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Abstract

In recent years, the �eld of quantum optics has thrived thanks to the possibility of
controlling light-matter interaction at the quantum level. This is relevant for the
study of fundamental quantum phenomena, the generation of arti�cial quantum sys-
tems, and for quantum information applications. In particular, it has been possible
to considerably increase the intensity of light-matter interaction and to shape the
coupling of quantum systems to the environment, so to realise unconventional and
highly nonclassical states. However, in order to exploit these quantum states for tech-
nological applications, the question of how to measure and control these systems is
crucial.

Our work is focused on proposing and exploring new protocols for the measure-
ment and the control of quantum systems, in which strong interactions and peculiar
symmetries lead to the generation of highly nonclassical states. The �rst situation
that we consider is the ultrastrong coupling regime in cavity (circuit) quantum elec-
trodynamics. In this regime, it becomes energetically favourable to have photons and
atomic excitations in the ground state, that is no more represented by the standard
vacuum. In particular, in case of parity symmetry, the ground state is given by a
light-matter Schr•odinger cat state. However, according to energy conservation, the
photons contained in these exotic vacua are bound to the cavity, and cannot be emit-
ted into the environment. This means that we can not explore and control them by
simple photodetection. In our work we propose a protocol that is especially designed
to overcome this issue. We show that we can infer the photonic properties of the
ground state from the Lamb shift of an ancillary two-level system.

Another class of systems in which the fundamental parity symmetry leads to very
unconventional quantum states is given by two-photon driven-dissipative resonators.
Thanks to the reservoir engineering, it is today possible to shape the interaction with
the environment to stabilize the system in particularly interesting quantum states.
When a resonator (an optical cavity) exchanges with the environment by pairs of
photons, it has been possible to observe the presence of optical Schr•odinger cat states
in the transient dynamics of the system. However, the quantum correlations of these
states quickly decays due to the unavoidable presence of one-photon dissipation. Pro-
tecting the system against this perturbation is the goal of the parity triggered feedback
protocol that we present in this thesis.

Key words : quantum physics; quantum optics; quantum measurement; quan-
tum trajectory; quantum feedback; ultrastrong coupling; Schr•odinger's cat; reservoir
engineering; light-matter interaction; atoms and photons.
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R�esum�e

Ces derni�eres ann�ees, les progr�es r�ealis�es dans le contrôle de l'interaction lumi�ere-
mati�ere au niveau quantique ont conduit �a de nombreuses avanc�ees en optique quan-
tique, en particulier dans l'�etude de ph�enom�enes quantiques fondamentaux, dans la
conception de syst�emes quantiques arti�ciels et dans les applications en information
quantique. Il a notamment �et�e possible d'augmenter consid�erablement l'intensit�e
de l'interaction lumi�ere-mati�ere et de contrôler le couplage de syst�emes quantiques
�a leur environnement, a�n d'obtenir des �etats non conventionnels et fortement non
classiques. Cependant, pour exploiter ces �etats quantiques en vue d'applications tech-
nologiques, il est crucial de pouvoir mesurer et contrôler ces syst�emes avec pr�ecision.

Dans ce contexte, ce travail de th�ese est consacr�e �a l'�etude de nouveaux proto-
coles pour la mesure et le contrôle de syst�emes quantiques dans lesquels des fortes
interactions et des sym�etries particuliers conduisent �a la g�en�eration d'�etats fortement
non classiques. Nous nous int�eressons dans un premier temps au r�egime de couplage
ultra-fort de l'�electrodynamique quantique en cavit�e (et de circuit). Plus pr�ecis�ement,
l'�etat de fondamental n'est plus le vide standard, car il devient �energiquement favor-
able qu'il contienne des photons. Dans ce r�egime on peut même obtenir des chat de
Schr•odinger comme �etat fondamental. En revanche, pour assurer la conservation de
l'�energie, les photons contenus dans ce vide exotique sont li�es �a la cavit�e et ne peu-
vent pas s'�echapper dans l'environnement. Cela signi�e qu'ils ne peuvent être mesur�es
par simple photod�etection. Nous proposons dans ce travail un protocole sp�ecialement
con�cu pour surmonter cette di�cult�e. Nous montrons qu'il est possible de d�eduire les
propri�et�es photoniques de l'�etat fondamental �a partir du d�eplacement de Lamb d'un
syst�eme �a deux niveaux auxiliaire.

Les r�esonateurs optiques �a paires de photons constituent une autre classe de
syst�emes dans lesquels la sym�etrie de parit�e conduit �a des �etats quantiques non con-
ventionnels. Grâce �a \l'ing�enierie de r�eservoir", il est aujourd'hui possible de contrôler
l'interaction d'un syst�eme avec son environnement, de fa�con �a le stabiliser dans des
�etats quantiques particuli�erement int�eressants. En particulier, quand un r�esonateur
(une cavit�e optique) est coupl�e �a l'environnement par �echange de paires de photons,
il est possible de cr�eer de chats de Schr•odinger optiques dans la dynamique transi-
toire du syst�eme. Les corr�elations quantiques de ces �etats sont par contre rapidement
perdues en raison de la pr�esence in�evitable de dissipation �a un photon. Prot�eger le
syst�eme contre cette perturbation est le but du protocole de feedback bas�e sur la
parit�e que nous pr�esentons dans cette th�ese.

Mot clefs : physique quantique; optique quantique; mesure quantique; trajectoires
quantiques; feedback quantique; couplage ultrafort; chat de Schr•odinger; ing�enierie de
r�eservoirs; interaction lumi�ere-mati�ere; atomes et photons.
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Chapter 1

Introduction

When Neil Amstrong set his left foot on the lunar surface, he pronounced the following
famous words: \That's one small step for [a] man, one giant leap for mankind".
Today I look at my PhD thesis and I think the exact contrary: \This is a small step
for science, one giant leap for a young man (me)". Indeed, these years working on
quantum physics represented a radical change in my vision of reality and science:
from a very realist vision of the world, I gradually developed a more subjective point
of view. As a young student in high school and later in my university studies, I
grew up with the idea that, with science, we are more and more approaching the
understanding of an absolute and unique reality. In this vision, reality is something
objective and independent from any cognitive being, and science is the description
of what we receive, as passive spectators, from this external world. This kind of
questions belong to a very long-standing philosophical debate that, in our occidental
culture, �nds its roots in the ancient Greek thinking [1], and follows into the formalised
doctrines of modern epistemology. Probably conditioned by traditional philosophies,
science today is still largely dominated by the point of view of scienti�c realism [2].
However, the revolutionary developments of science in the 20th century, and quantum
physics in particular, are strongly challenging this vision of reality.

Quantum physics is probably the most inuential theory for our contemporary life.
It allows to understand the world at the atomic scale and, by capturing the physics
of light and of the solid state, it determined the technological revolution that we are
living today. Mobile phones, computers, the internet: a very large part of human
wealth today is due to the knowledge of quantum physics.

Nevertheless and despite its enormous success, the ontological meaning of quan-
tum physics is still the matter of an intense debate [3{7]. It is enough to visit the
Wikipedia page for \Interpretations of quantum mechanics" to understand the level
of disagreement around this theory [8]. The table in Fig. 1.1 is extracted from this
page. It summarises the manifold of existing interpretations and their position on
various questions: in few words, \a map of madness" (quote from [9]).

The seventh column of this table is about \collapsing wave function". In most
formulations of quantum physics, wave function collapse is a founding postulate of
quantum physics and is related to what happens when we perform a measurement on
a system. However, according to the table in Fig. 1.1, only half of the interpretations
consider it as fundamental, and among them every interpretation gives a di�erent
meaning to the postulate. The way in which a measurement happens is one of the
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Figure 1.1 Table resuming the di�erent positions of the known interpretations of
quantum physics. From theWikipedia page for \Interpretations of quantum mechan-
ics" [8]. A more detailed description of physicist attitudes toward quantum mechanics
is given in Ref. [3].

most non-trivial aspects in interpriting quantum physics, indeed the \only mystery"
(quote of R. Feynman et al. [10])

What are the changes that quantum physics has brought about? And what does
quantum physics tell about the measurement? One of the biggest changes introduce by
quantum physics is the fact that any observable quantity must satisfy the Heisenberg's
uncertainty principle [11]. In our classical conception of reality, one can determine all
the properties of a system, and once that this condition of total knowledge is reached,
it is in principle possible to predict the outcome of any future observation on the
system. This is the idea ofIsaac Newton's clockwork universe[12], where everything
follows precise laws and any prediction is easy if one knows the starting conditions.
Quantum physics, and precisely the Heisenberg's uncertainty principle, tells that this
idea is an illusory misconception of our classical vision. Our predictions around the
observables quantities of any system have intrinsic limits that are not due to the
imperfection of our measurement, but are rather the expression of a fundamental
behaviour of nature.

In this thesis we will consider the measurement and control of quantum optics
systems in which the limits of Heisenberg's principle are attained. At the risk of
boring some experts, and in an attempt to include the broadest audience to this
discussion, in Figure 1.2 we will try to illustrate this principle in a very simpli�ed
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Figure 1.2 A very simpli�ed illustration of the Heisenberg principle. The update of
probability distributions (the histograms) after the measurement of position (magenta
little boxes) and the direction (blue little boxes) for a large object (a ball) and a
microscopic object (an atom).

form and language. Let us consider a ball that can move left and right inside a box
that is ideally divided into two sectors. In this simpli�ed model the ball can be in four
possible con�gurations (see Fig. 1.2 (a)): 1, left side moving to the right; 2, right side
moving to the right; 3, right side moving to the left; 4, left side moving to the left.
Imagine that the box is closed and that we do not know anything about the ball. The
only thing that we can say is that the ball has the same probability, 50%, of being in
the left or in the right side of the box. And the same probability is valid for the two
possible directions, label (b) in Figure 1.2.

By opening the box and sequentially measuring the position (c) and the direction
of the ball (d), we can update our knowledge about the ball, up to a condition of total
knowledge. We have indeed been able to determine the \real" con�guration of the
ball (the �rst one listed in (a)), that in principle allows us to predict with absolute
certainty, the ball position and direction at every subsequent observation.

This reasoning, that works in our classical conception of reality, is not valid any-
more in the quantum world. Let us consider now an atom inside the box (Fig. 1.2(e)),
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and let us follow the same argumentation as for the ball. Starting from total ignorance
(f), and by measuring the atom position (g) and direction (h), we may think to know
everything about the atom. In particular, by measuring the position quickly again,
we are sure to �nd the atom in the same position as suddenly before. Here comes the
big surprise: in the quantum world we can not be sure about this anymore. Indeed
when we measured the direction we lost all certainty about the position (h) and if
we measure the position we lose all information about the direction (g). Either we
perfectly know the position or the direction, we can not know both.

This behaviour is at odds with our intuition, but we have no explanation for it:
this is a fact, something that we see and that we have to account for. Why do not
we have the same picture for the ball? Actually, something similar is happening for
the ball as well, but on large objects the e�ect is too small to be noticed. That we
can reach a condition of total knowledge, in which all the propriety of a system are
perfectly predictable, it is an illusion. And this illusion is due to the large size of the
objects composing our daily life experiences.

Since the condition of total knowledge is unaccessible, thinking in term of con�g-
urations for the atom is misleading. The only thing that we can do is to handle the
atom's probability distributions, that are describing our knowledge about the atom
and de�ning the likelihood to observe a certain position or direction. In this regard,
quantum physics is a tool (a very sophisticated one) to handle oura priori knowledge
and our information of reality. And this idea can be indeed extended to science in gen-
eral. Atoms, particles, �elds, equations of motion: all the concepts and elements of the
theories in science, are not a representation of something \out there", they are rather
the abstract tools that we use to elaborate our knowledge about what we observed
in the past and what we are going to observe in the future. Indeed many modern
formulations of science are based on the concept of information (some examples in
mathematics [13, 14], in thermodynamics and physics [15{17], and in neuroscience
[18, 19]).

Translated into the language of quantum physicists, the idea is to interpret the
wave function as a description of thea priori information that an observer has on the
considered system. In other words, the wave function is more similar to a probability
distribution than to a con�guration of the system. This represents a possible solution
to the long-standing debate around the measurement problem in quantum physics
[7, 20{23]. The wave function collapse is nothing else then the (Bayesian) update of
this probability distribution. A pure state is a state of maximal knowledge, quantum
entanglement is a particular class of correlations, and decoherence describes a peculiar
form of information losses.

As we have mentioned above: in the physical conditions of our \normal life", the
consequences of the Heisenberg uncertainty principle are not apparent. Indeed, even
if quantum physics is needed to explain the nature of the most basic elements of our
reality (the colour of the sun, the structure of matter, etc.), the speci�c consequences
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of this principle are invisible to our \normal eyes". Nevertheless, the advances in
experimental quantum optics allow today to approach the limits of the Heisenberg
principle. In this kind of experiments the role of the measurement becomes crucial.

Quantum optics has always been very central in the development of quantum
physics. It is indeed by studying the light that the use of a quantum description has
been necessary the �rst time. In order to explain the spectral shape of solar radiation
(or more general, of the black body radiation), Max Planck in 1899 suggested that
light energy was formed by discrete quantities calledquanta [24]: the theory of quanta,
later renamed as quantum mechanics, was just born. Few years later, this new theory
had its �rst important successes by explaining the photoelectric e�ect (Einstein, 1905
[25]) and the structure of the hydrogen atom (Born, 1913 [26]).

Since its �rst stages, quantum physics has revolutionised our understanding of
light, matter, and of their interaction. One hundred years later, light-matter interac-
tion is still among the most important �elds in which quantum physics is tested and
exploited. Indeed, by improving the control of light-matter interaction, it is possible
to reach regimes in which quantum physics is crucially at play, and in which we can
observe and exploit properties that are otherwise unaccessible. This is precisely the
aim of cavity Quantum Electrodynamics (cavity QED) [27]. In simple words, cavity
QED studies the physics of one or more atoms interacting with an electromagnetic
�eld that is con�ned inside an optical cavity. Even if the way to model this physics
in terms of two-level systems (for the atoms) and of bosonic modes (for the electro-
magnetic �eld) is known since more then �fty years [28{32], it is only in the last
decades that the technological advances have permitted to access these systems in a
controlled way. The big challenge has been to reduce the e�ects of dissipation, and
then, to reach regimes of increasingly large light-matter coupling [33, 34]. When the
interaction strength becomes larger than the dissipation, the system enters the so
called strong coupling regime. In this regime, the system energy spectrum is resolv-
able [35], and the relatively long lifetime of atom-cavity correlations allows to perform
accurate estimations of the system state [36].

In this audacious exploration of the quantum world, cavity QED has more recently
be joined by two relatively new disciplines of solid-state physics: semiconductor cavity
QED [37, 38], and superconducting circuit QED [39, 40]. Exploiting the quantized
degrees of freedom of a superconductive circuit, it is indeed possible to realise the
same physics of cavity QED [41{48]. On a superconducting chip, optical cavities are
replaced by transmission line resonators and the arti�cial two-level atoms are realised
by exploiting the nonlinearity of Josephson junctions [49, 50]. The high degree of
control in these systems makes these systems very promising candidates as quantum
information devices. In semiconductor microcavities [51, 52], the electromagnetic �eld
is con�ned between two semiconductor mirrors and the role of atoms is played by the
electronic transitions in semiconductor nanostructures [53, 54]. It is in that kind of
structures, that the so called �eld of quantum uids of light was born [55]. In the strong
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light-matter coupling regime, intra-cavity photons are mixed to electronic excitations,
de�ning a new kind of quasiparticles, thepolaritons [29]. It has been proved that
the e�ective interactions between polaritons are strong enough to generate collective
many-body phenomena, such as the Bose-Einstein condensation [56], or superuidity
[57].

Another reason why superconducting circuit QED and semiconductor cavity QED
are particularly interesting is their suitability to reach the so calledultrastrong coupling
regime, in which the vacuum Rabi frequency (quantifying light-matter interaction
strength) is comparable to the bare transition frequencies of the atom and of the cavity.
This regime of intense interaction is attained in circuit QED experiments thanks to
the strong con�nement of light in transmission lines [58{63], while in semiconductor
realisations the interaction with the many electronic transitions can be recast into a
very large e�ective interaction with a single collective transition momentum [64{67].

One of the reason why ultrastrong coupling regime has recently attracted a growing
interest, is that in this regime the ground state can contain non-trivial population
and correlation of light and matter. Indeed in this regime, it becomes energetically
favourable to have photons and light-matter correlations in the ground state. When
the number of arti�cial atoms becomes large, some ultrastrong coupling models even
predict the emergence of the so calledsuperradiant phase transition[68{72]. According
to the particular symmetry of the model, the ground state can be for example a
Schr•odinger cat state of correlated light and matter [73], or it can be a squeezed
vacuum [63].

The interest of Schr•odinger cat states both for fundamental and for technological
developments, is witnessed by the literature [27, 74{77]. Another way to yield this
kind of states is throughreservoir engineering. Indeed, recently it has been possible
to engineer the environment with precise tailored symmetries, and to let a system
relax to a target, non-trivial steady state [78{85].

Given the possibility to generate these highly nonclassical states, a question arises
rather naturally: how can we measure and control them? This important question,
�nds today a renewed meaning. Indeed, in the past it was only possible to test the
ensemble properties of quantum systems. The advances in the protection of quantum
systems from decoherence, and in the precision of the measurements, allow today to
track the quantum state trajectory even on single shot experiments [86{89]. For this
reason quantum measurement and trajectories represent today a key topic for new
disciplines such as quantum control and quantum thermodynamics [90{93].

The work reported here is part of this �eld. This thesis presents original results
about: i) measurement protocols to detect exotic quantum optical ground states with
photons in the ultrastrong coupling regime; ii) a theory of quantum feedback for the
stabilisation of photonic Schr•odinger cat states in driven-dissipative resonators.

The manuscript is structured as follows. In Chapter 2 we introduce the paradig-
matic models of quantum optics, that we will use along this manuscript. After a
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derivation of the electromagnetic �eld quantization, we introduce the paradigmatic
models of light-matter interaction. Chapter 3 presents the theoretical framework that
is necessary to include the out-of-equilibrium nature of the considered open quantum
system. In particular we derive and present in detail the master equation approach,
and discuss its validity in the ultrastrong coupling regime. In Chapter 4, we introduce
the basic elements of quantum measurement and trajectories. Starting with a pre-
sentation of interpretative framework of quantum mechanics, we derive the stochastic
equations of quantum trajectories, and discuss their relation with the master equation
approach. In Chapter 5 we present our proposal for a non-destructive measurement
of light-matter populations and correlations in the exotic vacua achieved in the ul-
trastrong coupling regime [94]. Finally, Chapter 6 presents our analysis of quantum
trajectories for a resonator with two-photon drive and dissipation [95]. Moreover we
present a parity-triggered feedback control protecting photonic Schr•odinger cat states
against one-photon decoherence [96].





Chapter 2

Paradigmatic models in quantum
optics

This chapter is aimed at introducing the reader to the theoretical description of the
physical systems investigated in this thesis.

At the heart of our work is light and its quantum description. In all the systems
that we considered, the electromagnetic �eld plays the central role. For this reason
the chapter begins with a detailed derivation of the quantum description of light
(Sec. 2.1).

The second important ingredient of our investigation islight-matter interaction.
Recent advances in controlling light and matter degrees of freedom have allowed physi-
cists to reach new regimes in which a quantum model of light-matter interaction is
required. While in free space photons are mostly independent particles, in some partic-
ular realisations it has been possible to enhance signi�cant matter-mediated e�ective
interaction between photons [55]. In Section 2.2.1 we describe the quantization of the
electromagnetic �eld in a dielectric medium, in which the nonlinearities can mediate
an e�ective interaction between hybrid light-matter particles, called polaritons.

The high level of control recently reached in the �elds of cavity and circuit Quan-
tum Electrodynamics (QED), allows physicist to realise a variety of quantum mod-
els of interacting atoms and photons. Section 2.2.2 provides an introduction to the
paradigmatic cavity QED models, and Sec. 2.2.3 discusses their peculiar behaviour
when the regime of ultrastrong coupling is attained.

2.1 Quantum description of light

In this section we present the quantization of electromagnetic �eld, i.e. the formal path
from the classical to the quantum description of electrodynamics. The classical frame
of electrodynamics is basically de�ned by the real valued electric and magnetic vec-
tor �elds governed by Maxwell's equations. It turns out that the electromagnetic
�eld can be decomposed as a sum of independent harmonic oscillators. Furthermore,
the harmonic oscillator is a very convenient model to introduce the formal steps of
the quantization process. For these reasons, we start this section by reviewing the
canonical quantization of an harmonic oscillator (sec 2.1.1). In Sec. 2.1.2 and in
Sec. 2.1.3 we introduce the canonical description and the mode decomposition of the
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electromagnetic �eld, and in Sec. 2.1.4 we derive the �nal quantum description of the
electromagnetic �eld modes.

We point that this section is based on the very comprehensive textbooks in
Refs. [97{99] and on the lecture notes in Refs. [100, 101].

2.1.1 The harmonic oscillator

The aim of this section is to introduce, in the simpli�ed framework of an harmonic
oscillator, the formal steps of canonical quantization that we will follow in the more
complicated situation of the electromagnetic �eld.

The harmonic oscillator is probably the most used dynamic model in physics.
Many physical system, such as the electromagnetic �eld, can be recast or approxi-
mated in terms of harmonic oscillators and, most importantly, it is a solvable model.
The dynamics of a classical harmonic oscillator in one dimension is described by the
following di�erential equation for the coordinate x:

m•x = � kx (2.1)

wherem is the mass of the system that is experiencing the elastic forceF = � kx.
This dynamics is alternatively described by the system Lagrangian

L(x; _x) =
m _x2

2
�

kx2

2
; (2.2)

in its generalised coordinatex. The di�erential Equation (2.1) is easily regained
through the Euler-Lagrange equation

d
dt

�
@L
@_x

�
�

@L
@x

= 0 : (2.3)

The conjugate momentump and the Hamiltonian H are determined from this
Lagrangian:

p =
@L
@_x

= m _x ; (2.4)

H (x; p) = p_x � L =
p2

2m
+

kx2

2
=

p2

2m
+

m
2

! 2x2 ; (2.5)

where! =
p

k=m is the angular frequency of the oscillator.
To quantize the classical Hamiltonian, the �rst step is to formally substitutex and

p in Eq. (2.5) with some operators ^x and p̂ on the system Hilbert space, playing the
role of their quantum counterparts. The expression Hamiltonian is therefore:

Ĥ =
p̂2

2m
+

m
2

! 2x̂2 : (2.6)
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The key point is now to determine ^x and p̂. The operator x̂ and p̂ are now Hermitian
operators acting on the same Hilbert space. One can, in particular, express one in
terms of the other. Indeed, from the Heisenberg uncertainty principle, one can show
that [ x̂; p̂] = i~ [102{104].

In a more rigorous and general way this was postulated by Born [105] and later
generalised by Dirac [98, 106, 107]: the commutator of two quantum observables ^o1

and ô2 is related to the Poisson bracket of their classical counterparts via:

[ô1; ô2] = i~ f o1; o2g; (2.7)

wheref o1; o2g is the Poisson bracket between two classical observables.1 In the partic-
ular case in whicho1 and o2 are the conjugate generalised coordinate and momentum
(like x and p) the relation (2.7) reduces to

[ô1; ô2] = i~ : (2.8)

Once that the quantum description of the harmonic oscillator is settled, we are
interested in diagonalising its Hamiltonian, since its eigenvalues and eigenvector al-
lows to solve the system dynamics. The common way to do so is by recasting the
Hamiltonian through the annihilation and creation operators, respectively

â def=

r
m!
2~

�
x̂ +

i
m!

p̂
�

; ây def=

r
m!
2~

�
x̂ �

i
m!

p̂
�

: (2.9)

Employing the commutation relation of x̂ and p̂ it is straightforward to prove that

[â; ây] = 1 : (2.10)

Inverting the de�nitions in Eqs. (2.9), one attains:

x̂ =

r
~

2m!
(ây + â) ; p̂ = i

r
~m!

2
(ây � â) : (2.11)

These expressions can be inserted in the Hamiltonian Equation (2.6), obtaining the
following expression:

Ĥ = ~!
�

âyâ +
1
2

�
= ~!

�
N̂ +

1
2

�
; (2.12)

1In the canonical coordinatesqi and pi , the Poisson bracket between two observableso1(qi ; pi ; t)
and o2(qi ; pi ; t) is de�ned as

f o1; o2g =
NX

i =1

�
@o1
@qi

@o2
@pi

�
@o1
@pi

@o2
@qi

�
:

It follows that f qi ; pj g = � ij .
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whereN̂ def= âyâ is called the number operator. From the commutator of ^a and ây one
can show that

[N̂ ; ây] = ây and [N̂ ; â] = � â : (2.13)

Using this commutation relation it can be proved that the spectrum ofN̂ is given by
the positive natural numbersn, and that â and ây allow to climb down and up the
corresponding eigenstatesjni :

N̂ jni def= n jni ; ây jni =
p

n + 1 jn + 1i ; â jni =
p

n jn � 1i : (2.14)

The observableN̂ represents the number of energy quanta contained in the system.
In this regard â and ây are called the annihilation and creation operators, coherently
with the relations (2.14).

2.1.2 Canonical quantization of the electromagnetic �eld

In the previous section we saw that the main ingredients to de�ne a quantum system
are the Hamiltonian and the commutation relations between the operators intervening
in its expression. We also saw that the commutator between two canonical conjugate
variables is postulated equal toi~. In the case of the harmonic oscillator, it was
easy to recognise the two canonical conjugate variables arex and p. However for the
electromagnetic �eld this is not so direct. That is the reason why in this section we
will take the time to review the Lagrangian description of the electromagnetic �eld,
and to retrace the steps of its canonical quantization.

The dynamics of the electromagnetic �eld in vacuum and absence of charges is
encoded by the four Maxwell's equations:

r � E = 0 ;

r � B = 0 ;

r � E = �
@B
@t

;

r � B =
1
c2

@E
@t

:

(2.15)

The electric and magnetic �eldsE and B are typically described through the electric
scalar potential � and the magnetic vector potentialA as

E = �r � �
@A
@t

and B = r � A : (2.16)

These two potentials de�ne the so called four-potentialA �
def= ( �=c; � A ), whose com-

ponents are typically chosen as generalised coordinates in the Lagrangian description
of electrodynamics. They completely de�ne the electromagnetic �eld and, contrary to
the 6 components of the electric and magnetic �elds (E and B ) that are constrained
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by the Maxwell's equations, the components of the four-potential only have to respect
a minimal set of constraints that depend on the chosen gauge.

In the covariant formulation of electrodynamics, the Lagrangian density in vacuum
and absence of external charges reads (we use the Einstein notation for indices):

L (A � ; @tA � ) = �
1

4� 0
F �� F�� ; (2.17)

where the electromagnetic tensorF�� is a covariant antisymmetric tensor de�ned as:

F��
def= @� A � � @� A � and F �� = � �� F�� � �� : (2.18)

Here� �� is the Minkowsky metric tensor and the time-space derivatives@� are de�ned
as:

x � = ( ct; x ) = ( ct; x; y; z) and @� =
@

@x�
=

�
1
c

@
@t

; r
�

:

Note that the potentials � and A are unique only after a gauge choice. The most
comfortable choice for the quantization of the electromagnetic �eld is the Coulomb
gauge, de�ned by the condition

r � A = 0 : (2.19)

In this gauge and in absence of charges,� can be �xed to an arbitrary constant and
Eq. (2.16) simpli�es to

E = �
@A
@t

and B = r � A : (2.20)

Through these relations we can now express the tensorF�� as a function ofE and B :

F�� =

0

B
B
@

0 Ex=c Ey=c Ez=c
� Ex=c 0 � Bz By

� Ey=c Bz 0 � Bx

� Ez=c � By Bx 0

1

C
C
A (2.21)

and

F �� =

0

B
B
@

0 � Ex=c � Ey=c � Ez=c
Ex=c 0 � Bz By

Ey=c Bz 0 � Bx

Ez=c � By Bx 0

1

C
C
A : (2.22)

The validity of the Lagrangian density (2.17) is proved by its invariance with
respect to Lorentz transformations and by the fact that it reproduces the Maxwell's
equations through the use of the Euler-Lagrange equations:

@�

�
@L

@(@� A � )

�
�

@L
@A�

= 0 : (2.23)
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With the target of de�ning the Hamiltonian and the commutators, the �rst thing to
do is to identify the canonical coordinates, i.e. to determine the conjugate momenta
� � of the coordinate A � . They can be computed from the Lagrangian density in
Eq. (2.17):

� � def=
@L

@(@tA � )
=

1
c

@L
@(@0A � )

: (2.24)

Note that

@(F �� F�� )
@(@� A � )

= 2F �� @F��
@(@� A � )

= 2F ��

�
@(@� A � )
@(@� A � )

�
@(@� A � )
@(@� A � )

�

= 2F �� (� �
� � �

� � � �
� � �

� )

= 2F �� � 2F ��

= 4F ��

(2.25)

Using equations (2.25), (2.21) and (2.22) it is thus possible to show that:

� � = �
1

c� 0
F 0� = � 0(0; E ) : (2.26)

The fact the � 0 = 0 is not unimportant: it means that A0
def= �=c is not an independent

�eld. Indeed as we already reminded above, in the Coulomb gauge, the absence of
charges implies that the electric scalar potential� is an arbitrary constant, and it can
be �xed to zero.

Using Eq. (2.8) and reminding thatA � , � � and E i are space-dependent �elds, one
might be tempted to introduce the following canonical commutation relations for the
quantum observables of the problem:

h
Â � (r ); �̂ � (r 0)

i
?= i~ � �� � 3(r � r 0) ;

i.e.
h
Â i (r ); Ê j (r 0)

i
?= �

i~
� 0

� ij � 3(r � r 0) :
(2.27)

Unfortunately these relations are wrong! The Coulomb gauge imposes an additional
constraint to the electromagnetic �eld. Equation (2.19) implies that not all the com-
ponents ofA and E are independent and for this reason the correct commutation
relations for the corresponding quantum operator are:

h
Â � (r ); �̂ � (r 0)

i
= i~ � (tr )

�� (r � r 0) ;

i.e.
h
Â i (r ); Ê j (r 0)

i
= �

i~
� 0

� (tr )
ij (r � r 0) ;

(2.28)
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where we have introduced the so-called \transverse delta function", which has the
same e�ect as the usual delta function on transverse �elds and which is de�ned as

� (tr )
ij (r ) =

Z
d3k
2�

ei k �r

�
� ij �

ki kj

k 2

�
: (2.29)

Note that here and above Latin letter indexes refer to the components of 3-dimensional
space �elds such as the vector potentialA and the electric �eld E , while the Greek
letter indexes refer to covariant four-vectors or matrices such asA � or F �� . The
function � (tr )

�� (r � r 0) that we use in the �rst of Eqs. (2.28) is only de�ned for�; � 6= 0 .
The complete justi�cation for the use of the traverse delta function and the complete
derivation of these commutation relations go beyond the aim of this section. The
target here is to provide an idea of the formal steps to follow for a rigorous quantization
of the electromagnetic �eld, according to the postulates of quantum mechanics. For
more details on the traverse delta function and on the derivation of this commutation
relations we address the reader to the paragraph 7.7 of Ref. [97] in which one can
�nd a very complete description of this derivation.

The next step toward the quantization of the electromagnetic �eld is to determine
its Hamiltonian. The Hamiltonian density is de�ned through the Legendre transfor-
mation

H def= � � (@tA � ) � L : (2.30)

Using equations (2.26), (2.21) and (2.22) one can show that

H(A � ; � � ) = �
1
� 0

F 0� @0A � +
1

4� 0
F �� F��

= �
1
� 0

F 0� (F0� + @� A0) +
1

4� 0

�
2B 2 � 2

E 2

c2

�

= �
1
� 0

F 0� F0� +
1

2� 0

�
B 2 �

E 2

c2

�

=
1
� 0

E 2

c2
+

1
2� 0

�
B 2 �

E 2

c2

�

=
1
2

�
B 2

� 0
+ � 0E 2

�

(2.31)

where we used the fact that, sinceA0 is �xed to zero then also @� A0 = 0. This
expression coherently corresponds to the usual formula of the energy density for the
electric and magnetic �eld. Using Eq. (2.20), we can now expres the Hamiltonian as
a function of the only �eld A , or as a function of its canonical conjugate �eldsA and
� :

H (A � ; � � ) def=
Z

d3r H =
� 0

2

Z
d3r

" �
@A
@t

� 2

+ c2(r � A )2

#

=
1

2� 0

Z
d3r

�
� 2 +

1
� 0

(r � A )2

� (2.32)
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Here the parallelism with the harmonic oscillator is nearly settled. In Eq. (2.5)
we have a quadratic form of the Lagrangian generalised coordinatesA and of its
conjugate momentum� def= � 0E , that commute according to the commutation relation
in Eq. (2.28). It can be shown that this Hamiltonian can be diagonalised in a structure
very similar to that of the harmonic oscillator. In order to achieve this diagonalisation
we �rst need to introduce the mode decomposition of the electromagnetic �eld. This
is the topic of the next section.

