N

N

Uncertainty quantification and calibration of a
photovoltaic plant model: warranty of performance and
robust estimation of the long-term production.

Mathieu Carmassi

» To cite this version:

Mathieu Carmassi. Uncertainty quantification and calibration of a photovoltaic plant model : warranty
of performance and robust estimation of the long-term production.. Statistics [math.ST]. Université
Paris Saclay (COmUE), 2018. English. NNT: 2018SACLA042 . tel-02127835

HAL Id: tel-02127835
https://theses.hal.science/tel-02127835
Submitted on 13 May 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-02127835
https://hal.archives-ouvertes.fr

®
universite
PARIS-SACLAY

NNT : 2018SACLA042

i)
O
-
O
e
@)
o

©
)

[®)
)
wn

D

L

—

Yoro Tech

D i SNl
o»
7EN €DF

Uncertainty quantification and calibration
of a photovoltaic plant model: warranty of
performance and robust estimation of the

long-term production

These de doctorat de I'Université Paris-Saclay
préparée a AgroParisTech (I'Institut des sciences et industries du vivant et de
I'environnement)

Ecole doctorale n°581 Agriculture, Alimentation, Biologie, Environnement,

Santé (ABIES)
Spécialité de doctorat : Mathématiques appliquées

Thése présentée et soutenue a Paris, le 21 Décembre 2018, par
MATHIEU CARMASSI

Composition du Jury :

Liliane Bel

Professeur, AgroParisTech (MIA Paris) Président
Amandine Marrel

Ingénieur-Chercheur, CEA Cadarache (DER/SESI) Rapporteur
Olivier Roustant

Professeur, Ecole des Mines de Saint-Etienne (LIMOS) Rapporteur

Luc Pronzato

Directeur de Recherche, CNRS (I3S) Examinateur

Eric Parent

IGPEF, AgroParisTech (MIA Paris) Directeur de thése
Pierre Barbillon

Maitre de Conférence, AgroParisTech (MIA Paris) Co-directeur de thése
Matthieu Chiodetti

Ingénieur, EDF (TREE) Co-encadrant
Merlin Keller

Ingénieur-Chercheur, EDF (PRISME) Invité

REMERCIEMENTS

Je voudrais avant tout remercier mon directeur de thése Eric Parent pour m’avoir guidé durant ces trois années de
these. Ses qualités scientifiques et humaines ont contribué au trés bon déroulement de cette these. Eric a su trouver
un bon équilibre dans I’encadrement, en étant trés présent au début lorsque le besoin s’en ressentait et en me laissant
une certaine marge de manceuvre par la suite. Je tiens a souligner sa constante bonne humeur et son c6té paternel

qui m’a soulagé de la pression lorsque celle-ci se faisait trop importante.

Ensuite, je tiens a remercier mon co-directeur de thése Pierre Barbillon pour m’avoir aiguillé scientifiquement
durant ces trois années. J’ai pu bénéficier de ses grandes qualités scientifiques a n’importe quel moment et les
échanges que nous avons eus se sont toujours révélés tres productifs. Son perfectionnisme m’a aussi amené a ne
rien négliger que ce soit au niveau rédactionnel ou scientifique. J’ai pu apprécier sa personnalité au quotidien, que
ce soit pendant les soirées a Rochebrune, pendant les réunions de travail ou pendant les pauses-café dans le bureau
des doctorants. Une chose est slire c’est que les jeux de mots quasi quotidiens vont me manquer.

Je tiens aussi a adresser mes remerciements a Merlin Keller. Il est indéniablement la raison pour laquelle
j’ai pu en arriver 1a. Sa constante bonne humeur, sa modestie et ses qualités scientifiques ont été la source d’une
collaboration qui dure depuis mon stage de fin d’année d’école d’ingénieurs. J’ai pu le solliciter autant de fois que
je le souhaitais pendant la thése et méme si je ne travaillais pas sur le méme site, il a toujours été 12 pour m’aider. A
chaque réunion que nous avons eue, j’ai pu retrouver chez lui un juste recul sur les problemes industriels avec une

grande connaissance mathématique.

Je remercie également Amy Lindsay qui m’a encadré avec une grande qualité jusqu’a sa mutation qui est
intervenue au bout d’un an de thése. C’est aussi pour cela que je remercie grandement Matthieu Chiodetti qui s’est
retrouvé avec ma these sur les bras. Son encadrement a été d’une tres grande qualité et il a su m’orienter sur les
besoins industriels précis d’EDF et son expertise dans le domaine m’a permis de prendre du recul sur les résultats
que I’on pouvait avoir. De maniere générale, j’ai pu tisser avec chacun des membres de mon encadrement des liens
d’amitié qui se sont retranscrit dans des conférences ou écoles d’été (Rochebrune, ETICS,...) ot nous étions parfois

amenés a sortir du cadre professionnel.

J adresse également mes remerciements a Amandine Marrel et Olivier Roustant pour avoir accepté de rapporter
ma these. Le travail sur les rapports a grandement été apprécié. Je remercie aussi Liliane Bel d’avoir présidé ma

soutenance de theése et Luc Pronzato d’avoir accepté de faire partie de mon jury en tant qu’examinateur.

Mes prochains remerciements seront pour mes collegues d’EDF. Méme si le site des Renardieres se trouvait tres
loin de mon domicile, ¢’était toujours avec un grand plaisir que je retrouvais tout le groupe. J’ai toujours apprécié
les échanges, a table ou pendant les pauses, que nous avons eu. Je remercie tout particulierement mon laboratoire
MIA d’ AgroParisTech qui m’a apporté énormément durant cette these. Au-dela des compétences mathématiques
dont j’ai pu bénéficier, j’ai pu tisser des liens d’amitié€s forts avec d’autres doctorants. Merci Timothée, Marie P,
Pierre G (déja vieux docteur), Félix, Rana, Paul, Anna, Marie C, Loic d’avoir animé, a un moment ou un autre, le
bureau des doctorants. Les afterworks a la Montagne, au Vieux Chéne, ou dans la rue Mouffetard nous ont permis

de décompresser avec des journées de travail bien chargées.

Je tiens bien entendu a remercier toute ma famille : ma mere Marie-Christine, mon pere Patrick, mon frere
Guillaume et ma grand-mere Jeanine. Je pense sincerement que le cadre familial qu’ils ont établi m’a conduit 1a ou

je suis aujourd’hui et je n’aurais pas pu réver d’un meilleur équilibre de vie.

Je tiens désormais a remercier tous mes amis qui m’ont épaulé de pres ou de loin pendant la these. D’abord,
je remercie Quentin Huchet qui a été dans la méme galeére que moi et avec qui j’ai partagé quelques écoles d’été
qui sont devenues mythiques (Porquerolles, Roscoff, ...). Merci de m’avoir permis de rigoler profondément a des
moments ol j’en avais besoin, d’avoir tourné en dérision les situations compliquées, d’avoir toujours eu le mot
marrant pour dédramatiser le contexte. Merci a Lambert pour les pauses printemps de Bourges ou pour les quelques
week-ends pétanque, hors du temps, a Paris. Merci a Albin pour les pauses rugby au bar ou les brainstormings
non fructueux qui se terminaient quasi systématiquement en bieres/rugby. Je remercie toute la clique de 'ITFMA
: Tareck, Pilou, Vely, Alexia, ViVi, MiMi, Norman, Naf, Matthieu, Ludo pour les week-ends de retrouvailles ou
les réveillons du nouvel an passés ensemble. C’était aussi agréable de se retrouver des soirs aux Lombards, Mac
Bride, Halls Beer, et autres tavernes. Les moments pendant la coupe du monde sur cette petite place pleine a craquer

resteront aussi des moments marquants.

La conclusion de ces remerciements ne peut concerner que la personne qui m’a épaulé durant ces trois dernieres
années. Je remercie Camille pour m’avoir soutenu et supporté comme elle 1’a fait méme dans les moments ou je
devenais insupportable. Merci de m’avoir poussé a faire des breaks qui m’ont permis de mieux repartir apres. Merci
pour ces voyages qui n’appartiennent qu’a nous et qui m’ont permis de m’évader le temps de quelques semaines.
Merci de ne m’avoir jamais laissé tomber au fond du trou et de m’avoir poussé a repartir rapidement apres. Merci
pour ta joie de vivre et ta constante foi en moi qui me redonnait confiance dans les mauvais moments. Merci d’avoir

rendu cette these plus facile.

CONTENTS

Remerciements

List of figures

Acronyms

Résumé

1 Introduction

1.1
1.2
1.3

1.4

L.5

EconomiciSSue e e e e e e e e e e e e
Physical phenomenon e e e
Several modeling approaches L
1.3.1 Afirstsimple model
1.3.2 Advanced electrical models
Numerical codes e e e e e e e e
1.4.1 General framework
1.4.2 Sources of Uncertainties h e e e e e e e e
143 Pythoncode. e
144 Dymolacode

Thesis organization L e e e e e e e e e

2 Statistical tools for numerical code calibration

2.1

22

23

24

2.5

Sensitivity analysis Lo e e e e
2.1.1 Morrismethod
2.1.2 Sobolindices e e e e e e e
Kriging / Gaussian ProCesses v v v v v v v vt e e e e e e e e e e e e
2.2.1 General framework L e
2.2.2 Parameter estimation ii i e e e e e e e
223 Covariance functions L e
2.2.4 Gaussian process-based optimization
Design of experiments e e e e e e e e
2.3.1 Samplingcriteria Lo
2.3.2 Distance between the points criteria
Principal component analysis (PCA)
241 DIStanCe i e e e e e e e
242 Momentsof inertia L e e e e e e e e e e
243 Axisof minimuminertia L. oo
2.4.4 Contribution to the total inertia
2.4.5 Graphical representationso ittt e e e e e e e e
Monte Carlo Markov Chains techniques it
2.5.1 Gibbssampler

CONTENTS

2.5.2 Metropolis Hastings
2.5.3 Metropolis within Gibbs e
2.5.4 Improvements of the Metropolis Hastings

3 Review of the main calibration methods

3.1 Numericalcode
3.1.1 Sensitivity analysis L.
3.1.2 Prior propagation of uncertainty oL
3.2 Calibration through statistical models

3.2.1 Presentation of the models

322 Likelihood e e e
323 Estimation e e e e e e e e
3.3 Application to the prediction of power from a photovoltaic (PV)plant
33.1 Inference e e e e
332 Results e
333 CompariSON v v vt e e e e e e e e e e e e e e e
3.4 Conclusion and diScusSion L e e e e e

4 CaliCo: a R package for Bayesian calibration

4.1 Guidelines for users e e e e e e e e e
4.2 Multidimensional example with CaliCo
42.1 Themodels e e e
422 Priors . . .o e e e e e e e
423 Calibration e e e e e e e e e e e
424 Additionnal tools e e e e e e e
4.3 Conclusion e e e e

5 Performance monitoring on a large PV plant

5.1 Sensitivity analysiso e e e
52 PriordensitieSo e e e e
5.3 Propagation of uncertainties e e e
5.4 Bayesiancalibration. L e
5.4.1 Statisticalmodels
5.4.2 Modular estimation and likelihoods oL,

5.4.3 Application to the PV plant
6 Conclusion and perspectives

Bibliography

69
70
70
72
73
74
76
80
82
82
85
87
88

91
92
97
98
102
103
108
111

113
113
117
118
118
118
120
121

129

136

LIST OF FIGURES

1.1
1.2
1.3
1.4
1.5

1.6
1.7

1.8

2.1

2.2
23

24
25
2.6

2.7

2.8

2.9

2.10

p-n junction and the equivalent electrical component (source: Raffamaiden — CC By SA). 21
nside doping. e e e e e e e 21
psidedoping. e e e e e 21
Displacement of an electron in the silicon (source: Freshman404 — CC By SA). 22

On the left panel, the electrical equivalence with 1 diode where Ipy stands for a photo-current that
depends on the incident sun rays, Ip for the saturation current of the ideal diode, Rp the shunt
resistance, Rg the series resistance representing losses proportional to /, / the current and V' the
voltage generated by the cell. On the right panel the electrical equivalence with 2 diodes where Ip;
and Ip; stands for the saturation current of both ideal diodes. 23
I/Vcurveof atoyexample. v oo it 24
The power production by PVzen for August 2014 (on the left) and the power production averaged
by hour for August 25" 2014 (ontheright). 27
On the top left, the original scaled power production gathered on the the PV plant during the year
2015. On the top, right the same data but only on the first week. On the bottom left, the original
data but averaged by hour. On the bottom right, only the positive power is kept among the origin data. 29

Major steps in uncertainty treatment for industrial matters (source: Bertrand looss — ENBIS-EMSE

2009 COonference).« i i i i e e e e e e e e e e e e e e e e e e 32
Sampling grid on the scaled space. 34
On the left panel a result of Morris method on the Morris function and on the right panel 10

repetitions of the method. oL 37
Scatter plot of the Morris indices given by the 1500 iterations bootstrap. 39
Scatter plots of the Ishigami function where the output is given function of the each parameter. . . 41

Sobol’s index computed for the Ishigami function and the boxplots representing the variability of
1000 bootstrap iterations. e e e e e e e e e e e e 41
Different Gaussian process emulations for the toy function defined Equation (2.30). On the first
panel (on the left) the Gaussian process is estimated with 62 = 1 and y = 0.1. On the second panel
(on the middled left), 6> = 5 and y = 0.1. On the third panel (on the middle right), 6> = 1 and
v = 0.2. And, on the fourth panel (on the right), 6> =Sand y =0.2. 44
Different Gaussian process estimation for the toy function Equation (2.30) with 6> = 5 and y = 0.1
but with different covariance functions. On the first panel (on the left) the Gaussian process is
estimated with Gaussian covariance function. On the second panel (on the middled left), with a
Matérn 5/2. On the third panel (on the middle right), with a Matérn 3/2. And, on the fourth panel
(on the right), with an exponential. L 47

Expected improvement computed for the Gaussian process established on the function defined

2 EGO iterations with on top the GP updated based on the previous point found with the EI criterion
and on the bottom the EI values corresponding to the GP on top. The point in orange is the EI

maximum used to establish the following GP., 50

https://commons.wikimedia.org/wiki/File:PN_diode_with_electrical_symbol.svg
https://commons.wikimedia.org/wiki/File:Solargif1.gif
https://www.emse.fr/enbis-emse2009/pdf/slides/B.%20Iooss.pdf
https://www.emse.fr/enbis-emse2009/pdf/slides/B.%20Iooss.pdf

LIST OF FIGURES

2.11
2.12
2.13
2.14
2.15

2.16

3.1

3.2

33
34

3.5

3.6
3.7

3.8
39
3.10

4.1
4.2
4.3

4.4

4.5

4.6
4.7
4.8
4.9
4.10

5.1

52

2 last of the 6 iterations of the EGO algorithm. 50
6 points sampled with a LHS for 2 =1[0,1]%. i 52
6 points sampled with a LHS for 2 =[0,1]%. i 52

2 6-sized maximin LHS performed with the algorithm of Morris and Mitchell (1995) for 2 parameters. 53
Graphical representation of the individuals (on the left) and the variables (on the right) of the

decathlondataset. e 60
Gibbs sampler completed for 10000 iteration with a 1000 burn-in sample. 63

On the left panel Morris method at noon the 24" of September 2014 and all the EEs computed at
each time step over the twomonthsof data. o000 70
Results of the PCA done on the trajectories of the Morris DOE. On the right panel the correlation
circle and on the right panel the eigenvalues. 71
Projection on the PCA axis of the Morrisindices. 71

Sobol method completed for each time steps. On the left panel the first order indices and on the

right panel the total effectsindices. L L 72
n(n), n(u,) and 7(a,) prior densities (represented on the left panel) and induced credibility interval

of the instantaneous power (rightpanel). L . L. 73
Directed Acyclic Graph (DAG) representation of the different models. 76

Prior (in blue) and posterior (in red) densities of 1, L, a, and 0'62,, for each model. On the two first
column the two first models (without and with surrogate) which have only these four parameters to

estimate. The two other columns represent the third and the fourth models which have two more

parameters to estimate (see Figure 3.9). oL oo 85
Correlation representation between the parameters. 86
Prior (in blue) and posterior (in red) densities of 0'§ and yg for A5 and Ay. 86
Calibration results for .#, and ., that are using Gaussian processes build on a DOE extended by

the sequential design. 88
Displacement of the oscillator simulated. 97
Experimental data displayed when no parameter values are setin the model. 99

First and second model output for prior belief on parameter values. The left panel illustrates the
first model and the right panel the second model with the Gaussian process estimated. 101
Third and fourth model output for prior belief on parameter values. The left panel illustrates the
third model and the right one, the fourth model with the Gaussian process estimated. Both are
encompassing the disCrepancy. it e e e e e e e e e 102
My displayed for some guessed values with the CI relative to the measurement error on the left
panel, with the CI relative to the Gaussian process only on the middle panel and both credibility

intervalson the right panel. 102
Prior distributions for each parameter to calibrate in the applicationcase. 103
Series of plot generated by the function plot for calibrationon .#;. 105
prior and posterior distributions for each parameter for calibrationon .#y. 107

Result of calibration on .#4 for the quantity of interest with the credibility interval at 95% a posteriori.107
Series of plot generated by the function plot for the sequential designon .#5. 111

The PCA performed on the results given by the Morris method. On the left the correlation circle
and on the right the eigenvalues. L 114
Morris indices in the new space given by the PCA. On the left all the parameters names appear and

on the right only the ones that are not overlapping are displayed. 114

8

LIST OF FIGURES

5.3 On the top left, the impact of different values of shunt resistances on the I/V curve. On the top right

the impact of different values of shunt resistances on the evolution of the efficiency function of

the irradiance. On the bottom left, the impact of different values of series resistances on the I/V

curve. On the bottom right, the impact of different values of series resistances on the evolution of

the efficiency function of the irradiance. oL oL 116
5.4 Tllustration of the inverter performance model and the factors describing the relationship of the ac-

output to both dc-power and dc-voltage (source: https://energy.sandia.gov/wp-content/gallery/uploads/Performance-

Model-for-Grid-Connected-Photovoltaic-Inverters.pdf). 116
5.5 Prior densities for each parameter considered for further calibration. 117
5.6 Propagation of uncertainties based on prior elicitation. On the top experimental data over 10 days

in 2015 are displayed with the credibility interval a priori and on the bottom, to zoom on the

phenomenon, only one day has been plotted (28" of January 2015). 118
5.7 The PCA performed on the outputs gotten from the DOE of 300 points. On the left, the correlation

circle and on the right, the eigenvalues. e 121
5.8 The irradiation and the correlation of the power recorded with the three first PCA axes for the 27

first days. On the top the scaled irradiance, on the middle top the correlation of power recorded with

the first axis given by the PCA. On the middle bottom, the correlation between the recorded power

and the second PCA axis, and on the bottom, the correlation with the third PCA axis. 123
5.9 Correlation lengths for each component of the parameter vector € and for the variance of the 5

Gaussian processesoneach PCA axis. o Lo oo 124
5.10 Prior and posterior densities for each parameter in a ./ calibration. 125
5.11 Prior and posterior densities for each parameter in a .# calibration. 126

https://energy.sandia.gov/wp-content/gallery/uploads/Performance-Model-for-Grid-Connected-Photovoltaic-Inverters.pdf
https://energy.sandia.gov/wp-content/gallery/uploads/Performance-Model-for-Grid-Connected-Photovoltaic-Inverters.pdf

ACRONYMS

PV
EDF
LCOE
CSP
CRE
OPEX
CAPEX
UTC
uQ
V&V
SA
HSIC
OAT
EE
TSI

iid
LHS
LHD
EGO
GP
BLUP
EBLUP
EI
DOE
MST
SFD
ESE
PCA
MCMC
MLE
DAG
SMLE
MAP
Ccv
RMSE
CRAN

Photovoltaic

Electricté De France

Levalized Cost Of Energy

Concentrate Solar Power

Energy Regulation Commission
Operational Expenditures

Capital Expenditures

Universal Time Coordinated
Uncertainty Quantification
Verification and Validation

Sensitivity Analysis

Hilbert-Schmidt Independence Criterion
One At a Time

Elementary Effect

Total Sensitivity Index

independent and identically distributed
Latin Hyperspace Sampling

Latin Hyperspace Design

Efficient Global Optimization
Gaussian process

Best Linear Unbiased Predictor
Empirical Best Linear Unbiased Predictor
Expected Improvement

Design Of Experiments

Minimum Spanning Tree

Space Filling Design

Enhanced Stochastic Evolutionary
Principal Component Analysis

Monte Carlo Markov Chain

Maximum Likelihood Estimates
Directed Acyclic Graph

Separated Maximum of Likelihood Estimation
Maximum A Posteriori

Cross Validation

Root Mean Square Error

Comprehensive R Archive Network

11

RESUME

Dans la plupart des industries, I’acces aux expériences de terrain peut s’avérer coliteux économiquement et tres
chronophage dans certains cas. En effet, lorsque des tests sur des structures trés volumineuses sont a réaliser ou
lorsque les phénomenes a observer dépendent du temps, ces essais deviennent alors des enjeux majeurs pour les
sociétés qui les concoivent. Des codes numériques, représentant les phénomenes physiques en jeux, sont alors
congus pour diminuer les coiits. Cependant, un code numérique n’est qu’une représentation de ce qu’est la réalité.
Il doit étre en accord avec les résultats expérimentaux. C’est pour cela que 1’on ne peut pas dissocier le code

numérique des expériences de terrain.

Les codes numériques présentent des lors deux avantages. Ils sont, en effet, plus rapides pour obtenir des résultats
que I’expérimentation réelle et ils représentent, notamment, un moindre cofit pour les industriels. Cependant, pour
que les codes soient les plus représentatifs possible de la réalité, les ingénieurs les ont développés et perfectionnés
a un tel point que leurs exécutions prend un temps non négligeable. Ce temps est, certes, diminué par rapport a
I’expérimentation réelle, mais il assez pour remettre en question 1’utilisation de méthodes qui nous permettraient
d’obtenir des résultats sur la fiabilité du systeme. De plus, le code peut aussi transporter une erreur (appelée erreur

de code ou discrépance) qui représente les difficultés du code a reproduire le systeme physique réel.

A EDF (Electricité De France), des codes numériques sont utilisés dans tous domaines (le nucléaire, 1’éolien,
I’hydraulique, le photovoltaique, etc...). Ces domaines font appel a des codes numériques basés sur la simulation
de phénomene physique qui comprennent, notamment, la thermohydraulique, 1’hydraulique, la neutronique, la
mécanique des fluides, la mécanique continue, la mécanique vibratoire, I’écotoxicologie, la thermique, etc... Dans
certains domaines, des codes dits d’“échelle” peuvent €tre utilisés comme les codes éléments ou volumes finis, ou
des codes systeme dits OD/1D. Les enjeux de I’ utilisation de tels codes numériques se concentrent sur la stireté des in-
stallations, I’environnement, la distribution ou la production. Dans le cas du photovoltaique (PV), le code numérique
peut étre utilisé a bien des égards (les smarts grids, smart cities, les offres de service liés a 1’autoconsommation, les
études de dégradations, la physique du panneaux photovoltaique, etc...). Dans la thése, nous nous intéressons a
deux cas particuliers dans I’utilisation des codes numériques. Le premier concerne 1’établissement du business plan
d’une centrale PV avant sa construction. En France, la CRE (Commission de Régulation de 1’Energie) lance un
appel a projet pour la construction d’une centrale PV et les énergéticiens comme EDF doivent calculer les cofits
d’un tel projet. Pour ce faire, il faut connaitre les cofits de construction et de maintenance de la centrale puis la
production sur sa durée de vie ce qui permet ensuite de fixer un prix de facturation pour I’électricité produite par
cette centrale. Pour calculer la production totale d’électricité de la centrale, EDF utilise un code numérique, qu’il
sait imprécis. Pour chiffrer le projet, EDF applique un coefficient qui tend a sous estimer la sortie du code pour
diminuer les risques financiers. Pour augmenter la rentabilité du projet et diminuer ces risques financiers, il convient
donc de connaitre avec plus de précision quelles sont les incertitudes introduites dans le code numérique. Dans un
deuxiéme temps, le code PV peut étre utilisé a des fins de suivi de performances. En effet, lorsqu’une centrale est
d’ores et déja construite et que des données de production sont disponibles, le code numérique basés sur les données
de production est utilisé pour rectifier les prédictions sur les années suivantes. Dans les deux cas, le calage de code

numérique représente un enjeu majeur pour 1’obtention de résultats plus complets qui permettent de prendre une

13

décision financiere basée sur plus d’informations.

Le calage de code

Lorsque les données expérimentales de terrains sont prélevées, une erreur de mesure est a prendre en compte. En
effet, les tolérances des capteurs et I’imprécision des outils de mesure créent un bruit additionnel. De plus, si I’on
considere le phénomene physique comme une fonction déterministe & (Sacks et al., 1989) dépendant uniquement

de variables dites de controle, I’équation suivante peut étre écrite :

Vie[l,...,n] Yo, =&(Xi) + &, (D

ol Y,,p, est le i point de mesure parmi les n, & est un bruit blanc Gaussien tel que g ~ _¥(0,02,) (ot

tous les n & sont choisis indépendamment et identiquement distribués), & représente le phénomeéne physique réel
correspondant a la i mesure, et X; le vecteur des variables de contrdle qui correspondent aux variables observées

et non modifiables (comme les données environnementales par exemple).

Le calage de code permet de mieux quantifier et d’estimer les valeurs des parametres en entrée de code par
rapport a des données de terrain. Considérons un code numérique f, qui posséde deux types d’entrées: les variables
de controle (X, définies précédemment) et les parametres (6). Les parametres sont généralement des constantes
physiques implémentées dans les équations sous-jacentes au code numérique. L’hypotheése que le code représente
parfaitement le phénomene physique réel a condition de connaitre la “vraie” valeur de @ est faite dans un premier

temps. Ainsi, une nouvelle représentation des expériences de terrain peut &tre écrite comme il suit :

M Vie[[la---vn]] 1/;’xpl-:J“c'(A)(z‘ao)+£i- (2

Cependant lorsque le code f, est long a étre exécuté, 1’utilisation de méthodes statistiques sur le modele
précédent n’est pas envisageable. Afin de palier ce probleme, Sacks et al. (1989) proposent de mettre en place un
processus Gaussien en remplacement au code. Dans le cadre du calage Cox et al. (2001), ont eu I’idée d’introduire

un processus Gaussien dans le modele statistique :

%2 » Vie [[137’1]] l/e)cpl- = Fc(Xi30)+£i7 (3)

ol F, est un processus Gaussien définit tel que F.(e,0) ~ FPY (mg({o, o} {0, 0}) cs({o, 0}, {0, o})) (avec myg
la moyenne du processus Gaussien souvent considérées comme une forme linéaire avec un vecteur de coefficient 3
a estimer et cg la fonction de covariance du processus qui dépend d’une variance 0'32, d’un noyau de corrélation
et d’un vecteur 1 qui représente les longueurs de corrélation dans le noyau). Cependant, comme il a été intro-
duit précédemment une discrépance peut apparaitre avec I’introduction du code numérique en remplacement du
phénomene physique. Des articles comme Higdon et al. (2004), Kennedy and O’Hagan (2001) et Bayarri et al.
(2007) suggerent d’introduire cette discrépance et d’effectuer le calage en considérant celle-ci comme étant une
réalisation d’un processus Gaussien. Le fait de considérer la discrépance comme un processus Gaussien permet de
détecter et de quantifier les erreurs structurelles qui seraient présentes dans les données expérimentales. Si le code

n’est pas coliteux et que I’on ajoute une discrépance le modele devient alors :

M Vie[l,... 1] nxp[:fc(Xi>0)+5(X1)+£;, 4)

ol d représente la discrépance telle que 5(e) ~ PY (m,; (o,0),c5(e, o)) Dans un cadre ol le code numérique

est considéré comme cofiteux, le modele qui généralise les deux précédents peut s’écrire :

14

My Vi€ l,...,n] Yoy, = Fu(X;,0)+ 6(X,) + & (5)

Un des enjeux majeur du calage est I’estimation des parametres. Plus le modele est complexe et plus I’estimation
des parametres est compliquée. En effet, dans chaque modele statistique vient s’ajouter, aux parametres 6 du
code, les parametres dit de nuisances qui sont les variances Gezrr’ Gg, Gg et les vecteurs s, 5. Cela complexifie
I’estimation qui peut s’effectuer de plusieurs manieres (par la méthode des moindres carrés, I’inversion directe, la
régression quantile, etc...), mais qui est souvent réalisée de deux sortes : par maximum de vraisemblance (qui permet
une estimation simple) ou par estimation bayésienne (si un besoin de régularisation est nécessaire). Le maximum
de vraisemblance est utilisé notamment par Cox et al. (2001) pour effectuer I’estimation des parametres de .#, et
(Wong et al., 2017) ont étendu ces résultats au cas .#4. En calage bayésien, deux méthodes s’opposent. Higdon
et al. (2004) suggerent d’effectuer une estimation a posteriori directement sur la vraisemblance complete (pour
I’écriture des vraisemblance se référer a la section 3.2.2) alors que Kennedy and O’Hagan (2001) et Bayarri et al.
(2007) propose une estimation en deux temps appelée “approche modulaire” par Liu et al. (2009). Cette méthode
permet de séparer en deux la méthode d’estimation classique (utilisée par Higdon et al. (2004)), afin de réduire les
temps de calcul. Il s’agit de trouver des estimateurs des parametres de nuisances pour le processus Gaussien F; et
d’utiliser ces estimateurs dans la vraisemblance conditionnelle (plus de précision a la section 3.2.3).

A des fins de comparaisons, nous possédons un code numérique rapide qui reproduit la puissance instantanée du
stand de test expérimental de la R&D d’EDF composé de 12 panneaux nommé “PVzen”. Grice a sa flexibilité et a
sa rapidité, ce code nous permet de reproduire les différents cas évoqués précédemment. Suite a cette comparaison,
plusieurs conclusions émergent. La premiere concerne 1I’importance de la discrépance. En effet le calage du code
dans le cas . indique que la valeur la plus probable de la variance de 1’erreur de mesure doit étre bien plus élevée
que ce que I’on pensait a priori. Cependant, cette valeur indiquée par le calage n’a aucun sens physique puisqu’elle
est trop élevée pour étre plausible. En effectuant le calage avec .43, on remarque que la valeur de la variance de
I’erreur de mesure diminue pour étre cohérente avec I’a priori. La sur-estimation de 62, était due 4 la présence
d’une erreur de code qui n’était pas prise en compte. Dans le cas ou1 I’on considere le code comme cofiteux, le plan
d’expériences pour établir le processus Gaussien doit étre limité (nous avons fait le choix d’un plan de 50 points).
Le calage pour le modele .#, donne alors une incohérence dans les valeurs estimées par rapport aux densités a
priori. En effet le fait de prendre un processus Gaussien pas treés performant dégrade la qualité du calage. Il est
donc important de ne pas négliger la qualité du processus Gaussien précédent le calage. Dans cette perspective,
I’application d’une méthode d’établissement d’un plan d’expériences basé sur le critere EI (Expected Improvment)
(Damblin et al., 2018)), permet d’améliorer les résultats.

CaliCo

Le codage d’un package, appelé CaliCo, en R a été effectué pour le calage bayésien. Ce qui differe avec les
précédents packages mis en ligne sur le site du CRAN (Comprehensive R Archive Network), c’est que CaliCo se
base sur les quatre modeles introduits précédemment et offre la possibilité a 1’utilisateur d’utiliser au méme titre
chacun des modeles pour son code numérique et non pas uniquement .#4. L’ établissement du processus Gaussien
peut aussi étre automatiquement géré dans le package avec la possibilité d’effectuer un calage séquentiel (Damblin
et al., 2018). La majeure partie des algorithmes MCMC (Monte Carlo par Chaines de Markov) sont implémentés
en C++ ce qui rend leurs utilisations plus rapides. De plus, beaucoup d’outils de visualisation en ggplot2 ont été

ajoutés pour donner a I’utilisateur un rapide acces a des graphiques qu’il pourra lui méme modifier a sa guise.

15

Suivi de performances

L’application du calage bayésien dans un cadre industriel est mis en application sur une centrale PV de grande
taille. Nous possédons pour cela un autre code numérique qui est plus performant que celui que nous avions utilisé
précédemment. Il est ainsi plus coliteux en temps de calcul mais plus précis pour estimer la puissance PV dans
des conditions particulieres (ombrages, effets de missmatch, etc...). Ce code produit en sortie une série temporelle
sur un an de puissances instantanées. Le calage s’appliquait jusqu’a présent a des sorties scalaires. Higdon et al.
(2008) a introduit le calage de code sur une sortie multidimensionnelle en réalisant notamment une projection sur
d axes qui portent plus de 99% de I’information donné par une ACP (Analyse en Composante principales). La
qualité d’une telle projection est étudiée ainsi que 1’erreur faite en projetant les données sur les axes de I’ACP.
L’ajout d’une discrépance a aussi été faite dans I’espace de I’ ACP. Ce travail a abouti a I’écriture de deux modeles

supplémentaires, dont celui avec discrépance, s’écrit:

Jei (6)
.%4{2 PY;xp:PF +P55+E, (6)

Jes(8)
ol P est la matrice de passage entre I’espace de I’ ACP et I’espace physique, Yy, sont les puissances relevées, f,
sont les projections émulées par des processus Gaussien sur les d axes de I’ ACP, Py la matrice qui comporte les
T — d derniers vecteurs propres contenus dans P, la matrice Pr représente celle composée des d premier vecteurs
propres contenus dans P et E le vecteur aléatoire des bruits de mesure. Ce modele mis en application nous permet
d’obtenir des résultats de calage du code numérique cofiteux afin d’actualiser les prédictions de puissance sur les

années suivantes.

Conclusions et perspectives

En conclusion, cette these se focalise sur les méthodes de calage bayésien. L’ objectif était d’améliorer les con-
naissances en les parametres afin de rendre 1’estimation de la sortie du code plus robuste. Cela présente un intérét
économique fort puisque le fait de mieux estimer la puissance générée par une centrale photovoltaique permet de
moins prendre de risques financiers que ce soit lors de I’établissement d’un business plan ou lorsque I’on veut mettre
a jour des prévisions de productions. Le calage bayésien permet, a partir de données de terrain, de mieux connaitre

la loi de probabilité des parametres pour ainsi mieux prendre des décisions.

Dans cette thése nous avons effectué une revue des principales méthodes présentes dans la littératures. A I’aide
d’un code numérique peu coliteux en temps de calcul, nous avons pu mettre en place une comparaison des différents
modeles introduits. Les conclusions que nous avons pu en tirer sont que 1’introduction de la discrépance dans
certains cas peut s’avérer importante. En effet, lors de I’estimation des densités a posteriori des parametres, un
décalage par rapport a la densité a priori de la variance du bruit de mesure peut s’effectuer. Cela pourrait avoir du
sens si ’a priori n’était pas bon, cependant si I’augmentation de cette variance n’est pas justifiée d’un point de vue
physique, il est possible que la non prise en compte de la discrépance fausse le résultats. De plus lorsque le code
est coliteux et afin de réaliser les méthodes statistiques présentées, des émulateurs ou méta-modeles peuvent étre
utilisés. La aussi, la précaution doit étre d’usage lorsque 1’on tente de reproduire le code numérique. En effet, nous
avons constaté que si le méta-modele n’était pas d’une qualité suffisante, cela crée un décalage dans les modes a

posteriori.

Un travail de développement informatique a également été réalisé durant cette these. Le package CaliCo permet

de réaliser un calage bayésien avec une multitude de code numérique ou partir de plan d’expériences. Il offre une

16

flexibilité du choix du modele pour I'utilisateur. De plus, un codage des MCMC en C++ permet d’accélérer les
parties d’estimation qui sont chronophages. Des outils de visualisation basés sur ggplot2 permettent aussi de tirer
profit des réalisations du package sans difficultés.

