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ABSTRACT

Recent research in image registration techniques has demonstrated its worth in a variety

of fields from remote sensing to medical imaging. Image registration methods consist of

having two input images named as scene and model being made points. This is followed

by a registration transformation that relates the two images and similarity metric func-

tion that aims to measure a qualitative value of closeness or degree of fitting between

the transformed scene image and the model image. Finally, an optimiser which seeks the

optimal transformation inside the defined solution search space is performed. The main

contribution of this research is to consider the theoretical convergence condition of opti-

misation and use it to derive an image-driven selection mechanism for free parameters.

The main objective of this research is to apply optimisation methods in image registra-

tion techniques in order to provide the user with an estimate as to how accurate the

registration actually is. The specific objectives will be to determine the transformation

model, the similarity metrics in image registration and carry out a careful validation of

performance in registration using known basic error classes and methods for measuring

registration accuracy and robustness.
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CHAPTER 1. INTRODUCTION

1.1 Image Processing

Image processing is a highly researched field due to its many areas of application such as

medical imaging, Geographical Information System (GIS) and mapping, satellite com-

munications, biomedical engineering, robotics, remote sensing, among others. It encom-

passes image registration, image segmentation and edge detection, image enhancement

and restoration, image compression and pattern recognition. The importance of medical

imaging as a core component of several medical application and healthcare diagnosis

cannot be over emphasised. Integration of useful data acquired from different images is

vital for proper analysis of information contained in the images under observation. For

the integration process to be successful, a procedure referred to as image registration is

necessary.

1.2 Image Registration Model and Framework

The purpose of image registration is to align two images in order to find a geometric

transformation that brings one image into the best possible spatial correspondence with

another image by optimising a registration criterion. The two images are known as the

moving image and the fixed image. Image registration methods consist of having the two

images referenced with control points. This is followed by a registration transformation
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that relates the two images and a similarity metric function that aims to measure the

qualitative value of closeness or degree of fitness between the moving image and the fixed

image. Finally, an optimiser which seeks an optimal transformation inside the defined

solution search space is performed. The optimal transformation T : (x, y, z) 7→ (x
′
, y

′
, z

′
)

maps any point in the moving image I(x, y, z, t) at a time t into its corresponding point

in the fixed image I(x
′
, y

′
, z

′
, t0) taken at time t0. Since the motion of lung is non-

rigid, correction of global and local deformations requires a combined transformation

that consists of a global transformation and a local transformation, which is expressed

as follows:

T(x, y, z) = Tglobal(x, y, z) + Tlocal(x, y, z) (1.1)

Image registration consists of three major components namely,

1. The transformation model,

2. The similarity metric that describes the objective function to be minimised,

and

3. The optimisation algorithm, which is the numerical method used to solve the

minimisation problem.

The transformation models are classified into three categories according to:

1. Physical model,

2. Interpolation theory, and

3. Based on a prior knowledge.

Similarity metric component can be classified into three categories:

2



1. Geometric methods ,

2. Iconic methods, and

3. Hybrid methods, which combines the first two methods.

Optimisation algorithm as the last component can be categorised into:

1. Continuous methods such as gradient descent, conjugate gradient descent,

Quasi-Newton and stochastic gradient;

2. Discrete methods which are methods based on graph theory and linear pro-

gramming methods, and

3. Evolutionary and greedy algorithms.

The parameters that describe a geometric transformation can be computed directly or

searched for. Extensive research done in image registration methods can be found in the

following literature: Klein et al. (2010), Markelj et al. (2012) and Wang et al. (2001).

The framework for image registration takes the form of Fig.1.1. Intensity-based image

registration can be viewed as a non-linear optimisation problem which is expressed as:

µ̂ = arg max
µ

C(If (µ), Im(µ); T ) (1.2)

where C is the cost function or the similarity metric that measures the similarity between

the fixed image If and the deformed moving image Im. The solution is the parameter

vector that minimises the cost function and T is the transformation. Non-parametric

image registration methods use deformation fields to define the transformation relat-

ing to two images. In order to ensure that a smoothing function is available and that

the non-parametric registration problem is well posed, a regularisation term must be

added to the similarity measure to form the cost function. The process of minimising

3



the cost function is an optimisation problem which can be modelled mathematically.

In its simplest form, an optimisation problem consists of minimising a real function by

systematically choosing input values from within an allowed data set and computing the

value of the function. An optimisation problem can be represented in the following way:

Given: a function f : A −→ R from some set A to the real numbers.

Sought: an element x0 ∈ A: f(x0)≤ f(x) ∀ x ∈ A gives a minimisation solution. Typi-

cally, A is some subset of the Euclidean space Rn, often specified by a set of constraints

that the members of A have to satisfy. The domain A of f is called the search space,

while the elements of A are called candidate solutions. The function f is called the cost

function and a feasible solution that minimises the cost function is the optimal solution.

Figure 1.1: Image registration framework.

Fig.1.1 describes the image registration framework where the moving image is taken

through a similarity measure such as mutual information to check quality of alignment.

If the image is not aligned with reference to the fixed image, a fitness value is given. The

image is then optimised, given new transform parameters and then passed through the

interpolator until the degree of fitness to the fixed image is received. The semi-circle at

the top right corner indicates that optimisation is a cyclic process. (NB: The image is a

lung obtained from a data repository).
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1.2.1 Transformation

1.2.1.1 Similarity Transformation

In the class of well-known transformation functions is similarity transformation, which

is also known as the transformation of the Cartesian coordinate system. Similarity

transformation relates coordinates of corresponding points in images when the moving

image is translated, rotated and scaled with respect to the fixed image. It is defined by:

X = xs cos θ − ys sin θ + h (1.3)

Y = xs sin θ + ys cos θ + k (1.4)

where s is the scale, θ is the orientation or angle of rotation, and (h, k) is the location

of coordinate system origin of the moving image with respect to the fixed image. This

can be written in matrix form as:
X

Y

1

 =


1 0 h

0 1 k

0 0 1



cosθ −sinθ 0

sinθ cosθ 0

0 0 1



s 0 0

0 s 0

0 0 1



x

y

1


or simply by

P = TRSp (1.5)

where T is the translation, R is the rotation and S is the scale. Parameters s, θ, h and

k are easily determined if a minimum of two corresponding points in the images are

known.
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1.2.1.2 Affine transformation

All linear operations such as translation, rotation, scaling and shearing are expressed

through the same mathematical operation of matrix multiplication. Homogeneous coor-

dinates are used to achieve this. The operation such as rotation about the origin through

angle θ, scaling in 2D and shearing in x and y directions can be expressed using 2 x 2

matrix form shown below:

Tθ =

 cosθ sinθ

−sinθ cosθ

 Tsc =

s 0

0 s

 Tx =

1 0

α 1

 and Ty =

1 α

0 1


where the scalars s and α are scaling and shear factors respectively. The operation

of point translation is expressed through a single matrix multiplication with a vector

addition as indicated below: x′
y′

 =

x
y

+

αx
αy


or simply expressed as x′ = x+ d.

Point Distribution Matrix (PDM) S in a homogeneous system is defined by an augmented

matrix as expressed below:

S =


x1 x2 x3 ..... xN

y1 y2 y3 ..... yN

1 1 1 ....... 1


In homogeneous coordinates, the affine transformation can be expressed as:
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T =


α11 α12 α13

α21 α22 α23

0 0 1


where the parameters α13 and α23 correspond to the translation parameter.

From the aforementioned, the transformed shape coordinates Ŝ can be expressed as

Ŝ = TS

where T = T1T2 · · ·TN is a single matrix that operates on an input distribution S.

1.2.1.3 Projective transformation

Projective transformation is the transformation used in mapping of points on the object

to corresponding points in the image into an arbitrarily oriented image plane. To com-

pletely determine the form of projective transformation, one considers how one arbitrary

quadrilateral in the object maps into another quadrilateral in the image plane.

Figure 1.2: Projective Transformation.

Figure 1.2 shows projective transformation where (x, y) are the image plane coordinates

and (X, Y ) are referred to as the world coordinates of the object point.

The projective transformation has eight degrees of freedom because its mapping is con-

strained to four 2-D points. In the homogeneous coordinate system, the general form of

projective transformation is given by:

7



T =


α11 α12 α13

α21 α22 α23

α31 α32 α33


Projected coordinates in the image plane are derived by matrix multiplication and relates

to the world points. The transformed shape coordinates Ŝ is expressed as indicated

below:

Ŝ = TS which gives:


x

′
1 ..... x

′
N

y
′
1 ..... y

′
N

1 1 1

 =


α11 α12 α13

α21 α22 α23

α31 α32 α33



x1 ..... xN

y1 ..... yN

1 1 1


The reason there are eight and not nine degrees of freedom in projective matrix is that

the parameters are constrained by the relation:

α31x+ α32y + α33 = 1 (1.6)

1.2.2 Mutual Information

Mutual Information (MI) defines the amount of information that one image A contains

about a second image B, based on the concept of information theory and expressed as

follows:

Csimilarity(A,B) = H(A) +H(B)−H(A,B) (1.7)

where H(A), H(B) represent the marginal entropies of A, B and H(A,B) represents

joint entropy.
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This research presented an automated image registration algorithm for solving multi-

modal image registration on lung Computed Tomography (CT) scan pairs, where a com-

parison between regular step gradient descent optimisation technique and evolutionary

optimisation was investigated. The aim of this research was to carry out optimisation

and performance evaluation of image registration techniques in order to provide medical

specialists with estimation on how accurate and robust the registration process was.

Lung CT scan pairs were registered using mutual information as a similarity measure,

affine transformation and linear interpolation. In order to minimise the cost function,

an optimiser, which seeks the optimal transformation inside the defined search space

was applied.

Determination of a transformation model that depends on transformation parameters

and identification of similarity metric based on voxel intensity were carried out. By

fitting transformation to control points, three transformation models were compared.

Affine transformation produced the best recovered image when compared to non-reflective

similarity and projective transformations. The results of this research compared well

with documented results from EMPIRE 10 Challenge research and conformed to both

theoretical principles as well as practical applications.

1.3 Optimisation-Based Registration

The aims of optimisation based registration are:

1. Definition of similarity or dissimilarity measure,

2. Identification of initial parameters that approximately register the images, and

3. Development of an algorithm that takes the initial registration to the final one.
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An optimal registration is one that maximizes a similarity measure or minimises dissim-

ilarity measure between images. The properties of the images under consideration for

registration assist in choosing proper similarity or dissimilarity measure.

Specification of initial transformation parameters may be done interactively or deter-

mined automatically. In the interactive procedure, the user drags one image over the

other to align them. The automatic method does not require user intervention. Images

acquired in different modalities require that the entire parameter space be searched with

relatively large steps in order to find best correspondence that can be used for initial

registration. If the images are from the same modality, the initial registration will easily

be achieved through alignment by applying the principal axes method. The optimal

registration is achieved by iteratively refining the initial registration parameters until

maximum similarity or minimum dissimilarity is reached.

Several optimisation approaches with convergence analysis have been proposed in the

literature, as well as performance evaluation methods. The most commonly used optimi-

sation algorithm are Powell-Brent, quasi-Newton, regularised step-size gradient descent,

standard gradient descent, adaptive stochastic gradient descent, downhill simplex, sim-

ulated annealing and evolutionary strategies as presented by Gupta et al. (2012). How-

ever, not a single algorithm can be applied as standard method to all cases of image

registration techniques. In their research, Van der Bom et al. (2011) have shown that the

influence of optimisation methods on intensity-based 2D-3D image registration has not

been investigated. They proposed that the registration criterion be formulated as a sim-

ilarity measure defined in the multidimensional space of searched parameters. To bring

the registration parameters within the capturing range of local optimisation methods,

global optimisation approaches and heuristic search strategies are proposed. Accurate

registration is a crucial pre-processing step for many tasks as suggested by Dura et al.

(2012). Evaluation performance of registration techniques is therefore a necessary step
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as proposed by de Groot et al. (2013), Dura et al. (2012) and Murphy et al. (2009).

In their research, Floca & Dickhaus (2007) provide a framework offering suitable tools

for an easy integration, optimisation and evaluation of registration approaches. The

minimisation of the cost function in solving optimisation problems will be carried out.

1.4 Artificial Neural Networks

Artificial Neural Network (ANN) is a highly parallel system [Heger] composed of simple

processing elements with complex global behaviour designed to produce intelligent so-

lutions. ANN take input data values which are executed through a series of function to

produce one or more output values Heger (2014). Among the many areas of application

for ANN systems are pattern recognition, robotics, development of image processing

algorithms and techniques, intelligence in business, to mention but a few.

There are several types of ANN in use for different purposes in image processing. These

are classified according to area of application such as pre-processing, feature extraction,

segmentation, classification, data compression and optimisation as indicated by Ramı́rez-

Quintana et al. (2012). The common types of ANN used in image processing are:

1. Feed Forward Neural Network,

2. Self-Organising Maps (SOM),

3. Feed Forward Radial Basis Function Network (RBFNN) and

4. Hopfield Neural Network (HNN).

Feed forward neural networks are simple with neurons or connections from input layer

connected to zero or hidden layers and finally to the output layer as discussed by Heger

(2014). They are normally trained on genetic algorithms, simulated annealing or via any
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propagation techniques. SOM is a neural network with two layers and its output layer

employs a winner takes it all principle. The consideration is that the neuron with the

highest output is the winner. HNN and RBF networks are used for pattern recognition.