2.1.3 Mode decomposition

In this section we will show that the electromagnetic �eld can be expressed as a linear
superposition of wave modes. This will suggest the right variable change leading to
the diagonalisation of the electromagnetic �eld Hamiltonian. First of all we recall the
3rd and 4th Maxwell's equation in absence of charges:

r � E = �
@B
@t

and r � B =
1
c2

@E
@t

: (2.33)

From this last equation and replacing the �eldsE and B with the expressions given
by equations (2.20) one �nds

r � (r � A ) = �
1
c2

@2A
@t2

(2.34)

Given that r � (r � A ) = r (r � A ) � r 2A and that r � A = 0 (see Eq. (2.19)), it is
straightforward to show that the vector potentialA evolves according to the following
wave equation:

1
c2

@2A
@t2

� r 2A = 0 : (2.35)

The solution of this di�erential equation depends on the initial condition and
on the boundary conditions. Without loss of generality, we will consider here the
simplest situation in which the �eld is con�ned in a cubic box of sizeL and satis�es
periodic boundary conditions. Under these conditions the electromagnetic �eld can
be expressed as a sum of plane-wave modes:

A (r ; t) def=
X

k ;�

r
~

2� 0L3! k

�
� k ;� � ei k �r � ! k t + � �

k ;� � � e� i k �r + ! k t
�

; (2.36)

where the sum runs over the possible wave vectorsk and polarisation complex unit
vectors � . In order to ful�ll the wave Equation (2.34), the wave frequency! k is
a function of the wave vector: ! k = cjk j. According to the box con�nement and
boundary condition the allowed wave vectors arek = 2� n =L, where n is a set of
three integersn = ( nx ; ny; nz). For every wave vector we have two possible orthogonal
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unit vectors � , they are orthogonal and they lay on the plane orthogonal to the wave
vectors, such� � k = 0.

Every couple ofk and � de�nes a wave mode that evolves independently to the
others at the frequency! k . The complex coe�cients � (k ;� ) de�ne the amplitude of
the mode and depend on the initial and boundary conditions, the �eldA (r ; t) is
completely de�ned by these coe�cients.

2.1.4 Quantum description of the electromagnetic �eld

The mode decomposition given by Eq. (2.36) suggests the change of variables that
can diagonalise the electromagnetic Hamiltonian. Let us recast the quantum �eld
operator Â (r ) of the vector potential �eld as:

Â (r ) def=
X

k ;�

r
~

2� 0L3! k

h
âk ;� � ei k �r + ây

k ;� � � e� i k �r
i

: (2.37)

Using Eq. (2.36) and Eqs. (2.20) the mode decomposition of quantum �eld operators
�̂ (r ), Ê (r ) and B̂ (r ) reads

�̂ (r ) = � � 0Ê (r ) = � i
X

k ;�

r
~ ! k � 0

2L3

h
âk ;� � ei k �r � ây

k ;� � � e� i k �r
i

(2.38a)

B̂ (r ) = i
X

k ;�

r
~

2� 0L3! k

h
âk ;� (k � � ) ei k �r � ây

k ;� (k � � � )e� i k �r
i

: (2.38b)

By using these expressions for the operators of the electromagnetic �eld we can
rewrite the Hamiltonian (Eqs. (2.31) and (2.32)) in the following diagonalised form:

Ĥ =
X

k ;�

~! k

 

ây
k ;� âk ;� +

1̂
2

!

=
X

k ;�

~! k

 

N̂k ;� +
1̂
2

!

; (2.39)

where we have de�ned the mode number operatorNk ;�
def= ây

k ;� âk ;� , in perfect analogy
with what we did for the harmonic oscillator.

The last ingredient to de�ne our quantum system are the commutation relations.
One can prove that the canonical commutation relations postulated for the conjugate
variables of the electromagnetic �eld, equations (2.28), imply that the mode operators
âk ;� and ây

k ;� respect the following commutation relations:

[âk ;� ; ây
k 0;� 0] = � kk 0� �� 0 : (2.40)

The proof of this equivalence is a simple calculation: see Section 7.7 of Ref. [97] or
Chapter 3 of Ref. [99] for more details.
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As a consequence of the commutator Eq. (2.40)

[N̂k ;� ; ây
k ;� ] = ây

k ;� ; [N̂k ;� ; âk ;� ] = � âk ;� ; (2.41)

and the action of âk ;� and ây
k ;� on the eigenstates ofN̂k ;� are given by the following

equations:

N̂k ;� jnk ;� i
def= nk ;� jnk ;� i ;

ây
k ;� jnk ;� i =

p
nk ;� + 1 jnk ;� + 1i ; âk ;� jnk ;� i =

p
nk ;� jnk ;� � 1i :

(2.42)

The eigenvalues ofN̂k ;� are the positive integers and its eigenstates are the so called
Fock statesjnk ;� i . This observable quanti�es the number of quanta in the considered
mode of the electromagnetic �eld. These quanta are called photons, and ^ak ;� , ây

k ;� are
the photon annihilation and creation operators,

âk ;� =

r
� 0

2~L3

Z
d3r e� i k �r �

�
p

! k Â (r ) �
i

p
! k

Ê (r )
�

(2.43)

Troughout this thesis we will study the electromagnetic �eld con�ned inside optical
cavities. The fact of con�ning the light in a small space (combined with the very good
quality of the con�ning mirrors) results in a large frequency spacing. This allows to
discern the di�erent modes and most of the times it is possible to work in a condition
in which only one cavity mode enters in the �eld dynamics. Using this assumption
the quantum description take the very simpli�ed form

Ĥc = ~! c âyâ and [â; ây] = 1̂ ; (2.44)

where we introduced the frequency! c of the relevant cavity mode and where we �xed
to zero the energy of the vacuum state. This Hamiltonian is the �rst brick of all the
systems that we will consider along this manuscript.

2.2 Light-matter interaction

In this section we will introduce some important models of light-matter interaction. In
Section 2.2.1 we derive the Hamiltonian of the e�ective photon-photon interaction that
is mediated by a generic dielectric medium. Section 2.2.2 provides an introduction to
the most important Hamiltonians modelling the interaction of atoms with the cavity
electromagnetic �eld. Finally, Sec. 2.2.3 introduces to the fundamental peculiarities
of cavity (circuit) QED in the regime of the ultrastrong coupling.

2.2.1 Interacting photons

Even if photon-photon interactions have been predicted to occur even in vacuum via
virtual excitation of electron-positron pairs [108], the cross section of this process is too
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small to play any signi�cant role in realistic optical systems. For this reason photons
in vacuum are typically considered independent. However, an e�ective interaction
between photons can arise as mediated by interaction of light with matter. The most
simple situation in which light-matter interaction happens is in the presence of a
dielectric medium.

The e�ect of the electric �eld on a dielectric medium is quanti�ed by polarisation
P , that is the dipole momentum created in the medium per unit volume. When the
�eld is weak the response of the medium can be assumed to be linear, i.e.

Pi = � 0� (1)
ij E j ; (2.45)

where � (1)
ij is the linear susceptibility tensor of the medium (repeated indexes are

summed). If the electric �eld is strong enough, then the linear response is not su�cient
anymore to describe the response of the dialectic medium, and nonlinear susceptibility
must be considered:

Pi = � 0

h
� (1)

ij E j + � (2)
ijk E j Ek + � (3)

ijkl E j EkE l + : : :
i

: (2.46)

Here the susceptibility tensors� (n) de�ne the expansion of the response function.
In absence of external charges or currents, the electromagnetic �eld is governed

by the following Maxwell's equations:

r � D = 0 ;

r � B = 0 ;

r � E = �
@B
@t

;

r � B = � 0
@D
@t

;

(2.47)

where D = � 0E + P is the displacement vector. Very similarly to what we did in
the previous section, these �elds and dynamics can be translated to the quantum
description through the canonical quantization. We will only consider here the most
simple case in which the medium response is homogeneous and non-dispersive, i.e.
the tensors� (n) do not depend on the space position and on the �eld frequency.

Under these assumptions an appropriate Lagrangian density is

L (A � ; @tA � ) =
� 0

2

�
E 2 � c2B

�

+ � 0

�
1
2

� (1)
ij E i E j +

1
3

� (2)
ijk E i E j Ek +

1
4

� (3)
ijkl E i E j EkE l + : : :

�
; (2.48)

that can then be recast in the generalised coordinatesA �
def= ( �=c; � A ), by substitut-

ing E and B with their expression as a function of the potentialsA and A0 = �=c :

E = �
@A
@t

� cr A0 and B = r � A : (2.49)
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This Lagrangian density reproduces Maxwell's Equation (2.47) through the Euler-
Lagrange equations and it allows to de�ne the conjugate momenta ofA � :

� � def=
@L

@(@tA � )
= (0 ; D ) : (2.50)

Once again the momentum �0 is zero, meaning thatA0 is not an independent �eld.
On the other hand, contrary to the case of vacuum, we can not �xA0 to zero, see
Ref. [109] for more details.

The Hamiltonian can then be de�ned using the Legendre transformation in
Eq. (2.30):

H (A � ; � � ) =
Z

d3r
� 0

2

�
E 2 + c2B 2

�

+
Z

d3r� 0

�
1
2

� (1)
ij E i E j +

2
3

� (2)
ijk E i E j Ek +

3
4

� (3)
ijkl E i E j EkE l + : : :

�

+
Z

d3r D � r A0 :

(2.51)

Integrating by parts and using the fact that r � D = 0 allows to eliminate the last
term. Since E is no longer the canonical momentum, it is useful to express the
Hamiltonian as a function ofD :

H (A � ; � � ) =
Z

d3r
1

2� 0
(r � A )2

+
Z

d3r
�

1
2

� (1)
ij D i D j +

1
3

� (2)
ijk D i D j Dk +

1
4

� (3)
ijkl D i D j DkD l + : : :

�
; (2.52)

where we introduced the tensors� (n) allowing to expressE as a function ofD ,

� (1) =
�
� 0

�
1 + � (1)

�� � 1

� (2)
ijk = � � 0 � (1)

il � (1)
jm � (1)

kn � (2)
lmn

� (3)
ijkl = � � 0 � (1)

im � (1)
jn � (1)

kp � (1)
lq � (3)

mnpq :

(2.53)

We suggest again the Ref. [109] for more details on these last expression.
Now we are ready to quantize these �elds, �rst of all we introduce the canonical

commutation relation:
h
Â � (r ); �̂ � (r 0)

i
= i~ � (tr )

�� (r � r 0) ;

i.e.
h
Â i (r ); D̂ j (r 0)

i
= � i~ � (tr )

ij (r � r 0) ;
(2.54)

where� (tr )
ij (r ) is de�ned in Eq. (2.29). Similarly to what we did in the case of the free

�eld, it is useful to introduce the annihilation and creation operators,âk ;� and ây
k ;� :

âk ;� =
1

p
2~L3

Z
d3r e� i k �r �

�
p

� 0! k Â (r ) �
i

p
� 0! k

D̂ (r )
�

; (2.55)
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where the usual commutation relations Eq. (2.40) also hold for these operators. Note
that, contrary to the free-�eld case (see Eq. (2.43)), these operators contain both light
and matter degree of freedom. They de�ne an hybrid light-matter excitation that is
a sort of \dressed" photon.

Only a few more assumptions allow to show a very simpli�ed expression of the
matter-madiated interaction between these \dressed" photons. Let us assume that
the medium is not only non-dispersive and homogeneous, but also symmetric under
spatial inversion (r ! � r ). Spatial inversion symmetry implies that� (2) is negligible.2

The second assumption is to reduce the problem to a single mode. This is valid
provided that the frequency spacing of the modes is large compared to the nonlinear
frequency shift, that is typically true when the �eld is con�ned in an optical cavity.
At this point it is just a formal calculation to prove that the 3rd order susceptibility
can be accounted through the so calledKerr Hamiltonian interaction term

ĤKerr =~ =
U
2

âyâyââ ; (2.56)

whereU is a scalar proportional toj� (3) j, quantifying the strength of the interactions
between the \dressed" photons.

2.2.2 Interacting photons and atoms

As we have mentioned in the introduction, cavity QED studies the physics of atoms
interacting with an electromagnetic �eld that is con�ned inside an optical cavity.
We also have mentioned that this physics is e�ciently modeled in terms of two-level
systems (for the atoms) and of bosonic modes (for the electromagnetic �eld) [28{32],
Here we introduce the microscopic origin of these paradigmatic models of interacting
atoms and photons.

Let us consider the most simple case of a single atom interacting with the electro-
magnetic �eld. Neglecting relativistic corrections, such a system is described by the
following Hamiltonian [27, 110{112]:

Ĥ =
NelX

j =1

h
p̂ j � qÂ (r̂ j )

i 2

2m
+ � (r̂ 1; :::; r̂ Nel ) +

X

i

~! i

 

ây
i âi +

1̂
2

!

; (2.57)

whereq and m are the charge and the mass of theNel electrons of the atom, whose
momenta and positions are depicted by the operator̂p j and r̂ j . The �rst two terms
of the Hamiltonian describe respectively the kinetic and the electric potential energy

2For a medium presenting such a symmetry the susceptibility tensors� (n ) are invariant under
spatial inversion (r ! � r ). This means that under spatial inversion � (2) ! � (2) , P (r ; t) ! � P (r ; t)
and E (r ; t) ! � E (r ; t). But P ! � P implies � (2) EE ! � � (2) EE , which can be satis�ed if and
only if � (2) = 0.
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of the electrons. The operator ^ay
i (âi ) describes the creation (annihilation) of the

cavity �eld mode with frequency ! i , and Â (r̂ j ) is the vector potential at the electron
position, that we assume to be of the form

Â (r̂ j ) =
X

i

r
~

2� 0V ! i
f i (r̂ j ) � i

�
âi + ây

i

�
: (2.58)

This expression is an analog of Eq. (2.37), where plane waves have been replaced by
real cavity-mode functionsf i (r ) depending on the speci�c geometry of the cavity. We
choose the normalisation of this function to be equal to the cavity total volume, i.e.R

d3r jf i (r )j2 = V, moreover, from the wave equation (Eq. (2.35)) we have that

r 2f i (r ) +
! i

c2
f i (r ) = 0 : (2.59)

Note from the expression ofÂ (r̂ j ) in Eq. (2.58), that this operator acts on both the
spaces of the atomic electrons and of the cavity �eld.

Let us spend a few words on the atom kinetic energy, to explain why the usual
expressionp̂2

j =2m has been replaced by [̂p j � qÂ (r j )]2=2m. The dynamics of a charged
particle in an electromagnetic �eld is described by the di�erential equation

m •r = F = q(E + _r � B ) (2.60)

that is equivalently generated by the Lagrangian

L = m _r 2=2 + q(A � _r � � ) : (2.61)

The resulting conjugate momentum of the generalised coordinater is

p =
@L
@_r

= m _r + qA : (2.62)

Thus the kinetic energy is

Ek = m _r 2 = ( p � qA )2=2m : (2.63)

Once the square in the kinetic energy of the electrons is expanded, it is possible
to distinguish three terms composing the Hamiltonian,̂H = Ĥat + Ĥph + Ĥ int + ĤA 2 :

Ĥat =
NelX

j =1

p̂ j
2

2m
+ � (r̂ 1; :::; r̂ Nel ) ;

Ĥph =
X

i

~! i

 

ây
i âi +

1̂
2

!

;

Ĥ int = �
q
m

NelX

j =1

p̂ j � Â (r̂ j ) ;

ĤA 2 =
q2

2m

NelX

j =1

Â 2(r̂ j ) :

(2.64)
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The �rst two terms are respectively referred to the atom and the cavity �eld degrees
of freedom. The third and the fourth terms represent the light-matter interaction.

The �rst term Ĥat is the usual Hamiltonian of an atom, with its characteristic spec-
trum f Ekg and eigenstatesjki , the atomic orbitals. In these terms the Hamiltonian
can be recast into

Ĥat =
X

k

Ek jkihkj : (2.65)

The third term describing the interaction between the atom and the cavity �eld has
been obtained by considering that̂p j commutes with Â (r̂ j ), which follows from the
Coulomb gauge conditionr � A = 0. Let us make use of the so called electric-dipole
approximation, assuming that the wave lengths of the signi�cant cavity modes are
much larger than the atom size,� � a0. In this approximation, the space depen-
dence of the electromagnetic �eld can be neglected, and̂A (r̂ j ) ' Â (r 0), where r 0

is the position of the atom inside the cavity. The matrix elements of the interaction
Hamiltonian on the atomic eigenstates read:

hkjĤ int jk0i = �
q
m

Â (r 0) �
NelX

j =1

hkjp̂ j jk0i

=
iq
~

Â (r 0) �
NelX

j =1

hkj
h
r̂ j ; Ĥat

i
jk0i

=
iq
~

Â (r 0) �
NelX

j =1

(Ek0 � Ek)hkjr̂ j jk0i ;

(2.66)

where we have used the relation [r̂ j ; Ĥat ] = i~ p̂ j =m, which follows from the canonical
commutation relations [̂r i ; p̂ j ] = i~� i;j . Note from the last line that on the basis of
the atomic eigenstates the diagonal elements of̂H int vanish.

Another very important simpli�cation is to reduce the problem to only two states
of the atom, and to only one cavity �eld mode, as illustrated in Fig. 2.1. Let us call
jgi the ground state andjei the excited state. The interaction matrix element reads

hgjĤ int jei =
iq
~

Â (r 0) �
NelX

j =1

(Ee � Eg)hgjr̂ j jei

= i ! a A (r 0) � hgj q
NelX

j =1

r̂ j jei
�

â + ây
�

= ~g
�

â + ây
�

;

(2.67)

where~! a = Ee � Eg > 0 quanti�es the atomic transition frequency, and where

A (r 0) def=

r
~

2� 0V ! c
f c(r 0) � c ; (2.68)
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! c

! a
jgi

jei

Figure 2.1 The simpli�ed model of an electromagnetic �eld mode interacting with
a resonant two-level system, corresponding to an electronic atomic transition.

follows from the expression in Eq. (2.58) of the vector potential for the selected cavity
mode of frequency! c and the ladder operators ^a and ây. In the last line we have
introduce the real parameter

g def=
i! a

~
A (r 0) � dge ; (2.69)

wheredge = hgj q
P Nel

j =1 r̂ j jei is the electric dipole of the considered transition. Note
that g is in general a complex number, however we can always choose the relative
phase betweenjei and hgj, in such a way that g becomes real and positive.

By neglecting the termĤA 2 , we obtain a very simpli�ed model, the Rabi Hamil-
tonian:

ĤRabi =~ = ! c âyâ +
! a

2
�̂ z + g(â + ây)( �̂ + + �̂ � ); (2.70)

where we have introduced the atomic operators, de�ned as

�̂ z = jeihej � j gihgj ;

�̂ � = �̂ y
+ = jgihej :

(2.71)

Note that the interaction strength g is proportional to f c(r 0)=
p

V. This means that
in order to reach a stronger interaction, in experimental realisation it is important to
position the atom at the maximum of the cavity-mode functionf c(r ), and to reduce
the volume V in which the electromagnetic �eld is con�ned.
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When the interaction strength is weak, this Hamiltonian can be approximated to
a further simpli�ed form. Let us perform the product in the interaction term

g(â + ây)( �̂ + + �̂ � ) = g(â �̂ + + ây�̂ � + â �̂ � + ây�̂ + ) : (2.72)

The �rst two terms of the right side conserve the excitation number

N̂exc = âyâ + ( �̂ z + 1̂)=2: (2.73)

Instead, the last two terms, also called anti-resonant terms, do not conservêNexc since
they respectively annihilate and create pairs of atomic and photon excitations. The
�rst two processes are energetically more favourable than the two others. Indeed, by
considering the Rabi Hamiltonian in the interaction picture we get

Ĥ 0
Rabi (t) = ~g

�
â �̂ + ei ( � ! c+ ! a )t + ây�̂ � ei (! c � ! a )t + â �̂ � e� i (! c+ ! a )t + ây�̂ + ei (! c+ ! a )t

�
;

(2.74)
we see that it contains both slowly (! c � ! a) and quickly (! c + ! a) oscillating terms.
In a regime of weak coupling in whichg;j! c � ! aj � (! c + ! a), when integrating the
system time evolution, the contribution of the quickly oscillating terms averages to
zero.

In this approximation, that is typically referred to as the rotating wave approxi-
mation (RWA), the anti-rotating terms of the Rabi model can be neglected, and we
obtain the so called the Jaynes-Cummings Hamiltonian:

ĤJC =~ = ! c âyâ +
! a

2
�̂ z + g(â �̂ + + ây�̂ � ): (2.75)

Despite its simplicity, this Hamiltonian provides an accurate description of a large
range of cavity QED experiments, explaining its broad exploitation in this �eld [33,
34].

Symmetries and conserved quantities

Note that these Hamiltonians have some conserved quantities. From what was dis-
cussed above, it is clear that the Jaynes-Cummings Hamiltonian̂HJC conserves the
total number of excitationsN̂exc, that is in contrary not conserved in the Rabi Hamil-
tonian ĤRabi , due to the presence of the anti-resonant terms in the interaction. On the
other hand, the anti-resonant terms act by creating or annihilating pairs of excitation,
so that ĤRabi conserves the excitation parity

P̂exc = ei� N̂exc : (2.76)

Dispersive regime

Let us consider the Jaynes-Cummings Hamiltonian̂HJC in the dispersive regime in
which the atom and cavity are largely detuned compared to the coupling strength, i.e.
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g � j ! c � ! aj. In this regime, the exchanges of excitations between the atom and the
cavity are energetically unfavourable. The bare spectra of the atom and the cavity
are only perturbatively shifted by the interaction.

Under these conditions, one can approximate the Hamiltonian in a form that
commutes with both âyâ and �̂ z. This is concretely done by applying the unitary
transformation

Û(� ) = e� X̂ � ; (2.77)

where we introduced the operatorX̂ � = ( ây�̂ � � â �̂ + ) and the small parameter

� =
g

! a � ! c
: (2.78)

Note that an unitary transformation leaves the spectrum of the Hamiltonian un-
changed: ĤJC and its transformedÛy(� )ĤJC Û(� ), have the same spectrum. By ex-
panding Ûy(� )ĤJC Û(� ) to the second order in� , we obtain an e�ective Hamiltonian
that has approximatively the same spectrum of̂HJC :

Ĥ (disp)
JC = Ûy(� )ĤJC Û(� ) ' ĤJC + �

h
ĤJC ; X̂ �

i
+

� 2

2

hh
ĤJC ; X̂ �

i
; X̂ �

i
: (2.79)

By performing the commutators in this expansion, one obtains the e�ective Hamil-
tonian of the Jaynes-Cummings model in the dispersive regime

Ĥ (disp)
JC =~ ' ! c âyâ +

! a

2
�̂ z +

g2

2(! a � ! c)
(âyâ + 1̂) �̂ z : (2.80)

The unitary transformation that we used is the so called Schrie�er-Wol� transforma-
tion, and it is explicitly chosen to eliminate the interaction term to �rst order in g 3.

Let us spend a few words on the validity boundaries of this e�ective Hamiltonian.
First of all, we recall that the Jaynes-Cummings Hamiltonian has been obtained using
the RWA, that is valid for j! c � ! aj � ! c + ! a. Combined with the de�nition of the
dispersive regime, this implies thatĤ (disp)

JC is only valid for g � j ! c � ! aj � ! c + ! a.
If the detuning j! c � ! aj is comparable to the excitation frequencies! c and ! a for
instance, the RWA breaks down and the approach outlined above is not valid anymore.
However the dispersive e�ective Hamiltonian beyond the RWA has been derived in
detail in Section 5.2.1 and in Ref. [115]. In Figure 2.2 we compare the spectra ofĤRabi ,
ĤJC and of Ĥ (disp)

JC , in the case of out-of-resonance tuning,! a=! c = 1:5. The three
models have exactly the same spectra forg � ! c, but as g increases, the error of
the approximations in the dispersive approach becomes quickly signi�cant. For large
values ofg, also the Rabi and the Jaynes-Cumming models disagree signi�cantly.

3Given the unitary transformation Û(g) that diagonalises the Jaynes-Cummings Hamiltonian
Ĥ JC , the Schrie�er-Wol� unitary transformation Û(� ) corresponds to the �rst order expansion of
Û(g)[113, 114].
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Figure 2.2 The spectra ofĤRabi (green), ĤJC (magenta) and ofĤ (disp)
JC (blue), for

! a=! c = 1:5.

The dispersive coupling described bŷH (disp)
JC , has a very important role in experi-

mental circuit QED [41{43, 88]. In the dispersive limit it is indeed possible to extract
information about the cavity �eld state from the measured value of the resonance
frequency of the two-level system andvice versa. This is more apparent by rewriting
Ĥ (disp)

JC in the following forms:

Ĥ (disp)
JC '

�
! c +

g2

2(! a � ! c)
�̂ z

�
âyâ +

�
! a

2
+

g2

2(! a � ! c)

�
�̂ z (2.81a)

' ! c âyâ +
�

! a

2
+

g2

2(! a � ! c)
âyâ +

g2

2(! a � ! c)

�
�̂ z : (2.81b)

From the �rst line we see that the two-level atom induces a state-dependent shift
of the cavity resonance frequency. In the same way, the resonance frequency of the
atom linearly depends on the number of photons inside the cavity, and precisely its
frequency shift is

�! n =
g2

2(! a � ! c)
(n + 1) (2.82)

where n labels the considered number state of the cavity, as illustrated in the left
panel of Fig.2.3. This means that a spectroscopic analysis on the atom would give
information on the cavity state. For instance, in Ref. [88] Sun et al. used this kind of
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Figure 2.3 The dispersive coupling. Left panel: the modi�cation of the atom fre-
quency as a function of the cavity number state in the dispersive limit. Right panel:
the spectral response of the qubit for two di�erently populated cavity �elds. The
relative area under the peaks quanti�es the population of each cavity number state.
It allows to clearly distinguish the two di�erent photon distributions of the cavity, a
coherent and a thermal state respectively. Figure extracted from Ref. [42].

coupling to repeatedly track the photon parity in a microwave cavity and in Ref. [42]
Schuster et al. resolved the photon number occupation of both a coherent and a
thermal state of the cavity, as shown in the right panel of Fig. 2.3.

Equation (2.81b) also suggests another important behaviour of atom-photon cou-
pling: the so called Lamb shift [116, 117]. Even in absence of photon, i.e.ĥayâi = 0,
the atom resonance frequency is shifted to! a + g2=(! a � ! c). This shift is due to
vacuum uctuations.

2.2.3 Ultrastrong coupling regime

The paradigmatic Hamiltonians presented above have proven to be very e�cient to
describe most cavity QED realisations [33{36]. However, typical experiments in cavity
QED, are characterised by a relatively small interaction strength, more preciselyg �
p

! c ! a. Whether these models also work for higher values of light-matter interaction
is a legitimate question. This explains the recent interest in exploring the ultrastrong
coupling regime, in which the vacuum Rabi frequency (quantifying the intensity of
light-matter interaction) is comparable to the bare transition frequencies of the atom



2.2. Light-matter interaction 43

and of the cavity [58{67].
Indeed, the Rabi and the Jaynes-Cumming Hamiltonians, predict some very pe-

culiar phenomena in the ultrastrong coupling regime. In this section, we will focus
on the highly nonclassical nature of their ground states, which are characterised by
a �nite population of photons in the ultrastrong coupling regime. Importantly, the
precise form of these exotic ground states depends on the model that is considered.
Indeed, in the ultrastrong coupling regime, the precise properties of the system, dras-
tically depend on the model that is considered [118{120]. This is the reason why the
ultrastrong coupling regime is considered an important ground to test for validity of
light-matter interaction models.

In the previous section we have seen that in a regime of weak coupling, in which the
conditions g;j! c � ! aj � (! c + ! a) for the rotating wave approximation are satis�ed,
the Rabi and the Jaynes-Cumming Hamiltonians produce comparable results. This
is no more the case in the ultrastrong coupling regime. Let us consider �rst the
Jaynes-Cumming Hamiltonian

ĤJC =~ = ! c âyâ +
! a

2
�̂ z + g(â �̂ + + ây�̂ � ); (2.83)

in which the anti-resonant terms (â �̂ � + ây�̂ + ) of the Rabi model have been neglected.
Since this Hamiltonian conserves the total number of excitationŝNexc, it can be
diagonalised by blocks. Each block space is spanned by the basisfj n; gi ; jn � 1; eig ,
where the �rst value labels the Fock states of the cavity. In this reduced space the
Jaynes-Cumming Hamiltonian reads

ĥ(n)
J � C =

�
!n � ! 0=2 g

p
n

g
p

n ! (n � 1) + ! 0=2

�
: (2.84)

Each block of the Hamiltonian can be diagonalised analytically, giving the following
eigenenergies

E (n)
� = ! (n � 1=2) �

p
(! � ! 0)2=4 + g2n

E (0) = � ! a=2
(2.85)

and the associated eigenstates

jn; + i = cos� n jn; gi + sin � n jn � 1; ei ;

jn; �i = � sin� n jn; gi + cos� n jn � 1; ei ;

j0; gi :

(2.86)

where
tan � n = 2g

p
n=

h
! � ! 0 +

p
(! � ! 0)2 + 4g2n

i
: (2.87)

This spectrum is represented in Figure 2.4 for the case of perfect resonance! c = ! a.
Interestingly, we see that in the Jaynes-Cumming model, forg=! a > 1, the energy
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Figure 2.4 The spectrum of Jaynes-Cumming and of Rabi Hamiltonians (respec-
tively in magenta and green) for! c = ! a.

of j1; �i is smaller then the energy ofj0; gi . This means that in this regime the
ground state is not represented by the standard vacuumj0; gi , but it is a state jn; �i
containing a �nite number of photons that depends on the strengthg of the interaction.

In Fig. 2.4 we also show the spectrum of the Rabi Hamiltonian

ĤRabi =~ = ! c âyâ +
! a

2
�̂ z + g(â + ây)( �̂ + + �̂ � ): (2.88)

By comparing the two spectra we see that, despite their agreement for small values of
g, the eigenenergies of the two models considerably diverge in the ultrastrong coupling
regime. Indeed, the role of the anti-resonant terms is crucial in this regime. These
terms couple the excitation-number blocks of the Jaynes-Cumming model, eventually
leading to the phenomenon of level anti-crossing.

Note that in the ultrastrong coupling regime, the two models considered here,
not only di�er for their spectrum, but they also have drastically di�erent eigenstates.
In Fig. 2.5 we compare the photon occupation of the ground states. The ground
state of the Rabi model contains photons for any �nite value of light-matter coupling.
Furthermore, photon population of the Rabi ground state increases continuously, while
in the Jaynes-Cumming model it increases by steps as expected by the presence of
level crossing.
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Figure 2.5 The average number of photons in the ground state of the Jaynes-
Cumming and Rabi Hamiltonians (in magenta and green respectively) for! c = ! a.

In order to better know the nature of the Rabi ground state, we explore the limit in
which g � ! a. Indeed, in this limit, an analytic expression for the ground state of the
Rabi model can be obtained by neglecting the only bound term of the Hamiltonian,
i.e. ! a �̂ z=2:

ĤRabi =~ ' ! c âyâ + g(â + ây)( �̂ + + �̂ � ): (2.89)

Since the only atomic operator in this approximated Hamiltonian is� x = �̂ + + �̂ � ,
we search for a ground state of the formj� i j � i , where� is a state of the cavity mode
and j� i is an eigenstate of� x , more precisely� x j� i = � j� i with � = � 1. We can thus
rewrite the Hamiltonian as

ĤRabi =~ ' !
�

ây +
g
! c

�
� �

â +
g
! c

�
�

�
g2

! c
� 2

= ! c b̂yb̂ � EG ;
(2.90)

where we have introduced the operator̂b = â + g�=! c and de�ned the ground state
energy EG = � g2� 2=! c. From the last expression of the Hamiltonian, we see that
�nding the ground state is equivalent to determining the statej� i such that b̂j� i = 0.
This expression is equivalent to ^a j� i = � g�=! c j� i , that is precisely the de�nition of
a coherent state. This means that the ground state of this approximated Hamiltonian



46 Chapter 2. Paradigmatic models in quantum optics

is of the form j� i j� g�=! ci , in which we note that the two values of� = � 1 lead
to two state with the same energyEG = � g2=! c, meaning that the ground state is
double degenerate. However, this degeneracy can be lifted by reintroducing the term
! a �̂ z=2 as a perturbation. We consider the action of the complete Rabi Hamiltonian
in Eq.(2.89) in the subspace spanned byfj + i j� g=! ci ; j�i j g=! cig :

ĥ(G)
Rabi =

�
� g2=! c

! a
2 e� 2g2=! 2

c

! a
2 e� 2g2=! 2

c � g2=! c

�
: (2.91)

By diagonalising this reduced Hamiltonian we obtain the ground state and for the
�rst excited state (respectively jG� i and jG+ i )

jG� i =
1

p
2

(j+ i j� g=! ci � j�i j g=! ci ); (2.92)

and the associated energies

E � =~ = �
g2

! c
�

! a

2
e� 2g2=! 2

c : (2.93)

From these energies we obtain the energy gap between the ground state and the �rst
exited state

� E=~ = ! ae� 2g2=! 2
c ; (2.94)

which decays to zero forg � ! c. We conclude that the ground state of the Rabi
model is a, so called,Schr•odinger cat state[27], in which light and matter are corre-
lated in a highly nonclassical state. In the ultrastrong coupling regime, both the Rabi
and the Jaynes-Cumming Hamiltonian have non-trivial light-matter populations and
correlations in the ground states. Unfortunately, because of energy conservation, the
photons and the atomic excitations contained in theseexotic vacuaare bound to the
cavity, meaning that it is not possible to explore their property by simple photodetec-
tion. Hence, alternative protocols of measurement are required (Chapter 5)[121{123].
In Sec. 3.1.3, we will discuss in more detail the stability of ground state photons.

