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nous construisons des estimateurs du paramètre d'indice avec la vitesse n log(n). De plus, dans ce chapitre, nous illustrons les résultats par des simulations numériques.

Résumé

Dans cette thèse, on considère une équation différentielle stochastique gouvernée par un processus de Lévy de saut pur dont l'indice d'activité des sauts α ∈ (0, 2) et on observe des données haute fréquence de ce processus sur un intervalle de temps fixé. Cette thèse est consacrée tout d'abord à l'étude du comportement de la densité du processus en temps petit. Ces résultats permettent ensuite de montrer la propriété LAMN (Local Asymptotic Mixed Normality) pour les paramètres de dérive et d'échelle. Enfin, on étudie des estimateurs de l'indice α du processus.

La première partie traite du comportement asymptotique de la densité en temps petit du processus. Le processus est supposé dépendre d'un paramètre β = (θ, σ) T et on étudie, dans cette partie, la sensibilité de la densité par rapport à ce paramètre. Cela étend les résultats de [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] qui étaient restreints à l'indice α ∈ (1, 2) et ne considéraient que la sensibilité par rapport au paramètre de dérive. En utilisant le calcul de Malliavin, on obtient la représentation de la densité, de sa dérivée et de sa dérivée logarithmique comme une espérance et une espérance conditionnelle. Ces formules de représentation font apparaître des poids de Malliavin dont les expressions sont données explicitement, ce qui permet d'analyser le comportement asymptotique de la densité en temps petit, en utilisant la propriété d'autosimilarité du processus stable.

La deuxième partie de cette thèse concerne la propriété LAMN (Local Asymptotic Mixed Normality) pour les paramètres. Le coefficient de dérive et le coefficient d'échelle dépendent tous les deux de paramètres inconnus et on étend les résultats de [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF]. On identifie l'information de Fisher asymptotique ainsi que les vitesses optimales de convergence. Ces quantités dépendent de l'indice α.

La troisième partie propose des estimateurs pour l'indice d'activité des sauts α ∈ (0, 2) basés sur des méthodes de moments qui généralisent les résultats de Masuda [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF]. On montre la consistence et la normalité asymptotique des estimateurs et on illustre les résultats par des simulations numériques. i

Résumé substantiel

Modèle

Dans cette thèse, nous considérons un processus X = (X t ) t≥0 solution d'une équation différentielle stochastique de la forme (0.0.1)

X t = x 0 + t 0 b(X s , θ)ds + σL t t ∈ [0, 1]
où (L t ) t∈[0,1] est un processus de Lévy de saut pur dont l'indice d'activité des sauts α ∈ (0, 2), En raison du rôle essentiel de la propriété LAN (LAMN) dans les problèmes d'estimation paramétrique et des applications importantes des processus de saut pur, l'un des buts de cette thèse est d'étudier la propriété LAMN pour l'équation différentielle stochastique donnée par (0.0.1).

β = (θ, σ) T ∈ R × (0,
Le calcul de Malliavin est le principal outil pour prouver la propriété LAMN et il explique partiellement les hypothèses spécifiques dans (i), (ii). Premièrement, puisque notre méthode est basée sur le calcul de Malliavin, les hypothèses d'intégrabilité pour les queues du processus de Lévy sont cruciales pour s'assurer que le processus (0.0.1) appartient à l'espace de Malliavin.

Deuxièmement, le comportement stable de la mesure Lévy autour de zéro est également nécessaire pour que le processus mis à l'échelle (n 1/α L t/n ) soit proche du processus α-stable (L α t ). Alors la fonction de troncation τ assure à la fois l'intégrabilité de |L t | p , ∀p ≥ 1, et le comportement α-stable exact autour de zéro (τ = 1). De plus, pour obtenir le développement asymptotique de la log-vraisemblance dans l'étude de la propriété LAMN, il nous faut connaître le comportement asymptotique de la densité du processus et de sa dérivée par rapport aux paramètres. En utilisant le calcul de Malliavin, nous obtenons des formules de représentation pour la densité et sa dérivée.

Ces formules de représentation dépendent de poids de Malliavin dont les expressions sont données explicitement. Ensuite, nous observons que l'introduction de la fonction de troncation τ permet d'assurer que le processus (n 1/α L t/n ) n'a pas de saut de taille supérieure à 2n 1/α et par conséquent il facilite le contrôle du comportement asymptotique des poids de Malliavin afin d'établir la convergence en temps petit de la densité. Plus précisément, les hypothèses (0.0.2) et (0.0.3) sont des outils techniques pour prouver les convergences de la densité et de sa dérivée, respectivement.

CONTEXTE

Contexte

Il existe une littérature importante concernant la propriété LAN(LAMN) pour les processus de saut pur basée sur des observations à haute fréquence, par exemple, les travaux de Aït-Sahalia et Jacod [START_REF] Aït | Volatility estimators for discretely sampled Lévy processes[END_REF] [3] , Kawai et Masuda [START_REF] Kawai | Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling[END_REF], Masuda [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF] [54], Ivanenko, Kulik et Masuda [START_REF] Ivanenko | Uniform LAN property of locally stable Lévy process observed at high frequency[END_REF], Clément et Gloter [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF].

En particulier, Masuda [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF] propose un estimateur des paramètres du processus de Lévy stable

X t = θt + σL α t (0.0.4)
basé sur des observations en temps discret (X i/n ) i=1,...,n . Il prouve la propriété LAN avec la vitesse

u n = diag 1 n -1/2+1/α , 1 n , 1
n log(n) pour l'estimation de β = (θ, σ, α) avec une matrice d'information de Fisher singulière. Par conséquent, les théorèmes de convolution et de minimax ne peuvent pas être appliqués et une borne inférieure pour la variance asymptotique des estimateurs ne peut pas être déduite dans cette expérience statistique. Concernant les estimateurs du paramètre α du processus, l'auteur a construit deux estimateurs αlog,n (basé sur les moments logarithmiques) et αr,n (basé sur les moments) pour α avec la vitesse de convergence n .

Récemment, pour résoudre le problème avec la matrice d'information de Fisher singulière et connaître la vitesse optimale d'estimation pour les paramètres dans (0.0.4), Brouste et Masuda [START_REF] Brouste | Efficient estimation of stable lévy process with symmetric jumps[END_REF] établissent la propriété LAN avec une vitesse non-diagonale, par exemple

u n = 1 n        n 1-1/α 0 0 0 1 -α -2 σ log(n) 0 0 1       
et une matrice d'information de Fisher non-dégénérée. Les théorèmes de convolution et du minimax peuvent être appliqués dans ce cas. La vitesse optimale de convergence de l'estimateur pour l'indice α lorsque le paramètre d'échelle σ est connu est n log(n) et est n lorsque le paramètre d'échelle σ est inconnu.

Dans Aït-Sahalia et Jacod [START_REF] Aït | Fisher's information for discretely sampled Lévy processes[END_REF] et [START_REF] Aït | Volatility estimators for discretely sampled Lévy processes[END_REF], les auteurs établissent le comportement de l'information de Fisher d'un processus X décomposé comme la somme de deux processus de Lévy indépendants X t = σL α t + θU t v où L est un processus stable symétrique standard avec l'indice α ∈ (0, 2], (U t ) est un autre processus de Lévy, indépendant de (L α t ) et dominé par (L α t ). Alors ils déduisent qu'avec le paramètre d'échelle σ connu et la vraie valeur α < 2, la vitesse de convergence pour l'estimation de α est n log(n). La propriété LAN est également prouvée avec la vitesse n -1 2 pour le paramètre σ.

Plus récemment, Ivanenko, Kulik et Masuda [START_REF] Ivanenko | Uniform LAN property of locally stable Lévy process observed at high frequency[END_REF] considèrent le modèle

X t = θt + σL α t + Z t
où L est un processus non-symétrique localement α-stable et Z est un processus indépendant et moins actif. Lorsque X est observé à haute fréquence, ils prouvent la propriété LAN pour le paramètre β = (θ, σ) ∈ R 2 avec la vitesse

u n = 1 n    n 1-1/α c n n 0 1    où c n = 1 n n -1/α <|u|<1 uµ(du)
est identiquement nul si la mesure Lévy µ est symétrique. Dans les travaux susmentionés, à partir de la linéarité des modèles, les accroissements (X i n -X i-1 n

) i≤i≤n sont indépendants et ont la même loi que X 1/n . La densité de transition du processus en temps discret (X i n ) 1≤i≤n est presque explicite donc on peut étudier la théorie statistique en utilisant l'expression explicite de la densité de X t .

En revenant au modèle (0.0.1), la difficulté dans l'étude statistique du modèle (0.0.1) est que la densité de transition de la chaîne de Markov (X i n ) 1≤i≤n est inconnue et le lien entre la densité de L t et la densité de X t n'est pas clair. Dans cette configuration, nous pouvons citer les articles récents de Clément et Gloter [START_REF] Clément | Estimating functions for SDE driven by stable Lévy processes[END_REF], Masuda [START_REF] Masuda | Non-gaussian quasi-likelihood estimation of sde driven by locally stable Lévy process[END_REF] où certains estimateurs des paramètres de dérive et d'échelle sont proposés pour l'équation générale

X t = x 0 + t 0 b(X s , θ)ds + t 0 c(X s-, σ)dL s
où L est un processus de saut pur localement stable. Cependant, dans ce cas, l'efficacité asymptotique des estimateurs n'est pas encore établie. Le seul résultat sur la propriété LAMN, à notre connaissance, est donné dans Clément et Gloter [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] où la propriété LAMN est prouvée pour l'estimation du paramètre de dérive θ pour la solution de (0.0.1) (avec σ = 1 et α ∈ [START_REF] Aït | Handbook of Financial Econometrics: Applications[END_REF][START_REF] Aït | Volatility estimators for discretely sampled Lévy processes[END_REF]).

Dans [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF], ils montrent que la propriété LAMN est satisfaite avec la vitesse r n = n 1/2-1/α et vi CONTEXTE l'information

I θ = 1 0 ∂ θ b(X β s , θ) 2 ds R ϕ α (u) 2
ϕ α (u) du, où ϕ α est la densité de la distribution α-stable de fonction caractéristique u → e -C(α)|u| α .

Le premier but de cette thèse est d'étendre les résultats de Clément et de Gloter [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] où l'indice α ∈ (1, 2) et le paramètre n'apparaît que dans le coefficient de dérive. C'est-à-dire nous étendons dans cette thèse ces résultats pour le cas α ∈ (0, 2) et prouvons que la propriété LAMN est satisfaite pour les deux paramètres (θ, σ) lorsque le paramètre d'indice α est connu.

La preuve est principalement basée sur le théorème 1 de [START_REF] Picard | Density in small time at accessible points for jump processes[END_REF] et ensuite utilise le comportement asymptotique de la densité de (X t ) et de sa dérivée par rapport aux paramètres. Pour cette raison, nous discutons, au chapitre 2, l'asymptotique en temps petit pour la densité de (X t ).

Un autre but de cette thèse est d'estimer le paramètre d'indice de la solution de (0.0.1), en supposant que le paramètre θ est connu.

Dans la dernière partie de cette thèse, nous construisons deux estimateurs avec la vitesse de convergence n pour l'indice de Blumenthal-Getoor α ∈ (0, 2) lorsque le paramètre d'échelle σ est inconnu, basés sur les méthodes de moments introduites dans Masuda [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF]. Nous prouvons la consistence et la normalité asymptotique des estimateurs et les résultats d'estimation sont illustrés par des simulations numériques. Si le paramètre d'échelle est connu, nous construisons des estimateurs du paramètre d'indice avec la vitesse n log(n), également basés sur les moments et moments logarithmiques.

En plus des références ci-dessus, nous listons ici d'autres travaux concernant l'estimation de l'indice d'activité des sauts à partir d'observations à haute fréquence. Dans Aït-Sahalia et Jacod [4] et Jing, Kong et Mykland [START_REF] Jing | On the jump activity index for semimartingales[END_REF], les auteurs considèrent le processus

X t = x 0 + t 0 b s ds + t 0 σ s W s + t 0 |x|≤1
x(µυ)(ds, dx) + Todorov et Tauchen [START_REF] Todorov | Limit theorems for power variations of pure-jump processes with application to activity estimation[END_REF] proposent une estimation de l'indice d'activité des sauts dans un contexte de semi-martingales de saut pur pour laquelle la vitesse de convergence est n pour 2 ≤ α < 2 (le cas α < 2 nécessite une hypothèse de dérive nulle).

vii Récemment, Todorov [START_REF] Todorov | Jump activity estimation for pure-jump semimartingales via self-normalized statistics[END_REF] 

Résumé des principaux résultats

Cette thèse est divisée en quatre chapitres.

Chapitre 2: Nous nous concentrons sur le comportement asymptotique, en temps petit, de la densité de (X est proche d'un processus de Lévy stable.

On note ϕ α la densité de L α 1 où (L α t ) est un processus α-stable de mesure de Lévy υ(d z) = 1 |z| α+1 1 z =0 dz. Nous avons les résultats suivants pour le comportement asymptotique de la densité et de sa dérivée:

Theorem 0.0.1 (Clément, Gloter and Nguyen [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]). Soit (ς n,θ,x 0 t

) la solution de l'équation différentielle ordinaire (0.0.5) et soit (β n ) n≥1 = ((θ n , σ n ) T ) n≥1 une suite telle que β n n→∞ ----→ β. Pour tout

(x 0 , u) ∈ R 2 , 1. σ n n 1/α p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1 ) n→∞ ----→ ϕ α (u), 2 
. ϕ α (u) du

σ 2 n n 2 α -1 ∂ θ p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1 ) n→∞ ----→ -∂ θ b(x 0 , θ) × ϕ α (u),
I 22 = 1 σ 2 R
(ϕα(u)+uϕ α (u)) 2 ϕ α (u)

du.

La preuve de la propriété LAMN est basée sur le théorème 1 dans [START_REF] Jeganathan | Some asymptotic properties of risk functions when the limit of the experiment is mixed normal[END_REF]. Cette partie contient également un résultat indépendant et intéressant qui établit la continuité par rapport au conditionnement dans une espérance conditionnelle.

Le chapitre 3 est publié dans l'article suivant: * Emmanuelle Clément, Arnaud Gloter, and Huong Nguyen. LAMN property for the drift and volatility parameters of a SDE driven by a stable Lévy process. ESAIM: P/S, 2018.

Chapitre 4: Le but de ce chapitre est d'estimer le paramètre α d'une équation différentielle stochastique gouvernée par un processus α-stable tronqué avec l'indice α ∈ (0, 2) donnée par l'équation (0.0.1) et avec le paramètre θ connu à partir d'observations à haute fréquence sur un intervalle de temps donné. Masuda [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF] a construit des estimateurs basés sur des méthodes de moments pour l'indice α avec la vitesse de convergence n , quand le paramètre d'échelle σ est inconnu. Basé sur les idées du Masuda [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF], dans ce chapitre, nous adaptons la procédure de l'estimation à l'équation (0.0.1) et fournissons les distributions asymptotiques.

Les principaux outils pour établir les résultats statistiques sont la loi des grands nombres et le théorème de la limite centrale pour les sommes

1 n n-1 j=1 f n 1/α σ X α t j+1 -ς 1/n (X α t j )
avec f fonction appropriée et ς 1/n solution de 

INTRODUCTION

The goal of this chapter is to provide a brief review of definitions and properties on asymptotic statistical inference and on Lévy processes, that are used in the sequel. We give the motivations and overviews of the main results achieved in this thesis as well. None of the statements and theorems, that we recall, will be proved here since most of them are well-known from the asymptotic statistics and probability theories.

Asymptotic statistics and Local Asymptotic (Mixed) Normality property

The concept of statistical experiment, also called a statistical model, is introduced by Blackwell

[10] as a triplet E = (Ω, F , (P θ : θ ∈ Θ))

where (Ω, F ) is a measurable space, Θ is a set called the parameter space and (P θ : θ ∈ Θ) is a family of probability measures on (Ω, F ) depending on an unknown parameter θ ∈ Θ ⊂ R d , d ≥ 1.

It is used for the mathematical description of observed data. If the size or dimension of the data is n, with n increasing, then a sequence of statistical experiments is defined as

E n = (Ω n , F n , P θ n : θ ∈ Θ ⊂ R d ), n ≥ 1.
In the second half of the 20th century, Lucien Le Cam introduced the so-called Local Asymptotic Normality (LAN) property of a sequence of statistical models.

Definition 1.1.1 (A.W. van der Vaart [START_REF] Van Der | Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF] ). The sequence of statistical experiments (Ω n , F n , P θ n :

θ ∈ Θ ⊂ R d ), n ≥ 1, is locally asymptotically normal (LAN) at θ if there exist d × d matrices u n (||u n || tends to zero as n goes to infinity) and a non random information matrix I(θ) and random vectors (∆ n,θ ) such that (∆ n,θ ) converges in law under P θ n to N (0, I θ ) and for every h ∈ R d log dP

θ+u n h n dP θ n = h T ∆ n,θ - 1 2 h T I(θ)h + o P θ n (1). 
In other words, an experiment is called locally asymptotically normal when its likelihood converges to the likelihood of the Gaussian shift experiment.

The LAN property is an important concept in asymptotically optimal statistical analysis. This property allows the sequence of statistical models to be asymptotically approximated by a normal location model, after a rescalling of the parameter.

We give now a number of simplest examples, where the LAN property holds true.

Example 1 ( [START_REF] Roussas | Contiguity of probability measures: some applications in statistics[END_REF]). Let P θ n be the law of (X 1 , X 2 , ..., X n ) where (X n ) n≥1 is a sequence of independent and identically distributed (i.i.d.) random variables from N (µ, σ 2 ). Here θ = (µ, σ) T ∈ R × (0, +∞)

is an unknown parameter to be estimated. Then the LAN property holds at θ with the rate

u n =    n -1/2 0 0 n -1/2
  , and the information matrix

I(θ) =    1 σ 2 0 0 1 2σ 4   .
Example 2 ( [START_REF] Aït | Handbook of Financial Econometrics: Applications[END_REF]). We consider the Ornstein-Uhlenbeck process given by d X t = -θX t dt + dW t , θ > 0, X 0 = x 0 where θ is an unknown parameter and satisfies θ > 0, (W t ) t≥0 is a standard Wiener process.

We consider here, the mathematically simplest case where the whole path is observed over an interval [0, T]. If θ > 0 then the process is ergodic and, in this case, the LAN property holds true with rate T -1/2 at each point θ > 0 and with asymptotic Fisher information I(θ) = 1/2θ.

In general case (see Kutoyants [START_REF] Kutoyants | Statistical Inference for Ergodic Diffusion Processes[END_REF]), we consider the diffusion process

d X t = b(θ, X t )dt + σ(X t )dW t , X 0 = x 0 , 0 ≤ t ≤ T,
where b(., .) is some known function, x 0 is a starting point and θ ∈ Θ ⊂ R d is a finite-dimensional parameter. Under appropriate assumptions on the coefficients, we have the LAN property with rate 1/ T and with information matrix 2 .

I(θ) = E θ ∂ θ b(θ, ϑ)∂ θ b(θ, ϑ) T σ(ϑ)

ASYMPTOTIC STATISTICS AND LOCAL ASYMPTOTIC (MIXED) NORMALITY PROPERTY

Here ϑ is the random variable with stationary density function f (θ, x) given by

f (θ, x) = G(θ) -1 σ(x) -2 exp 2 x 0 b(θ, v) σ(v) 2 dv
where G(θ) = +∞ -∞ σ( y) -2 exp 2 y 0 a(θ,v) σ 2 (v) dv d y.

However, it was observed that there exists a number of processes, where LAN condition is not satisfied. Coming back to Example 2, if θ < 0 then the process is non-ergodic, the LAN property does not hold true at θ (see [START_REF] Aït | Handbook of Financial Econometrics: Applications[END_REF]). The explosive auto-regressive process of first order and the Super-critical Galton-Watson branching process with geometric off-spring distribution are also situations where the Fisher information matrix must be replaced by a random matrix (see Le Cam and Yang [START_REF] Le | Asymptotics in statistics: some basic concepts[END_REF]). As a consequence, the concept of Local Asymptotic Mixed Normality (LAMN)

property has been introduced by Jeganathan [ [START_REF] Jeganathan | On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal[END_REF], [START_REF] Jeganathan | Some asymptotic properties of risk functions when the limit of the experiment is mixed normal[END_REF]] to extend to random Fisher information the LAN property.

Definition 1.1.2 (Jeganathan [39]). For each n ≥ 1, let (Ω n , F n , P θ n : θ ∈ Θ ⊂ R d ) be a statistical where (N n , I n (θ)) converges in law (under P θ n ) to (N, I(θ)), where N is a standard d-variate normal distribution independent of I(θ).

We can remark that when the information matrix I(θ) is deterministic, the LAN property holds. The matrix u n is often called the rate matrix.

We present sufficient conditions stated by Jeganathan [START_REF] Jeganathan | On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal[END_REF] to establish the LAMN property that are used in the sequel.

Let (X i ) i≥1 be a sequence of real random variables defined on a probability space (Ω, F , P θ : θ ∈ Θ ⊂ R d ) and define F n = σ(X 1 , X 2 , ..., X n ) the σ-field induced by the random vector (X 1 , X 2 , ..., X n ).

We assume that, for j ≥ 2, there exists a σ-finite measure µ j such that a version of the regular conditional probability measure of the distribution of X j given (X 1 , X 2 , ..., X j-1 ), is absolutely continuous with respect to the measure µ j with a corresponding density p θ j (X j |X 1 , ..., X j-1 ) := p θ j , j ≥ 2 and p θ 1 (X 1 ) = p θ 1 .

We now introduce the following assumptions Let us remark that as soon as θ → p θ is a smooth function then we can set χ j in A1 such that χ j (θ) = (χ i j (θ)) i=1,...,d with χ

i j (θ) =          ∂ θ i p θ j p θ j if p θ j = 0 0 otherwise
and we get ξ j (θ) = (ξ i j (θ)) i=1,...,d with

ξ i j (θ) =          ∂ θ i p θ j p θ j if p θ j = 0, 0 otherwise.
If X is a homogeneous Markov process then the assumption A2 is natural. Indeed, for every j ≥ 1, if p θ j = 0 we have

E ξ j (θ)|F j-1 = E ∂ θ p θ j p θ j X j |X j-1 |F j-1 = E ∂ θ p θ j p θ j X j |X j-1 |X j-1 .

ASYMPTOTIC STATISTICS AND LOCAL ASYMPTOTIC (MIXED) NORMALITY PROPERTY

But we can write

E ∂ θ p θ j p θ j X j |X j-1 |X j-1 = x = E ∂ θ p θ 1 p θ 1 (X 1 |x) = ∂ θ p θ 1 (y|x)d y.
Moreover, suppose that we can exchange the order of differentiation and integration then we obtain

∂ θ p θ 1 (y|x)d y = ∂ θ p θ 1 (y|x)d y = 0.
Theorem 1.1.1 (Jeganathan [39]). Assume that the assumptions A1-A5 are satisfied. Then the sequence of families

(P θ n : θ ∈ Θ ⊂ R d ), n ≥ 1, d ≥ 1 satisfies the LAMN property at θ, at rate u n with I n (θ) = u n n j=1 E ξ j (θ)ξ T j (θ)|F j-1 u T n and N n = I n (θ) 1/2 u n n j=1 ξ j (θ).
Moreover, under P θ n , (N n , I n (θ)) converges in law to a limit (N, I(θ)), with N = I(θ) 1/2 W where W is independent of I(θ) and distributed according to N (0, I d ) where I d is the d × d identity matrix.

The LAMN (LAN) property has been playing an important role in parametric estimation problems because if it holds true and if the information matrix is non degenerate, the Minimax Hájek-Le Cam Theorem and the Convolution Theorem can be applied and then a lower bound for the asymptotic variance of estimators can be obtained via minimax theorems. Hence, once LAMN (LAN) is proved, the asymptotic optimality of estimation for the parameters is known.

Remark that the nondegeneracy of the rate u n and the information matrix I(θ) is essential in the minimax theorem due to Hájek [START_REF] Hájek | Local asymptotic minimax and admissibility in estimation[END_REF] and Le Cam [49].

We are now in a position to state the convolution theorem. The general references on the convolution theorem are Jeganathan [START_REF] Jeganathan | On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal[END_REF] for the LAMN case and Hájek [START_REF] Hájek | Local asymptotic minimax and admissibility in estimation[END_REF], Ibragimov and Has'minskii [START_REF] Ibragimov | Statistical Estimation: Asymptotic Theory[END_REF] for the LAN case.

We begin with the definitions of a regular parameter estimator and a stochastic kernel. 

(Markov) kernel from (Ω, F ) to (Ω * , F * ) is a function K = K(ω, A * ) : Ω × F * → [0, 1] such that (1) K(., A * ) is F -measurable function for each A * ∈ F * (2) K(ω, .
) is a probability measure on (Ω * , F * ) for each ω ∈ Ω.

In the LAMN (LAN) case, the following theorem is known as the convolution theorem. (a) (Hájek [START_REF] Hájek | A characterization of limiting distributions for regular estimators[END_REF]) When LAN holds at θ, (T n ) n≥1 is a sequence of regular estimators of θ then any limit distribution of H arising in Definition 1.1.3(a) can be written as a convolution representation

L (H) = N (0, I(θ) -1 ) * υ(θ)
for some distribution υ(θ) on R d .

(b) (Jeganathan [START_REF] Jeganathan | On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal[END_REF]) When LAMN holds at θ, (T n ) n≥1 is a sequence of estimators regular at θ, i.e. for every h ∈ R d ,

I n (θ), u -1 n (T n -θ -u n h) ⇒ (I(θ), T(θ)) under P θ+u n h n 1.1.
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for some random d-vector T(θ) independent of h. Let L I(θ) be a regular conditional probability measure of T(θ) given I(θ). Then there exists a stochastic kernel K I(θ) such that L I(θ) is a convolution between the Gaussian law N (0, I(θ) -1 ) and K I(θ) , that is,

L I(θ) = K I(θ) * N (0, I(θ) -1 ) a.s.
In other words, the convolution theorem states that any regular estimator in a parametric model has a conditional asymptotic distribution equal to a sum of two independent random variables, one of which is normal with asymptotic variance equal to the inverse of Fisher information, and the other having arbitrary distribution. If we have a sequence of estimators (T n ) n≥1

satisfying the condition in the convolution theorem, then we have the following proposition.

Proposition 1.1.1 (Jeganathan [39]).

Let (P θ n : θ ∈ Θ), n ≥ 1 be LAMN at θ ∈ Θ. Let (T n ) n≥1 be a
sequence of estimator satisfying the condition in Theorem 1.1.2. Let Z be a random vector with

standard normal distribution on R d . Let f : R d → R be a loss function of the form f (0) = 0, f (x) = f (|x|) and f (|x|) ≤ f (|y|) if |x| ≤ |y| then lim inf n→∞ E θ f (u -1 n (T n -θ)) ≥ E f I(θ) 1/2 Z .
We state a local asymptotic minimax bound that Hájek [START_REF] Hájek | Local asymptotic minimax and admissibility in estimation[END_REF] introduced for estimation in LAMN (LAN) parametric models.

Theorem 1.1.3. (Minimax Theorem) Suppose that the model

(P θ n ) is LAMN or LAN at θ ∈ Θ ⊂ R d .
We consider an arbitrary sequence of estimators (T n ) n for the unknown parameter and an arbitrary loss function f : R d → [0, ∞) which is continuous, symmetric and subconvex. Let Z be a random vector with standard normal distribution on R d , independent of I(θ). Then we have

lim r→∞ lim inf n→∞ inf T n sup |h|≤r E θ+u n h f u -1 n (T n -(θ + u n h)) ≥ E f (I(θ)) -1/2 Z)
the infimum being taken over all estimators of θ.

In particular, if we choose the quadratic function f (x) = x 2 then we obtain from the above theorem that an asymptotic lower bound for the covariance matrix of any sequence of unbiased estimators is given by I(θ) -1 . A sequence of estimators that attains this asymptotic bound is called asymptotically efficient. 

P θ such that u -1 n (T n -θ) ⇒ H.
Additionally, the sequence is asymptotically efficient if H has the distribution of I(θ) -1/2 Z, with Z standard normally distributed and independent of I(θ).

In brief, when the Local Asymptotic Mixed Normality (Local Asymptotic Normality) holds at θ with the rate u n and the information matrix I(θ) > 0, the convolution and minimax theorems can be applied. Moreover, the asymptotically efficient estimators of the parameter θ are defined in terms of the optimal asymptotic variance I(θ) -1 and the optimal rate of convergence u -1 n . We can obtain the lower bound for the asymptotic variance of estimators given by I(θ) -1 via minimax theorem.

Lévy processes

In this section, we recall the useful definitions and properties of real Lévy processes. For additional details on Lévy processes, we refer to Sato [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF] or Applebaum [START_REF] Applebaum | Lévy processes and stochastic calculus[END_REF].

Definition 1.2.1. (Lévy Process) A càdlàg stochastic process L ≡ (L t ) t≥0 defined on a filtered probability space (Ω, F , (F t ) t≥0 , P) is said to be a Lévy process if it possesses the following properties:

(1) L 0 = 0 a.s.

(2) L has independent increments. That is, for any choice of n ≥ 1 and 0 ≤ t 0 < t 1 < ... < t n , L t j -L t j-1 , 1 ≤ j ≤ n are independent.

(3) L has stationary increments. That is, for all 0 ≤ s < t < ∞, the distribution of L t -L s is equal to L t-s . 

(d n ) with each c n > 0 such that the distribution of X 1 + X 2 + ... + X n is equal to c n X + d n ,
where X 1 , X 2 , ..., X n are independent copies of X . In particular, X is said to be strictly stable if each d n = 0 and X is said to be symmetric stable if X and -X have the same distribution.

It can be shown (see Feller [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF], p.166) that the only possible choice of c n is of the form σn 1/α where σ > 0 and 0 < α ≤ 2. The parameter α plays a key role in the investigation of stable random variables and is called the index of stability or the exponent of the process. A process L is said to be a strictly stable process, if it is a Lévy process which also satisfies the self-similarity property with b = a 1/α . It is known that α ∈ (0, 2], and the case α = 2 corresponds to Brownian motion. A symmetric stable process is easily seen to be also strictly stable.

When L is a stable process for α ∈ (0, 2) then, for any t, we have

E(|L t | p ) < ∞ for any 0 < p < α E(|L t | p ) = ∞ for any p ≥ α.
In particular, when α ≤ 1 the expected value of L t is not defined. For more properties of α-stable process, we refer to Sato [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF].

The following theorem is of the most fundamental importance in the theory of Lévy process which allows to show that the law of a Lévy process is uniquely determined by its drift, volatility and Lévy measure.

Theorem 1.2.1. (Lévy-Khintchine formula for Lévy processes) Let L be a one-dimensional Lévy process. Then there exists (unique) b ∈ R, σ ≥ 0 and υ a measure defined on R \ {0} with

R\{0} min(1, x 2 )υ(dx) < ∞ such that ∀u ∈ R, ∀t ≥ 0, E(e i(u,L t ) ) = e tφ(u) = exp t ibu - 1 2 σ 2 u 2 + R\{0} e iuz -1 -iuz1 |z|≤1 υ(dz) .
The triplet (b, σ 2 , υ) is called the Lévy or characteristic triplet and φ(u) is called the Lévy or characteristic exponent. Moreover, b is called the drift term, σ the diffusion coefficient and υ the Lévy measure.

Note that a Borel measure υ defined on R \ {0} is called a Lévy measure if

R\{0} min(1, x 2 )υ(dx) < ∞
and it characterizes the size and frequency of the jumps. If this measure is infinite, then the process has an infinite number of jumps of every small sizes in any small interval.

In particular, if L is a stable real-valued random variable for α ∈ (0, 2], then its characteristics must take one of the following forms:

(1) when α = 2, the Lévy measure υ = 0, so L corresponds to Brownian motion with mean b and variance σ 2 .

(2) when α = 2, the Gaussian component σ 2 = 0 and the Lévy measure υ is absolutely continuous with density given by

c + x -(α+1) 1 x>0 + c -|x| -(α+1) 1 x<0 , x ∈ R where c + ≥ 0, c -≥ 0, c + + c -> 0. 1.2. LÉVY PROCESSES
Moreover, in the case α ∈ (0, 2), there exist c > 0, -1 ≤ β ≤ 1 and b ∈ R such that for u ∈ R, L has the characteristic exponent of the form:

φ(u) =        iub -c|u| α (1 -iβ tan πα 2 sgn(u)) α ∈ (0, 2) \ {1} iub -c|u| 1 + iβ 2 π sgn(u) log(|u|) α = 1.
Note that if a stable random variable is symmetric then its characteristic exponent is given by

φ(u) = -C α |u| α for all 0 < α ≤ 2,
where C α > 0.

A proof can be found in Sato [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF] and we can also extend the result for the random variables taking values in R d , see more details in Sato [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF] p.83 and Applebaum [START_REF] Applebaum | Lévy processes and stochastic calculus[END_REF] p.35. In the following, we consider the jump activity index or the index parameter of a Lévy process, a non-random parameter which is independent of time and determines the strength of the jump process at high frequencies.

Definition 1.2.5. (Jump Activity Index)

α := inf r ∈ [0, 2]; |x|≤1 |x| r υ(dx) < +∞
where υ(dx) is the Lévy measure.

The index parameter of a Lévy process is thus the Blumenthal-Getoor index which was first introduced by Blumenthal and Getoor [START_REF] Blumenthal | Sample functions of stochastic processes with stationary independent increments[END_REF]. Moreover, for a stable process, it is the so-called stability index of the process. The interest in identifying the jump activity index stays in the fact that the index classifies the Lévy process according to the "degree of activity " of jumps: when α increases from 0 to 2, the small jumps tend to be more and more frequent.

Every Lévy process can be represented as the sum of three independent processes: a linear drift, a Brownian motion and a pure jump process. This result is stated as follows: 

(B t ) on R + × R \ {0} with intensity dt × υ, we can represent Z as Z t = Z (0) t + Z (1) t , with Z (0) t = t 0 |z|≤1 z {N(ds, dz) -υ(d z)ds} and Z (1) t = t 0 |z|>1 zN(ds, dz) = s≤t (L s -L s-) 1 {|L s -L s-|>1} .
Remark that since Z is a semi-martingale and a standard Brownian motion is a martingale then L is a semi-martingale.

From the above theorems, we realize that a pure-jump Lévy process is a Lévy process with the characteristic triplet (0, 0, υ). In recent years, pure jump models have been widely used, especially in view of applications to finance (see Schoutens [START_REF] Schoutens | Lévy processes in finance: Pricing financial derivatives[END_REF], Cont and Tankov [START_REF] Tankov | Financial Modelling with Jump Processes[END_REF]), network traffic (see Mikosch et al [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF]) and climate dynamics (see [START_REF] Ditlevsen | Anomalous jumping in a double-well potential[END_REF]). The reason for this attention is that pure-jump processes provide a sufficiently rich class of models with jumps to describe more realistic pictures of empirically observed situations in practice, for example, Cont and Tankov [START_REF] Tankov | Financial Modelling with Jump Processes[END_REF], and Carr et al. [START_REF] Carr | The fine structure of asset returns: An empirical investigation[END_REF]. On the other hand, with the progress made in understanding jump processes, many computations can be handled analytically (see Sato [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF], Applebaum [START_REF] Applebaum | Lévy processes and stochastic calculus[END_REF]).

Motivation and Overview

Model

Throughout this thesis, we consider a process X = (X t ) t≥0 solving a stochastic differential equation of the form

(1.3.1) X t = x 0 + t 0 b(X s , θ)ds + σL t t ∈ [0, 1]
where (L t ) t∈[0,1] is a truncated pure jump α-stable Lévy process with exponent α ∈ (0, 2), β = (θ, σ) T ∈ R × (0, ∞) is an unknown parameter and b is a real valued function. More precisely, we assume that the following assumptions are fulfilled for the truncated α-stable process (L t ) t∈[0,1] . 

L t = t 0 [-1,1] z{ μ(ds, dz) -ῡ(ds, dz)} + t 0 [-1,1] c z μ(ds, dz),
where μ is a Poisson random measure, with compensator ῡ(dt, dz) = dt × F(z)dz where F(z)

is given on R by F(z) = 1 |z| α+1 1 |z| =0 τ(z), α ∈ (0, 2).
We assume that τ is a non negative smooth

function equal to 1 on [-1,1], vanishing on [-2, 2] c such that 0 ≤ τ ≤ 1. (ii) We assume that ∀p ≥ 1, R τ (u) τ(u) p τ(u)du < ∞, (1.3.2) R τ (u) τ(u) p τ(u)du < ∞. (1.3.3)
We observe this process at discrete times, equally spaced, over the fixed finite interval [0,1], that means that X is observed at n + 1 discrete, equidistant time-points

t n i = i n := i∆ n , i = 0, 1, ...n, in the interval [0,1]
. We are concerned with asymptotic properties as the time lag ∆ n = 1 n , goes to 0.

In practice, this means that we are in the context of high-frequency data. It is known that, in the diffusion case, we can not estimate the drift parameter in finite time horizon. On the contrary, for a pure jump process, we can estimate the drift parameter in both cases: a fixed observation period or a long time asymptotic. Without loss of generality, we can suppose that the observation

interval is [0, 1].
Because of the essential role of the LAN (LAMN) property in parametric estimation problems and the important applications of pure jump Lévy processes, one of the purposes of this thesis is to study the LAMN property for the stochastic differential equation given by (1.3.1).

Malliavin calculus is the principal tool to prove the LAMN property and it explains partially the specific assumptions in (i), (ii). First, since our method is based on Malliavin calculus, the integrability assumptions for the tails of the Lévy process are crucial to ensure that the process (1.3.1) belongs to the Malliavin space. Secondly, the stable behavior of the Lévy measure around zero is also required to make the rescaled process (n 1/α L t/n ) close to the α-stable process (L α t ).

Then the truncation function τ ensures both the integrability of |L t | p , ∀p ≥ 1, and the exact α-stable behavior around zero (τ = 1). Moreover, in order to obtain the asymptotic expansion of the log-likelihood ratio in the study of LAMN property, we need to know about the asymptotic CHAPTER 1. INTRODUCTION behavior of the density of the process and its derivative with respect to the parameters. Using

Malliavin calculus, we get the representation formulas for the density and its derivative. These representation formulas involve some Malliavin weights whose expressions are given explicitly.

Then we observe that the introduction of the truncation function τ permits to ensure that the process (n 1/α L t/n ) has no jump of size larger than 2n 1/α and consequently it makes easier the control of the asymptotic behavior of the Malliavin weights in order to establish the convergence in small time of the density. More precisely, the assumptions (1.3.2) and (1.3.3) are technical tools to prove the convergences of the density and its derivative, respectively.

Background

There is a large literature concerning the LAN (LAMN) property for pure jump Lévy processes based on high frequency observations, for example, the works of Aït-Sahalia and Jacod [START_REF] Aït | Volatility estimators for discretely sampled Lévy processes[END_REF] [3],

Kawai and Masuda [START_REF] Kawai | Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling[END_REF], Masuda [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF][54], Ivanenko, Kulik and Masuda [START_REF] Ivanenko | Uniform LAN property of locally stable Lévy process observed at high frequency[END_REF], Clément and Gloter [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF].

In particular, Masuda [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF] proposes a joint estimator for a stable Lévy process

X t = θt + σL α t (1.3.4)
based on discrete time observations (X i/n ) i=1,...,n . He proves the Local Asymptotic Normality property with the rate

u n = diag 1 n -1/2+1/α , 1 n , 1 n log(n)
for the estimation of β = (θ, σ, α) with a singular Fisher information matrix. Consequently, the conventional convolution and minimax theorems can not be applied and then a lower bound for the asymptotic variance of estimators can not be deduced in this statistical experiment. Concerning the estimators of the index parameter α of the process, the author has constructed two estimators αlog,n based on the logarithmic moments and αr,n based on the lower-order fractional moments for α with the convergence rate n .

Recently, to fix the problem with singular Fisher information matrix and know the optimal rate of estimators for the parameters in (1.3.4), Brouste and Masuda [START_REF] Brouste | Efficient estimation of stable lévy process with symmetric jumps[END_REF] develop the Local 

u n = 1 n        n 1-1/α 0 0 0 1 -α -2 σ log(n) 0 0 1       
and a non-degeneracy Fisher information matrix. The convolution and minimax theorems can be applied in this case and then the optimal rate of convergence of estimator for the index parameter α when the scale parameter σ known is n log(n) and is n when the scale parameter σ unknown.

In Aït-Sahalia and Jacod [START_REF] Aït | Fisher's information for discretely sampled Lévy processes[END_REF] and [START_REF] Aït | Volatility estimators for discretely sampled Lévy processes[END_REF], the authors exhibit the behavior of the Fisher information of a process X decomposed as the sum of two independent Lévy processes

X t = σL α t + θU t
where L is a standard symmetric stable process with index α ∈ (0, 2], (U t ) is a another Lévy process, independent of (L α t ) and dominated by (L α t ). Then they derive that with the scale parameter σ known and the true value α < 2, they can hope for estimators converging to α at the rate n log(n). The LAN property is also proved with rate n -1 2 for the parameter σ.

More recently, Ivanenko, Kulik and Masuda [START_REF] Ivanenko | Uniform LAN property of locally stable Lévy process observed at high frequency[END_REF] consider the model

X t = θt + σL α t + Z t
where L is a non-symmetric locally α-stable process and Z is an independent and less active process. When X is observed at high-frequency, they prove the LAN property for the parameter

β = (θ, σ) ∈ R 2 with the rate u n = 1 n    n 1-1/α c n n 0 1    where c n = 1 n n -1/α <|u|<1 uµ(du) which is identically zero if the Lévy measure µ is symmetric.
In above works, from the linearity of the models then the increments (X i n

-X i-1 n
) i≤i≤n are independent and have the same law as X 1/n . The transition density of the discrete time process (X i n ) 1≤i≤n is almost explicit therefore the statistical study can be done using the explicit expression of the density of X t .

Coming back to the model (1. density of L t and the density of X t is not clear. In this setup, we can mention the recent papers by Clément and Gloter [START_REF] Clément | Estimating functions for SDE driven by stable Lévy processes[END_REF], Masuda [START_REF] Masuda | Non-gaussian quasi-likelihood estimation of sde driven by locally stable Lévy process[END_REF] where some estimators of the drift and scale parameters are proposed for the general equation

X t = x 0 + t 0 b(X s , θ)ds + t 0 c(X s-, σ)dL s
where L is a locally stable pure-jump Lévy process. However, in that case, the asymptotic efficiency of the estimators is not yet established. The only result about LAMN property, to our knowledge, in this direction is given in Clément and Gloter [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] where the LAMN property is proved for the estimation of the drift parameter θ for the process solution of (1.3.1) (with σ = 1 and α ∈ (1, 2)).

In [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF], they show that the LAMN property is satisfied with rate r n = n 1/2-1/α and information

I θ = 1 0 ∂ θ b(X β s , θ) 2 ds R ϕ α (u) 2
ϕ α (u) du, where ϕ α is the density of the standard α-stable distribution with characteristic function u → e -C(α)|u| α .

The first goal of this thesis is to extend the results of Clément and Gloter [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] where the index α ∈ (1, 2) and the parameter appears only in the drift coefficient. Namely, we extend in this thesis these results to α ∈ (0, 2) and prove that the LAMN property holds for the two parameters (θ, σ)

when the index parameter α is known.

The proof is mainly based on Theorem 1.1.1 and then remark that the asymptotic behavior of the density of (X t ) and its derivative with respect to the parameters need to be known to obtain the asymptotic of Fisher information matrix in small time, as well as the asymptotic expansion of the log-likelihood ratio. Because of this reason, we discuss in Chapter 2 the asymptotic in small time for the density of (X t ).

Another purpose of this thesis is to estimate the index parameter (see definition 1.2.5 ) of the process solving (1.3.1) and assuming that the parameter θ is known.

In the last part of this thesis, we construct two estimators with the convergence rate n for the Blumenthal-Getoor index α ∈ (0, 2) when the scale parameter σ is unknown, based on the two moment-fitting procedures (the logarithmic moments and the lower-order fractional moments) introduced in Masuda [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF]. We prove the consistency and asymptotic normality for the estimators and the estimation results will be supported by the simulation experiments. If the scale parameter is known, we construct some estimators of the index parameter with the rate n log(n) also based on the logarithmic moments and the lower-order fractional moments.

Besides the above references, we list here some others works concerning the estimation of the jump activity index from high frequency observations. In Aït-Sahalia and Jacod [4] and Jing, Kong and Mykland [START_REF] Jing | On the jump activity index for semimartingales[END_REF] the authors consider the process with the dominant component being a Brownian motion given by

X t = x 0 + t 0 b s ds + t 0 σ s W s + t 0 |x|≤1 x(µ -υ)(ds, dx) + t 0 |x|≥1 xµ(ds, dx)
where W t is a standard Brownian motion, b and σ are Itô processes and µ is a random measure with compensator υ. Based on truncated power variation, they propose estimators for the index parameter α in high-frequency.

Todorov and Tauchen [START_REF] Todorov | Limit theorems for power variations of pure-jump processes with application to activity estimation[END_REF] propose estimation of the jump activity index in pure-jump semimartingales setting for which the rate of convergence is n for 2 ≤ α < 2 (the case α < 2 needs

an assumption of zero drift) based on adaptively chosen optimal power for which the realized power variation does not explode.

Recently, Todorov [START_REF] Todorov | Jump activity estimation for pure-jump semimartingales via self-normalized statistics[END_REF] considers the estimation of the jump-activity index α ∈ (1, 2] of the process

d X t = b t dt + σ t-dL t + dY t
where L is locally stable pure jump Lévy process whose Lévy measure around zero behaves like that of a stable process and Y is a pure jump process which is dominated at high frequencies by L.

He obtains the rate of convergence n if α ∈ (1, 2) and n u -2 n for some sequence u n converging to zero if α = 2, by using the empirical characteristic function of the scaled differenced increments.

Overview of the main results

This thesis is divided into four chapters.

Chapter 2: We focus on the asymptotic behavior, in small time, of the density of (X

β t )
with index α ∈ (0, 2) for the solution of (1.3.1), as well as its derivative with respect to the parameter β = (θ, σ) T . This problem plays an important role in asymptotic statistics based on high frequency observations. Indeed, considering the estimation of β from the discrete time observations (X By using Malliavin calculus, we obtain the representation formulas for the density, its derivative and its logarithm derivative, as an expectation and a conditional expectation. These representation formulas involve some Malliavin weights whose expressions are given explicitly (see Theorem 2.3.1) and this permits to analyze the asymptotic behavior in small time of the density by using the time rescaling property of the stable process. Our results are established through a careful study of each terms appearing in the Malliavin weights, which is complicated by the non integrability of the α-stable process as if α ≤ 1. Moreover, when we study the asymptotic behavior, in order to deal with any value of the index α ∈ (0, 2), we introduce the solution of the ordinary differential equation

β i/n ) 0≤i≤n ,
(1.3.5) ς n,θ,x t = x + 1 n t 0 b(ς n,θ,x s , θ)ds t ∈ (0, 1], x ∈ R
and then we obtain that

n 1/α X β 1 n (x) -ς n,θ,x 1 
is close to a stable Lévy process.

We denote by ϕ α the density of L α 1 where (L α t ) is an α-stable process with Lévy measure

υ(d z) = 1 |z| α+1 1 z =0 dz.
We have the following results about the asymptotic behavior of the density and its derivative:

Theorem 1.3.1 (Clément,Gloter and Nguyen [19]). Let (ς n,θ,x 0 t

) be the solution to the ordinary differential equation (1.3.5) and let

(β n ) n≥1 = ((θ n , σ n ) T ) n≥1 be a sequence such that β n n→∞ ----→ β.
For all given by the equation (1.3.1). This extends the results of [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] where the index α ∈ (1, 2) and only the Local Asymptotic Mixed Normality property for the drift coefficient is considered. Based on the expression for the logarithm derivatives of the density with respect to β in terms of a conditional exception, Malliavin weights and the results about the asymptotic behavior of the density established in Chapter 2, we derive the asymptotic behavior of Fisher information matrix in small time for one observation of the process. Furthermore, we prove an asymptotic expansion of the log-likelihood ratio (using Malliavin calculus for jump processes) and prove that the LAMN property holds for the drift and volatility parameters with rate

(x 0 , u) ∈ R 2 , 1. σ n n 1/α p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1 ) n→∞ ----→ ϕ α (u), 2. σ 2 n n 2 α -1 ∂ θ p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1 ) n→∞ ----→ -∂ θ b(x 0 , θ) × ϕ α (u), σ 2 n n 1/α ∂ σ p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1 ) n→∞ ----→ -ϕ α (u) -uϕ α (u),
u n =    n 1 2 -1 α 0 0 n -1 2    and information matrix I =    I 11 0 0 I 22    where        I 11 = 1 σ 2 1 0 ∂ θ b(X β s , θ) 2 ds R ϕ α (u) 2
ϕ α (u) du

I 22 = 1 σ 2 R (ϕα(u)+uϕ α (u)) 2 ϕ α (u)
du.

The proof of the LAMN property is based on Theorem 1.1.1. This part contains also an independent and interesting result stating a continuity property with respect to the conditioning variable in a conditional expectation (see Proposition 3.6.3).

Chapter 3 is published as the following article: * Emmanuelle Clément, Arnaud Gloter, and Huong Nguyen. LAMN property for the drift and volatility parameters of a SDE driven by a stable Lévy process. ESAIM: P/S, 2018.

Chapter 4:

The aim of this chapter is to estimate the index parameter α of a stochastic differential equation driven by a truncated α-stable process with index α ∈ (0, 2) given by the equation (1.3.1) with known parameter θ based on high frequency observations on a fixed time period. Masuda [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF] has constructed the estimators based on the logarithmic moments and the lower-order fractional moments for the index α with the convergence rate n , when the scale parameter σ is CHAPTER 1. INTRODUCTION unknown. Based on the ideas of Masuda [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF], in this chapter, we adapt the estimation procedure to the equation (1.3.1) and provide the asymptotic distributions.

The main tools for establishing the statistical results are Law of Large Numbers and Central Limit Theorem for

1 n n-1 j=1 f n 1/α σ X α t j+1 -ς 1/n (X α t j )
with f some suitable functions and ς 1/n solving

ς t (x) = x + t 0 b(ς s (x))ds t ∈ (0, 1/n], x ∈ R.
The introduction of this ordinary differential equation is convenient for dealing with any value of α, however, this leads to a limitation in practice since the drift function b has to be known.

