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The same sensory input does not always trigger the same reaction. In laboratory experiments, a given stimulus may elicit a different response on each trial, particularly near the sensory threshold. This is usually attributed to an unspecific source of noise that affects the sensory representation of the stimulus or the decision process. In this thesis we explore the hypothesis that response variability can in part be attributed to measurable, spontaneous fluctuations of ongoing brain state. For this purpose, we develop and test two sets of tools. One is a set of models and psychophysical methods to follow variations of perceptual performance with good temporal resolution and accuracy on different time scales. These methods rely on the adaptive procedures that were developed for the efficient measurements of static sensory thresholds and are extended here for the purpose of tracking time-varying thresholds. The second set of tools we develop encompass data analysis methods to extract from electroencephalography (EEG) signals a quantity that is predictive of behavioral performance on various time scales. We applied these tools to joint recordings of EEG and behavioral data acquired while normal listeners performed a frequency-discrimination task on near-threshold auditory stimuli. Unlike what was reported in the literature for visual stimuli, we did not find evidence for any effects of ongoing low-frequency EEG oscillations on auditory performance. However, we found that a substantial part of judgment variability can be accounted for by effects of recent stimulus-response history on an ongoing decision.
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Psychophysics, or at least what Fechner defined as outer psychophysics, is concerned with the relationship between physical stimulus and sensation [START_REF] Fechner | Elements of psychophysics[END_REF]. In experimental investigations of psychophysical laws, behavioral responses are used to probe the subjective, mental experience resulting from stimulus presentation. Behavioral outcomes observed in these experiments are typically subject to a large variability: repetitions of identical stimuli under the same conditions may elicit different responses from the same subject. For instance, the stimulus may sometimes be consciously perceived and reported, and other times not. Decisions relying on perceptual discriminations are variable as well. Besides, the reaction times for these conscious reports also change from one trial to the next. Facing the universality of the phenomenon, some authors proposed that perceptual variability constitutes one of the fundamental axioms of a general theory of perception [START_REF] Ashby | Perceptual Variability as A Fundamental Axiom of Perceptual Science[END_REF]. This behavioral variability is particularly large when the signal underlying a decision is difficult to perceive, or when the stimulus is intrinsically ambiguous, which can give rise to what has been called multistable perception. When presented with multistable stimuli, the subject reports experiencing two (or more) alternating subjective percepts [START_REF] Kleinschmidt | Variability of perceptual multistability: from brain state to individual trait[END_REF][START_REF] Klink | United we sense, divided we fail: contextdriven perception of ambiguous visual stimuli[END_REF][START_REF] Pressnitzer | Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization[END_REF][START_REF] Schwartz | Multistability in perception: binding sensory modalities, an overview[END_REF].

Signal Detection Theory (SDT) provides a commonly accepted method to deal with the variability of perceptual reports. In this framework, perceptual decisions are assumed to be affected by noise scrambling the internal representation of the stimuli [START_REF] Green | Signal Detection Theory and Psychophysics[END_REF][START_REF] Macmillan | Detection theory: A user's guide[END_REF]. Actions following from PART I. CHARACTERIZATION OF SENSORY VARIABILITY stimulation (including reports) are assumed to rely on internally coded decision variables which take different values in repeated trials, due to the fluctuation of internal variables unrelated to the stimulus. To the extent that these variables are unobservable by the experimenter they are best treated as a random process or "internal noise". However, the availability of brain recording methods opens the perspective of accounting for some of this variability.

Neural correlates

In the last decades, the development of non-invasive neuro-imaging and electrophysiological recording techniques made possible the joint observation of behavior and physiological activity. This has allowed for the investigation of the neural bases of perceptual decision-making [START_REF] Heekeren | The neural systems that mediate human perceptual decision making[END_REF]. Cognitive neuroscience relies on

the assumption that there is a correspondence between mental states of the mind and physical states of the brain. In particular, the experience of a given subjective percept (and thus the resulting observable behavior) is believed to have objective neural correlates. The study of these correlations is in fact what Fechner referred to as inner psychophysics, although this part of his contribution received less attention [START_REF] Robinson | Fechner's "inner psychophysics[END_REF].

The fundamental assumption of a mapping between neural activity and experienced sensations implies that the variability of reports following presentations of identical stimuli is related to the variability of the neural representations elicited by these stimuli. In other words, by measuring with perfect accuracy the neural representation on a given trial, one should be able to exactly infer a subject's percept on that trial and the associated behavioral response. Uncovering the exact nature of the neural representations, i.e. which physical quantity determines the percept, is a challenge that is still being addressed. Despite this difficulty however, the application of machine learning methods to the classification of single-trial neural signals has led to highly promising successes in "brain reading" (or "decoding"), that is, in inferring perceptual decisions on the basis of recorded brain activity [START_REF] Haynes | Decoding mental states from brain activity in humans[END_REF][START_REF] Heekeren | The neural systems that mediate human perceptual decision making[END_REF][START_REF] Ritchie | Neural Decoding and "Inner" Psychophysics: A Distanceto-Bound Approach for Linking Mind, Brain, and Behavior[END_REF][START_REF] Sajda | Single-trial analysis of neuroimaging data: inferring neural networks underlying perceptual decision-making in the human brain[END_REF]. In this context, the question about the origin of sensory variability can be reformulated as follows:

what causes neural responses to a given stimulus to differ from one trial to another?

Predicting fluctuations in sensory responses from ongoing brain activity Spontaneous, or endogenous brain activity (i.e. activity occurring independently of external stimulation) is generally believed to be subject to the same sources of variability as evoked, or exogenous activity (i.e. activity caused by external stimulation). Indeed, the variability of neural evoked responses can be as large as the spontaneous fluctuations of neural activity [START_REF] Arieli | Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex[END_REF], which led some authors to compare the effect of a stimulus on cortical activity with the additional ripples caused by tossing a stone into a wavy sea [START_REF] Arieli | Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses[END_REF]. This observation has often caused ongoing spontaneous activity to be termed "baseline activity", and to be used as a surrogate of ongoing internal noise. It was indeed shown that, in some cases, evoked activity can be fairly approximated, over a reasonable time, by a linear summation of a reproducible response component and an estimate of ongoing activity [START_REF] Arieli | Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses[END_REF][START_REF] Fox | Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses[END_REF]. This assumption has actually guided the methods used in standard analyses of brain recordings since the very first studies: an estimate of ongoing spontaneous activity is often obtained from pre-stimulation activity (generally the mean activity over a short window) and subtracted from the activity following the presentation of external stimuli in the aim to recover purely evoked responses. However, even after these "baseline corrections", variability remains in the responses to repeated presentations of identical stimuli. This persistence has at least two distinct accounts. First, the simplistic estimation of the fluctuations that will be superimposed on the actual response from pre-stimulus activity may not be accurate enough. Second, it is possible that the relation between spontaneous and evoked activity is actually more complex than a simple addition. A better understanding of the content and structure of spontaneous activity and how it interacts with sensory inputs could therefore enable a monitoring of the sources causing sensory variability and improve the decoding of evoked responses.

What causes spontaneous activity? Stochastic processes versus top-down regulations Like any physical system, the brain is governed by stochastic processes on a microscopic scale, and information transfers within the central nervous system are affected by these. Random biophysical and biochemical processes occur constantly in neurons and synapses, such as protein production and degradation, opening and closing of intracellular ion sources and of ion channels on the neuronal membrane, fusing of synaptic vesicles with the membrane, or diffusion and binding of signaling molecules [START_REF] Faisal | Noise in the nervous system[END_REF]. Spontaneous neuronal discharges occurring as a consequence of these probabilistic events are unpredictable and believed to contribute to internal noise. However, another important source of fluctuations in spontaneous activity are top-down signals conveying variable internal inputs [START_REF] Gilbert | Brain states: top-down influences in sensory processing[END_REF][START_REF] Sadaghiani | The Relation of Ongoing Brain Activity, Evoked Neural Responses, and Cognition[END_REF]. To the extent that they are unknown and unpredictable, they are best modeled as stochastic variables, but if instead they are potentially observable or predictable, they are best modeled as deterministic variables that remain to be observed. Consequently, spontaneous activity would not merely reflect noise, but it would be informative about changing, functional states which also contribute to the variability of neural responses, but in a potentially predictable way.

General aims and outline of the thesis

The brain is a (complex) dynamical system fed by sensory inputs from the environment. We postulate that the variability of behavioral responses caused by identical inputs has two distinct origins: (1) stochastic processes in the system, by nature unpredictable; (2) variability of the ongoing dynamic state of the system.

Therefore, one way to improve the prediction of a subject's perceptual reports is to probe their ongoing brain state. In particular, this state may be observable in brain activity recordings such as electro-encephalography (EEG) recordings.

In this thesis, we study sensory variability occurring when human subjects perform auditory tasks, with a particular focus on pitch discrimination tasks. We analyze both separately and conjointly the behavior and the continuous EEG signals observed during such tasks. These various analyses aim at (1) improving the characterization of sensory variability from a behavioral point of view, (2) improving the characterization of brain state based on EEG signals,and (3) assessing the links between sensory variability and brain state fluctuations.

Among other aspects of variability, the reports made by the subject in a psychophysics experiment may fall on different categories, being sometimes correct and sometimes incorrect. The fraction of correct reports may be interpreted in terms of sensory sensitivity: listeners with an acute sense of hearing will mainly make correct reports in a given task and, in that sense, their responses are less variable. Response variability is thus tightly linked to sensory sensitivity. One important question is whether sensitivity itself varies over time within the same individual. In other words, is there variability also in the parameters that determine trial-to-trial variability (second-order variability)? And if so, how can we evidence it? If listeners do experience variations of sensitivity, do these correlate with any EEG marker of their brain state? To answer such a question, we need first of all a continuous measure of the listener's sensitivity over time. Such a measure is not trivial since estimating sensitivity typically requires a statistic computed from the outcome of a large number of task trials. The development of a methodology to track sensitivity variations with enough precision and temporal resolution is the focus of Chapter 2.

In Chapter 3, we will reassess the notion of internal noise. Our motivation for measuring brain state is to observe internal factors that are unrelated to the stimulus and yet affect its neural representation, but part of these factors may not be internal strictly speaking and may be observable without resorting to brain recording. We investigate in particular the role of the context defined by the history of stimulus presentation and of the listener's responses and show that such history accounts for a substantial part of report variability. By doing so, we get closer to isolating the purely internal factors of variability.

The psychophysical analyses and models developed in Part I will provide two different types of information about the subject's behavior at a given point in time.

One is an estimation of the ongoing level of their auditory sensitivity, characterized by a statistical discrimination threshold. The other one is an estimation of the likelihood PART I. CHARACTERIZATION OF SENSORY VARIABILITY of the response category (among 2 alternatives) in the ongoing trial, given the stimulus and the history context.

Once sensory variability has been better characterized from a behavioral point of view, our aim in Part II will be to identify, if they exist, the EEG markers of its internal sources. The challenge will be to find variables of continuous EEG signals that adequately describe brain state. In our approach, an adequate description of brain state is one that either correlates with the ongoing task performance level, or allows to improve the trial-by-trial predictions of the listener's response in comparison to the best achievable prediction ignoring brain state.

Finding relevant EEG variables for brain state description is a hard task that is common to several brain reading problems, ranging from sleep monitoring for clinical applications to intention decoding for the control of Brain-Computer Interfaces (BCIs). Even more than Event-Related Potentials (ERPs) computed by averaging signals over multiple signal epochs, isolated continuous EEG signals can be hard to make sense of, due to low Signal-to-Noise Ratio (SNR), source mixing, and poor spatial resolution. In these conditions, recording with numerous EEG sensors can be advantageous for source separation but it also exacerbates the number of potential signal descriptors. Accounting for sensory variability requires to sort and select the features of EEG signals with most explanatory power. In Chapter 4, we rely on analyses of EEG recordings on their own to identify interesting features based on a structural criterion. The adopted strategy is to explore the intrinsic structure of EEG signals to evidence alternations of, or gradual transitions between, characteristic activity patterns. More precisely, we will identify several types of EEG components using linear signal processing techniques. Some of these components will be selected

for their slow variations that may reflect long-term brain state changes. Other components will be selected for their oscillating activity (based on the importance given to oscillatory activity in the literature). We describe numerous marked EEG oscillations at very different frequencies, ranging from 0.1 Hz to above 30 Hz. These oscillations may be seen as an alternation between distinct brain states, e.g. "up" and "down" states. Their amplitude may fluctuate over time and brain states may also be divided into "high-amplitude" and "low-amplitude" states. Besides, synchronization between distinct oscillatory sources may index different states of functional connectivity. Taken together, the descriptors of all the various ongoing oscillations will form a high-dimensional space of brain state features.

In the last chapter, we test the relevance of previously identified EEG-derived brain state features in the account for sensory variability. We examine in particular the effects of ongoing EEG oscillations on individual responses. These analyses are motivated by previous reports of the literature describing effects of low-frequency oscillations on visual perception, which our auditory data does not replicate. We also examine how the time-dependent sensitivity measure developed in Chapter 2 correlates with EEG features, starting from the slowly-varying components identified in Chapter 4 and following with components identified by supervised learning techniques. These analyses fail to demonstrate a consistent EEG marker of ongoing sensitivity.

Part I.

Characterization of sensory variability

By sensory variability, we allude to the fact that repeated presentations of the same stimulus are not followed by identical responses. In this part of the thesis, sensory variability is studied from a behavioral point of view using tools from psychophysics and modeling. In particular, Chapters 2 and 3 aim at characterizing this variability in the case of pitch perception. For these studies, we asked human participants to perform a continuous pitch discrimination task [START_REF] Arzounian | A sliding two-alternative forcedchoice paradigm for pitch discrimination[END_REF]. In this task, subjects are presented with a series of brief pure tones. The pitch frequency varies from tone to tone with a random direction: either the frequency increases (upward pitch change) or it decreases (downward pitch change). The size of the pitch intervals is adjusted by an adaptive procedure that maintains the difficulty of the task to a level yielding an intermediate performance of 75%-correct. After each tone (except the very first one), the subjects are required to report whether the pitch of the last tone was lower or higher than that of the previous tone. The task is therefore of the 2-alternative forced choice (2-AFC) type, but because each tone is successively involved in two comparisons, we refer to this paradigm as sliding 2-AFC. Every response of the subject triggers the onset of the next tone after an inter-trial interval, usually of 500 ms, and the task continues until a pre-determined number of stimuli have been presented. In comparison to more standard 2-interval, 2-alternative forced choice tasks, our paradigm offers at least two advantages, that will become in the following paragraphs.

The first aspect studied in this Part I is related to the idea that different brain states may be associated to different levels of sensory sensitivity, leading to different levels of statistical performance in a perceptual task. Levels of arousal, for instance, may lead to different performance levels, states of high wakefulness being associated with higher performance than states of drowsiness. As a subject performing a task passes through different states of arousal, one might be able to observe changes in their response statistics corresponding to changes in overall sensitivity. Detecting and tracking these changes would allow to relate them to the markers of arousal that are visible in EEG activity, which could then constitute important predictors of perceptual responses. In order to explore this hypothesis, we need techniques to reliably measure performance as it fluctuates over time. In Chapter 2, the possibility of tracking these statistical fluctuations of behavior by the means of adaptive psychophysical procedures is studied both theoretically and experimentally. In this approach, the ability to detect rapid changes of sensitivity is conditioned by the number of judgments available in successive estimation windows. Regarding this aspect, the sliding 2-AFC task is preferable over 2-interval tasks because it provides one judgment after each presented stimulus, rather than one judgments after each stimulus pair.

The second aspect pertains to the amount of variability that can fairly be attributed to internal factors, whether internal noise or internal state fluctuations. Part of the variability might actually arise from factors that are observable from the experimenter's point of view without resorting to physiological measures, such as anterior stimulation and behavior. To get a more accurate estimation of the amount of internal variability, it can be necessary to reconsider what we regard as identical stimuli and to systematically incorporate in their descriptions variables that are objectively irrelevant regarding the ongoing task, stemming either from the stimulus itself or from its context. Chapter 3 investigates internal variability in the case of pitch perception, and demonstrates that taking into account the pitch of previously presented stimuli and the previous responses of a listener can reduce the amount of unexplained response variability that would otherwise by attributed to internal factors (such as sensory noise). This may prove useful later when assessing the contribution of brain state variations to response variability by targeting more specifically the part that remains unexplained by these external factors. The investigation of these effects was made easier by the sliding 2-AFC task because the sequence of stimuli preceding one trial contained tones of only one type. In contrast, 2-interval tasks contain two types of tones, those serving exclusively as a reference for the current trial (first tone of a pair) and those serving exclusively as a comparison tone (second of a pair), each type having potentially a different influence on posterior decisions.

These two chapters will analyze the behavior of listeners performing a pitch discrimination task from two different angles. The analyses will rely on two distinct types of psychometric functions, an accuracy function and a choice function. The link between the two will be explained first, in Chapter 1, along with a model from Signal Detection Theory that will be used to specify assumptions about these psychometric functions.

The resort to the sliding 2-AFC task is motivated by its high response yield and by the uniformity of its stimulus sequences, but it is legitimate to wonder how it affects frequency discrimination abilities in comparison to more standard tasks. This question was the focus of a preliminary study published in the Journal of the Acoustical Society of America and available for consultation in Appendix A. In short, discrimination thresholds measured with the sliding 2-AFC are not different from those measured using a 2-interval task with similar stimulation parameters.

In summary, the tools proposed in this part for the characterization of sensory variability from a behavioral point of view are expected to serve the goals of this thesis by: (1) tracking changes of perceptual performance that might be associated to global changes of brain state and of EEG activity patterns; (2) improving our trial-by-trial prediction of a subject's response based on stimulation and context, so as to reduce the amount of unexplained trial-to-trial variability to be accounted for by brain state Psychophysics deals with the relations between the physical attributes of sensory stimuli and the sensation they produce. To investigate these relations objectively, psychophysicists have to rely on behavioral reports that subjects make in response to selected stimuli after receiving certain instructions [START_REF] Ehrenstein | Psychophysical methods[END_REF]. Because of the trial-to-trial variability of subject's responses, experimenters call PART I. CHARACTERIZATION OF SENSORY VARIABILITY on statistics to draw conclusions from the subject's behavior. One common goal is to estimate the sensitivity of a subject to a given stimulus attribute, i.e. what level of this attribute is the subject able to detect and with which accuracy. When it pertains to detecting a change in this attribute, sensitivity relates to the ability of the subject to discriminate between stimuli. Estimation of sensitivity is often performed by measuring a threshold, sometimes also called difference limens or also just noticeable difference when it characterizes stimulus discrimination abilities.

As it appeared, the notion of threshold implied in a way that perception is an allor-none phenomenon: the stimulus attribute in question (or the change in that attribute) is either above the threshold and gets perceived, or below the threshold and remains totally undetected. This is not a faithful description of what usually happens.

In fact, there is typically a range of levels where the stimulus (or change) gets perceived on a proportion of trials and undetected on others. Consequently, the notion of threshold was conventionally modified to refer to the level associated with a specific proportion of successful trials, generally chosen in such a way to be intermediate between chance performance and maximal performance. With such a definition, the threshold turns out to be a specific feature of what is called a psychometric function.

Psychometric functions

Accuracy psychometric functions

The tasks that subjects perform in psychophysical experiments typically require to report whether a target is present or absent in a stimulus (detection task), or whether two stimuli presented during the trial are the same or different (discrimination task).

Other discrimination tasks may require to assign stimuli to one of two (or more) categories. In all these tasks, the salience of sensory information (either, indicating the presence of the target, the presence of a change, or one of the stimulus categories) may be varied by the experimenter, and the probability that a subject answers correctly will depend on this salience. For an auditory detection task, for instance, salience depends, among other things, on the loudness of the target. For a discrimination task, the salience of a change between two stimuli depends on its amplitude, e.g. on the difference between the two tones' frequencies in the case of pure tone frequency discrimination. The stimulus variable 𝑥 that, when manipulated, affects the salience of relevant information is often referred to as stimulus strength.

When stimulus strength is infinitesimally small, the target stimulus or change cannot be perceived by the subject who is then expected to respond randomly, or according to some strategy in decision making [START_REF] Abrahamyan | Adaptable history biases in human perceptual decisions[END_REF]. The probability that they give a correct response then depends on the number of response alternatives and may be referred to as chance level. On the opposite extreme, a very salient stimulus or change is unlikely to be missed, and the probability of a correct response is therefore close to 1 for very large stimulus strengths. The accuracy level associated with the threshold by definition is chosen so as to be intermediate between chance performance and maximal performance. For instance, in the case of a task with two possible responses, chance performance is at 50%-correct and the threshold may be chosen as corresponding to 75%-correct or nearby, possibly depending on the estimation method, as will be discussed later (2.1.1).

The relationship between success probability and stimulus strength is represented by the accuracy psychometric function. Apart from rare cases, the accuracy function is expected to be monotonic, the probability of a correct response increasing if stimulus strength is increased. This increase is generally continuous, unlike what would be assumed from the initial notion of threshold. However, the rapidity of the increase is generally unknown. A good representation of the psychometric function involves to choose an appropriate scale for the stimulus strengths on the horizontal axis, so that points corresponding to intermediate values of the correct response probability on the vertical axis take up a visually important part of the curve. In lots of cases, this is achieved by reporting on the horizontal axis the logarithm of the physical attribute of interest. E.g. in the case of tone frequency discrimination, correct response probability is generally reported as a function of 𝑥 = log(|Δ𝑓/𝑓|), where Δ𝑓 is the difference between frequencies of the two tones to discriminate and 𝑓 is one of these frequencies or their average. In most cases, the resulting function has a sigmoid (i.e. S-like) shape (Figure 1.1, lower panels), the abscissa of the inflexion point being near the threshold of interest.