Superradiant phase transition

So far, we have considered the models of only one atom coupled to the cavity. However
one could be interested in considering an arbitrary number of atoms interacting with
the same cavity mode. This is for example the case in the microcavity semiconductors,
in which the cavity �eld interact with the many intra-cavity electronic transitions
that play the role of the atoms [53, 54, 64{67]. In this case an often studied model is
represented by the Dicke Hamiltonian:

ĤDicke =~ = ! câyâ +
! a

2

X

i

�̂ (i )
z +

�
p

Nat

X

i

(�̂ (i )
+ + �̂ (i )

� )( â + ây) ; (2.95)
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where the Pauli matrices here refer to each two-level atom. This model simply gen-
eralises the Rabi Hamiltonian to an arbitrary number of atomsN , in which we have
recast the coupling strength of a single atom asg = �=N . The Dicke Hamiltonian
is most conveniently rewritten by considering the collective spin associated to theN
two-level systems, namely

Ĵz =
1
2

NX

i =1

�̂ (i )
z ; Ĵ� =

NX

i =1

�̂ (i )
� : (2.96)

We can thus write

ĤDicke =~ = ! câyâ + ! aĴz +
�

p
N

�
ây + â

� �
Ĵ+ + Ĵ�

�
: (2.97)

From the rules of combining angular momenta, we know that the total spin quantum
number here, can range over all the half-integers from 0 toN=2. However, since the
Hamiltonian commutes with the operator of total spin magnitudeĴ 2, we can reduce
the problem to only one eigenspace of̂J 2. In particular we choose the space with
maximal total spin, since it is the one in which the ground state is contained (this is
straightforward for � = 0 and for � ! 1 ). This means that the operators de�ned in
Eq.(2.96) represent collective spin of sizeN=2. Note that by doing so we considerably
reduce the dimension of the atomic Hilbert space from 2N to N .

Similarly to the Rabi model, this Hamiltonian is characterised by parity symme-
try, de�ned by the operator �̂ = exp f i� (âyâ + Ĵz + N=2)g. In the thermodynamical
limit N ! 1 the system is characterised by a phase transition that is associated
to the breaking of this discrete symmetry. A detailed description of this quantum
phase transition is provided by C. Emary and T. Brandes in Ref. [73], here we only
briey use their results to describe this transition and the relation with the �nite size
properties. It is indeed possible to show that at zero temperature and thermodynamic
limit the Dicke model undergo a quantum phase transition at� = 0:5. In the bro-
ken symmetry phase, also called superradiant phase, the system has two degenerate
eigenstatesj	 � i = j� � i j� � i , wherej� � i is a coherent state of the cavity mode and
j� � i is a polarised state of the atoms. The latter is de�ned as a coherent state on the
bosonic operator introduced with the Holstein-Primako� transformation [124] that is
used in Ref. [73] to describe the superradiant phase transition. We have that

� = �
�

p
N

! c

s

1 �
�

! c ! a

4g2

� 2

;

� = �

r
N
2

r
1 �

! c ! a

4g2
:

(2.98)

However, the degeneracy of the ground state mathematically only holds in the limit
of an in�nite number of atoms. For any �nite N the two states are coupled, leading
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to a lift of the degeneracy [62]. Similarly to what we did to determine the ground
state of the Rabi model, we can consider the action of the Hamiltonian in Eq. (2.97)
on the two statesj	 � i . Diagonalising this reduced Hamiltonian, one obtains a good
approximation of the ground and of the �rst excited state (respectivelyjG� i and
jG+ i ) for a �nite number of atoms. Without going into the details of the calculations,
we have

jG� i '
j� i j � i � j� � i j� � i

N �
; (2.99)

where N � ensures the right normalisation of the state. Again the ground and �rst
excited states are Sch•rodinger cat states with a nonclassical correlation between light
and matter.

No-go theorem for superradiant quantum phase transitions in cavity QED

It is important to mention that a no-go theorem for superradiant quantum phase
transitions has been predicted for cavity QED realisations [63]. Indeed thêA 2 term
in Eq. (2.64), that we have neglected to derive the Rabi Hamiltonian, can become
crucial in the ultrastrong coupling regime. Adding the contribution of this term to
the Dicke model, one obtains the Hamiltonian

Ĥ=~ = ! câyâ + ! aĴz +
�

p
N

�
ây + â

� �
Ĵ+ + Ĵ�

�
+ D

�
ây + â

� 2
; (2.100)

and whenD = � 2=! a one obtains the Hop�eld model, well known in semiconductor
optics [29, 64]. It can be proven [63] that in cavity QED the sum rule impliesD �
� 2=! a. For these values ofD, the quadratic renormalisation introduced by theÂ 2

term inhibits the superradiant phase transition at zero temperature. This shows
that the way in which we model light-matter interaction is importantly tested in
the ultrastrong coupling regime. Indeed, while the contribution of theÂ 2 term is
unimportant in typical regimes of cavity QED realisations, in the ultrastrong coupling
regime it can drastically modify the physics of the system.

Note that this no-go theorem only applies in the precise conditions of cavity QED
system. In circuit QED, however, the systems can be tailored to make thêA 2 term
negligible [63], or to realise the physics of most atom-cavity models [48, 72].



Chapter 3

Open quantum systems and
Lindblad master equation

An aspect that intrinsically distinguishes the physics of photons from other branches
of physics is its out-of-equilibrium nature. Despite the e�orts to isolate the electro-
magnetic �eld in more and more e�cient cavities, the coupling to the environment is
typically non-negligible. The photons generally escape through the optical mirrors of
the cavities and dissipate in the in�nite modes of the external electromagnetic �eld.

More general, in open quantum systems, the environment is represented by a
second system with in�nite degrees of freedom. Due to its large size, it is in principle
impossible to have total control of the environment. Thus, except in speci�c cases,
in which the environment is in a precisly known and controlled state, the coupling
to an environment represents a loss of information on the system. In Section 3.1 we
introduce a microscopical model of the coupling to the environment that allows to
describe the system evolution in the form of a Lindblad master equation.

Since the photons tend to escape the cavity, in order to have a non-negligible
population we need to constantly replace them. This is the role of the driving, which
can for example be a laser �eld, that injects photons inside the cavity. In Section 3.2
we provide a simple microscopic description of this process.

3.1 Coupling to the environment and Lindblad
master equation

The coupling to the environment is associated with some very important processes
in quantum physics. It is responsible for the loss of quantum information, commonly
called decoherence, impeding the control and exploitation of quantum systems, and
it also explains the loss of energy, generally called dissipation.

In order to consider these processes, the Lindblad master equation often is a very
convenient description [125, 126]. In its general form, a Lindblad master equation
describes the time evolution of the density operator as

@t �̂ = �
i
~

h
Ĥ ; �̂

i
+

N 2 � 1X

i

�
2Â i �̂ Ây

i � Ây
i Â i �̂ � �̂ Ây

i Â i

�
(3.1)

49



50 Chapter 3. Open quantum systems and Lindblad master equation

whereĤ is an Hermitian operator, andÂ i are operators acting on the system Hilbert
space of dimensionN . The �rst term of Eq. (3.1) describes a unitary evolution, where
Ĥ is typically the Hamiltonian of the system. The second term is associated to the
coupling of the system to the environment, it produces a non-unitary dynamics, and
is determined by the so called jump operatorŝA i .

In Section 3.1.1, we provide a detailed derivation of the Lindblad master equa-
tion. This will allow us to describe the dissipation and decoherence of atoms and
cavities (Sec. 3.1.2), and, importantly, to derive a master equation consistent with
the ultrastrong coupling regime (Sec. 3.1.3). In Sec. 2.2.3 we have indeed seen, that
when cavity QED systems reach the ultrastrong coupling regime, their ground state
contains a �nite population of photons and of atom excitations. In order to prop-
erly describe the stability of these ground state photons, a careful description of the
environment coupling is needed.

3.1.1 Microscopic derivation of Lindblad master equation

In this subsection we provide a microscopic derivation of the Lindblad master equa-
tion based on Refs.[125{127]. From a mathematical point of view, the coupling to
the environment can be described by considering the total Hamiltonian of the quan-
tum system and the environment, that determines the dynamics of the total density
operator. Here we follow a standard procedure, that permits to obtain an e�ective
dynamics for only the system density operator, by tracing out the degrees of freedom
of the environment degrees. The total Hamiltonian of the systemS and the coupled
environment B is

Ĥ = ĤS + ĤB + Ĥ I ; (3.2)

whereĤS and ĤB are respectively the free Hamiltonian of the system and the environ-
ment and Ĥ I describes the interaction between them. We assume all the Hamiltonian
terms to be time independent.

A simple model of the environment is given by a bath of harmonic oscillators

ĤB =
X

k

~! k b̂y
k b̂k ;

h
b̂k ; b̂y

k0

i
= � k;k 0 ; (3.3)

where! k is the frequency of thekth mode of the bath. The bath of harmonic oscillator
can represent, for instance, the extra-cavity modes of the electromagnetic �eld, or it
can describe the phonon modes of a solid environment. Here we consider the bath at
thermal equilibrium

�̂ B =
e� � Ĥ B

ZB
=

Y

k

�
1 � e� ~ ! k

�
e� ~ ! k b̂y

k b̂k ; (3.4)

where ^� B is the density operator of the bath andZB is its partition function. The
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thermal equilibrium implies the following relations:

ĥbk i T = ĥby
k i T = 0 ; ĥbk b̂k i T = ĥby

k b̂y
k i T = 0 ;

ĥby
k b̂k i T = � k;k 0NT (! k) with NT (! k) =

1
e� ~ ! k � 1

;
(3.5)

whereh � iT = Tr B f � �̂ B g represent the thermal equilibrium average at temperatureT
and where we have introduced the bosonic average occupation numberNT (! k) of the
kth mode.

A quite general assumption is to consider the following form for the interaction
term

Ĥ I =~ = Ŝ 
 B̂ ; (3.6)

where Ŝ is a generic Hermitian operator acting on the system degrees of freedom,
while B̂ is an Hermitian operator acting on the bath, and that we choose to be of the
form

B̂ =
X

k

�
gk b̂k + g�

k b̂y
k

�
: (3.7)

In the Schr•odinger picture, the time evolution of the total density operator for the
system and environment is

@t �̂ = �
i
~

h
ĤS + ĤB + Ĥ I ; �̂

i
: (3.8)

The derivation of the Lindblad equation is most easily performed in the interaction
picture, in which �̂ is mapped into

�̂ 0(t) def= e
i
~ (Ĥ S + Ĥ B )t �̂ (t)e� i

~ (Ĥ S + Ĥ B )t : (3.9)

In the interaction frame, the equation of motion for ^� 0 reads:

@t �̂ 0 = �
i
~

h
Ĥ 0

I (t); �̂ 0(t)
i

; (3.10)

where
Ĥ 0

I (t) def= e
i
~ (Ĥ S + Ĥ B )t Ĥ I e� i

~ (Ĥ S + Ĥ B )t : (3.11)

This equation can be formally integrated as

�̂ 0(t) = �̂ 0(0) �
i
~

Z t

0
dt0

h
Ĥ 0

I (t0); �̂ 0(t0)
i

; (3.12)

and injected again in Eq. (3.10) allowing to write the following time evolution:

@t �̂ 0 = �
i
~

h
Ĥ 0

I (t); �̂ 0(0)
i

�
1
~2

Z t

0
dt0

h
Ĥ 0

I (t);
h
Ĥ 0

I (t0); �̂ 0(t0)
ii

: (3.13)

At this point we have to do the �rst important assumption of the approach, the
so calledBorn approximation. We assume that the interaction termĤ I is too weak
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to create a signi�cant correlation between the system and the bath. Furthermore,
one should keep in mind the large size of the bath. The e�ects of the interaction are
dispersed on the many degrees of freedom of the bath, and we can assume that its state
remains mostly unperturbed. This allows us to consider the following approximate
factorised expression:

�̂ (t) ' �̂ S (t) 
 �̂ B : (3.14)

Injecting this expression in Eq. (3.13) and tracing out the bath degrees of freedom
we �nd the time evolution of the reduced system density operator ^� 0

S
(in the interaction

picture):

@t �̂ 0
S

= �
1
~2

Z t

0
d� Tr B

nh
Ĥ 0

I (t);
h
Ĥ 0

I (t � � ) ; �̂ 0
S
(t � � ) 
 �̂ B

iio
; (3.15)

where we have introduced the variable� = t � t0 and where we have used the fact
that �̂ 0

B
(t) = �̂ B , since ^� B commute with ĤB and ĤS. The fact that the �rst term in

Eq. (3.13) vanishes is proven by noting that̂H I =~ = Ŝ 

P

k(gk b̂k + g�
k b̂y

k) and that at
thermal equilibrium ĥbk i T = 0.

In order to expand the Eq. (3.15) we �rst need to decompose the operator̂S.
Supposing a discrete spectrum, let us denote the eigenvalues and eigenstate ofĤS by
� and j� i respectively. Then we can de�ne the operators

Ŝ(! ) def=
X

� 0� � = ~ !

h� jŜj� 0i j � ih� 0j ; (3.16)

where the sum in this expression is extended over all the eigenvalues� 0 and � of ĤS

with a �xed energy di�erence ~! . This means that the operatorsŜ(! ) only couples
energy levels with a di�erence in energy equal to~ ! . They are not Hermitian, but
they satisfy the relation Ŝy(! ) = Ŝ(� ! ), and in the interaction picture frame they
read

e
i
~ Ĥ S t Ŝ(! ) e� i

~ Ĥ S t = e� i!t Ŝ(! )

e
i
~ Ĥ S t Ŝy(! ) e� i

~ Ĥ S t = e+ i!t Ŝy(! ) :
(3.17)

Summing over all the energy di�erences! (positive and negative) and employing the
completeness relation we get

X

!

Ŝ(! ) =
X

!

Ŝy(! ) = Ŝ : (3.18)

This allows us to recast the interaction Hamiltonian term into the form

Ĥ I =~ =
X

!

Ŝ(! ) 
 B̂ =
X

!

Ŝy(! ) 
 B̂ : (3.19)
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This is translated in the interaction picture as

Ĥ 0
I (t)=~ =

X

!

e� i!t Ŝ(! ) 
 B̂ 0(t) =
X

!

e+ i!t Ŝy(! ) 
 B̂ 0(t) (3.20)

where
B̂ 0(t) = e

i
~ Ĥ B t B̂ e� i

~ Ĥ B t =
X

k

�
gk e� i!t b̂k + g�

k e+ i!t b̂y
k

�
: (3.21)

Injecting the expression ofĤ 0
I (t) into the Equation (3.15) we obtain the following

expression for the time evolution of ^� 0
S
:

@t �̂ 0
S

=
1
~2

Z t

0
d� Tr B

n
Ĥ 0

I (t � � )
�

�̂ 0
S
(t � � ) 
 �̂ B

�
Ĥ 0

I (t)
o

�
1
~2

Z t

0
d� Tr B

n
Ĥ 0

I (t) Ĥ 0
I (t � � )

�
�̂ 0

S
(t � � ) 
 �̂ B

� o
+ h:c:

=
X

!; ! 0

ei (! 0� ! )t Ŝ(! )
� Z t

0
d�e i!� �̂ 0

S
(t � � )hB̂ 0(t)B̂ 0(t � � )i T

�
Ŝy(! 0)

�
X

!; ! 0

ei (! 0� ! )t Ŝy(! 0) Ŝ(! )
� Z t

0
d�e i!� �̂ 0

S
(t � � )hB̂ 0(t)B̂ 0(t � � )i T

�
+ h:c: :

(3.22)

To simplify the integral in the square brackets we need to spend some words on the
bath correlation hB̂ 0(t)B̂ 0(t � � )i T . First of all, we notice that the bath correlations
are homogeneous in time, which implies thathB̂ 0(t)B̂ 0(t � � )i T = hB̂ 0(� )B̂ 0(0)i T .
We can express this bath correlation by injecting the expression for̂B 0(t) in Eq (3.21):

hB̂ 0(� )B̂ 0(0)i T = Tr B

(

�̂ B

X

k

�
gk e� i! k � b̂k + g�

k e+ i! k � b̂y
k

� X

k0

�
gk0 b̂k0 + g�

k0 b̂y
k0

�
)

=
X

k

�
jgk j2 e� i! k � ĥbk b̂y

k i T + jgk j2 e+ i! k � ĥby
k b̂k i T

�

=
X

k

jgk j2
�

[1 + NT (! k)] e� i! k � + NT (! k) e+ i! k �
	

(3.23)

where we exploited the thermal equilibrium averages in Eqs. (3.5). It can be
shown [125, 126], that for the typical models of thermal bath, this correlation decays
to zero for large� . This is heuristically explained by considering that, for� larger
then a characteristic decay time that we call� B , the oscillation of the di�erent expo-
nentialse� i! k � from the di�erent modes are dephased and interfere destructively. This
destructive interference is more and more e�ective as the number of populated modes
is large, requiring the bath to be \large" enough and implying that� B decreases as
the temperature of the bath increases.
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This analysis on the bath correlation function now allows us to simplify the integral
in the square brackets in Eq. (3.22). To do so, we need to introduce the so called
Markov approximation. We assume that the time scale� B is much shorter than the
time scale�S in which the interaction picture density operator of the system changes
signi�cantly. It means that in the time in which hB̂ 0(t)B̂ 0(t � � )i T has a signi�cant
value, the density operator nearly is constant and we can approximate it as ^� 0

S
(t � � ) '

�̂ 0
S
(t). The validity of this approximation is based on the large size of the thermal

bath, which implies a small �B , and on the weakness of the interactionĤ I , that
determines the time scale of the density operator ^� 0

S
(t) relaxation. This is called the

Markov approximation because the fast decay of bath correlation, implies that the
time evolution is local in time. It means that the system time evolution at a certain
time does not depend on the past states of the system and of the bath: this de�nes a
Markovian memoryless evolution.

Applying the approximations introduced above, we can now simplify the integral
inside the square brackets in Eq. (3.22):

Z t

0
d� e i!� �̂ 0

S
(t � � )hB̂ 0(t)B̂ 0(t � � )i T = �̂ 0

S
(t)

Z t

0
d� e i!� hB̂ 0(� )B̂ 0(0)i T : (3.24)

Considering that for t � � B the bath correlation function is negligible, we can send
the upper limit of the integral to in�nity

�̂ 0
S
(t) �( ! ) = �̂ 0

S
(t)

Z 1

0
d� e i!� hB̂ 0(� )B̂ 0(0)i T ; (3.25)

where we have introduced the Fourier transform of the bath correlation function

�( ! ) =
Z 1

0
d� e i!� hB̂ 0(� )B̂ 0(0)i T : (3.26)

Using this expression to simplify the time evolution in Eq. (3.22) we obtain

@t �̂ 0
S

=
X

!; ! 0

ei (! 0� ! )t �( ! )
h

Ŝ(! )�̂ 0
S
(t) Ŝy(! 0) � Ŝy(! 0) Ŝ(! )�̂ 0

S
(t)

i
+ h:c: : (3.27)

At this point we introduce the last important approximation toward the derivation
of the Lindblad master equation: thesecular approximation. The exponential factor
is assumed to rotate rapidly compared to the time scale�S of the system relaxation.
Once again, this is justi�ed by assuming that the interactionĤ I is much weaker then
the system typical energy di�erences� 0 � � , where thef � g are the eigenvalues of̂HS.
Under this assumption the terms of the summation in Eq. (3.27) with! 6= ! 0 are
negligible in the time integration of the equation, and they can be neglected in the
equation for the time evolution:

@t �̂ 0
S

=
X

!

�( ! )
h

Ŝ(! )�̂ 0
S
(t) Ŝy(! ) � Ŝy(! ) Ŝ(! )�̂ 0

S
(t)

i
+ h:c: : (3.28)
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In order to obtain the Lindblad master equation in its �nal form we need to
compute the complex function �(! ). First of all, it is convenient to decompose �(! )
in its real and imaginary part

�( ! ) =
1
2

 (! ) + i �( ! ) ; (3.29)

where

�( ! ) =
1
2i

[�( ! ) � � � (! )] (3.30)

and

 (! ) =
1
2

[�( ! ) + � � (! )] =
Z 1

�1
d� e i!� hB̂ 0(� )B̂ 0(0)i T : (3.31)

The imaginary part �( ! ) induces a shift in the energy levels, it is also referred as the
Lamb shift induced by the system-bath coupling. In most circumstances this term
can be neglected [125, 126]. While the real part

 (! ) =
Z 1

�1
d� e i!� hB̂ 0(� )B̂ 0(0)i T

=
Z 1

�1
d� e i!�

X

k

jgk j2
�

[1 + NT (! k)] e� i! k � + NT (! k) e+ i! k �
	

=
X

k

jgk j2
�

[1 + NT (! k)]
Z 1

�1
d� e i (! � ! k )� + NT (! k)

Z 1

�1
d� e i (! + ! k )�

�

=
X

k

2� jgk j2 f [1 + NT (! k)] � (! � ! k) + NT (! k) � (! + ! k) g ;

(3.32)

Where we used
R1

�1 d� e i!� = 2�� (! ), the integral de�nition of the Dirac delta func-
tion. Injecting this expression of �(! ) into the time evolution Eq. (3.28), we get

@t �̂ 0
S

=
X

!> 0

X

k

� jgk j2[1 + NT (! k)] � (! � ! k)
h
2Ŝ(! )�̂ 0

S
(t)Ŝy(! ) �

n
Ŝy(! )Ŝ(! ); �̂ 0

S
(t)

oi

+
X

!> 0

X

k

� jgk j2NT (! k) � (! � ! k)
h
2Ŝy(! )�̂ 0

S
(t)Ŝ(! ) �

n
Ŝ(! ) Ŝy(! ); �̂ 0

S
(t)

oi
;

(3.33)

where the negative frequencies have been excluded by the summation considering that
! k > 0, while in the second term we used the propertŷS(� ! ) = Ŝy(! ). Now we can
de�ne the function

G(! ) =
X

k

� jgk j2 � (! � ! k) ; (3.34)
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and we obtain

@t �̂ 0
S

=
X

!> 0

G(! )[1 + NT (! )]
h

2Ŝ(! )�̂ 0
S
(t) Ŝy(! ) �

n
Ŝy(! ) Ŝ(! ) ; �̂ 0

S
(t)

oi

+
X

!> 0

G(! )NT (! )
h

2Ŝy(! )�̂ 0
S
(t) Ŝ(! ) �

n
Ŝ(! ) Ŝy(! ) ; �̂ 0

S
(t)

oi
:

(3.35)

The function G(! ) depends on the spectral density of the harmonic oscillator bath
and on the system-bath interaction strengthgk . Note that in most circumstances
the spectrum of the harmonic oscillator bath is a continuum, thus the summation is
replaced by an integral over! k and gk is a continuous functiong(! k). The function
G(! ) is non-zero-valued only in correspondence of a bath mode frequency. Looking
Eq. (3.35), the physical meaning ofG(! ) is clear: it only allows an exchange of energy
with the system if it is resonant with some frequency of the bath. The expression of
G(! ) in Eq. (3.34) is reminiscent of the Fermi's golden rule, it quanti�es the system
rate of emission in the environment. The two terms of Eq. (3.35) describe the two
directions of the system-bath energy exchange: the �rst term describes the system
loss of energy while the second one depicts the transfer of bath excitations toward the
system. Note that at zero temperature there are no excitations in the bath, indeed
NT (! ) = 0 and the second term vanishes. On the other hand the �rst term remains
�nite, and the energy is only drained away from the system.

It can be convenient to recast the Eq. (3.35) as

@t �̂ 0
S

=
 S

2

X

!> 0

eG(! )[1 + NT (! )]
h

2Ŝ(! )�̂ 0
S
(t) Ŝy(! ) �

n
Ŝy(! ) Ŝ(! ) ; �̂ 0

S
(t)

oi

+
 S

2

X

!> 0

eG(! )NT (! )
h

2Ŝy(! )�̂ 0
S
(t) Ŝ(! ) �

n
Ŝ(! ) Ŝy(! ) ; �̂ 0

S
(t)

oi
:

(3.36)

where we have introduced the dissipation rate S = 2G(! S ) and the dimensionless
spectral function eG(! ) = G(! )=G(! S ), with ! S the characteristic frequency of the
system: for instance the cavity mode frequency or atom transition frequency. It is
the time to go back to the Schr•odinger picture in which

�̂ S

def= e
i
~ Ĥ S t �̂ 0

S
e� i

~ Ĥ S t : (3.37)

The two terms of Eq. (3.36) are invariant under this transformation and we obtain
the following expression for the time evolution of ^� S :

@t �̂ S =
i
~

h
ĤS ; �̂ S

i
+

 S

2
DT (Ŝ)�̂ S (3.38)

whereDT (Ŝ) de�nes the dissipation superoperator at �nite temperatureT

DT (Ŝ)�̂ S =
X

!> 0

eG(! )[1 + NT (! )]
h

2Ŝ(! )�̂ S Ŝy(! ) �
n

Ŝy(! ) Ŝ(! ) ; �̂ S

oi

+
X

!> 0

eG(! )NT (! )
h

2Ŝy(! )�̂ S Ŝ(! ) �
n

Ŝ(! ) Ŝy(! ) ; �̂ S

oi
:

(3.39)
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Note that the dimensionless spectral functioneG(! ) depends on the kind of bath that
we are considering. For a 3D electromagnetic �eld, for instance,eG(! ) / ! 3 and it
vanishes for! ! 0.

Let us go a few steps backward. Before applying the rotating wave approximation,
the time evolution of �̂ 0

S
was expressed by Eq. (3.27). If we follow the same steps

detailed above we �nd that �̂ 0
S

is evolving as

@t �̂ 0
S

=

2

X

!> 0

X

! 0

ei (! 0� ! )t eG(! )[1 + NT (! )]
h
Ŝ(! )�̂ 0

S
(t)Ŝy(! 0) � Ŝy(! 0)Ŝ(! )�̂ 0

S
(t)

i
+ h:c:

+

2

X

!> 0

X

! 0

e� i (! 0� ! )t eG(! )NT (! )
h
Ŝy(! )�̂ 0

S
(t)Ŝ(! 0) � Ŝ(! 0)Ŝy(! )�̂ 0

S
(t)

i
+ h:c: :

(3.40)

Now we apply a kind of rotating wave approximation by neglecting only the negative
frequencies in the summation over! 0. This is justi�ed by considering that, ! being
positive, the factor e� i (! 0� ! )t rotates faster for those terms. At zero temperature,
with the assumption that eG(! ) = 1 is a constant, and going back to the Schr•odinger
picture we obtain that

@t �̂ S =
i
~

h
ĤS ; �̂ S

i
+


2

h
2Ŝ� �̂ S Ŝy

� �
n

Ŝy
� Ŝ� ; �̂ S

oi
(3.41)

where we have introduced the jump operator

Ŝ�
def=

X

!> 0

Ŝ(! ) =
X

!> 0

X

� 0� � = ~ !

h� jŜj� 0i j � ih� 0j =
X

� 0>�

h� jŜj� 0i j � ih� 0j ; (3.42)

in which we recall that f � g and fj � ig are the eigenvalues and eigenstates ofĤS respec-
tively. At T = 0, the bath can only absorb energy from the system, so only jumps
going downward in the system eigenstates are permitted (� 0 > � ).

3.1.2 Master equations for atoms and cavities

Let us apply the general Lindblad master equations that we have microscopically
derived above to the two elementary bricks of cavity QED models: linear cavities,
and two-level atoms. We will consider here the simpli�ed case of zero temperature
and constant spectral functionG(! ). In this conditions a very convenient description
is given by Equation (3.41).

Damped cavity master equation

Let us consider a single mode linear cavity, whose Hamiltonian is

Ĥc=~ = ! câyâ; (3.43)
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where ây and â are the creation and annihilation operator of a cavity �eld mode of
frequency! c. We assume that the cavity is coupled to the environment through the
interaction Hamiltonian:

Ĥ I =~ = Ŝ 
 B̂ = ( â + ây)
X

k

�
gk b̂k + g�

k b̂y
k

�
: (3.44)

Let us compute the jump operatorŜ� , using the eigenstates ofHc that are the Fock
states jni , i.e. Ĥc jni = n ~! c jni :

Ŝ� =
X

n0>n

hnjâ + âyjn0i j nihn0j =
X

n0>n

hnjâjn0i j nihn0j = â ; (3.45)

where we have used thathnjâ + âyjn0i = 0 for any n0 > n . The resulting Lindblad
master equation for a damped cavity at zero temperature is

@t �̂ = � i
�
! c âyâ ; �̂

�
+

 c

2

�
2â�̂ ây � âyâ�̂ � �̂ âyâ

�
; (3.46)

where c quanti�es the intensity of the coupling to the environment, that depends on
the values of thegk and on the bath density of states (Eq. (3.34)). This equation
e�ciently describes the dissipation of photons (and energy) into the bath. Indeed, by
considering the dynamics of the average number of photonŝN , we get

@thN̂ i = Tr
�

âyâ (@t �̂ )
	

= �  chN̂ i ) h N̂ i (t) = hN̂ i (0)e�  c t : (3.47)

Here, we see that the mean number of photons and the energy inside the cavity decays
exponentially to zero.

Dissipation and decoherence in a two-level atom

Let us now follow the same procedure for a two-level atom, whose Hamiltonian reads

Ĥa=~ =
! a

2
�̂ z ; (3.48)

and in which the interaction Hamiltonian between the system and the bath is chosen
to be

Ĥ I =~ = Ŝ 
 B̂ = ( �̂ � + �̂ + )
X

k

�
gk b̂k + g�

k b̂y
k

�
: (3.49)

Here the ^� operators are the usual Pauli matrices operating on the space of a two-
level system with transition frequency! a. We compute the jump operatorŜ� for the
two-level atom by using its eigenstatejgi and jei :

Ŝ� = hgj�̂ � + �̂ + jei j gihej = hgj�̂ � jei j gihej = �̂ � ; (3.50)
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where we used the equality ^� + jei = 0. Using this result, we can now express the zero
temperature Lindblad master equation of a damped two-level atom as

@t �̂ = � i
h! a

2
�̂ z ; �̂

i
+

 a

2
(2�̂ � �̂ �̂ + � �̂ + �̂ � �̂ � �̂ �̂ + �̂ � ) ; (3.51)

where, as for the damped linear cavity, a quanti�es the intensity of the coupling to
the environment.

Two-level systems (also called qubits, as shortcut for quantum bits) are the ele-
mentary bricks of quantum computation. The idea is to store information in these
systems and to exploit their quantumness to improve the performances of certain
algorithms. However, the coupling to the environment is an obstacle to this exploita-
tion, since the uncontrolled bath degrees of freedom represent a loss of information.
Imagine to store the information in a superposition ofjgi and jei , namely:

j	(0) i = ( jgi + jei )=
p

2: (3.52)

This quantum information is gradually deteriorated by the presence of the environ-
ment. Indeed the superposition coherencehej�̂ jgi exponentially vanishes as

@thej�̂ jgi = hej@t �̂ jgi = � (i! a +  a=2)hej�̂ jgi

) h ej�̂ (t)jgi = hej�̂ (0)jgi e� i! a t �  a t=2 :
(3.53)

This process of information loss in quantum systems is generally calleddecoherence.

3.1.3 Consistent master equation in the ultrastrong coupling
regime

In the previous section we have obtained the description of dissipation for a cavity
mode (Eq. (3.46)) and for a two-level system (Eq. (3.46)). At this point one could be
interested in determining the master equation of a generic cavity QED system̂HS in
which cavity and atom are coupled. A �rst guess could be to simply combine the two
dissipation terms of the cavity and the atom, into the following master equation:

@t �̂ = �
i
~

h
ĤS; �̂

i
+

 c

2

�
2â�̂ ây � âyâ�̂ � �̂ âyâ

�
+

 a

2
(2�̂ � �̂ �̂ + � �̂ + �̂ � �̂ � �̂ �̂ + �̂ � ) :

(3.54)
While this master equation, that is broadly used in quantum optics, is a good approx-
imation in the case of a weak couplingg �

p
! c! a between the cavity and the atom,

however, it can lead to very pathological results in the ultrastrong coupling regime.
Indeed, as we have seen in Section 2.2.3, the ground state of cavity QED models

in the ultrastrong coupling regime contains a �nite population of photons and atomic
excitations. What happens to these excitations when the dissipation is considered?
Are they going to be emitted in the environment? A na•�ve answer would be that,
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since the ground state contains photons and that the mirrors of the cavity are not
perfect, these photons should be able to escape the cavity. However this reasoning
leads to a wrong conclusion. Indeed, since these photons are part of the system ground
state, extracting a photon means to increase the state energy. At the same time, a
dissipated photon contributes to increase the environment energy. So, we �nish with
the contradictory conclusion that the total energy of the system and the environment
is clearly not conserved.