If we know the true value of the scale parameter, then we construct some estimators of the index parameter with the rate n log(n). Moreover, in this chapter, we give some simulations to illustrate the finite-sample behaviors of our estimators.

CHAPTER 2

ASYMPTOTICS IN SMALL TIME FOR THE DENSITY OF A STOCHASTIC DIFFERENTIAL EQUATION DRIVEN BY A STABLE LÉVY PROCESS

This work focuses on the asymptotic behavior of the density in small time of a stochastic differential equation driven by a truncated α-stable process with index α ∈ (0, 2). We assume that the process depends on a parameter β = (θ, σ) T and we study the sensitivity of the density with respect to this parameter. This extends the results of [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] which was restricted to the index α ∈ (1, 2) and considered only the sensitivity with respect to the drift coefficient. By using Malliavin calculus, we obtain the representation of the density and its derivative as an expectation and a conditional expectation. This permits to analyze the asymptotic behavior in small time of the density, using the time rescaling property of the stable process.

Introduction

We consider the following stochastic differential equation (SDE)

(2.1.1)

X β t = x 0 + t 0 b(X β s , θ)ds + σL t for t ∈ [0, 1]
, where (L t ) t∈[0,1] is a truncated α-stable process with exponent 0 < α < 2 and our aim is to study the asymptotic behavior, in small time, of the density of (X [START_REF] Clément | LAMN property for the drift and volatility parameters of a SDE driven by a stable Lévy process[END_REF], an asymptotic expansion of the log-likelihood ratio and we prove the LAMN property for the parameter β.

In the last decades, a large literature has been devoted to the existence and regularity of the density to the solution (X t ) t , for t > 0, of a general stochastic equation driven by pure jump Lévy processes. We can mention the works of Bichteler, Gravereaux and Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF], Picard [START_REF] Picard | On the existence of smooth densities for jump processes[END_REF], Denis [START_REF] Denis | A criterion of density for solutions of Poisson-driven SDEs[END_REF], Ishikawa-Kunita [START_REF] Ishikawa | Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps[END_REF], Fournier-Printems [START_REF] Fournier | Absolute continuity for some one-dimensional processes[END_REF] and more recently the works of Debussche-Fournier [START_REF] Debussche | Existence of densities for stable-like driven SDE's with Hölder continuous coefficients[END_REF] and Kulik [START_REF] Kulik | On weak uniqueness and distributional properties of a solution to an SDE with α-stable noise[END_REF], under Hölder continuity assumptions on the coefficients of the equation and assuming that the equation is driven by an α-stable process.

In this paper, the main contributions are obtained by using the Malliavin calculus for jump processes developed by Bichteler, Gravereaux and Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] and adapted to the particular case of equation (2.1.1) by Clément-Gloter [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF]. Although it requires some strong derivability assumptions on the coefficients of the equation, it leads to some explicit representation formulas for the density and its derivative (see also ). Let us mention that alternative representations for the density can be obtained by other methods, for example the method proposed by Bouleau-Denis [START_REF] Bouleau | Dirichlet forms methods for Poisson point measures and Lévy processes[END_REF] based on Dirichlet forms or the parametrix method used by Kulik [START_REF] Kulik | On weak uniqueness and distributional properties of a solution to an SDE with α-stable noise[END_REF].

To study the asymptotic behavior of the transition density of X β t and its derivative, in small time, we establish some representation formulas. This extends the results of Clément-Gloter [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] where only the derivative with respect to the drift parameter θ was considered, with the restriction α > 1. These representation formulas involve some Malliavin weights whose expressions are given explicitly. This permits first to identify in the Malliavin weights a main part and a negligible part in small time asymptotics and then to derive the asymptotics for the density stated in Theorem 2.2.1 and Theorem 2.2.2. In contrast to [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF], the exposition now involves the solution of the ordinary differential equation defined by the deterministic part of (2.1.1). Moreover, the study part and a negligible part and then in the study of their asymptotic behavior. We prove our main results in Sections 2.4 and 2.5. Finally, in Section 2.6, we recall the Malliavin integration by parts setting developed by [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] and used in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF], and give some representations of the transition density, its derivative, as well as its logarithm derivative. We also explicit the iterated Malliavin weights appearing in the expression of the derivative of the density.

Asymptotics for the density and its derivative

We consider the process (X β t ) t∈[0,1] solution to the stochastic equation (2.1.1) where (L t ) t∈[0,1] is a pure jump Lévy process defined on a filtered probability space (Ω, G , (G t ) t∈[0,1] , P), b is a real valued function and the parameter β = (θ, σ) T belongs to R × (0, ∞). We assume that the following assumptions are fulfilled.

H 1 : (a)
The function b has bounded derivatives up to order five with respect to both variables.

(b i ) The Lévy process (L t ) t∈[0,1] is given by

L t = t 0 [-1,1] z{ μ(ds, dz) -ῡ(ds, dz)} + t 0 [-1,1] c z μ(ds, dz)
where μ is a Poisson random measure, with compensator ῡ(dt, dz) = dt × F(z)dz where F(z) is given on R * by F(z) = 1 |z| α+1 τ(z), α ∈ (0, 2). Moreover, we assume that τ is a non negative smooth

function equal to 1 on [-1,1], vanishing on [-2, 2] c such that 0 ≤ τ ≤ 1. (b ii ) We assume that ∀p ≥ 1, R τ (u) τ(u) p τ(u)du < ∞, R τ (u) τ(u) p τ(u)du < ∞.
Under these assumptions, X Throughout the paper, we will use the following notation. For a vector h ∈ R 2 , h T denotes the transpose of h, and |h| denotes the euclidean norm. For a function f defined on R × R 2 depending on both variables (x, β), here β = (θ, σ) T ∈ R × (0, +∞), we denote by f the derivative of f with respect to the variable x, by ∂ θ f the derivative of f with respect to the parameter θ, by ∂ σ f the derivative of f with respect to the parameter σ, and

∇ β f =    ∂ θ f ∂ σ f   .
The regularity assumption H 1 (a) on the drift coefficient b is a sufficient condition to obtain the representations of the density and its derivative. This assumption could be weakened but our methodology is based on the Malliavin calculus developed in [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] that requires strong regularity assumptions on the coefficients. From Theorem 10-3 in [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF], the computation of the Malliavin operators for a stochastic differential equation needs coefficients with derivatives up to order three. As we iterate the Malliavin operators we need derivatives up to order five (see Lemma 2.6.2). Note that we relax the boundedness assumption on b assumed in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF].

Remark 2.2.1. The assumptions on the Lévy measure are restrictive and one may expect that our results hold with a more general Lévy measure F(z) = 1 |z| α+1 g(z), where g satisfies (b ii ) and g(0) = 1.

However in our approach the integrability assumptions for the tails of the Lévy process are crucial to ensure that our process belongs to the Malliavin space. Moreover, the exact Our aim is to study the asymptotic behavior of p

β 1 n (x 0 , u) (the density of X β 1 n
) and its derivative with respect to the parameter β. To this end, we introduce the solution to the ordinary differential equation (2.2.1)

ς n,θ,x 0 t = x 0 + 1 n t 0 b(ς n,θ,x 0 s , θ)ds t ∈ [0, 1].
Heuristically, n 1/α (X

β 1/n -ς n,θ,x 0 1 
) is close to σn 1/α L 1/n and from assumption H 1 (b i ), the rescaled process (n ) converges to the density of L α 1 ,

as n goes to infinity.

In what follows, we denote by ϕ α the density of L α 1 where (L α t ) is an α-stable process with

Lévy measure υ(d z) = 1 |z| α+1 1 z =0 dz.
With these notations, we can state our main results. In view of statistical applications, we need some uniformity with respect to the parameter around the true value β = (θ, σ) T and consequently we study the asymptotic behavior of p

β n 1 n
where (

β n ) n≥1 = ((θ n , σ n ) T ) n≥1 is a sequence converging to β. Theorem 2.2.1. Let (ς n,θ,x 0 t
) be the solution to the ordinary differential equation (2.2.1) and let

(β n ) n≥1 be a sequence such that β n n→∞ ----→ β. For all (x 0 , u) ∈ R 2 , 1. σ n n 1/α p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1 ) n→∞ ----→ ϕ α (u), 2. sup u∈R sup n σ n n 1/α p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1 ) < ∞,
where ϕ α is the density of L α 1 .

If the solution to the ordinary equation (2.2.1) is not given explicitly, we can approximate it by a numerical scheme. The previous convergence will be preserved if the order of the numerical scheme is sufficiently high. This is explain in the next remark. in the statement of the theorem and we obtain

( f ) = f ) such that f (ς n,θ,x 0 t , θ) = f (ς n,θ,x 0 0 , θ) + t 0 (A f )(ς n,θ,x 0 s , θ)ds, we obtain ς n,θ,x 0 t = x 0 + 1 n t 0 A 0 (b)(ς n,θ,x 0 s , θ)ds = x 0 + t(A 0 b)(x 0 , θ) n + 1 n t 0 t 1 0 (Ab) n (ς n,θ,x 0 t 2 , θ)dt 2 dt 1 = ς (k),n,θ,x 0 t + 1 n k+1 t 0 t 1 0 ... t k 0 (A k b)(ς n,θ,x 0 t k , θ)dt k+1 ...dt t 1 with ς (k),n,θ,x 0 t = x 0 + t(A 0 b)(x 0 ,θ) n + t 2 (Ab)(x 0 ,θ) 2n 2 + ... + t k (A k-1 b)(x 0 ,θ) k!n k , for k ≥ 1,
σ n n 1/α p β n 1 n (x 0 , uσ n n 1/α + ς (k),n,θ n ,x 0 1 ) n→∞ ----→ ϕ α (u), if k > 1 α -1.
In particular, if α > 1, the choice ς (0),n,θ n ,x 0 1 = x 0 is convenient as established in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF].

Remark 2.2.3. The results of Theorem 2.2.1 have been obtained by Kulik [START_REF] Kulik | On weak uniqueness and distributional properties of a solution to an SDE with α-stable noise[END_REF], using the parametrix method.

The next result gives the asymptotic behavior of the derivatives of the density with respect to the parameters θ and σ.

Theorem 2.2.2. Let (β n ) n≥1 be a sequence such that

β n n→∞ ----→ β. For all (x 0 , u) ∈ R 2 , i) σ 2 n n 2 α -1 ∂ θ p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1 ) n→∞ ----→ -∂ θ b(x 0 , θ) × ϕ α (u), σ 2 n n 1/α ∂ σ p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1 ) n→∞ ----→ -ϕ α (u) -uϕ α (u), ii) sup u∈R sup n σ 2 n n 2 α -1 ∂ θ p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1
) < ∞,

sup u∈R sup n σ 2 n n 1/α ∂ σ p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1 ) < ∞.
Considering the statistical experiment (R n , B n , P β n ) corresponding to the observation of (X 

β i/n ) 1≤i≤n ,
n i=1 E     R      p β+r n h 1 n X β i-1 n , y 1/2 -p β 1 n X β i-1 n , y 1/2 - 1 2 h T r n ∇ β p β 1 n (X β i-1 n , y) (p β 1 n ) 1/2 (X β i-1 n , y)      2 d y     n→∞ ----→ 0, with rate r n =    n 1 2 -1 α 0 0 n -1 2   .
In this application, the sequence (

β n = (θ n , σ n ) T ) is (β + r n h). The L 2 -regularity property (re- lated to the L 2 -differentiability of β → (p β 1 n ) 1/2
) is the first step to obtain an asymptotic expansion of the log-likelihood ratio log [START_REF] Clément | LAMN property for the drift and volatility parameters of a SDE driven by a stable Lévy process[END_REF]) and to deduce the Local Asymptotic Mixed Normality property (see Jeganathan [START_REF] Jeganathan | On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal[END_REF]). We proved that the LAMN property holds (Corollary 2.4 in [START_REF] Clément | LAMN property for the drift and volatility parameters of a SDE driven by a stable Lévy process[END_REF]) for the parameter β with rate r n and information matrix

dP β+rn h n dP β n Ê (X β 1/n , . . . , X β 1 ) (see Theorem 2.1 in
I =    I 11 0 0 I 22    where I 11 = 1 σ 2 1 0 ∂ θ b(X β s , θ) 2 ds R ϕ α (u) 2
ϕ α (u) du and

I 22 = 1 σ 2 R (ϕα(u)+uϕ α (u)) 2 ϕ α (u)
du. As a consequence, we deduce that the estimation rate for θ is n α and that the estimation rate for σ is the usual one n -1 2 . Moreover, the best asymptotic variance of any regular estimator of β (that converges in distribution with rate r n ) is the inverse of the information matrix I .

The proofs of Theorems 2.2.1 and 2.2.2 are based on the representations of the density and its derivative obtained by using Malliavin calculus and on the study of the asymptotic behavior of the Malliavin weights. This is given in the next sections.

Rescaling and representation of the density in small time

In this section, we give a representation of the density and identify in this representation the main terms and the remainder terms. This decomposition is a key step for the convergence study and is mainly based on the rescaling described in the next subsection.

Rescaling

We can observe that the process (n 1/α L t/n ) equals in law to a centered Lévy process with Lévy measure (2.3.1)

F n (z) = 1 |z| 1+α τ( z n 1/α ).
As mentioned previously, this clearly suggests that when n grows, the process (n 1/α L t/n ) converges to an α-stable process. In the sequel, it will be convenient to construct a family of Lévy processes (L n t ) n≥1 with the same law as (n 1/α L t/n ), on a common probability space where the limiting α-stable process exists as well, and where the convergence holds true in a path-wise sense, as done in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF].

Let We define the Poisson measures µ (n) , for all n ≥ 1, and µ by setting :

∀A ⊂ [0, ∞) × R, µ (n) (A) = [0,∞) R [0,1] 1 A (t, z)1 {u≤τ( z n 1/α )} µ e (dt, dz, du), ∀A ⊂ [0, ∞) × R, µ(A) = [0,∞) R [0,1]
1 A (t, z)µ e (dt, dz, du).

By simple computation, one can check that the compensator of the measure µ (n) (dt, dz) is 

υ (n) (dt, dz) = dt × τ( z n 1/α ) dz |z| 1+α = dt × F n (z)
L α t = t 0 [-1,1]
z μ(ds, dz)

+ t 0 [-1,1] c zµ(ds, dz), (2.3.3) 
L n t = t 0 [-n 1/α ,n 1/α ] z μ(n) (ds, dz) + t 0 [-n 1/α ,n 1/α ] c zµ (n) (ds, dz).
By construction, the process (L α t ) is a centered α-stable process and the process (L n t ) is equal in law to the process (n 1/α L t/n ) t∈[0,1] , since they are based on random measures with the same compensator. Remark that the jumps of L n t with size smaller than n 1/α exactly coincide with the jumps of L α with size smaller than n 1/α . On the other hand, the process L n has no jump with a size greater than 2n 1/α .

Using that the measures µ and µ (n) coincide on the subsets of {(t, z); |z| ≤ n 1/α }, and the function

τ( z n 1/α ) 1 |z| 1+α = 1 |z| 1+α is symmetric on |z| ≤ n 1/α , we can rewrite: (2.3.4) L n t = t 0 [-1,1]
z μ(ds, dz)

+ t 0 1<|z|<n 1/α zµ(ds, dz) + t 0 n 1/α ≤|z|≤2n 1/α zµ (n) (ds, dz).
The following simple lemma gives a connection between L n and the stable process

L α . Lemma 2.3.1. On the event A n = µ({(t, z)|0 ≤ t ≤ 1, |z| ≥ n 1/α }) = 0 , we have (2.3.5) µ (n) = µ, L n t = L α t ,

and

(2.3.6) 

P (A n ) = 1 + O(1/n).
A n = {µ({(t, z)|0 ≤ t ≤ 1, |z| ≥ n 1/α }) = 0}.
The probability of the latter event is e -2/αn which converges to 1 at rate 1/n as stated. Then we also get (2.3.6).

Let A = ∪ ∞ n=1 A n , we get that P(A) = 1 since A n ⊆ A n+1 for each n ∈ N and (2.3.6) holds. Thus, for all ω ∈ A ∩ C, ∃n 0 (ω) ≥ 1, ∀n ≥ n 0 (ω), µ (n) = µ and f n (ω, s, z) → f (ω, s, z)∀s ∈ [0, 1], ∀|z| > 1. Then we deduce that

1 0 |z|>1 f n (ω, s, z)µ (n) (ds, dz) n→∞ ----→ a.s. 1 0 |z|>1
f (ω, s, z)µ(ds, dz).

We also get sup t∈

[0,1] |L n t -L α t | n→∞ ----→ 0.

Representation of the density in small time and first approximation

We introduce the process (

Ȳ n,β,x 0 t ) t∈[0,1] given by (2.3.8) Ȳ n,β,x 0 t = x 0 + 1 n t 0 b( Ȳ n,β,x 0 s , θ)ds + σ n 1/α L n t t ∈ [0, 1],
where (L n t ) is defined by (2.3.4) and is such that 1 n 1/α (L n t ) equals in law to (L t/n ). By construction, the process (X

β t n ) t∈[0,1] equals in law ( Ȳ n,β,x 0 t ) t∈[0,1]
. Let q n,β,x 0 be the density of Ȳ n,β,x 0 1 then the connection between the densities of X 

ρ n (z) =                  z 4 if |z| < 1 ζ(z) if 1 ≤ |z| ≤ 2 z 2 τ( z 2n 1/α ) if |z| > 2,
where τ is defined in assumption 

H 1 (b i ),
(x 0 , u) = q n,β,x 0 (u) = E(1 { Ȳ n,β,x 0 1 ≥u} H Ȳ n,β,x 0 1 (1)), with (2.3.13) H Ȳ n,β,x 0 1 (1) = 1 σ n 1/α Ĥ n 1,β (1) + Ĥ n 2,β (1) + R n 1,β (1) + R n 2,β (1) + R n 3,β (1) 
.

The main terms Ĥ n 1,β (1), Ĥ n 2,β (1) are given by

Ĥ n 1,β (1) =    1 0 R ( n s ) -3 ρ n (z)(ρ n ) (z)µ (n) (ds, dz) n 1 1 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz) 2    , (2.3.14) Ĥ n 2,β (1) = - 1 0 R ( n s ) -1 (ρ n ) (z) -1+α z ρ n (z) µ (n) (ds, dz) n 1 1 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz) , (2.3.15)
and the remainder terms satisfy for any compact subset Q ⊂ R × (0, ∞)

(2.3.16) ∀p ≥ 2, E sup β∈Q R n 1,β (1) 
p ≤ C n , sup β∈Q |R n 2,β (1)| ≤ C n , sup β∈Q |R n 3,β (1)| ≤ C n ,
where C is some deterministic constant. ) converges almost surely to σL α 1 , this permits to check that 1 {n 1/α ( Ȳ n,βn ,x 0 1 -ς n,θn ,x 0 1

)≥σ n v} converges to 1 {L α 1 ≥v} . From Theorem 2.3.1, we deduce that σ n n 1/α p

β n 1 n (x 0 , σ n n 1/α u + ς n,θ n ,x 0 1
) is close to

E1 {L α 1 ≥u} [ Ĥ n 1,β n (1) + Ĥ n 2,β n (1) 
] and it remains to study the limit of the main terms.

We can see from the definition of

ρ n that ρ n (z) n→∞ ----→ ρ(z)
where

ρ(z) =                  z 4 if |z| < 1 ζ(z) if 1 ≤ |z| ≤ 2, z 2 if |z| > 2.
(2.3.17)

Combining this with Lemma 2.3.1, it permits to establish the almost sure convergence of the main terms:

Ĥ n 1,β n (1) n→∞ ----→ a.s. H 1,L α (1), (2.3.18) Ĥ n 2,β n (1) n→∞ ----→ a.s.
H 2,L α (1), (2.3.19) where H 1,L α (1), H 2,L α (1) are given by

H 1,L α (1) = 1 0 R ρ(z)ρ (z)µ(ds, dz) 1 0 R ρ(z)µ(ds, dz) 2 , (2.3.20) H 2,L α (1) = - 1 0 R ρ (z) -1+α z ρ(z) µ(ds, dz) 1 0 R ρ(z)µ(ds, dz) . (2.3.21)
Moreover, the limit weight H 1,L α (1) + H 2,L α (1) can be interpreted as a Malliavin weight (see (2.4.29)) and we have the following representation for the density of L α

1 ϕ α (u) = E1 [u,∞) (L α 1 )[H 1,L α (1) + H 2,L α (1)].
This suggests that, as n goes to infinity, σ n n 1/α p

β n 1 n (x 0 , σ n n 1/α u + ς n,θ n ,x 0 1
) is close to ϕ α . This is rigorously established in the next section. The proof is based on the Malliavin calculus developed in Section 2.6. We recall that q n,β,x 0 is the density of Ȳ n,β,x 0 1 and that the connection between the densities of X

β 1 n and Ȳ n,β,x 0 1 is given by p β 1/n (x 0 , x) = q n,β,x 0 (x).
We use the framework of Sections 2.6.1 and 2.6.2, with g(z)

:= F n (z) = 1 |z| 1+α τ( z n 1/α
) and with the auxiliary function ρ n defined by (2.3.11) such that it satisfies all conditions of Section 2.6.1.

From the assumptions on τ, we can easily deduce that

z 2 τ( z 2n 1/α ) =        z 2 if 2 ≤ |z| ≤ 2n 1/α 0 if |z| > 4n 1/α . Moreover, we recall that ρ n (z) n→∞ ----→ ρ(z)
where ρ is defined by (2.3.17). Note that from the definitions of ρ n and ρ, we can easily see that )) is a particular case of (2.6.1) with the function a and the constant c given explicitly as

ρ n (z) = ρ(z) if |z| ≤ 2n
(2.4.1) a(x, θ) = 1 n b(x, θ), c = 1 n 1/α .
Under the assumptions H 1 , we can apply the results of Theorem 2.6.1 to Ȳ n,β,x 0 1

. The nondegeneracy assumption is verified by the choice of ρ n (z) near zero (see (2.3.11)). Let us denote by

U n,β t = Γ[ Ȳ n,β,x 0 t , Ȳ n,β,x 0 t ] and W n,β t = Γ[ Ȳ n,β,x 0 t ,U n,β
t ], then we obtain:

p β 1 n (x 0 , u) = q n,β,x 0 (u) = E(1 { Ȳ n,β,x 0 1 ≥u} H Ȳ n,β,x 0 1 (1)); with (2.4.2) H Ȳ n,β,x 0 1 (1) = W n,β 1 (U n,β 1 ) 2 -2 L Ȳ n,β,x 0 1 U n,β 1 .
Applying the results of Theorem 2.6.1 and solving the linear equations (2.6.8)-(2.6.10) (with a and c given by (2.4.1)) we get,

(2.4.3) U n,β 1 = ( n 1 ) 2 σ 2 n 2/α 1 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz), (2.4.4) L( Ȳ n,β,x 0 1 ) = n 1 2n 1 0 b ( Ȳ n,β,x 0 s , θ)(U n,β s )( n s ) -1 ds + σ n 1 2n 1/α 1 0 R ( n s ) -1 [(ρ n ) (z) + F n (z) F n (z) ρ n (z)]µ (n) (ds, dz), (2.4.5) 
W n,β

1 = σ 3 ( n 1 ) 3 n 3/α 1 0 R ( n s ) -3 (ρ n ) (z)ρ n (z)µ (n) (ds, dz) + 2( n 1 ) 3 n 1 0 b ( Ȳ n,β,x 0 s , θ)(U n,β s ) 2 ( n s ) -3 ds. Recalling that F n (z) = 1 |z| 1+α τ( z n 1/α ) (see (2.3.1)), then F n (z) F n (z) = -1+α z + τ (z/n 1/α ) τ(z/n 1/α ) 1 n 1/α if |z| ≤ 2n 1/α . Based
on these expressions and (2.4.2) we deduce, after some calculus, the decomposition (2.3.13), where the remainder terms are given by,

R n 1,β (1) = - 1 0 R ( n s ) -1 ρ n (z) τ (z/n 1/α ) τ(z/n 1/α ) µ (n) (ds, dz) σ n 1 1 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz) , (2.4.6) R n 2,β (1) = 2( n 1 ) 3 1 0 b ( Ȳ n,β,x 0 s , θ)(U n,β s ) 2 ( n s ) -3 ds n(U n,β 1 ) 2 , (2.4.7) R n 3,β (1) = - ( n 1 ) 1 0 b ( Ȳ n,β,x 0 s , θ)(U n,β s )( n s ) -1 ds 2n(U n,β 1 ) . (2.4.8)
We can establish the following bounds for the remainder terms.

For R n 1,β (1), since ( n s ) is lower and upper bounded uniformly with respect to β (recall (2.3.10)), and since τ (z) = 0 on [-1, 1] then for M a positive constant we have

(2.4.9) sup β∈Q R n 1,β (1) ≤ M   1 0 |z|>2 z 2 τ (z/n 1/α ) τ(z/n 1/α ) µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz)   .
Assume that there exists a jump of the Lévy process

L n 1 in [-2n 1/α , -n 1/α ) ∪ (n 1/α , 2n 1/α ], then we get 1 0 |z|>2 z 2 µ (n) (ds, dz) > n 2/α . Thus, (2.4.10) 1 0 |z|>2 z 2 τ (z/n 1/α ) τ(z/n 1/α ) µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) ≤ 1 0 |z|>2 z n 1/α 2 τ (z/n 1/α ) τ(z/n 1/α ) µ (n) (ds, dz).
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Assume that there are no jumps in [-2n 1/α 

, -n 1/α ) ∪ (n 1/α , 2n 1/α ], since τ(z/n 1/α ) = 1 if |z| ≤ n 1/α ,
then τ (z/n 1/α ) = 0 and as a consequence, the right-hand side of (2.4.9) equals zero in this case.

In both cases, for any p ≥ 1

(2.4.11) E   1 0 |z|>2 z 2 τ (z/n 1/α ) τ(z/n 1/α ) µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz)   p ≤ E 1 0 |z|>2 z n 1/α 2 τ (z/n 1/α ) τ(z/n 1/α ) µ (n) (ds, dz) p . Now from µ (n) (ds, dz) = μ(n) (ds, dz) + υ (n) (ds, dz)
, by convexity inequality, we have for C(p) a positive constant

(2.4.12)

E 1 0 |z|>2 z n 1/α 2 τ (z/n 1/α ) τ(z/n 1/α ) µ (n) (ds, dz) p ≤ C(p)E 1 0 |z|>2 z n 1/α 2 τ (z/n 1/α ) τ(z/n 1/α ) μ(n) (ds, dz) p + C(p) 1 0 |z|>2 z n 1/α 2 τ (z/n 1/α ) τ(z/n 1/α ) υ (n) (ds, dz) p .
Using Kunita's first inequality (see Theorem 4.4.23 in [START_REF] Applebaum | Lévy processes and stochastic calculus[END_REF]) for p ≥ 2, there exists a constant

D(p) > 0 such that E 1 0 |z|>2 z n 1/α 2 τ (z/n 1/α ) τ(z/n 1/α ) μ(n) (ds, dz) p ≤ D(p) 1 0 |z|>2 z n 1/α 4 τ (z/n 1/α ) τ(z/n 1/α ) 2 υ (n) (ds, dz) p/2 + D(p) 1 0 |z|>2 z n 1/α 2p τ (z/n 1/α ) τ(z/n 1/α ) p υ (n) (ds, dz) = D(p) n p/2 1 0 2 1 1 u α-3 τ (u) τ(u) 2 τ(u) duds p/2 + D(p) n 1 0 2 1 1 u α+1-2p τ (u) τ(u) p τ(u) duds , where we have used that υ (n) (ds, dz) = ds 1 |z| 1+α τ(z/n 1/α )dz and the change of variable u = z n 1/α .
Moreover, we have

(2.4.13) 1 0 |z|>2 z n 1/α 2 τ (z/n 1/α ) τ(z/n 1/α ) υ (n) (ds, dz) p = 1 0 |z|>2 z n 1/α 2 τ (z/n 1/α ) τ(z/n 1/α ) 1 |z| 1+α τ(z/n 1/α )dzds p = 1 n 1 0 2 1 1 u α-1 τ (u) τ(u) τ(u)duds p . Under the assumption H 1 (b ii ), we deduce E sup β∈Q R n 1,β (1) p ≤ C/n, ∀p ≥ 2 .
Using that b has bounded derivatives and that sup β∈Q sup 0≤s≤1

U n,β s U n,β 1 is bounded, the remainder terms R n 2,β (1), R n 3,β (1) satisfy the upper bound sup β∈Q |R n 2,β (1)| ≤ C n , sup β∈Q |R n 3,β (1)| ≤ C n ,
where C is some deterministic constant.

Proof of Theorem 2.2.1

We first prove that

n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
) is close to a stable Lévy process.

Lemma 2.4.1. Let (ς n,θ,x 0 t
) be the solution to the ordinary differential equation (2.2.1), then

(2.4.14) n 1/α ( Ȳ n,β n ,x 0 1 -ς n,θ n ,x 0 1 ) n→∞ ----→ a.s. σL α 1 ,
for any sequence (β n ) converging to β, and this convergence is uniform with respect to x 0 .

Proof. Using (2.3.8) and the boundedness of b , we have for t ∈ [0, 1]

n 1/α Ȳ n,β n ,x 0 t -ς n,θ n ,x 0 t -σL α t = 1 n t 0 n 1/α b( Ȳ n,β n ,x 0 s , θ n ) -b(ς n,θ n ,x 0 s , θ n ) ds + σ n L n t -σL α t ≤ 1 n t 0 ||b || ∞ n 1/α Ȳ n,β n ,x 0 s -ς n,θ n ,x 0 s -σL α s ds + σ||b || ∞ n 1 0 L α s ds + sup t∈[0,1] σ n L n t -σL α t ,
where ||b || ∞ = sup x,θ |b (x, θ)|. Applying Gronwall's Lemma, we get (2.4.15) sup

x 0 n 1/α Ȳ n,β n ,x 0 1 -ς n,θ n ,x 0 1 -σL α 1 ≤ C σ n 1 0 |L α s |ds + sup t∈[0,1] |σ n L n t -σL α t | ,
where C is a positive constant.

From Lemma 2.3.1, we have sup t∈[0,1] |L n t -L α t | a.s.
--→ 0 and we deduce sup

t∈[0,1] |σ n L n t -σL α t | a.s. --→ 0. Since t → L α t is càdlàg, we get 1 0 |L α s |ds < ∞ a.s., then σ n 1 0 |L α s |ds a.s.
--→ 0 and we get the result of Lemma 2.4.1.

We now proceed to the proof of Theorem 2.2.1. From (2.3.9) and Theorem 2.3.1, we have the representation (2.4.16)

σ n n 1/α p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1 ) = σ n n 1/α q n,β,x 0 ( uσ n n 1/α + ς n,θ n ,x 0 1 ) = E 1 { Ȳ n,βn ,x 0 1 ≥ uσn n 1/α +ς n,θn ,x 0 1 } σ n n 1/α H Ȳ n,βn ,x 0 1 (1)
,

where σ n n 1/α H Ȳ n,βn ,x 0 1 (1) = Ĥ n 1,β n (1)+ Ĥ n 2,β n (1)+ σ n n 1/α R n 1,β n (1)+ σ n n 1/α R n 2,β n (1)+ σ n n 1/α R n 3,β n (1), with Ĥ n 1,β n (1), Ĥ n 2,β n (1) 
given by (2.3.14), (2.3.15) and R n

1,β n (1), R n 2,β n (1), R n 3,β n
(1) satisfy the bounds (2.3.16).
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Since b is bounded and ρ n (z) ≥ 0, we deduce the upper bounds

Ĥ n 1,β n (1) ≤ C *    1 0 R ρ n (z)|(ρ n ) (z)|µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 2    , (2.4.17) Ĥ n 2,β n (1) ≤ C *   1 0 R |ρ n (z)| + 1+α |z| ρ n (z) µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz)   , (2.4.18)
for some constant C * > 0.

We now show that sup n Ĥ n

1,β n (1) 
p and sup n Ĥ n 2,β n (1) 
p are integrable ∀p ≥ 1. The proof will be divided into the two following steps.

Step 1: We show that the right-hand side of (2.4.17) is bounded by a random variable independent of n and belonging to ∩ p≥1 L p . In fact, since the measures µ (n) and µ coincide on the set {(s, z)|s

∈ [0, 1], |z| ≤ n 1/α }, and ρ n (z) = ρ(z) on the support of the Poisson measure µ (n) , we have (2.4.19) 1 0 R ρ n (z)|(ρ n ) (z)|µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 2 ≤    1 0 |z|≤2 ρ (z) ρ(z)µ(ds, dz) 1 0 |z|≤2 ρ(z)µ(ds, dz) 2 + 1 0 |z|>2 2|z| 3 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 2    .
We first consider the first term in the right-hand side of (2.4.19). Using that ρ, ρ belongs to

∩ p≥1 L p (1 |z|≤2 |z| -1-α dz), we get (2.4.20) E 1 0 |z|≤2 |ρ (z)|ρ(z)µ(ds, dz) p < ∞, ∀p ≥ 1.
On the other hand, since ρ satisfies the non degeneracy assumption (2.6.6), [ 

1 0 |z|≤2 ρ(z)µ(ds, dz)] -1 belongs to ∩ p≥1 L p [
(n) ({(t, z)|0 ≤ t ≤ 1, |z| > 2}) < ∞,
we have the following representation [see Chapter VI in [START_REF] Çınlar | Probability and stochastics[END_REF]]

(2.4.21)

1 0 |z|>2 2|z| 3 µ (n) (ds, dz) = N 1 i=1 2|Z i | 3 a.s., 1 0 |z|>2 z 2 µ (n) (ds, dz) = N 1 i=1 Z 2 i a.s.,
where N = (N t ) 1≥t≥0 is a Poisson process with intensity λ n = |z|>2 F n (z)dz < ∞, and (Z i ) i≥0 are i.i.d. random variables independent of N with probability measure

F n (z)1 |z|>2 dz λ n . Thus, 1 0 |z|>2 2|z| 3 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 2 = N 1 i=1 2|Z i | 3 N 1 i=1 Z 2 i 2 ≤ N 1 i=1 2|Z i | 3 N 1 i=1 Z 4 i ≤ 1.
where we used Z 2 i ≥ 0 and

|Z i | > 2. We deduce that sup n Ĥ n 1,β n (1) 
p is integrable ∀p ≥ 1.

Step 2: We show that sup n Ĥ n

2,β n (1) 
p is integrable.

Using the definitions of ρ n (recall (2.3.11)), ρ (recall (2.3.17)) and ρ n = ρ on the support of the

Poisson measure µ (n) (see Section 2.3.2), we have (2.4.22) 1 0 R |ρ n (z)| + 1+α |z| ρ n (z) µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) ≤ 1 0 |z|≤2 ρ(z) + ρ(z) 1+α |z| µ(ds, dz) 1 0 |z|≤2 ρ(z)µ(ds, dz) + 1 0 |z|>2 (3 + α)|z|µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz)
where we used

1 0 |z|≤2 ρ(z)µ(ds, dz) ≥ 0, 1 0 |z|>2 ρ n (z)µ (n) (ds, dz) ≥ 0
, and the equality of µ (n) and µ on the set {(s, z)|s

∈ [0, 1], |z| ≤ n 1/α }.
Proceeding as for the first term in the right-hand side of (2.4.19), we also get that the first term of (2.4.22) belongs to ∩ p≥1 L p .

On the other hand, for the second term of (2.4.22) we have:

1 0 |z|>2 (3 + α)|z|µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) ≤ 1 0 |z|>2 (3 + α)z 2 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) = 3 + α.
This completes the proof of Step 2.

We finally deduce (with additionally some uniformity with respect to x 0 )

(2.4.23) ∀p ≥ 1, E( sup n,β,x 0 Ĥ n 1,β (1) 
p + sup n,β,x 0 Ĥ n 2,β (1) p ) < ∞.
Recalling the almost sure convergences (2.3.18) and (2.3.19), we get from the dominated conver-

gence theorem the L p -convergences (2.4.24) Ĥ n 1,β n (1) n→∞ ----→ L p H 1,L α (1), ∀p ≥ 1. (2.4.25) Ĥ n 2,β n (1) n→∞ ----→ L p H 2,L α (1), ∀p ≥ 1,
where H 1,L α (1) and H 2,L α (1) are defined respectively by (2.3.20) and (2.3.21).

On the other hand, Lemma 2.4.

1 implies that n 1/α ( Ȳ n,β n ,x 0 1 -ς n,θ n ,x 0 1
) converges almost surely to σL α 1 . Then, using P(L α 1 = u) = 0, we deduce the almost sure convergence

(2.4.26) 1 { Ȳ n,βn ,x 0 1 ≥ uσn n 1/α +ς n,θn ,x 0 1 } = 1 [u,∞) n 1/α ( Ȳ n,β n ,x 0 1 -ς n,θ n ,x 0 1 
)

σ n n→∞ ----→ a.s. 1 [u,∞) (L α 1 )
.
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Applying the dominated convergence theorem, we get the latter convergence in L p , ∀p ≥ 1. This gives finally :

(2.4.27)

σ n n 1/α q n,β n ,x 0 ( uσ n n 1/α + ς n,θ n ,x 0 1 ) n→∞ ----→ E[1 [u,∞) (L α 1 )H L α (1)],
where 

H L α (1) = H 1,L α (1) + H 2,L α (1)
σ n n 1/α q n,β n ,x 0 ( uσ n n 1/α + ς n,θ n ,x 0 1
) < ∞.

To finish the proof of the convergence, it remains to show that

(2.4.29) ϕ α (u) = E[1 [u,∞) (L α 1 )H L α (1)].
Let us denote by ϕ n (u) the density of the variable L n 1 . We consider the situation where the drift function b ≡ 0 and x 0 = 0 for which

n 1/α Ȳ n,β,x 0 1 = σL n 1 . Then (2.4.27), (2.4.28) yield (2.4.30) ϕ n (u) n→∞ ----→ E[1 [u,∞) (L α 1 )H L α (1)] := ψ(u), (2.4.31) sup u∈R sup n ϕ n (u) < ∞.
Assume by contradiction that, for some u, we have ψ(u) = ϕ α (u). Since P(L α 1 = u) = 0, it can be seen that ψ is continuous at the point u. Hence, one can find a continuous, compactly supported,

function f such that (2.4.32) f (x)ψ(x)dx = f (x)ϕ α (x)dx.
On the one hand we have, 

E[ f (L n 1 )] = f (x)ϕ n (x)dx n→∞ ----→ f (x)ψ(x)
E[ f (L n 1 )] = E[ f (L n 1 )1 {L n 1 =L α 1 } ] + E[ f (L n 1 )1 {L n 1 =L α 1 } ]. By Lemma 2.3.1, we have P(L n 1 = L α 1 ) n→∞ ----→ 1. We deduce that, (2.4.34) E[ f (L n 1 )] n→∞ ----→ E[ f (L α 1 )] = f (x)ϕ α (x)dx.
This last convergence result clearly contradicts (2.4.32) and we get (2.4.29).

Combining the preceding results with (2.4.27), we can get the results of Theorem 2.2.1.

2.5. PROOF OF THEOREM 2.2.2

Proof of Theorem 2.2.2

The proof is divided into three steps. We first give a representation of the derivative of the density and explicit the iterated Malliavin weights based on the calculus given in Section 2.6. We then study the convergence of these weights and proceed to the proof of Theorem 2.2.2.

Representation of

∇ β p β n 1 n

and computation of the iterated Malliavin weights

We intensively use the results of Section 2.6. From Theorem 2.6.3, we have the representation

(2.5.1) ∇ β p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1 ) = ∇ β q n,β n ,x 0 ( uσ n n 1/α + ς n,θ n ,x 0 1 ) = E 1 { Ȳ n,βn ,x 0 1 ≥ uσn n 1/α +ς n,θn ,x 0 1 } H Ȳ n,βn ,x 0 1 (H Ȳ n,βn ,x 0 1 (∇ β Ȳ n,β n ,x 0 1 
)) .

Using (2.6.7), (2.6.14) and (2.6.18), (2.6.19), by some simple calculus, we get the explicit formula for the iterated Malliavin weight (2.5.2)

H Ȳ n,β,x 0 1 (H Ȳ n,β,x 0 1 (∇ β Ȳ n,β,x 0 1 )) =     ∂ θ Ȳ n,β,x 0 1 ∂ σ Ȳ n,β,x 0 1     H Ȳ n,β,x 0 1 (1) 2 -     V n,θ 1 V n,σ 1     2H Ȳ n,β,x 0 1 (1) U n,β 1 +     ∂ θ Ȳ n,β,x 0 1 ∂ σ Ȳ n,β,x 0 1     H Ȳ n,β,x 0 1 (1)W n,β 1 (U n,β 1 ) 2 +     ∂ θ Ȳ n,β,x 0 1 ∂ σ Ȳ n,β,x 0 1     (W n,β 1 ) 2 (U n,β 1 ) 4 -     V n,θ 1 V n,σ 1     W n,β 1 (U n,β 1 ) 3 +     ∂ θ Ȳ n,β,x 0 1 ∂ σ Ȳ n,β,x 0 1     2D n,β 1 (U n,β 1 ) 2 -     ∂ θ Ȳ n,β,x 0 1 ∂ σ Ȳ n,β,x 0 1     Q n,β 1 (U n,β 1 ) 3 +     T n,θ 1 T n,σ 1     1 (U n,β 1 ) 2
where

H n Ȳ n,β,x 0 1 (1), U n,β 1 ,W n,β 1 
are given by (2.3.13), (2.4.3), (2.4.5), respectively.

Moreover the processes (∂

θ Ȳ n,β,x 0 t ) t and (∂ σ Ȳ n,β,x 0 t ) t are respectively solution to (2.5.3) ∂ θ Ȳ n,β,x 0 t = 1 n t 0 b ( Ȳ n,β,x 0 s , θ)∂ θ Ȳ n,β,x 0 s ds + 1 n t 0 ∂ θ b( Ȳ n,β,x 0 s , θ)ds, (2.5.4) ∂ σ Ȳ n,β,x 0 t = 1 n t 0 b ( Ȳ n,β,x 0 s , θ)∂ σ Ȳ n,β,x 0 s ds + L n t n 1/α . CHAPTER 2.
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For the computations of V n,θ

1 = Γ( Ȳ n,β,x 0 1 , ∂ θ Ȳ n,β,x 0 1 ) and V n,σ 1 = Γ( Ȳ n,β,x 0 1 , ∂ σ Ȳ n,β,x 0 1
), using (2.6.15), (2.6.16) we have

V n,θ 1 = 1 n ( n 1 ) 2 1 0 ( n s ) -2 U n,β s (∂ θ b) ( Ȳ n,β,x 0 s , θ) + b ( Ȳ n,β,x 0 s , θ)∂ θ Ȳ n,β,x 0 s ds, (2.5.5) V n,σ 1 = 1 n ( n 1 ) 2 1 0 ( n s ) -2 b ( Ȳ n,β,x 0 s , θ)∂ σ Ȳ n,β,x 0 s U n,β s ds + σ n 2/α ( n 1 ) 2 t 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz).
(2.5.6)

Finally from ((2.6.20) -(2.6.23)) we compute explicitly

D n,β 1 = Γ( Ȳ n,β,x 0 1 , L Ȳ n,β,x 0 1 ), Q n,β 1 = Γ( Ȳ n,β,x 0 1 ,W n,β 1 ), T n,θ 1 = Γ( Ȳ n,β,x 0 1 , V n,θ 1 ) and T n,σ 1 = Γ( Ȳ n,β,x 0 1 , V n,σ 1 
). We get:

(2.5.7)

D n,β 1 = ( n 1 ) 2 n 1 0 ( n s ) -2 b ( Ȳ n,β,x 0 s , θ)L Ȳ n,β,x 0 s U n,β s ds + ( n 1 ) 2 2n 1 0 ( n s ) -2 b ( Ȳ n,β,x 0 s , θ)W n,β s ds + ( n 1 ) 2 2n 1 0 ( n s ) -2 b ( Ȳ n,β,x 0 s , θ)(U n,β s ) 2 ds + σ 2 ( n 1 ) 2 2n 2/α 1 0 R ( n s ) -2 ρ n (z) (ρ n ) (z) + ρ n (z) F n (z) F n (z) µ (n) (ds, dz), (2.5.8) 
Q n,β 1 = 7( n 1 ) 4 n 1 0 ( n 1 ) -4 b ( Ȳ n,β,x 0 s , θ)W n,β s U n,β s ds + 2( n 1 ) 4 n 1 0 ( n 1 ) -4 b ( Ȳ n,β,x 0 s , θ)(U n,β s ) 3 ds + σ 4 ( n 1 ) 4 n 4/α 1 0 R ( n 1 ) -4 ρ n (z) (ρ n ) (z) 2 + ρ n (z)(ρ n ) (z) µ (n) (ds, dz),
(2.5.9)

T n,θ 1 = 3( n 1 ) 3 n 1 0 ( n 1 ) -3 b ( Ȳ n,β,x 0 s , θ)V n,θ s U n,β s ds + ( n 1 ) 3 n 1 0 ( n 1 ) -3 (∂ θ b) ( Ȳ n,β,x 0 s , θ)W n,β s ds + ( n 1 ) 3 n 1 0 ( n 1 ) -3 b ( Ȳ n,β,x 0 s , θ)∂ θ Ȳ n,β,x 0 s W n,β s ds + ( n 1 ) 3 n 1 0 ( n 1 ) -3 (∂ θ b) ( Ȳ n,β,x 0 s , θ)(U n,β s ) 2 ds + ( n 1 ) 3 n 1 0 ( n 1 ) -3 b ( Ȳ n,β,x 0 s , θ)∂ θ Ȳ n,β,x 0 s (U n,β s ) 2 ds, (2.5.10) T n,σ 1 = 3( n 1 ) 3 n 1 0 ( n 1 ) -3 b ( Ȳ n,β,x 0 s , θ)V n,σ s U n,β s ds + ( n 1 ) 3 n 1 0 ( n 1 ) -3 b ( Ȳ n,β,x 0 s , θ)∂ σ Ȳ n,β,x 0 s W n,β s ds + ( n 1 ) 3 n 1 0 ( n 1 ) -3 b ( Ȳ n,β,x 0 s , θ)∂ σ Ȳ n,β,x 0 s (U n,β s ) 2 ds + σ 2 ( n 1 ) 3 n 3/α 1 0 R ( n 1 ) -3 ρ n (z)(ρ n ) (z)µ (n) (ds, dz).
From the above calculus and combining with (2.5.1) and (2.5.2) we have an explicit representation for the derivative of the density with respect to parameter β that allows to analyze its asymptotic behavior in small time. To obtain the results of Theorem 2.2.2, we will study the convergence of each term appearing in the decomposition (2.5.2). This is based on the preceding explicit expressions that permit to identify some main terms and some remainder terms.

In the sequel, we prove that all the terms involving the derivatives of b with respect to x are remainder terms.

Convergence of the iterated weights

In this section, we study the convergence of the iterated Malliavin weight

H Ȳ n,βn ,x 0 1 (H Ȳ n,βn ,x 0 1 (∇ β Ȳ n,β n ,x 0 1 
))

which is the cornerstone of the proof for the convergence of ∇ β p

β n 1 n
later. Firstly, we state some technical lemmas useful for our aim. The proofs of these lemmas are postponed to the end of the section.

We recall that (

∂ θ Ȳ n,β,x 0 t ) t and (∂ σ Ȳ n,β,x 0 t
) t are respectively solution to (2.5.3) and (2.5.4).