Un dernier cas d’étude, basé sur des données de centrale photovoltaique de grande capacité de production,
a enfin été partiellement traité. Le code numérique utilisé dans ce cas est chronophage car il est basé sur des
optimisations informatiques qui alourdissent le temps de calcul mais qui améliorent ses performances. La sortie de
ce code est une série temporelle ce qui ne permet pas d’appliquer les différents modeles introduits précédemment.
Ce probleme a abouti a la formalisation de deux nouveaux modeles qui permettent, a partir d’une ACP, de trouver
une sous espace vectoriel orthonormé dans lequel le calage peut étre effectué. Cette formalisation a été appliquée au
cas d’étude et nous a permis d’estimer les densités a posteriori des parametres du code mais aussi de la variance des
erreurs de mesures ainsi que la variance de la discrépance. La valeur de la variance de I’erreur de mesure se retrouve
plus élevée que ce que I’on attendait a piori lorsque I’on utilise le modele sans discrépance. Ce décalage est rattrapé
par I’ajout de la discrépance et nous permet de conclure que I’apport de la discrépance a permis d’expliquer une

erreur qui s’était retrouvée dans la variance de I’erreur de mesure et qui représentait une erreur de code.

Cependant, les aspects prédictifs du modele utilisant I’ ACP reste a étre démontré. Une validation croisée aurait
pu étre effectué sur un mois de données. La nécessité d’ajouter une discrépance est tres discutée dans beaucoup de
papiers (Kennedy and O’Hagan, 2001; Bayarri et al., 2007; Higdon et al., 2004) et fait I’objet de la validation de
modele statistique basée sur le facteur de Bayes dans Damblin et al. (2016). Une validation statistique a 1’aide d’un
modele de mélange peut aussi étre envisagé comme le propose Kamary (2016). La remise en question sur la qualité
du processus Gaussien en tant qu’émulateur de code interroge sur la nécessité de prendre un plan d’expériences
bien fourni. Des travaux comme Damblin et al. (2018) permettent dans ce cas d’améliorer le plan d’expériences en
vue du calage bayésien. Les méthodes permettant d’utiliser des codes a sorties multidimensionnelles dans le cadre
du calage découle d’un article fondateur (Higdon et al., 2008) mais ne restent pas treés développés en pratique. Un
processus Gaussien multi-fidélité pourrait aussi étre envisagé en remplacement du code a sortie multidimensionnelle

et ainsi étre intégré dans le calage de code.

17

INTRODUCTION

1.1 EconomiciSSue i i i i e e e e e e e 19
1.2 Physical phenomenon 21
1.3 Several modeling approaches L 22
1.3.1 Afirstsimple model 22
1.3.2 Advanced electrical models 23
1.4 Numerical codes e e e 25
1.4.1 General framework 25
1.4.2 Sources of Uncertaintiest e e e e e e e e 25
1.43 Pythoncode. 26
1.44 Dymolacode e e e e 27
1.5 Thesis organization i i e e e e e e e e e e e e e e e e e 30

In many industrial fields, numerical experiments have become more and more popular over the last few years.

Field experiments are often really expensive and getting results from the real phenomenon is quite long. To limit
this investment, numerical simulations are run as a substitute for field experiments (Santner et al., 2013; Fang
et al., 2005). As numerical simulations intend to be as close as possible to the physical system, they have been
continuously improved. However, the development of computer processors did not catch up with this evolution
and some numerical simulations are still greedy in computational time (Sacks et al., 1989). Moreover, a difference
between the numerical code and experiments is often observed. If there exists a bias between the code and the
reality, what is the uncertainty in using it as a proxy of the physical system? Bayarri et al. (2007) introduce the
notion of validation which consists in comparing the code outputs to the field experiments. Such a task can be
difficult to achieve since it needs expensive field experiments and outputs from a code, often long to run. All along
this thesis, we will use the word “code” as a proxy for numerical code, sometimes also called numerical model,

simulator or computational code and field experiment for real world experiment.

In that respect, EDF (Electricité De France) uses numerical simulations in many fields, in particular to estimate
the power produced by a photovoltaic (PV) plant. This thesis is motivated by the uncertainty quantification and
calibration of a numerical code that intends to estimate the power produced by a PV plant. In this introduction, we
will present the economic context that explains the needs of EDF for such a study. Then, a brief explanation of how
a PV panel works is given that is followed by details on the different physical models developed by EDF. Finally,

the numerical codes, used as application cases in this thesis, are detailed and presented in the last section.

1.1 Economic issue

Due to global warming, new “fuel-free” technologies are increasingly being developed. EDF focuses its research on
some of them which are, without being exhaustive, the photovolatic, wind turbines or concentrated solar power
(CSP). In each field the same economic problems appear especially in the photovoltaic (PV) where more and
more PV plants are built in France and all around the would. The goal for energy suppliers such as EDF is to be
competitive in this new market. In France, the apparition of new plants is regulated by an entity called CRE (Energy

Regulation Commission). The right to build and manage a new plant usually comes by winning a bidding call for

19

=
=]
0;
5]
=}
5
B
~—
=
[*=i

=
=
E=
3}
=
g
=
~—
=
—

Chapter 1 — Introduction

project. The business model of such a project is particularly based on a factor called the levelized cost of energy

also named LCOE.
LCOE

The average minimum cost at which electricity must be sold in order to break-even

over the lifetime of the project.

It can be written as:

. . . n Li+M,
sum of actualized costs over the lifetime B Y (11+r)[r

= , 1.1
sum of electrical energy produced over lifetime) (lfr)’ (1.1

LCOE =

where I, stands for the investment expenditures in the year t, M, for the operations and maintenance expenditures in
the year ¢, E; for the electrical energy generated in the year ¢, r for the discount rate and n for the expected lifetime

of the system or power station.

The costs are relatively well estimated. Based on previous experience, the operational expenditures (also named
OPEX, which encompass the operations and maintenance expenditures) and the capital expenditures (also called
CAPEX, which cover investment expenditures ;) are approximated with a narrow credibility interval. The CAPEX
represents the invested money for building a photovoltaic plant and are fixed costs, when the OPEX is the money
spent to build and maintain the photovolatic plant and stands for the variable costs. However, to predict the total
power generated over the lifetime of the plant, energy suppliers use a homemade or commercial numerical code.
For the uncertainty quantification of the code, the actual methodologies used give credibility intervals around +8%
of the output of the code. A compromise is found between the risk and the price based on the estimated uncertainty.
This compromise tends to have a LCOE secure for investors but it increases the price of the project. Other energy
supplier companies, which could have more accurately predicted the power or have a more aggressive policy on the
establishment of business plans, could win the project. The main stake is to better assess the credibility interval on
the power produced so that even the estimation of the less power produced is better than the final power estimation

of the competition.

Once EDF has won the call for project, the PV plant is built in the specific location. When its activation
is effective, data of power production are recorded. After some time, EDF engineers can compare the estima-
tion made in the business plan to the real power produced. If, as expected, the prediction is lower than real
power gathered on the field, the electricity price based on the business plan is no longer adequate. A new sim-
ulation can be run, based on these new data, which better estimates the power produced for the next few years.

The business plan can then be updated based on the new estimation. This operation is called performance monitoring.

In France the economical stakes are important because it is the fifth photovoltaic field in Europe. The estimation
of the total production capacity is more than 400 GWp. Wp stands for Watt peak which represents the power
delivered by a photovolatic panel or plant under nominal conditions (1000 W/m? of enlightening and a temperature
of 25°C). The development deadlines are also shorter in photovolatic (3-4 years) than onshore wind turbine (7-9
years). The costs of the electricity produced by the photovoltaic is decreasing (it was more than 200 €/MWh in
2012 and it was equal to 55 €/MWh in 2018 for large scaled PV plants). So far, in France only 8,159 MW of
PV capacity is installed. In 2018 EDF has announced a Solar Plan which aims to install 30 GW of photovoltaic
power between 2020 and 2035. A major part of this 30 GW will be constituted of by large PV plants. The resources
mobilized by the EDF Group are the identification of the land to be mobilized, the mobilization of the subcontracting

chain and EDF’s partners, the development of self-consumption offers, the cooperation with public authorities to

20

1.2. Physical phenomenon

make large areas available, the development of an industrial model adapted to the challenge, etc... In that context
EDF is looking to better control the uncertainties made by the production estimations to limit financial risks when
establishing the project.

The aim of this thesis is to quantify the uncertainty of the numerical codes used by EDF. Based on Bayesian
calibration, the main framework will be the performance monitoring, where recorded power data are available. Then,
the new predicted power can then be compared to the estimated one in the business plan and quantify plausible

earnings.

1.2 Physical phenomenon

The photovoltaic principle mainly lies in characteristics of the semiconductor material used for the cell which is,
for most of the technologies developed up to now, the silicon. The energy contribution of the sun to the PV cell is
visible at a quantum level. Indeed, the energy present in the light spectrum changes locally the energy levels of the

silicon until the emission of an electron. A panel encompasses a high number of cells and a cell is composed of two

semiconductor materials. One is called the p-type and the other one the n-type. They are linked by the p-n junction.

The anode corresponds to the p-type and the cathode to the n-type. The anode includes an excess of holes (it is
positively charged, because a hole is a lack of electron) and the cathode contains an excess of electron (negatively

charged). Figure 1.1 illustrates this dipole which can be “electrically” modeled by a diode.

p-type n-type
Anode silicon silicon Cathode
(o, | O
Anode | Cathode

Figure 1.1: p-n junction and the equivalent electrical component (source: Raffamaiden — CC By SA).

The contact between both parts can lead to a displacement, by diffusion, of an electron toward a hole. The
creation of an electron/hole pair can occur with a sufficient energy supply. When an electron/hole pair is created,
the displacement of the electron is generating current. The energy needed to create such a displacement, is called
the gap energy. It corresponds to the difference of the energy levels between conduction and valence bands. Figure
1.4 illustrates the different bands and the creation of the current. To facilitate this creation, a doping of the poles can
be done. The p-side doping creates an electron deficiency to establish a new pseudo level higher than the valence
band (c¢f Figure 1.3). Similarly, the n-side doping is an excess of electron production to set up a pseudo level lower
than the conduction band (cf Figure 1.2).

B o

= Ey

Figure 1.2: n side doping. Figure 1.3: p side doping.

Once the photon (elementary particle particle brought here by the light) with enough energy has arrived on the

cell, the creation of an electron/hole pair is done. Figure 1.4 illustrates the displacement, after the photon arrival,

21

=
=]
.:
9
=}
5
B
~—
[=
[*=i

https://commons.wikimedia.org/wiki/File:PN_diode_with_electrical_symbol.svg

=
=]
.;
5}
=
3
Bt
~—
=
|

Chapter 1 — Introduction

from the n side to the p side of the electron.

conduction band
(empty)

negative charge

(electron)
e —]

forbidden
energy band
(gap)

lence band

f full)

metal n-doped | p-doped metal
contact [semicond| semicond. contact

Figure 1.4: Displacement of an electron in the silicon (source: Freshman404 — CC By SA).

The silicon is a fragile material and needs to be protected from the environment. Anti-reflective coatings,
transparent adhesive and glass cover are responsible of losses due to reflection of sun rays. The metal contacts, the
gap energy, the probability to create an electron hole pair (also called Quantum efficiency) generate other losses.
The efficiency of a panel, which is the total energy used to create electricity over the total energy arriving on the
panel, stands between 15 and 20% according to manufacturers. As the global interest increases, technologies of PV
cells and experiments are evolving. It is now possible to make a characterization in laboratory, very quickly, for a
single panel. However, to get the total energy produced by a PV plant is a much longer and expensive experimental
operation. That is why numerical codes based on a physical model have been developed.

1.3 Several modeling approaches

Several numerical codes, based on physical models have been developed to mimic the PV cell behavior. This
section presents only models developed at EDF. What differentiates them from one another is their level of accuracy,
especially when it comes to predict the power of a PV plant in constraining conditions (when shades or mismatch
effects appear). If one is interested in modeling a PV system very quickly with a correct approximation, one can
look into the first model described below. However, for a more accurate prediction in constraining conditions, one
should refer to the second model detailed beneath.

1.3.1 A first simple model

First, for a good approximation of the power produced by a PV plant, a model based on physical equations is estab-
lished. As the power produced by a panel is mainly proportional to the nominal power of the panel and the incident

direct irradiation, the equations can be written explicitly without the use of complex computer optimization to solve

22

https://commons.wikimedia.org/wiki/File:Solargif1.gif

1.3. Several modeling approaches

eventually challenging equations. To consider the losses described in Section 1.2, parameters are implemented in
the model and can encompass the module photo-conversion efficiency or the module temperature coefficient for
example (more details are given in Section 1.4.3). This model, that does not require any optimization to get the

resolution of eventual differential equations, is quick to implement but presents some limitations.

1.3.2 Advanced electrical models

To model, more accurately, the PV system, a refined representation of the cell is achieved. The p-n junction can be
"electrically represented" by a diode (Figure 1.1), so that an electrical representation can be set up to reproduce
the power generated by a PV cell, panel or plant. Two different electrical schemes have been developed. The first
drawn, on the left panel of Figure 1.5, has only one diode when the second one (on the right panel of Figure 1.5)
takes two. The second diode is added because it takes into account the cases where the functioning conditions are

more difficult (shades or low irradiations for example).

1 [>) Rs l b1 1 Ip2 Rs
v v
I Rp I Rp

PV PV

Figure 1.5: On the left panel, the electrical equivalence with 1 diode where Ipy stands for a photo-current that
depends on the incident sun rays, Ip for the saturation current of the ideal diode, Rp the shunt resistance, Rg the
series resistance representing losses proportional to 7, I the current and V the voltage generated by the cell. On the
right panel the electrical equivalence with 2 diodes where Ip; and Ip; stands for the saturation current of both ideal
diodes.

To establish the performances of the PV cell, the power is the quantity looked for. Then, from both electrical
schemes the voltage V needs to be expressed as a function of the current /. Kirchhoff’s equations allow to solve the

electrical model with one diode (Tian et al., 2012) and:

V +IR,
R, '

V +1IR; _1} (1.2)

nv;

I=1Ipy —1Ip lexp{

where V; and n are the thermodynamic potential and the quality factor of the diode. The solution of the electrical

model with two diodes is given by:

IR, IR, IR,
I =Ipy —Ip; [exp{v+ - 1}] —Ipp [e}cp{vJr - 1}] — VIR , (1.3)

mVi n2Vin R,

where V;; and n; are the thermodynamic potential and the quality factor of the diode i (Ishaque et al., 2011). A

PV panel is generally made of around 60 to 72 PV cells and the voltage at the output of the panel is continuous.

To be integrated in the network grid, it has to be transformed into an alternating voltage. To do so, an inverter is
added at the output of a group of panel in a PV plant. The inverter finds the “best” functioning point (which is the
maximum of /V, the available power) and generates the alternating power corresponding. To get this maximum
power possible, the relation between I and V is studied. Figure 1.6 illustrates the typical behavior of the current as a

function of the voltage for a module or a PV system.

The working conditions of the inverter are such that it physically performs an “optimization” to get to the

23

=
=]
0;
5]
=}
5
B
~—
=
[*=i

=
=
=)
5}
=]
3
Bt
~—
=
|

Chapter 1 — Introduction

Current

Voltage

Figure 1.6: 1/V curve of a toy example.

point Pmax (Figure 1.6) and generates the alternating voltage afterward. Having an explicit expression of [as a
function of V is intractable regarding Equation (1.2) and Equation (1.3). Both equations are implicit and to solve
them, computers usually run optimization operations which are time consuming. To bypass this burden, some
approximation can be proposed to render explicit the equations. The use of Lambert’s function W is required in
many cases (Petrone et al., 2007; Ding and Radhakrishnan, 2008; Picault et al., 2010). It is defined as:

Vx> —e! W(x)exp{W(x)} =x, (1.4)

and if x is near +oo or O:

W(x) =logx—log(log(x))+ Z i loliloﬂ , (1.5)
=0m=1 g)

with
k

- %S[ker,kJr 1, (1.6)

and S[k +m,k + 1] is the number of Stirling’s cycle. Using the Lambert’s function, [and V can be separated and
Equation (1.2) now written:

Ry(Ipy +1Ip) =V nV,

I= -
R, +R; R,

W(a(V)), 1.7)

with

R,R R '
a(V)= "= LI { - V+R’(IPV+ID)}.
R, +Rs nV; R, +R; nV;

Newton or Halley’s method allows to find the couple (/,V) maximizing the available power V. However,the
more elaborated Equation (1.3) cannot be changed to be rendered explicit. The question is to know whether one

wants a numerical code fast to run or an accurate code. Is the approximation worth the saved computation time?

24

1.4. Numerical codes

1.4 Numerical codes

In this section, we detail the general framework and notations of the numerical codes used in this thesis and we
introduce the main sources of uncertainties that can be found in this context. Then we present, in details, the two

numerical codes further used in this work.

1.4.1 General framework

A computer code generally depends on two kinds of inputs: variables and parameters. The variables represent
the input variables (also called controllable variables in Higdon et al. (2008) or general inputs in Plumlee (2017))
which are set during a field experiment and can encompass environmental variables which can be measured in field
experiments. In contrast, the parameters are generally interpreted as physical constants defining the mathematical
model of the system of interest, but can also contain the so-called tuning parameters, which have no physical
interpretation. They have to be set by the user to run the code and chosen carefully to make the code mimic the real
physical phenomenon. The code can be mathematically represented by a function f,. Let us note in what follows
that, @ € 2 C R” to represent the parameter vector and x € .7 C R? which is the variable vector. The space 2 is
called the input parameter space and .77 the input variable space. The physical quantity of interest (QOI) is denoted
by £ and only depends on variables in vector & € 7 because the parameter vector 6 has no counterpart in field

experiments.

A code output is then written as f,(x,0) (considered as a deterministic code all along the thesis) whereas §(x)
denotes the physical phenomenon for the same variable x. This is of course an idealized formalization, in which
we assume that the code variables x are exhaustive to describe the phenomenon of interest, in the sense that the

quantity to be predicted can take a single deterministic value {(x) for a given .

1.4.2 Sources of uncertainties

In general, there are two main kinds of uncertainties considered: the epistemic and the statistical. The statistical
uncertainty represents the random fluctuations of the input variables, and the associated measurement errors and
the epistemic uncertainty comes from the uncertainty on parameters, that one could in principle know but does
not in practice. The latter can be estimated but can also be reduced as the number of experiments increases. The
uncertainties relative to the numerical code are then epistemic. The code is deterministic so no variability is visible
between two launches. In this thesis, we focus only on the epistemic uncertainties that are detailed below.

The numerical code takes two inputs that are uncertain: @ and X . In the calibration framework, only the

uncertainty on @ is considered because we do not know the true value of 8 and we need to adjust it.

In the PV plant context, 6 represents physical constants or manufacturer values that are carrying uncertainty.

Indeed, the building process of a PV panel encompasses tolerances at each step of the fabrication. At the end of the
chain, the parameter, that characterizes the nominal power of the panel for example, might be altered. The input
variables X represent mainly meteorological data. These are also carrying uncertainty because in both, prediction
or performance monitoring, contexts, X is averaged from previous data where modification due to global warming
is added.

This thesis focuses only on parametric uncertainties, because the main aim is to calibrate the parameter vector 8
given a data set, the uncertainty of the input variable being out of the scope of this study. EDF experts judge that

25

=
=]
.:
9
=}
5
B
~—
[=
[*=i

Chapter 1 — Introduction

parameter uncertainty and input variable uncertainty are each responsible for about 4% of the output variability.

=
=
=)
5}
=
3
Bt
~—
=
|

1.4.3 Python code

Code

The Python code has been developed based on the first physical model described in Section 1.3.1. It implements the
physical equations that encompass production approximation estimation but also the losses relative to the panel. As
no optimization are needed in this code, it runs very fast (about 36Ls each run). The code, that does not take into

account the inverter, produces an estimation of the instantaneous power. That means:

fe: Hx2—R
(1.8)
(x,0) —y.
n
Hy
The code depends on some parameter vector 8 and input variables x detailed as follows: 8 = & and
a
ay
Ninc
t
L
l
xr =
Iy
la
T

The physical meaning of the parameters 8 is explained below (Duffie and Beckman, 2013):

* 7: module photo-conversion efficiency in nominal test conditions (1000W / m2, 25 °C),

* u;: module temperature coefficient (the efficiency decreases when the temperature rises) in %/°C,
* n;: reference temperature for the normal operating conditions of the module in °C,

¢ g;: reflection power of the ground (albedo),

* a,: describes the transmission of the radiation as a function of the incidence angle of solar rays, which

depends on optical properties and the cleanliness,

* njyc. transmission factor for normal incidence.

The input variables x contain all measurable data:

¢ ¢t: the UTC time since the beginning of the year in s,

L: the latitude in °,

e [: the longitude in °,

* I,: global irradiation (normal incidence of the sun rays to the panel) in W/ m?,

o I;: diffuse irradiation (horizontal incidence of the sun rays to the panel) in W/ m2,

26

1.4. Numerical codes

* T,: ambient temperature in °C.

Note that temporal aspects are taken into account through the input variables. We do not consider any delay in
the PV reaction to the forcing conditions. Time ¢ indicates here a snap shot corresponding to the instant when the
power has to be computed. This code only focuses on a specific time and if the evolution of the power over a day is
what we look for, a repetition over the specific durations has to be made. This operation has to consider the number
of time steps available. For example, if 300 configurations of « are accessible for one day, the code will have to be
executed 300 times to have the power evolution over a day. For the rest of this thesis, we will denote the code output
referring to the i time step by f.(x;,0) and by f.(X,8) the code outputs corresponding to the whole time frame

contained in matrix X.

Experimental data

The Python code has been created to reproduce the instantaneous power of a test stand at EDF called “PVzen”. The
stand is a group of 12 panels connected together. Data over two months are available at a time step of 10s: August
and September 2014. Figure 1.7 is an example of data gathered on the stand. Note that on the left panel of Figure
1.7, several days have no production. It is mainly because of the sensor malfunctions and data need to be cleaned
before being used. The power collected on the stand is the one before the inverter and physically matches with the

one simulated by the numerical code introduced in Section 1.4.3.

600

1500

1000

200

Power in W

500

1 4 7 10 13 16 19 22 25 28 31 7 10 13 16 20

Days Hours

Figure 1.7: The power production by PVzen for August 2014 (on the left) and the power production averaged by
hour for August 25" 2014 (on the right).

1.4.4 Dymola code
Code

The code Dymola is based on the “electrical” modeling introduced in Section 1.3.2, especially the physical
model with one diode. Dymola is a modeling and simulation environment based on the language Modelica. This
code has been developed for a specific PV plant that EDF maintains. It implements the shades that appear in
a big plant configuration but also takes into account the mismatch effects. The mismatch effects are when the

panels from a PV plant do not possess the same nominal power value. The inverter has to find the minimal

27

=
=]
0;
5]
=}
5
B
~—
=
[*=i

=
=]
.;
5}
=
3
Bt
~—
=
|

Chapter 1 — Introduction

one and not the averaged. Mismatch effects is also a concern when one or several cells are shaded but not the

whole panel. Shunt resistances are then activated so this part of the panel does not affect the panel overall production.

This code is then much longer to run than the previous one (about 20s for each call) but the output is a temporal
trajectory over one year of the instantaneous power with the time step of 900s. This means that, for n points in the

trajectory:

fo: 2R
0—y.

(1.9)

This numerical code does not take X as input variables because they are implicitly implemented in Dymola.
As a matter of fact, X represent the meteorological, the mismatch data and the projected rays files for one year
corresponding to the n points produced by f.. The mismatch and the projected rays files are input data that give the
information of the mismatch effects and the shades on the PV plant panels we are focusing on. In these conditions,
the output power is more complex to determine. The parameter vector 0 takes 26 components that we will not detail
here. The parameter vector encompasses those which have an electrical meaning such as 1,,,, R), or R, of Figure 1.5
(on the left panel) but also those which characterize the inverter. That means the output given by the Dymola code

corresponds to the power after the optimization performed by the inverter.

Experimental data

The data available for the Dymola code is the power gathered during one year 2015 (sometimes data are partially
collected). Data are scaled in Figure (1.8) for confidentiality matters. Identically as in Figure 1.7, there is some
days where the production is null. These issues are common and also correspond to recording errors. Figure 1.8

represents the temporal series given by the PV plant for the year 2015.

28

1.4. Numerical codes

=
=
=
3}
=
3
=
~—
=
L

2.0 (‘
= .15
[} ()
S =
o o
o o
=] o
[} (3}
a ©LO
(&) (&)
n %)
05
oo | U
0e+00 1le+07 2e+07 3e+07 0e+00 20405 4e+05
timeins timeins
2.0
oLl 5]
= =
o o
o o
e] el
Qo <@
8 1.0 g
n)
05
0.0
0e+00 1e+07 2e+07 3e+07 0e+00 1e+07 2e+07 3e+07

timeins timeins

Figure 1.8: On the top left, the original scaled power production gathered on the the PV plant during the year 2015.
On the top, right the same data but only on the first week. On the bottom left, the original data but averaged by hour.
On the bottom right, only the positive power is kept among the origin data.

29

=
=]
.:
5}
=]
3
Bt
~—
=
|

Chapter 1 — Introduction

1.5 Thesis organization

This thesis presents the work done on Bayesian calibration especially conditioned by the two different application
cases detailed above. First, Chapter 2 recalls the main tools in sensitivity analysis, design of experiments, principle
component analysis, Monte Carlo Markov chains and Gaussian processes for a good understanding of Bayesian
Calibration. Chapter 3 gives a state of the art of Bayesian calibration methods. This chapter uses the application
case of the Python code to illustrate and compare the different statistical models that are existing. Then, Chapter 4
presents a package, called CaliCo, that completes Bayesian calibration in R which has been developed in the frame
of this thesis. Chapter 5 illustrates a comprehensive industrial study of calibration using the Dymola code and data

from a real PV plant. The document then concludes with a discussion and perspectives to be explored.

30

CHAPTER

STATISTICAL TOOLS FOR NUMERICAL
CODE CALIBRATION

a
Bt
D
N
2
<
=
&

2.1 Sensitivity analysis L e e e e 33
2.1.1 Morrismethod L 33
2.1.2 Sobolindices e e e 39
2.2 Kriging / Gaussian PrOCESSES . . . v v v v v v v v e e e e e e e e e e e e e e e e e e 42
2.2.1 General frameworko 42
2.2.2 Parameter eStimationo i e e e e e e e e e e e 45
2.2.3 Covariance functions 47
2.2.4 Gaussian process-based optimization 48
2.3 Design of eXperimentso e e e e e e e e e 51
2.3.1 Sampling criteria e e e e e e e e e 51
2.3.2 Distance between the points criteria Lo e 52
2.4 Principal component analysis (PCA) L 54
241 DIStance i e e e e e e e e e 54
242 Moments of inertial e 55
243 Axisof minimuminertia L. oo e 56
244 Contributiontothetotalinertia L L 58
2.4.5 Graphical representations oL e e e e e e e e e e e 58
2.5 Monte Carlo Markov Chains techniques 61
2.5.1 Gibbssampler L. 62
2.5.2 Metropolis Hastings 63
253 Metropolis within Gibbs 65
2.5.4 TImprovements of the Metropolis Hastings 65

Uncertainty Quantification (UQ) in an industrial context has become important over the last few years. All along
the process in an industrial cycle, from the research to the in-service and maintenance, UQ has an equivalent impact
on business and risk reliability. However, the procedure for establishing the impact of the variability of several
quantities on the output of interest has to be performed in multiple steps. From the identification of which parameter
is responsible for the most of the output variation to the propagation of uncertainty, there is several steps that are
detailed in Rocquigny (2009). Figure 2.1 is a graphical representation of the main steps in the UQ in an industrial

context:

* Step A is the problem specification. An identification of the quantities of interest, input variables, input

parameters, and of the numerical codes have to be done.

31

Chapter 2

Chapter 2 — Statistical tools for numerical code calibration

 Step B is the quantification of the uncertainty sources. Some components of the input variables or of the input

parameters might be randomly distributed as mentioned in Section 1.4.2. Their variabilities are identified and

the distribution densities determined in this step.

» Step B’ is the V& V step (Verification and Validation) which can be followed by calibration of the numerical

code.

Step C is the propagation of the uncertainty achieved through the code. The distribution of the quantity of

interest is looked for and particularly its moments (generally the expectancy or the variance), quantiles or

modes.

e Step C’ is the sensitivity analysis. The variables or parameters can be sorted in order of importance to identify

which variable or parameter has the most responsibility for the variability of the quantity of interest.

Step C : Propagation of
uncertainty sources

L'}

Modelisation with
probability
distributions

WL A
_

Direct methods,
statistics, expertise

Input
variables

Uncertain : x
Fixed : d

Step A : Problem specification

Model] Quantity of
(or measurement Var ra;: les interest
process) int:res " Ex: variance,
fix.d) Y = fx.d) prnhiEiIHy .

!

§tep C’ : Sensitivity analysis,

Prioritization
—
=
Observed
variables
Inverse methods, calibration, assimilation v
obs

Figure 2.1: Major steps in uncertainty treatment for industrial matters (source: Bertrand looss — ENBIS-EMSE 2009

Conference).

This thesis focuses essentially on step B’ and code calibration. However, before running any calibration on a

numerical code, preliminary studies have to be conducted. This chapter aims to introduce some of them in order

to help the reader in understanding the main steps of code calibration in an industrial context. First, two different

methods of sensitivity analysis are presented. The second section provides theoretical developments on Gaussian

processes that can be used as much in machine learning as in modeling some structural error. The third section

introduces the aspects of design of experiments and recalls some of the major tools used in the thesis. Then, the two

last sections present, theoretically, the principal component analysis and Monte Carlo Markov Chains techniques

that are useful for a complete understanding of the extensions used in the further work.

32

https://www.emse.fr/enbis-emse2009/pdf/slides/B.%20Iooss.pdf
https://www.emse.fr/enbis-emse2009/pdf/slides/B.%20Iooss.pdf

2.1. Sensitivity analysis

2.1 Sensitivity analysis

The quantification of the influence of each input parameter on the output is the task performed by sensitivity analysis.

It is interesting to access such an information because if the numerical code is time consuming, it can be helpful to
focus on a reduced number of parameters. In that sense, sensitivity analysis (SA) can be considered as a prerequisite
for model building in any setting (Saltelli et al., 2000). SA has a different meaning in different contexts. For an
engineer, it could mean to move each component of the input parameter vector at the same range and compare
the impacts on the quantity of interest. For a statistician, SA is the study of the variation of the distribution of the

density of the quantity of interest according to the change of specific parameters.

There are two major categories in SA: global and local methods. Local SA tends to quantify the impact of
a parameter around reference values. It is mainly done with partial derivatives. This kind of analysis is useful
when one is interested in understanding the behavior of the physical model nearby these values. However, these
methods do not allow to study the effect of the input parameters on the output when they have an important area of
uncertainty. Contrary to local SA, global SA aims to study the variability of the quantity of interest driven by input
parameters variation on all their area of uncertainty. In this section, we present only global SA methods mainly
because in this thesis we are interested on the overall impact of the parameters on the variability of the quantity of

interest.

Global SA can be performed in several different ways. First, screening methods allow to explore quickly the
variability of the output, given by a numerical code, induced by a variation of the, potentially large, input parameter
vector. The importance criterion in such methods is the amplitude of the variations of the code output obtained for
different input parameter values. Screening methods can also be categorized but we only focus on Morris method
Section 2.1.1 (Morris, 1991) because it requires less assumptions about the model compared to the other screening
methods. These methods only allow to identify the non-influent parameters. If one is interested in classifying by
order of importance the parameter influence, sensibility indices can be used. Sensibility indices are defined as a
measure of the influence of an input parameter on the variability of the output. If the chosen measure of importance
is the variance, then the indices are called Sobol indices (Sobol’, 1990) and are presented in Section 2.1.2. However,
these methods require a lot of code calls and if the code is time consuming they become quickly intractable. To
estimate, with a limited computational impact, sensitivity indices, smoothing methods or surrogate of the code
function have been developed. For example, Sudret (2008) demonstrates that Sobol indices straightforwardly arise
from the chaos polynomial decomposition. Kriging surrogate also allows to obtain analytically the sensitivity
indices formulation as it is shown in Oakley and O’Hagan (2004); Marrel et al. (2009). Da Veiga (2015) also
introduced global SA methods which use dependence measures as the mutual information, the distance correlation
or the Hilbert-Schmidt Independence Criterion (HSIC). Then, De Lozzo and Marrel (2016) have extended this work
for a screening purpose and allow to decrease the computational time burden.

2.1.1 Morris method

Morris method aims to evaluate the influence of each input parameter by considering the impact of its variation on
the output considering the other ones as constant. This way to operate consists in moving each parameter one at a

time ("One At a Time" or OAT method). Then, the input parameter space is discretized on a grid.

Sampling space

Since the parameter range values are not all of the same order, the sampling design of the Morris method is
standardized over the interval [0, 1]. Thus, for p parameters, the sampling plan will be contained in a hypercube

o = [0, 1]7. To generate a comparable variation for each parameters, a step 6 is defined. For each parameter, the

33

a
R
2
N
=
=]
=
O

Chapter 2

Chapter 2 — Statistical tools for numerical code calibration

1
Y O0—1
axis is split into Q — 1 equals sections. Usually, the step & is chosen equally as the sampling step ﬁ but one can

sampling plan is divided in Q levels such as D = [0 %, .., 1] (where D stands for the sampling grid). Each
also pick ak € N™ such as § = ﬁ Figure 2.2 illustrates these variations. To define them, a point is randomly
selected on the grid D. Then, a sign is also randomly selected (practically a Bernoulli random variable) to indicate
the direction of displacement. The new point being found, a new random test on the sign of § is run to move in
the second direction. This procedure is repeated p — 1 times and is called a trajectory. In its paper Morris (1991)
advocates to select § = % and Q even such as not to favor any area of the space. However, the step of such
selection might imply some lost of information on the parameter. For the rest of the thesis, the choice of § = ﬁ

will always be made.

Let us define a toy function f; such as:

0,1’ =R
(61,62) — f1(61,62) 2.1)
0 — f,(0).
01
The parameter vector 8 can be extended to a vector with p componentas 8 = | : | (if the function takes p
0y

input parameters as it is the case for f.). If we choose a sampling level of Q =9, Figure 2.2 illustrates the grid
obtained and 4 different trajectories for f;.

“Tra P5

0.75 B6

P10 P11

&' 050

P9 P3

P8 P7 P1 P2

ampling ste

0.00

Figure 2.2: Sampling grid on the scaled space.

Let us call r the number of trajectories accomplished (Figure 2.2, r = 4). In his paper, Morris (1991) advices
not to take a too high r. The aim is to screen the input parameter space with some displacements, not to generate a
design of experiments representative of the original space (some of them are developed in Section 2.3). Note that if
one of the chosen point is taken on the boundary of the grid, then the sign of § is not randomly chosen. Indeed, to

stay in the input parameter space, the sign is set such as the displacement stays in the grid.

34

2.1. Sensitivity analysis

Elementary effects

These variations of each parameter are quantified by elementary effects (EE) (Morris, 1991). For the function f,
defined on [0, 1)”, the EEs can be written as:

Elementary effects

(g\]
S
; :)
0 Fe(6i+878) — f.(0i+6),5) "y 2
kT (i)) (.) 2
o0&’ (k) 5
where:
O]
51 51 51
£<l> =10 Sk Sk 5
0 0 Sp

with e(()i) =(0,... 7O)(,-)T and where slii) stands for the k" column vector of the matrix £().Vi € [1,7] SIEi) (k) = s,@,

€1 possesses p lines with s,(f> =+1Vke[l,p], 6;=(64,..., Gp)(Ti) is the i point in the design, and A,(:)fc is the

elementary effect of the k" parameter at the iteration i and § stands for the step.

o
N) and P; coordinates by

0
In the 2 dimensional example (Figure 2.2), P, coordinates are given by f; (!
¢

0 1
fi "). The direction is positive so: € = <0> . From this example, the elementary effect for the first trajectory
2

and for 0 is defined by:

o)) AG)0)2) ())

- 5 5

This matches with the finite difference on 6; and for a step d. Visually in Figure 2.2, it coincides with the

difference of the values of f; at the unnormalized points P, and P; and divided it by &.