In order to better illustrate this idea, let us consider the concrete case of the
resonant (! c = ! a = ! ) Jaynes-Cumming model

ĤJC =~ = ! âyâ +
!
2

�̂ z + g(â �̂ + + ây�̂ � ) : (3.55)

Considering the same cavity-to-environment coupling chosen in the previous section,
we have

Ĥ I =~ = ( â + ây)
X

k

�
gk b̂k + g�

k b̂y
k

�
: (3.56)

Let us compute the jump operatorŜ� on the eigenstates of the Jaynes-Cumming
Hamiltonian that are presented in Section 2.2.3. Forg � ! we get

Ŝ� '
X

n0>n

X

�;� 0= �

hn; � jâ + âyjn0; � 0i j n; � ihn0; � 0j

=
X

n0>n

X

�� 0= �

hn; � jâjn0; � 0i j n; � ihn0; � 0j = â ;
(3.57)

where we used the fact thathn; � jâyjn0; � 0i = 0 for any n0 > n . In a similar way, for
an atomic coupling to the bath of the form in Eq. (3.49), and in the limit of weak
coupling g � ! , one can �nd that the jump operator is �̂ � . This means that in this
limit the master equation in Eq. (3.54) is a valid description of dissipation for the
Jaynes-Cumming model.

However, this is no more the case in the ultrastrong coupling regime. Indeed, for
g > ! the state j0; gi is no more the ground state of the system, and, since we have
that â j0; gi = �̂ � j0; gi = 0, Eq. (3.54) predicts that this state is stable. That an
excited state is stable in absence of driving and for a bath at zero temperature is not
physical. Furthermore, since ^a jn; �i ; �̂ � jn; �i 6= 0, the ground state jn; �i of the
system forg > ! is never stable under the action of the bare cavity and atom jump
operatorsâ and �̂ � .

Nevertheless, the general master equations that we have microscopically derived
in Section 3.1.1 (Eqs. (3.41) and (3.38)), are consistent with the ultrastrong coupling
regime and immune from the unphysical artefacts illustrated above.
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3.2 External driving

Most of the experiments in quantum optics, particularly those in cavity and circuit
QED, require the presence of an external driving, both to excite and to probe the
considered system. The driving can be of di�erent forms, electric or optical, coherent
or incoherent.

Here we start by consider the microscopic description of cavity mode coherently
driven by a laser beam. Let us consider the full quantum description of the laser �eld
and cavity mode through the total Hamiltonian

Ĥ tot =~ = ! c âyâ + ! p b̂yb̂+ g
�
ây + â

� �
b̂y + b̂

�
; (3.58)

where b̂ is the annihilation operator of the the laser �eld, ! p is its frequency, the
�̂ operators describe the two-level system degrees of freedom, andg quanti�es the
strength of the coupling, as detailed in Sec. 2.2.2.

The common assumption here, and in general whenever a system-environment
coupling is studied, is to consider the environment as una�ected by the system. Thus
the laser �eld stays in a coherent state and the total density matrix will be of the
form:

�̂ tot (t) = �̂ (t) 
 j � (t)ih� (t)j : (3.59)

Here ^� (t) is the density operator of the cavity andj� (t)i is the coherent state of the
laser �eld that, neglecting the e�ect of the interaction with the cavity, evolves as:

j� (t)i = e� i! p b̂y b̂ t j� 0i = j� 0e� i! p t i : (3.60)

Injecting the density operator de�ned by Eqs. (3.59) and (3.60) into the Liouville-von
Neumann equation

@t �̂ tot (t) = �
i
~

h
Ĥ tot ; �̂ tot (t)

i
; (3.61)

and tracing out the laser mode degrees of freedom we see that the density operator
of only the cavity evolves in time as

@t �̂ (t) = �
i
~

h
Ĥ (t); �̂ (t)

i
; (3.62)

with
Ĥ (t)=~ = ! c âyâ + 
 p cos(! pt)( â + ây) ; (3.63)

and where we introduced the pumping strength 
p = g� 0=2 (here we have chosen� 0

to be real).
Note that one can obtain a di�erent expression for the driving by using the rotat-

ing wave approximation (see Sec. 2.2.2) on the complete Hamiltonian in Eq. (3.58).
Neglecting the anti-resonant terms, and by following the same reasoning as above,
leads to obtain the following Hamiltonian for the driven cavity

Ĥpump (t)=~ = ! c âyâ + Fe� i! p t ây + F � ei! p t â ; (3.64)
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where we have introduced the complex pumping strengthF = g� 0 (for an arbitrary
complex � 0). Very similar expressions can be obtained to describe the driving of a
two-level atom, by simply replacing the creation and annihilation operators of the
cavity mode with the ladder operators� � .

Note that here the coupling to an external environmental bosonic mode does not
represent a loss of knowledge. Indeed, since the environment is in a precisely known
state, it does not reduce our knowledge on the observables of the cavity mode. This
explains why it has been possible to describe the coupling to this environment through
an Hamiltonian term for the cavity. This will not be the case for other kind of
environments in which a non-unitary time evolution is necessary, see subsection 3.1.

Rotating frame

It is in general not desirable to have a time dependence in the Hamiltonian. In the
case of the Hamiltonian driving term in Eq. (3.64), it is possible to move to a rotating
frame in which the time dependence is removed. This is done through the unitary
transformation

Û(t) = ei ! p ây â t : (3.65)

The cavity density operator in the rotating frame reads

�̂ 0 = Û�̂ Ûy ; (3.66)

and its time evolution is

@t �̂ 0 = ( @t Û)�̂ Ûy + Û�̂ (@t Ûy) + Û(@t �̂ )Ûy

= i! p
�
âyâ; �̂ 0

�
�

i
~

h
Ĥ 0; �̂ 0

i
= �

i
~

h
Ĥ 0 � ~ ! pâyâ ; �̂ 0

i
:

(3.67)

Thus the time evolution of the cavity density operator in the rotating frame is governed
by the relative Hamiltonian

Ĥ (rf ) = Ĥ 0 � ~ ! pâyâ = ÛĤ Ûy � ~ ! pâyâ

= � � ^ayâ + F ây + F � â :
(3.68)

where we introduced the frequency detuning � = ! p � ! c and where

Û(t) â Ûy(t) = e� i ! p t â : (3.69)

Note that the populations are unchanged by this transformation, this means that
computing the average of Hermitian operators, such as the number of photons ^ayâ
does not requires to go back in the non-rotating frame.



Chapter 4

Theory of quantum measurement
and trajectories

The degrees of control that experimental quantum optics has reached nowadays gives
a renewed value to the question of quantum measurement. Indeed, while in the
past it was only possible to test the ensemble properties of quantum systems, the
improvements in reducing the decoherence, and the advances in the precision of the
measurements, today allow physicists to track the quantum state trajectory even on
single shot experiments [87{89]. This is paving the way to new physics, encompassing
feedback control [86, 128] and quantum thermodynamics [90{93].

In this chapter we introduce the most basic elements of the theory of quantum
measurement. Traditionally, quantum physics describes the measurement through
the projection postulate. However, since the very early stages of the quantum theory
this postulate has stimulated intense debates, whose relation with the foundations of
quantum physics is reported in Section (4.1). In particular, we will show that in the
framework of an informational interpretation of quantum mechanics, the projection
measurement can be seen as an information update. While the projection postulate
represents the most basic description of a quantum measurement, in Sec. 4.2 we will
present a more general theory of measurement, in which other kinds of information
updates can be considered. In particular we will consider the case of the continuous
measurement, in which the continuous extraction of information allows to reconstruct
the quantum state trajectory of the system. In Section 4.3 we will present the physics
of stochastic quantum trajectories, and in particular their relation with the Lindblad
master equation approach.

4.1 The measurement problem in the foundations
of quantum physics

The measurement problem in quantum mechanics, and the associatedquantum state
collapse1, is one of the most intriguing { and often misunderstood { concept in physics.

1Note that for traditional reasons \quantum state collapse" is less used than \wave function
collapse". In order to stay more general, here we preferred to use the �rst expression, however
there are no substantial di�erences between them. Furthermore this term is also an equivalent
denomination of the projection postulate.

63
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Since the origin of quantum mechanics, this problem has stimulated vivid debates,
formulation of gedanken experiments and paradoxes [21, 129].

In quantum physics, a system is described by its quantum state that evolves de-
terministically, according to the Schr•odinger equation. When a certain observable is
measured, the quantum state collapses by projection into the eigenstate of the observ-
able operator that corresponds to the observed output value (this process is further
explained in section 4.2.1). This process, that is typically introduced as a postulate
of quantum physics, is characterised by some counterintuitive features.

� Randomness: even if the measurement apparatus and the system evolve deter-
ministically, the result of a measurement is in principle unpredictable. It is the
�rst time that a physical theory has an intrinsic randomness, which is generally
perceived as philosophically inconvenient. This unease is well expressed by the
famous sentence by Einstein: \God doesn't play dice with the world" (p.58 of
Ref. [20]).

� Nonlocality: the quantum state collapse is instantaneous and it changes the
system description at a distance arbitrary large with respect to the place in
which the measurement occurred. This seems to be at odds with the speed-of-
light limit and is the subject of the largely debated EPR paradox [21].

� Two di�erent evolution principles: there is no way to explain the random pro-
cess of quantum state collapse from the deterministic Schr•odinger equation; the
origins of the quantum state collapse as a physical process are unclear.

Classically, through an ideal measurement, it is in principle possible to determine
with certainty the values of all the system variables. In this condition of complete
knowledge, the results of all subsequent measurements are perfectly predictable. Al-
though measurement and probability are crucial for practical applications, they are
completely irrelevant in the foundation of classical mechanics.

The picture is completely di�erent in quantum physics. In this case, no matter
the perfection of the measurement or thedegree of knowledgeon the system, there is
always a measurement whose result is uncertain. The best one can do is to determine
the probability distribution of the physical system observables. One could interpret
this uncertainty as due to an incomplete knowledge of the considered quantum sys-
tem. This is the idea of\hidden" variable interpretations of quantum physics. They
attribute the randomness of quantum measurement to the existence of some \hidden"
variables whose knowledge is incomplete.

Although many of these interpretations are consistent (the most famous is prob-
ably the Bohm or pilot-wave theory [130, 131]) they are generally rejected by most
physicists. An important contribution in determining this rejection is probably due to
the result of Bell in 1964, who showed that any deterministic \hidden" variable theory
must be nonlocal [22]. The idea that a theory is based on nonlocal variables is indeed
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undesired. Less famous than the Bell's result, another black mark for deterministic
\hidden" variable theories is represented by the quantum contextuality. In any theory
that explains quantum mechanics in deterministic terms, the result of an observable
measurement depends on the speci�c setup of the measurement [7, 23].

Another viable option to reconcile these controversial aspects, is to interpret quan-
tum mechanics in terms of the knowledge and the information that an observer has
of a physical system. Rather then an element of reality, the quantum state can be
seen as the description of observer's knowledge about the system. In these terms, for
instance, the quantum state collapse is simply the update of the observer's knowledge
due to the new information obtained by the measurement. Just like in the classical
theory of probability and information, a knowledge update can be random, it can be
nonlocal and instantaneous2, and it happens in a very di�erent fashion compared to
the probability distribution time evolution.

Probably the �rst interpretation of quantum mechanics adopting this idea is due
to the Copenhagen school, and particularly to the original thinking of Bohr: \It is
wrong to think that the task of physics is to �nd out how nature is. Physics concerns
what we can say about nature" [132]. In the same vein, QBism, a very recent inter-
pretation of quantum physics, tries to extend the Bayesian conception of probability
to the quantum frame [5, 6]. In this view the quantum state is a representation of the
subjective degrees of beliefof the observer, as de�ned by decision theory and the de
Finetti's theorem [133, 134].

In the next sections, we will adopt this point of view. The quantum state is a
representation of the observer's knowledge about the realisation of the measurement
outcomes. The quantum state collapse is the update of the information that the
observer has about the system. Only one more conceptual assumption is needed
to justify certain properties of quantum measurements: any kind of measurement
is always accompanied by an interaction between the measured and the measuring
system. The measurement is an act of interaction. At the end of Sec. 4.2.1, we will
show the importance of this last assumption in a concrete situation.

4.2 General theory of quantum measurement

In the previous section we have interpreted the quantum state collapse as an update
of the information that an observer has on a system. In Sec. 4.2.1 we describe this
information update, within the mathematical formalism of quantum mechanics, and
in the form of a projective measurement. The projective measurement is not the only
way to acquire information from a system. For this reason in Sec. 4.2.2 we present

2When one acquires new information about a system that is correlated to a second distant system,
the knowledge update is instantaneous, and concerns both systems even if they are separated by large
distances. It may seem to be a nonlocal process, however it is not the case, because no faster-than-
light transmission of information occurs.
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a more general description of quantum measurement. We point that this section is
inspired by Ref. [135].

4.2.1 Projective measurement

In its traditional description, quantum measurement is de�ned in terms of projective
measurements. Let us consider the measurement of the observable�̂. This operator is
Hermitian and can be written in a diagonal form, in terms of its eigenspace projectors
�̂ � and the associated real eigenvalues� :

�̂ =
X

�

� �̂ � : (4.1)

For simplicity, we will assume the ensemblef � g to be discrete.
When a measurement of the observablê� is performed, one obtains as result one

of the eigenvaluesf � g. The probability p� (t) to observe a particular eigenvalue� at
time t, is provided by the Born rule [136]:

p� (t) = Tr
n

�̂ � �̂ (t)
o

(4.2)

where ^� (t) represents thea priori knowledge of the system at timet.
We are interested in determining thea posteriori conditional state after the mea-

surement, i.e. the state ^� � (t+ ) that we deduce at a timet+ just after obtaining from
the measurement the result� . This is determined by a projective update on thea
priori state �̂ (t):

�̂ � (t+ ) =
�̂ � �̂ (t)�̂ �

p� (t)
: (4.3)

If the system is in a pure state (a state of maximal knowledge) before the measurement,
i.e. �̂ (t) = j (t)ih (t)j, the Eqs. (4.2) and (4.3) can be simpli�ed as

p� (t) = h (t)j �̂ � j (t)i ; (4.4)

j � (t+ )i =
�̂ � j (t)i
p

p� (t)
: (4.5)

This is the mathematical formulation of theprojection postulateor the quantum state
collapse, as we referred to in Section (4.1). If, in addition, the spectrum of�̂ is non-
degenerate, then the eigenspace projectors can be expressed as�̂ � = j� ih� j (wherej� i
are the eigenstates of̂�), and Equation (4.3) de�nes a von Neumann measurement.

Given Eqs. (4.2) and (4.3), it is possible to determine the unconditional state
�̂ (t+ ), i.e. the state obtained when the measurement results are not retained:

�̂ (t+ ) =
X

�

p� (t)�̂ � (t+ ) =
X

�

�̂ � �̂ (t)�̂ � : (4.6)
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This implies that, if we do not keep track of the measurement results, ana priori
pure state will be in general updated to a mixed state, increasing the entropy of the
system.

From an information theory point of view, this is very strange: if one does not
receive any information on the outcomes of the measurement, then the state of knowl-
edge ^� should remain unchanged. To get out of this impasse, we recall an assumption
on the nature of quantum measurement that we introduced at the end of Section (4.1):
any kind of measurement is always accompanied by an interaction between the mea-
sured and measuring system. This interaction must be accounted for in the time
evolution of the system, and this introduces a �nite e�ect on the state of the mea-
sured system.

The picture is totally di�erent in the classical conception, in which measurement
is seen as a passive reception of information. From this point of view, rejecting the
outcomes is equivalent to not performing any measurement, and in both cases it would
leave the system state of knowledge unchanged.

4.2.2 General description of measurement

In undergraduate courses, the projective measurement is typically the only kind of
quantum measurement to be introduced. However, this is not the most general kind
of measurement. It describes an ideal measurement, and it is inadequate when the
measurement extracts only partial information about the observable or when one
needs to include the e�ect of errors.

Indeed, there are many situations in which thea posteriori conditional state ^� � (t+ )
is clearly not obtained through a projective update of thea priori state �̂ (t). This is
for instance the case in photon counting. As we will see in detail later, when a photon
is detected the state of the system is update by annihilating a photon:

�̂ det (t
+ ) / â �̂ (t) ây (4.7)

where â is the photon annihilation operator and ^� det describes the system state con-
ditional to the detection of a photon. The non-Hermitian operatorâ is clearly not a
projector.

A more generalised description of quantum measurement is provided by the for-
malism of positive-operator valued measures (POVM). In this formalism every mea-
surement outcomer is associated to an operatorM̂ r . When a measurement returns
the value r the system state is updated as

�̂ r (t + tm ) =
M̂ r �̂ (t)M̂ y

r

pr (t)
; (4.8)

wheretm is the measurement duration time that, contrary to the projective measure-
ment, is �nite. The operators f M̂ r g are calledmeasurement operators, and they are
not required to be Hermitian.
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The probability to measure the valuer given the a priori state of knowledge ^� (t)
is:

pr (t) = Tr
n

M̂ y
r M̂ r �̂ (t)

o
: (4.9)

Positive probabilities imply that the operators f M̂ y
r M̂ r g are positive semide�nite op-

erators. The fact that the probability must sum to 1 for anya priori state, the set of
operatorsf M̂ r g must satisfy the completeness relation:

X

r

M̂ y
r M̂ r = 1̂S ; (4.10)

where1̂S is the unit system operator. The set of operatorsf M̂ y
r M̂ r g is POVM, de�nes

a set of semide�nite positive Hermitian operators respecting the completeness relation,
explaining the name of the formalism.

Note that this formalism includes the projective measurement, however, it is not
based on the concept of \observable". The outcomesf rg are not necessarily eigen-
states of an observable Hermitian operator. They represent the possible results of
the measurement, but the kind of information that they bring (represented byM̂ r )
depends on the circumstances. This idea will be more clear when considering concrete
situations. In section 4.3 we will use the formalism to derive the description of photon
counting and homodyne detection.

The POVM formalism in terms of projective measurements

It is important to know, that any POVM can be obtained as an interaction with
an ancillary quantum system followed by a projective measurement on the ancillary
system.

Let us consider a system in the initial statej (t)i . The system interacts with an
ancillary system whose initial state isj� (t)i . The initial uncorrelated state of the total
system is

j	( t)i = j� (t)i j  (t)i : (4.11)

After a time t �
m the total system evolves into the state (~ = 1)

j	( t + t �
m )i = e� iH I t �

m j� (t)i j  (t)i ; (4.12)

where H I is the interaction between the two subsystems, which are now correlated.
Measuring one of them gives information on the other. The idea is now to recover
the measurement operatorM̂ r for the original system by performing a projective
measurement on the ancillary system.

Let us measure on the ancillary system the observablêR, whose spectrumf rg is
assumed to be discrete and non-degenerate. Thea posteriori state of the system,
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conditional to the observation of the outcomer is obtained by using the associated
projector � r = jr ihr j 
 1̂S:

j	( t + tm )i =
jr ihr j e� iH I t �

m j� (t)i j  (t)i
p

pr (t)
; (4.13)

where the probability of observing the valuer is

pr (t) = h (t)j h� (t)j e+ iH I t �
m

�
jr ihr j 
 1̂S

�
e� iH I t �

m j� (t)i j  (t)i : (4.14)

After the projective measurement the ancillary system is in the statejr i , the total
state is factorisable and the total system state can be written as:

j	( t + tm )i = jr i
M̂ r j (t)i
p

pr (t)
: (4.15)

Here we de�ned the measurement operator̂M r acting on the original system Hilbert
space, de�ned as

M̂ r = hr j e� iH I t �
m j� (t)i : (4.16)

It can be proven that any set of measurement operatorsf M̂ r g can be recast by the
suitable unitary evolution and a projective measurement [137]. This explains why only
the projective measurement is presented in undergraduate courses. Even if POVM
measurements are more general and useful for concrete applications, the projective
measurement is the fundamental description of measurement in quantum physics.

Imperfect measurement

It is important to note that the measurement formalism introduced above describe
the situation of an ideal measurement. On the other hand, one could be interested
in describing real measurements in which the role of experimental errors can not be
neglected. Referring to the previous subsection this can be explained for instance by
a mixed initial state of the ancilla or by imperfections in recording the projection
measurement results.

In this more general case the measurement description requires to introduceop-
eration superoperators. To every measurement outcomer is associated an operation
superoperator

Or �̂ =
X

j

Ôr;j �̂ Ôy
r;j (4.17)

acting on the space of the system density operators ^� .
After observing the outcomer the system state of knowledge is updated to the

conditional state

�̂ r (t + tm ) =
Or �̂ r (t)

pr (t)
; (4.18)
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wheretm is the measurement duration and

pr (t) = Tr fO r �̂ r (t)g = Tr

(
X

j

Ôy
r;j Ôr;j �̂

)

: (4.19)

Continuous weak measurement

Among the many kind of possible measurement, continuous monitoring plays a crucial
role, especially from an experimental point of view. Photon counting and homodyne
detection, are among the most used techniques in experimental quantum optics and
cavity QED [89, 126, 138{140]. In order to give a formal description of these mea-
surement (Sec. 4.3), we need to de�ne a continuous weak measurement. In simple
words it consists of a measurement that continuously monitors the system, without
introducing important perturbations on the system. Within the POVM formalism it
is possible to give a precise de�nition of this kind of measurements.

In the POVM formalism the unconditional state of the system ^� (t + tm ) is given
as

�̂ (t + tm ) =
X

r

pr (t)�̂ r (t + tm ) =
X

r

M̂ r (tm )�̂ (t)M̂ y
r (tm ) ; (4.20)

where we considerM̂ r (tm ) to depend on the measurement durationtm , that is indeed
justi�ed by Equation (4.16).

Contrary to the case of projective measurement (Eq. (4.6)), it is now possible
to have a set of measurement operatorsf M̂ r (tm )g such that Eq. (4.20) describes a
continuous evolution for anya priori state �̂ (t). More precisely, it is possible to choose
the measurement operatorsf M̂ r (tm )g such that

lim
tm ! 0

�̂ (t + tm ) � �̂ (t)
tm

=
d�̂ (t)

dt
(4.21)

de�nes a �nite di�erential when tm goes to zero. This condition de�nes a special
subclass of POVM measurements: the continuous weak measurements.

In some situation one can be interested in monitoring the system continuously.
At all times one would have a result and a conditional state, de�ning aquantum
state trajectory. In other words a continuous measurement is a measurement in which
information is continually extracted from a system. The requirement in Eq. (4.21)
means that the amount of information extracted goes to zero as the duration of the
measurement goes to zero: the measurement is weak.

In section 4.3 we will study the quantum state trajectories arising from two con-
tinuous weak measurements that are crucially important in experimental quantum
optics: photon counting and homodyne detection.
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4.3 Quantum trajectories and stochastic
Schr•odinger equations

In Chapter 3 we have seen that the information stored in a quantum system is generally
deteriorated by the coupling to the environment. Indeed, information is indeed lost
into the unmonitored degrees of freedom of the environment. Our knowledge of the
system is incomplete in this case, and the system is in general described through a
mixed-state density operator. However by performing a continuous measurement on
the environment it is possible to retrieve the lost information, and to track thequantum
trajectory of the maximal-knowledge pure state of the system. In this section we
consider two commonly used kinds of monitoring in quantum optics:photon counting
and homodyne detection. In particular we will derive a microscopical description of
photon counting in Sec. 4.3.1, and present the relation between stochastic evolutions
and the Lindblad master equation (Sec. (4.3.2)). Finally in Sec. 4.3.3 we briey
report, the formal step that allows to de�ne a di�usive stochastic evolution in the
case of homodyne detection.

We pointout that this section takes inspiration from Refs. [126, 135].

4.3.1 Photon counting: microscopic description

Let us consider a cavity QED system continuously monitored through photon count-
ing. The system is coupled to a bath represented by the modes of the extracavity
electromagnetic �eld. Assuming to be able to monitor all theses modes one could
detect all the photons that are released by the cavity QED system. This would allow
to track the state of the system at all times, i.e. to follow the quantum trajectory
of the system. The idea here is to model the system-bath energy exchanges and the
detection of these exchanges by continuously monitoring the environment.

Very similarly to what we did to derive the Lindblad master equation in Sec. 3.1.1,
we de�ne the total Hamiltonian of the systemS and the coupled environmentB as

Ĥ = ĤS + ĤB + Ĥ I ; (4.22)

where ĤS and ĤB are respectively the free Hamiltonian of the system and the en-
vironment, while Ĥ I describes the interaction between them. For this derivation we
�nd it convenient to use a bath of harmonic oscillators with a continuous spectrum:

ĤB =
Z 1

0
d! ~ ! b̂y(! )b̂(! ) ;

h
b̂(! ); b̂y(! 0)

i
= � (! � ! 0) ; (4.23)

whereb̂(! ) is the annihilation operator of the bath mode with only positive energies
! .

The interaction is modeled as

Ĥ I = i~
Z 1

0
d! g (! )( â � ây)

h
b̂(! ) + b̂y(! )

i
; (4.24)



72 Chapter 4. Theory of quantum measurement and trajectories

where g(! ) quanti�es the interaction strength and â is an operator acting on the
Hilbert space of the cavity QED system. More precisely, for this derivation we need
â to be of the form

â =
X

� 0� � = ~ ! 0

c�� 0 j� ih� 0j ; (4.25)

where c�� 0 are arbitrary complex coe�cients and where the sum runs over all the
eigenvalues� 0 and � of ĤS with an arbitrary energy di�erence ~! 0 > 0. Thus the
operator â encodes the loss of a precise amount of energy~ ! 0 in the system (very
similarly to an annihilation operator for a linear cavity). Note that this choice forâ is
quite general, indeed any interaction term can be decomposed in a sum of operators
like those assumed here.

In the interaction picture the evolution is determined by only the interaction
Hamiltonian term

Ĥ 0
I (t) = i~

Z 1

0
d! g (! )( â e� i! 0 t � âyei! 0 t )

h
b̂(! )e� i!t + b̂y(! )ei!t

i
: (4.26)

Adopting the rotating wave approximation, we neglect the anti-resonant terms, giving

Ĥ 0
I (t) = i~

Z 1

0
d! g (! )

h
â b̂y(! )ei (! � ! 0 )t � âyb̂(! )e� i (! � ! 0 )t

i
: (4.27)

At this point we need to use the Markov approximation. Since the coupling is weak
we can assume that in the time scale of the system-bath interaction, the exponential
terms in Eq. (4.27) oscillate very rapidly. This means that only the modes that are
very close to! 0 give a signi�cant contribution in the integral above. If g(! ) is smooth

enough, we can replace it by the constant valueg(! ) = g(! 0) def=
p

= 2� . For the
same reason we can also send the bottom limit of the integral to negative in�nity.
After this approximation the interaction Hamiltonian reads

Ĥ 0
I (t) = i~

p


h
â b̂y(t) � âyb̂(t)

i
; (4.28)

where the time-dependent bath operators

b̂(t) =
1

p
2�

Z 1

�1
d! b̂(! )e� i (! � ! 0 )t ; (4.29)

can be shown to be related by the following commutation relation
h

b̂(t); b̂y(t0)
i

= � (t � t0) : (4.30)

In section Sec. 4.2.2 we have shown that is possible to justify a general measure-
ment operatorM̂ r on the system, as a projective measurement on a coupled ancillary
system. Here the situation is pretty similar, the bath represents the ancillary system,
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and we will derive the photon-counting measurement operators of only the system
from a projective measurement on the bath mode.

Let us assume the bath at zero temperature, and in its vacuum statej0i . The
bath and the system are initially in a uncorrelated state

j	 0(t)i = j 0(t)i j 0i ; (4.31)

where j 0(t)i and j	 0(t)i are respectively thea priori state of the system and of the
total system in the interaction picture (j0i is unchanged in this picture).

The evolution of this state after a small interval of time � t is obtained through
the following operator

Û(t + � t; t ) = e� i
~

Rt +� t
t Ĥ 0

I (t1 ) d t1 = exp
�

p


Z t+� t

t

h
â b̂y(t) � âyb̂(t)

i
dt

�
: (4.32)

For small values of � t the evolution can be developed using a Dyson expansion. As
we will see below, due to delta function in the commutator in Eq. (4.30), we will need
to keep the second-order expansion of the time evolution operator:

Û(t + � t; t ) ' 1̂ �
i
~

Z t+� t

t
dt1 Ĥ 0

I (t1) �
1
~2

Z t+� t

t
dt1

Z t1

t
dt2 Ĥ 0

I (t1)Ĥ 0
I (t2) : (4.33)

Using this approximation and considering that̂b(t) j0i = 0 for all t we can compute
the state changej	 0(t + � t)i � j 	 0(t)i :

j	 0(t + d t)i � j 	 0(t)i '
p


Z t+� t

t
dt1 â b̂y(t1) j 0(t)i j 0i (4.34a)

� 
Z t+� t

t
dt1

Z t1

t
dt2 âyâ b̂(t1)b̂y(t2) j 0(t)i j 0i (4.34b)

+ 
Z t+� t

t
dt1

Z t1

t
dt2 â â b̂y(t1)b̂y(t2) j 0(t)i j 0i : (4.34c)

Even if the second term of this equation seems to be of second order in dt, it is not
the case. Indeed, since

b̂(t1)b̂y(t2) j0i =
h

b̂(t1); b̂y(t2)
i

j0i = � (t1 � t2) j0i ; (4.35)

the �rst integral in the term can be solved obtaining

� 
Z t+� t

t
dt1

Z t1

t
dt2 âyâ b̂(t1)b̂y(t2) j 0(t)i j 0i = �


2

Z t+� t

t
dt1 âyâ j 0(t)i j 0i : (4.36)

Going to the limit � t ! dt we �nd that
Rt+� t

t dt1 ! dt and so we can �nally express
the �rst-order time evolution of the state

j	 0(t + d t)i =
�

1̂ � dt 
âyâ
2

�
j 0(t)i j 0i +

p
dt

p
 â j 0(t)i j 1(t ) i (4.37)



74 Chapter 4. Theory of quantum measurement and trajectories

where we introducedj1(t ) i
def=

p
dt b̂y(t) j0i that represents the one-photon state in the

bath mode labelled byt, and with the property

h1(t ) j1(t0) i = d t h0j b̂(t)b̂y(t0) j0i = d t � (t � t0) (4.38)

Note that we dropped the third term in Eq. (4.34c), it is of order dt2 and thus negligible
(as we will see, it corresponds to the detection of two photons).

Let us now perform a projective measurement with a photon-detector that is able
to count the number of photons in the bath at timet. In other words a projective
measurement of the observablêby(t)b̂(t). By obtaining the result 0, the state of the
system is updated by projection on the bath vacuumj0i

j	 0
0(t + d t)i =

1
p

p0(t; dt)

�
1̂ � dt 

âyâ
2

�
j 0(t)i j 0i (4.39)

where

p0(t; dt) = h 0(t)j
�

1̂S � dt 
âyâ
2

� �
1̂S � dt 

âyâ
2

�
j 0(t)i h0j0i ; (4.40)

with 1̂S is the unitary operator of only the system. The same state update is described
by the measurement operator

M̂ 0
0 = 1̂S � dt 

âyâ
2

(4.41)

acting on the Hilbert space of only the system.
On the other hand, if the measurement returns the value 1 it means that a photon

has been detected in the bath and thea posteriori conditional state is updated as:

j	 0
1(t + d t)i =

p
dt

p


p
p1(t; dt)

â j 0(t)i j 1(t ) i ; (4.42)

wherep1 the probability to detect a photon

p1(t; dt) = d t  h 0(t)j âyâ j 0(t)i h1(t ) j1(t ) i : (4.43)

In the reduced space of only the system, the same update of the state is produce by
the measurement operator

M̂ 0
1 =

p
dt

p
 â : (4.44)

Note that, after the detection, the projective measurement is supposed to leave the
bath in the state j1(t ) i , while the approach is based on a initial vacuum state. In
reality, photon detection, at least at optical frequencies, is done by absorption, so the
bath is always left in the vacuum state. However, this consideration is not essential
to the validity of the approach presented. Indeed since the interaction with the bath
in assumed Markovian, at timet + d t the system is not a�ected anymore by the bath
mode b̂(t). The fact that this mode contains a photon is unimportant because the
system is already interacting with other modes that are still in the vacuum state.

