

be condensed in the compact expression in Eq. (5.5).

5.3 Spectroscopy of the ancillary qubit: consistent

master equation

Taking into account drive and dissipation, here we show how the spectroscopy of the

ancilla qubit will allow us to measure the Lamb shift. In order to include dissipa-

tion consistently with the ultrastrong coupling regime, we need to consider a master
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equation for the density matrix where the quantum jumps occur between the actual

eigenstates of the Hamiltonian ĤS+M [151, 152]. We consider three decay channels,

associated to the bosonic mode, the N two-level systems and the measurement qubit,

with dissipation rates γc, γa and γM respectively (see Fig. 5.1). Namely:

∂tρ̂ = −i[Ĥ(t), ρ̂] +
γc
2
D−(â† + â)ρ̂+

γa
2
D−(Ĵx)ρ̂+

γM
2
D−(σ̂(M)

x )ρ̂ . (5.25)

Here D−(Ŝ)ρ̂ =
(
2Ŝ−ρ̂Ŝ

†
− − ρ̂Ŝ†−Ŝ− − Ŝ†−Ŝ−ρ̂

)
and Ŝ− =

∑
ε′>ε〈ε|Ŝ|ε′〉|ε〉〈ε′|, define

respectively the dissipation term and the jump operators. Here we are considering

reservoirs at zero temperature (they can only absorb energy from the system S +

M). This Lindblad master equation corresponds to the one in Eq. (3.41), that has

been microscopically derived in Sec. 3.1 for a generic system and a single dissipative

coupling. Note that Eq. (5.25) allows to solve the pathological behaviour of the

standard Lindblad equation with bare excitation operators as in Ref. [149], in which

the ground state of the whole system ĤS+M is unstable and the reservoir excites the

system even at zero temperature.

For cavity QED systems with infrared transitions at cryogenic temperatures, it

is experimentally feasible to have kBT � ~ωC , which is equivalent to the zero-

temperature limit. For circuit QED systems based on superconductors [153] with

microwave resonators and dilution fridge cryogenic conditions, the thermal energy can

be a fraction of the photon energy: to give an example, a temperature of 50 mK and

a resonator transition frequency ωc/(2π) = 5 GHz corresponds to kBT/(~ωc) ' 0.21.

In this range of temperatures the main effect is a moderate thermal broadening of the

ancilla qubit transition resonance (see section 5.4 for more details).

We can now apply the master equation in Eq. (5.25) to describe the spectroscopy

when the qubit M is driven as described by Eq. (5.1). We have determined the steady-

state density matrix ρ̂S+M and consequently the reduced density matrix of the qubit

M and system S , namely

ρ̂M = TrS {ρ̂S+M} and ρ̂S = TrM {ρ̂S+M} . (5.26)

In Fig. 5.5, we show results for the qubit excited state population

n(M)
e = TrS,M

{
ρ̂S+M(1 + σ̂(M)

z )/2
}

(5.27)

versus the driving frequency ωp and the collective atom-photon coupling λ. The ancilla

excited state population spectrum shows a resonant peak that provides direct access

to the vacuum-dependent qubit Lamb shift discussed so far and well described by the

formula in Eq. (5.5).

Measurement back action

Within our framework, we can evaluate the degree of back-action on the system S.

In particular we can calculate the measurement fidelity

F = TrS {ρ̂S|GS〉〈GS|} , (5.28)
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Figure 5.5 Excited state population of the ancilla qubit M versus the coherent

drive frequency ωp for different values of collective coupling λ, that controls the cavity

vacuum. Left panel: Dicke model with Ωp = 0.5γM . Right panel: Tavis-Cummings

model with Ωp = 0.2γM . Dissipation parameters: γM = γc = γa = 0.01ωc for the left

panel and 0.005ωc for the right panel. The other parameters are as in Fig. 5.2. The

white line corresponds to the analytical curve in Eq. (5.5).

depending on the coupling between S and M , the driving of the qubit and the dissi-

pation rates. F = 1 means that the system stays in its ground state |GS〉 during the

measurement process. In Fig. 5.6, we show F versus ωp for different values of λ and of

the dissipation rates. The moderate dip at the resonance frequency is due to creation

of real excitations in the system S via the driving of the qubit M . When the driving

amplitude Ωp → 0, the dip disappears (not shown). Out of resonance, F → FG,

the fidelity depending only on the level mixing between qubit M and system S (see

Fig. 5.4), quantified by the ground state fidelity FG. Concerning the dissipation, our

results show that when the cavity system S dissipation rates γc, γa are much smaller

than the ancilla qubit dissipation rate γM , then the most pronounced fidelity dip is

obtained (black solid-lines in Fig. 5.6 are for vanishing dissipation in the system

S). Indeed, in such conditions a significant steady-state population of excited states

can be created in S due to the low dissipation rates, implying that the ancilla qubit

cannot ’read’ faithfully the ground state of the system. Instead in the opposite limit,

the fidelity dip disappears (F(ωdip)→ FG) as the excited state populations in S can

be dissipated efficiently.
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Figure 5.6 Measurement fidelity F (see definition in the text) for different values

of λ for the Dicke model and for different dissipation rates γc = γa = ηγM and

γM = 0.01ωc. Solid line: η = 0. Dashed line: η = 1. Dot-dashed line: η = 10. Other

parameters as in Fig. 5.5.

5.4 Finite temperature and dephasing

All the results shown up to now have been obtained considering reservoirs at zero

temperature, because the focus is the physics of the ground state. In this section,

we consider the effect of a finite temperature bath and of dephasing on the ancillary

qubit spectroscopy.

In order to include the effect of temperature, we need to consider the following

master equation, that is derived in detail in Section 3.1:

∂tρ̂ = −i[Ĥ(t), ρ] +
γc
2
DT (Ŝc)ρ̂+

γa
2
DT (Ŝa)ρ̂+

γM
2
DT (ŜM)ρ̂ (5.29)

where the dissipative term DT are defined in the following energy conserving form

DT (Ŝi)ρ̂ =
∑
ω>0

G̃(ω)(1 +N(ω))
{

2Ŝi(ω)ρŜ†i (ω)− ρŜ†i (ω)Ŝi(ω)− Ŝ†i (ω)Ŝi(ω)ρ
}

+
∑
ω>0

G̃(ω)N(ω)
{

2Ŝ†i (ω)ρŜi(ω)− ρŜi(ω)Ŝ†i (ω)− Ŝi(ω)Ŝ†i (ω)ρ
}
.

(5.30)
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Figure 5.7 Excited state population of the ancilla M versus the coherent drive fre-

quency ωp for different values of collective coupling λ at finite temperature. In the four

columns from left to right, the value of the temperature is respectively kBT/(~ωc) = 0,

0.105, 0.21 and 0.42. Top panels are for the Dicke model with Ωp = 0.5γM and dissipa-

tion parameters γM = γc = γa = 0.01ωc. Bottom panels are for the Tavis-Cummings

model with Ωp = 0.2γM and dissipation parameters γM = γc = γa = 0.005ωc (note

that in some areas of the figures the colour scale is saturated in order to improve the

contrast). Other parameters: N = 3, ωc = ωa, ωM = 2.75ωc, gM = 0.1ωc.

where N(ω) is the bosonic thermal distribution and the jumps operator Ŝi(ω) are

defined as

Ŝi(ω)
def
=

∑
ε′−ε=ω

〈l|Ŝi|l′〉|l〉〈l′|.

The operators Ŝi are those involved in the coupling to the reservoir, namely Ŝc = â†+â

for the bosonic mode, Ŝ0 = Ĵx for the two-level systems and ŜM = σ̂
(M)
x for the

ancilla. The spectral function G̃(ω) depends on the density-of-states of the reservoir

excitations. When the bath is a 3D electromagnetic field, we have G̃(ω) ∝ ω3, hence

it vanishes while ω → 0 [125, 126]. An ohmic reservoir scales instead as G̃(ω) ∝ ω.

In Fig. 5.7 , we show the ancillary transition spectrum as a function of the coupling

λ for different values of temperature, namely kBT/~ωc = 0, 0.105, 0.21 and 0.42 (from

bottom to top) for the Dicke (left panels) and Tavis-Cummings model (right panel).

As we mentioned in Sec. 5.3, these values for kBT/~ωc are realistic values in circuit

QED realisation. We conclude that the Lamb shifts are still well measurable and

that the main effects is a moderate broadening of the Lamb-shifted ancillary qubit

resonances.

We have also checked that the behaviour at low frequency does not affect the

results in a significant way. In Fig. 5.8, we show a typical ancilla spectrum with

three different reservoirs with G̃(ω) ∝ ωα and α = 1 (ohmic), α = 2 and α = 3. It

is apparent that the differences are negligible, indeed the broadening is dominated by
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Figure 5.8 Example of ancilla spectrum dependence on reservoir density of states

(J(ω) ∝ ωα with α = 1, 2, 3) for a finite temperature (kBT/(~ωc) = 0.21). Dicke

model, parameters: λ/ωc = 1, γc = γM = γa = 0.01ωC . Other parameters: N = 3,

ωc = ωa, ωM = 2.75ωc, gM = 0.1ωc.

the spectra dependence around the ancilla qubit transition.

Dephasing noise

We have also tested the robustness of the ancillary spectroscopy under the effect of

noise mechanisms different from flip errors. More precisely we considered the effect

produced by jump operator σ̂
(M)
z and Ĵz, which correspond to pure dephasing respec-

tively on the ancilla and on the intra-cavity two-level systems. At zero temperature,

we account for this kind of noise by adding to the master equation in Eq. (5.29) the

term γd
2
D0(Ŝd)ρ̂, which is defined as

D0(Ŝd)ρ̂ =
∑
ω>0

{
2Ŝd(ω)ρ̂Ŝ†d(ω)− ρ̂Ŝ†d(ω)Ŝd(ω)− Ŝ†d(ω)Ŝd(ω)ρ̂

}
, (5.31)

where we assumed a constant spectral function G̃(ω) = 1 and where the operator

Ŝd(ω) is defined as above, using the jump operators Ŝd = σ̂
(M)
z or Ĵz. We have checked

that the ancillary qubit spectroscopy is robust with respect to pure dephasing, which

gives a similar effect to what produced by dissipation (population finite lifetime).

In Fig. 5.9 we show different spectra by varying the ratio between dissipation and

pure dephasing produced by the jump operator Ĵz. The broadening effect due to

pure dephasing is suppressed for larger values of coupling λ between the cavity and

the two-level systems. This kind of suppression is due to collective symmetry and

is consistent with results obtained in other works on ultrastrongly coupled systems
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Figure 5.9 Ancilla spectrum of the Dicke model at zero temperature when the

pure dephasing rate is tuned from γd = 0 (solid red), 0.5 (dashed green) to 1 γc
(dotted blue). Left panel: λ = 0.5ωC . Right panel: λ = 1ωC . Other parameters:

γc = γM = γa = 0.006ωC , N = 3, ωc = ωa, ωM = 2.75ωc, gM = 0.1ωc.

[76, 152]. We do not show the well known results about the effect of pure dephasing

produced by the jump operator σ̂
(M)
z , which only causes an additional broadening

of the ancilla transition. What is mainly relevant in the ancilla spectroscopy is the

total broadening affecting the spectral linewidth more than the specific nature of its

origin. We emphasise that in our work, we have conservatively considered spectral

linewidths, which are considerably larger than what achievable in state-of-the-art

circuit QED systems [152, 154].

5.5 Conclusion and perspectives on the ancillary

qubit spectroscopy

In conclusion, we have shown theoretically that the spectroscopy of an ancillary qubit

coupled to a cavity (circuit) QED system is a very sensitive probe of its ground

state properties. The spectral Lamb shift of the ancillary qubit transition is vacuum-

dependent, namely it depends on the ground state populations and correlations. The

Lamb shift behaves qualitatively in a different way for systems described by the Dicke,

Tavis-Cummings and Hopfield models, whose exotic vacua are qualitatively different.

By a consistent solution of the master equation to include dissipation in the ultra-

strong coupling regime, we have studied the measurement fidelity by accounting for

level-mixing between system and measurement qubit, driving and dissipation. The

present work demonstrates that ancillary qubit spectroscopy of cavity QED systems

is a promising tool to study non-destructively the rich physics of QED vacua in the

ultrastrong light-matter coupling regime.