They are trained via algorithms that assist them to recognise patterns.

Neural network models used to find solutions for problems in image processing are very

fast compared to conventional image processing methods. However, the time required

to train a neural network is high, notwithstanding the complex computation of image

processing tasks. An ANN requires a larger number of training data in order to achieve

high and reliable results for performance of non-training subjects as suggested by Shi &

He (2010). In this research, we created more data by performing translation, rotation

and scaling on the lung CT scans dataset obtained from EMPIRE 10. These data were

trained via ANN algorithms to assist in image registration. (NB: Further details will be

provided once the results from simulation by Prof. Karim are available.).

1.5 Performance Evaluation of Registration Methods

The images under considerations have been acquired under different modalities. Joint

Probability Density (JPD) of images contain information about the quality of regis-

tration for images from different modalities. The intensities of corresponding voxels in

registered images form a JPD with a narrow band when the registration is accurate.

JPD obtained for a registration that was not accurate will contain a wider distribution.

Joint entropy (P) and joint energy (E) are measures used to quantify the spread of a

probability distribution and are represented by the following expressions respectively:

P = −
255∑
i=0

255∑
i=0

pij log2

(
pij
)

(1.8)
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E =
255∑
i=0

255∑
i=0

p2
ij (1.9)

These measures are used to quantify registration accuracy and the smaller the P (the

larger the E) is, the better the registration will be for images in different modalities or

in the same modalities respectively. Qualitative measure of registration accuracy can

be done by an expert through visual evaluation alone. It is the method of choice for

acceptance or rejection of results of an automatic registration procedure.

1.6 Importance/Benefits of Study

Image registration has a wide range of application especially in medical imaging. Avail-

able literature on image registration techniques indicate that there is no single method

that is applicable to all cases of image registration. The study on different anatomical

structure for image registration using non-rigid registration has not received a lot of at-

tention in research. The aim of this research is to carry out optimisation and performance

evaluation of image registration techniques. This will help identify parameters required,

carry out optimisation and performance evaluation of the registration techniques em-

ployed. The data obtained from analyses of this research will provide physicians and

clinicians with estimation as to how accurate the registration process actually is, as well

as indicate the most accurate and robust registration techniques.

1.7 Delimitation of Study

This thesis will involve searching through current literature to investigate the status of

existing methods for non-rigid medical image registration. Tools used will be laptop In-

tel Core i7 pre-loaded with necessary software such as Matlab and Latex among others.
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The particular area of study will be image registration of lung CT scan using regular step

gradient descent optimisation algorithm for medical imaging obtained from data repos-

itory by EMPIRE 10 challenge. This study does not intend to cover other anatomical

human or animal body organs such as heart, brain, kidneys or liver but the method can

be modified to suit them. Results of this study will assist medical doctors, physicians

and clinicians quickly and accurately diagnose changes in internal body organs thereby

delivering the fastest decision to save lives.

1.8 Contribution

The contribution of this research was its potential to increase the scientific understand-

ing of image registration of anatomical body organs. It laid a basis for further research

in performance evaluation of registration techniques. Validation of these procedures to

other types of algorithms and image registration application areas, such as remote sens-

ing, satellite communication, biomedical engineering, robotics, geographical information

systems and mapping, among others are recommended for future research. The use

of evolutionary optimisation algorithms combined with gradient descent optimisations

improve speed and accuracy of registration when registering CT scans from lung images.

1.9 Organisation of Thesis

Research presented in this thesis is divided into 5 chapters. Chapter 1 covers introduc-

tion while chapter 2 discusses literature review of different image registration techniques,

transformation models, similarity measures, interpolation and optimisation techniques.

In chapter 3, a chronology of the methodology is given which details the use of mean

squared differences and mutual information as similarity metrics and the optimisation

techniques employed in lung CT scans registration. Chapter 4 focuses on analysis and
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discussion of results. The thesis is concluded in chapter 5 with a conclusion and recom-

mendations of future research.
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CHAPTER 2. LITERATURE REVIEW

2.1 Introduction

This thesis has a foundation from scientific work in the fields of Medical Imaging and

Computer Vision. Research presented in this thesis has wide areas of application not

limited to medical imaging only. Image registration is commonly formulated as an op-

timisation problem based on an objective function which evaluates the quality of trans-

formation with respect to the image data and some prior information. Registration is

a problem that seeks to align two images in the same space or coordinates to achieve

the best correpondences between them. There are several image registration techniques,

whose use depend on area of application, image modality, time of image acquisition

among other factors. Some of these techniques like intensity-based, control point-based,

feature-based, elastic-based and neural network-based registrations have been discussed

in this chapter. Literature review on different research topics related to image registra-

tion such as transformation models, similarity measures, interpolation and optimisation

techniques have been presented in the literature review section. Literature review aims

to provide a solid theoretical foundation for research endeavours in image registration

techniques. Developing a solid foundation for a research study is possible through a

methodological analysis and synthesis of existing contributions as discussed by Levy &

Ellis (2006). A methodological analysis is crucial in understanding the existing body of

knowledge including where excess research exists and where new research is needed. Out
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of these considerations, the aim of this chapter is to enhance the scientific community’s

understanding of the current status of research in optimisation and performance evalu-

ation of image registration techniques and also communicate to them, the contribution

of this research in the field of image processing.

This chapter is divided into seven sections. The first section covers the introduction. The

second section addresses literature review on image registration techniques. Section three

looks at review on transformation models. The fourth section covers the overview on

similarity measures. The fifth section contains literature review on various interpolation

methods. Section six covers review on five types of optimisation techniques while the

seventh section deals with performance evaluation.

2.2 Overview of Image Registration Techniques

By definition, image registration is the process of aligning a target image to a source

image in order to determine the transformation that best maps points on the target

image to corresponding points on the source image.

The purpose of carrying out image registration is to determine analysis of temporal

evolution, fusion of multi-modal images, inter-patients comparison, atlas superposition

and reconstruction of a 3D volume from a series of contiguous 2D slices from an Electron

Microscopy camera. There are different classes of problems under image registration

such as mono-modalities and multi-modalities images, intra-subjects or inter-subjects

registration and rigid or non-rigid transformation. The process of image registration

uses four steps namely: feature detection, feature extraction, transformation model

estimation and registration of transformation model.

Image formation is the process where radiation emitted from an object is collected to

form an image of the object in one or the other way. It includes geometric and radio-
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metric aspects. The geometry of imaging requires the use of several coordinate systems

such as world coordinates attached to the observed scene, the camera coordinates aligned

to the optical axis of the optical system, the image coordinate related to the position

on the image plane and the pixel coordinates attached to an array of sensor elements.

In information theory, image synthesis consists of image registration and visualisation.

Registration covers necessary processes that bring images into spatial alignment with

each other. Visualisation on the other hand allows information from the aligned data

sets to be observed together, for instance in montage. There are various reasons for

performing image synthesis, among them being:

1. For assessment of diseases progression or growth using temporal series of images;

2. For combining of both structural and functional information acquired from differ-

ent imaging modalities;

3. For comparing corresponding regions in different images or individuals by matching

them into a standard coordinate system;

4. For generating and analysing atlases and or templates representing distinctive

appearance in health or disease;

5. For providing a guideline to invasive procedures and image-guided surgery.

The position of objects in 3D space can be described in many different ways. We can

use a coordinate system which is related to the observation scene. Coordinate mapping

of corresponding points from world to camera coordinates, requires a translation and

a rotation. First, the origin of the world coordinate system is shifted to the origin of

the camera coordinate system by the translation vector T. Then the orientation of the

shifted coordinate system is changed by a sequence of rotations about suitable axes so
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that it coincides with the camera coordinate system. Mathematically, translation is

described by vector subtraction and rotation by multiplication of the coordinate vector

with a matrix:

X = R(X
′ − T ) (2.1)

where X is the camera coordinate, X
′
is the world coordinate, T is the translation vector

and R is the matrix.

Several methods have been proposed for medical image registration. According to Fitz-

patrick et al. (2000), they are categorised into the following criteria: image dimen-

sionality, nature of registration basis, geometric transformation, degree of interaction,

optimisation procedure, modality, subject and object.

In this research, we are concerned with nature of registration basis, which is further

subdivided into three major sections namely: intensity-based registration, control point-

based registration and feature-based registration.

2.2.1 Intensity-based registration

In intensity-based registration, the voxel values alone are used to calculate transforma-

tion between two images. By iteratively optimising the cost function calculated using the

pixel or voxel values, the registration transformation is determined. In medical imaging,

3D images are frequently used and therefore the cost function is referred to as voxel sim-

ilarity measure or function. In many practical applications, intensity-based registration

methods use only a subset of voxels and require some pre-processing procedures to be

done. This may result in the algorithm running faster. The subset used may be chosen

randomly or searched for, from a regular grid. In some cases of intensity-based registra-

tion methods, the cost functions work on derived image’s parameters like image gradients
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instead of the voxel values as shown by Fitzpatrick et al. (2000). Intensity-based reg-

istration methods have wide areas of application ranging from registering images with

the same or different dimensionalities, intra-modality or inter-modality images to rigid

transformation or deformable images. The similarity measures or cost functions used

with intensity-based registration methods include: Sum of Squares Differences (SSD);

Correlation Coefficient (CC); Ratio-Image Uniformity (RIU); Partition Intensity Unifor-

mity (PIU); Joint Histogram and Joint Probability Distribution (JPDF); Joint Entrophy

(JE); Mutual Information (MI) and Normalised Mutual Information (NMI).

2.2.2 Control Point-based registration

Control point-based registration provides for manual selection of common features in

an image to map to the same pixel location. This method is best suited for images

with distinct features. Correspondence establishment between detected set of candidate

points in the target image and reference image is done using a searching procedure that

minimises dissimilarity metric, as discussed by Wang et al. (2009). Control point selec-

tion cpselect is a four step process which starts as follows:

Step 1: Start the cpselect tool that specifies the target and reference images in Matlab.

Step 2: Use the navigation aid to scroll the image for landmark features common in

both images. Functions such as panning, zooming, magnification and viewing other

parts of the image can be carried out.

Step 3: Specify control point pairs that match the target image to the reference images.

Step 4: Save the control points to Matlab workspace.
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2.2.3 Feature-based registration

Feature-based image registration detects feature points in both the fixed and moving

images. It finds corresponding pairs and computes image transformation. Detectors

such as Harris corner detector, Scale Invariant Feature Transform (SIFT) detector and

Random Sample Consensus (RANSAC) are used in this registration. Feature-based

image registration methods are used when local structure image data is much higher than

data carried by image intensity, can handle complex distortions between images and are

faster. They rely on relatively small number of features and do not evaluate a matching

criteria for every single pixel. The general process includes identifying features in two

images which are then paired to determine which feature in one image should be aligned

to the other image. A calculation step then follows where the mathematical operation

necessary to align sets of paired images is done. Finally application of transformation is

done where the results of the calculations are applied to all pixels or voxels in one image

that will be aligned with another image.

Registration algorithm has three main components namely the similarity measure, the

transformation model (objective function) and the optimisation process. Result of the

registration algorithm naturally depends on the similarity measure and the objective

function. The dependency of the registration result on the optimisation strategy fol-

lows from the fact that image registration is inherently ill-posed as proposed by Sotiras

et al. (2013). Enormous amount of research has been dedicated in the field of image

registration which has generated many innovative ideas regarding the three algorithmic

registration steps. Comprehensive scientific reviews in this field have been proposed in

Sotiras et al. (2013), Markelj et al. (2012), Fluck et al. (2011), Ezzeldeen et al. (2010),

Wyawahare et al. (2009) and Zitova & Flusser (2003). Image registration techniques

are categorised based on geometric approaches, intensity-based approaches or the com-

bination of both known as hybrid approaches, which has been presented by Gupta et al.
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(2012). Geometric approaches have explicit models and fast optimisation procedures,

are used for rigid or affine transformations and require user intervention to identify land-

marks. The accuracy of registration is dependent on feature extraction steps. Intensity-

based approaches match intensity patterns using a mathematical or statistical criteria,

define measure of intensity similarity between source and target, and determines the

transformation that optimises the voxel similarity measure. Hybrid approaches are a

combination of both the geometric and the intensity-based approaches. They combine

advantages of both geometric and intensity approaches to achieve more accurate regis-

tration.

Deformable models as discussed by Castillo et al. (2013) and Sotiras et al. (2013) can

be used to take advantage of their strength, defined by large number of degrees of

freedom, as well as allowing modelling of both misalignment between images and local

deformations. Image registration techniques using deformable transformation models

are very accurate and rectify local misalignment. Mathematical basis functions based

on Fourier or Wavelet domain, are used in deformable transformation model to define

the correspondence between the original image and the transformed image.