Choice psychometric functions

Some tasks require to assign a stimulus to one of two categories A and B (or more).

For instance, in a frequency discrimination task, the subject may be presented with two successive pure tones with different frequencies 𝑓 1 and 𝑓 2 and have to report which one has the highest pitch, which amount to saying that the tone pair belongs to the "up" (or upward) category and the other to the "down" (or downward) category. This applies to our sliding 2-AFC task in which each tone of a continuous series is judged as higher or lower than the previous [START_REF] Arzounian | A sliding two-alternative forcedchoice paradigm for pitch discrimination[END_REF]. In these cases, it is useful to describe the responses of the subject in terms of choice, rather than accuracy. In general, the probability of choosing one alternative versus the other is expected to vary monotonically with some attribute 𝑠 of the stimuli that are being manipulated by the experimenter. In the case of the pitch discrimination tasks, relevant variables can be chosen as the frequency difference 𝑠 = Δ𝑓 = 𝑓 2 -𝑓 1 or as the log interval 𝑠 = log(𝑓 2 /𝑓 1 ). In both cases, the quantity is negative when 𝑓 2 < 𝑓 1 and positive when 𝑓 1 < 𝑓 2 . Consistently, the probability that the subject reports the second tone as being higher is low for extremely negative values of 𝑠 and increases when 𝑠 increases to zero and beyond.

It is common to define the point of subjective equality (PSE) as the value of the variable 𝑠 associated with equal probabilities of choosing A or B. In some cases, the PSE can be compared to some point of objective equality, meaning that the experimenter has an objective criterion for labeling a response as being correct or incorrect. In these cases it is in general possible to define 𝑠 as a variable whose sign depends on the correct response category, like the two variables proposed for the pitch discrimination task. The difficulty of the task is then linked to the absolute value of 𝑠:

if |𝑠| is large, the trial is easy, and the listener will give the correct answer with a large probability; if |𝑠| is small, the trial is more difficult, and the listener's response is less certain. The PSE will be positioned at 𝑠 = 0 if the listener is unbiased. It can be shifted to the left or to the right if the listener has a choice bias, i.e. a tendency to report more often one category or the other regardless of the stimuli presented. In other situations, the category of the stimuli is by nature ambiguous and it is not possible to set an objective criterion regarding response accuracy; there is in fact no correct response.

For instance, certain types of artificial sounds, like Shepard tones, contain a superposition of several pure tones spaced by octaves, so that their pitch is ambiguous [START_REF] Chambers | Prior context in audition informs binding and shapes simple features[END_REF][START_REF] Chambers | Perceptual hysteresis in the judgment of auditory pitch shift[END_REF]. Deciding which of two Shepard tones with different frequency contents is higher in pitch depends on how one binds their frequency components.

The function that relates the probability of choosing one alternative, e.g. A, to the value of 𝑠 can be called a choice psychometric function. A typical psychometric function has the shape of a sigmoid function that goes from 0 for extreme negative values of 𝑠 to 1 for extreme positive values of 𝑠 (Figure 1.1, upper panels). The slope of the curve reflects the subject's sensitivity: if the subject is able to correctly discriminate stimuli even when they are close to the PSE, the curve will be steep; if not, the curve will be shallower.

Relationship between the accuracy and choice psychometric functions in the case of 2 response alternatives

The accuracy and choice psychometric functions differ in several respects. First, the accuracy function can only be defined when there is a way to objectively label a choice as being correct or incorrect. This is the case of the sliding 2-AFC pitch discrimination task we will consider in this thesis, the objectively correct report being an upward pitch change when the frequency of the last tone is higher than that of the previous tone and vice-versa. Second, these functions take as inputs different variables: a signed variable 𝑠 that can be both positive and negative in the case of the choice function and a positive variable 𝑥 signifying "stimulus strength" in the case of the accuracy function. In many cases, data from the same task can be analyzed with either psychometric function. In fact, for any choice function where one stimulus category corresponds to 𝑠 > 0 and the other to 𝑠 < 0 , the most straightforward accuracy function will relate the success probability to |𝑠|. However, the best approach is not necessarily to define 𝑥 = |𝑠|. Indeed, commonly used accuracy functions typically differ from choice functions in the scale chosen for the horizontal axis, so that it is more common to define 𝑥 as being a logarithmic transform of A main difference between the two functions is that it is possible to retrieve the accuracy function from the choice function, but not the converse. As an example, let's consider the case where 𝑥 is defined as 𝑥 = log(|𝑠|) , i.e. 𝑠 = ±𝑒 𝑥 . The choice psychometric function is given by some mathematical function 𝑓 𝑐ℎ𝑜𝑖𝑐𝑒 that relates the probability that the listener chooses alternative A to the signed variable 𝑠: 𝑃(A|𝑠) = 𝑓 𝑐ℎ𝑜𝑖𝑐𝑒 (𝑠).

(1.1)

The accuracy psychometric function is given by some other mathematical function 𝑓 𝑎𝑐𝑐 that relates the probability that the listener gives a correct response to the unsigned stimulus strength:

𝑃(correct|𝑥) = 𝑓 𝑎𝑐𝑐 (𝑥). (1.2)
This probability depends on the respective probabilities that 𝑠 = -𝑒 𝑥 and 𝑠 = +𝑒 𝑥 and on the conditional probability of a correct response in the two corresponding cases:

𝑃(correct|𝑥) = 𝑃(𝑠 = -𝑒 𝑥 |𝑥)𝑃(B|𝑠 = -𝑒 𝑥 ) + 𝑃(𝑠 = +𝑒 𝑥 |𝑥)𝑃(A|𝑠 = +𝑒 𝑥 ), (1.3)
from which ensues the theoretical relation between the choice and accuracy psychometric functions:

𝑓 𝑎𝑐𝑐 (𝑥) = 𝑃(𝑠 = -𝑒 𝑥 |𝑥)(1 -𝑓 𝑐ℎ𝑜𝑖𝑐𝑒 (-𝑒 𝑥 )) + 𝑃(𝑠 = +𝑒 𝑥 |𝑥)𝑓 𝑐ℎ𝑜𝑖𝑐𝑒 (+𝑒 𝑥 ) (1.4)
In psychophysical experiments, it is very often the case that stimulus categories A and B are balanced so that 𝑃(𝑠 = -𝑒 𝑥 |𝑥) = 𝑃(𝑠 = +𝑒 𝑥 |𝑥) = 1/2 . In that case, the previous relation becomes

𝑓 𝑎𝑐𝑐 (𝑥) = 1 2
(1 -𝑓 𝑐ℎ𝑜𝑖𝑐𝑒 (-𝑒 𝑥 ) + 𝑓 𝑐ℎ𝑜𝑖𝑐𝑒 (+𝑒 𝑥 )).

(1.5)

The previous expression recovers the accuracy function 𝑓 𝑎𝑐𝑐 from the choice function 𝑓 𝑐ℎ𝑜𝑖𝑐𝑒 . For the same value of the variable 𝑥 , correct response rates may differ CHAPTER 1. ACCURACY AND CHOICE PSYCHOMETRIC FUNCTIONS according to the sign of 𝑠, i.e. 1 -𝑓 𝑐ℎ𝑜𝑖𝑐𝑒 (-𝑒 𝑥 ) may be different from 𝑓 𝑐ℎ𝑜𝑖𝑐𝑒 (+𝑒 𝑥 ), in particular if the subject has a choice bias. For this reason, 𝑓 𝑐ℎ𝑜𝑖𝑐𝑒 cannot be recovered from 𝑓 𝑎𝑐𝑐 . This unsymmetrical relationship between the two functions is illustrated in Figure 1.1.

Unbiased listener Biased listener

Link between choice and accuracy psychometric functions in the case of 2 response alternatives A and B. Cases of an unbiased listener (left column) and of a listener with a choice bias towards Achoices (right column). The first row displays the choice functions, i.e. the probability of choosing one alternative, e.g. A (green lines), or B (red lines), against signed stimulus strength (variable s ). A positive stimulus strength indicates the actual stimulus is from class A, a negative stimulus strength that it is from class B. Therefore, the solid part of the lines corresponds to correct choices and the dashed part to incorrect choices. The second row displays the accuracy functions, i.e. the probability of choosing the correct alternative against the absolute value of the stimulus strength (|s |). When the listener is unbiased, the probability of a correct response does not depend on the class of the stimulus. When the listener has a choice bias, the two stimulus classes yield different accuracies for the same absolute value of the stimulus strength and the resulting overall accuracy is in-between. Units on the stimulus strength axes are arbitrary but it can be noted that, typically, a linear scale is used for the choice function and a logarithmical scale for the accuracy function, which results in both curves being sigmoid.

Experimental estimation of psychometric functions and thresholds

Psychometric functions can be estimated empirically by reporting the proportion of one type of responses (correct responses in the case of the accuracy function, choice A responses in the case of the choice function) observed for several values of the relevant stimulus variable sampled along the horizontal axis. The precision of the estimated response probabilities will depend on the number of stimuli per sampled value that were presented in the experiment.

If knowing the actual entire shape of the accuracy psychometric function, or even just its slope, might be of interest to assess some mechanisms of perceptual decision making [START_REF] Gold | How mechanisms of perceptual decision-making affect the psychometric function[END_REF], it is most of the time not essential in order to get a useful indication of performance in the task and of sensitivity. In particular, the values of performance when approaching the lower or upper asymptote are not very informative about the listener's sensitivity. In contrast, the steep part of the function is of much interest and the threshold to measure is typically located near the inflection point of the curve. Adaptive procedures were therefore developed to speed up the estimation of the threshold by targeting stimulus strength values that have a high chance to be in the vicinity of this threshold, according to the responses made by the listener in earlier trials [START_REF] Leek | Adaptive procedures in psychophysical research[END_REF]Macmillan and Creelman, 2005, chap. 11;[START_REF] Treutwein | Adaptive psychophysical procedures[END_REF]. These methods will be discussed in more details in a future chapter (see 2.1.1).

To extract features of interest from these sampled, estimated psychometric functions, like the subject's PSE, sensitivity or threshold, some analyses rely on specific assumptions regarding the shape of the function. They assume the mathematical function (𝑓 𝑎𝑐𝑐 or 𝑓 𝑐ℎ𝑜𝑖𝑐𝑒 ) belongs to some parametric family. Fitting such a function to the observed behavior allows to make use of the entire dataset in a more efficient way, increasing the reliability of the probability estimates. Reliable estimation of the many parameters implicit in a psychometric function sampled at discrete values requires large number of trials. A parametric function involves fewer parameters, making it easier to derive a meaningful fit. Several parametric families have been proposed both for the choice and accuracy functions, among which logistic functions, cumulative normal distribution functions, and cumulative Weibull distribution functions [START_REF] Gold | How mechanisms of perceptual decision-making affect the psychometric function[END_REF][START_REF] Klein | Measuring, estimating, and understanding the psychometric function: A commentary[END_REF]Macmillan and Creelman, 2005, chap. 11). Note that despite the theoretical link between the choice and accuracy inversely with the slope of the accuracy function. In both cases, curve fitting methods allow to determine the set of function parameters that leads to the best match to the experimental results [START_REF] Klein | Measuring, estimating, and understanding the psychometric function: A commentary[END_REF][START_REF] Wichmann | The psychometric function: I. Fitting, sampling, and goodness of fit[END_REF]. These optimized parameters may then yield estimates of the corresponding features.

The next section will expose why, in the rest of this dissertation, choice functions will be assumed to belong to the family of cumulative normal distribution functions.

The underlying model will be explained and the form of the theoretically associated accuracy function will be described.

PART I. CHARACTERIZATION OF SENSORY VARIABILITY 1.2 Signal Detection Theory

Modeling of the decision process

Signal Detection Theory (SDT; [START_REF] Green | Signal Detection Theory and Psychophysics[END_REF][START_REF] Macmillan | Detection theory: A user's guide[END_REF] provides a model to account for the variability of subjects' responses to stimuli, interpret them in terms of sensitivity, and predict the shape of the psychometric function. In this model, the responses of a subject are assumed to derive from an internal variable 𝜓 encoding the relevant stimulus attribute 𝑠. This internal variable is affected both by the presented stimulus and by internal factors, so that repetitions of the same stimulus may lead every time to a different value of the internal variable. It is assumed that the value of 𝜓 varies along a one-dimensional axis and results from the summation of a deterministic term given by some transduction function 𝑓 𝑡𝑟𝑎𝑛𝑠 of 𝑠 and some random variable 𝜖 called internal noise:

𝜓 = 𝑓 𝑡𝑟𝑎𝑛𝑠 (𝑠) + 𝜖. (1.6)
The subject is assumed to split the internal representation axis into intervals, each assigned to one of the stimulus categories. If there are two categories A and B for instance, this means the subject compares 𝜓 to some boundary criterion 𝑐 and decides, e.g., that the stimulus belongs to A if 𝜓 > 𝑐 and that it belongs to B if 𝜓 < 𝑐.

If the task is to detect the presence of a target, one category may be "target absent" and the other "target present". Some tasks require to compare two internal representations associated to different stimuli. In the pitch discrimination task for instance, each decision relies on the comparison of the internal representations of two tones' pitches.

The situation is however comparable to the previous if we consider that the relevant internal representation 𝜓 is that of the difference between the stimulus pitches. The noise that disturbs the internal representation of this difference may result from the summation of the noise in their individual representations and, possibly, of processing noise that adds when forming a representation of the distance between the stimuli.

For a fixed stimulus (or stimulus difference), i.e. for a fixed value of 𝑠, the statistics of the subject's choices across trials are determined by the statistical distribution of the internal variable, i.e. by the distribution of the internal noise 𝜖 . The choice probability for each alternative is given by the cumulative probabilities that 𝜓 > 𝑐 and that 𝜓 < 𝑐 , respectively. In the framework of Signal Detection Theory, noise is generally assumed to be normally distributed with mean 0 and some standard deviation 𝜎 in the space of internal representations (Macmillan and Creelman, 2005, chap. 1), that is, 𝜖~𝒩(0, 𝜎 2 ). This means the distribution of 𝜓 is assumed to be a normal distribution centered on 𝑓 𝑡𝑟𝑎𝑛𝑠 (𝑠). Consequently, the probability 𝑃(𝐴|𝑠) that the subject assigns the stimulus with attribute 𝑠 to category A is given by:

𝑃(𝐴|𝑠) = 𝜙 𝜎 (𝑓 𝑡𝑟𝑎𝑛𝑠 (𝑠) -𝑐) (1.7)
where 𝜙 𝜎 is the cumulative distribution function of the normal distribution with mean The psychometric function describes how response statistics vary in more complex situations where 𝑠 varies along a continuum and each category may contain a variety of stimuli. To predict the shape of the psychometric function from the SDT model, one needs to know how the center of the distribution of the internal representation 𝜓 is displaced when the physical attribute of the stimulus is changed. In other words, one needs a model for the transduction process that maps the physical attribute 𝑠 to a location on the axis of the internal representation, or psychological dimension (Macmillan and Creelman, 2005, chap. 11). This process is described by the function 𝑓 𝑡𝑟𝑎𝑛𝑠 . In the simplest case, conversion from the physical to the psychological dimension will be assumed to be linear, in which case the internal variable takes the simple form:

0
𝜓 = 𝑠 + 𝜖. (1.8)
Theoretically, this can always be achieved by appropriately choosing the variable 𝑠 to capture the physical attribute using a psychologically relevant scale. In some cases, this may require to compute 𝑠 as a non-linear transform (e.g. the logarithm) of a more basic dimension, like the frequency ratio in the case of pitch. The choice psychometric function that follows is then given by: 𝑓 𝑐ℎ𝑜𝑖𝑐𝑒 (𝑠) = 𝑃(𝐴|𝑠) = 𝜙 𝜎 (𝑠 -𝑐).

(1.9)

As mentioned earlier, a subject is considered as unbiased if their PSE (criterion 𝑐)

coincides with a point of objective equality. If the objectively correct stimulus category is given by the sign of 𝑠, e.g. the stimulus belongs to A if and only if 𝑠 > 0, then an unbiased subject has a criterion 𝑐 = 0. 

The function 𝜙

Effects of sensitivity and bias on accuracy

Now assuming that the choice function is given by an SDT model where the psychological transduction of 𝑠 is linear and its internal representation 𝜓 is affected by Gaussian noise with standard deviation 𝜎, 𝑓 𝑐ℎ𝑜𝑖𝑐𝑒 is mathematically defined by 𝑓 𝑐ℎ𝑜𝑖𝑐𝑒 (𝑠) = 𝜙 𝜎 (𝑠 -𝑐), with 𝑐 the choice criterion. Incorporating this expression into Eq. (1.5) leads to:

𝑓 𝑎𝑐𝑐 (𝑥) = 1 2 (1 -𝜙 𝜎 (-𝑒 𝑥 -𝑐) + 𝜙 𝜎 (+𝑒 𝑥 -𝑐)).
(1.10)

In sum, the accuracy function is modulated by the two parameters of the SDT model, 𝜎 and 𝑐, characterizing the sensitivity and the bias of the subject, respectively. The respective effects of the two model parameters on the shape of the function's curve can be observed in Figure 1.3. For a fixed and neutral criterion, a change in 𝜎 corresponds more or less to a shift of the psychometric function along the stimulus axis, as can be PART I. CHARACTERIZATION OF SENSORY VARIABILITY seen in panel (A). In contrast, panel (B) reveals that, for a fixed value of 𝜎, a change in the criterion impacts both the position of the curve center and its slope.

In the particular case where the listener is unbiased (𝑐 = 0, case of Figure 1.3, panel (A) and of the left panel of Figure 1.1), the expression is simplified by the antisymmetric property of the cumulative normal distribution function 𝜙 𝜎 (i.e.

𝜙 𝜎 (-𝑠) = 1 -𝜙 𝜎 (𝑠)) and becomes:

𝑓 𝑎𝑐𝑐 (𝑥) = 𝜙 𝜎 (𝑒 𝑥 ).

(1.11)

If the threshold is defined as the value of |𝑠| associated with a probability 𝑝 of giving a correct answer, it is in that case the value 𝜃 such that 𝜙 𝜎 (𝜃) = 𝑝, which is given by

𝜃 = 𝜙 𝜎 -1 (𝑝) = 𝜎 𝜙 1 -1 (𝑝) (1.12)
where 𝜙 𝜎 -1 is the inverse of the function 𝜙 𝜎 . If, for instance, 𝑝 is chosen to be 0.75, then 𝜃 ≈ 0.67𝜎.

In the hypothetic case that sensitivity varies during the course of an experiment, e.g. in relation to brain state fluctuations, the accuracy function and the associated threshold will shift along the stimulus axis, as in Figure 1.3 (A). If correct response probabilities are then estimated from the entire set of trials, the estimated psychometric function will correspond to an average of the "true", moving functions.

The corresponding global threshold will be an average of the "true", varying thresholds and the slope of the globally-estimated function will be shallower than the actual slope of the "true" functions [START_REF] Leek | An interleaved tracking procedure to monitor unstable psychometric functions[END_REF]. In Chapter 2, a method to track such displacements of the psychometric function will be proposed, based on existing adaptive psychophysical procedures. In the previous chapter, a model accounting for the statistics of subject's behavioral responses in psychophysical tasks was explained. The approach adopted in the current chapter aims at detecting potential variations of the model's parameters over time and, more specifically, variations of a listener's sensory sensitivity (𝜎 in the previous model). The underlying motivation comes from the common intuition that sensitivity may change with brain state, and that some of these changes may occur over a timescale that can be quite long compared to the time that typically separates consecutive trials. If we manage to track temporal variations of sensitivity in an experiment, it becomes conceivable and could be informative to relate these variations to features of brain activity that vary over similar time scales.

Effects of sensitivity and criterion in a Signal

An important aspect that will influence the strategy developed in the chapter is that sensitivity is a statistical parameter and, consequently, requires multiple, repeated events for its estimation. As evoked in the previous chapter, sensitivity is inversely proportional to the width of the noise distribution in internal representations and, under certain assumptions (normal distribution, no bias), is inversely proportional to the sensory threshold. An estimate of sensitivity can therefore be derived from an estimate of this threshold but this requires to collect responses over multiple trials to get an estimate of response probabilities for various values of the stimulus strengths.

This necessarily constrains the ability to follow changes of sensitivity occurring within the time necessary for collecting this data.

Over the years, psychophysicists have developed and improved methods to efficiently estimate sensory thresholds using a limited number of trials. Most of these methods rely on adaptive procedures that optimize the values of stimulus strength used in experimental trials so as to collect responses for the values that yield the most information. We propose here to capitalize on these methods and to extend them in such a way as to develop a method for the continuous estimation of time-varying sensitivity. In this chapter, I will expose the general principle of the proposed method to track variations of thresholds over time, as well as a methodology for assessing the results obtained with this method. As a proof of concept for the tracking method, a behavioral experiment will be described first. Then I will describe a systematic simulation effort aiming to find parameters that optimize tracking performance.

Lastly, I will present the results of applying this optimized method in a real experiment where threshold variations could occur spontaneously over several tens of minutes.

The method was specifically developed for the tracking of pitch discrimination thresholds but may well serve to track any type of threshold. In the following pages, for the sake of simplicity, the terms used refer more specifically to discrimination abilities, i.e. an ability to detect a difference or change in a physical attribute of a stimulus (e.g. a difference in intensity, a difference in frequency, etc.) that typically depends on the physical size of this difference. However, most of the reasoning also applies to detection abilities, i.e. an ability to detect the stimulus itself that, typically, depends on some absolute physical attribute(s) of that stimulus (e.g. the absolute intensity of the stimulus).