For r Morris trajectories, there will be N = r(p+ 1) calls to the function f,.. Two indices computed with the EEs
allow to compare the effect of the variation of each parameter on the output. The first is the expectancy of the EEs
for each parameter (Faivre et al., 2013; Saltelli et al., 2000, 2004; Morris, 1991):

AVF. (2.3)

SN | =
.M‘

L/L\k:

i=1

If f. is periodic, the mean of the EEs is near zero. This does not mean that the parameter has no impact, that is
why it is better to use the mean of the absolute value of the EEs pu* (Faivre et al., 2013; Saltelli et al., 2000, 2004):

35

Chapter 2

Chapter 2 — Statistical tools for numerical code calibration

o~

the estimated expectancy u*

—~ 1L
B =7 L1808 24)

The second index is the standard deviation of the EEs (Morris, 1991; Saltelli et al., 2004):

the estimated standard deviation 6;

6 — 1
k= r—li

Indices fi, ‘ak; and o/ are Monte-Carlo estimators of respectively (i = Eg[Arf.(0)], i = E@HAk f(0) |] and
o} = Var(Acf+(©)) with ® ~ Unif[{0, ..., ﬁ, ..., 1}P]. Thus, under regularity conditions of f, and its deriva-

tives, when & — 0 these estimators converge toward Iy = Jio, 1k g—g(e)de, /I,’; = Joop ‘%ZKG)(ZG = H%;

AD £ —)2, 2.5)

-

1

| and

~ arz ~ Afe (12 ~
O'k2 = f[o,uka%k (e)defﬂ% = ||a£k

2
2~ Hi-

If the relation between the k" input parameter and the output is linear then the mean of the elementary effect is
proportional to the intensity of the relation. The index oy, on the other hand, allows to detect interactions between
input parameters and is sensitive to the non-linearity of the output function of the k' input parameter (Faivre et al.,
2013). A graph of the elementary effects can be display considering the x-axis as /jt* and the y-axis as 6. Then,

three areas appear:
* for low values of y and Ok, the k™" parameter is considered as having a negligible impact on the output,
* for hight values of u;” compared to Ok, the k™" parameter has a strong linear effect on the output,

« for hight values of G the k' parameter has either a strong non-linear effect on the output and/or includes one

or several interactions with other ones.

One of the limits of this method is that we cannot differentiate parameters that have interaction with other ones
from those which have a non-linear effect on the output (Faivre et al., 2013). To access this information another
study has to be performed afterward. Computing the Sobol indices on the parameters left can be a solution (see
Section 2.1.2 for further details).

Morris function

In its paper, Morris (1991) introduced a test function of the method that allows to visualize the three areas. The

function takes 20 input parameters and is defined as:

20 20 20 20
Y=o+ Z Biwi + Z Bi,jwiw;j+ Z Bijiwiwjw; + Z Bi jiswiwjwiwy, (2.6)
i=1 i<j i<j<l i<j<l<s

where,

2(1.1x2%~ —0.5) fori=3,5,7
i — (I.1x757 —0.5) fori=3,5,7,
2(X;—0.5) otherwise.

36

2.1. Sensitivity analysis

The B are defined as:

Bi =20 for i=1,...,10,
Bi,j=-15 forij=1,...,6,
Bij;=—10 forijl=1,..,5,
Bijis=5 for i,j,1,s=1,...,4.

All the f;, B; j left and fBy are sampled according to a standard normal distribution. The number of parameter p

is equal to 20 and r = 5 trajectories are achieved on a sampled space with Q = 9. Figure 2.3 illustrates on the left

S
]
2
N
=
<
=
o

the results of the method with the, previously defined, settings for the Morris function and on the right 10 repetitions
of the method on the same function.

X3 X5 ..
150
60 X6
XX5
X4
X7 x5 X2
X3 xi
e 100 X" e
40 X5 X3
X5 X
X5 X1 X§
© © K Xl
xxe X1
X7y o X6 X
20 50 @g%i xa%q
X1
X8
X5 X9 A6
X5
14
2@8 X9,
x5 X8 X10 iﬂé@ ;
0. X186 0 w
0 10 20 30 40 0 50 100 150
H m

Figure 2.3: On the left panel a result of Morris method on the Morris function and on the right panel 10 repetitions
of the method.

The three areas presented above are visible in Figure 2.3. The parameters X8, X9 and X 10 are in the area where
the mean of the EEs are high compared to the standard deviation of the EEs. That means these parameters have a
linear impact on the output. Then, parameters X 1, X2, X3, X4, X5, X6 and X7 are in the area where o is high. All
other parameters (from X 11 to X20) are negligible since they possess low values of u* and ¢. This method only
allows to identify the parameters to neglect for further study. However, some variability is visible on the right panel

of Figure 2.3 because 10 repetitions of the method gives different results.

Non-parametric bootstrap

To quantify the variability of the method, a non-parametric bootstrap is run. This has the advantage to run only once
the Morris method. A N re-sample is done on the matrix of the EEs called A. In this case the aim is to estimate the

following: bias, variance and credibility interval at 95%:

37

Chapter 2

Chapter 2 — Statistical tools for numerical code calibration

b(8) =E(6—-6) (2.7)
6(0)% =Var(0) = Var(6 —6) (2.8)
CI(8) = 6+ [g97.5% (6 — 8):q2.5%(6 — 6)] (2.9)

These values straightforwardly depend on the distribution L(§ — 6). Bootstrapping allows, here, to simulate

another distribution L(§* — 5) to estimate these coefficients.

(u*,0)
)
Al Al ITH
A= : - 6=
AL LA TEG
!
Al Al TR
A= : : - 0=
AF LAY w' o

Because of the low number of simulations used in Morris method, the uncertainty on the estimated matrix 6
can be high. The lines A* (A};*, ...,A}") are each of them sampled uniformly and re-injected among the lines A
(A};7 ...,A}). This operation is completed N times to get N estimations of 6* (§1*, e §}\‘,) Then for each sample,

the coefficients introduced above can be estimated as:

_ N
b(8) = l Z o 6. (2.10)
Ni:l
—=2 1 N _2 1 N _\2
) =-Yo6 —(-Yor 2.11
c(6) Ni:ZI i (Nl; l) ’ 1D
]C(/@\) = a [/9\ 9 [975%*1\/] /9\ 6*[2.5%*N]} (2.12)

- [[97.5%+N)> 2 5%*N]}

where 6:[97‘5%*1\,] corresponds to 6;[1] <..< B*M and [x] = E(x).

To visualize graphically the results given by the bootstrap, scatter plots can be displayed. Figure 2.4 gives
the bootstrap results for N = 1500 and for » = 100 trajectories of Morris. This shows the trustworthiness of the
hypothesis about the variability of the method. The biggest variability concerns only the parameters from X1 to X7.
However even with the variability, the three areas are distinct and the decision about the parameter to neglect can

still be achieved.

38

2.1. Sensitivity analysis

50

0 20 40 60 80
M

Figure 2.4: Scatter plot of the Morris indices given by the 1500 iterations bootstrap.

2.1.2 Sobol indices

The Morris method only allows to detect parameters that have no impact on the output and hence can be negligible.
However to get more information on which parameter has the more influence on the output, another method needs to
be applied. Sensitivity index based on a measure of importance can be used and in this section, the variance-based
sensitivity analysis is presented. This method is also called Sobol method and uses the variance as the measure of

influence of the output to get sensitivity index.

First order sensitivity index

Sobol method has been introduced by Sobol’ (1990) and, as it is the case for the Morris method, the parameter input
space is normalized between O and 1. It means that the space Q is the & sized hypercube. From Fourier Haar’s series,

Sobol, in a previous work, had proposed a decomposition of the function f. such as:

k
fc(913~~'79k):f60+2fc',‘ + Z fcl} 9176)+ +fc12 (91, -79k)' (213)
i=1

<i<j<k 7

For Equation (2.13) to make sense, f., must be constant and the integral of each part of the sum must be null:

1
/fci1 (8., 0,)d6, =0 if 1<k<s. (2.14)
0

The consequence of Equation (2.13) and Equation (2.14) is that all the parts of the sum are orthogonal. So, if

(i],...,is);é(j1,...,j1)then:
/ Foyoifer,. ;8 =0, (2.15)

Sobol shows, in its article Sobol (1993), that the decomposition given in Equation (2.13) is unique and all the

terms can be evaluated thanks to multidimensional integrals:

fuu(8) = m+/ /ﬁ 0.,

Forr(01:6)) = — oo — fur(0) — fo (6 +/ ‘/ﬁ o).

where d6..; and d6._;; stands for the integrations over the whole domain Q without (respectively) 6; and, 6;

39

S
]
2
N
=
<
=
o

Chapter 2

Chapter 2 — Statistical tools for numerical code calibration

and 6;. Total variance D of f.(6) can be expressed by:

p— /Qk F20)d0— f2. 2.16)

In a similar way and thank to the decomposition introduced in Equation (2.13), partial variances can be written

as:

1 1
D""“""'V:/o /0 2 (B 0,)d6;, a6, 2.17)

where 1 <ij <---<ig<kands=1,...,k. When the square of Equation (2.13) is taken and then integrated

over QK the total variance is written:

k
D=) Di+) D+ +Dis (2.18)

i=1 1<i<j<k

The first index in the Sobol method is called the first order Sobol index and is defined as:

First order Sobol’s index

D.
Si= 7. (2.19)

The first order Sobol’s index is S; for the parameter 6;. This index allows to quantify the principal effects of this
V“Z%‘ﬁ"] is, here, found back. The S;; for i # j are called
second order index and allow to quantify the interactions between 6; and 6; that are not taken into account in S;. If

Equation (2.18) is divided by D and replaced by Sobol’s index defined in Equation (2.19), then:

parameter on the variance of the output. The formula S; =

k
Ysi+ Y S+ +Siaax=1 (2.20)

i=1 1<i< j<k

Total effect index

Total effect index or total sensitivity index (TSI) are defined as the sum of the all the indices encompassing the

studied parameter. This definition can be rewritten as:

Total sensitivity index

TS(i)=YS:. (2.21)

ICi

In a 3-dimensional toy example, the TSI of the parameter 6, is given by T'S(1) = S; + S12 + 813 + S123 where S|
is the first-order index of the parameter 6; on the output y., S12 and S;3 are the second order index which are
quantifying the interactions of 8; with 6, and 63, and S;23 the third order index. If TS(i) & S;, that means only
the first-order index has a significant impact on the output and the superior order indices are then negligible. It is

common to compute the first order index and the total index to check if interactions are present.

Compared to the Morris method, Sobol indices allow to visualize interactions between parameters. However,
the computation of the first order and the total effect Sobol’s indices are performed with a design D. To have a

global study on the overall impact, for the range of D, the analysis has to be run for each 8 in D which is really

40

2.1. Sensitivity analysis

time consuming. Some optimal design of experiments can be used to compute the Sobol indices such as optimal

Latin Hypercube Sampling (LHS detailed in Section 2.3) described in Saltelli (2002) for example.

Test on Ishigami functions

The Ishigami function is a non-monotonic test function which is defined by:

Y =sin @) +Asin® 6, 4+ B65 sin 0, (2.22)

with 6; ~U(—m,7m),A =7 and B=0.1. From a first prospect, no parameter seems having a bigger impact on

Chapter 2

the output than another. As a matter of fact trigonometric functions and different coefficients lead to a difficult
interpretation of the function. The scatter plots in Figure 2.5, represent the output function of each parameter and

allow to visualize the behavior of the function according to a specific parameter.

Figure 2.5: Scatter plots of the Ishigami function where the output is given function of the each parameter.

The results of the first order and the total effect Sobol’s indices with the Ishigami function are represented in
Figure 2.6. The can point out a first remark that the total index is close to the first index for the parameter 6, but
they are far away for 0; and 6. It means that for 6, there is likely no interaction with other parameters. However, a
strong interaction is denoted for 0; and 65 by the Sobol’s indices. As there is only three parameters, the interaction
is only between 6, and 63. Figure 2.6 also represents the box-plot of a bootstrap of 1000 iterations. The variability

of this method is lower than the one obtained by Morris.

First-order sensiiity index
3 Total sensitivity index

-
T

0.2

0.0

6, 6, 63

Figure 2.6: Sobol’s index computed for the Ishigami function and the boxplots representing the variability of 1000
bootstrap iterations.

41

Chapter 2

Chapter 2 — Statistical tools for numerical code calibration

2.2 Kriging / Gaussian processes

In mining engineering, predicting the content at site, knowing the content of neighbor sites by a Gaussian process
comes from Krige (1951) and is called Kriging. Then Matheron, in Matheron (1963), has proposed the Kriging
method to model spatial data in geostatistics (Cressie and Noel, 1993; Stein, 2012). This is Sacks et al. (1989) that
have used this formal modeling as surrogate in a numerical experiment framework. More than a surrogate, this kind
of modeling brings also an indicator of the uncertainty according to a prediction of the surrogate at a given point.
This section will focus, first, on the general framework of the Gaussian process and in a second part on the main
parameter estimation methods. Then, on a third part some general covariance functions, used to depict correlation
between nearby sites, are developed. To optimize the design of experiments regarding the quality of the Gaussian
process, some Gaussian process-based optimization method have been developed and one of them, named Efficient
Global Optimization (EGO), is presented in the fourth part.

2.2.1 General framework

Let us consider a probability space (Q,.%, 1) where Q stands for a sample space, # a ¢-algebra on Q and 7 a
probability on .%. A stochastic process X is a family as {X; ; t € .7} where .7 C RY. It is said that the aleatory
process is indexed by ¢. At fixed, the application X; : £ — R is a random variable. At ® € Q fixed, the application
t — X; () is a trajectory of the stochastic process.

Fort; € ,....t, € 7, the probability distribution of the random vector (X;,,...,X;,) is called finite-dimensional
distributions of the stochastic process {X; };c ~. Hence, the probability distribution of an aleatory process is deter-
mined by its finite-dimensional distributions. Kolmogorov’s theorem guaranties the existence of such a stochastic
process if a suitably collection of coherent finite-dimensional distributions is provided.

A random vector Z such as Z = (Zy,...,Z,) is Gaussian if VA,,...,4, € R the random variable ¥ | 4,;Z;
is Gaussian. The distribution of Z is straightforwardly determined by its two first moments: the mean pu =
(E[Z1],...,E[Z,]) and the variance covariance matrix X = cov(Z;,Z;)1<;, j<n- When X is positive definite, Z has a
probability density defined by Equation (2.23).

‘2‘71/2

n(z) = (zﬁ)n/Z

exp{—%(z—u)TE*I(z—u)}. (2.23)

Let us consider two Gaussian vectors called U7 and Uz such as:

U, oo (M 7 i1 i .
U, 75 301 oo

The conditional distribution Uz |U7 is also Gaussian (Equation (2.24)). This property is the base of Kriging

when a Gaussian process is used as a surrogate of a function.

Conditional distribution

Uz|Uy ~ JV(Mz I 22712f,{(U1 —p1), X — 22,1217712172)- (2.24)

A stochastic process {X; };c 7 is a Gaussian process if each of its finite-dimensional distributions are Gaussian.
Let us introduce the mean function such as m : ¢t € 7 — m(t) = E[X;] and the correlation function such as
K:(t,i'Ye T xT — K(t,t') = corr(X;,X,) (as well noted r(z,') in the thesis). A Gaussian process with a certain

variance noted 6> will be defined as Equation (2.25).

42

2.2. Kriging / Gaussian processes

X(.)~ 29 (m(.),c%K(.,.)). (2.25)

Gaussian processes are used in this thesis in two cases. In the fist one, f. is a code function long to run and the
Gaussian process emulates its behaviour. Then the Gaussian process is the surrogate of the code. The second case is
when we want to model the error made by the code (called code error or discrepancy). For the former, we want to
create a surrogate f. of a deterministic function f,. Let us define this function to emulate f. such as:

f.:2CR SR
06— £.(0).

(2.26)

Following previous statement, f. is a realization of a Gaussian process. In a Bayesian framework, the Gaussian
process is a “functional” a priori on f. (Currin et al., 1991). The natural idea of the Gaussian process emulation is
to use known evaluations of f. at some selected points from a design of experiments D, and access information of
the evaluation of f. at some point 8¢ where 8¢ ¢ D. The modeling with a Gaussian process of the function f. can

be written as:
fe(e) ~ P9 (H(e)" B,6°Ky(e,0)), (2.27)

where S is a parameter vector such as 8 = (fi,...,B,). o2 and 1 respectively stands for the variance and the

correlation length of the covariance function ¢ 4 (e,®) = c(e,0) = 62Ky (e,) and H () the matrix of regressors.

The covariance function is defined as:

Covariance function

(0,0') € 2x 2, ¢(0,0") = 67Ky (0,0). (2.28)

Equation (2.27) can also be written as:

Gaussian process

0c2, f.(60)=H(6)B+Z(6), (2.29)

where Z(0) represents a centered Gaussian process characterized by its covariance function ¢(Z(0),Z(0’) =
62K¢ (6,60"). Let us consider a toy function f; we try to emulated by a Gaussian process with 5 points in the design

of experiments:

fi:[0,1] =R

(2.30)
0 y=(60—2)sin(116 —4) .

To visualize the impact of parameter values, some Gaussian process realizations are performed with different
values of 62 and 1. The results are displayed in Figure 2.7 and allows to note that these parameters values impacts

the Gaussian process quality.

Usually 8, 6% and 1) are unknown. Some modeling consider them as determined values but, practically, they
are estimated upstream with methods described in Section 2.2.2. They also can be considered as unknown during

the Gaussian process modeling with their associated uncertainty encompassed. However, this could lead to complex

43

Chapter 2

Chapter 2

Chapter 2 — Statistical tools for numerical code calibration

Figure 2.7: Different Gaussian process emulations for the toy function defined Equation (2.30). On the first panel
(on the left) the Gaussian process is estimated with 62 = 1 and y = 0.1. On the second panel (on the middled left),
02 =5 and y = 0.1. On the third panel (on the middle right), 6> = 1 and ¥ = 0.2. And, on the fourth panel (on
the right), 62 = 5 and y = 0.2.

modelings. In what follows, we consider 3, o2 and 1) as determined values.

Let us consider that N evaluations of f, are available (where f. is the general function of Equation (2.27)) at N
different points of a design of experiments D. We note the design of experiments (DOE) D = (8,...,0y)" and the
corresponding outputs of D by f., ye = (v1,...,yn)!. To get the evaluation of 8y € .2 — D by f., we are interested
in knowing the distribution of f,(6¢) conditionally to Y, where Y, = (f.(61),..., f¢(Oy)). This can be written as:

(ﬂ(%)) N JV< (H(Bo)Tﬂ> o (Zy(60) z¢(00,0)>) 0an
Y, H(D)'B 3y (00,D)" Ty (D)
where H(D) = (H(61),...,H(0N)), H(60) = (H(63),...,H(6})), Z(00) = Ky (60,60) = I, (because

of the kernel regularity), (2.(00,D))1<i<y = Ky(600,0;) and (X (D))1<i,j<nv = Ky (0;,6;). Using Equation
(2.24), it comes straightforwardly that:

fe(00)|Ye =ye ~ «/V(#oo\pﬁgow),

with,
lgyp = H(60)" B+ 34(00,D)Zy (D)~ (y. — H(D)' B), (2.32)

Cooip =0 (1 - Ew(90,D)T2¢(D)’12¢(00,D)). (2.33)

In prediction, the mean can be used to approach the value of f,(6¢) and fo: 00— Hgo|p- The variance 630‘ D
represents the uncertainty associated to the prediction of f.(6¢) by fc(Oo). A confidence interval can be established
for the surrogate because:

c 0o) —
M ~ H(0,1). (2.34)
GGO‘D

Jones et al. (1998) proposes to validate the surrogate with a “leave-one-out” cross validation method which

consists in testifying that 99.7% of the i = 1,...,n:

€[-3,3], (2.35)
(72
0o|D

where fc,,.(ei) and 630‘ D respectively stands for the posterior mean and the posterior variance obtained by
Equation (2.32) and Equation (2.33) for a design of experiments D = {601,...,0;_1,0;:1,...,0x}.

44

2.2. Kriging / Gaussian processes

The predictor fc(Oo) is the Best Linear Predictor (BLP) if it minimizes the following Mean Square Error (MSE):
MSE (60) = E[(f(60) — fe(60))*]- (2.36)
With 3, 6% and) fixed, and under hypotheses of Equation (2.27), the best linear predictor of f.(8g) is

Best linear predictor

80 — H(00)" B+ (00,D)Z (D) (y. — H(D)' B). (2.37)

This predictor is unbiased and its mean square error is equal to MSE(0¢) = 0'30‘ p- 1f the evaluated point is

taken in the original design D (i.e. 8g = 0; € 2), then ,uéo‘D =y; and Géo\D =0.

2.2.2 Parameter estimation
Maximum likelihood estimates

Practically, B is unknown, and, to estimate it, a generalized least square method is commonly applied which

corresponds to the maximum likelihood of Equation (2.23). This gives:

p=(H(D)"Sy(D) 'H(D))'H(D) Sy (D) 'ye. (2.38)

The predictor given Equation (2.37) can be rewritten as:
Je(80) = H(B0)" B+2y(00,D)Zy (D) (ye — H(D)" B), (2.39)

and its mean square error is:

Var(f.(80)) = E(fc(6o) — f(60))* (2.40)
o :

+u(60)" (H(D) 2y (D)~ H(D))™'u(80) — Ly (80.D) 2y (D)~ 'Ey (60, D),
where u(6o) = H(00)" £, (D) 'L, (00, D) — H(8p). This prediction mean square error is applied when £3 is not
fixed. If it is fixed the prediction mean square error is given Equation (2.33) but in both cases the predictor mean

square error corresponds to the predictor variance since it is unbiased. If we consider 62 and 3 as unknown, the
covariance matrix known, then fC(GO) is the Best Linear Unbiased Predictor (BLUP) of f.(0g).

To estimate the parameter 62, that only intervenes in the calculation of the root mean square error, a maximum

1

= (Ye— H(D)B)'2y (D)~ (Yo~ H(D)B). (241)

likelihood can be applied and:

45

Chapter 2

Chapter 2

Chapter 2 — Statistical tools for numerical code calibration

Then, the parameter 4} is estimated after having plugged 3 and 62 in the likelihood and getting the maximum.

After parameter plugging, the opposite log-likelihood can be written as:
L (Yeitp) < Nlog(?) +log(|Z4 (D)), (2:42)

and, ¥ = argmin L (Ye;1).
b

The resulting predictor
Je(80) = H(80)" B+Z(60,D) L,;(D)(Ye — H(D)B) (2.43)

is called EBLUP (Empirical Best Linear Unbiased Predictor) although it is neither linear nor unbiased. Maximum
likelihood estimation, and “plug-in” techniques under estimate the prediction variance (Handcock and Stein, 1993;

Helbert et al., 2009) and does not take into account any uncertainty affecting the parameters 3, 6 and).

Bayesian estimation

In this section we focus on Bayesian estimation of 6 and 3. We will consider a three level hierarchical model,
in the sense of Robert (2007), in where the lowest level only deals with the parameter 3. At the second level, the
parameter ¢ controls the distribution of 3 and at the top level, the parameter v/ controls the distribution of 6 and
. Note that the estimation of 6% causes the loss of normality a posteriori. The prior density of (8, 0?) can be

written:

n(ﬂ,cz) = 7T(,3|O'2)7'C(62). (2.44)

In this section we will work with the four configurations of priors present in Santner et al. (2013); Le Gratiet
(2013):

1. 62~ 79 (a,7) and B|c? ~ A (bg, 0% Vp)
2. m(0?) o 2y and B|6* ~ A (bo, 5> Vo)

3. 62~ F9Y(a,y) and n(B|0?) o< 1

4. m(0?) o< 5 and 71(B]6?) < 1

The first case is the more common in Bayesian Kriging because both priors are conjugate to a normal likelihood
and the posterior density can, explicitly, be written. In the presented configurations, .# ¥ («, v) stands for the inverse
Gamma distribution

7 e VX

ﬂ(x) = F((X) xa+1]1X>0-

The computation of the posterior density can be done for each cases and for v fixed. In each cases, the posterior
can be expressed as 7(8|yc,0%) ~ A (VLX) with:

(HT%.,(D)H +Vy)/o* for the cases (1) and (2),
(H'xy(D)H)/o? for the cases (3) and (4),

sl _ (2.45)

and,

(HTL,(D)ye + Viobo)/o? for the cases (1) and (2), (2.46)
V= .
(H"%4(D)y.)/0? for the cases (3) and (4).

46

2.2. Kriging / Gaussian processes

In the second level of the hierarchical model, we are now considering 2. We can write:

. 2 2 2
E(Gz‘yc) _ g<yc,/876n)(7yti?|o-)7[(6)7 (247)

and this equation leads the posterior distribution 62|y. ~ .#9(0s, Y5) Where

27+ (bo—B*) (Vo + (H'E, H) ! (bg— B* +77) for (1),
bo—B*)(Vo+ (HTEL ' H) ' (by— B* + for (2) ,
Yo = (bo—B*)(Vo+ (H X, H) " (bo — B* +7") (2) (2.48)
2y+v* for (3) ,
e for (4) ,
with 8* = (H'S JH) " (H'E 'ye), v =yl (2, -, HH"E JH) " H"E)y, and:
%—ka for (1),
% for (2)
a5 = (2.49)

[NSTa ST STpST

=z =
|
+
R
5}
=
—~ o~~~
w
~— ~ ~

A posterior predictive distribution can also be available by integrating, over the domain of 3, 7(3|ye, 62) and
then integrating the result over the domain of 6. Details of this method are pursued in Le Gratiet (2013). Another

method, based on cross validation, is used by Bachoc et al. (2014) to estimate the parameters.

2.2.3 Covariance functions

The choice of the covariance function is crucial in establishing a Gaussian process. Figure 2.8 illustrates the different

results that one can have with different covariance functions.

0.00 025 050 075 1.00 0.00 025 050 075 1.00 0.00 025 050 075 1.00 0.00 025 050 075 1.00
X X

Figure 2.8: Different Gaussian process estimation for the toy function Equation (2.30) with 6> = 5 and y = 0.1 but
with different covariance functions. On the first panel (on the left) the Gaussian process is estimated with Gaussian
covariance function. On the second panel (on the middled left), with a Matérn 5/2. On the third panel (on the
middle right), with a Matérn 3/2. And, on the fourth panel (on the right), with an exponential.

This section recalls the main correlation functions, that will be used for further purpose in the thesis, but the
reader is invited to refer to Rasmussen (2004) or Santner et al. (2013) to have more details. In this section and in all
the thesis, when it not specified, the Gaussian processes will be considered as stationary (the covariance function is
a function of the only argument 8 — 6’ and depends on the distance and the direction of two points in the space)
and isotropic (the covariance function is a function of the only argument |@ — &’| the euclidean distance between
0 and 0’). When the Gaussian process is used to emulate the function ., the choice of the correlation function

depends on the regularity of the function. Just as a recall, ¢ o, = 0'2K¢ where ¢ represents the covariance and Ky,

47

a
R
D
N
2
<
=
&

Chapter 2

Chapter 2 — Statistical tools for numerical code calibration

the correlation functions.

The exponential functions

The exponential family can be written for a euclidean distance d such as d = |6 — 0’| with @ = (6y,...,6,)" and
o' =(6,...,6,)":

Exponential function family

dV

for0<v<2 Ky,(d)= l—plexp{ - E}. (2.50)
j=1

This function is a product of unidimensional correlation functions. The parameter 1) is a vector that specifies
the correlation length in each direction. If 9/ is a scalar the function is isotropic. This parameter influence the
correlation scale of the process. If v =1 the function is called exponential, but if v = 2 the function is called
Gaussian (otherwise it is a generalized exponential function). For 0 < v < 2, the covariance function is differentiable
in root mean square and the trajectories are almost likely continuous. However, the Gaussian covariance function is

infinitely differentiable which generates a smooth process.

The Matérn functions

The Matérn family (Matérn, 1960) can be written for a distance d such as d = |@ — 0’| with 8 = (6y,...,0,)" and

0 =(6],....6,):

Matérn function family

K ﬁ ¥yldl” Jv(®)ld]), (2.51)
wv(d LT (vyov-TV47 '
j:

where Jy is a modified v order Bessel function. Identically as for the exponential family, the parameter v controls
the regularity of the process. For the Matérn family, if v > m then the process is m differentiable in root mean square.
The parameter 1) still influences the correlation scale. Usually, the Matérn 5/2 and Matérn 3 /2 are considered and
correspond to v =35/2 and v = 3/2 (Rasmussen, 2004).

2.2.4 Gaussian process-based optimization

When the code to emulate is time consuming, the number of code calls is limited. Once the Gaussian process is
established, if its variance is too high, it is possible to identify sequentially the inputs locations where the code f.
has to be run to improve the estimation. These new points are generally found around global minimum of f,. over
the initial design of experiments D. This method is called Expected Improvements (EI) strategy (Jones et al., 1998)

and EI is defined as:
Expected improvement (El)

EI(0) = E(m— fc(0))1,(6)>m> (2.52)

48

2.2. Kriging / Gaussian processes

where 0 is the parameter vector, m the global minimum of f. over the initial design of experiments D and the
expectancy is taken on the distribution of f.. Figure 2.9 illustrates the values of the EI for the emulated Gaussian

process on the function defined Equation (2.30).

10

> 0
-5
-10
0.00 0.25 0.50 0.75 1.00
03+
0.2
w
0.1
00 N A
0.00 0.25 0.50 0.75 1.00

X

Figure 2.9: Expected improvement computed for the Gaussian process established on the function defined Equation
(2.30) with 5 points in the original design of experiments.

Let us consider that k simulations are run and the outputs are expressed by f.(Dy) where Dy is the design of
experiment used to establish the k' Gaussian process. The EI criterion expresses the expected improvement brought
by a new point close to the global minimum of f.. The new point 6;; will then be the one that maximizes the

expected improvement:

Ox+1 = argmax EL(0),
o

(2.53)
= argmax E ((mk) - Fk(gk))]le(ek)>m)

o
where my = minf(Dy) and Fj is the current Gaussian process (established with Dy). If the Gaussian process
(GP) used to emulate f, was deterministic, the EI criterion would be my, — tr(0) if pg(0) < my (with up(0) the
mean of the Gaussian process) and 0 otherwise. In the case where F is stochastic, the expectation of its truncated
difference with respect to the distribution of Fj represents the EI criterion. The algorithm that consists in improving
the Gaussian process by updating each time the design of experiments based on the EI criterion is called Efficient
Global Optimization (EGO) (Jones et al., 1998). Figure 2.10 illustrates two iterations of the algorithm and shows at

each time the new point to add in the new DOE.

The convergence of the EGO has been proven by Vazquez and Bect (2010) under some assumptions such
as non-degeneracy of the covariance function of the GP (called the Non-Empty-Ball property) and 7-almost all
continuous functions, where 7 is the probability distribution of the GP. Then, Bull (2011) has shown that expected
improvement can converge near-optimally, but a naive implementation may not converge at all. Practically the algo-
rithm is stopped after a limited (and authorized) number of calls or when the improvement m;, becomes negligible.
In Ginsbourger (2009) it is shown that with comparable levels of performance and based the second stop criterion,
EGO algorithm does not need as much code call as for other regular optimization methods. Figure 2.11 illustrates
the end of the EGO algorithm for the toy function of Equation (2.30).

49

Chapter 2

Chapter 2

Chapter 2 — Statistical tools for numerical code calibration

10 10

-5 5

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.100

0.075

{1 0.050

0.025

0.000 o il 5 RO i e

Figure 2.10: 2 EGO iterations with on top the GP updated based on the previous point found with the EI criterion
and on the bottom the EI values corresponding to the GP on top. The point in orange is the EI maximum used to
establish the following GP.

10 10
5 5
> >
0 0
-5 -5
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.009

] 0.006

0.003

0.000
0.00 0.25 0.50 0.75 1.00

X

Figure 2.11: 2 last of the 6 iterations of the EGO algorithm.

50

2.3. Design of experiments

2.3 Design of experiments

So far, the Design Of Experiments (DOE) to build a Gaussian process as a surrogate or for the Sobol sensitivity
analysis was considered known. In both cases, the number of code calls matches with the number of points in the
DOE. So it is important, especially when the code is time consuming, to find the design that gives the maximum
of information but with a limited number of points. Let us keep the same notation introduced in Subsection 2.1.2
where the DOE was represented by D = {0, ...,0y} with D C 2" and 2 C R”. A mathematical criterion, that
specifies that the points are well spread in the parameter input space, needs to be defined. Several criteria exist
such as the sampling property of the points in D or the distances between the points. The DOE introduced for
the Morris method, in Subsection 2.1.1, is particular to the method because it focuses on evaluating the impact of
a displacement in the parameter input space. This design, called factorial design, is particular to this sensitivity
analysis method, and is not relevant here. In this section the space 2 will be consider hypercubic, which means that
each dimension is bounded. First the sampling criterion of the points in D is presented and will be followed by

details on the distance criterion between the points.

2.3.1 Sampling criteria

In the particular cases of the sensitivity analysis or the establishment of the surrogate of a function f,, considered as
a deterministic function, it is interesting to sample points in 2 such as to have a fairly good representation of f.(D).
The 64, ...,0y are generated such as the expected value of E(f.(0)) (for the sake of simplicity, f.(D) = y(D)) can

be estimated by:

y(b):%.

M=

fe(63). (2.54)
1

For a time consuming code function f;, it is important to chose a sampling scheme that allows to estimate
E(f:(0)) well but with N as small as possible. The first idea for sampling D is to generate N iid random vectors with
an identical probability distribution (usually uniform) on D. This is called the simple random sampling. A second
sampling method, called stratified sampling, considers that a population is represented by multiple subpopulations
(or strata) and sampled in each stratum. However, McKay et al. (1979) introduced an alternative method called
Latin Hypercube Design (LHD), also named Latin Hypercube Sampling (LHS). Considering that 2 = [0,1]7, it
consists in placing the point of D asfori=1,...,Nand j=1,...,p:

Coordinates in the LHD

(2.55)

where P = (p;j)1<i<n.1<j<p is @ matrix which takes in the j” column random permutations of the integers

{1,...,N} and where U (u;;)1<i<n,1<j<p is @ matrix which takes in the j column a N sampling in a Uniform
distribution between 0 and 1. The LHS is based on the stratified sampling and allows to separate the points in N
subdivisions of the space 2. Let us take, as an example, 2 such as 2 = [0, 1]* with 8 = (6;,6,)”. The LHS of
N = 6 points in 2 obtained is displayed in Figure 2.12.

McKay et al. (1979) shows that if D1 is a simple random sample and if D2 is a LHS then:

Var(Y(Dy)) > Var(Y (D)), (2.56)

where Y (D) is a random variable which takes as a realization y(D) defined in Equation (2.54). It shows that the
sampling error is lower when the LHS is performed. Without any hypotheses on the monotony of f., Stein (1987)
has demonstrated that Var(Y (D,)) is asymptotically lower than Var(Y (Dy)) if the second order moment exists.

51

Chapter 2

Chapter 2

Chapter 2 — Statistical tools for numerical code calibration

777

777

———

fff

Figure 2.12: 6 points sampled with a LHS for 2 = [0, 1]°.

Moreover, the LHS performs well when there are worthless dimensions. However, the LHD is not necessarily a
good design for an exploratory DOE. So far the LHD has been build under the hypothesis that the input parameter
vector 8 was following an uniform distribution on [0, 1]” with independence between each components. The LHS
can be performed with a different distribution for 8 on [0, 1]? but also with dependence between the components of
6 (Stein, 1987). A generalization of the LHD design called randomized orthogonal arrays will not be developed
here. For details the reader is referred to the articles of Owen (1992); Tang (1993).

2.3.2 Distance between the points criteria

As it is said above, the LHD can be not optimal regarding space exploration. For example in Figure 2.13 shows that

some configuration of LHD does not cover properly the entire input parameter space.

777

———

———

Figure 2.13: 6 points sampled with a LHS for 2 = [0, 1]°.