Multi-resolution methods offer powerful tools for signal analysis widely applied in feature

extraction, image compression techniques and anti-noise applications as proposed by

Vujović (2015). The main reasons why multi-resolution approach is used is to improve

performance, reduce computational complexity, improve robustness, improve intuition

and simplify the algorithm. Multi-resolution approaches and algorithms can be classified

under the following three categories namely wavelet methods, Hierarchical models and

Hierarchical algorithms. They are good for processes like feature extraction and filtering

where Gaussian and Laplace filters are used.

2D-3D image registration methods do not require user interaction such as manual anno-

tations, additional machinery or additional acquisition data as discussed by Van der Bom
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et al. (2011). The same author recommended Powell-Brent search strategy for intensity-

based 2D-3D image registration in cerebral interventions due to its good performance

with all three similarity measures (gradient difference, gradient correlation and pattern

intensity), and concludes his work by showing that further research on the influence of

optimisation method on intensity-based 2D-3D image registration needs to be done.

2.2.4 Elastic Model-Based registration

In their research, Hopp et al. (2013) presented automatic multimodal 2D/3D breast

image registration using biomechanical models and intensity-based optimisation. Ac-

celerated non-rigid intensity-based image registration using Importance Sampling (IS),

presented by Bhagalia et al. (2009) uses a small random subset of image voxels to ap-

proximate the gradient and reduces computation time. A two-step elastic medical image

registration approach based on image intensity has been proposed by Wang et al. (2001).

This approach has several attractive features such as achieving high registration perfor-

mance and it is an automatic algorithm using the raw intensity as feature space. Other

research based on elastic image registration has been developed by Klein et al. (2010) in

the form of Elastix, a toolbox for intensity-based medical image registration. Another

linear elastic model-based image registration algorithm is proposed by Lu et al. (2012),

where robustness of the registration accuracy is the key finding.

In the research presented by Bunting et al. (2010), an approach for automatic image-to-

image registration has been outlined, where a topologically regular grid of tie points was

imposed within the overlapping regions of the images. This algorithm produced results

that showed the automatic operator far outperformed the manual operator. However,

some limitations of the network data structure were identified when dealing with very

large errors. Volume image registration by template matching, suggested by Ding et al.

(2001) involves comparing a given template with windows of the same size in an image
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and identifying the window that is most similar to the template. The characteristics of

this algorithm are that it computes correlation of the template with windows of the same

size in the neighbourhood (auto-correlation) and also uses the eigenvalues of the inertia

matrix of the template. A survey of medical image registration on graphics hardware

has been carried out by Fluck et al. (2011), where an analysis of different approaches to

programming on Graphics Processing Units (GPU), programming models and interfaces

are presented. Researcher Kosiński et al. (2012) presented robust image registration

based on mutual information measure and showed that it is a highly effective method

for registration of multi-modal medical images.

2.2.5 Neural Network-based registration

Research carried out by Jiang et al. (2010) recommended future use of neural networks

in medical image registration during pre-processing and post-processing stages. Com-

putational intelligence with neural networks cover applications in medical imaging such

as medical image registration, medical image content analysis used in edge detection,

segmentation, breast cancer screening, and computer-aided detection and diagnosis as

presented by Doi (2007). Neural networks are designed to find varying solutions through

competitive learning, Self-Organising Maps (SOM) and grouping method or clustering

to provide and process input features and give the best possible alignment during reg-

istration between different images or data sets. In the research by Zhang & Li (2007)

surface-based rigid registration using neural networks demonstrated that registration

systems could achieve sub-voxel accuracy compared to traditional methods and are sig-

nificantly faster. Overall combining SOM with other registration techniques could result

in very powerful registration algorithms. The area of neural networks as applied to med-

ical image registration is open for future research and development.

Recently discovered 4D imaging techniques such as 4D-computed tomography (CT),

24



4D-Cone Beam CT (CBCT), 4D-Magnetic Resonance Imaging (MRI), and 4D-Positron

Emission Tomography (PET) are effective tools used in spatial and temporal definition of

tumor target volume in human anatomy. 4D-4D image registration research presented by

Schreibmann et al. (2008) seeks to establish a spatio-temporal correspondence between

a set of input images, finds the transformation matrix T(x, t) that maps an arbitrary

point [x, t] from the fixed image to the corresponding point [x̂, t̂] on the moving image

or vice versa. During the iterative optimisation of the metric function, the following

basic operations on the moving image set are involved: translation in the x, y and z

directions and in the temporal axis; non-uniform scaling in the x, y and z directions and

in the temporal axis, and rotation in 3D space. Automated 4D-4D image registration

as shown by recent research findings by Schreibmann et al. can find the best possible

spatio-temporal match between two 4D data sets and is useful in all the 4D applications

mentioned above.

2.3 Transformation Models

Transformation in image registration is defined as the coordinate mapping from the fixed

image domain to the moving image domain, which can be expressed as:

T: ΩF ⊂ Rd −→ ΩM ⊂ Rd.

The type of transformation model selected for specified image registration mainly de-

pends on application and the kind of images being considered. For geometric transfor-

mation such as scaling, translation, shearing or rotation, linear transformation is the

most suitable to align the images. In medical image applications where rigid structures

are in consideration, linear transformation is applied. If the anatomical organ is ex-

pected to undergo changes in their form during image acquisition, then transformations
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that can recover the deformations are applied, as suggested by Glocker et al. (2011).

Precise image registration is a crucial pre-processing step for many tasks in image reg-

istration techniques, which is presented by Dura et al. (2012). The fundamental char-

acteristic of any image registration techniques is the type of spatial transformations or

mapping used to properly overlay two images as shown by Deshmukh & Bhosle (2011).

Several of these transformations exist such as rigid, affine, global, projective and per-

spective. The following are the types of transforms and their mathematical formulations

commonly used in image registration:

Translation:

Tµ(x) = x+ t (2.2)

Rigid or Euler Transform:

Tµ(x) = R(x− c) + t+ c (2.3)

Similarity:

Tµ(x) = sR(x− c) + t+ c (2.4)

Affine:

Tµ(x) = A(x− c) + t+ c (2.5)

B-Spline:

Tµ(x) = x+
∑
xk∈Nx

ρkβ
3x− xk

σ
(2.6)

where,

Tµ(x) - is the transform;

t - is translation;

c - is a constant;

s - is similarity;
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R- is rotational matrix;

A is matrix without restrictions;

xk are control points;

pk is B-Spline coefficient vector (control points displacement);

σ is B-Spline control point spacing;

Nx is set of all control points with the compact support of the B-Spline at x ;

β3(x) is the cubic multidimensional B-Spline polynomial.

Transformation model can be subdivided into rigid and non-rigid. Rigid registration

finds the various degrees of freedom, namely three rotational and three translational

forms of transformation that map any point in the source image into the corresponding

points in the reference image. They are best used in applications where there is virtually

little or no change in shape or location of the structure. Transformation parameters in

2D rigid transformation are discussed by Delibasis et al. (2011) in detail. Researchers

Meskine et al. (2013) have developed a rigid point-set registration method based on the

application of genetic algorithms and Hausdorff distance. The proposed method, unlike

other methods that match two intensity images, can match a set of data extracted

from an image. Non-rigid registrations are usually applied on imaged body organs

which undergo soft-tissue type of deformation. Klein et al. (2006) made a comparison

of accelerated techniques in medical image registration and introduced a fast non-rigid

registration that allows online updating of treatment plan. Research using thin-plate

spline non-rigid registration on images has been done by Brooks & Arbel (2007) and

Bolin & Huihui (2010).

Diffeomorphism is defined as one-to-one, differentiable, invertible and smoothing map-

ping. Large Deformation Diffeomorphic Metric Mapping (LDDMM) is a framework in

which the optimal velocity fields are time-dependent and geodesic as presented by Risser

et al. (2010) and Arguillère et al. (2015). It statistically compares images and shapes,
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as well as creation of atlases. LDDMM is a non-linear registration techniques that de-

fines diffeomorphic transformations between images in which anatomical structures and

sub-structures are maintained as indicated by Ceritoglu et al. (2010). This algorithm

enhances registration accuracy and, by minimising the function of velocity field vector

in deformation flow, it resolves registration between two images in an Euler-Lagrange

framework by applying gradient descent, as demonstrated by Risser et al. (2010). Pai

et al. (2014) presented step-wise inverse consistent Euler’s scheme for diffeomorphic im-

age registration. The challenges of LDDMM include memory and time consumption as

well as practical use limited to small deformations even though designed for large de-

formations. Log-Demons or spectral Log-Demons uses spectral correspondence to find

similarity between fixed image and moving image, as shown by Lombaert et al. (2013).

The general Log-Demon framework comprises an input which has fixed image, moving

image and an initial velocity field, and an output consisting of a transformation from

the fixed image to the moving image, as presented by Lombaert et al. (2013).

Non-rigid registration using intensity-based similarity metric has been studied by Klein

et al. (2010) and Van der Bom et al. (2011). In their research on non-rigid medical image

registration method based on improved linear elastic model, Lu et al. (2012) proves

that not only high registration accuracy is achieved, but also enhances robustness and

anti-noise properties of the registration algorithm. Research on non-rigid registration

of images for medical applications by Rueckert & Aljabar (2010) gave two drawbacks

for non-rigid registration as speed and non-existence of a general standard method for

assessing and evaluating the success of the registration techniques. The development of

non-rigid registration techniques is an open area for further research and most algorithms

are under different stages of evaluation and validation.
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2.3.1 Non-reflective Similarity

Non-reflective similarity transformation which has four degrees of freedom and needs only

two pairs of points supports rotation, translation and isotropic scaling. It is expressed

as follows:

[
H

]
=


h1 −h2

h2 h1

h3 h4


The projection of a point [x, y] by H is given by:

[
x̂ ŷ

]
=

[
x y 1

] [
H

]

2.3.2 Affine Transformation

Affine transformation is any transformation that can be given in terms of matrix mul-

tiplications followed by vector addition. The value of pixel located at point coordinate

[x̂, ŷ] in the output image is determined by the value of the pixel at coordinates [x, y] in

the input image. This can be expressed as:

x̂ = xh1 + yh2 + h3 and ŷ = xh4 + yh5 + h6 (2.7)

where h1, h2, ......, h6 are transformation coefficients. For one transformation, the trans-

formation coefficients are:

[
H

]
=


h1 h4

h2 h5

h3 h6


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which is a 3x2 matrix, or:

[
H

]
=

[
h1 h2 h3 h4 h5 h6

]

which is a 1x6 vector.

For more than one transformation, the transformation coefficients are Q-by-6 matrix

expressed as:

[
H

]
=



h11 h12 ..... h16

h21 h22 ..... h26

.... ... .... .....

.... ... .... .....

hQ1 hQ2 .... hQ6


where Q is the number of transformations.

2.3.3 Projective Transformation

In projective transformation, the relationship between the input and output points is

defined by the following equations:

x̂ =
xh1 + yh2 + h3

xh7 + yh8 + h9

and ŷ =
xh4 + yh5 + h6

xh7 + yh8 + h9

(2.8)

where h1, h2, ......, h6 are transformation coefficients. For one transformation, the trans-

formation coefficients are arranged as a 3-by-3 matrix expressed as:

[
H

]
=


h1 h4 h7

h2 h5 h8

h3 h6 h9


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or as a 1x9 vector of the form:

[
H

]
=

[
h1 h2 h3 h4 h5 h6 h7 h8 h9

]
For more than one transformation, the transformation coefficients are arranged as Qx9

matrix expressed as follows:

[
H

]
=



h11 h12 ..... h19

h21 h22 ..... h29

.... ... .... .....

.... ... .... .....

hQ1 hQ2 .... hQ9


2.3.4 Thin Plate Spline Transformation

Thin plate spline, as shown by Goshtasby (2012), also referred to as surface spline is

commonly used in non-rigid medical image registration as a transformation function,

which is presented by Qiu et al. (2009) and Menon & Narayanankutty (2010) in their

research. Together with Gaussian and multi-quadric functions, thin-plate spline form

radial basis functions. Their common properties include providing optimally smooth

deformations, are generally stable for weight estimation for different configurations of

points, and are expensive to re-evaluate whole image match because a change of location

on any landmark changes the whole deformation field. The thin-plate spline interpolat-

ing a set of points with associated values in a plane is defined by:

f(x, y) = A1 + A2x+ A3y +
n∑
i=1

Bir
2
i ln r2

i (2.9)

where, r2
i = (x − xi)2 + (y − yi)2 + d2. The component d acts as a stiffness parameter,

which, when increased, produces a smoother surface. Thin-plate spline is expressed in
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terms of affine transformation and a weighted sum of radially formulated logarithmic

basis functions, presented by Goshtasby (2012) as of the form r2
i logri.