In conclusion this derivation allowed to determine the expression of the photon-
counting measurement operators from a microscopic description.
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Photon-counting description from a minimal measurement model

An alternative procedure to derive the equations that describe the system evolution
under photon-counting monitoring is by de�ning the minimal model ful�lling the
requirement in Eq. (4.21), namely

�̂ (t + d t) � �̂ (t)
dt

=
P

r M̂ r (dt)�̂ (t)M̂ y
r (dt) � �̂ (t)

dt
(4.45)

must de�ne a �nite di�erential for every a priori state �̂ (t).
A minimal model for a continuous monitoring is a measurement that at all times

t returns at least two possible outcomes, i.e.r = 0; 1. A general guess forM̂ 0(dt) is
a linear expansion in dt, namely

M̂ 0(dt) = 1̂S �

 
R̂
2

+ i Ĥ

!

dt (4.46)

whereR̂ and Ĥ are Hermitian operators. Given this choice for̂M 0(dt) the second mea-
surement operatorM̂ 1(dt) is determined from the completeness relation in Eq. (4.10):

M̂ 0(dt)yM̂ 0(dt) + M̂ 1(dt)yM̂ 1(dt) = 1̂S : (4.47)

In order to satisfy this relation we have

M̂ 1(dt)yM̂ 1(dt) = 1̂S � M̂ 0(dt)yM̂ 0(dt) = R̂ dt : (4.48)

Then we conclude that a minimal model, ful�lling the requirements above (continu-
ous unconditional evolution and the completeness relation), is given by the following
measurement operators:

M̂ 0(dt) = 1̂S �
�

ĉyĉ
2

+ i Ĥ
�

dt ; (4.49a)

M̂ 1(dt) =
p

dt ĉ ; (4.49b)

where we introduce the arbitrary operator ^c (replacing R̂ = ĉyĉ) and whereĤ is an
Hermitian operator that allows to include the Hamiltonian evolution in our descrip-
tion.

The two measurement operators that we derived here from a minimal model of
continuous measurement are clearly equivalent to those we obtain by a microscopic
approach, under the replacement ^c !

p
 â. Except for absence of the Hamiltonian

that Ĥ (that is recovered by going back in the Schr•odinger picture) the operator̂M 0
0

in Eq. (4.41) is indeed equivalent to the measurement operator̂M 0 that we derived
here.
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According to Eq. (4.20), the unconditional evolution of the state under the action
of this measurement is

�̂ (t + d t) =
�
1 �

�
ĉyĉ
2

+ i Ĥ
�

dt
�

�̂ (t)
�
1 �

�
ĉyĉ
2

� i Ĥ
�

dt
�

+ d t ĉ �̂ (t) ĉy ; (4.50)

which is importantly equivalent to the following Lindblad master equation

d�̂ (t)
dt

= � i
h
Ĥ; �̂ (t)

i
+ D(ĉ)�̂ (t) ; (4.51)

where we used the superoperator

D(ĉ)�̂ = ĉ �̂ ĉy �
1
2

�
ĉyĉ �̂ + �̂ ĉyĉ

�
: (4.52)

Note that by replacing ĉ with
p

 â in Equation (4.51) one recovers the damped-
cavity master equation derived in Sec. 3.1.2 (Eq. (3.46)), reinforcing the idea that
this minimal model is a good description of photodetection.

4.3.2 Photon counting: stochastic quantum jumps

Once that photon-counting monitoring is de�ned in the formalism of quantum mea-
surement we are interested in studying the conditional evolution of the system, when it
is submitted to this kind of monitoring. We will see that it is possible to describe this
evolution through an \adapted" Schr•odinger equation based on stochastic Poissonian
increments.

Let us start by noting that the probability to obtain the result r = 1

p1(t; dt) = Tr
n

M̂ 1(dt)yM̂ 1(dt)�̂ (t)
o

= d t Tr
�

ĉyĉ �̂ (t)
	

(4.53)

is in�nitesimal. This means that for almost all times the result of the continuous
measurement will ber = 0, and that the system evolves according toM̂ 0(dt) in a
continuous (but non-unitary) evolution. At random times, and precisely at the rate
p1(t; dt)=dt, a result r = 1 occurs. These relatively rare events are calleddetections,
and they are accompanied by an abrupt discontinuous evolution, described by the
measurement operatorM̂ 1(dt), and that are called quantum jumps. This stochastic
time evolution is illustrated in Fig. 4.1. It is important to have in mind the con-
text in which we de�ned this stochastic behaviour. The detections are the result of
a measurement, and quantum jumps are the conditional updates of the observer's
knowledge of the system.

A convenient way to encode this kind of behaviour is through the so calledstochas-
tic Schr•odinger equation. First of all, we need to introduce the discontinuous function
N (t) denoting the number of photodetections counted up to timet. This function
allows to de�ne the stochastic increment dN (t) = N (t + d t) � N (t), that is equal 1
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Figure 4.1 The quantum trajectories of a linear cavity relaxing from the three
photon Fock state to the vacuum state, where quanti�es the coupling to the envi-
ronment. Top panel: three di�erent realisations of quantum trajectories. The abrupt
jumps correspond to the detection of photons. Bottom panel: the average of an
increasing number of trajectories approaches the solution of the master equation.

when a photon is detected and 0 otherwise. From this de�nition it is straightforward
to recognise the following properties of dN (t):

dN (t)2 = d N (t) ; (4.54a)

E[dN (t)] = p1(t; dt) = d t h c(t)jĉyĉj c(t)i ; (4.54b)

where we are assuming that the system is in a maximal-knowledge pure statej c(t)i
at time t, and where we introduced the ensemble expectation value E[�]. The subscript
c in the state j c(t)i , stands for conditional. From now on all the states considered are
conditional on the result of the detection, and the bracketsh � ic(t) = h c(t)j � j  c(t)i
denote the average on these states.

The conditional evolution de�ned by the measurement operators in Eqs. (4.49a)
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and (4.49a) can alternatively be expressed as

d j c(t)i = d N (t)

 
ĉ

p
ĥcyĉi c(t)

� 1̂S

!

j c(t)i

+ [1 � dN (t)] dt
�

ĥcyĉi c(t)
2

�
ĉyĉ
2

� i Ĥ
�

j c(t)i ;

(4.55)

where we used the expansion of the denominator in the state update associated toM̂ 0

to the �rst order in d t:

j c0(t + d t)i =
M̂ 0 j c(t)iq

hM̂ y
0M̂ 0i c

=
�

1̂S � dt
�
i Ĥ +

ĉyĉ
2

�
ĥcyĉi c(t)

2

��
j c(t)i : (4.56)

The stochastic evolution in Equation (4.55) can be simpli�ed further by considering
that dN (t) dt = o(dt):

d j c(t)i =

"

dN (t)

 
ĉ

p
ĥcyĉi c(t)

� 1̂S

!

+ d t
�

ĥcyĉi c(t)
2

�
ĉyĉ
2

� i Ĥ
� #

j c(t)i :

(4.57)
This expression de�nes the stochastic Schr•odinger equation for a photon-counting
monitoring. Note that the equation is nonlinear inj c(t)i due to the presence of the
averagesh�ic. The name of the equation comes from the fact that the equation acts
on and is solved by pure states.

As we have seen in Equation (4.51) the unconditional state of the system evolves
according to a Lindbladian master equation. In accordance with this, here we show
that the ensemble average ofj c(t)i evolves through the same master equation. Let
us de�ne the pure state density operator ^� c(t) = j c(t)ih c(t)j. Its time evolution is
given by (using the notationjd c(t)i = d j c(t)i )

d�̂ c(t) = jd c(t)ih c(t)j + j c(t)ihd c(t)j + jd c(t)ihd c(t)j

=
n

dN (t)G(ĉ) � dt H (i Ĥ + ĉyĉ=2)
o

�̂ c(t)
(4.58)

where we introduced the nonlinear superoperators

G(r̂ )�̂ =
r̂ �̂ r̂ y

Tr f r̂ yr̂ �̂ g
� �̂ ; (4.59a)

H(r̂ )�̂ = r̂ �̂ + �̂ r̂ � Tr f r̂ �̂ + �̂ r̂ g �̂ : (4.59b)

The ensemble average state of the system is de�ned as

�̂ (t) = E[ �̂ c(t)] =
X

�̂ c

�̂ c(t)p(�̂ c; t) ; (4.60)
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where the sum over all the possible ^� c and p(�̂ c; t) is the probability to be in such ^� c

at time t. By using the relation

E[ dN (t)�̂ c(t)] =
X

�̂ c

p1(t; dt) p(�̂ c; t)�̂ c(t) = d t E[ Tr
�

ĉyĉ �̂ c(t)
	

�̂ c(t)] ; (4.61)

one can easily retrieve the same Lindbladian master equation in Eq. (4.51)

d�̂ (t)
dt

= � i
h
Ĥ; �̂ (t)

i
+ D(ĉ)�̂ (t) : (4.62)

This basically means that if we take an in�nite number of solution to the stochastic
Eq. (4.57), the average of them is a solution of the Lindbladian master equation, as
illustrated in the bottom panel of Fig. 4.1. The Monte Carlo wave function (MCWF)
method, one of the most used (numerical) method in the study of open quantum
system is based on this idea [141{144]. The next section is devoted to introduce this
method.

Furthermore, we would like to stress that this relation between quantum trajec-
tories and Lindblad master equation clari�es the physical meaning of the latter. The
Lindblad master equation describes the evolution of the density operator, represent-
ing our knowledge about the system, when we do not use any information about the
environment. Information from photodetection measurement on the environment al-
lows to infer a more precise estimation of the system state. In the ideal case in which
all the photons escaping a cavity QED system are detected, our knowledge about the
system can be described by a maximal-knowledge pure state at all times provided
that the system was in a pure state at the initial time.

Monte Carlo wave function method

The existence of a mathematical map between the Lindblad master equation and
stochastic state trajectories has been emphasised the �rst time in 1992 by Dalibard et
al. [141]. This mathematical map has been later developed [142, 143], and extensively
exploited for numerical approaches to open quantum system [144].

The idea is to approximate the solution of the Lindblad master equation by averag-
ing a large number of quantum state trajectories. The numerical advantage behind the
success of this method consists in the fact that, by simulating a stochastic Schr•odinger
equation, one only has to deal with a state of dimensiond (the Hilbert space dimen-
sion), while working with density operator requires a space of orderd2. This means
that this stochastic techniques, require less memory than a direct numerical integra-
tion, permitting to solve a master equation for larger values ofd. In addition, the
quantum trajectories can be sampled on di�erent processors via parallel computing,
that can considerably reduce the computing time of the method.

Let us consider the following general form for the Lindblad master equation

d�̂ (t)
dt

= � i
h
Ĥ; �̂ (t)

i
+

X

�

D(ĉ� )�̂ (t) : (4.63)
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The stochastic Schr•odinger equation whose average is equivalent to this master equa-
tion, is a generalised one in which the state of the system is conditional on di�erent
distinguishable type of detections labeled by� :

d j c(t)i =

2

4dN � (t)

0

@ ĉ�q
ĥcy

� ĉ� i c(t)
� 1̂S

1

A + d t

 
ĥcy

� ĉ� i c(t)

2
�

ĉy
� ĉ�

2
� i Ĥ

! 3

5 j c(t)i ;

(4.64)
with

E[dN � (t)] = p� (t; dt) = d t ĥcy
� ĉ� i c(t) ; (4.65a)

dN � (t)dN � (t) = d N � (t)� �� : (4.65b)

The simplest method to solve this stochastic equation is to de�ne a small time interval
�t , and to compute the in�nitesimal state evolution by random generation of the
increments�N � (t) = 0 ; 1.

However, since the increments�N � (t) are most of the time equal to zero, this is
not the most e�cient approach. A more e�cient way to sample a quantum trajectory
is through an iterative method, whose steps are listed above.

1. We choose the initial normalised statej c(t0)i at times t0.

2. A real numberr 2 [0; 1] is randomly generated.

3. Given the unnormalised statej e c(t)i , whose evolution

d j e c(t)i
dt

= �

 
X

�

ĉy
� ĉ�

2
+ iĤ

!

j e c(t)i ; (4.66)

is not unitary, we let evolve this state fromj e c(t0)i = j c(t0)i up to the time
t1 in which the norm he c(t1)j e c(t1)i = r . The time t1 is the time in which the
next detection occurs.

4. For the detection at time t1 we randomly generate its type� 1, according to the
following probabilities that are conditional on the detection occurrence:

�p� (t1) =
p� (t1; dt)

P
� p� (t1; dt)

=
ĥcy

� ĉ� i c(t1)
P

� ĥcy
� ĉ� i c(t1)

: (4.67)

Note that computing the averagesh � ic on the unnormalised statej e c(t1)i pro-
vides the good values for �p� (t1).

5. The normalised state of the system at timet1 is updated according to the
occurred type of detection:

j c(t1)i =
M̂ � 1 j e c(t1)i

q
he c(t)j M̂ y

� 1 M̂ � 1 j e c(t1)i
=

ĉ� 1 j e c(t1)i
q

he c(t)j ĉy
� 1 ĉ� 1 j e c(t1)i

(4.68)
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Figure 4.2 The two schemes of detection. Photon counting on the right side and
homodyne detection on the left.

6. The method is iterated usingj c(t1)i as the initial state.

At the end of this procedure, we �nish with a set of couplesf (� 1; t1); ( � 2; t2); : : : ; (� n ; tn )g
(with t1 < t 2 < : : : < t n ), reporting the times and the types of registered detections,
and that univocally de�nes a quantum trajectory.

The advantage of this method stays in the fact that since the detection are rare
events it is convenient to generate the time of the next detection rather then generating
the increments �N � (t) at each interval of time �t . The main numerical weight is
represented by the integration in the step 3. However Eq. (4.66) is an ordinary linear
di�erential equation that is e�ciently solved by standard numerical techniques, such
as Runge-Kutta integration.

Let us better clarify the meaning of step 3. The non-unitary evolution in Equa-
tion (4.66) is equivalently described by the (unnormalised) action of the non-detection
measurement operatorM̂ 0(dt) = 1̂S � dt(

P
� ĉy

� ĉ� =2+ iĤ ). The norm of j e c(t)i is then
equivalent to the probability of having no-detection up to timet. Thus it represents
the right probability distribution to use in generating the random time of the next
detection.

4.3.3 Homodyne detection: stochastic di�usive evolution

Beyond photon counting, another possible way to continuously monitor a quantum-
optical system is through homodyne detection. It consists in a widely-used experi-
mental technique which allows to access the cavity �eld quadratures [89, 138, 139].

The implementation of this kind of measurement is illustrated in Fig. 4.2. The
cavity output �eld is mixed to a coherent �eld of a reference laser through a beam
splitter. The mixed �elds are then probed via (perfect) photodetectors. Assuming
the beam splitter to be of perfect transmittance and the coherent �eld to have a large
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amplitude, one can show that the measurement operator for the detection of this �eld
is

M̂ 1(dt) =
p

dt (ĉ + � ) (4.69)

where� is the coherent �eld amplitude [126, 135] . In order to ful�ll the completeness
relation, the measurement operator for no-detection is required to be

M̂ 0(dt) = � dt
�
i Ĥ +

1
2

�
� � ĉ � � ĉy

�
+

1
2

�
ĉy + � �

�
(ĉ + � )

�
(4.70)

Note that these measurement operators can alternatively be obtained from the oper-
ators in Eqs. (4.49) through the transformation:

ĉ ! ĉ + � ; Ĥ ! Ĥ � i
1
2

(� � ĉ � � ĉy) : (4.71)

Furthermore, the Lindblad master Equation (4.51) is invariant under this transfor-
mation. This means that the homodyne quantum trajectories generated by the mea-
surement operators in Eqs. (4.69) and (4.70) are an alternative unraveling of the same
master equation that describes the unconditional evolution of the system in the case
of photon counting, Eq. (4.51).

The ideal limit of homodyne detection is when the coherent �eld amplitude�
goes to in�nity. In this case the number of detections per time unit is very large,
and a stochastic Schr•odinger equation based on point process increments dN (t) (see
Eq. (4.57)), would not be the most convenient representation anymore. Indeed, a
numerical implementation in these terms would require a too small time interval�t
in order to ensure a negligible probability of multiple counting. The probability of a
detection is indeed very large, and equal to

p1(t; dt) = h(ĉ + � )y(ĉ + � )i c(t) dt '
�
� 2 + � ĥc + ĉyi c(t)

�
dt ; (4.72)

where the approximation is valid in the limit of � ! 1 . Note that here, and in the
following, the amplitude � is for simplicity chosen to be real.

Even if detections are very frequent, the detected �eld is almost entirely due to
the coherent �eld, associated to the operators� . This means that a single detection
contains very little information about the system, and that the total jump operators
ĉ + � have a very small e�ect on its state. Indeed the action of the single detection
measurement operatorM̂ 1

M̂ 1 j c(t)iq
hM̂ y

1M̂ 1i c

'
(ĉ + � ) j c(t)ip

h(ĉ + � )y(ĉ + � )i c(t)
(4.73)

approaches the identity in the limit of � ! 1 . In this limit, the occurrence of an
in�nite number of jumps is counterbalanced by their in�nitesimally small e�ect on the
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system. Indeed, it has been shown that the resulting e�ective dynamics is a stochastic
di�usive evolution of the system state [142, 145]. Without entering the details of the
calculations here we present the main concepts of this derivation.

Let us assume a small time interval�t with the precise scaling�t = O(� � 3=2). From
Eq. (4.72), the number of detections within this time interval�N = O(� 2�t ) = O(� 1=2)
is large, and the average change of the system, ofO(�t ) = O(� � 3=2) is small. Under
this assumption, the average number of detections in the time interval�t reads

E[ �N (t) ] ' p1(t; �t ) '
�
� 2 + � ĥxi c(t)

�
�t : (4.74)

This is dominated by the contribution from the coherent �eld, and it is linear with
the average �eld quadratureĥxi c = ĥc + ĉyi c. Since the system evolution during the
time �t is small, the probability of a single detection per unit of time is constant. This
implies that the statistics of �N (t) is mostly Poissonian, thus we can conclude that
its variance is

Var[ �N (t) ] ' � 2�t : (4.75)

Furthermore, since the average is very large we can consistently attribute to�N (t) a
Gaussian statistics, and write

�N (t) = � 2�t + � ĥxi c(t) �t + � �W (t) ; (4.76)

where�W (t) are a Wiener increments with a Gaussian statistics characterised by

E[ �W (t) ] = 0 and E[ �W 2(t) ] = �t : (4.77)

These Wiener increments describe the uctuation around the average value of the
homodyne photocurrent.

At this stage we can write the unnormalised evolution of the conditional state of
the system over the time interval�t as

j e c(t + �t )i = N̂ (t + �t � tm )( ĉ+ � )N̂ (tm � tm� 1) � � � (ĉ+ � )N̂ (t1 � t) j c(t)i ; (4.78)

where t1; t2; : : : ; tm are the times of them detections recorded in the time�t , and
where the time evolution between two detections is described by the operator

N̂ (t1 � t) = exp
�

�
�
i Ĥ +

1
2

�
2� ĉ + ĉyĉ + � 2

�
�

(t1 � t)
�

: (4.79)

Note that this operator is obtained from the repeated action of the no-detection
measurement operatorM̂ 0(dt) in Eq. (4.70). Since the time interval �t is small,
the system change over this time is typically small as well. This implies that the
conditional state in Eq. (4.78) is approximatively independent on the detection times
t1; t2; : : : ; tm [145]. This allows to move all the collapse operator at the beginning of
the evolution and to rewrite the unnormalised conditional state as

j e c(t + �t )i = N̂ (�t ) ( ĉ + � )m j c(t)i ; (4.80)
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Figure 4.3 Comparison between the photon-counting and homodyne-detection
quantum trajectories for a linear cavity relaxing from the three photon Fock state
to the vacuum state ( quanti�es the coupling to the environment). The homodyne
trajectories follow a di�usive evolution.

Since we are only considering the evolution of the unnormalised state we can drop the
factor exp(�t � 2=2) � m and write

j e c(t + �t )i = exp
�
� i Ĥ�t �

1
2

�
2� ĉ + ĉyĉ

�
�t

� �
1̂S +

ĉ
�

� m

j c(t)i : (4.81)

Expanding this expression and substitutingm with the expression of�N in Eq. (4.76),
one obtains an approximated formulation for the conditional state that becomes exact
in the limit of � ! 1 . In this continuous limit �t ! dt, �W (t) ! dW(t) and, after
renormalisation of the conditional state, it can be shown that the conditional time
evolution under homodyne monitoring is

d j c(t)i =
�

� i Ĥ dt �
1
2

�
ĉyĉ + 2ĥx=2i c(t) ĉ + ĥx=2i 2

c(t)
�

dt

+ [ ĉ � h x̂=2i c(t) ] dW(t)
�

j c(t)i :
(4.82)

This equation de�nes the stochastic Schr•odinger equation of homodyne detection. By
this equation one can simulate the conditional quantum trajectory, taking a reasonably
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small dt and generating stochastic Wiener increments at each time step. The initial
state combined with the history of the occurred dW(t) completely de�ne a singular
homodyne conditional state trajectory. Note in Eq. (4.82) that, by performing the
limit, we lost the dependence on the values of� . Even if the underlying measurement
is detection, the quantum jumps of photon counting have been reduced to a continuous
di�usive evolution, as illustrated in Fig. 4.3.

In a very similar way to what we did in Sec. (4.3.2) we can determine the stochastic
evolution of the conditional density matrix ^� c(t) = j c(t)ih c(t)j. Having in mind that
dW 2(t) = d t, it is easy to prove that

d�̂ c(t) = jd c(t)ih c(t)j + j c(t)ihd c(t)j + jd c(t)ihd c(t)j

= � i
h
Ĥ; �̂ c(t)

i
dt + D(ĉ)�̂ c(t) dt + H(ĉ)�̂ c(t) dW(t);

(4.83)

where the superoperatorH has been de�ned in Eq. (4.59b) andD is the usual dissi-
pation term of Lindblad master equation de�ned in Eq. (4.52).

As we mentioned at the beginning of the section, the unconditional evolution
under homodyne monitoring is the same as in photon counting, i.e. the master Equa-
tion (4.51). Indeed the Wiener increments dW(t) are uncorrelated to the state of the
system ^� c(t), then we have

E[ H(ĉ)�̂ c(t)dW(t)] = E[ H(ĉ)�̂ c(t)] E[ dW(t)] = 0 : (4.84)

This implies that the average state of the system ^� (t) = E[ �̂ c(t)] is a solution of the
Lindblad master Equation (4.51)

d�̂ (t)
dt

= � i
h
Ĥ; �̂ (t)

i
+ D(ĉ)�̂ (t) ; (4.85)

Once again we have seen that the Lindblad master equation describes the evolution of
our knowledge about the system, when the information is lost in an unmonitored envi-
ronment. Homodyne detection allows to retrieve this information and to describe the
system in a state of maximal knowledge, a pure state. Note that the photon-counting
and the homodyne detection trajectories are very di�erent. One is characterised by
quantum jumps, the other by a di�usive evolution, however both the evolution aver-
age to the same master equation. This means that the way in which we monitor the
same environment, drastically condition the evolution of the system quantum state.





Chapter 5

Ancillary qubit spectroscopy of
exotic vacua

In recent years, cavity quantum electrodynamics (QED) has thrived thanks to the
possibility of controlling light-matter interaction at the quantum level, which is rel-
evant for the study of fundamental quantum phenomena, the generation of arti�cial
quantum systems, and quantum information applications [27]. The �eld has more re-
cently blossomed in solid-state systems, particularly in superconducting circuit QED
[41, 74] and semiconductor cavity QED [52].

In conventional cavity QED, photons are present only in the excited light-matter
states of the system and can escape the cavity due to a �nite transparency of the
mirrors. The situation changes drastically in the so-called ultrastrong light-matter
coupling regime[58, 61, 64{67], achieved when the light-matter interaction rate is
comparable or larger than the photon frequency. Indeed, it can become energetically
favorable to have photons in the ground state. However, such ground state photons
are bound to the cavity and cannot escape, since that would violate energy conserva-
tion[146].

In the 'thermodynamic' limit where a large numberN of two-level systems are
(ultra)strongly coupled to a single bosonic mode, phase transitions can occur with
non-trivial and degenerate vacua. The vacuum properties depend on the details of
the light-matter coupling and on the Hamiltonian symmetries. These phase transitions
are associated with symmetry breaking: it is a discreteZ2 symmetry for the phase
transition [68{70, 73] in the Dicke model [28] where the non-rotating wave terms of
light-matter interaction are considered; it is a continuousU(1) symmetry in the case
of the Tavis-Cummings model [30, 71] where non-rotating wave terms are absent.
Such symmetries can be controlled in models where the two-level systems are coupled
to both quadratures of the bosonic �eld [72]. On the other hand, in Hamiltonians
containing a strong enough quadratic renormalisation of the cavity photon frequency
(e.g., due to the squared electromagnetic vector potential term), the ground state
is a two-mode squeezed vacuum, but no phase transition occurs [63]. This is the
case for the Hop�eld model [29], notably realised in semiconductor microcavities [64{
67]. The fundamental meaning and validity of cavity and circuit QED quantization
procedures is critically at play in the ultrastrong coupling regime, since di�erent forms
of Hamiltonians lead to extremely di�erent physical phenomena [118{120]. Protocols
to detect the properties of cavity vacua are therefore of strong signi�cance, not only
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for a study of intriguing ground states, but also as a sensitive test of fundamental
microscopic theories.

In this context, a crucial question arises: how to detect ground state photon pop-
ulations and correlations without destroying them? In principle bound photons in
cavity (circuit) QED vacua can be released by a non-adiabatic, ultrafast modulation
of the Hamiltonian parameters [64, 121{123, 147, 148], which can convert a ground
state into an excited state. While non-adiabatic QED provides an interesting way of
observing nonclassical quantum vacuum radiation, �nding a non-invasive and sensi-
tive probe of the ground state properties remains highly desirable. Some theoretical
work [149, 150] in circuit QED has suggested to study the coupling between a Dicke
system and an additional superconducting qubit, showing that Dicke criticality can be
observed via current transport measurements. However, in Ref. [149] the considered
e�ective dispersive interaction between the cavity system and the auxiliary qubit de-
pends only on the cavity photon population, and not on the intracavity light-matter
correlations; moreover the dissipation has not been treated with a master equation
which is valid in the ultrastrong coupling regime [151], which is essential to avoid
artifacts such as the instability of the ground state and the excitation of the system
in the absence of driving [146, 151].

In this chapter, we show that the spectroscopy of an ancillary qubit, moderately
coupled to a cavity QED system, depends sensitively on the type of vacuum. By
driving this ancillary qubit and analyzing its frequency response, we show that it
is possible to have distinct signatures of the ground state photon populations and
correlations without destroying them. We explore this protocol by considering three
di�erent classes of systems described respectively by the Dicke, Tavis-Cummings and
Hop�eld models, whose Hamiltonian are introduced in Sec. 5.1. Each of these models
has a ground state with di�erent properties.

Sections 5.2 and 5.3 report our main results. We show numerically and analytically
that the Lamb shift of the ancillary qubit transition is very sensitive both to the
photon populations and correlations of exotic vacua. We explore the back-action of the
ancillary qubit on the cavity ground state and determine the key physical quantities
a�ecting the �delity of the measurement, consistently including the dissipation e�ects
in the ultrastrong coupling regime.

Finally in Sec. 5.4 we show how the �nite temperature a�ects our measurement
protocol and we provide a detailed derivation of e�ective Hamiltonians in the disper-
sive regime.

5.1 The model

As sketched in Fig. 5.1, we will consider an ancillary qubitM coupled to the bosonic
mode of a cavity (circuit) QED systemS. In particular, we will deal with the following
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Figure 5.1 A sketch of a cavity (circuit) QED system S consisting of a single-
mode resonator coupled toN two-level (arti�cial) atoms. An ancillary qubit M is
also coupled to the resonator boson mode. The spectroscopy of the ancilla is used to
probe quantum ground state properties ofS. Note that in experimental realisations,
also the ancillary qubit can be inserted inside the cavity.

time-dependent Hamiltonian (~ = 1),

Ĥ (t) = ĤS +
! M

2
�̂ (M )

z + gM
�
ây + â

�
�̂ (M )

x + 
 p cos(! pt)�̂ (M )
x ; (5.1)

where ĤS is the system Hamiltonian,gM is the coupling between the measurement
qubit and the boson �eld, whose boson annihilation operator isa. The �̂ (M )

i Pauli
operators act on the Hilbert space of the qubitM , whose transition frequency is! M ,
while 
 p is the amplitude of the driving �eld (see Sec. 3.2) with frequency! p acting
on M .

In the following, ĤS will be one of the three Hamiltonians, describing respectively
the Dicke, Tavis-Cummings and Hop�eld-like models (~ = 1):

ĤDicke = ! câyâ + ! aĴz +
�

p
N

�
ây + â

� �
Ĵ+ + Ĵ�

�
; (5.2a)

ĤT C = ! câyâ + ! aĴz +
�

p
N

�
âyĴ� + âĴ+

�
; (5.2b)

ĤHopf ield = ĤDicke + D
�
ây + â

� 2
; (5.2c)
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where! c is the frequency of the bosonic mode,! a is the transition frequency of each
of the N identical two-level atoms, � is the collective coupling andD = � 2=! a is
the strength of the boson renormalisation term in the Hop�eld model. TheĴi are
the angular momentum operators representing the collective pseudo-spin associated
to the N two-level systems, namely

Ĵz =
1
2

NX

i =1

�̂ (i )
z ; Ĵ� =

NX

i =1

�̂ (i )
� ; (5.3)

where the Pauli matrices here refer to each two-level system. Sec. 2.2.3 and Sec. 2.2.2
provide a more detailed description of these models.

5.2 Spectrum analysis and Lamb shift

We start by considering the energy levels of̂HS+ M , describing the systemS coupled
to the measurement qubitM , namely:

ĤS+ M = ĤS +
! M

2
�̂ (M )

z + gM
�
ây + â

�
�̂ (M )

x : (5.4)

The eigenstates and their energies are de�ned bŷHS+ M j� i = � j� i . SystemS will be
of the Dicke, Tavis-Cummings or Hop�eld type, as shown in Figs. 5.2 and 5.3. We
consider a qubit transition frequency! M detuned with respect to the boson frequency
! c = ! a.

For gM = 0, the driving �eld term, proportional to the operator �̂ (M )
x , induces a

transition from the ground state jGSi 
 j gi to the excited statejGSi 
 j ei , being jGSi
the ground state ofS and jgi (jei ) the ground (excited) state of the qubit M . For
�nite gM , the coupling betweenS and M creates a mixing between states of the form
j	 Si 
 j  M i and the driving induces a transition from the ground statejGS+ M i to
excited states ofĤS+ M . Therefore, in the spectroscopy the relevant excited statesj� i
are those having the largest values ofjhGS+ M j �̂ (M )

x j� ij 2. The colour scale of the levels
in Figs. 5.2 and 5.3 is proportional to the value of such matrix elements.

The results show that, due to the o�-resonant coupling, there is only one dominant
spectroscopically-active level (black thick solid line), which originates from and has a
strong overlap with the statejGSi 
 j ei . The right panels of Figs. 5.2 and 5.3, show
the Lamb shift of the qubit transition frequency.

For � = 0 the system S is like a bare cavity, so the spectral renormalisation is
the standard Lamb shift [43] of the qubit due to the coupling to the normal vacuum
in the cavity. By increasing � the vacuum is modi�ed and the Lamb-shift changes.
It is apparent that the behaviour of the qubit shift is qualitatively di�erent in the
three cases. For the Dicke model (top panels of Fig. 5.2), the Lamb shift increases
strongly with � and becomes much bigger than in the case of the bare cavity (� = 0).
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Figure 5.2 Left panels: excitation energies for the three considered systemsS versus
the coupling� between the boson �eld and theN atoms. Right panels: the Lamb shift
of the ancillary qubit transition. The red dashed lines are calculated via Eq. (5.5).
Top panels: Dicke system. withN = 3, ! c = ! a, ! M = 2:75! c, gM = 0:1! c. Bottom
panels: Tavis-Cummings system withN = 3, ! c = ! a, ! M = 2:75! c, gM = 0:1! c.

In the Tavis-Cummings case (bottom panels Fig. 5.2), the Lamb shift increases in a
step-like way as a function of� . In the Hop�eld model (Fig. 5.3), instead the Lamb
shift decreases with increasing value of� .

As it will be detailed in Sec. 5.2.1, we have derived an analytical expression at the
second order ingM for the measurement qubit Lamb shift, namely

�! (S)
M ' g2

M

�
1

! M � ! c
+

1
! M + ! c

�
h(ây+ â)2i + g2

M

�
1

(! M � ! c)
2 �

1

(! M + ! c)
2

�
hV̂ (S) i ;

(5.5)
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Figure 5.3 Left and right panels like in Fig. 5.2, but for the Hop�eld system with
N = 3, ! c = ! a, ! M = 6:75! c (chosen to avoid level crossing),gM = 0:1! c, D = � 2=! a.

where

V̂ (Dicke ) =
�

p
N

(ây + â)Ĵx ; (5.6a)

V̂ (T C) =
�

p
N

(âyĴ� + âĴ+ ) ; (5.6b)

V̂ (Hopf ield ) = V̂ (Dicke ) + 2
� 2

! a
(ây + â)2 : (5.6c)

Here the expectation values are calculated on the ground statejGSi of the target sys-
tem S. Importantly, the shift not only depends on the ground state photon population
ĥayâi , but also on the anomalous expectation valueĥay2 + â2i and on the correlation
between photon �eld and theN two-level systems. The red-dashed lines in the right
panels of Figs. 5.2 and 5.3 depict the shift predicted by Eq. (5.5). The agreement
between the numerical diagonalisation results and the analytical formula is excellent
in the considered range of values for�=! c, except for points where there are avoided
crossings with other levels, as expected from the pertubative nature of our formula.