Proposed method for threshold tracking

The method we propose combines an adaptive psychophysical procedure and a mathematical operation that reconstructs an estimated threshold time-course from the outcome of the experiment. The general principle is quite simple, but there is PART I. CHARACTERIZATION OF SENSORY VARIABILITY considerable flexibility in the method details of both the experimental procedure and the reconstruction method. I will give an overview of the options that exist and motivate some specific choices we make regarding the procedure (subsection 2.1.1) and the reconstruction (subsection 2.1.2). I will also review previous attempts that used similar methods (2.1.3).

Adaptive psychophysical procedures were developed to estimate stationary thresholds with a reduced number of experimental trials. These procedures select the level of the stimulus strength to present to the listener in a new trial based on the preceding level(s) and the accuracy of the response(s) that the listener gave in the previous trial(s). The selection rule is built in such a way that, after some convergence phase, the level of the stimulus strength is always near the targeted threshold. If an adaptive procedure is run during a prolonged time and variations of thresholds occur over that time, the procedure should adapt to these changes, which should be visible as a statistical change in selected stimulus strengths. For simplification, and to match a denomination commonly used in the literature of adaptive procedures, I'll now use the shortcut term "stimulus level" to refer to the stimulus variable 𝑥 that is manipulated by the adaptive procedure. In many cases, this corresponds to the logarithm of the variable regarded as stimulus strength. In frequency discrimination tasks, this is usually log(|Δ𝑓/𝑓|).

The situation we will be facing can be sketched as the diagram in Figure 2.1: the level (𝑥) of the stimulus that the experimental procedure (P) presents to the listener (L) depends on the responses ( 𝑦 ) made by the listener to previous stimuli. The combination of the listener and the procedure therefore constitutes a discrete-time closed-loop system (S). An unknown determinant of this system's behavior (or input to this system) is the threshold (𝜃) of the listener. We wish to reconstruct the temporal variations of the threshold from the observation of the time series of stimulus levels (𝑥) outputted by the system. For instance, a series of threshold estimates (𝜃 ̂) can be obtained by computing some mathematical transformation of the time series of 𝑥.

Schematic of threshold tracking. The diagram illustrates the links between time-varying thresholds (θ ) of a listener (L), the time series of stimulus levels (x ) produced by an adaptive experimental procedure (P), the time-series of responses (y ) produced by the listener, and the reconstructed time series of threshold estimates 𝜽 ̂ obtained by some mathematical transformation (T) of the stimulus levels.

The elements that are typically under the control of the experimenter are the procedure P and the transformation T. The former has to be set prior to data collection (collection of stimulus levels and listener's responses) whereas the latter can be designed, and maybe optimized, after data collection. The procedure choice may modulate the relation between threshold variations and the resulting time series of stimulus levels, as well as the capacity to recover the former from the latter. The tracking method could therefore benefit from a careful selection of procedural parameters. Before looking into how to design a mathematical transformation that can reconstruct the time-course of threshold variations as faithfully as possible from the time series of stimulus levels, I will thus briefly run through the options that are available when implementing an adaptive procedure.

Experimental procedure

Any adaptive procedure is associated with some function 𝒜 that returns a chosen value 𝑥 𝑛+1 to use for the stimulus level in trial 𝑛 + 1 given the stimulus level-response pairs {(𝑥 𝑘 , 𝑦 𝑘 ) , 𝑘 ∈ {1, … , 𝑛}} that occurred in earlier trials [START_REF] Treutwein | Adaptive psychophysical procedures[END_REF]:

𝑥 𝑛+1 = 𝒜({(𝑥 𝑘 , 𝑦 𝑘 ) , 𝑘 ∈ {1, … , 𝑛}}).
(2.1)

This function can range from an easy-to-implement explicit mathematical operation, like a fixed increment or decrement, to computationally more expensive, sophisticated In general, the probability that the level increases will be higher after an incorrect response, and the probability that it decreases will be higher after a correct response.

However, the way the amount of increase or decrease, called the step size, is determined, differs across procedures. For instance, in the general case of what I will refer to as staircase procedures, also called up-down methods, the step size is a predetermined, fixed parameter, although it can differ between upward (level increase)

and downward (level decrease) steps. In other procedures, like Robbins and Monro's stochastic approximation method [START_REF] Robbins | A Stochastic Approximation Method[END_REF]) and Kesten's accelerated stochastic approximation method [START_REF] Kesten | Accelerated Stochastic Approximation[END_REF], the size of the steps will decrease over the course of the procedure. In procedures like the Parameter Estimation by Sequential Testing (PEST) method proposed by [START_REF] Taylor | PEST: Efficient Estimates on Probability Functions[END_REF] and some of its derivations (e.g. in [START_REF] Kaplan | The five distractors experiment: exploring the critical band with contaminated white noise[END_REF], the size of the steps may increase or decrease, depending on the history of step directions. Finally, in a specific category of procedures called Bayesian methods (including maximum-likelihood methods), step size changes do not follow any explicit rule. Rather, each new stimulus level is chosen as the current best estimate of the target threshold based on preceding stimulus-response pairs. Procedures of this type are called parametric methods because they require strong assumptions about the shape of the psychometric function [START_REF] Treutwein | Adaptive psychophysical procedures[END_REF].

These methods, in theory, or according to heuristics, lead to series of stimulus levels that converge towards the targeted threshold. However, they all rely more or less on a stationarity assumption and some of them can become quite inappropriate for tracking varying thresholds. Staircase procedures are the least impacted because their adaptive rule relies on the accuracy of a fixed number of trials rather than on an ongoing quantitative estimate of the threshold position, like in the other methods.

They provide additional advantages: they are the simplest to implement and they require only few hypotheses regarding the shape of the psychometric function, especially in contrast to parametric methods. In fact, the only assumption made by staircase procedures is monotonicity, i.e. that performance increases as the stimulus level increases. For these various reasons, we turn towards staircase procedures for tracking time-varying thresholds in this thesis.

Staircase procedures come in various versions. The first and simplest version is the simple up-down staircase, where stimulus level is systematically increased after an incorrect response and systematically decreased after a correct response, upward and downward steps being of equal sizes. The usefulness of this version is very limited, given that it can only target a threshold corresponding to a performance of 50%correct, and being so often wrong can besides discourage the subjects if there they get feedback. In tasks where chance level is at, or slightly below 50% (like e.g. 2-AFC tasks), one may want to define threshold as corresponding to a higher accuracy level.

The transformed up-down staircases introduced by [START_REF] Levitt | Transformed Up-Down Methods in Psychoacoustics[END_REF] provide a bit more flexibility. The transformation consists in changing stimulus levels only after sequences of trials that follow specific patterns, instead of changing stimulus levels systematically after any response. For instance, in the commonly used 2-down, 1-up transformed staircase, the level is systematically increased after an incorrect response, but it is not decreased unless two consecutive correct responses are given; if a single correct response occurs after an incorrect response, the level used for the next stimulus will be unchanged. This particular rule will result in stimulus levels converging to a 70.7%-correct performance threshold. By changing the number of consecutive correct responses required for decreasing the stimulus level, or the number of consecutive incorrect responses required for increasing it, different thresholds can be targeted. However, only a small number of target values are conceivable with reasonably simple rules, and the more complex the rule is, the more trials will be necessary to reach the threshold, and the less efficient the procedure will be. In comparison, the weighted up-down methods by [START_REF] Kaernbach | Simple adaptive testing with the weighted up-down method[END_REF] offers further flexibility for the target threshold, since the corresponding performance can be any between 0%-and 100%-correct. It also converges faster, since the stimulus level is systematically changed on every trial. The particularity of these staircases in that the step sizes differ for upward and downward steps. To target a performance level where the probability of success is 𝑝, the ratio of downward step size to upward step size should be 𝑝/(1 -𝑝). In other words, downward steps are weighted by (1 -𝑝) while upward steps are weighted by 𝑝, hence the name of weighted up-down staircases. In the case where the targeted threshold corresponds to 𝑝 = 0.75 for instance, upward steps will be 3 times larger than downward steps. These procedures' operating can be recapitulated by the following rule: after trial 𝑛, the level 𝑥 𝑛+1 for the next stimulus is chosen in such a way that equation (2.1) takes the form:

𝑥 𝑛+1 = 𝑥 𝑛 -𝑦 𝑛 (1 -𝑝) 𝑆 + (1 -𝑦 𝑛 ) 𝑝 𝑆 (2.2)
where 𝑆 is a reference step size for the stimulus level and 𝑦 𝑛 is a binary variable encoding the accuracy of the response in trial 𝑛 so that 𝑦 𝑛 = 1 if the response is correct and 𝑦 𝑛 = 0 if it is incorrect. It should be noted that when the variable 𝑥 is defined as the logarithm of some other physical variable, e.g. |Δ𝑓/𝑓| in the case of frequency discrimination, adding or subtracting a fixed quantity to 𝑥 amounts to multiplying or dividing this other variable by a fixed factor.

The stimulus level series that results from an adaptive rule such as Eq. ( 2.2), or from any other adaptive rule (Eq. (2.1)), is often called a track. Most rules will result in a large serial dependency within in a track, i.e. dependency between stimulus levels in consecutive trials. To avoid confusions, this sort of dependency, which is due to the behavior of the experimental procedure itself, should not be confused with the serial dependencies of responses, like those that will be studied in Chapter 3, which are due to history-dependent biases in the behavior of the listener. Serial dependencies in stimulus levels can bring about several inconveniences. In attempts to measure the slope of the psychometric function from adaptive procedures' data, serial dependencies lead to an estimation bias that results in overestimated slopes [START_REF] Kaernbach | Slope bias of psychometric functions derived from adaptive data[END_REF]. If noticed by the listener, they can generate expectations that bias perception. Such effects may be reduced by interleaving several, independent adaptive tracks within the same procedure. For instance, an experimenter may interleave a number 𝑁 𝑡𝑟𝑎𝑐𝑘𝑠 ≥ 2 of alternating tracks, each using the weighted up-down rule described above (Eq. (2.2)) , which amounts to replacing 𝑥 𝑛+1 by 𝑥 𝑛+𝑁 𝑡𝑟𝑎𝑐𝑘𝑠 in the left term of the previous equation. This will remove any dependency between 𝑥 𝑛 , 𝑥 𝑛+1 , …

, 𝑥 𝑁 𝑡𝑟𝑎𝑐𝑘𝑠 -1 that could have been induced by the adaptive rule in a single-track procedure. The dependency will remain between 𝑥 𝑛 and 𝑥 𝑛+𝑁 𝑡𝑟𝑎𝑐𝑘𝑠 , but since trials 𝑛 and 𝑛 + 𝑁 𝑡𝑟𝑎𝑐𝑘𝑠 do not follow each other, the likelihood that the subject's decision is affected by knowledge of that dependency is reduced. Such track interleaving may also prove helpful in revealing temporal features of the listener's behavior (like serial response dependencies, as will be discussed in Chapter 3) and turn out to be useful for our aim of tracking varying threshold. In a study assessing the stability of psychometric functions over time, [START_REF] Leek | An interleaved tracking procedure to monitor unstable psychometric functions[END_REF] Another advantage of the interleaved tracks, not explicitly stated by the authors, is that they reduce the variance of locally-estimated thresholds, as will be explained in the following sub-section about threshold variation reconstruction (2.1.2). This advantage however comes with the disadvantage that multiple-track procedure will react with a supplementary delay to threshold changes, as a change in threshold at trial 𝑛 will impact the response in that trial and the following ones, but will only impact stimulus level at trial 𝑛 + 𝑁 𝑡𝑟𝑎𝑐𝑘𝑠 and later.

En respect du droit d'auteur et de la propriété intellectuelle, cette figure a été retiré de cette version

Example of a staircase procedure with 2 interleaved tracks. The procedure starts with a single track, divided into two alternating, independent tracks with the same adaptive rule after 20 trials. Stimulus levels of consecutive stimuli from the same track, i.e. of every other 2 stimuli, are separated by a fixed upward or downward step, the direction of the step being determined by the response on the previous trial within the same track. Figure reproduced from [START_REF] Leek | An interleaved tracking procedure to monitor unstable psychometric functions[END_REF].

All adaptive rules are conceived in such a way that stimulus levels are, on average, attracted towards the true threshold so that, after a number of transient trials, they tend to remain in the vicinity of the threshold and an equilibrium state may be reached, as long as the threshold itself remains stable. When they are used for measuring stationary thresholds, another flexible feature of adaptive procedures is the stopping rule, i.e., the criterion for deciding when to stop the procedure, which, depending on the experimenter's choice, can take various forms, like reaching a predetermined number of trials, a predetermined number of step direction reversals, a minimum step size, or some predetermined level of confidence in the estimate of the threshold. The duration of the procedure will correspond to a compromise between estimation accuracy and time cost. For a given targeted level of estimation confidence, the same stopping rule may lead to a smaller number of trials if the procedure is more efficient than another. In our process of applying adaptive methods to the tracking of time-varying thresholds, this efficiency criterion will remain very important, even though the question of a stopping rule itself will not apply. On the contrary, one may want to prolong the procedure to an arbitrary, substantial duration in order to observe the variations of a threshold that may occur on a corresponding time-scale. In the same vein, the choice of a stimulus level for initializing the procedure is not crucial and should not affect the tracking performance of the method on the long term, since it is reasonable to assume that in all procedures stimulus levels reach the neighborhood of the targeted threshold after some shorter or longer time.

Reconstruction of the threshold time-course

Once an adaptive procedure has been run, we would like to retrieve the time-course of the threshold that occurred during the experiment from the information contained in the series of stimulus levels {𝑥 𝑛 , 𝑛 ∈ {1, … , 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 }} that were produced. Putting aside the fact that we would like to estimate multiple values at different points in time, the situation is analogous to the problem that arises when trying to estimate a unique threshold from data collected with adaptive procedures. To this end, various estimation methods have been used and reviewed [START_REF] Leek | Adaptive procedures in psychophysical research[END_REF]Macmillan and Creelman, 2004, chap. 11;[START_REF] Treutwein | Adaptive psychophysical procedures[END_REF]. Depending on the chosen method, the threshold can be estimated either as being the last stimulus level used in the procedure, the average of all stimulus levels produced (generally excluding initial trials), the average of stimulus levels at those trials where a step direction reversal occurred, or the value obtained from a model-fitting method that minimizes some cost function calculated from the entire set of trials (e.g. minimizing least squares or maximizing likelihood).

It is possible to imagine an extension of any of the existing methods for computing time-dependent threshold estimates. A simple method that would be one possible equivalent of averaging all stimulus levels would be to compute a local, moving average, i.e. a local arithmetical mean of consecutive stimulus levels contained in a sliding time-window. A parameter of such an estimator is the size of the sliding window, i.e. the number 𝑁 𝑤 of trials in that window. If the estimator uses a window containing 𝑁 𝑤 trials, then the local estimate of the threshold is given by:

𝜃 𝑛 ̂= 1 𝑁 𝑤 ∑ 𝑥 𝑘 𝑛+𝑁 𝑤 𝑘=𝑛+1 . (2.
3)

It is possible to conceive other forms of local averages. Within the estimation window, some stimulus levels, might be more informative about the true threshold at trial 𝑛 than others. The threshold estimation could therefore be improved by computing a weighted mean such as:

𝜃 𝑛 ̂= ∑ 𝑤 𝑘 𝑥 𝑘 𝑛+𝑁 𝑤 𝑘=𝑛+1 (2.4)
where the weight 𝑤 𝑘 assigned to the stimulus level depends on the position 𝑘 of the trial within the window. These weights constitute additional parameters of the estimator. The arithmetic mean mentioned above is just a special case of the latter where 𝑤 𝑘 = 1/𝑁 𝑤 for all 𝑘. Weighted means are linear transformations of the series {𝑥 𝑛 , 𝑛 ∈ {1, … , 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 }} and may be optimized with standard linear techniques, as will be shown later in this chapter (see section 2.4).

Because they combine the outcome of multiple trials, local arithmetic or weighted means are expected to yield estimates that are less variable and therefore possibly more accurate in comparison to single stimulus level values, at least if the true threshold is relatively stable over a few consecutive trials. However, this variance reduction is limited by the serial dependency that exists between nearby trials from the same adaptive track. The more trials in the estimation window belong to independent tracks, the more the variance of the weighted mean will be reduced (see a qualitative explanation in Appendix B). Even though the variance is not the only aspect that determines the quality of an estimator, this speaks in favor of interleaving multiple tracks in the experimental procedure.

In theory, methods estimating thresholds by fitting a psychometric function model could also be extended to produce series of local estimates. Each of these methods relies on a chosen model for the psychometric function of which the threshold is one of possibly multiple parameters. The threshold is estimated by finding the parameter(s) of the psychometric function that minimize(s) some cost function that jointly depends on this (these) parameter(s) and the actual data. Such a fit requires to take into account the responses of the listener. This would be achieved by feeding these responses as an additional input into the transformation T in Figure 2.1. This is in fact not necessary because the information about the accuracy of the listener's responses is implicitly contained in the stimulus level series (e.g. it is given by the direction of stimulus level changes within a staircase track). The simplest way to estimate timevarying thresholds using function fitting would probably be to compute 𝜃 𝑛 ̂ by fitting the psychometric function to a subset of data contained in a local window of size 𝑁 𝑤 , assuming the function's parameters, are constant over that window. Again, some fitting methods may allow to assign more weight in the fitting process to some trials compared to others, as a function of their position within the window. More sophisticated techniques could be conceived using models that intrinsically assume time-varying thresholds. Each instant value of the threshold would constitute one parameter of the model. The whole set of parameters could be optimized, e.g. to maximize the likelihood of the obtained stimulus level series given the successive thresholds. The solution would then correspond to the time-series of thresholds that best explains the series of stimulus levels. Such an estimation process may however be impracticable because of the very large number of parameters to estimate (equal to the number of trials, or more if the psychometric function has several parameters). It is in addition computationally expensive to compute (and thus to maximize) the likelihood of a time-series of stimulus levels because the number of possible sequences is very large when the sequence order is taken into account.

Whether the estimate be obtained from an explicit transformation like Eq. ( 2.4) or from model fitting, the considerations to take into account for choosing the size of the estimation window are similar. On the one hand, a window containing a large number of trials will be advantageous with respect to the variance of the estimates. On the other hand, a window that stretches over a long duration will blur threshold variations that occur on a smaller time-scale. One of the question that needs to be addressed is whether there is an optimal window size for balancing these two effects, and how this optimum depends on the characteristics of the true threshold variations.

Previous attempts

So far, to our knowledge, very few studies have tested the capacity of psychophysical procedures to accurately track changes in perceptual thresholds. Yet, this possibility was suggested quite early in the history of adaptive procedures. In his introduction of the transformed up-down methods, [START_REF] Levitt | Transformed Up-Down Methods in Psychoacoustics[END_REF] mentioned tracking of gradual drifts of a psychometric function's parameters as a useful application of these procedures, although he did not present any rigorous assessment of the actual tracking capacity. Others suggested methods to detect the presence of threshold instability, not exactly providing an estimate of the threshold time-course [START_REF] Hall | A procedure for detecting variability of psychophysical thresholds[END_REF][START_REF] Leek | An interleaved tracking procedure to monitor unstable psychometric functions[END_REF].

Probably one of the first threshold tracking attempt that used the method presented here was undertaken by [START_REF] Leek | Learning to detect auditory pattern components[END_REF]. In their study, the experimenters sustained a transformed up-down staircase over thousands of trials to assess learning during a 2-AFC tone sequence discrimination task and identified distinct learning styles. Their conclusions are mainly based on a visual inspection of the time courses of stimulus levels averaged in a 5-trial sliding window, a choice PART I. CHARACTERIZATION OF SENSORY VARIABILITY window size that appears arbitrary, no supportive analysis of window size effect on the results being presented.

Recent studies by [START_REF] Doll | Tracking of nociceptive thresholds using adaptive psychophysical methods[END_REF][START_REF] Doll | Observation of time-dependent psychophysical functions and accounting for threshold drifts[END_REF] have the merit of resorting to Monte Carlo simulations to assess and compare several threshold tracking methods. In a first publication [START_REF] Doll | Tracking of nociceptive thresholds using adaptive psychophysical methods[END_REF], they introduced a new adaptive procedure originally referred to as a "random staircase", later renamed as "adaptive probing" procedure.

In this procedure, stimulus levels are randomly selected from a small set of possible levels, the whole set of levels being increased or decreased by a fixed step on each new trial, depending on the previous response. The motivation for this procedure was to preserve the efficiency of adaptive testing while limiting the predictability of upcoming stimulus levels from the point of view of the subject. This randomization process has as an effect to reduce the serial dependency of stimulus levels in consecutive trials, quite similar to the effect of interleaving independent adaptive tracks in a purely deterministic adaptive procedure. The proposed procedure was compared to a simple up-down adaptive procedure, as well as to a minimum entropy adaptive procedure, each combined with several estimation methods, for their ability to track a 50% detection threshold. In the second publication [START_REF] Doll | Observation of time-dependent psychophysical functions and accounting for threshold drifts[END_REF], three methods for estimating the threshold and the slope of a psychometric function from simulated data obtained with the adaptive probing procedure were compared. The three methods rely on least-squares fits of generalized linear models with a logit link function that incorporate different assumptions regarding the variations of the threshold. In the first method, the threshold is assumed to be constant; in the second and third methods, it is assumed to vary linearly as a function of time; the last two methods differ in that the model is fit to the entire series of trials in the case of the second method, whereas it is locally fit to a subset of 25 trials contained in a sliding window centered on the time of the estimated function.