2.4 Similarity Measures

Similarity measure is the second part of a registration process that computes the de-

gree of alignment of the images. It can be categorised into two approaches, namely

featured-based and voxel-based similarity measures. Feature-based approach, shown by

researchers Han (2010) requires a feature extraction step which can bring an error that

can generally affect the registration algorithm and cannot be reversed later, as indicated

by Rueckert & Aljabar (2010). Voxel-based approach aims at determining the degree

of similarity in the image intensities. Voxel similarity measures are generally preferred

methods for measuring image similarity because of being robust and accurate. Accord-

ing to Van der Bom et al. (2011), the three similarity measures that give good accuracy

and robust results are gradient descent, gradient correlation and pattern intensity. In

their research, Klein et al. (2007) concluded that the choice of the characteristic of the

cost function and the search strategy used determines how successful the registration

process will become. Single modality image registration is best done using invariant

moments while multi-modality image registration is best done using mutual information

similarity measure. For images with rotational differences, cross correlation coefficients

and invariant moments types of similarity measures are the best to apply. Mutual in-

formation similarity measure has highest sensitivity to image similarity, as presented by

Yaegashi et al. (2013) because it is not calculated based on pixel by pixel value but by

use of histogram of the gray scale values of two images.
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2.4.1 Difference Measures

These type of similarity measures are the simplest and belong to a class of similarity

measures known as point-wise measures as indicated in research done by Glocker et al.

(2011). They are based on differences of intensities between the source and target im-

ages. The following two types will be considered:

1. Normalised Sum of Absolute Differences (SAD) is represented as:

SSAD(I, J) =
1

|Ω|
∑
p∈Ω

|I(p)− J(p)| (2.10)

and

2. Normalised Sum of Squared Differences (SSD) is represented as:

SSSD(I, J) =
1

|Ω|
∑
p∈Ω

[I(p)− J(p)]2 (2.11)

where,

I is the source image;

J is the target image and

Ω is the image domain.

Intensity differences are applied in mono-modal registration where image acquisition is

from same modality. They are easy to implement and compute efficiently. The difference

between the two measures is that SAD is more robust to outliers while SSD over-penalises

the outliers. Normalisation is done to ensure the measures are independent of the size

of overlap of the domain Ω.
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2.4.2 Statistical Measures

The most popular statistical measures include Correlation Coefficient (CC), Mutual In-

formation (MI) and Entropy Correlation Coefficient (ECC) shown in the research by

Glocker et al. (2011). CC is defined by the following expression:

SCC(I, J) =

∑
p∈Ω (I(p)− µI)(J(p)− µJ)√∑

p∈Ω (I(p)− µI)2
√∑

p∈Ω (J(p)− µJ)2
=
cov(I, J)

σIσJ
(2.12)

where µI and µJ are the two means and σI and σJ are the standard deviations of the im-

age intensity distributions. The correlation coefficient normally has values in the range

[-1,1] where 1 indicates a perfect linear relationship, 0 indicates no relationship and -1

indicates inverse relationship. The CC criterion is driven by less strict assumptions on

intensity relationship than difference measures. Mutual information is the statistical

measure which goes beyond these assumptions and is given by:

SMI(I, J) = H(I) +H(J)−H(I, J) (2.13)

where H(I) and H(J) are marginal entropies and H(I, J) is the joint entropy of the

images I and J . The entropies are defined by the following expressions:

H(I) = −
∑
i

p(i) log p(i) and H(I, J) = −
∑
i,j

p(i, j) log(p(i, j)) (2.14)

where p(i) and p(i, j) are the marginal and joint intensity distributions respectively. MI

as a similarity measure requires more computational steps than the difference measures.
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A popular and normalised version of mutual information is the entropy correlation co-

efficient which is expressed as follows:

SECC(I, J) = 2− 2H(I, J)

H(I) +H(J)
(2.15)

These types of statistical measures are used for multi-modal registration of CT and MRI

images where no linear or even non-linear relationship between intensity distributions of

images exist.

Below is a list of mathematical formulation for three similarity measures as shown by

Kosiński et al. (2012): sum of absolute differences, cross correlation coefficient and mu-

tual information.

a. Sum of absolute differences. Let f1 represent a reference image, and f2 represent

a moving image. A similarity image, denoted by s with a location (x,y,z) can be

expressed as (6):

s(x, y, z) =
n∑
i=1

n∑
j=1

n∑
k=1

f 1(i,j,k)-f 2(x+i-1,y+j-1,z+k-1) (2.16)

where,

x,y,z = 1,2,...,m-n+1.

b. Cross correlation coefficient can be expressed as (7):

s(x, y, z) =

∑n
i=1

∑n
j=1

∑n
k=1 f1(i, j, k)− f2(x+ i− 1, y + j − 1, z + k − 1)∑n

i=1

∑n
j=1

∑n
k=1 f

2
1 (i, j, k)1/2

∑n
i=1

∑n
j=1

∑n
k=1 f

2
2 (x+ i− 1, y + j − 1, z + k − 1)1/2

.

(2.17)
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where,

x,y,z = 1,2,...,m-n+1.

c. Mutual information can be expressed as (8):

I(T,W ) =
∑
a

∑
b

PTW (a, b)log
PTW (a, b)

PT (a)PW (b)
(2.18)

where,

T is a template and W is a window and are both random variables;

PT (a) is the probability that the intensity at a voxel in T is a and

PW (b) is the probability that the intensity at a voxel in W is b;

PTW (a, b) is the joint probability, which gives the probability that intensity a in

the template lies on top of intensity b in the window.

2.5 Linear Interpolation

Linear methods for interpolation can be divided into several groups such as neural net-

works, bilinear, bicubic, splines and sinc splines. Neural networks are the most basic,

least time consuming during processing and deal with one pixel which results in making

the pixels bigger. On the other hand, bilinear interpolation is a 2x2 neighbourhood

that deals with 4 pixels and returns smoother images. Bicubic interpolation is a 4x4

neighbourhood that deals with 16 pixels, has sharper images and a combination of good

computational time and quality. The splines and the sinc interpolations retain image

information, are computationally extensive and useful for multiple image rotations and

distortions. In interpolation, the formulation of problem statement is as follows: Given

an input image k with uniformly-sampled pixels pa,b, find a function p(x, y) that satisfies:
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pa,b = p(a, b) (2.19)

for all a, b ε Z.

Sampling rate in interpolation must satisfy Nyquist Theorem. Interpolation computes

values of a Continuous Space (CS) image wc(x, y) at (x,y) locations, matches them with

values of a Discrete Space (DS) image wd(a, b), and gives corresponding samples of some

continuous space image wc(x, y). Critical areas of application for interpolation include

displaying, zooming, estimation of motion, coding and warping of images. These linear

methods are expressed by the following mathematical formulation:

Linear interpolation:

wc(x, y) =
∞∑

n=−∞

∞∑
m=−∞

wd[a, b]h(x− n∆X , y −m∆Y ) (2.20)

where h(x, y) is the interpolation kernel.

2.5.1 Bilinear Interpolation

Bilinear interpolation is a tri function which is a piecewise linear function of its spatial

arguments expressed as follows:

h(x, y) = tri(
x

∆X

)tri(
y

∆Y

) (2.21)

In this scenario, for any coordinate point (x,y), the four nearest sample points are found

as wd[0, 0], wd[0, 1], wd[1, 0], wd[1, 1]. From there we fit a polynomial of the form:

α0 + α1x+ α2y + α3xy
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The matrix representation of the above is given by:



1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1





α0

α1

α2

α3


=



wd[0, 0]

wd[0, 1]

wd[1, 0]

wd[1, 1]


2.5.2 Cubic Interpolation

Cubic interpolation is expressed by the following equation:

f(x) =


1− 5

2
|x|2 + 3

2
|x|3 , |x| ≤ 1;

2− 4|x| + 5
2
|x|2 − 1

2
|x|3 , 1 < |x| < 2;

0, otherwise.

(2.22)

2.5.3 B-Splines Interpolation

Splines are piecewise polynomials with pieces that are smoothly connected together.

For a spline of degree n, each segment is a polynomial of degree n. Splines are uniquely

characterised in terms of a B-Spline expansion:

S(x) =
∑
kεZ

c(k)βn(x− k) (2.23)

where βn(x) is the central B-spline

c(k) represents B-Spline coefficients for discrete signals
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B-Splines are symmetrical bell-shaped functions constructed from the (n+ 1)-fold con-

volution.

β0(x) =


1, −1

2
< x < 1

2
;

1
2
, |x| = 1

2
;

0, otherwise.

(2.24)

n-order B-Spline is expressed as follows:

βn(x) =
1

n!

n+1∑
k=0

(
n+ 1

k

)
(−1)k

(
x− k +

n+ 1

2

)n
+

(2.25)

where

xn+ =


xn, x ≥ 0;

0, x < 0.

Cubic B-Spline basis function is a popular choice expressed in the form:

β3(x) =
1

6
[(x+ 2)3

+ − 4(x+ 1)3
+ + 6(x)3

+ − 4(x− 1)3
+ + (x− 2)3

+] (2.26)

β3(x) =



2
3
−|x|2 + |x|3

2
, 0 ≤|x| < 1;

(2−|x|)3
6

, 1 ≤|x| < 2;

0, 2 ≤|x|.

(2.27)

Interpolators have some desirable properties as listed below:
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1. Self consistency:

wc(x, y)|x=n∆ = wc(n∆) = wd[n]

2. Continuous and smooth:

∂
∂x
wc(x, y) =

∑∞
k=−∞wd[n] ∂

∂x
h(x− n∆)

3. Short spatial extent to minimise computation:

wc(x, y) =
∑∞

k=−∞wd[n]h(x− n∆)=

=
∑

nεZ:x−n∆εS wd[n]h(x− n∆)

4. Frequency response approximation.

5. Symmetric.

6. Shift invariant, and

7. Minimum side-lobes to avoid ringing artifacts.

2.6 Optimisation Techniques

The optimisation process is another component of image registration algorithm. Op-

timisation method is a procedure that finds various parameters that optimise a given

similarity measure. A dependable optimiser will reliably and quickly find the best pos-

sible transformation. Registration via optimisation is a variational-based approach, as

presented by Fischer & Modersitzki (2008) which allows a sound mathematical treat-

ment, characterisation, formulation as well as classification of some of the most used

procedures. Optimisation-based registration according to Goshtasby (2012) is classi-

fied according to the area to which deformations belong, either rigid or non-rigid. Rigid,

sometimes referred to as affine, registration process depends on some selected few param-
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eters, while spline-based approaches usually have very high-dimensional transformation

area. During image registration, issues such as ill-conditioning, instability of solutions

and non-convexity of the cost functions occur which can be alleviated by introduction of

a regularisation and additional penalty term in the optimisation problem, as described by

Fischer & Modersitzki (2008). Optimisation-based registration requires that a similarity

or dissimilarity measure is defined, initial parameters that nearly register the images are

found and an algorithm is developed to run the initial registration to completion, as

shown by Goshtasby (2012). Some properties of images determine how well the proper

measure of similarity or dissimilarity between two images is done. For example, images

acquired in different modalities require mutual information to determine the similarities,

and joint entropy to determine the dissimilarities. Images acquired in the same modality

need cross correlation coefficient to measure similarity, and sum of squared differences

to measure dissimilarity between them. Transformation parameters are either specified

manually or automatically. The initial registration used is searched for within the entire

parameter space to find the best approximate registration. Parameters for the initial

registration are iteratively refined until the optimal registration is achieved.

The most commonly used optimisation algorithms are gradient descent as shown by

Markelj et al. (2012), Powell as indicated by Van der Bom et al. (2011), quasi-Newton,

non-conjugate gradient descent as given by Klein et al. (2006), stochastic gradient de-

scent as presented in Klein (2008), downhill simplex and Marquardt-Levenberg as shown

by Markelj et al. (2012). Recent research has produced other approaches like local pertur-

bation Dasgupta et al. (2013), global optimisation approaches such as stochastic global

optimisation Zhigljavsky & Žilinskas (2007), convex optimisation Boyd & Vandenberghe

(2009), stochastic approximation Chen (2003), exploration or selection, sequential Monte

Carlo techniques and library-based optimisation. Optimisation problems can be clas-

sified as deterministic and non-deterministic. In deterministic optimisation problems,
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neither randomness nor uncertainty is taken into account as indicated by Chen (2010),

though they are very simple to solve. However, in non-deterministic optimisation prob-

lems, which reflect actual optimisation problems, noise or uncertainties occur in the

form of randomness. Stochastic optimisation is very useful during design, analysis and

operation of modern systems.

Optimisation algorithms such as quasi-Newton methods as seen in Hennig & Kiefel

(2013) require only the gradient of the objective function to be computed at each itera-

tion, they are much faster than steepest descent and more efficient than Newton meth-

ods. The most commonly used quasi-Newton method is the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) as shown by researchers Blomgren (2014) and Lewis & Overton (2013).

Quasi-Newton methods function well in the stochastic approximation domain by using

limited memory BFGS (L-BFGS). In their research, Byrd et al. (2014) employed the

second-order information which reliably yielded stable and productive Hessian approx-

imations. Discrete optimisation as compared to continuous optimisation offers a lot

of advantages. It performs as a Markov Random Field (MRF) labelling, which is an

energy function consisting of two terms, namely the data term and the regularisation

term. The data term measures the similarity of voxel in one image and a displaced voxel

in the second image. The regularisation term is a pair-wise function that enforces a

globally smooth transformation by penalising derivatives of the displacements and has

a weighting parameter that sets the influence of the regularisation Ferrante & Paragios

(2013). The advantages of discrete optimisation include overcoming susceptibility of

local minima, eliminating need for numerical derivatives of the objective function and

offering high accuracy and good computational speed as compared to what is commonly

observed in continuous optimisation.