Lemma 2.5.1. We have for all compact subset

Q ⊂ R × (0, ∞) i) sup β∈Q |∂ θ Ȳ n,β,x 0 1 | ≤ C n , where C is some deterministic constant. ii) sup β∈Q sup s∈[0,1] ∂ σ Ȳ n,β,x 0 s n→∞ ----→ L p 0, ∀p ≥ 1.
Lemma 2.5.2. Let (β n ) be a sequence converging to β and Q be a compact subset of R × (0, ∞), the following decompositions and estimates hold,

i) 1 n 1/α D n,β 1 U n,β 1 2 = n 1/α 2σ 2 Ĥ n 3,β (1) + R n 4,β (1) + R n 5,β (1) + R n 6,β (1) 
.

ii)

1 n 1/α Q n,β 1 U n,β 1 3 = n 1/α σ 2 Ĥ n 4,β (1) + R n 7,β (1) + R n 8,β (1) 
.

iii) sup β∈Q

1 n 1/α+1 sup s∈[0,1] |∂ σ Ȳ n,β,x 0 s W n,β s | U n,β 1 2 n→∞ ----→ L p 0, ∀p ≥ 1.
The main terms Ĥ n 3,β (1), Ĥ n 4,β (1) are given by

Ĥ n 3,β (1) = 1 0 R ( n s ) -2 ρ n (z) (ρ n ) (z) -(ρ n ) (z) (1+α) z + ρ n (z) (1+α) z 2 µ (n) (ds, dz) ( n 1 ) 2 1 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz) 2 , (2.5.11) Ĥ n 4,β (1) = 1 0 R ( n 1 ) -4 ρ n (z) (ρ n ) (z) 2 + ρ n (z)(ρ n ) (z) µ (n) (ds, dz) ( n 1 ) 2 1 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz) 3 . (2.5.12) CHAPTER 2.
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where ( n s ) s∈[0,1] is given by (2.3.10). Moreover we have for p ≥ 1and some deterministic constant C

Ĥ n 3,β n (1) n→∞ ----→ L p H 3,L α (1), Ĥ n 4,β n (1) n→∞ ----→ L p H 4,L α (1), (2.5.13) sup β∈Q |R n 4,β (1)| n→∞ ----→ L p 0, sup β∈Q |R n 5,β (1)| n→∞ ----→ L p 0, sup β∈Q |R n 6,β (1)| ≤ C 2n 1+1/α , (2.5.14) sup β∈Q |R n 7,β (1)| n→∞ ----→ L p 0, sup β∈Q |R n 8,β (1)| ≤ C n 1+1/α , (2.5.15)
where

H 3,L α (1) = 1 0 R ρ(z)ρ (z) -ρ(z)ρ (z) (1+α) z + ρ(z) 2 (1+α) z 2
µ(ds, dz)

1 0 R ρ(z)µ(ds, dz) 2 , (2.5.16) H 4,L α (1) = 1 0 R ρ(z) ρ (z) 2 + ρ(z)ρ (z) µ(ds, dz) 1 0 R ρ(z)µ(ds, dz) 3 . (2.5.17) Lemma 2.5.3. Let (β n ) be a sequence converging to β and Q be a compact subset of R × (0, ∞), the following estimates hold: i) sup β∈Q V n,θ 1 U n,β 1 ≤ C n , ii) sup β∈Q 1 n 2/α-1 |T n,θ 1 | U n,β 1 2 n→∞ ----→ L p 0, ∀p ≥ 1, iii) V n,σ 1 U n,β 1 = 1 σ + R n 9,β (1), iv) 1 n 1/α T n,σ 1 U n,β 1 2 = 1 σ 2 Ĥ n 5,β (1) + R n 10,β (1) + R n 11,β (1) + R n 12,β (1),
where C is some deterministic constant. The main term Ĥ n 5,β (1) is given by

(2.5.18) Ĥ n 5,β (1) = 1 0 R ( n 1 ) -3 ρ n (z)(ρ n ) (z)µ (n) (ds, dz) n 1 1 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz) 2 with ( n s ) given by (2.3.10). Moreover, (sup β∈Q |R n i,β (1)|) 9≤i≤12 converge to zero as n → ∞ in L p , ∀p ≥ 1 and Ĥ n 5,β n (1) n→∞ ------→ L p ,∀p≥1 H 5,L α (1), with (2.5.19) H 5,L α (1) = 1 0 R ρ(z)ρ (z)µ(ds, dz) 1 0 R ρ(z)µ(ds, dz) 2 .
Lemma 2.5.4. Let (β n ) be a sequence converging to β. For all p ≥ 1, the following convergences hold uniformly with respect to x 0 :

(2.5.20)

n∂ θ Ȳ n,β n ,x 0 1 Ĥ n β n (1) q n→∞ ----→ L p ∂ θ b(x 0 , θ) (H L α (1)) q , ∀q ≥ 1,
(2.5.21)

n∂ θ Ȳ n,β n ,x 0 1 Ĥ n β n (1) Ĥ n 1,β n (1) n→∞ ----→ L p ∂ θ b(x 0 , θ)H L α (1)H 1,L α (1), (2.5.22 
)

n 1/α ∂ σ Ȳ n,β n ,x 0 1 Ĥ n β n (1) q n→∞ ----→ L p L α 1 (H L α (1)) q , ∀q ≥ 1,
(2.5.23)

n 1/α ∂ σ Ȳ n,β n ,x 0 1 Ĥ n β n (1) Ĥ n 1,β n (1) n→∞ ----→ L p L α 1 H L α (1)H 1,L α (1),
where

Ĥ n β (1) = Ĥ n 1,β (1) + Ĥ n 2,β (1) with Ĥ n 1,β (1), Ĥ n 2,β (1) given by (2.3.14), (2.3.15); H L α (1) = H 1,L α (1) + H 2,L α (1) where H 1,L α (1), H 2,L α (1) are defined by (2.3.20), (2.3.21) 
.

Lemma 2.5.5. Let (β n ) be a sequence converging to β. For all p ≥ 1 the following convergences hold uniformly with respect to x 0 :

i) n∂ θ Ȳ n,β n ,x 0 1 Ĥ n 3,β n (1) n→∞ ----→ L p ∂ θ b(x 0 , θ)H 3,L α (1), ii) n∂ θ Ȳ n,β n ,x 0 1 Ĥ n 4,β n (1) n→∞ ----→ L p ∂ θ b(x 0 , θ)H 4,L α (1), iii) n 1/α ∂ σ Ȳ n,β n ,x 0 1 Ĥ n 3,β n (1) n→∞ ----→ L p L α 1 H 3,L α (1), iv) n 1/α ∂ σ Ȳ n,β n ,x 0 1 Ĥ n 4,β n (1) n→∞ ----→ L p L α 1 H 4,L α (1),
where Ĥ n 3,β (1), Ĥ n 4,β (1) are given by (2.5.11), (2.5.12), and H 3,L α (1), H 4,L α (1), are defined by (2.5.16), (2.5.17).

The uniform convergence with respect to x 0 is not required in this paper but will be useful in [START_REF] Clément | LAMN property for the drift and volatility parameters of a SDE driven by a stable Lévy process[END_REF].

Remark 2.5.1. We observe that although L α 1 does not belong to L p , the choice of the auxiliary

function ρ permits to prove that L α 1 (H L α (1)) 2 , L α 1 H 3,L α (1) and L α 1 H 4,L α (1) belong to L p , ∀p ≥ 1. CHAPTER 2.
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Based on the preceding lemmas, we can prove the following convergence result.

Proposition 2.5.1. Let (β n ) n≥1 be a sequence such that β n n→∞ ----→ β then for all p ≥ 1 (2.5.24)

σ 2 n n 1/α H Ȳ n,βn ,x 0 1 (H Ȳ n,βn ,x 0 1 (∂ σ Ȳ n,β n ,x 0 1 )) n→∞ ----→ L p H (2) , (2.5.25) σ 2 n n 2/α-1 H Ȳ n,βn ,x 0 1 (H Ȳ n,βn ,x 0 1 (∂ θ Ȳ n,β n ,x 0 1 )) n→∞ ----→ L p ∂ θ b(x 0 , θ)H (2) 1 ,
where H (2) and H (2) 1 are some random variables whose expressions do not depend on β and b.

Proof. From the equation (2.5.2), we have

(2.5.26)     σ 2 n n 2/α-1 H Ȳ n,βn ,x 0 1 (H Ȳ n,βn ,x 0 1 (∂ θ Ȳ n,β n ,x 0 1
))

σ 2 n n 1/α H Ȳ n,βn ,x 0 1 (H Ȳ n,βn ,x 0 1 (∂ σ Ȳ n,β n ,x 0 1 
))

    =    σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    H Ȳ n,βn ,x 0 1 (1) 2 -    σ 2 n n 2/α-1 V n,θ n 1 σ 2 n n 1/α V n,σ n 1    2H Ȳ n,βn ,x 0 1 (1) (U n,β n 1 ) +    σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    H Ȳ n,βn ,x 0 1 (1)W n,β n 1 (U n,β n 1 ) 2 +    σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    (W n,β n 1 ) 2 (U n,β n 1 ) 4 -    σ 2 n n 2/α-1 V n,θ n 1 σ 2 n n 1/α V n,σ n 1    W n,β n 1 (U n,β n 1 ) 3 +    σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    2D n,β n 1 (U n,β n 1 ) 2 -    σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    Q n,β n 1 (U n,β n 1 ) 3 +    σ 2 n n 2/α-1 T n,θ n 1 σ 2 n n 1/α T n,σ n 1    1 (U n,β n 1 ) 2 .
We will prove the convergence of each term in the right-hand side of (2.5.26)

Term 1: Recall (2.3.13) and set Ĥ n 

β n (1) = Ĥ n 1,β n (1) + Ĥ n 2,β n (1), R n β n (1) = R n 2,β n (1) + R n 3,β n (1) 
   σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    H Ȳ n,βn ,x 0 1 (1) 2 =    σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    n 1/α σ n Ĥ n 1,β n (1) + Ĥ n 2,β n (1) + R n 1,β n (1) + R n 2,β n (1) + R n 3,β n (1) 2 =    n∂ θ Ȳ n,β n ,x 0 1 n 1/α ∂ σ Ȳ n,β n ,x 0 1    Ĥ n β n (1) 2 +    2σ n n 1/α-1 ∂ θ Ȳ n,β n ,x 0 1 2σ n ∂ σ Ȳ n,β n ,x 0 1    Ĥ n β n (1)R n β n (1) +    2σ n n 1/α-1 ∂ θ Ȳ n,β n ,x 0 1 2σ n ∂ σ Ȳ n,β n ,x 0 1    Ĥ n β n (1)R n 1,β n (1) +    σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    R n 1,β n (1) 2 +    σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    R n β n (1) 2 +    2σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 2σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    R n 1,β n (1)R n β n (1
   σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    H Ȳ n,βn ,x 0 1 (1) 2 n→∞ ------→ L p ,∀p≥1    ∂ θ b(x 0 , θ) L α 1    (H L α (1)) 2 .
Term 2: From (2.3.13) and Lemma 2.5.3 part i) and part iii), we can estimate the second term as

   σ 2 n n 2/α-1 V n,θ n 1 σ 2 n n 1/α V n,σ n 1    2H n Ȳ n,βn ,x 0 1 (1) (U n,β n 1 ) =    O( 1 n 2/α ) 2σ 2 n n 1/α R n 9,β n (1) + 1 σ n    1 σ n n 1/α Ĥ n β n (1) + R n 1,β n (1) + R n β n (1) =    O( 1 n 1/α ) Ĥ n β n (1) + O( 1 n 2/α )R n 1,β n (1) + O( 1 n 2/α )R n β n (1) 2 Ĥ n β n (1) + 2σ n R n 1,βn (1) n 1/α + 2σ n R n βn (1) n 1/α + 2σ n R n 9,β n (1) Ĥ n β n (1) + 2σ 2 n R n 1,βn (1)R n 9,βn (1) n 1/α + 2σ 2 n R n βn (1)R n 9,βn (1) n 1/α   
where C is some deterministic constant and O( 

   σ 2 n n 2/α-1 V n,θ n 1 σ 2 n n 1/α V n,σ n 1    2H Ȳ n,βn ,x 0 1 (1) (U n,β n 1 ) n→∞ ------→ L p ,∀p≥1    0 2H L α (1)   
   σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    H Ȳ n,βn ,x 0 1 (1)W n,β n 1 (U n,β n 1 ) 2 =    σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    n 1/α Ĥ n β n (1) 
σ n + R n 1,β n (1) + R n β n (1)
n 1/α σ n Ĥ n 1,β n (1) + R n 2,β n (1) =    n∂ θ Ȳ n,β n ,x 0 1 n 1/α ∂ σ Ȳ n,β n ,x 0 1    Ĥ n β n (1) Ĥ n 1,β n (1) +    σ n n 1/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ n ∂ σ Ȳ n,β n ,x 0 1    Ĥ n β n (1)R n 2,β n (1) +    σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    R n 1,β n (1)R n 2,β n (1) +    σ n n 1/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ n ∂ σ Ȳ n,β n ,x 0 1    R n 1,β n (1) Ĥ n 1,β n (1) +    σ n n 1/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ n ∂ σ Ȳ n,β n ,x 0 1    R n β n (1) Ĥ n 1,β n (1) +    σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    R n β n (1)R n 2,β n (1
   σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    H Ȳ n,βn ,x 0 1 (1)W n,β n 1 (U n,β n 1 ) 2 n→∞ ------→ L p ,∀p≥1    ∂ θ b(x 0 , θ)H 1,L α (1)H L α (1) L α 1 H 1,L α (1)H L α (1).    Term 4: Using W n,βn 1 (U n,βn 1 
) 2 = n 1/α σ n Ĥ n 1,β n (1) + R n 2,β n
(1) again, we can rewrite 

   σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    (W n,β n 1 ) 2 (U n,β n 1 ) 4 =    σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    n 1/α σ n Ĥ n 1,β n (1) + R n 2,β n (1) 2 =    n∂ θ Ȳ n,β n ,x 0 1 n 1/α ∂ σ Ȳ n,β n ,x 0 1    ( Ĥ n 1,β n (1)) 2 +    σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    (R n 2,β n (1)) 2 +    2σ n n 1/α-1 ∂ θ Ȳ n,β n ,x 0 1 2σ n ∂ σ Ȳ n,β n ,x 0 1    R n 2,β n (1) Ĥ n 1,β n (1
   σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    (W n,β n 1 ) 2 (U n,β n 1 ) 4 n→∞ ------→ L p ,∀p≥1    ∂ θ b(x 0 , θ) H 1,L α (1) 2 L α 1 H 1,L α (1) 2   
Term 5: From Lemma 2.5.3 we can estimate the fifth term as

   σ 2 n n 2/α-1 V n,θ n 1 σ 2 n n 1/α V n,σ n 1    W n,β n 1 (U n,β n 1 ) 3 =    O( 1 n 2/α ) σ 2 n n 1/α R n 9,β n (1) + 1 σ n    n 1/α σ n Ĥ n 1,β n (1) + R n 2,β n (1) =    O( 1 n 1/α ) Ĥ n 1,β n (1) + O( 1 n 2/α )R n 2,β n (1) 
σ n R n 9,β n (1) Ĥ n 1,β n (1) + σ 2 n n 1/α R n 9,β n (1)R n 2,β n (1) + Ĥ n 1,β n (1) + σ n n 1/α R n 2,β n (1) 

  

where C is some deterministic constant. From (2.3.16), (2.4.24), Lemma 2.5.3, we also conclude that

   σ 2 n n 2/α-1 V n,θ n 1 σ 2 n n 1/α V n,σ n 1    W n,β n 1 (U n,β n 1 ) 3 n→∞ ------→ L p ,∀p≥1    0 H 1,L α (1)   
Term 6: Using Lemma 2.5.2 we write the sixth term as 

   σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    D n,β n 1 (U n,β n 1 ) 2 =    n 2 ∂ θ Ȳ n,β n ,x 0 1 n 1/α 2 ∂ σ Ȳ n,β n ,x 0 1    Ĥ n 3,β n (1) +    σ 2 n n 1/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n ∂ σ Ȳ n,β n ,x 0 1    R n 4,β n (1) + R n 5,β n (1) + R n 6,β n (1) .
   σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    2D n,β n 1 (U n,β n 1 ) 2 n→∞ ------→ L p ,∀p≥1    ∂ θ b(x 0 , θ)H 3,L α (1) L α 1 H 3,L α (1)   
where H 3,L α (1) is defined in Lemma 2.5.2.

Term 7: From Lemma 2.5.2, we can rewrite the seventh term as

   σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    Q n,β n 1 (U n,β n 1 ) 3 =    n∂ θ Ȳ n,β n ,x 0 1 n 1/α ∂ σ Ȳ n,β n ,x 0 1    Ĥ n 4,β n (1) +    σ 2 n n 1/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n ∂ σ Ȳ n,β n ,x 0 1    R n 7,β n (1) + R n 8,β n (1) .
Applying Lemma 2.5.2, Lemma 2.5.5 and Lemma 2.5.1 we obtain that

   σ 2 n n 2/α-1 ∂ θ Ȳ n,β n ,x 0 1 σ 2 n n 1/α ∂ σ Ȳ n,β n ,x 0 1    Q n,β n 1 (U n,β n 1 ) 3 n→∞ ------→ L p ,∀p≥1    ∂ θ b(x 0 , θ)H 4,L α (1) L α 1 H 4,L α (1)   
where H 4,L α (1) is defined in Lemma 2.5.2.

Term 8: From Lemma 2.5.3, we have

   σ 2 n n 2/α-1 T n,θ n 1 σ 2 n n 1/α T n,σ n 1    1 (U n,β n 1 ) 2 =    σ 2 n n 2/α-1 T n,θn 1 (U n,βn 1 ) 2 Ĥ n 5,β n (1) + σ 2 n R n 10,β n (1) + σ 2 n R n 11,β n (1) + σ 2 n R n 12,β n (1) 

  

Using the results of Lemma 2.5.3, we easily deduce that

   σ 2 n n 2/α-1 T n,θ n 1 σ 2 n n 1/α T n,σ n 1    1 (U n,β n 1 ) 2 n→∞ ------→ L p ,∀p≥1    0 H 5,L α (1)   
where H 5,L α (1) is defined in Lemma 2.5.3.

Finally from the above convergences, we can deduce the result of Proposition 2.5.1.

Proof of Theorem 2.2.2

We will first prove part ii) and then give a proof for part i).

ii) Remark that from (2.5.24), (2.5.25)

sup u∈R sup n E 1 { Ȳ n,βn ,x 0 1 ≥ uσn n 1/α +ς n,θn ,x 0 1 } σ 2 n n 2/α-1 H Ȳ n,βn ,x 0 1 (H Ȳ n,βn ,x 0 1 (∂ θ Ȳ n,β n ,x 0 CHAPTER 2.
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and

sup u∈R sup n E 1 { Ȳ n,βn ,x 0 1 ≥ uσn n 1/α +ς n,θn ,x 0 1 } σ 2 n n 1/α H Ȳ n,βn ,x 0 1 (H Ȳ n,βn ,x 0 1 (∂ σ Ȳ n,β n ,x 0 1
)) < ∞.

By representation (2.5.1) this leads to

sup u∈R sup n σ 2 n n 2 α -1 ∂ θ p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1
) < ∞ and sup

u∈R sup n σ 2 n n 1/α ∂ σ p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1
) < ∞.

i) From (2.5.1), (2.4.26) and Proposition 2.5.1, we easily deduce that (2.5.28)

σ 2 n n 1/α ∂ σ p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1 ) = σ 2 n n 1/α ∂ σ q n,β n ,x 0 ( uσ n n 1/α + ς n,θ n ,x 0 1 ) n→∞ ----→ E[1 [u,∞) (L α 1 )
H (2) ],

(2.5.29)

σ 2 n n 2 α -1 ∂ θ p β n 1 n (x 0 , uσ n n 1/α +ς n,θ n ,x 0 1 ) = σ 2 n n 2 α -1 ∂ θ q n,β n ,x 0 ( uσ n n 1/α +ς n,θ n ,x 0 1 ) n→∞ ----→ ∂ θ b(x 0 , θ)×E[1 [u,∞) (L α 1 )H (2) 1 ],
where H (2) and H (2) 1 are defined in Proposition 2.5.1.

To finish the proof of Theorem 2.2.2, it remains to show that

E[1 [u,∞) (L α 1 )H (2) 1 ] = -ϕ α (u) and E[1 [u,∞) (L α 1 )H (2) ] = -ϕ α (u) + uϕ α (u)
. This is done in Lemma 2.5.6 below.

Lemma 2.5.6. We have

ϕ α (u) = -E[1 [u,∞) (L α 1 )H (2) 1 ], -ϕ α (u) + uϕ α (u) = E[1 [u,∞) (L α 1 )H (2) ],
where ϕ α is the density of L α 1 and H (2) and H (2) 1 are defined in Proposition 2.5.1.

Proof. Let us consider the situation where b(x, θ) = θ and x 0 = 0. In that case, we have Ȳ1 n,β,x 0 = θ n + σ n 1/α L n 1 and thus the density of Ȳ1 n,β,x 0 is related to the density of L n 1 by the relation,

q n,β,x 0 (u) = n 1/α σ ϕ n n 1/α σ u - θ n .
Then,

∂ θ q n,β,x 0 (u) = - n 2/α-1 σ 2 (ϕ n ) n 1/α σ u - θ n , ∂ σ q n,β,x 0 (u) = - n 1/α σ 2 ϕ n n 1/α σ u - θ n - (n 1/α ) 2 σ 3 u - θ n (ϕ n ) n 1/α σ u - θ n . 2.5. PROOF OF THEOREM 2.2.2
By a change of variables, we get

∂ θ q n,β,x 0 uσ n 1/α + θ n = - n 2/α-1 σ 2 (ϕ n ) (u) ∂ σ q n,β,x 0 ( uσ n 1/α + θ n ) = - n 1/α σ 2 ϕ n (u) + u(ϕ n ) (u) .
Hence, we can apply the results of part ii) of Theorem 2.2.2 and (2.5.28), (2.5.29) in this specific setting. This yields

∀u, (ϕ n ) (u) n→∞ ----→ -E[1 [u,∞) (L α 1 )H (2) 1 ], (2.5.30) ∀u, ϕ n (u) + u(ϕ n ) (u) n→∞ ----→ -E[1 [u,∞) (L α 1 )H (2) ], (2.5.31) sup u,n |(ϕ n ) (u)| < ∞, (2.5.32) sup u,n ϕ n (u) + u(ϕ n ) (u) < ∞. (2.5.33) Let us denote X (u) = -E[1 [u,∞) (L α
1 )H (2) 1 ] and assume by contradiction that X = ϕ α . Using the continuity of u → X (u), there exists a smooth, compactly supported function f , such that

X (u) f (u)du = ϕ α (u) f (u)du. Now, on the one hand we have (2.5.34) (ϕ n ) (u) f (u)du n→∞ ----→ X (u) f (u)du,
where we have used the dominated convergence theorem, together with (2.5.30), (2.5.32).

On the other hand, we can write,

(ϕ n ) (u) f (u)du = -ϕ n (u) f (u)du (2.5.35) = -E[ f (L n 1 )] n→∞ ----→ -E[ f (L α 1 )] (2.5.36) = -ϕ α (u) f (u)du = ϕ α (u) f (u)du
where the convergence (2.5.35) is obtained in the same way as (2.4.34). Clearly (2.5.36) contradicts (2.5.34), and we get

E[1 [u,∞) (L α 1 )H (2) 1 ] = -ϕ α (u).
By the same method, let us denote

X 1 (u) = -E[1 [u,∞) (L α 1 )
H (2) ] and assume by contradiction that

u → X 1 (u) is different from u → ϕ α (u) + u(ϕ α ) (u) .
Using the continuity of u → X 1 (u), there exists a smooth, compactly supported function f , such that

X 1 (u) f (u)du = ϕ α (u) + u(ϕ α ) (u) f (u)du. DIFFERENTIAL EQUATION DRIVEN BY A STABLE LÉVY PROCESS
Now, we have (2.5.37)

ϕ n (u) + u(ϕ n ) (u) f (u)du n→∞ ----→ X 1 (u) f (u)du,
where we have used the dominated convergence theorem, together with (2.5.31), (2.5.33).

On the other hand, letting g(u) = u f (u) and using the integration by parts formula, we can write,

ϕ n (u) + u(ϕ n ) (u) f (u)du = ϕ n (u) f (u)du + (ϕ n ) (u)g(u)du (2.5.38) = E[ f (L n 1 )] -ϕ n (u)g (u)du = E[ f (L n 1 )] -E[g (L n 1 )] n→∞ ----→ E[ f (L α 1 )] -E[g (L α 1 )] (2.5.39) = ϕ α (u) f (u)du -ϕ α (u)g (u)du = ϕ α (u) f (u)du + ϕ α (u)g(u)du
where the convergence (2.5.38) is obtained in the same way as (2.4.34). Clearly (2.5.39) contradicts (2.5.37), and the lemma is proved.

Proofs of the intermediate lemmas

In this subsection, we give the proofs of Lemmas 2.5.1 -2.5.5 of Section 2.5.2.

Proof of Lemma 2.5.1: i) Since b has bounded derivatives, we obtain from (2.5.3)

sup β∈Q |∂ θ Ȳ n,β,x 0 1 | ≤ C n .
ii) From (2.5.4) and Gronwall's Lemma, we get 

∂ σ Ȳ n,β,x 0 s ≤ C n 1/α sup s∈[0,1] L n s ≤ C n 1/α sup s∈[0,1] s 0 |z|≤1 z μ(du, dz) + C n 1/α 1 0 |z|>1 |z|µ (n) (du, dz)
We now consider the first term of (2. We now consider the second term of (2.5.40).

From µ (n) (ds, dz) = μ(n) (ds, dz) + υ (n) (ds, dz) then for C 2 (p) a positive constant, we have 1 

n p/α E 1 0 |z|>1 |z|µ (n) (du, dz) p ≤ C 2 (p) n p/α E 1 0 |z|>1 |z| μ(n) (du, dz) p + E 1 0 |z|>1 |z|υ (n) (du,
n p/α E 1 0 |z|>1 |z| μ(n) (ds, dz) p ≤ C 3 (p) n p/α 1 0 |z|>1 z 2 υ (n) (ds, dz) p/2 + 1 0 |z|>1 |z| p υ (n) (ds, dz) = C 3 (p) n p/α 1 0 |z|>1 z 2 1 |z| 1+α τ(z/n 1/α )dzds p/2 + C 3 (p) n p/α 1 0 |z|>1 |z| p 1 |z| 1+α τ(z/n 1/α )dzds ≤ 2C 3 (p) n p/α 1 0 2n 1/α 1 1 z α-1 dzds p/2 + 2C 3 (p) n p/α 1 0 2n 1/α 1 1 z α+1-p dzds n→∞ ----→ 0,
where we used that 0 ≤ τ ≤ 1 and τ = 0 on [-2, 2] c . Hence, we get that the second term of (2.5.40) also converges to zero in L p , ∀p ≥ 1. This finishes the proof of ii). 2 , then we obtain that the main term is (2.5.11) and the remainder terms are

R n 4,β (1) = 1 0 |z|>2 ( n s ) -2 ρ n (z)ρ n (z) τ (z/n 1/α ) τ(z/n 1/α ) µ (n) (ds, dz) 2σ 2 n 1/α ( n 1 ) 2 1 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz) 2 + + 1 0 |z|>2 ( n s ) -2 ρ n (z) 2 τ (z/n 1/α ) τ(z/n 1/α ) -τ (z/n 1/α ) τ(z/n 1/α ) 2 µ (n) (ds, dz) 2σ 2 n 1/α ( n 1 ) 2 1 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz) 2 , R n 5,β (1) = ( n 1 ) 2 1 0 ( n s ) -2 b ( Ȳ n,β,x 0 s , θ) 2L Ȳ n,β,x 0 s U n,β s + W n,β s ds 2n 1+1/α U n,β 1 2 , R n 6,β (1) = ( n 1 ) 2 1 0 ( n s ) -2 b ( Ȳ n,β,x 0 s , θ)(U n,β s ) 2 ds 2n 1+1/α U n,β 1 2 . 
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The part ii) is proved by decomposing

Q n,β 1 (U n,β 1 )
3 , then we obtain that the main term is (2.5.12) and the remainder terms are

R n 7,β (1) = 7( n 1 ) 4 1 0 ( n 1 ) -4 b ( Ȳ n,β,x 0 s , θ)W n,β s U n,β s ds n 1+1/α U n,β 1 3 R n 8,β (1) = 2( n 1 ) 4 1 0 ( n 1 ) -4 b (( Ȳ n,β,x 0 s , θ)(U n,β s ) 3 ds n 1+1/α U n,β 1 3 
.

We now study the convergence of the main terms.

From (2.3.10), the boundedness of b and Lemma 2.3.1, it is clear that Ĥ n 3,β n

(1) converges almost surely to H 3,L α (1). Moreover, using again the boundedness of b , the upper and lower bounds of ( n s ) s∈[0,1] and the fact that ρ n (z) is a non negative function, we deduce the upper bound, for some

constant C > 0, (2.5.42) 
Ĥ n 3,β (1) ≤ C     1 0 R ρ n (z) (ρ n ) (z) + ρ n (z) ρ n (z) (1+α) |z| + ρ n (z) 2 (1+α) z 2 µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 2     .
Proceeding as in Step 1 in the proof of Theorem 2.2.1, we show that sup n Ĥ n

3,β n (1) 
p is integrable.

Then applying the dominated convergence theorem, we get Ĥ n

3,β n (1) n→∞ ------→ L p ,∀p≥1
H 3,L α (1). In the same way we prove that Ĥ n

4,β n (1) n→∞ ------→ L p ,∀p≥1 H 4,L α (1).
Turning to the remainder terms, since b has bounded derivatives and sup

β sup s U n,β s U n,β 1 is bounded, we obtain sup β∈Q |R n 5,β (1)| ≤ C sup β∈Q sup s∈[0,1] |L Ȳ n,β,x 0 s | n 1+1/α U n,β 1 + sup s∈[0,1] |W n,β s | n 1+1/α (U n,β 1 ) 2 , sup β∈Q |R n 6,β (1)| ≤ C 2n 1+1/α , (2.5.43) sup β∈Q |R n 7,β (1)| ≤ C sup β∈Q sup s∈[0,1] |W n,β s | n 1+1/α (U n,β 1 ) 2 , sup β∈Q |R n 8,β (1)| ≤ C n 1+1/α .
(2.5.44) 

sup s∈[0,1] |L Ȳ n,β,x 0 s | n 1+1/α U n,β 1 ≤ C   1 n 2+1/α + 1 0 R |ρ n (z)| + 1+α |z| ρ n (z) µ (n) (ds, dz) n 1 0 R ρ n (z)µ (n) (ds, dz)   + C   1 0 |z|>2 z 2 τ (z/n 1/α ) τ(z/n 1/α ) µ (n) (ds, dz) n 1+1/α 1 0 |z|>2 z 2 µ (n) (ds, dz)   , sup β∈Q sup s∈[0,1] |W n,β s | n 1+1/α (U n,β 1 ) 2 ≤ C    1 n 2+1/α + 1 0 R ρ n (z)|(ρ n ) (z)|µ (n) (ds, dz) n 1 0 R ρ n (z)µ (n) (ds, dz) 2    . (2.
sup β∈Q R n 4,β (1) ≤ C     1 0 |z|>2 |z| 3 n 1/α τ (z/n 1/α ) τ(z/n 1/α ) + z 4 n 1/α τ (z/n 1/α ) τ(z/n 1/α ) + τ (z/n 1/α ) τ(z/n 1/α ) 2 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 2     (2.5.46) ≤ C     1 0 |z|>2 |z| 3 n 1/α τ (z/n 1/α ) τ(z/n 1/α ) + z 4 n 1/α τ (z/n 1/α ) τ(z/n 1/α ) + τ (z/n 1/α ) τ(z/n 1/α ) 2 µ (n) (ds, dz) n 4/α     (2.5.47)
where we used

1 0 |z|>2 z 2 µ (n) (ds, dz) > n 2/α , if there exists a jump of the Lévy process in [-2n 1/α , -n 1/α )∪ (n 1/α , 2n 1/α ]. If there are no jumps in [-2n 1/α , -n 1/α ) ∪ (n 1/α , 2n 1/α ], since τ(z/n 1/α ) = 1 if |z| ≤ n 1/α ,
we have τ (z/n 1/α ) = 0 and τ (z/n 1/α ) = 0. Thus for M(p) a positive constant we have

E sup β∈Q |R n 4,β (1)| p ≤ C p n p/α E    1 0 |z|>2   1 n 1/α z n 1/α 3 τ (z/n 1/α ) τ(z/n 1/α ) + z n 1/α 4 τ (z/n 1/α ) τ(z/n 1/α ) + τ (z/n 1/α ) τ(z/n 1/α ) 2   µ (n) (ds, dz)    p ≤ M(p) n p/α    E   1 0 |z|>2 1 n 1/α z n 1/α 3 τ (z/n 1/α ) τ(z/n 1/α ) µ (n) (ds, dz)   p + E   1 0 |z|>2 z n 1/α 4 τ (z/n 1/α ) τ(z/n 1/α ) µ (n) (ds, dz)   p + E   1 0 |z|>2 z n 1/α 4 τ (z/n 1/α ) τ(z/n 1/α ) 2 µ (n) (ds, dz)   p    CHAPTER 2.
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Similarly to the proof of Theorem 2.3.1, we show that under assumption H 1 (b ii ), sup β∈Q |R n 4,β (1)| converges to zero as n → ∞ in L p for all p ≥ 1 and this completes the proof of ii).

The result of iii) follows from Lemma 2.5.1 ii) and the estimation (2.5.45).

Proof of Lemma 2.5.3: i) From (2.5.5), the fact that b has bounded derivatives, sup β sup 0≤s≤1

U n,β s U n,β 1 
is bounded, the upper and lower bounds of (( n t )) t∈[0,1] , we deduce i).

ii) From (2.4.3), (2.5.9) we have

T n,θ 1 n 2 α -1 U n,β 1 2 = 3( n 1 ) 3 1 0 ( n 1 ) -3 b ( Ȳ n,β,x 0 s , θ)V n,θ s U n,β s ds n 2 α U n,β 1 2 + ( n 1 ) 3 1 0 ( n 1 ) -3 (∂ θ b) ( Ȳ n,β,x 0 s , θ)W n,β s ds n 2 α U n,β 1 2 + ( n 1 ) 3 1 0 ( n 1 ) -3 b ( Ȳ n,β,x 0 s , θ)∂ θ Ȳ n,β,x 0 s W n,β s ds n 2 α U n,β 1 2 + ( n 1 ) 3 1 0 ( n 1 ) -3 (∂ θ b) ( Ȳ n,β,x 0 s , θ)(U n,β s ) 2 ds n 2 α U n,β 1 2 + ( n 1 ) 3 1 0 ( n 1 ) -3 b ( Ȳ n,β,x 0 s , θ)∂ θ Ȳ n,β,x 0 s (U n,β s ) 2 ds n 2 α U n,β 1 2 . 
We deduce, using Lemma 2.5.1 i) and Lemma 2.5.3 i) that (2.5.48)

sup β∈Q T n,θ 1 n 2 α -1 U n,β 1 2 ≤ C 1 n 2 α + C 2 sup β∈Q sup s∈(0,1] |W n,β s | n 2 α (U n,β 1 ) 2 
, where C 1 , C 2 are some deterministic constants. Now from the estimation (2.5.45), we easily deduce that sup β∈Q 2 tends to zero as n → ∞ and then we get ii).

sup s∈(0,1] |W n,β s | n 2 α (U n,β 1 )
iii) and iv) From (2.4.3), (2.5.6), (2.5.10), an easy computation shows the decomposition of

V n,σ 1 U n,β 1 and 1 n 1/α T n,σ 1 U n,β 1 
2 , where the leading term is (2.5.18) and the remainder terms are given by 

R n 9,β (1) = ( n 1 ) 2 1 0 ( n s ) -2 b ( Ȳ n,β,x 0 s , θ)∂ σ Ȳ n,β,x 0 s U n,β s ds nU n,β 1 , R n 10,β (1) = 3( n 1 ) 3 1 0 ( n 1 ) -3 b ( Ȳ n,β,x 0 s , θ)V n,σ s U n,β s ds n 1+1/α U n,β 1 2 , R n 11,β (1) = ( n 1 ) 3 1 0 ( n 1 ) -3 b ( Ȳ n,β,x 0 s , θ)∂ σ Ȳ n,β,x 0 s W n,β s ds n 1+1/α U n,β 1 2 , R n 12,β (1) = ( n 1 ) 3 1 0 ( n 1 ) -3 b ( Ȳ n,β,x 0 s , θ)∂ σ Ȳ n,β,x 0 s (U n,β s ) 2 ds n 1+1/α U n,β 1 2 . 
∂ σ Ȳ n,β,x 0 s , sup β∈Q R n 10,β (1) ≤ C 1 n 1+1/α sup β∈Q sup s∈[0,1] |V n,σ s | U n,β 1 , sup β∈Q |R n 11,β (1)| ≤ C 2 n 1+1/α sup β∈Q    sup s∈[0,1] |∂ σ Ȳ n,β,x 0 s W n,β s | U n,β 1 2    , sup β∈Q |R n 12,β (1)| ≤ C 3 n 1+1/α sup β∈Q sup s∈[0,1] ∂ σ Ȳ n,β,x 0 s where C, C 1 , C 2 , C 3 are deterministic constants.
We observe that from Lemma 2.5. 

x 0 | Ĥ n β n (1) q -H L α (1) q | n→∞ ----→ a.s 0, ∀q ≥ 1.
We deduce that almost surely, one has the convergence (2.5.50) ∀q ≥ 1, sup 

x 0 n∂ θ Ȳ n,β n ,x 0 1 Ĥ n β n (1) q -∂ θ b(x 0 , θ) (H L α (1)) q n→∞ ----→ 0.
|n 1/α ∂ σ Ȳ n,β n ,x 0 1 -L α 1 | n→∞ ----→ a.s 0, CHAPTER 2.
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and from (2.5.49) we deduce ∀q ≥ 1, sup

x 0 n 1/α ∂ σ Ȳ n,β n ,x 0 1 Ĥ n β n (1) q -L α 1 (H L α (1)) q n→∞ ----→ 0.
Consequently, to prove the convergence in L p -norm, it remains to check

(2.5.51) ∀p, q ≥ 1, E sup n,β,x 0 n 1/α ∂ σ Ȳ n,β n ,x 0 1 Ĥ n β (1) q p < ∞.
Using again (2.5.4) and Gronwall's Lemma, we have sup

x 0 ,β |n 1/α ∂ σ Ȳ n,β,x 0 1 | ≤ C sup t∈[0,1] |L n t |,
and (2.5.51) reduces to

(2.5.52) ∀p, q ≥ 1, E sup n,β,x 0 sup t∈[0,1] |L n t | Ĥ n β (1) q p < ∞.
Let us recall that

L n t = t 0 |z|≤1 z μ(ds, dz) + t 0 |z|>1 zµ (n) (ds, dz). Then we have sup t∈[0,1] |L n t | ≤ sup t∈[0,1] | t 0 |z|≤1 z μ(ds, dz)| + 1 0 |z|>1 |z|µ (n) (ds, dz).
From this decomposition and since sup t∈[0,1] | t 0 |z|≤1 z μ(ds, dz)| p is integrable, for all p ≥ 1, we see that (2.5.52) is a consequence of (2.4.23) and the following bound

(2.5.53) ∀p ≥ 1, E sup n,β,x 0 Ĥ n β (1) 1 0 |z|>1 |z|µ (n) (ds, dz) p < ∞.
To prove (2.5.53), we first remark from (2.4.17) that for C a positive constant, (2.5.54)

Ĥ n β (1) 1 0 |z|>1 |z|µ (n) (ds, dz) ≤ C       1 0 R ρ n (z)|(ρ n ) (z)|µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 2 + 1 0 R |ρ n (z)| + 1+α |z| ρ n (z) µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz)    1 0 2≥|z|>1 |z|µ(ds, dz)    +C       1 0 R ρ n (z)|(ρ n ) (z)|µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 2 + 1 0 R |ρ n (z)| + 1+α |z| ρ n (z) µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz)    1 0 |z|>2 |z|µ (n) (ds, dz)   
Considering the first term in the right-hand side of ( x 0 and belonging to ∩ p≥1 L p .

We now consider the second term in the right-hand side of (2.5.54). From (2.3.11), we have

(2.5.55)    1 0 R ρ n (z)|(ρ n ) (z)|µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 2 + 1 0 R |ρ n (z)| + 1+α |z| ρ n (z) µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz)    1 0 |z|>2 |z|µ (n) (ds, dz) ≤    1 0 |z|≤2 ρ(z) ρ (z) µ(ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 2 + 1 0 |z|≤2 ρ (z) + ρ(z) 1+α |z| µ(ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz)    1 0 |z|>2 |z|µ (n) (dt, dz) +    1 0 |z|>2 2|z| 3 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 2 + 1 0 |z|>2 (3 + α) |z|µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz)    1 0 |z|>2 |z|µ (n) (dt, dz)
Using the Cauchy-Schwarz inequality

1 0 |z|>2 µ (n) (dt, dz) × 1 0 |z|>2 z 2 µ (n) (ds, dz) ≥ 1 0 |z|>2 |z|µ (n) (dt, dz) 2
we get:

(2.5.56)

1 0 |z|>2 2|z| 3 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 2 1 0 |z|>2 |z|µ (n) (dt, dz) ≤ 1 0 |z|>2 2|z| 3 µ (n) (ds, dz) 1 0 |z|>2 |z|µ (n) (dt, dz) 3 1 0 |z|>2 µ (n) (dt, dz) 2 = N 1 i=1 2|Z i | 3 N 1 i=1 |Z i | 3 1 0 |z|>2 µ (n) (dt, dz) 2 ≤ 2 1 0 |z|>2 µ(dt, dz) 2 and 
(2.5.57)

1 0 |z|>2 (3 + α)|z|µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 1 0 |z|>2 |z|µ (n) (dt, dz) ≤ (3 + α) 1 0 |z|>2 µ(dt, dz).
Combining (2.5.56), (2.5.57) with (2.5.55), it follows that the second term in the right-hand side of (2.5.54) is also bounded by a random variable independent of n, β and x 0 and belonging to ∩ p≥1 L p . Consequently, we get (2.5.53) and this achieves the proof of (2.5.22).

For (2.5.23), the proof is similar to (2.5.22).

Proof of Lemma 2.5.5: From (2.5.13), we prove i) and ii) proceeding as in the proof of (2.5.20), and iii) and iv) proceeding as in the proof of (2.5.22).
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Appendix. Representation of the transition density via

Malliavin calculus

The aim of this section is to represent the density of a pure jump Lévy process as well as its derivative and its logarithm derivative as an expectation, using the Malliavin calculus for jump processes developed by Bichteler, Gravereaux and Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] and used by Clément-Gloter [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF]. We are not exactly in the context of [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF], where the compensator of the Poisson measure is uniform on [0, 1] × E. In fact, in our context the compensator of the Poisson measure is dt × g(z)dz, where g is the density of the Lévy measure and we need to adapt slightly the definitions of Malliavin operators given in [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF]. We recall here the appropriate integration by parts setting developed in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] for the reader convenience.

Integration by parts setting

We consider a filtered probability space (Ω, G , (G t ) t∈[0 where the parameter β = (θ, σ) T belongs to R × (0, ∞), a is a real valued function and c is a constant. This is the framework of Clément-Gloter [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] and our aim is to give some explicit representation formulas for the density of Y β 1 and its derivative with respect to β.

We assume that the following assumptions are fulfilled.

H: (a)

The function a has bounded derivatives up to order five with respect to both variables. We now recall the Malliavin operators L and Γ and their basic properties (see Bichteler, Gravereaux, Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF], Chapter IV, Section 8-9-10). For a test function f

: [0, 1] × E → R ( f is measurable, 2.

APPENDIX. REPRESENTATION OF THE TRANSITION DENSITY VIA MALLIAVIN CALCULUS

C 2 with respect to the second variable, with bounded derivative, and f ∈ ∩ p≥1 L p (ν)) we set

µ( f ) = 1 0 E f (t, z)µ(dt, dz).
We introduce an auxiliary function ρ : E → (0, ∞) such that ρ admits a derivative and ρ, ρ and ρ g g belong to ∩ p≥1 L p (g(z)dz). With these notations, we define the Malliavin operator L, on a simple functional µ( f ), in the same way as in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] by the following equations :

L(µ( f )) = 1 2 µ ρ f + ρ g g f + ρ f ,
where f and f are the derivatives with respect to the second variable. For Φ = F(µ( f 1 ), ..,

µ( f k )),
with F of class C 2 , we set

LΦ = k i=1 ∂F ∂x i (µ( f 1 ), ..., µ( f k ))L(µ( f i )) + 1 2 k i, j=1 ∂ 2 F ∂x i ∂x j (µ( f 1 ), ..., µ( f k ))µ(ρ f i f j ).
These definitions permit to construct a linear operator L on a space D ⊂ ∩ p≥1 L p with the same basic properties as in [17, equations (i)-(iii), p.2322].

We associate to L, the symmetric bilinear operator Γ:

Γ(Φ, Ψ) = L(ΦΨ) -ΦLΨ -ΨLΦ.
Moreover, if f and h are two test functions, we have:

Γ(µ( f ), µ(h)) = µ(ρ f h ).
These operators satisfy the following properties (see [8, 

equation (8-3)]) (2.6.2) LF(Φ) = F (Φ)LΦ + 1 2 F (Φ)Γ(Φ, Φ), Γ(F(Φ), Ψ) = F (Φ)Γ(Φ, Ψ), Γ(F(Φ 1 , Φ 2 ), Ψ) = ∂ Φ 1 F(Φ 1 , Φ 2 )Γ(Φ 1 , Ψ) + ∂ Φ 2 F(Φ 1 , Φ 2 )Γ(Φ 2 , Ψ).
The operator L and the operator Γ permit to establish the following integration by parts formula (see [8, Propositions 8-10, p.103]).

Proposition 2.6.1. For Φ and Ψ in D, and f bounded with bounded derivatives up to order two,

we have

E f (Φ)ΨΓ(Φ, Φ) = E f (Φ)(-2ΨLΦ -Γ(Φ, Ψ)). DIFFERENTIAL EQUATION DRIVEN BY A STABLE LÉVY PROCESS Morover, if Γ(Φ, Φ) is invertible and Γ -1 (Φ, Φ) ∈ ∩ p≥1 L p , we have E f (Φ)Ψ = E f (Φ)H Φ (Ψ), (2.6.3) with H Φ (Ψ) = -2ΨΓ -1 (Φ, Φ)LΦ -Γ(Φ, ΨΓ -1 (Φ, Φ)) (2.6.4) = -2ΨΓ -1 (Φ, Φ)LΦ - 1 Γ(Φ, Φ) Γ(Φ, Ψ) + Ψ Γ(Φ, Φ) 2 Γ(Φ, Γ(Φ, Φ)).
(2.6.5)

Representation of the density of Y β 1 and its derivative

The integration by parts setting of the preceding section permits to derive the existence of the density of Y β 1 given by (2.6.1), and gives a representation of this density as an expectation.

From Bichteler, Gravereaux, Jacod [8, Section 10, p.130], we know that ∀t > 0, the variable Y β t , the solution of (2.6.1), belongs to the domain of the operator L, and we can compute [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF]. We recall the representation formula for the density of Y β 1 (see [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF]).

LY β t and Γ(Y β t , Y β t ) as in
Theorem 2.6.1. ]: Let us denote by q β the density of Y β 1 . We assume that H holds and that the auxiliary function ρ satisfies:

(2.6.6) lim inf u→∞ 1 ln u E 1 {ρ(z)≥1/u} g(z)dz = +∞.

Then,

q β (u) = E(1 {Y β 1 ≥u} H Y β 1 ( 1)), with, 
(2.6.7)

H Y β 1 (1) = Γ(Y β 1 , Γ(Y β 1 , Y β 1 )) Γ(Y β 1 , Y β 1 ) 2 -2 LY β 1 Γ(Y β 1 , Y β 1 ) = W β 1 (U β 1 ) 2 -2 LY β 1 U β 1 ,
where the processes (LY

β t ) and (U β t ) = Γ(Y β t , Y β t
) are solutions of the linear equations:

(2.6.8)

LY β t = t 0 a (Y β s , θ)LY β s ds + 1 2 t 0 a (Y β s , θ)U β s ds + cσ 2 t 0 E ρ (z) + ρ(z) g (z) g(z) µ(ds, dz),
(2.6.9)

U β t = 2 t 0 a (Y β s , θ)U β s ds + c 2 σ 2 1 0 E ρ(z)µ(ds, dz).
The process (W

β t ) = Γ(Y β t ,U β t )
is the solution of the linear equation:

(2.6.10)

W β t = 3 t 0 a (Y β s , θ)W β s ds+2 t 0 a (Y β s , θ)(U β s ) 2 ds+c 3 σ 3 t 0 E ρ(z)ρ (z)µ(ds, dz).
In [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF], the authors studied the derivative of q β with respect to the drift parameter θ only.

Here, we intend to study the derivative of q β with respect to both parameters θ and σ. We first remark that (Y 

∂ θ Y β t = t 0 a (Y β s , θ)∂ θ Y β s ds + t 0 ∂ θ a(Y β s , θ)ds,
(2.6.12)

∂ σ Y β t = t 0 a (Y β s , θ)∂ σ Y β s ds + c t 0 E z μ(ds, dz).
By iterating the integration by parts formula, since Y β 1 admits derivatives with respect to θ and σ, one can prove, under the assumption H, the existence and the continuity in β of ∇ β q β (see Theorem 4-21 in [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF]), moreover, we will represent it as an expectation in Theorem 2.6.3. The next result extends the result of Theorem 5 in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF], by giving an expression for the logarithm derivatives of the density w.r.t. (θ, σ) in terms of a conditional expectation.

Theorem 2.6.2. Under the assumptions of Theorem 2.6.1,

(2.6.13)

∇ β q β q β (u) =     ∂ θ q β q β (u) ∂ σ q β q β (u)     = E(H Y β 1 (∇ β Y β 1 )|Y β 1 = u),
where

(2.6.14) H Y β 1 (∇ β Y β 1 ) :=    H Y β 1 (∂ θ Y β 1 ) H Y β 1 (∂ σ Y β 1 )    = -2    ∂ θ Y β 1 ∂ σ Y β 1    LY β 1 U β 1 +    ∂ θ Y β 1 ∂ σ Y β 1    W β 1 (U β 1 ) 2 - 1 U β 1     Γ(Y β 1 , ∂ θ Y β 1 ) Γ(Y β 1 , ∂ σ Y β 1 )     , LY β 1 , U β 1 and W β 1 are given in Theorem 2.6.1, the process (V θ t ) = Γ(Y β t , ∂ θ Y β t ) is the solution of (2.6.15) V θ t = 2 t 0 a (Y β s , θ)V θ s ds + t 0 U β s (∂ θ a) (Y β s , θ) + a (Y β s , θ)∂ θ Y β s ds,
and the process (

V σ t ) = Γ(Y β t , ∂ σ Y β t ) is the solution of (2.6.16) V σ t = 2 t 0 a (Y β s , θ)V σ s ds + t 0 a (Y β s , θ)∂ σ Y β s U β s ds + c 2 σ t 0 E ρ(z)µ(ds, dz).
Proof. Theorem 2.6.2 is an extension of Theorem 5 in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] where the main novelty is the expression for We end this subsection with an explicit representation of ∇ β q β (u) which gives a computation of the iterated Malliavin weight

∂ σ q β q β .
H Y β 1 (H Y β 1 (∇ β Y β 1 )).
Theorem 2.6.3. Under the assumptions of Theorem 2.6.1,

(2.6.17)

∇ β q β (u) =    ∂ θ q β (u) ∂ σ q β (u)    = E 1 {Y β 1 ≥u} H Y β 1 (H Y β 1 (∇ β Y β 1 )) ,
where

H Y β 1 (H Y β 1 (∇ β Y β 1 )) = -2H Y β 1 (∇ β Y β 1 )
LY Proof. Let f be a smooth functions with compact support. Then,

β 1 U β 1 + H Y β 1 (∇ β Y β 1 ) W β 1 (U β 1 ) 2 -     Γ(Y β 1 , H Y β 1 (∂ θ Y β 1 )) Γ(Y β 1 , H Y β 1 (∂ σ Y β 1 ))     1 U β 1 , ( 2 
∇ β E f (Y β 1 ) = R du∇ β q β (u) f (u).
On the other hand, using the integration by parts formula of the Malliavin calculus, we have

∇ β E f (Y β 1 ) = E f (Y β 1 )∇ β Y β 1 = E f (Y β 1 )H Y β 1 (∇ β Y β 1 ) = E F(Y β 1 )H Y β 1 H Y β 1 (∇ β Y β 1 )
where F denotes a primitive function of f . If f converges to Dirac mass at some point u, from the estimates above, we can deduce (2.6.17). Moreover, from (2.6.5) we also get (2.6.18).