Another criterion can be added to the original design of the LHD to optimize the exploration of the space.
Johnson et al. (1990) has introduced two criteria based on the distance between two points. These criteria are used

to testify the exploration quality of a DOE. First, a DOE D (defined above) is called minimax if it minimizes:

52

2.3. Design of experiments

minimax

hp = in |10 —6,]|%. 2.57
D 32‘@122”1\/” il| (2.57)

The distance distance by || e || refers in this section and along the thesis for the euclidean distance. Similarly, a

maximi

Sp= min _||0;—0;|. (2.58)
1<i,j<N

DOE D is called maximin if it maximizes:

As the parameter input space is a compact and as the functions D — hp and D — Jp are continuous , the existence
of minimax and maximin design is guarantied. A minimax design will ensure that all points in 2 will not be far

from a point in D. A maximin design tries to create a maximum space between the points to avoid replications.

Morris and Mitchell (1995) proposed to look for a maximin design in the latin hypercube classes. It is then

possible to use the maximin criterion on a LHS to add dispersion property on the original DOE. Figure 2.14

illustrates two different maximin LHS designs obtained with the algorithm introduced in Morris and Mitchell (1995).

Several optimal designs exists and they can be compared to Figure 2.12. In the rest of the thesis, maximin LHS
refers to this algorithm of Morris and Mitchell (1995).

100._A__._.__A._.__._.____.__A: __________________________ 100 ___
0.75 0.75 .

@ 0.50 -4 === = e koo @ 0.50 =4 === e ool
0.25 ! 0.25 }
ooo. ooo --------------------------

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
04 04

Figure 2.14: 2 6-sized maximin LHS performed with the algorithm of Morris and Mitchell (1995) for 2 parameters.

When the number of input parameter increase, the question of the optimization according distance criterion can
be highlighted. Indeed, it exists several other distance criteria than maximin distance such as the L2-discrepancy, the
minimum spanning tree (MST) (Dussert et al., 1986; Franco et al., 2009) etc... Some optimizations have also been
developed as the Enhanced Stochastic Evolutionary algorithm (ESE) (Jin et al., 2003) or the Simulated Annealing
(SA). A review of the optimization methods is available in Viana et al. (2010). Morris and Mitchell (1995) have
proposed a version called MM SA (for Morris and Mitchell SA, that is detailed above) and Marrel (2008) has

proposed a version called the Boussouf SA. In their paper, Damblin et al. (2013) aim to compare several optimization

53

Chapter 2

Chapter 2

Chapter 2 — Statistical tools for numerical code calibration

methods in the high dimensional case. They analyzed that the ESE algorithm behaves more efficiently than the MM
SA and seems to be a good choice as an optimization. They also state that the MST criterion, which analyzes the
geometrical profile design according to the distance between the points, is preferable to the the maximin design.

The maximin design is nonetheless good. Indeed, in its paper Schaback (2007) had provided convergence proofs
for a generalized non-square version of Kansa’s collocation method (Kansa, 1985), showing that the convergence
rates are determined by approximation results for non-stationary meshless-kernel-based trial spaces. Furthermore,
Auffray et al. (2010) had shown that the maximin design which ensures that any point of 2 is not far from the

points of the design that leads to the best performances.

2.4 Principal component analysis (PCA)

The Principal Component Analysis (PCA) (introduced in Pearson (1901)) belongs to the group of multivariate
analysis descriptive methods called factorial methods (Husson et al., 2017). In the sense where these methods are
descriptive, they are not based on a probabilistic model, but depend on a geometric model. The PCA proposes,
from a rectangular table of data composed of n observations (also called individuals) with p variables, graphical
representations of these observations and variables. These data can be derived from a sampling procedure or from
the observation of an entire population. Graphical representations allow to visualize if it exists a structure, a priori
unknown, on these data. Similarly, graphical representations can help to identify the linear link structures on

variables considered.

Let us consider that the measures are performed on n units {uy,...,u,} and the p quantitative variables that
represent these measures are {vy,...,v,}. The table of data can be written as:
X11 Xip
X=|": s (2.59)
Xnl Xnp

where the j column represents the data on the n units for the quantitative variable v ; and the i""" line the data of p
variables for the unit u;. Let us call U; the vector of the data for the i unit such as U; = (xi1y - 7xl-p)T and Vj the

vector of data for the variable j such as V; = (x1,...,%4;)" .

For the graphical representation of the units, we choose an affine space with , as an origin, a particular point of
R? (for example the point with the null coordinates). Similarly, in R” each variable can be represented by a point.
The set of points that represent the variables is called a “scatter plot”. However, the dimension of these spaces is
in general larger than 2 and even at 3 and we cannot visualize these representations. The general idea of factorial
methods is to find a new plan or axis system such as the projections of these scatter plots on this axis or plan allow

to reconstitute points positions relative to each other (i.e. having the least distorted images as possible).

2.4.1 Distance

To make a geometric representation, it is necessary to choose a distance between two points of the space. The

distance used by the PCA is the classical Euclidean distance:
2 4 2
d*(uisuy) = Y (xij —x7;)°. (2.60)
j=1

54

2.4. Principal component analysis (PCA)

With this distance, all the variables are playing the same role and the axes defined by the variables are constituting

an orthogonal basis. A dot product can be associated to this distance:

P
(0?11'70;;1-0 = injxi/j = U,,:TUi/, (261)
j=1

as well as a norm:

||ow;|* = Zx,] Ulu;. (2.62)

We can then define the angle & between two vectors by its cosine:

- =
Ol U'u,
os(a) = <ﬁ””0”;> - i i . (2.63)
|ou;|| [|ous || (UTUy)(UTUy)

The point with null coordinates is not always a satisfactory origin because if the coordinates of the points in the
scatter plot are high, the plotted points are far away from the origin. It seems wiser to chose an origin linked to the
scatter plot itself: the center of gravity. We will consider for the following that we center the matrix X such as:

X11 — Xel <. Xlp — Xep
X.= ; : . (2.64)
Xnl — Xel xnp—x.p

where x,, is the mean of the corresponding column in X. The coordinates of the vectors U; and V7 are also

centered and can be written as:

Xil — Xel Xjj — Xej
U, = 7and ‘/cj = . (265)

Xip — Xep Xnj = Xej

2.4.2 Moments of inertia

Les us note /i the moment of inertia of the individuals scatter plot with respect to the center of gravity G:

1 1 & & , 1& . 7
IG:ZZ ;Z;(xij_xv') :;;UciUci- (2.66)

i=1 i=1

This moment of total inertia is of interest because it measures the dispersion of the individual scatter plot from
the center of gravity. If this moment of inertia is large, it means the scatter plot is dispersed. However, if it is small,
the scatter plot is highly concentrated on its center of gravity. Another way to write Equation (2.66) can be obtained

by inverting the sums:
2ol
=) R

where Var(v;) is the empirical variance of the variable v;. From this form, it can be seen that total inertia is

HM:

P
x,,- " j)z} - ZlVar(Vj), (2.67)
p=

equal to the trace of the covariance matrix X of the p variables v;:
I =trace(%). (2.68)

55

a
R
D
N
2
<
=
&

Chapter 2 — Statistical tools for numerical code calibration

The inertia of the scatter plot from an axis A passing by G is by definition:

l n
= Y d*(hai,ui), (2.69)
i=1

where hy; is the orthogonal projection of u; on A. This inertia measures the proximity of the scatter plot to the axis

A.
N
Eg‘ The inertia of the scatter plot from a linear subspace V passing by G, is similarly defined, and is equal to:
(=%
<
= 14,
Iy =~ Y d*(hvi,u;), 2.70
&) V=" Y & (hvi,ui) (2.70)

i=1

where hy; is the orthogonal projection of u; on the linear subspace V. Let us not V* the orthogonal complement
of V in R? and hy+; the orthogonal projection of u; on V*. By the Pythagorean theorem:

dz(hvl',ui) +d2(hv*,'7ui) = dz(G,u,-) = dZ(G,]’lv,’) +d2(G,hv*i). 2.71)

From Equation (2.71), it can be concluded that:

Huygens theorem

Iy + Iy~ = Ig. 2.72)

In the particular case where the linear subspace V has a dimension of 1, Iy« is a measure of the scatter plot
elongation along the axis of the linear subspace. By projecting the scatter plot on a linear subspace V, the inertia

measured by Iy is lost (only Iy+ is kept). If R” is decomposed in a sum of orthogonal linear subspace such as:
Al BA DB A, (2.73)

then (with a Pythagorean theorem):
IG:IAT+"'+IA;‘,- (2.74)

2.4.3 Axis of minimum inertia

The axis A; which is the closest to all the individuals in the scatter plot is an axis passing by G and has the minimum
inertia /5, . This axis is interesting because, when the projection will be done, this will give the least distorted image
of the scatter plot. Looking for A; such as I, is minimum is equivalent to look for A; such as I,: is maximum

— —
(Equation (2.74)). Let us note the unitary vector Ga; of the axis A;. Then, the vector Ga; is looked for such as IAT

I
is maximum under the constraint of ||Gay||* = 1.

We can write:
2 2T T
d (G,/’IA“) = <Gu,~,Ga1> =daj UciUcial . (2.75)

Using the property of symmetry of the dot product, it can be deduced that:
Ivor T r[ly T
Iny = - 2(11 U.,U;a =a b Z UciUci}al- (2.76)
i=1 i=1

56

2.4. Principal component analysis (PCA)

The empirical variance ¥ of the p variables is identified under the bracket of Equation (2.76). Then:
Iy = al Xay, 2.77)
with,

.
|Ga,[|* = af ay. (2.78)

The problem is summarized at finding a; that maximize alT Y a; under the constraint alTal = 1. The components
of a; are unknown and are linked by a constraint. To solve such a problem, a Lagrange multiplier method can
be used. This method consists in finding the optimums of a function f(z1,...,t,) where the p variables are
linked by a relation [(t1,...,t,) = cte. The p partial derivatives with respect to each variable of the function
g(t,....tp) = f(t1,...,t,) —A(l(t1,...,t,) — cte) are calculated and annulled to get a system of p+ 1 equations
with p + 1 variables (after adding the constraint term). The term A is called the Lagrange multiplier. In the previous

case, partial derivatives of

glar) =glait,...,a1p) = a Za; —M(ala; 1) (2.79)
has to be found. Using the derivative of a quadratic form with respect of a vector, it can be proven that:

dg(a1)

=2%a; —2Ma; =0. (2.80)
&al

The system to solver is then:

2—11(11 :0 (1)
ala;—1=0 (2)

2.81)

From Equation (2.81), matrix Equation (1) allows to show that a; is an eigenvector of X with eigenvalue 4.

Multiplying matrix Equation (1) by alT on the left
alXay —Mala; =0 (2.82)

is obtained and using the Equation (2) in Equation 2.81, it is shown that:

alSa; = 2. (2.83)

From Equation (2.77), the first term of Equation (2.83) is replaced and it can be stated that A; = IAT' That means
the value A, is the highest eigenvalue of X and this eigenvalue is the inertia carried by A;. Then, the axis A; has for

unit vector the first eigenvector associated at the highest eigenvalue of the covariance matrix 3.

However, only one axis might not be sufficient to represent all the data. Then, a second axis A; is looked for
which is orthogonal to A; and has a minimal inertia. Identically as before, let us define the axis A, passing by G and

defined by its unit vector u,. The inertia of the individuals scatter plot with respect to it orthogonal complement is:
Iy, = atas. (2.84)

The inertia defined Equation (2.84) has to be maximum under the constraints:

aday=1 and alal =0. (2.85)

57

a
R
D
N
2
<
=
&

Chapter 2

Chapter 2 — Statistical tools for numerical code calibration

The second constraint Equation (2.85) represents the orthogonality of u; with u;. With the Lagrange multipliers
method, but with two constraints, it can be shown that a; is the eigenvector of the covariance matrix 3 which
corresponds to the second highest eigenvalue. It can be also demonstrated that the inertia is maximum in the linear

subspace defined with the unit vectors u| and uj.

The same procedure can be extended but can only be done p times. The covariance matrix 3 is real and

symmetrical, thus it has only p eigenvectors (building an orthogonal basis of R?).

2.4.4 Contribution to the total inertia

All the axes does not have the same contribution on the total inertia. Using the Huygens theorem Equation 2.72, the

total inertia can be decomposed as:

Ig=1Ix+ I =i+ +4. (2.86)

The absolute contribution to the total inertia of the axis Ay, is equal to:

ca(Ar/Ic) = M, (2.87)
but its relative contribution is defined as:
A
er(Ae/Ig) = 2X. (2.88)
I

For the rest of the thesis, the term “percent of inertia explained by the axis A;” will be used as a reference of the
relative contribution. It is possible to extend these definitions at all the generated linear subspaces. For example, the
percent of inertia explained by the linear subspace generated by the two eigenvector associated at the two highest

eigenvalues is defined as:

M+A

cr(A1 EBAQ/[G) = Ic

(2.89)

These inertia percentages are indicators of the part of variability of the scatter plot explained by these subspaces.
Practically, only the d (d < p) first axis are considered because they explain a percentage of inertia close to 1. The
other axes are then neglected.

2.4.5 Graphical representations
Individuals representation quality

To have a graphical representation of the individuals in the plans defined by the new axis, it is necessary to calculate

the coordinates of each individuals in the new axis. To get y; the coordinate of the unit u; on the axis A;, an

5
orthogonal projection of the vector Gu; is achieved:
A
yie = (Guj,ar) = al Uy, (2.90)

and,
Y, =A"U,, (2.91)

where Y is the vector of coordinates of the unit u; and A is the change of basis matrix (A is the matrix composed

of the orthogonal eigenvectors, which have a norm equal to 1, is an orthogonal matrix and its inverse is equal to its

58

2.4. Principal component analysis (PCA)

transposed).

—
The square of the cosine of the angle ¢, between Gu; and an axis Ay is equal to:

2
~ Ge P (xii—xe)k
<Gui,Gak>2_a£UciUCTiak_ ZJ:l(xlj X.J)ak]
|Gl 2 UiiUei X0 (i — o))

cos® (o) = (2.92)

N
As mentioned above, by using the Pythagorean theorem, the square of the cosine of the angle ;s between Gu;
and the plan generated by the two axes Ay @ Ay can be calculated and:

cos® (O) = cos* (o) + cos* (o). (2.93)

Contribution of an individual to an axis

When IAE (the inertia carried by the axes Ay) is calculated, it is possible to see the part of the inertia attributable to
an individual u; in particular. From Equation (2.70), IA;: = % . dz(hAki,G) and the absolute contribution of u; of
this inertia is:

calui/) = &l G), .94

because all the individuals have the same weight. Practically, an individual will have a greater contribution to the
axis when its projection will be far from the center of gravity. The other way around, an individual which has a
projection close to the center of gravity will have a weak contribution to the axis. It is also possible, for the same

particular individual u;, to give its relative contribution to the inertia carried by Ay:

- -
172 1 2 1.7 T
L2(hp .G) Y (Gu;,G LU, UT
Cr(lli/Ak) _n (IAA*kt) — n< M’Ak ak> — %% ;; czak. (2.95)
k

Note that Y7, cr(u;/Ar) = 1.

Graphical representation of the variables

The individuals have been represented in the space of the original variables and the change of basis has been made
in this original space. New axes are then linear combination of original axes and can be considered as new variables

which are a linear combination of original variables. These new variables are called “principal components”. Let us

note Z1,...,Z, the principal components, Z; being the new variable corresponding to the axes Ay and:
p
Z =) aVej = Xeay, (2.96)
J=1

where V,; is the centered variable vector defined in Equation (2.65) and X the matrix of centering data

introduced Equation (2.64). In general, the principal components can be written as:
Z =7,....Z2)) = X A. (2.97)

It is also interesting to visualize how original variables are linked to the principal components by calculating the
correlations. Original variables representation will be done by taking as coordinates the correlation coefficients with
the new variables. This representation is called “correlation circle” because of the fact that a correlation coefficient
is always between —1 and 1 which leads to have all the points in a circle of radius 1. The variances of the principal

COII’IpOIleI’ltS are:

59

a
R
D
N
2
<
=
&

Chapter 2

Chapter 2 — Statistical tools for numerical code calibration

1
Var(Zy) = —al X! Xpar = al Bag = A, (2.98)
n
their covariances are:

0 0 0

| | : : :
Cov(Zy,V,)) = ;a,{X({ch = ;a,{Xch 1| =alZ 1| =k | 1| =Nhaj, (2.99)

0 0 0

and their correlations with the original variables are:

Agj
Cor(Zi, Vi) = /Mg ——td 2.100
Or(k j) k Var(Vj) ()

where ay; is the 7 coordinates of the unit vector a; of A;. Generally, the covariance matrix of the principal

components Xz can be written as:
1
Sy = ;ATXEXCA:ATZA:A, (2.101)

where A is the diagonal matrix of the eigenvalues of X:

A (0)
A= " , (2.102)

and the covariance matrix between the principal components and original variables is:
1
Cov(Z,V)=-XIX.A=3A=AA. (2.103)
n

Example on the decathlon data set

As an example, let us consider the decathlon data set in the FactoMineR (Husson et al., 2018) package. The data set
is an example of decathlon data which refers to athletes’ performance during two athletic meetings (2004 Olympic
Games or 2004 Decastar). The data set is made of 41 rows and 13 columns where the ten first column only are kept.

These columns correspond to the performances of the athletes of the ten events of the decathlon.

Individuals graph Variables graph

======

uuuuuuuuuuuuuuuuu

wwwww

Dimension2 (17.37 %)

,,,,, — -

o]
Dimension 1(32.71 %) Dimensiont (32.71 %)

Figure 2.15: Graphical representation of the individuals (on the left) and the variables (on the right) of the decathlon
data set.

60

2.5. Monte Carlo Markov Chains techniques

Figure 2.15 represents the individuals and the variables of the decathlon data set. For each axis, the percentage
of the inertia carried is indicated and both axis (the ones used for the representation) contain 50% of the total
inertia. The right panel of Figure 2.15 illustrates the correlation between the variables and for example the variable
“100m” is negatively correlated with the variable “long.jump”. This means that when an athlete jumps far, he
does not achieve so good performances in the 100m. The left panel of Figure 2.15 illustrates in two axis a global
representation of the performances of the athletes. The first axis strongly represents the speed events and long jump
event (given from the right panel of Figure 2.15). This means for an individual that has a high value on this axis, he
is more likely better on these events than an individual that has a weak value on the axis. For example Karpov seems
to have better performed than Bourguignon in these events. The second axis represents the variables “Discuss” and
“shot put” and similarly a high value of the individual on this axis means that he performed well on these events.
The winner of the 2004 Olympic Games is Sebrie who has reasonable value on both axis. The variable “Discus”,
“Shot.put” and “High.jump” are not correlated to “100m”, “400m”, “110m.hurdle” and “Long.jump” which means

that strength and speed are not correlated.

2.5 Monte Carlo Markov Chains techniques

Sampling from a posterior distribution is the only mean to get information about the posterior distribution if there
is no conjugacy in the model. Several Monte Carlo Markov Chains (MCMC) have been developed in that sense
(Robert and Casella, 2013; Andrieu et al., 2003). Let us consider a general example, in a Bayesian framework,
where the posterior density of a p dimensional parameter vector 0 is looked for. Let us define a probability space
(Q, .7,) where Q stands for a sample space, .% a c-algebra on Q and 7 a probability on .%. The parameter vector
is defined as 8 € 2 C RP? and the n dimensional experimental vector as y € & C R”. From Bayes formula, it is

possible to write straightforwardly that:

Z(y:0)n(0)

, 2.104
n(y) (104

n(6ly) =
where m(y) = [gc0-Z(y;0)m(0), but as the term m(y) is independent from @, Equation (2.104) can be

rewritten as:

n(0ly) < Z(y;0)7(0). (2.105)

When the prior distribution is not conjugate to the the likelihood, (6|y) cannot be expressed analytically. The
choice of the sampling method is partly conditioned by the knowledge of full conditional distributions (i.e. the
knowledge of 7(6;|y,0_;) Vi € [1,...,n], 6_; representing the vector § without the i component). In case
where these full conditional distributions are known, the Gibbs sampler can be used. Otherwise, Metropolis Hastings
algorithms could be applied to sample in the posterior distribution. The full conditional distribution can be written

proportionally to the joint distribution such as:

n(0,y)

O/ly.0_,) =
7 (Oily,6-i) 761, 01,601, 0,y

;= 7(0.y). (2.106)

Then from Equation (2.105):

7(6:60-1,y) =< L (y;0)7(0)
o« L(4:0)7(61|6,...,0,)7(62]65,...,8,) ... 7(6,_1]6,)7(6,).

(2.107)

61

a
R
2
N
=
=]
=
O

Chapter 2

Chapter 2 — Statistical tools for numerical code calibration

And, if all the components of € are independent then:

P
7(610:.y) < £ (y;0) [[n(6)). (2.108)

i=1

The aim of the MCMC is then to produce a Markov chain whose invariant distribution

is the posterior distribution

2.5.1 Gibbs sampler

If the full conditional distributions are known, then it is possible to sample in each of them. This way, if an initial

state 8, such as 86) = (01(8), . I§S>), is considered, a new state can be sampled from:
L ample 67 ~ (@ 102,...08)

2. sample 0, ~ n(6;"10)7.05......0, y)

(p). sample 015”') ~ 71:(9[(,“')|(95‘Y)7 .. .,01(21,y)

(p+1). OGTD = (91(s+1), - -,G,SSH))

The algorithm that repeats this sequence S times is called Gibbs sampler and generates a dependent sequence of
parameters: 6 = {0(]>, ... ,0(5)} (Robert and Casella, 2013; Hoff, 2009). The algorithm can be written as:

Algorithm 1 Gibbs sampler

01) = Oini
foriin2:Sdo

for jinl:pdo

) 1), (i .
91(1 N“(GJ(I |051.?.j71’9§'l~)kl...p7y)

end for _

00 = (0" ... 6\
end for

For example, let us consider a sample of data y such as each component are a realization of the random variable
Y which is following ¥ ~ A" (u, %) where U is the population mean and 7 the population precision (inverse of the
variance). Let us consider n the sample size, j the sample mean and s° the sample variance. A priori, there is no

correlation between the population mean and the population variance:
m(w,t)=n(u)n(t). (2.109)

Considering that 7(u) o< 1 and 7(7) < 7! as prior densities (Casella and George, 1992), the conditional

posterior densities are explicit and can be expressed as:

62

2.5. Monte Carlo Markov Chains techniques

1

ulry ~ o (5,), (2.110)
n 2

Tm’ywr(i’(n—l)s2—|—n(,u—)7)2)' Q.111)

As the conditional posterior densities can be written, the Gibbs sampler can be run and then have access to the

joint posterior density. Figure 2.16 is the result of the Gibbs sampler in this example.

0.8

0.6

0.4

0.2

135 140 145 15.0 155 16.0
Figure 2.16: Gibbs sampler completed for 10000 iteration with a 1000 burn-in sample.

When conjugate prior densities are not accessible, the Gibbs sampler cannot be used. To sample in the posterior

joint density, another algorithm can be performed.

2.5.2 Metropolis Hastings

The Metropolis Hastings algorithm has been introduced in Metropolis et al. (1953) by Metropolis but with a
specific Boltzmann distribution. In Hastings (1970), Hastings has generalized the algorithm for every specific
cases. To approximate the posterior density, it is not possible to generate independent and identically distributed
(i.i.d.) samples from 7(8|y). To do so, a large collection of @ values {8, ...,8")}, whose empirical distribution
approximates 7(0|y), are generated. Let us suppose that we have a working collection such as {0(1), ey H(S)}
to which we would like to add a new value 8¢+1). Let us consider a new point #*) which is nearby 8. If
n(8%|y) > w(8")|y), it means that 8) has a probability to be in the set higher than 8*) which is already in the
set. In that particular case 8! can take the value of 8(*). However, if 7(0%)|y) < 7(0%|y), 6*) should not
be necessarily rejected. A decision, based on the comparison of (8*)|y) and 7(8")|y) has to be established.
Fortunately, this comparison can be made even if 7(6|y) cannot be computed (from Equation (2.104)):
n(0%]y) 2 (6%):y)n(8") m(y) Z(0%);y)m(8%)

T ROV T mly) 200y)n(0) Z(00:y)a(60) (2.112)

The intuition is when r > 1, £(8)|y) > (0" |y) and 8*) should be accepted in the set. On the other hand if
r < 1, the probability to add @) in the set is equal to the min(1,r). It is similarly as comparing r to a value that has
been sampled from an uniform distribution between 0 and 1 (let us call this value). Then if r > u, 8*) is accepted

in the set, if r < u, then ™) is rejected.

63

Chapter 2

Chapter 2

Chapter 2 — Statistical tools for numerical code calibration

The new point 0™), which is nearby oY), is generated from a proposal distribution (also called jumping
distribution in Gelman et al. (1995)). This distribution ¢(8(*)|(*)) can be distinguished in two cases. The first, the

distribution is symmetric such as q(G(*) |81)) = ¢(8*)|0*)) which is the case for:
q(0%)]0)) = uniform(8®) — §,00) 4 §),
+ ¢(6%)]01)) = normal (8, k%:2).

In that particular case the algorithm is called Metropolis algorithm and the computation of the ratio is straight-
forwardly obtained from Equation (2.112). Algorithm 2 recalls the steps of this particular MCMC.

Algorithm 2 Metropolis algorithm

6) = 6,
Taccept = 0
foriin 1 :Sdo'
~ N (0 kx)
9<* b) _ <e<*)Z(8%):y)
(6! |>) 2(01).2(1:y)
if r > u, with u ~ % (0,1) then
oli+1) — g(x)
Taccept = Taccept +1
else
oli+1) — ()
end if
end for

Om = H[Nburnfin : S]

On the other hand if ¢(0(*)|8(*)) is not symmetric, the ratio is now given by:

Z2(6"):y)a(8") (69]0)

. 2.113
Z(60:y)7(00)) q(67160) G

r =

The ratio is almost surely defined because a jump can only occur if both ¢(0*)]8)) and ¢(6*)|8*)) are non
zero. Such a proposal can be useful for increasing the speed of the random walk. Algorithm 3 details the steps of

the, so-called, Metropolis Hastings algorithm.

Algorithm 3 Metropolis Hastings algorithm

61) = 6,
Taccept = 0
foriin1:Sdo
61 ~ q(8"),.)
70 |y)qg(60).00) _ m(6™).2(0M):y)q(6").01)
7(0W[y)q(00.00)) — n(61).2(61):y)q(01).00)
if r > u, with u ~ %/ (0,1) then

e(i-‘rl) _ 0(*)
Taccept = Taccept +1
else
gli+1) — g0
end if
end for

HMH = G[Nburn—in : S}

The choice of the nature of g is problem relevant. To simplify the programing, it is common to choose a

Metropolis algorithm. It is difficult to tune all the parameters of a Metropolis algorithm, so it simplifies this problem

64

2.5. Monte Carlo Markov Chains techniques

if a symmetric proposal distribution is taken. Between the normal or the uniform random walk, the major difficulty
is to tune the parameter k or 6. The performance of such an algorithm is evaluated by its faculty to explore the input
parameter space 2. So, if 2 C RP with p high, then it is hard to find the right convergence direction.

In the case where the Metropolis is chosen with a normal proposal distribution, some improvements can be

brought especially when p is high.

2.5.3 Metropolis within Gibbs

When the number of parameter of parameter is high, the input parameter space becomes a space where it is
complicated to move in the right direction. If the access of conditional distributions are available, one solution could
be to compute the ratio according to the conditional distribution relative to the active parameter. Then, the algorithm
would move parameter by parameter, that increases the efficiency of the displacement. The ratio introduced in
Equation (2.112) becomes:

016"y w@)2e:6 6%,) o)

- s s S s s K
x(0V16%,y) (02060, 6", v

Algorithm 4 Metropolis within Gibbs algorithm

01) = 0;i

Taccept = (07 o aO)T

foriinl:Sdo

for jinl:pdo
(*) (¥ P
0, ~ N (0; k%), j])

n6\)ze:6", 16\)

_ . P [+1...pvy
”(951))3(%1);9?.?._/4 795‘21...,7&')
if r > u, with u ~ 2/ (0,1) then
0t — g
Tacceptj = Tacceptj +1
else(, 1 ”
i+ i
9]- = Gj
end if
end for
end for

OMWG = Q[Nburnfin : S]

The strength of Algorithm 4 is to sample well in a multidimensional space. However, as it is moving component
by component, it is more time consuming than a regular Metropolis or Metropolis Hastings algorithm.

2.5.4 Improvements of the Metropolis Hastings

The major difficulty in applying a Metropolis Hastings algorithm is to use a right proposal distribution such as the
new point point is neither too far from the previous one or too close. The acceptation ratio controls the quality of
the chain. If the acceptation ratio is too high, it means that the number of the new accepted points is too high and
that the proposal distribution is not adequate to the problem because it generates points too close to the previous
one. Similarly, a too low acceptation ratio is synonym of a proposal distribution that generates points that are too
far from the previous one. Let us consider for the rest of this section (and for the major part of the thesis) that the
considered proposal distribution is normal centered on the previous point and with variance covariance kX. The

proposal distribution is in that case symmetric and the major difficulty is to find the right k and X that make a good

65

Chapter 2

Chapter 2

Chapter 2 — Statistical tools for numerical code calibration

proposal distribution.

To tune the matrix 3 is tricky because before running the Metropolis algorithm, the structure of the covariance
matrix that is representative of the space is unknown. Especially, if correlation exists between parameters. A Laplace
approximation can be performed upstream to get an initial point (which is the estimate Maximum A Posteriori) and
a covariance structure which comes from the Hessian of the likelihood. This can be burdensome if the number of
parameter is high. An algorithm, called Adaptive Metropolis, has been developed by Haario et al. (2001) that tries to
improve the original Metropolis algorithm. It mainly proposes to run a certain amount, say 1000, of samples, with
at first ¥ =, and k = 1, and evaluates the covariance matrix on the 1000 samples generated. Then, by changing
3 to this new calculated covariance matrix, it improves the proposal distribution based on the samples already
simulated. The direction of the proposal distribution has better features than the previous one because it takes now
into account, possible, correlation between parameters and variances corresponding to the right intensities to move
in the posterior density. The Adaptive Metropolis (Algorithm 5) also continues this adaptation each 500 iterations to

converge toward the right covariance matrix and to finally have a proper proposal distribution.

Algorithm 5 Adaptive Metropolis

61 = 0y
Taccept = 0
»=1,

foriin1:Sdo
0% ~ (60 kX)
ﬂ<9(*>|y) ((*))3(00):y)
n(60y) W)z (@ y)
ifr>u, w1thu~%(0,) then
gli+1) — g(*)

Taccept = Taccept +1
else
9(i+1) — 6(1)
ifimodA=0 & i> Bthen
Y =cov(0[1:1])
end if
end if
end for
Oy = ®[Nburn7in : S]

The condition added in Algorithm 5 compared to Algorithm 2 introduces the adaptive behavior of the algorithm
where B stands for the threshold to compute the covariance (in the previous example 1000) and A stands for the
value that specifies at which steps the covariance matrix is computed after the threshold (in the previous example
500). Ergodicity, reversibility and convergence criteria of MCMC chains of such an algorithm are well explained in

Haario et al. (2001) and will not be developed here.

It is also common to focus only on the tuning parameter k. As the mixing quality is related to the acceptance
ratio, it is possible to establish an algorithm that, function of the actual acceptation rate, modify the parameter k.
In Roberts et al. (1997), it is demonstrated that the “optimal efficiency” of the MCMC chain is obtained for an
acceptation rate at 0.234. Algorithm 6 introduces such an algorithm that adapts the parameter &, each C iterations,

function of the actual acceptation rate.

66

2.5. Monte Carlo Markov Chains techniques

Algorithm 6 k tuned Metropolis

o) = 6,
Taccept = 0
foriin1:Sdo

00 ~ (61 kX)

_ 0%y _ 2(0M)2(0M):y)
x(00y) — =(6")2(@%y)
if r > u, with u ~ % (0,1) then

g+l — g(*)

Taccept = Taccept +1
else
9(i+1) _ 6(1)
if i mod C = 0 then
if Tyccepr /S < 0.2 then
k=k(1—r)
else
if Taccepr /S > 0.5 then
k=k(1+4r)
end if
end if
end if
end if
end for
®KM = ®[Nburn7in : S]

Chapter 2

To improve drastically the performances the MCMC chain, the Adaptive Metropolis can be adapted by running
upstream a Metropolis within Gibbs algorithm on a limiter number of iterations. The aim is to move in the right
direction (but slowly) with the Metropolis within Gibbs, to estimate a covariance structure. Once this covariance
is known, a regulation on the parameter & can still be useful to better tune the displacement in the space 2. The
regulation is stopped after an amount of iterations to keep convergence properties. Indeed, the convergence properties
are preserved when changes in the chain decrease. This hybrid algorithm (detailed Algorithm 7) is the one used all

along the thesis to perform MCMC sampling estimation.

67

Chapter 2

Chapter 2 — Statistical tools for numerical code calibration

Algorithm 7 Hybrid Metropolis

6V) = 6,
Taccept = (07 s aO)T
foriinl: SMWG do
for jinl:pdo
0 ~ v (6 k[, j])
0120001, 00

_ _ 0=
”(95"))“55’(9?)2957.,71195’11.,.1,&)
if r > u, with u ~ %/(0,1) then
9§i+1) _ 9(*)
Taccept; = Taccept; +1
else(' 1 0
i+ i
Gj = Bj
end if
end for
end for

0vwG = O[Npurn—in : Suwa)
Y= COV(OMWG)
0 = 6
Taccept = 0
foriin1:Sy do
00 ~ (60 kX)
_ x(0W]y) _ 2(0™)2(00)y)
00y a(89).2(0'y)
if r > u, with u ~ % (0,1) then
G(H-l) _ 9(*)

Taccept = Taccept +1
else
oli+1) — g(i)
if i mod C = 0 then
if Tyccepr/Su < 0.2 then

k=k(l—r)

else
if Tyccept /Sm > 0.5 then

k=k(1+r)

end if

end if

end if
end if

end for
®HM = ®[Nburn7in : SM]

Some other developments have been completed for improving the Metropolis algorithm as the Delayed rejection
introduced in Mira et al. (2001). It consists in, in case of rejection, proposing another point, based on the same
proposal distribution, with a probability of 0.5 (sampled from a binomial distribution). If the realization of the
binomial is 1, then a new point is proposed and the ratio is computed as if it was the first point. If another rejection
occurs, the same procedure is repeated but if it is accepted, the current iteration in the algorithm can end. If the
realization if the binomial is 0, the rejection is accepted and the iteration of the algorithm can also stop. This
algorithm allows to postpone the rejection and gives another chance to accept a specific point. The aim of this

method is not to stay on the same point which tends to increase autocorrelation.

68

CHAPTER

REVIEW OF THE MAIN CALIBRATION
METHODS

3.1 Numericalcode o e e e 70
3.1.1 Sensitivity analysis e e e e 70
3.1.2 Prior propagation of uncertainty 72
3.2 Calibration through statistical models 73
3.2.1 Presentationofthemodels 74
32.2 Likelihood e 76
323 Estmation e e e e e e e e e 80
3.3 Application to the prediction of power from a photovoltaic (PV)plant 82
33.1 Inference e 82
332 Results e 85
333 CompariSOn ot e e e e e e e e e e e e 87
3.4 Conclusion and discussion 88

The general framework of this chapter is the one introduce in Section 1.4.1 where we considered, the outputs of §
and f, lie in R. A vector of experimental data (y,x,) which are noisy measurements of { is observed as a realization
of the statistical model:

Moy 2 NVie[l,...n] Yoy, =C(xi)+ &

where Vi€ [1,...,n] & %oy (0,02.). The corresponding values of the variables z; are also observed.

Code calibration

Calibrating the code consists in setting the vector of parameters 6 consistent in some

sense with these 7 field data.

Several statistical modeling strategies have been proposed in the literature. When only measurement errors
are considered, Cox et al. (2001) use a rather simple model, considering that the code does not differ from the
phenomenon under study. As for Higdon et al. (2004), Kennedy and O’Hagan (2001) and Bayarri et al. (2007),
they advocate some extensions, which additionally encompass a model bias or a model error term, also dubbed
discrepancy in the following. All of these models are reviewed and discussed in Section 3.2. The identifiability
issues between the parameter 6 and the discrepancy were already discussed in the written discussions of Kennedy
and O’Hagan (2001). Tuo et al. (2015) consider the calibration task as a minimization of a loss function between

69

Chapter 3 — Review of the main calibration methods

the code and the physical reality. In Tuo and Wu (2016), they show that this loss function leads to an estimation of
0 depending on the the chosen prior distribution of the discrepancy. Then, Plumlee (2017) advices an orthogonality
specification for the discrepancy i.e. the discrepancy should be orthogonal to the gradient of the computer code
with respect to a loss function. Finally, Konomi et al. (2017) also propose a methodology to model the discrep-

ancy as a non-stationary Gaussian process and apply it on the carbon capture with AX sorbent mathematical function.