Optimisation problems seek to determine a configuration or design that minimises the

42



cost function as shown by Chen (2010):

minθ∈ΘJ(θ) (2.28)

where,

θ is a p-dimensional vector of all decision variables, commonly represented by x in math-

ematical programming, and Θ is the feasible region.

If the cost function J(theta) is linear in θ, and Θ can be expressed as a set of linear

equations in θ, then we have a linear program. Similarly, if J(theta) is convex in θ and

Θ is a convex set, then we have a convex optimisation problem, as presented by Klein

et al. (2010). In their research, Klein et al. (2006) similarly defined the optimisation

problem that seeks to minimise the cost function as:

minimisex∈Rn := g(x) + h(x) (2.29)

where,

g is a convex, continuously differentiable function and h is a convex but not necessar-

ily differentiable penalty function or regulariser. The same author showed that proxi-

mal Newton-type procedures inherit the desirable convergence behaviour for minimising

smooth functions. The minimisation of the cost function follows line search methods as

per:

xk+1 = xk + tk∆xk (2.30)

where,

tk denotes a scalar gain factor that controls the step size in the search direction;

∆xk is the search direction at iteration k and means that several iterations of an algo-
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rithm are carried out.

The search direction and the gain factors are chosen such that the sequence xk converges

to a local minimum of the cost function. Approaches towards stochastic simulation

optimisation, presented by Chen (2010), such as model-based approaches and meta-

heuristics can improve image registration processes because with reference to simulation

optimisation, the handles associated with the search have been eliminated. Therefore,

allocation of simulation replications to different or alternative designs can be carried out

efficiently. Meta-heuristics starts with an initial population of designs. This approach

can be used for performance evaluation when the design area is being searched for. This

is because generation of a good population of designs requires that iteration to iteration

in the search process be carried out.

Several research works on optimisation on image registration can be found in Van der

Bom et al. (2011), Klein et al. (2007), Klein (2008), Lee et al. (2014), Klein et al. (2009),

Baudin et al. (2010), de Groot et al. (2013), Delibasis et al. (2010), Kabus et al. (2004)

and Klein et al. (2011). In their research work, Floca & Dickhaus (2007) designed

a powerful tool whose framework uses an engine that compares different registration

approaches and hence makes the tool suitable for easy integration, optimisation and

evaluation. This tool contributes immensely in establishment and optimisation of image

registration techniques due to its ability to be automated. As a result, a lot of time is

saved in clinical application procedures. The research work by Klein (2008) in its contri-

bution explains that the choice of optimisation procedure adopted significantly impacts

on the computation time, accuracy and robustness of the registration method used,

which in turn influences the clinical procedures and the turnaround time for diagnosis

and therapy treatment.

This research is based on theoretical work done by Plakhov & Cruz (2004), where the

theoretical convergence conditions of the optimisation algorithms are taken into con-
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sideration. In Klein et al. (2009), a stochastic adaptive descent optimisation method

for image registration with adaptive step size prediction is presented, which provides a

solution to Robbin-Monro schemes shortcoming of the need for a predetermined step

size function. The main advantage of adaptive stochastic gradient descent optimiser

stems from the fact that random sampling of the data in the computation of the deriva-

tives is utilised, which translates into a meaningful reduction of computation time. A

comprehensive review of 2D/3D registration based on optimisation procedure has been

proposed by Markelj et al. (2012) for image-guided interventions. An improvement on

the intensity-based image registration can be viewed as a non-linear optimisation prob-

lem which is expressed as:

µ̂ = arg max
µ

C(If (µ), Im(µ); T ) (2.31)

where,

C is the objective function or similarity measure that compares the alignment between

the source image If and the reference image Im. The solution µ is the parameter vector

that minimises the objective function and T is the transformation.

2.6.1 CMA Evolutionary Strategy Optimisation

Evolutionary optimisations adapt to biological process of optimisation known as evolu-

tion. They are based on evolutionary operators such as crossover, mutation and selection

as shown by Kramer (2014). From a set of candidate solutions, the crossover evolutionary

methods combine the best characteristics of two or more solutions. In mutation, random

changes are effected while ensuring articulate balancing of exploitation and exploration.

Selection uses iteration process to choose the most promising candidate solutions by re-

combination and mutation. Covariance matrix adaptation (CMA) evolutionary strategy
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presented by Kramer (2014) is a very powerful evolutionary optimisation algorithm. It

is commonly used where no derivatives are given and no assumptions about the fitness

function are known. Proven success of these algorithms have been demonstrated through

theoretical results and a large area of application in past research. However, this suc-

cess is attributed to proper parameter settings before and during search. Evolutionary

algorithm model as indicated by Mwaura & Keedwell (2010) are based on stochastic

algorithms and follow the listed down steps as a general methodology for solutions to

population based EA problems:

Step 1: Create an initial population of solutions P (0) = (P1(0), ..., Pn(0));

Step 2: Compute the fitness f(Pi(t)), for each individual Pi(t), of the current popula-

tion P (t). Pi(t) refers to an individual i in P (t) and t is the number of generations;

Step 3: Select parent organism by applying selection method and/or replication;

Step 4: Apply genetic operations on parent individuals to create offspring P (t+1) that

make up the next generation or replace individuals in the current population, and

Step 5: Go to step 2; if maximum fitness has been achieved or maximum generation

attained exit algorithm else go to step 3.

Three operations are carried out in all evolutionary optimisation methods namely, evalu-

ation, selection and alteration as shown by Machowski & Marwala (2007). The applica-

tion of these operations to different branches of EO such as Simulated Annealing (SA),

Genetic Algorithms (GA) and Particle Swamp Optimisation (PSO) vary from algorithm

to algorithm. Most traditional optimisation techniques make use of the cost function

value from its first derivative or second derivative. EO algorithms do not apply any other

information but cost function values themselves and by so doing, eliminates the need to

evaluate the gradients which can be computationally expensive. They sample the search

space in detail more than non-evolutionary methods, thereby increasing the probability

of finding the global optimum point or local minimum. The main advantage of using
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evolutionary computation in image registration is to help avoid the common challenges

of classical gradient-based optimisation techniques as demonstrated by Valsecchi et al.

(2012).

2.6.2 Regular Step Gradient Descent Optimisation

In Regular Step Gradient Descent (RSGD) optimisation, the step size is computed by

use of bipartition scheme as presented by Wu & Murphy (2010) and Paquin (2007) where

the parameters of transformation in the direction of the gradient are advanced and the

step size is governed by learning rate, given in Eikvil et al. (2005) research. The gradient

of a function is an n-component vector given by:

[
∆fn∗1

]
=



df

dx1
df

dx2
:

:
df

dxn


The gradient direction is also known as the direction of steepest ascent, which has a lo-

cal property and not global one. The function value increases fastest along the tangent

of descent for one point but varies from point to point along the direction of steepest

ascent. Gradient vectors, ∆(f), is evaluated at points along the gradient direction that

represent the direction of steepest ascent. The negative of a gradient vector shows the

direction of steepest descent. For the proof of this, we refer reader to Appendix A1. The

possibility of derivation of theoretical bounds on distance to the solution at an iteration

gives an indication of the rate of convergence of gradient descent algorithm as discussed

by Klein (2008).
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2.6.3 Conjugate Gradient Descent Optimisation

Gradient descent is commonly used for large scale optimisation problems due to its sim-

plicity in implementation and cheapness in iteration as presented by Hauser (2012). It

consists of taking small steps in the direction of the steepest descent. This optimiser

advances the parameters of transformation in the direction of the gradient and the step

size is governed by learning rate. The setback for gradient descent algorithms is that

the step size depends on the value of the gradient, which has been shown by Eikvil

et al. (2005). Steepest descent method uses the principle of the negative vector as the

direction of minimisation, according to Rao & Rao (2009). It is based on the first order

of Taylor approximation of the form f(x+ u) around x expressed as:

f(x+ u) ≈ f̂(x+ u) = f(x) + Of(x)Tu (2.32)

where Of(x)Tu is the directional derivative of f at x in the direction of u as indicated

by Boyd & Vandenberghe (2009), that gives an approximate change in f for a small step

in u. When the value of the directional derivative is negative, the step u is the descent

direction. It is desirable to make the directional derivative as negative as possible by

taking large values of u. The directional derivative Of(x)Tu is linear in u as long as it

is the descent direction of the form Of(x)Tu < 0. There is need to set limit for the size

of u which is referred to as normalisation of the length of u.

Let ‖ · ‖ be any norm on Rn. We define the steepest descent direction (with respect to

the norm ‖ · ‖) as:

∆xnsd = argmin{Of(x)Tu | ‖ u ‖ = 1} (2.33)

From the foregoing, a normalised steepest descent direction ∆xnsd is a step of unit norm

that yields the largest decrease in the linear approximation of f . It can also be defined
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geometrically as:

∆xnsd = argmin{Of(x)Tu | ‖ u ‖ ≤ 1} (2.34)

which gives the interpretation the direction of the unit ball ‖ · ‖ that extends farthest

in the direction −Of(x).

The steepest descent method applies the steepest descent direction as search direction, as

shown by Boyd & Vandenberghe (2009). Conjugate Gradient Descent (CGD) method

is used to improve the convergence characteristics of steepest descent method. Any

minimisation method that uses conjugate direction is said to be quadratically convergent

and ensures that minimisation of a quadratic function is done in n steps or less. A general

function that can be approximated fairly well by a quadratic near the optimal point,

finds the optimal point in a determined number of iterations.

2.6.4 Quasi-Newton Optimisation

Quasi-Newton methods, according to Lewis & Overton (2013) are the most popular of

the BFGS methods which are optimisation algorithms that require only the gradient

of the cost function to be computed at each iteration. They are faster than the steep-

est descent, much more efficient than Newton algorithms and operate in the stochastic

approximation regime by using L-BFGS. Quasi-Newton methods construct and em-

ploy Hessian approximation for arbitrary smooth cost function f(x) using the values

of second-order information evaluated at the current and previous points, as proved by

Byrd et al. (2014). Further, Quasi-Newton methods minimise the problem of a convex

(non-convex) stochastic function which is expressed as follows:
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min
ω∈Rn

F (ω) = E[f(ω; ξ)] (2.35)

where

ω is a random variable consisting of input-output pair (x, z);

x is the input representation;and

z is the target output.

The collection of {(xi, zi)}, i=1,.....,N is referred to as the training data set. The cost

function is defined by the empirical expectation:

F (ω) =
1

N

N∑
i=1

f(ωi, xi, zi) (2.36)

2.6.5 Discrete Optimisation

In discrete optimisation format, the variables have discrete values which are labelled

to each variable such that the cost function is minimised. Such a discrete optimisation

performs as an MRF, as presented by Zikic et al. (2010). An MRF is a probabilistic

model which is expressed by undirected graph containing a set of vertices that encodes

random variables, whose values are derived from a discrete set. The aim is to estimate

the optimal label assignment by minimising an energy function in the form:

E(f) =
∑
p∈D

D(fp) + α
∑

(p,q)∈N

R(fp, fq) (2.37)

where,

D(fp) is the data term (unary cost) that measures the similarity of voxel in one image

and a displaced voxel in the second image;
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R(fp, fq) is pair-wise regularisation term that enforces a globally smooth transformation

by penalising deviations of the displacements;

α is the weighting parameter that sets the influence of the regularisation, as indicated

by Heinrich et al. (2012) and Ferrante & Paragios (2013).

Discrete optimisation is able to locate an approximate global optimum of the registra-

tion cost function and can avoid false local optima. It does not require second-order

information of similarity metric which increases flexibility. The advantages of discrete

optimisation are that it overcomes susceptibility of local minimum caused by continuous

optimisation, eliminates requirements for numerical derivative of the cost function and

has good accuracy and computational speed compared to continuous optimisation. The

main challenges include avoidance of an iterative solution, image interpolation and re-

quires intensive sampling of the displacement space which results in high computational

and memory needs.

2.7 Performance Evaluation

Performance evaluation is the last component of image registration algorithm that anal-

yses and validates how well a particular technique performed. There are various perfor-

mance evaluation methods but we shall highlight expert judgement method, NUMERICS

algorithms and OSIRIX software.

Expert judgement methods are based on identification and correlation of similar and

shared anatomical structures between images, as shown by Adler (2011). Landmarks or

segmented regions of interest are used to perform validation. Structures known to be

shared across individuals in a population have their landmarks and segmented regions of
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interest defined. The accuracy of registration algorithms that apply methods based on

landmarks and ROI are basically limited to the accuracy in which these features can be

identified. The limitation of human judgement is its subjectivity and the results yielded

are difficult to reproduce. Further to that, these evaluations are unable to detect any

registration mismatches that may exist between landmarks or within ROIs. The other

challenge is in distinguishing between registration errors and real morphological vari-

ability within a study population. The advantages of expert judgement are that they

provide better visual perception, quicker user recognition and interaction.

NUMERICS is a web software platform for evaluation of performance of registration

techniques. It provides accessible tools that allow access to dedicated numerical meth-

ods for comparison and registration of medical images as presented by Gerganov et al.