To complete the result of Theorem 2.6.3, we give the expressions for Γ(Y

β 1 , H Y β 1 (∂ θ Y β 1 )
) and

Γ(Y β 1 , H Y β 1 (∂ σ Y β 1 )).
Lemma 2.6.1. Under the assumptions of Theorem 2.6.1,

(2.6.19)     Γ(Y β 1 , H Y β 1 (∂ θ Y β 1 )) Γ(Y β 1 , H Y β 1 (∂ σ Y β 1 ))     =    V θ 1 V σ 1    H Y β 1 (1) -    ∂ θ Y β 1 ∂ σ Y β 1    2D β 1 U β 1 -    ∂ θ Y β 1 ∂ σ Y β 1    H Y β 1 (1)W β 1 U β 1 +    ∂ θ Y β 1 ∂ σ Y β 1    Q β 1 (U β 1 ) 2 - -    T θ 1 T σ 1    1 U β 1 +    V θ 1 V σ 1    W β 1 (U β 1 ) 2
, 

where ∂ θ Y β 1 , ∂ σ Y β 1 are
β 1 = Γ(Y β 1 , LY β 1 ), Q β 1 = Γ(Y β 1 ,W β 1 ), T θ 1 = Γ(Y β 1 , V θ 1 ) and T σ 1 = Γ(Y β 1 , V σ 1 )
.

Proof. From the basic properties of the operators L and Γ (linearity and the chain rule property) stated in Section 2.6.1, we get that

Γ(Y β 1 , H Y β 1 (∂ θ Y β 1 )) = Γ Y β 1 , -2∂ θ Y β 1 LY β 1 U β 1 + Γ Y β 1 , ∂ θ Y β 1 W β 1 (U β 1 ) 2 + Γ Y β 1 , - Γ(Y β 1 , ∂ θ Y β 1 ) U β 1 , Γ(Y β 1 , H Y β 1 (∂ σ Y β 1 )) = Γ Y β 1 , -2∂ σ Y β 1 LY β 1 U β 1 + Γ Y β 1 , ∂ σ Y β 1 W β 1 (U β 1 ) 2 + Γ Y β 1 , - Γ(Y β 1 , ∂ σ Y β 1 ) U β 1 , where Γ Y β 1 , -2∂ θ Y β 1 LY β 1 U β 1 = -2 LY β 1 U β 1 Γ(Y β 1 , ∂ θ Y β 1 ) -2 ∂ θ Y β 1 U β 1 Γ(Y β 1 , LY β 1 ) + 2∂ θ Y β 1 LY β 1 (U β 1 ) 2 Γ(Y β 1 ,U β 1 ) = -2 LY β 1 U β 1 V θ 1 -2 ∂ θ Y β 1 U β 1 D β 1 + 2∂ θ Y β 1 LY β 1 (U β 1 ) 2 W β 1 . Γ Y β 1 , ∂ θ Y β 1 W β 1 (U β 1 ) 2 = W β 1 (U β 1 ) 2 Γ(Y β 1 , ∂ θ Y β 1 ) + ∂ θ Y β 1 (U β 1 ) 2 Γ(Y β 1 ,W β 1 ) - 2∂ θ Y β 1 W β 1 (U β 1 ) 3 Γ(Y β 1 ,U β 1 ) = W β 1 (U β 1 ) 2 V θ 1 + ∂ θ Y β 1 (U β 1 ) 2 Q β 1 - 2∂ θ Y β 1 W β 1 (U β 1 ) 3 W β 1 . Γ Y β 1 , - Γ(Y β 1 , ∂ θ Y β 1 ) U β 1 = - Γ(Y β 1 , Γ(Y β 1 , ∂ θ Y β 1 )) U β 1 + Γ(Y β 1 , ∂ θ Y β 1 ) (U β 1 ) 2 Γ(Y β 1 ,U β 1 ) = - T θ 1 U β 1 + V θ 1 (U β 1 ) 2 W β 1 .
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Similarly, we have

Γ Y β 1 , -2∂ σ Y β 1 LY β 1 U β 1 = -2 LY β 1 U β 1 V σ 1 -2 ∂ σ Y β 1 U β 1 D β 1 + 2∂ σ Y β 1 LY β 1 (U β 1 ) 2 W β 1 . Γ Y β 1 , ∂ σ Y β 1 W β 1 (U β 1 ) 2 = W β 1 (U β 1 ) 2 V σ 1 + ∂ σ Y β 1 (U β 1 ) 2 Q β 1 - 2∂ σ Y β 1 W β 1 (U β 1 ) 3 W β 1 . Γ Y β 1 , - Γ(Y β 1 , ∂ σ Y β 1 ) U β 1 = - T σ 1 U β 1 + V σ 1 (U β 1 ) 2 W β 1 .
Then, from (2.6.7) and the above estimates, we get the formula (2.6.19), after some calculus and the proof is complete.

Lemma 2.6.2. Under the assumptions of Theorem 2.6.1, there are versions of the processes

(D β t ) = (Γ(Y β t , LY β t )) t , (Q β t ) = Γ(Y β t ,W β t ) t , (T θ t ) t = (Γ(Y β t , V θ t )) t and (T σ t ) t = (Γ(Y β t , V σ t )) t that are
solutions of the linear equations:

(2.6.20)

D β t = 2 t 0 a (Y β s , θ)D β s ds + t 0 a (Y β s , θ)LY β s U β s ds + 1 2 t 0 a (Y β s , θ)W β s ds + 1 2 t 0 a (Y β s , θ)(U β s ) 2 ds + c 2 σ 2 2 t 0 E ρ(z) ρ (z) + ρ(z) g (z) g(z) µ(ds, dz), (2.6.21) 
Q β t = 4 t 0 a (Y β s , θ)Q β s ds + 7 t 0 a (Y β s , θ)W β s U β s ds + 2 t 0 a (Y β s , θ)(U β s ) 3 ds + c 4 σ 4 t 0 E ρ(z) (ρ(z) ) 2 + ρ(z)ρ(z) µ(ds, dz),
(2.6.22)

T θ t = 3 t 0 a (Y β s , θ)T θ s ds + 3 t 0 a (Y β s , θ)V θ s U β s ds + t 0 (∂ θ a) (Y β s , θ)W β s ds + t 0 a (Y β s , θ)∂ θ Y β s W β s ds + t 0 (∂ θ a) (Y β s , θ)(U β s ) 2 + t 0 a (Y β s , θ)∂ θ Y β s (U β s ) 2 ds,
(2.6.23)

T σ t = 3 t 0 a (Y β s , θ)T β s ds + 3 t 0 a (Y β s , θ)V σ s U β s ds + t 0 a (Y β s , θ)∂ σ Y β s W β s ds + t 0 a (Y β s , θ)∂ σ Y β s (U β s ) 2 ds + c 3 σ 2 t 0 E ρ(z)ρ(z) µ(ds, dz).
Proof. The proof of Lemma 2.6.2 is a direct consequence of Theorem 10-3 in [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF]. Indeed, considering the stochastic differential equation satisfied by the vector

Y β t , LY β t ,U β t ,W β t , V θ t , V σ t , ∂ θ Y β t , ∂ σ Y β t T
and using Theorem 10-3 in [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF], we prove that the processes (D

β t ) = (Γ(Y β t , LY β t )) t , (Q β t ) = Γ(Y β t ,W β t ) t , (T θ t ) t = (Γ(Y β t , V θ t )) t and (T σ t ) t = (Γ(Y β t , V σ t )
) t are solutions of linear equations, respectively, given by (2.6.20)-(2.6.23).

CHAPTER 3

LAMN PROPERTY FOR THE DRIFT AND VOLATILITY PARAMETERS OF A SDE DRIVEN BY A STABLE LÉVY PROCESS

This work focuses on the Local Asymptotic Mixed Normality (LAMN) property from high frequency observations, of a continuous time process solution of a stochastic differential equation driven by a truncated α-stable process with index α ∈ (0, 2). The process is observed on the fixed time interval [0,1] and the parameters appear in both the drift coefficient and scale coefficient. This extends the results of [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] where the index α ∈ (1, 2)

and the parameter appears only in the drift coefficient. We compute the asymptotic Fisher information and find that the rate in the LAMN property depends on the behavior of the Lévy measure near zero. The proof relies on the small time asymptotic behavior of the transition density of the process obtained in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF].

Introduction

Modeling with pure jump Lévy processes plays an important role in many fields, especially in mathematical finance (see for example [START_REF] Barndorff-Nielsen | Lévy processes: theory and applications[END_REF], [START_REF] Jing | Modeling high-frequency financial data by pure jump processes[END_REF], [START_REF] Kong | Testing for pure-jump processes for high-frequency data[END_REF]) and parametric inference for such processes is a currently active subject.

In this paper, we are concerned with parametric estimation of a stochastic differential equation driven by a pure jump Lévy process, from high-frequency observations on a fixed observation time. More precisely we consider the statistical experiment (R n , B n , (P

β n ) β∈Θ⊂R 2 ) corresponding to DRIVEN BY A STABLE LÉVY PROCESS
the observation of a Lévy driven stochastic equation at discrete times (X

β i n
) 1≤i≤n , solution of

X β t = x 0 + t 0 b(X β s , θ)ds + σL t , t ∈ [0, 1],
where (L t ) t∈[0,1] is a truncated α-stable process with exponent α ∈ (0, 2) and

β = (θ, σ) T ∈ R × (0, ∞)
is an unknown parameter to be estimated. We prove in this work that the Local Asymptotic Mixed Normality property (LAMN) holds for the parameter β. The LAMN property has been introduced

by Jeganathan [START_REF] Jeganathan | On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal[END_REF] [40] to extend to the markovian case the LAN property introduced in the pioneer works by Lecam and Hájek (see [START_REF] Le | Asymptotics in statistics: Some basic concepts[END_REF], [START_REF] Hájek | Local asymptotic minimax and admissibility in estimation[END_REF]) in the i.i.d. case. This property permits in particular to identify the optimal estimation rate for the parameters θ and σ and the asymptotic Fisher information.

Parametric inference and LAN property for pure jump Lévy processes based on high frequency observations have been investigated in several papers, see for example Aït-Sahalia and Jacod [START_REF] Aït | Volatility estimators for discretely sampled Lévy processes[END_REF] [3], Kawai and Masuda [START_REF] Kawai | On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling[END_REF] [44], Masuda [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF]. In particular, in [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF], the LAN property is established and estimators are proposed for the parameters (θ, σ, α) in the model

X t = θt + σL α t ,
where (L α t ) is an α-stable process. Aït-Sahalia and Jacod [START_REF] Aït | Volatility estimators for discretely sampled Lévy processes[END_REF] [3] considered the model

X t = σL α t + θY t ,
where (Y t ) is a Lévy process, independent of (L α t ) and dominated by (L α t ). More recently, Ivanenko, Kulik and Masuda [START_REF] Ivanenko | Uniform LAN property of locally stable Lévy process observed at high frequency[END_REF] proved the LAN property for the parameter (θ, σ) in the model

X t = θt + σZ t +U t ,
where Z is a locally α-stable process and U is an independent and less active process. In all these works, the increments (X i n Concerning the parametric estimation of a stochastic differential equation driven by a pure jump Lévy process from high frequency observations on a fixed observation time, we can mention the recent paper by Masuda [START_REF] Masuda | Non-gaussian quasi-likelihood estimation of sde driven by locally stable Lévy process[END_REF] where some estimators of the parameters (θ, σ) are proposed for the general equation

-X i-1 n ) 1≤i≤n
X t = x 0 + t 0 b(X s , θ)ds + t 0 c(X s-, σ)dL s ,
where L is a locally α-stable process, with α ∈ [1, 2). However in that case the asymptotic efficiency of the estimators is not yet establish and to our knowledge, the only result in that direction is given in Clément and Gloter [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF], where the LAMN property is proved for the estimation of the drift parameter θ for the process solution of (3.2.1) (with σ = 1), in the case α ∈ (1, 2). They show that the LAMN property is satisfied with rate r n = n 1 2 -1 α and information

I θ = 1 0 ∂ θ b(X β s , θ) 2 ds R ϕ α (u) 2
ϕ α (u) du, where ϕ α is the density of the standard α-stable distribution with characteristic function u → e -C(α)|u| α .

Based on the main ideas of [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] and using the results of [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF], we extend in the present paper these results to α ∈ (0, 2) and prove that the LAMN property holds for the parameters 

σ 2 R (ϕα(u)+uϕ α (u)) 2 ϕ α (u)
du. The proof is mainly based on the L 2 -regularity property of the transition density (see Jeganathan [START_REF] Jeganathan | On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal[END_REF]) and on Malliavin calculus (see for example Gobet [START_REF] Gobet | Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach[END_REF] for the use of Malliavin calculus in the case of a diffusion process). The L 2 -regularity property is established here by using the asymptotic behavior of the density of the process solution of (3.2.1) in small time as well as its derivative with respect to the parameter, given in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF] and based on the Malliavin calculus for jump processes developed by Bichteler, Gravereaux and Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF]. It also requires a careful study of the asymptotic behavior of the information matrix based on one observation of the process, this is the subject of Section 3.3. This paper contains also an independent and interesting result stating a continuity property with respect to the conditioning variable in a conditional expectation (see Proposition 3.6.3).

This paper is organized as follows. The main results (asymptotic expansion of the loglikelihood function and LAMN property) are stated in Section 3.2. Section 3.3 studies the asymptotic behavior of the Fisher information matrix based on the observation of X 

H = L α 1 H L α (1).

Main results

We consider the process (X

β t ) t∈[0,1] solution to (3.2.1) X β t = x 0 + t 0 b(X β s , θ)ds + σL t t ∈ [0, 1],
where (L t ) t∈[0,1] is a pure jump Lévy process defined on some probability space (Ω, A , P ) and we are interested in the statistical properties of the process (X 

(b ii ) We assume that ∀p ≥ 1, R τ (u) τ(u) p τ(u)du < ∞, R τ (u) τ(u) p τ(u)du < ∞.
These assumptions are sufficient to ensure that (3.2.1) has an unique solution belonging to L p , ∀p ≥ 1, and that X β t admits a density, for t > 0 (see [START_REF] Picard | On the existence of smooth densities for jump processes[END_REF]). Moreover, it is proved in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF] that this density is differentiable with respect to β.

Remark 3.2.1. Our assumptions on the Lévy measure F are quite restrictive and reduce the generality of our results but simplify the proofs which nevertheless remain still technical. There are mainly two important properties required on the Lévy measure in our approach. First, since our method is based on Malliavin calculus, the L p -bounds for the tails of the Lévy process are crucial to ensure that our process belongs to the Malliavin space. Secondly, the stable behavior of the Lévy measure around zero is also required to make the rescaled process (n 1/α L t/n ) close to the α-stable process (L α t ). The introduction of the truncation function τ permits to address both issues and to avoid more technical proofs. In particular it permits to ensure that the process (n 1/α L t/n ) has no jump of size larger than 2n 1/α and consequently makes easier the control of the asymptotic behavior of the Malliavin weights (mainly studied in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]). Moreover the exact stable behavior of the Lévy measure around zero (τ = 1) gives the equality between the rescaled process (n 1/α L t/n ) and the α-stable process (L α t ), and also the equality of the corresponding Poisson measures, on a set A n whose complementary has small probability ( P(A c n ) ≤ C/n, see Lemma 3.3.1 below). This property is repeatedly used in our proofs (see for example the proof of Theorem 3.2.3) and is also essential to study the limit of the Malliavin weights in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF].

However, since the information matrix obtained in the LAMN property (established in Corollary 3.2.4) does not depend on the function τ, this suggests that the same result probably holds for a more general Lévy measure even with no integrability conditions on the large jumps and that the truncation or integrability assumptions should only be introduced in the proof sections. To that end, a possible extension of our paper (and also of [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]) could be to replace τ by a more general function g such that g(0) = 1 and satisfying (b ii ), but up to now we do not know how to obtain the key results established in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF] in this more general context.

Before stating our main results, we introduce some notations which are used throughout this paper. For a vector h ∈ R 2 , h T denotes the transpose of h, and |h| denotes the euclidean norm. For a function f defined on R × R 2 depending on both variables (x, β), here β = (θ, σ) T ∈ R × (0, +∞), we denote by f the derivative of f with respect to the variable x, by ∂ θ f the derivative of f with respect to the parameter θ, by ∂ σ f the derivative of f with respect to the parameter σ, and

∇ β f =    ∂ θ f ∂ σ f   .
We denote by p β i/n (x, y) the transition density of the homogeneous Markov chain (X 

β i/n ) i=0,...n , by (F i/n ) i the σ-field such that F i/n = σ(X β s , s ≤ i/n) = σ(L s , s ≤ i/n)
=    n 1 2 -1 α 0 0 n -1 2   , then for every h ∈ R 2 (3.2.2) log dP β+r n h n dP β n (X β 1 n , ..., X β 1 ) = h T J n (β) 1 2 N n (β) - 1 2 h T J n (β)h + o P (1), with J n (β) = r n n-1 i=0 E ξ i,n (β)ξ T i,n (β)|F i/n r n , N n (β) = J n (β) -1 2 r n n-1 i=0 ξ i,n (β), ξ i,n (β) =       ∂ θ p β 1 n p β 1 n X β i n , X β i+1 n ∂ σ p β 1 n p β 1 n X β i n , X β i+1 n       .
We can precise the asymptotic behavior of J n (β) and N n (β). Let ϕ α be the density of L α 1 ,

where (L α 1 ) is a centered α-stable Lévy process whose Lévy measure is dz |z| 1+α 1 |z| =0 . We define the following quantity which will be the random asymptotic information of the statistical model: where

I 11 = 1 σ 2 1 0 ∂ θ b(X β s , θ) 2 ds × R ϕ α (u) 2 ϕ α (u) du, I 22 = 1 σ 2 × R ϕ α (u) + uϕ α (u) 2 ϕ α (u) du.
Remark 3.2.2. i) From [START_REF] Aït | Fisher's information for discretely sampled Lévy processes[END_REF] and [START_REF] Ivanenko | Uniform LAN property of locally stable Lévy process observed at high frequency[END_REF], we know that the parameter θ of the process X θ t = θt + L t is estimated with rate n ϕ α (u) du and that the parameter σ of the process X σ t = σL t is estimated with the usual rate n -1/2 and Fisher information R

(ϕα(u)+uϕ α (u)) 2 ϕ α (u) du.
ii) It is worth to notice that the information does not depend on the truncation function τ, but depends on α through the Fisher information of the translated α-stable process and multiplicative α-stable process.

Theorem 3.2.2. With the notations and assumptions of Theorem 3.2.1, the following convergences hold:

J n (β) n→∞ ----→ I (β) in probability, (3.2.4) ∀ > 0, n-1 i=0 E |r n ξ i,n (β)| 2 1 {|r n ξ i,n (β)|≥ } n→∞ ----→ 0. (3.2.5)
Theorem 3.2.3. We have the convergence in law

J n (β) 1 2 N n (β) = r n n-1 i=0 ξ i,n (β) ⇒ N (0, I (β)) (3.2.6)
where the limit variable is conditionally Gaussian and the convergence is stable with respect to the σ-field σ(L s , s ≤ 1).

The stable convergence in law (3.2.6) and the convergence in probability (3.2.4) yield the convergence in law of the couple (J n (β), N n (β)):

(J n (β), N n (β)) ⇒ (I (β), N),
where N is a standard Gaussian variable independent of I (β). As a consequence of the asymptotic expansion given in Theorem 3.2.1 and the preceding limit theorems, we deduce the LAMN property. The rate of estimation of the drift parameter depends on α : when α tends to 2, the rate is extremely low, however, when α goes to zero, it becomes high, especially for α < 1 where it is faster than the usual one n -1/2 . On the other hand, the rate of estimation of the volatility parameter σ is n -1/2 and does not depend on α.

Before proceeding to the proof of these results, we discuss some extensions of our model that are not addressed in this paper.

• The Malliavin calculus used in this paper allows to consider the more general process

X β t = x 0 + t 0 b(X β s , θ)ds + t 0 c(X β s-, σ)dL s , DRIVEN BY A STABLE LÉVY PROCESS
and based on the results given in [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] the Malliavin operators have explicit expressions. But the difficulty relies on the control of the Malliavin weights. Although explicit, these weights contain a lot of cumbersome terms especially the iterated weights involving the derivatives of the process with respect to the parameters θ and σ. These iterated weights (and their asymptotic behavior) are crucial to obtain the asymptotic behavior of the derivative of the transition density in small time (see [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]). The restriction to a constant coefficient c, assumed in this paper, permits to handle all these terms successfully. The theoretically possible extension to a general coefficient is still open.

• Unlike the papers [START_REF] Aït | Volatility estimators for discretely sampled Lévy processes[END_REF], [START_REF] Aït | Fisher's information for discretely sampled Lévy processes[END_REF] and [START_REF] Ivanenko | Uniform LAN property of locally stable Lévy process observed at high frequency[END_REF], our model does not contain an additional noise. Based on the structure of an additive model, the key point in these papers is that the density of the observed process can be written explicitly as a convolution between the Lévy process and the additional noise. Since we are dealing with a stochastic equation, this approach does not work anymore in our case and the introduction of an additional noise complicates significantly our model study.

• In contrast to the diffusion or jump-diffusion case, the interesting particularity of a pure jump process is that we can estimate the drift coefficient observing the process on a fixed time period [0, T]. It is important to stress that the estimation of θ is impossible without letting T go to infinity if (L t ) has a Brownian component. This is why we focus in this paper on the estimation of (θ, σ) from high frequency observations on the time interval [0, 1]. The long time estimation problem (nh n → ∞, where n is the number of observations and h n the step between two consecutive observations) is also an interesting problem, but substantially different, that can certainly be treated with our methodology under ergodicity assumptions.

The remainder of the paper is devoted to the proofs of the main theorems above. The first step of our approach consists in studying the asymptotic Fisher information matrix by using Malliavin calculus techniques.
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The asymptotic Fisher information matrix in small time

The asymptotic properties of the Fisher information matrix

Our main concern in this section is to study the asymptotic properties of the Fisher information carried by the observation of the random variable X 

= E        ∂ θ p β 1 n (x 0 , X β 1/n ) p β 1 n (x 0 , X β 1/n )    2     , I n,β,x 0 12 = E       ∂ θ p β 1 n (x 0 , X β 1/n ) p β 1 n (x 0 , X β 1/n ) ∂ σ p β 1 n (x 0 , X β 1/n ) p β 1 n (x 0 , X β 1/n )       ,
and

I n,β,x 0 22 = E   ∂ σ p β 1 n (x 0 ,X β 1/n ) p β 1 n (x 0 ,X β 1/n ) 2   .
The following proposition gives the asymptotic behavior of the Fisher information based on the observation of the random variable X β 1/n as 1 n tends to zero.

Theorem 3.3.1. Let (β n ) be a sequence such that β n n→∞ ----→ β, Q ⊂ R × (0, ∞) a compact set and r n =    n 1 2 -1 α 0 0 n -1 2    then i) nr n I n,β n ,x 0 r n n→∞ ----→    1 σ 2 ∂ θ b(x 0 , θ) 2 R ϕ α (u) 2 ϕ α (u) du 0 0 1 σ 2 R [ ϕ α (u)+uϕ α (u) ] 2 ϕ α (u) du   
and this convergence is uniform with respect to x 0 .

ii) ∀p ≥ 1, sup n,β∈Q,x 0 E n 1/2 r n

∇ β p β 1 n (x 0 ,X β 1 n ) p β 1 n (x 0 ,X β 1 n ) p < ∞.
As a consequence of ii) with p = 2, we deduce immediately sup n,β∈Q,x 0 n 2-2/α I n,β,x 0 11

< ∞,

sup n,β∈Q,x 0 I n,β,x 0 22
< ∞ and from Cauchy-Schwarz inequality sup n,β∈Q,x 0 n 1-1/α I n,β,x 0 12 < ∞.

Remark 3.3.1. From Theorem 3.3.1, we see that the Fisher information contained in one observation is of magnitude n -1 r -2 n and the Fisher information based on n observations is of magnitude r -2 n . This is consistent with the fact that r n is the rate in the LAMN property stated in Corollary 3.2.4.

The rest of this section is devoted to the proof of Theorem 3.3.1.

Proof of Theorem 3.3.1

The proof of Theorem 3.3.1 relies on a representation of the score function using Malliavin calculus initiated by Gobet (see [START_REF] Gobet | Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach[END_REF] and [START_REF] Gobet | LAN property for ergodic diffusions with discrete observations[END_REF]) and adapted to our context in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF].

This representation is established after a rescaling that we describe in the next subsection.

Rescaling and representation of the score function using Malliavin calculus

We consider µ e (dt, dz, du) a Poisson measure on [0, ∞) × R × [0, 1] with compensating measure 

∀A ⊂ [0, ∞) × R, µ (n) (A) = [0,∞) R [0,1] 1 A (t, z)1 {u≤τ( z n 1/α )} µ e (dt, dz, du).
We note that the compensator of

µ (n) (dt, dz) is υ (n) (dt, dz) = dt × τ( z n 1/α )1 |z| =0 dz |z| 1+α := dt × F n (z)dz
and the compensated Poisson random measure μ(n) (dt, dz) = µ (n) (dt, dz) -υ (n) (dt, dz).

We define the process (L n t ) by:

(3.3.2) L n t = t 0 [-n 1/α ,n 1/α ] z μ(n) (ds, dz) + t 0 [-n 1/α ,n 1/α ] c zµ (n) (ds, dz).
We observe that the process (L t/n ) (recall H 1 (b i )) equals in law ( 1 n 1/α L n t ) since the associated Poisson measures have the same compensator. Moreover, when n grows, we can show that the process (L n t ) converges almost surely to an α-stable process defined by

(3.3.3) L α t = t 0 [-1,1] z μ(ds, dz) + t 0 [-1,1] c zµ(ds, dz),
where µ is the Poisson random measure defined by,

∀A ⊂ [0, ∞) × R, µ(A) = [0,∞) R [0,1]
1 A (t, z)µ e (dt, dz, du).

The compensator of

µ(dt, dz) is υ(dt, dz) = dt × 1 |z| =0
dz |z| 1+α and we note the compensated Poisson random measure μ(dt, dz) = µ(dt, dz) -υ(dt, dz).
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It is important to note that L n and the α-stable process L α are defined on the same probability space (this property is crucial in our method to study the convergence of the Fisher information I n,β,x 0 ). The connection between L n and L α is given more clearly by the following lemma.

Lemma 3.3.1. [lemma 3.1 in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]] On the event A n = µ({(t, z)|0 ≤ t ≤ 1, |z| ≥ n 1/α }) = 0 , we have

µ (n) = µ, L n t = L α t ,
and

P (A n ) = 1 + O(1/n).
Furthermore, let ( f n ) n∈N and f be measurable functions from Ω × [0, 1] × R to R such that there exists C with

P(C) = 1 and ∀ω ∈ C, ∀s ∈ [0, 1], ∀|z| > 1 f n (ω, s, z) n→∞ ----→ f (ω, s, z). Then 1 0 |z|>1 f n (ω, s, z)µ (n) (ds, dz) n→∞ ----→ a.s. 1 0 |z|>1
f (ω, s, z)µ(ds, dz).

Moreover, we have

sup t∈[0,1] |L n t -L α t | n→∞ ----→ a.s 0.
We now consider the process ( Ȳ n,β,x 0 t

) solution to the equation

(3.3.4) Ȳ n,β,x 0 t = x 0 + 1 n t 0 b( Ȳ n,β,x 0 s , θ)ds + σ n 1/α L n t t ∈ [0, 1].
From the construction of L n , (X

β t n
) t∈[0,1] equals in law ( Ȳ n,β,x 0 t

) t∈[0,1] . Let q n,β,x 0 be the density of Ȳ n,β,x 0 1 then the connection between the densities of X We remark also that ( Ȳ n,β,x 0 t ) t admits derivatives with respect to the parameters θ and Let q n,β,x 0 be the density of Ȳ n,β,x 0 1 then we have the representation of the logarithmic derivative of the density as a conditional expectation:

(3.3.6) ∇ β p β 1 n p β 1 n (x 0 , u) = ∇ β q n,β,x 0 q n,β,x 0 (u) =     ∂ θ q n,β,x 0
q n,β,x 0 (u)

∂ σ q n,β,x 0 q n,β,x 0 (u)     = E(H Ȳ n,β,x 0 1 (∇ β Ȳ n,β,x 0 1 )| Ȳ n,β,x 0 1 = u) with H Ȳ n,β,x 0 1 (∇ β Ȳ n,β,x 0 1 ) =     H Ȳ n,β,x 0 1 (∂ θ Ȳ n,β,x 0 1 ) H Ȳ n,β,x 0 1 (∂ σ Ȳ n,β,x 0 1 )     . DRIVEN BY A STABLE LÉVY PROCESS The Malliavin weight H Ȳ n,β,x 0 1 (∇ β Ȳ n,β,x 0 1
) depends on the derivatives of Ȳ n,β,x 0 1 with respect to θ and σ and on Malliavin operators. Its explicit expression will be given in Section 3.6 (see (3.6.11)) after some recalling on Malliavin calculus.

Intermediate lemmas

In this section, we study the convergence of the Malliavin weight appearing in the representation of the score function. The limit of this Malliavin weight brings out an other weight denoted by

H L α (1) (given explicitly in (3.6. 16 
)) that permits to represent ϕ α /ϕ α , where ϕ α is the density of L α 1 , as an expectation. This representation is not immediate since L α 1 does not belong to the domain of our Malliavin operators (see Section 3.6).

Lemma 3.3.2. We have the representation

(3.3.7) ϕ α (u) ϕ α (u) = -E H L α (1)|L α 1 = u .
The connection between the weights

H Ȳ n,β,x 0 1 (∇ β Ȳ n,β,x 0 1 
) and H L α (1) is established in the next lemmas. The first lemma shows the convergence of the normalized iterated Malliavin weight

H Ȳ n,β,x 0 1 (∇ β Ȳ n,β,x 0 1 
).

Lemma 3.3.3. Let (β n ) n≥1 be a sequence such that β n n→∞ ----→ β. Then, the following convergence holds uniformly with respect to x 0 (3.3.8)

n 1/2 r n H Ȳ n,βn ,x 0 1 (∇ β Ȳ n,β n ,x 0 1 ) =     n 1-1/α H Ȳ n,βn ,x 0 1 (∂ θ Ȳ n,β n ,x 0 1 ) H Ȳ n,βn ,x 0 1 (∂ σ Ȳ n,β n ,x 0 1 )     n→∞ ------→ L p ,∀p≥1     1 σ ∂ θ b(x 0 , θ)H L α (1) 1 σ L α 1 H L α (1) -1     , where L α 1 is defined by (3.3.3). Moreover, for any compact subset Q ⊂ R × (0, ∞), ∀p ≥ 1, sup n,β∈Q,x 0 E n 1/2 r n H Ȳ n,β,x 0 1 (∇ β Ȳ n,β,x 0 1 ) p < ∞.
The next two lemmas are related to a continuity property with respect to the conditioning variable, in a conditional expectation.

Lemma 3.3.4. Let (β n ) n≥1 be a sequence such that β n n→∞ ----→ β. Then, the following convergence holds uniformly with respect to x 0 .
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TIME i) n 2-2/α E[E[H Ȳ n,βn ,x 0 1 (∂ θ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 ] 2 ] n→∞ ----→ 1 σ 2 [∂ θ b(x 0 , θ)] 2 E E[H L α (1)|L α 1 ] 2 , ii) E[E[H Ȳ n,βn ,x 0 1 (∂ σ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 ] 2 ] n→∞ ----→ 1 σ 2 E E[L α 1 H L α (1) -1|L α 1 ] 2 ,
Lemma 3.3.5. Let (β n ) n≥1 be a sequence such that β n n→∞ ----→ β. Then, the following convergence holds uniformly with respect to x 0 ,

(3.3.9) n 1-1/α E[E[H Ȳ n,βn ,x 0 1 (∂ θ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 ]E[H Ȳ n,βn ,x 0 1 (∂ σ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 ]] n→∞ ----→ 1 σ 2 E E[H L α (1)|L α 1 ]E[L α 1 H L α (1) -1|L α 1 ] .
The proofs of the above lemmas are very technical. They are postponed to Section 3.6.

Admitting these intermediate results, we can proceed to the proof of Theorem 3.3.1.

Proof of Theorem 3.3.1

Proof. i) We need to prove that for (β n ) a sequence such that

β n n→∞ ----→ β and r n =    n 1 2 -1 α 0 0 n -1 2   
we have

nr n I n,β n ,x 0 r n n→∞ ----→    1 σ 2 ∂ θ b(x 0 , θ) 2 R ϕ α (u) 2 ϕ α (u) du 0 0 1 σ 2 R [ ϕ α (u)+uϕ α (u) ] 2 ϕ α (u) du   
and that this convergence is uniform with respect to x 0 .

Since

nr n I n,β n ,x 0 r n =    n 2-2 α I n,β n ,x 0 11 n 1-1 α I n,β n ,x 0 12 n 1-1 α I n,β n ,x 0 12 I n,β n ,x 0 22
  , the proof of the above convergence reduces to prove the convergence of each entries of the matrix.

Convergence of n 2-2/α I n,β n ,x 0 11

. From (3.3.6) in Proposition 3.3.1, we have

n 2-2/α I n,β n ,x 0 11 = n 2-2/α E E H Ȳ n,βn ,x 0 1 (∂ θ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 2 n→∞ ----→ 1 σ 2 ∂ θ b(x 0 , θ) 2 E E H L α (1)|L α 1 2
, uniformly with respect to x 0 , from Lemma 3.3.4 i),

= 1 σ 2 ∂ θ b(x 0 , θ) 2 E ϕ α (L α 1 ) 2 ϕ α (L α 1 ) 2 from (3.3.7) in Lemma 3.3.2.

Convergence of I

n,β n ,x 0 22

. We remark that from the representation (3.3.7), we can deduce the following representation 

(3.3.10) ϕ α (u) + uϕ α (u) ϕ α (u) = -uE (H L α (1)) |L α 1 = u + 1 = -E L α 1 H L α (1) -1 |L α 1 = u .
= E E H Ȳ n,βn ,x 0 1 (∂ σ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 2 , n→∞ ----→ 1 σ 2 E E L α 1 H L α (1) -1 |L α 1 2
, uniformly with respect to x 0 ,

= 1 σ 2 E ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 ) 2 ϕ α (L α 1 ) 2 from (3.3.10). Convergence of n 1-1/α I n,β n ,x 0 12
. We first recall the expression for the Fisher information

I n,β n ,x 0 12 = E       ∂ θ p β n 1 n (x 0 , X β n 1/n ) p β n 1 n (x 0 , X β n 1/n ) ∂ σ p β n 1 n (x 0 , X β n 1/n ) p β n 1 n (x 0 , X β n 1/n )       ,
then from (3.3.6) in Proposition 3.3.1 and Lemma 3.3.5 we have

(3.3.11) n 1-1/α I n,β n ,x 0 12 = n 1-1/α E[E[H Ȳ n,βn ,x 0 1 (∂ θ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 ]E[H Ȳ n,βn ,x 0 1 (∂ σ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 ]] n→∞ ----→ 1 σ 2 E E[H L α (1)|L α 1 ]E[L α 1 H L α (1) -1|L α 1 ] .
On the other hand, from (3.3.7) and (3.3.10) we get (3.3.12)

ϕ α (L α 1 ) ϕ α (L α 1 ) ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 ) ϕ α (L α 1 ) = E H L α (1)|L α 1 E L α 1 H L α (1) -1 |L α 1 .
Combining (3.3.11) with (3.3.12) gives (3.3.13)

n 1-1/α I n,β n ,x 0 12 n→∞ ----→ 1 σ 2 R ϕ α (u) ϕ α (u) + uϕ α (u) ϕ α (u) du = 1 σ 2 R ϕ α (u)du + 1 σ 2 R u ϕ α (u) 2 ϕ α (u) du = 0,
where we used the fact that ϕ α is a symmetric function, and that the functions under the integral are odd. This completes the proof of part i).

ii) Using (3.3.6) in Proposition 3.3.1 again and Jensen's inequality, we get:

E n 1/2 r n ∇ β p β 1 n (x 0 , X β 1 n ) p β 1 n (x 0 , X β 1 n ) p ≤ E|n 1/2 r n H Ȳ n,β,x 0 1 (∇ β Ȳ n,β,x 0 1 )| p ,
and the result follows from Lemma 3.3.3. This achieves the proof of Theorem 3.3.1. 

(β) =       ∂ θ p β 1 n p β 1 n X β i n , X β i+1 n ∂ σ p β 1 n p β 1 n X β i n , X β i+1 n       and we denote χ n (β, x, y) =       ∂ θ p β 1 n (x,y) p β 1 n (x,y) 1/2 ∂ σ p β 1 n (x,y) p β 1 n (x,y) 1/2       . A1. L 2 -regularity n j=1 E R p β+r n h 1 n X β j-1 n , y 1/2 -p β 1 n X β j-1 n , y 1/2 - 1 2 h T r n χ n (β, X β j-1 n , y) 2 d y n→∞ ----→ 0. A2. J n (β) = r n n-1 i=0 E ξ i,n (β)ξ T i,n (β)|F i/n r n n→∞ ----→ I (β) (> 0 a.e.
), in probability.

A3.

∀ > 0, 

n-1 i=0 E |r n ξ i,n (β)| 2 1 {|r n ξ i,n (β)|≥ } n→∞ ----→ 0. A4. sup n n i=0 E( r n ξ i,n (β)ξ i,n (β) T r n ) ≤ C,
nE(r n ξ i,n (β)ξ i,n (β) T r n ) = E    n 2-2 α I n,β,X β i/n 11 n 1-1 α I n,β,X β i/n 12 n 1-1 α I n,β,X β i/n 12 I n,β,X β i/n 22    .
Note that these conditions do not imply the stable convergence in law (3.2.6) since in our framework the filtration (F i n ) i does not satisfy the "nested condition" (see Theorem 3.2 in [START_REF] Hall | Martingale limit theory and its application[END_REF]).

The proof of the stable convergence in law will be given in Section 3.5.

Proof of the condition A1 (the L 2 -regularity condition).

Following [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF], the crucial point of the proof is the asymptotic behavior of the transition density of X β t established in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF] and recalled below. We assume that H 1 holds. Let (ς n,θ,x 0 t

) be the solution to the ordinary differential equation

(3.4.1) ς n,θ,x 0 t = x 0 + 1 n t 0 b(ς n,θ,x 0 s , θ)ds t ∈ [0, 1]. Let (β n ) n≥1 be a sequence such that β n n→∞ ----→ β then for all (x 0 , u) ∈ R 2 , i) σ n n 1/α p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1 ) n→∞ ----→ ϕ α (u), ii) sup u∈R sup n σ n n 1/α p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1 ) < ∞,
where ϕ α is the density of L α 1 , a centered α-stable Lévy process.

Theorem 3.4.2. [Theorem 2.2 in [19]]

Under the assumptions of Theorem 3.4.1, i)

σ 2 n n 2 α -1 ∂ θ p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1 ) n→∞ ----→ -∂ θ b(x 0 , θ) × ϕ α (u), σ 2 n n 1/α ∂ σ p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1 ) n→∞ ----→ -ϕ α (u) -uϕ α (u), ii) sup u∈R sup n σ 2 n n 2 α -1 ∂ θ p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1 ) < ∞, sup u∈R sup n σ 2 n n 1/α ∂ σ p β n 1 n (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1 ) < ∞.

Proof of A1 By the change of variable

y = uσ n 1/α + ς n,θ,X β j-1 n 1 proving A1 is equivalent to show: (3.4.2) 1 n n j=1 R E f n (X β j-1 n , u) -g n (X β j-1 n , u) 2 du n→∞ ----→ 0,
where

f n (x, u) = σ n 1/2-1/2α p β+r n h 1 n x, uσ n 1/α + ς n,θ,x 1 1/2 -p β 1 n
x, uσ

n 1/α + ς n,θ,x 1 1/2 , g n (x, u) = σ 2 n 1/2-1/2α (r n h) T χ n β, x, uσ n 1/α + ς n,θ,x 1 
.

Following the proof of Proposition 8 in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF], the next three properties are sufficient to prove (3.4.2).

PROOF OF THE ASYMPTOTIC EXPANSION OF THE LIKELIHOOD (THEOREMS 3.2.1 -3.2.2)

1. There exists a function f such that,

(3.4.3) ∀x, u, f n (x, u) n→∞ ----→ f (x, u), g n (x, u) n→∞ ----→ f (x, u).
2. We have for all x,

(3.4.4) lim sup n R f n (x, u) 2 du ≤ R f (x, u) 2 du, lim sup n R g n (x, u) 2 du ≤ R f (x, u) 2 du.
3. We have

(3.4.5) sup x,n R f n (x, u) 2 du < ∞, sup x,n R g n (x, u) 2 du < ∞.
We now need to check the validity of the conditions (3.4.3), (3.4.4) and (3.4.5).

We start with the proof of the condition (3.4.3).

We recall that

r n =    n 1 2 -1 α 0 0 n -1 2    and h = (h 1 , h 2 ) T ∈ R 2
then by a simple computation we have,

g n (x, u) = σ 2 n 1-3 2α h 1 ∂ θ p β 1 n x, uσ n 1/α + ς n,θ,x 1 p β 1 n x, uσ n 1/α + ς n,θ,x 1 1/2 + σ 2 n -1 2α h 2 ∂ σ p β 1 n x, uσ n 1/α + ς n,θ,x 1 p β 1 n x, uσ n 1/α + ς n,θ,x 1 1/2 .
From Theorems 3.4.1 and 3.4.2, we see that

g n (x, u) n→∞ ----→ f (x, u) := - h 1 2σ ∂ θ b(x, θ) ϕ α (u) ϕ α (u) 1/2 - h 2 2σ ϕ α (u) + uϕ α (u) ϕ α (u) 1/2 . Let m t = p β+r n ht 1 n x, uσ n 1/α + ς n,θ,x 1 
, t ∈ [0, 1], then we can rewrite f n (x, u) as

f n (x, u) = σ n 1/2-1/2α m 1/2 1 -m 1/2 0 .
Using the mean value theorem, we get for some s(x, u) ∈ (0, 1)

f n (x, u) = σ 2 n 1/2-1/2α m s(x,u) m s(x,u) = σ 2 n 1/2-1/2α (r n h) T ∇ β p β n 1 n x, uσ n 1/α + ς n,θ,x 1 p β n 1 n x, uσ n 1/α + ς n,θ,x 1 1/2 ,
where

β n = β + r n s(x, u)h.
From Theorems 3.4.1 and 3.4.2, we also get that f n (x, u) n→∞ ----→ f (x, u).

Now we prove the condition (3.4.4).

We have

(3.4.6) R g n (x, u) 2 du = σh 2 1 4 n 2-3/α R ∂ θ p β 1 n x, uσ n 1/α + ς n,θ,x 1 2 p β 1 n x, uσ n 1/α + ς n,θ,x 1 du + σh 2 2 4 n -1/α R ∂ σ p β 1 n x, uσ n 1/α + ς n,θ,x 1 2 p β 1 n x, uσ n 1/α + ς n,θ,x 1 du + σh 1 h 2 2 n 1-2/α R ∂ θ p β 1 n x, uσ n 1/α + ς n,θ,x 1 p β 1 n x, uσ n 1/α + ς n,θ,x 1 1/2 ∂ σ p β 1 n x, uσ n 1/α + ς n,θ,x 1 p β 1 n x, uσ n 1/α + ς n,θ,x 1 
1/2 du.

From Theorem 3.3.1, we get

(3.4.7) R g n (x, u) 2 du n→∞ ----→ R f (x, u) 2 du, ∀x. . Using f n (x, u) = σ 2 n 1/2-1/2α 1 0 (r n h) T ∇ β p β+r n hs 1 n x, uσ n 1/α + ς n,θ,x 1 p β+r n hs 1 n x, uσ n 1/α + ς n,θ,x 1 
1/2 ds, we write:

R f n (x, u) 2 du = || f n (x, .)|| 2 2 = σn 1-1/α 4 1 0 (r n h) T ∇ β p β+r n hs 1 n x, σ . n 1/α + ς n,θ,x 1 p β+r n hs 1 n x, σ . n 1/α + ς n,θ,x 1 1/2 ds 2 2 ≤ σn 1-1/α 4     1 0 (r n h) T ∇ β p β+r n hs 1 n x, σ . n 1/α + ς n,θ,x 1 p β+r n hs 1 n x, σ . n 1/α + ς n,θ,x 1 1/2 2 ds     2 = σn 1-1/α 4     1 0 n 1 2 -1 α h 1 ∂ θ p β+r n hs 1 n x, σ . n 1/α + ς n,θ,x 1 p β+r n hs 1 n x, σ . n 1/α + ς n,θ,x 1 1/2 + n -1 2 h 2 ∂ σ p β+r n hs 1 n x, σ . n 1/α + ς n,θ,x 1 p β+r n hs 1 n x, σ . n 1/α + ς n,θ,x 1 1/2 2 ds     2 = σn 1-1/α 4     1 0   R n 1-2 α h 2 1 ∂ θ p β+sr n h 1 n x, uσ n 1/α + ς n,θ,x 1 2 p β+sr n h 1 n x, uσ n 1/α + ς n,θ,x 1 du + R n -1 h 2 2 ∂ σ p β+sr n h 1 n x, uσ n 1/α + ς n,θ,x 1 2 p β+sr n h 1 n x, uσ n 1/α + ς n,θ,x 1 du + R n -1 α 2h 1 h 2 ∂ θ p β+sr n h 1 n x, uσ n 1/α + ς n,θ,x 1 ∂ σ p β+sr n h 1 n x, uσ n 1/α + ς n,θ,x 1 p β+sr n h 1 n x, uσ n 1/α + ς n,θ,x 1 du   1/2 ds     = n 1-1/α 4     1 0   R n 1-1 α h 2 1 ∂ θ p β+sr n h 1 n (x, v) 2 p β+sr n h 1 n (x, v) dv + R n 1 α -1 h 2 2 ∂ σ p β+sr n h 1 n (x, v) 2 p β+sr n h 1 n (x, v) dv + R 2h 1 h 2 ∂ θ p β+sr n h 1 n (x, v) ∂ σ p n,β+sr n h 1 n (x, v) p β+sr n h 1 n (x, v) dv   1/2 ds    
2 by the change of variable uσ

n 1/α + ς n,θ,x 1 = v, (3.4.8) = 1 4     1 0   n 2-2 α h 2 1 I n,β+sr n h,x 11 
+ h 2 2 I n,β+sr n h,x 22 
+ n 1-1/α 2h 1 h 2 I n,β+sr n h,x 12   1/2 ds     2 n→∞ ----→ 1 σ 2 h 2 1 4 (∂ θ b(x, θ)) 2 R ϕ α (u) 2 ϕ α (u) du + h 1 h 2 2σ 2 R ϕ α (u) ϕ α (u) + uϕ α (u) ϕ α (u) du + 1 σ 2 h 2 2 4 R ϕ α (u) + uϕ α (u) 2 ϕ α (u) du = R f 2 (x, u)du.
Where, in the last line, we have used Theorem 3. 

Proof of the conditions A2 and A3 (Theorem 3.2.2)

From the Markov property and (3.3.1) we have:

I n,β,X β i/n = E ξ i,n (β)ξ i,n (β) T |G i/n =    I n,β,X β i/n 11 I n,β,X β i/n 12 I n,β,X β i/n 12 I n,β,X β i/n 22    .
From Theorem 3.3.1 we know that the quantities sup 0≤i≤n-1

nr n I n,β,X β i/n r n -    1 σ 2 ∂ θ b(X β i/n ) 2 R ϕ (u) 2 ϕ(u) du 0 0 1 σ 2 R [ ϕ α (u)+uϕ α (u) ] 2 ϕ α (u) du   
converge to zero as n → ∞. Then the convergence A2 is a consequence of the convergence of a Riemann sum.

To prove A3, from the Markov property, we get:

E |r n ξ i,n (β)| k |X β i/n = x = E   r n ∇ β p β 1 n (x,X β 1 n ) p β 1 n (x,X β 1 n ) k   , for any k ≥ 1. But from Theorem 3.3.1 ii) we have sup n,x E   n 1/2 r n ∇ β p β 1 n (x,X β 1 n ) p β 1 n (x,X β 1 n ) k   < ∞, ∀k ≥ 1.
This control, for instance with k = 4, is sufficient to imply the Lindeberg's condition A3.

CHAPTER 3. LAMN PROPERTY FOR THE DRIFT AND VOLATILITY PARAMETERS OF A SDE DRIVEN BY A STABLE LÉVY PROCESS

Proof of Theorem 3.2.3 (Stable central limit theorem)

The aim of this section is to prove the stable convergence in law stated in Theorem 3.2.3. We first recall the following result established in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF] where Ȳ n,β,x 0 1 is defined by (3.3.4) and is equal in law to X 

n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) n→∞ ----→ a.s. σL α 1 ,
and this convergence is uniform with respect to x 0 .

Proof of Theorem 3.2.3 Since

r n =    n 1 2 -1 α 0 0 n -1 2    we have r n n-1 i=0 ξ i,n (β) = n-1 i=0       n 1 2 -1 α ∂ θ p β 1 n p β 1 n X β i n , X β i+1 n n -1 2 ∂ σ p β 1 n p β 1 n X β i n , X β i+1 n       . Theorem 3.2.
3 is an immediate consequence of Lemmas 3.5.2-3.5.3-3.5.4 below.

Lemma 3.5.2. We consider

i,n = n 1-1/α ∂ θ p β 1 n p β 1 n (X β i n , X β i+1 n ) + 1 σ ∂ θ b(X β i n , θ) ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n ) then we have n -1/2 n-1 i=0 i,n n→∞ ----→ P 0.
Proof. Using Lemma 9 in [START_REF] Genon | On the estimation of the diffusion coefficient for multi-dimensional diffusion processes[END_REF], it is sufficient to show that:

(3.5.2) n -1/2 n-1 i=0 |E[ i,n |F i/n ]| n→∞ ----→ P 0, (3.5.3) n -1 n-1 i=0 |E[ 2 i,n |F i/n ]| n→∞ ----→ P 0,
We start by the proof of (3.5.2). Since a score function has an expectation equal to zero, and

L i+1 n -L i n is independent of F i/n , we deduce that E[ i,n |F i/n ] = 1 σ ∂ θ b(X β i n , θ)E   ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n )   .
Since (L t ) t has stationary increments, the law of

n 1/α (L i+1 n -L i n
) is the same as the law of L n 1 .