Chapter 6

Photonic Schrödinger cat and their

feedback control

Even if the quantization of light was at the heart of the development of quantum

mechanics, for a very long time it was impossible to exploit photons to investigate

quantum many-body physics. It was only recently that this idea became reality. In

particular, the development of new experimental platforms, such as semiconductor

cavities[37, 38, 51] and superconducting circuits [44, 47], made possible to create

effective photon-photon interactions via the meditation of the electronic degrees of

freedom of the materials. Thanks to these developments, it was possible to study

many-body quantum physics with light [155]. Because of its out-of-equilibrium nature,

this physics profoundly differs from its atomic counterpart. The continuous leak

of photons from a resonator can not be neglected, and therefore photons must be

continuously pumped into the system. The competition between drive, dissipation,

and interactions in such kind of out-of-equilibrium quantum systems enriches even

more the physical scenario. Indeed, this non-equilibrium regime has been at the

centre of a vast theoretical and experimental exploration: from quantum fluids of

light (e.g. [55] and references therein), to dissipative phase transition (both in spin

systems [156, 157] and in softcore bosons [158]) the interest in the subject has been

considerable.

At the same time, the new field of reservoir engineering achieved extraordinary

results. The objective is to shape the photon exchanges between a resonator and the

environment, so to realise non-trivial drive and dissipation [78–85]. In this direction

moved the idea of quantum computation with light. If one can exploit the environment

so to force the system into a nonclassical superposition of orthogonal states, those

can be used as the logic basis of computation. The advantage in this procedure is

that those states will be, for their own construction, impervious to decoherence. In

particular, it has been proven that Schrödinger cats (and coherent states) can be used

as (quasi-)orthogonal states in quantum computation [75, 77, 159, 160]. Those states

are defined as the superposition of two coherent states and have the form:

|C±α 〉 =
|α〉 ± |−α〉√

1± e−2|α|2
. (6.1)

We recall that the coherent state |α〉 = e−|α|
2/2
∑

n(n!)−1/2 αn |n〉 is the eigenstate

of the destruction operator: â |α〉 = α |α〉. Coherent states are the states of the

103
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electromagnetic field that are the closest to the classical ones, since they have a well

defined mean amplitude |α| and phase (being |n〉 the n-photon Fock state). Cat

states become particularly interesting in the limit 〈n̂〉 = |α|2 � 1. In this limit of

high number of photons, in fact, 〈α| − α〉 ' 0 and therefore the Schrödinger cat is

a superposition of two (almost) orthogonal (semi) classical states. The state |C+
α 〉 is

called the even cat, since it can be written as a superposition of solely even Fock

states, while |C−α 〉 is the odd cat.

In this chapter we report our work on a class of two-photon driven-dissipative

resonators that is particularly promising for the realisation of these interesting states.

We start by showing in Sec. 6.1, that the steady state of this kind of systems could be

very well approximated by a statistical mixture of two photonic Schrödinger cats [96].

Even if in the transient dynamics of the cavity it is still possible to detect some quan-

tumness [85], the steady state was mathematically proven to be fully classical (i.e.

with a totally positive Wigner function). By studying the quantum trajectories of the

system we realised that this loss of quantumness is mainly due to one-photon dissi-

pation and that under photon-counting monitoring the state of the system is always

quantum. This quantum trajectory analysis, that is largely discussed in Section 6.2,

leads to envisioning a feedback mechanism that exploits the action of one-photon

dissipation to effectively protect a chosen cat state. In Sec. 6.3 we analyse in more

detail this feedback protocol, by discussing its effect on the system, providing both

an analytical and a numerical description.

6.1 The model: two-photon driven-dissipative res-

onators

The system under consideration is a single nonlinear Kerr resonator (see Sec. 2.2.1)

subject to a parametric two-photon driving and to one- and two-photon dissipation

processes, see Fig. 6.1. This class of exotic resonators have been realised experimen-

tally, and interestingly it was shown in Ref. [85] that in the transient dynamics toward

the steady state some features of photonic Schrödinger cats were still present. In the

absence of pumping our Hamiltonian reads (~ = 1)

Ĥ0 = ωc â
†â+

U

2
â†â†ââ, (6.2)

where ωc is the cavity mode frequency, U is the strength of photon-photon interaction

(see Sec. 2.2.1), â and â† are, respectively, the annihilation and creation operator for

photons inside the resonator. As shown in Ref.[85], a two-photon coherent drive with

amplitude G and frequency 2ωp can be realised through a parametric processes. It

allows to coherently inject pairs of photons in the system and it can be described by
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G η γ

|0〉
|1〉
|2〉
|3〉
|4〉

. . . . . .
|n〉

Figure 6.1 A sketch of the considered class of systems. The photon-photon inter-

action of a Kerr nonlinear resonator is quantified by U . The resonator is also subject

to a coherent two-photon driving of amplitude G, one- and two-photon losses with

rates γ and η. On the right, we sketch the effects of these physical processes on the

Fock (number) states |n〉.

the following time-dependent Hamiltonian term :

Ĥ2ph =
G

2
e−i2ωptâ†â† +

G∗

2
ei2ωptââ, (6.3)

where G is the pump amplitude and ω2 its frequency (see Sec. 3.2 for a microscop-

ical derivation of a driving Hamiltonian). In order to remove the time-dependence

from the Hamiltonian we consider the unitary transformation Û(t) = eiωpâ
†ât. This

transformation allows us to describe the system in the reference in a frame rotat-

ing at the coherent pump frequency ωp. In this rotating frame the Hamiltonian is

time-independent and it reads:

Ĥ = −∆â†â+
U

2
â†â†ââ+

G

2
â†â† +

G∗

2
ââ, (6.4)

where ∆ = ωp − ωc is the pump-cavity detuning (more detail on the derivation of

the rotating frame Hamiltonian are provided at the end of Sec. 3.2). Here and in the

rest of the manuscript we will consider the case of resonant pumping, i.e ωp = ωc and

∆ = 0. With any loss of generality we can arbitrarly choose the two-photon pumping

phase in such a way to have a real amplitude G. Under this two assumptions the

Hamiltonian reducesf to a very simplified form:

Ĥ =
U

2
â†â†ââ+

G

2

(
â†â† + ââ

)
, (6.5)

Despite the high quality factor of state-of-the-art cavities, a confined photon has

always a finite lifetime due to the coupling to the environment. The environment is

in general a system with a huge number of degrees of freedom in which the system
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dissipates photons. As detailed in Sec. 3.1, an excellent description of the coupling

to the environment is provided by a Lindblad dissipation super-operator D(Â) of the

form

D(Â) ρ̂ = 2 Â ρ̂ Â† − Â†Â ρ̂− ρ̂ Â†Â, (6.6)

where Â is the quantum jump operator corresponding to the specific dissipation pro-

cess. To include the interaction with the environment, it is usually enough to consider

one-photon losses, whose jump operator is given by the annihilation operator (see

Sec. 3.1.2). In addition, we also consider two-photon losses, which naturally emerge

together with the engineered two-photon pumping [85]. These losses are included

through the jump operator â2. The resulting Lindblad master equation describing

the evolution of the the system density matrix ρ̂ is

∂ρ̂

∂t
= i
[
ρ̂, Ĥ

]
+
γ

2
D(â) ρ̂+

η

2
D(â2) ρ̂ = Lρ̂, (6.7)

where γ and η are, respectively, the one- and two-photon dissipation rates and Ĥ is

the one given in Eq. (6.5). We recall that together with the initial condition, the

time evolution of ρ̂ is completely defined by the Lindbladian superoperator L. Note

that we are assuming the environment to be at zero temperature. Indeed according

to the two dissipators in Eq. (6.7) the photons are only going from the system to the

environment. On the other hand these losses are balanced by the two-photon pump

that keep the population of the cavity finite. We emphasise that only the one-photon

dissipation term in the Lindblad master equation (6.7) is not preserving the parity of

the cavity field P̂ = exp(iπâ†â) = exp(iπN̂).

6.1.1 Exact solution for the steady state

Despite the many different contributing terms, this master equation has an exact ana-

lytic solution for the steady density matrix [161]. The solution has been recently found

following a technique first introduced in Ref. [162] via the so-called P-representation

of the density matrix. In this representation the Lindblad master Equation (6.7) maps

into a Fokker-Planck equation whose stationary solution is known. Remarkably, this

solution can be integrated, providing the analytic expression of the stationary density

matrix in the Fock basis of number states:

〈n| ρ̂ss |m〉 =
1

N
∞∑
`=0

1

`!
√
n!m!

F(g, c, `+ n)F∗(g, c, `+m), (6.8)

where N is the normalisation factor, chosen such that Tr{ρ̂ss} = 1. F(g, c, `) =

(i
√
g)` 2F1(−`,−c;−2c; 2), 2F1 being the Gaussian hypergeometric function [163].

In spite of the several parameters in the model, the solution depends only on two

dimensionless quantities, namely

c = (∆ + i γ/2)/(U − i η) ,

g = G/(U − i η) .
(6.9)
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Figure 6.2 Exact results for the steady-state. The corresponding density matrix

can be expressed as ρ̂ss =
∑

κ pκ|Ψκ〉〈Ψκ|, where p1 and p2 are the probabilities of the

two most probable eigenstates. The parameters are set to: ∆ = 0, U = 1η, γ = 0.1 η.

Panel (a): residual probability 1 − p1 − p2 versus the two-photon drive amplitude G

normalised to the two-photon loss rate η, showing that the density matrix is dominated

by the first two eigenstates. Panel (b): as a function of G/η, mean number of photons

〈N̂〉ss and its contributions 〈N̂〉 1 and 〈N̂〉 2. Panel (c): as a function of G/η, the mean

parity 〈P̂ 〉ss and its contributions 〈P̂ 〉 1 and 〈P̂ 〉 2. Panel (d): for G = 10η, contour

plots of the Wigner function Wss(β) for the density matrix ρ̂ss, together with the

Wigner functions W1(β) and W2(β) associated to the two most probable eigenstates.

For the latter, we also show a 3D zoom of the central region |β| ≤ 1.6.

The former can be seen as a complex single-particle detuning ∆ + i γ/2 divided by

a complex interaction energy U − i η; g is instead the two-photon pump intensity

normalised by the same quantity. We recall that we will only consider here the

resonant pump case ∆ = 0, thus the dimensionless quantity c reduces to c = i γ/2(U−
i η). Notably, F(g, c, `) = 0 for ` odd, meaning that, for any finite value of the system

parameters, there will be no even-odd coherences in the steady state. More detail on

this analytic solution of the stationary density matrix is provided in Ref. [161].

To further characterise the steady state, we consider its spectral decomposition

ρ̂ss =
∑
κ

pκ|Ψκ〉〈Ψκ| , (6.10)

with |Ψκ〉 the κth eigenstate of ρ̂ss with eigenvalue pκ. The latter corresponds to the

probability of finding the system in |Ψκ〉. The eigenstates are sorted in such a way

that pκ ≥ pκ+1. For a pure state, p1 = 1 and all the other probabilities pκ are zero.

For the steady state in Eq. (6.8) only two eigenstates dominate the density matrix.
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As shown in Fig. 6.2(a), typically

p1 + p2 ' 1 , and ρ̂ss ' p1 |Ψ1〉 〈Ψ1|+ p2 |Ψ2〉 〈Ψ2| . (6.11)

The aforementioned absence of even-odd coherences implies that |Ψ1(2)〉 is composed

of only even (odd) Fock states. Furthermore, we find that |Ψ1,2〉 are nearly equal to

the photonic Schrödinger Cat states |C±α 〉 where the coherence α depends on physical

parameters of the system:

α =

√
−G

U − iη , (6.12)

where an explanation for this formula is given in Section 6.1.2. In order to give an idea

of how close |Ψ1,2〉 are to the cat states |C±α 〉 we compute the inner product between

these state for the parameters of Fig. 6.2(d). The value we obtain is very close to one:

〈Ψ1,2|C+(−)
α 〉 ' (1− 8× 10−6) for α ≈ 2.7 e2.0 i. Hence the steady-state density matrix

ρ̂ss is well approximated by the statistical mixture of two orthogonal cat states:

ρ̂ss ' p1 |C+
α 〉〈C+

α |+ p2 |C−α 〉〈C−α | , (6.13)

The coefficients p1,2 can be interpreted as the probabilities of the system of being found

in the corresponding cat state. Using the linearity of the trace, for any operator Ô

one can write

Oss = Tr
{
ρ̂ss Ô

}
' p1O1 + p2O2, where Oκ = 〈Ψκ|Ô|Ψκ〉 . (6.14)

In Fig. 6.2(b) we plot, as a function of the pump amplitude G, the steady-state mean

density 〈N̂〉ss, together with the mean density 〈N̂〉1,2 of the two contributing cat-like

states |Ψ1,2〉. The mean number of photons of these two states become large and

equal in the limit of a very intense pumping. As a confirmation that |Ψ1,2〉 ' |C±α 〉, in

Fig. 6.2(c), we have that the 〈P̂ 〉1,2 are always close to ±1, that are the eigenvalues of

P̂ . A valuable tool to visualise the non-classicality of a state is the Wigner function

defined as:

W (β) =
2

π
Tr
{
ρ̂ D̂µP̂ D̂

†
µ

}
, where D̂µ = eβâ

†−β∗â (6.15)

is the displacement operator [164]. Indeed, negative values of W (β) indicate that we

are in presence of non-classicality [27, 165]. More concretely, in the context of quan-

tum computation, negative valued Wigner representation are considered a necessary

resource for computational speed-up [166, 167].