(2012a). NUMERICS platform supports two classes of image registration algorithms,

namely standard image registration and elastics Thin-Plate Splines (TPS) image regis-

tration. Standard category which are based on parameter optimisation techniques allow

selection of specific geometric transformation functions, specific cost functions and cho-

sen optimisation algorithms. The TPS image registration is based on the thin-plate

spline interpolation approaches where elastic deformation of the initial image is per-

formed. Interpolating feature points displacements are done in the coordinate plane

using thin-plate splines. The platform has two pages from where the user uploads the

two images to be registered and also specifies the type and the parameters of the algo-

rithms that will be used. Page two contains the dashboard which displays results from

submitted job and a list of all the intermediate steps performed. Detailed statistical

information that includes mean, median, minimum and maximum intensity, standard

deviation of the intensities, 3rd and 4th moment of the distribution of the intensities and

a histogram of the intensity distribution are given as shown by Gerganov et al. (2012a).
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The advantage of the NUMERICS platform as a tool for evaluation of performance of

image registration algorithm is that it provides processing operations for analysing the

results. It produces rendering contours that give areas of statistical significance differ-

ence between submitted images. By applying different colour schemes to the images, an

improved visualisation quality is displayed.
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CHAPTER 3. METHODOLOGY

3.1 Introduction

Image registration is the process of aligning a target image to a source image in order

to determine the transformation that best maps points in the target image to corre-

sponding points in the source image. This process adds value to images in the sense

that it allows structural and functional images to be observed and analysed in the same

coordinate system. The registration process has wide areas of application such as mon-

itoring of diseases in clinical applications, constructing of mathematical models in the

study of population and developing geographical maps among other applications. In this

research we carried out image registration of lung CT scans from EMPIRE 10 Challenge

by applying Mattes mutual information as a similarity metric, affine transformation, lin-

ear interpolation and regular step gradient descent optimisation using Image Processing

toolbox in Matlab. Matlab, which is an acronym from MATrix LABoratory (MATLAB)

is a computational, analysis and programming tool. It is a high performance language

for technical computing that integrates programming, computation and visualisation in

solving matrix and vector-based problems in a very short period of time compared to

other languages such as C and Fortran. Matlab consists of a family of application-specific

solutions known as toolboxes, which are detailed collections of Matlab functions referred

to as M-files used to solve specific classes of problems. In this research, we applied

Image Processing, Computer Vision Systems (CVS), Neural Network and Optimisation
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Toolboxes. Part two of the image registration process uses neural networks.

3.2 Image Registration Techniques

Image registration considers two images. One is the target image, denoted as If and the

other is the source image denoted as Im. The aim is to find a transformation T that

best aligns the two images:

T :ΩF ⊂ Rd −→ ΩM ⊂ Rd,

where Ω is the image domain and Rd is the Euclidean distance of dimension d equal to

2 or 3. The source or moving image Im will be deformed by a transformation T to fit

the target or fixed image If . The deformed image is symbolised as Im◦T . If the energy

or cost function C created to evaluate how well the target image If fits the deformed

image Im◦T , then an expression for the best transformation will be:

T̂ = arg minTC(T ) (3.1)

where,

C is the cost function or similarity measure that compares the alignment between the

source image Im and the target image If . The solution T̂ is the parameter vector that

minimises the objective function and T is the transformation.

The steps for proposed algorithm for image registration:

Step 1: Take the 1st set of lung CT scan images 01;
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(a) Fixed Image 01 (b) Moving Image 01 (c) Fixed Image 02 (d) Moving Image 02

Figure 3.1: Fixed and Moving Image Pairs 03 and 04.

(a) Fixed Image 03 (b) Moving Image 03 (c) Fixed Image
04

(d) Moving Image
04

Figure 3.2: Fixed and Moving Image Pairs 03 and 04.

Step 2: Load the fixed and moving images;

Step 3: Find image rotation and scale;

Step 4: Resize the images to make them same size;

Step 5: Select Control Points (CP) for both fixed and moving images and save them in

workspace;

Step 6: Estimate transformation;

Step 7: Choose the optimiser and the metric functions;

Step 8: Show the final registered image.

Fig. 3.1-3.3 show images acquired from the EMPIRE 10 database used for this registra-

tion:

The original images have diverse dimensions and therefore there is need to resize them
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(a) Fixed Image 05 (b) Moving Image 05 (c) Fixed Image 06 (d) Moving Image 06

Figure 3.3: Fixed and Moving Image Pairs 05 and 06.

to 256 x 256 pixel sizes or less for them to be applicable in image processing toolbox

applications. The next step is spatial transformation which brings the moving image

into alignment with the fixed image. To apply a geometric transformation, parameters

of transformation on the images are defined. This is done using affine transformation

whose matrix’s last column contains [0 0 1].

Registration can be divided into two forms, namely global and local registration. Global

registration is based on block-matching techniques and finds similarities between sub-

volumes of pairs of images for registration while local registration is based on Free Form

Deformation (FFD) as proposed by Modat et al. (2010). Local registration consists of

a deformation model, an objective function and the optimisation scheme.

Using the Image Processing (IP)and Computer Vision Systems (CVS) toolboxes in Mat-

lab, three image registration solutions have been investigated, namely: intensity-based

automatic registration, control point-based registration and automated featured-based

registration. Depending on the relative intensity patterns, certain pixels are mapped

to the same location in intensity-based automatic registration. In control point-based

registration, manual selection of similar features in each image are allowed to be mapped

to the same pixel location. Automated feature-based registration uses feature matching

between images and involves feature detection, extraction and estimation of transforma-

tion. Transformation in image registration is defined as the coordinate mapping from

the fixed image domain to the moving image domain. The mathematical model that
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expresses transformation is given by:

X ′ = XR + T (3.2)

The above can be represented in matrix form as:

x′
y′

 =

cosθ −sinθ
sinθ cosθ


x
y

+

tx
ty


The estimated rotational angle is a matrix containing equal values that can be found as

per parametric representation of a line:

ρ = ycosψ − xsinψ (3.3)

ρ′ = y′cosψ′ − x′sinψ′ (3.4)

Substituting (3.2) and (3.3) in the matrix above and using trigonometric theorem, we

find that:

θ = ψ′ − ψ (3.5)

Details of the procedure followed in registration of all images mentioned above are given

in Appendix C.

Precise image registration is a crucial pre-processing step for many tasks in image regis-

tration techniques (Bhagalia et al. (2009)). The fundamental characteristic of any image

registration technique is the type of spatial transformations or mapping used to properly

overlay two images (Bolin & Huihui (2010)). This research uses affine transformation

and scaling for comparison. Control point selection procedure in Matlab uses the code

cpselect(moving, fixed,movingpoints, fixedpoints). The results are displayed in form
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(a) Distorted Im-
age02

(b) Adjusted Initial Ra-
dius02

(c) Registration Affine Image02 Model

Figure 3.4: Affine Registration for Image 02 with Adjusted Initial Radius.

(a) Distorted Image03 (b) Adjusted Initial Radius03 (c) Registration Affine Image03
Model

Figure 3.5: Affine Registration for Image 03 with Adjusted Initial Radius.

(a) Distorted Image04 (b) Registration using
RSGD Image04

(c) Recovered Image04 Montage

Figure 3.6: RSGD Registration for Image 04 and its recovery.
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(a) Fixed Image05 (b) Moving Image05 (c) Registration using
RSGD Image05 Model

(d) Registration using
RSGD with 500 MI Im-
age05 Model

Figure 3.7: RSGD Registration for Image 05.

of a matrix as follows:

[
Pm

]
=



224.2500 223.2500

368.2500 150.7500

369.7500 238.2500

321.7500 245.2500

270.7500 251.7500

253.2500 134.2500

336.7500 134.2500

222.2500 166.2500


and

[
Pf

]
=



228.0000 229.2500

355.5000 161.2500

369.5000 241.7500

321.5000 244.7500

272.0000 250.7500

253.5000 131.2500

340.5000 130.7500

227.5000 166.2500


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3.3 Similarity Metric

Similarity measure is the second part of a registration process that computes the de-

gree of alignment of the images. It can be categorised into two approaches, namely

featured-based and voxel-based similarity measures. Feature-based approach requires a

feature extraction step which can bring an error that can generally affect the registra-

tion algorithm and cannot be reversed later as suggested by Rueckert & Aljabar (2010).

Voxel-based approach aims at determining the degree of similarity in the image inten-

sities. Voxel similarity measures are generally preferred methods for measuring image

similarity because they are robust and give better accuracy. According to Van der Bom

et al. (2011), the three similarity measures that give good accuracy and robust results

are gradient descent, gradient correlation and pattern intensity. The choice of the char-

acteristic of the cost function and the search strategy as indicated by Klein et al. (2007),

determines how successful the registration process becomes. Single modality image reg-

istration is best done using invariant moments while multi-modality image registration

is best done using mutual information similarity measure. For images with rotational

differences, cross correlation coefficients and invariant moments types of similarity mea-

sures are the best to apply. Mattes mutual information is the similarity metric used in

this research.

3.3.1 Mean Squared Differences

In medical image registration techniques, accurate definition of similarity measures plays

a very important role as pointed out by Ulysses & Conci (2010). The most commonly

used intensity-based similarity metrics are mutual information, linear interpolation and

mean squared differences. Mean Square Error (MSE), as shown by Peksinski et al.

(2015), is a popular and commonly used medical image registration quality measure
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which is expressed as follows:

MSE =

∑M
x=1

∑N
y=1[fin(x, y)− fout(x, y)]2

M.N
. (3.6)

where fin(x, y) is original image; fout(x, y) is the registered image and M.N is the res-

olution. The values for these images are also referred to as actual value for original

image and predicted value for registered image. This metric has the advantage of being

computationally simple and is based on the premise that pixels intensity in one image

corresponds to pixels intensity in the second image.

3.3.2 Mutual Information

Mutual information between source and target images is used for determining visual

quality. From information theoretic metrics, information fidelity criterion is bounded

below by zero since mutual information can never be non negative, and bounded above by

infinity which occurs when the source image is identical to the target image as indicated

by Bovik (2009). Mutual information can be expressed as:

I(T,W ) =
∑
a

∑
b

PTW (a, b)log
PTW (a, b)

PT (a)PW (b)
(3.7)

where,

T is a template, W is a window and both are random variables;

PT (a) is the probability that the intensity at a voxel in T is a and

PW (b) is the probability that the intensity at a voxel in W is b;

PTW (a, b) is the joint probability, which gives the probability that intensity a in the

template lies on top of intensity b in the window.

In image registration using mutual information, the initial registration set-up involves
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calling Image Processing Toolbox in Matlab. The two images to be registered are read

onto Matlab workspace. If the input images are in colour, they are converted to gray

scale from Red, Green and Blue (RGB). Depending on their dimensions, they can be

scaled properly (resized) to less than 256 x 256 pixels. Translation, in-plane rotation and

if necessary cropping are then carried out. Control points are selected on both the fixed

and moving images then saved in the workspace. Geometric transformation is estimated

using the tform command in Matlab where the resultant output recovers scale and

angle of rotation, theta. An optimiser is selected to minimise the cost function. Various

properties of the optimiser such as the initial search radius and maximum iterations

can be adjusted to improve the registration process. Successful registration is attained

when optimisation converges to a local or global minimum. Below are results obtained

for image registration using mutual information where the step value is fixed at 20 and

there is no cropping.

Table 3.1: Calculation of Joint Entropy and Mutual Information

Image
Pair

Entropy
1

Entropy
2

Joint Entropy Mutual Information

01 691.2923 691.2923 1.5976 1.3842× 10+3

02 673.9541 736.2445 2.0812 1.4123× 10+3

03 726.5749 652.7596 1.8837 1.3812× 10+3

04 948.3985 1013.9000 1.8383 1.9641× 10+3

05 676.8840 610.7235 2.2973 1.2899× 10+3

06 730.4745 777.7002 1.8288 1.5100× 10+3

In tables 3.1-3.7 of image registration results, angle represents vector angle of rotation

to check rotation, e.g. [-30:2:30] which is the same as angle=15, the step represents

how many pixels to shift in the x and y directions to check translation, crop indicates

if cropping needs to be performed or not, e.g. crop=0 means no cropping and crop=1

means crop part of the image and save computational time. Theta gives best angle of

rotation, while I and J represent the coordinates to the top left corner of the matched
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Table 3.2: Image Registration 01 using Mutual Information

Image Size Theta I J θ hmin hmax
01F 368×418×uint8 -2:1:2 2 1 -2 -2.3128 0
01M 386×462×uint8 -8:4:8 2 1 -8 -2.3128 0
- - -10:2:10 2 1 -10 -2.3128 0
- - -10:5:10 2 1 -10 -2.3128 0
- - -20:4:20 2 1 -20 -2.3128 0
- - -20:5:20 2 1 -20 -2.3128 0
- - -30:3:30 2 1 -30 TME TME
- - -30:5:30 2 1 -30 TME TME
- - -30:10:30 2 1 -30 TME TME

Table 3.3: Image Registration 02 using Mutual Information

Image Size Theta I J θ hmin hmax
02F 312×420×uint8 -2:1:2 1 41 2 -0.2739 0.1497
02M 338×462×uint8 -8:4:8 1 41 8 -0.2739 0.1531
- - -10:2:10 1 41 8 -0.2739 0.1531
- - -10:5:10 1 61 10 -0.2739 0.1510
- - -20:4:20 1 61 -16 -0.2739 0.1581
- - -20:5:20 1 61 -15 -0.2739 0.1571
- - -20:10:20 1 61 20 -0.2739 0.1556
- - -30:3:30 61 81 30 -0.2739 0.1571
- - -30:5:30 61 81 30 -0.2739 0.1604
- - -30:10:30 61 81 30 -0.2739 0.1604

area of the large image as shown by Artyushkova et al. (2011). TME stands for too

many elements.
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(a) Montage Image 01 (b) Histogram Montage 01 (c) Image
01 with 300
Maximum
Iterations

(d) Histogram Image
01 with 300 Maxi-
mum Iterations

Figure 3.8: Montage for Image 01 and its Histogram.