Moreover, we know from Lemma 3.3.1, that

P(L n 1 = L α 1 ) = O(1/n), thus E[ i,n |F i/n ] = 1 σ ∂ θ b(X β i n , θ)E ϕ α (L α 1 ) ϕ α (L α 1 ) + ϕ α ϕ α ∞ O(n -1 ),
where we used the fact that ϕ α ϕ α is bounded (see e.g. Theorem 7.3.2 in [START_REF] Vassili | Markov processes, semigroups and generators[END_REF]). Using E

ϕ α (L α 1 ) ϕ α (L α 1 ) = R ϕ α (u)du = 0, we deduce |E[ i,n |G i/n ]| ≤ Cn -1
for some constant C and (3.5.2) follows.

We now prove (3.5.3). We have (3.5.4)

E[ 2 i,n |F i/n ] = n 2-2/α I n,β,X β i n 11 + 1 σ 2 ∂ θ b(X β i n , θ) 2 E    ϕ α n 1/α (L i+1 n -L i n ) 2 ϕ α n 1/α (L i+1 n -L i n ) 2    + 2E   n 1-1/α ∂ θ p β 1 n (X β i n , X β i+1 n ) p β 1 n (X β i n , X β i+1 n ) 1 σ ∂ θ b(X β i n , θ) ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n ) F i n    .
With a method analogous to the proof of (3.5.2), we can show that [START_REF] Aït | Handbook of Financial Econometrics: Applications[END_REF]. From Theorem 3.3.1, it appears that the first two terms in the right-hand side of (3.5.4) are asymptotically close to the same quantities, and that (3.5.3) is proved as soon as we show that the following control holds, uniformly with respect to i,

E ϕ α n 1/α (L i+1 n -L i n ) 2 ϕ α n 1/α (L i+1 n -L i n ) 2 = E ϕ α (L α 1 ) 2 ϕ α (L α 1 ) 2 + o
(3.5.5) E   n 1-1/α ∂ θ p β 1 n (X β i n , X β i+1 n ) p β 1 n (X β i n , X β i+1 n ) 1 σ ∂ θ b(X β i n , θ) ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n ) F i n    = - 1 σ 2 ∂ θ b(X β i n , θ) 2 E ϕ α (L α 1 ) 2 ϕ α (L α 1 ) 2 + o(1).
Using the notations of Section 3.3.2.1, we define d n,θ,x 0 = E n 1-1/α ∂ θ q n,β,x 0 ( Ȳ n,β,x 0 1 )

q n,β,x 0 ( Ȳ n,β,x 0 1 ) 1 σ ∂ θ b(x 0 , θ) ϕ α (L n 1 ) ϕ α( L n 1 )
, so that the left-hand side of (3. , to d n,θ,X β i/n . On the other hand, we can rewrite d n,θ,x 0 as (3.5.6)

d n,θ,x 0 = E     n 1-1/α ∂ θ q n,β,x 0 ( Ȳ n,β,x 0 1 ) q n,β,x 0 ( Ȳ n,β,x 0 1 ) 1 σ ∂ θ b(x 0 , θ) ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ     + E     n 1-1/α ∂ θ q n,β,x 0 ( Ȳ n,β,x 0 1 ) q n,β,x 0 ( Ȳ n,β,x 0 1 ) 1 σ ∂ θ b(x 0 , θ)     ϕ α L n 1 ϕ α L n 1 - ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ         .
Using the Cauchy-Schwarz inequality for the second term in the right-hand side of (3.5.6), we get (3.5.7)

E     n 1-1/α ∂ θ q n,β,x 0 ( Ȳ n,β,x 0 1 ) q n,β,x 0 ( Ȳ n,β,x 0 1 ) 1 σ ∂ θ b(x 0 , θ)     ϕ α L n 1 ϕ α L n 1 - ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ         ≤   E n 1-1/α ∂ θ q n,β,x 0 ( Ȳ n,β,x 0 1 ) q n,β,x 0 ( Ȳ n,β,x 0 1 ) 1 σ ∂ θ b(x 0 , θ) 2   1/2      E     ϕ α L n 1 ϕ α L n 1 - ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ     2      1/2 . Furthermore, ∀ > 0 we have E     ϕ α L n 1 ϕ α L n 1 - ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ     2 = E     ϕ α L n 1 ϕ α L n 1 - ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ     2 1 n 1/α ( Ȳ n,θ,x 0 1 -ς n,θ,x 0 1 ) σ -L n 1 ≤ + E     ϕ α L n 1 ϕ α L n 1 - ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ     2 1 n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ -L n 1 > ≤ C 1 2 + 2C 2 E   1 n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ -L n 1 >    = C 1 2 + 2C 2 P n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ -L n 1 > n→∞ ----→ C 1 2 ,
where we used the fact that ϕ α ϕ α is bounded with a bounded derivative (see e.g. Theorem 7.3.2 in [START_REF] Vassili | Markov processes, semigroups and generators[END_REF]) and Lemma 3.5.1. From Theorem 3.3.1 ii), and the estimates above we deduce that (3.5.7) converges to zero as n → ∞. Then, (3.5.8)

d n,θ,x 0 = E     n 1-1/α ∂ θ q n,β,x 0 ( Ȳ n,β,x 0 1 ) q n,β,x 0 ( Ȳ n,β,x 0 1 ) 1 σ ∂ θ b(x 0 , θ) ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α ( Ȳ n,θ,x 0 1 -ς n,θ,x 0 1 ) σ     + o(1),
where the o(1) term is uniform with respect to x 0 . Now, using Proposition 3.3.1, we get

d n,θ,x 0 = E     n 1-1/α H Ȳ n,β,x 0 1 (∂ θ Ȳ n,β,x 0 1 ) 1 σ ∂ θ b(x 0 , θ) ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ     + o(1).
From Lemma 3.3.3, we also have sup

x 0 d n,θ,x 0 - 1 σ 2 ∂ θ b(x 0 , θ) 2 E     H L α (1) ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ     n→∞ ----→ 0.
From Lemma 3.5.1 we can deduce that

d n,θ,x 0 n→∞ ----→ 1 σ 2 [∂ θ b(x 0 , θ)] 2 E H L α (1) ϕ α L α 1 ϕ α L α 1 ,
uniformly with respect to x 0 . Then, the relation (3.3.7) enables to rewrite this convergence as,

d n,θ,x 0 n→∞ ----→ - 1 σ 2 [∂ θ b(x 0 , θ)] 2 E ϕ α L α 1 2 ϕ α L α 1 2
, uniformly with respect to x 0 .

This result implies (3.5.5) and hence (3.5.3).

Lemma 3.5.3. We consider i,n =

∂ σ p β 1 n p β 1 n (X β i n , X β i+1 n ) + 1 σ ϕ α n 1/α (L i+1 n -L i n ) + n 1/α (L i+1 n -L i n )ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n ) then we have n -1/2 n-1 i=0 i,n n→∞ ----→ P 0.
Proof. We proceed as in the proof of Lemma 3.5.2 and check that (3.5.9)

n -1/2 n-1 i=0 |E[ i,n |F i/n ]| n→∞ ----→ P 0, (3.5.10) n -1 n-1 i=0 |E[ 2 i,n |F i/n ]| n→∞ ----→ P 0. CHAPTER 3.
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We start by the proof of (3.5.9). Since a score function has an expectation equal to zero, and

L i+1 n -L i n is independent of F i/n , we deduce that E[ i,n |F i/n ] = 1 σ E   ϕ α n 1/α (L i+1 n -L i n ) + n 1/α (L i+1 n -L i n )ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n )   .
Since (L t ) t has stationary increments, the law of

n 1/α (L i+1 n -L i n
) is the same as the law of L n 1 .

Moreover, we know from Lemma 3.3.1, that

P(L n 1 = L α 1 ) = O(1/n), thus E[ i,n |F i/n ] = 1 σ E ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 ) ϕ α (L α 1 )
+ ϕ α (u) + uϕ α (u) ϕ α (u) ∞ O(n -1 ),
where we used the fact that (u) is bounded (see e.g. Theorem 7.3.2 in [START_REF] Vassili | Markov processes, semigroups and generators[END_REF]).

uϕ α (u) ϕ α
Using E

L α 1 ϕ α (L α 1 ) ϕ α (L α 1 ) = R uϕ α (u)du = -1, we deduce |E[ i,n |F i/n ]| ≤ Cn -1
for some constant C and (3.5.9) follows.

We now prove (3.5.10). We have (3.5.11)

E[ 2 i,n |F i/n ] = I n,β,X β i n 22 + 1 σ 2 E    ϕ α n 1/α (L i+1 n -L i n ) + n 1/α (L i+1 n -L i n )ϕ α n 1/α (L i+1 n -L i n ) 2 ϕ α n 1/α (L i+1 n -L i n ) 2    + 2E    ∂ σ p β 1 n (X β i n , X β i+1 n ) p β 1 n (X β i n , X β i+1 n ) 1 σ ϕ α n 1/α (L i+1 n -L i n ) + n 1/α (L i+1 n -L i n )ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n ) F i n    .
With a method analogous to the proof of (3.5.9), we can show that

E ϕ α n 1/α (L i+1 n -L i n ) +n 1/α (L i+1 n -L i n )ϕ α n 1/α (L i+1 n -L i n ) 2 ϕ α n 1/α (L i+1 n -L i n ) 2 = E [ ϕ α (L α 1 )+L α 1 ϕ α (L α 1 ) ] 2 ϕ α (L α 1 ) 2 + o(1).
Proceeding as in the proof of (3.5.4), then (3.5.9) is proved as soon as we show that the following control holds uniformly with respect to i,

(3.5.12) E    ∂ σ p β 1 n (X β i n , X β i+1 n ) p β 1 n (X β i n , X β i+1 n ) 1 σ ϕ α n 1/α (L i+1 n -L i n ) + n 1/α (L i+1 n -L i n )ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n ) F i n    = - 1 σ 2 E ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 ) 2 ϕ α (L α 1 ) 2 + o(1). We define d n,σ,x 0 1 = E ∂ σ q( Ȳ n,β,x 0 1 ) q( Ȳ n,β,x 0 1 ) 1 σ ϕ α( L n 1 )+L n 1 ϕ α (L n 1 ) ϕ α( L n 1 )
, so that the left-hand side of (3.5.12) reduces, from the Markov property, to d n,σ,X

β i/n 1 .

PROOF OF THEOREM 3.2.3 (STABLE CENTRAL LIMIT THEOREM)

Proceeding as in the proof of (3.5.8), noting that uϕ α (u) ϕ α (u) is bounded with a bounded derivative (see e.g. Theorem 7.3.2 in [START_REF] Vassili | Markov processes, semigroups and generators[END_REF]), then we also get that

d n,σ,x 0 1 = E ∂ σ q( Ȳ n,β,x 0 1 ) q( Ȳ n,β,x 0 1 ) 1 σ + E     ∂ σ q( Ȳ n,β,x 0 1 ) q( Ȳ n,β,x 0 1 ) 1 σ n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ     + o(1)
where the o(1) term is uniform with respect to x 0 . Now, using Proposition 3.3.1, we get

d n,σ,x 0 1 = E    H Ȳ n,β,x 0 1 (∂ σ Ȳ n,β,x 0 1 ) σ    + E     H Ȳ n,β,x 0 1 (∂ σ Ȳ n,β,x 0 1 ) σ n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ ϕ α n 1/α ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) σ     + o(1).
From Lemma 3.5.1 and the convergence result (3.3.8) we can deduce that

d n,σ,x 0 1 n→∞ ----→ 1 σ 2 E L α 1 H L α (1) -1 ϕ α L α 1 + L α 1 ϕ α L α 1 ϕ α L α 1 ,
uniformly with respect to x 0 . Then, the relation (3.3.10) enables to rewrite this convergence as,

d n,σ,x 0 1 n→∞ ----→ - 1 σ 2 E ϕ α L α 1 + L α 1 ϕ α L α 1 2 ϕ α L α 1 2 .
This result implies (3.5.12) and hence (3.5.10).

Lemma 3.5.4. We have the convergence in law,

(3.5.13)       -n -1/2 n-1 i=0 ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n ) 1 σ ∂ θ b(X β i n , θ) -n -1/2 n-1 i=0 1 σ ϕ α n 1/α (L i+1 n -L i n ) +n 1/α (L i+1 n -L i n )ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n )       ⇒ N (0, I (β))
where the convergence is stable with respect to the σ-field σ(L s , s ≤ 1) .

Proof. We define the following processes:

Z n t = nt i=0 L i+1 n -L i n , Γ n t =    Γ n,1 t Γ n,2 t    = n -1/2       nt i=0 ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n ) 1 σ ∂ θ b(X β i n , θ) nt i=0 ϕ α n 1/α (L i+1 n -L i n ) +n 1/α (L i+1 n -L i n )ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n ) 1 σ       , CHAPTER 3 
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Γ n t =    Γ n,1 t Γ n,2 t    = n -1/2       [nt] i=0 ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n ) [nt] i=0 ϕ α n 1/α (L i+1 n -L i n ) +n 1/α (L i+1 n -L i n )ϕ α n 1/α (L i+1 n -L i n ) ϕ α n 1/α (L i+1 n -L i n )       .
We will apply Lemma 2.8 in [START_REF] Jacod | The Euler scheme for Lévy driven stochastic differential equations: limit theorems[END_REF] to prove (3.5.13). Indeed, we will show that there exists a Gaussian random vector γ with var(γ)

=     E ϕ α (L α 1 ) 2 ϕ α( L α 1 ) 2 0 0 E (ϕα(L α 1 )+L α 1 ϕ α (L α 1 )) 2 ϕ α( L α 1 ) 2     , independent of L 1
such that one has the convergence in law

(3.5.14) (Γ n 1 , Z n 1 ) ⇒ (γ, L 1 ).
Then, by application of Lemma 2.8 in [START_REF] Jacod | The Euler scheme for Lévy driven stochastic differential equations: limit theorems[END_REF], there exists a bi-dimensional Brownian motion (Γ t ) t independent of (L t ) t such that one has the convergence in law (Z n , Γ n , Γ n ) ⇒ (L, Γ, Γ ) where

Γ t = t 0    1 σ ∂ θ b(X β s , θ) 0 0 1 σ    dΓ s and var(Γ 1 ) = var(γ).
Let us focus on the derivation of the convergence (3.5.14). For (u, v, w) ∈ R 3 , we set

X n (u, v, w) = E   exp   i u n 1/2 ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n ) + i v n 1/2 ϕ α (n 1/α L 1 n ) + n 1/α L 1 n ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n ) + iwL 1 n     .
Using the i.i.d. structure of the increments of the Lévy process L, we easily get the following expression about the characteristic function of (Γ n 1 , Z n 1 )

(3.5.15) log E exp(iuΓ

n,1 1 + ivΓ n,2 1 + iwZ n 1 ) = n log X n (u, v, w).
Let us study the asymptotic behavior of X n (u, v, w). Using the expansion of the exponential function near zero and that ϕ α ϕ α and

xϕ α (x)
ϕ α (x) are bounded we get

X n (u, v, w) = E        e iwL 1 n     1 +   iu n 1/2 ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n ) + iv n 1/2 ϕ α (n 1/α L 1 n ) + n 1/α L 1 n ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n )   + 1 2   iu n 1/2 ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n ) + iv n 1/2 ϕ α (n 1/α L 1 n ) + n 1/α L 1 n ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n )   2            + O(n -3/2 ) 3.5. PROOF OF THEOREM 3.2.3 (STABLE CENTRAL LIMIT THEOREM) = E e iwL 1 n + iu n 1/2 E   ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n ) e iwL 1 n   + iv n 1/2 E   ϕ α (n 1/α L 1 n ) + n 1/α L 1 n ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n ) e iwL 1 n   - u 2 2n E     ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n )   2 e iwL 1 n   - uv n E   ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n ) + n 1/α L 1 n ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n ) e iwL 1 n   - v 2 2n E     ϕ α (n 1/α L 1 n ) + n 1/α L 1 n ϕ α (n 1/α L 1 n ) ϕ α (n 1/α L 1 n )   2 e iwL 1 n   + O(n -3/2 ) (3.5.16) := X (1) n (u, v, w) + iu n 1/2 X (2) n (u, v, w) + iv n 1/2 X (3) n (u, v, w) - u 2 2n X (4) n (u, v, w) - uv n X (5) n (u, v, w) - v 2 2n X (6) n (u, v, w) + O(n -3/2 ).
First, we have (3.5.17)

X (1) n (u, v, w) = e ψ(w)/n = 1 + ψ(w)/n + O(n -2 )
where ψ(w) is the Lévy Khintchine exponent of L 1 .

We now focus on the term X (2) n (u, v, w). Using the results of Lemma 3.3.1, and the fact that n 1/α L 1/n has the same law as L n 1 , we get (3.5.18)

X (2) n (u, v, w) = E ϕ α ϕ α (L α 1 )e i wL α 1 n 1/α + O(n -1 ) = R ϕ α (s)e i ws n 1/α ds + O(n -1 ) = - iw n 1/α R ϕ α (s)e i ws
n 1/α ds + O(n -1 ) using integration by parts formula

= O(max(n -1/α , n -1 )).
For the term X (3) n (u, v, w), using Lemma 3.3.1 again, it is easy to see that (3.5.19)

X (3) n (u, v, w) = E ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 ) ϕ α (L α 1 ) e i wL α 1 n 1/α + O(n -1 ) = R ϕ α (s)e i ws n 1/α ds + R sϕ α (s)e i ws n 1/α ds + O(n -1 ).
Using integration by parts formula, we have For the term X (4) n (u, v, w), using Lemma 3.3.1 again, we have (3.5.25)

E(e iwL α 1 n ) = R ϕ α (s)e iws n 1/α ds = - n 1/α iw R ϕ α (s)e
X (4) n (u, v, w) = E ϕ α ϕ α (L α 1 ) 2 e i wL α 1 n 1/α + O(n -1 ) n→∞ ----→ E ϕ α ϕ α (L α 1 ) 2 .
For the term X (5) n (u, v, w) we have (3.5.26)

X (5) n (u, v, w) = E ϕ α (L α 1 ) ϕ α (L α 1 ) (ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 )) ϕ α (L α 1 ) e iwL α 1 n 1/α + O(n -1 ) n→∞ ----→ E ϕ α (L α 1 ) ϕ α (L α 1 ) (ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 )) ϕ α (L α 1 )
= 0 from (3.3.13).

For the term X (6) n (u, v, w), we see that (3.5.27)

X (6) n (u, v, w) = E ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 ) ϕ α (L α 1 ) 2 e iwL α 1 n 1/α + O(n -1 ) n→∞ ----→ E ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 ) ϕ α (L α 1 ) 2 .
3.6. PROOFS OF LEMMAS 3.3.2-3.3.5

Collecting the convergence of (X (i) n (u, v, w)) 1≤i≤6 , we deduce the convergence log E exp(iuΓ

n,1 1 + ivΓ n,2 1 + iwZ n 1 ) n→∞ ----→ ψ(v) - u 2 2 E ϕ α ϕ α (L α 1 ) 2 - v 2 2 E ϕ α (L α 1 ) + L α 1 ϕ α (L α 1 ) ϕ α (L α 1 )
2 and thus the convergence in law of this lemma.

Proofs of Lemmas 3.3.2-3.3.5

The proof of these lemmas is very technical and requires many intermediate results. We first recall the Malliavin calculus for jump processes used in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF] and some properties of the Malliavin weights. Next we will establish a regularity property of a conditional expectation with respect to the conditioning variable. Then we will proceed to the proof of the lemmas.

Malliavin calculus and preliminary lemmas

We recall the Malliavin calculus on the Poisson space associated to the measure µ (n) (defined in Section 3.3.2.1) and the basic properties of the Malliavin operators (see Bichteler, Gravereaux, Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF], Chapter IV, Section 8-9-10). For a test function f : [0, 1] × E → R ( f is measurable, C 2 with respect to the second variable, with bounded derivative, and f ∈ ∩ p≥1 L p (ν)) we set

µ (n) ( f ) = 1 0 E f (t, z)µ (n) (dt, dz).
We introduce an auxiliary function ρ n as (3.6.1)

ρ n (z) =                  z 4 if |z| < 1 ζ(z) if 1 ≤ |z| ≤ 2 z 2 τ( z 2n 1/α ) if |z| > 2
where τ is defined in the assumption H 1 (b i ), and ζ is a non negative function belonging to C ∞ such that the function ρ n belongs to C ∞ . Note that ζ is defined such that ρ n (z) admits a derivative and ρ n , (ρ n ) , ρ n F n (z) F n (z) belong to ∩ p≥1 L p (F n (z)dz). From the conditions on τ, we can easily deduce 

that z 2 τ( z 2n 1/α ) =        z 2 if 2 ≤ |z| ≤ 2n 1/α 0 if |z| > 4n
ρ(z) =                  z 4 if |z| < 1 ζ(z) if 1 ≤ |z| ≤ 2 z 2 if |z| > 2.
(3.6.2)

Note that from the definition of ρ n and ρ, we can easily see that

ρ n (z) = ρ(z) if |z| ≤ 2n 1/α .
With these notations, we define the Malliavin operator L, on a simple functional µ (n) ( f ), in the same way as in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF] by the following equations :

L(µ (n) ( f )) = 1 2 µ (n) (ρ n ) f + ρ n F n F n f + ρ n f ,
where f and f are the derivatives with respect to the second variable. For

Φ = F(µ (n) ( f 1 ), .., µ (n) ( f k )), with F of class C 2 , we set LΦ = k i=1 ∂F ∂x i (µ (n) ( f 1 ), ..., µ (n) ( f k ))L(µ (n) ( f i )) + 1 2 k i, j=1 ∂ 2 F ∂x i ∂x j (µ (n) ( f 1 ), ..., µ (n) ( f k ))µ (n) (ρ n f i f j ).
These definitions permit to construct a linear operator L on a space D ⊂ ∩ p≥1 L p whose basic properties are the following.

i) L is self-adjoint: ∀Φ, Ψ ∈ D, we have EΦLΨ = ELΦΨ.

ii) LΦ 2 ≥ 2ΦLΦ.

iii) ELΦ = 0.

We associate to L, the symmetric bilinear operator Γ:

(3.6.3) Γ(Φ, Ψ) = L(ΦΨ) -ΦLΨ -ΨLΦ.
This operator satisfies the following properties (see [8, equation (8-3)])

Γ(F(Φ), Ψ) = F (Φ)Γ(Φ, Ψ), (3.6.4) Γ(F(Φ 1 , Φ 2 ), Ψ) = ∂ Φ 1 F(Φ 1 , Φ 2 )Γ(Φ 1 , Ψ) + ∂ Φ 2 F(Φ 1 , Φ 2 )Γ(Φ 2 , Ψ), (3.6.5) |Γ(Φ, Ψ)| ≤ Γ(Φ, Φ) 1/2 Γ(Ψ, Ψ) 1/2 .
(3.6.6) Remark 3.6.1. The operators L and Γ depend on n through the functions ρ n and F n but to simplify the notation we omit the dependence in n.

The operator L and the operator Γ permit to establish the following integration by parts formula (see [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF]p.103]). Proposition 3.6.1. For Φ and Ψ in D, and f bounded with bounded derivative up to order two, if Γ(Φ, Φ) is invertible and Γ -1 (Φ, Φ) ∈ ∩ p≥1 L p then we have (3.6.11)

E f (Φ)Ψ = E f (Φ)H Φ (Ψ), (3.6.7) with H Φ (Ψ) = -2ΨΓ -1 (Φ, Φ)LΦ -Γ(Φ, ΨΓ -1 (Φ, Φ)) (3.6.8) = -2ΨΓ -1 (Φ, Φ)LΦ - 1 Γ(Φ, Φ) Γ(Φ, Ψ) + Ψ Γ(Φ, Φ) 2 Γ(Φ, Γ(Φ, Φ)) (3.6.9) = ΦL Ψ Γ(Φ, Φ) - ΨLΦ Γ(Φ, Φ) -L ΨΦ Γ(Φ, Φ) . ( 3 
H Ȳ n,β,x 0 1 (∇ β Ȳ n,β,x 0 1 ) =     H Ȳ n,β,x 0 1 (∂ θ Ȳ n,β,x 0 1 ) H Ȳ n,β,x 0 1 (∂ σ Ȳ n,β,x 0 1 )     =    ∂ θ Ȳ n,β,x 0 1 ∂ σ Ȳ n,β,x 0 1    H Ȳ n,β,x 0 1 (1) - 1 Γ( Ȳ n,β,x 0 1 , Ȳ n,β,x 0 1 )    Γ( Ȳ n,β,x 0 1 , ∂ θ Ȳ n,β,x 0 1 ) Γ( Ȳ n,β,x 0 1 , ∂ σ Ȳ n,β,x 0 1 )   

and

(3.6.12)

H Ȳ n,β,x 0 1 (1) = Γ( Ȳ n,β,x 0 1 , Γ( Ȳ n,β,x 0 1 , Ȳ n,β,x 0 1 )) (Γ( Ȳ n,β,x 0 1 , Ȳ n,β,x 0 1 )) 2 -2 L Ȳ n,β,x 0 1 Γ( Ȳ n,β,x 0 1 , Ȳ n,β,x 0 1 ) = 1 σ n 1/α Ĥ n β (1) + R n 1,β (1) + R n 2,β (1) + R n 3,β (1) 
.

The main term Ĥ n β (1) is given by (3.6.13) 

Ĥ n β (1) = 1 0 R ( n s ) -3 ρ n (z)(ρ n ) (z)µ (n) (ds, dz) n 1 1 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz) 2 - 1 0 R ( n s ) -1 (ρ n ) (z) -1+α z ρ n (z) µ (n) (ds, dz) n 1 1 0 R ( n s ) -2 ρ n (z)µ (n) (
n s = exp 1 n s 0 b ( Ȳ n,β,x 0 u , θ)du .
The remainder terms satisfy for all compact set Q ⊂ R × (0, ∞)

(3.6.15) ∀p ≥ 2, E sup β∈Q R n 1,β (1) p ≤ C n , sup β∈Q |R n 2,β (1)| ≤ C n , sup β∈Q |R n 3,β (1)| ≤ C n ,
where C is some deterministic constant.

Remark 3.6.2. i) It is proved in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF] (see (4.23) ) that Ĥ n β (1) is bounded by a random variable independent of n, β and x 0 and belonging to ∩ p≥1 L p and that it converges in L p , ∀p ≥ 1, uniformly with respect to x 0 (see (4.23) and (5.49) in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]) to H L α (1) given by

H L α (1) = 1 0 R ρ(z)ρ (z)µ(ds, dz) 1 0 R ρ(z)µ(ds, dz) 2 - 1 0 R ρ (z) -1+α z ρ(z) µ(ds, dz) 1 0 R ρ(z)µ(ds, dz) . (3.6.16) Moreover, H L α (1) and L α 1 H L α (1) belong to L p , ∀p ≥ 1.
ii) In the case b ≡ 0 and σ = 1, we have n s = 1 and the remainder terms R n 2,β (1), R n 3,β (1) are equal to zero (see (4.7) and (4.8) in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]). Moreover, we see that (3.6.12) can be rewritten as 1), then we can deduce that H L n 1 (1)

Ĥ n β (1) + 1 n 1/α R n 1,β (1) = H L n 1 (
L p ---→ p≥1 H L α (1).
Before studying the Malliavin weight

H Ȳ n,β,x 0 1 (∇ β Ȳ n,β,x 0 1
), we give some control on the pro-

cesses (∂ θ Y β t ) t and (∂ σ Y β t ) t ,

respectively solution to the equations

∂ θ Ȳ n,β,x 0 t = 1 n t 0 b ( Ȳ n,β,x 0 s , θ)∂ θ Ȳ n,β,x 0 s ds + 1 n t 0 ∂ θ b( Ȳ n,β,x 0 s , θ)ds, (3.6.17) ∂ σ Ȳ n,β,x 0 t = 1 n t 0 b ( Ȳ n,β,x 0 s , θ)∂ σ Ȳ n,β,x 0 s ds + L n t n 1/α . (3.6.18)
We have the following properties. We now proceed to the decomposition of the Malliavin weight H Ȳ n,βn ,x 0

Lemma 3.6.1. [Lemma 5.1 in [19]] Let Q ⊂ R × (0, ∞) be a compact subset. We have i) sup β∈Q |∂ θ Ȳ n,β,x 0 1 | ≤ C n , ii) sup β∈Q sup s∈[0,1] ∂ σ Ȳ n,β,x 0 s n→∞ ----→ L p 0, ∀p ≥ 1.
1 (∇ β Ȳ n,β n ,x 0 1
) defined in Proposition 3.6.2 into some main parts and some remainder parts. From (3.6.11), (3.6.12), we can rewrite

H Ȳ n,βn ,x 0 1 (∇ β Ȳ n,β n ,x 0 1 ) as, (3.6 
.19) H Ȳ n,βn ,x 0 1 (∇ β Ȳ n,β n ,x 0 1 ) =    1 σ n n 1/α ∂ θ Ȳ n,β n ,x 0 1 Ĥ n β n (1) 
1

σ n n 1/α ∂ σ Ȳ n,β n ,x 0 1 Ĥ n β n (1) -1    + R n β n (∇ β Ȳ n,β n ,x 0 1 )
where Ĥ n β (1) is given by (3.6.13) and

(3.6.20) R n β n (∇ β Ȳ n,β n ,x 0 1 ) =    ∂ θ Ȳ n,β n ,x 0 1 ∂ σ Ȳ n,β n ,x 0 1    R n 1,β n (1) + R n 2,β n (1) + R n 3,β n (1) -     V n,θn 1 U n,βn 1 V n,σn 1 U n,βn 1 -1 σ n     with U n,β 1 = Γ( Ȳ n,β,x 0 1 , Ȳ n,β,x 0 1 ), V n,θ 1 = Γ( Ȳ n,β,x 0 1 , ∂ θ Ȳ n,β,x 0 1
) and

V n,σ 1 = Γ( Ȳ n,β,x 0 1 , ∂ σ Ȳ n,β,x 0 1 ) given by (3.6.21) U n,β 1 
= ( n 1 ) 2 σ 2 n 2/α 1 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz), V n,θ 1 = 1 n ( n 1 ) 2 1 0 ( n s ) -2 U n,β s (∂ θ b) ( Ȳ n,β,x 0 s , θ) + b ( Ȳ n,β,x 0 s , θ)∂ θ Ȳ n,β,x 0 s ds, (3.6.22) 
V n,σ 1 = 1 n ( n 1 ) 2 1 0 ( n s ) -2 b ( Ȳ n,β,x 0 s , θ)∂ σ Ȳ n,β,x 0 s U n,β s ds + σ n 2/α ( n 1 ) 2 t 0 R ( n s ) -2 ρ n (z)µ (n) (ds, dz) (3.6.23) 
and ( n s ) s∈[0,1] given by (3.6.14). Now we recall two technical lemmas given in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF] useful to study the convergence of the Malliavin weight

H Ȳ n,βn ,x 0 1 (∇ β Ȳ n,β n ,x 0 1
) in the proof of Lemmas 3.3.4 -3.3.5 later.

Lemma 3.6.2. [Lemma 5.4 in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]] Let (β n ) be a sequence converging to β. For all p ≥ 1, the following convergences hold uniformly

with respect to x 0 i) n∂ θ Ȳ n,β n ,x 0 1 Ĥ n β n (1) n→∞ ----→ L p ∂ θ b(x 0 , θ)H L α (1), ii) n 1/α ∂ σ Ȳ n,β n ,x 0 1 Ĥ n β n (1) n→∞ ----→ L p L α 1 H L α (1),
where Ĥ n β (1) and H L α (1) are respectively given by (3.6.13) and (3.6.16).

Lemma 3.6.3. [Lemma 5.3 in [19]]

Let Q ⊂ R × (0, ∞) be a compact subset. The following estimates hold:

i) sup β∈Q V n,θ 1 U n,β 1 ≤ C n , ii) V n,σ 1 U n,β 1 = 1 σ + R n 9,β (1) 
,

where C is some deterministic constant and sup β∈Q |R n 9,β (1)| converges to zero as n → ∞ in L p , ∀p ≥ 1.

Regularity of the conditional expectation

In this section, we prove a regularity property of the conditional expectation with respect to the conditioning variable.

Proposition 3.6.3. Let H be a random variable such that E(H ) 2 < ∞. We assume that there exists a sequence of random variables

(H n ) n≥1 with E(H n ) 2 < ∞ and such that H n n→∞ ----→ L 2
H and

sup n ||Γ(H n , H n )|| 2 < ∞. Then, (3.6 
.24) E E[H | Ȳ n,β n ,x 0 1 ] 2 -E E[H |L α 1 ] 2 n→∞ ----→ 0
and this convergence is uniform with respect to x 0 .

Remark 3.6.3. Note that if the random variable H depends on all the measure µ then the Malliavin calculus of Section 3.3.2.1 is not defined. So we need to introduce the sequence of random variables (H n ), for which the Malliavin calculus of Section 3.6.1 is defined, such that

Γ(H n , H n ) is also well defined . It is the case, for instance, if H n is a simple functional of µ (n) .
Proof of Proposition 3.6.3 First we reduce the situation to the case where the random variable in the expectation is bounded. Let K > 1 and denote by x → X K (x) a smooth truncation function with (3.6.25) For all > 0, we can choose K large enough such that ||H -H X K (H )|| 2 2 < and then, one can see that (3.6.24) is implied by the following convergence, ∀K > 2 sup

                 X K (x) = 0 for |x| > K X K (x) = 1 for |x| ≤ K/2 0 ≤ X K (x) ≤ 1 for K/2 ≤ |x| ≤ K.
x 0 E E[H X K (H )| Ȳ n,β n ,x 0 1 ] 2 -E E[H X K (H )|L α 1 ] 2 n→∞ ----→ 0. Now since E (H n -H ) 2 n→∞ ----→ 0, it is sufficient to prove that, ∀K > 2 (3.6.26) sup x 0 E E[H n X K (H n )| Ȳ n,β n ,x 0 1 ] 2 -E E[H n X K (H n )|L α 1 ] 2 n→∞ ----→ 0.
We now prove (3.6.26). First, we define η H n,K and ηH n,K as follows (3.6.27)

η H n,K ( Ȳ n,β n ,x 0 1 -ς n,θ n ,x 0 1 ) = E H n X K (H n )| Ȳ n,β n ,x 0 1 -ς n,θ n ,x 0 1 = E H n X K (H n )| Ȳ n,β n ,x 0 1 , ηH n,K ( σL α 1 n 1/α ) = E H n X K (H n )| σL α 1 n 1/α = E H n X K (H n )|L α 1 .
With these notations, we can rewrite (3.6.26) as (3.6.28) sup

x 0 E η H n,K ( Ȳ n,β n ,x 0 1 -ς n,θ n ,x 0 1 ) 2 -E ηH n,K ( σL α 1 n 1/α ) 2 n→∞ ----→ 0.
Using Lemma 3.6.5 in Section 3.6.4, we know that:

sup x 0 E η H n,K ( Ȳ n,β n ,x 0 1 -ς n,θ n ,x 0 1 ) -ηH n,K ( Ȳ n,β n ,x 0 1 -ς n,θ n ,x 0 1 
) n→∞ ----→ 0 and since |η H n,K | and | ηH n,K | are bounded by the constant K, we deduce sup

x 0 E[η H n,K ( Ȳ n,β n ,x 0 1 -ς n,θ n ,x 0 1 ) 2 ] -E[ ηH n,K ( Ȳ n,β n ,x 0 1 -ς n,θ n ,x 0 1 ) 2 ] 
n→∞ ----→ 0. Now, applying Lemma 3.6.4 in Section 3.6.4, with the choice H n = 1 with the bounded function ( ηH n,K ) 2 we get (3.6.28) and the proposition is proved.

We can now prove Lemma 3. Indeed, since L n 1 belongs to the Malliavin space D, the integration by parts formula (3.6.7)

gives for any test function f ( f is bounded, compactly supported and f is bounded), (3.6.29)

E[ f (L n 1 )] = E[ f (L n 1 )H L n 1 (1)]. DRIVEN BY A STABLE LÉVY PROCESS Now from Lemma 3.3.1, we have P(L n 1 = L α 1 )
n→∞ ----→ 1 and from Remark 3.6.2 ii) we have

H L n 1 (1) L p ---→ p≥1 H L α (1)
. Letting n go to infinity in (3.6.29), we deduce (3.6.30)

E[ f (L α 1 )] = E[ f (L α 1 )H L α (1)]. Observing that ϕ α (u) f (u)du = -ϕ α (u) f (u)du, we get f (u)ϕ α (u)du = -E[ f (L α 1 )H L α (1)] and
we deduce the representation (3.3.7).

Proof of Lemma 3.3.3

The proof of this lemma is based on the results in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF] recalled in Section 3.6. From (3.6.20), Lemma 3.6.1, Lemma 3.6.3 and (3.6.15), we easily deduce that

sup β∈Q R n β (∇ β Ȳ n,β n ,x 0 1
) converges to zero in L p , ∀p ≥ 1 (uniformly with respect to x 0 ).

From Lemma 3.6.2 iii) and (3.6.19) we can deduce (3.3.8).

The uniform control of

E n 1/2 r n H Ȳ n,β,x 0 1 (∇ β Ȳ n,β,x 0 1 ) p is immediate. 
Proof of Lemma 3.3.4 From Jensen's inequality, we have

E E[n 1-1/α H Ȳ n,βn ,x 0 1 (∂ θ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 ] -E[ 1 σ ∂ θ b(x 0 , θ)H L α (1)| Ȳ n,β n ,x 0 1 ] 2 ≤E E n 1-1/α H Ȳ n,βn ,x 0 1 (∂ θ Ȳ n,β n ,x 0 1 ) - 1 σ ∂ θ b(x 0 , θ)H L α (1) 2 | Ȳ n,β n ,x 0 1 =E n 1-1/α H Ȳ n,βn ,x 0 1 (∂ θ Ȳ n,β n ,x 0 1 ) - 1 σ ∂ θ b(x 0 , θ)H L α (1)
2 From Lemma 3.3.3, the last term converges to zero uniformly with respect to x 0 . In turn, it gives the uniform convergence sup

x 0 n 2-2/α E E[H Ȳ n,βn ,x 0 1 (∂ θ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 ] 2 - 1 σ 2 ∂ θ b(x 0 , θ) 2 E E[H L α (1)| Ȳ n,β n ,x 0 1 ] 2 n→∞ ----→ 0.
By the same method as above, we also get the uniform convergence sup

x 0 E E[H Ȳ n,βn ,x 0 1 (∂ σ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 ] 2 - 1 σ 2 E E[ L α 1 H L α (1) -1 | Ȳ n,β n ,x 0 1 ] 2 n→∞ ----→ 0.
Hence, this lemma will be proved as soon as we show that sup

x 0 E E[H L α (1)| Ȳ n,β n ,x 0 1 ] 2 -E E[H L α (1)|L α 1 ] 2 n→∞ ----→ 0, (3.6.31) sup x 0 E E[ L α 1 H L α (1) -1 | Ȳ n,β n ,x 0 1 ] 2 -E E[ L α 1 H L α (1) -1 |L α 1 ] 2 n→∞ ----→ 0. (3.6.32)
To prove (3.6.31), we apply Proposition 3.6.3 with the choice H = H L α (1) and (3.6.33)

H n = 1 0 R ρ n (z)(ρ n ) (z)µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 2 - 1 0 R (ρ n ) (z) -1+α z ρ n (z) µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) := H n . From Remark 3.6.2 ii) we get that H n = H L n 1 (1) -1 n 1/α R n 1,β , moreover E(H L α (1)) 2 < ∞ and H n n→∞ ----→ L 2 H L α (1)
. The computation of Γ( H n , H n ) is omitted but reduces to the computation of the Γ-bracket between simple functionals. After some calculus (similar to those in the proof of Theorem 2.1 in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]) we get that Γ( H n , H n ) is bounded by a random variable independent of n and belonging to ∩ p≥1 L p (see the detail verification in Section 3.7). Turning to 3.6.32, we proceed similarly with the choices

H = L α 1 H L α (1) and H n = L n 1 H n . Note that using Lemma 3.6.2 ii) with b(x, θ) = 0 and σ = 1 we deduce that L n 1 H n n→∞ ----→ L 2 L α 1 H L α (1) moreover we can prove that sup n ||Γ(L n 1 H n , L n 1 H n )|| 2 < ∞ (see the detail verification in Section 3.7).
Proof of Lemma 3.3.5 It is easy to see that

(3.6.34) E   n 1-1/α E[H Ȳ n,βn ,x 0 1 (∂ θ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 ]E[H Ȳ n,βn ,x 0 1 (∂ σ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 ] -E 1 σ L α 1 H L α (1) -1 | Ȳ n,β n ,x 0 1 E 1 σ ∂ θ b(x 0 , θ)H L α (1)| Ȳ n,β n ,x 0 1   ≤ E   n 1-1/α E[H Ȳ n,βn ,x 0 1 (∂ θ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 ] E[H Ȳ n,βn ,x 0 1 (∂ σ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 ] -E L α 1 H L α (1) -1 σ | Ȳ n,β n ,x 0 1   + E   E L α 1 H L α (1) -1 σ | Ȳ n,β n ,x 0 1 n 1-1/α E[H Ȳ n,βn ,x 0 1 (∂ θ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 ] -E ∂ θ b(x 0 , θ)H L α (1) σ | Ȳ n,β n ,x 0 1   .
Then using Cauchy-Schwarz inequality

E   n 1-1/α E[H Ȳ n,βn ,x 0 1 (∂ θ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 ]× × E[H Ȳ n,βn ,x 0 1 (∂ σ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 ] -E L α 1 H L α (1) -1 σ | Ȳ n,β n ,x 0 1   DRIVEN BY A STABLE LÉVY PROCESS ≤ E n 1-1/α E[H Ȳ n,βn ,x 0 1 (∂ θ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 ] 2 1/2 × ×   E   E[H Ȳ n,βn ,x 0 1 (∂ σ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 ] -E L α 1 H L α (1) -1 σ | Ȳ n,β n ,x 0 1   2   1/2 (3.6.35) ≤ E n 2-2/α E H Ȳ n,βn ,x 0 1 (∂ θ Ȳ n,β n ,x 0 1 ) 2 | Ȳ n,β n ,x 0 1 1/2 × ×   E   E H Ȳ n,βn ,x 0 1 (∂ σ Ȳ n,β n ,x 0 1 ) - L α 1 H L α (1) -1 σ 2 | Ȳ n,β n ,x 0 1     1/2 = E n 2-2/α H Ȳ n,βn ,x 0 1 (∂ θ Ȳ n,β n ,x 0 1 ) 2 1/2   E   H n Ȳ n,βn ,x 0 1 (∂ σ Ȳ n,β n ,x 0 1 ) - L α 1 H L α (1) -1 σ 2     1/2 .
Furthermore, from (3.3.8) we easily deduce that (3.6.35) converges to zero uniformly with respect to x 0 . Similarly, we also get that

E E (L α 1 H L α (1)-1) σ | Ȳ n,β n ,x 0 1 n 1-1/α E[H Ȳ n,βn ,x 0 1 (∂ θ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 ] -E ∂ θ b(x 0 ,θ)H L α (1) σ | Ȳ n,β n ,x 0 1 tends
to zero uniformly with respect to x 0 . And then, we can conclude that (3.6.34) converges to zero uniformly with respect to x 0 . In turn, it gives the uniform convergence (3.6.36) sup

x 0 E n 1-1/α E[H Ȳ n,βn ,x 0 1 (∂ θ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 ]E[H Ȳ n,βn ,x 0 1 (∂ σ Ȳ n,β n ,x 0 1 )| Ȳ n,β n ,x 0 1 ] - -E E 1 σ L α 1 H L α (1) -1 | Ȳ n,β n ,x 0 1 E 1 σ ∂ θ b(x 0 , θ)H L α (1)| Ȳ n,β n ,x 0 1 n→∞ ----→ 0.
On the other hand, we can rewrite

(3.6.37) E E 1 σ L α 1 H L α (1) -1 | Ȳ n,β n ,x 0 1 E 1 σ ∂ θ b(x 0 , θ)H L α (1)| Ȳ n,β n ,x 0 1 = 1 4 E    E 1 σ L α 1 H L α (1) -1 + 1 σ ∂ θ b(x 0 , θ)H L α (1)| Ȳ n,β n ,x 0 1 2 -E 1 σ L α 1 H L α (1) -1 - 1 σ ∂ θ b(x 0 , θ)H L α (1)| Ȳ n,β n ,x 0 1 2    .
Then, the lemma will be proved as soon as we show that

(3.6.38) E    E 1 σ L α 1 H L α (1) -1 + 1 σ ∂ θ b(x 0 , θ)H L α (1) Ȳ n,β n ,x 0 1 2 -E 1 σ L α 1 H L α (1) -1 - 1 σ ∂ θ b(x 0 , θ)H L α (1) Ȳ n,β n ,x 0 1 2    3.6. PROOFS OF LEMMAS 3.3.2-3.3.5
is uniformly convergent with respect to x 0 to

(3.6.39) E    E 1 σ L α 1 H L α (1) -1 + 1 σ ∂ θ b(x 0 , θ)H L α (1) L α 1 2 -E 1 σ L α 1 H L α (1) -1 - 1 σ ∂ θ b(x 0 , θ)H L α (1) L α 1 2    .
We end the proof by using Proposition 3.6.3 with

H = L α 1 H L α (1) ± ∂ θ b(x 0 , θ)H L α (1) and H n = L n 1 H n ± ∂ θ b(x 0 , θ)
H n where H n given by (3.6.33).

3.6.4 Lemmas 3.6.4 and 3.6.5

The aim of this section is to show that the functions η H n,K and ηH n,K defined by (3.6.27) are close in some sense. The idea is mainly based on [17, Proposition 9, p.2348], however we need a more technical study since α ∈ (0, 2) and the function b is not assumed to be bounded. Our first result is the following. Lemma 3.6.4. Under the assumptions of Proposition 3.6.3, for all bounded function h, ∀K > 2, there exists a constant C K > 0 such that

|E[H n X K (H n )h( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 )] -E[H n X K (H n )h( σL α 1 n 1/α )] ≤ C K n ||h|| ∞
and the above estimate is uniform with respect to x 0 ∈ R and

β ∈ Q, for any compact set Q ⊂ R × (0, ∞). Proof. Since H n X K (H n ) is bounded and P(L n 1 = L α 1 ) ≤ C n (see Lemma 3.3.1) it is sufficient to show that (3.6.40) E[H n X K (H n )h( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 )] -E[H n X K (H n )h( σL n 1 n 1/α )] ≤ C K n ||h|| ∞ .
We now prove (3.6.40).

Let us denote H n,K = H n X K (H n ) and H any primitive function of h. Using the integration by parts formula (3.6.7), we have

(3.6.41) E h( σL n 1 n 1/α )H n,K = E H( σL n 1 n 1/α )H ( σL n 1 n 1/α ) (H n,K ) CHAPTER 3.
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where

H ( σL n 1 n 1/α ) (H n,K
) is given by (3.6.10), namely here

H ( σL n 1 n 1/α ) (H n,K ) = L   H n,K Γ( σL n 1 n 1/α , σL n 1 n 1/α )   σL n 1 n 1/α - L( σL n 1 n 1/α )H n,K Γ( σL n 1 n 1/α , σL n 1 n 1/α ) -L   H n,K σL n 1 n 1/α Γ( σL n 1 n 1/α , σL n 1 n 1/α )   .
On the other hand, we have for t

∈ [0, 1] Ȳ n,β,x 0 t -ς n,θ,x 0 t - σL n t n 1/α = 1 n t 0 b( Ȳ n,β,x 0 s , θ) -b(ς n,θ,x 0 s , θ) ds ≤ 1 n t 0 ||b || ∞ | Ȳ n,β,x 0 s -ς n,θ,x 0 s |ds ≤ 1 n t 0 ||b || ∞ | Ȳ n,β,x 0 s -ς n,θ,x 0 s - σL n s n 1/α |ds + 1 n 1+1/α 1 0 |σL n s |ds
Applying the Gronwall's inequality, for C a positive constant, independent of n and K,

- σL n 1 n 1/α ≤ C n 1+1/α 1 0 |σL n s |ds. (3.6.42) Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
Using that the function H is globally Lipschitz with a Lipschitz constant ||h|| ∞ , we deduce from (3.6.41) that (3.6.43)

E H n,K h( σL n 1 n 1/α ) -E H( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 )H 
( σL n 1 n 1/α ) (H n,K ) ≤ σC n 1+1/α ||h|| ∞ E 1 0 |L n s |dsH ( σL n 1 n 1/α ) (H n,K ) . Now we compute E[H( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 )H 
( σL n 1 n 1/α )
(H n,K )] using successively the self-adjoint property of the operator L, (3.6.3) and (3.6.10), to obtain an integration by part formula in a reverse direction:

(3.6.44)

E[H( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 )H 
( σL n 1 n 1/α ) (H n,K )] = E   H( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 )    L   H n,K Γ( σL n 1 n 1/α , σL n 1 n 1/α )   σL n 1 n 1/α - L( σL n 1 n 1/α )H n,K Γ( σL n 1 n 1/α , σL n 1 n 1/α ) -L   H n,K σL n 1 n 1/α Γ( σL n 1 n 1/α , σL n 1 n 1/α )        = E   {L(H( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
)

σL n 1 n 1/α ) -H( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
)L(

σL n 1 n 1/α ) -L(H( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
))

σL n 1 n 1/α )}H n,K Γ( σL n 1 n 1/α , σL n 1 n 1/α )   = E   H n,K Γ( σL n 1 n 1/α , H( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
))

Γ(

σL n 1 n 1/α , σL n 1 n 1/α )   = E   H n,K h( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
) Γ(

σL n 1 n 1/α , Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
)

Γ( σL n 1 n 1/α , σL n 1 n 1/α )   .
3.6. PROOFS OF LEMMAS 3.3.2-3.3.5

Putting together (3.6.43) and (3.6.44) we deduce,

E[H n,K h( σL n 1 n 1/α )] -E[H n,K h( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
)]

≤ ( σC n 1+1/α )||h|| ∞ H ( σL n 1 n 1/α ) (H n,K ) 1 0 |L n s |ds 1 + E   H n,K h( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
)

   Γ( σL n 1 n 1/α , Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
)

Γ( σL n 1 n 1/α , σL n 1 n 1/α ) -1      (3.6.45) ≤ ( σC n 1+1/α )||h|| ∞ H ( σL n 1 n 1/α ) (H n,K ) 1 0 |L n s |ds 1 + ||H n,K || ∞ ||h|| ∞ Γ( σL n 1 n 1/α , Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
)

Γ( σL n 1 n 1/α , σL n 1 n 1/α ) -1 1 ≤ C n ||h|| ∞ 1 0 σ n 1/α H ( σL n 1 n 1/α ) (H n,K )|L n s | 1 I (n,s) 1 ds + ||H n,K || ∞ ||h|| ∞ Γ( σL n 1 n 1/α , Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
)

Γ( σL n 1 n 1/α , σL n 1 n 1/α ) -1 1 I n 2 .
Hence the lemma will be proved if we show that sup n sup s∈[0

< ∞ and sup n nI (n) 2 < ∞.