These two studies come closest to solving the problem of how to track a timevarying threshold, but they have a number of limitations (that we try to overcome in our study). First, they tested only a limited number of method parameter combinations in a limited number of situations with only monotonically varying thresholds, namely a fixed threshold step in the first publication, a fixed linear threshold ramp and two exponentially relaxing thresholds in the second. Second, results are presented separately in terms of estimation bias and estimation precision, lacking a comprehensive measure that incorporates both aspects so as to guide method selection. Lastly, these studies are weakened by certain methodological choices, such as the selection of tested methods based on results obtained for invariant thresholds, the use of the adaptive probing procedure in the second study although the first failed to demonstrated any advantage of this procedure over the simple updown procedure, or the removal from the analysis of extreme estimates, judged "unrealistic", the number of which is not reported. They are also weakened by a sometimes inconsistent description of the results.

Summary

The method we propose for tracking potential variations of a listener's threshold over the course of an experiment entails two independent components. The first component is an adaptive procedure that selects stimulus levels during the experiment so that they will constantly remain near the threshold, even if it varies over time. We choose to use a weighted up-down staircase method that has the advantages of having a fairly simple implementation, of allowing to target thresholds associated with any level of performance, of updating stimulus levels on every trial (preserving efficient convergence), of making few assumptions regarding the psychometric function, and of requiring few parametrical choices. Several parameters must still be decided by the experimenter, including the performance level associated with the targeted threshold (𝑝 in Eq. (2.2)), the baseline size of the steps (𝑆 in Eq. (2.2)), and the number of independent adaptive tracks to interleave in the procedure.

The second component is an estimation process that will return a time series of local threshold estimates based on the times series of stimulus levels (and, possibly, on the information that it contains about the listener's responses) once they have been generated by the experimental procedure. Interesting candidate estimates are local averages of stimulus levels that can be either a simple arithmetic mean or a more flexible linear transform with more parameters, and model parameters obtained from fitting a model psychometric function onto local sets of trials. The number of local trials to include in the estimation process is a free parameter of these various estimators.

The reconstructed threshold estimates are expected to depend both on the procedure and its parameters, mainly the baseline step size and the number of tracks, and on the threshold estimation method and its parameters, in particular window size.

Using multiple independent tracks and a small step size in the procedure, as well as a large estimation window is expected to yield stable estimates with low variance; in return, the procedure will be sluggish to react to rapid threshold changes, and the large estimation window will attenuate them. In brief, a change of any of the parameters is expected to have opposite effects on the temporal resolution and on the reliability of the final estimate. In the rest of this chapter, I will try to address what is an optimal tradeoff between these two effects. But before we undertake to compare the behavior of the method under different sets of parameters, we need a way of quantifying its capacity to recover the true threshold variations and how it changes with method parameters. In this purpose, the following section will define estimator performance metrics inspired from estimation theory.

Assessment of tracking performance

To assess the performance of a threshold tracking method, we need to know the time course of the real threshold (ground truth). This is possible if the procedure is simulated, and can be approximated in a behavioral experiment by manipulating the sensitivity of the listener. In that case, we can compare an estimated, sampled threshold time-course {𝜃 𝑛 ̂: 𝑛 ∈ {1, … , 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 }} obtained with our tracking method to the true threshold variations {𝜃 𝑛 : 𝑛 ∈ {1, … , 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 }}. The estimated threshold time series will necessarily differ from the ideal and would differ between repetitions of the experiment, even if the underlying true threshold time-course was exactly the same, because of response stochasticity near threshold. In other words, even if {𝜃 𝑛 : 𝑛 ∈ {1, … , 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 }} is fixed, 𝜃 𝑛 ̂ is a random variable. The estimated time-course will also differ based on characteristics of the procedure and tracking methods. It is the suitability of these parameters that we aim to assess.

The resemblance of the estimated and the true time-courses provides an index of tracking performance that can be compared across different tracking methods. An intuitive way to quantify the success of the method is to look at the errors (𝜃 𝑛 ̂-𝜃 𝑛 ) of the local estimates. However, a good performance index needs to take into account the variability of the outcomes over repeated experiments. A useful statistic is the Mean Squared Error (MSE), which is the mean of (𝜃 𝑛 ̂-𝜃 𝑛 ) 2 . The term mean here refers to the mathematical expectation, i.e. the long-run average over an infinite number of repeated experiments with the same pattern of underlying threshold variations

{𝜃 𝑛 : 𝑛 ∈ {1, … , 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 }}.
In principle, it is possible to define an MSE specifically for each trial 𝑛:

(MSE) 𝑛 = 𝔼 ((𝜃 𝑛 ̂-𝜃 𝑛 ) 2 ). (2.5)
However, if all trials are equally important in the experiment, it makes sense to compute a summary metric like the average of the MSE over the entire experiment:

MSE = 1 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 ∑ (MSE) 𝑛 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 𝑛=1 (2.6)
The MSE can be broken down into two different components: it is the sum of the variance and of the squared bias of the estimate:

MSE = 𝑉𝑎𝑟(𝜃 ̂) + 𝐵𝑖𝑎𝑠(𝜃 ̂, 𝜃) 2 .
(2.7)

Just as well as the MSE, the squared bias and the variance can be defined trialspecifically and their averages over trials used as summary metrics. The bias of the estimate in trial 𝑛 is the expected value of the error, i.e. :

𝐵𝑖𝑎𝑠(𝜃 𝑛 ̂, 𝜃 𝑛 ) = 𝔼(𝜃 𝑛 ̂-𝜃 𝑛 ) = 𝔼(𝜃 𝑛 ̂) -𝜃 𝑛 .
(2.8)

The variance characterizes the deviations of the estimate from its expected value:

𝑉𝑎𝑟(𝜃 ̂𝑛) = 𝔼 ((𝜃 𝑛 ̂-𝛦(𝜃 ̂𝑛)) 2
).

(2.9)

PART I. CHARACTERIZATION OF SENSORY VARIABILITY

To better grasp the meanings of the bias and the variance and their respective impact on the estimation performance, it is useful to consider the analogy of shooting arrows at a target, as illustrated in Figure 2.3. An estimator with a high bias is analogous to a shooter whose arrows spread around a central location that is away from the actual target center. An estimator with a large variance is analogous to a shooter whose throws may be very different between multiple attempts, resulting in arrows that are spread out over a large surface. Best shooters are those with a low variance and a low bias, but a shooter with low variance and high bias may on average perform as well as a shooter with high variance and low bias.

In the rest of this chapter, for simplification, I may refer indifferently to the MSE or to their estimates computed from experimental data (real or simulated). Idem for the bias and the variance.

Illustration of the bias and the variance of an estimator.

In each quarter, the center of the target represents the true threshold θn at trial n. Variations of the threshold over trials can be seen as a shift of the target in space when n increases. The four panels represent plausible outcomes for four tracking methods with different bias and variance. Within each method, the experiment can be repeated multiple time, each time resulting in one estimate 𝜽 𝒏 ̂ pictured as a dot on the target. The error of the estimate is given by the distance of the dot from the center. A method associated with a low-variance estimator (left column) will result in all dots being clustered in a narrow region of the target, while a method associated with a high-variance estimator (right column) will result in dots that are distributed on a much wider surface. The center of the distribution is close to the target center in case of a low-bias estimator (upper row); it is further away from the center in case of a high-bias estimator.

To be computed, the performance metrics presented in this section all imply to know what the true values of the threshold is in all trials. It is in practice difficult to assess performance of tracking methods using data from real experiment, because we do not have access to the time course of the listener's real threshold in those experiments. To overcome this obstacle, we will resort to two approaches. In the first, we will attempt to induce specific variations of real listeners' thresholds using an experimental manipulation. This will allow me to present a proof of concept for the proposed tracking method. In a second step, we will use data produced by simulated experiments where the threshold variations of the virtual listener are perfectly known and controlled to study more thoroughly the effects of the parameters of the tracking procedure on tracking performance, so as to formulate recommendations regarding parameter choice.

Proof of concept: psychophysical experiment

I will present here an experiment in which we assessed the capacity of our method to track changes of discrimination thresholds in the previously introduced sequential pitch change direction identification task (see the introduction of Part I). The strategy consisted in inducing predictable threshold changes by varying the duration of the tones. It is expected that shorter tones will be associated with higher thresholds [START_REF] Moore | Frequency difference limens for short-duration tones[END_REF].

I will compare results obtained with a single-track procedure to others obtained with a procedure that entailed 4 independent tracks. The results illustrate clearly that interleaving independent tracks decreases estimate variance, at least when using short time-windows.

Methods

Participants

25 subjects aged between 19 and 30 participated in the study. None of them reported any history of hearing impairment. 4 subjects were dismissed after task training because they didn't reach the minimally pre-required discrimination threshold of 1 semi-tone, leaving 21 subjects included in the analyses below.

Stimuli and task

Participants sat in a double-shielded experimental booth. Stimuli were generated by MATLAB ® (version 2012a). Instructions were displayed on a computer screen visible from the inside of the booth through a window and audio stimuli were presented through Sennheiser ® HD 600 headphones (no EEG was recorded during this experiment).

Audio stimuli were pure tones starting at a frequency of 250 Hz. This starting frequency was chosen based on previous literature to maximize the effects of tone duration on pitch discrimination performance [START_REF] Moore | Frequency difference limens for short-duration tones[END_REF] . Frequency varied from one tone to the next with random direction and a frequency step size determined according to the ongoing procedure. The direction of the frequency change was swapped on certain trials to prevent the frequency from decreasing lower than 166 Hz or increasing higher than 375 Hz. After each tone, the participant was requested to indicate the direction of pitch change by pressing one of two keys. The key press triggered the display of a feedback message and the onset of the next trial. The delay between the key press and the offset of the next tone was 820 ms in all trials (the delay between key press and tone onset differed based on the tone's duration). Each block comprised 500 trials, which lasted between 10 and 16 minutes according to the participant's response speed.

In order to induce shifts of the accuracy psychometric function along the horizontal axis, tone duration was switched 5 times between 320 ms (long duration) and 40 ms (short duration) over the course of a block. The series of tone durations started at 320 ms and was the same in all blocks and for all participants. Between changes, the duration was kept constant for 92 consecutive trials. To reduce surprise at the times of duration changes, duration was varied progressively over 9 trials. All tones had 10ms cosine onset-and offset-ramps.

The adaptive procedures were weighted-up down procedures targeting 75% correct performance involving the logarithm of the relative frequency difference (𝑓 𝑛 -𝑓 𝑛-1 )/ 𝑓 𝑛-1 between consecutive tones. The relative frequency difference was doubled after incorrect responses and divided by √2 

Analyses

Prior estimation of duration-specific thresholds

Psychometric functions were estimated by adjusting two parameters, 𝜆 and 𝑥 0 , in the equation relating the probability 𝑃 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 of a correct response to the absolute value of the relative frequency difference 𝑥 = log|Δ𝑓/𝑓| separating two consecutive tones, assumed to be of the form:

𝑃 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 (𝑥) = 0.5 + 0.5 1 + 𝑒 -𝜆(𝑥-𝑥 0 ) .
(2.10)

The threshold corresponding to 𝑃 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 0.75 was then given by 𝑥 0 . The parameter 𝜆 modulates the slope of the psychometric function.

In order to check for effects of tone duration, block order and block type on discrimination thresholds and psychometric curve slope parameter, separate psychometric functions were initially fit independently for short-and long-duration 54 PART I. CHARACTERIZATION OF SENSORY VARIABILITY tone trials, for each subject, in each of the two blocks, using a least-squares optimization method. Main effects of subject, tone duration, block order and block type on thresholds and on function slopes were tested using a 4-way analysis of variance.

Finally, as no effect of block type and only a relatively small effect of block order on thresholds were found, and as no effects of any factor on slope parameter were found, data from the two main blocks were merged together and final, subject-specific thresholds 𝜃 𝑠 and 𝜃 𝑙 were determined for short-and long-duration tones respectively, by fitting two psychometric functions with a constraint of equal slope parameter. The effect of tone duration on thresholds was finally assessed by a unilateral, pairedsample Student test on the latter estimates. Group-means of 𝜃 𝑠 and 𝜃 𝑙 were computed and will be denoted as of now by Θ 𝑠 and Θ 𝑙 , respectively.

Computation of continuous threshold estimates and of estimation error

Pitch discrimination thresholds are very variable across individuals. To obtain time-courses that are comparable across subjects and compute group-level statistics, the time series {𝑥 𝑛,𝑠 , 𝑛 ∈ {1, … ,500}} of relative frequency differences obtained for each subject 𝑠 was centered so that the value corresponding to the average of 𝜃 𝑠 and 𝜃 𝑙 was at the same level for all subject, equal to the average of the two group-means Θ 𝑠 and Θ 𝑙 . We did not align duration-specific individual thresholds as this would imply to modify the scale of the threshold axis differently for each subject and would yield an incorrect estimation of the variance of the threshold estimates. For each experimental block, multiple time-series {𝜃 𝑛,𝑠 ̂, 𝑛 ∈ {1, … ,500}} of threshold estimates were computed from the centered time-series {𝑥 𝑛,𝑠 , 𝑛 ∈ {1, … ,500}} according to Eq. ( 2.3), each corresponding to a given size 𝑁 𝑤 for the estimation window, varied between 1 trial and 100 trials (the half period of the tone duration square wave pattern). The true threshold time course was assumed to alternate between Θ 𝑠 and Θ 𝑙 , with the square wave pattern dictated by the series of the tone durations. The error at trial 𝑛 was computed accordingly as 𝜃 𝑛,𝑠 ̂-𝜃 𝑛 with 𝜃 𝑛 = Θ 𝑠 or 𝜃 𝑛 = Θ 𝑙 , depending on the duration of the tone in that trial. The reason we chose to assume subject-independent rather than subject-specific true thresholds is to be able to estimate biases of the estimates through group statistics. The bias for trial 𝑛 was computed by averaging the error over all participants (𝑁 𝑠𝑢𝑏𝑗 = 21):

𝐵𝑖𝑎𝑠 𝑛 = 1 𝑁 𝑠𝑢𝑏𝑗 ∑ (𝜃 ̂𝑛,𝑠 -𝜃 𝑛 ) 𝑁 𝑠𝑢𝑏𝑗 𝑠=1
(2.11)

The variance for that trial was computed as:

𝑉𝑎𝑟(𝜃 ̂𝑛) = 1 𝑁 𝑠𝑢𝑏𝑗 ∑ (𝜃 ̂𝑛,𝑠 - 1 𝑁 𝑠𝑢𝑏𝑗 ∑ 𝜃 ̂𝑛,𝑠 𝑁 𝑠𝑢𝑏𝑗 𝑠=1 ) 2 𝑁 𝑠𝑢𝑏𝑗 𝑠=1
(2.12) and the MSE for that trial was computed by averaging the squared error over participants:

(MSE) 𝑛 = 1 𝑁 𝑠𝑢𝑏𝑗 ∑ (𝜃 ̂𝑛,𝑠 -𝜃 𝑛 ) 2 𝑁 𝑠𝑢𝑏𝑗 𝑠=1 (2.13) 
A global MSE was computed by averaging the trial-specific MSEs over the entire block (𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 = 500):

MSE = 1 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 ∑ (MSE) 𝑛 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 𝑁=1 (2.14)
Global estimates of the variance and of the squared bias of the estimates were also computed, similarly.

Note that this entire succession of steps was followed independently for the singletrack procedure and for the 4-track procedure.

Results

Estimated thresholds for short-duration tones were significantly higher than those for long-duration tones (unilateral, paired-sample Student test, p<10 -10 , n=21). The effect of tone duration of thresholds was strikingly consistent across subjects, although within-condition, inter-individual threshold variability was, quite typically, very large, as can be seen in Figure 2.4. On average, thresholds for short-duration tones were 1.9 times higher than those for long-duration tones.

Effect of tone duration on frequency discrimination thresholds. Each of the thin lines corresponds to one subject, the thick line represents group-means. Individual thresholds were computed using trials merged from the two blocks and separated according to tone duration.

Individual threshold estimate time courses can be seen in Figure 2.5 for three different sizes of the estimation window: 𝑁 𝑤 = 1 , 16 or 100 trials. Corresponding results for the two procedures are plotted on the same row. Average time courses over participants, depicted as thick lines, follow quite faithfully the true (or expected) time course, represented by a black line. It can be observed that the across-subject variance of the estimates is similar across procedures in the case of the 1-trial window (first row). Variance reduces when the size of the window is increased (lower rows) and the rate of reduction is greater when 4 independent tracks were interleaved in the procedure (right column) than when only one track was used (left column). Another consequence of increasing the size of the estimation window is the flattening of time courses, which is particularly visible in the group-average time-courses. Another observation is that threshold estimates obtained with the 4-track procedure are slower to converge towards the true value of the threshold after a change of the tone duration. This is not surprising since stimulus levels are updated after a 4-trial delay in the 4track procedure, against only 1 trial in the single-track procedure. This foretells a more important bias of the estimates obtained from the 4-track procedure. Because the 4-track procedure is slower to converge to the target thresholds, it is associated with a larger squared bias than the 1-track procedure. In both types of procedures, the variance decreases with the size of the estimation window, while the squared bias increases. However, at small window sizes, the decrease in variance is much greater in the case of the 4-track procedure. Since the contribution of the squared bias is small in comparison to the variance, the MSE is smaller in the 4-track procedure at small window sizes, compared to the 1-track procedure. However the smallest MSEs are reached for very large (close to 100-trial) window sizes, at which point they are similar between the two procedures. For a window of this size the estimated threshold is a very smoothed version of the true threshold (see the lower traces in Figure 2.5).

Tracking performances of the 1-track and 4-track procedures. The global Mean Squared Error (MSE, right panel) of threshold estimates has two additive contributions: the squared bias (left panel) and the variance (middle panel) of the estimates. MSE, squared bias and variance were normalized so that a value of 1 corresponds to the square of the "true" threshold step.

Discussion of results

In this experiment, we were able to retrieve the expected threshold variations, with an accuracy and temporal resolution that depended on the number of tracks (a procedural parameter) and the analysis window size (an analysis parameter). The best tracking performance in terms of MSE was obtained using very large estimation windows, almost as large as or larger than the half period of the expected variation threshold pattern (100 trials), at which point performance was similar for both procedures. Both procedures being equivalent in terms of tracking performance, the reduced ability to anticipate stimuli might justify using the 4-track procedure preferentially.

The interpretation of these experimental results is somewhat limited by the fact that we could only infer what the true threshold time course was. To compute the MSE of the estimates, we regarded each individual's session as one repetition of the same experiment, which is inexact since absolute thresholds differ between participants.

Besides, subject's performance may not faithfully follow our manipulation of tone duration. For example, it might be subject to uncontrolled fluctuations in brain state (that are the subject of this thesis). Lastly, the "true" thresholds assumed for shortand long-durations are themselves based on the data, which potentially biases our analysis: it might be the case that we underestimate the error and the bias, according to a sort of Texas sharpshooter fallacy [START_REF] Thompson | Painting the Target around the Matching Profile: The Texas Sharpshooter Fallacy in Forensic DNA Interpretation[END_REF].

The cost of running a behavioral experiment precludes testing a wide range of procedural parameters. It is possible that procedures with a different step size, or with a different number of adaptive tracks, would lead to even better results. It is also possible that the optimal choice of parameters might be different for a different pattern of threshold change (e.g. random walk, or slow ramp).

All these considerations justify the use of simulated data from a model of listener's behavior to further optimize our choice of procedural parameters. In addition, the ability to synthesize large quantities of data allows us to more reliably optimize analysis methods and parameters.

Optimization of the method: simulation study

In this section, I investigate more extensively the effects of the tracking method parameters on tracking performance. Rather than using real experimental data as in the previous section, I will exploit data produced by a model of behavior. This approach has multiple advantages. First, the threshold variations can take any form and are perfectly known and controlled, which was not the case in the psychophysical experiment presented earlier. Secondly, collecting data from simulated experiments is cheap and quick. This will allow us to test a very large number of procedures and parameters, and obtain a large quantity of simulated responses to optimize analysis methods and parameters. Exploration of tracking performance in this larger parameter space will hopefully yield useful results applicable to real behavioral experiments.

In particular, the effect of interleaving multiple, independent tracks within the adaptive procedure will be further assessed. As mentioned earlier, it seems that interleaving multiple reduces the variance of threshold estimates but slows the tracking. This makes it difficult to predict the optimal choice of track number, particularly if this choice interacts (as the simulation will demonstrate) with that of step size, another procedural parameter that needs optimizing. Furthermore, the optimal choice may depend on the shape of variation of the threshold to be tracked, a priori unknown.

General method

Let's assume that we know the shape of the psychometric function, parametrized by its threshold, and we know the time course of the threshold during an experiment, i.e., we know for each trial 𝑛 of the experiment the value 𝜃 𝑛 of the threshold that determines, together with the level 𝑥 𝑛 of the stimulus on that trial, the probability of a correct response. We want to know what the performance of a given tracking method will be in terms of MSE, which is a mathematical expected value. Computing the MSE requires to know which time series of stimulus levels can result from this experiment and with which probability given the supposed threshold variations.