Criticality

In Fig. 5.4, we present the behaviour of the qubit spectral shift as a function ofN .
With increasing value ofN , a critical point emerges for the Dicke Hamiltonian (left
panels), but not for the Hop�eld case (right panels). The behaviour of the qubit Lamb
shift, already completely di�erent for small values ofN , becomes strikingly dissimilar.
Already for N = 30, the shift has a considerable jump around the critical coupling.
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Figure 5.4 Top panels: Lamb shift of the ancillary qubit (black dots) versus� for
N = 1; 3; 10 and 30. Red-dashed lines are obtained via Eq. (5.5). Bottom panel:
ground state �delity FG. Left panels: Dicke model with! c = ! a, ! M = 2:75! c,
gM = 0:1! c. Right panels: Hop�eld model with ! c = ! a, ! M = 6:75! c, gM = 0:1! c,
D = � 2=! a.

The bottom panels shows the ground state �delity

FG = TrS;M
�

jGS+ M ihGS+ M j(jGSihGSj 
 1̂(M ))
	

; (5.7)

quantifying the change of the cavity system ground state in presence of the ancilla
qubit. In the considered conditions,FG can be close to 1. However, for large values
of �=! c the �delity strongly decreases in the Dicke case above the critical coupling,
while it stays close to 1 for the Hop�eld model. Since forgM ! 0 the �delity tends
to 1 and the qubit shift is proportional to g2

M , a trade-o� between �delity and size of
the qubit shift can be found depending on the degree of level broadening, as it will
be discussed later, when we will include the e�ect of dissipation.

5.2.1 Dispersive Hamiltonians and analytical derivation of
vacuum-dependent Lamb shift

In Sec. 2.2.2 we introduced the dispersive regime and its e�ective Hamiltonian for
atom-cavity interaction when the rotating wave approximation (RWA) is valid. Since
the ancillary qubit and the cavity are strongly detuned compared to the interaction
intensity gM , the same approach can be used to simplify the complete Hamiltonians
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ĤS+ M . However, due to the presence of anti-resonant terms in the interaction between
the ancillary qubit and the cavity, our approach must be adapted to be valid beyond
the rotating wave approximation [115].

Let us start from the simple situation in which � = 0. In this case our system
reduces to only the boson mode and the coupled ancillary qubit. This is equivalent
to the Rabi model whose Hamiltonian is:

ĤC+ M = ! câyâ +
! M

2
�̂ (M )

z + gM
�
ây + â

�
�̂ (M )

x : (5.8)

In the dispersive regime, i.e.j! M � ! cj � gM , it is possible to derive an e�ective
Hamiltonian for this model. Let us de�ne the operatorsX̂ � and Ŷ� , exactly in the
same way as in Ref. [115] (except for the sign ofŶ� ):

X̂ � = ây�̂ (M )
� � â �̂ (M )

+ ; Ŷ� = â �̂ (M )
� � ây�̂ (M )

+ : (5.9)

Applying to ĤC+ M the unitary transformation

Û(�; ~� ) = e� X̂ � + ~� Ŷ� ; where � =
gM

! M � ! c
and ~� =

gM

! M + ! c
;

and keeping only the terms up to the second order in the small parameters� and ~� ,
the transformed Hamiltonian can be approximated as

Ĥ (disp)
C+ M ' Ûy(�; ~� )ĤC+ M Û(�; ~� )

' ĤC+ M +
h
ĤC+ M ; � X̂ � + ~� Ŷ�

i
+

hh
ĤC+ M ; � X̂ � + ~� Ŷ�

i
; � X̂ � + ~� Ŷ�

i
:

(5.10)

The unitary transformation Ûy(�; ~� ) is a Schrie�er-Wol� transformation [113], and
this is explicitly chosen to eliminate the interaction term to �rst order in gM . As
we have mentioned in Sec. 2.2.2, the approach is based on the idea that a uni-
tary transformation leaves the spectrum of the Hamiltonian unchanged, thuŝHC+ M

and its transformed Ûy(�; ~� )ĤC+ M Û(�; ~� ), have the same spectrum. By expanding
Ûy(�; ~� )ĤC+ M Û(�; ~� ) to the second order in� and ~� , we obtain an e�ective Hamilto-
nian that has approximatively the same spectrum of̂HC+ M .

Indeed, using the following commutation relations,
h
! câyâ +

! M

2
�̂ (M )

z ; � X̂ � + ~� Ŷ�

i
= � (! M � ! c)X̂ + � (! M + ! c)Ŷ+ ;

h
X̂ + ; X̂ �

i
= (2 âyâ + 1) �̂ (M )

z + 1;
h
Ŷ+ ; Ŷ�

i
= (2 âyâ + 1) �̂ (M )

z � 1;
h
Ŷ� ; X̂ �

i
= � (ây2 + â2)�̂ (M )

z ;
h
Ŷ� ; X̂ �

i
= � (ây2 � â2)�̂ (M )

z ;

(5.11)

it is possible to obtain the e�ective dispersive Hamiltonian to the second order in�
and ~� :

Ĥ (disp)
C+ M ' ! câyâ +

! M

2
�̂ (M )

z +
g2

M

2

�
1

! M � ! c
+

1
! M + ! c

�
(â + ây)2�̂ (M )

z : (5.12)
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The resulting e�ective shift for the transition frequency of the qubit due to the cou-
pling to the cavity ground state reads:

� (cav)
! M

' g2
M

�
1

! M � ! c
+

1
! M + ! c

�
h(â + ây)2i : (5.13)

Here and in the following, the expectation values are calculated on the ground state
jGSi of the target systemS. In this case the system is the bare cavity,jGSi is the
standard vacuum and the last equation gives the standard Lamb shift.

Lamb shift for an exotic vacuum

On the other hand, when� 6= 0 the vacuum is changed and correspondingly also the
Lamb shift changes. We start by considering the Dicke model, its complete Hamilto-
nian when it is coupled to the measurement ancilla qubit reads:

ĤDicke + M = ĤC+ M + ! aĴz +
�

p
N

�
ây + â

�
Ĵx : (5.14)

We apply to this Hamiltonian the transformation Û(�; ~� ) de�ned above. The Ĵi op-
erators commute withÛ(�; ~� ) (i.e. Ûy(�; ~� )Ĵi Û(�; ~� ) = Ĵi ), and, at second order in�
and ~� , the cavity quadrature (â + ây) transforms as

Ûy(�; ~� )( â + ây)Û(�; ~� ) ' (â + ây) + ( � � ~� )�̂ (M )
x +

1
2

(� 2 � ~� 2)( â + ây)�̂ (M )
z : (5.15)

The shift of the qubit M transition frequency due to coupling to the Dicke system, to
the second order in� and ~� reduces to:

�! (Dicke )
M ' � (cav)

! M
+ g2

M
�

p
N

�
1

(! M � ! c)
2 �

1

(! M + ! c)
2

�
h(â + ây)Jx i : (5.16)

where we used the fact thathĴx i = 0. It can be proved by considering thatĤDicke

commutes with the parity operator P̂ = exp[i� (âyâ + Ĵz + N=2)]. Indeed, since
[ĤDicke ; P̂ ] = 0, the eigenstates ofĤDicke are also eigenstates of̂P, this means that

hGSjĴ� jGSi = hGSjP̂ yĴ� P̂ jGSi = �h GSjĴ� jGSi ) h GSjĴ� jGSi = 0 ; (5.17)

where we have used the fact that̂P yĴ� P̂ = � Ĵ� . The same reasoning leads to prove
that ĥai = ĥayi = 0.

Let us consider now the Hop�eld model, characterised by the quadratic renormal-
isation of the cavity photon frequency. The total Hamiltonian reads

ĤHopf ield + M = ĤDicke + M + ! aĴz +
� 2

! a

�
â + ây

� 2
: (5.18)



96 Chapter 5. Ancillary qubit spectroscopy of exotic vacua

Using the fact that Ûy(�; ~� )( â + ây)2Û(�; ~� ) = ( Ûy(�; ~� )( â + ây)Û(�; ~� ))2, we obtain:

Ûy(�; ~� )( â + ây)2Û(�; ~� ) '
�
(â + ây) + ( � � ~� )�̂ (M )

x +
1
2

(� 2 � ~� 2)( â + ây)�̂ (M )
z

� 2

:

(5.19)
Developing the square up to the second order in� and ~� , we get

Ûy(�; ~� )(a+ ay)2Û(�; ~� ) ' (a+ ay)2+2( � � ~� )(a+ ay)� (M )
x +( � 2� ~� 2)(a+ ay)2� (M )

z +( � � ~� )1̂ :
(5.20)

Sinceĥa + âyi = 0, the shift of the ancilla transition due to coupling to the Hop�eld
system, to the second order in� and ~� , is:

�! (Hop)
M ' � (Dicke )

! M
+ 2g2

M
� 2

! a

�
1

(! M � ! c)
2 �

1

(! M + ! c)
2

�
h(â + ây)2i : (5.21)

Finally we consider the case of the Tavis-Cummings model, in this case the com-
plete Hamiltonian of the ancilla qubit plus the cavity system reads:

ĤT C+ M = ĤC+ M + ! aJz +
�

p
N

�
âĴ+ + âyĴ�

�
: (5.22)

Considering that

Ûy(�; ~� )âÛ(�; ~� ) = â + ( � �̂ (M )
� � ~� �̂ (M )

+ ) +
1
2

(� 2 � ~� 2)â�̂ (M )
z + o(� 2; ~� 2; � ~� ); (5.23)

the action of the unitary transformation on the interaction term of Tavis-Cummings
model to the second order in� and ~� , is:

Ûy(�; ~� )
�

âĴ+ + âyĴ�

�
Û(�; ~� ) ' â Ĵ+ + â Ĵ� + ( � � ~� )

�
�̂ (M )

� Ĵ+ + �̂ (M )
+ Ĵ�

�

+
1
2

(� 2 � ~� 2)
�

âĴ+ + âyĴ�

�
�̂ (M )

z :
(5.24)

SincehĴ� i = hĴ+ i = 0, the second-order shift of the ancillary qubit transition due to
the coupling to the Tavis-Cummings system is:

�! (T C)
M ' � (cav)

! M
+ g2

M
�

p
N

�
1

(! M � ! c)
2 �

1

(! M + ! c)
2

�
h(âĴ+ + âyĴ� )i :

The three expressions obtained for the shift of the qubit M transition can �nally
be condensed in the compact expression in Eq. (5.5).

5.3 Spectroscopy of the ancillary qubit: consistent
master equation

Taking into account drive and dissipation, here we show how the spectroscopy of the
ancilla qubit will allow us to measure the Lamb shift. In order to include dissipa-
tion consistently with the ultrastrong coupling regime, we need to consider a master



5.3. Spectroscopy of the ancillary qubit 97

equation for the density matrix where the quantum jumps occur between the actual
eigenstates of the HamiltonianĤS+ M [151, 152]. We consider three decay channels,
associated to the bosonic mode, theN two-level systems and the measurement qubit,
with dissipation rates  c,  a and  M respectively (see Fig. 5.1). Namely:

@t �̂ = � i [Ĥ (t); �̂ ] +
 c

2
D� (ây + â)�̂ +

 a

2
D� (Ĵx )�̂ +

 M

2
D� (�̂ (M )

x )�̂ : (5.25)

Here D� (Ŝ)�̂ =
�
2Ŝ� �̂ Ŝy

� � �̂ Ŝy
� Ŝ� � Ŝy

� Ŝ� �̂
�

and Ŝ� =
P

� 0>� h� jŜj� 0ij � ih� 0j, de�ne
respectively the dissipation term and the jump operators. Here we are considering
reservoirs at zero temperature (they can only absorb energy from the systemS +
M ). This Lindblad master equation corresponds to the one in Eq. (3.41), that has
been microscopically derived in Sec. 3.1 for a generic system and a single dissipative
coupling. Note that Eq. (5.25) allows to solve the pathological behaviour of the
standard Lindblad equation with bare excitation operators as in Ref. [149], in which
the ground state of the whole system̂HS+ M is unstable and the reservoir excites the
system even at zero temperature.

For cavity QED systems with infrared transitions at cryogenic temperatures, it
is experimentally feasible to havekB T � ~! C , which is equivalent to the zero-
temperature limit. For circuit QED systems based on superconductors [153] with
microwave resonators and dilution fridge cryogenic conditions, the thermal energy can
be a fraction of the photon energy: to give an example, a temperature of 50 mK and
a resonator transition frequency! c=(2� ) = 5 GHz corresponds tokB T=(~! c) ' 0:21.
In this range of temperatures the main e�ect is a moderate thermal broadening of the
ancilla qubit transition resonance (see section 5.4 for more details).

We can now apply the master equation in Eq. (5.25) to describe the spectroscopy
when the qubit M is driven as described by Eq. (5.1). We have determined the steady-
state density matrix �̂ S+ M and consequently the reduced density matrix of the qubit
M and systemS , namely

�̂ M = TrS f �̂ S+ M g and �̂ S = TrM f �̂ S+ M g : (5.26)

In Fig. 5.5, we show results for the qubit excited state population

n(M )
e = TrS;M

�
�̂ S+ M (1 + �̂ (M )

z )=2
	

(5.27)

versus the driving frequency! p and the collective atom-photon coupling� . The ancilla
excited state population spectrum shows a resonant peak that provides direct access
to the vacuum-dependent qubit Lamb shift discussed so far and well described by the
formula in Eq. (5.5).

Measurement back action

Within our framework, we can evaluate the degree of back-action on the systemS.
In particular we can calculate the measurement �delity

F = TrS f �̂ SjGSihGSjg ; (5.28)
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Figure 5.5 Excited state population of the ancilla qubit M versus the coherent
drive frequency! p for di�erent values of collective coupling� , that controls the cavity
vacuum. Left panel: Dicke model with 
p = 0:5 M . Right panel: Tavis-Cummings
model with 
 p = 0:2 M . Dissipation parameters: M =  c =  a = 0:01! c for the left
panel and 0:005! c for the right panel. The other parameters are as in Fig. 5.2. The
white line corresponds to the analytical curve in Eq. (5.5).

depending on the coupling betweenS and M , the driving of the qubit and the dissi-
pation rates. F = 1 means that the system stays in its ground statejGSi during the
measurement process. In Fig. 5.6, we showF versus! p for di�erent values of � and of
the dissipation rates. The moderate dip at the resonance frequency is due to creation
of real excitations in the systemS via the driving of the qubit M . When the driving
amplitude 
 p ! 0, the dip disappears (not shown). Out of resonance,F ! F G,
the �delity depending only on the level mixing between qubitM and systemS (see
Fig. 5.4), quanti�ed by the ground state �delity FG. Concerning the dissipation, our
results show that when the cavity systemS dissipation rates c,  a are much smaller
than the ancilla qubit dissipation rate  M , then the most pronounced �delity dip is
obtained (black solid-lines in Fig. 5.6 are for vanishing dissipation in the system
S). Indeed, in such conditions a signi�cant steady-state population of excited states
can be created inS due to the low dissipation rates, implying that the ancilla qubit
cannot 'read' faithfully the ground state of the system. Instead in the opposite limit,
the �delity dip disappears (F (! dip ) ! F G) as the excited state populations inS can
be dissipated e�ciently.
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Figure 5.6 Measurement �delity F (see de�nition in the text) for di�erent values
of � for the Dicke model and for di�erent dissipation rates c =  a = � M and
 M = 0:01! c. Solid line: � = 0. Dashed line: � = 1. Dot-dashed line: � = 10. Other
parameters as in Fig. 5.5.

5.4 Finite temperature and dephasing

All the results shown up to now have been obtained considering reservoirs at zero
temperature, because the focus is the physics of the ground state. In this section,
we consider the e�ect of a �nite temperature bath and of dephasing on the ancillary
qubit spectroscopy.

In order to include the e�ect of temperature, we need to consider the following
master equation, that is derived in detail in Section 3.1:

@t �̂ = � i [Ĥ (t); � ] +
 c

2
DT (Ŝc)�̂ +

 a

2
DT (Ŝa)�̂ +

 M

2
DT (ŜM )�̂ (5.29)

where the dissipative termDT are de�ned in the following energy conserving form

DT (Ŝi )�̂ =
X

!> 0

eG(! )(1 + N (! ))
n

2Ŝi (! )� Ŝy
i (! ) � � Ŝy

i (! )Ŝi (! ) � Ŝy
i (! )Ŝi (! )�

o

+
X

!> 0

eG(! ) N (! )
n

2Ŝy
i (! )� Ŝi (! ) � � Ŝi (! )Ŝy

i (! ) � Ŝi (! )Ŝy
i (! )�

o
:

(5.30)
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Figure 5.7 Excited state population of the ancillaM versus the coherent drive fre-
quency! p for di�erent values of collective coupling� at �nite temperature. In the four
columns from left to right, the value of the temperature is respectivelykB T=(~! c) = 0,
0:105, 0:21 and 0:42. Top panels are for the Dicke model with 
p = 0:5 M and dissipa-
tion parameters M =  c =  a = 0:01! c. Bottom panels are for the Tavis-Cummings
model with 
 p = 0:2 M and dissipation parameters M =  c =  a = 0:005! c (note
that in some areas of the �gures the colour scale is saturated in order to improve the
contrast). Other parameters:N = 3, ! c = ! a, ! M = 2:75! c, gM = 0:1! c.

where N (! ) is the bosonic thermal distribution and the jumps operatorŜi (! ) are
de�ned as

Ŝi (! ) def=
X

� 0� � = !

hl jŜi jl0ij l ihl0j:

The operatorsŜi are those involved in the coupling to the reservoir, namelŷSc = ây+ â
for the bosonic mode,Ŝ0 = Ĵx for the two-level systems andŜM = �̂ (M )

x for the
ancilla. The spectral function eG(! ) depends on the density-of-states of the reservoir
excitations. When the bath is a 3D electromagnetic �eld, we haveeG(! ) / ! 3, hence
it vanishes while! ! 0 [125, 126]. An ohmic reservoir scales instead aseG(! ) / ! .

In Fig. 5.7 , we show the ancillary transition spectrum as a function of the coupling
� for di�erent values of temperature, namelykB T=~! c = 0, 0:105, 0:21 and 0:42 (from
bottom to top) for the Dicke (left panels) and Tavis-Cummings model (right panel).
As we mentioned in Sec. 5.3, these values forkB T=~! c are realistic values in circuit
QED realisation. We conclude that the Lamb shifts are still well measurable and
that the main e�ects is a moderate broadening of the Lamb-shifted ancillary qubit
resonances.

We have also checked that the behaviour at low frequency does not a�ect the
results in a signi�cant way. In Fig. 5.8, we show a typical ancilla spectrum with
three di�erent reservoirs with eG(! ) / ! � and � = 1 (ohmic), � = 2 and � = 3. It
is apparent that the di�erences are negligible, indeed the broadening is dominated by
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Figure 5.8 Example of ancilla spectrum dependence on reservoir density of states
(J (! ) / ! � with � = 1; 2; 3) for a �nite temperature (kB T=(~! c) = 0 :21). Dicke
model, parameters:�=! c = 1,  c =  M =  a = 0:01! C . Other parameters: N = 3,
! c = ! a, ! M = 2:75! c, gM = 0:1! c.

the spectra dependence around the ancilla qubit transition.

Dephasing noise

We have also tested the robustness of the ancillary spectroscopy under the e�ect of
noise mechanisms di�erent from ip errors. More precisely we considered the e�ect
produced by jump operator ^� (M )

z and Ĵz, which correspond to pure dephasing respec-
tively on the ancilla and on the intra-cavity two-level systems. At zero temperature,
we account for this kind of noise by adding to the master equation in Eq. (5.29) the
term  d

2 D0(Ŝd)�̂ , which is de�ned as

D0(Ŝd)�̂ =
X

!> 0

n
2Ŝd(! )�̂ Ŝy

d(! ) � �̂ Ŝy
d(! )Ŝd(! ) � Ŝy

d(! )Ŝd(! )�̂
o

; (5.31)

where we assumed a constant spectral functioneG(! ) = 1 and where the operator
Ŝd(! ) is de�ned as above, using the jump operatorŝSd = �̂ (M )

z or Ĵz. We have checked
that the ancillary qubit spectroscopy is robust with respect to pure dephasing, which
gives a similar e�ect to what produced by dissipation (population �nite lifetime).
In Fig. 5.9 we show di�erent spectra by varying the ratio between dissipation and
pure dephasing produced by the jump operator̂Jz. The broadening e�ect due to
pure dephasing is suppressed for larger values of coupling� between the cavity and
the two-level systems. This kind of suppression is due to collective symmetry and
is consistent with results obtained in other works on ultrastrongly coupled systems
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Figure 5.9 Ancilla spectrum of the Dicke model at zero temperature when the
pure dephasing rate is tuned from d = 0 (solid red), 0:5 (dashed green) to 1 c

(dotted blue). Left panel: � = 0:5! C . Right panel: � = 1 ! C . Other parameters:
 c =  M =  a = 0:006! C , N = 3, ! c = ! a, ! M = 2:75! c, gM = 0:1! c.

[76, 152]. We do not show the well known results about the e�ect of pure dephasing
produced by the jump operator ^� (M )

z , which only causes an additional broadening
of the ancilla transition. What is mainly relevant in the ancilla spectroscopy is the
total broadening a�ecting the spectral linewidth more than the speci�c nature of its
origin. We emphasise that in our work, we have conservatively considered spectral
linewidths, which are considerably larger than what achievable in state-of-the-art
circuit QED systems [152, 154].

5.5 Conclusion and perspectives on the ancillary
qubit spectroscopy

In conclusion, we have shown theoretically that the spectroscopy of an ancillary qubit
coupled to a cavity (circuit) QED system is a very sensitive probe of its ground
state properties. The spectral Lamb shift of the ancillary qubit transition is vacuum-
dependent, namely it depends on the ground state populations and correlations. The
Lamb shift behaves qualitatively in a di�erent way for systems described by the Dicke,
Tavis-Cummings and Hop�eld models, whose exotic vacua are qualitatively di�erent.
By a consistent solution of the master equation to include dissipation in the ultra-
strong coupling regime, we have studied the measurement �delity by accounting for
level-mixing between system and measurement qubit, driving and dissipation. The
present work demonstrates that ancillary qubit spectroscopy of cavity QED systems
is a promising tool to study non-destructively the rich physics of QED vacua in the
ultrastrong light-matter coupling regime.



Chapter 6

Photonic Schr•odinger cat and their
feedback control

Even if the quantization of light was at the heart of the development of quantum
mechanics, for a very long time it was impossible to exploit photons to investigate
quantum many-body physics. It was only recently that this idea became reality. In
particular, the development of new experimental platforms, such as semiconductor
cavities[37, 38, 51] and superconducting circuits [44, 47], made possible to create
e�ective photon-photon interactions via the meditation of the electronic degrees of
freedom of the materials. Thanks to these developments, it was possible to study
many-body quantum physics with light [155]. Because of its out-of-equilibrium nature,
this physics profoundly di�ers from its atomic counterpart. The continuous leak
of photons from a resonator can not be neglected, and therefore photons must be
continuously pumped into the system. The competition between drive, dissipation,
and interactions in such kind of out-of-equilibrium quantum systems enriches even
more the physical scenario. Indeed, this non-equilibrium regime has been at the
centre of a vast theoretical and experimental exploration: from quantum uids of
light (e.g. [55] and references therein), to dissipative phase transition (both in spin
systems [156, 157] and in softcore bosons [158]) the interest in the subject has been
considerable.

At the same time, the new �eld of reservoir engineering achieved extraordinary
results. The objective is to shape the photon exchanges between a resonator and the
environment, so to realise non-trivial drive and dissipation [78{85]. In this direction
moved the idea of quantum computation with light. If one can exploit the environment
so to force the system into a nonclassical superposition of orthogonal states, those
can be used as the logic basis of computation. The advantage in this procedure is
that those states will be, for their own construction, impervious to decoherence. In
particular, it has been proven that Schr•odinger cats (and coherent states) can be used
as (quasi-)orthogonal states in quantum computation [75, 77, 159, 160]. Those states
are de�ned as the superposition of two coherent states and have the form:

jC�
� i =

j� i � j� � i
p

1 � e� 2j� j2
: (6.1)

We recall that the coherent statej� i = e�j � j2=2
P

n (n!)� 1=2 � n jni is the eigenstate
of the destruction operator: â j� i = � j� i . Coherent states are the states of the
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electromagnetic �eld that are the closest to the classical ones, since they have a well
de�ned mean amplitude j� j and phase (beingjni the n-photon Fock state). Cat
states become particularly interesting in the limitĥni = j� j2 � 1. In this limit of
high number of photons, in fact,h� j � � i ' 0 and therefore the Schr•odinger cat is
a superposition of two (almost) orthogonal (semi) classical states. The statejC+

� i is
called the even cat, since it can be written as a superposition of solely even Fock
states, whilejC�

� i is the odd cat.
In this chapter we report our work on a class of two-photon driven-dissipative

resonators that is particularly promising for the realisation of these interesting states.
We start by showing in Sec. 6.1, that the steady state of this kind of systems could be
very well approximated by a statistical mixture of two photonic Schr•odinger cats [96].
Even if in the transient dynamics of the cavity it is still possible to detect some quan-
tumness [85], the steady state was mathematically proven to be fully classical (i.e.
with a totally positive Wigner function). By studying the quantum trajectories of the
system we realised that this loss of quantumness is mainly due to one-photon dissi-
pation and that under photon-counting monitoring the state of the system is always
quantum. This quantum trajectory analysis, that is largely discussed in Section 6.2,
leads to envisioning a feedback mechanism that exploits the action of one-photon
dissipation to e�ectively protect a chosen cat state. In Sec. 6.3 we analyse in more
detail this feedback protocol, by discussing its e�ect on the system, providing both
an analytical and a numerical description.

6.1 The model: two-photon driven-dissipative res-
onators

The system under consideration is a single nonlinear Kerr resonator (see Sec. 2.2.1)
subject to a parametric two-photon driving and to one- and two-photon dissipation
processes, see Fig. 6.1. This class of exotic resonators have been realised experimen-
tally, and interestingly it was shown in Ref. [85] that in the transient dynamics toward
the steady state some features of photonic Schr•odinger cats were still present. In the
absence of pumping our Hamiltonian reads (~ = 1)

Ĥ0 = ! c âyâ +
U
2

âyâyââ; (6.2)

where! c is the cavity mode frequency,U is the strength of photon-photon interaction
(see Sec. 2.2.1), ^a and ây are, respectively, the annihilation and creation operator for
photons inside the resonator. As shown in Ref.[85], a two-photon coherent drive with
amplitude G and frequency 2! p can be realised through a parametric processes. It
allows to coherently inject pairs of photons in the system and it can be described by
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Figure 6.1 A sketch of the considered class of systems. The photon-photon inter-
action of a Kerr nonlinear resonator is quanti�ed byU. The resonator is also subject
to a coherent two-photon driving of amplitudeG, one- and two-photon losses with
rates  and � . On the right, we sketch the e�ects of these physical processes on the
Fock (number) statesjni .

the following time-dependent Hamiltonian term :

Ĥ2ph =
G
2

e� i 2! p t âyây +
G�

2
ei 2! p t ââ; (6.3)

where G is the pump amplitude and! 2 its frequency (see Sec. 3.2 for a microscop-
ical derivation of a driving Hamiltonian). In order to remove the time-dependence
from the Hamiltonian we consider the unitary transformationÛ(t) = ei! p ây ât . This
transformation allows us to describe the system in the reference in a frame rotat-
ing at the coherent pump frequency! p. In this rotating frame the Hamiltonian is
time-independent and it reads:

Ĥ = � �^ayâ +
U
2

âyâyââ +
G
2

âyây +
G�

2
ââ; (6.4)

where � = ! p � ! c is the pump-cavity detuning (more detail on the derivation of
the rotating frame Hamiltonian are provided at the end of Sec. 3.2). Here and in the
rest of the manuscript we will consider the case of resonant pumping, i.e! p = ! c and
� = 0. With any loss of generality we can arbitrarly choose the two-photon pumping
phase in such a way to have a real amplitudeG. Under this two assumptions the
Hamiltonian reducesf to a very simpli�ed form:

Ĥ =
U
2

âyâyââ +
G
2

�
âyây + ââ

�
; (6.5)

Despite the high quality factor of state-of-the-art cavities, a con�ned photon has
always a �nite lifetime due to the coupling to the environment. The environment is
in general a system with a huge number of degrees of freedom in which the system
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dissipates photons. As detailed in Sec. 3.1, an excellent description of the coupling
to the environment is provided by a Lindblad dissipation super-operatorD(Â) of the
form

D(Â) �̂ = 2 Â �̂ Ây � ÂyÂ �̂ � �̂ ÂyÂ; (6.6)

whereÂ is the quantum jump operator corresponding to the speci�c dissipation pro-
cess. To include the interaction with the environment, it is usually enough to consider
one-photon losses, whose jump operator is given by the annihilation operator (see
Sec. 3.1.2). In addition, we also consider two-photon losses, which naturally emerge
together with the engineered two-photon pumping [85]. These losses are included
through the jump operator â2. The resulting Lindblad master equation describing
the evolution of the the system density matrix ^� is

@̂�
@t

= i
h
�̂; Ĥ

i
+


2

D(â) �̂ +
�
2

D(â2) �̂ = L �̂; (6.7)

where  and � are, respectively, the one- and two-photon dissipation rates and̂H is
the one given in Eq. (6.5). We recall that together with the initial condition, the
time evolution of �̂ is completely de�ned by the Lindbladian superoperatorL . Note
that we are assuming the environment to be at zero temperature. Indeed according
to the two dissipators in Eq. (6.7) the photons are only going from the system to the
environment. On the other hand these losses are balanced by the two-photon pump
that keep the population of the cavity �nite. We emphasise that only the one-photon
dissipation term in the Lindblad master equation (6.7) is not preserving the parity of
the cavity �eld P̂ = exp( i� âyâ) = exp( i� N̂ ).

6.1.1 Exact solution for the steady state

Despite the many di�erent contributing terms, this master equation has an exact ana-
lytic solution for the steady density matrix [161]. The solution has been recently found
following a technique �rst introduced in Ref. [162] via the so-called P-representation
of the density matrix. In this representation the Lindblad master Equation (6.7) maps
into a Fokker-Planck equation whose stationary solution is known. Remarkably, this
solution can be integrated, providing the analytic expression of the stationary density
matrix in the Fock basis of number states:

hnj �̂ ss jmi =
1
N

1X

`=0

1

`!
p

n! m!
F (g; c; `+ n) F � (g; c; `+ m); (6.8)

where N is the normalisation factor, chosen such that Trf �̂ ssg = 1. F (g; c; )̀ =
(i

p
g)`

2F1(� `; � c; � 2c; 2), 2F1 being the Gaussian hypergeometric function [163].
In spite of the several parameters in the model, the solution depends only on two
dimensionless quantities, namely

c = (� + i = 2)=(U � i � ) ;

g = G=(U � i � ) :
(6.9)
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Figure 6.2 Exact results for the steady-state. The corresponding density matrix
can be expressed as ^� ss =

P
� p� j	 � ih	 � j, wherep1 and p2 are the probabilities of the

two most probable eigenstates. The parameters are set to: � = 0,U = 1� ,  = 0:1� .
Panel (a): residual probability 1� p1 � p2 versus the two-photon drive amplitudeG
normalised to the two-photon loss rate� , showing that the density matrix is dominated
by the �rst two eigenstates. Panel (b): as a function ofG=� , mean number of photons
hN̂ i ss and its contributions hN̂ i 1 and hN̂ i 2. Panel (c): as a function ofG=� , the mean
parity hP̂ i ss and its contributions hP̂ i 1 and hP̂ i 2. Panel (d): for G = 10� , contour
plots of the Wigner function Wss(� ) for the density matrix �̂ ss, together with the
Wigner functions W1(� ) and W2(� ) associated to the two most probable eigenstates.
For the latter, we also show a 3D zoom of the central regionj� j � 1:6.

The former can be seen as a complex single-particle detuning � +i = 2 divided by
a complex interaction energyU � i � ; g is instead the two-photon pump intensity
normalised by the same quantity. We recall that we will only consider here the
resonant pump case � = 0, thus the dimensionless quantityc reduces toc = i = 2(U�
i � ). Notably, F (g; c; )̀ = 0 for ` odd, meaning that, for any �nite value of the system
parameters, there will be no even-odd coherences in the steady state. More detail on
this analytic solution of the stationary density matrix is provided in Ref. [161].