This chapter presents the main calibration statistical model that one can found in literature which are illustrated
by an application case introduced in Section 1.4.3. Section 3.1 focuses on sensitivity analysis performed for the
numerical code and the prior propagation of uncertainty, then Section 3.2 recalls the main statistical models for
code calibration with the associated likelihoods and the main estimation methods. Then Section 3.3 applies and

compares the four statistical models through the application case.

3.1 Numerical code

3.1.1 Sensitivity analysis

Based on the code presented in Section 1.4.3, a sensitivity analysis is run upstream calibration to identify the
important parameter to keep for further study. A Morris method is first applied to screen, upstream, the non-influent
parameters that can be set to their nominal value for the rest of the study. Figure 3.1 illustrates the Morris study

performed on the numerical code.
50

40

20

nt i nt

N eta -] W eta

0 # ‘ 0 4

0.0 2.5 5.0 7.5 0 50 100 150 200
M H

Figure 3.1: On the left panel Morris method at noon the 24" of September 2014 and all the EEs computed at each
time step over the two months of data.

However, as described in Section 2.1.1, Morris method only concerns functions that create a scalar output. In
this particular case, it is necessary to have an indication of the parameter impacts over the whole time frame. On the
left panel of Figure 3.1, the Morris method is applied at noon the 24" of September 2014. The impact of several
parameters seems negligible in the graph but they could not be negligible on another moment of the day. When
the Morris method is completed for each time step, a “dynamic” version is visible on the right panel of Figure 3.1.
Thus, it is not possible to conclude on which parameter has no influence on all the time frame of the data. That
is why, a PCA (Section 2.4) on all the trajectories of the Morris DOE is performed. In the new subspace, “new”
indices u* and ¢ can be computed and then summarize the information contained in the whole time frame. It

means that the PCA allows to visualize eventual temporal correlation and to find new representation axis for the

70

3.1. Numerical code

Morris indices. The left panel of Figure 3.2 represents the circle of correlation obtained by the PCA and on the right

panel the eigenvalues for the ten first axis found.

Variables factor map (PCA)

1.0

0.5

Dim 2 (15.39%)
0.0

-0.5
1

-1.0

‘ ‘ ‘ ‘ ‘ I
o N
1 2 3 4 5

Dim 1 (84.26%) 6 7 8 9 10

eigenvalue

Figure 3.2: Results of the PCA done on the trajectories of the Morris DOE. On the right panel the correlation circle
and on the right panel the eigenvalues.

From Figure 3.2, three axis of representation can be chosen because they are covering more than 99% of the

information. The different Morris indices in the PCA subspace composed of these axes are visible in Figure 3.3.

PCA3
a PCA2
PCA1

mu_t
afc‘a [

0 - i)

0 10 20 30 40 50
&

Figure 3.3: Projection on the PCA axis of the Morris indices.

Figure 3.3 is more visual than the one presented on the right panel of Figure 3.1. It allows to conclude on
the non-influent parameter and to keep as random 1), U; and a,. As this numerical code is quick to be executed,
these results are double checked with a Sobol method. It is also a way to better acknowledge the input parameters,
especially if interaction between them and/or non linear effects are quantifiable. The results of the first order indices
and the total effects indices are visible in Figure 3.4. The Sobol indices has been computed for each time step,

which allows to state on the evolution of the influence of a parameter over the time frame.

Figure 3.4 confirms the results obtained by the Morris method after the PCA visible in Figure 3.3. The three

71

Chapter 3 — Review of the main calibration methods

1.00
1.00
7] 9 0.75
Bors g
k=] ©
£ £
© o O nt
Q mu_t Q mu_t
[} - [} -
wn —eta) 0.50 —eta
‘5 0.50 —al S —al
N ar e ar
% n_int é n_int
(@) [)
o —
[}
2 £0.25
LL 0.25 [
AN A WAL A ool AW o JUNN. L]
0.00
0 10 20 30 40 0 10 20 30 40

time step time step

Figure 3.4: Sobol method completed for each time steps. On the left panel the first order indices and on the right
panel the total effects indices.

parameters to consider as random are 1, U, and a,. With the Sobol method, it is also possible to sort the order of
importance of the parameters and in this case a, is the most influent all along the time frame. One can also note
that the differences between the first order indices and the total effects are practically equal which means that no

non-linear effects affect the input parameters.

3.1.2 Prior propagation of uncertainty

So far, experts are using the code with some parameter values with the knowledge that these parameters are uncertain
(the so called reference values). They can also provide more expertise on the nature of the parameter. For example for
ay, the nominal value is 0.17 and experts state that the parameter lies within the 95% confidence interval [0.05,0.29].
We chose to consider a, as Gaussian with a, ~ 4 (it = 0.17,6% = 3.6.1073). The standard deviation is chosen
equal to 0.06 because we have considered the upper bound and the lower bound of the given interval as respectively
the quantiles a,, s and ay, ,,s. Similarly, n) and g, are taken as Gaussian such as) ~ 4" (u = 0.143, 62=25.1073)
and y; ~ A (U = —0.4,6% = 1072). If 100 realizations are drawn from the joint distribution of 1, 4, and a,, the
production curve and the prior credibility interval can be simultaneously plotted on a same graph to see how
uncertain the predicted power is over a day. Figure 3.5 illustrates on the left the distribution of 17, i, and a, and on
the right the production curve obtained for reference values and the prior credibility interval at 90%. On the right
side, experiments collected that same day are also displayed. One can check that the prior credibility interval, build

given by the experts, looks coherent regarding the experimental data.

If one is interested in the energy produced rather than the power (the energy in kW h is the power in kW multiplied
by a duration), one can easily compute the maximum and the minimum energy for say 100 realizations. The energy
for collected power is W,, = 3.44kW h, the maximum energy computed W4, = 3.65kW h and the minimum energy
Winin = 2.93kWh. Straightforwardly Wi, < Weyp < Winex Which means that the experts interval seems correct
for that day. With the considered uncertainty on 1, i, and a,, the error made is about 20% over only one day.
Considering this error over a day, cumulative error over a lifetime plant could be too prejudicial. The aim of the
calibration is to quantify this error and, at the same time, increase the knowledge on the parameter distribution. The

results of calibration for this application case are detailed in Section 3.3.

72

3.2. Calibration through statistical models

[Cprior Experiments

— Simulated
600

90% credibility interval a priori

density

/ \‘\
/ 400

Power in W

200
’ /

density

00 01 02 03 7 10 13 16 20

Hours

Figure 3.5: m(n), n(y,) and 7(a,) prior densities (represented on the left panel) and induced credibility interval of
the instantaneous power (right panel).

3.2 Calibration through statistical models

Calibration intends to find the “best fitting” parameters of a computational code, in order to minimize the difference
between the output and the experiments. It can be used in two cases. In a forecasting context (Craig et al., 2001),
calibrated code on data collected on site can be used to compute the behavior of the power plant over the next time
period. In a prediction context, data from an experimental stand are used to predict the behavior of a non-existing

stand (assuming they have the same features).
A simple way to express calibration is to write down a first, straightforward model. The computational code is

set up to entirely replace the physical system. Intuitively, we can assume that Vx € 57, {(x) = f.(x, 0) for some

well-chosen 0 which leads to the following equation:

M o Vie [[1,...,1’1]] yexpizfc(xi,6)+£,~7 3.1)

with Vi€ [1,...,n] & .#(0,062,).

The likelihood of such a model is a function of f.. In methods such as Maximum Likelihood Estimation (MLE)
or as in Bayesian estimation (making recourse to many MCMC iterations), it becomes intractable to work with a
time consuming f,.

For the sake of simplicity we will consider, in what follows, the code as deterministic. It means that for the
same inputs, the output of the code is identical, which is generally the case. Even in a deterministic context, a gap
between the code and the physical system is often unavoidable. This gap is called code error or discrepancy. Some
papers advocate for adding this discrepancy in the statistical models (Kennedy and O’Hagan, 2001; Higdon et al.,
2004; Bayarri et al., 2007; Bachoc et al., 2014). In the following, we present three models which take into account a

73

Chapter 3 — Review of the main calibration methods

time consuming code and/or an additional discrepancy.

3.2.1 Presentation of the models
A time consuming code

Let us consider a time consuming code. As said above, in this particular case, the computational burden become
too huge to perform calibration. That is why Sacks et al. (1989) introduced an emulation of the not yet computed
outputs from the code by a random function, i.e. a stochastic process. The common choice is oriented toward the
Gaussian process because the conditional Gaussian process is still a Gaussian process (see Section 2.2 for more
details). It is, parsimoniously, defined by its mean and covariance functions. The first “simple” and straightforward

model was introduced by Cox et al. (2001) which uses this emulation of f,.

My 2 Nie[l,....n] Yep;, = F(xi,0)+& (3.2)
F(o0) ~ 42 (ms(e.0),cs{(s0),(s.0)})

where Vi € [1,...,n] & % (0,02,) and the random function F(x;, @) stands for a Gaussian process (GP) over

the joint domain of x; and 6. Its mean function mg(x;, 0) is generally a linear form of simple functions of x; and 6
and its covariance function cs{(x},0%), (x;,0)} = 6Zry{(x,0%), (x;,0)} is such as the function ry{(e,e),(e,e)}

is the correlation function with a vector parameter ¢ which is the scale and the regularity of the kernel and where
GS2 represents the variance. The mean mg(x;, 0) can be written:

M
ms(xi,0) = mg(xi,0) = E[F (xi,0)] = Bs, + Y. Bs;hs, (xi, 0) = hs(xi,0)Bs (3.3)
j=1

where B§ = (Bsys- - -+ Bsy,) is the coefficient vector to be estimated and /g(e,®) = (g, (e,9),...,hs, (e, @)) the
row vector of regression functions where hg, = 1. Similarly we define the n x (M + 1) matrix Hg(X, 0) such as its
i'" row is hg(x;, 0). The correlation function can take multiple forms as Gaussian or Matérn for instance (see Santner
et al., 2013, for more examples). We will consider, for now and for all theoretical developments, the general form of
cs{(e,0),(e,0)} = 03ry {(e,e),(e,0)} where 67 is the variance and r is the correlation function with a parameter
vector Y. The advantage of using a surrogate model, for f.(X, 0) is to alleviate the computational burden, at the
cost of adding an additional source of uncertainty, and of increasing the number of uncertain parameters. Specific
hypotheses, for instance a known smoothness of the random field, may help to choose the size of the parametric

family in which the correlation shape is to be assessed.

When the code is time consuming, a fixed number N of simulations is set up. The ensuing simulated data (we
will call them y,) are usually the image of a design of experiments (DOE) representative of the input space. Some
interesting developments have been made on using the least possible points in the input space with some wise
repartitions (the Latin Hilbert Space sampling is one example, some good insights are available in Pronzato and
Miiller (2012)).

Let us call D a DOE, a set of N points sampled in the input space defined as the product of Z and 2. We can
write D = {(xP,7P),... (xR, 70)} where Vi € [1,...,N] (xP,7P) are chosen in /% x 2. The establishment of the

74

3.2. Calibration through statistical models

DOE will lead to simulated data which are defined as y, = f..(D). The error made by the surrogate strongly depends
on the numerical design of experiments used to fit the emulator. Adaptive numerical designs introduced in Damblin
et al. (2018) is a way to enhance the emulator when the goal is to calibrate the code.

With a code error

Considering the computational code as a perfect representation of the physical system may be a too strong hypothesis
and it is legitimate to wonder whether the code might differ from the phenomenon. This error (called discrepancy

and introduced above) can be defined as:

8(xi) = §(xi) — fulx:, 0).

In all the works cited above, this unknown discrepancy is modeled as a realization of a Gaussian process, this
time yielding a random function over the domain of X variables only. For the sake of simplicity we will denote by
my, cs (¢ G_%-Vs) and rg (ry,) the mean, covariance (with 652 as the variance) and correlation function relative to the
surrogate and by mg, cs (¢ Ggwﬁ) and rg (ry;) the same functions relative to the discrepancy (respectively G(% for the
variance in the covariance function). Note that mg and cs are functions of x only and not 6. The aim of adding the
discrepancy lies in the fact that correlation is sometimes visible in the residuals and/or that no value of 6 makes the
computer close to experiments. However, the discrepancy could lead to an identifiability issue. For example, it could
easily exist two couples (0,06(x;)) and (6%,0%(x;)) that verify the two equalities: 8(x;) = {(x;) — f¢(x;,0) and
0% (x;) = &(x;) — fe(xi,07). Some papers (Higdon et al., 2004; Bachoc et al., 2014; Bayarri et al., 2007) advocate to
set the mean of the discrepancy to O to solve this identifiability issue. The contribution of the discrepancy is widely

discussed in literature and make the object of comparative studies in validation (Damblin, 2015).

When the code is not time consuming, the real code f, is used:

My Nie[L,. .0 Yeap, = fe(x:,0)+6(x)+ ¢ (3.4)
5(e) ~ 92 (ms(e),c5(,9))

where Vi€ [1,...,n] & % (0,02,), and &(e) stands for a Gaussian process which mimics the discrepancy and

will only depends on the input variables x. We can write §(e) ~ 4 22 (mg(e),cs(e,e)) with Vx, mg(x) = hg(x)Bs
(where hg is a row vector and 35 is a column vector if we choose a parametric representation of the mean) and

cs the covariance function of the discrepancy. We also denote H 5(X) the n row matrix, the i’ row of which is Ag (x;).

When the code is time consuming, the systematic use of f. is not computationally acceptable. Then, as for
Model .#>, the code is replaced with a Gaussian process. This leads to the more generic model introduced in
Kennedy and O’Hagan (2001).

My Vi e [[1,...,71]] Yexp; :F(xi,9)+6(x,-)+s,~ 3.5)

75

Chapter 3 — Review of the main calibration methods

where Vi € [1,...,n] Si%JV(O,Gz

=), F(x;,0) and 8(x;) are two Gaussian processes defined as before. In their

model, Kennedy and O’Hagan (2001) also used a scale parameter p in front of F. This parameter is usually set to 1

in many works in order to achieve the best estimate on 6. Thus, we omit this parameter in the model definition.

A quantification of the bias form is the aim of both models. If we are interested in improving the computational
code or its surrogate, it is usually fair to set the mean of the discrepancy to zero and find the best tuning parameter

vector which compensates a potential bias (Higdon et al., 2004; Bachoc et al., 2014).

,
Bs. 05, Vs

Figure 3.6: Directed Acyclic Graph (DAG) representation of the different models.

Figure 3.6 is a summary of all the models introduced above. The directed acyclic graph (DAG) allows us
to compare the structures of all the previously introduced models. Specifically: if one considers only the grey
nodes, the obtained DAG corresponds to Model .#;. Adding the green node, the resulting DAG represents .#,.
Considering the grey and red nodes, yields a DAG for model .#3 and the whole DAG represents the general model
M. Note that two categories of parameters are considered. The tuning parameters are only related to the code and
other parameters (also called nuisance parameter) concern the measurement error, the surrogate or the discrepancy
introduced in the models. In calibration, we only focus on the value of 8 but the other parameters introduced need

to be estimated as well. We will dig into these estimation issues in Section 3.2.3.

All these models introduce new parameters and need to be estimated as well as tuning parameters. Estimation
needs to dive into technical aspects such as writing the likelihood for each model. The following section provides

all the elements required to go one step further and carry out estimation.

3.2.2 Likelihood

For estimating parameters (whatever framework used, Bayesian or Maximization Likelihood Estimation (MLE)),
expressing the likelihood comes as the first requirement. Two major categories stand out. When the code is not
time consuming, the main issue in code calibration (i.e. the computational time burden) is avoided. When the code
is time consuming, new parameters have to be taken into account and to be estimated. That is why, in the cases 1
and 3 data are only field data y,,, and in the cases 2 and 4, numerical data (outputs of the code) are added to form
the whole data vector y = (y,,yl'). In what follows, we will denote by 6" the true parameter vector. Note that
it is well-defined only in Models .#] and .#%, as the value of 8 which satisfies : {(x) = f.(x, 6*) for all possible
x, (assuming such a 6 exists and is unique). On the other hand, the models .#3 and .#, are both defined by the
relation §(x) = f.(x,0) + &(x), which holds for infinitely many couples (8,0(e)), as discussed earlier. Kennedy

and O’Hagan (2001) avoid this issue by defining 8™ as a “best-fitting” value, but it is unclear what this means

76

3.2. Calibration through statistical models

exactly (see the discussion section of their paper for further details).

In order to simplify the notation, we will use for the rest of the paper ® = {67,063, yg, Y5} and s = {07, s}
and &5 = {0'(%, V¥ 5}, where 0'§ and 0'52 are the variances of the two Gaussian processes respectively relative to the
surrogate and the discrepancy. The two parameter vectors Y and Y5 are relative to the correlation functions. Let

us call BT = (B?, B%) the vector of collected coefficient vectors.

Both cases of time consuming or not time consuming code will be dealt with. The likelihood equations will
be written for the generic forms of .#3 and .#,. The likelihoods for the simpler models .#; and .#, will be then
derived since .#| C /5 and > C M.

A fast code

The generic model which deals with calibration with a code quick to run is detailed in Equation (3.4). Experimental
data are the only one needed because simulation data are free but will not bring additional information for the

parameters of Model .#3. Experimental data follow a Gaussian distribution, the expectation of which is:

E[yexp‘eaﬁB;X] = mgx‘?)(X76) = mEXP(X76) = fC(Xae) +H5(X)ﬁ6'

Then, the expression of the variance is given by:

D5, ezrr
Var[yexp|q)5;x] = Vex‘;ia (X) = VexP(X) = 25(X) +Gezrr1’l

with V(i, j) € [1,...,n]*: (Z5(X))i,; = (EfI;‘S (X))i,j = cs({xi,x;}). The likelihood in this particular case can be

written as

! ex —1< — Mexp(X 9))TV (x)!
@R PV ()12 TP 7 2 Ve ™ Mern (-8 Hewr

(yex,,—mexp(x,m)}.

This likelihood is relative to Model .#3 (Equation (3.4)). For the specific case, where no discrepancy is

gF(evB&q)ﬁ;yexva) =

(3.6)

considered (corresponding to .2 Equation (3.1)) the likelihood can be written in a similar way but with me, (X, 0) =
f:(X,0) and V., (X) = 02,1, Note that the covariance matrix depends only on o,,%. It implies that if we seek to
estimate the posterior density on 6 (in a Bayesian framework), this covariance term is superfluous.

Then the likelihood can be rewritten in an simpler way:

1 1
"E/pF(67Gezrr;yexp7X) = (zmn/zcneXp{ - Fl'yexp —fc(X,9)|%}- (3.7)

err

The models using the code with or without the discrepancy do look quite similar. For theoretical development,
it might be easier to work with the one without discrepancy. From an experimental point of view, it could be

interesting to study the role of the code error.

77

Chapter 3 — Review of the main calibration methods

A time consuming code

When a code is time consuming and replaced by a surrogate, additional parameters are to be estimated. As introduced
above, a DOE is set up and intends to be a representative sample of the input space (variable and parameter input
space). Simulated data from this DOE (called y,) will constitute additional data for the estimation of the nuisance
parameters. Depending on how we consider that two sources of data are linked, multiple likelihoods can be set up.
For the theoretical development, we will consider the general model .#4 and we will detail the particular case .#>

hereafter.

The first likelihood useful in estimation is the full likelihood. This one concerns the distribution of all

collected data (y! = (yeTxp,yLT.)). That means, we are interested in estimating the parameters of the distribu-

tion 7(y|0,B,®,02,;X,D) which is Gaussian. The expectations can be written from both expectancies of

T(Verp|6, B, @, 05,3 X) and (y.|6, Bg, Ps; X).

Ely,|Bs: D] = mES (D) = m.(D) = Hs(D)By

; (3.8)
E[yexp‘evﬁ;x] = mexP(X7 9) = mEXP(X>0) = HS(X76)ﬁS +H5(X)ﬁ5

This can be summed up for two component vectors y/ = (yeTxp, yI:

E[y[0,B:X,D] = me((x79)7D) :my((X79)7D) =H((X,0),D)p

_ (Hs(X,6) Hs(X) (3.9)
-\ Hg(D) 0 h

The variance matrix now includes the covariance functions of the discrepancy and the surrogate.

Varly|0,®,62%,:X,D] = V¥%((X,0),D) = V((X,0),D)

— Zexpﬁexp(xae)_FZS(X)+Ge2rr1’1 Zex}’ac((x76)>D) (3'10)
- Eexp,c((X79)7D)T EC’C(D)

where

* V(@) €L n]? : (Berpenp(X,0))ij = es{(xi, 0), (x;,)},

« V(i j) €[1,...,n] x[1,...,N] : (Bexpe((X,0),D))ij = cs{(x:, 0:), (x?,72)},
* VG j) €L,...n]? : (Z5(X))ij = cs{(xix)) .

V(i j) €1, .NJ?: (Bee(D))ij = es{(xP,7P), (xP, 2P)}.

As areminder D is the DOE set up to build the surrogate and is defined as D = {(x?,7P),... (xR, 70)}. The

general expression of the full likelihood can then be expressed:

1 1 T
F 2 . — — —(y—
<z (evﬁvq)aaerr’yaxvl))_ (27'5)(n+N)/2|V((X,9),D)‘1/2 exp{ Z(y m}(<X’6)’D))

(3.11)
V((X.0).0)"" (y—my«X,e),D))}.

78

3.2. Calibration through statistical models

The particular cases of Bayarri et al. (2007) and Higdon et al. (2004) a zero mean for the discrepancy is
HS (X7 9)

Hs(D)
For the model .#, where a surrogate is used without any discrepancy (Cox et al., 2001), the expectation becomes:

considered. Under this condition, we have m,((X,0),D) = < B and the other terms remain the same.

E[y|6. Bs: X, D] = my((X,0).D) = H((X.8),D)Bs = (H:If(‘l;f)> By (3.12)

and the covariance:

(3.13)

by X,0 21, % X,0),D
Var[y|e,¢7czr,;x,m:V«X,e),m:(eopesp(X,6)+ 0%l Taspel(X,6), >>

Zepe((X,0),D)" Zee(D)

where covariances matrices are the same as defined before.

The estimation can be separate into different steps where the partial likelihood (Equation (3.14)) could be useful.
This one only concerns simulated data and the corresponding surrogate. The partial likelihoods of the model .,
and .#, are then the same. That means we are only interesting in estimating the distribution 7(f ¢, ®s|y,) where
Og = {GSZ, y}. The expectation can be obtained by considering only the mean function of the surrogate (Equation
(3.8)) and the variance is straightforwardly linked to the variance of the surrogate.

Var[yc|<I>S;D] = V?S(D) = VC(D) = ZC,C(D)7

where V(i, j) € [1,...,N|? : (Z¢o(D))ij = cs{(xP,67), (x?,6%7)}. Let us recall that Equation (3.8) established
that m.(D) = Hg(D) . It implies that the partial likelihood relative to .#4 and .# is:

LM (g, ®s:y,. D) = (2n>N/2éC(D)| 73 X { - % (s = me(D)) Ve(D) ! (3o~ me(D) } (3.14)

As the other model introduced by Higdon et al. (2004) and Bayarri et al. (2007) only deals with changes on the

discrepancy, the partial likelihood remains identical as the one for the model in Bayarri et al. (2007).

From what has been introduced before, one can write the conditional distribution 7(y,,,[y.) (see Section 2.2 for

more details) from the joint distribution 7(y,,,y.) and for .#:

Yexp | V% Mexp(X, 6) Zexpexp(X,0) + L5+ ool Zexpe((X,0),D)
Ve me(D) ’ Zexnc((X,e)aD)T L.c(D)
where m, and m,y, are defined Equation (3.8) and covariance matrices defined above before Equation (3.11). Then,
yexp|yc ~ ‘/V(“exp\c((xa 9)7D)a2exp|c((xv 9>7D))

with:

nuexp\c((Xa 6),D) = Mexp(X,0) + Zexp o (X, 9)7D)EC7C(D)71()}C —me(D)), (3.15)
Zeuple((X,0),D) = Zexpexp(X,0) + L5+ 0 In — Zexp e (X, 0),D)Z (D) ' Lewp (X, 0),D)" (3.16)

For ./, the variance term Xoyp oxp(X,0) + X5 + 62,1, in Equation (3.2.2) becomes Zexpexp(X,0) + o2.1,

because there is no discrepancy. It means that X, .((X, 0), D) for .#/ can be rewritten as:

79

Chapter 3 — Review of the main calibration methods

Loeplc((X,0),D) = Zexpexp(X, 0) + Gezrrln —Zewpe (X, 9),D)ZC,C(D)*1ZW,_,C((X, 6),D)". (3.17)

The conditional likelihood can then be expressed as:

fc(&ﬁ57¢5;ﬁ5,¢57yexp|yC,X,D) °<|Eexp\c((X79)7D)|7l/2

1
CXP{ N E(yexp _:uexP‘C((X? 6)7D))TEQXP‘C((X’ 9)7D)71 (318)

(yexp - “explc((xv 9)’D))}

Usually in a Bayesian framework, f3 is distributed according to a Jeffreys prior. In this case, 7(B) = w(Bg, Bs) o
1 and we can integrate out 3 from the full likelihood expressed by Equation (3.11).

3.2.3 Estimation
Maximum likelihood estimator

In this section, we comment remarkable insights developed in Cox et al. (2001). For estimating the parameters 0,
B and @, a first approach (for .#] and .#>) would be to maximize the full likelihood introduced in the previous
section. This method is called Full Maximization of Likelihood Estimator. The major drawback of this method is to

deal with a high number of parameters and in certain cases this leads to a very heavy computational operation.

A second method, introduced in Cox et al. (2001) only for .#, to overcome this issue, is called the Separated
Maximization of Likelihood Estimation (SMLE). The estimation is made in two steps. The first step is to maximize
the partial likelihood (Equation (3.14)) to get estimators of the parameters of the Gaussian Process. Then these
estimators (& and) are plugged into Heplc((X,0),D) and E,,,-((X, 0),D) which are the mean and the variance
of the conditional distribution. A likelihood is set up from those quantities and maximized to get 6. The SMLE

method can also be seen as an approximation of the generalized non linear least squares.

These methods are applied in Cox et al. (2001) for .#>. For models .#3 and .#4, (Wong et al., 2017) have
developed a new approach which deals with the identifiability problem when the discrepancy is added in this

framework. Then, the estimation part is performed in two times. The first step consists in estimating 6 in

S 1y
0 = argmin M, (0) with M,(0) = fZ{yexpi—F(x,gG)}z. (3.19)
0c2 iz

Then the estimation of the discrepancy is done by applying a nonparametric regression to the data {x;, yexp, —

.....

shows an interesting flexibility of the approach.

Bayesian estimation

Under the Bayesian framework, there are several ad hoc short cuts to find estimators without evaluating and sampling
from the entire joint posterior distribution of the unknowns. The idea behind is to consider a prior distribution on
each parameters which we will separate into two different categories. The first category represents the nuisance
parameters which are typically {Gg, Gg, Ve, Vst o2, and B. Those parameters are added because of the modeling.
The second category regroups the other parameters to estimate such as 8. We will work on the two generic models

M and .#, with the corresponding sets of parameters to estimate.

80

3.2. Calibration through statistical models

The difference between both models lies in the fact that for .#3 the code can be used as such and for .#, a
surrogate is used to avoid running the code. In the further developments, the parameters to estimate will be rela-
tive to .#4 and for going back to .#/3 it will be just necessary to omit the nuisance parameters relative to the surrogate.

As introduced before, it is common to take a weakly informative prior on 8 such as ©(Bg,Bg) o< 1. It is also
reasonable to suppose that prior information about 6 is independent from the prior information about ® and . The

prior density can then be expressed as

n(0,B,®) =m(0) x 1 x 1(P). (3.20)

Once the full likelihood integrated .#’*" on the prior distribution of B, the posterior distribution can be expressed

(all details are pursued in Kennedy and O’Hagan (2001)).

For a full Bayesian analysis, integrating & out is needed to finally get 7(6|y). However this integration can
be quite difficult because of the high number of nuisance parameters. It would also demand a full and careful
consideration of the prior 7(®). Two methods are mainly used for estimating 6 and ®. In Higdon et al. (2004), the
choice made is to jointly estimate all parameters from Equation (3.11). The strength of this method is to stand within
the pure Bayesian tracks: recourse is made to all collected data (the simulated with the DOE and experimental data)

to estimate all parameters and nuisance parameters at the same time.

However, Kennedy and O’Hagan (2001) and Bayarri et al. (2007) have chosen an estimation in separate steps.
This method called modularization by Liu et al. (2009) makes inference simpler but gives only a convenient approx-
imation of the exact posterior (that separates the components of parameter ® for each Gaussian Process involved).
The first step consists in maximizing the likelihood -#M (B, ®s|y.;D) (Equation (3.14)) to get the maximum
likelihood estimates (MLE) B s and b of B s and ®g. In the second stage, these estimators are plugged into the
conditional likelihood .#€ (6, B 5, ®s; B 5 P8, Vexplye, X, D) (Equation 3.18) from which the posterior density is
sampled with MCMC methods. Note that this last step is the only one that differs from SMLE method from Cox
et al. (2001).

Kennedy and O’Hagan (2001) arrange to first estimate the nuisance parameters of the surrogate of the code
with the partial likelihood (Equation (3.8)), then they make an integration on the prior density of 8 to estimate
the nuisance parameters of the discrepancy and the variance of the measurement error. They finally estimate
the parameter vector 6 by sampling in the posterior density with a MCMC. Bayarri et al. (2007) are doing the
same thing in estimating first the nuisance parameters of the surrogate with the partial likelihood. However, they
use “virtual” residuals (defined as Yexp — fe(X,0 p,,-(,,) where 0,y is a prior value on 0) to compute a maximum
likelihood estimates for estimating the nuisance parameters relative to the discrepancy and to the measurement error.

are sampled with a Gibbs algorithm based on conditional complete

Then the posterior densities of 0, Gg and 62,

distribution. Practically, this estimation is very time consuming. Indeed, the Gibbs sampler will compute at each
iteration the full likelihood which contains a (n+ N) x (n+4 N) matrix to invert.

We made the choice to use the modularization method for estimating first the nuisance parameters of the
surrogate with the partial likelihood. Then, to avoid the computational time burden of the method introduced by
Bayarri et al. (2007) and the integration on the prior density of 8 of Kennedy and O’Hagan (2001), we chose to
sample, with the Algorithm 7, in the posterior densities of the parameter vector 0, of the nuisance parameters of the
discrepancy and of the variance of the measurement error. The first part of the algorithm is a Metropolis Hastings
within Gibbs that is run for a limited number of times. This algorithm allows to estimate the covariance structure on

the samples generated and to use it in a Metropolis algorithm. These way to proceed help the Metropolis algorithm

81

Chapter 3 — Review of the main calibration methods

to better perform.

3.3 Application to the prediction of power from a photovoltaic (PV) plant

In this section, the PV plant code is a toy example to try out all the models. First, we test the model .#; (Equation
(3.1)), in which only the initial code and the measurement error are considered. The code is supposed, in this case,
quick to run although, in most industrial case studies, numerical codes are time consuming. This is the first issue of
feasibility met by engineers. In a second part, we apply Model .#, on our example to mimic the case when the code
cannot be run at will. This model introduces a surrogate of the code and its characteristics will be detailed below.
M3 is motivated by the gap between the reality and the code observed, most of the time, by engineers. In this case,
we will add to . an error term for the discrepancy between the code and the phenomenon. This code error will be
represented by a Gaussian process also detailed below. The final case is when both issues are occurring. That will

lead to the consideration of .#4 for the application case.

The Bayesian framework starts with the elicitation of priors densities (that will not be discussed here (Albert

et al., 2012)). According to the experts we choose:
* N ~.4(0.143,25.107),
o W~ N (=0.4,1072),
s a, ~A4(0.17,3.6.1073),

s 62, ~T(2,169),

err
« 03 ~T(3,1),

* Y5~ 02/(0, 1).

This application section is developed in two subsections. The first subsection details the practical implementation
procedure of the inference for each model. In the second subsection, we discuss all the results obtained for the

models that we tried out.

3.3.1 Inference

The sensitivity analysis run Section 3.1.1 on the parameter vector 6 allowed to conclude that only 17, y; and a,
are relevant considering the power output. The inference only concerns these three parameters and the additional
nuisance parameters depending on the model. For the sake of simplicity, data, recorded every 10s, is averaged
per hour and only data corresponding to a strictly positive power are kept. The Bayesian framework is chosen for
the following study. It is motivated by the availability of strongly informative priors, elicited from experts, on the
parameters we want to estimate. To perform the inference, a Markov Chain Monte Carlo algorithm is used (Robert,
1996) (especially the algorithm 7 in Section 2.5). Here, the Metropolis within Gibbs is launched for 3000 iterations.
The values of this first sampling phase are kept to improve the covariance structure of the auxiliary distribution used
to make proposals by the algorithm. This will lead to better mixing properties for the following Metropolis Hastings
(10000 iterations including a burn in phase of 3000).

82

3.3. Application to the prediction of power from a photovoltaic (PV) plant

Two months of data are studied. The PV production over August and September 2014 are available. We used
those two months of data averaged per hour which makes 1019 points. For the cross validation, three days of
instantaneous power (51 points) are taken off the learning set and used to evaluate the predictive power of the model

considering the rest of the available data.

The Gaussian process

As said in Section 1.4.3, 6 input variables are needed to run the code. These are ¢ the UTC time, L the latitude, /
the longitude, I, the global irradiation, I; the diffuse irradiation and 7, the ambient temperature. The test stand is
precisely located. Therefore, the latitude and the longitude are not to be considered since they do not change by

records.

The major issue in emulating the behavior of the code is to deal with correlated variables. Actually, the global
irradiation, diffuse irradiation and ambient temperature depend on the time which defines the sun position. If a
space filling DOE, is taken into [0, 1]* and then unnormalized between the upper and lower bounds of the 4 input
variables and the parameter, some configurations tested would not make any sense. We could obtain for example, a
time which indicates the morning and a global irradiation value which corresponds at noon. To solve this problem,
we choose to run a PCA (Principle Component Analysis) on the matrix containing all the x;’s (over the duration
used for the calibration). The aim is to access an uncorrelated space in which we could sample a DOE which would

keep a physical sense and then go back to the original space with the transformation matrix.

The main steps of this method are:

ith

1. the PCA is performed on the matrix X where the i/ line contains x; = where x; € R,

2. the maximin LHS is sampled in the uncorrelated space given by the PCA,
3. the transformation matrix 7 allows us to go back in the original space,

4. the code is run for those points and gives the computed data y,..

The Gaussian processes emulated from this method reveal to work much better. We also could have developed

the method with an adaptive numerical design (see (Damblin et al., 2018)) to the correlated input variables.

To position the application case to a time consuming context, a limited number of experiments is allowed for the
DOE which establishes the surrogate. We will limit the number of code calls to 50 to investigate the time consuming
situation and compare it to other situations more favorables. This number of experiments is taken when computer
codes are extremely time consuming. To compare the quality of .#> with a DOE of 50 points, we chose to compare
it with a model .#, established with a DOE of 100 points.

Table 3.1: Results in cross validation for .#, for 2 different DOE sizes

| 50 points | 100 points

coverage rate at 90% (in %) 32 65
RMSE of the instantaneous power (W) 21.61 19.7

83

Chapter 3 — Review of the main calibration methods

The degradation in prediction with the decrease of the number of points in the DOE (Table 3.1) is in line with

our desire to place ourselves in the most unfavorable case possible.

The first model .7

Model .#, described by Equation (3.1) only deals with the measurement error. The code used in its simplest form
only makes recourse to the parameters 7, U; and a,. In this case the parameters to infer on are 7, Y, a, and Gezrr
(where & % N(0,62,)).