In principle, it is possible to compute the exact probability distributions over repeated experiments using Markov chain theory. This has been done in the case of staircase procedures where the threshold was assumed to be constant [START_REF] Kollmeier | Adaptive staircase techniques in psychoacoustics: A comparison of human data and a mathematical model[END_REF] and can in theory be applied to a time-varying threshold. In every possible repetition of the experiment, the values taken by the stimulus level will follow a onedimensional, biased random walk in which the probabilities of upward-and downward steps change with time, depending both on the threshold and on the stimulus level in a particular trial. This can be modeled as a Markov process with a time-dependent transition probability matrix. The transition matrix at a given timepoint is determined by the true threshold at this time point. Knowing the initial position of the stimulus level (set by the experimenter) and the true threshold timecourse, it is possible to compute the probability that the stimulus reaches a given level at a given time-point 𝑡, or trial 𝑛. It is also possible to compute the probability of a given sequence or chain of stimulus levels between two trials 𝑛 and 𝑛'. If the local threshold estimate 𝜃 ̂𝑛′ is computed as a function of stimulus levels between trials 𝑛 and 𝑛', it is then possible to compute its probability distribution by combining the probabilities of all possible chains and their associated threshold estimates.

I implemented this Markov process numerically, but the number of possible chains increases exponentially with the number of trials in the chain and with the distance of the chain from the starting point, so that these computations become heavier and lengthier and can turn rapidly impracticable. For this reason, it is preferable to use Monte-Carlo simulations of experimental runs, as described below, to compute an empirical estimate of the probability distributions from a representative sample of possible experimental outcomes.

The simulations are based on a model of the Listener-Procedure closed loop (Figure 2.1, p. 37) in which the experimental procedure can be implemented exactly as in a real experiment (see 2.1.1) and different models can be used to reproduce the listener's behavior. The general idea is to assume that at a given trial 𝑛, the response 𝑦 𝑛 of the listener (𝑦 𝑛 = 1 if the response is correct, 𝑦 𝑛 = 0 otherwise) to the stimulus with level 𝑥 𝑛 is drawn from some Bernoulli distribution with parameter 𝑃 𝑐𝑜𝑟𝑟𝑒𝑐𝑡,𝑛 .

Different assumptions can be made regarding how the probability 𝑃 𝑐𝑜𝑟𝑟𝑒𝑐𝑡,𝑛 depends on 𝑥 𝑛 . I will restrict the current study to the case of a 2-AFC task, with chance level corresponding to 50% correct responses, and I choose to assume an accuracy psychometric function of the following form:

𝑃 𝑐𝑜𝑟𝑟𝑒𝑐𝑡,𝑛 = 𝜙 𝜎 𝑛 (𝑒 𝑥 𝑛 ) (2.15)
where 𝜎 𝑛 is a parameter linked to the sensitivity of the listener at trial 𝑛 and is linked to the true threshold at that trial by 𝜃 𝑛 = 𝜙 𝜎 𝑛 -1 (0.75), which is equivalent to: 

𝜎 𝑛 = 𝜃 𝑛 𝜙 1 -1 (0.75) . ( 2 
MSE = 1 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 ∑ MSE 𝑛 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 𝑁=1 (2.18)
Similarly, it is possible to compute trial-specific or global estimates of the bias and of the variance of 𝜃 ̂.

Of course, the interesting step will be to compare the tracking performance metrics obtained for 𝑁 𝑒𝑥𝑝 experiments run with a tracking method A and another 𝑁 𝑒𝑥𝑝 experiments run with a different tracking method B but assuming the same threshold variations. We can then decide which of method A or method B performs better for this specific time-course of threshold variations by selecting the one that yields the estimate with the lowest global MSE and/or the highest correlation to the true threshold.

Some tracking method A might turn out to perform better than another method B for a particular threshold variation profile and not for another with a different type of temporal characteristics. For instance, some methods might be more appropriate to track large, rapid variations, while others will be more appropriate for low-amplitude, slow variations. In the following subsections, I will consider several possible types of threshold variations that can be expected to occur in real 2-AFC task experiments. For each, I will compare the tracking performance of several methods, all using a weighted up-down adaptive procedure and a transformation of the stimulus level series to compute threshold estimates. These methods may differ in the parameters of the procedure (size of the steps, number of interleaved tracks) and in the parameters of the transformation (size of estimation window or weights assigned to different trials).

I will attempt to determine which parameter set yields the best tracking performance for each threshold variation type.

The profiles of threshold variations I will consider are of mainly two types. In the first type, the threshold can take two, or a finite (small) number of discrete values, in alternations. This type of profile is consistent with the idea that brain states may cluster into a small number of categories, each associated with different sensory sensitivities, for instance the states "on-task" and "off-task" that are often considered in the mind-wandering literature, and that one may "jump" from one state category to the other more or less instantly. The other type of threshold variations I will consider are continuous variations, consistent with the idea that brain state and perceptual sensitivity may vary smoothly over time rather than abruptly, either within one of the previous state categories, or even across categories. But before looking at these two types of variations, I will start with a third type, for illustrative purposes, namely the case of invariant thresholds.

For generality, stimulus levels, procedure's step size and thresholds will be expressed in 'stimulus units' (s.u.) and, correspondingly, the MSE, variance and squared bias will be expressed in 'squared stimulus units' (s.u. 2 ).

Case of invariant thresholds

In a first step, to better grasp the effects of procedural and estimation parameters (step size, number of adaptive tracks, size of the estimation window) on the variance of the estimate, it is useful to consider a situation where the true threshold is constant.

Anticipating, we will find that estimation error decreases as the integration window becomes larger (as expected) and that it is smaller when the adaptive procedure used a small step size and when multiple adaptive tracks are interleaved. In brief, in the present case of an invariant threshold, the error of the estimate will decrease when 1) the size of the adaptive procedure's steps is decreased, 2) the size of the estimation window is increased and 3) the number of trials from independent adaptive tracks within the estimation window is increased. The shape of these dependencies can be observed in Figure 2.8. Panel (A) illustrates that the decrease in MSE when the size of the estimation increases is highly modulated by the number of independent tracks that were used in the procedure. In short, the effect of enlarging the window is much softened as soon as the size of the window reaches the number of tracks. This reflects the limited benefit of including in the estimation process a trial whose stimulus level is highly dependent on another stimulus level already included.

At this stage, it might therefore seem a reasonable strategy to set the number of tracks according to the size of the estimator window one plans to use, i.e. to design a procedure with 𝑁 tracks if one plans to estimate the threshold from the average of 𝑁 In summary, if the threshold is expected to be constant, it is advantageous to use a procedure with small steps and multiple independent tracks and to compute the average of stimulus levels over a very large estimation window. Of course, threshold tracking is motivated by the assumption that threshold is not constant. Thus, we next consider such cases.

Case of a threshold step

The previous simulation addressed the case of a constant threshold. If the threshold varies, a different choice of parameters may be preferable. Here we consider the case of a threshold step occurring after the 50 th trial. Figure 2.9 shows the corresponding two psychometric functions that consecutively dictate the behavior of the listener (upper panel), along with the time-course of the threshold (lower panel).

Anticipating, we will find that the best procedural step size and estimation window size to use in that case are neither the smallest or the largest, but rather intermediate sizes that correspond to the best compromise between estimation variance and bias. We first investigate the effect of the procedure's step size in the case of a singletrack procedure. Figure 2.8(A) shows the average time course of stimulus levels obtained for two procedures with different step sizes (𝑆 = 1 s.u. and 𝑆 = 0.1 s.u.). The stimulus level was initialized at the initial value of the threshold. 1,000 experiments were simulated for each procedure. Gray shades mark the 95%-confidence intervals for stimulus levels, i.e. excluding the lowest 2.5% and the highest 2.5% stimulus values occurring over all experiments. It can be observed, unsurprisingly, that after the change, the stimulus level takes on average a longer time to reach the threshold in the procedure with the smallest step size (lower plot), compared to the procedure using a larger step (upper plot). Since the time-varying threshold is estimated from the series of stimulus values, the sluggishness of the small-step procedure will lead to greater bias after the threshold change. On the other hand, as what was observed with invariant thresholds, large steps lead to greater variance over simulations of the stimulus levels. Consequently, both a very large and a very small step sizes turn out to be disadvantageous regarding the expected MSE. Figure 2.10(C) actually reveals that, at a given estimation window size (here 37 trials), the lowest MSE is obtained for an intermediate step size (here of about 0.38 stimulus units).

We next consider the question of window size and its interaction with step size.

Averaging the time series of stimulus levels produced by the adaptive procedure over local windows of increasing sizes has two opposite effects. The variance of the estimate decreases on one hand; on the other, the time-course of the estimated threshold gets smoother and less faithful to the true, step-shaped time-course of the threshold, resulting in a higher estimation bias. Figure 2.10(B) shows the average time-course of the estimate obtained when averaging stimulus levels over 37 consecutive trials, in the case of a large step size (𝑆 = 1 s.u.). The smoothing effect manifests as a flattening of the raising part of the estimate time course (red line) in comparison to the true stimulus levels (black line). The variance reduction obtained by smoothing manifests as narrower confidence intervals for the average estimate (red shaded bands) in comparison to the intervals of the raw stimulus levels (gray shaded bands).

Averaging over the entire block, this window size (37 trials) produces the smallest overall MSE for that particular procedure (Figure 2.10(C)). Considering window size and step size together, the optimum corresponds to a step size of 0.38 stimulus units and an estimation window of 37 trials (Figure 2.10(E)). At this optimum, the MSE is of the order of 0.25 s.u. 2 , meaning the absolute error is on average ~0.5 s.u., that is, half the size of the threshold step. We next consider the effect of the number of interleaved adaptive tracks. Figure 2.11 displays the MSE obtained with 1-, 2-, and 4-track procedures. A first thing to notice is that, contrary to what we found for a constant threshold, the 2 and 4-track procedures produce a larger MSE than the 1-track procedure for all values of window size and step size (panel A). For the 2-track (resp. 4-track) procedure the optimal step size is approximately twice (resp. 4 times) that of the 1-step procedure. The optimal window size is also larger for more tracks (panel B). The dependency on step size and window size is shallower for 2 and 4 tracks than 1 track. This result seems to contradict our conclusion from the behavioral study that a 4track procedure might be preferable for shorter window size. The explanation is that the same set of parameters yield different tracking performance depending on the characteristics of the threshold variations, including the size of the threshold step(s), and the duration of the threshold plateaus, as we show below.

First, let us consider the impact of the size of the threshold step. From the two cases presented in Figure 2.12, it can be seen that the position on the MSE surface with optimal procedure step size and estimation window coordinates, indicated by the red arrows, is indeed displaced when the size of the threshold step is changed. Let us now consider the impact of the duration of the threshold plateau. The MSE at each time point is the sum of a term representing bias (that tends to be small when the threshold is constant and large after a step) and one representing variance (more or less constant over the block). When averaged over the entire experiment, the MSE will be more or less impacted by the threshold change depending on how long the estimate transition lasts in comparison to the rest of the experiment where the threshold estimate is less biased. This results in a dependence of the global MSE on the duration of the experiment for a given method, as well as in a dependence of the optimal method on experiment duration. As an illustration, Figure 2.13 compares the MSE surfaces obtained when the experiment lasts for 50 trials and when it lasts for 200 trials, each time assuming a threshold change of 1 stimulus unit occurs halfway 72 PART I. CHARACTERIZATION OF SENSORY VARIABILITY through the sequence of trials. These surfaces can in addition be compared to the one previously obtained with a 100-trial experiment and a threshold change of the same size, in Figure 2.10(E). Although the exact same threshold change occurs at some point in these various experiments, the overall threshold estimation performance turns out to be very different in the three cases, and the position of the MSE minimum is also changed. In particular, a longer window size can be advised if the experiment is longer.

Dependency of the performance of single-track procedure methods with different parameters on the experiment's length. Results are shown for experiments in the middle of which the threshold makes an upward step of 1 stimulus units. The two plots show the combined effects of procedure step size and estimation window size on the Mean Squared Error (MSE) of the threshold estimate, and are analogous to Figure 2.10(E). The left panel corresponds to the results in the case of a threshold step that occurs after the 25 th trial in an experiment that lasts for 50 trials; the right panel corresponds to results in the case of a threshold step that occurs after the 100 th trial in an experiment that lasts for 200 trials.

In sum, it appears that the dependency of tracking performance on procedural and estimation parameters is modulated by the characteristics of the threshold, so that it is not possible to give a general recommendation regarding the choice of these parameters. The only generality that seems to hold is that the best achievable performances will be obtained using a single adaptive track, although multiple tracks sometimes lead to better results when a non-optimal step size was used, which might have been the case in our proof-of-concept experiment. The impacts of the threshold step size and of the experiment duration on tracking performance suggest that the relative success of a given method will, also in more general situations, depend on the relative amount of threshold variability that occurs in the course of the experiment.

Case of 2 alternating thresholds

To check whether our simulations reproduce well what was observed in our "proof-ofconcept" experiment, we simulated a square wave threshold pattern similar to the one we had induced by manipulating tone duration in that experiment (section 2.3). A comparison of the results presented in Figure 2.14 to those seen in Figure 2.5 leads to the conclusion that simulation results are strikingly similar those observed in the real experiment.

Time-courses of threshold estimates in the case of 2 alternating thresholds. Same conventions as in Figure 2.5, with shaded bands representing 95% confidence intervals for the threshold estimates over the 2,000 simulated experiments.

We took advantage of the simulations to predict the results we would have obtained using other procedures, in particular procedures with a different number of adaptive tracks. The performance of these various procedures is summarized in Figure 2.15.

Again, in the case of the 1-track and 4-track procedures, the values of the squared bias, variance, and MSE are very similar to what we measured in the real experiment (compare with Figure 2.6). For all procedures, the lowest MSEs are obtained using PART I. CHARACTERIZATION OF SENSORY VARIABILITY large estimation windows. However, the MSE decreases more rapidly with the size of the estimation when more tracks are interleaved in the procedure. This effect of the number of tracks seems to saturate, so that 8-track and 16-track procedures yield very similar performance for all estimation windows. 

Case of continuous, random variations

The cases that were presented so far involved thresholds that varied in a discrete way, taking one of only two possible values at any point in the experiment. This sort of situations quite well approximates what happens when listeners experience attentional lapses, or when they spontaneously switch between on-task and off-task states due to mind-wandering. This being said, it is also plausible that thresholds may vary more continuously. It is thus of interest to investigate how the previous results are modified in such situations.

In the following example, the threshold variations were assumed to be generated by a pink noise process, i.e. having a power spectral density inversely proportional the Fourier frequency. These initial time-series were additionally passed through a highpass filter with a cut-off frequency of 0.002 trials -1 to prevent large excursions from the initial value and then scaled by a multiplicative factor in such a way that the standard deviation of the true thresholds was 0.5 stimulus units. An illustrative fragment of the time-course is shown as a green line in Figure 2.16(A). In the following pages, we assess tracking performance for these type of fluctuations using various procedural parameters. We also test and compare 3 threshold reconstruction methods, presented successively.

Arithmetic means as estimates

In a first step, local thresholds were computed as local arithmetic means, as previously. For each tested method, the MSE was estimated as the squared error averaged over the 200,000 trials of a unique, simulated experiment. Similarly to what was found in previous situations, there seems to exist an optimal combination of procedure step size and estimation window size yielding the lowest possible MSE in the case of a single track procedure, as revealed by Figure 2.16(B). The location of the minimum, indicated by the red arrow, corresponds to a step size of ~0.15 stimulus units and a window size of ~140 trials. This a quite a large window, which leads us to expect that the estimate time-course obtained with the corresponding method is quite smooth and mainly reflects the low-frequency trend of the true threshold. The corresponding MSE is ~0.25 s.u. 2 , meaning the average absolute error is of the order of the standard deviation of the threshold ( 0.5 s.u.). An example of estimated variations obtained with this optimal method is shown as a blue line in Figure 2.16(A). 

Optimized weighted means as estimates

Using linear transforms with unequal weights to compute local threshold estimates may have several advantages. First, it enables to give more weight to the trials that are more informative, that is, in which the stimulus level is more dependent on the threshold to estimate. Second, it may allow to use information about the listener's response that is contained in and recoverable from the direction of within-track level changes. It is difficult to guess what is the best way to distribute weights within the estimation window, but we have a mean to let the data tell us. We are basically dealing with an optimization problem that consists in finding the best set of weights {𝑤 1 , … , 𝑤 𝑁 𝑤 } to use in the computation of the local mean to most faithfully recover the true threshold time-course, i.e. to minimize the MSE. Using matrix notations, this amounts to looking for the vector 𝑾 = [𝑤 1 , … , 𝑤 𝑁 𝑤 ] that hypothetically relates stimulus levels and thresholds by a vector-matrix product:

𝑾𝑿 = 𝜣 (2.19)
where 𝚯 = [𝜃 1 , … , 𝜃 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 -𝑁 𝑤 ] is the vector containing the values of the true threshold in successive trials, and the columns of matrix 𝑿 correspond to the stimulus levels contained in successive estimation windows:

𝑿 = [ 𝑥 1 𝑥 2 ⋯ 𝑥 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 -𝑁 𝑤 𝑥 2 𝑥 3 ⋯ ⋮ ⋮ ⋮ ⋯ ⋮ 𝑥 𝑁 𝑤 𝑥 𝑁 𝑤 +1 ⋯ 𝑥 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 ].
(2.20)

Given that the number of trials (number of columns of 𝑿) is much larger than the number of trials in one estimation window (number of rows), Eq. ( 2.19) is an overdetermined system of equations. This is nothing else than a multidimensional linear regression problem whose least squares solution is obtained by a simple matrix product involving the inverse of 𝑿𝑿′:

𝑾 = ((𝑿𝑿 ′ ) -1 𝑿𝜣 ′ ) ′ . (2.21)
In MATLAB, this can be computed with the left matrix division as 𝑾 = 𝑿′\𝚯′.

PART I. CHARACTERIZATION OF SENSORY VARIABILITY

An optimized set of weights obtained when this regression method is performed on the pink-noise threshold data presented above with an estimation window containing 100 trials is shown in Figure 2.17. It is interesting to notice that some trials are associated with a negative weight. This probably reflects that the listener's response accuracy, given by the sign of the difference between stimulus levels in consecutive trials from the same adaptive track, contains valuable information regarding the ongoing threshold. It can also be observed that the absolute value of the weight decays as the position of the trial moves away from the point where the threshold is being estimated, consistent with the fact that distant trials are less informative about the ongoing threshold.

Optimized linear filter for the reconstruction of the threshold time-course from the stimulus levels time-series. Weights are plotted as a function of the position of the trial within the estimation window, 0 corresponding to the trial where the threshold is being estimated. This set of 101 weights was optimized to recover threshold variations in a simulated experiment where these variations were generated as pink (1/f ) noise with a standard deviation of 0.5 s.u. .

As could be expected, the optimized set of weights depends in part on the characteristics of the threshold variations (Figure 2.18). For instance, threshold variations of larger amplitudes are associated with larger weight differences (compare panels from the middle column in Figure 2.18). The speed spectrum of the variations is also crucial. To illustrate this point, similar simulations were performed assuming the random process generating threshold variations was a colored noise with a 1/𝑓 𝛼 spectral profile, where 𝛼 was varied between 0 and 2. The set of weights obtained for a white noise case (𝛼 = 0) and for a so-called brown noise case (𝛼 = 2) are plotted in the leftmost and rightmost panels of Figure 2.18, respectively. Because the temporal correlation of threshold variations and, necessarily, of associated stimulus levels series, increases when 𝛼 increases, the pattern gets changed in a way that significant weights get distributed on a larger number of trials around the estimation point.

Effects of threshold variations properties on the shape of optimized filters. Filter weights are shown for the 20 most central trials in the estimation window, to highlight the most noticeable differences. The effect of variations amplitude is made evident by comparing the two panels in the middle column, showing two filters both obtained when variations are pink noise (α = 1), either with a standard deviation of 1 s.u. (higher panel) or 0.2 s.u. (lower panel). Notice the different scales on the vertical axis. The effect of variations speed spectrum is evident when comparing the left and right plots, both obtained when variations have a standard deviation of 0.5 s.u., either with a white noise (α = 0, left panel) or a brown noise (α = 2, right plot) spectrum.

The optimized set of weights also adapts to the experimental procedure. Among other things, the amplitude of the weight pattern varies with the size of the procedure's step. Its shape, however, is little modified with step size. In contrast, the pattern's shape changes depending on the number of interleaved tracks, as shown in Figure 2.19. It seems that the trial associated with the most negative weight is shifted leftward by a number of trials equal to the number of tracks, consistent with the idea that information is contained in the difference between stimulus levels in consecutive trials from the same track. How much do optimized linear filters improve threshold reconstruction by comparison with arithmetic means? Time courses of the true threshold in a simulated experiment and of the corresponding estimate reconstructed with an optimized filter is shown in Figure 2.20 (left panel) and can be compared to the one obtained in Figure 2.16(A). Although the estimation windows have similar sizes in the two cases, the weighted mean displays quite rapid variations, while the arithmetic mean was smoother and mainly captured the low-frequency trend of the threshold.

To quantify estimation improvement, MSEs were computed on simulated datasets that were not included when performing the regression leading to the optimized sets of weights, but in which the true threshold variations had similar properties (same amplitude and spectral shape). Because optimized weights adapt to the parameters of the adaptive procedure, the MSEs do not depend much on the procedure's step size and number of tracks. Besides, because distant trials can be down-weighted, the estimation is not degraded when the estimation window is enlarged, as was the case when estimates were computed as arithmetic means. As long as weight overfitting is avoided, which is achieved by performing the regression on a sufficient amount of data, the MSE of weighted mean estimates decreases with the size of the estimation window, as visible in the right panel of Figure 2.20. However, since the optimal weight of more and more distant trials gets closer and closer to zero, the decrease of the MSE gets rapidly negligible and the MSE stagnates above a limit, slightly below 0.2 s.u. 2 . In comparison, the lowest MSE obtained when computing the threshold estimate as an arithmetic mean was 0.25 s.u. These performances can change if the frequency spectrum of the threshold variations has a different shape. As an example, when the variations are like a random walk, i.e. brown noise with power decreasing as 1/𝑓 2 , and with similar amplitude (standard deviation of 0.5 s.u.), true and reconstructed time courses are smoother and the MSE reaches below 0.1 s.u. 2 at large window sizes (Figure 2.21).