To further characterise the steady state, we consider its spectral decomposition

�̂ ss =
X

�

p� j	 � ih	 � j ; (6.10)

with j	 � i the � th eigenstate of ^� ss with eigenvaluep� . The latter corresponds to the
probability of �nding the system in j	 � i . The eigenstates are sorted in such a way
that p� � p� +1 . For a pure state,p1 = 1 and all the other probabilities p� are zero.
For the steady state in Eq. (6.8) only two eigenstates dominate the density matrix.
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As shown in Fig. 6.2(a), typically

p1 + p2 ' 1 ; and �̂ ss ' p1 j	 1i h	 1j + p2 j	 2i h	 2j : (6.11)

The aforementioned absence of even-odd coherences implies thatj	 1(2) i is composed
of only even (odd) Fock states. Furthermore, we �nd thatj	 1;2i are nearly equal to
the photonic Schr•odinger Cat statesjC�

� i where the coherence� depends on physical
parameters of the system:

� =

s
� G

U � i�
; (6.12)

where an explanation for this formula is given in Section 6.1.2. In order to give an idea
of how closej	 1;2i are to the cat statesjC�

� i we compute the inner product between
these state for the parameters of Fig. 6.2(d). The value we obtain is very close to one:
h	 1;2jC+( � )

� i ' (1 � 8 � 10� 6) for � � 2:7e2:0 i . Hence the steady-state density matrix
�̂ ss is well approximated by the statistical mixture of two orthogonal cat states:

�̂ ss ' p1 jC+
� ihC+

� j + p2 jC�
� ihC�

� j ; (6.13)

The coe�cients p1;2 can be interpreted as the probabilities of the system of being found
in the corresponding cat state. Using the linearity of the trace, for any operator̂O
one can write

Oss = Tr
n

�̂ ssÔ
o

' p1O1 + p2O2; where O� = h	 � jÔj	 � i : (6.14)

In Fig. 6.2(b) we plot, as a function of the pump amplitudeG, the steady-state mean
density hN̂ i ss, together with the mean densityhN̂ i 1;2 of the two contributing cat-like
states j	 1;2i . The mean number of photons of these two states become large and
equal in the limit of a very intense pumping. As a con�rmation thatj	 1;2i ' jC �

� i , in
Fig. 6.2(c), we have that thehP̂ i 1;2 are always close to� 1, that are the eigenvalues of
P̂ . A valuable tool to visualise the non-classicality of a state is the Wigner function
de�ned as:

W(� ) =
2
�

Tr
n

�̂ D̂ � P̂D̂ y
�

o
; where D̂ � = e� ây � � � â (6.15)

is the displacement operator [164]. Indeed, negative values ofW(� ) indicate that we
are in presence of non-classicality [27, 165]. More concretely, in the context of quan-
tum computation, negative valued Wigner representation are considered a necessary
resource for computational speed-up [166, 167].

The Wigner function corresponding to the stationary density matrix in Eq. (6.8)
is always positive, while the separate contributionsW1(� ) and W2(� ) exhibit an in-
terference pattern with negative regions, typical of cat states [cf. Fig. 6.2(d)].

From Fig. 6.2(b,c) it is clear that in the regime of intense pumping (G � U; ; � ),
one hasj� j � 1 and p1 ' p2 ' 1=2. Under these conditions Eq. (6.13) can be recast
as:

�̂ ss '
1
2

j� ih� j +
1
2

j� � ih� � j : (6.16)
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Hence, the steady state can be seen as well as a statistical mixture of two coherent
states of opposite phase. Since ^� ss is anyhow a mixture of two (quasi-)orthogonal
states, the steady state is bimodal. Such a bimodality can be visualised, for instance,
through the Wigner function Fig. 6.2(d) [96, 161]. Now, the pivotal question is: if one
monitors the evolution of the system, in which states will it be? The orthogonal cat
states in Eq. (6.13), the two coherent states with opposite phases in Eq. (6.16), or
none of them in particular? As we will show in Section 6.2, the answer dramatically
depends on the type of measurement scheme employed to monitor the trajectory of
the system.

6.1.2 Evolution in the cat subspace

To obtain a useful insight on the property of this system, let us consider a di�erent
approach to the solution of Eq. (6.7). Let us divide the Liouvillian into a two-photon

part and a one photon one, i.e.L = L 2 + D1, whereL 2�̂ = i
h
�̂; Ĥ

i
+ �

2 D(â2) �̂ and

D1�̂ = 
2 D(â)�̂ . In the most simple case, there exists a class of steady state density

matrices ^� which separately are zero under the action ofL 2 and D1. In this spirit, one
may try to simplify the description of the system time evolution. First, one identi�es
a set of density matrices ^� i for which L 2�̂ i = 0. If D1 simply couples the ^� i between
them, then the evolution of a system on this reduced subspace greatly simpli�es.

The Schr•odinger cats statesjC�
� ihC�

� j, de�ned in Eq. (6.1), are steady state ofL 2,
indeed

L 2 jC�
� ihC�

� j =
�

� i
U
2

� 2 � i
G
2

�
�
2

� 2

�
âyây jC�

� ihC�
� j

+
�

� i
U
2

� 2 � i
G
2

�
�
2

� 2

�
jC�

� ihC�
� j â â

+
�

� i
G
2

� 2 + i
G
2

� � 2 + � j� j4
�

jC�
� ihC�

� j ;

(6.17)

and it is straightforward to check that the brackets cancel for� =
p

� G=(U � i� ).
Any statistical mixture of the Schr•odinger cat states ^� = p+ jC+

� ihC+
� j + p� jC�

� ihC�
� j

is also a steady state ofL 2, i.e. L 2�̂ = 0.
Let us now consider the e�ect ofD1 on this mixed state:

D1�̂ = 
�
j� j2p� jC+

� ihC+
� j + j� j2p+ jC�

� ihC�
� j

�

�

2

�
� p + ây jC�

� ihC+
� j + � p � ây jC+

� ihC�
� j

�

�

2

�
� � p+ jC+

� ihC�
� j â + � � p� jC�

� ihC+
� j â

�
:

(6.18)

This equation is not zero except for = 0. However it interestingly approaches a
very simpli�ed expression in the regime of intense pumping, in whichj� j � 1. Let us
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express all the terms of the form ^ay jC�
� i in Eq. (6.18) asây jC�

� i � � � jC�
� i + � � jC�

� i :

D1�̂ = 
�
j� j2(p� � p+ ) jC+

� ihC+
� j + j� j2(p+ � p� ) jC�

� ihC�
� j

�

�

2

�
�p +

�
ây jC�

� i � � � jC+
� i

�
hC+

� j + �p �
�
ây jC+

� i � � � jC�
� i

�
hC�

� j
�

�

2

�
� � p+ jC+

� i
�
hC�

� j â � � hC+
� j

�
+ � � p� jC�

� i
�
hC+

� j â � � hC�
� j

��
:

(6.19)

For j� j � 1, the last two terms are negligible with respect to the �rst one. Indeed, the
norm of the states

�
ây jC�

� i � � � jC�
� i

�
is equal to 1 for any value of� , so the last two

terms in Eq. (6.19) are of orderO(j� j), while the �rst two terms are of order O(j� j2).
Thus, we have proved that the overall e�ect ofD1 is simply to evolve the populations
of the even ad odd cats:

D1�̂ ' 
�
j� j2(p� � p+ ) jC+

� ihC+
� j + j� j2(p+ � p� ) jC�

� ihC�
� j

�
: (6.20)

Note that this equation reduces to zero forp+ = p� = 1=2 and that the projection on
cat subspace is valid and stable as soon as is small compared to the other parameters
G, U and � , that are the parameters ofL 2 whose action is to stabilise the cat states.

Summarising, in the regime of strong pumping and weak one-photon dissipation
G � U; � �  , the behaviour and the properties of the system can be faithfully
described by considering the subspace spanned by the two cat statesjC�

� i . The e�ect
of D1 will be to evolve the system towards an equal mixture of odd and even cats.
We have therefore developed a tool which allows to study both the steady state and
the evolution of the density matrix passing from an in�nite dimensional space to one
of dimension two. We will also see how this tool can be used to analyse the action of
a feedback control, as detailed in Sec. 6.3.

6.2 Quantum trajectories approach to bimodality

From a theoretical point of view, a Lindblad master equation describes the out-of-
equilibrium dynamics of a system coupled to a Markovian (i.e., memoryless) environ-
ment. As we have seen in Chapter 4, the density matrix ^� (t) solving Eq. (6.7) also
encodes the average evolution of the system when no information is collected about
the environment state. On the other hand, one can imagine to keep track of the sys-
tem state by continuously probing the environment. Doing so, the time evolution of
the system would change at each realisation, as expected from the intrinsic random-
ness of quantum measurement. However, ^� (t) can be retrieved by averaging over an
in�nite number of such \monitored" realisations.

The Montecarlo wavefunction method [144, 168, 169] has been developed relying
exactly on this idea. It is based on the stochastic simulation of the system evolution
when one continuously gathers information from the environment. Each simulation of
the stochastic evolution of the system gives a single quantum trajectory. The results
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obtained by solving the master Equation (6.7) are recovered by averaging over many
trajectories. In order to simulate the quantum trajectories, it is necessary to explicitly
model how an observer measures the environment, thus a�ecting the system evolution
itself (a detailed discussion on this subject is given in Ref. [27]). Interestingly, several
di�erent measures can be associated with the same master equation. Depending on
the chosen measurement, contrasting results and interpretations can emerge. Those
incompatibilities are, however, harmonised once the mean value over many trajectories
is taken.

As it stems from Eqs. (6.13) and (6.16), the steady-state density matrix of the
system can be cast as the statistical mixture of only two pure states. This bimodality
is an intrinsic propriety of the Lindblad master Equation (6.7) and, being an average
propriety of the system, it should somehow appear also on a single experimental
realisation. In other words, the quantum trajectory approach should show a bimodal
behaviour. However, the states between which the system switches, as well as the
characteristic time scales, can not be inferred from the form of ^� ss, and are not manifest
in the Lindblad master equation, but depend on the measurement process. After a
brief reminder of the basic de�nitions, we present the quantum trajectory behaviour
under two di�erent measurement protocols that both average to the same master
Equation (6.7): photon counting and homodyne detection.

6.2.1 Photon counting and jumping Schr•odinger cats

The most natural way to observe the exchanges between the Kerr resonator and the
environment is to just detect every leaked photon (both individually and in couples).
At every detection of leaked photons the knowledge of the system is updated via the
action of the one-photon jump operatorĴ1 =

p
 â and the two-photon oneĴ2 =

p
� â2

(see Sec. 4.3 for more details). Indeed, in typical realisations (e.g. in Ref. [85]) the
one- and two-photon dissipation channels are discernible. Hence, we can assume that
the photodetector is capable of distinguishing between one- and two-photon losses.
The photon-counting trajectory is then simulated by discretising the system time
evolution. At each time step, one stochastically determines if a single photon or a
couple of them has been detected. To do so, one considers that the probability of a
one- and two-photon detection in a time stepdt are, respectively,

p1(t; dt) = hĴ y
1 Ĵ1i (t)dt =  ĥayâi (t)dt; p2(t; dt) = hĴ y

2 Ĵ2i (t)dt = � ĥay 2â2i (t)dt :
(6.21)

If a jump occurs, the system state abruptly changes under the action of the corre-
sponding jump operator according to

j	( t + d t)i =
Ĵ� j	( t)i

q
h	( t)jĴ y

� Ĵ� j	( t)i
; � = 1; 2: (6.22)
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Figure 6.3 Time evolution of ĥxi , ĥpi , and hP̂ i along single photon-counting quan-
tum trajectories for the master Equation (6.7).The system parameters are set to
U = 1� , G = 5� , and  = 0:1� . Simulations were performed on a truncated Fock
basis with nmax = 15, ensuring convergence.

If no jump occurs, the unnormalised statej e	( t)i evolves under the action of an e�ec-
tive non-hermitian Hamiltonian operator:

d j e	( t)i
dt

= � i

 

Ĥ �
i
2

X

� =1 ;2

Ĵ y
� Ĵ�

!

j e	( t)i ; (6.23)

where here and below, the averages are computed on the conditional state of the
systemj	( t)i at time t (note that respect to Sec. 4.3, we have let drop the subscript
c standing for \conditional"). We stress that dt must be su�ciently small to ensure
p1;2(t; dt) � 1, such to avoid multiple jumps in the same time step. A photon-counting
trajectory is then characterised by a smooth evolution given by an e�ective non-
hermitian Hamiltonian and by abrupt jumps corresponding to the projective measure
associated to the detection of one or two photons.

As shown in Section 6.1, the Hamiltonian (6.5) and the two-photon dissipation
preserve the parity of the cavity and tend to stabilise photonic cat states. On the
other hand the single-photons annihilation does not preserve the parity and its action
on the even cat state is to switch it into the odd one andvice versa: â jC�

� i / � jC�
� i .

Thus one-photon dissipation, described by the jump operator̂J1 =
p

 â, induces
random jumps between the two cat states at a rate proportional to ĥayâi . This
picture is con�rmed by the simulations of photon-counting trajectories, an example
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Figure 6.4 Dynamics of averaged quantities versus single quantum trajectories.
Panel (a): dynamics (time is in logarithmic scale) of the photon population for a
single quantum trajectory (blue line), an average of 100 trajectories (orange line) and
the fully averaged (green line) density-matrix. Panel (b): same as (a) but for the
expectation value of the photon parity operator. Panel (c): snapshots of the Wigner
functions at times t1; t2; : : : ; t6 indicated in panel (b). The system parameters are
� = 0, U = 1� , G = 10� , and  = 0:1� .

of which is given in Fig. 6.3. The expectation value of the parity operator̂P = ei� ây â

jumps between its eigenvalues� 1. We recall that cat states are orthogonal eigenstates
of the parity operator P̂ , this suggests that along a single trajectory the system
intermittently and randomly switches between the two cat states. As a con�rmation
of this picture, the mean values of the �eld quadratures ^x =

�
ây + â

�
=2 and p̂ =

i
�
ây � â

�
=2 are practically zero along the trajectory, as expected for any cat state.

In order to have a de�nitive con�rmation of how the trajectories behave we consider
the evolution of the system Wigner function. The fully-averaged and single-trajectory
evolutions of the Wigner function are shown in panel (c) of Fig. 6.4 . Starting from
the vacuum state as initial condition, an even-cat transient appears in the average
behaviour, but negativities are eventually washed out for�t; t � 1 [85, 170, 171]. On
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a single trajectory, two-photon processes initially dominate, drivingW(�; t ) towards
the Wigner function of jC+

� i . Even if many two-photon losses are detected, they do
not a�ect the state parity, indeed Ĵ2 jC�

� i / â2 jC�
� i = � 2 jC�

� i . This is why the
system remains close to the even cat state until a one-photon loss occurs. At this
point, since Ĵ1 jC�

� i / â jC�
� i / jC �

� i , the Wigner function of the system abruptly
switches to that of jC�

� i [171], then back at each one-photon jump.
Hence, if the quantum trajectory is monitored via photon counting [126], the

system can only be found nearbyjC+
� i or jC�

� i . Furthermore, we may interpret p�
ss

in Eq. (6.13) as the asymptotic probabilities to �nd the system in one of the two
cat states. In the panels (a) and (b) of Fig. 6.4, we compare the evolution of the
Wigner function evolution with the evolution of the average photon numberhN̂ i and
parity hP̂ i . Since hN̂ i 1;2 � h N̂ i ss, it is impossible to discern the cats' jumps by
tracking the photon density. It is in particular impossible to determine in which cat
state the system is by measuring the photon loss intensity. A parity measurement,
contrarily, would be suitable [88] to unravel the bimodal behaviour of the system
when is monitored by photon-counting detection. In Fig. 6.4(a) and (b) we also
show the average over 100 trajectories, which, as expected, converges to the master
equation solution. The latter corresponds to the full average over an in�nite number
of realisations.

6.2.2 Homodyne detection and switching coherent states

Another possible way to monitor a quantum-optical system is through homodyne de-
tection, a widely-used experimental technique which allows to access the �eld quadra-
tures [89, 138, 139]. To implement this kind of measurement, the cavity output �eld is
mixed to the coherent �eld of a reference laser through a beam splitter (here assumed
of perfect transmittance). Then, the mixed �elds are probed via (perfect) photode-
tectors, whose measures are described by new jump operators. We stress that both
the coherent and the cavity �elds are measured simultaneously.

In our case, we want to probe independently the two dissipation channels. To
distinguish between one- and two-photon losses, one can exploit a nonlinear element
acting on the cavity output �eld. Indeed, in experimental realisations such as in
Ref. [85], a nonlinear element is already part of the system and is the key ingredient to
realise two-photon processes. More speci�cally, one-photon losses are due to the �nite
quality factor of the resonator. They can be probed by directly mixing the output
�eld of the cavity with a coherent beam of amplitude � 1 acting as local oscillator.
Therefore, the homodyne jump operator for one-photon losses can be cast asK̂ 1 = Ĵ1+
� 11̂. Two-photon losses are, instead, mediated by a nonlinear element (a Josephson
junction in Ref. [85]), which converts two cavity photons of frequency! c into one
photon of frequency! nl . Hence, the �eld coming out of the nonlinear element can be
mixed to a second independent oscillator. This whole process can be seen as the action
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Figure 6.5 Time evolution of ĥxi , ĥpi (right panel), and hP̂ i (left panel) along
single homodyne quantum trajectories for the master Equation (6.7). The system
parameters are set toU = 1� , G = 5� , and  = 0:1� . Simulations were performed on
a truncated Fock basis withnmax = 15, ensuring convergence.

of a nonlinear beam splitter which mixes pairs of dissipated photons with a reference
oscillator of amplitude � 2. Therefore, the homodyne two-photon jump operator takes
the form K̂ 2 = Ĵ2 + � 21̂. Without loss of generality, in the following, we assume the
amplitudes � 1;2 to be real [135].

From the de�nitions of the jump operators, one extracts the jump probabilities

p1(t; dt) = hK̂ y
1K̂ 1i (t)dt = h(

p
 â + � 11̂)y(

p
 â + � 11̂)i (t)dt

' [� 2
11̂ + � 1

p
 ĥa + âyi (t)]dt;

p2(t; dt) = hK̂ y
2K̂ 2i (t)dt = h(

p
� â2 + � 21̂)y(

p
� â2 + � 21̂)i (t)dt

'
�
� 2

21̂ + � 2
p

� ĥa2 + ây 2i (t)
�

dt;

(6.24)

where the approximations are valid in the ideal limit� 1;2 � 1. In this regime, for any
time interval, there would be a huge number of total �eld detections. This would make
computationally very demanding to follow the same procedure as in Sec. 6.2.1, since
one should take an extremely small time step. However, the detected �eld is almost
entirely due to the reference lasers, associated to the operators� 1;21̂. This means
that a single detection contains very few information on the resonator �eld, and that
the total jump operators K̂ 1;2 have a very small e�ect on its state. In the ideal limit
� 1;2 ! 1 , the occurrence of an in�nite number of jumps is counterbalanced by their
in�nitesimal e�ect on the resonator, resulting in an e�ective di�usive evolution of the
cavity state. The latter, indeed, is found to obey to a stochastic Schr•odinger equation
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of the form

dj (t)i = � i dt Ĥ j (t)i +
X

� =1 ;2

("

Ĵ� �
hĴ� + Ĵ y

� i (t)
2

1̂

#

dW� (t)

�
1
2

"

Ĵ y
� Ĵ� � h Ĵ� + Ĵ y

� i (t)Ĵ� +
hĴ� + Ĵ y

� i
2
(t)

4
1̂

#

dt

)

j (t)i ;

(6.25)

where Ĵ1;2 are the resonator jump operators and dW1;2 are stochastic Wiener incre-
ments of zero expectation value satisfying dW� (t)dW� (t) = � �� dt (a more detailed
description of the main formal steps to derive this equation is given in Sec. 4.3.3).

Those Wiener processes describe the uctuation of the homodyne signal. Using
the stochastic Schr•odinger Equation (6.25), one can simulate the trajectory by tak-
ing a reasonably smalldt and generating stochastic Wiener increments at each time
step. Note that Eq. (6.25) does not depend on the values of� 1;2, which are both in-
�nitely large. In conclusion, the homodyne detection reduces to a continuous di�usive
evolution of the wave function.

As shown in Sec. 6.2.1, quantum trajectory analysis based on photon counting
seems to privilege a mixture of cat states (Eq. (6.13)) over the mixture of coherent
states (Eq. (6.16)) as the more truthful picture of the steady state. This is no more
the case if we consider homodyne quantum trajectories. In Fig. 6.5(b), we present
(in a log-linear scale) the mean parityhP̂ i along a single homodyne trajectory, taking
the vacuum as initial state. In spite of the \switching cat" picture, the parity rapidly
approaches zero, and than just uctuates around this value. These uctuations are
due to the di�usive nature of Eq. (6.25), which rules the stochastic time evolution
of the system wave function under homodyne detection. The bimodal behaviour,
instead, is clear in the time evolution ofĥxi and ĥpi , shown in Fig. 6.5(c). This
appears compatible with the picture given by Eq. (6.16): at the steady state the
system switches between the coherent statesj� � i . We point out that the phase
switches observed for homodyne trajectories have a much smaller rate than parity
switches in photon-counting trajectories. This is a consequence of the metastable
nature of the coherent statesj� � i [85, 96].

For �nite  the considered system has always a unique steady-state. However,
the temporal relaxation towards the steady-state dramatically depends on the initial
state. This is revealed by the time-dependent �delity with respect to the steady-state

f [�̂ ss; �̂ (t)] = Tr
� q p

�̂ ss �̂ (t)
p

�̂ ss

�
; (6.26)

that in Fig. 6.6 has been obtained by numerical integration of the master equation.
In particular, initialising the system in one of the coherent statesj� � i composing
the steady-state cats, it remains nearby for a time several orders of magnitude longer
than 1= and 1=� . More precisely, this is the same time (of the order of 104=� ) that
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Figure 6.6 Metastable versus steady-state regime. The curves depict the time-
dependent �delity of the density matrix �̂ (t) with respect to the unique steady-state
density matrix �̂ ss by taking as initial condition a pure coherent state, i.e., ^� (t =
0) = j� ih� j. The �delity f [�̂ ss; �̂ (t)] is de�ned in Eq. (6.26). The values of� and the
corresponding colours are indicated in the inset. In the top panel, the phase of the
initial coherent state is varied, while in the bottom panel the amplitude is changed.
The dashed line corresponds to the vacuum as initial state. Parameters: � = 0,
U = 1� , G = 10� ,  = 0:1� .

one has to wait in average to have a switch in the homodyne trajectory (Fig. 6.5(c)).
Hence, we proved thatj� � i are metastable states of the systems, improving the
previous dominant interpretation that was considering them as multiple stable steady
states [85].

6.2.3 One-photon driven resonators

It is legitimate to question if the abrupt switches observed in the quantum trajectories
presented in Fig. 6.5 are an intrinsic property of the system or is just an e�ect of the
measurement protocol. To dispel all doubts, we calculated single photon-counting
and homodyne trajectories for a resonator subject to a resonant one-photon driving
of frequency! c. In the frame rotating at ! c, the corresponding Hamiltonian reads

Ĥ =
U
2

âyâyââ + F
�
ây + â

�
: (6.27)

We stress that, di�erently from the case discussed above, the steady state of this
system is not an equiprobable statistical mixture of two states [140, 162]. A photon-
counting trajectory for hP̂ i and homodyne trajectories forĥxi and ĥpi are shown,
respectively, in Fig. 6.7(a) and (b). Clearly, the trajectory does not show the same
kind of abrupt switches observed in Fig. 6.5. This proves that the behaviour discussed
in Sec. 6.2.1 and Sec. 6.2.2 is not caused solely by the measurement protocol, but is
indeed linked to the bimodal character of the steady state.
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Figure 6.7 Left Panel: Time evolution ofhP̂ i along a single photon-counting trajec-
tory. Righ Panel: Time evolution of ĥxi and ĥpi along a single homodyne trajectory.
Both plots refers to the Lindblad Equation (6.7) for the one-photon-driving Hamil-
tonian (6.27). We set the system parameters toU = 1� , F = 5� , and  = 0:1� (we
stress that hereG = 0). Simulations were performed on a truncated Fock basis with
nmax = 15, ensuring convergence.

6.2.4 Conclusion on trajectory analysis

In this section we have studied the behaviour of interacting photons in a nonlinear res-
onator subject to engineered two-photon processes. The objective has been to point
out and characterise the bimodal nature of the system steady state, which can be seen,
equivalently, as the statistical mixture of photonic Schr•odinger cat states (Eq. (6.13))
or of coherent states with same amplitude and opposite phases (Eq. (6.16)). The
behaviour of the system along a single quantum trajectory dramatically depends on
the measurement protocol adopted. For photon-counting measurements on the en-
vironment, the system switches between the parity-de�ned cat states appearing in
Eq. (6.13). Under homodyne detection, the states explored along a single quantum
trajectory are the coherent ones in Eq. (6.16). In other words, one may assign a
physical meaning to the probabilities appearing in the mixed-state representation of
�̂ ss only upon speci�cation of the single-trajectory protocol.

However, the average behaviour is exactly the same for the two detection protocols,
which are described by the same Lindblad master Equation (6.7). Finally, we have
also studied the quantum trajectories for a one-photon-driven resonator in a regime
where its steady state is not bimodal. The absence of abrupt switches in parity or
quadratures proves that the ones observed in Fig. 6.5 are not artefacts of the quantum
trajectory approach, but a feature linked to the steady-state bimodality.
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6.3 Feedback control on cat states

In the previous sections we saw that the class of systems described by the Lindblad
master equation (6.7) is very promising for the realisation of Schr•odinger cat states.
Cat states have been observed in the transient dynamics of this kind of systems [85].
These states are highly nonclassical and very promising for computation applications
[75, 77, 159, 160]. On the other hand they are fragile to one-photon decoherence and
their lifetime is very short.

The question is: how can we protect photonic Schr•odinger cats from one-photon
decoherence? As we showed, when considering photon-counting quantum trajectories,
the system intermittently jumps between an even and an odd cat states. We recall
that quantum trajectories can be thought as the description of an actual experiment
in which a continuous measurement is performed on the environment [126, 135, 144].
Photon counting is, in this regard, the most natural way to monitor the system: each
time a photon escapes the cavity it is measured by a photon counter. In particular,
if it was possible to collect all the leaked photons, one would be able to reconstruct
the state of the cavity. In this regard, i.e. under perfect photon counting, the system
would be anyhow in one of the two cats, and one would know in which one. Now, what
can we say about the cavity if we consider non-perfect photodetection? As discussed
in Ref. [27] for a closely related example, one would progressively lose its knowledge
about the system. As the time passes and the number of missed photon increases,
there will be an equal probability to be in the even or in the odd cat: hence one
retrieve the statistical mixture in Eq. (6.13).

We stress that, even if bothjC�
� i in Eq. (6.13) are highly nonclassical states,

it was proved in Ref. [96, 161] that the steady state of Eq. (6.13) has lost all the
quantumness, i.e. there are no negativities in the Wigner function (cf. Fig 6.2).
Thus, in order to retrieve some of the quantum features of the Schr•odinger cats, it is
necessary to contrast the one-photon dissipation. A possible way could be to actively
control the system through a feedback protocols. This is the topic of the following
sections.

6.3.1 Feedback by conditioning of one-photon dissipation

In Sec. 6.2.1 we saw that the main e�ect of one-photon dissipation is to induce abrupt
and totally random jumps from one cat state to the other with opposite parity. This
process drive the system toward a mixed state with equal probability 1=2 for the two
cat states. In this stationary state the coherence betweenj� i and j� � i is completely
lost and system is in a classical state.

Thus one-photon dissipation is the main obstacle toward the stabilisation of one of
the two cat states. On the other hand, because of its central role, one could imagine
to control the system state by controlling the intensity of one-photon dissipation. In
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particular one could try to recover a cat-like steady state by unbalancing the even
and odd contribution to �̂ ss (Eq. (6.13)). In a quantum trajectory picture, if the jump
rate from the even to the odd cat state is, for instance, smaller than the jump rate
from the odd to the even cat state then the latter will be dominant. The resulting
stationary state will be a cat-like state and the coherence betweenj� i and j� � i is
recovered. In one of our works [96], we proposed the realisation of this idea through
a parity-triggered feedback mechanism [172{175]. The idea is to repeatedly perform a
non-destructive parity measurements at timest i and to open an addition one-photon
loss channel when the undesired value is measured. We point out that a similar
measure has already been realised in the context of superconducting circuits [86, 88].

Let us describe a general evolution of the system under repeated measurement
and a Liouvillian that depends on the result of the measure. As detailed in Sec. 4.2.1,
any observableM̂ can be written in terms of its eigenspace projectorŝ� � and the
associated eigenvalues� : M̂ =

P
� � �̂ � . The probability of obtaining the result � ,

upon measure ofM̂ , is thereforep� = Tr
n

�̂ �̂ �

o
. After obtaining the outcome� from

the measurement ofM̂ , the density matrix become

�̂ � =
�̂ � �̂ �̂ �

Tr
n

�̂ � �̂
o =

M � �̂
p�

; (6.28)

where we have introduced the measurement superoperator of the formM � �̂ = �̂ � �̂ �̂ � .
Now, we are interested in the description of the mean e�ect of the measure on the
master equation, i.e. what are the quantities which can be retrieved from performing
several times the same experiment . Thus, if we call ^� the density matrix describing
the system just before the measure, the e�ect ofM is

M �̂ =
X

�

p� �̂ � =
X

�

M � �̂ : (6.29)

We suppose to perform a measure on the system at every timet i , while the system
evolves under the action of the Liouvillian for � t = t i +1 � t i . Let us de�ne the
conditional Liouvillian L � , that is chosen according to the result of the measurement.
The mean evolution of the system in between two measures is:

�̂ (t) =
X

�

eL � (t � t i )M � �̂ (t i ) =
X

�

eL � (t � t i ) �̂ � �̂ (t i )�̂ � ; (6.30)

where ^� (t i ) is the system state at the moment of the last measurement. So the average
action on the density matrix of one feedback cycle (measurement followed by control)
is given by:

�̂ (t i +1 ) =
X

�

eL � � tM � �̂ (t i ) : (6.31)
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Figure 6.8 A schematic representation of the proposed feedback protocol. The
system is probed by a parity measurementP at time t. If the result is +1 we go
directly to the next measurement at timet + � t. Otherwise, if the result is � 1 a
strongly dissipating two-level system is tuned in resonance with the cavity and we
come back to measure. This enhances the one-photon dissipation bringing the system
toward the target even state.

A possible way to distinguish between cat states is a parity measure. In fact, the
even and odd cats are compound only by even or odd states, respectively, and thus
are eigenstate with eigenvalue� 1 of the parity operator P̂ = ei� ây â. Thus, in the
description our protocol to obtain cat-like states we can exploit parity measurement
superoperatorsP� �̂ = �̂ � �̂ �̂ � , where parity projectors have the form

�̂ � =
1
2

h
1̂ � ei� ây â

i
: (6.32)

Note that, correctly, �̂ y
� �̂ � + �̂ y

+ �̂ + = 1̂ and that measurement superoperatorsP�

project the density matrix on the even-odd manifold.
Following the proposal in Ref. [96], we condition the value of on the result of

parity measurement. A proposal to realise the conditional dissipation is to increase
it by tuning in resonance with the cavity a strongly dissipating two-level system (as
detailed in the appendix. A). Figure 6.8 provides schematic representation of the
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Figure 6.9 Left panel: evolution of the expectation value of the parityP̂ for di�er-
ent durations � t of the feedback cycle. Parameters areG = 10� , U = 1� ,  + = 0:1�
and  � = 2 + ; the initial state is the even cat statejC+

� i . The solid lines represent
the mean on the full density matrix, while the white dashes are obtained using the
populations p� of the reduced space. Inset left panel: relative error in determining
the parity using the projection procedure. Right panel: the Wigner function of the
system density operator at time� t = 7.

feedback protocol.
The conditional Lindbladian superoperators act asL � �̂ = i [�̂; Ĥ ] + D2�̂ + D �

1 �̂ =
(L 2 + D �

1 )�̂; where we have introduced the parity-dependent one-photon dissipation:

D �
1 �̂ =

 �

2

�
2â�̂ ây � âyâ�̂ � �̂ âyâ

�
: (6.33)

The evolution of the system in Eq. (6.30) now reads:

�̂ (t) =
X

� = �

eL � (t � t i )P� �̂ (t i ) =
h
e(L 2+ D +

1 )( t � t i )P+ + e(L 2+ D �
1 )( t � t i )P�

i
�̂ (t i ) : (6.34)

In Fig. 6.9 we plot the evolution of the parity according to Eq. (6.34) for di�erent
values of � t. The initial pure even cat state quickly decay toward a zero-parity
state, until the e�ect of the measurement-feedback procedure intervene. At every
measurement we have a discontinuity in the �rst derivative of system time evolution.
Between the two subsequent measurements the parity evolution is continuous and
after few feedback cycles it stabilises on a precise repeated behaviour.

In Fig. 6.9 we choose to plot the average parity of the system because it is a good
indicator of how close we are to realise a cat state, that is the target of our feed-
back protocol. In absence of feedback the two cats become equally probable, and the
Wigner function of the steady state has no negativity (see Fig. 6.2). Introducing a
feedback with � = 2 + , the odd cat state is more fragile then the even one and some
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quantum features will emerge (see the Wigner functions in Fig. 6.9). The resulting
system state is closer to the even cat state as �t decreases. Indeed in the Wigner
functions showed in Fig. 6.9 we see that the smaller is �t the more the fringes are
marked. In order to explain that e�ect one has to consider that, after every mea-
surement, the one-photon dissipation deteriorate the acquired information. For more
frequent measurement the degrading e�ect of one-photon dissipation is smaller and
the feedback is more e�cient.