(a) Default Registration Image 01 (b) Default Registration Histogram

Figure 3.9: Default Registration Image 01 and its Histogram..
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Table 3.4: Image Registration 03 using Mutual Information

Image Size Theta I J θ hmin hmax
03F 296×412×uint8 -2:1:2 21 21 -2 0 0.5272
03M 300×434×uint8 -8:4:8 21 21 -4 0 0.5860
- - -10:2:10 21 21 -4 0 0.5860
- - -10:5:10 21 21 -5 0 0.5882
- - -20:4:20 21 21 -4 0 0.5860
- - -20:5:20 21 21 -5 0 0.5882
- - -20:10:20 41 41 -10 0 0.5423
- - -30:3:30 21 21 -3 0 0.5655
- - -30:5:30 21 21 -5 0 0.5882
- - -30:10:30 41 41 -10 0 0.5423

Table 3.5: Image Registration 04 using Mutual Information

Image Size Theta I J θ hmin hmax
04F 432×384×uint8 -2:1:2 1 21 0 -19.1900 16.9927
04M 436×408×uint8 -8:4:8 1 21 0 -19.1900 16.9927
- - -10:2:10 1 21 0 -19.1900 16.9927
- - -10:5:10 1 21 0 -19.1900 16.9927
- - -20:4:20 1 21 0 -19.1900 16.9927
- - -20:5:20 1 21 0 -19.1900 16.9927
- - -20:10:20 1 21 0 -19.1900 16.9927
- - -30:3:30 1 21 0 -19.1900 16.9927
- - -30:5:30 1 21 0 -19.1900 16.9927
- - -30:10:30 1 21 0 -19.1900 16.9927

Table 3.6: Image Registration 05 using Mutual Information

Image Size Theta I J θ hmin hmax
05F 282×412×uint8 -2:1:2 21 1 1 0 0.7211
05M 294×418×uint8 -8:4:8 41 21 8 0 0.7213
- - -10:2:10 41 21 8 0 0.7213
- - -10:5:10 21 21 5 0 0.6862
- - -20:4:20 41 21 8 0 0.7213
- - -20:5:20 21 21 5 0 0.6862
- - -20:10:20 41 21 10 0 0.6617
- - -30:3:30 41 21 9 0 0.6924
- - -30:5:30 21 21 5 0 0.6862
- - -30:10:30 41 21 10 0 0.6617
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Table 3.7: Image Registration 06 using Mutual Information

Image Size Theta I J θ hmin hmax
06F 318×430×uint8 -2:1:2 1 1 -1 0.1307 0.1604
06M 318×428×uint8 -8:4:8 21 21 4 0 0.1575
- - -10:2:10 21 21 6 0 0.1706
- - -10:5:10 21 21 5 0 0.1745
- - -20:4:20 21 21 4 -0.0273 0.1575
- - -20:5:20 21 21 5 -0.0273 0.1745
- - -20:10:20 41 21 10 -0.0273 0.1292
- - -30:3:30 21 21 6 -0.1214 0.1706
- - -30:5:30 21 21 5 -0.1214 0.1745
- - -30:10:30 41 21 10 -0.1214 0.1292
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3.4 Transformation

Estimation of transformation was carried out using function tform to find fitting geomet-

ric transformation for moving points, Pm and fixed points, Pf . The function tformInv

was used to recover the scale and the angle of the rotated image. In order to create a

geometric transformation object, the parameters of the geometric transformation need

to be defined. The imwarp function performed the transformation by determining the

values of pixels in the output image which are then mapped into new locations that

correspond to similar locations in the input image. Table 3.8 shows details of recov-

ered values of scale and angle theta for the three types of transformations, which are

compared to the original. Results show that affine transformation gives the best results

that are close to the original values, followed by projective transformation and the most

divergent results were from non-reflective similarity transformation.

Table 3.8: Registered Image Recovery

Item Non-reflective
Similarity

Affine Projective Original

Scale Recovered 0.7764 0.6863 0.7553 0.7000
Theta Recovered 20.6824 29.7407 26.6684 30.0000

Table 3.9: Estimation Transformation

Similarity Transformation Moving
Points

Fixed
Points

Affine
Values

tform IR/3.5 0.9149 0.0000 0
” 0.0000 0.9149 0
” 4.4858 3.9777 1.0000
tform IR/4.0 0.9147 0.0000 0
” 0.0000 0.9147 0
” 4.6593 5.0475 1.0000
tform IR/6.0 0.9224 0.0000 0
” 0.0000 0.9224 0
” 1.3062 2.4753 1.0000
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3.5 Optimisation Techniques

The last component of image registration algorithm is the optimisation process, whose

tools define the process for minimising or maximising the similarity measure. Optimi-

sation process iteratively minimises the cost function and updates parameters during

image registration framework. A dependable optimiser will reliably and quickly find

the best possible transformation. Registration via optimisation is a variational-based

approach as demonstrated by Matjelo et al. (2015), which allows a sound mathematical

treatment, characterisation, formulation as well as classification of some of the most

commonly used procedures. A search algorithm greatly contributes to the accuracy of

a registration procedure. In this research, Regular Step Gradient Descent (RSGD) op-

timisation algorithm is used to minimise the cost function. The convergence property

values of RSGD such as the growth factor in search radius, initial radius, epsilon and

maximum iterations are changed to give varying results. Optimisation parameters such

as minimum step length, the relaxation factor, the initial step length and number of

iterations are defined. The minimum step length and the number of iterations act as

the stopping criteria for the optimisation.

Optimisation algorithms used for formulation of engineering design problems vary from

problem to problem. Not a single algorithm can work for all optimisation problems

efficiently and accurately. Optimisation algorithms are classified into two categories,

namely: direct methods and gradient-based methods. The difference between the two

is that direct methods do not use any derivative information of the cost function while

gradient-based methods require the first and/or the second order derivative information

of the cost function to guide the search process. Most optimisation algorithms employ

the following iterative scheme:
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pk+1 = pk + akdk (3.8)

where ak is scalar gain factor and dk search direction.

Choice of the gain sequence is critical to the performance of the optimisation strategy.

Depending on the strategy adopted, it can be determined as follows:

1. As a constant where ak= a

2. Slowly decaying:

ak = f(k) =
a

(A+ k)α
(3.9)

where α governs the decay rate and A is the stability constant.

When the term α=1, this becomes the condition for theoretically optimal setting rate of

convergence as shown by Qiao et al. (2016). When k=0, the gain function is at maximum

a0 =
a

(A)
and the sigmoid function f(0) = 0, out of which:

f(k) =
fmax − fmin

1− (
fmax
fmin

)e

−k
ω

+ fmin (3.10)

where fmax determines the maximum gain at each iteration, fmin indicates the maximal

step backward in time and ω affects the shape of the sigmoid function. Convergence is

achievable when k ≥ 0 and the maximum of the sigmoid function when fmax = 1 as

shown by Qiao et al. (2016) and Klein et al. (2009). From the above equation, it can

be observed that asymptotic normality and convergence can be assured when fmax >

−fmin and ω > 0.

3. As an exact line search:
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ak = argminaC(pk + adk) (3.11)

4. As inexact line search:

ak ≈ argminaC(pk + adk) (3.12)

5. As adaptive:

ak = F (progress fromprevious iterations) (3.13)

The performance of an optimisation algorithm depends very much on the choice of the

gain sequence. Parameters such as the α, that govern the decay rate are chosen within

the range 0 < α ≤ 1. To take advantage of asymptotic optimality, it is beneficial to

convert α = 1 and γ =
1

6
if the algorithm runs a large number of iterations. Typical

practical values for these parameters are α = 0.602 and γ = 0.101 in the equations:

ak =
a

(A+ k)α

ck =
c

(k + 1)γ

where a, c, A are non-negative coefficients.

Chosen values of a, A are done at the same time to attain a good performance of the

optimisation algorithm where A > 0 and a0 =
a

(1 + A)0.602
.

For regular step gradient descent optimiser configuration, the following properties are

taken into consideration:

1. Gradient magnitude tolerance which is a positive scalar value that controls the opti-

misation process;
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2. Minimum step length which is a positive scalar that controls the accuracy of conver-

gence;

3. Maximum step length which is a positive scalar that controls the initial step length

used in optimisation, whose default value is 0.0625;

4. Maximum number of iterations which is a positive scalar integer that determines the

maximum number of iterations the optimiser performs at any given pyramidal level;

5. Relaxation factor, also referred to as step length reduction factor which is a scalar

value between 0 and 1 that defines the rate at which the optimiser reduces the step sizes

during convergence. It has a default value of 0.5.

Choosing the α < 1 makes the step size to decay less faster. When a is set too small, the

optimisation method suffers from slow convergence and a large a may cause the process

to become unstable. Convergence analysis for iterative systems’ stability and speed is

comprehensively discussed by Berenguer-Vidal et al. (2015).

3.5.1 Regular Step Gradient Descent Optimisation

Optimisation-based registration requires that a similarity or dissimilarity measure is de-

fined, initial parameters that nearly register the images are found and an algorithm is

developed to run the initial registration to completion as discussed by Goshtasby (2012).

To use regular step gradient descent optimiser, the following steps are carried out:

Step 1: Create a regularstepgradientdescent object to register a set of lung CT scan

images;

Step 2: Create suitable optimisation configuration object for registering the two im-

ages;

Step 3: Create a metric configuration object;

Step 4: Modify the optimiser object to acquire more precision;

Step 5: Perform registration;
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(a) Image 01 RSGD regis-
tered

(b) Image 02 RSGD registered (c) Image 03 RSGD registered

Figure 3.10: RSGD Registered Images 01-03.

(a) Image 04 RSGD regis-
tered

(b) Image 05 RSGD registered (c) Image 06 RSGD registered

Figure 3.11: RSGD Registered Images 04-06.

Step 6: View the registered images.

In Figure 3.10 and 3.11, we show images of lung CT scans registered using RSGD opti-

misation algorithm.

3.5.2 One to One Evolutionary Optimisation

One to one evolutionary optimisation algorithm is one of the simplest yet very powerful

Evolutionary Strategies (ES). It is usually denoted by (1+1)-ES as given by (Sbalzarini

2000). The simple idea in evolutionary algorithms is to imitate the natural biological

process to solve the optimisation problem described using a limited number of parame-

ters. Evolutionary algorithm as discussed by Eiben & Smith (2003) has the underlying
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(a) Adjusted Initial Radius Im-
age 02 with a Maximum Itera-
tion 500

(b) Adjusted Initial Radius Im-
age 02 with a Maximum Itera-
tion 800

(c) Adjusted Initial Radius Im-
age 02 with a Maximum Iteration
1000

Figure 3.12: Registration with Adjusted Initial Radius for Image 02 and various Maxi-
mum Iteration.

(a) Adjusted Initial Radius Im-
age 03 with a Maximum Itera-
tion 500

(b) Adjusted Initial Radius Image
03 with a Maximum Iteration 800

(c) Adjusted Initial Radius Im-
age 03 with a Maximum Iteration
1000

Figure 3.13: Registration with Adjusted Initial Radius for Image 03 with various Maxi-
mum Iteration.
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principle that given a population of individuals, the surrounding conditions cause natu-

ral selection which results in fitness in the population (survival for the fittest). A group

of different parameter vectors is created and named a population of individuals. This

produces a population size. The quantity and quality of these parameter vectors de-

scribe a scalar valued fitness function also referred to as cost function. If the aim of the

optimisation is to minimise (maximise) the cost function, then parameter vectors with

lower (greater) fitness value are considered better respectively.