Tracking performance with optimized filter for the reconstruction of brown-noise-like threshold variations. Same as in Figure 2.20 but with 1/f ² threshold variations, analogous to a random walk, instead of 1/f .

Parameters of a fitted psychometric function as estimates

The fact that optimized linear filters of the stimulus time-series appear to compute differences between consecutive stimulus levels suggests that the accuracy of the listener's response is almost as valuable an information as the ongoing stimulus level when inferring the ongoing threshold. Indeed, the difference between two levels that are consecutive within the same adaptive track is positive if the response in the first trial was incorrect, negative otherwise. A different way to make use of both the stimulus level and the response from all trials in the estimation window is to fit an accuracy psychometric function to these stimulus-response pairs and deduce the threshold by interpolation of the function. We applied this strategy to the simulated datasets. The psychometric function given by Eq. (2.15) was fit to provide the best match to the data in the estimation window by adjusting the parameter 𝜎 𝑛 using a least-square generalized linear model (GLM) regression method, and the position of the threshold was interpolated using Eq. (2.16).

Results can be seen in Figure 2.22. The time-course of an estimate obtained when the window contains 100 trial is shown in the left panel and can be compared to the one obtained previously in Figure 2.20 with the weighted mean technique. In comparison, the function fit technique yields a smoother time course. In terms of MSE, this estimation method does not perform as good as the previous. MSE is plotted as a function of the size of the estimation window in the right panels of Figure 2.22.

There seems to be an optimum that must correspond to a compromise between the reliability of the fit and the temporal resolution, situated here around 100 trials. The MSE achieved in this way is above 0.24 s.u.², which is close to the threshold variance (0.25 s.u.²), while it was below 0.2 s.u.² with the weighted mean method. Here too, the parameters of the experimental procedure do not impact much the quality of the results.

Tracking performance by fits of local psychometric functions for the reconstruction of pink-noise-like threshold variations. Same as in Figure 2.20 but when threshold is estimated from the fit of a psychometric function to the stimulus level -response pairs data in the local estimation window. The lower right panel is a zoom on the lowest part of the MSE curve shown above.

Discussion and conclusions of the simulation study

The simulations performed in this study relied on a very simple model of the listener's behavior which had a single parameter, 𝜎 (see Eq. advantage is that it simplifies the investigation of tracking methods performance, because we neglect how particular traits of the listener, e.g. biases, may impact the results. Other models may have been used, and it is possible that significant aspects of real listeners' behavior were not captured by the model used this study. For instance, the listener may have choice biases, whether invariant or history-dependent, as we will show in Chapter 3, and the slope of the psychometric function may be different from the one assumed in our study. Another feature that is captured by other commonly used parametric psychometric function models and not by our model is the rate of attentional lapses [START_REF] Wichmann | The psychometric function: I. Fitting, sampling, and goodness of fit[END_REF]. Despite everything, these simulations reproduced very well the behavior that we observed in our proof of concept experiment (see subsection 2.4.4). This agreement allows us to rest on the results and conclusions drawn from this simulation study.

The first two examples we considered, a constant threshold and a threshold taking a step in the course of the experiment, were useful to illustrate how a method's parameters impact tracking performance when estimates are computed as local arithmetic means. These estimates are more stable when the procedure's step is small, when the estimation window is large, and when this window contains trials from multiple independent tracks. However, these same conditions favor large estimation biases following a threshold change. Consequently, there are in those cases a preferred procedure step size and a preferred estimation window size. However, this preferential set of parameters depends on the size of the threshold change and on the duration of the intervals where the threshold remains constant, so that it is not possible to give a general recommendation regarding the choice of these parameters when using arithmetic means as estimates.

We then simulated experiments where the threshold variations are more continuous and further compared tracking performance across 3 threshold reconstruction methods: (1) locally averaging stimulus levels with uniform weights (arithmetic mean), ( 2) locally averaging stimulus levels with non-uniform weights (weighted mean) and (3) locally fitting a psychometric function. The best results were obtained with weighted means. Their superiority probably comes from their capacity to assign more weight to trials near the estimation point. It is possible that better performances would be obtained in the fitting process if trials were also weighted, i.e.

if their contribution to the cost function to minimize was weighted. Because it is the solution of a non-linear optimization problem, optimal weighting for function fitting is however tedious to derive from the data, e.g. in comparison to the linear regression that could be used in the case of weighted means. Even for threshold variations whose spectral profile is known, like in the simulated experiments, it is difficult to establish theoretically what the optimal weighting would be. A bell-shaped set of weights, like a triangular, a Hanning or a Hamming window, may be chosen arbitrarily. We have not tested their interest yet.

Because weights can be adapted to the experimental procedure, the choice of procedural parameters does not make much difference regarding achievable tracking performance. This might appear counter-intuitive, as we mentioned that the latency of stimulus level variations with respect to the threshold variations depends on these parameters. Somehow, the weighting process manages to compensate for such latency in a specific way, by shifting and amplifying (or attenuating) the weight pattern by the right amount. We would therefore recommend setting the procedure's step size and the number of adaptive tracks according to any other experimental constraint. In particular, interleaving multiple adaptive tracks has the advantage of reducing stimulus anticipation by the subject and may be preferred over using a single track.

A remarkable result was that some trials are assigned negative weights under optimal weighting. In sum, it looks like these optimized weights constitute a differentiator, or high-pass filter. This is quite different from, if not at the other end of, what happens with uniform weighting, which is implicit when computing arithmetic means and rather acts as a low-pass filter. Our result therefore questions the intuition that a local uniform average of stimulus levels is a good proxy for the ongoing threshold, an idea that we exploited at first in our approach and that had been used previously [START_REF] Leek | Learning to detect auditory pattern components[END_REF]. In fact, the shape of our optimized filters suggest that the adaptive procedure acts as a stochastic low-pass filter on the time series of the true threshold, so that a high-pass filter is necessary to invert this first filter and recover the initial time-series.
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We showed that optimal weighting of trials in the estimation window depends in part on the characteristics of the threshold variations, so that one may wonder how to set the weights after a real experiment where these characteristics are not known a priori. We address this problem in the next section, where we analyze data from such a real experiment.

Threshold tracking in a real experiment

In this section, we attempt to transpose the weight optimization method presented in 2.4.5.2, that required the knowledge of the type of variations of the true threshold, to a situation where the type of variations is unknown. The behavioral data from the experiment we will analyze here was collected while participants had their EEG recorded. The aim we will then pursue, in the second Part of this thesis, will be to relate the estimated threshold variations to a measure of ongoing brain state derived from these EEG signals.

In this experiment, each participant performed more than 1000 trials of the sliding 2-AFC pitch discrimination task, in a single block interspersed with occasional, selfpaced breaks. The size of the relative frequency difference between the tones to compare ( |Δ𝑓/𝑓| ) was adjusted on every trial according to a weighted up-down procedure targeting 75-% correct, with 4 interleaved tracks.

To infer from the data what weights should be used when estimating thresholds as local weighted means, our strategy consisted in repeating a 3-step process depicted in 2.3) with 𝑁 𝑤 = 4). This window size was chosen to equal the number independent adaptive tracks interleaved in the experimental procedure. In the first step that followed, multiple reproductions of the experiment (𝑁 𝑠 = 500) were simulated assuming the true threshold variations 𝜃 = {𝜃 𝑛 : 𝑛 ∈ {1, … , 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 }} were those previously estimated. The participant was assumed to behave according to the model used in the previous simulation study (Eq. ( 2.15)), with the sensitivity parameter 𝜎 𝑛 being inferred from 𝜃 𝑛 using Eq. (2.16). In a second step, a linear transform T recovering the threshold series 𝜃 from the series of stimulus levels 𝑥 = {𝑥 𝑛 : 𝑛 ∈ {1, … , 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 }} was optimized based on the results of the simulated experiments, using the linear regression method described previously in 2.4.5.2. This transform was then applied, in the third step, to the stimulus level series from the real experiment, to re-compute and update the threshold estimates 𝜃 ̂. This succession of steps was then repeated several times, until stabilization of the results.

Iterative process for the computation of the linear transform T and the estimation of spontaneous threshold variations in human subjects.

The filters computed with this method converge within a few iterations (2 or 3) towards a stable form that is consistent across subjects, although dissimilar to the one obtained in the simulation study. Figure 2.24 shows the evolution of the threshold estimate obtained from an illustrative dataset during the first iterations of the optimization process. Average optimized weight patterns for 3 different estimation window sizes (i.e. filter orders) are shown in Figure 2.25. A consistent pattern is found whatever the order of the filter: the first 4 and last 4 trials of the window are attributed markedly higher weights that the rest. In-between, weights are quite uniformly distributed, with slightly higher weights for the trials that follow the point of better results than a constant estimator equal to the average estimated threshold, which would yield an MSE equal to the threshold variance. We can therefore assume with confidence, in future developments, that significant threshold variations have occurred during these experiments and that our reconstruction of these variations is relatively faithful.

Estimation of threshold tracking performance in the pitch discrimination task. Thin lines correspond to individual subjects, the thick line is the average across all participants, except one outlier (red line).

General discussion on threshold tracking

In this chapter I presented a simple method to reconstruct the time-course of a potentially varying perceptual threshold. This was motivated by the idea that perceptual thresholds represent a statistical aspect of a listener's perception, namely their sensitivity, that may vary with brain state. We applied this method to reconstruct spontaneous variations of the pitch discrimination thresholds of human listeners during an extended psychophysical task. The link between these behavioral variations and fluctuations of brain state measured through EEG will be studied in Chapter 5.

The method makes use of adaptive psychophysical procedures, more specifically of the weighted up-down procedures introduced by Kaernbach, to ensure that the level of the stimuli presented to the listener will constantly be brought back into the vicinity of the threshold, even if the latter changes over the course of the experiment. The timecourse of the threshold is then estimated by computing a moving average of the time series of stimulus levels. This average can be a simple arithmetic mean but better estimation can be obtained using a more complex weighted mean or linear filter. The adequacy of this method was demonstrated both in a real proof-of-concept psychophysical experiment and in simulated experiments. Parameters of the procedure, such as the size of the procedure's step and the number of independent adaptive tracks, impact the recovery of threshold variations when they are reconstructed using arithmetic means, but not so much if they are reconstructed by optimized weighted means. They can therefore be tuned by the experimenter based on other constraints (e.g. avoiding that the listener becomes aware of the adaptive rule).

The best tracking performance achievable and the optimal set of weights depend on the temporal characteristics of the true threshold variations. If these characteristics are known, the set of weights can be optimized by linear regression methods performed on synthetic data that match these characteristics. If they are not, an advisable strategy might be to estimate them coarsely in a first step and refine their estimation as one optimizes the filter weights in an iterative process until a stable pattern appears. What are the typical temporal characteristics of real, spontaneous threshold fluctuations is a fundamental question in itself that was only briefly broached here and requires further work.

Possible methodological variants

Other possible strategies for tracking perceptual performance are conceivable that are more or less distant from the one presented in this chapter. The most similar may use the same general method but with either a different type of adaptive procedure or another estimation method, or both. I presented for instance a threshold reconstruction method that consists in locally fitting a psychometric function and mentioned the possibility to improve the estimation by assigning different weights to trials as a function of their position in the estimation window.

Regarding the experimental procedure, the weighted up-down methods seemed to guarantee the best efficiency among other staircase procedures because they allow to update stimulus levels after every trial, while allowing to target any level of performance. Most of the other existing adaptive procedures seem very inappropriate because they rely strongly on stationarity assumptions. This is particularly the case of stochastic approximation methods in which the step size is forced to decrease over the course of the experiment [START_REF] Kesten | Accelerated Stochastic Approximation[END_REF][START_REF] Robbins | A Stochastic Approximation Method[END_REF]. Adapting methods of the PEST family [START_REF] Kaplan | The five distractors experiment: exploring the critical band with contaminated white noise[END_REF][START_REF] Taylor | PEST: Efficient Estimates on Probability Functions[END_REF] or parametric methods (Bayesian and maximum-likelihood methods) to threshold tracking would require a priori information about the speed of threshold changes to expect, so as to choose the 92 PART I. CHARACTERIZATION OF SENSORY VARIABILITY number of recent trials to include and/or how to weight them in the estimation process that is used within the experimental procedure. Also, let us recall that the adaptive probing procedure proposed by [START_REF] Doll | Tracking of nociceptive thresholds using adaptive psychophysical methods[END_REF] was not advantageous in comparison to a simple up-down procedure. For the moment, it seems reasonable to use an adaptive procedure that does not make much assumptions about the psychometric function, nor about its displacements, and to rather adjust post hoc the reconstruction method based on the speed of the variations that seem to have occurred at the sight of experimental results. Maybe a better characterization of the frequency spectrum of spontaneous threshold variations will allow to take advantage of maximum likelihood adaptive methods for threshold tracking in the future.

Lastly, some strategies have been proposed towards using a measure of perceptual performance that relies on a continuous behavior (e.g. [START_REF] Gaume | Towards cognitive BCI: Neural correlates of sustained attention in a continuous performance task[END_REF] rather than a measure that relies on categorical responses that are isolated in time. Gaume et al. for instance instructed their participants to continuously control with a joystick the position of a circle on a screen so that a randomly moving target cursor would at all times remain within the circle. One drawback of these methods is that the continuous behavior typically involves a motor component that may generate a significant part of the measure's variability and thus does not entirely reflect purely perceptual variability. Of course, a motor component is also involved when subjects give discrete perceptual reports by pressing buttons, and the variability of motor behavior may account for a significant part of response time variability, but response category is not likely to be impacted by motor variability apart from very rare instances.

Application to other paradigms and aims

The method presented in this chapter was designed in a way that allows it, in principle, to be used for tracking perceptual thresholds in any kind of task performed in sequential trials. It may be worth checking how the results found here generalize to these different situations. It might be the case that better tracking performance is achievable in tasks with lower chance performance level, the reason being that behavior is less variable in these tasks, a correct response happening by chance being less likely.

The methodology for threshold tracking was motivated by the hypothesis that statistical threshold variations may be correlated with fluctuations of brain state. In fact, the technique may prove useful in different contexts, for instance when experimenters are interested in detecting potential drops in vigilance during an experiment to exclude the corresponding trials, or when trying to assess progressive increases in performance related to learning. It may also help correct the estimate of the slope of a psychometric function that is biased when the assumption of stationary thresholds is violated [START_REF] Doll | Observation of time-dependent psychophysical functions and accounting for threshold drifts[END_REF][START_REF] Leek | An interleaved tracking procedure to monitor unstable psychometric functions[END_REF]. Our chances to unravel the contribution of brain state to perception will be the highest if our initial prediction already takes into account all other variability factors.

Modeling context effects in sequential pitch judgments

These factors include the physical properties of the stimulus. They may also incorporate the context in which the stimulus is presented, e.g. the history of previous stimuli. Chapter 1 introduced the SDT model that predicts choice probability based on a single stimulus variable 𝑠, considered as the objectively relevant variable to judge the stimulus. The aim of this chapter is to extend this model, incorporating additional predictors from trial history, to improve the response prediction. We investigate the benefit of such additional variables in the specific case of our sliding 2-AFC pitch discrimination task. To this end, we re-analyze the behavioral data introduced in the previous chapter (section 2.5, pp. 86-90). The corresponding study is presented hereinafter in the form of an article that was submitted for publication1 .

Introduction

Psychophysics attempts to relate a physical dimension of a stimulus (for example fundamental frequency) to a psychological dimension (for example pitch) using behavioral methods. Some individuals possessing absolute pitch are capable of accurately identifying the pitch of a musical tone without any preceding reference, but a majority of listeners appreciate tone pitches in a melody by judging their distance relative to previous tones. The physical dimension is then frequency change (or ratio) between tones, and the psychological dimension pitch change (or interval). A rich literature has probed experimentally the limits of our ability to discriminate small frequency differences [START_REF] Dai | Psychometric functions for pure-tone frequency discrimination[END_REF][START_REF] Harris | The decline of pitch discrimination with time[END_REF][START_REF] Jesteadt | Decision processes in frequency discrimination[END_REF][START_REF] Matthews | The effect of stimulus range on two-interval frequency discrimination[END_REF][START_REF] Micheyl | Characterizing the dependence of pure-tone frequency difference limens on frequency, duration, and level[END_REF][START_REF] Moore | Frequency difference limens for short-duration tones[END_REF][START_REF] Moore | Mechanisms underlying the frequency discrimination of pulsed tones and the detection of frequency modulation[END_REF][START_REF] Nordmark | Mechanisms of Frequency Discrimination[END_REF][START_REF] Rosenblith | On the DL for Frequency[END_REF][START_REF] Sek | Frequency discrimination as a function of frequency, measured in several ways[END_REF]. In these studies, listeners typically make judgments on pairs (or triplets, or quadruplets) of tones, and the accuracy of their judgments is assessed as a function of the frequency difference between the tones in the trial. Discrimination thresholds are then interpreted as reflecting the resolution of the sensory representation by which those tones are coded. However, there is evidence that judgments also depend on the history of stimuli that precede each trial. In an extreme case, [START_REF] Chambers | Perceptual hysteresis in the judgment of auditory pitch shift[END_REF] found that for certain ambiguous stimuli (two successive Shepard tones separated by a tritone interval) responses depended almost entirely on the history of prior stimulation. To the extent that history effects are uncontrolled, they contribute an unwanted source of variance when measuring the psychophysical relation between the stimulus and the response that it evokes. It is thus of interest to better understand these effects and model their influence.

It is well known that "roving" the overall frequencies of tone pairs can make it hard to judge the frequency difference within each pair. In 2-Interval Forced Choice (2-IFC) designs, where listeners are instructed to identify which of two tones that are presented successively is higher in pitch, frequency discrimination thresholds, sometimes termed Frequency Difference Limens, are lower if the comparison involves a fixed reference tone that appears in all trials, compared to a situation in which the tones can be taken from a large frequency range (roving) [START_REF] Amitay | Auditory frequency discrimination learning is affected by stimulus variability[END_REF][START_REF] Bull | Recognition memory for pitch of fixed and roving stimulus tones[END_REF][START_REF] Demany | The slow formation of a pitch percept beyond the ending time of a short tone burst[END_REF][START_REF] Harris | The decline of pitch discrimination with time[END_REF][START_REF] Jesteadt | Intensity and frequency discrimination in one-and twointerval paradigms[END_REF][START_REF] Nahum | From Comparison to Classification: A Cortical Tool for Boosting Perception[END_REF]. In addition, when a fixed reference is used, thresholds appear to depend on the position (first or second interval) of the reference within trials [START_REF] Nahum | From Comparison to Classification: A Cortical Tool for Boosting Perception[END_REF][START_REF] Raviv | Contradictory Behavioral Biases Result from the Influence of Past Stimuli on Perception[END_REF]. Such effects are often interpreted as reflecting a difference in perceptual sensitivity between different experimental configurations, but it has also been argued that they can be accounted for by a history-dependent perceptual bias [START_REF] Raviv | Contradictory Behavioral Biases Result from the Influence of Past Stimuli on Perception[END_REF].
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Detecting a history-dependent bias is important for the study of perceptual mechanisms. First, ignoring it can lead to overestimating the amount of "internal noise" in the sensory representation [START_REF] Fründ | Quantifying the effect of intertrial dependence on perceptual decisions[END_REF]. Second, the bias itself may inform us about how the brain accumulates perceptual evidence and combines ongoing sensory input with past traces. Lastly, taking into account inter-trial dependencies might improve the analyses of neural correlates of decision making [START_REF] Lages | How predictable are "spontaneous decisions" and "hidden intentions"? Comparing classification results based on previous responses with multivariate pattern analysis of fMRI BOLD signals[END_REF]. To better capture these dependencies we made certain methodological choices that differ from those made in previous studies.

In past experiments probing context effects [START_REF] Raviv | How recent history affects perception: the normative approach and its heuristic approximation[END_REF][START_REF] Raviv | Contradictory Behavioral Biases Result from the Influence of Past Stimuli on Perception[END_REF][START_REF] Ruusuvirta | Proactive interference in a two-tone pitch-comparison task without additional interfering tones[END_REF], the subject was presented with a sequence of tone pairs, and answered after each tone pair which tone had a higher pitch (two interval two alternative forced choice, 2I-2AFC). In contrast, we used a one-tone-per-trial procedure in which subjects were presented with a sequence of tones and answered after each tone whether it was higher in pitch than the previous tone (sliding 2AFC). The purpose of the new procedure was to ensure a homogeneous sequence of prior tones, in contrast to the classic procedure where the sequence included both reference tones (the first of a pair) and comparison tones (the second). Prior to this study we established that the new procedure yields similar discrimination thresholds as the old [START_REF] Arzounian | A sliding two-alternative forcedchoice paradigm for pitch discrimination[END_REF]. The task has an analog in melody perception, where each note anchors both the preceding and following interval, or speech intonation where each segment participates in the pitch transitions that precede and follow it.

In a standard adaptive procedure, the interval size for a trial is adjusted based on the response to the previous trial. This introduces a strong serial correlation in the sequence of interval sizes, limiting the range of intervals that can precede a trial. To ensure a wider range of history, we interleaved multiple independent tracks, such that the interval on each trial was determined by the response to a trial several steps in the past.