The second model .7,

As defined in Section 3.2, when the code is time consuming, the solution is to mimic it with a Gaussian process
(GP). For the GP emulator, we made the choice to consider the mean function mg(e, e) as a linear combination of
linear functions. That means Hg is a matrix of linear functions. The correlation function rg (cg = Gszrg) chosen is

defined by the following equation that corresponds to a Gaussian kernel (Equation (2.50)):

. s 1|(x,0) — (x*,0)|3

rs{(x,0),(x*,0)}:exp{—iu() 1/1(2)”2} (3.21)
s

where || ||> stands for the Euclidean norm.

In this case, five parameters have to be estimated: 1, u;, a, Gfrr, 0'3 and y.

The third model .73

The third model introduces another GP for the discrepancy. We choose a different covariance kernel which is
a Matérn 5/2 (Equation (3.22) from Equation (2.51) with v = 5/2). Note that compared to Equation (3.4), the
discrepancy mean has been set to 0 (i.e. mg(.) = 0). These choices are motivated by the fact that the purpose of
calibration is to estimate the "best-fitting" vector parameter 8. We do not want any compensation into any additional

bias. This decision is consistent with Bachoc et al. (2014) where the same hypothesis has been made.

(3.22)

- o x[]12 -
o Yl Sy o Yl

rs(x,x*) =
3(5%) (Vs 3y Vs

In this case, there are also five parameters to estimate that are 7, U, a, G(%, Vs and Gezrr.

The fourth model .74

This part focuses on a time consuming code with discrepancy. This model uses the same surrogate and discrepancy
defined above. The two correlation function for the surrogate and the discrepancy were chosen with different
regularity in order to distinguish the two Gaussian processes. It seems relevant to assume that the discrepancy is
smoother than the code. That is why a Matérn correlation function is chosen for the code and a Gaussian correlation
function for the discrepancy. In this case seven parameters need to be estimated which are n, u;, ay, 682,,, 0'3, Y,

2
o5 and Y.

Estimation of the nuisance parameters

In our Bayesian framework, the choice of an estimation by modularization is made. It concerns only the second and
the fourth model. As it is the case in Kennedy and O’Hagan (2001), a maximization of the probability w(Ps|y,.)
is done to estimate f3 ¢, GSZ and y¢ where y,. are the outputs of the code for all the points given by the DOE. This

maximization is included in the R function km from the package DiceKriging (Roustant et al., 2012).

84

3.3. Application to the prediction of power from a photovoltaic (PV) plant

3.3.2 Results

1200 250
osterior 200 osterior osterior osterior
500 Hhfor HIhRor FIbRor Fhror

900 200

150
600

density

200

posterior posterior posterior posterior
prior

m Dlprior 200 lprior Clprior

150

b 15
‘5 10
= 100
15} 20 10
kel
5
10 50 5
/\ /\
PR) B e S 0 s 0— 0 \
-06 -04 -02 -06 -0.4 -02 oc -08 -06 04 0.2 -06 04 -02
My
150
300
posterior posterior posterior posterior
Clprior [Cprior [prior . Clprior
60
100
. 200
‘5 40 40
=
Q
o 100 50
20 20
L [1 / \
0— — 0o— — o N B S 0— — o —
0.0 01 02 0.3 0.0 01 02 03 0.0 01 0.2 0.3 0.0 01 0.2 0.3
ar
0.0 posterior posterior posterior 008 posterior
[Cprior [Clprior Clprior [Cprior
0.03 0.15
0.06
> 0.04
= 0.02
— 0.10
g 0.04
3
0.02 001
0.05 0.02
00— - 000 00— 000 —=———+ -
0 500 1000 0 200 400 600 800 0 250 500 750 0 500 1000
Gerr

Figure 3.7: Prior (in blue) and posterior (in red) densities of 1, 1, a, and 662,, for each model. On the two first
column the two first models (without and with surrogate) which have only these four parameters to estimate. The
two other columns represent the third and the fourth models which have two more parameters to estimate (see
Figure 3.9).

Figure 3.7 compares the results obtained (with the help of the R package CaliCo (Carmassi, 2018)) for n, , a,

for each model. In each case, the MCMC chains converge. For the first model, a strong disagreement has

appeared between the prior and posterior densities for 62.,. The Maximum A Posteriori (MAP) of 62,’s density,

and 62,
for /1, is 1283 W?2. That makes a standard deviation of 36W which is too high and has no physical trustworthiness.
For ./, /3 and ./ the MAP estimations of 62,’s densities seem to be coherent with physics. The addition of the
discrepancy between .#) and .# then between .#, and .#4 depicts a correlation (an error structure) in y,. When,

no code error is applied, the variance from this covariance matrix is added to the variance of the measurement error.

85

Chapter 3 — Review of the main calibration methods

From . to .#>, a surrogate emulates the numerical code. Figure 3.7 illustrates a bigger variance a posteriori
for the parameters densities of .#), than .#). Replacing the code by a surrogate had brought more uncertainty.
Moreover, the densities for ., appear to be out of step with .#;. Calibration behaves as if a bias has appeared with
the surrogate. This is worth to note that using a surrogate not only increase the variance of the posterior distribution
of the parameter 6 but may also change the mode. This is also observed when moving from .#3 to .#4. Adding
the discrepancy (from .#) to .43 and from .4, to .#4) has almost always reduced the variances of the posterior

distributions.

We also depict correlation between the parameters. As a matter of fact, a strong positive and linear correlation
links every parameters (1, Y, and a,) with each other as illustrated in Figure 3.8. A strong correlation appears

between U, and a,. A lower, but still meaningful, correlation is also visible between 1 and u,, and a, and 7).

n My ar

Figure 3.8: Correlation representation between the parameters.

0.3
posterior posterior
015 Cprior [Cprior
0.2
)
— 0.10
7]
=
Q
o 01
0.05
0.00—=————7+ e 0.0 e
o 200 400 600 800 o 200 400 600
60
posterior posterior
Clbrior Cprior
60
>\‘ 40
=
7 40
=
Q
o 2
20
0 0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Figure 3.9: Prior (in blue) and posterior (in red) densities of G§ and ;g for .43 and 4.

Figure 3.9 illustrates the estimation of the parameters from the discrepancy term. As expected, learning from
data has improved our prior belief by decreasing the prior uncertainty of the parameters. It shows that in both cases

(with and without surrogate) that the convergence seems to be reached at some point.

86

3.3. Application to the prediction of power from a photovoltaic (PV) plant

3.3.3 Comparison

To compare the prediction ability of the four models, a cross validation (CV) is performed. Three days of data
(chosen randomly) are taken off the calibration dataset for each of the 100 repetitions of the CV. The power densities,
generated from the MCMC samples, allow us to compute, for each model, the 90% predictive credibility intervals.
The coverage rate at 90% represents the quantity of validation experiments contained in these credibility intervals.
The Root Mean Square Error (RMSE) is also computed for the instantaneous power. The results are displayed Table
3.2.

Table 3.2: Comparison of the RMSEs and coverage rates in prediction of 100 test-sets on three randomly selected
days.

| oy | My | M| M
coverage rate at 90% (in %) 91 32 87 23
RMSE of the instantaneous power (W) | 12.69 | 21.61 | 591 | 18.7

The coverage rates for .#) and .#3 corresponds to the chosen credibility level. However for .#5 and .#4 the
coverage rates are below this level. This was expected since the coverage rates for the code emulation displayed
in Table 3.1 were below the fixed credibility level especially when the DOE had only 50 points. We recall that
these coverage rates only account for the surrogate error and not for the uncertainty on 8. We also notice that the

predictive power increases when the discrepancy is added.

Overall, the model .#3 has better results than the others. This conclusion can be explained twofold. First, the
code achieves a better prediction than the surrogate. Second, a correlation structure remains in the error. Adding the
discrepancy in the model allows to catch up the real results. The fact that the models, encompassing a surrogate,
produces worse results is expected. The Gaussian process used for the surrogate had trouble to fill every variation of
power. To compensate this lack of information, the posterior credibility interval becomes wide and less informative.

Figure 3.7 illustrates that the use of a Gaussian process with a low number of points creates a bad estima-
tion of the parameters. Indeed the modes a posteriori found with .#, or .#, are shifted compared to the a
priori modes. A particular attention has to be given to the Gaussian process quality regarding further calibra-
tion. A better DOE could have been proposed as for example the sequential design introduced in Damblin et al.
(2018). If we start from an initial maximin LHS DOE with a higher number of points, say 150 points, and if

we use the sequential design to add say 30 points, calibration is modified and the results are illustrated in Figure 3.10.

87

Chapter 3 — Review of the main calibration methods

density

density

density

density

Figure 3.10: Calibration results for .#, and .#, that are using Gaussian processes build on a DOE extended by the

sequential design.

With the new DOE, the estimation of the nuisance parameters is better than the previous one and allow to be
consistent with the prior densities and the physical meaning. The question highlighted here is to wonder how many

points to add in the design to have a proper Gaussian process which leads to a coherent calibration.

/A
300
B
200
100
o e
0.0 0.1 0.2 0.3
40
o
30
20
10
o— AT | _
0.7! 0.50 -0.25 0.00
90 [n
60
30
0—] \ |
0.0 0.1 0.2 03

a

0,00 = —

0 500 1000 1500 2000

Gerr

3.4 Conclusion and discussion

This chapter focuses on code calibration which can be a very interesting way to deal with uncertainties in numerical
experiments. The code used in this chapter, to allow comparisons with time consuming codes, is a quick code
predicting power from small PV plant. This work can be extended to bigger computational codes in application at
larger PV plants. As we are working with a physical code, it is important in this case to keep in mind the reality of

the physical boundaries. This aspect had allowed us to confirm the presence of the discrepancy.

88

200

100

o T | e S |

80

40

1O e -

100

50

0.2

01

00—
0 500 1000 1500 2000

3.4. Conclusion and discussion

In a case where input variables are correlated, additional issues of DOE appear when the surrogate is fitted. To
cope with these issues we made recourse to a PCA. The design of numerical experiments could have been enhanced

by using adaptive designs proposed by Damblin et al. (2018).

The hypotheses made for the application case can also be discussed. For example setting p and mg(.) to 1 and 0
is a preliminary decision which goes along with calibration. We do not want to quantify the bias because the aim of
calibration is to find the parameter value to compensate that bias. If one’s goal is to check where the uncertainty
goes, other hypotheses could have been made. For example, a non zero discrepancy expectation would quantify the
mean of the gap between the code and the experiments. In calibration we want this gap to be taken into account in
the code through adjusted 6.

The quality of the Gaussian process is also mentioned. Indeed, in code calibration if the estimation of the
parameters of the Gaussian process is based on a not satisfactory DOE, calibration quality is then affected. Some
techniques as the sequential design, based of the expected improvement criterion, allow to enhance the initial DOE

by finding new points regarding further calibration.

One can wonder which models to use in a given particular case. There is no obvious answer to this question
but it depends first on the numerical code. If it is time consuming, the first model to try on is .4, and, if it is not,
one can use .. One may then wonder whether it is worth adding a discrepancy term, going from .#; to .#3 or
from .#, to .#,. In-depth work on statistical validation had been developed in Damblin et al. (2016) in which the
comparison between two models (with and without discrepancy) is studied in a simplified context. The Bayes factor
helps to decide whether the discrepancy is relevant or not. However, this Bayes factor is burdensome to compute in

a general context.

89

CHAPTER

CALICO: A R PACKAGE FOR BAYESIAN
CALIBRATION

4.1 Guidelines forusers e e e 92
4.2 Multidimensional example with CaliCo 97
42.1 Themodels e e e 98
422 Priors o e e e e e e e e 102
423 Calibration e e e e e e e e e 103
424 Additionnal tools e e 108
4.3 Conclusion e e e e e e e e 111

This chapter presents and illustrates the package CaliCo that has been published on CRAN (Comprehensive R
Archive Network). It is based on all theoretical developments given Chapter 3. Three packages have been developed
for Bayesian calibration. The package BACCO (Hankin, 2013b) is a bundle of several other packages. It imports
emulator (Hankin, 2014), mvtnorm (Genz et al., 2018), calibrator (Hankin, 2013c) and approximator (Hankin,
2013a). These packages contain functions that perform Bayesian calibration and also prediction. The statistical
model implemented concerns only the case where the numerical code is time consuming and when a code error is
added (the model introduced by Kennedy and O’Hagan (2001)). Moreover, BACCO explores the prior distribution,
of the parameters from the statistical model, using analytic or numerical integration. Similarly, another package
called SAVE (Palomo et al., 2017) deals with Bayesian calibration through four main functions: SAVE, bayesfit,
predictcode and validate. The function SAVE creates the statistical model when bayesfit, predictcode and
validate perform respectively Bayesian calibration, prediction and validation of a model. Calibration is done
in SAVE in a similar way to BACCO because it is based on the same statistical model. Both packages are not
flexible with the numerical code and the statistical model. A design of experiments has to be run upstream on the
code before running calibration. The package RobustCalibration based on Gu and Wang (2017) (Gu, 2018b) is a
package that achieves calibration of inexact mathematical models and implements the discrepancy with a “scaled

Gaussian process”.

CaliCo offers more flexibility on the statistical model choice. If one is interested in calibrating a numerical
code inexpensive in computation time, CaliCo allows the user to upload the numerical code in the model and
run Bayesian calibration with it. A very intuitive perspective is given to the user by using four functions called
model, prior, calibrate and forecast, that are detailed in Section 4.1. CaliCo also allows the user to access
several ggplot2 (Wickham and Chang, 2016) graphs very easily and to load each of them to change the layout
at one’s convenience. At some point, if the code is time consuming, calibration needs a surrogate to emulate it.
Usually, a Gaussian process is chosen (Sacks et al., 1989; Cox et al., 2001). Three packages are related to the

establishment of a Gaussian process as a surrogate: GPfit (MacDoanld et al., 2015), DiceKriging (Roustant et al.,

91

Chapter 4

Chapter 4

Chapter 4 — CaliCo: a R package for Bayesian calibration

2015) and RobustGaSP based on Gu (2018a) (Mengyang Gu and Berger, 2018). We use in CaliCo, the package
DiceDesign (Franco et al., 2015) to establish design of experiments (DOE). For compatibility matters, we have
chosen DiceKriging to generate surrogates. Moreover, the time consuming steps of the Bayesian calibration are
coded in C++ and linked to R via the package Repp (Eddelbuettel et al., 2018).

In this section, the first part (Section 4.1) presents the main functions and functionalities of the package. The
second section provides a Bayesian calibration illustration on a toy example. It is based on a physical model of a

damped harmonic oscillator with five parameters to calibrate.

4.1 Guidelines for users

CaliCo performs a Bayesian calibration through 3 different steps:
1. creation of the statistical model,
2. selection of the prior distributions,
3. running calibration with some simulation options.

CaliCo allows the user to easily take advantage of the calibration performed. Indeed, a prediction can be
performed on a new data set using the calibrated code in the statistical model. The main functions of the package
CaliCo are detailed Table 4.1.

Function Description
model generates a statistical model
prior creates one or a list of prior distributions

calibrate performs calibration for the model and prior specified
forecast predicts the output over a new data set

Table 4.1: Main functions necessary for calibration in CaliCo.

CaliCo is coded in R6 (Chang, 2017) which is an oriented object language. Each function generates an R6
object that can be used by other functions (in this case methods) that are proper to the object. The R6 layer is not

visible to the user. The main classes implemented with the associated functions are detailed Table 4.2.

Function R6 class called
model model.class
prior prior.class

calibrate calibrate.class
forecast forecast.class

Table 4.2: R6 classes called by the main functions in CaliCo.

To define the statistical model, which is the first step in calibration, several elements are necessary. The code

function must be defined in R and takes two arguments X and 0 respecting this order. For example:
code <- function(X,theta)

{
return((6*X-2) “2*sin(theta*X-4))

92

4.1. Guidelines for users

If the numerical code is called from another language, one can implement a wrapper that calls from R the

numerical code according to the above writing. It is also possible to build a design of experiments and run the code

outside R to get the outputs. Then, the DOE and the relative outputs are used instead of the numerical code in the

statistical model (more details below). The function model takes several other arguments (Table 4.3) as for example

the vector or the matrix of the input variables (described in Section 1.4.1), the vector of experimental data or the

statistical model chosen for calibration.

model description

Arguments to be specified

f2(x,0) the function to calibrate
X the matrix of the input variables
v, the vector of experimental data
A the statistical model selected

Gaussian process options (optional only for
.///2 and .///4)

Emulation options (optional only for

M and Ay)

Simulation options (optional only for

./fz and %4)

Discrepancy options (necessary only for
M3 and Ay)

code (defined as code (x,theta))

X

Yexp

(Default value model1l) modell, model?2,
model3, modeld

(Optional) opt . gp (is a 1ist)

(Optional) opt.emul (is a 1ist)
(Optional) opt.sim (is a list)

(Optional) opt.disc (isa list)

Table 4.3: description of the arguments of the function model.

If the chosen model is .#> or .44, then a Gaussian process will be created as a surrogate of the function code.

In each case the Gaussian process option (opt . gp, see Table 4.3) is needed. It is a 1ist which encompasses:

* type: type of covariance function chosen for the surrogate established by the package DiceKriging (Roustant

etal., 2015),

» DOE: design of experiments for the surrogate (default value NULL).

Three cases can occur. First, the numerical code is available and the user does not possess any Design Of

Experiments (DOE). In this case, only the Gaussian process option opt . gp and the emulation option opt . emul

(Table 4.3) are needed. The emulation option controls the establishment of the DOE. It is a 1ist which contains:

* p: the number of parameters in the model,

* n.emul: the number of points for constituting the DOE,

* binf: the lower bound of the parameter vector,

* bsup: the upper bound of the parameter vector.

The second possible case is when the user want to enforce a specific DOE. Note that in opt . gp, the DOE option is

NULL. One can upload a specific DOE in this option. As the new DOE will be used, the emulation option opt . emul

is not needed anymore.

The third case is when no numerical code is available. The user is only in possession of a DOE and the

corresponding code evaluations. Then, the simulation option opt . sim is added. This option encompasses:

¢ Ysim: the code evaluations of DOEsim,

* DOEsim: the specific DOE used to get simulated data.

93

Chapter 4 — CaliCo: a R package for Bayesian calibration

When this option is added, the emulation option is not necessary anymore. The code argument in the function
model can then be set to code=NULL. Table 4.4 presents a summary of these three cases and the options to add in
the function model.

cases options needed in the function model
numerical code without DOE opt.gp and opt.emul

numerical code with DOE opt.gp

no numerical code opt.gp and opt.sim

Table 4.4: Summary of the options needed depending on the case.

If .4 or .4 is chosen, a discrepancy term is added in the statistical model. This discrepancy is created
in CaliCo with the option opt.disc in the function model. It is a 1ist composed of one component called
type.kernel which corresponds to the correlation function of the discrepancy chosen. The list of the correlation

functions implemented are detailed in Table 4.5.

kernel.type covariance implemented

gauss g(d) = c2exp(— %(%)2)

exp g(d) = o%exp(— %%

matern3_2 gld)=0c*(1+ \5% exp(— \/5%)
matern5_2 g(d) = o2 1—|—\5§ —&—5%)6}6[}(—\@%)

Table 4.5: Kernel implemented for the discrepancy covariance.

The model function creates an R6 object in which two methods have been coded and are able to be used as
regular functions. These function are plot and print. The function print gives an access to a short summary
of the statistical model created. The function plot allows to get a visual representation. However, to get a visual
representation, parameter values have to be specified in the model. A pipe %<7 is available in CaliCo to parametrize
amodel. Let us consider a created random model called myModel. The code line myModel %<% param is the way
to give the model parameter values. The param variable is a 1ist containing values of 6 (named theta in the
list), 05 for .#3 and .#4 (variance and correlation length of the discrepancy, named thetaD in the 1ist) and Gez
(named var). Section 4.2 gives an overview of how the pipe works for each models. The plot function takes two
arguments that are the model generated by model and the x-axis to draw the results. An additional option CI (by

default CI="all") allows to select which credibility interval at 95% one wants to display:
e CI="err" only the credibility interval of the measurement error with (or without) the discrepancy is given,
e CI="GP", only the credibility interval of the Gaussian process is plotted,
e CI="all" all credibility intervals are displayed.

The second step for calibration is to define the prior distributions of the parameters we seek to estimate. At least,
two prior distributions have to be set and it is in the case where the code function takes only one input parameter 6.
That means, only the posterior distributions of this parameter and the variance 62 (for the model .#) are what we

seek to sample in calibration.

Table 4.6 describes the options needed into the function prior. Three choices of type.prior are available so
far (gaussian, gamma and unif which respectively stands for Gaussian, Gamma and Uniform distributions, see
Table 4.7 for details). For calibration with 2 parameters (which is the lower dimensional case), type.prior is a
vector (type.prior=c("gaussian","gamma") for example). Then, opt.prior is a list containing characteris-

tics of each distribution. For the Gaussian distribution, it will be a vector of the mean and the variance, for the

94

4.1. Guidelines for users

prior arguments
type.prior
opt.prior

description
vector or scalar of string among ("gaussian", "gamma" and "unif")
list of vector corresponding to the distribution parameters

Table 4.6: description of the arguments of the function prior.

Gamma distribution it will be the shape and the scale and for the Uniform distribution the lower bound and the

upper bound (opt .prior=1list(c(1,0.1),c(0.01,1)) for example).

type.prior distribution arguments in opt . prior vector
-

gaussian flx)= zlﬂvexp<— %(%)) c(m,V)

gamma flx)= (ka*}_(a»x(“_l)exp(—%) c(a,k)

unif fx) = 5= c(a,b)

Table 4.7: description of the arguments of the function prior.

When the prior distributions and the model are defined, calibration can be run. The function calibrate

implements a Markov Chain Monte Carlo (MCMC) according to specific conditions all controlled by the user.

calibrate arguments Description
md the model generated with the function model

pr the list of prior generated by the function prior
opt.estim estimation options for calibration
opt.valid (optional) cross validation options (default value NULL)

Table 4.8: description of the arguments of the function calibrate.

The MCMC implemented in CaliCo is composed of two algorithms as described in Section 2.5. The imple-
mented algorithm (Algorithm 7) is coded in C++ thanks to Repp package (Eddelbuettel et al., 2018) in order to
limit the time consuming aspect of these non-parallelizable loops. Note that there is an adaptability present to reg-

ulate the parameter k according to the acceptation rate. The user is free to set that regulation at the wanted percentage.
Then, the opt.estim option is a 1ist composed of:
* Ngibbs: the number of iterations of the Metropolis within Gibbs algorithm,
e Nmh: the number of iteration of the Metropolis Hastings algorithm,

* thetalnit: the starting point,

 r: the vector of regulation of the covariance in the Metropolis within Gibbs algorithm (in the proposition

distribution the variance is kY),
* sig: the variance of the proposition distribution X,
e Nchains: (default value 1) the number of MCMC chains to run,
* burnIn: the number of iteration to withdraw from the Metropolis Hastings algorithm.

In the function calibrate, one optional argument is available to run a cross validation. This option called

opt.valid, is a list composed of two options which have to be filled:

* type.CV: the type of cross validation wanted (leave one out is the only cross validation implemented so far
type.CV="1o0"),

95

Chapter 4 — CaliCo: a R package for Bayesian calibration

¢ nCV: the number of iteration to run in the cross validation.

After calibration is complete, an R6 object is created and two methods (print and plot) are available and are
also able to be used as regular functions. The print function is a summary that recalls the selected model, the
code used for calibration, the acceptation rate of the Metropolis within Gibbs algorithm, the acceptation rate of the
Metropolis Hastings algorithm, the maximum a posteriori and the mean a posteriori. It allows to quickly check the
acceptation ratios and see if the chains have properly mixed. The plot function generates automatically, a series of
graphs that displays, notably, the output of the calibrated code. Two arguments are necessary to run this function:
the calibrated model and the x-axis to draw the results. An additional option graph (by default graph="all")

allows to control which graphic layout one wants to plot:

* if graph="chains" a layout containing the autocorrelation graphs, the MCMC chains and the prior and

posterior distributions for each parameter is given,

¢ if graph="corr" alayout containing in the diagonal the prior and posterior distributions for the parameter

vector 6 and the scatterplot between each pair of parameters is plotted,
* if graph="results" the result of calibration is displayed,
¢ if graph="all all of them are printed.

Note that all these graphs (made in ggplot2) are proposed in a particular layout but one can easily load all of
them into a variable and extract the particular graph one wants. Indeed, if a variable p is used to store all the graphs,
then p is a 1ist containing "ACF" (the autocorrelation graphs), "MCMC" (the MCMC chains), "corr" (the scatter
plot between each pair of parameters), "dens" (prior and posterior distributions) and "out" (the calibration result
graph) variables.

Two external functions can be run on an object generated by the function calibrate:

e chain: function that allows to extract the chains sampled in the posterior distribution. If the variable
Nchains, in opt.estim option, is higher than 1 then the function chain return a coda (Plummer et al.,
2016) object with the sampled chains,

* estimators: function that accesses the maximum a posteriorilMAP) and the mean a posteriori.

Sequential design introduced in Damblin et al. (2018) allows to improve the Gaussian process estimation for
M and 4. Based on the expected improvement (EI), introduced in Jones et al. (1998), new points are added to an

initial DOE in order to improve the quality of calibration. The arguments of the function are given Table 4.9.

sequentialDesign arguments Description

md the model generated with the function model
(for > or M4)

pr the list of prior generated by the function prior

opt.estim estimation options for calibration

k number of points to add in the design

Table 4.9: description of the arguments of the function sequentialDesign.

The last main function in CaliCo is forecast which produces a prediction of a selected model on a new data

and based on previous calibration.

The object generated by forecast.class possesses the two similar methods print and plot. The print

function gives a summary identical to the one in model. class except that it adds the MAP estimator. The plot

96

4.2. Multidimensional example with CaliCo

forecast arguments Description
modelfit calibrated model (run by calibrate function)
X.new new data for prediction

Table 4.10: description of the arguments of the function calibrate.

function displays the calibration results and also adds the predicted results. The arguments of plot are the predicted

model and the x-axis which is the axis corresponding to calibration extended with the axis corresponding to the

forecast.

4.2 Multidimensional example with CaliCo

An illustration is provided in this section to help the user to easily handle the functionalities of CaliCo. This
example, represents a damped harmonic oscillator and experimental data are simulated for specific values of the
parameter vector 6. These parameters to calibrate are A the constant amplitude, the damping ratio &, the spring
constant k, the mass of the spring m and ¢ the phase. The recorded displacement of the damped oscillator is

represented in Figure 4.1 and the equation of the displacement of a damped harmonic oscillator is:

x(1,0) :RxR’—R 4.1)

(1,6 = (4,8, k,m,9)") %Aegﬁ‘sin(ﬁﬁrw) (4.2)

1.0
0.5
0.0

-0.5
0.0 0.5 1.0 15 2.0
t

Figure 4.1: Displacement of the oscillator simulated.

There is five parameters to calibrate. Let us consider that experiments are available for the 2 first seconds of the
movement (these experiments have been simulated for the interval time [0,2] with the time step of 40ms and for
specific parameter values). Visually, at time t = O the position of the mass seems to be at the position x = 1. So the
values a priori of A and ¢ are A = 1 and ¢ = Z. The company states that the spring has a constant of k = 6N /m and
the mass is weighing at m = 50g. The major uncertainty lies in the knowledge of £. It is indeed a difficult parameter
to estimate. However, the value of the damping ratio £ determines the behavior of the system. A damped harmonic

oscillator can be:

97

Chapter 4

Chapter 4

Chapter 4 — CaliCo: a R package for Bayesian calibration

* over-damped (£ > 1): the system exponentially decays to steady state without oscillating,
« critically damped (¢ = 1): the system returns to steady state as quickly as possible without oscillating,
* under-damped (& < 1): The system oscillates with the amplitude gradually decreasing to zero.

Physical experts provide us a value of & = 0.3 but says that the parameter can oscillate between the value
[0.15,0.45] at 95%.

4.2.1 The models

To define the first statistical model, the function code has to be defined such as:

n <- 50

t <- seq(0,2,length.out=n)

code <- function(t,theta)

{
w0 <- sqrt(theta[3]/thetal4])
return(theta[l]*exp(-theta[2]*wO*t)*sin(sqrt(1-theta[2] ~2)*wO*t+thetal[5]))

In CaliCo, one function allows to define the statistical model. This function model takes as inputs the code
function, the input variables X, experimental data and the model choice. If a numerical code has no input variables,

it is just enough to put X=0.
modell <- model(code,X=t,Yexp,"modell")

In this particular case where, the input variables are unidimensional, it is easy to choose a graphical representation
of the model. As mentioned in Section 4.1, when the function model is called, a model. class object is generated.

This object owns several methods as plot or print that behave as regular functions.

print (modell)

Call:

[1] "modell"

#Hit

With the function:

function(t,theta)

{

w0 <- sqrt(thetal[3]/thetal4])
return(thetal[1]*exp(-theta[2]*wO*t)*sin(sqrt(1-theta[2]~2)*wO*t+theta[5]))
}

#i

No surrogate is selected

##

No discrepancy is added

To get a visual representation, parameter values need to be added to the model. To achieve such an operation
in CaliCo, one can use the defined pipe %<%. Following the pipe, a list containing all parameter values allows to

select these values for the visual representation. The parameter vector (theta) and the value of the variance of the

98

4.2. Multidimensional example with CaliCo

measurement error (var), here, are needed in the list to set a proper parametrization of the model:

modell %<% list(theta=c(1,0.3,6,50e-3,pi/2) ,var=1e-4)

Warning: Please be careful to the size of the parameter vector

The Warning is present at each use of the pipe. It appears as a reminder for the user to be careful with the size
of the parameter vector. When the model is defined nothing indicates the number of parameter within. To get a
visual representation of the model with such parameters values, the plot function can be straightforwardly applied
on the model object created by model and completed by the pipe %<%. The x-axis needs to be filled in plot to get
an x-axis for display. The left panel of Figure 4.3 is the result of:

plot(modell,t)

If no parameter value is added to the model and the visual representation is required, a Warning appears and

remind the user that no parameter value has been defined and only experiments are plotted (Figure 4.2):

modellbis <- model(code,X=t,Yexp, "modell")
plot(modellbis,t)

Warning: mno theta and var has been given to the model, experiments only are

plotted
1.0
—exp
0.5
<
0.0
-0.5
0.0 05 1.0 15 2.0
t

Figure 4.2: Experimental data displayed when no parameter values are set in the model.

If no x-axis is defined, then no visual representation is possible and the function plot breaks:

modellbis <- model(code,X=t,Yexp,"modell")
plot(modelibis)

Error: No x-axis selected, no graph is displayed

For .7, several cases may occur (see Table 4.4 for more details). First the user only has the time consuming code
without any Design Of Experiments (DOE). Then, the definition of the model is done by delimiting the boundaries
of the parameters. The option opt . gp allows the user to set the kernel type of the Gaussian process and to specify
if the user has a particular DOE. In this first case the DOE is not available, so DOE=NULL in the opt . gp option. To

parametrize the DOE created in the function model, the option called opt . emul needs to be filled by p, n. emul,

99

Chapter 4

Chapter 4

Chapter 4 — CaliCo: a R package for Bayesian calibration

binf, bsup. Where p stands for the number of parameter to calibrate, n. emul for the number of experiments in the

DOE, binf and bsup for the lower and upper bounds of the parameter vector.

binf <- ¢(0.9,0.15,5.8,48e-3,1.49)
bsup <- ¢(1.1,0.45,6.2,52e-3,1.6)

model2 <- model(code,t,Yexp, "model2",
opt.gp = list(type="matern5_2",DOE=NULL),
opt.emul = list(p=5,n.emul=60,binf=binf,bsup=bsup))

The second case is when the users has a numerical code and a specific DOE. In CaliCo, the option DOE in
opt . gp allows to consider a particular DOE wanted by the user. As no DOE is build with the function model, the

option opt.emul is not necessary anymore:

library(DiceDesign)
DOE <- maximinSA_LHS(lhsDesign(60,6)$design)$design
DOE <- unscale(DOE,c(0,binf),c(2,bsup))

model2doe <- model(code,t,Yexp,'"model2",
opt.gp=list(type="matern5_2",DOE=DOE))

When one does not possess any numerical code, but only the DOE and the corresponding output, another option,
called opt . sim, needs to be filled. The opt . gp option is still needed to specify the chosen kernel but the opt . emul
option is no longer necessary (for the same reasons as in the second case). The opt . sim option is the list containing
the DOE and the output of the code. As the user does not possess the numerical code, the code option in the

function model can be set to code=NULL.

Ysim <- code(DOE[1,1],DOE[1,2:6])
for (i in 2:60){Ysim <- c(Ysim,code(DOE[i,1],DOE[i,2:6]))}

model2code <- model(code=NULL,t,Yexp, "model2",
opt.gp = list(type="matern5_2", DOE=NULL),
opt.sim = 1list(Ysim=Ysim,DOEsim=DOE))

The package CaliCo is comfortable with these three situations and bring flexibility according to the different
problems of the users. Similarly as before, parameter values need to be added to each models and the function

print and plot can be directly used:

ParamlList <- list(theta=c(1,0.3,6,50e-3,pi/2),var=1e-4)
model?2 %<% ParamList
model2doe %<% ParamList

model2code %<% ParamList

plot(model2,t)
plot(model2doe,t)
plot(model2code,t)

These three lines of code produce the same graphs because CaliCo uses a maximin Latin Hypercube Sample
(LHS) to establish the DOE. Several credibility interval are displayed. For the first model only the 95% credibility

100

4.2. Multidimensional example with CaliCo

interval of the measurement error is available. For the second model, the 95% credibility interval of the Gaussian

process can also be shown. Figure 4.3 illustrates .#; and ..

///1 ///2
1.0 1.0
\ . ex|

[ICl1 95% noise 7mgdel output
—exp T ICl 95% GP
—model output WICI 95% noise

0.5

>
0.0
-0.5
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Figure 4.3: First and second model output for prior belief on parameter values. The left panel illustrates the first
model and the right panel the second model with the Gaussian process estimated.

One can be interested in modeling a code discrepancy. When the code is not time consuming, the model to
choose is .#3. The opt.disc option allows to specify the kernel type of the discrepancy. Note that the visual
representation requires initial values for the discrepancy and are needed in the pipe %<%. This vector thetaD is

composed of 62 and y according to Table 4.5.

model3 <- model(code,t,Yexp, "model3",

opt.disc = list(kernel.type="gauss"))
model3 %<% list(theta=c(1,0.3,6,50e-3,pi/2),thetaD=c(1le-4,0.2),var=1e-4)

Chapter 4

When the code is time consuming, then .# is selected. The same cases can occur as for ./, but only the case

where the code is not available will be considered, here, for .#4.

model4 <- model(code=NULL,t,Yexp, "modeld",
opt.gp = list(type="matern5_2", DOE=NULL),
opt.sim = 1list(Ysim=Ysim,DOEsim=DOE),
opt.disc = list(kernel.type="gauss"))
modeld %<% list(theta=c(1,0.3,6,50e-3,pi/2),thetaD=c(1le-4,0.2),var=1e-4)

To get a visual representation of .#3 and .#4, the function plot is defined identically as before. The results are

displayed in Figure 4.4.

plot(model3,t)
plot(modeld,t)

Note that several credibility intervals can be displayed. By default all of them are shown (for example see right
panels of Figure 4.3 and Figure 4.4). For .#) and .#/; only one credibility interval is given. It represents the 95%
credibility interval of the measurement error, in the case of .#, and the 95% credibility interval of the measurement
error plus the discrepancy, in the case of .#3. For .#, and ./, two credibility intervals are available. Compared to
1 and ./ the credibility interval at 95% of the Gaussian process, that emulates the code, is added. It allows to

101

Chapter 4

Chapter 4 — CaliCo: a R package for Bayesian calibration

M3 My

10 1.0
\ _ ICI 95% discrepancy + noise
ex
fmc?del output [_/C1 95% GP

—eX|

[TICI 95% discrepancy + noise m(g)del ouput

0.5 0.5
> >
0.0 0.0
—05 -0.5
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
t t

Figure 4.4: Third and fourth model output for prior belief on parameter values. The left panel illustrates the
third model and the right one, the fourth model with the Gaussian process estimated. Both are encompassing the
discrepancy.

quickly visualize from where the variability of the model comes before calibration.