Step 1: we show that sup n sup s∈[0

We can write from (3.6.9)

(3.6.46)

H ( σL n 1 n 1/α ) (H n,K ) = -2L( σL n 1 n 1/α )H n,K Γ( σL n 1 n 1/α , σL n 1 n 1/α ) + H n,K Γ( σL n 1 n 1/α , σL n 1 n 1/α ) 2 Γ σL n 1 n 1/α , Γ( σL n 1 n 1/α , σL n 1 n 1/α ) - Γ( σL n 1 n 1/α , H n,K ) Γ( σL n 1 n 1/α , σL n 1 n 1/α ) = n 1/α σ -2L(L n 1 )H n,K Γ(L n 1 , L n 1 ) + H n,K Γ(L n 1 , L n 1 ) 2 Γ(L n 1 , Γ(L n 1 , L n 1 )) - Γ(L n 1 , H n,K ) Γ(L n 1 , L n 1 )
. Now, let us recall that from (3.3.2)

L n s = s 0 |z|≤1 z μ(n) (dt, dz) + s 0 |z|>1 zµ (n) (dt, dz), then, (3.6 
.47) σ n 1/α H ( σL n 1 n 1/α ) (H n,K )|L n s | ≤ σ n 1/α H ( σL n 1 n 1/α ) (H n,K ) s 0 |z|≤1 z μ(n) (dt, dz) (3.6.48) + σ n 1/α H ( σL n 1 n 1/α ) (H n,K ) 1 0 |z|>1 |z|µ (n) (dt, dz)
First, we consider the expectation of the right-hand side term in (3.6.47), we have:

E σ n 1/α H ( σL n 1 n 1/α ) (H n,K ) s 0 |z|≤1 z μ(n) (dt, dz) ≤ E s 0 |z|≤1 z μ(n) (dt, dz) 2 1/2 E σ n 1/α H ( σL n 1 n 1/α ) (H n,K ) CHAPTER 3.
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(3.6.49)

= 1 0 |z|≤1 z 2 1 |z| 1+α dzdt 1/2 E σ n 1/α H ( σL n 1 n 1/α ) (H n,K ) 2 1/2 ≤ M E σ n 1/α H ( σL n 1 n 1/α ) (H n,K ) 2 1/2
where M is a deterministic constant.

Furthermore, from (3.6.6) we have 

Γ(L n 1 , H n,K ) ≤ Γ(H n,K , H n,K ) 1/2 Γ(L n 1 , L n 1 )
σ n 1/α H ( σL n 1 n 1/α ) (H n,K ) 2 ≤ 2 -2L(L n 1 )H n,K Γ(L n 1 , L n 1 ) + H n,K Γ(L n 1 , L n 1 ) 2 Γ(L n 1 , Γ(L n 1 , L n 1 )) 2 + Γ(H n,K , H n,K ) Γ(L n 1 , L n 1 )
.

Then, we can deduce that

E σ n 1/α H ( σL n 1 n 1/α ) (H n,K ) 2 (3.6.51) ≤ 2 E -2L(L n 1 )H n,K Γ(L n 1 , L n 1 ) + H n,K Γ(L n 1 , L n 1 ) 2 Γ(L n 1 , Γ(L n 1 , L n 1 )) 2 I n 1.1 +2 E Γ(H n,K , H n,K ) Γ(L n 1 , L n 1 ) I n 1.2 . 
Our aim is to prove that I n 1.1 and I n 1.2 are bounded independently of n.

For I n 1.1 , we see from (3.6.8) and Remark 3.6.2, (3.6.52)

Γ(L n 1 , Γ(L n 1 , L n 1 )) Γ(L n 1 , L n 1 ) 2 - 2L(L n 1 ) Γ(L n 1 , L n 1 ) = H L n 1 (1) = Ĥ n β (1) + 1 n 1/α R n 1,β .
From the crucial fact ||H n,K || ∞ ≤ K and from (3.6.12), (3.6.15), Remark 3.6.2 we can deduce that

I n 1.
1 is bounded by a random variable independent of n (but depending on K).

For I n 1.2 , from (3.6.1) and (3.6.21), we have

I n 1.2 = E Γ(H n,K , H n,K ) Γ(L n 1 , L n 1 ) = E Γ(H n,K , H n,K ) 1 0 R ρ n (z)µ (n) (dt, dz) ≤ E Γ(H n,K , H n,K ) 1 0 |z|<1 z 4 µ(dt, dz)
. Now since H n,K is a smooth Malliavin functional, using the chain rule property (3.6.4) we have

(3.6.53) Γ(H n,K , H n,K ) ≤ c 2 K Γ(H n , H n )
where c K is any upper bound of the derivative of x → xX K (x).

Then we deduce that Turning to the expectation of (3.6.48), we have:

I n 1.2 ≤ c 2 K E Γ(H n , H n ) 1 0 |z|<1 z 4 µ(dt, dz)
E σ n 1/α H ( σL n 1 n 1/α ) (H n,K ) 1 0 |z|>1 |z|µ (n) (dt, dz) = E σ n 1/α H ( σL n 1 n 1/α ) (H n,K ) 1 0 1≤|z|≤2 |z|µ (n) (dt, dz) + 1 0 |z|>2 |z|µ (n) (dt, dz) ≤ E σ n 1/α H ( σL n 1 n 1/α ) (H n,K ) 1 0 1≤|z|≤2 |z|µ (n) (dt, dz) + E σ n 1/α H ( σL n 1 n 1/α ) (H n,K ) 1 0 |z|>2 |z|µ (n) (dt, dz) .
By a similar estimation technique as for the bound of (3.6.47), we get that

sup n E σ n 1/α H ( σL n 1 n 1/α ) (H n,K ) 1 0 1≤|z|≤2 |z|µ (n) (dt, dz) ≤ C K < +∞.
We now show that (

E σ n 1/α H ( σL n 1 n 1/α ) (H n,K ) 1 0 |z|>2 |z|µ (n) (dt, dz) ≤ C K < +∞. 3.6.54) sup n 
In fact, from (3.6.46) we have

E σ n 1/α H ( σL n 1 n 1/α ) (H n,K ) 1 0 |z|>2 |z|µ (n) (dt, dz) ≤ E         -2L(L n 1 )H n,K Γ(L n 1 , L n 1 ) + H n,K Γ(L n 1 , L n 1 ) 2 Γ(L n 1 , Γ(L n 1 , L n 1 )) + Γ(L n 1 , H n,K ) Γ(L n 1 , L n 1 )     × 1 0 |z|>2 |z|µ (n) (dt, dz)     (3.6.55) = E -2L(L n 1 )H n,K Γ(L n 1 , L n 1 ) + H n,K Γ(L n 1 , L n 1 ) 2 Γ(L n 1 , Γ(L n 1 , L n 1 )) 1 0 |z|>2 |z|µ (n) (dt, dz) I n 1.3 + E Γ(L n 1 , H n,K ) Γ(L n 1 , L n 1 ) 1 0 |z|>2 |z|µ (n) (dt, dz) I n 1.4
To prove (3.6.54), we just have to show that I n 1.3 and I n 1.4 are bounded independently of n. For I n 1.3 , we recall here (3.6.52),

Γ(L n 1 , Γ(L n 1 , L n 1 )) Γ(L n 1 , L n 1 ) 2 - 2L(L n 1 ) Γ(L n 1 , L n 1 ) = Ĥ n β (1) + 1 n 1/α R n 1,β (1) 
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Then from the boundedness of H n,K , we get

I n 1.3 ≤ KE Ĥ n β (1) 1 0 |z|>2 |z|µ (n) (dt, dz) + KE R n 1,β (1) 
1

n 1/α 1 0 |z|>2 |z|µ (n) (dt, dz)
From the proof of Lemma 5.4 in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF], we can deduce that Ĥ n β (1)

1 0 |z|>2 |z|µ (n) (dt, dz) is bounded
by a random variable independent of n and belonging to ∩ p≥1 L p .

Using Cauchy-Schwarz inequality and (3.6.15), we get

(3.6.56) E R n 1,β (1) 
1

n 1/α 1 0 |z|>2 |z|µ (n) (dt, dz) ≤ C n E 1 0 |z|>2 |z| n 1/α µ (n) (dt, dz) 2 1/2
Now from µ (n) (ds, dz) = μ(n) (ds, dz) + υ (n) (ds, dz), by convexity inequality, we have (3.6.57)

E 1 0 |z|>2 |z| n 1/α µ (n) (ds, dz) 2 ≤ 2E 1 0 |z|>2 |z| n 1/α μ(n) (ds, dz) 2 + 2 1 0 |z|>2 |z| n 1/α υ (n) (ds, dz) 2 ≤ 2E 1 0 2<|z|≤2n 1/α |z| 2 n 2/α 1 |z| 1+α dzds + 2 1 0 2<|z|≤2n 1/α |z| n 1/α 1 |z| 1+α dzds 2 ≤ C n 2/α n 2/α n + n 1/α n
where C is a deterministic constant.

From (3.6.56) and (3.6.57), we deduce that the left-hand side of (3.6.56) is bounded by C n . Then we get that sup n I n 1.3 < +∞ .

For I n 1.4 , from the boundedness of H n,K , (3.6.21), and the fact that

Γ(L n 1 , H n,K ) ≤ Γ(H n,K , H n,K ) 1/2 Γ(L n 1 , L n 1 )
1/2 we have:

I n 1.4 ≤ E Γ(H n,K , H n,K ) Γ(L n 1 , L n 1 ) 1/2 1 0 |z|>2 |z|µ (n) (dt, dz) = E    Γ(H n,K , H n,K ) 1/2 1 0 R ρ n (z)µ (n) (ds, dz) 1/2 1 0 |z|>2 |z|µ (n) (dt, dz)    ≤ E    Γ(H n,K , H n,K ) 1/2 1 0 |z|>2 z 2 µ (n) (ds, dz) 1/2 1 0 |z|>2 |z|µ (n) (dt, dz)    .
Applying the Cauchy-Schwarz inequality, we have (3.6.58)

1 0 |z|>2 µ (n) (dt, dz) × 1 0 |z|>2 z 2 µ (n) (ds, dz) ≥ 1 0 |z|>2 |z|µ (n) (dt, dz) 2 .
3.6. PROOFS OF LEMMAS 3.3.2-3.3.5

We deduce (3.6.59)

E    Γ(H n,K , H n,K ) 1/2 1 0 |z|>2 z 2 µ (n) (ds, dz) 1/2 1 0 |z|>2 |z|µ (n) (dt, dz)    ≤ E Γ(H n,K , H n,K ) 1/2 1 0 |z|>2 µ (n) (dt, dz) 1/2 ≤ E Γ(H n,K , H n,K ) 1/2 E 1 0 |z|>2 µ (n) (dt, dz) 1/2 . From E 1 0 |z|>2 µ (n) (dt, dz) 1/2
≤ C 4 where C 4 is a constant and the fact that Γ(H n,K , H n,K ) admits finite moment, independently of n (but depending of K). Then, (3.6.59) is bounded independently of n and I n 1.4 is proved. Hence (3.6.54) follows.

Step 2: We now prove sup n nI n 2 < C* where C* is a positive constant.

We have

Γ( σL n 1 n 1/α , Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
)

Γ( σL n 1 n 1/α , σL n 1 n 1/α ) -1 = 1 n 1 0 Γ( σL n 1 n 1/α , b( Ȳ n,β,x 0 s , θ) -b(ς n,θ,x 0 s , θ)) Γ( σL n 1 n 1/α , σL n 1 n 1/α ) ds ≤ 1 n ||b || ∞ Γ( σL n 1 n 1/α , σL n 1 n 1/α ) 1 0 Γ( σL n 1 n 1/α , Ȳ n,β,x 0 s ) ds. Using that                  Γ( σL n 1 n 1/α , Ȳ n,β,x 0 s ) ≤ Γ( σL n 1 n 1/α , σL n 1 n 1/α ) 1/2 Γ( Ȳ n,β,x 0 s , Ȳ n,β,x 0 s ) 1/2 Γ( Ȳ n,β,x 0 s , Ȳ n,β,x 0 s ) 1/2 ≤ MΓ( Ȳ n,β,x 0 1 , Ȳ n,β,x 0 1 ) 1/2 Γ( Ȳ n,β,x 0 1 , Ȳ n,β,x 0 1 ) 1/2 
≤ M 1 Γ(

σL n 1 n 1/α , σL n 1 n 1/α ) 1/2
for some constants M and M 1 , we can easily deduce that Γ(

σL n 1 n 1/α , Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
)

Γ( σL n 1 n 1/α , σL n 1 n 1/α ) -1 ≤ C * n ,
for a positive constant C * .

Lemma 3.6.5. Under the assumptions of Proposition 3.6.3, for any compact set Q ⊂ R × (0, ∞), ∀K > 2, there exists a constant c K > 0 such that (3.6.60) sup

x 0 ,β∈Q η H n,K ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) -ηH n,K ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) 1 ≤ c K n .
Proof. We estimate the L 1 -norm appearing in (3.6.60) by duality. Let β : R → [-1, 1] be a measurable function, we evaluate:

E (η H n,K ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) -ηH n,K ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 )) β( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
)

≤ E η H n,K ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) β( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
)

-E ηH n,K ( σL α 1 n 1/α ) β( σL α 1 n 1/α ) + E ηH n,K ( σL α 1 n 1/α ) β( σL α 1 n 1/α ) -E ηH n,K ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) β( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
)

≤ E η H n,K ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) β( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
)

-E ηH n,K ( σL α 1 n 1/α ) β( σL α 1 n 1/α ) + C K n K
where we have used Lemma 3.6.4 with the choice H n = 1, K > 2 and the choice h = ηH n,K β, recalling that || ηH n,K || ∞ ≤ K. From the definition of ηH n,K (

σL α 1 n 1/α ) and η H n,K ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
) as conditional expectations, we have:

E η H n,K ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) β( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
)

-E ηH n,K ( σL α 1 n 1/α ) β( σL α 1 n 1/α ) = E H n X K (H n ) β( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 
)

-E H n X K (H n ) β( L α 1 n 1/α ) ≤ C K n
where we used Lemma 3.6.4. This gives, sup

|| β|| ∞ ≤1 E (η H n,K ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) -ηH n,K ( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 )) β( Ȳ n,β,x 0 1 -ς n,θ,x 0 1 ) ≤ (1 + K) C K n
and we deduce the result of this lemma.

3.7 Appendix. Checking the conditions for H = H L α (1) and

H = L α 1 H L α (1) in Proposition 3.6.3
The aim of this section is to verify the conditions given in Proposition 3.6.3 for the choices

H = H L α (1) and H = L α 1 H L α (1)
. Recall that we need to check the following four conditions with

H = H L α (1), H = L α 1 H L α (1)
and the choice of H n in the hypothesis of Proposition 3.6.3 to be clarified later:

(1)

E(H ) 2 < ∞ (2) E(H n ) 2 < ∞ (3) H n n→∞ ----→ L 2 H DRIVEN BY A STABLE LÉVY PROCESS
Let us consider the first term in the right-hand side of (3.7.3).

Using the definition of the operator Γ for a test function, we obtain

(3.7.4) Γ(µ (n) (ρ n (ρ n ) ), µ (n) (ρ n (ρ n ) )) µ (n) (ρ n ) 4 = 1 0 R ρ n (z) ρ n (z)(ρ n ) (z) + ((ρ n ) (z)) 2 2 µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 4 ≤ 1 0 |z|≤2 ρ(z) ρ(z) (ρ) (z) + ((ρ) (z)) 2 2 µ(ds, dz) 1 0 |z|≤2 ρ(z)µ(ds, dz) 4 + 1 0 |z|>2 36z 6 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 4
where we used the fact that the measures µ (n) (ds, dz) and µ(ds, dz) coincide on the set {(s, z)|s ∈ [0, 1], |z| ≤ n 1/α }, and ρ n (z) = ρ(z) on the support of the Poisson measure µ (n) .

We now consider (3.7.4). Using that ρ, ρ , ρ belongs to ∩ p≥1 L p (1 |z|≤2 |z| -1-α dz), we get

E 1 0 |z|<2 ρ(z) ρ(z) (ρ) (z) + ((ρ) (z)) 2 2 µ(ds, dz) p < ∞, ∀p ≥ 1.
We can check that ρ satisfies the non degeneracy assumption lim inf

u→∞ 1 ln(u) |z|≤2 1 ρ(z)≥1/u F(z)dz = lim inf u→∞ 1 ln(u) |z|≤2 1 ρ(z)≥1/u 1 |z| 1+α 1 |z| =0 dz < +∞.
Proceeding as in the proof of [ [17, Theorem 4 p.2323]], we obtain [ 1 0 |z|≤2 ρ(z)µ(ds, dz)] -1 belongs to ∩ p≥1 L p , as a consequence we deduce that the first term of (3.7.4) belongs to ∩ p≥1 L p , moreover, it does not depend on n .

For the second term of (3.7.4), from the fact that v (n) ({(t, z)|0 ≤ t ≤ 1, |z| > 2}) < ∞, we can construct the integral with respect to the random measure µ (n) as follows

1 0 |z|>2 |z| 6 µ (n) (ds, dz) = N 1 i=1 |Z i | 6 a.s., 1 0 |z|>2 z 2 µ (n) (ds, dz) = N 1 i=1 Z 2 i a.s.,
where N = (N t ) 1≥t≥0 is a Poisson process with intensity λ n = |z|>2 F n (z)dz < ∞, and (Z i ) i≥0 are i.i.d. random variable independent of N with probability measure

F n (z)1 |z|>2 dz λ n . Thus, 1 0 |z|>2 |z| 6 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 4 = N 1 i=1 |Z i | 6 N 1 i=1 Z 2 i 4 ≤ N 1 i=1 |Z i | 6 N 1 i=1 Z 8 i ≤ 1 3.7. APPENDIX. CHECKING THE CONDITIONS FOR H = H L α (1) AND H = L α 1 H L α (1) IN PROPOSITION 3.6.3
where we used the fact that Z 2 i ≥ 0, and |Z i | > 2. Hence, from the above estimates, the first term in the right-hand side of (3.7.3) is bounded by a random variable independent of n and belonging to ∩ p≥1 L p .

We estimate the second term in the right-hand side of (3.7.3).

Using the definition of the operator Γ for a test function, we have (3.7.5)

µ (n) (ρ n (ρ n ) ) µ (n) (ρ n ) 5 Γ(µ (n) (ρ n (ρ n ) ), µ (n) (ρ n )) = 1 0 R ρ n (z)(ρ n ) (z)µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 5 1 0 R ρ n (z)(ρ n ) (z) ((ρ n ) (z)) 2 + ρ n (z)(ρ n ) (z) µ (n) (ds, dz) ≤ 1 0 R ρ n (z) (ρ n ) (z) µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 2 × ×     1 0 |z|≤2 ρ(z) (ρ) (z) ((ρ) (z)) 2 + ρ(z)|(ρ) (z)| µ(ds, dz) 1 0 |z|<2 ρ(z)µ(ds, dz) 3 A 1,n + 1 0 |z|>2 12|z| 5 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 3 A 2,n     .
From

Step 1 in the proof of Theorem 2.1 in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF], we have

E   sup n 1 0 R ρ n (z)|(ρ n ) (z)|µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 2 p    < ∞, ∀p ≥ 1.
Proceeding as in the proof of (3.7.4) then we can easily deduce that A 1,n , A 2,n are bounded by a random variable independent of n and belonging to ∩ p≥1 L p .

We now consider the last term in the right-hand side of (3.7.3).

Using the definition of the operator Γ for a test function, we obtain

µ (n) (ρ n (ρ n ) ) 2 µ (n) (ρ n ) 6 Γ(µ (n) (ρ n ), µ (n) (ρ n )) = 1 0 R ρ n (z)(ρ n ) (z)µ (n) (ds, dz) 2 1 0 R ρ n (z)µ (n) (ds, dz) 6 1 0 R ρ n (z)(ρ n ) (z)(ρ n ) (z)µ (n) (ds, dz) = 1 0 R ρ n (z)(ρ n ) (z)µ (n) (ds, dz) 2 1 0 R ρ n (z)µ (n) (ds, dz) 4 1 0 R ρ n (z)(ρ n ) (z)(ρ n ) (z)µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 2 .
We proceed as in the proof of the first term of (3.7.3), we can get the result for this term, as well.

The Step 1 follows.

Step 2: We show that sup n ||Γ(B n , B n )|| p < ∞, ∀p ≥ 1. 

2 1 0 |z|>2 z 2 µ (n) (ds, dz)    1 0 |z|≤2 ρ(z) ρ(z) (ρ) (z) + ((ρ) (z)) 2 2 µ(ds, dz) 1 0 |z|≤2 ρ(z)µ(ds, dz) 3    ≤ 1 0 |z|>2 µ (n) (dt, dz)    1 0 |z|≤2 ρ(z) ρ(z) (ρ) (z) + ((ρ) (z)) 2 2 µ(ds, dz) 1 0 |z|≤2 ρ(z)µ(ds, dz) 3    ≤ 1 0 |z|>2 µ(dt, dz)    1 0 |z|≤2 ρ(z) ρ(z) (ρ) (z) + ((ρ) (z)) 2 2 µ(ds, dz) 1 0 |z|≤2 ρ(z)µ(ds, dz) 3    and 1 0 |z|>2 |z|µ (n) (dt, dz) 2    1 0 |z|>2 36z 6 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 4    ≤    1 0 |z|>2 36z 6 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 3    1 0 |z|>2 µ (n) (dt, dz) = N 1 i=1 36|Z i | 6 N 1 i=1 |Z i | 2 3 1 0 |z|>2 µ (n) (dt, dz) ≤ 36 1 0 |z|>2 µ(dt, dz)
where N = (N t ) 1≥t≥0 is a Poisson process with intensity λ n = |z|>2 F n (z)dz < ∞, and (Z i ) i≥0 are i.i.d. random variable independent of N with probability measure

F n (z)1 |z|>2 dz λ n .
From the above estimates, we can deduce that (3.7.13) is bounded by a random variable independent of n and belonging to ∩ p≥1 L p .

For (3.7.14), we have (3.7.16)

1 0 |z|>2 |z|µ (n) (dt, dz) 2 µ (n) (ρ n (ρ n ) ) µ (n) (ρ n ) 5 Γ(µ (n) (ρ n (ρ n ) ), µ (n) (ρ n ) ≤ 1 0 |z|>2 |z|µ (n) (dt, dz) 2 × 1 1 0 |z|>2 z 2 µ (n) (ds, dz) ×    1 0 R ρ n (z) (ρ n ) (z) µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 4 1 0 R ρ n (z)(ρ n ) (z) ((ρ n ) (z)) 2 + ρ n (z) (ρ n ) (z) µ (n) (ds, dz)    ≤    1 0 R ρ n (z) (ρ n ) (z) µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 4 1 0 R ρ n (z) (ρ n ) (z) ((ρ n ) (z)) 2 + ρ n (z) (ρ n ) (z) µ (n) (ds, dz)    × × 1 0 |z|>2 µ (n) (dt, dz)
where we have used the Cauchy-Schwarz inequality (3.6.58). Furthermore, we can estimate (3.7.17)

   1 0 R ρ n (z) (ρ n ) (z) µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 4 1 0 R ρ n (z) (ρ n ) (z) ((ρ n ) (z)) 2 + ρ n (z) (ρ n ) (z) µ (n) (ds, dz)    × × 1 0 |z|>2 µ (n) (dt, dz) ≤    1 0 |z|≤2 ρ(z) (ρ) (z) µ(ds, dz) 1 0 |z|≤2 ρ(z)µ(ds, dz) 3/2 + 1 0 |z|>2 2|z| 3 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 3/2    × ×    1 0 |z|≤2 ρ(z) (ρ) (z) ((ρ) (z)) 2 + ρ(z) (ρ) (z) µ(ds, dz) 1 0 |z|≤2 ρ(z)µ(ds, dz) 5/2 + 1 0 |z|>2 20|z| 5 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 5/2    × × 1 0 |z|>2 µ(dt, dz).
We observe that from the fact that v

(n) ({(t, z)|0 ≤ t ≤ 1, |z| > 2}) < ∞, we can estimate that 1 0 |z|>2 |z| 3 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 3/2 = N 1 i=1 |Z i | 3 N 1 i=1 |Z i | 2 3/2 ≤ N 1 i=1 |Z i | 2 3/2 N 1 i=1 |Z i | 2 3/2 = 1 (3.7.18) 1 0 |z|>2 |z| 5 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 5/2 = N 1 i=1 |Z i | 5 N 1 i=1 |Z i | 2 5/2 ≤ N 1 i=1 |Z i | 2 5/2 N 1 i=1 |Z i | 2 5/2 = 1 (3.7.19)
where N = (N t ) 1≥t≥0 is a Poisson process with intensity λ n = |z|>2 F n (z)dz < ∞, and (Z i ) i≥0 are i.i.d. random variable independent of N with probability measure Proceeding as in the proof of (3.7.5) we can easily deduce a similar result for (3.7.14).

We consider (3.7.15), we have (3.7.21)

1 0 |z|>2 |z|µ (n) (dt, dz) 2 µ (n) (ρ n (ρ n ) ) 2 µ (n) (ρ n ) 6 Γ(µ (n) (ρ n ), µ (n) (ρ n )) = 1 0 |z|>2 |z|µ (n) (dt, dz) 2    1 0 R ρ n (z)(ρ n ) (z)µ (n) (ds, dz) 2 1 0 R ρ n (z)µ (n) (ds, dz) 6 1 0 R ρ n (z)(ρ n ) (z)(ρ n ) (z)µ (n) (ds, dz)    ≤    1 0 R ρ n (z) (ρ n ) (z) µ (n) (ds, dz) 2 1 0 R ρ n (z)µ (n) (ds, dz) 5 1 0 R ρ n (z) (ρ n ) (z) 2 µ (n) (ds, dz)    1 0 |z|>2 µ(dt, dz) DRIVEN BY A STABLE LÉVY PROCESS
We consider first (3.7.24).

(3.7.27)

1 0 |z|>2 |z|µ (n) (dt, dz) 2 1 µ (n) (ρ n ) 2 Γ µ (n) (ρ n ) - 1 + α z ρ n , µ (n) (ρ n ) - 1 + α z ρ n = 1 0 |z|>2 |z|µ (n) (dt, dz) 2    1 0 R ρ n (z) (ρ n ) (z) -1+α z (ρ n ) (z) + 1+α z 2 ρ n (z) 2 µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 2    ≤ 1 0 |z|>2 |z|µ (n) (dt, dz) 2 1 0 |z|>2 z 2 µ (n) (dt, dz)    1 0 R ρ n (z) (ρ n )(z) + 1+α |z| (ρ n ) (z) + 1+α z 2 ρ n (z) 2 µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz)    ≤    1 0 R ρ n (z) (ρ n )(z) + 1+α |z| (ρ n ) (z) + 1+α z 2 ρ n (z) 2 µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz)    1 0 |z|>2 µ(dt, dz)
where we have used the inequality (3.6.58) to get the last line. Proceeding as in the proof of (3.7.7), we get a similar result for (3.7.24).

We consider (3.7.25), we have given in Section 4.2. We assume that the stochastic process (X α t ) is observed at discrete time points {t i = i∆ n , i = 0, 1, ..n, ∆ n = 1 n }, where ∆ n is the time frequency for observation and n is the sample size. We aim to estimate the index of jump activity α ∈ (0, 2) based on the sampling data

1 0 |z|>2 |z|µ (n) (dt, dz) 2 2µ (n) (ρ n ) -1+α z ρ n µ (n) (ρ n ) 3 Γ µ (n) (ρ n ) - 1 + α z ρ n , µ (n) (ρ n ) = 1 0 |z|>2 |z|µ (n) (dt, dz) 2 × × 1 0 R (ρ n ) (z) -1+α z ρ n (z) µ (n) (ds, dz) 1 0 R ρ n (z) (ρ n ) (z) -1+α z (ρ n ) (z) + 1+α z 2 ρ n (z) (ρ n ) (z)µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 3 ≤ 1 0 |z|>2 |z|µ (n) (dt, dz) 2 1 0 |z|>2 z 2 µ (n) (dt, dz) × 1 0 R (ρ n )(z) + 1+α |z| ρ n (z) µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 1/2 × 1 0 R ρ n (z) (ρ n )(z) + 1+α |z| (ρ n ) (z) + 1+α z 2 ρ n (z) (ρ n ) (z) µ (n) (ds, dz) 1 0 R ρ n (z)µ (n) (ds, dz) 3/2 ≤ 1 0 |z|>2 |z|µ (n) (dt, dz) 2 1 0 |z|>2 z 2 µ (n) (dt, dz) ×    1 0 |z|≤2 (ρ)(z) + 1+α |z| ρ(z) µ(ds, dz) 1 0 |z|≤2 ρ(z)µ(ds, dz) 1/2 + 1 0 |z|>2 (3 + α)|z|µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 1/2    ×    1 0 |z|≤2 ρ(z) (ρ)(z) + 1+α |z| (ρ) (z) + 1+α z 2 ρ(z) (ρ) (z) µ(ds, dz) 1 0 |z|≤2 ρ(z)µ(ds, dz) 3/2 + 1 0 |z|>2 (10 + 6α)|z| 3 µ (n) (ds, dz) 1 0 |z|>2 z 2 µ (n) (ds, dz) 3/2    .
(X α t i ) n i=0 .
An index of jump activity introduced in [START_REF] Blumenthal | Sample functions of stochastic processes with stationary independent increments[END_REF], when X is a Lévy process, coincides with the Blumenthal-Getoor index defined in terms of the Lévy measure as

α := inf r ∈ [0, 2]; |x|≤1 |x| r υ(dx) < +∞
where υ(dx) is the Lévy measure. For a stable process, the Blumenthal-Getoor index is also the stability index of the process.

The topic of high frequency estimation for discretely observed pure-jump Lévy processes is a currently active topic. Estimation of the jump activity index from high frequency observations has also received a lot of attention in recent years since the jump activity index can be used for different purposes, especially in financial field (see for example [START_REF] Birge | Modeling financial security returns using lévy processes[END_REF], [START_REF] Bull | Near-optimal estimation of jump activity in semimartingales[END_REF]). In Aït-Sahalia and Jacod [START_REF] Aït | Fisher's information for discretely sampled Lévy processes[END_REF], the authors studied Fisher's information for the parameters of a process X decomposed as the sum of two independent Lévy processes (X t = σW t + θY t ) and then they derive that if the scale parameter σ is known and the true value α < 2, we can hope for estimators converging to α at the rate n log(n). Based on truncated power variation, [4] and [START_REF] Jing | On the jump activity index for semimartingales[END_REF] propose estimation in high-frequency setting when the process has the dominant component being a Brownian motion. Todorov and Tauchen [START_REF] Todorov | Limit theorems for power variations of pure-jump processes with application to activity estimation[END_REF] propose estimation of the jump activity index in pure-jump semi-martingales setting for which the rate of convergence is n for 2 ≤ α < 2 (the case α < 2 needs an assumption of zero drift) based on adaptively chosen optimal power for which the realized power variation does not explode. Recently, Todorov [START_REF] Todorov | Jump activity estimation for pure-jump semimartingales via self-normalized statistics[END_REF] has considered the estimation of the jump-activity index α ∈ (1, 2] for a locally-stable pure-jump Itô semi-martingale from high frequency data, by using the empirical characteristic function of the scaled differenced increments.

He obtains the rate of convergence n if α ∈ (1, 2) and n u -2 n for some sequence u n converging to zero if α = 2.

Related to the topic, Masuda [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF] and Brouste and Masuda [START_REF] Brouste | Efficient estimation of stable lévy process with symmetric jumps[END_REF] consider a stable Lévy process X t = θt + σL α t . In [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF], the Local Asymptotic Normality property is proved with the rate 

(β) =        M α /σ 2 0 0 0 H α /σ 2 H α /(σα 2 ) 0 H α /(σα 2 ) H α /α 4       
where H α := (ϕ α (y) + yϕ α (y)) 2 ϕ α (y) -1 d y and M α := (ϕ α (y)) 2 ϕ α (y) -1 d y with ϕ α the density of the centered α-stable Lévy process. From the convergence in probability of the form

(4.1.2) 1 n n-1 j=0 f n 1/α σ (X t j+1 -X t j -θ 1 n ) n→∞ ----→ f (y)ϕ α (y)d y,
for suitable f , the author has constructed two estimators for the index α: αlog,n based on the logarithmic moments and αr,n based on the lower-order fractional moments with the convergence rate n .

The aim of this chapter is to adapt these estimation procedures to the equation (4.1.1) and to provide the asymptotic distributions. The main tool for establishing the statistical results is the convergences in probability (4.1.3) and the associated central limit theorem. To do this, we consider (ς t (x)) t∈(0,1/n] the solution of the ordinary differential equation 

.3) 1 n n-1 j=0 f n 1/α σ X α t j+1 -ς 1/n (X α t j ) P ----→ n→∞ f (y)ϕ α (y)d y.
If we know the true value of the scale parameter, then we construct some estimators of the index parameter with the rate n log(n).

The chapter is organized as follows. In Section 4.2, we describe our model and notations. We construct estimators of the index α based on the two moment-fitting procedures (the logarithmic moments and the lower-order fractional moments) in Subsection 4. and by p α 1/n (x, y) the transition density of the homogeneous Markov chain (X α i/n ) n i=0 . We recall below some important results proved in [START_REF] Clément | LAMN property for the drift and volatility parameters of a SDE driven by a stable Lévy process[END_REF] and [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]. The first result is the uniform boundedness

of σ n 1/α p α 1 n (x, uσ n 1/α + ς 1 n (x)), the density of n 1/α σ X α,x
1/n -ς 1/n (x) , proved in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF]:

sup x sup u∈R sup n 1 n 1/α p α 1 n (x, uσ n 1/α + ς 1 n (x)) < ∞, (4.2.1)
where ς 1 n (x) is the solution to the ordinary differential equation We recall also Lemma 6.4 and Equation (6.40) in the case H n X K (H n ) = 1 given in [START_REF] Clément | LAMN property for the drift and volatility parameters of a SDE driven by a stable Lévy process[END_REF]. For any bounded function h, there exists a constant C > 0 such that (4.2.4) sup

x E h n 1/α σ X α,x 1 n -ς 1 n (x) -E h L α 1 ≤ C||h|| ∞ n , (4.2.5) sup x E h n 1/α σ X α,x 1 n -ς 1 n (x) -E h n 1/α Z α 1 n ≤ C||h|| ∞ n .
If the drift function b ≡ 0, σ = 1 and x = 0 then (4.2.4) can be rewritten as

(4.2.6) E h n 1/α Z α 1 n -E h L α 1 ≤ C||h|| ∞ n .
Throughout the paper, for suitable functions f , we use the following notations 

G n (α) := 1 n n-1 j=0 f n 1/α σ X α t j+1 -ς 1/n (X α t j ) , (4.2.7) H n (α) = 1 n n-1 j=0 f n 1/α Z α t j+1 -Z α t j , ( 4 

Construction of the estimator and main results

Let X α be given by (4.1.1). Suppose that we observe a finite sample (X α i/n ) i=0,...,n .

The main goal of this section is to build an estimator using the method of moments based on the sample moment

1 n n-1 j=0 f n 1/α σ X α t j+1 -ς 1/n (X α t j )
for suitable functions f and to prove the consistency and asymptotic normality of the estimator as n gets large. In Section 4.3.1 we construct the estimators of the index α and in Section 4.3.2

the main results about the consistency and asymptotic normality for the estimators are given.

Construction of the estimator

We construct now an estimator for the index parameter α based on the ideas of Masuda [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF] where the author has succeeded to estimate (θ, σ, α) of a stable Lévy process X t = θt + σL α t . In [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF], in view of the scaling property of

L α , n 1/α σ (X t j+1 -X t j -θ 1 n ) j=0,...,n-1
are independent and identically distributed and each random variable has as the α-stable distribution. Based on the convergence in probability, for suitable f ,

1 n i≤n f n 1/α σ X t j+1 -X t j -θ 1 n n→∞ ----→ f (y)ϕ α (y)d y,
Masuda [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF] has constructed an estimator of the index α with the convergence rate n by studying the two moment-fitting procedures

• the logarithmic moments {log |y|} l ϕ α (y)d y for l = 1, 2,

• the lower-order fractional moments |y| lr ϕ α (y)d y for l = 1, 2 and r ∈ (0, α/4).

In the rest of this paper, we consider the two moment-fitting procedures as in [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF] for the model (4.1.1) and we propose two estimators of the index parameter α which are consistent in probability and asymptotically normal.

Logarithmic moments

Let X α be given by (4.1.1) and we denote by α 0 the true parameter value. We now construct an estimator for α 0 based on (X α 0 i/n ) i=0,...,n .

CONSTRUCTION OF THE ESTIMATOR AND MAIN RESULTS

We set

f (y) = (log |y|) l , l = 1, 2.
The distribution of L α 1 admits explicit finite logarithmic moments for any positive order (see [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF]).

Here are the first two moments

E(log |L α 1 |) = C 1 α -1 (4.3.1) E(log |L α 1 |) 2 = π 2 6 1 α 2 + 1 2 + C 2 1 α -1 2 , C the Euler constant. (4.3.2) This yields V ar(log |L α 1 |) = E(log |L α 1 |) 2 -E(log |L α 1 |) 2 = π 2 6 1 α 2 + 1 2 . (4.3.3)
Recalling (4.1.3), we observe that the method of moment consisting in solving the equation

(4.3.4) 1 n n-1 j=0 log 1 σ n 1/α 0 X α 0 t j+1 -ς 1/n (X α 0 t j ) = E(log(|L α 1 |))
is unfeasible due to the appearance of the unknown factor n 1/α 0 σ in the left-hand side of (4.3.4). In order to overcome this problem, we use the method of moments estimator based on the variance of the log-observations. Indeed, the variance is invariant with regards to translation. Under the log-transformed observations, the data points and the mean are shifted by the same amount that is the unknown factor log n 1/α 0 σ .

Let us consider equating the variance of log |L α 1 | with the corresponding sample moment, this leads to the following equation in α (4.3.5)

V ar(log

|L α 1 |) = 1 n n-1 j=0 log 2 n 1/α 0 σ X α 0 t j+1 -ς 1/n (X α 0 t j ) - 1 n n-1 j=0 log n 1/α 0 σ X α 0 t j+1 -ς 1/n (X α 0 t j ) 2
Combining (4.3.3) and (4.3.5), we get an explicit solution αlog,n as follows :

(4.3.6) αlog,n

= 6 π 2 1 n n-1 j=0 log n 1/α 0 σ X α 0 t j+1 -ς 1/n (X α 0 t j ) 2 - 1 n 2 n-1 j=0 log n 1/α 0 σ X α 0 t j+1 -ς 1/n (X α 0 t j ) 2 - 1 2 -1/2 = 6 nπ 2 n-1 j=0 log n 1/α 0 σ X α 0 t j+1 -ς 1/n (X α 0 t j ) - 1 n n-1 j=0 log n 1/α 0 σ X α 0 t j+1 -ς 1/n (X α 0 t j ) 2 - 1 2 -1/2 = 6 nπ 2 n-1 j=0 log X α 0 t j+1 -ς 1/n (X α 0 t j ) - 1 n n-1 j=0 log X α 0 t j+1 -ς 1/n (X α 0 t j ) 2 - 1 2 -1/2
, as soon as the square root is well defined. Here, observe that the unknown factor n 1/α 0 σ involved in

n 1/α 0 σ X α 0 t j+1 -ς 1/n (X α 0 t j
) is cancelled out in the computation of αlog,n , making the quantities (4.3.6) usable.

Lower-order fractional moments

Now we set f (y) = |y| lr for l = 1, 2 and r ∈ (0, α/4).

We need the condition r < α 4 in order that E |L α 1 | 2lr < ∞. In this section, we construct an estimator of the true parameter α 0 based on (X

α 0 i/n ) i=0,...,n .
The q-th absolute moments of L α exist for q ∈ (0, α) (see [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF] ) and

(4.3.7) E(|L α 1 | q ) = |y| q ϕ α (y)d y = 2 q Γ q+1 2 Γ 1 - q α π Γ 1 - q 2 := C(α, q),
where the gamma function, denoted Γ(t), is defined, for t > 0 by (see equation (2.42) in [START_REF] Larry | Special functions of mathematics for engineers[END_REF]):

Γ(t) = ∞ 0 y t-1 e -y d y.
We see that the main problem of using the method of moments for the lower-order fractional moments is similar to the case of the logarithmic moments, that means we can not estimate the true parameter value α 0 by αr,n such that

(4.3.8) 1 n n-1 j=0 n 1/α 0 σ X α 0 t j+1 -ς 1/n (X α 0 t j ) r = C( αr,n , r),
because of the appearance of the unknown factors n 1/α 0 and the parameter σ in the formula in the left-hand side of (4.3.8).

Following Masuda [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF], we observe that the factor n 1/α 0 and σ can be effectively cancelled out in the following case

1 n n-1 j=0 n 1/α 0 σ X α 0 t j+1 -ς 1/n (X α 0 t j ) r 2 1 n n-1 j=0 n 1/α 0 σ X α 0 t j+1 -ς 1/n (X α 0 t j ) 2r = 1 n n-1 j=0 X α 0 t j+1 -ς 1/n (X α 0 t j ) r 2 1 n n-1 j=0 X α 0 t j+1 -ς 1/n (X α 0 t j )
2r . (4.3.9) This yields that we can estimate α 0 by solving equation 

1 n n-1 j=0 X α 0 t j+1 -ς 1/n (X α 0 t j ) r 2 1 n n-1 j=0 X α 0 t j+1 -ς 1/n (X α 0 t j ) 2r = C( αr,n ,
C( αr,n , r) 2 C( αr,n , 2r) = 1 π Γ r+1 2 2 Γ(1 -r) Γ 1 -r 2 2 Γ 1 2 + r Γ(1 -r/ αr,n ) 2 Γ(1 -2r/ αr,n ) , then (4.3 
1 n n-1 j=0 X α 0 t j+1 -ς 1/n (X α 0 t j ) r 2 1 n n-1 j=0 X α 0 t j+1 -ς 1/n (X α 0 t j ) 2r = 1 π Γ r+1 2 2 Γ(1 -r) Γ 1 -r 2 2 Γ 1 2 + r Γ(1 -r/ αr,n ) 2 Γ(1 -2r/ αr,n ) .
Note that we can see here that for each r ∈ (0, α/4), the right-hand side of (4.3.11) is a constant multiple of the function g(α) that we denote by (4.3.12) g(α) := Γ(1 -r/α) 2 Γ(1 -2r/α) .

We observe that

g (α) = - 2rΓ(1 -r/α) 2 φ(1 -2r/α) α 2 Γ(1 -2r/α) + 2rΓ(1 -r/α) 2 φ(1 -r/α) α 2 Γ(1 -2r/α)
where φ(z) (the digamma function) is the derivative of log Γ(z) at z and is given by

φ(z) = ∞ 0 e -t
t -e -zt 1-e -t dt (see equation (2.68) in [START_REF] Larry | Special functions of mathematics for engineers[END_REF]). It is easy to see that φ (z) > 0, furthermore, from the properties of Γ-function that is Γ(u) > 0 for all u > 0, we easily obtain that g (α) > 0. This yields that the function g is strictly increasing in α ∈ (4r, 2) and continuously differentiable. By the inverse function theorem, the function g is invertible and the inverse g -1 is continuously 

   1 D 1 n n-1 j=0 X α 0 t j+1 -ς 1/n (X α 0 t j ) r 2 1 n n-1 j=0 X α 0 t j+1 -ς 1/n (X α 0 t j ) 2r    where (4.3.14) D := 1 π Γ r+1 2 2 Γ(1 -r) Γ 1 -r 2 2 Γ 1 2 + r .

Main results

The following theorems give the consistency and asymptotic normality results for the estimators αlog,n and αr,n . where V log (α 0 ) = 11 10 α 2 0 + 1 2 α 4 0 + 13 20 α 6 0 .

Remark 4.3.1. Following [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF] via the logarithmic moment fitting, if we know the true value of the volatility parameter σ then we can construct an estimator of α with the rate n log(n). In fact, we

set S n := 1 n n-1 j=0 log X α 0 t j+1 -ς 1/n (X α 0 t j ) and recall from (4.3.1) that E(log |L α 0 1 |) = C 1 α 0 -1 then we can compute that n 1 n n-1 j=0 log n 1/α 0 σ X α 0 t j+1 -ς 1/n (X α 0 t j ) -E log |L α 0 1 | = n log n α 0 -n log σ + 1 n n-1 j=0 log X α 0 t j+1 -ς 1/n (X α 0 t j ) -n E log |L α 0 1 | = n (log n) 1 α 0 1 - C log n - log σ log n + S n log n + C log n = n (log n) 1 - C log n 1 α 0 + S n + C -log σ log n -C ∼ P n (log n) 1 α 0 + S n + C -log σ log n -C . S n = logQ n (p) log(n) -log   2 p Γ p+1 2 π Γ 1 - p 2   1 log(n) - p log(σ) log(n) with Q n (p) := 1 n n-1 j=0 X α 0 t j+1 -ς 1/n (X α 0 t j ) p .
Then we have the convergence in law

n log(n) α * (p) -α 0 ⇒ N 0, α 4 0 p 2 C (α 0 , 2p) C 2 (α 0 , p) -1 . 
Proof. We set

(4.3.20) Z n (p) = n n p α 0 σ p Q n (p) -C (α 0 , p) where C (α 0 , p) = E(|L α 1 | p ) = 2 p Γ p+1 2 Γ 1- p α 0 π Γ(1- p 2 ) 
. From (4.5.8), we have

(4.3.21) Z n (p) ⇒ N (0, C (α 0 , 2p) -C 2 (α 0 , p)).
We observe that, from (4.3.20), we can write

logQ n (p) = log σ p n - p α 0 Z n (p) n + C (α 0 , p) = log σ p n - p α 0 C (α 0 , p) 1 + Z n (p) C (α 0 , p) n = p log(σ) - p α 0 log(n) + log(C (α 0 , p)) + log 1 + Z n (p) C (α 0 , p) n = p log(σ) - p α 0 log(n) + log   2 p Γ p+1 2 Γ 1 - p α 0 π Γ 1 - p 2   + log 1 + Z n (p) C (α 0 , p) n It follows that logQ n (p) log(n) -log   2 p Γ p+1 2 π Γ 1 - p 2   1 log(n) - p log(σ) log(n) = - p α 0 + log Γ 1 - p α 0 log(n) + log 1 + Z n (p) C (α 0 , p) n 1 log(n) . (4.3.22)
We observe that M n (u) = -1 - 

) = log 1 + Z n (p) C (α 0 , p) n 1 log(n) .
From (4.3.21), we can deduce that

S n -M n ( p α 0 ) = Z n (p) C (α 0 , p) n 1 log(n) + o p 1 n log(n) . It follows (4.3.25) n log(n) S n -M n ( p α 0 ) ⇒ N 0, C (α 0 , 2p) C 2 (α 0 , p) -1 . 
We observe that

M -1 n (S n ) -M -1 n M n p α 0 = S n -M n p α 0 M -1 n M n p α 0 + o p S n -M n p α 0 where o p (R n ) = Y n R n with Y n P -→ 0.
Multiplying both sides by n log(n), we obtain

n log(n) M -1 n (S n ) -M -1 n M n p α 0 = n log(n) S n -M n p α 0 M -1 n M n p α 0 + n log(n)o p S n -M n p α 0 where M -1 n M n p α 0 = M n ( p α 0 ) -1
(the inverse function theorem).

Since sup u M n (u) + 1 n→∞ ----→ 0 then we can deduce that M n ( p α 0 )

-1 n→∞ ----→ -1. Combining this with (4.3.25), we obtain that = o p (1). Hence, from the above estimates, we can conclude that

n log(n) S n -M n p α 0 M -1 n M n p α 0 ⇒ N 0, C (α 0 , 2p) C 2 (α 0 , p) -1 . 
n log(n) M -1 n (S n ) - p α 0 ⇒ N 0, C (α 0 , 2p) C 2 (α 0 , p) -1 . 
Therefore, combining with Delta method, we get that

n log(n) α * (p) -α 0 ⇒ N 0, α 4 0 p 2 C (α 0 , 2p) C 2 (α 0 , p) -1 . then α * (p) = p M -1 n (S n
) is an asymptotically normal estimator with the rate n log(n).

As expected, the estimator α * (p) exhibits excellent finite-sample performance; see Tables 1 in Section 4.6.

The remainder of the paper is devoted to the proofs of the main theorems above. The main statistical tools for establishing the consistency and asymptotic normality of the estimator are the convergence in probability of 1 n n-1 j=0 f n 1/α σ X α t j+1 -ς 1/n (X α t j ) and the convergence in law associated, for suitable functions f . For this reason, in the next section, we will study Law of Large Numbers and Central Limit Theorem which are the two principal tools for the proofs of theorems in Section 4.3.2.

Limit theorems

Law of Large Numbers

Let f : R → R be an even function and we suppose that the function f satisfies the following assumptions Assumption 4.4.1.

1. ∃C > 0 such that | f (y)| ≤ C |log |y|| 4 + 1 for all |y| ≤ 1.
2. There exist 0 < p < α, C > 0 such that | f (y)| ≤ C|y| p for all |y| > 1 where C is a positive constant.