One to one evolutionary optimisation algorithm generates a random sample as shown by

Eikvil et al. (2005) around the current posistion in the parametric space. They perform

better than gradient descent type optimisers when the metrics are noisy. Evolutionary

Optimisation (EO) principles presented by Deb (2011) differ from typical optimisation

algorithms in that their procedures do not use gradient information in their search pro-

cess. This means that they are direct search methodologies which allow them to be

used in a wide variety of optimisation problems. EO use a population approach in an

iteration unlike the typical optimisation algorithm which uses a point approach. The

advantages of a population approach include quick computational search, finds multiple

optimal solutions and has the ability to normalise decision variables as suggested by Deb

(2011). EO uses stochastic operators as opposed to the typical optimisation algorithms

that use deterministic operators. Evolutionary algorithm model discussed by Mwaura

& Keedwell (2010) are based on stochastic algorithms and follow the listed down steps

as a general methodology for solutions to population based EA problems:

Step 1: Create an initial population of solutions P (0) = (P1(0), ..., Pn(0));

Step 2: Compute the fitness f(Pi(t)), for each individual Pi(t), of the current popula-

tion P (t). Pi(t) refers to an individual i in P (t) and t is the number of generations;

Step 3: Select parent organism by applying selection method and/or replication;

Step 4: Apply genetic operations on parent individuals to create offspring P (t+1) that
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(a) Registration by
1+1 ES Image02

(b) Registration by
RSGD Image02

(c) Unregistered Montage Image02

Figure 3.14: Registration using ES for Image 02.

make up the next generation or replace individuals in the current population and

Step 5: Go to step 2; if maximum fitness has been achieved or maximum generation

attained exit algorithm else go to step 3.

3.6 Performance Evaluation

Expert judgement method for performance evaluation of image registration provided bet-

ter visual perception, quicker user recognition and interaction as suggested by Coutre

et al. (2000). Colour enhanced images assist in visualisation. Visualisation brings to-

gether human perception and cognitive ability to provide analysis on image registration.

Expert judgement is applied to evaluate registration performance by scoring the colour

enhanced images based on quality. Acquisition and application of NUMERICS software

shown by Gerganov et al. (2012b) would also prove useful in validation of the registra-

tion algorithm used. During qualitative and quantitative validation of image registration,

Target Registration Error (TRE) is calculated as shown by Yin et al. (2009). Differ-

ent performance evaluation measures are applied depending on expertise of registration.

Such measures include image intensity-based metrics where Root Mean Square (RMS)

as indicated by Yan et al. (2012), Median Absolute Deviation (MAD) and Maximum

Intensity Differences (MID) are calculated according to Yin et al. (2009). The other
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method is where expert review is employed, based on anatomical landmarks.
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CHAPTER 4. ANALYSIS AND DISCUSSION OF RESULTS

4.1 Similarity Metric

Several lung CT scan pairs from EMPIRE 10 data set were registered using mutual

information similarity metric and affine transformation where the metrics were subjected

to two optimisers, RSGD and EO in order to minimise the cost function and achieve the

required convergence. The results are compared both quantitatively and qualitatively to

check on quality measure. Table 3.1 shows the results of calculation of joint entropy and

mutual information for each set of lung CT scans. Mutual information calculated is the

Shannon type which is a powerful measure of similarity between multi-modality images

being registered. It is given by the difference between the sum of Shannon’s marginal

entropies and the joint entropy. Mutual information depends on relative occurrence in

each of the images separately and the combined co-occurrence in both images, which

explains Eq (2.13). Joint entropy results for CT scan pairs 02 and 05 images are very

similar, and their values are 2.0812 and 2.2973 respectively, as shown in Table 3.1.

CT scan pairs 03, 04 and 06 similarly have their joint entropy values in the range of

1.82-1.88. These results give an indication of quality measure for the selected metric.

Results of Tables 3.2-3.7 give values of minimum (hmin) and maximum (hmax) mutual

information, theta (the best angle of rotation), I and J ( coordinates of top left corner

of the matched area of image being mapped on) as outputs during calculation of mutual

information. The work of Han (2010) presented feature-constrained lung CT registration
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using mutual information and stochastic gradient descent optimisation scheme, whose

results on correspondence of annotated point pairs compares well with our results. Fig.

3.10 shows registered lung CT scan images when mutual information was used to evaluate

alignment of the two pairs of images. The alignment has been driven by choosing the

overlap with large marginal entropies. The overlap has equal area of foreground and

background intensities represented by green and magenta for fixed and moving images

respectively. The white portion shows area of common intensities.

4.2 Transformation

From the results of Table 3.8, it was observed by fitting transformation to the control

points, affine transformation produced the best recovered image when compared to both

non-reflective similarity and projective transformations. Affine transformation gave the

closest values to the original image for both the scale and the angle.

4.3 Optimisation

The following two optimisation algorithms were chosen to minimise the objective func-

tion:

1 : Regular Step Gradient Descent

2 : One to One Evolutionary

4.3.1 Regular Step Gradient Descent

Fig. 3.1-3.3 show lung CT scans for all the six data sets registered using regular step

gradient descent optimisation algorithm. The Moving Image 01 in Fig. 3.1 b) appears
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that way because it was very dark. Fig. 3.4 shows Affine Registration for Image 02

with adjusted initial radius. The distorted image is displayed in Fig. 3.4 a), after

performing initial radius adjustment for image 02, the results shown in Fig. 3.4 b) and

the overall results of registration using affine transformation are contained in Fig. 3.4

c). These results show an overlap with slightly wider borderline indicated by the green

and magenta colours. The centre white shows areas of common intensity. Fig. 3.5 a)-c)

show registration for Image 03 using the same process. Registration for Image 04 using

RSGD optimisation and its recovered montage are shown in Fig. 3.6. It was observed

that the registration of the image sets was well aligned with very impressive results. This

tallies well with the results shown in Table 3.8. The fixed and moving images for CT

scan 05 are shown in Fig. 3.7 a) and b). Registration results for Image 05 using RSGD

optimisation and Maximum Iteration (MI) at a value of 500 are shown in Fig. 3.7 c)

and d). Fig 3.8 a)and b) show results of montage Image 01 and the generated histogram

respectively. Image 01 with MI of 300 is shown in Fig. 3.8 c) and its generated histogram

in Fig. 3.8 d). Default registration Image 01 and its generated histogram are shown

in Fig. 3.9 a) and b) respectively. Fig. 3.11 gives results for registered Images 01-06

using regular step gradient descent optimisation algorithm. When certain properties of

the optimiser have been changed, the registered images showed little or no effect. The

initial radius was reduced by a factor of 3.5, kept constant and the maximum iterations

were varied from 100, 500, 800 and 1000. Fig 3.12 shows results for data set of Image

02 but similar results were found for all the other data sets. It was noted that change

in maximum iterations had little or no effect on the resultant registered image. This

was observed from Fig. 3.13 where three images for Image 03 with adjusted radius and

different values for maximum iterations were registered.
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4.3.2 One to One Evolutionary

Fig. 3.14 gives the results of the two optimisation algorithms. In the results for one plus

one evolutionary method, shown in Fig. 3.14 a), the registered image showed overlap of

magenta over green. In the results of regular step gradient descent method, shown in

Fig. 3.14 b), the registered image showed overlap of green over magenta. The results

presented here are for Image 02 but they are the same for the rest of the Images 03-06.

Both optimisation methods have similar results, the difference being the interchange of

overlap areas. The areas of common intensity remain the same for all registered images.
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CHAPTER 5. CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In this research, several image registration techniques were discussed. However, image

registration using affine transformation, mutual information as the similarity measure,

linear interpolation, RSGD and EO as optimisation algorithms were investigated. Image

registration is a wide field of research that develops mathematical algorithms to analyse

information from medical images, satellite images, remote sensing equipment, etc. for

use in various applications, such as clinical and basic scientific research. The algorithms

and mathematical models developed assist in finding solutions to specific engineering

problems. Image registration of lung CT scans was successfully performed. The results

compared well with documented results from EMPIRE 10 Challenge research, especially

where landmark matching were investigated. Affine transformation was applied in this

research but it is possible to include non-rigid transformations like B-Splines or Thin-

Plate Splines transforms. Where such cases occur, Principal Component Analysis (PCA)

will be employed because many more parameters need to be trained. Mutual informa-

tion is a distinctive similarity measure particularly for multi-modal medical imaging

registration techniques. They have been shown to be robust to occlusions and illumina-

tion intensity variations making them good for alignment. The results of this research

conforms to both theoretical principles as well as practical applications. Therefore, the

contribution of this research is its potential to increase the scientific understanding of
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image registration of anatomical body organs and it lays a basis for future research in

performance evaluation of registration techniques.

5.2 Recommendations

1. Further research using Artificial Neural Networks (ANN) for transformation pa-

rameter validation and big data handling would be an important area to deal

with.

2. Detailed experiments with different similarity measures and different optimisers

would shed more light in the knowledge area of image registration not only for

medical images but also other fields like remote sensing, Geographic Informa-

tion System (GIS), satellite communication and mapping, biomedical engineering,

robotics and so forth.

3. There is need to carry out a further research with additional data sets in order

to validate the applicability of the procedures to other types of algorithms and

application areas.
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APPENDIX A. Proof of Theorem

Theorem 1. Gradient Vector Representation

Proof: Consider an arbitrary point X in the n-dimensional space. Let f denote the

value of the objective function at the point X. Consider a neighbouring point X + dX

with

dX =



dx1

dx2

.

.

.

dxn


where dx1, dx2, ...., dxn represent the components of the vector dX. The magnitude of

the vector dX, ds, is given by:

dXTdX = (ds)2 =
n∑
i=1

(dxi)
2 (A.1)

If f + df denotes the value of the objective function at X + dX, the change in f , df ,

associated with dX can be expressed as:

df =
n∑
i=1

δf

δxi
dxi = OfTdX (A.2)
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If u denotes the unit vector along the direction dX and ds the length of dX, we can write:

dX = uds (A.3)

The rate of change of the function with respect to the step length ds is given by (A3) as :

df

ds
=

n∑
i=1

δf

δxi

dxi
ds

= OfT
dX

ds
= OfTu (A.4)

The value of df
ds

will be different for different directions and we are interested in finding

the particular step dX along which the value of df
ds

will be maximum. This will give the

direction of the steepest ascent. In general, if the df
ds

= OfTu > 0 along a vector dX, it

is called a direction of ascent, and if the df
ds
< 0 it is called a direction of descent. By

using the definition of the dot product,(A5) can be written as:

df

ds
= ‖ Of ‖‖ u ‖cosθ (A.5)

where ‖ Of ‖ and ‖ u ‖ denote the lengths of the vectors Of and u, respectively, and

θ indicates the angle between the vectors Of and u. It can be seen that df
ds

will be

maximum when θ = 00 and minimum when θ = 1800. This indicates that the function

value increases at a rate in the direction of the gradient in other words when u is along

Of .

The rate of change of f with respect to the step length s along the direction u is given

(A.5). Since df
ds

is maximum when θ = 00 and u is a unit vector, then equation (A.6)

gives ( df
ds

) |max= ‖ Of ‖ which proves the theorem. Q.E.D
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Theorem 2. Proof of Convergence of gradient descent

Most of the know iterative algorithms for solving unconstrained problems take the form:

pk+1 = pk + akdk (A.6)

where ak is scalar gain factor which is a positive step-size parameter and if ∇k 6= 0, dk

is descent direction;

It satisfies: d
′

k∇k < 0 if ∇k 6= 0 and

dk = 0 if ∇k = 0.

This kind of algorithm is referred to as a generalised gradient method or simply gradient

method. Q.E.D.

Procedure for image registration for Images of Figure 3.1-3.3

Step 1: Find image rotation and scale:

Read both fixed and moving images

fixed01 = imread(′01f ixed.png
′);

moving01 = imread(′01moving.png
′);

Convert to grayscale from RGB

Image1 = rgb2gray(fixed01);

Image2 = rgb2gray(moving01);

Step 2: Resize the image [0:255]

A1 = imresize(Image1, 0.5);

A2 = imresize(Image2, 0.5);

Make image A1 same size as image A2 using the following command in Matlab:
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All = imresize(A1, [NoR NoC]);

figureimshow(All)

title(′Fixed01′)

scale = 0.7; distorted− imresize(All, scale);

theta = 30;

distorted = imrotate(distorted, theta)

figure, imshow(distorted).

Step 3: Select control points

movingpoints = [xm1ym1 xm2ym2 ... xmnymn];

fixedpoints = [xf1yf1 xf2yf2 ... xfnyfn];

cpselect(distorted, original,movingpoints, fixedpoints);

Step 4: Estimate Transformation

tform = fitgeotrans(movingpoints, fixedpoints,′ affine′);

Step 5: Select the optimiser and metric

Optimiser = registration.optimiser.One+OneEvolutionary;

Metric = registration.metric.MeanSquares;

Optimiser.MaximumIterations = 300; 500; 800; 1000;

Optimiser = registration.optimiser.One+OneEvolutionary;

Optimiser.InitialRadius = optimiser.InitialRadius/3.5;

movingRegistered = imregister(Image1, Image2,′ Similarity′, optimiser,metric);

movingRegisteredAdjustedInitialRadius = imregister(Image1, Image2,′ Similarity′, optimiser,metric);

figure, imshow(movingRegisteredAdjustedInitialRadius, Image2).

title(′AdjustedInitialRadius′)

tformSimilarity = imregtform(Image1, Image2,′ affine′, optimiser,metric);

Rfixed = imref2d(size(Image2));

movingRegisteredRigid = imwarp(Image1, tformSimilarity, OutputV iew,Rfixed);

figure, imshowpair(movingRegisteredRigid, Image1).

99



title(′RegisteredAffineImage01′).
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