The Wigner function corresponding to the stationary density matrix in Eq. (6.8)

is always positive, while the separate contributions W1(β) and W2(β) exhibit an in-

terference pattern with negative regions, typical of cat states [cf. Fig. 6.2(d)].

From Fig. 6.2(b,c) it is clear that in the regime of intense pumping (G� U, γ, η),

one has |α| � 1 and p1 ' p2 ' 1/2. Under these conditions Eq. (6.13) can be recast

as:

ρ̂ss '
1

2
|α〉〈α|+ 1

2
|−α〉〈−α| . (6.16)
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Hence, the steady state can be seen as well as a statistical mixture of two coherent

states of opposite phase. Since ρ̂ss is anyhow a mixture of two (quasi-)orthogonal

states, the steady state is bimodal. Such a bimodality can be visualised, for instance,

through the Wigner function Fig. 6.2(d) [96, 161]. Now, the pivotal question is: if one

monitors the evolution of the system, in which states will it be? The orthogonal cat

states in Eq. (6.13), the two coherent states with opposite phases in Eq. (6.16), or

none of them in particular? As we will show in Section 6.2, the answer dramatically

depends on the type of measurement scheme employed to monitor the trajectory of

the system.

6.1.2 Evolution in the cat subspace

To obtain a useful insight on the property of this system, let us consider a different

approach to the solution of Eq. (6.7). Let us divide the Liouvillian into a two-photon

part and a one photon one, i.e. L = L2 + D1, where L2ρ̂ = i
[
ρ̂, Ĥ

]
+ η

2
D(â2) ρ̂ and

D1ρ̂ = γ
2
D(â)ρ̂. In the most simple case, there exists a class of steady state density

matrices ρ̂ which separately are zero under the action of L2 and D1. In this spirit, one

may try to simplify the description of the system time evolution. First, one identifies

a set of density matrices ρ̂i for which L2ρ̂i = 0. If D1 simply couples the ρ̂i between

them, then the evolution of a system on this reduced subspace greatly simplifies.

The Schrödinger cats states |C±α 〉〈C±α |, defined in Eq. (6.1), are steady state of L2,

indeed

L2 |C±α 〉〈C±α | =
(
−iU

2
α2 − iG

2
− η

2
α2

)
â†â† |C±α 〉〈C±α |

+

(
−iU

2
α2 − iG

2
− η

2
α2

)
|C±α 〉〈C±α | â â

+

(
−iG

2
α2 + i

G

2
α∗ 2 + η|α|4

)
|C±α 〉〈C±α | ,

(6.17)

and it is straightforward to check that the brackets cancel for α =
√
−G/(U − iη).

Any statistical mixture of the Schrödinger cat states ρ̂ = p+ |C+
α 〉〈C+

α | + p− |C−α 〉〈C−α |
is also a steady state of L2, i.e. L2ρ̂ = 0.

Let us now consider the effect of D1 on this mixed state:

D1ρ̂ = γ
[
|α|2p− |C+

α 〉〈C+
α |+ |α|2p+ |C−α 〉〈C−α |

]
− γ

2

[
α p+â† |C−α 〉〈C+

α |+ α p−â† |C+
α 〉〈C−α |

]
− γ

2

[
α∗p+ |C+

α 〉〈C−α | â+ α∗p− |C−α 〉〈C+
α | â

]
.

(6.18)

This equation is not zero except for γ = 0. However it interestingly approaches a

very simplified expression in the regime of intense pumping, in which |α| � 1. Let us
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express all the terms of the form â† |C±α 〉 in Eq. (6.18) as â† |C±α 〉 − α∗ |C∓α 〉+ α∗ |C∓α 〉:

D1ρ̂ =γ
[
|α|2(p− − p+) |C+

α 〉〈C+
α |+ |α|2(p+ − p−) |C−α 〉〈C−α |

]
− γ

2

[
αp+

(
â† |C−α 〉 − α∗ |C+

α 〉
)
〈C+
α |+ αp−

(
â† |C+

α 〉 − α∗ |C−α 〉
)
〈C−α |

]
− γ

2

[
α∗p+ |C+

α 〉
(
〈C−α | â− α 〈C+

α |
)

+ α∗p− |C−α 〉
(
〈C+
α | â− α 〈C−α |

)]
.

(6.19)

For |α| � 1, the last two terms are negligible with respect to the first one. Indeed, the

norm of the states
(
â† |C±α 〉 − α∗ |C∓α 〉

)
is equal to 1 for any value of α, so the last two

terms in Eq. (6.19) are of order O(|α|), while the first two terms are of order O(|α|2).

Thus, we have proved that the overall effect of D1 is simply to evolve the populations

of the even ad odd cats:

D1ρ̂ ' γ
[
|α|2(p− − p+) |C+

α 〉〈C+
α |+ |α|2(p+ − p−) |C−α 〉〈C−α |

]
. (6.20)

Note that this equation reduces to zero for p+ = p− = 1/2 and that the projection on

cat subspace is valid and stable as soon as γ is small compared to the other parameters

G, U and η, that are the parameters of L2 whose action is to stabilise the cat states.

Summarising, in the regime of strong pumping and weak one-photon dissipation

G � U, η � γ, the behaviour and the properties of the system can be faithfully

described by considering the subspace spanned by the two cat states |C±α 〉. The effect

of D1 will be to evolve the system towards an equal mixture of odd and even cats.

We have therefore developed a tool which allows to study both the steady state and

the evolution of the density matrix passing from an infinite dimensional space to one

of dimension two. We will also see how this tool can be used to analyse the action of

a feedback control, as detailed in Sec. 6.3.

6.2 Quantum trajectories approach to bimodality

From a theoretical point of view, a Lindblad master equation describes the out-of-

equilibrium dynamics of a system coupled to a Markovian (i.e., memoryless) environ-

ment. As we have seen in Chapter 4, the density matrix ρ̂(t) solving Eq. (6.7) also

encodes the average evolution of the system when no information is collected about

the environment state. On the other hand, one can imagine to keep track of the sys-

tem state by continuously probing the environment. Doing so, the time evolution of

the system would change at each realisation, as expected from the intrinsic random-

ness of quantum measurement. However, ρ̂(t) can be retrieved by averaging over an

infinite number of such “monitored” realisations.

The Montecarlo wavefunction method [144, 168, 169] has been developed relying

exactly on this idea. It is based on the stochastic simulation of the system evolution

when one continuously gathers information from the environment. Each simulation of

the stochastic evolution of the system gives a single quantum trajectory. The results
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obtained by solving the master Equation (6.7) are recovered by averaging over many

trajectories. In order to simulate the quantum trajectories, it is necessary to explicitly

model how an observer measures the environment, thus affecting the system evolution

itself (a detailed discussion on this subject is given in Ref. [27]). Interestingly, several

different measures can be associated with the same master equation. Depending on

the chosen measurement, contrasting results and interpretations can emerge. Those

incompatibilities are, however, harmonised once the mean value over many trajectories

is taken.

As it stems from Eqs. (6.13) and (6.16), the steady-state density matrix of the

system can be cast as the statistical mixture of only two pure states. This bimodality

is an intrinsic propriety of the Lindblad master Equation (6.7) and, being an average

propriety of the system, it should somehow appear also on a single experimental

realisation. In other words, the quantum trajectory approach should show a bimodal

behaviour. However, the states between which the system switches, as well as the

characteristic time scales, can not be inferred from the form of ρ̂ss, and are not manifest

in the Lindblad master equation, but depend on the measurement process. After a

brief reminder of the basic definitions, we present the quantum trajectory behaviour

under two different measurement protocols that both average to the same master

Equation (6.7): photon counting and homodyne detection.

6.2.1 Photon counting and jumping Schrödinger cats

The most natural way to observe the exchanges between the Kerr resonator and the

environment is to just detect every leaked photon (both individually and in couples).

At every detection of leaked photons the knowledge of the system is updated via the

action of the one-photon jump operator Ĵ1 =
√
γ â and the two-photon one Ĵ2 =

√
η â2

(see Sec. 4.3 for more details). Indeed, in typical realisations (e.g. in Ref. [85]) the

one- and two-photon dissipation channels are discernible. Hence, we can assume that

the photodetector is capable of distinguishing between one- and two-photon losses.

The photon-counting trajectory is then simulated by discretising the system time

evolution. At each time step, one stochastically determines if a single photon or a

couple of them has been detected. To do so, one considers that the probability of a

one- and two-photon detection in a time step dt are, respectively,

p1(t, dt) = 〈Ĵ†1 Ĵ1〉(t)dt = γ〈â†â〉(t)dt, p2(t, dt) = 〈Ĵ†2 Ĵ2〉(t)dt = η〈â† 2â2〉(t)dt .
(6.21)

If a jump occurs, the system state abruptly changes under the action of the corre-

sponding jump operator according to

|Ψ(t+ dt)〉 =
Ĵν |Ψ(t)〉√

〈Ψ(t)|Ĵ†ν Ĵν |Ψ(t)〉
, ν = 1, 2 . (6.22)
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Figure 6.3 Time evolution of 〈x̂〉, 〈p̂〉, and 〈P̂ 〉 along single photon-counting quan-

tum trajectories for the master Equation (6.7).The system parameters are set to

U = 1η, G = 5η, and γ = 0.1η. Simulations were performed on a truncated Fock

basis with nmax = 15, ensuring convergence.

If no jump occurs, the unnormalised state |Ψ̃(t)〉 evolves under the action of an effec-

tive non-hermitian Hamiltonian operator:

d |Ψ̃(t)〉
dt

= −i
(
Ĥ − i

2

∑
ν=1,2

Ĵ†ν Ĵν

)
|Ψ̃(t)〉 , (6.23)

where here and below, the averages are computed on the conditional state of the

system |Ψ(t)〉 at time t (note that respect to Sec. 4.3, we have let drop the subscript

c standing for “conditional”). We stress that dt must be sufficiently small to ensure

p1,2(t, dt)� 1, such to avoid multiple jumps in the same time step. A photon-counting

trajectory is then characterised by a smooth evolution given by an effective non-

hermitian Hamiltonian and by abrupt jumps corresponding to the projective measure

associated to the detection of one or two photons.

As shown in Section 6.1, the Hamiltonian (6.5) and the two-photon dissipation

preserve the parity of the cavity and tend to stabilise photonic cat states. On the

other hand the single-photons annihilation does not preserve the parity and its action

on the even cat state is to switch it into the odd one and vice versa: â |C±α 〉 ∝ α |C∓α 〉.
Thus one-photon dissipation, described by the jump operator Ĵ1 =

√
γ â, induces

random jumps between the two cat states at a rate proportional to γ 〈â†â〉. This

picture is confirmed by the simulations of photon-counting trajectories, an example
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Figure 6.4 Dynamics of averaged quantities versus single quantum trajectories.