Proof of Lemma 4.4.1 We start with the proof of the part (1). We recall that

sup n E G n (α) -G n,K (α) = sup n E 1 n n-1 j=0 f n 1/α σ X α t j+1 -ς 1/n (X α t j ) - 1 n n-1 j=0 f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) .
Our proof starts with the observation that

(4.4.6) | f (x) -f K (x)| ≤ | f (x)|1 |x|≥K 1/p + | f (x)|1 |x|≤ 1 K 2 then we have (4.4.7) sup n E 1 n n-1 j=0 f n 1/α σ X α t j+1 -ς 1/n (X α t j ) - 1 n n-1 j=0 f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) ≤ sup n 1 n n-1 j=0 E f n 1/α σ X α t j+1 -ς 1/n (X α t j ) 1 n 1/α σ X α t j+1 -ς 1/n (X α t j ) ≥K 1/p + sup n 1 n n-1 j=0 E f n 1/α σ X α t j+1 -ς 1/n (X α t j ) 1 n 1/α σ X α t j+1 -ς 1/n (X α t j ) ≤ 1 K 2 . Let us estimate E f n 1/α σ X α t j+1 -ς 1/n (X α t j ) 1 n 1/α σ X α t j+1
-ς 1/n (X α t j

) ≥K 1/p .

We observe that for all t ∈ [t j , t j+1 ]

X α t -ς t-t j (X α t j ) = t t j b(X α s )ds - t t j b(ς s-t j (X α t j ))ds + σ Z α t -Z α t j ≤ t t j b(X α s ) -b(ς s-t j (X α t j )) ds + σ sup t j ≤t≤t j+1 Z α t -Z α t j ≤ ||b || ∞ t t j X α s -ς s-t j (X α t j ) ds + σ sup t j ≤t≤t j+1 Z α t -Z α t j .
Using the Gronwall's inequality, for C a positive constant, for all t ∈ [t j , t j+1 ], we have

X α t -ς t-t j (X α t j ) ≤ Cσ sup t j ≤t≤t j+1 Z α t -Z α t j .
It follows that 

X α t j+1 -ς 1/n (X α t j ) ≤ Cσ sup t j ≤t≤t j+1 Z α t -Z α t j . ( 4 
E f n 1/α σ X α t j+1 -ς 1/n (X α t j ) 1 n 1/α σ X α t j+1 -ς 1/n (X α t j ) >K 1/p ≤ sup n E n 1/α σ X α t j+1 -ς 1/n (X α t j ) p 1 | n 1/α σ X α t j+1 -ς 1/n (X α t j ) | p >K ≤ C sup n E n p/α sup t j ≤t≤t j+1 Z α t -Z α t j p 1 n p/α sup t j ≤t≤t j+1 Z α t -Z α t j p >K/C p ≤ C sup n E   n p/α sup 0≤s≤ 1 n Z α s p 1 n p/α sup 0≤s≤1/n |Z α s | p >K/C p  
where we use the fact that Z α has stationary increments to get the last line. From Luschgy and

Pagès [START_REF] Luschgy | Moment estimates for Lévy processes[END_REF], we have for all r ∈ (0, α)

(4.4.10) E   sup s≤ 1 n Z α s r   ≤ C n r/α .
where C is a constant independent of n. Indeed, the assumptions in Theorem 2 in [START_REF] Luschgy | Moment estimates for Lévy processes[END_REF] are satisfied since (Z α t ) t∈[0,1] is a Lévy process with characteristics (0, 0, υ) such that E|Z α 1 | r < +∞ for any r ∈ (0, α) and the Lévy measure of the process Z α s (recall Assumption H 1 (a i )) is bounded by φ(z) := 1 |z| 1+α which is a regularly varying function at zero of index -(1 + α). Using Theorem 2 in [START_REF] Luschgy | Moment estimates for Lévy processes[END_REF] with l(z) := z α+1 φ(z) = 1, we obtain (4.4.10). As a consequence, recalling that p ∈ (0, α), there

exists δ > 0 such that p(1 + δ) < α then (4.4.11) sup n E     n p/α sup 0≤s≤ 1 n Z α s p   1+δ   ≤ C.
It follows that n p/α sup 0≤s≤1/n Z α s p n is a sequence of uniformly integrable random variables and we can conclude that (4.4.9) converges to zero as K → ∞.

We now consider

E f n 1/α σ X α t j+1 -ς 1/n (X α t j ) 1 n 1/α σ X α t j+1 -ς 1/n (X α t j ) ≤ 1 K 2 .
We recall that p α 1 n (x, y) is the transition density of the homogeneous Markov chain (X α i/n ) i=0,...,n then we can deduce that the density of n

1/α σ X α,x 1/n -ς 1/n (x) is σ n 1/α p α 1 n x, uσ n 1/α + ς 1 n (x) . 4.4. LIMIT THEOREMS (1) G n,K (α) -H n,K (α) n→∞ ----→ P 0 (2) H n,K (α) -g K (α) n→∞ ----→ P 0
We start with the proof of the property (1). We need to prove that

G n,K (α) -H n,K (α) = 1 n n-1 j=0 f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) -f K n 1/α Z α t j+1 -Z α t j n→∞ ----→ P 0.
We will use Lemma 9 from Genon-Catalot and Jacod [START_REF] Genon-Catalot | Estimation of the diffusion coefficient for diffusion processes: random sampling[END_REF] to show the property [START_REF] Aït | Handbook of Financial Econometrics: Applications[END_REF]. It is sufficient to show that

1 n n-1 j=0 E f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) -f K n 1/α Z α t j+1 -Z α t j |F t j n→∞ ----→ P 0, (4.4.16) 1 n 2 n-1 j=0 E f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) -f K n 1/α Z α t j+1 -Z α t j 2 |F t j n→∞ ----→ P 0. (4.4.17)
Since Z α t j+1 -Z α t j is independent of F t j and Z α has stationary increments then we get

E f K n 1/α Z α t j+1 -Z α t j |F t j = E f K n 1/α Z α 1 n . (4.4.18)
From the Markov property, we have

E f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) |F t j = E f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) |X α t j . (4.4.19)
But we can write Using (4.2.5) with the bounded function f K , there exists a constant C > 0 such that sup 

E f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) |X α t j = x = E f K n 1/α σ X α,x 1 n -ς 1 n (x) (4.4.20) where X α,x
x E f K n 1/α X α,x 1 n -ς 1 n (x) -E f K n 1/α Z α 1 n ≤ CK n n→∞ ----→ 0 (4.
E f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) -f K n 1/α Z α t j+1 -Z α t j |F t j ≤ CK n n→∞ ----→ 0
and then (4.4.16) follows.

We now prove (4.4.17). From the boundedness of f K we get that

1 n 2 n-1 j=0 E f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) -f K n 1/α Z α t j+1 -Z α t j 2 |F t j ≤ 4CK 2 n .
Letting n → ∞, we get (4.4.17).

We now prove the property (2). We need to show that

H n,K (α) -g K (α) = 1 n n-1 j=0 f K n 1/α Z α t j+1 -Z α t j -E( f K (L α 1 )) n→∞ ----→ P 0. (4.4.24)
Using again Lemma 9 from Genon-Catalot and Jacod [START_REF] Genon-Catalot | Estimation of the diffusion coefficient for diffusion processes: random sampling[END_REF] to show the property (2), it is sufficient to prove that

1 n n-1 j=0 E f K n 1/α Z α t j+1 -Z α t j -E( f K (L α 1 )) |F t j n→∞ ----→ P 0, (4.4.25) 1 n 2 n-1 j=0 E f K n 1/α Z α t j+1 -Z α t j -E( f K (L α 1 )) 2 |F t j n→∞ ----→ P 0. (4.4.26)
Since Z α t j+1 -Z α t j is independent of F t j and Z α has stationary increments then we get (4.4.27) is proved. Hence the result of this lemma follows.

1 n n-1 j=0 E f K n 1/α Z α t j+1 -Z α t j -E( f K (L α 1 )) |F t j = E f K n 1/α Z α 1 n -E( f K (L α 

Proof of Proposition 4.4.1:

We can see that for any positive number

P 1 n n-1 j=0 f n 1/α σ X α t j+1 -ς 1/n (X α t j ) -f (y)ϕ α (y)d y > = P (|G n (α) -g(α)| > ) ≤ P G n (α) -G n,K (α) > 3 + P G n,K (α) -g K (α) > 3 + P |g K (α) -g(α)| > 3 ≤ 2 E G n (α) -G n,K (α) + P G n,K (α) -g K (α) > 3 + P |g K (α) -g(α)| > 3 ≤ 4c K + P G n,K (α) -g K (α) > 3 + P |g K (α) -g(α)| > 3 
where in the second inequality, the third inequality and the four inequality we used the Markov's inequality and Lemma 4.4.1(1) respectively. From Lemma 4.4.2, we deduce that ∀ > 0 lim sup

n→∞ P 1 n n-1 j=0 f n 1/α σ X α t j+1 -ς 1/n (X α t j ) -f (y)ϕ α (y)d y > ≤ 4c K + P |g K (α) -g(α)| > 3 for all K > 2.
Taking K → ∞ , c K → 0 and using Lemma 4.4.1(2), we deduce Proposition 4.4.1.

Central Limit Theorem

In this section, we want to study the convergence in law associated with the convergence in probability in Proposition 4. 

   1 n n-1 j=0 f 1 n 1/α σ X α t j+1 -ς 1/n (X α t j ) -f 1 (y)ϕ α (y)d y 1 n n-1 j=0 f 2 n 1/α σ X α t j+1 -ς 1/n (X α t j ) -f 2 (y)ϕ α (y)d y    ⇒ N (0, Σ) (4.4.28)
where the asymptotic covariance matrix Σ = [Σ ik ] i,k=1,2 is given by (4.4.29)

Σ ik = ( f i (y) -g i (α)) ( f k (y) -g k (α)) ϕ α (y)d y, 1 ≤ i, k ≤ 2.
We observe that the left-hand side of (4.4.28) can be written as 

n    1 n n-1 j=0 f 1 n 1/α σ X α t j+1 -ς 1/n (X α t j ) -1 n n-1 j=0 f 1 n 1/α Z α t j+1 -Z α t j 1 n n-1 j=0 f 2 n 1/α σ X α t j+1 -ς 1/n (X α t j ) -1 n n-1 j=0 f 2 n 1/α Z α t j+1 -Z α t j    + (4.4.30) + n    1 n n-1 j=0 f 1 n 1/α Z α t j+1 -Z α t j -f 1 (y)ϕ α (y)d y 1 n n-1 j=0 f 2 n 1/α Z α t j+1 -Z α t j -f 2 (y)ϕ α (y)d y    . ( 4 
   1 n n-1 j=0 f 1 n 1/α σ X α t j+1 -ς 1/n (X α t j ) -1 n n-1 j=0 f 1 n 1/α Z α t j+1 -Z α t j 1 n n-1 j=0 f 2 n 1/α σ X α t j+1 -ς 1/n (X α t j ) -1 n n-1 j=0 f 2 n 1/α Z α t j+1 -Z α t j    n→∞ ----→ P 0.
   1 n n-1 j=0 f 1 n 1/α Z α t j+1 -Z α t j -f 1 (y)ϕ α (y)d y 1 n n-1 j=0 f 2 n 1/α Z α t j+1 -Z α t j -f 2 (y)ϕ α (y)d y    ⇒ N (0, Σ) (4.4.32)
where the asymptotic covariance matrix Σ is given by (4. (1+δ) where δ is chosen such that (2 + δ)p < α (in order to simplify the notation, in the rest of this proof, we shall simply write 

K instead of K n ).
= K n = n 2+δ 4(1+δ) , we have 1) n E G n (α) -G n,K (α) n→∞ ----→ 0, 2) n E H n (α) -H n,K (α) n→∞ ----→ 0,
where G n (α), H n (α), G n,K (α) and H n,K (α) are defined by (4.2.7), (4.2.8) and (4.4.3), (4.4.4) respectively.

Proof of Lemma 4.4.3

We first show the part 1). For K := K n = n 2+δ 4(1+δ) where δ satisfies (2+δ)p < α. From (4.4.7), we have

E n G n (α) -G n,K (α) = E 1 n n-1 j=0 f n 1/α σ X α t j+1 -ς 1/n (X α t j ) - 1 n n-1 j=0 f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) (4.4.33) ≤ 1 n n-1 j=0 E f n 1/α σ X α t j+1 -ς 1/n (X α t j ) 1 | n 1/α σ X α t j+1 -ς 1/n (X α t j ) |≥K 1/p (4.4.34) + 1 n n-1 j=0 E f n 1/α σ X α t j+1 -ς 1/n (X α t j ) 1 n 1/α σ X α t j+1 -ς 1/n (X α t j ) ≤ 1 K 2 .

LIMIT THEOREMS

Let us estimate (4.4.33). From (4.4.9), we have

(4.4.35) E f n 1/α σ X α t j+1 -ς 1/n (X α t j ) 1 | n 1/α σ X α t j+1 -ς 1/n (X α t j ) |≥K 1/p ≤ CE   n p/α sup 0≤s≤ 1 n Z α s p 1 n p/α sup 0≤s≤ 1 n |Z α s | p >K/C p   .
Moreover, we can estimate (4.4.35) as follows

CE   n p/α sup 0≤s≤ 1 n Z α s p 1 n p/α sup 0≤s≤ 1 n |Z α s | p >K/C p   ≤ E   n p/α sup 0≤s≤ 1 n Z α s p   n p/α sup 0≤s≤ 1 n Z α s p K/C p   1+δ   = C p(1+δ) K 1+δ E     n p/α sup 0≤t≤ 1 n Z α s p   2+δ   for δ is chosen such that (2 + δ)p < α.
From the above estimate, with the choice K := K n = n Let us estimate (4.4.34). We easily see that

E f n 1/α σ X α t j+1 -ς 1/n (X α t j ) 1 n 1/α σ X α t j+1 -ς 1/n (X α t j ) ≤ 1 K 2 = E E f n 1/α σ X α t j+1 -ς 1/n (X α t j ) 1 n 1/α σ X α t j+1 -ς 1/n (X α t j ) ≤ 1 K 2 |F t j = E E f n 1/α σ X α t j+1 -ς 1/n (X α t j ) 1 n 1/α σ X α t j+1 -ς 1/n (X α t j ) ≤ 1 K 2 |X α t j
where we have used the Markov property to get the last line. Moreover, we have

(4.4.37) E f n 1/α σ X α t j+1 -ς 1/n (X α t j ) 1 n 1/α σ X α t j+1 -ς 1/n (X α t j ) ≤ 1 K 2 |X α t j = x = 1 K 2 -1 K 2 | f (u) | σ n 1/α p α 1 n x, uσ n 1/α + ς 1 n (x) du ≤ C 1 1 K 2 -1 K 2 | f (u) |du = 2C 1 1 K 2 0 | f (u)|du ≤ 2C 1 C 1 K 2 0 | log |u|| 2 du + 2C 1 C K 2 := T CHAPTER 4.

ESTIMATION OF THE INDEX PARAMETER FOR A STOCHASTIC DIFFERENTIAL EQUATION DRIVEN BY A STABLE LÉVY PROCESS

Let us consider (4.4.45). Using Hölder's inequality, we obtain

E f n 1/α σ X α,x 1 n -ς 1/n (x) 2 1 n 1/α σ X α,x 1 n -ς 1/n (x) -n 1/α Z α 1 n > n ≤   E f 2 n 1/α σ X α,x 1 n -ς 1/n (x) 2+δ 2   2 2+δ   E 1 n 1/α σ X α,x 1 n -ς 1/n (x) -n 1/α Z α 1 n > n 2+δ δ   δ 2+δ (4.4.47) = E f n 1/α σ X α,x 1 n -ς 1/n (x) 2+δ 2 2+δ P n 1/α σ X α,x 1 n -ς 1/n (x) -n 1/α Z α 1 n > n δ 2+δ .
From Lemma 4.4.4, in order to show that (4.4.47) converges to zero as n → ∞, it remains to show that (4.4.48)

P n 1/α σ X α,x 1 n -ς 1/n (x) -n 1/α Z α 1 n > n n→∞ ----→ 0.
In fact, we observe that for any t ∈ [0, 1 n ] 

n 1/α X α,x t -ς t (x) -n 1/α σZ α t = t 0 n 1/α b(X α,x s ) -b(ς s (x)) ds ≤ t 0 ||b || ∞ n 1/α X α,x s -ς s (x) -n 1/
n 1/α σ X α,x 1 n -ς 1 n (x) -n 1/α Z α 1 n ≤ C n   n 1/α sup 0≤s≤ 1 n |Z α s |   .
Let 0 < r < α then, from (4.4.49), we have 

(4.4.50) P n 1/α σ X α,x 1 n -ς 1/n (x) -n 1/α Z α 1 n > n ≤ P     n 1/α sup 0≤s≤ 1 n |Z α s |   r > n r r n C r   ≤ C r n r r n E     n 1/α sup 0≤s≤ 1 n |Z α s |   r   . With the choice n = n -2-3 2 δ 2(1+δ
E f n 1/α Z α 1 n 2 1 n 1/α σ X α,x 1 n -ς 1/n (x) -n 1/α Z α 1 n > n ≤ E f 2 n 1/α Z α 1 n 2+δ 2 2 2+δ   E 1 n 1/α σ X α,x 1 n -ς 1/n (x) -n 1/α Z α 1 n > n 2+δ δ   δ 2+δ = E f n 1/α Z α 1 n 2+δ 2 2+δ P n 1/α σ X α,x 1 n -ς 1/n (x) -n 1/α Z α 1 n > n δ 2+δ .
We observe that (4.4.52) 

E f n 1/α Z α 1 n 2+δ = E f n 1/α Z α 1 n 2+δ 1 |n 1/α Z α 1 n |>1 + E f n 1/α Z α 1 n 2+δ 1 |n 1/α Z α 1 n |≤1 ≤ E |n 1/α Z α 1 n | p(2+δ) + |u|≤1 | f (u)| 2+δ ϕ n (u)du ≤ C α,p,δ + C 1 0 | f (u)| 2+δ du < ∞

Proof of Lemma 4.4.6

We use Lemma 9 from Genon-Catalot and Jacod [START_REF] Genon-Catalot | Estimation of the diffusion coefficient for diffusion processes: random sampling[END_REF] then it is sufficient to show that

1 n n-1 j=0 E f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) -f K n 1/α Z α t j+1 -Z α t j |F t j n→∞ ----→ P 0, (4.4.53) 1 n n-1 j=0 E f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) -f K n 1/α Z α t j+1 -Z α t j 2 |F t j n→∞ ----→ P 0. (4.4.54)
From (4.4.23), we can easily deduce that for C is a positive constant then

1 n n-1 j=0 E f K n 1/α X α t j+1 -ς 1/n (X α t j ) -f K n 1/α Z α t j+1 -Z α t j |F t j ≤ CK n .
With the choice K := K n = n 2+δ 4(1+δ) , this yields (4.4.53).

We consider (4.4.54). We observe that (4.4.55)

E f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) -f K n 1/α Z α t j+1 -Z α t j 2 |F t j = E f 2 K n 1/α σ X α t j+1 -ς 1/n (X α t j ) |F t j + E f 2 K n 1/α Z α t j+1 -Z α t j |F t j -2E f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) × f K n 1/α Z α t j+1 -Z α t j |F t j .
From Markov property, we have

(4.4.56) E f 2 K n 1/α σ X α t j+1 -ς 1/n (X α t j ) |F t j = E f 2 K n 1/α σ X α t j+1 -ς 1/n (X α t j ) |X α t j .
But we can write (4.4.57)

E f 2 K n 1/α σ X α t j+1 -ς 1/n (X α t j ) |X α t j = x = E f 2 K n 1/α σ X α,x 1 n -ς 1/n (x)
where

X α,x 1 n
is the solution to (4.1.1) starting from X α 0 = x.

Using the fact that Z α t j+1 -Z α t j is independent of F t j then we can write (4.4.58)

E f 2 K n 1/α Z α t j+1 -Z α t j |F t j = E f 2 K n 1/α Z α t j+1 -Z α t j = E f 2 K n 1/α Z α t j+1 -Z α t j |X α t j From X α t j+1 = X α t j + t j+1 t j b(X α s )ds + σ Z α t j+1 -Z α t j , we can see that (4.4.59) f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) × f K n 1/α Z α t j+1 -Z α t j = f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) × f K n 1/α σ X α t j+1 -X α t j - t j+1 t j b(X α s )ds
Since (X α t ) t≥0 has the Markov property with respect to (F t ) then we obtain (4.4.60)

E f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) × f K n 1/α σ X α t j+1 -X α t j - t j+1 t j b(X α s )ds F t j = E f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) × f K n 1/α σ X α t j+1 -X α t j - t j+1 t j b(X α s )ds |X α t j
a.s. 

E f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) × f K n 1/α σ X α t j+1 -X α t j - t j+1 t j b(X α s )ds X α t j = x = E f K n 1/α σ X α,x 1 n -ς 1/n (x) × f K n 1/α σ X α,x 1 n -x - 1 n 0 b(X α,x s )ds = E f K n 1/α σ X α,x 1 n -ς 1/n (x) × f K n 1/α Z α 1 n . From ( 
E f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) -f K n 1/α Z α t j+1 -Z α t j 2 |F t j = E f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) -f K n 1/α Z α t j+1
E f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) -f K n 1/α Z α t j+1 -Z α t j 2 |X α t j = x = E f K n 1/α σ X α,x 1 n -ς 1/n (x) -f K n 1/α Z α 1 n 2 .
From Lemma 4.4.5, we get

sup j sup x E f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) -f K n 1/α Z α t j+1 -Z α t j 2 |X α t j = x n→∞ ----→ 0.
Combining this with (4.4.62), we can deduce that sup 

j E f K n 1/α σ X α t j+1 -ς 1/n (X α t j ) -f K n 1/α Z α t j+1 -Z α t j 2 |F t j n→∞ ----→ 0 
(α) -H n (α)| ≤ G n (α) -G n,K (α) + G n,K (α) -H n,K (α) + H n,K (α) -H n (α) .
E f (n 1/α Z α 1 n ) -E f (L α 1 ) n→∞ ----→ 0.
E f (n 1/α Z α 1 n ) -E f (L α 1 ) ≤ lim sup n E f (n 1/α Z α 1 n ) -E f K (n 1/α Z α 1 n ) + lim sup n E f K (n 1/α Z α 1 n ) -E f K (L α 1 ) + E f K (L α 1 ) -E f (L α 1 ) .
Hence the proposition will be proved if we show that each term on the right-hand side of (4.4.65) tends to 0 as K → ∞.

We get immediately that the third term on the right-hand side of (4. 

E f K (n 1/α Z α 1 n ) -E f K (L α 1 ) = 0. We now show that lim sup n E f (n 1/α Z α 1 n ) -E f K (n 1/α Z α 1 n ) K→∞ ----→ 0.
We have, for δ is chosen such that (1

+ δ)p < α, lim sup n E f (n 1/α Z α 1 n ) -E f K (n 1/α Z α 1 n ) ≤ lim sup n E f (n 1/α Z α 1 n ) -f K (n 1/α Z α 1 n ) ≤ lim sup n E f (n 1/α Z α 1 n ) 1 n 1/α Z α 1 n ≥K 1/p + lim sup n E f (n 1/α Z α 1 n ) 1 n 1/α Z α 1 n ≤ 1 K 2 ≤ lim sup n E n 1/α Z α 1 n p 1 n 1/α Z α 1 n ≥K 1/p + C 1 K 2 -1 K 2 | f (u) |du ≤ lim sup n E      n 1/α Z α 1 n p      n 1/α Z α 1 n p K      δ      + 2C 1 K 2 0 (log(|u|)) 4 + 1 du
Proof of Proposition 4.4.4

Proof. We set (4.4.70)

ξ n j :=    ξ n j,1 ξ n j,2    =    1 n f 1 n 1/α Z α t j+1 -Z α t j -f 1 (y)ϕ α (y)d y 1 n f 2 n 1/α Z α t j+1 -Z α t j -f 2 (y)ϕ α (y)d y    then we get n    1 n n-1 j=0 f 1 n 1/α Z α t j+1 -Z α t j
f 1 (y)ϕ α (y)d y

1 n n-1 j=0 f 2 n 1/α Z α t j+1 -Z α t j -f 2 (y)ϕ α (y)d y    = n-1 j=0 ξ n j .
Since the variables (Z α t j+1 -Z α t j : j ≥ 0) are independent, we use Theorem 2.2.14 in [START_REF] Jacod | Discretization of processes[END_REF] to prove (4.4.32). It is sufficient to show that the following properties hold

(1) n-1 j=0 E ξ n j n→∞ ----→ 0.

(2) n-1 j=0 E ξ n j,i ξ n j,k n→∞ ----→ Σ ik for all i, k = 1, 2 and Σ ik is defined by (4.4.29).

(3) n-1 j=0 E ||ξ n j || r n→∞ ----→ 0 for some r > 2.

The property (1) can be deduced immediately from Lemma 4.4.8. For the property (2), we start the proof by considering the case i = k, we have 

n f i n 1/α Z α t j+1 -Z α t j -f i (y)ϕ α (y)d y 2 = E f i n 1/α Z α 1 n -E f i (L α 1 ) 2 = E f 2 i n 1/α Z α 1 n + E f i (L α 1 ) 2 -2E f i n 1/α Z α 1 n E f i (L α 1 ) Since f 1 , f 2 , f 2 
= E f i n 1/α Z α 1 n -E f i (L α 1 ) f k n 1/α Z α 1 n -E f k (L α 1 ) = E f i n 1/α Z α 1 n f k n 1/α Z α 1 n + E f i (L α 1 ) E f k (L α 1 )
-

E f i n 1/α Z α 1 n E f k (L α 1 ) -E f k n 1/α Z α 1 n E f i (L α 1 )
.

Since ( f i + f k ) 2 and ( f i -f k ) 2 satisfy Assumption 4.4.1 then using Lemma 4.4.7 again, we get (4.4.76)

E f i Z n,α 1 
f k Z n,α 1 = 1 4 E f i Z n,α 1 + f k Z n,α 1 
2 -E f i Z n,α 1 -f k Z n,α 1 2 n→∞ ----→ 1 4 E f i L α 1 + f k L α 1 2 -E f i L α 1 -f k L α 1 2 = E f i L α 1 f k L α 1 .
From (4.4.73) and (4.4.76), we can deduce that, as n → ∞, (4.4.75) tends to

E f i L α 1 f k L α 1 + E f i (L α 1 ) E f k (L α 1 ) -E f i L α 1 E f k (L α 1 ) -E f k L α 1 E f i (L α 1 )
= ( f i (y) -g i (α)) ( f k (y) -g k (α)) ϕ α (y)d y = Σ ik .

Thus the property (2) is proved.

For the property (3), we need to show that n-1 j=0 E ||ξ n j || r P -→ 0 for some r > 2. This is equivalent to prove that for i = 1, 2 and for some r > 2 The aim of this section is to prove the consistency and asymptotic normality results given in Section 4.3.2. We first proceed to the proof of Theorem 4.3.1.

Proof of Theorem 4.3.1:

We recall that the expression of αlog,n is 

6 π 2 1 n n-1 j=0 log n 1/α 0 σ X α 0 t j+1 -ς 1/n (X α 0 t j ) 2 - 1 n 2 n-1 j=0 log n 1/α 0 σ X α 0 t j+1 -ς 1/n (X α 0 t j ) 2 - 1 2 
+ 1 2 + C 2 1 α 0 -1 2 -C 1 α 0 -1 2 - 1 2 -1/2 = α 0 .
Hence the consistency result of this theorem is proved.

Proof of Theorem 4.3.2:

We denote υ 1,α 0 := E log |L log n 1/α 0 σ X α 0 t j+1 -ς 1/n (X

α 0 t j ) -E log |L α 0 1 | 2 -υ 2,α 0 -n 1 n n-1 j=0 log n 1/α 0 σ X α 0 t j+1 -ς 1/n (X α 0 t j ) -E log |L α 0 1 | 2 .
Our aim is to show that (4.5.2) n S α 0 n -υ 2,α 0 ⇒ N 0, υ 4,α 0 -υ 2 2,α 0 .

The proof will be divided into two steps.

Step 1: We show that Step 2: We show that (e -1 α 0 ) Σ α 0 ((e -1 α 0 ) ) := V log (α 0 ) = 11 10 α 2 0 + 1 2 α 4 0 + 13 20 α 6 0 . Hence this theorem is proved.

Proof of Theorem 4.3.3:

Let Ω n be the set where 1 hence P(Ω n ) tends to one as n → ∞ by the convergence in probability (4.5.7). Then, in this case

g -1 1 D 1 n n-1 j=0 X α 0 t j+1 -ς 1/n (X α 0 t j ) r 2 1 n n-1 j=0 X α 0 t j+1
-ς 1/n (X α 0 t j ) 2r exists. Since the function g is strictly increasing then the estimator αr,n is uniquely determined as αr,n = g -1

   1 D 1 n n-1 j=0 X α 0 t j+1 -ς 1/n (X α 0 t j ) r 2 1 n n-1 j=0 X α 0 t j+1 -ς 1/n (X α 0 t j ) 2r    .
From the continuity of g -1 and from the convergence (4.5.7), we can deduce the result of this theorem. 

Now we denote by

W α 0 n := 1 D 1 n n-1 j=0 n 1/α 0 σ X α 0 t j+1 -ς 1/n (X α 0 t j ) r 2 1 n n-1 j=0 n 1/α 0 σ X α 0 t j+1 -ς 1/n (X α 0 t j ) 2r ,
where D is given by (4. 

Monte-Carlo Simulations

We will now focus on a simulation study to observe different finite-sample behaviors of the estimators according to the true value of α 0 developed in Section 4. The true index α 0 α 0 = 0.5 α 0 = 0.6 α 0 =0.8 αlog,n with n=50 0.5279346 0.0854579 0.6299152 0.1077263 0.8566200 0.1801666 -As was expected from Figure 4.1, we observe that αlog,n becomes more unstable for α 0 closer to 2. We need the number of observation enough large, for example 500, to obtain a good result for estimating α 0 > 1.5 (see Table 1).

-We obtain the better results for estimating α 0 > 1 by using αr,n with small r. In practice, we can begin with a small r such as r = 0.1 and then adaptively choice p according to the estimated value of α 0 (choosing r = 0.2 if the estimate of α 0 is greater than 1.5). For α 0 > 1.5, we need the number of observation n ≥ 250 for using the estimator α0. 

log X α 0 t j+1 -X α 0 t j - 1 n n-1 j=0 log X α 0 t j+1 -X α 0 t j 2 - 1 2 -1/2 , α * r,n = g -1    1 D 1 n n-1 j=0 X α 0 t j+1 -X α 0 t j r 2 1 n n-1 j=0 X α 0 t j+1 -X α 0 t j 2r    .
where D and the function g are defined by (4.3.14) and (4.3.12) respectively.

We assume that the assumption H 0 is replaced by the new assumption H0 : H0 b : R → R is a bounded function with bounded derivatives up to order two. then we have

u n E G * n (α) -G * n,K (α) = u n E 1 n n-1 j=0 f n 1/α X α t j+1 -X α t j - 1 n n-1 i=0 f K n 1/α X α t j+1 -X α t j ≤ u n n n-1 j=0 E f n 1/α X α t j+1 -X α t j 1 n 1/α X α t j+1
-X α t j ≥K Hence, with the choice K := K n = n (1-1 α ) 1 2+δ , we can deduce that (4.7. Proof. The idea of the proof is the same as Lemma 4.4.6. We use Lemma 9 from Genon-Catalot and Jacod [START_REF] Genon-Catalot | Estimation of the diffusion coefficient for diffusion processes: random sampling[END_REF] then it is sufficient to show that Looking at the proof of Proposition 9 in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF], we can deduce that (4.7.21) sup

u n n n-1 j=0 E f K n 1/α σ X α t j+1 -X α t j -f K n 1/α Z α t j+1 -Z α
u 2 n n 2 n-1 j=0 E f K n 1/α σ X α t j+1 -X α t j -f K n 1/α Z α t j+1 -Z α
x E f K n 1/α σ X α,x 1 n -x -f K n 1/α Z α 1 n ≤ C|| f K || ∞ n 1-1/α
where C is a positive constant. From the Markov property, we have

E f K n 1/α σ X α t j+1 -X α t j |F t j = E f K n 1/α σ X α t j+1 -X α t j
|X α t j . (4.7.22) But we can write 

E f K n 1/α σ X α t j+1 -X α t j |X α t j = x = E f K n 1/α σ X α,x
E f K n 1/α σ X α t j+1 -X α t j -f K n 1/α Z α t j+1 -Z α t j |F t j ≤ CK u n n 1-1/α .
With the choice K := K n = n (1-1 α ) 1 2+δ where δ ∈ (0, 2) is chosen such that (2 + δ)p < α and u n = n 1/2-1/2α , it yields (4.7.19).

We consider (4.7.20). We observe that by the same proof as (4.4.62), we have (4.7.24) 

E f K n 1/α σ X α t j+1 -X α t j -f K n 1/α Z α t j+1 -Z α t j 2 |F t j = E f K n 1/α σ X α t j+1 -X α t j -f K n 1/α Z α t j+1 -Z α
E f K n 1/α σ X α t j+1 -X α t j -f K n 1/α Z α t j+1 -Z α t j 2 |X α t j = x = E f K n 1/α σ X α,x 1 n -x -f K n

Appendix. Python Code

In this section, we present the Python code that we used to study the asymptotic variances of the estimators of α 0 (Figure 4.1) and the Python code for estimating α ∈ (0, 2) by using the estimators αn,log , αr,n and αn , α * n given by (4. 

3 )

 3 ∞) est un paramètre inconnu et b est une fonction à valeur réelle. Plus précisément, nous supposons que les hypothèses suivantes sont remplies pour le processus α-stable tronqué (L t ) t∈[0,1] .(i) Le processus de Lévy (L t ) t∈[0,1] est donné parL t = t 0 [-1,1] z{ μ(ds, dz) -ῡ(ds, dz)} + t 0 [-1,1] c z μ(ds, dz), où μ est une mesure aléatoire de Poisson, de compensateur ῡ(dt, dz) = dt × F(z)dz où F(z) est donnée sur R par F(z) = 1 |z| α+1 1 |z| =0 τ(z), α ∈ (0, 2) . Nous supposons que τ est une fonction lisse non négative, égale à 1 sur [-1,1], s'annulant sur [-2, 2] c telle que 0 ≤ τ ≤ 1. (ii) nous supposons que ∀p ≥ 1, Nous observons ce processus à des temps discrets, équidistants, sur l'intervalle fini fixé [0,1], ce qui signifie que X est observé aux instants t n i = i n := i∆ n , i = 0, 1, ...n, dans l'intervalle [0,1]. Nous iii nous intéressons aux propriétés asymptotiques lorsque ∆ n = 1 n , tend vers 0. En pratique, cela signifie que nous sommes dans le contexte des données à haute fréquence. On sait que, dans le cas de la diffusion, on ne peut pas estimer le paramètre de dérive avec un temps d'observation fixé. Au contraire, pour un processus de saut pur, on peut estimer le paramètre de dérive dans les deux cas: une période d'observation fixée ou un temps d'observation tendant vers l'infini. Sans perte de généralité, nous supposerons ici que l'intervalle d'observation est [0, 1].

  , dx) où W t est un mouvement brownien standard, b et σ sont des processus d'Itô et µ est une mesure aléatoire avec compensateur υ. Basés sur la p-variation, ils proposent des estimateurs pour le paramètre d'indice α à haute fréquence.

βt

  ) avec l'indice α ∈ (0, 2) pour la solution de (0.0.1), ainsi que sa dérivée par rapport au paramètre β = (θ, σ) T . Ce problème joue un rôle important dans les statistiques asymptotiques basées sur des observations à haute fréquence. En effet, en considérant l'estimation de β à partir des observations en temps discret (X β i/n ) 0≤i≤n , et en notant par p β 1/n (x, y) la densité de transition du processus en temps discret, la vitesse d'estimation du paramètre β repose fortement sur le comportement asymptotique de la dérivée ∇ β p β 1/n (x, y), quand n tend vers l'infini. En utilisant le calcul de Malliavin, nous obtenons des formules de représentation pour la densité, sa dérivée et sa dérivée logarithmique, comme une espérance et une espérance conditionnelle. Ces formules de représentation font apparaître des poids de Malliavin dont les expressions sont données explicitement, ce qui permet d'analyser le comportement asymptotique de la densité en temps petit, en utilisant la propriété d'autosimilarité du processus stable. Nos résultats sont établis grâce à une étude attentive de chaque terme apparaissant dans les poids de Malliavin, ce qui est compliqué par la non-intégrabilité du processus α-stable quand α ≤ 1. De plus, lorsque nous étudions le comportement asymptotique, pour traiter toute valeur de l'indice α ∈ (0, 2), nous introduisons la solution de l'équation différentielle ordinaire (0.0.5) ς n,θ,x t = x + 1 n t 0 b(ς n,θ,x s , θ)ds t ∈ (0, 1], x ∈ R viii RÉSUMÉ DES PRINCIPAUX RÉSULTATS et alors nous obtenons que n 1/α X

σ 2 n n 1 /α ∂ σ p β n 1 nChapitre 3 :

 2113 (x 0 , uσ n n 1/α + ς n,θ n ,x 0 1 ) n→∞ ----→ -ϕ α (u) -uϕ α (u), Le chapitre 2 est publié dans l'article suivant: * Emmanuelle Clément, Arnaud Gloter, and Huong Nguyen. Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process. ESAIM: P/S, 2018. Nous discutons de la propriété Local Asymptotic Mixed Normality pour les paramètres de dérive et d'échelle à partir des observations à haute fréquence d'une solution de l'équation différentielle stochastique gouvernée par un processus α-stable tronqué avec l'indice α ∈ (0, 2) donnée par l'équation (0.0.1). Ceci étend les résultats de [17] où l'indice α ∈ (1, 2) et seulement la propriété Local Asymptotic Mixed Normality pour le coefficient de dérive est considérée. A partir de l'expression des dérivés logarithmiques de la densité par rapport à β comme une espérance conditionnelle, des poids de Malliavin et des résultats sur le comportement asymptotique de la densité établis au chapitre 2, nous déduisons le comportement asymptotique de la matrice d'information de Fisher en temps petit pour une observation du processus. En outre, nous établissons un développement asymptotique de la log-vraisemblance (en utilisant le calcul de Malliavin pour les processus de saut) et prouvons que la propriété LAMN est vérifiée pour les paramètres de dérive et de volatilité avec la vitesse u n =

ς t (x) = x + t 0 b

 0 (ς s (x))ds t ∈ (0, 1/n], x ∈ R.L'introduction de cette équation différentielle ordinaire est nécessaire pour traiter n'importe quelle valeur de α, cependant, cela conduit à une limitation dans la pratique puisque la fonction de dérive b doit être connue. Si nous connaissons la vraie valeur du paramètre d'échelle, alors x

  experiment. The sequence of families {P θ n : θ ∈ Θ}, n ≥ 1 satisfies the LAMN property at θ (an interior point of Θ), at rate u n (a d × d positive definite matrix such that ||u n || tends to zero as n goes to infinity) with the random information matrix I(θ) > 0 if for every h ∈ R d (1.1.1) log dP θ+u n h dP θ n = h T I n (θ) 1/2 N n -1 2 h T I n (θ)h + o P θ n (1)

A1. L 2 A3.E

 2 -regularityWe assume that there exist a sequence of d-dimensional random vectors (χ j (θ)) j≥1 and a sequence of d × d positive definite matrices u n , n ≥ 1 with ||u n || → 0 such that for every h ∈ R For every j ≥ 1E ξ j (θ)|F j-1 = 0 where ξ j (θ) = (ξ i j (θ)) i=1,...,d with ξ j (θ) There exists a measurable function I(θ) > 0 mapping Ω to the set of d × d symmetric matricesu n n j=1 E ξ j (θ)ξ T j (θ)|F j-1 u T n n→∞----→ I(θ) (> 0 a.e.), in probability. u n ξ j (θ)ξ j (θ) T u T n ≤ C, for a strictly positive constant C.

and denoting by p β 1 /

 1 n (x, y) the transition density of the discrete time CHAPTER 1. INTRODUCTION process, the estimation rate of the parameter β strongly relies on the asymptotic behavior of the derivative ∇ β p β 1/n (x, y), as n goes to infinity.

Remark 2 . 2 . 2 .

 222 If we assume that the function b is of class C 1+k with respect to x (k ≥ 0) and setting A( f ) = b f (and A 0

CHAPTER 2 .

 2 ASYMPTOTICS IN SMALL TIME FOR THE DENSITY OF A STOCHASTIC DIFFERENTIAL EQUATION DRIVEN BY A STABLE LÉVY PROCESS

  5.40). Using Kunita's first inequality (see Theorem 4.4.23 in [6]) ∀p ≥ 2, we have E sup s∈[0,1] s 0 |z|≤1 z μ(du, dz) p < ∞, and the first term of (2.5.40) converges to zero in L p , ∀p ≥ 1.

Proof of Lemma 2 . 5 . 2 :

 252 Recall that D n,β 1 and U n,β 1 are given by (2.5.7) and (2.4.3). The part i) is proved by decomposing

, 1 ] 2

 12 , P) endowed with a Poisson random measure µ on [0, 1] × E, where E is an open subset of R, with compensator υ on [0, 1] × E and with compensated measure μ = µυ. We now consider the process (Y β t ) t∈[0,1] , the solution of (

( b )

 b The compensator of the Poisson random measure µ is given by υ(dt, dz) = dt × g(z)dz with g ≥ 0 on E, C 1 on E and such that ∀p ≥ 2, E |z| p g(z)dz < ∞.

  are independent and the transition density of the discrete time process (X i n ) 1≤i≤n is almost explicit. Extensions to stochastic equations driven by pure jump Lévy processes are not immediate and require a different approach since the transition density of the Markov chain (X i n ) 1≤i≤n is unknown. Moreover they involve a random asymptotic Fisher information and lead to the LAMN property.

I 11 = 1 σ 2

 2 I θ and I 22 = 1

β 1 n

 1 (as n goes CHAPTER 3. LAMN PROPERTY FOR THE DRIFT AND VOLATILITY PARAMETERS OF A SDE DRIVEN BY A STABLE LÉVY PROCESS to infinity). The proof of the main results are given in Section 3.4 and Section 3.5. Section 3.6 contains some additional technical proof required to establish the results of Section 3.3. Finally, Section 3.7 checks the conditions given in Proposition 3.6.3 for the choices H = H L α (1) and

  ) i=0,...n . We assume that the following assumptions are fulfilled. H 1 : (a) The function b has bounded derivatives up to order five with respect to both variables. (b i ) The Lévy process (L t ) t∈[0,1] is given by L t = t 0 [-1,1] z{ μ(ds, dz)-ῡ(ds, dz)}+ t 0 [-1,1] c z μ(ds, dz) where μ is a Poisson random measure, with compensator ῡ(dt, dz) = dt × F(z)dz where F(z) is given on R by F(z) = 1 |z| α+1 1 |z| =0 τ(z), α ∈ (0, 2). We assume that τ is a non negative smooth function equal to 1 on [-1,1], vanishing on [-2, 2] c such that 0 ≤ τ ≤ 1.

1 2 - 1 α

 21 and Fisher information R ϕ α (u)2 

Corollary 3 . 2 . 4 .

 324 The family (P β n ) satisfies the LAMN property with rate r n = information I (β) given by (3.2.3).

υ

  e (dt, dz, du) = dt1 |z| =0 dz |z| 1+α du and for n ≥ 1, we define the Poisson random measure µ (n) by

  (x 0 , x) = q n,β,x 0 (x).
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 3 LAMN PROPERTY FOR THE DRIFT AND VOLATILITY PARAMETERS OF A SDE DRIVEN BY A STABLE LÉVY PROCESS Furthermore, combining (3.3.6) and Lemma 3.3.4 ii), we have I n,β n ,x 0 22

  for a strictly positive constant C. The condition A1 is proved in Section 3.4.1 and A2 and A3 are proved in Section 3.4.2. The condition A4 is immediate from Theorem 3.3.1 ii) since

Theorem 3 . 4 . 1 .

 341 [Theorem 2.1 in [19]]

12 ,

 12 respectively and the application of the dominated convergence theorem. From (3.4.7) and (3.4.8) we get (3.4.4). (3.4.5) is deduced directly from Theorem 3.3.1.

Lemma 3 . 5 . 1 .

 351 [Lemma 4.1 in [19]] Let (ς n,θ,x 0 t ) be the solution to the ordinary differential equation (3.4.1), then (3.5.1)

  5.5) reduces, from the Markov property, (3.3.5) and the fact that DRIVEN BY A STABLE LÉVY PROCESS Ȳ n,β,x

iws n 1

 1 /α ds. DRIVEN BY A STABLE LÉVY PROCESS Then, symmetric α-stable process then we have for some constant C(α) |sϕ α (s)|ds < ∞ and w → we -C(α) w n 1/α α admits a derivative on R, we obtain by taking the derivative with respect to w of the both sides of (3.5.22) n (u, v, w) = O(n -1 ).

1 . 3 . 6 . 2 .

 1362 .6.10) With these notations, we can explicit the Malliavin weight H Ȳ n,β,the score function given in Proposition 3.3.Proposition [Theorem 3.1 and Theorem 6.2 in [19]]

3. 6 .

 6 PROOFS OF LEMMAS 3.3.2-3.3.5

3. 6 .

 6 PROOFS OF LEMMAS 3.3.2-3.3.5

3 . 2 , 5 Proof of Lemma 3 . 3 . 2

 325332 Lemma 3.3.3, Lemma 3.3.4 and Lemma 3.3.5. First we remark that although L α 1 does not belong to the domain of Malliavin operators D we can establish a representation for ϕ α /ϕ α .

.

  

3. 6 . 5 From 1 0

 651 PROOFS OF LEMMAS 3.3.2-3.3.the assumption on Γ(H n , H n ) in Proposition 3.6.3 and since |z|<1 z 4 µ(dt, dz) -1 belongs to ∩ p≥1 L p (see [17, the proof of Theorem 4]), we can deduce that I n 1.2 is bounded independently of n. Thus, we get that the expectation of the right-hand side term in (3.6.47) is finite.

F

  i | for (a 1 , ..., a d ) ∈ R, r > 1.
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 4 ESTIMATION OF THE INDEX PARAMETER FOR A STOCHASTIC DIFFERENTIAL EQUATION DRIVEN BY A STABLE LÉVY PROCESS

4. 1 . INTRODUCTION 1 n 1 / 2 - 1

 11121 /α , n , n log(n), for the estimation of β = (θ, σ, α) with the singular Fisher information matrix I

ς t (x) = x + t 0 b

 0 (ς s (x))ds t ∈ (0, 1/n], x ∈ R.The introduction of this ordinary differential equation is convenient for dealing with any value ofα, however, this leads to a limitation in practice since the drift function b has to be known. Then, for suitable f , Proposition 4.4.1 in Section 4.3.1 shows that (4.1

( 4 .

 4 2.2) ς t (x) = x + t 0 b(ς s (x))ds t ∈ (0, 1/n], x ∈ R.Moreover, if the drift function b ≡ 0, σ = 1 and x = 0 then (4.2.1) yields sup u∈R sup n ϕ n (u) < ∞.(4.2.3)

  .2.8) g(α) := f (y)ϕ α (y)d y. (4.2.9)

  .10) can be replaced by the following equation(4.3.11) 

Theorem 4 . 3 . 1 (Theorem 4 . 3 . 2 (

 431432 Consistency). The estimator αlog,n defined by (4.3.6) is consistent in probability: αlog,n P -→ α 0 , n → ∞. Asymptotic normality). With the estimator αlog,n defined by (4.3.6), we have (4.3.15)n ( αlog,n -α 0 ) ⇒ N (0, V log (α 0 ))

CHAPTER 4 .

 4 ESTIMATION OF THE INDEX PARAMETER FOR A STOCHASTIC DIFFERENTIAL EQUATION DRIVEN BY A STABLE LÉVY PROCESS Moreover, since n log(n) S n -M n p α 0 converges in law by (4.3.25) then we can deduce that n log(n)o p S n -M n p α 0

1 n

 1 is the solution to (4.1.1) starting from X α 0 = x.From the construction of the function f K and Assumption 4.4.1(1)(2), we can deduce that (4.4.21) | f K | ≤ CK.

4 . 22 )

 422 Combining (4.4.22) with (4.4.18) and (4.4.20), we deduce that (4.4.23)

  used (4.2.6) with the boudedness of f K to get the convergence. Hence we can deduce (4.4.25). Since | f K | ≤ CK, we can deduce immediately (4.4.26) and hence the property (2)

4 . 1 .Assumption 4 . 4 . 2 . 1 . 2 .Remark 4 . 4 . 1 .Proposition 4 . 4 . 2 . 1 , 2 .

 414421244144212 At this point, we need stronger assumptions on the function f because of the exploding factor n . Let f : R → R be a symmetric function and we suppose that the function f satisfies the following assumptions ∃C > 0 such that | f (y)| ≤ C |log |y|| 2 + 1 for all |y| ≤ 1. There exists 0 < p < α 2 such that | f (y)| ≤ C|y| p for all |y| > 1 and C is a positive constant. 3. f is a differentiable function such that for a constant C > 0 then f (y) ≤ C| log |y|+1| |y| for all |y| ≤ 1 and f (y) ≤ C|y| p for all |y| > 1. From Assumptions 4.4.2(1)(2) we can deduce that there exists δ > 0 such that (2 + δ)p < α and then | f (y)| (2+δ) ϕ α (y)d y < ∞. Let f 1 , f 2 : R → R satisfy Assumption 4.4.2. We set g l = f l (y)ϕ α (y)d y for l = We have the following convergence in law n

  .4.31) Hence Proposition 4.4.2 will be proved if we can prove the two propositions (Propositions 4.4.3-4.4.4).

Proposition 4 . 4 . 3 .

 443 Let f 1 , f 2 : R → R satisfy Assumption 4.4.2, then we have n

Proposition 4 . 4 . 4 .

 444 Let f 1 , f 2 : R → R satisfy Assumption 4.4.2. We have the following convergence in law n

  4.29). The proof of Proposition 4.4.3 is based on Lemmas 4.4.3-4.4.6 and the proof Proposition 4.4.4 is based on Lemmas 4.4.7-4.4.8. From now on, we choose K := K n = n 2+δ 4

Lemma 4 . 4 . 3 .

 443 We suppose that Assumption 4.4.2 holds then, with K :

  M is some positive constant. From (4.4.10) with r = p(2 + δ) < α and (4.4.36), we get that (4.4.33) converges to zero as n → ∞.