Finally, let us consider the continuous limit, i.e. � t �  � , the feedback protocol is
maximally e�cient in this limit (see Fig. 6.9). As we will prove at the end of Sec. 6.3.5,
this continuous limit is e�ectively described by an additional parity-dependent dissi-
pation channel to the bare master equation in Eq. (6.7). More precisely this additional
dissipation is described by the jump operator ^af = â 1

2(1̂ � P̂ ) = â �̂ � and the corre-
sponding dissipator

Df �̂ =
 f

2

�
2âf �̂ ây

f
� ây

f
âf �̂ � �̂ ây

f
âf

�
: (6.35)

Qualitatively, Df leaves the even cat undisturbed, while it enhances the dissipation for
the odd one. Making the link to the parameters of our feedback protocol f =  � �  +

and  =  + .
In Fig. 6.10(a) we show the time evolution ofhP̂ i for three di�erent values of  f .

At the steady state, hP̂ i increases with increasingly f , indicating that the positive
cat has a larger weight in ^� ss. In Fig. 6.10(b) we show the corresponding steady-state
Wigner functionsW(� ). For �nite  f , negative fringes appear in the Wigner function.
They are more pronounced as f is increased, revealing a highly nonclassical state.
In the limit  f �  , �̂ ss ' jC +

� i hC+
� j. Note that, by using instead the jump operator

âf = â 1
2(1̂ + P̂), one can similarly stabilise the odd cat state.

6.3.2 Projection on cat states

In Section 6.1.2, we saw that in the strong pumping and weak one-photon dissipation
regime, the description of the system can be restricted to the subspace spanned by the
cat states and that only the cat populations really matter (and not their coherences).

Let us use the same idea to project Eq. (6.34) on the subspace of the cat states.
If at time t i the system is in a statistical mixture of the two cats of the form ^� (t i ) =
p+ (t i ) jC+

� ihC+
� j + p� (t i ) jC�

� ihC�
� j, the density matrix at time t 2 (t i ; t i +1 ) between the

two measurements is given by

�̂ (t) =
X

�

eL � (t � t i )P� �̂ (t i ) = eL + (t � t i ) p+ (t i ) jC+
� ihC+

� j + eL � (t � t i ) p� (t i ) jC�
� ihC�

� j

= p+ (t i ) e(L 2+ D +
1 )( t � t i ) jC+

� ihC+
� j + p� (t i ) e(L 2+ D �

1 )( t � t i ) jC�
� ihC�

� j :
(6.36)
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Figure 6.10 E�ects of the considered feedback. These results are obtained by
taking the vacuum as initial condition and for same system parameters as in Fig. 6.4.
Panel (a): time evolution of the steady-state parity mean-value in presence of the
feedback described by Eq. (6.35) for di�erent values of f (cf. legend). Panel (b):
steady-state Wigner function (t ! + 1 ) exhibiting negativities for  f > 0.

As we have seen in Sec. 6.1.2, for� =
p

� G=(U � i� ) we haveL 2 jC�
� ihC�

� j = 0, and
then the Eq. (6.36) become:

�̂ (t) = p+ (t i ) eD +
1 (t � t i ) jC+

� ihC+
� j + p� (t i ) eD �

1 (t � t i ) jC�
� ihC�

� j : (6.37)

The action of the propagatorseD �
1 (t � t i ) on a generic mixture of the cat states is equiv-

alent to the time evolution given by the following di�erential equation:

@
@t

�
p+ (t) jC+

� ihC+
� j + p� (t) jC�

� ihC�
� j

�
= D �

1

�
p+ (t) jC+

� ihC+
� j + p� (t) jC�

� ihC�
� j

�

(6.38)
As we saw in Section 6.1.2, forG � U; � �  (i.e. j� j � 1), the e�ect of superop-
erators D �

1 is to evolve the cat populations. Let us de�ne the subspace of cat state
population, in which we de�ne the following representation of an arbitrary mixture of
cat states:

a jC+
� ihC+

� j + b jC�
� ihC�

� j def=
�

a
b

�
(6.39)

The action of D �
1 , that we have determined in Eq. (6.20), can be expressed in the



6.3. Feedback control on cat states 125

basis of cat states populations:

D �
1

�
p+ (t) jC+

� ihC+
� j + p� (t) jC�

� ihC�
� j

� def= D �
1

�
p+ (t)
p� (t)

�
'

�
�  � j� j2 +  � j� j2

+  � j� j2 �  � j� j2

��
p+ (t)
p� (t)

�
:

(6.40)
Using the same representation we can now recast the Eq. (6.38) in the following rate
equations:

@
@t

�
p+ (t)
p� (t)

�
'  �

�N
�
� 1 +1
+1 � 1

� �
p+ (t)
p� (t)

�
; (6.41)

in which we introduce the average number of photons�N ' j � j2. In the regime we
are considering, the time evolution given by these rate equations is approximately
equivalent to those produced by the propagatorseD �

1 (t � t i ) . One can solve the rate
equations by diagonalizing it and then determine the action of the propagators:

eD +
1 (t � t i ) jC+

� ihC+
� j =

1 + e� 2 �N + (t � t i )

2
jC+

� ihC+
� j +

1 � e� 2 �N + (t � t i )

2
jC�

� ihC�
� j ; (6.42a)

eD �
1 (t � t i ) jC�

� ihC�
� j =

1 � e� 2 �N � (t � t i )

2
jC+

� ihC+
� j +

1 + e� 2 �N � (t � t i )

2
jC�

� ihC�
� j : (6.42b)

Using these expressions for the propagators, the Equation (6.37) reads:

�̂ (t) = p+ (t) jC+
� ihC+

� j + p� (t) jC�
� ihC�

� j

=
1
2

h
1 + p+ (t i ) e� 2 �N + (t � t i ) � p� (t i ) e� 2 �N � (t � t i )

i
jC+

� ihC+
� j +

1
2

h
1 + p� (t i ) e� 2 �N � (t � t i ) � p+ (t i ) e� 2 �N + (t � t i )

i
jC�

� ihC�
� j :

(6.43)

In Fig. 6.9 we plot the evolution ofhP̂ i under the parity dependent feedback both
for the full solution and for the projection on the cat states. The density operator,
initialised in the even cat state, rapidly loses its quantum features if no feedback is
applied, and the reduced basis perfectly captures this feature. The projection method
produces very reliable quantitative results with respect to the full simulation also in
presence of the parity dependent feedback. In the inset of Fig. 6.9 is also plotted the
relative error between the projected evolution of Eq. (6.37) and the full simulation. We
stress that the error is never bigger than 1%, con�rming the validity of the approach.

As one may notice from Fig. 6.9, after a su�ciently long time the system stabilises
on a repeated evolution of period �t = t i +1 � t i , the delay between two subsequent par-
ity measurements. In other words, after a certain time ^� (t i +1 ) = �̂ (t i ) and the state of
the system only depend on the time� passed between two subsequent measurements,
precisely� = t � t i and � 2 [0; � t].

In this regard it is possible to de�ne the stroboscopic stationary state ^� (� ) and its
the stroboscopic stationary populationss+ (� ) and s� (� ), in analogy with Eq. (6.43):
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�̂ (� ) = s+ (� ) jC+
� ihC+

� j + s� (� ) jC�
� ihC�

� j

=
1
2

h
1 + s+ (0) e� 2 �N + � � s� (0) e� 2 �N � �

i
jC+

� ihC+
� j +

1
2

h
1 + s� (0) e� 2 �N � � � s+ (0) e� 2 �N + �

i
jC�

� ihC�
� j :

(6.44)

With this de�nitions the the fact that �̂ (t i +1 ) = �̂ (t i ) implies that � (� t) = � (0) and
that

s+ (� t) =
1
2

h
1 + s+ (0) e� 2 �N + � t � s� (0) e� 2 �N � � t

i
= s+ (0) ;

s� (� t) =
1
2

h
1 + s� (0) e� 2 �N � � t � s+ (0) e� 2 �N + � t

i
= s� (0) :

(6.45)

Solving these equations fors� (0) we obtain

s� (0) =
1 � e� 2 �N � � t

2 � e� 2 �N + � t � e� 2 �N � � t
: (6.46)

It follows that the stroboscopic stationary density matrix is
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(6.47)

and the average value of parity for this stroboscopic steady state is

hP̂ i � (� ) =
e� 2 �N + �

�
1 � e� 2 �N � � t

�
� e� 2 �N � �

�
1 � e� 2 �N + � t

�

2 � e� 2 �N + � t � e� 2 �N � � t
: (6.48)

Notice that, in accordance to Fig. 6.9, all these expressions depend on �t. Moreover,
for � t ! 1 one correctly retrieves the no feedback solutions+ = s� = 1=2, while
for � t ! 0 the ratio between the population is of the forms+ =s� =  + = � . For
the chosen parameters ( � = 2 + ) this would lead to an average parity ofhP̂ i =
( � �  + )=( � +  + ) = 1 =3, that is in very good agreement with the numerical
simulation of the continuous limit (see Fig. 6.9).

It is interesting, at this point, to explore the feedback e�ciency by studying how
close the stroboscopic steady state is to the even cat state. In order to further charac-
terise the e�ectiveness of this feedback, in Fig. 6.11 we plot, for di�erent values of �t,
the �delity of the stroboscopic stationary density matrix �̂ (� = 0) (full simulation)
with respect to �̂ + = jC+

� ihC+
� j as a function of � = + . We recall that the �delity be-

tween two density matrices ^� and � is de�ned asf (�̂; �̂ ) = Tr f
p p

�̂ �̂
p

�̂ g. Clearly, an
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Figure 6.11 Fidelity as a function of the strength of the parity-selective dissipation
for di�erent values of the feedback characteristic time �t. The parameters areG =
10� , U = 1� ,  + = 0:1� and  � = 2 + . Top panel: �delity between the even cat
�̂ + = jC+

� ihC+
� j and the density matrix of the full simulation �̂ 0

def= �̂ (� = 0) at the
stroboscopic steady state. Bottom panel: �delity between the projected stroboscopic
density matrix �̂ 0

def= �̂ (� = 0) and the density matrix of the full simulation �̂ 0
def=

�̂ (� = 0).

interesting interplay between � = + and � t takes place. In the continuous limit the
parity is continuously measured and an increasing value of � = + will always increase
the probability of being in the even cat. More interesting are the intermediate regimes.
In fact, for a certain value  � = + the purity of the system starts to decrease. This
poses a theoretical limit to the puri�cation toward a even cat state which depends on
the repetition rate of the parity measure. A qualitative explanation is the following.
As  � increases, the system spends less and less time in the odd cat. This time is
proportional to 1= � , when it is too small compared to �t the measurements are not
frequent enough to have an updated knowledge of the system and the feedback is not
e�cient anymore.

Moreover, for further increasing � the approximations done in Sec. 6.1.2 are no
more valid. In particular, for strong  � , the dissipator D �

1 is leading the system
out of a statistical mixture of cat states with amplitude � =

p
� G=(U � i� ). The
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bottom panel of Fig. 6.11 show the limits of our approximation beyond which the
description in terms of the two cat states breaks. To quantify the error committed
by the cat state projection approach, the dashed line represent the �delity between
the approximated stroboscopic steady state and the full simulation one. Clearly, for
 � � 1=� t the approximation is optimal, and one has a �delity close to one, while for
big  � the system cannot be described in the subspace spanned by the two considered
cats. This also explain the further decrease of the stroboscopic stationary density
matrix �̂ (� = 0) and the even cat ^� + = jC+

� ihC+
� j.

6.3.3 Imperfect parity measurement

Let us study now the more realistic case in which the parity measurement is not
perfect. In this case a certain outcome of the parity measurement does not allow
to project the system state on the associated projector uniquely. More concretely,
in the framework de�ned by Eq. (6.31), we will use the measurement superoperators

M �
def= (1 � pe) P� + pe P� , where pe is the error probability allowing to take into

account the imperfection of the parity measurement (also introduced in Sec. 4.2.2).
This measurement superoperators lead to the following expression for system evo-

lution:

�̂ (t) =
X

� = �

eL � (t � t i ) [(1 � pe) P� + pe P� � ] �̂ (t i )

=
n

e(L 2+ D +
1 )( t � t i ) [(1 � pe) P+ + pe P� ] + e(L 2+ D �

1 )( t � t i ) [(1 � pe) P� + pe P+ ]
o

�̂ (t i );

(6.49)

where we use the same de�nitions as in Eq. (6.34). In the same regime of the pre-
vious section, and following the same steps, this equation can be recast in the two-
dimensional subspace of cat state populations:

�̂ (t) = p+ (t i )
h
(1 � pe) eD +

1 (t � t i ) + pe eD �
1 (t � t i )

i
jC+

� ihC+
� j +

p� (t i )
h
(1 � pe) eD �

1 (t � t i ) + pe eD +
1 (t � t i )

i
jC�

� ihC�
� j :

(6.50)

By properly inserting the action ofeD �
1 (t � t i ) given in Eq. (6.42), one gets:

�̂ (t) =
1
2

h
1 + p+ (t i ) e� 2 �N + (t � t i ) � p� (t i ) e� 2 �N � (t � t i )

+ pe

�
e� 2 �N � (t � t i ) � e� 2 �N + (t � t i )

�i
jC+

� ihC+
� j

+
1
2

h
1 + p� (t i ) e� 2 �N � (t � t i ) � p+ (t i ) e� 2 �N + (t � t i )

+ pe

�
e� 2 �N � (t � t i ) � e� 2 �N + (t � t i )

�i
jC�

� ihC�
� j :

(6.51)
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As in the case of perfect measurement, after few feedback cycles the system sta-
bilises in a repeated evolution of period �t. It is then possible to de�ne the stro-
boscopic stationary density matrix� (� ) and the populationss� (� ) (see Eq. (6.44)),
explicitly including the e�ect of errors in the parity measurement. In particular, the
stroboscopic populations and the average parity at time� = 0 (equivalent to � = � t)
are given by:

s� (� = 0) =
1 � e� 2 �N � � t � pe

�
e� 2 �N � � t � e� 2 �N + � t

�

2 � e� 2 �N + � t � e� 2 �N � � t
; (6.52a)

hP̂ i � (� = 0) =
(1 � 2pe)

�
e� 2 �N + � t � e� 2 �N � � t

�

2 � e� 2 �N + � t � e� 2 �N � � t
: (6.52b)

We recall that the parity is a good indicator of how close the system is to a cat
state. For parity close to 1 (� 1) the system is roughly in a even (odd) cat state,
while for vanishing parity the two cat states are equally mixed, resulting in strictly
positive Wigner functions. In equation (6.52b) the e�ect of imperfections in the parity
measurement are explicit. For maximally imperfect measurement, i.e.pe = 0:5, the
average parity is zero, the system is in a equally weighted mixture of the two cat
states and the Wigner function is positive.

6.3.4 Feedback by conditional pumping

While Section 6.3.1 reported our results on a feedback protocol based in conditioning
the one-photon dissipation channel, in this section we show how a conditional change
of pumping parameters can a�ect the steady state of the system. More precisely, we
will show that it is possible to yield a negative valued Wigner function in the steady
state by switching the phase or the intensity of the pumping.

Conditional pumping intensity

Let us repeatedly perform a projective parity measurement and conditionally tune
the pumping intensity, depending on the measurement outcome. In Fig. 6.12 we
show the steady state for continuous measurement limit ^� ss when G+ =G� = 5=12
(at this ratio the e�ects of the feedback protocol are particularly apparent) and all
the other parameters are independent of the measurement result, i.e.U+ = U� ,
 + =  � and � + = � � . As the even sector is less pumped than the odd one, one
would expect to see the odd sector more populated then the even one, but it is
not the case. Indeed the system stabilises to a state that is closer to the even cat
state, recovering the characteristic negative fringes in the Wigner function. This is
explained as follows. The two sectors are approaching independently two cat states
with two di�erent values of � corresponding to the two di�erent pumping intensities,
in accordance with the formula� =

p
� G=(U � i� ). Because of this, the two cat

states have two di�erent number of photons and, as the one-photon dissipation is
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Figure 6.12 Continuous limit stationary state for conditional intensity of the pump-
ing. Wigner function of the stationary state ^� ss (left panel), and of its even (middle
panel) and odd (right panel) contributions. The parameter areU = 1� ,  = 0:1� ,
G+ = 5� and G� = 12� .

proportional to the number of photons, it results in a stronger dissipation for the
odd cat state that is then less populated. The state represented in Fig. 6.12 has an
average parity of aroundhP̂ i ' 0:4, it is dominated by even cat states, nevertheless
we can still see the reminiscence of the of the odd cat state in the deformation of the
positive lobes of the Wigner function. The coherent states composing the odd cat
state have a larger amplitude� than the ones in the even cat state, and they appear
at the extrema of the even cat state lobes.

Conditional pumping phase

Let us now consider the the case in which we conditionally pump the cavity with two
opposite phases. The action of this feedback protocol for �nite �t is described again
by Eq. (6.31) in which G+ = � G� and all the other parameters are independent of
the measurement result, i.e.U+ = U� ,  + =  � and � + = � � . In Fig. 6.13 we plot the
Wigner function of the stationary and stroboscopic stationary state (see Sec. 6.3.2 for
its de�nition), respectively for the continuous measurement limit and for �nite � t.

As mentioned in Sec. (6.1), without feedback our system evolve into a statistical
mixture of jC+

� i and jC�
� i . The value of � is determined by the system parameters,

in particular if G ! � G then � ! i� . In the feedback protocol considered here we
pump the two parity sector with opposite phase (G+ = � G� ), thus the even sector
will tend to the state jC+

� i while the odd sector will tend tojC�
i� i . In the continuous

limit of this feedback protocol the steady state, showed in Figure (6.13, left), is given
by:

�̂ ss ' p+
ss jC+

� ihC+
� j + p�

ss jC�
i� ihC�

i� j ; (6.53)
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Figure 6.13 Feedback by conditional pumping phase. Wigner function of the sta-
tionary and the stroboscopic stationary state (see Sec. 6.3.2 for its de�nition), respec-
tively for the continuous limit (left panel) and for � t = 0:5=� (right panel). The
parameter areU = 1� ,  = 0:1� , G+ = 10� and G� = � G+

where in the intense pumping regimep+
ss ' p�

ss ' 1=2. If � t is �nite on the other
hand, the one-photon dissipation has the time to introduce an error that modi�es the
stationary state of the feedback. In this case the pseudo stationary state has the form:

�̂ ss ' p+
� jC+

� ihC+
� j + p�

i� jC�
i� ihC�

i� j + p�
� jC�

� ihC�
� j + p+

i� jC+
i� ihC+

i� j ; (6.54)

where the last two terms are due to the error introduced by the one photon dissipation.

6.3.5 Projection of the feedback evolution on the parity sub-
spaces

Let us consider the action of a feedback cycle, given by Eq. (6.31), in the more general
case in which any parameter of the system can be controlled. It is not possible in
general to do the same we did in the Section 6.3.2, and reduce the problem to the
basis of the cat state populations. In this section we show that in the continuous
measurement limit it is possible to neglect the odd-even photon number coherences
and to reduce the problem to the parity de�ned subspaces.

In order to yield the continuous measurement limit of the general feedback proto-
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col, let us expand for small �t the conditional propagator in Eq. (6.31):

�̂ (t i +1 ) =
X

�

eL � � tP� �̂ (t i ) '
X

�

(1 + L � � t) P� �̂ (t i ) =
X

�

P� �̂ (t i ) + � t
X

�

L � P� �̂ (t i )

= �̂ (t i +1 ) = ( P� + P+ ) �̂ (t i ) + � t (L � P� + L + P+ ) �̂ (t i ) :
(6.55)

In the perspective of the continuous limit (� t ! dt and t i +1 ' t i ! t) we can express
this equation as

�̂ (t + d t) = ( P� + P+ ) �̂ (t) + d t (L � P� + L + P+ ) �̂ (t) : (6.56)

It is not possible in general to obtain a di�erential equation from this expression,
but this becomes possible when we consider its projection on the parity de�ned sub-
spaces. Let us study, for example, the projection on the even space by applying the
superoperatorP+ [�] = �̂ + [�]�̂ y

+ to Eq. (6.56):

P+ �̂ (t + d t) = P+ (P� + P+ ) �̂ (t) + d t P+ (L � P� + L + P+ ) �̂ (t) : (6.57)

Note that �̂ + �̂ � = 0 and that �̂ 2
� = �̂ � , this implies that P+ P� = 0 and that

P2
� = P� . Using these properties of the projectors, the expression (6.57) can be

simpli�ed to:

P+ �̂ (t + d t) = P+ �̂ (t) + d t P+ (L � P� + L + P+ ) �̂ (t) : (6.58)

From Equations (6.7) and (6.6) one can see that, a part for the �rst term of the
one-photon dissipator, every term of the time evolution de�ned by the Lindbladian
superoperatorsL � preserves the parity. Taking into account this property and de�ning
�̂ �

def= P� �̂ , we obtain:

�̂ + (t + dt) � �̂ + (t)
dt

� @t �̂ + = i [�̂ + ; Ĥ+ ] + D+
2 �̂ + + P+ D �

1 �̂ � + P+ D+
1 �̂ + ; (6.59)

where we switched Eq. (6.58) into a di�erential equation and we omitted for simplicity
the explicit time dependence. The same procedure can be performed for the projection
on the odd subspace. We �nally obtain two coupled master equation for the parity
projected density matrix ^� + and �̂ � :

@t �̂ + = i [�̂ + ; Ĥ+ ] + � +

�
ââ�̂ + âyây �

1
2

�
âyâyââ; �̂ +

	
�

�
 +

2

�
âyâ; �̂ +

	
+  � â�̂ � ây ;

@t �̂ � = i [�̂ � ; Ĥ � ] + � �

�
ââ�̂ � âyây �

1
2

�
âyâyââ; �̂ �

	
�

�
 �

2

�
âyâ; �̂ �

	
+  + â�̂ + ây ;

(6.60)

where the subscripts denote the dependence of the piecewise-constant parameters on
the measurement outcome.
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We stress that these coupled equations do not represent a master equation in
the full space asP+ + P� 6= 1. These equations disregard the coherences between
even and odd sectors, that is valid for our problem in which these coherences are
cancelled by the continuous parity measurement and in which any term of the dynamic
couples the to parity de�ned sectors in a coherent manner. As a sanity check we can
see that Trf @t �̂ + + @t �̂ � g = 0, whereas the traces are not individually conserved
Tr f @t �̂ � g 6= 0. The expression obtained for the density matrix evolution under the
e�ect of the feedback in Eq. (6.60), allows to study the system in large range of
situation and in a more simpli�ed representation.

Imperfect parity measurement

As we did in Section 6.3.3 we could be interested in the e�ect of the measurement error
on these two coupled master equations. We use the same measurement superoperator
M �

def= (1 � pe) P� + pe P� and we follow the same procedure as in Section 6.3.3. One
can show that the same coupled master equations hold in this case, with the only
e�ect of modifying their parameters:

Ĥ 0
� = (1 � pe) Ĥ � + pe Ĥ � ; (6.61a)

� 0
� = (1 � pe) � � + pe � � ; (6.61b)

 0
� = (1 � pe)  � + pe  � : (6.61c)

The case of maximally imperfect measurement, i.e.pe = 1=2, is perfectly equivalent
to the absence of feedback control:̂H 0

+ = Ĥ 0
� , � 0

+ = � 0
� and  0

+ =  0
� . Remarkably for

this kind of feedback the presence of a measurement error is equivalent to a reduced
pumping amplitude. Considering thatG+ = � G� , Eq. (6.61a) implies that G0

� =
(1 � 2pe)G� that is by de�nition smaller than G� .

Equivalence with the e�ective parity-dependent dissipation

At the end of Sec. 6.3.1 we have described the continuous limit of our feedback protocol
through the e�ective parity-dependent dissipation in Eq. (6.35). By projecting on the
parity subspaces we can prove the equivalence between the continuous limit of our
parity triggered feedback protocol and this e�ective dissipation. From Eq. (6.35), we
recall his expression:

Df �̂ =
 f

2

�
2âf �̂ ây

f
� ây

f
âf �̂ � �̂ ây

f
âf

�
: (6.62)

whereâf = â 1
2(1̂ � P̂ ) = â �̂ � is a parity selective jump operator. By projecting the

dissipator Df on the parity de�ned subspaces we obtain:

P+ Df �̂ =  f â�̂ � ây ;

P� Df �̂ =
 f

2

�
âyâ; �̂ �

	
:

(6.63)
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Imagine that we are not applying any feedback, it means that all the parameters are
independent on the parity, i.e. Ĥ+ = Ĥ � = Ĥ , � + = � � = � and  + =  � =  . By
comparing Eqs. (6.63) and Eqs. (6.60), it is clear that by adding the dissipatorDf

one is e�ectively increasing by f the value of  � , i.e.  + �  and  � �  +  f . Note
that the equivalence is only true in the parity de�ned subspaces.

6.4 Conclusions and perspectives on photonic
Schr•odinger cat state generation

In this chapter we presented our results on the study of quantum trajectories and
feedback control of two-photons driven-dissipative resonators. Studying quantum tra-
jectories turned out to be very convenient in interpreting the characteristic bimodality
of this kind of systems. Investigating the onset of bimodality in driven-dissipative res-
onators is particularly interesting since the components of the resulting mixed steady
state,

�̂ ss ' p1 jC+
� ihC+

� j + p2 jC�
� ihC�

� j or �̂ ss '
1
2

j� ih� j +
1
2

j� � ih� � j ;

can be used as (quasi-)orthogonal states in quantum computation [75, 77, 159, 160]. To
exploit the two-photon driven resonator in this context, one can envision a feedback
mechanism which unbalances the steady-state mixture in favour of one of the two
components [96]. Based on this idea we explored the properties and possibilities of a
parity measurement triggered feedback. We considered some simpli�ed approaches to
the problem, that proved to be very e�cient and accurate and we studied the e�ect
of the several sources of error entering the feedback protocol.

From a perspective point of view, it would be interesting to de�ne a precise realistic
protocol to exctract information about the parity in this kind of two-photons driven-
dissipative resonators. In Ref. [88], Sun et al. have been able to track photon jumps
by repeated measurements of parity. However, in this experiment they measured
the parity of a free linear cavity, while our system is driven and nonlinear. Some
preliminary analysis, that we did not present in this thesis, have proved that it is
indeed possible to extract partial information on the parity of our two-photons driven-
dissipative resonators, by coupling and measuring an ancillary qubit. This partial
information can be used to protect the quantum properties of optical Schr•odinger cat
states through a feedback protocols of the kind that we presented in this chapter.



Chapter 7

Conclusion and perspectives

In this thesis we have explored theoretically the measurement and the control of
highly nonclassical states of quantum optical systems. After an introduction of some
paradigmatic models of quantum optics in Chapter 2, and a presentation of the the-
oretical framework in Chapters 3 and 4, we have detailed the original results of this
thesis in Chapters 5 and 6.

In Chapter 5 we have presented our proposal for a non-destructive measurement
of populations and correlations of exotic ground states in the ultrastrong coupling
regime [94]. Cavity (circuit) QED systems in the ultrastrong coupling regime are
characterised by exotic vacua that contain photons. The precise nature of these vacua
is directly related to the fundamental symmetries of the considered cavity (circuit)
QED systems. In the case of the Dicke model for example, the ground state is a light-
matter Schr•odinger cat state. Due to energy conservation, the photons contained
in these exotic ground states are bound to the cavity, and cannot be emitted into
the environment. This means that we can not explore and control them by simple
photodetection. With our work we have proven that the Lamb shift of an ancillary
two-level atom (qubit) coupled to a cavity (circuit) QED system in the ultrastrong
coupling regime contains direct information on the populations and the coherences of
the system ground state.

Another important part of our work has been focused on the realisation of photonic
Schr•odinger cat states in two-photon driven-dissipative resonators [96]. The results of
this work have been reported in Chapter 6. Through reservoir engineering, it is
possible to shape an out-of equilibrium system, in which, except for the presence of
one-photon dissipation, the parity of the system is conserved [160]. It has been proved,
that this symmetry allows to observe photonic Schr•odinger cats in the transient dy-
namics of the system [85]. However, due to the unavoidable one-photon dissipation,
the stationary state of the system is a classical state, and more precisely it is a statis-
tical mixture of the two photonic Schr•odinger cat states with opposite parity. The big
challenge here is to protect one of the two cat state against one-photon dissipation,
and to recover the distinctive quantum features of these states. Based on a detailed
analysis of the system quantum state trajectories [95], we have proposed and explored
the di�erent regimes of a parity-triggered feedback control that is intended to recover
the quantum features of photonic Schr•odinger cat states.

It is worth spending a few words on the analogies and the di�erences between
the two types of systems considered in this thesis. First of all, we note that in both
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systems the generation of highly nonclassical states of light and matter is associated
to the underlying symmetry of the system. Both the ground state of a (Dicke) system
in the ultrastrong coupling regime, and the out-of-equilibrium stationary state of two-
photon driven-dissipative resonators, are both in the form of Schr•odinger cat states.
These kind of states are very interesting because they are a coherent superposition of
macroscopically di�erent states. However, the access to the quantum correlations of
these systems is non-trivial: our work in this thesis has been to address this problem.

Furthermore, we �nd important to discuss the relation of this research with the
problem of quantum-to-classical boundaries. In order to have a macroscopic state,
we need the Schr•odinger cat state to have a large number of photons. However, it
is precisely in that condition that the e�ect of decoherence is stronger. Indeed, for a
large number of photons, the ground state and the �rst excited state in the ultrastrong
coupling regime are quasi-degenerate. This makes these system more vulnerable to the
e�ect of thermal equilibrium, that for a large enough temperature of the bath, leads
the system to a classical mixture of ground and �rst exited state. In an analogous way,
since one-photon dissipation is proportional to the number of photons, the lifetime
of photonic Schr•odinger cats in two-photon driven-dissipative resonators is inversely
proportional to number of photons. In a few words, these superposition of macroscopic
states are more fragile as their size increases.

Along this thesis, we have insisted on the crucial role of information in quantum
physics. Another �eld in which this concept haa a very central role is the thermo-
dynamics. Indeed, Jaynes reinterpretation of thermodynamics principles in terms of
Shannon's theory of information [13, 14], cast a new light on the �eld [15, 16]. Ac-
cording to this view, observer knowledge and information are the central concepts, on
which modern thermodynamics is built [176].

In this regard, a very promising �eld to develop the role of information in physics,
is represented by quantum thermodynamics [177, 178]. Furthermore, the enormous
experimental advances in tracking the quantum state trajectories [86{89], represent
a concrete resource to explore the thermodynamics of quantum systems [90{93, 179,
180]. Being among the main processes of information managing, quantum measure-
ment and feedback control might play a very central role in this research.



Appendix A

A realistic model of an arti�cial
dissipation

As a possible model for the parity-selective dissipation, let us consider to conditionally
couple the cavity to a two-level system. For sake of simplicity, let us suppose that
we want to stabilise the even cat, and let us consider the following feedback. At time
t = 0, we perform the parity measure: if the right parity is measured, we keep the
two-level system decoupled, i.e. the spin stays in its ground statej0ih0j and the cat
state evolves according toeL t . Instead, if the wrong one is measured, we activate a
qubit which enters in resonance with the cavity, and whose interaction is given by:

Ĥg = g
�
ây�̂ � + â�̂ +

�
; (A.1)

where ^� � are the spin creation/annihilation operators. Now, we measure the qubit
with a frequency � � . We suppose that, initially, the qubit is in its ground state, and
therefore the evolution of the system fort 2 [0; � � ] is given by:

�̂ (t) = e(L + L g )t �̂ (0) '
�

1 + ( L + L g)t +
(L + L g)2t2

2

�
jC�

� i hC�
� j 
 j 0i h0j

=
�

1 + L t +
L 2t2

2
+ L gt +

L 2
gt2

2
+ ( LL g + L gL )

t2

2

�
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� i hC�
� j 
 j 0i h0j

'
�

eL t + L gt +
L 2

gt2

2
+ ( LL g + L gL )

t2

2

�
jC�

� i hC�
� j 
 j 0i h0j :

(A.2)

At time t = � � we perform the measure on the system. Therefore, coherences will
disappear after the measure. This translates into the fact that the only relevant terms
to determine the outcome of the measure are those quadratic inL g. Therefore one
has

�̂ (t) '
�

eL t +
L 2

gt2

2

�
jC�

� i hC�
� j 
 j 0i h0j : (A.3)
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138 Appendix A. A realistic model of an arti�cial dissipation

The evolution of the �rst term is given by Eq. (6.42). For the second term, we have
that

L 2
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2
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Ĥg; jC�

� i hC�
� j 
 j 0i h0j

ii

= �
gt2

2

h
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i
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� j 
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�
;

(A.4)

where we recall that �N = j� j2.
Combining in Eq. (A.3) the results from Eqs. (6.42) and (A.4), and tracing out

the two-level system degrees of freedom we eventually obtain

�̂ (t) '
1 � e� 2 �Nt + 2g2t2 �N

2
jC+

� ihC+
� j +

1 + e� 2 �Nt � 2g2t2 �N
2

jC�
� ihC�

� j

'
1 � e� 2 �N e� t

2
jC+

� ihC+
� j +

1 + e� 2 �N e� t

2
jC�

� ihC�
� j

(A.5)

where we have introduced e� =  + g2t. In other words, we have proved that the
Hamiltonian coupling to a two-level system and a measurement on it can e�ectively
result in an additional one-photon dissipation for the cavity.
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