Panel (a): dynamics (time is in logarithmic scale) of the photon population for a

single quantum trajectory (blue line), an average of 100 trajectories (orange line) and

the fully averaged (green line) density-matrix. Panel (b): same as (a) but for the

expectation value of the photon parity operator. Panel (c): snapshots of the Wigner

functions at times t1, t2, . . . , t6 indicated in panel (b). The system parameters are

∆ = 0, U = 1η, G = 10η, and γ = 0.1η.

of which is given in Fig. 6.3. The expectation value of the parity operator P̂ = eiπâ
†â

jumps between its eigenvalues ±1. We recall that cat states are orthogonal eigenstates

of the parity operator P̂ , this suggests that along a single trajectory the system

intermittently and randomly switches between the two cat states. As a confirmation

of this picture, the mean values of the field quadratures x̂ =
(
â† + â

)
/2 and p̂ =

i
(
â† − â

)
/2 are practically zero along the trajectory, as expected for any cat state.

In order to have a definitive confirmation of how the trajectories behave we consider

the evolution of the system Wigner function. The fully-averaged and single-trajectory

evolutions of the Wigner function are shown in panel (c) of Fig. 6.4 . Starting from

the vacuum state as initial condition, an even-cat transient appears in the average

behaviour, but negativities are eventually washed out for ηt, γt� 1 [85, 170, 171]. On
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a single trajectory, two-photon processes initially dominate, driving W (β, t) towards

the Wigner function of |C+
α 〉. Even if many two-photon losses are detected, they do

not affect the state parity, indeed Ĵ2 |C±α 〉 ∝ â2 |C±α 〉 = α2 |C±α 〉. This is why the

system remains close to the even cat state until a one-photon loss occurs. At this

point, since Ĵ1 |C±α 〉 ∝ â |C±α 〉 ∝ |C∓α 〉, the Wigner function of the system abruptly

switches to that of |C−α 〉 [171], then back at each one-photon jump.

Hence, if the quantum trajectory is monitored via photon counting [126], the

system can only be found nearby |C+
α 〉 or |C−α 〉. Furthermore, we may interpret p±ss

in Eq. (6.13) as the asymptotic probabilities to find the system in one of the two

cat states. In the panels (a) and (b) of Fig. 6.4, we compare the evolution of the

Wigner function evolution with the evolution of the average photon number 〈N̂〉 and

parity 〈P̂ 〉 . Since 〈N̂〉1,2 ≈ 〈N̂〉ss, it is impossible to discern the cats’ jumps by

tracking the photon density. It is in particular impossible to determine in which cat

state the system is by measuring the photon loss intensity. A parity measurement,

contrarily, would be suitable [88] to unravel the bimodal behaviour of the system

when is monitored by photon-counting detection. In Fig. 6.4(a) and (b) we also

show the average over 100 trajectories, which, as expected, converges to the master

equation solution. The latter corresponds to the full average over an infinite number

of realisations.

6.2.2 Homodyne detection and switching coherent states

Another possible way to monitor a quantum-optical system is through homodyne de-

tection, a widely-used experimental technique which allows to access the field quadra-

tures [89, 138, 139]. To implement this kind of measurement, the cavity output field is

mixed to the coherent field of a reference laser through a beam splitter (here assumed

of perfect transmittance). Then, the mixed fields are probed via (perfect) photode-

tectors, whose measures are described by new jump operators. We stress that both

the coherent and the cavity fields are measured simultaneously.

In our case, we want to probe independently the two dissipation channels. To

distinguish between one- and two-photon losses, one can exploit a nonlinear element

acting on the cavity output field. Indeed, in experimental realisations such as in

Ref. [85], a nonlinear element is already part of the system and is the key ingredient to

realise two-photon processes. More specifically, one-photon losses are due to the finite

quality factor of the resonator. They can be probed by directly mixing the output

field of the cavity with a coherent beam of amplitude β1 acting as local oscillator.

Therefore, the homodyne jump operator for one-photon losses can be cast as K̂1 = Ĵ1+

β11̂. Two-photon losses are, instead, mediated by a nonlinear element (a Josephson

junction in Ref. [85]), which converts two cavity photons of frequency ωc into one

photon of frequency ωnl. Hence, the field coming out of the nonlinear element can be

mixed to a second independent oscillator. This whole process can be seen as the action
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Figure 6.5 Time evolution of 〈x̂〉, 〈p̂〉 (right panel), and 〈P̂ 〉 (left panel) along

single homodyne quantum trajectories for the master Equation (6.7). The system

parameters are set to U = 1η, G = 5η, and γ = 0.1η. Simulations were performed on

a truncated Fock basis with nmax = 15, ensuring convergence.

of a nonlinear beam splitter which mixes pairs of dissipated photons with a reference

oscillator of amplitude β2. Therefore, the homodyne two-photon jump operator takes

the form K̂2 = Ĵ2 + β21̂. Without loss of generality, in the following, we assume the

amplitudes β1,2 to be real [135].

From the definitions of the jump operators, one extracts the jump probabilities

p1(t, dt) = 〈K̂†1K̂1〉(t)dt = 〈(√γâ+ β11̂)†(
√
γâ+ β11̂)〉(t)dt

' [β2
1 1̂ + β1

√
γ〈â+ â†〉(t)]dt,

p2(t, dt) = 〈K̂†2K̂2〉(t)dt = 〈(√ηâ2 + β21̂)†(
√
ηâ2 + β21̂)〉(t)dt

'
[
β2

2 1̂ + β2
√
η〈â2 + â† 2〉(t)

]
dt,

(6.24)

where the approximations are valid in the ideal limit β1,2 � 1. In this regime, for any

time interval, there would be a huge number of total field detections. This would make

computationally very demanding to follow the same procedure as in Sec. 6.2.1, since

one should take an extremely small time step. However, the detected field is almost

entirely due to the reference lasers, associated to the operators β1,21̂. This means

that a single detection contains very few information on the resonator field, and that

the total jump operators K̂1,2 have a very small effect on its state. In the ideal limit

β1,2 →∞, the occurrence of an infinite number of jumps is counterbalanced by their

infinitesimal effect on the resonator, resulting in an effective diffusive evolution of the

cavity state. The latter, indeed, is found to obey to a stochastic Schrödinger equation
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of the form

d|ψ(t)〉 = − i dt Ĥ |ψ(t)〉+
∑
ν=1,2

{[
Ĵν −

〈Ĵν + Ĵ†ν〉(t)
2

1̂

]
dWν(t)

−1

2

[
Ĵ†ν Ĵν − 〈Ĵν + Ĵ†ν〉(t)Ĵν +

〈Ĵν + Ĵ†ν〉
2
(t)

4
1̂

]
dt

}
|ψ(t)〉 ,

(6.25)

where Ĵ1,2 are the resonator jump operators and dW1,2 are stochastic Wiener incre-

ments of zero expectation value satisfying dWν(t)dWµ(t) = δνµ dt (a more detailed

description of the main formal steps to derive this equation is given in Sec. 4.3.3).

Those Wiener processes describe the fluctuation of the homodyne signal. Using

the stochastic Schrödinger Equation (6.25), one can simulate the trajectory by tak-

ing a reasonably small dt and generating stochastic Wiener increments at each time

step. Note that Eq. (6.25) does not depend on the values of β1,2, which are both in-

finitely large. In conclusion, the homodyne detection reduces to a continuous diffusive

evolution of the wave function.

As shown in Sec. 6.2.1, quantum trajectory analysis based on photon counting

seems to privilege a mixture of cat states (Eq. (6.13)) over the mixture of coherent

states (Eq. (6.16)) as the more truthful picture of the steady state. This is no more

the case if we consider homodyne quantum trajectories. In Fig. 6.5(b), we present

(in a log-linear scale) the mean parity 〈P̂ 〉 along a single homodyne trajectory, taking

the vacuum as initial state. In spite of the “switching cat” picture, the parity rapidly

approaches zero, and than just fluctuates around this value. These fluctuations are

due to the diffusive nature of Eq. (6.25), which rules the stochastic time evolution

of the system wave function under homodyne detection. The bimodal behaviour,

instead, is clear in the time evolution of 〈x̂〉 and 〈p̂〉, shown in Fig. 6.5(c). This

appears compatible with the picture given by Eq. (6.16): at the steady state the

system switches between the coherent states |±α〉. We point out that the phase

switches observed for homodyne trajectories have a much smaller rate than parity

switches in photon-counting trajectories. This is a consequence of the metastable

nature of the coherent states |±α〉 [85, 96].

For finite γ the considered system has always a unique steady-state. However,

the temporal relaxation towards the steady-state dramatically depends on the initial

state. This is revealed by the time-dependent fidelity with respect to the steady-state

f [ρ̂ss; ρ̂(t)] = Tr

{√√
ρ̂ss ρ̂(t)

√
ρ̂ss

}
, (6.26)

that in Fig. 6.6 has been obtained by numerical integration of the master equation.

In particular, initialising the system in one of the coherent states |±α〉 composing

the steady-state cats, it remains nearby for a time several orders of magnitude longer

than 1/γ and 1/η. More precisely, this is the same time (of the order of 104/η) that



6.2. Quantum trajectories approach to bimodality 117

��-� ��-� � ��� ��� ��� ���
���

���

���

���

���

���

� η

�
[
ρ� �
�
�ρ
� (
�)
]

��[β]

��[β]�������������

������
�����

(b)
��-� ���� � ��� ��� ��� ���
���

���

���

���

���

���

� η

�
[
ρ� �
�
�ρ
� (
�)
]

��[β]

��[β]�������������

������
�����

��-� ���� � ��� ��� ��� ���
���

���

���

���

���

���

� η

�
[
ρ� �
�
�ρ
� (
�)
]

��[β]

��[β]�������������

������
�����

(a)

⌘ t ⌘ t
��-� ��-� � ��� ��� ��� ���
���

���

���

���

���

���

� η

�
[
ρ� �
�
�ρ
� (
�)
]

��[β]

��[β]�������������

������
�����

(b)
��-� ���� � ��� ��� ��� ���
���

���

���

���

���

���

� η

�
[
ρ� �
�
�ρ
� (
�)
]

��[β]

��[β]�������������

������
�����

��-� ���� � ��� ��� ��� ���
���

���

���

���

���

���

� η

�
[
ρ� �
�
�ρ
� (
�)
]

��[β]

��[β]�������������

������
�����

(a)

⌘ t ⌘ t

Figure 6.6 Metastable versus steady-state regime. The curves depict the time-

dependent fidelity of the density matrix ρ̂(t) with respect to the unique steady-state

density matrix ρ̂ss by taking as initial condition a pure coherent state, i.e., ρ̂(t =

0) = |β〉〈β|. The fidelity f [ρ̂ss; ρ̂(t)] is defined in Eq. (6.26). The values of β and the

corresponding colours are indicated in the inset. In the top panel, the phase of the

initial coherent state is varied, while in the bottom panel the amplitude is changed.

The dashed line corresponds to the vacuum as initial state. Parameters: ∆ = 0,

U = 1η, G = 10η, γ = 0.1η.

one has to wait in average to have a switch in the homodyne trajectory (Fig. 6.5(c)).

Hence, we proved that |±α〉 are metastable states of the systems, improving the

previous dominant interpretation that was considering them as multiple stable steady

states [85].

6.2.3 One-photon driven resonators

It is legitimate to question if the abrupt switches observed in the quantum trajectories

presented in Fig. 6.5 are an intrinsic property of the system or is just an effect of the

measurement protocol. To dispel all doubts, we calculated single photon-counting

and homodyne trajectories for a resonator subject to a resonant one-photon driving

of frequency ωc. In the frame rotating at ωc, the corresponding Hamiltonian reads

Ĥ =
U

2
â†â†ââ+ F

(
â† + â

)
. (6.27)

We stress that, differently from the case discussed above, the steady state of this

system is not an equiprobable statistical mixture of two states [140, 162]. A photon-

counting trajectory for 〈P̂ 〉 and homodyne trajectories for 〈x̂〉 and 〈p̂〉 are shown,

respectively, in Fig. 6.7(a) and (b). Clearly, the trajectory does not show the same

kind of abrupt switches observed in Fig. 6.5. This proves that the behaviour discussed

in Sec. 6.2.1 and Sec. 6.2.2 is not caused solely by the measurement protocol, but is

indeed linked to the bimodal character of the steady state.
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Figure 6.7 Left Panel: Time evolution of 〈P̂ 〉 along a single photon-counting trajec-

tory. Righ Panel: Time evolution of 〈x̂〉 and 〈p̂〉 along a single homodyne trajectory.

Both plots refers to the Lindblad Equation (6.7) for the one-photon-driving Hamil-

tonian (6.27). We set the system parameters to U = 1η, F = 5η, and γ = 0.1η (we

stress that here G = 0). Simulations were performed on a truncated Fock basis with

nmax = 15, ensuring convergence.