With the option CI, one can deactivate or select which credibility interval (CI) one wants to display. By default
CI="all", butif CI="err" only the 95% CI of the measurement error with, or without, the discrepancy is given.
Similarly, for .#, and .#4, if CI="GP", only the 95% CI of the Gaussian process is shown. For example, for .#4
the three possibilities are obtained with the following code and are displayed in Figure 4.5.

plot(model4d,t,CI="err"
plot(model4d,t,CI="GP")
plot(model4,t,CI="all")

1.0

1.0 1.0
WICI 95% discrepancy + noise
Cl1 95% GP ‘&1 9200 Qpcrepancy

—exp

—model output
— —exp —exp

[7ICI 95% discrepancy + noise —model ouput model ouput

0.5

0.0

-0.5

0.0 0.5 1.0 1.5 2.0

Figure 4.5: .4 displayed for some guessed values with the CI relative to the measurement error on the left panel,
with the CI relative to the Gaussian process only on the middle panel and both credibility intervals on the right
panel.

4.2.2 Priors

To a proper Bayesian calibration, prior distributions have to be defined on every parameters we want to estimate
(parameters of interest as 6 or nuisance parameter such as 05 or Gezrr)' It means that the number of parameters to

estimate differs according to the model. In CaliCo, the possible distributions are detailed in Table 4.7.

102

4.2. Multidimensional example with CaliCo

To define a proper prior distribution in CaliCo, a prior.class object with the function prior is generated.
One or several prior distributions can be produced with this function. Two arguments have to be completed:
type.prior and opt.prior. The argument type.prior can be a string (if only one prior distribution is looked
for) or a vector of strings (if several prior distributions are wanted). Similarly, the argument opt . prior can be a

vector of the distribution parameters or a list of vectors.

In this example, 5 parameters have to be calibrated. For .#3 and .#, the discrepancy is added and the variance
G§ with the correlation length y have to be estimated as much as the other parameters. It means that for these
models, two more prior distributions have to be added compared at .# and .#,. The order to define them are, first
the parameters 0, then 65 and Gezrr‘ In the following code lines, pr1 stands for the prior distributions for .#| and
M where pr2 for .43 and .#44. In the first prior definition, only the 5 parameters and 62, prior distributions are

defined. In the second definition, the 8 prior distributions are added between 8 and G2, ones.

type.prior <- c(rep("gaussian",5),"gamma")

opt.prior <- list(c(1,1e-3),c(0.3,1e-3),c(6,1e-3),c(50e-3,1e-5),
c(pi/2,1e-2),c(1,1e-3))

prl <- prior(type.prior,opt.prior)

type.prior <- c(rep("gaussian",5),"gamma","unif","gamma")

opt.prior <- list(c(1,1e-3),c(0.3,1e-3),c(6,1e-3),c(50e-3,1e-5),
c(pi/2,1e-2),c(1,1e-3),c(0,1),c(1,1e-3))

pr2 <- prior(type.prior,opt.prior)

(((((

o o
125 150 175 2.00 00000 0.0025 0050 0.0075 000 00000 0.0025 00050 00075
2

o
S5 075 100
& o

o,
Ws Oerr

Figure 4.6: Prior distributions for each parameter to calibrate in the application case.

Figure 4.6 illustrates the prior distributions considered for the parameters of the damped harmonic oscillator
code. For . and .#>, only A, &, k, m, ¢$? and 63,, distributions are useful. Calibration with .#5 or .#, the two

last distributions (0'§ and yy) are then used.

4.2.3 Calibration

Calibration is run thanks to the function calibrate in CaliCo. Estimation option (opt .estim) has to be filled
to run the algorithm properly. As it is described in Section 4.1, two MCMC algorithms are run by the function

calibrate.

103

Chapter 4

Chapter 4

Chapter 4 — CaliCo: a R package for Bayesian calibration

opt.estim = 1list(Ngibbs=1000,Nmh=5000,thetalnit=c(1,0.25,6,50e-3,pi/2,1e-3),
r=c(0.05,0.05) ,sig=diag(6) ,Nchains=1,burnIn=2000)
mdfitl <- calibrate(modell,prl,opt.estim)

In the terminal, a loading bar represents the execution time of the inference algorithm. Then, the method print

can be used to quickly access some information (see Section 4.1).

print (mdfitl)

Call:

##

With the function:

function(t,theta)

{

w0 <- sqrt(thetal3]/thetal4])

return(thetal[l]*exp(-theta[2]*wO*t)*sin(sqrt(1-theta[2]~2)*wO*t+theta[5]))
}

<bytecode: 0x561a96e4f068>

##

Selected model : modell

##

Acceptation rate of the Metropolis within Gibbs algorithm:
[1] "46.6%" "27%" "27.9%" "8.9%" "B.1%" "4.4%"

##

Acceptation rate of the Metropolis Hastings algorithm:

[1] "44.52)"

##

Maximum a posteriori:

[1] 1.0138252830 0.2032794864 5.9924680899 0.0505938887 1.5199179525
[6] 0.0002565248

##

Mean a posteriori:

[1] 1.0107256606 0.2010363776 5.9755232004 0.0497000370 1.5042868046
[6] 0.0002493378

To visualize the results, the plot method allows to generate ggplot2 objects and if the option graph is not

deactivated, the function plot will create a layout of graphs displayed in Figure 4.7 which contains:
1. the auto-correlation graphs,
2. the chains trajectories,
3. the prior and posterior distributions,
4. the correlation between parameters,
5. the results on the quantity of interest.

To generate all the graphs of Figure 4.7, the plot function is used similarly as for amodel.class object with

the following code line.

104

4.2. Multidimensional example with CaliCo
plot(mdfitl,t)

calibated
\

— experiments
\
\

950 credibily interval a posteriori
|
05 \

\
0.0 \

Figure 4.7: Series of plot generated by the function plot for calibration on .

Same procedures are available for ./,

mdfit2 <- calibrate(model2,prl,opt.estim)

For ./ and .#4, the estimation options are slightly different because the number of parameter to estimate has
increased. The prior object also has changed

opt.estim2=1ist (Ngibbs=1000,Nmh=5000,thetalnit=c(1,0.3,6,50e-3,pi/2,1e-3,0.5,1e-3)

r=c(0.05,0.05) ,sig=diag(8) ,Nchains=1,burnIn=2000)

mdfit3 <- calibrate(model3,pr2,opt.estim2)

mdfit4 <- calibrate(model4,pr2,opt.estim2)

105

Chapter 4

Chapter 4 — CaliCo: a R package for Bayesian calibration

print (mdfit4)

Call:

##

With the function:

NULL

##

Selected model : model4d

##

Acceptation rate of the Metropolis within Gibbs algorithm:

[1] "97.8%" "94.7%" "96.8)" "90.3%" "87.5%" "94.3%" "97.5%" "94.1%"
##

Acceptation rate of the Metropolis Hastings algorithm:

[1] "59.2)"

##

Maximum a posteriori:

[1] 1.0145661817 0.3052534056 6.0274228120 0.0521952278 1.6229728079
[6] 0.0009970529 0.4769160005 0.0007652975

##

Mean a posteriori:

[1] 0.9968290203 0.2835127409 6.0032790767 0.0506295380 1.5845041957
[6] 0.0009225639 0.4235883680 0.0006717480

Figure 4.7 illustrates the several graphs layout one can obtain with the use of the function plot. To select which

specific graph one wants to display, the option graph can be added to the function plot:

* graph="chains": only the table of the autocorrelation, chains points and distributions a priori and a
posteriori is produced . It represents only the top part of Figure 4.7,

* graph="corr": only the table of the correlation graph between each parameter is displayed. It represents

only the bottom left part of Figure 4.7,

* graph="result": only the result on the quantity of interest is given. It represents only the bottom right part

of Figure 4.7,
* graph=NULL: no graphs are produced automatically.

If one does not want to produce these graphs automatically, one can set the graph option to NULL. As the plot

function generates ggplot2 objects, it is possible to load all the generated graphs apart.
p <- plot(mdfit4,t,graph=NULL)

The variable p is a 1ist of all the graphs displayed in Figure 4.7. The elements in p are:
e ACF a list of all autocorrelation graphs in the chains for each variable,

¢ MCMC a 1list of all the MCMC chains for each variable,

* corrplot a list of all correlation graphs between each parameter,

* dens a 1ist of all distribution a priori and a posteriori graphs for each variable,

* out the ggplot2 object of the result on the quantity of interest.

106

4.2. Multidimensional example with CaliCo

Figure 4.8 illustrates the prior and posterior distributions resulted from calibration on .#4.

100
"‘ 80 \" I |
. | Eposeror J | Fposeror 60 “ ‘ -posterio 750 i F-posteio
\‘ 60 H ‘ | f
2 ‘ [40 | “ 500 H
2 \ w i \ |
S | ‘ ‘
|
I | | ‘ ‘
2 il 20 - 20 ‘ i 250 N
| 11 I
1
o o 0
09 10 11 02 03 04 59 60 6.1 0.04 0.05 0.06
A 13 k m
20000
0 \‘ I
| 15000
‘\‘ Esﬁgtrenor 15000 Hﬁﬁi're””' 20 ‘ ‘ Hﬁﬁi’f""' Hgﬁé'f”‘"
15
_?20 ‘ ‘ | 10000
2 10000 | ‘
3 | ‘ 10 ‘ ‘
| |
10 | | 000 M 5000 ‘
| 5 ‘
| I
/’\ I I
0 . o ol I 1 0
125 1.50 175 2,00 00000 00025 0.0050 00075 [o5 ok ors o 00000 0.0025 00050 0.0075
% Us Oerr

Figure 4.8: prior and posterior distributions for each parameter for calibration on .#4.

Similarly, if one desires to access the graph of the result on the quantity of interest one only needs to run p$out.

p$out

10
—— calibrated
— experiments
95% credibilty interval a posteriori
95% credibilty interval for the discrepancy 1
05 =
=
x @)
0.0
-05

0.0 0.5 1.0 15 2.0

Figure 4.9: Result of calibration on .#4 for the quantity of interest with the credibility interval at 95% a posteriori.

107

Chapter 4

Chapter 4 — CaliCo: a R package for Bayesian calibration

4.2.4 Additionnal tools

A function in CaliCo called estimators allows to access estimators as the MAP and the mean a posteriori.

estimators(mdfitl)

$MAP

[1] 1.0105967765 0.2011318973 5.9741254796 0.0496559638 1.5042583733
[6] 0.0002488385

##

$MEAN

[1] 1.0107256606 0.2010363776 5.9755232004 0.0497000370 1.5042868046
[6] 0.0002493378

If one is interested in running convergence diagnostics on the MCMC chains run by the function calibrate,
one is free to increase the number of chains in the opt . estim options. This operation is accomplished in parallel

with an automatically detected number of cores.

opt.estim=1ist (Ngibbs=1000,Nmh=5000,thetalnit=c(1,0.25,6,50e-3,pi/2,1e-3),
r=c(0.05,0.05) ,sig=diag(6) ,Nchains=3,burnIn=2000)

mdfitMCMC <- calibrate(modell,prl,opt.estim)

By setting Nchains=3, calibration is run 3 times. The function chain allows to load the coda object generated

and then to use coda tools as Gelman-Rubin diagnostics (Gelman and Rubin, 1992) for example.

mcmc <- chain(mdfitMCMC)
library(coda)

gelman.diag(mcmc)

Potential scale reduction factors:

#i#

#it Point est. Upper C.I.
[1,] 4.00 7.81
[2,] 1.55 2.39
[3,] 8.58 16.65
[4,] 1.25 1.68
[5,] 3.52 7.23
[6,] 38.66 75.48
##

Multivariate psrf

#i#

31.3

The user can also run very easily a cross validation (a leave one out) to estimate how accurately the model
prediction will perform in practice. An additional option, called opt.valid, is then necessary to run this cross
validation. This option is a list containing the number of iteration (nCV) and the type cross validation method

(type.valid).

108

4.2. Multidimensional example with CaliCo

mdfitCV <- calibrate(modell,pril,

opt.estim = list(Ngibbs=1000,
Nmh=5000,
thetalnit=c(1,0.25,6,50e-3,pi/2,1e-3),
r=c(0.05,0.05),
sig=diag(6),
Nchains=1,
burnIn=2000),

opt.valid = list(type.valid="loo",
nCV=50))

The activation of the cross validation will run the regular calibration and then the nCV iterations requested by the
user. To decrease the computational burden of such operation, a parallel operation is performed by to the package
parallel presentin R core.

print (mdfitCV)

Call:

#i#t

With the function:

function(t,theta)

{

w0 <- sqrt(theta[3]/thetal4])

return(thetal[1]*exp(-theta[2]*wO*t)*sin(sqrt(1-theta[2]~2)*wO*t+theta[5]))
¥

<bytecode: 0x561a93b33348>

#i#

<
Selected model : modell ‘E
##t >
Acceptation rate of the Metropolis within Gibbs algorithm: 6

[1] "43.8%" |l27_5%|| ||27.3%|| ||9.1%|| ||4.3%n n4'4%n
##

Acceptation rate of the Metropolis Hastings algorithm:

[1] "48.56"

##

Maximum a posteriori:

[1] 1.0144067620 0.2032408379 6.0077799738 0.0508023686 1.5169972084
[6] 0.0002536493

##

Mean a posteriori:

[1] 1.0121094549 0.2016018588 5.9975259667 0.0499179223 1.5060238122
[6] 0.0002488799

##

##

Cross validation:

Method: loo

Hit Predicted Real Error

1 0.581834516 0.58394961 0.0021150930

109

Chapter 4

Chapter 4 — CaliCo: a R package for Bayesian calibration

2 0.251110861 0.25245428 0.0013434211
3 0.860725971 0.86208615 0.0013601740
4 0.860627965 0.86208615 0.0014581796
5 0.009987004 0.00981318 0.0001738244
6 0.251052820 0.25245428 0.0014014613
#it

RMSE: [1] 0.03737526

#it

Cover rate:

[1] "947"

The print method displays the head of the first iterations of the cross validation and the root mean square error

(RMSE) associated. The coverage rate is also printed to check the accuracy of the posterior credibility interval.

The implemented function sequentialDesign is available only for .#, and .#4. This function allows to run a
sequential design as described in Damblin et al. (2018). Based on the expected improvement (Jones et al., 1998),
it improves the estimation of the Gaussian process that emulates the code by adding new points in the design.

Calibration quality is, as expected, increased.

binf <- ¢(0.9,0.05,5.8,40e-3,1.49)
bsup <- ¢(1.1,0.55,6.2,60e-3,1.6)

model2 <- model(code,t,Yexp, "model2",
opt.gp = list(type="matern5_2",DOE=NULL),
opt.emul = 1list(p=5,n.emul=200,binf=binf,bsup=bsup))

type.prior <- c(rep("gaussian",5),"gamma")

opt.prior <- list(c(1,1e-3),c(0.3,1e-3),c(6,1e-3),c(50e-3,1e-5),
c(pi/2,1e-2),c(1,1e-3))

prl <- prior(type.prior,opt.prior)

newModel2 <- sequentialDesign(model2,pril,

opt.estim = list(Ngibbs=100,
Nmh=600,
thetaInit=c(1,0.25,6,50e-3,pi/2,1e-3),
r=c(0.05,0.05),
sig=diag(6),
Nchains=1,
burnIn=200),

k=20)

110

4.3. Conclusion

[I : : 3 : . :) 5 :) Y

Before sequential design

300 80 800 BU
200 = - 60000
B B 50 B 500 B 60 B - =
2150 2200 2 2 2 =
5 g 5 g S0 ©40000
c 2 240 2400 2 2
g Si0o g g 3 Ba0000
50 20 200 20
O O == oo e on e O o= T 0.0000002E0080075.
09 10 11 02 03 04 59 60 6.1 0.04 0.05 0.06 1.25 1.50 1.75 2.00 E 2 75
1 2 63 s 3 Oerr
After sequential design
€0 1200 80 80000
B = B B= B B-
200 60 60 60000
Z 270 2 2 800 2 Z
% g %40 g %40 540000
100 100 ©
3 S -520 T 400 uZO 20000
0 [S —— oA | o —— | o= g
09 10 11 02 03 04 59 60 6.1 0.04 0.05 0.06 1.25 1.50 1.75 2.00 : 2

1 2 3 4 5 Oerr

Figure 4.10: Series of plot generated by the function plot for the sequential design on ..

4.3 Conclusion

In conclusion, CaliCo is a package that deals with Bayesian calibration through four main functions. For an
industrial numerical code, every specific cases is covered by CaliCo (if the user has a DOE or not, with a numerical
code or not). The R6 classes used in the implementation makes the package more robust. Even if the class layer

is not visible to the user, the standardized formulation allows a rigorous treatment. The multiple ggplot2 graphs

available for each class allow the user to take advantage of the graphical display without any knowledge of ggplot2.
The flexibility of ggplot2 enables also the user to modify the frame, scale, title, labels of the graphs really quickly.

All the MCMC calls are implemented in C++, which reduces the time of these time-consuming algorithms. The
Metropolis within Gibbs algorithm provides a better learning of the covariance matrix that the Metropolis Hastings

will use in its proposition distribution. That improves the performance of the algorithms.

Many developments can be brought to the package. For example, statistical validation can be added to the
package and permit the user to elect the best model according to the data. Based on Damblin et al. (2016) a
validation using the Bayes factor or mixture models can be implemented. The dependences on DiceKriging or
DiceDesign can also be a weakness of the package. When too many dependencies are implemented, the chances to

have bad configuration also increase.

111

Chapter 4

CHAPTER

PERFORMANCE MONITORING ON A
LARGE PV PLANT

5.1 Sensitivity analysis e e e e e 113
5.2 PriordensitieS e e e e e e e e e e e e e e 117
5.3 Propagation of uncertainties L. oL o e e e 118
54 Bayesiancalibration. L. 118
5.4.1 Statistical models e e 118
5.4.2 Modular estimation and likelihoods o oL 120
5.4.3 Applicationtothe PV plant 121

This chapter concerns the study of a PV plant built and maintained by EDF. The precise location is not given and
data are normalized for a confidentiality matter. Mainly, the numerical code, based on the one diode modeling
(among the advanced physical models presented in Section 1.3.2) is considered in this chapter. Particularly, the
numerical code introduced in Section 1.4.4 is used to complete the study in a performance monitoring context.
Based on actual production and meteorological data over one year, code calibration better assesses the uncertainties
on the parameters input of the Dymola code to this specific case. Once calibration has been run, the code with the
new parameter distributions, could predict better the power for a next period of time. The business plan initially
conceived on the prior parameter distributions, can then be reviewed and the price of electricity adapted to the
new estimated power. This chapter presents first the numerical code and the sensitivity analysis performed on
the 26 parameters. The prior distributions of the parameters are also presented which leads to a propagation of
uncertainties a priori. Then calibration, in this particular case, is performed but the following issues differ from
previous chapters. Indeed, the Dymola code outputs are time series and dealing with multidimensional output in

calibration requires additional work.

5.1 Sensitivity analysis

The Dymola code, as presented in Section 1.4.4, is more accurate in the prediction of a large PV plant production
than the code used in Chapter 3. Indeed, one of the limitations of the code used to compare calibration models,
is to over estimate the power when shades appear. This case scenario occurs every days in a large PV plant
configuration because when the sun comes up, the panel in the first raw automatically creates a shade on the
one behind. However, because it adds implicit equations that need to be numerically solved, such a development
has the effect to slow down the code speed. Moreover, the code estimates the power of the PV plant over a
year and produces a time series of 15,858 points. Applying regular sensitivity analysis (as it was the case for
the methods presented in Section 2.1) is more complicated because it has to take into account the behavior of

the code on the whole time frame and not only in the instantaneous time. To overcome these issues, the same

113

Chapter 5

Chapter 5

Chapter 5 — Performance monitoring on a large PV plant

method as the one developed in Section 3.1.1 is used. A Morris method is applied and a PCA is performed on

the Morris trajectories to give a graphical representation of the indices. The results of the PCA are given in Figure 5.1.

Variables factor map (PCA)

1.0

10000

Dim 2 (6.06%)

5000

-0.5
|

Dim 1 (90.50%) 1 2 3 4 5 6 7 8 9 10
eigenvalue

Figure 5.1: The PCA performed on the results given by the Morris method. On the left the correlation circle and on
the right the eigenvalues.

Figure 5.1 shows that the time series of the outputs, given by the Morris method, can be projected on a 5 axis
basis with keeping more that 99% of the information. Then, this projection in the new space is used to compute the
new indices of the Morris method. Figure 5.2 illustrates them all for each of the 5 axes of the dimensional subspace
given by the PCA.

300 300
PCAS PCAS
PCA4 PCA4
a PCA3 a PCA3
a PCA2 a PCA2
200 Rshunt_0_1D Font 200 Rshunt_0_1D Fo
k 1D k 1D
o o]
Rshunt_0_1D Rshunt_0_1D
100 100
k_1D k_1D
nD nD
nunnBic 10 i
.'é?e%‘%@r)ﬂ (L Rserie_b_1D
AR 12 0 Alph=
0 100 200 300 400 500 0 100 200 300 400 500
M o

Figure 5.2: Morris indices in the new space given by the PCA. On the left all the parameters names appear and on
the right only the ones that are not overlapping are displayed.

Figure 5.2 can also be seen as a representation of the Morris analysis but in a smaller dimension to allow a
proper graphical interpretation. On the left panel in Figure 5.2, the new indices on the 5 axes that are carrying 99%
of the total inertia is given and allow to identify the parameter that have no impact on the time series output over the

time frame. Graphically, 19 parameters are identified as having no impact on the output. It means that calibration

114

5.1. Sensitivity analysis

will need to focus on only 7 parameters that are:

* [is the short circuit current. It is the current delivered by a PV panel when the voltage at its terminals is

Zero.

* nD is the ideal factor of the diode in the equivalent electric circuit. It would be close to 1 for a perfect diode.

The diode corresponds to the diode of the one in the left electrical scheme in Figure 1.5.

* Rshunt_stc_1D is the shunt resistance in standard test conditions. Shunt resistances are typically due to
manufacturing defects. Low shunt resistance causes power losses in solar cells by providing an alternate
current path for the light-generated current. Its impact on the I/V curve and on the efficiency function of the

irradiance is given in Figure 5.3.

* Rserie_b_1D is the series resistance in standard test conditions. Series resistance in a solar cell has three
causes: first, the movement of current through the emitter and base of the solar cell; second, the contact
resistance between the metal contact and the silicon; and finally the resistance of the top and rear metal
contacts. Its impact on the I/V curve and on the efficiency function of the irradiance is also given in Figure

5.3.
* Rshunt_0_1D and K_1D coefficients that allow the shunt resistance to vary with the irradiation.

* Paco is the maximum ac-power “rating” for inverter at reference or nominal operating condition, assumed to

be an upper limit value (see Figure 5.4 for more details).

Chapter 5

115

Chapter 5 — Performance monitoring on a large PV plant

influence of Rshunt influence of Rshunt
10 A —— 84.687
275.234 0.17
465.78
g 656.326 0.16
B46.873
0.15
< 6+ 2
E’ § 0.14
E £
O, Y13
0.12 —— 84.687
" —— 275.234
1 —— 465.78
0.11 1
— 656.326
— 846.873
0 T T T 0.10 T T T T
0 10 20 30 40 50 0 200 400 600 800 1000 1200 1400
Voltage (V) Irradiance (W/m2)
influence of Rserie influence of Rserie
0.19
10 — 0.051
— 0.354
—— 0.658 4184
81 — 0961
— 1.265 0.17 4
0.16
< 61 z
g § 0.154
£ e
© 4 “ 0.14 4
0.13 A
2 -
0.12 A
0 0.11 4
0 10 20 30 40 50 0 200 400 600 800 1000 1200 1400
Voltage (V) Irradiance (W/m2)

Figure 5.3: On the top left, the impact of different values of shunt resistances on the I/V curve. On the top right the
impact of different values of shunt resistances on the evolution of the efficiency function of the irradiance. On the
bottom left, the impact of different values of series resistances on the I/V curve. On the bottom right, the impact of
different values of series resistances on the evolution of the efficiency function of the irradiance.

Definition of Parameters for Inverter Perforamnce Model

3000
\
2500 -
Curvature
2000 c

—_— o

g

Py

£ 1500 -

o
w o
: a H
e 1000 -
g
= ==Nominal dc Voltage, Vdco
@) 500 - —+ High dc Voltage

—— Low dc Voltage
~
0~ T T T T
0 500 1000 1500 2000 2500 3000

dc Power (W) or Array P, (W)

Figure 5.4: Tllustration of the inverter performance model and the factors describing the relationship of the ac-output
to both dc-power and dc-voltage (source: hitps://energy.sandia.gov/wp-content/gallery/uploads/Performance-Model-
for-Grid-Connected-Photovoltaic-Inverters.pdyf).

116

https://energy.sandia.gov/wp-content/gallery/uploads/Performance-Model-for-Grid-Connected-Photovoltaic-Inverters.pdf
https://energy.sandia.gov/wp-content/gallery/uploads/Performance-Model-for-Grid-Connected-Photovoltaic-Inverters.pdf

5.2. Prior densities

5.2 Prior densities

Prior densities are generally established from the expert’s knowledge. For all of them a normal density is chosen,
except for the variance of the measurement error which is a Gamma. The means of the normal densities are chosen
accordingly to the data sheet of the PV panel or of the inverter. The variances are chosen thanks to the credibility
intervals given by the manufacturer. As the sensitivity analysis has elected only 7 parameters, the prior densities

will concern only these ones, the others will be fixed to nominal/reference values. Figure 5.5 illustrates all of them

according the credibility intervals given by the experts.

ra\ M\
4 f L
/ \ 30000
o 075 [[m] e
3 2
S > S 220000
2 gos0 2 2
5, 5 & 5
o a o a
1
/ 10000-
025 / /
1 / /
/ y
/ \
0 000 o o
82 84 86 88 0 1 2 000 025 050 075 10 0000075 0000100 0000125 0000150 00001
Isc nD Rshunt_stc_1D Rserie_b_1D
s o\ N
03 f \ / \ f
T / \ [/ \ [[
/ \ te05 / \ de-10
2
> 2z
=y 202 =y i3
]]] 2
2 2 2 5
g 5 g H
o =] o
o 2e-10
1
01 / /
/ /
0e+00
0 00 0e+00
0e700 26109 Zer09 Gert
00 125 200 25 50 75 60 820000 840000 860000 2
aco O

150 175
Rshunt_0_1D K_1D

Figure 5.5: Prior densities for each parameter considered for further calibration.

117

Chapter 5

Chapter 5

Chapter 5 — Performance monitoring on a large PV plant

5.3 Propagation of uncertainties
The prior credibility interval is obtained from sampling in prior densities values of 8 and getting the output of the

code for each of them. The 95% credibility interval can be obtained. Figure 5.6 illustrates the prior credibility
interval for the time series confronted with experimental data.

C195% a priori

s
:

(h /‘/k/\\/‘w
B 9 Jan 30 Jan 31Jan 1Fev 2Fe 3Fev 4Fev 5Fev 6 Fev 7Fev

Days in 2015

Scaled power in W

C195% a priori

Scaled power in W

2
Time in hour

Figure 5.6: Propagation of uncertainties based on prior elicitation. On the top experimental data over 10 days in
2015 are displayed with the credibility interval a priori and on the bottom, to zoom on the phenomenon, only one
day has been plotted (28" of January 2015).

In Figure 5.6, the data are not centered but the scale in the y-axis has been changed. If the centered power has
been considered the credibility interval a priori would not have been seen smaller than the reality. One can notice, in
Figure 5.6 that the credibility interval is not constant during the time series. It increases when the power production
grows. It is damaging when one wants to estimate the production for a next period of time. The poor knowledge

carried by the prior parameter densities does not allow to access to a narrow prediction.

5.4 Bayesian calibration

So far, calibration model and estimation methods have been presented when the numerical code output lies in R. In
the non scalar case where the code output is a time series or multidimensional, one can wonder how to write the
statistical models and the associated likelihoods to perform calibration. First, we present the models useful to deal
with calibration that implies time series outputs. The likelihoods corresponding to each models are also presented

and then, the results based on the Dymola code will be presented and commented.

5.4.1 Statistical models

Let us consider the framework introduced in Section 1.4.1. The numerical code with the time series output can be
written as:

118

5.4. Bayesian calibration

fo: 2RI
0—Y .

(5.1)

where T stands for the number of instantaneous power observed and .2 C R”. Note that no input variables X are
taken into account in this formalization since they are implicitly implemented in the Dymola code as mentioned in
Section 1.4.4 which is significantly different from the Higdon et al. (2008).

The case of a time consuming code is assumed in this section. To have a surrogate that reproduces a time series,
the first idea would be to generate a surrogate for each time step. When T is too high a reduction of dimension
must be considered. In that respect, a LHS maximin DOE (see Section 2.3) of n points is generated and the times
series are computed for each configurations of 8. The results are stored in a matrix Y of size n x T. A PCA is
performed on the reduced and centered results matrix Y . It is, then, possible to identify d principal components that
are carrying more than 99% of the total inertia. It means that the sub-space with the d dimensional PCA basis is
sufficient to represent well enough the simulations. Let us note P the transition matrix from the physical basis to
the PCA basis such as:

P:RT - RT. (5.2)

The matrix P represents the 7 x T matrix that allows to get the coordinates of Y on the T PCA axes.
In the space of the PCA, the model .#4 (Equation (3.5)) can be projected as:

PY,,, = Pf.(6)+ P5+ PE. (5.3)

The PCA on simulated data gives the information that all the generated trajectories by the code can be represented
at 99% in a d sized orthogonal subspace. It is then possible to identify two subspaces. The first is built with the d
first eigenvectors given by the PCA and the second in the orthogonal subspace generated with the T — d eigenvectors
left. The PCA tells that P f.(0) mainly lies in a d-dimension orthogonal subspace. It is then possible to represent
accurately the numerical code by using d independent Gaussian processes that emulates the projections of the code
on the d axes of the PCA. The hypothesis made here is to consider that the discrepancy represents everything that is

left over in the 7 — d dimensional subspace. The statistical model would become:

Model with PCA

fe,(0)
%‘{Z PY;XPZPF —|—P56—|—E:PFF+P56+E, 5.4

fcd (0)

where f,,..., fc, (the components of F') are equal to Py f, ..., P, f. with Py,..., P, the projections on the d principal
components, and F is equal to P FE in probability distribution because the matrix P is orthonormal. The PCA is
performed on centered data, so it is possible to formulate the hypothesis that the Gaussian processes on each axis
would be defined as f.,(e) ~ 4 (0, G]%l-rp,'(O, e)). This is a prior belief that is expressed by Higdon et al. (2008)
and as code parameters might not have the same impact on the different axis, we rely on anisotropic Gaussian
processes. The discrepancy represents the rest of the projection of the data on the T — d axes of the PCA and
can be modeled as an independent and identically distributed Gaussian noise which is a random vector defined

as 0 ~ A (0r_y, 0'§IT—d)- The matrix Pr and Py are two matrix that are composed of, respectively, the d first

119

Chapter 5

Chapter 5 — Performance monitoring on a large PV plant

eigenvectors and the T — d remaining eigenvectors.

If no discrepancy is considered, the statistical model can be simplified as:

Model with PCA without discrepancy

My: PYy,=PrF+E, (5.5)

5.4.2 Modular estimation and likelihoods

To fulfill a proper modular estimation in the sense of modularization (Liu et al., 2009), the likelihoods have to
be written. The estimation is performed in two steps. On each of the d axis that are supporting the Gaussian
processes, the partial likelihood can be written from the coordinates of the n points obtained from the DOE D used
to perform the PCA. The coordinates on the d axis of the PCA are called Y ,...,Y,,. The i"* partial likelihood can
be expressed as:

1 1 T
2@ ¥, D) = G exp{ —5 (%) (Ghru(D) (¥ } (56)

where 6[2"- and r,; are the prior variance of the covariance function and the prior anisotropic correlation function
relative to the i Gaussian process. The estimation of all the nuisance parameters of each Gaussian process can be
done in a Bayesian framework where prior densities of all the parameters are given and the posterior densities are
sampled with MCMC algorithms. It could also be performed using maximum likelihood estimates to get estimators

of the nuisance parameters.

In a Bayesian framework, the prior densities can be chosen according to Higdon et al. (2008) where they consider
Ggi as a Gamma distribution, and each y;; (the correlation lengths in r);) as a Beta distribution where i would be the
i axis and j would be the j* parameter component. Once estimators of the parameters a posteriori, such as the Max-
imum A Posteriori (MAP), are found they are plugged into the conditional likelihood. For the following, the method
of using the maximum likelihood estimates to find estimators of each Gaussian processes is picked. Let us, then,

consider that the i"" Gaussian process conditioned on the DOE is defined as f.,(®)|P:f.(D) ~ 4 2 (m;(s),6%ci(e,9)).

In the case where the discrepancy is a white Gaussian noise and independent Gaussian processes are chosen for
each as surrogates on each axis, the full likelihood can be written straightforwardly. If we consider & as the set of
the nuisance parameters for the d surrogates estimators, then the full likelihood of the model ///A{ is:

"%f(P},exp;eaGZ Ggaci)) =

err’

1 oxp _;i(PéYexp—mi(G))z
Cmyendfoz,+o20) \ 25 ot oi(®)

1 1
——exp | —=——— || P§ Yeup | | -
(2m(0? + 03))T=/2 (2(02,+03) 0
(5.7)

120

5.4. Bayesian calibration

And for the model without discrepancy .#;:

it 1 1& (PLY,., —mi(0))?
ff(PY;xl’;eﬂo-ezrrch): (F; ~exp 1())

exp (— Z
2 2 (0
(271')“’/21—[?:1 Ggrr+61.2(9) i=1 O-err+61() (58)

1 1 . 5
(2n(02,))T-a2 P (-WIPS Yoyl) :

5.4.3 Application to the PV plant

The Dymola code is time consuming and produces a time series output. In this section, both models .# and .
will be applied to the code and the results will be commented. First, the necessary PCA is performed before carrying
out calibration. Then, after getting the estimators for the maximization of the partial likelihood, calibration is

performed.

The PCA

As introduced earlier, the Dymola code possesses a time series outputs of 15,858 points. A PCA is performed on
the output of the code of a maximin LHS DOE (see Section 2.3) of n = 300 points. The results of the PCA obtained

are displayed Figure 5.7.

Variables factor map (PCA)

1.0

6000

0.5
1

4000

Dim 2 (2.28%)
0.0

2000

-1.0

Dim 1 (97.20%) * z ¢ ‘ esigenvaluse ! ’ ! b

Figure 5.7: The PCA performed on the outputs gotten from the DOE of 300 points. On the left, the correlation
circle and on the right, the eigenvalues.

The PCA performed on the maximin LHS gives different results from Figure 5.1 because between both 7
parameters has been selected by the sensitivity analysis. The DOE generated by the Morris method was implying
displacements on a 26 dimensional space and the maximin LHS only focuses on these 7 parameters. It means that
we might have lost a little piece of information which is not relevant regarding the variations of power in the time

series output. That is why in the PCA performed with the Morris DOE more dispersion is visible.

Figure 5.7 illustrates the correlation circle and the eigenvalues obtained after the PCA. It allows to consider
that only d = 5 axes are carrying more than 99% of the total inertia of the points. Regarding Figure 5.7, 3 axis
could have been considered instead of 5 but, as the time consuming part is focused on the establishment of the
DOE, it does not cost a lot to use 5 axis and then limit the projection error. In this example, Pr : R — R? is the

projection on the subspace of the first 5 principal components. The matrix that is representing the projection on the

121

Chapter 5

w
.
>
N
=8
[}
=
Q

Chapter 5 — Performance monitoring on a large PV plant

orthogonal subspace to the 5 principal components is then noted P : R — R”7—>. The correlation between the
power computed by the numerical code and the the PCA axis (computed from Equation (2.100)) is visible in Figure
5.8. The irradiation is plotted on the figure as well because we want to link the physical phenomenon to each axis of
the PCA. Each PCA axis should reproduce a different characteristic of the time series and Figure 5.8 shows that the
first component of the PCA is representing the average value of the power, when the second axis seems to take care
of power fluctuations. The first axis presents some peaks at low values of irradiation because when the sun is low in
the sky, some non-linear effects appear which affect the production and the averaged power. The third axis looks
like it re-creates the behavior of the PV plant when the irradiation is low. The values are near zero and the peaks are
occurring at the same time as the peaks represented on the first axis. This may represent the non linear behavior
of the panel when the sun rays angle is low. The moments when the sun rises and when it sets are when shades
are occurring. So the third axis can represent the parts of the code that are dealing with the shades and missmatch
effects. The fourth and the fifth axis are not given because they are almost entirely flat and does not carry a strong

interpretation.