Previous studies have analyzed history effects as resulting from the recent history of stimuli. However, a subject's judgment is also known to depend on previous responses [START_REF] Fründ | Quantifying the effect of intertrial dependence on perceptual decisions[END_REF]. In this study we analyze our data using a set of models that incorporate stimulus history, response history, or both. This combination of experimental and analysis methodology puts us in a position to usefully revisit the question of history effects on pitch judgments. In brief, we found effects of both stimulation and response, the weight of each factor being subjectdependent. Controlling for these factors led to estimates of internal noise that were smaller (and arguably more accurate) than those obtained with previous methods.

Methods

Participants and procedure

14 subjects, 7 male and 7 female, aged between 19 and 29, with no self-reported hearing impairment nor history of neurological or psychiatric disorder, participated in the experiment. Among them, 7 were inexperienced, 2 had prior experience in nonauditory psychophysical studies, 3 had prior experience in psycho-acoustic studies, and 2 had performed a similar task in a previous study. All gave written, informed consent prior to participation and received a compensation of 20€ per hour of their time. The protocol was approved by the ethics review board of Paris Descartes University (CERES 2013-11).

Apparatus, stimuli and task

Participants sat in a double-shielded experimental booth. Visual displays and auditory stimuli were generated by Matlab (version 2012a). Written instructions and fixation cross were displayed on a computer LCD screen standing in the outside of the booth and visible from the inside through a window. Auditory stimuli were presented through insert earphones (E-A-R-TONE ® 3A) at a comfortable level, similar for all participants. As part of a study on the effects of brain state on performance, EEG was recorded using an Active-Two (BioSemi) system with 72 channels (64 channels positioned according to the standard 10/20 layout + 8 additional channels positioned at M1, M2, IO1, IO2, SO1, SO2, EO1 and EO2), sampled at 2048Hz. The analysis of these data is not reported here.
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Auditory stimuli were 100-ms pure tones with 10-ms cosine onset-and offsetramps. Starting from 𝑓 0 = 1000 Hz, the frequency varied from one tone to the next with random direction and a step size |Δ𝑓| determined according to an adaptive procedure (see below). A random walk can produce extreme values; to avoid this situation the probability of an up transition (0.5 at 1000Hz) decreased linearly in frequency by a factor 0.0003 / Hz, so that frequency remained in a region near 1000 Hz (see Results). In this region, up and down transitions were approximately equiprobable.

After each tone, the participant was requested to indicate the direction of pitch change (either "upward" or "downward") by pressing one of two computer keyboard keys. The reaction time on each trial was recorded. The key press triggered the onset of the next tone after an interval of 500 ms.

Before the main block analyzed here, participants were trained on the task with visual feedback (on 60 trials if they were already familiar with the task, on 120 trials if they were not). They then performed two short blocks (120 trials) without feedback, not analyzed here. The main, final block comprised 1080 trials without feedback.

Participants were told they could take short breaks when needed by simply holding the response of the current trial until they were ready to continue (such trials were then later excluded from analyses).

Multi-track adaptive procedure

The size of the relative frequency step |Δ𝑓/𝑓| was 10% in the first trial and was then adjusted trial-by-trial according to a weighted up-down procedure [START_REF] Kaernbach | Simple adaptive testing with the weighted up-down method[END_REF] with step size limited to at most 30%. During an initial phase the step size for each trial depended on the success of the previous trial. After a minimum of 20 trials and 1 reversal, the rule was then changed so that the step size depended on the response 4 trials in the past, yielding 4 independent interleaved adaptive tracks [START_REF] Leek | An interleaved tracking procedure to monitor unstable psychometric functions[END_REF].

For an incorrect response, the step size was increased by a factor of 2, otherwise it was decreased by a factor of √2
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. Thus all tracks targeted a 75%-correct performance [START_REF] Kaernbach | Simple adaptive testing with the weighted up-down method[END_REF]. The adaptive procedure ensures a dense sampling of the psychometric function in the vicinity of the nominal threshold [START_REF] Dai | On measuring psychometric functions: A comparison of the constantstimulus and adaptive up-down methods[END_REF], and interleaving reduces the short-term serial correlation of |𝛥𝑓| typically induced by adaptive procedures, thus providing a more balanced distribution of frequencies and step sizes preceding each trial.

Analysis of behavioral data

Data were analyzed by fitting to them a series of models of increasing complexity.

Previous studies of sequential history effects considered only the sign of the relevant stimulus feature in the previous trial [START_REF] Alais | Auditory frequency perception adapts rapidly to the immediate past[END_REF]Taubert et al., 2016aTaubert et al., , 2016b)).

Here, the preceding signed interval was included as a linear regressor, together with response history, and a fixed bias. Previous studies averaged data over subjects so the analysis could only reveal effects that are consistent across individuals, whereas we fit subject-specific models. We model the probability of reporting an upward change on each trial, rather than the probability of a "correct" response as in many previous studies [START_REF] Dai | Psychometric functions for pure-tone frequency discrimination[END_REF][START_REF] Moore | Frequency difference limens for short-duration tones[END_REF][START_REF] Moore | Mechanisms underlying the frequency discrimination of pulsed tones and the detection of frequency modulation[END_REF][START_REF] Rosenblith | On the DL for Frequency[END_REF][START_REF] Sek | Frequency discrimination as a function of frequency, measured in several ways[END_REF]. Standard model comparison methods are used to assess the significance of the contribution of each parameter to the model.

Models

All models tested here assume the choice probability 𝑃 of reporting an upward pitch change to be a psychometric function of the form:

𝑃 = 𝜙 𝜎 (𝑋) (3.1)
where 𝜙 𝜎 is the cumulative normal distribution function with mean 0 and standard deviation 𝜎, and the decision variable 𝑋 is determined by the stimulus and, possibly, by an invariant bias and/or by stimulus or response history. This form is in accordance with the framework of Signal Detection Theory, assuming that the internal representation of the frequency change is given by the sum of 𝑋 and some internal noise that is normally distributed with mean 0 and standard deviation 𝜎 . The parameter 𝜎 determines discrimination sensitivity.
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In the simplest model, that we'll refer to as Baseline model, the value of 𝑋 at trial 𝑛 is purely determined by the frequencies 𝑓 𝑛-1 and 𝑓 𝑛 of the last two tones:

𝑋 𝑛 = 𝑠 𝑛 (3.2)
where 𝑠 𝑛 = 12 log 2 (𝑓 𝑛 /𝑓 𝑛-1 ) is expressed in semitone units. This first model corresponds to the behavior of an ideal listener in the sense that choice probability only depends on the task-relevant attribute of the stimulation, with the probability being 0.5 when 𝑠 𝑛 = 0, i.e. when consecutive tones have exactly the same frequency.

In this ideal case, the discrimination threshold is determined by 𝜎 only, and can be calculated as 𝜙 𝜎 -1 (0.75), that is ~0.67𝜎, for a threshold at 75% correct. The parameter 𝜎 is assumed to reflect the frequency resolution of the sensory representation.

This Baseline model can be extended by including other potential contributions to the probability of an upward change report, such as the frequency ratio on the previous trial, the response to the previous trial, or a uniform bias:

𝑋 𝑛 = (1 -𝛼) 𝑠 𝑛 + 𝛼 𝑠 𝑛-1 + 𝛽 𝑟 𝑛-1 + 𝑏 (3.3)
where 𝑟 𝑛-1 is a binary variable coding for the response in trial 𝑛 -1 (1 in case of an upward report, -1 in case of a downward report), 𝛼 quantifies the relative influence of the previous trial's frequency change, 𝛽 weights the contribution of the previous trial's response, and 𝑏 represents a systematic bias. Figure 3.1 represents the relations between variables and parameters of this Full model. A non-zero bias (𝑏 ≠ 0) reflects a tendency to report more upward changes (or more downward changes) regardless of the stimuli presented. A non-zero response history parameter (𝛽 ≠ 0) might reflect a deliberate or unconscious adaptive response strategy, whereas a nonzero stimulus history parameter (𝛼 ≠ 0) might represent an assimilative (𝛼 > 0) or else contrastive (𝛼 < 0) sensory dependency on prior stimulation [START_REF] Raviv | How recent history affects perception: the normative approach and its heuristic approximation[END_REF].

These contributions are illustrated in Figure 3.1.

Structure of the Full model. Solid arrows represent the additive contributions of current (sn) and previous (sn -1) intervals, previous response (rn -1) and choice bias (𝒃) to the decision variable (Xn). Parameters α and β weight the relative contributions of previous interval and previous response, respectively. The dashed arrow symbolizes the stochastic dependence of the response rn on Xn.

In addition to the Baseline and Full models we considered 3 partial models according to which parameters of Eq. (3.3) are non-zero. These models are: systematic Bias (B), systematic Bias + Prior Stimulus (BPS), and systematic Bias + Prior Response (BPR) (Table 3.1). Like the Full model, the last two are history-dependent.

It should be noted that the factors prior interval 𝑠 𝑛-1 and prior response 𝑟 𝑛-1 are mutually dependent, as the subject is more likely to have reported an upward change after a positive step. Consequently, with 𝛽 = 0 the 𝛼𝑠 𝑛-1 term would indirectly capture a contribution of the preceding response, leading to an incorrect estimate of stimulus history effects. Similarly with 𝛼 = 0 the 𝛽𝑟 𝑛-1 term would capture some contribution of the previous stimulus. Obviously, these constitute only a subset of plausible models. In particular, we consider only linear dependencies (Eq. (3.3)), we ignore the possibility that parameters might vary over the session, for example due to a change in the subject's strategy, and we ignore potential contributions of earlier history (trials 𝑛 -2, etc.).

Data analysis

Thresholds were computed in a first analysis estimating the classic psychometric function relating probability of a correct answer to the logarithm of the absolute value |Δ𝑓/𝑓| of the relative frequency difference [START_REF] Dai | Psychometric functions for pure-tone frequency discrimination[END_REF]. This accuracy psychometric function is implicit in most studies that estimate a discrimination threshold using adaptive methods [START_REF] Kaernbach | Simple adaptive testing with the weighted up-down method[END_REF][START_REF] Levitt | Transformed Up-Down Methods in Psychoacoustics[END_REF]. A logistic function varying between 50% (chance level performance) and 100% correct was fit to individual subjects' data and individual discrimination thresholds were defined as the interpolated value of |Δ𝑓/𝑓| yielding 75%-correct accuracy.

As the sign of the frequency difference is not taken into account by the accuracy psychometric function, it is inadequate to highlight choice biases that may affect performance. A second analysis estimated instead the choice psychometric function relating probability of an "up" report (Eq. (3.1)) to the decision variable which was log frequency ratio in the Baseline model, and some combination of this factor, bias and prior stimulus and response in the four other models. Each model was fit individually to the behavioral data collected from each participant. Using the notation 𝑦 𝑛 =

(1 + 𝑟 𝑛 )/2 for convenience (𝑦 𝑛 = 1 if the listener reported an upward change, 𝑦 𝑛 = 0 if they reported a downward change), parameters were estimated with the Matlab (version R2015b) glmfit function performing a generalized linear regression of the binary responses 𝑦 𝑛 on the predictor variables (𝑠 𝑛 , 𝑠 𝑛-1 , 𝑟 𝑛-1 ) or a subset of these depending on the model, using a probit link function. For all except the Baseline model, predictors included an additional constant term to capture the systematic bias ( 𝑏 ). 95%-confidence intervals for the free parameters were computed using a bootstrap procedure with 1000 resampling iterations.

The quality of each fit was assessed by three different metrics. First, the Mean Squared Residual (MSR) was computed as:

MSR = 1 𝑁 ∑(𝜙 𝜎 (𝑋 𝑛 ) -𝑦 𝑛 ) 2 𝑁 𝑛=1 (3.4)
where 𝑁 is the number of trials. Secondly, the Mean Log Likelihood (MLL) was computed as:

MLL = 1 𝑁 ∑ log ((𝜙 𝜎 (𝑋 𝑛 )) y n (1 -𝜙 𝜎 (𝑋 𝑛 )) (1-y n ) ) 𝑁 𝑛=1 . (3.5)
Lastly, a Receiver Operating Characteristics (ROC) and the Area Under the ROC curve (AUROC) were computed using Matlab's perfcurve function. The ROC describes the performance of the model when it is used as a binary classifier predicting the subject's response 𝑦 𝑛 ("up" versus "down") based on 𝑋 𝑛 . By changing the probability threshold to be reached by 𝜙 𝜎 (𝑋 𝑛 ) to label a response as "up" rather than "down", one changes the "true positive" (i.e. model predicts "up" response, subjects responds "up")

and "false positive" (i.e. model predicts "up" response, subjects responds "down") rates, similarly to what happens in Signal Detection Theory when a subject changes criterion. The AUROC reflects the "sensitivity" of the model, i.e. its capacity to discriminate between the two classes of trials.

Nested models were compared by F-tests with a 5% false-rejection probability (Motulsky and Christopoulos, 2004, pp. 141-142), with correction for multiple comparisons as needed.

Results

Main blocks lasted between 19 and 29 minutes (mean duration was 24 minutes), except for one participant who took more than 38 minutes. Trials in which the reaction time was shorter than 300 ms or exceeded 1500 ms were excluded. This resulted in the exclusion of between 11 and 124 trials depending on the participant, leaving between 956 and 1069 trials to include for model fitting, except for the slowest participant for which 448 trials were excluded leaving 632 for analysis. Frequencies followed a random walk with opposite biases above and below 1000 Hz preventing large deviations from this center frequency (see Methods). Resulting frequency distributions had an average (over subjects) center of 1000.9 Hz ± 41 Hz (mean ± s.d.) and an average (over subjects) standard deviation of 89 Hz ± 74 Hz.

Classic discrimination threshold analysis

The accuracy psychometric function relating probability of a correct response to log absolute value of the relative frequency step was fit individually for each subject, and the abscissa at 75% correct was taken as the discrimination threshold. Thresholds are plotted for each subject as open symbols in Figure 3.2. On average over subjects, the threshold was 0.10 semitones (geometric mean) with a deviation factor of 2.0 (geometric s.d.).

Baseline model

The choice psychometric function relating probability of a "up" report to log frequency ratio was fit individually for each subject using the Baseline model (Eqs. and thus these values appear consistent with the previous analysis. The wide scatter of values across subjects (more than an order of magnitude) is typical of previous studies (e.g. [START_REF] Micheyl | Influence of musical and psychoacoustical training on pitch discrimination[END_REF]. In the absence of bias and history effects, discrimination thresholds are assumed to reflect sensory noise, so it is reassuring that the two estimates seem to agree. 

Full model

Probability of "up" versus "down" reports was also fit using the Full model (Eqs.

(3.1) and (3.3), 𝑏 ≠ 0, 𝛼 ≠ 0, 𝛽 ≠ 0 ) that includes factors prior stimulus, prior response, and systematic bias, as well as reduced models with subsets of these factors.

Adding factors improves the fit, as reflected by the MLL scores plotted in Figure 3.3A.

The scores indicate a better fit for the Full model (plotted rightmost, average MLL is -0.46 ± 0.03, mean ± s.d.) than for the Baseline model (plotted leftmost, average MLL is -0.52 ± 0.03, mean ± s.d.), with intermediate scores for the reduced models, and similar trends were found for AUROC and MSR measures (not shown). However, an obvious concern is whether the more complete models are justified given their 108 PART I. CHARACTERIZATION OF SENSORY VARIABILITY complexity. Pairs of nested models were compared using the F-statistic with a p-value threshold of 0.05 , and for each pair the number of subjects for which the more complete model was superior is reported in Figure 3.3B. Detailed statistics can be found in the Appendix1 . Models BPS and BPR are not compared with each other because they are not nested. According to this analysis, for all factors, a model that includes that factor is better than a model that excludes it for most subjects. The benefit was cumulative, and the Full model was superior to all other models for 13 of the 14 subjects. After applying Bonferroni correction of p-value thresholds for multiple comparisons, the Full model was still superior to all others for 12 of the 14 subjects. zero for 10 subjects (positive for 8 and negative for 2). The average normalized bias 𝑏/𝜎 was 0.08 ± 0.18 (mean ± s.d.). The parameter 𝛼 (Figure 3.4C) was significantly different from zero for all subjects but one, with a positive value suggesting an assimilative effect of prior stimulation. The average value of 𝛼 was 20% ± 8.5% (mean ± s.d.). The parameter 𝛽 (Figure 3.4D) was significant for most subjects, but with a sign that differed between subjects, suggesting different behavior strategies (also suggested by the between-subject differences in systematic bias 𝑏). The average value of 𝛽/𝜎 was -0.14 ± 0.45 (mean ± s.d.). As mentioned earlier, the factors prior stimulus and prior response are mutually dependent but not collinear: if either is removed the model quality is reduced for most subjects. If one factor is removed, the variability associated to it is captured by the other factor, overestimating its true effect when both factors act in the same direction, underestimating it otherwise. Thus, response history effects should be controlled for, as we do, even in studies where the goal is to measure purely sensory effects (e.g. [START_REF] Raviv | How recent history affects perception: the normative approach and its heuristic approximation[END_REF]. To illustrate this point, Figure 3. 

Discussion

This study probed the influence on pitch judgments of the history of frequency changes and responses preceding each trial, that is usually ignored in psychophysical studies of pitch. In those studies, the "physical" dimension considered is the interval between tones within a trial, based on the assumption that the subject can ignore previous trials. This is at best an approximation: discrimination thresholds are known to be higher if frequencies are roved, implying that the ability to discriminate two tones within a trial is impaired if the frequencies of previous trials fluctuated over a wide range [START_REF] Mathias | Stimulus uncertainty and insensitivity to pitch-change direction[END_REF]. This might be attributed to the wider distribution of frequencies preceding a trial, for example because the subject cannot focus on a restricted frequency region. Alternatively, it might be explained by a stimulus contextdependent bias, such as we found in this study, that leads to non-optimal performance and thus elevated thresholds. In the presence of roving, the large frequency interval preceding each trial might more strongly bias the decision on that trial, leading to higher thresholds. Effects of stimulus history on performance have recently been examined more closely [START_REF] Nahum | From Comparison to Classification: A Cortical Tool for Boosting Perception[END_REF] and modeled as an integration of frequencies of prior tones [START_REF] Raviv | How recent history affects perception: the normative approach and its heuristic approximation[END_REF][START_REF] Raviv | Contradictory Behavioral Biases Result from the Influence of Past Stimuli on Perception[END_REF]. Our study extends those studies using a different methodology.

Discrimination acuity

The measurement of perceptual limits is a primary goal of psychophysics [START_REF] Fechner | Elements of psychophysics[END_REF], and numerous psychophysical studies have been devoted to quantifying frequency discrimination thresholds [START_REF] Dai | Psychometric functions for pure-tone frequency discrimination[END_REF][START_REF] Harris | The decline of pitch discrimination with time[END_REF][START_REF] Jesteadt | Decision processes in frequency discrimination[END_REF][START_REF] Matthews | The effect of stimulus range on two-interval frequency discrimination[END_REF][START_REF] Micheyl | Characterizing the dependence of pure-tone frequency difference limens on frequency, duration, and level[END_REF][START_REF] Moore | Frequency difference limens for short-duration tones[END_REF][START_REF] Moore | Mechanisms underlying the frequency discrimination of pulsed tones and the detection of frequency modulation[END_REF][START_REF] Nordmark | Mechanisms of Frequency Discrimination[END_REF][START_REF] Rosenblith | On the DL for Frequency[END_REF][START_REF] Sek | Frequency discrimination as a function of frequency, measured in several ways[END_REF]. According to Signal Detection Theory [START_REF] Green | Signal Detection Theory and Psychophysics[END_REF][START_REF] Macmillan | Detection theory: A user's guide[END_REF], perceptual limits are determined by the amount of noise within the sensory dimension underlying the task, and with appropriate assumptions (Gaussian noise, no bias) the noise magnitude can be inferred from the measured threshold. The threshold is defined as the abscissa of the point at which the psychometric function, relating frequency step size to percentage correct, reaches a criterion value, for example 75%. This point can be determined explicitly from a psychometric function estimated by fitting the density of correct and incorrect responses to a range of stimuli, or else implicitly from the rule associated with an adaptive procedure [START_REF] Kaernbach | Simple adaptive testing with the weighted up-down method[END_REF][START_REF] Levitt | Transformed Up-Down Methods in Psychoacoustics[END_REF]. For the classic correct-response analysis (Methods) we chose to estimate thresholds from the psychometric function relating percent correct to log(|Δ𝑓/𝑓|) sampled at values chosen by the adaptive procedure. Thresholds that we obtain in this fashion (Figure 3.2, open symbols) are consistent with the literature [START_REF] Emmerich | A reexamination of the frequency discrimination of random-amplitude tones, and a test of Henning's modified energy-detector model[END_REF][START_REF] Micheyl | Influence of musical and psychoacoustical training on pitch discrimination[END_REF][START_REF] Moore | Frequency difference limens for short-duration tones[END_REF][START_REF] Moore | Mechanisms underlying the frequency discrimination of pulsed tones and the detection of frequency modulation[END_REF][START_REF] Sek | Frequency discrimination as a function of frequency, measured in several ways[END_REF] although markedly smaller than those reported by [START_REF] Nahum | From Comparison to Classification: A Cortical Tool for Boosting Perception[END_REF]. The wide spread of values across subjects (more than an order of magnitude) is also consistent with other studies, e.g. [START_REF] Micheyl | Influence of musical and psychoacoustical training on pitch discrimination[END_REF]. Under the assumption of Gaussian sensory noise and no bias, the standard deviation 𝜎 of the noise is inferred to be ~1.5 times the threshold at 75%.