6.2.4 Conclusion on trajectory analysis

In this section we have studied the behaviour of interacting photons in a nonlinear res-

onator subject to engineered two-photon processes. The objective has been to point

out and characterise the bimodal nature of the system steady state, which can be seen,

equivalently, as the statistical mixture of photonic Schrödinger cat states (Eq. (6.13))

or of coherent states with same amplitude and opposite phases (Eq. (6.16)). The

behaviour of the system along a single quantum trajectory dramatically depends on

the measurement protocol adopted. For photon-counting measurements on the en-

vironment, the system switches between the parity-defined cat states appearing in

Eq. (6.13). Under homodyne detection, the states explored along a single quantum

trajectory are the coherent ones in Eq. (6.16). In other words, one may assign a

physical meaning to the probabilities appearing in the mixed-state representation of

ρ̂ss only upon specification of the single-trajectory protocol.

However, the average behaviour is exactly the same for the two detection protocols,

which are described by the same Lindblad master Equation (6.7). Finally, we have

also studied the quantum trajectories for a one-photon-driven resonator in a regime

where its steady state is not bimodal. The absence of abrupt switches in parity or

quadratures proves that the ones observed in Fig. 6.5 are not artefacts of the quantum

trajectory approach, but a feature linked to the steady-state bimodality.
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6.3 Feedback control on cat states

In the previous sections we saw that the class of systems described by the Lindblad

master equation (6.7) is very promising for the realisation of Schrödinger cat states.

Cat states have been observed in the transient dynamics of this kind of systems [85].

These states are highly nonclassical and very promising for computation applications

[75, 77, 159, 160]. On the other hand they are fragile to one-photon decoherence and

their lifetime is very short.

The question is: how can we protect photonic Schrödinger cats from one-photon

decoherence? As we showed, when considering photon-counting quantum trajectories,

the system intermittently jumps between an even and an odd cat states. We recall

that quantum trajectories can be thought as the description of an actual experiment

in which a continuous measurement is performed on the environment [126, 135, 144].

Photon counting is, in this regard, the most natural way to monitor the system: each

time a photon escapes the cavity it is measured by a photon counter. In particular,

if it was possible to collect all the leaked photons, one would be able to reconstruct

the state of the cavity. In this regard, i.e. under perfect photon counting, the system

would be anyhow in one of the two cats, and one would know in which one. Now, what

can we say about the cavity if we consider non-perfect photodetection? As discussed

in Ref. [27] for a closely related example, one would progressively lose its knowledge

about the system. As the time passes and the number of missed photon increases,

there will be an equal probability to be in the even or in the odd cat: hence one

retrieve the statistical mixture in Eq. (6.13).

We stress that, even if both |C±α 〉 in Eq. (6.13) are highly nonclassical states,

it was proved in Ref. [96, 161] that the steady state of Eq. (6.13) has lost all the

quantumness, i.e. there are no negativities in the Wigner function (cf. Fig 6.2).

Thus, in order to retrieve some of the quantum features of the Schrödinger cats, it is

necessary to contrast the one-photon dissipation. A possible way could be to actively

control the system through a feedback protocols. This is the topic of the following

sections.

6.3.1 Feedback by conditioning of one-photon dissipation

In Sec. 6.2.1 we saw that the main effect of one-photon dissipation is to induce abrupt

and totally random jumps from one cat state to the other with opposite parity. This

process drive the system toward a mixed state with equal probability 1/2 for the two

cat states. In this stationary state the coherence between |α〉 and |−α〉 is completely

lost and system is in a classical state.

Thus one-photon dissipation is the main obstacle toward the stabilisation of one of

the two cat states. On the other hand, because of its central role, one could imagine

to control the system state by controlling the intensity of one-photon dissipation. In
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particular one could try to recover a cat-like steady state by unbalancing the even

and odd contribution to ρ̂ss (Eq. (6.13)). In a quantum trajectory picture, if the jump

rate from the even to the odd cat state is, for instance, smaller than the jump rate

from the odd to the even cat state then the latter will be dominant. The resulting

stationary state will be a cat-like state and the coherence between |α〉 and |−α〉 is

recovered. In one of our works [96], we proposed the realisation of this idea through

a parity-triggered feedback mechanism [172–175]. The idea is to repeatedly perform a

non-destructive parity measurements at times ti and to open an addition one-photon

loss channel when the undesired value is measured. We point out that a similar

measure has already been realised in the context of superconducting circuits [86, 88].

Let us describe a general evolution of the system under repeated measurement

and a Liouvillian that depends on the result of the measure. As detailed in Sec. 4.2.1,

any observable M̂ can be written in terms of its eigenspace projectors Π̂µ and the

associated eigenvalues µ: M̂ =
∑

µ µ Π̂µ. The probability of obtaining the result µ,

upon measure of M̂ , is therefore pµ = Tr
{
ρ̂Π̂µ

}
. After obtaining the outcome µ from

the measurement of M̂ , the density matrix become

ρ̂µ =
Π̂µρ̂Π̂µ

Tr
{

Π̂µρ̂
} =

Mµ ρ̂

pµ
, (6.28)

where we have introduced the measurement superoperator of the formMµρ̂ = Π̂µρ̂Π̂µ.

Now, we are interested in the description of the mean effect of the measure on the

master equation, i.e. what are the quantities which can be retrieved from performing

several times the same experiment . Thus, if we call ρ̂ the density matrix describing

the system just before the measure, the effect of M is

Mρ̂ =
∑
µ

pµ ρ̂µ =
∑
µ

Mµ ρ̂ . (6.29)

We suppose to perform a measure on the system at every time ti, while the system

evolves under the action of the Liouvillian for ∆t = ti+1 − ti. Let us define the

conditional Liouvillian Lµ, that is chosen according to the result of the measurement.

The mean evolution of the system in between two measures is:

ρ̂(t) =
∑
µ

eLµ(t−ti)Mµ ρ̂(ti) =
∑
µ

eLµ(t−ti)Π̂µρ̂(ti)Π̂µ , (6.30)

where ρ̂(ti) is the system state at the moment of the last measurement. So the average

action on the density matrix of one feedback cycle (measurement followed by control)

is given by:

ρ̂(ti+1) =
∑
µ

eLµ∆tMµρ̂(ti) . (6.31)
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Figure 6.8 A schematic representation of the proposed feedback protocol. The

system is probed by a parity measurement P at time t. If the result is +1 we go

directly to the next measurement at time t + ∆t. Otherwise, if the result is −1 a

strongly dissipating two-level system is tuned in resonance with the cavity and we

come back to measure. This enhances the one-photon dissipation bringing the system

toward the target even state.

A possible way to distinguish between cat states is a parity measure. In fact, the

even and odd cats are compound only by even or odd states, respectively, and thus

are eigenstate with eigenvalue ±1 of the parity operator P̂ = eiπâ
†â. Thus, in the

description our protocol to obtain cat-like states we can exploit parity measurement

superoperators P±ρ̂ = Π̂±ρ̂ Π̂±, where parity projectors have the form

Π̂± =
1

2

[
1̂± eiπâ†â

]
. (6.32)

Note that, correctly, Π̂†−Π̂− + Π̂†+Π̂+ = 1̂ and that measurement superoperators P±
project the density matrix on the even-odd manifold.

Following the proposal in Ref. [96], we condition the value of γ on the result of

parity measurement. A proposal to realise the conditional dissipation is to increase

it by tuning in resonance with the cavity a strongly dissipating two-level system (as

detailed in the appendix. A). Figure 6.8 provides schematic representation of the
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Figure 6.9 Left panel: evolution of the expectation value of the parity P̂ for differ-

ent durations ∆t of the feedback cycle. Parameters are G = 10η, U = 1η, γ+ = 0.1η

and γ− = 2γ+; the initial state is the even cat state |C+
α 〉. The solid lines represent

the mean on the full density matrix, while the white dashes are obtained using the

populations p± of the reduced space. Inset left panel: relative error in determining

the parity using the projection procedure. Right panel: the Wigner function of the

system density operator at time η t = 7.

feedback protocol.

The conditional Lindbladian superoperators act as L±ρ̂ = i [ρ̂, Ĥ] +D2ρ̂+D±1 ρ̂ =

(L2 +D±1 )ρ̂, where we have introduced the parity-dependent one-photon dissipation:

D±1 ρ̂ =
γ±
2

(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
. (6.33)

The evolution of the system in Eq. (6.30) now reads:

ρ̂(t) =
∑
µ=±

eLµ(t−ti)Pµρ̂(ti) =
[
e(L2+D+

1 )(t−ti)P+ + e(L2+D−1 )(t−ti)P−
]
ρ̂(ti) . (6.34)

In Fig. 6.9 we plot the evolution of the parity according to Eq. (6.34) for different

values of ∆t. The initial pure even cat state quickly decay toward a zero-parity

state, until the effect of the measurement-feedback procedure intervene. At every

measurement we have a discontinuity in the first derivative of system time evolution.

Between the two subsequent measurements the parity evolution is continuous and

after few feedback cycles it stabilises on a precise repeated behaviour.

In Fig. 6.9 we choose to plot the average parity of the system because it is a good

indicator of how close we are to realise a cat state, that is the target of our feed-

back protocol. In absence of feedback the two cats become equally probable, and the

Wigner function of the steady state has no negativity (see Fig. 6.2). Introducing a

feedback with γ− = 2γ+, the odd cat state is more fragile then the even one and some
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quantum features will emerge (see the Wigner functions in Fig. 6.9). The resulting

system state is closer to the even cat state as ∆t decreases. Indeed in the Wigner

functions showed in Fig. 6.9 we see that the smaller is ∆t the more the fringes are

marked. In order to explain that effect one has to consider that, after every mea-

surement, the one-photon dissipation deteriorate the acquired information. For more

frequent measurement the degrading effect of one-photon dissipation is smaller and

the feedback is more efficient.

Finally, let us consider the continuous limit, i.e. ∆t� γ−, the feedback protocol is

maximally efficient in this limit (see Fig. 6.9). As we will prove at the end of Sec. 6.3.5,

this continuous limit is effectively described by an additional parity-dependent dissi-

pation channel to the bare master equation in Eq. (6.7). More precisely this additional

dissipation is described by the jump operator â
f

= â 1
2
(1̂− P̂ ) = â Π̂− and the corre-

sponding dissipator

D
f
ρ̂ =

γ
f

2

(
2â

f
ρ̂â†

f
− â†

f
â
f
ρ̂− ρ̂â†

f
â
f

)
. (6.35)

Qualitatively, D
f

leaves the even cat undisturbed, while it enhances the dissipation for

the odd one. Making the link to the parameters of our feedback protocol γ
f

= γ−−γ+

and γ = γ+.

In Fig. 6.10(a) we show the time evolution of 〈P̂ 〉 for three different values of γ
f
.

At the steady state, 〈P̂ 〉 increases with increasingly γ
f
, indicating that the positive

cat has a larger weight in ρ̂ss. In Fig. 6.10(b) we show the corresponding steady-state

Wigner functions W (β). For finite γ
f
, negative fringes appear in the Wigner function.

They are more pronounced as γ
f

is increased, revealing a highly nonclassical state.

In the limit γ
f
� γ, ρ̂ss ' |C+

α 〉 〈C+
α |. Note that, by using instead the jump operator

â
f

= â 1
2
(1̂ + P̂ ), one can similarly stabilise the odd cat state.

6.3.2 Projection on cat states

In Section 6.1.2, we saw that in the strong pumping and weak one-photon dissipation

regime, the description of the system can be restricted to the subspace spanned by the

cat states and that only the cat populations really matter (and not their coherences).

Let us use the same idea to project Eq. (6.34) on the subspace of the cat states.

If at time ti the system is in a statistical mixture of the two cats of the form ρ̂(ti) =

p+(ti) |C+
α 〉〈C+

α |+p−(ti) |C−α 〉〈C−α |, the density matrix at time t ∈ (ti, ti+1) between the

two measurements is given by

ρ̂(t) =
∑
µ

eLµ(t−ti)Pµρ̂(ti) = eL+(t−ti) p+(ti) |C+
α 〉〈C+

α |+ eL−(t−ti) p−(ti) |C−α 〉〈C−α |

= p+(ti) e
(L2+D+

1 )(t−ti) |C+
α 〉〈C+

α |+ p−(ti) e
(L2+D−1 )(t−ti) |C−α 〉〈C−α | .