122

5.4. Bayesian calibration

Scaled irradiance
in W/m2

AN

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

=
N
w
N
(&2}
(o2

-0.80
-0.854

-0.90 4
-0.951 W

-1.00A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

PCA1

0.24

0.14

0.04

PCA 2

-0.1+

-0.21

-0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0.44

PCA3

0.2 1

NIV J

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Days

Figure 5.8: The irradiation and the correlation of the power recorded with the three first PCA axes for the 27 first
days. On the top the scaled irradiance, on the middle top the correlation of power recorded with the first axis given
by the PCA. On the middle bottom, the correlation between the recorded power and the second PCA axis, and on
the bottom, the correlation with the third PCA axis.

123

Chapter 5

Chapter 5 — Performance monitoring on a large PV plant

Calibration

Calibration is performed under some hypotheses. The first one is to consider anisotropic Matérn 5/2 kernels for
the Gaussian processes. A maximum of the partial likelihood is used to find the nuisance parameters relative to
each Gaussian process. Different values of correlation lengths according the parameters and different variances are

expected because the influence of each Gaussian process is diverse. The values for these parameters are given in

08
06 02
o P
g £}
Foa 3
B s
01
02
00 00

Figure 5.9.

20

o

Values

=8 =y PCA3 = PCAS PCAL PCA2 PCA3 PCAd PCAS. PCAL PCAZ PCA3 = PCAs PCAL PCA2 PCA3 PCAd PCAS

PCA axis PCA axis PCA axis PCA axis
Yisc YnD YRshunt_stc_1D YRserie_b_1D
o o 10.07 Be+12-
.
15 75
seri2
o g
« o
Sw 3. H
3 3 S
o = s g
2otz
s 2]
.
" o 0o- oes00- —_
st pdm pdas pdm pcas i P2 pcas pcm pcas pai e ps pdm pcas Pai pdw pdas pcm pdas
PCA axis PCA axis PCA axis PCA axis
62
WRshunt_0_1D Vk_1D Ypaco

Figure 5.9: Correlation lengths for each component of the parameter vector 6 and for the variance of the 5 Gaussian
processes on each PCA axis.

Figure 5.9 illustrates the histograms of each correlation length value for each parameter and the variance of the
kernel for the 5 Gaussian processes used. The value of the variance is noticeable because after the third principal
component the variance decrease drastically. It means that the variance of the phenomenon carried by the fourth
and fifth axes is negligible regarding the three first ones. This result is in agreement with the right panel of Figure
5.7 where the the fourth and the fifth eigenvalues were significantly lower than the three first ones. The correlation
lengths are homogeneous except for the component R_shunt_1D where the correlation length is decreasing. The
correlation function used to establish the Gaussian process is a Matérn 5/2 (Equation (2.51)). In the package
DiceKriging (Roustant et al., 2015), the Matérn correlation function is coded such as the correlation factor is in the
denominator of an exponential. It means that if the value of y decreases, the weight of the correlation structure is

declining.

Once the Gaussian processes parameters are estimated by MLE, the estimators are plugged into the conditional
likelihood that allows to sample in the full likelihood for a regular MCMC. This method might bring instability
in calibration because of the computation of the full likelihood. Indeed, in Equation (5.7), the second term, that
introduces the term || PsY,y| |? can potentially be huge and counterparts the first one. A separation in the estimation
can be done. The way to do it would be to separate the likelihoods in two, and perform two Bayesian calibrations.

124

5.4. Bayesian calibration

The first one, the estimation is performed on the first part of the likelihood which is:

1 exp _1 i (P};Y;xp 7mi(9))2 (5 9)
(2m)421L /62, + 67 (6) 25 ok+0o7(0) '

Estimators of 8, 62, and G§ are then found and used as new starting points of the estimation based on the

second part of the likelihood:

1

PIy,.|*]. 5.10
(2n(02+02)) T/ 1P5 Yexp|| (5.10)

This method allows to perform the estimation even if the second term in the likelihood creates too much weight.
This case can easily occur because it is highly dependent on the size of the vector PsY,,, (which is T'). In time
series outputs, the number of points is often high and having recourse to this split estimation solves the issue.
Calibration is performed via the CaliCo package presented in Chapter 4. The chosen prior densities are the one
presented in Section 5.2. First the model without discrepancy is considered. This model .#, encompasses the 5

Gaussian processes estimated above. The results are displayed in Figure 5.10.

15 250000

200
200000

150000

50

density
density

100000

iss ESSNIES” NSENNIES “aialieiEl> eis

075 10 0000075 0000100 0000125 _ 0000150 0.0001
Rserie_b_1D

1509 posior

EY

density
density
density

density

T = SIS b RIS [SEERE,A

200 25 75 100 820000 840000 860000
Paco o

100 125 150 175 50
Rshunt_0_1_D K_1D

Figure 5.10: Prior and posterior densities for each parameter in a .#, calibration.

The results given in Figure 5.10 are obtained after visual checking of the good mixing properties in the MCMC
chains. The posterior density for each parameter has less variance than the prior density which indicates that
information in the PCA subspace has been useful to improve the knowledge on the parameter densities. The variance
of the measurement error looks coherent regarding the prior density but is a little over estimated in that case because

the projection errors are not taken into account and might have introduced this increase of variance.

Let us now consider the model that encompasses the discrepancy modeled as a multidimensional Gaussian noise

with a variance G(%. The results for that model .# are given in Figure 5.11.

125

Chapter 5

Chapter 5

Chapter 5 — Performance monitoring on a large PV plant

S / N

82 84 86 88 0 i 2 000 025 050 ors 10
Isc D Rshunt_stc_1D
075
75000 €
s e [
250000 2¢ 27
@ @ @
& 54 &
3 3 3
7 /\ // I\
N / / \
/ \ y \ 1 \
/ / \
/ K / \\\ /
0o— — 0o— — 0.00— / \\ I
0000075 000000 __0.000125 0000150 00001 00 1% 150 7 200 25 50 7s 160
Rserie_b_1D Rshunt_0_1_D K_1D
o8
sosteror de08 osteror
oo 08 e [T
,,,,,,,
Eheor
o8
50-08

density

\
\
/ \\ 000400 - 06400 —
00es00—

00400 Tel08 20109 30109 00100 20109 40709 6os
2

820000 840000 860000
Paco % o

Figure 5.11: Prior and posterior densities for each parameter in a .# calibration.

Figure 5.11 shows that the maximum a posteriori are the same for the second model. When the projection error
is taken into account in the model, the variance of the measurement error has decreased and has an acceptable
value. However, when the discrepancy is introduced the posterior parameter densities have larger variances than
the ones estimated without. It can be explained by the introduction of a new parameter 0'§ that tends to increase
the uncertainty when the estimation is looked for. The modes a posteriori look coherent for both estimation. The
interest of adding the discrepancy here is low because the variances of the parameter densities have increased and the
estimation of the variance of the measurement error was not so bad with ///2’ When the numerical code is accurate,
the introduction of the discrepancy is maybe not necessary. Some methods, in statistical validation, allow to pick
the most likely model given experimental data between the one with discrepancy and the one without (Damblin
et al., 2016).

The split estimation may have underestimated the variance a posteriori of the 652 and Gezrr variances. Another
practical solution could have been to compute the Maximum Likelihood Estimates and start the algorithm at this
estimator. The MLE can be expressed straightforwardly by deriving Equation 5.7 regarding 62, or Gg. Indeed, if

the log-likelihood of Equation (5.7) is derived regarding Gg then we obtain:

T—d PsY,,,||?
(2)2 _ I 26 xp|2|2:07 (5.11)
2(0-err+65) 2(Gerr+(55)
which leads to:
PsY,|I?
(03 +02,) = |<;_§)| (5.12)

If the derivative is done regarding 62, the following relationship is found:

126

5.4. Bayesian calibration

_ d |‘PFF_PF)/;‘xp‘|2: (T_d) _ ||P5},€XP||2
262 262‘”. 2(692rr + Gg) 2(O-ezrr + 0}%)2 .

err

Thanks to Equation (5.11) the right term is equal to 0 and:

> _ I1PrF —PrYel|f

err — d ’

(5.13)

62: ||P5Y;XP||2 _ HI:)F-F_-PF}/e)cpH2
" (T —d) d '

The use of the PCA had allowed us to summarize the information contained in the time series output of the code,

(5.14)

and to emulate the projections in a restricted space. The hypotheses made on the discrepancy can be discussed.

Indeed, representing the discrepancy as the projection on the orthogonal space might be a too subtle representation.

One could have think of a representation of the discrepancy as an error term on several axis and not on all the
orthogonal space. The results obtained after calibration state that a numerical code which reproduces well enough
the physical system does not need the add of the discrepancy. Regarding the results, the discrepancy just add
a parameter to estimate and increases the variance a posteriori of the parameter densities. It could have been
interesting to apply statistical validation, with the Bayes factor for example (Damblin et al., 2016), and compare the
results with the ones obtained in Chapter 3 where the discrepancy had an positive impact. The predictive aspect can
also be developed. The cross validation has not been tested on these models but a month of data could have been
taken off, calibration performed on the remaining test data set and predictive tests on the power could have been
run on the month that have been taken off. The characterization of the meteorological data could also have been
considered. To get back in the frame of the article of Higdon et al. (2008), the numerical code could have been

modified such as a X matrix, which represents the input variables, would be introduced in the input of the code.

127

Chapter 5

CONCLUSION AND PERSPECTIVES

The general framework of this thesis is Bayesian calibration of numerical codes. The objective was to better asses
the credibility interval a posteriori of the quantity of interest when using an industrial code. This objective is really
important for industrial companies such as EDF because numerical codes are used in prediction in many contexts
and these companies have difficulties to estimate the predictive error they could make. In the economical framework
at EDF, it becomes relevant especially in the forecasting context where power plants are already built and data are
already gathered. Then, the numerical code initially used to predict the power before the construction of the plant is
used again and the results are confronted with data. Calibration is then performed to better asses the knowledge of

the input parameters of the code corresponding to the specific plant.

In this thesis, we have introduced four concepts of calibration that are using different kinds of numerical code.

We reviewed the main statistical methods that are available in the literature and we have detailed the inference
associated with these statistical models. The purpose of the first part is to confront the models with and without
discrepancy. We have noticed that, in the case of the numerical code, we used the discrepancy appears to be really
important in the modeling. Indeed, the estimation of the variance of the measurement errors was not concordant
with the physical reality. Then, when the discrepancy was added, the estimation became correct which implies that
the code was carrying an error not taken into account in the model without discrepancy. The second conclusion
comes when the initial numerical code turns out to be long to run. In this scenario case, a Gaussian process is used
to emulate the behavior of the code. In a real industrial case, numerical codes can be so expensive in time, that
we only have recourse to a few code calls. In that case the estimations after calibration are deteriorating because
the emulator is not precise enough. It means that the physical interpretation of the parameter density does not
stand anymore and new density parameters corresponding to the, bad, emulator are found. If one is interested in
finding the right parameter densities even with an emulator, it is possible to have recourse to an adaptive sequential
design that finds points regarding further calibration. It drastically improves the emulation quality and allows to find

estimators in correspondence with a physical meaning.

Based on the models developed in the first part, I developed a package. The CaliCo package is coded in
object-oriented language that allows to manipulate easily users requests. It performs Bayesian calibration with
recourse to MCMC that are coded in C++ to improve the speed of these time consuming operations. The package
provides flexibility on the model choice which makes it different from other packages published so far. For each
step, visual representations are available and the user can easily take advantage of each graph. A graphical interface
has also been developed so that EDF will be able to use the package and take advantage of the coded functions for
running test and illustrates the improvements they could make using calibration.

The third part focuses on a real test case which brings lots of issues. Indeed, instead of having a scalar output,
the code is producing time series outputs. It is a common fact for numerical codes in industries, so calibration has to
be adapted to be performed on these codes. To deal with this issue, Higdon et al. (2008) have proposed to run a
PCA on a DOE that encompass the simulations of the code. The aim is to reproduce the time series output with
a limited amount of Gaussian processes. Indeed the PCA allows to specify a reasonable number of axis that are
carrying a majority of the total inertia of the simulations. Then, the projected simulations on these axes are used
to estimate the parameters of the Gaussian processes (when one Gaussian process is used to emulate the behavior

of the numerical code on one axis). In this particular case we have considered the discrepancy as the projection

129

=
S
47
=
2]
=
S
@)

=
S
'@
=
<
=
3
<)

Chapter 6 — Conclusion and perspectives

on the orthogonal subspace. We have detailed the inference associated with these statistical models and proposed
and applied them on a numerical code that predicts the power of a large PV power plant. The result show that the
estimation of the parameters of the code are coherent in both cases. The variance a posteriori of the parameter
densities is higher when the estimation is performed with the model with discrepancy than with the model without.
However, the variance of the measurement errors is a little higher when it is estimated with the model without dis-

crepancy but when the discrepancy is introduced, the value stands to decrease to have more reasonable physical sense.

The predictive aspect of the models that encompasses the PCA has to be completed. It could be interesting to
visualize how the models works in prediction. Data already gathered on the field could also be split by keeping a
month of data as a validation data set. However, with such a complex model and code, for each test set, the DOE
has to be computed again and the PCA performed at each time. Such an operation could turn out to be intractable
for desktop computers. The impact of the discrepancy is also the subject of statistical validation. Some studies
highlight the fact that data gathered on the field also allow to elect the right model. Bayes factor (Damblin, 2015) or
mixture models (Kamary, 2016) have been developed and it could be interesting to try out these methods on the
application cases provided in this thesis. Working with a time consuming code also turned out to be difficult to
deal with. To run proper calibration on a function that emulates the code, this function has to be close to the initial
numerical code, otherwise the prediction of the parameter could loose their physical sense. It could be interesting to
study deeper the way to find adapted designs for calibration or other kind of emulators. Also calibration on nested
numerical codes could be a real challenge. Indeed, emulating a nested code properly with a Gaussian process might
be a difficult task and integrating it in a Bayesian calibration framework would be interesting for companies that are

using this kind of codes.

130

BIBLIOGRAPHY

Albert, L., Donnet, S., Guihenneuc-Jouyaux, C., Low-Choy, S., Mengersen, K., Rousseau, J., et al. (2012). Combining
expert opinions in prior elicitation. Bayesian Analysis, 7(3):503-532.

Andrieu, C., De Freitas, N., Doucet, A., and Jordan, M. L. (2003). An introduction to mcmc for machine learning.
Machine learning, 50(1-2):5-43.

Auffray, Y., Barbillon, P., and Marin, J.-M. (2010). Maximin design on non hypercube domain and kernel
interpolation. arXiv preprint arXiv:1004.0784.

Bachoc, F., Bois, G., Garnier, J., and Martinez, J.-M. (2014). Calibration and improved prediction of computer

models by universal kriging. Nuclear Science and Engineering, 176(1):81-97.

Bayarri, M. J., Berger, J. O., Paulo, R., Sacks, J., Cafeo, J. A., Cavendish, J., Lin, C.-H., and Tu, J. (2007). A

framework for validation of computer models. Technometrics, 49(2):138—154.

Bull, A. D. (2011). Convergence rates of efficient global optimization algorithms. Journal of Machine Learning
Research, 12(0Oct):2879-2904.

Carmassi, M. (2018). CaliCo: Code Calibration in a Bayesian Framework. R package version 0.1.0.
Casella, G. and George, E. L. (1992). Explaining the gibbs sampler. The American Statistician, 46(3):167—-174.
Chang, W. (2017). R6: Classes with Reference Semantics. R package version 2.2.2.

Cox, D. D., Park, J.-S., and Singer, C. E. (2001). A statistical method for tuning a computer code to a data base.
Computational statistics & data analysis, 37(1):77-92.

Craig, P. S., Goldstein, M., Rougier, J. C., and Seheult, A. H. (2001). Bayesian forecasting for complex systems
using computer simulators. Journal of the American Statistical Association, 96(454):717-729.

Cressie, N. A. and Noel, A. (1993). Cassie (1993). statistics for spatial data. vol. 900.

Currin, C., Mitchell, T., Morris, M., and Ylvisaker, D. (1991). Bayesian prediction of deterministic functions, with
applications to the design and analysis of computer experiments. Journal of the American Statistical Association,
86(416):953-963.

Da Veiga, S. (2015). Global sensitivity analysis with dependence measures. Journal of Statistical Computation and
Simulation, 85(7):1283-1305.

Damblin, G. (2015). Contributions statistiques au calage et a la validation des codes de calcul. PhD thesis, PhD
thesis, Université Paris Saclay.

Damblin, G., Barbillon, P., Keller, M., Pasanisi, A., and Parent, E. (2018). Adaptive numerical designs for the
calibration of computer codes. SIAM/ASA Journal on Uncertainty Quantification, 6(1):151-179.

Damblin, G., Couplet, M., and Iooss, B. (2013). Numerical studies of space-filling designs: optimization of latin
hypercube samples and subprojection properties. Journal of Simulation, 7(4):276-289.

131

Damblin, G., Keller, M., Barbillon, P., Pasanisi, A., and Parent, E. (2016). Bayesian model selection for the
validation of computer codes. Quality and Reliability Engineering International, 32(6):2043-2054.

De Lozzo, M. and Marrel, A. (2016). New improvements in the use of dependence measures for sensitivity analysis

and screening. Journal of Statistical Computation and Simulation, 86(15):3038-3058.

Ding, J. and Radhakrishnan, R. (2008). A new method to determine the optimum load of a real solar cell using the
lambert w-function. Solar Energy Materials and Solar Cells, 92(12):1566—1569.

Duffie, J. A. and Beckman, W. A. (2013). Solar engineering of thermal processes. John Wiley & Sons.

Dussert, C., Rasigni, G., Rasigni, M., Palmari, J., and Llebaria, A. (1986). Minimal spanning tree: A new approach
for studying order and disorder. Physical Review B, 34(5):3528.

Eddelbuettel, D., Francois, R., Allaire, J., Ushey, K., Kou, Q., Russell, N., Bates, D., and Chambers, J. (2018).
Rcpp: Seamless R and C++ Integration. R package version 0.12.16.

Faivre, R., Iooss, B., Mahévas, S., Makowski, D., and Monod, H. (2013). Analyse de sensibilité et exploration de

modeéles: application aux sciences de la nature et de I’environnement. Editions Quae.
Fang, K.-T., Li, R., and Sudjianto, A. (2005). Design and modeling for computer experiments. CRC Press.

Franco, J., Dupuy, D., Roustant, O., Damblin, G., and Iooss, B. (2015). DiceDesign: Designs of Computer
Experiments. R package version 1.7.

Franco, J., Vasseur, O., Corre, B., and Sergent, M. (2009). Minimum spanning tree: A new approach to assess the

quality of the design of computer experiments. Chemometrics and intelligent laboratory systems, 97(2):164-169.
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995). Bayesian data analysis. Chapman and Hall/CRC.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical

science, pages 457-472.

Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F.,, Scheipl, F., Bornkamp, B., Maechler, M., and Hothorn, T. (2018).

mvtnorm: Multivariate Normal and t Distributions. R package version 1.0-7.

Ginsbourger, D. (2009). Multiples metamodeles pour I’approximation et I’ optimisation de fonctions numeriques

multivariables. PhD thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne.

Gu, M. (2018a). Jointly robust prior for gaussian stochastic process in emulation, calibration and variable selection.
arXiv preprint arXiv:1804.09329.

Gu, M. (2018b). RobustCalibration: Robust Calibration of Imperfect Mathematical Models. R package version
0.5.1.

Gu, M. and Wang, L. (2017). Scaled gaussian stochastic process for computer model calibration and prediction.
Haario, H., Saksman, E., Tamminen, J., et al. (2001). An adaptive metropolis algorithm. Bernoulli, 7(2):223-242.
Handcock, M. S. and Stein, M. L. (1993). A bayesian analysis of kriging. Technometrics, 35(4):403-410.
Hankin, R. K. S. (2013a). approximator: Bayesian prediction of complex computer codes. R package version 1.2-6.

Hankin, R. K. S. (2013b). BACCO: Bayesian Analysis of Computer Code Output (BACCO). R package version
2.0-9.

Hankin, R. K. S. (2013c). calibrator: Bayesian calibration of complex computer codes. R package version 1.2-6.

132

Hankin, R. K. S. (2014). emulator: Bayesian emulation of computer programs. R package version 1.2-15.

Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications. Biometrika,
57(1):97-109.

Helbert, C., Dupuy, D., and Carraro, L. (2009). Assessment of uncertainty in computer experiments from universal
to bayesian kriging. Applied Stochastic Models in Business and Industry, 25(2):99-113.

Higdon, D., Gattiker, J., Williams, B., and Rightley, M. (2008). Computer model calibration using high-dimensional
output. Journal of the American Statistical Association, 103(482):570-583.

Higdon, D., Kennedy, M., Cavendish, J. C., Cafeo, J. A., and Ryne, R. D. (2004). Combining field data and
computer simulations for calibration and prediction. SIAM Journal on Scientific Computing, 26(2):448-466.

Hoff, P. D. (2009). A first course in Bayesian statistical methods. Springer Science & Business Media.

Husson, F., Josse, J., Le, S., and Mazet, J. (2018). FactoMineR: Multivariate Exploratory Data Analysis and Data
Mining. R package version 1.41.

Husson, F., L&, S., and Pages, J. (2017). Exploratory multivariate analysis by example using R. Chapman and
Hall/CRC.

Ishaque, K., Salam, Z., Taheri, H., et al. (2011). Modeling and simulation of photovoltaic (pv) system during partial
shading based on a two-diode model. Simulation Modelling Practice and Theory, 19(7):1613-1626.

Jin, R., Chen, W., and Sudjianto, A. (2003). An efficient algorithm for constructing optimal design of computer
experiments. In ASME 2003 International Design Engineering Technical Conferences and Computers and

Information in Engineering Conference, pages 545-554. American Society of Mechanical Engineers.

Johnson, M. E., Moore, L. M., and Ylvisaker, D. (1990). Minimax and maximin distance designs. Journal of

statistical planning and inference, 26(2):131-148.

Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global optimization of expensive black-box functions.
Journal of Global optimization, 13(4):455-492.

Kamary, K. (2016). Non-informative priors and modelization by mixtures. PhD thesis, PhD thesis, Université Paris
Dauphine.

Kansa, E. (1985). Application of hardy’s multiquadric interpolation to hydrodynamics. Technical report, Lawrence

Livermore National Lab.

Kennedy, M. and O’Hagan, A. (2001). Supplementary details on bayesian calibration of computer. rap. tech.,

university of nottingham. Statistics Section.

Kennedy, M. C. and O’Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 63(3):425-464.

Konomi, B. A., Karagiannis, G., Lai, K., and Lin, G. (2017). Bayesian treed calibration: an application to carbon

capture with ax sorbent. Journal of the American Statistical Association, 112(517):37-53.

Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the witwatersrand. Journal of
the Southern African Institute of Mining and Metallurgy, 52(6):119-139.

Le Gratiet, L. (2013). Multi-fidelity Gaussian process regression for computer experiments. PhD thesis, Université
Paris-Diderot-Paris VII.

133

Liu, F., Bayarri, M., Berger, J., et al. (2009). Modularization in bayesian analysis, with emphasis on analysis of

computer models. Bayesian Analysis, 4(1):119-150.

MacDoanld, B., Chipman, H., and Ranjan, P. (2015). GPfit: Gaussian Processes Modeling. R package version
1.0-0.

Marrel, A. (2008). Mise en oeuvre et exploitation du métamodele processus gaussien pour 1’analyse de modeles
numériques-application a un code de transport hydrogéologique. These de I'INSA Toulouse.

Marrel, A., looss, B., Laurent, B., and Roustant, O. (2009). Calculations of sobol indices for the gaussian process
metamodel. Reliability Engineering & System Safety, 94(3):742-751.

Matérn, B. (1960). Spatial variation: Meddelanden fran statens skogsforskningsinstitut. Lecture Notes in Statistics,
36:21.

Matheron, G. (1963). Principles of geostatistics. Economic geology, 58(8):1246—1266.

McKay, M. D., Beckman, R. J., and Conover, W. J. (1979). Comparison of three methods for selecting values of

input variables in the analysis of output from a computer code. Technometrics, 21(2):239-245.

Mengyang Gu, J. P. and Berger, J. (2018). RobustGaSP: Robust Gaussian Stochastic Process Emulation. R package
version 0.5.5.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state
calculations by fast computing machines. The journal of chemical physics, 21(6):1087-1092.

Mira, A. et al. (2001). On metropolis-hastings algorithms with delayed rejection. Metron, 59(3-4):231-241.

Morris, M. D. (1991). Factorial sampling plans for preliminary computational experiments. Technometrics,
33(2):161-174.

Morris, M. D. and Mitchell, T. J. (1995). Exploratory designs for computational experiments. Journal of statistical
planning and inference, 43(3):381-402.

Oakley, J. E. and O’Hagan, A. (2004). Probabilistic sensitivity analysis of complex models: a bayesian approach.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(3):751-769.

Owen, A. B. (1992). Orthogonal arrays for computer experiments, integration and visualization. Statistica Sinica,
pages 439-452.

Palomo, J., Garcia-Donato, G., Paulo, R., Berger, J., Bayarri, M. J., and Sacks, J. (2017). SAVE: Bayesian Emulation,
Calibration and Validation of Computer Models. R package version 1.0.

Pearson, K. (1901). Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 2(11):559-572.

Petrone, G., Spagnuolo, G., and Vitelli, M. (2007). Analytical model of mismatched photovoltaic fields by means of

lambert w-function. Solar energy materials and solar cells, 91(18):1652-1657.

Picault, D., Raison, B., Bacha, S., De La Casa, J., and Aguilera, J. (2010). Forecasting photovoltaic array power
production subject to mismatch losses. Solar Energy, 84(7):1301-13009.

Plumlee, M. (2017). Bayesian calibration of inexact computer models. Journal of the American Statistical
Association, 112(519):1274-1285.

134

Plummer, M., Best, N., Cowles, K., Vines, K., Sarkar, D., Bates, D., Almond, R., and Magnusson, A. (2016). coda:
Output Analysis and Diagnostics for MCMC. R package version 0.19-1.

Pronzato, L. and Miiller, W. G. (2012). Design of computer experiments: space filling and beyond. Statistics and
Computing, 22(3):681-701.

Rasmussen, C. E. (2004). Gaussian processes in machine learning. In Advanced lectures on machine learning,

pages 63-71. Springer.
Robert, C. (1996). Méthodes de Monte Carlo par chaines de Markov. Economica.

Robert, C. (2007). The Bayesian choice: from decision-theoretic foundations to computational implementation.

Springer Science & Business Media.
Robert, C. and Casella, G. (2013). Monte Carlo statistical methods. Springer Science & Business Media.

Roberts, G. O., Gelman, A., Gilks, W. R., et al. (1997). Weak convergence and optimal scaling of random walk
metropolis algorithms. The annals of applied probability, 7(1):110-120.

Rocquigny, E. d. (2009). Quantifying uncertainty in an industrial approach: an emerging consensus in an old

epistemological debate. SAPI EN. S. Surveys and Perspectives Integrating Environment and Society, (2.1).

Roustant, O., Gainsbourger, D., and Deville, Y. (2015). DiceKriging: Kriging Methods for Computer Experiments.
R package version 1.5.5.

Roustant, O., Ginsbourger, D., and Deville, Y. (2012). Dicekriging, diceoptim: Two r packages for the analysis
of computer experiments by kriging-based metamodelling and optimization. Journal of Statistical Software,
51(1):54p.

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and analysis of computer experiments.
Statistical science, pages 409—423.

Saltelli, A. (2002). Making best use of model evaluations to compute sensitivity indices. Computer physics
communications, 145(2):280-297.

Saltelli, A., Chan, K., Scott, E. M., et al. (2000). Sensitivity analysis, volume 1. Wiley New York.

Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M. (2004). Sensitivity analysis in practice: a guide to

assessing scientific models. John Wiley & Sons.

Santner, T. J., Williams, B. J., and Notz, W. L. (2013). The design and analysis of computer experiments. Springer
Science & Business Media.

Schaback, R. (2007). Convergence of unsymmetric kernel-based meshless collocation methods. SIAM Journal on
Numerical Analysis, 45(1):333-351.

Sobol’, I. M. (1990). On sensitivity estimation for nonlinear mathematical models. Matematicheskoe modelirovanie,
2(1):112-118.

Sobol, I. M. (1993). Sensitivity estimates for nonlinear mathematical models. Mathematical modelling and

computational experiments, 1(4):407—414.

Stein, M. (1987). Large sample properties of simulations using latin hypercube sampling. Technometrics, 29(2):143—
151.

Stein, M. L. (2012). Interpolation of spatial data: some theory for kriging. Springer Science & Business Media.

135

Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System
Safety, 93(7):964-979.

Tang, B. (1993). Orthogonal array-based latin hypercubes. Journal of the American statistical association,
88(424):1392-1397.

Tian, H., Mancilla-David, F., Ellis, K., Muljadi, E., and Jenkins, P. (2012). A cell-to-module-to-array detailed model
for photovoltaic panels. Solar energy, 86(9):2695-2706.

Tuo, R., Wu, C. J., et al. (2015). Efficient calibration for imperfect computer models. The Annals of Statistics,
43(6):2331-2352.

Tuo, R. and Wu, J. (2016). A theoretical framework for calibration in computer models: parametrization, estimation

and convergence properties. SIAM/ASA Journal on Uncertainty Quantification, 4(1):767-795.

Vazquez, E. and Bect, J. (2010). Convergence properties of the expected improvement algorithm with fixed mean

and covariance functions. Journal of Statistical Planning and inference, 140(11):3088-3095.

Viana, F. A., Venter, G., and Balabanov, V. (2010). An algorithm for fast optimal latin hypercube design of

experiments. International journal for numerical methods in engineering, 82(2):135-156.

Wickham, H. and Chang, W. (2016). ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics.
R package version 2.2.1.

Wong, R. K., Storlie, C. B., and Lee, T. (2017). A frequentist approach to computer model calibration. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 79(2):635-648.

136

universite

PARIS-SACLAY

ECOLE DOCTORALE

santé (ABIES)

Agriculture, alimentation,
biologie, environnement,

Titre : Quantification des incertitudes et calage d’'un modéle de centrale photovoltaique : garantie de perfor-
mance et estimation robuste de la production long-terme.

Mots clés : Centrale photovoltaique / Calage bayésien / Quantification d’incertitudes / Code numérique

Résumé Les difficultés de mise en ceuvre
d’expériences de terrain ou de laboratoire, ainsi que
les colts associés, conduisent les sociétés indus-
trielles a se tourner vers des codes numériques de
calcul. Ces codes, censés étre représentatifs des
phénomenes physiques en jeu, entrainent néanmoins
tout un cortége de problemes. Le premier de ces
problemes provient de la volonté de prédire la
réalité a partir d'un modéle informatique. En ef-
fet, le code doit étre représentatif du phénoméne
et, par conséquent, étre capable de simuler des
données proches de la réalité. Or, malgré le constant
développement du réalisme de ces codes, des er-
reurs de prédiction subsistent. Elles sont de deux na-
tures différentes. La premiére provient de la différence
entre le phénoméne physique et les valeurs relevées
expérimentalement. La deuxieme concerne I'écart
entre le code développé et le phénomene physique.
Pour diminuer cet écart, souvent qualifié de biais ou
d’erreur de modele, les développeurs complexifient
en général les codes, les rendant trés chronophages

dans certains cas. De plus, le code dépend de pa-
ramétres a fixer par I'utilisateur qui doivent étre choi-
sis pour correspondre au mieux aux données de ter-
rain. Lestimation de ces paramétres propres au code
s’appelle le calage. Cette thése propose dans un
premier temps une revue des méthodes statistiques
nécessaires a la compréhension du calage Bayésien.
Ensuite, une revue des principales méthodes de ca-
lage est présentée accompagnée d’'un exemple com-
paratif basé sur un un code de calcul servant a prédire
la puissance d’'une centrale photovoltaique. Le pa-
ckage appelé CaliCo qui permet de réaliser un calage
rapide de beaucoup de codes numériques est alors
présenté. Enfin, un cas d’'étude réel d'une grande
centrale photovoltaique sera introduit et le calage
réalisé pour effectuer un suivi de performance de la
centrale. Ce cas de code industriel particulier intro-
duit des spécificités de calage numériques qui seront
abordées et deux modeles statistiques y seront ex-
posés.

Title : Uncertainty quantification and calibration of a photovoltaic plant model: warranty of performance and

robust estimation of the long-term production.

Keywords : Photovoltaic power plant / Bayesian calibration / Uncertainty quantification / Numerical code

Abstract : Field experiments are often difficult and
expensive to make. To bypass these issues, indus-
trial companies have developed computational codes.
These codes intend to be representative of the phy-
sical system, but come with a certain amount of pro-
blems. The code intends to be as close as possible
to the physical system. It turns out that, despite conti-
nuous code development, the difference between the
code outputs and experiments can remain significant.
Two kinds of uncertainties are observed. The first
one comes from the difference between the physi-
cal phenomenon and the values recorded experimen-
tally. The second concerns the gap between the code
and the physical system. To reduce this difference, of-
ten named model bias, discrepancy, or model error,
computer codes are generally complexified in order to
make them more realistic. These improvements lead

to time consuming codes. Moreover, a code often de-
pends on parameters to be set by the user to make the
code as close as possible to field data. This estimation
task is called calibration. This thesis first proposes a
review of the statistical methods necessary to unders-
tand Bayesian calibration. Then, a review of the main
calibration methods is presented with a comparative
example based on a numerical code used to predict
the power of a photovoltaic plant. The package called
CaliCo which allows to quickly perform a Bayesian ca-
libration on a lot of numerical codes is then presented.
Finally, a real case study of a large photovoltaic power
plant will be introduced and the calibration carried out
as part of a performance monitoring framework. This
particular case of industrial code introduces numeri-
cal calibration specificities that will be discussed with
two statistical models.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de I'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Remerciements
	List of figures
	Acronyms
	Résumé
	Introduction
	Economic issue
	Physical phenomenon
	Several modeling approaches
	A first simple model
	Advanced electrical models

	Numerical codes
	General framework
	Sources of uncertainties
	Python code
	Dymola code

	Thesis organization

	Statistical tools for numerical code calibration
	Sensitivity analysis
	Morris method
	Sobol indices

	Kriging / Gaussian processes
	General framework
	Parameter estimation
	Covariance functions
	Gaussian process-based optimization

	Design of experiments
	Sampling criteria
	Distance between the points criteria

	Principal component analysis (PCA)
	Distance
	Moments of inertia
	Axis of minimum inertia
	Contribution to the total inertia
	Graphical representations

	Monte Carlo Markov Chains techniques
	Gibbs sampler
	Metropolis Hastings
	Metropolis within Gibbs
	Improvements of the Metropolis Hastings

	Review of the main calibration methods
	Numerical code
	Sensitivity analysis
	Prior propagation of uncertainty

	Calibration through statistical models
	Presentation of the models
	Likelihood
	Estimation

	Application to the prediction of power from a photovoltaic (PV) plant
	Inference
	Results
	Comparison

	Conclusion and discussion

	CaliCo: a R package for Bayesian calibration
	Guidelines for users
	Multidimensional example with CaliCo
	The models
	Priors
	Calibration
	Additionnal tools

	Conclusion

	Performance monitoring on a large PV plant
	Sensitivity analysis
	Prior densities
	Propagation of uncertainties
	Bayesian calibration
	Statistical models
	Modular estimation and likelihoods
	Application to the PV plant

	Conclusion and perspectives
	Bibliography