Lemma 4 . 4 . 6 .

 446 where we have used (4.4.10) with r = p(2 + δ) < α, the fact that f is a symmetric function, (4.2.3) and Assumption 4.4.2(1) to get the last line. From (4.4.48) and (4.4.52), we deduce that (4.4.51) tends to zero as n → ∞. This implies that (4.4.46) tends to zero as n → ∞. From the above estimates, we can deduce that (4.4.42) goes to zero as n → ∞. Hence this lemma is proved. We assume that Assumption 4.4.2 holds and K := K n = n 2+δ 4(1+δ) then n G n,K (α) -H n,K (α) n→∞ ----→ P 0 where G n,K and H n,K are defined by (4.4.3)-(4.4.4).

CHAPTER 4 .Lemma 4 . 4 . 7 .

 4447 ESTIMATION OF THE INDEX PARAMETER FOR A STOCHASTIC DIFFERENTIAL EQUATION DRIVEN BYA STABLE LÉVY PROCESS From Lemma 4.4.6, we get n G n,K (α) -H n,K (α) n→∞ ----→ P 0. From Lemma 4.4.3, we have n E G n (α) -G n,K (α) n→∞ ----→ 0 and n E H n (α) -H n,K (α) n→∞ ----→ 0.From the above estimates, we can conclude that Proposition 4.4.3 is proved. Now we will prove Proposition 4.4.4. The proof of this proposition is based on the two following lemmas. We suppose that the function f satisfies Assumptions 4.4.1 then

4 . 65 )

 465 converges to 0 as K → ∞ from (4.4.14). From (4.4.27), we obtain that lim sup n

1 , f 2 2 satisfy 2 E f 2 i n 1

 1221 Assumption 4.4.1 then we can apply Lemma 4.4.7 and obtain for i = 1, the two above results, we can estimate that (4.4.71) converges to(4.4.74) E f 2 i L α 1 -E f i (L α 1 ) 2 = ( f i (y) -g i (α)) 2 ϕ α (y)d y = Σ ii .4.4. LIMIT THEOREMSWe now focus on the casei = k, 1/α Z α t j+1 -Z α t j -f i (y)ϕ α (y)d y f k n 1/α Z α t j+1 -Z α t jf k (y)ϕ α (y)d y

r( 3 )

 3 From r > 2 and E f i (L α 1 ) < ∞ then, in order to get (4.4.77), we just need to show thatE f i n 1/α Z α 1/n ris bounded by a positive constant that does not depend on n. Actually, this holds true with the choice r = 2 + δ where δ > 0 satisfies p(2 + δ) < α and the result of (4.4.52). Hence the property is proved and Proposition 4.4.4 follows.

4. 5

 5 Proof of Main results (Theorems 4.3.1-4.3.4)

-1/ 2 ,( 4 . 5 . 1 )

 2451 as soon as the square root is well defined.We see that Assumption 4.4.1 is satisfied with the choice f l (y) := (log |y|) l , l = 1, 2 then using the result of Proposition 4.4.1 and (4.3.1), (4.3.2), we get the two following convergence

α 0 1 | 1 in

 11 and υ k,α 0 := E log |L ζ stands for Riemann's zeta function; ζ(3) ≈ 1.202057 (for more information see Section 3.

2 -

 2 υ 2,α 0 ⇒ N (0, υ 4,α 0 -υ 2 2,α 0 ) Indeed, Assumption 4.4.2 is satisfied with the choice f 2 (y) := log |y| -E(log(L the result of Proposition 4.4.2 we easily obtain (4.5.3).

From ( 4 . 5 . 5 ) 1 |) = π 2 6 1α 2 + 1 2 (

 4551622 Assumption 4.4.2 is satisfied with the choice f 1 (y) := log |y| then using the result of Proposition 4.4., we can deduce the convergence (4.5.4) and Step 2 is proved. Let e : (0, 2) → R be the function defined by e(α) = V ar(log |L α see (4.3.3)). Then the estimator αlog,n solves the equation S α 0 n = e( αlog,n ).Using the Delta-method, we get (4.5.6) n ( αlog,n -α 0 ) = n e -1 (Sα 0 n ) -e -1 (υ 2,α 0 ) ⇒ N 0, (e -1 α 0 ) Σ α 0 ((e -1 α 0 ) )where Σ α 0 = υ 4,α 0 -is the derivative of e -1 at e(α 0 ). From the inverse function theorem we have the the derivative of e -1 at e(α 0 ) is the inverse e -1 α 0 of the derivative e α 0 of e at α 0 . Then by some computations, we get (e -1 α 0 ) = e -1

  range of the function g defined by (4.3.12). Observe that Assumption 4.4.1 is satisfies with the choice f (y) := |y| r and f (y) := |y| 2r for r ∈ (0, α/4) then applying Proposition 4.4.1, we obtain

4. 5 . 1 |

 51 PROOF OF MAIN RESULTS (THEOREMS 4.3.1-4.3.4) Σ ik (α 0 ) = C (α 0 , (i+k)r)-C (α, ir) C (α, kr) for i, k ∈ 1, 2 and noting from (4.3.7) that E |L α 0 1 | r = C (α 0 , r), E |L α 0 2r = C (α 0 , 2r). Assumption 4.4.2 is satisfied with the choice ( f l (y)) l=1,2 = |y| lr for r ∈ (0, α/4) then using the result of Proposition 4.4.2 we can deduce (4.5.8).

Σ 2 4C

 2 h(x, y) = x 2 D y . The map h is differentiable at the point θ = (C (α 0 , r), C (α 0 , 2r)) T , with derivative ∇h(θ) = ∂h ∂x (θ), ∂h ∂y (θ) 11 (α 0 ) Σ 12 (α 0 )Σ 12 (α 0 ) Σ 22 (α 0 ) (α 0 , r) 2 C (α 0 , 2r) -4C (α 0 , r) 3 C (α 0 , 3r) C (α 0 , 2r) 3 + C (α 0 , r) 4 C (α 0 , 4r) C (α 0 , 2r) 4 -C (α 0 , r) 4C (α 0 , 2r) 2 := V r (α 0 ).(4.5.11) 

Figure 4 . 1 :

 41 Figure 4.1: Plot of asymptotic variances of the estimators of α 0 . The panel containing the logarithmic moment based one (red line), the three lower-order moment based ones with r = 0.05 (blue line), r = 0.1 (green line) and r = 0.2 (yellow line).

3 . 2 .

 32 In this section, we consider two different cases for the choice of the drift function b (b(x) = -x + sin(2πx) and b(x) = -x).

4. 6 . 3

 63 The drift function b(x) = -x + sin(2πx) With this choice, we simulate and approximate X α 0 t by using the Euler scheme. Let n be the number of observations, M = 1000 × n be the number of steps of Euler scheme, ∆ = 1 n be the observation time frequency and δ = 1 M be the simulation step. Then in each simulation below, the Lévy process (Lα 0 t ) t∈[0,1]is a symmetric α 0 -stable Lévy process with the index α 0 ∈ (0t j = jδ for j = 0, ..., M -1. The drift function in the simulation is b(x) = -x + sin(2πx), the initial value is X α 0 = 1 with the true parameter α 0 = 1.5. In the figure 4.

4. 7 .Proof of Lemma 4 . 7 . 1

 7471 ESTIMATION OF THE INDEX PARAMETER FOR THE UNKNOWN DRIFT FUNCTION WHEN α ∈ (1, 2). The idea of the proof is the same as Lemma 4.4.3. It is enough to prove the first assertion as using it with the drift function b ≡ 0, σ = 1 and x = 0, we deduce immediately the result of the second one. Using| f (x) -f K (x)| ≤ | f (x)|1 |x|≥K 1/p + f (x)|1 |x|≤ 1 K 2

3 )

 3 is bounded byMu n K 1+δ E C (2+δ)p + n 1/α Z α Cand M are some positive constants. Using (4.4.10) with r = p(2 + δ) < α and the fact that α > 1 we get that (4.7.7) converges to zero as n → ∞. Hence (4.7.3) converges to zero as n → ∞.

4. 7 .

 7 ESTIMATION OF THE INDEX PARAMETER FOR THE UNKNOWN DRIFT FUNCTION WHEN α ∈ (1, 2).

  is the solution to (4.1.1) starting from X α 0 = x. Combining this with (4.4.18), (4

  3.6),(4.3.11) and in Remark 4.3.1, Proposition 4.3.1, respectively. We note that the drift function b is required to be known.

4. 8 . 1

 81 Python code for the figure 4.1 from s c i p y . s p e c i a l import digamma , gamma from numpy import sqrt , pi , arange import m a t p l o t l i b . p y p l o t as p l t #The asymptotic variance $V^\ l o g (\ alpha_0 ) $ given in Theorem 3 . 2 . def e q u a t i o n l o g ( alpha ) : return ( 1 1 . / 1 0 ) * alpha ** 2 + ( 1 . / 2 ) * alpha ** 4 + ( 1 3 . / 2 0 ) * ( alpha * * 6 ) # For $V^{ r } ( \ alpha_0 ) $ given by Theorem 3 . 4 , #We d e f i n e by equationp ( alpha , r ) accoding t o d e f equations 1-5. def equation1 ( alpha , r ) : return ( 2 * * r ) * gamma ( ( r + 1 ) / 2 ) * gamma(1-r / alpha ) / ( s q r t ( p i ) * gamma(1-r / 2 ) ) def equation2 ( alpha , r ) : return digamma( 1 -r / alpha ) -digamma(1-2 * r / alpha ) def equation3 ( alpha , r ) : return equation1 ( alpha , 2 * r ) / ( equation1 ( alpha , r ) * * 2 ) def equation4 ( alpha , r ) : 4.8. APPENDIX. PYTHON CODE Xtemp [ j ] = Xtemp [ j -1] + b ( Xtemp [ j -1 ] ) * ( f l o a t ( 1 ) / nEuler ) + sigma * ( ( f l o a t ( 1 ) / nEuler ) * * ( 1 . / alpha ) ) * S Xt [ i ]=Xtemp [ Euler_sub_pas ] return ( Xt ) @ j i t def ODE( n , Euler_sub_pas , Xt ) : nEuler= n * Euler_sub_pas t s =np . l i n s p a c e ( 0 , Euler_sub_pas / nEuler , Euler_sub_pas +20) x= np . copy ( Xt ) # x longeur n+1 r e s u l t = np . z e r o s ( n ) for i in range ( 0 , n ) : y0= x [ i ] ys=o d e i n t ( dy_dt , y0 , t s ) ys= np . array ( ys ) . f l a t t e n ( ) r e s u l t [ i ] = ys [ -1] return r e s u l t @ j i t def f ( n , Xt , r e s u l t ) : h = np . z e r o s ( n ) for j in range ( 0 , n ) : h [ j ] = l o g ( abs ( Xt [ j +1] -r e s u l t [ j ] ) ) return h def alpha_log ( n , f ) : mean=np . average ( [ f [ j ] for j in range ( n ) ] ) # alpha_hat = ( ( 6 / ( n * np . pi * * 2 ) ) * sum ( [ ( f [ j ]-mean) * * 2 # f o r j in range ( n)]) -1/2) ** ( -1/2) i f ( 6 / ( n * np . p i * * 2 ) ) * sum ( [ ( f [ j ]-mean) * * 2 for j in range ( n ) ] ) -1 / 2 > 0 : alpha_hat = ( ( 6 / ( n * np . p i * * 2 ) ) * sum ( [ ( f [ j ]-mean) * * 2 for j in range ( n ) ] ) -1 / 2 ) * * ( -1 / 2 ) else : alpha_hat = np . random . uniform ( 0 , 2 ) DIFFERENTIAL EQUATION DRIVEN BY A STABLE LÉVY PROCESS return alpha_hat @ j i t def g ( n , Xt , r e s u l t ) : k = np . z e r o s ( n ) for j in range ( 0 , n ) : k [ j ] = ( abs ( Xt [ j +1] -r e s u l t [ j ] ) ) return k # r the lower-order def alpha_r ( n , r , g ) : mean1 = np . average ( [ g [ j ] * * r for j in range ( n ) ] ) mean2 = np . average ( [ g [ j ] * * ( 2 * r ) for j in range ( n ) ] ) alpha_r = mean1 * * 2 /mean2 D = ( 1 / np . p i * * ( 1 / 2 ) ) * ( ( ( gamma ( ( r + 1 ) / 2 ) ) * * 2 ) * gamma(1-r ) ) / ( ( ( gamma(1-r / 2 ) ) * * 2 ) * gamma( 1 / 2 + r ) ) def Sol_alpha_r ( x ) : return (gamma(1-r / x ) ) * * 2 /gamma(1-2 * r / x ) * D-alpha_r i f Sol_alpha_r ( 4 * r ) * Sol_alpha_r ( 2 ) < 0 : alphar=optimize . b i s e c t ( Sol_alpha_r , 4 * r , 2 ) else : alphar=np . random . uniform ( 0 , 2 ) return alphar def S_n ( n , r e s u l t , Xt ) : Sn = ( ( 1 ) / n ) * sum( [ l o g ( abs ( Xt [ j +1]-r e s u l t [ j ] ) ) for j in range ( n ) ] ) return Sn def a l p h a _ t i t l e ( n , Sn , alpha ) : C= 0.5772 a l p h a t i b l e = ( f l o a t (-Sn-C ) / ( l o g ( n)-C) ) * * ( -1 ) return a l p h a t i b l e # l i s number o f the r e p l i c a t e s . def program ( n , alpha , r , sigma , X0 , Euler_sub_pas , l ) : s o l = [ f l o a t ( alpha ) ] * ( l ) s o l 1 = [ f l o a t ( alpha ) ] * ( l ) i f r == 0 :

  considère l'estimation de l'indice d'activité de sauts α ∈ (1, 2] du processus d X t = b t dt + σ t-dL t + dY t où L est un processus de Lévy de saut pur localement stable dont la mesure de Lévy autour de zéro se comporte comme un processus stable et Y est un processus de saut pur qui est dominé aux hautes fréquences par L. Il obtient la vitesse de convergence n si α ∈ (1, 2) et n u -2 n pour une suite u n qui tend vers zéro si α = 2, en utilisant la fonction caractéristique empirique des accroissements normalisés.
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  If LAMN property holds at point θ, (T n ) n an estimator of θ is termed regular at the point θ if there is some random variable H on R d×d × R d such that for every h ∈ R d

	θ+u n h n
	as n → ∞ for any h ∈ R d . The distribution of H does not depend on the value of the local parameter
	h ∈ R d .
	(b) (Jeganathan [39]) the convergence in law
	I

Definition 1.1.3 (Regular Estimator).

(a)

(Hájek [29]

) Let a family (P θ n ) satisfy the LAN property with the normalizing matrix u n at point θ. An estimator T n (possibly a randomized one) of parameter θ is called regular at the point CHAPTER 1. INTRODUCTION θ if for some random variable H the convergence in law is valid u -1 n (T n -(θ + u n h)) ⇒ H under P n (θ), u -1 n (T n -(θ + u n h)) ⇒ H under P θ+u n h n as n → ∞ and the limiting law H does not depend on h ∈ R d . Definition 1.1.4 (Stochastic kernel). Let (Ω, F ) and (Ω * , F * ) be two measurable spaces. A stochastic

  1.2. LÉVY PROCESSESThat is to say, a Lévy process is a process with stationary and independent increments whose sample paths are right continuous with left limits. The properties of stationary and independent increments implies that a Lévy process is a Markov process and the distribution of a Lévy process has the property of infinite divisibility. Any linear combination of two independent Lévy processes is again a Lévy process.

	Definition 1.2.2. (Stable Distribution) A random variable X is called stable if for any integer

n ≥ 2, there exist real-valued sequences (c n ) and

  and ς

	CHAPTER 2. ASYMPTOTICS IN SMALL TIME FOR THE DENSITY OF A STOCHASTIC
	DIFFERENTIAL EQUATION DRIVEN BY A STABLE LÉVY PROCESS
	Then from the proof of Theorem 2.2.1, if n 1/α /n k+1 goes to zero, we can replace ς	n,θ n ,x 0 1	by ς	(k),n,θ n ,x 0 1
						(0),n,θ,x 0 t	= x 0 .
	Assuming moreover that the function b has bounded derivatives, we deduce that
	ς	n,θ,x 0 t	-ς	(k),n,θ,x 0 t	≤	C n k+1 .

  dz and the compensator of µ(dt, dz) is υ(dt, dz) = dt ×

	dz |z| 1+α . Moreover, we note μ(n) (dt, dz) = µ (n) (dt, dz)-υ (n) (dt, dz) and μ(dt, dz) = µ(dt, dz)-υ(dt, dz)
	the compensated Poisson random measures. Remark that since τ(z) = 1 for |z| ≤ 1, the measures
	µ (n) (dt, dz) and µ(dt, dz) coincide on the set {(t, z)|t ∈ [0, 1], |z| ≤ n 1/α }.
	Now we define the stochastic processes associated to these random measures,
	(2.3.2)

  and ζ is a non negative function belonging to C ∞ such that ρ n belongs to C ∞ . The function ρ n is an auxiliary function related the the Malliavin calculus developed in[START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF]. In our setting, the above choice (not unique) is convenient (see Remark 2.4.1).

	Theorem 2.3.1. Under the assumption H 1 , we have
	(2.3.12)	p	β 1
			n

  and H 1,L α (1), H 2,L α (1) are given by (2.3.20), (2.3.21), respectively. Remark that, we also get from (2.3.12), (2.3.13), (2.3.16) and (2.4.24), (2.4.25)

	(2.4.28)	sup

u∈R sup n

  ).

	where R n 1,β n	(1) is given by (2.4.6). We can deduce from (2.3.16), (2.4.24), (2.4.25), Lemma 2.5.4
	and Lemma 2.5.1 that

  ). CHAPTER 2. ASYMPTOTICS IN SMALL TIME FOR THE DENSITY OF A STOCHASTIC DIFFERENTIAL EQUATION DRIVEN BY A STABLE LÉVY PROCESS From (2.3.16), (2.4.24), (2.4.25), Lemma 2.5.1 and Lemma 2.5.4, we also conclude that

  2.5. PROOF OF THEOREM 2.2.2Applying Lemma 2.5.2, Lemma 2.5.5 and Lemma 2.5.1 we obtain that

  5.45) From the results of Step 1, Step 2 in the proof of Theorem 2.2.1, and the control given in the proof of Theorem 2.3.1 for (2.4.11) we can deduce that sup β∈Q

	sup s∈[0,1] |L n 1+1/α U	Ȳ n,β,x 0 s n,β 1	|	and sup β∈Q	sup s∈[0,1] |W s | n,β n 1+1/α (U n,β 1 ) 2
	converge to zero in L				

p , ∀p ≥ 1 and we deduce the convergence of sup β∈Q |R n 5,β (1)| and sup β∈Q |R n 7,β (1)|. It remains to study the convergence of sup β∈Q |R n 4,β (1)|.

From the boundedness of ( n t ) t∈[0,1] , the definition of ρ n (see

(2.3.11)

), and since µ (n) is a positive measure, we have

  1 and Lemma 2.5.2 iii), we can deduce immediately the convergences to zero in L

			U U	n,β s 1 n,β	is bounded.
	The convergence of Ĥ n 5,β x 0	|n∂ θ	Ȳ n,β n ,x 0

p , ∀p ≥ 1 of the remainder terms sup β∈Q |R n 9,β (1)|, sup β∈Q |R n 11,β (1)| and sup β∈Q |R n 12,β (1)|. For sup β∈Q |R n 10,β (1)|, the proof follows from Lemma 2.5.1 ii), (2.5.6), (2.4.3), the boundedness of ( n s ), the fact that b has bounded derivatives and sup β sup s n (1) is proved as the convergence of Ĥ n 3,β n (1) in the proof of Lemma 2.5.2. This completes the proof Lemma 2.5.3. Proof of Lemma 2.5.4: We first prove (2.5.20). From (2.5.3) we have (we omit the details) sup 1 -∂ θ b(x 0 , θ)| n→∞ ----→ a.s 0. From the expressions (2.3.14), (2.3.15), using sup x 0 sup s∈[0,1] | n s -1| → 0 and Lemma 2.3.1, it can be seen that (2.5.49) sup

  2. ASYMPTOTICS IN SMALL TIME FOR THE DENSITY OF A STOCHASTIC DIFFERENTIAL EQUATION DRIVEN BY A STABLE LÉVY PROCESS[START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] to the stochastic differential equation satisfied by the vector (Y

	β t ,U	β t , ∂ σ Y	β t ) T , this gives the
	above expression for (V σ t ).		

For the computation of the new term H Y β 1 (∂ σ Y β 1 ), we apply Theorem 10-3 in CHAPTER

  and by P

			β n the law of the vector
	(X	β 1	, ..., X
		n	

β 1 ) on R n .

Our first result is an asymptotic expansion of the log-likelihood ratio. CHAPTER 3. LAMN PROPERTY FOR THE DRIFT AND VOLATILITY PARAMETERS OF A SDE DRIVEN BY A STABLE LÉVY PROCESS Theorem 3.2.1. We assume that H 1 holds. Let r n

  1/α . CHAPTER 3. LAMN PROPERTY FOR THE DRIFT AND VOLATILITY PARAMETERS OF A SDE DRIVEN BY A STABLE LÉVY PROCESS Moreover, we can see that ρ n (z)

n→∞

----→ ρ(z) where

  ds, dz)
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	with
	(3.6.14)

  3.7. APPENDIX. CHECKING THE CONDITIONS FORH = H L α (1) AND H = L α 1 H L α (1) IN PROPOSITION 3.6.3

	we get
	1 0 |z|>2 |z|µ (n) (dt, dz)

  3.1. The main results about the consistency and asymptotic normality for the estimators are given in Subsection 4.3.2. In Section 4.4, we provide the law of large numbers and central limit theorems (Propositions 4.4.1 and 4.4.2) for our proposed statistics, and use them to prove the main results in Section 4.5. The -stable process with Lévy measure υ(d z) = 1 |z| α+1 1 z =0 dz, by ϕ n the density of the variable n 1/α Z α

			4.2. MODEL AND NOTATIONS
	by X	α,x 1 n	the solution to (4.1.1) starting from X α 0 = x, by ϕ α the density of L α 1 where (L α t ) is an
			1
			n

α

  r)2 

	(4.3.10)	C( αr,n , 2r)	.
	From (4.3.7), we have		

  CHAPTER 4. ESTIMATION OF THE INDEX PARAMETER FOR A STOCHASTIC DIFFERENTIAL EQUATION DRIVEN BY A STABLE LÉVY PROCESSdifferentiable. In the proof of Theorem 4.3.3 below, we show that the solution of the equation (4.3.11) exists with probability tending to 1 and the estimator αr,n is uniquely determined as

	(4.3.13)	αr,n = g -1

  * n be the set where S n is in the range of the function M n , we get that P(Ω * n ) tends to one as n → ∞ by the convergence in probability (4.3.23). Hence, in this case M -1 n (S n ) exists and since the function M n is strictly decreasing then the estimator α * (p) is uniquely determined by (4.3.19).

	φ((1-u)) log(n) where φ(z) (the digamma function) is the derivative of log Γ(z) at z and is given by φ(z) = ∞ 0 e -t t -e -zt 1-e -t dt (see equation (2.68) in [5]). For n large n is continuously differentiable. Moreover, from (4.3.22), we can easily deduce that (4.3.23) S n n→∞ ----→ P -p α 0 . Then, let Ω We now observe that, from (4.3.22), we have enough, we get that M invertible and the inverse M -1 (4.3.24) p S n -M n ( α 0

n (u) < 0 for u ∈ [0, 1/2]. This yields that the function M n is a continuous strictly decreasing function on [0, 1/2]. By the inverse function theorem, the function M n is

  a.s.. Thus (4.4.54) is proved and the proof of this lemma is complete.

	Proof of Proposition 4.4.3	
	Proof. Since f i for i = 1, 2 satisfy Assumption 4.4.2, then Proposition 4.4.3 will be proved if we
	show that for f : R → R satisfying Assumption 4.4.2 then n (G n (α) -H n (α))	P -→ 0 where G n (α)
	and H n (α) are defined by (4.2.7), (4.2.8) respectively.	

Under the notations (4.2.7)-(4.2.9) and (4.4.3)-(4.4.5), we observe that (4.4.64)

|G n

  2, ten simulated sample paths of the process X , we generate first a symmetric α 0 -stable random sample, we use the 4.6. A SIMULATION STUDY for three sample sizes and four true index parameters which we have chosen before based on In the Table1, as n get larger, the RMSEs are getting better. The best estimates for n = 2000 are αlog,n α0.05,n , α0.2,n , and α0.2,n , for α = 0.8, 1.0, 1.5 and 1.7, respectively(the red-letter elements).-We use αlog,n , if we know α 0 is small, we still can have reasonable result even when the number of observation is small, for example 50.

				4.6. A SIMULATION STUDY
	mean	RMSE	mean	RMSE	mean	RMSE
	α 0 t j+1 -L α 0 mean α 0 αlog,n with n= 500 RMSE 0.8037252 0.0455599 0.8032420 0.0345784 0.8016381 0.0237851 mean RMSE mean RMSE αlog,n with n= 1000 αlog,n with n = 2000 1.0104462 0.070802 1.0034732 0.0471853 1.0034792 0.0346555 1.5437813 0.1784205 1.5180485 0.1186146 1.51749272 0.0835110 1.8065441 0.2871730 1.7666206 0.1843406 1.7577750 0.1303583 mean RMSE mean RMSE mean RMSE 0.8035548 0.0493085 0.80160196 0.0342533 0.8033393 0.0243324 1.0070387 0.0637764 1.0048068 0.0462132 1.0012119 0.0324376 1.5253815 0.1475756 1.5143174 0.0941305 1.5136220 0.0655977 1.6605543 0.2951940 1.6969005 0.2513790 1.7402026 0.1255374 mean RMSE mean RMSE mean RMSE α0.1,n with n = 500 α0.1,n with n = 1000 α0.1,n with n = 2000 0.8059862 0.0537238 0.8031538 0.03780156 0.8028442 0.0278225 1.0036059 0.0673361 1.0065038 0.0449074 1.0010474 0.0329233 1.5185346 0.1198106 1.5147109 0.0813918 1.5126050 0.0566897 1.6737466 0.2998005 1.7253146 0.1766232 1.7446146 0.0985915 The true index α 0 The true index α 0 0.8 1.0 1.5 1.7 0.8 1.0 1.5 1.7 The true index α 0 0.8 1.0 1.5 1.7 α0.2,n with n = 500 α0.2,n with n = 1000 α0.2,n with n = 2000 0.8 ------1.0 1.0234143 0.1016859 1.0111369 0.0747016 1.0049630 0.0526113 1.5 1.5297790 0.1082202 1.5167167 0.0723243 1.5110450 0.0526677 1.7 1.7252562 0.1986302 1.7415116 0.0927847 1.7437377 0.0566068 mean RMSE mean RMSE mean RMSE The true index α 0 αn with n= 500 αn with n= 1000 αn with n = 2000 0.8 0.7699008 0.0313345 0.7734386 0.0271524 0.7999666 0.0042935 1.0 1.0003541 0.0126898 1.0002279 0.0080386 1.0001365 0.0049952 1.5 1.6061061 0.1091086 1.5939569 0.0953270 1.5842965 0.0848937 1.7 1.8070126 0.1109151 1.7918403 0.0937689 1.7832002 0.0840492 mean RMSE mean RMSE mean RMSE The true index α 0 α * (0.05) with n= 500 α * (0.05) with n= 1000 α * (0.05) with n = 2000 0.8 0.7694143 0.0318793 0.7729256 0.0276266 0.7755499 0.0247046 1.0 0.9996752 0.0125434 0.9997976 0.0079439 0.9998605 0.0052414 1.5 1.6067400 0.1097934 1.5945983 0.0959445 1.5844919 0.0850574 1.7 1.8047055 0.1089453 1.7918403 0.0937689 1.7834100 0.0842196 mean RMSE mean RMSE mean RMSE The true index α 0 α * (0.1) with n= 500 α * (0.1) with n= 1000 α * (0.1) with n = 2000 0.8 0.7694723 0.0319901 0.7723942 0.0271524 0.7751606 0.0251329 1.0 0.9996210 0.0130434 0.9997550 0.0283150 1.0000276 0.0050884 1.5 1.6086234 0.1113341 1.5953294 0.0965713 1.5846691 0.0852433 1.7 1.8063842 0.1101661 1.7929472 0.0950375 1.7834307 0.0842211 mean RMSE mean RMSE mean RMSE The true index α 0 α * (0.2) with n= 500 α * (0.2) with n= 1000 α * (0.2) with n = 2000 0.8 0.7672141 0.0346441 0.7706410 0.0302085 0.7739378 0.0042935 1.0 0.9999466 0.0144433 0.9997626 0.0090004 0.9999333 0.0264721 1.5 1.6102755 0.1131355 1.5960832 0.0973221 1.5866909 0.0872366 1.7 1.8063371 0.1101885 1.7953793 0.0970049 1.7841309 0.0848353 Some practical remarks. t j 1000 replicates. The true index α 0 α0.05,n with n = 500 α0.05,n with n = 1000 α0.05,n with n = 2000 mean RMSE mean RMSE mean RMSE

t are considered in the code (see Section 4.8.2). In order to generate the Lévy sample path L

Estimation of the index parameter for the unknown drift function when

  .7. ESTIMATION OF THE INDEX PARAMETER FOR THE UNKNOWN DRIFT FUNCTION WHEN α ∈ (1, 2). introduction of the ordinary differential equation ς t (x) is to deal with any value of α belonging to (0, 2). However, the appearance of ς in the estimators of α makes necessary to know the drift function. If α ∈ (1, 2), we can replace ς t (x) by x and then build some estimators which do not require to know the drift function b. Namely, in this case, the estimators αlog,n and αr,n are replaced by α * log,n and α * r,n given respectively by

		mean	RMSE	mean	RMSE	mean	RMSE
	The true index α 0		α0.2,n with n = 500	α0.2,n with n = 1000	α0.2,n with n = 2000
	0.8		-	-	-	-	-	-
	1.0	1.0173278 0.0911352 1.0124521 0.0643748 0.9898929 0.060756
	1.5	1.5155668 0.1033405 1.5082002 0.0734346 1.4860405 0.0545570
	1.7	1.7020924 0.1411906 1.7099061 0.0793526 1.6830948 0.0633612
		mean	RMSE	mean	RMSE	mean	RMSE
	The true index α 0		αn with n= 500	αn with n= 1000	αn with n = 2000
	0.8	0.7999835 0.0094323 0.7999789 0.0059331 0.8016138 0.0040069
	1.0	1.0001276 0.0123388 0.9998303 0.0077497 1.0008398 0.0053345
	1.5	1.6061061 0.1091086 1.5001159 0.0138787 1.5005670 0.0091295
	1.7	1.6992440 0.0268464 1.6991394 0.0168119 1.7009518 0.0111302
	4.7 α * log,n =	6 nπ 2	n-1 j=0		2,n .		
		mean	RMSE	mean	RMSE	mean	RMSE
	The true index α 0		α 0 = 1.5	α 0 = 1.6	α 0 =1.7
	α0.2,n with n=250	1.5233678 0.1547434 1.6323820 0.1787911 1.6728896 0.3043069
	αlog,n with n=250	1.5691571 0.2751471 1.7049045 0.3536027 1.8491799 0.4390338

4α ∈ (1, 2).

The

  ≥K 1/p . Using α > 1 and the drift function b bounded then we can estimate, for C is a positive constant (4.7.5)

	(4.7.3)									1/p
	(4.7.4)	+	u n n	n-1 j=0	E f n 1/α X α t j+1 -X α t j	1 n 1/α X α t j+1	-X α t j	K 2 ≤ 1	.
	Let us estimate E f n 1/α X α t j+1 -X α t j	1 n 1/α X α t j+1	-X α t j
		n 1/α X α t j+1 -X α t j	= n 1/α	t j+1 t j	b(X α s )ds + n 1/α Z α t j+1 -Z α t j
					≤	1 n 1-1/α ||b|| ∞ + n 1/α Z α t j+1 -Z α t j	≤ C + n 1/α Z α t j+1 -Z α t j .
	Using Assumption 4.4.2(2) and combining with the above estimate, we get
	(4.7.6)	E f n 1/α X α t j+1 -X α t j	1 n 1/α X α t j+1	-X α t j	>K 1/p
			≤ E n 1/α X α t j+1 -X α t j	p	1 |(n 1/α X α t j+1	-X α t j	)| p >K
							≤ E C + n 1/α Z α t j+1 -Z α t j	p	1	C+ n 1/α Z α t j+1	-Z α t j	p	>K	.
	Similarly to the estimate of (4.4.35), we obtain that (4.7.6) is bounded by
		M K 1+δ E C (2+δ)p + n 1/α Z α 1/n	(2+δ)p	for	

δ ∈ (0, 2) chosen such that (2 + δ)p < α.

  1/α Z α Thus (4.7.20) is proved and the proof of this lemma is complete.
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	From Lemma 4.7.2, we get			
	sup j	sup x	E f K	n 1/α σ	X α t j+1 -X α t j	-f K n 1/α Z α t j+1 -Z α t j	2	|X α t j = x	n→∞ ----→ 0.
	Combining this with (4.7.24), we can deduce that
	sup j	E f K	n 1/α σ	X α t j+1 -X α t j	-f K n 1/α Z α t j+1 -Z α t j	2	|F t j	n→∞ ----→ 0 a.s..
										2
										1	.
										n

2.4. PROOF OF THEOREMS 2.3.1 AND 2.2.1

2.5. PROOF OF THEOREM 2.2.2

)) < ∞

3.5. PROOF OF THEOREM 3.2.3 (STABLE CENTRAL LIMIT THEOREM)

3.6. PROOFS OF LEMMAS 3.3.2-3.3.5

1/2 by Cauchy-Schwarz inequality,

4.3. CONSTRUCTION OF THE ESTIMATOR AND MAIN RESULTS

Remerciements

APPENDIX. CHECKING THE CONDITIONS FOR H = H L α (1) AND H = L α

1 H L α (1) IN PROPOSITION 3.6.3 (4) sup n Γ(H n , H n ) 2 < ∞.

We denote µ (n) 

The case

We set H n := H n where (3.7.1)

and verify the four above conditions (1)- (4).

From Remark 3.6.2 ii), we get that

H L α (1). Thus, we just have to check the condition (4), namely

From the inequality (8.7) in [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF], we have

then the condition (4) will be proved if we show that sup n ||Γ(A n , A n )|| 2 < ∞ and sup n ||Γ(B n , B n )|| 2 < ∞.

Step 1: We prove that sup n ||Γ(A n , A n )|| p < ∞, ∀p ≥ 1.

Using the chain rule property for the operator Γ, we get (3.7.3)

CHAPTER 3. LAMN PROPERTY FOR THE DRIFT AND VOLATILITY PARAMETERS OF A SDE DRIVEN BY A STABLE LÉVY PROCESS

Using the chain rule property for the operator Γ, we get

We consider first (3.7.7). We have

where we used the fact that 1 0 |z|≤2 ρ(z)µ(ds, dz) ≥ 0, 1 0 |z|>2 ρ n (z)µ (n) (ds, dz) ≥ 0 and the measures µ (n) (ds, dz) and µ(ds, dz) coincide on the set {(s, z)|s ∈ [0, 1], |z| ≤ n 1/α }.

Similarly to (3.7.4), we also obtain that (3.7.7) is bounded by a random variable independent of n and belonging to ∩ p≥1 L p .

Let us consider (3.7.8). We have

|z| ρ(z) µ(ds, dz) 1 0 |z|≤2 ρ(z)µ(ds, dz)

Proceeding as for the first term in the right-hand side of (3.7.4), we get that (3.7.8) is bounded by a random variable independent of n and belonging to ∩ p≥1 L p . For the last term (3.7.9), we have

With the same technique as for the above terms, we also get that this term is bounded by a random variable independently of n and belonging to ∩ p≥1 L p . This achieves the proof of Step 2 .

We now can conclude that sup n ||Γ( H n , H n )|| p < ∞, ∀p ≥ 1. Hence the condition (4) is proved.

The case

Let us recall that

and set

H n where H n is given by (3.7.1). We verify the four conditions (1)-(4).

From Remark 3.6.2 i), we get E L α 1 H L α (1) 2 < ∞. Using Lemma 3.6.2 ii) with b(x, θ) = 0 and

. Hence, we just have to verify the condition (4).

Namely,

Using the Chain rule property for the operator Γ, we have,

Step 1 : we prove that sup

From (3.7.2), we have

11) DRIVEN BY A STABLE LÉVY PROCESS

Using the convexity inequality, we get

From

Step 1 in Section 3.7.1, we have

Let us estimate

We consider (3.7.13), using the definition of the operator Γ for a test function, we have

Using the Cauchy-Schwarz inequality 3.6.58, that is

µ(dt, dz)

Proceeding as

Step 1 in the proof of Theorem 2.1 in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF], we have

From the above estimates, we can deduce that

We now consider the second term in the right-hand side of (3.7.11), we have

From Step 2 in Section 3.7. 

Using the inequality (3.6.58), we get

µ(dt, dz). (3.7.28) From (3.7.28), (3.7.18) and proceeding as in the proof of the first term of (3.7.4), we can deduce that (3.7.25) is bounded by a random variable independent of n and belonging to ∩ p≥1 L p . For (3.7.26), using (3.7.28), we have

Proceeding as

Step 1 in the proof of Theorem 2.1 in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF], we have

and with the same technique as for (3.7.7), we can deduce (3.7.26) is bounded by a random variable independent of n and belonging to ∩ p≥1 L p .

From the above estimates, we get that sup n (L n 1 ) 2 Γ(B n , B n ) p < ∞ for all p ≥ 1. Thus Step 1 follows.

Step 2 : we show that sup n ( H n ) 2 Γ(L n 1 , L n 1 ) p < ∞, ∀p ≥ 1.

Note that we have (3.7.30)
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Combining with (3.7.1), we get

Proceeding as in the proof of (3.7.29), we get the result.

Step 3: We prove that sup

Using the inequality

then we obtain

From the results of Step 1 , Step 2 and using the Cauchy-Schwarz inequality, we can deduce the

Step 3.

We now conclude that

CHAPTER 4

ESTIMATION OF THE INDEX PARAMETER FOR A STOCHASTIC DIFFERENTIAL EQUATION DRIVEN BY A STABLE LÉVY PROCESS

This work focuses on the estimation of the Blumenthal-Getoor index α of a stochastic differential equation driven by a truncated α-stable process with index α ∈ (0, 2) given by

t based on high frequency observations on a fixed time period. In [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF], the author has succeeded to study a joint estimation (θ, σ, α) of a stable Lévy process

Based on the ideas in [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF], we derive consistency and rate of convergences for the estimators of the index parameter α. We give some simulations to illustrate the finite-sample behaviors of our estimators.

Introduction

Pure-jump processes have attracted many attention recently, especially in view of applications to finance (see Schoutens [START_REF] Schoutens | Lévy processes in finance: Pricing financial derivatives[END_REF]), network traffic (see Mikosch et al [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF]) and climate dynamics (see [START_REF] Ditlevsen | Anomalous jumping in a double-well potential[END_REF]). In this chapter, we consider the following stochastic differential equation (SDE):

where Z α is a truncated α-stable process with the index α ∈ (0, 2). In this chapter, we use the notation (Z α t ) instead of (L t ) to make clear the dependence on α. All formal conditions for X are DIFFERENTIAL EQUATION DRIVEN BY A STABLE LÉVY PROCESS estimation results will be supported by the simulation experiments presented in Section 4.6. In Section 4.7, we construct some estimators of the index in the case α ∈ (1, 2) where we replace ς t (x) by x in the expressions of the estimators. As a consequence, we do not need to know the drift function b in practice but the rate of convergence in probability in this case is less than n 1/2-1/2α (Proposition 4.7.1). Finally, we give the Python code used in numerical results in this chapter in Section 4.8.

Model and notations

In this work we aim to estimate the unknown index parameter α ∈ (0, 2) based on the discrete time observations (X α i/n ) i=0,...,n of the process X α given by

where x is the initial condition, b is a real valued function, the parameter σ belongs to (0, ∞) and

is a pure-jump Lévy process defined on a filtered probability space (Ω, F , (F t ) t , P). We assume that the following assumptions are fulfilled.

H 0 b : R → R is a function with bounded derivatives up to order two.

where μ is a Poisson random measure, with compensator ῡ(dt, dz)

. Moreover, we assume that τ is a non negative smooth

Under the above assumptions, X α t admits a smooth density for t > 0 (see [START_REF] Picard | On the existence of smooth densities for jump processes[END_REF]). The introduction of the truncation function τ in the density of the Lévy measure and the assumption H 1 (a ii ) are technical tools to get (4.2.1) and (4.2.5), as showed in [START_REF] Clément | Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process[END_REF] and [START_REF] Clément | LAMN property for the drift and volatility parameters of a SDE driven by a stable Lévy process[END_REF] respectively, which we will use later for the proof of the convergences in probability and in law in Section 4.4.

We will use the following notations. For a vector h ∈ R 2 , h T denotes the transpose of h and |h| denotes the euclidean norm. For a bounded function g : R → R, ||g|| ∞ = sup x |g(x)|. We denote

CONSTRUCTION OF THE ESTIMATOR AND MAIN RESULTS

Combining this with (4.5.5), we have n (log n)

where

Therefore, combining with the delta method, it follows that

is an asymptotically normal estimator with the rate n log(n). As expected, the estimator αn exhibits excellent finite-sample performance; see Tables 1 and2 in Section 4.6.

Theorem 4.3.3 (Consistency). The estimator αr,n , the solution of (4.3.11) exists with probability tending to 1 and it is consistent:

Theorem 4.3.4 (Asymptotic normality). We have

where

with φ(z) (the digamma function) is the derivative of log Γ(z) at z (see equation (2.68) in [START_REF] Larry | Special functions of mathematics for engineers[END_REF]).

If we know the true value of the volatility parameter σ then we can construct an estimator of α, via the lower-order fractional moment fitting, with the rate n log(n). 

where M n (u), S n are given by

Proposition 4.4.1. Under Assumption 4.4.1,we have

To prove this proposition, we first prove Lemmas 4.4.1 and 4.4.2 below. From now on, we will use the following notations in the proofs. We denote by f K (x) := f (x)X K (x) where x → X K (x) for all K > 2 is a smooth truncation function with (4.4.1)

Moreover, the derivative of function X K with respect to the variable x satisfies (4.4.2)

where C is a positive constant independent of K. Note that we will not use this condition for the proof of the convergence in probability in Proposition 4.4.1, however it is a useful condition for the convergence in law in Proposition 4.4.2.

We set 

where we have used the Markov property to get the last line. Furthermore, we can write that

x, uσ

x, uσ

where we have used (4.2.1) and the fact that f is a symmetric function. The result follows from Assumption 4.4.1(1) and the dominated convergence theorem.

We prove the part [START_REF] Aït | Volatility estimators for discretely sampled Lévy processes[END_REF]. We need to show that (4.4.14)

From (4.4.6), we can estimate 

In order to prove Lemma 4.4. 

where δ > 0 satisfies p(2 + δ) < α.

Proof of Lemma 4.4.4 From Assumption 4.4.2(2), we have

.

Let us consider the first term of (4.4.39). Using (4.4.8) that Z α has stationary increments and (4.4.10) with p(2 + δ) < α, we get the first term of (4.4.39) is bounded by a positive constant that does not depend on n.

We consider the second term of (4.4.39). We have

x, uσ

where we have used the boundedness of σ n 1/α p α be the solution to (4.1.1) starting from X α 0 = x then Proof of Lemma 4.4.5 For all n > 0, we can write

)

We observe that, for C is a deterministic constant, from Assumption 4.4.2 (1-3) we have

Then we can estimate

We choose n = n 

Moreover, using Assumption 4.4.2(1)(2), we can see that (4.4.68) is bounded by

where δ is chosen such that p(2 + δ) < α and C is a deterministic constant. We observe that, with the choice and using the delta method again we get that (4.5.12) n ( αr,n

where V r (α 0 ) is given by (4.5.11) and (g -1 α 0 ) is the derivative of g -1 at g(α 0 ).

From the inverse function theorem we have the the derivative of g -1 at g(α 0 ) is the inverse g -1 α 0 of the derivative g α 0 of g at α 0 . Then by some computations, we get

where η r (α 0 ) is defined by (4.3.18) and

Hence this theorem is proved.

A simulation study 4.6.1 Comparison of asymptotic variances

For comparison between the asymptotic variances V log (α 0 ) and V r (α 0 ) given in Theorem 4. From Figure 4.1, since the asymptotic variance V r (α 0 ) is just finite with r < α 0 /4, that is: we can not use the estimator αr,n for estimating the true parameter α 0 in the case r ≥ α 0 /4. It can be seen that the red line has been a slight increase with α ∈ (0, 2). This show that the asymptotic performance of αlog,n gets worse for larger α 0 and better for smaller α 0 . For α 0 < 1, the asymptotic variance of αlog,n is the smallest thus the estimate αlog,n is recommended in this case. While αr,n with small r such that 0.05 ∼ 0.2 is recommended for α 0 > 1. We can see the result of Table 1 below as a demonstration of this remark. DIFFERENTIAL EQUATION DRIVEN BY A STABLE LÉVY PROCESS direct method in Janicki and Weron [38] (1994, pp.48). That is: we generate a random variable V uniformly distributed on (-π/2, π/2) and an exponential random variable W with mean 1. We compute the symmetric α 0 -stable random sample

Last, we generate the Lévy increment by L

Next, we proceed to the estimation of α 0 by considering the logarithmic moments and the three We recall that the purpose of the introduction of the ordinary differential equation ς t (x) is to deal with any value of α belonging to (0, 2). The simulation of the solution ς t (x) is done by using the package "scipy.integrate.odeint" in python. 

The drift function b(x) = -x

In this case, the process (X α ) is defined as a Lévy-driven Ornstein-Uhlenbeck process

which may also be written by Itô formula as (4.6.3)

Here we consider the Lévy process (L α t ) t∈[0,1] is the symmetric α-stable with the index α ∈ (0, 2).

For ∆ n = t j+1 -t j , we have (4.6.4)

where we have used the fact that L α has independent and stationary increments to get the last line. We observe that in order to simulate (4.6.4), we need to simulate t 0 e u dL α u . In order to do this, we first observe that by the Lévy-integral transform of the characteristic function (see Lemma 15.1 in [START_REF] Tankov | Financial Modelling with Jump Processes[END_REF]) and denoting by F * (z) = C α |z| 1+α 1 |z| =0 the Lévy density of the Lévy measure of

where we have used the fact that F * (z) is a symmetric function then |z|> zF * (z)dz = 0 for all > 0.

A SIMULATION STUDY

Let us set z = e u z then (4.6.5) can be written by Hence we can deduce that t 0 e u dL α u = L t 0 e uα du

It follows that (4.6.6)

and as a result it is possible to simulate exactly the process (X α t j ) j as soon as we simulate the stable variable.

Algorithm for Ornstein-Uhlenbeck simulation:

1. Simulate the symmetric α-stable Lévy process L α 1 :

1.1. Simulate a random variable V uniformly distributed on (-π/2, π/2).

1.2. Simulate an exponential random variable W with mean 1.

We compute the symmetric α-stable random sample by

2. Sample the path of the Lévy driven Ornstein-Uhlenbeck process

Note that when b(x) = -x then the ordinary differential equation (4.2.2) can be solved explicitly, Then we prove in this section, that under the assumptions H0 and H 1 , then the rate for the law of large number is at least n 1/2-1/2α for α ∈ (1, 2).

Proposition 4.7.1. We set u n = n 

From now on, we choose K := K n = n (1-1 α ) 1 2+δ and we denote

We observe that from notations (4.2.8)-(4.2.9), (4.4.4) with u n = n 

where

where G n (α) Let us estimate (4.7.4). We easily see that

where we have used the Markov property to get the last line. Moreover, using equations ( 10) and ( 52) in [START_REF] Clément | Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes[END_REF], we have x, uσ

then we can deduce that (4.7.9

x, uσ

where we have used (4.7.8), f is a symmetric function and Assumption 4.4.2 [START_REF] Aït | Handbook of Financial Econometrics: Applications[END_REF]. Hence, we obtain that (4.7.4) is bounded by

We observe that, with the choice K := K n = n (1-1 α ) 1 2+δ and u n = n 1/2-1/2α , we have (4.7.10)

This implies that (4.7.4) goes to zeros as n → ∞. Hence this lemma is proved.

In order to prove u n G * n,K (α) -H n,K (α) be the solution to (4.1.1) starting from X α 0 = x. We suppose that Assumption 4.4.2 holds then

where f K (x) := f (x)X K (x) with X K is defined by (4.4.1) and (4.4.2) and with K :

where δ > 0 satisfies p(2 + δ) < α.

Proof of Lemma 4.7.2 The idea of the proof is the same as Lemma 4.4.5.

For all n > 0, we can write

≤ n (4.7.12) 

goes to zero as n → ∞. This implies that (4.7.12) tends to zero as n → ∞.

We now consider (4.7.13). From 

where ||b|| ∞ = sup x∈R |b(x)|. Then (4.7.17) is bounded by (4.7.18)

. Then, in order to show that (4.7.17) converges to zero as n → ∞, we need to show that

is bounded by a positive constant that does not depend on n. Proceeding as in the proof of Lemma 4.4.4 and using (4.7.8), we get that 

from (4.7.18), for δ ∈ (0, 2) is chosen such that (2 + δ)p < α. Combining this with (4.4.52), we can deduce that (4.7.16) tends to zero as n → ∞. From the above estimates, we can deduce that (4.7.13) goes to zero as n → ∞. Hence this lemma is proved. print ( " meanalphar " , r , " i s : " + str ( meanalphar ) )

print ( " rms " , r , " e r r o r : " + str ( rmse_val ) )

else :

print ( " e r r o r alpha " , r , " ( rmse = " , rmse_val , " ) " )

program ( 5 0 0 , . , 0 . , 1 , 1 . , 1 0 0 0 , 1 0 0 0 ) program ( 5 0 0 , . , 0 . 0 5 , 1 , 1 . , 1 0 0 0 , 1 0 0 0 ) program ( 5 0 0 , . , 0 . 1 , 1 , 1 . , 1 0 0 0 , 1 0 0 0 ) program ( 5 0 0 , . , 0 . 2 , 1 , 1 . , 1 0 0 0 , 1 0 0 0 )