(6.36)
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Figure 6.10 Effects of the considered feedback. These results are obtained by

taking the vacuum as initial condition and for same system parameters as in Fig. 6.4.

Panel (a): time evolution of the steady-state parity mean-value in presence of the

feedback described by Eq. (6.35) for different values of γ
f

(cf. legend). Panel (b):

steady-state Wigner function (t→ +∞) exhibiting negativities for γ
f
> 0.

As we have seen in Sec. 6.1.2, for α =
√
−G/(U − iη) we have L2 |C±α 〉〈C±α | = 0, and

then the Eq. (6.36) become:

ρ̂(t) = p+(ti) e
D+

1 (t−ti) |C+
α 〉〈C+

α |+ p−(ti) e
D−1 (t−ti) |C−α 〉〈C−α | . (6.37)

The action of the propagators eD
±
1 (t−ti) on a generic mixture of the cat states is equiv-

alent to the time evolution given by the following differential equation:

∂

∂t

[
p+(t) |C+

α 〉〈C+
α |+ p−(t) |C−α 〉〈C−α |

]
= D±1

[
p+(t) |C+

α 〉〈C+
α |+ p−(t) |C−α 〉〈C−α |

]
(6.38)

As we saw in Section 6.1.2, for G � U, η � γ (i.e. |α| � 1), the effect of superop-

erators D±1 is to evolve the cat populations. Let us define the subspace of cat state

population, in which we define the following representation of an arbitrary mixture of

cat states:

a |C+
α 〉〈C+

α |+ b |C−α 〉〈C−α |
def
=

(
a

b

)
(6.39)

The action of D±1 , that we have determined in Eq. (6.20), can be expressed in the
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basis of cat states populations:

D±1
[
p+(t) |C+

α 〉〈C+
α |+ p−(t) |C−α 〉〈C−α |

] def
= D±1

(
p+(t)

p−(t)

)
'
[−γ±|α|2 +γ±|α|2
+γ±|α|2 −γ±|α|2

](
p+(t)

p−(t)

)
.

(6.40)

Using the same representation we can now recast the Eq. (6.38) in the following rate

equations:

∂

∂t

(
p+(t)

p−(t)

)
' γ±N̄

[−1 +1

+1 −1

](
p+(t)

p−(t)

)
, (6.41)

in which we introduce the average number of photons N̄ ' |α|2. In the regime we

are considering, the time evolution given by these rate equations is approximately

equivalent to those produced by the propagators eD
±
1 (t−ti). One can solve the rate

equations by diagonalizing it and then determine the action of the propagators:

eD
+
1 (t−ti) |C+

α 〉〈C+
α | =

1 + e−2N̄γ+(t−ti)

2
|C+
α 〉〈C+

α |+
1− e−2N̄γ+(t−ti)

2
|C−α 〉〈C−α | , (6.42a)

eD
−
1 (t−ti) |C−α 〉〈C−α | =

1− e−2N̄γ−(t−ti)

2
|C+
α 〉〈C+

α |+
1 + e−2N̄γ−(t−ti)

2
|C−α 〉〈C−α | . (6.42b)

Using these expressions for the propagators, the Equation (6.37) reads:

ρ̂(t) =p+(t) |C+
α 〉〈C+

α |+ p−(t) |C−α 〉〈C−α |

=
1

2

[
1 + p+(ti) e

−2N̄γ+(t−ti) − p−(ti) e
−2N̄γ−(t−ti)

]
|C+
α 〉〈C+

α | +

1

2

[
1 + p−(ti) e

−2N̄γ−(t−ti) − p+(ti) e
−2N̄γ+(t−ti)

]
|C−α 〉〈C−α | .

(6.43)

In Fig. 6.9 we plot the evolution of 〈P̂ 〉 under the parity dependent feedback both

for the full solution and for the projection on the cat states. The density operator,

initialised in the even cat state, rapidly loses its quantum features if no feedback is

applied, and the reduced basis perfectly captures this feature. The projection method

produces very reliable quantitative results with respect to the full simulation also in

presence of the parity dependent feedback. In the inset of Fig. 6.9 is also plotted the

relative error between the projected evolution of Eq. (6.37) and the full simulation. We

stress that the error is never bigger than 1%, confirming the validity of the approach.

As one may notice from Fig. 6.9, after a sufficiently long time the system stabilises

on a repeated evolution of period ∆t = ti+1−ti, the delay between two subsequent par-

ity measurements. In other words, after a certain time ρ̂(ti+1) = ρ̂(ti) and the state of

the system only depend on the time τ passed between two subsequent measurements,

precisely τ = t− ti and τ ∈ [0,∆t].

In this regard it is possible to define the stroboscopic stationary state σ̂(τ) and its

the stroboscopic stationary populations s+(τ) and s−(τ), in analogy with Eq. (6.43):
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σ̂(τ) =s+(τ) |C+
α 〉〈C+

α |+ s−(τ) |C−α 〉〈C−α |

=
1

2

[
1 + s+(0) e−2N̄γ+τ − s−(0) e−2N̄γ−τ

]
|C+
α 〉〈C+

α | +

1

2

[
1 + s−(0) e−2N̄γ−τ − s+(0) e−2N̄γ+τ

]
|C−α 〉〈C−α | .

(6.44)

With this definitions the the fact that ρ̂(ti+1) = ρ̂(ti) implies that σ(∆t) = σ(0) and

that

s+(∆t) =
1

2

[
1 + s+(0) e−2N̄γ+∆t − s−(0) e−2N̄γ−∆t

]
= s+(0) ,

s−(∆t) =
1

2

[
1 + s−(0) e−2N̄γ−∆t − s+(0) e−2N̄γ+∆t

]
= s−(0) .

(6.45)

Solving these equations for s±(0) we obtain

s±(0) =
1− e−2N̄γ∓∆t

2− e−2N̄γ+∆t − e−2N̄γ−∆t
. (6.46)

It follows that the stroboscopic stationary density matrix is

σ̂(τ) =
1

2

[
1 +

e−2N̄γ+τ
(
1− e−2N̄γ−∆t

)
− e−2N̄γ−τ

(
1− e−2N̄γ+∆t

)
2− e−2N̄γ+∆t − e−2N̄γ−∆t

]
|C+
α 〉〈C+

α | +

1

2

[
1 +

e−2N̄γ−τ
(
1− e−2N̄γ+∆t

)
− e−2N̄γ+τ

(
1− e−2N̄γ−∆t

)
2− e−2N̄γ+∆t − e−2N̄γ−∆t

]
|C−α 〉〈C−α | .

(6.47)

and the average value of parity for this stroboscopic steady state is

〈P̂ 〉σ(τ) =
e−2N̄γ+τ

(
1− e−2N̄γ−∆t

)
− e−2N̄γ−τ

(
1− e−2N̄γ+∆t

)
2− e−2N̄γ+∆t − e−2N̄γ−∆t

. (6.48)

Notice that, in accordance to Fig. 6.9, all these expressions depend on ∆t. Moreover,

for ∆t → ∞ one correctly retrieves the no feedback solution s+ = s− = 1/2, while

for ∆t → 0 the ratio between the population is of the form s+/s− = γ+/γ−. For

the chosen parameters (γ− = 2γ+) this would lead to an average parity of 〈P̂ 〉 =

(γ− − γ+)/(γ− + γ+) = 1/3, that is in very good agreement with the numerical

simulation of the continuous limit (see Fig. 6.9).

It is interesting, at this point, to explore the feedback efficiency by studying how

close the stroboscopic steady state is to the even cat state. In order to further charac-

terise the effectiveness of this feedback, in Fig. 6.11 we plot, for different values of ∆t,

the fidelity of the stroboscopic stationary density matrix ρ̂(τ = 0) (full simulation)

with respect to ρ̂+ = |C+
α 〉〈C+

α | as a function of γ−/γ+. We recall that the fidelity be-

tween two density matrices ρ̂ and σ is defined as f(ρ̂, σ̂) = Tr{
√√

ρ̂σ̂
√
ρ̂}. Clearly, an
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Figure 6.11 Fidelity as a function of the strength of the parity-selective dissipation

for different values of the feedback characteristic time ∆t. The parameters are G =

10η, U = 1η, γ+ = 0.1η and γ− = 2γ+. Top panel: fidelity between the even cat

ρ̂+ = |C+
α 〉〈C+

α | and the density matrix of the full simulation ρ̂0
def
= ρ̂(τ = 0) at the

stroboscopic steady state. Bottom panel: fidelity between the projected stroboscopic

density matrix σ̂0
def
= σ̂(τ = 0) and the density matrix of the full simulation ρ̂0

def
=

ρ̂(τ = 0).

interesting interplay between γ−/γ+ and ∆t takes place. In the continuous limit the

parity is continuously measured and an increasing value of γ−/γ+ will always increase

the probability of being in the even cat. More interesting are the intermediate regimes.

In fact, for a certain value γ−/γ+ the purity of the system starts to decrease. This

poses a theoretical limit to the purification toward a even cat state which depends on

the repetition rate of the parity measure. A qualitative explanation is the following.

As γ− increases, the system spends less and less time in the odd cat. This time is

proportional to 1/γ−, when it is too small compared to ∆t the measurements are not

frequent enough to have an updated knowledge of the system and the feedback is not

efficient anymore.

Moreover, for further increasing γ− the approximations done in Sec. 6.1.2 are no

more valid. In particular, for strong γ−, the dissipator D−1 is leading the system

out of a statistical mixture of cat states with amplitude α =
√
−G/(U − iη). The
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bottom panel of Fig. 6.11 show the limits of our approximation beyond which the

description in terms of the two cat states breaks. To quantify the error committed

by the cat state projection approach, the dashed line represent the fidelity between

the approximated stroboscopic steady state and the full simulation one. Clearly, for

γ− � 1/∆t the approximation is optimal, and one has a fidelity close to one, while for

big γ− the system cannot be described in the subspace spanned by the two considered

cats. This also explain the further decrease of the stroboscopic stationary density

matrix ρ̂(τ = 0) and the even cat ρ̂+ = |C+
α 〉〈C+

α |.

6.3.3 Imperfect parity measurement

Let us study now the more realistic case in which the parity measurement is not

perfect. In this case a certain outcome of the parity measurement does not allow

to project the system state on the associated projector uniquely. More concretely,

in the framework defined by Eq. (6.31), we will use the measurement superoperators

Mµ
def
= (1 − pe)P± + peP∓, where pe is the error probability allowing to take into

account the imperfection of the parity measurement (also introduced in Sec. 4.2.2).

This measurement superoperators lead to the following expression for system evo-

lution:

ρ̂(t) =
∑
β=±

eLµ(t−ti) [(1− pe)Pµ + peP−β] ρ̂(ti)

=
{
e(L2+D+

1 )(t−ti) [(1− pe)P+ + peP−] + e(L2+D−1 )(t−ti) [(1− pe)P− + peP+]
}
ρ̂(ti),

(6.49)

where we use the same definitions as in Eq. (6.34). In the same regime of the pre-

vious section, and following the same steps, this equation can be recast in the two-

dimensional subspace of cat state populations:

ρ̂(t) = p+(ti)
[
(1− pe) eD

+
1 (t−ti) + pe e

D−1 (t−ti)
]
|C+
α 〉〈C+

α |+

p−(ti)
[
(1− pe) eD

−
1 (t−ti) + pe e

D+
1 (t−ti)

]
|C−α 〉〈C−α | .

(6.50)

By properly inserting the action of eD
±
1 (t−ti) given in Eq. (6.42), one gets:

ρ̂(t) =
1

2

[
1 + p+(ti) e

−2N̄γ+(t−ti) − p−(ti) e
−2N̄γ−(t−ti)

+pe

(
e−2N̄γ−(t−ti) − e−2N̄γ+(t−ti)

)]
|C+
α 〉〈C+

α |

+
1

2

[
1 + p−(ti) e

−2N̄γ−(t−ti) − p+(ti) e
−2N̄γ+(t−ti)

+pe

(
e−2N̄γ−(t−ti) − e−2N̄γ+(t−ti)

)]
|C−α 〉〈C−α | .

(6.51)
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As in the case of perfect measurement, after few feedback cycles the system sta-

bilises in a repeated evolution of period ∆t. It is then possible to define the stro-

boscopic stationary density matrix σ(τ) and the populations s±(τ) (see Eq. (6.44)),

explicitly including the effect of errors in the parity measurement. In particular, the

stroboscopic populations and the average parity at time τ = 0 (equivalent to τ = ∆t)

are given by:

s±(τ = 0) =
1− e−2N̄γ∓∆t ± pe

(
e−2N̄γ−∆t − e−2N̄γ+∆t

)
2− e−2N̄γ+∆t − e−2N̄γ−∆t

, (6.52a)

〈P̂ 〉σ(τ = 0) =
(1− 2pe)

(
e−2N̄γ+∆t − e−2N̄γ−∆t

)
2− e−2N̄γ+∆t − e−2N̄γ−∆t

. (6.52b)

We recall that the parity is a good indicator of how close the system is to a cat

state. For parity close to 1 (−1) the system is roughly in a even (odd) cat state,

while for vanishing parity the two cat states are equally mixed, resulting in strictly

positive Wigner functions. In equation (6.52b) the effect of imperfections in the parity

measurement are explicit. For maximally imperfect measurement, i.e. pe = 0.5, the

average parity is zero, the system is in a equally weighted mixture of the two cat

states and the Wigner function is positive.

6.3.4 Feedback by conditional pumping

While Section 6.3.1 reported our results on a feedback protocol based in conditioning

the one-photon dissipation channel, in this section we show how a conditional change

of pumping parameters can affect the steady state of the system. More precisely, we

will show that it is possible to yield a negative valued Wigner function in the steady

state by switching the phase or the intensity of the pumping.

Conditional pumping intensity

Let us repeatedly perform a projective parity measurement and conditionally tune

the pumping intensity, depending on the measurement outcome. In Fig. 6.12 we

show the steady state for continuous measurement limit ρ̂ss when G+/G− = 5/12

(at this ratio the effects of the feedback protocol are particularly apparent) and all

the other parameters are independent of the measurement result, i.e. U+ = U−,

γ+ = γ− and η+ = η−. As the even sector is less pumped than the odd one, one

would expect to see the odd sector more populated then the even one, but it is

not the case. Indeed the system stabilises to a state that is closer to the even cat

state, recovering the characteristic negative fringes in the Wigner function. This is

explained as follows. The two sectors are approaching independently two cat states

with two different values of α corresponding to the two different pumping intensities,

in accordance with the formula α =
√
−G/(U − iη). Because of this, the two cat

states have two different number of photons and, as the one-photon dissipation is
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Figure 6.12 Continuous limit stationary state for conditional intensity of the pump-

ing. Wigner function of the stationary state ρ̂ss (left panel), and of its even (middle

panel) and odd (right panel) contributions. The parameter are U = 1η, γ = 0.1η,

G+ = 5η and G− = 12η.

proportional to the number of photons, it results in a stronger dissipation for the

odd cat state that is then less populated. The state represented in Fig. 6.12 has an

average parity of around 〈P̂ 〉 ' 0.4, it is dominated by even cat states, nevertheless

we can still see the reminiscence of the of the odd cat state in the deformation of the

positive lobes of the Wigner function. The coherent states composing the odd cat

state have a larger amplitude α than the ones in the even cat state, and they appear

at the extrema of the even cat state lobes.

Conditional pumping phase

Let us now consider the the case in which we conditionally pump the cavity with two

opposite phases. The action of this feedback protocol for finite ∆t is described again

by Eq. (6.31) in which G+ = −G− and all the other parameters are independent of

the measurement result, i.e. U+ = U−, γ+ = γ− and η+ = η−. In Fig. 6.13 we plot the

Wigner function of the stationary and stroboscopic stationary state (see Sec. 6.3.2 for

its definition), respectively for the continuous measurement limit and for finite ∆t.

As mentioned in Sec. (6.1), without feedback our system evolve into a statistical

mixture of |C+
α 〉 and |C−α 〉. The value of α is determined by the system parameters,

in particular if G → −G then α → iα. In the feedback protocol considered here we

pump the two parity sector with opposite phase (G+ = −G−), thus the even sector

will tend to the state |C+
α 〉 while the odd sector will tend to |C−iα〉. In the continuous

limit of this feedback protocol the steady state, showed in Figure (6.13, left), is given

by:

ρ̂ss ' p+
ss |C+

α 〉〈C+
α |+ p−ss |C−iα〉〈C−iα| , (6.53)
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Figure 6.13 Feedback by conditional pumping phase. Wigner function of the sta-

tionary and the stroboscopic stationary state (see Sec. 6.3.2 for its definition), respec-

tively for the continuous limit (left panel) and for ∆t = 0.5/η (right panel). The

parameter are U = 1η, γ = 0.1η, G+ = 10η and G− = −G+

where in the intense pumping regime p+
ss ' p−ss ' 1/2. If ∆t is finite on the other

hand, the one-photon dissipation has the time to introduce an error that modifies the

stationary state of the feedback. In this case the pseudo stationary state has the form:

ρ̂ss ' p+
α |C+

α 〉〈C+
α |+ p−iα |C−iα〉〈C−iα|+ p−α |C−α 〉〈C−α |+ p+

iα |C+
iα〉〈C+

iα| , (6.54)

where the last two terms are due to the error introduced by the one photon dissipation.

6.3.5 Projection of the feedback evolution on the parity sub-

spaces

Let us consider the action of a feedback cycle, given by Eq. (6.31), in the more general

case in which any parameter of the system can be controlled. It is not possible in

general to do the same we did in the Section 6.3.2, and reduce the problem to the

basis of the cat state populations. In this section we show that in the continuous

measurement limit it is possible to neglect the odd-even photon number coherences

and to reduce the problem to the parity defined subspaces.

In order to yield the continuous measurement limit of the general feedback proto-
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col, let us expand for small ∆t the conditional propagator in Eq. (6.31):

ρ̂(ti+1) =
∑
µ

eLµ∆tPµρ̂(ti) '
∑
µ

(1 + Lµ∆t)Pµρ̂(ti) =
∑
µ

Pµρ̂(ti) + ∆t
∑
µ

LµPµρ̂(ti)

= ρ̂(ti+1) = (P− + P+) ρ̂(ti) + ∆t (L−P− + L+P+) ρ̂(ti) .

(6.55)

In the perspective of the continuous limit (∆t→ dt and ti+1 ' ti → t) we can express

this equation as

ρ̂(t+ dt) = (P− + P+) ρ̂(t) + dt (L−P− + L+P+) ρ̂(t) . (6.56)

It is not possible in general to obtain a differential equation from this expression,

but this becomes possible when we consider its projection on the parity defined sub-

spaces. Let us study, for example, the projection on the even space by applying the

superoperator P+[·] = Π̂+[·]Π̂†+ to Eq. (6.56):

P+ρ̂(t+ dt) = P+ (P− + P+) ρ̂(t) + dtP+ (L−P− + L+P+) ρ̂(t) . (6.57)

Note that Π̂+Π̂− = 0 and that Π̂2
± = Π̂±, this implies that P+P− = 0 and that

P2
± = P±. Using these properties of the projectors, the expression (6.57) can be

simplified to:

P+ρ̂(t+ dt) = P+ ρ̂(t) + dtP+ (L−P− + L+P+) ρ̂(t) . (6.58)

From Equations (6.7) and (6.6) one can see that, a part for the first term of the

one-photon dissipator, every term of the time evolution defined by the Lindbladian

superoperators L± preserves the parity. Taking into account this property and defining

ρ̂±
def
= P±ρ̂, we obtain:

ρ̂+(t+ dt)− ρ̂+(t)

dt
≡ ∂tρ̂+ = i [ρ̂+, Ĥ+] +D+

2 ρ̂+ + P+D−1 ρ̂− + P+D+
1 ρ̂+ , (6.59)

where we switched Eq. (6.58) into a differential equation and we omitted for simplicity

the explicit time dependence. The same procedure can be performed for the projection

on the odd subspace. We finally obtain two coupled master equation for the parity

projected density matrix ρ̂+ and ρ̂−:

∂tρ̂+ = i [ρ̂+, Ĥ+] + η+

[
ââρ̂+â

†â† − 1

2

{
â†â†ââ, ρ̂+

}]
− γ+

2

{
â†â, ρ̂+

}
+ γ− âρ̂−â

† ,

∂tρ̂− = i [ρ̂−, Ĥ−] + η−

[
ââρ̂−â

†â† − 1

2

{
â†â†ââ, ρ̂−

}]
− γ−

2

{
â†â, ρ̂−

}
+ γ+ âρ̂+â

† ,

(6.60)

where the subscripts denote the dependence of the piecewise-constant parameters on

the measurement outcome.
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We stress that these coupled equations do not represent a master equation in

the full space as P+ + P− 6= 1. These equations disregard the coherences between

even and odd sectors, that is valid for our problem in which these coherences are

cancelled by the continuous parity measurement and in which any term of the dynamic

couples the to parity defined sectors in a coherent manner. As a sanity check we can

see that Tr {∂tρ̂+ + ∂tρ̂−} = 0, whereas the traces are not individually conserved

Tr {∂tρ̂±} 6= 0. The expression obtained for the density matrix evolution under the

effect of the feedback in Eq. (6.60), allows to study the system in large range of

situation and in a more simplified representation.

Imperfect parity measurement

As we did in Section 6.3.3 we could be interested in the effect of the measurement error

on these two coupled master equations. We use the same measurement superoperator

Mµ
def
= (1− pe)P±+ peP∓ and we follow the same procedure as in Section 6.3.3. One

can show that the same coupled master equations hold in this case, with the only

effect of modifying their parameters:

Ĥ ′± = (1− pe) Ĥ± + pe Ĥ∓ , (6.61a)

η′± = (1− pe) η± + pe η∓ , (6.61b)

γ′± = (1− pe) γ± + pe γ∓ . (6.61c)

The case of maximally imperfect measurement, i.e. pe = 1/2, is perfectly equivalent

to the absence of feedback control: Ĥ ′+ = Ĥ ′−, η′+ = η′− and γ′+ = γ′−. Remarkably for

this kind of feedback the presence of a measurement error is equivalent to a reduced

pumping amplitude. Considering that G+ = −G−, Eq. (6.61a) implies that G′± =

(1− 2pe)G± that is by definition smaller than G±.

Equivalence with the effective parity-dependent dissipation

At the end of Sec. 6.3.1 we have described the continuous limit of our feedback protocol

through the effective parity-dependent dissipation in Eq. (6.35). By projecting on the

parity subspaces we can prove the equivalence between the continuous limit of our

parity triggered feedback protocol and this effective dissipation. From Eq. (6.35), we

recall his expression:

D
f
ρ̂ =

γ
f

2

(
2â

f
ρ̂â†

f
− â†

f
â
f
ρ̂− ρ̂â†

f
â
f

)
. (6.62)

where â
f

= â 1
2
(1̂− P̂ ) = â Π̂− is a parity selective jump operator. By projecting the

dissipator D
f

on the parity defined subspaces we obtain:

P+Df ρ̂ = γ
f
âρ̂−â

† ;

P−Df ρ̂ =
γ
f

2

{
â†â, ρ̂−

}
.

(6.63)
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Imagine that we are not applying any feedback, it means that all the parameters are

independent on the parity, i.e. Ĥ+ = Ĥ− = Ĥ, η+ = η− = η and γ+ = γ− = γ. By

comparing Eqs. (6.63) and Eqs. (6.60), it is clear that by adding the dissipator D
f

one is effectively increasing by γ
f

the value of γ−, i.e. γ+ ≡ γ and γ− ≡ γ + γ
f
. Note

that the equivalence is only true in the parity defined subspaces.

6.4 Conclusions and perspectives on photonic

Schrödinger cat state generation

In this chapter we presented our results on the study of quantum trajectories and

feedback control of two-photons driven-dissipative resonators. Studying quantum tra-

jectories turned out to be very convenient in interpreting the characteristic bimodality

of this kind of systems. Investigating the onset of bimodality in driven-dissipative res-

onators is particularly interesting since the components of the resulting mixed steady

state,

ρ̂ss ' p1 |C+
α 〉〈C+

α |+ p2 |C−α 〉〈C−α | or ρ̂ss '
1

2
|α〉〈α|+ 1

2
|−α〉〈−α| ,

can be used as (quasi-)orthogonal states in quantum computation [75, 77, 159, 160]. To

exploit the two-photon driven resonator in this context, one can envision a feedback

mechanism which unbalances the steady-state mixture in favour of one of the two

components [96]. Based on this idea we explored the properties and possibilities of a

parity measurement triggered feedback. We considered some simplified approaches to

the problem, that proved to be very efficient and accurate and we studied the effect

of the several sources of error entering the feedback protocol.

From a perspective point of view, it would be interesting to define a precise realistic

protocol to exctract information about the parity in this kind of two-photons driven-

dissipative resonators. In Ref. [88], Sun et al. have been able to track photon jumps

by repeated measurements of parity. However, in this experiment they measured

the parity of a free linear cavity, while our system is driven and nonlinear. Some

preliminary analysis, that we did not present in this thesis, have proved that it is

indeed possible to extract partial information on the parity of our two-photons driven-

dissipative resonators, by coupling and measuring an ancillary qubit. This partial

information can be used to protect the quantum properties of optical Schrödinger cat

states through a feedback protocols of the kind that we presented in this chapter.



Chapter 7

Conclusion and perspectives

In this thesis we have explored theoretically the measurement and the control of

highly nonclassical states of quantum optical systems. After an introduction of some

paradigmatic models of quantum optics in Chapter 2, and a presentation of the the-

oretical framework in Chapters 3 and 4, we have detailed the original results of this

thesis in Chapters 5 and 6.

In Chapter 5 we have presented our proposal for a non-destructive measurement

of populations and correlations of exotic ground states in the ultrastrong coupling

regime [94]. Cavity (circuit) QED systems in the ultrastrong coupling regime are

characterised by exotic vacua that contain photons. The precise nature of these vacua

is directly related to the fundamental symmetries of the considered cavity (circuit)

QED systems. In the case of the Dicke model for example, the ground state is a light-

matter Schrödinger cat state. Due to energy conservation, the photons contained

in these exotic ground states are bound to the cavity, and cannot be emitted into

the environment. This means that we can not explore and control them by simple

photodetection. With our work we have proven that the Lamb shift of an ancillary

two-level atom (qubit) coupled to a cavity (circuit) QED system in the ultrastrong

coupling regime contains direct information on the populations and the coherences of

the system ground state.

Another important part of our work has been focused on the realisation of photonic

Schrödinger cat states in two-photon driven-dissipative resonators [96]. The results of

this work have been reported in Chapter 6. Through reservoir engineering, it is

possible to shape an out-of equilibrium system, in which, except for the presence of

one-photon dissipation, the parity of the system is conserved [160]. It has been proved,

that this symmetry allows to observe photonic Schrödinger cats in the transient dy-

namics of the system [85]. However, due to the unavoidable one-photon dissipation,

the stationary state of the system is a classical state, and more precisely it is a statis-

tical mixture of the two photonic Schrödinger cat states with opposite parity. The big

challenge here is to protect one of the two cat state against one-photon dissipation,

and to recover the distinctive quantum features of these states. Based on a detailed

analysis of the system quantum state trajectories [95], we have proposed and explored

the different regimes of a parity-triggered feedback control that is intended to recover

the quantum features of photonic Schrödinger cat states.

It is worth spending a few words on the analogies and the differences between

the two types of systems considered in this thesis. First of all, we note that in both
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systems the generation of highly nonclassical states of light and matter is associated

to the underlying symmetry of the system. Both the ground state of a (Dicke) system

in the ultrastrong coupling regime, and the out-of-equilibrium stationary state of two-

photon driven-dissipative resonators, are both in the form of Schrödinger cat states.

These kind of states are very interesting because they are a coherent superposition of

macroscopically different states. However, the access to the quantum correlations of

these systems is non-trivial: our work in this thesis has been to address this problem.

Furthermore, we find important to discuss the relation of this research with the

problem of quantum-to-classical boundaries. In order to have a macroscopic state,

we need the Schrödinger cat state to have a large number of photons. However, it

is precisely in that condition that the effect of decoherence is stronger. Indeed, for a

large number of photons, the ground state and the first excited state in the ultrastrong

coupling regime are quasi-degenerate. This makes these system more vulnerable to the

effect of thermal equilibrium, that for a large enough temperature of the bath, leads

the system to a classical mixture of ground and first exited state. In an analogous way,

since one-photon dissipation is proportional to the number of photons, the lifetime

of photonic Schrödinger cats in two-photon driven-dissipative resonators is inversely

proportional to number of photons. In a few words, these superposition of macroscopic

states are more fragile as their size increases.

Along this thesis, we have insisted on the crucial role of information in quantum

physics. Another field in which this concept haa a very central role is the thermo-

dynamics. Indeed, Jaynes reinterpretation of thermodynamics principles in terms of

Shannon’s theory of information [13, 14], cast a new light on the field [15, 16]. Ac-

cording to this view, observer knowledge and information are the central concepts, on

which modern thermodynamics is built [176].

In this regard, a very promising field to develop the role of information in physics,

is represented by quantum thermodynamics [177, 178]. Furthermore, the enormous

experimental advances in tracking the quantum state trajectories [86–89], represent

a concrete resource to explore the thermodynamics of quantum systems [90–93, 179,

180]. Being among the main processes of information managing, quantum measure-

ment and feedback control might play a very central role in this research.



Appendix A

A realistic model of an artificial

dissipation

As a possible model for the parity-selective dissipation, let us consider to conditionally

couple the cavity to a two-level system. For sake of simplicity, let us suppose that

we want to stabilise the even cat, and let us consider the following feedback. At time

t = 0, we perform the parity measure: if the right parity is measured, we keep the

two-level system decoupled, i.e. the spin stays in its ground state |0〉〈0| and the cat

state evolves according to eLt. Instead, if the wrong one is measured, we activate a

qubit which enters in resonance with the cavity, and whose interaction is given by:

Ĥg = g
(
â†σ̂− + âσ̂+

)
, (A.1)

where σ̂± are the spin creation/annihilation operators. Now, we measure the qubit

with a frequency ∆τ . We suppose that, initially, the qubit is in its ground state, and

therefore the evolution of the system for t ∈ [0,∆τ ] is given by:

ρ̂(t) = e(L+Lg)tρ̂(0) '
(
1 + (L+ Lg)t+

(L+ Lg)2t2

2

)
|C−α 〉 〈C−α | ⊗ |0〉 〈0|

=

(
1 + Lt+

L2t2

2
+ Lgt+

L2
gt

2

2
+ (LLg + LgL)

t2

2

)
|C−α 〉 〈C−α | ⊗ |0〉 〈0|

'
(
eLt + Lgt+

L2
gt

2

2
+ (LLg + LgL)

t2

2

)
|C−α 〉 〈C−α | ⊗ |0〉 〈0| .

(A.2)

At time t = ∆τ we perform the measure on the system. Therefore, coherences will

disappear after the measure. This translates into the fact that the only relevant terms

to determine the outcome of the measure are those quadratic in Lg. Therefore one

has

ρ̂(t) '
(
eLt +

L2
gt

2

2

)
|C−α 〉 〈C−α | ⊗ |0〉 〈0| . (A.3)
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The evolution of the first term is given by Eq. (6.42). For the second term, we have

that

L2
gt

2

2
ρ̂(0) = −t

2

2

[
Ĥg,

[
Ĥg, |C−α 〉 〈C−α | ⊗ |0〉 〈0|

]]
= −gt

2

2

[
Ĥg,

[
â†σ̂− + âσ̂+, |C−α 〉 〈C−α | ⊗ |0〉 〈0|

]]
= −gt

2

2

[
Ĥg, α |C+

α 〉 〈C−α | ⊗ |1〉 〈0| − α∗ |C−α 〉 〈C+
α | ⊗ |0〉 〈1|

]
= −g

2t2

2

(
αâ† |C+

α 〉 〈C−α |+ |α|2 |C−α 〉 〈C−α |
)
⊗ |0〉 〈0|

− g2t2

2

(
|α|2 |C+

α 〉 〈C+
α |+ α∗ |C+

α 〉 〈C−α | â
)
⊗ |1〉 〈1|

' −g2t2N̄
(
|C−α 〉 〈C−α | ⊗ |0〉 〈0| − |C+

α 〉 〈C+
α | ⊗ |1〉 〈1|

)
,

(A.4)

where we recall that N̄ = |α|2.

Combining in Eq. (A.3) the results from Eqs. (6.42) and (A.4), and tracing out

the two-level system degrees of freedom we eventually obtain

ρ̂(t) ' 1− e−2N̄γt + 2g2t2N̄

2
|C+
α 〉〈C+

α |+
1 + e−2N̄γt − 2g2t2N̄

2
|C−α 〉〈C−α |

' 1− e−2N̄γeff t

2
|C+
α 〉〈C+

α |+
1 + e−2N̄γeff t

2
|C−α 〉〈C−α |

(A.5)

where we have introduced γeff = γ + g2t. In other words, we have proved that the

Hamiltonian coupling to a two-level system and a measurement on it can effectively

result in an additional one-photon dissipation for the cavity.
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tum measurement in stochastic thermodynamics . npj Quantum Information 3

(2017), p. 9.

http://dx.doi.org/10.1364/JOSAB.10.000524
http://dx.doi.org/10.1364/JOSAB.10.000524
http://dx.doi.org/10.1103/PhysRevLett.70.2273
http://dx.doi.org/10.1103/PhysRevA.49.2785
http://dx.doi.org/10.1103/PhysRevA.49.2785
http://dx.doi.org/10.1103/PhysRevA.50.4330
http://dx.doi.org/10.1103/PhysRevA.50.4330
http://dx.doi.org/10.1103/PhysRevA.50.4330
http://dx.doi.org/10.1080/09500340408233597
http://dx.doi.org/10.1080/09500340408233597
http://dx.doi.org/10.1103/PhysRevA.67.052101
http://dx.doi.org/10.1103/PhysRevA.67.052101
http://dx.doi.org/10.1038/nature10376
http://dx.doi.org/10.1103/PhysRevLett.108.243602
http://dx.doi.org/10.1103/PhysRevLett.108.243602
http://dx.doi.org/10.1038/nphys3230
http://dx.doi.org/10.1038/nphys3230
http://dx.doi.org/10.1088/1367-2630/18/1/011002
http://dx.doi.org/10.1088/1751-8113/49/14/143001
http://dx.doi.org/10.1088/1751-8113/49/14/143001
http://dx.doi.org/10.1073/pnas.1704827114
http://dx.doi.org/10.1073/pnas.1704827114
http://dx.doi.org/10.1038/s41534-017-0008-4
http://dx.doi.org/10.1038/s41534-017-0008-4

	Introduction
	Paradigmatic models in quantum optics
	Quantum description of light
	The harmonic oscillator
	Canonical quantization of the electromagnetic field
	Mode decomposition
	Quantum description of the electromagnetic field

	Light-matter interaction
	Interacting photons
	Interacting photons and atoms
	Ultrastrong coupling regime


	Open quantum systems and Lindblad master equation
	Coupling to the environment and Lindblad master equation
	Microscopic derivation of Lindblad master equation
	Master equations for atoms and cavities
	Consistent master equation in the ultrastrong coupling regime

	External driving

	Theory of quantum measurement and trajectories
	The measurement problem in the foundations of quantum physics
	General theory of quantum measurement
	Projective measurement
	General description of measurement

	Quantum trajectories and stochastic Schrödinger equations
	Photon counting: microscopic description
	Photon counting: stochastic quantum jumps
	Homodyne detection: stochastic diffusive evolution


	Ancillary qubit spectroscopy of exotic vacua
	The model
	Spectrum analysis and Lamb shift
	Dispersive Hamiltonians and analytical derivation of vacuum-dependent Lamb shift

	Spectroscopy of the ancillary qubit
	Finite temperature and dephasing
	Conclusion and perspectives on the ancillary qubit spectroscopy

	Photonic Schrödinger cat and their feedback control
	The model: two-photon driven-dissipative resonators
	Exact solution for the steady state
	Evolution in the cat subspace

	Quantum trajectories approach to bimodality
	Photon counting and jumping Schrödinger cats
	Homodyne detection and switching coherent states
	One-photon driven resonators
	Conclusion on trajectory analysis

	Feedback control on cat states
	Feedback by conditioning of one-photon dissipation
	Projection on cat states
	Imperfect parity measurement
	Feedback by conditional pumping
	Projection of the feedback evolution on the parity subspaces

	Conclusions and perspectives on photonic Schrödinger cat state generation

	Conclusion and perspectives
	A realistic model of an artificial dissipation
	Bibliography