For the alternative up-response analysis (Methods), the noise magnitude 𝜎 is inferred from the slope of the psychometric function relating the density of "up" reports to log(𝑓 𝑛 /𝑓 𝑛-1 ) . Again assuming Gaussian noise, 𝜎 is proportional to the inverse of the slope at 50% of this curve. In the absence of bias the two methods for estimating variance are equivalent, and indeed fitting our data with the model without bias terms leads to estimates of 𝜎 (Figure 3.2, closed symbols) that are consistent with the thresholds estimated with the classic analysis (ratio close to 1.5).

In the presence of bias the two approaches are no longer equivalent. With the first approach (psychometric function relating percent correct to the unsigned relative frequency difference) sensory noise is overestimated, whereas with the second (psychometric function relating percentage of "up" reports to the signed interval) bias contributions appear as opposite effects on rising and falling interval and can be factored out to obtain an accurate estimate of sensory noise. Estimates of 𝜎 obtained in this way are indeed smaller (Figure 3.4 top, red symbols) and arguably more reliable than with the first approach. An accurate estimate of sensory noise is important for studies that compare human performance to theoretical limits such as the Gabor tradeoff, [START_REF] Moore | Frequency difference limens for short-duration tones[END_REF][START_REF] Oppenheim | Human Time-Frequency Acuity Beats the Fourier Uncertainty Principle[END_REF], or to physiological data and models (e.g. [START_REF] Heinz | Evaluating Auditory Performance Limits: I. One-Parameter Discrimination Using a Computational Model for the Auditory Nerve[END_REF].

Effects of stimulus and response history

As pointed out earlier, the existence of stimulus history effects can be surmised from higher thresholds observed with roving. Likewise, the lower thresholds obtained using a fixed standard in a two-interval discrimination task (e.g. [START_REF] Bull | Recognition memory for pitch of fixed and roving stimulus tones[END_REF][START_REF] Nahum | From Comparison to Classification: A Cortical Tool for Boosting Perception[END_REF] can be interpreted either as a beneficial "perceptual anchor" effect of a fixed reference [START_REF] Durlach | Intensity Perception. I. Preliminary Theory of Intensity Resolution[END_REF][START_REF] Matthews | The effect of stimulus range on two-interval frequency discrimination[END_REF][START_REF] Nahum | From Comparison to Classification: A Cortical Tool for Boosting Perception[END_REF] or as a deleterious confusing or bias effect of a roving reference [START_REF] Mathias | Stimulus uncertainty and insensitivity to pitch-change direction[END_REF][START_REF] Mathias | A note about insensitivity to pitchchange direction[END_REF]. The latter was probed in recent studies [START_REF] Raviv | How recent history affects perception: the normative approach and its heuristic approximation[END_REF][START_REF] Raviv | Contradictory Behavioral Biases Result from the Influence of Past Stimuli on Perception[END_REF].

However, the methodology of prior studies limits their ability to conclude. Studies that model percent correct as a function of the magnitude of the absolute frequency step (log(|Δ𝑓/𝑓|)) conflate bias with sensory noise. They cannot distinguish between a history-dependent sensory noise (e.g. a deleterious effect of roving or beneficial effect of a fixed perceptual anchor), or a history-dependent bias (e.g. regression of new sensory traces to the mean of prior traces). Likewise, studies that model effects of stimulus but not response history miss the opportunity to factor out that source of variance and risk producing misleading estimates of sensory history effects due to dependencies between the two factors. In contrast, our methods allow us to control both for stimulus and response history, and indeed we find evidence for both.

We found a significant and positive contribution of stimulus history for all subjects, except one for which the contribution was not distinguishable from zero (Figure 3.4C).

We also found a contribution of response history that was significant for all subjects, and with a sign that depended on the subject (Figure 3.4D). A possible explanation is that near threshold subjects adopt a guessing strategy (conscious or unconscious) that takes into account their previous response, and that this strategy is subject-dependent.

For example, a subject might try to avoid a series of identical responses, judged unlikely, or else stick to the same decision as was made on the previous trial in the absence of a strong sensory cue to decide otherwise. Systematic bias was also subjectdependent (Figure 3.4B). As we pointed out, the factors stimulus and response history are mutually dependent, and the variance of one is likely to be absorbed by the other unless both are included in the model. A model including both factors was superior for all subjects to a model containing only stimulus history (Figure 3.3), and omitting response history strongly affected estimated weights 𝛼 of stimulus history (Figure 3.5). Thus, including both factors leads to a more accurate estimate of the contribution of stimulus history.

Sensory integration

Once the confounding effect of response history has been controlled for (Full model), the contribution of prior stimulation appears to be positive (assimilative) for all subjects but one for which it did not differ from zero. One interpretation is that an internal representation of the interval on that trial is integrated with that of the previous interval. A representation of frequency change by Frequency-Shift Detectors was hypothesized by Demany and Ramos [START_REF] Carcagno | Frequency-shift detectors bind binaural as well as monaural frequency representations[END_REF][START_REF] Demany | Tuning properties of the auditory frequencyshift detectors[END_REF][START_REF] Demany | Implicit versus explicit frequency comparisons: Two mechanisms of auditory change detection[END_REF]2005;[START_REF] Demany | The slow formation of a pitch percept beyond the ending time of a short tone burst[END_REF]. Another is that internal representations of the two frequencies that determine the interval associated with a trial are affected by those of previous tones. These two hypotheses are compatible with the same model of Eq.

(3.3), so we cannot distinguish them on the basis of the data.

Integration across trials might be due to an inability to rapidly discard past sensory traces and follow fast change (sluggishness). Alternatively, it could reflect a mechanism of temporal integration or evidence accumulation designed to counteract sensory noise, or to smooth out irrelevant stimulus fluctuations. Sensory integration is an effective way of reducing noise in stimulus representations when the world tends to remain constant [START_REF] Burr | Vision: Efficient Adaptive Coding[END_REF][START_REF] Cicchini | Compressive mapping of number to space reflects dynamic encoding mechanisms, not static logarithmic transform[END_REF], i.e. when stimulus changes are small in comparison to the noise fluctuations in internal representations.

Here, all frequency changes were near threshold for pitch discrimination, possibly promoting greater integration. The weight of the interval preceding a trial was indeed quite large, 20% on average (Figure 3.4). An interesting question is whether this weight might change with the statistics of frequency changes preceding each trial.

There is some evidence that the threshold elevation due to roving is larger for an intermediate than a large frequency range [START_REF] Matthews | The effect of stimulus range on two-interval frequency discrimination[END_REF]. The weight of prior sensory evidence is also expected to increase with decreasing salience of sensory evidence within the current trial. As an extreme example, the direction of pitch change between ambiguous stimuli (Shepard tones spaced by half an octave) was found to be almost entirely dependent on prior stimulation [START_REF] Chambers | Perceptual hysteresis in the judgment of auditory pitch shift[END_REF]. It has been suggested that updating of the perceptual weight of previous observations might occur on a rapid time scale, according to a process that can be modeled as a Kalman filter [START_REF] Burr | Vision: Efficient Adaptive Coding[END_REF]. It has also been suggested PART I. CHARACTERIZATION OF SENSORY VARIABILITY Sensory integration has an assimilative effect, as if the representation of an interval were attracted towards that of the previous interval(s). This differs from adaptation effects, where past stimuli bias the perception of following stimuli in the opposite direction [START_REF] Gibson | Adaptation with negative after-effect[END_REF]. [START_REF] Alais | Auditory frequency perception adapts rapidly to the immediate past[END_REF] found such negative aftereffects when listeners had to detect continuous, directional frequency modulations (sweeps) in a series of modulated and non-modulated tones. It is still unclear which types of perceptual traits are dominated by positive assimilation or by negative aftereffects, and in which conditions [START_REF] Cicchini | Guest Editorial: On the Possibility of a Unifying Framework for Serial Dependencies[END_REF]. It has been suggested that naturally stable stimulus attributes be prone to assimilation, while naturally changeable attributes be subject to adaptation (Taubert et al., 2016a). The intervals presented in our study were sampled around listeners' thresholds and rarely exceeded ±2 semitones, whereas Alais et al. used frequency sweeps with amplitudes ranging from 0 to ±3 octaves.

Differences between subjects

Thresholds differed widely across subjects (Figure 3.2, open symbols) as found in previous studies [START_REF] Amitay | Auditory frequency discrimination learning is affected by stimulus variability[END_REF][START_REF] Kidd | Individual differences in auditory abilities[END_REF][START_REF] Micheyl | Influence of musical and psychoacoustical training on pitch discrimination[END_REF]. Using the Full model, subjects were also found to differ in the magnitude and sign of the systematic bias (Figure 3.4B), the magnitude and sign of the previous response factor (Figure 3.4D), and the magnitude of the previous stimulus weight (Figure 3.4C). After factoring out these effects, internal noise (Figure 3.4A) also differed between subjects by an order of magnitude, which quashes any speculation that differences in pitch discrimination ability result only from differences in ability to ignore trial history. The weight of interval 𝑠 𝑛-1 ranged from non-significant for subject 11 to 40% for subject 9, suggesting a difference in ability to "isolate" the current sensory trace from previous traces. [START_REF] Mathias | Stimulus uncertainty and insensitivity to pitch-change direction[END_REF] previously found that subjects differed in their susceptibility to frequency roving in 2AFC tasks. Those inter-individual differences might be linked to the differences we report here. It has been observed that some subjects can perceive a pitch change but have difficulty assigning a direction to it [START_REF] Mathias | Stimulus uncertainty and insensitivity to pitch-change direction[END_REF][START_REF] Semal | Individual differences in the sensitivity to pitch direction[END_REF]. It would be interesting to extend our experimental and modeling framework to address this situation.

Limitations of our study

The frequency step preceding a trial was restricted to a few times the listener's threshold. This limits the applicability of the present findings to situations where the frequency steps are larger, e.g. roving over a wide range. We mainly consider history limited to the previous trial, for ease of exposition, and because our trial selection criterion based on response time (Methods) reduces the number of longer sequences.

In any case, because we used only 4 interleaved tracks, interval sizes in trial 𝑛 and trial 𝑛 -4 are highly correlated which limits our ability to assess the influence of a deeper history. We considered only a linear model (Eq. (3.3)). It is possible that choice probability is better predicted by a non-linear transform of the factors, in which case our linear model captured the best linear approximation of this dependence. In particular, we might expect interactions between factors, for example a stronger weight of response history when stimulus evidence is weak, or an increase in sensory noise with roving due to confusion. Other factors might conceivably affect responses, for example absolute frequency. A systematic exploration of all possible factors, transforms, and interactions is tedious and prone to overfitting. For the same reason, we did not explore the likely hypothesis that model parameters vary as a function of time, for example due to adjustments of response strategy. Although testing for such a hypothesis and adjusting the model accordingly is theoretically feasible, it requires assumptions about the lifespan of a given set of parameters, and the number of data points available for each fit would be reduced, reducing confidence in parameter estimates. For simplicity, the model was therefore assumed to be stationary over the entire duration of the block.

Summary

This study investigated how responses in a sliding 2-AFC pitch discrimination task are affected by factors other than the stimuli to be compared, and in particular by the preceding pitch interval and the report made about this preceding interval. We found a significant influence of interval history, of assimilative nature for all subjects, suggesting that the sensory trace of each new stimulus might be integrated with the 120 PART I. CHARACTERIZATION OF SENSORY VARIABILITY memory trace of previous stimuli. We also found a significant influence of response history, with a sign that was subject-specific, that might reflect a conscious or unconscious response strategy based in part on the previous response. Because the two factors were correlated (the previous response was affected by the previous interval) a model that contains only one would have incorrectly estimated the weight of the other. In particular, ignoring response history would have led to misleading conclusions with respect to stimulus history effects. Factoring out effects of interval and response history as well as systematic bias (also subject-dependent) led to an estimate of sensory noise that was smaller (and arguably more reliable) than that obtained with a simpler model, or from the measure of a pitch discrimination threshold. The level of sensory noise varied widely across subjects, suggesting that perceptual acuity was highly subject-dependent, as suggested by previous studies.

Subjects also differed in the weight assigned to the previous interval (suggesting differences in ability to "isolate" the current interval), and response (suggesting differences in ability to resist the influence of previous decisions). Future work may clarify if these context effects occur similarly in more traditional two-interval tasks. To obtain these results we used several methodological refinements (choice psychometric function, continuous tone series, interleaved tracks, model including response history and bias) that may be of use in future studies.

Part II. Relating sensory variability to brain state fluctuations

Having examined variations in behavioral responses in a sensory discrimination task, we now ask how much of these variations can be attributed to variations of brain state measurable by EEG.

We will search for long-term effects, in which a threshold estimate is partly predicted by EEG features on a long time scale, and for hypothetical trial-by-trial effects, in which the response on a specific trial is partly predicted by a transient feature in the EEG. In doing so, we will restrict the search to the EEG signal prior to stimulation, to make sure that these "predictive" EEG features are not affected by the response (either sensory or behavioral).

EEG is a high-dimensional signal, and the number of potentially predictive features is large. To restrict the search we first identify EEG features that we expect to be informative, based on the literature or on the intrinsic structure we observe in our EEG data. We will later consider methods to determine relevant features automatically in a data-driven fashion. This chapter is dedicated to the characterization of brain state as it can be measured from ongoing EEG, and to the characterization of state fluctuations. The goal will be to explore the intrinsic structure of the EEG and describe typical activity patterns that may be associated with particular states.

Measuring brain states with EEG

In the literature, brain state can take different meanings, one of the most used referring to the level of arousal, i.e. dissociating awake and anesthetized states. Our operational definition of brain state is broader: it is any combination of EEG-derived variables that is predictive of the response to an upcoming stimulus. The state at a given moment will then correspond to a point in a state space whose dimensions PART II. RELATING SENSORY VARIABILITY TO BRAIN STATE FLUCTUATIONS correspond to the descriptive variables, termed state features, or state dimensions, sometimes grouped in a vector representation that allows algebraic manipulations.

The values taken by the state features at a given time correspond to the coordinates of the point at that time. From moment to moment, features will vary so that the point will move and describe trajectories within the state space. The challenge is to find adequate state features so that states that are associated with different responses to identical stimuli fall in distinct regions, while states associated with similar responses cluster together in a single region of the state space.

Determining adequate state features rises several questions. One pertains to the lifespan of brain states: On what time-scale should state features be measured? The answer may differ depending on what aspects of behavior we are trying to account for (e.g. individual responses or local threshold). The choice of the size of the time window in which they are computed will in any case constrain the number and the nature of possible descriptive features. For instance, one needs a window of at least two cycles to accurately detect an oscillating signal, so the size of the window will impose a minimum frequency for the brain oscillations whose features, like amplitude and phase, can be measured. The envelope of such oscillation might in turn be modulated at any slower rhythm, and the amplitude of the modulation might constitute a feature of brain state when it is measured on a longer time scale.

Once a typical state duration has been established, a major problem that arises when looking for state features in continuous EEG data is related to the highdimensionality of the signal. Imagine we would like to describe any 1-s segment of EEG as corresponding to one brain state. The simplest way to define brain state without losing any information contained in the signals would be to concatenate the value of the electrical potentials measured at all sites in all time samples into a long feature vector. If the EEG is recorded at, say, 64 sites and a sampling frequency of 1 kHz, any 1-s segment contains 64,000 data points. In other words, if we were to use each point as a state feature, we would have to deal with a 64,000-dimension state space, which would be much too large in relation to the number of different brain states we expect to describe. In such a large space, all encountered states would be completely isolated, making any clustering impossible.

It is unlikely that every detail of the signals is useful . Instead, it is likely that useful information is coded redundantly in the feature vector representing the measured EEG. A more useful description likely contains a much smaller number of variables computed from the original set of signals. Several strategies can be adopted to select a small number of EEG-derived state attributes. Most feature extraction methods involve some combination of linear processing (e.g. spatial and/or temporal filtering, Fourier transform) and non-linear demodulation (e.g. to measure power or correlation). They may also involve selection of a subset of quantities (e.g. linear components, or Fourier coefficients) to obtain a state space representation of lower dimensionality.

Linear spatial filters are quite appealing for EEG because sensor signals can be well modeled as linear source mixtures. The EEG is a set of electrical potentials recorded from multiple positions on the scalp. Due to the superposition of potentials produced by different neural sources at the recording sites, the measured signals reflect an attenuated and spatially mixed version of the currents generated by sources in the brain [START_REF] Buzsáki | The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes[END_REF]. They are thought to mainly capture the naturally synchronized activity of cortical pyramidal cell populations, which have a favorable alignment. During recordings of EEG activity, each sensor records a weighted sum of the activity generated by multiple brain sources. That being the case, it is reasonable to combine these signals linearly, with appropriate weights, with the hope of enhancing a particular subset of sources relative to others. A set of sensor weights corresponds to a linear spatial filter for the EEG data and can be optimized to satisfy a given criterion. Finding appropriate weights with no or little knowledge about the sources is the problem of Blind Source Separation (BSS) and can be addressed using several multivariate signal processing algorithms that optimize different criteria, the most well-known being probably Principal Component Analysis (PCA) [START_REF] Jolliffe | Principal Component Analysis and Factor Analysis[END_REF], which decomposes a dataset into uncorrelated components ordered by decreasing variance, and Independent Component Analysis (ICA) [START_REF] Hyvärinen | Independent Component Analysis[END_REF][START_REF] Hyvärinen | Independent component analysis: recent advances[END_REF], which finds statistically independent components. The methods we use in this chapter rely on two other algorithms, Canonical Correlation Analysis (CCA) and Joint-Decorrelation (JD), that I will present along the following sections. We use 128 PART II. RELATING SENSORY VARIABILITY TO BRAIN STATE FLUCTUATIONS these as ways to reduce the dimensionality of the brain state space by going from an experimentally-defined number of sensors to a reduced number of components with interesting properties. The method presented in the first section (4.1) aims for components that are predictive of activity occurring after a fixed temporal lag. The rationale for doing so is that a feature that has power to predict subsequent EEG signals is a plausible candidate for a feature predictive of behavior. As a result, we mainly find self-predictive components, that is, components that vary either slowly or periodically. In the second section (4.2), we target components with a narrowband frequency spectrum and identify a rich variety of signals oscillating at various speeds.

Auto-predictive patterns in EEG signals

The aim pursued in this section is to find patterns of EEG signals that predict different or similar upcoming patterns. The rationale for this is that such predictive patterns, if they exist, may reflect reproducible aspects of brain dynamics associated to particular and relatively sustained brain states.

The analyses presented in the following pages are built on the technique of CCA. This technique allows to reveal correlations existing between two different sets 𝑋 and 𝑌 of multivariate observations. The variables within each set can be linearly combined to form so-called components. CCA will find the pair of components, one for each set, that have maximal correlation with one another. More than that, it will find as many independent pairs as can be obtained from these two datasets, ordered from the most to the least correlated [START_REF] Hardoon | Canonical Correlation Analysis: An Overview with Application to Learning Methods[END_REF][START_REF] Hotelling | Relations Between Two Sets of Variates[END_REF]. In our particular approach, CCA was used to reveal correlations that exist between features 𝑋 of EEG signals at a time point 𝑡 and features 𝑌 of the same signals at a time point 𝑡 + Δ𝑡. If such correlations were found, they indicated that EEG signals are partly predictable from preceding signals. This approach has some similarity with modeling EEG as a multivariate auto-regressive process, an approach that has been used quite repeatedly to characterize continuous brain activity [START_REF] Anderson | Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks[END_REF][START_REF] Gersch | Parametric time series models for multivariate EEG analysis[END_REF][START_REF] Kuhlmann | Tracking electroencephalographic changes using distributions of linear models: application to propofol-based depth of anesthesia monitoring[END_REF][START_REF] Ogawa | An application of autoregressive model to pattern discrimination of brain electrical activity mapping[END_REF][START_REF] Pardey | A review of parametric modelling techniques for EEG analysis[END_REF]. A major difference is that auto-regressive modeling usually yields a prediction of the entire sensor signals from the past of all these signals, whereas our CCA approach yields one or multiple pair-by-pair prediction(s) of a single EEG component based on the past of a single component. To perform CCA, we used an algorithm implemented in MATLAB by Alain de Cheveigné and available in the Noise Tools toolbox * .

The analyses were performed on the EEG data from 17 participants (3 pilots and 14 from the main experimeint), collected while they were performing the previously introduced frequency discrimination task (see Part I). As a reminder, the subjects were presented with a series of 100-ms pure tones varying in frequency and were asked to report after each tone the direction of the pitch change, the size of the pitch intervals being adjusted by an adaptive procedure targeting a 75%-correct accuracy level. Each subject performed a total of 1080 trials in a single block, which lasted between 19 and 28 minutes depending on the subject's reaction time and their occasional self-paced breaks.

The EEG was recorded using an Active-Two (BioSemi) system with 72 channels, including 64 channels positioned according to the standard 10/20 layout, 2 channels positioned at mastoid sites (M1, M2) and 6 electrooculography (EOG) channels (positioned at IO1, IO2, SO1, SO2, EO1 and EO2). The acquisition sampling rate was of 2.048 kHz. Data preprocessing was performed using the Noise Tools toolbox and, unless otherwise stated, comprised the following successive steps: (1) filtering out 50-Hz power line noise by convolving signals with a 20-ms square window (nt_smooth);

(2) applying an anti-aliasing low-pass filter and down-sampling from a 2048-Hz to a 128-Hz rate (nt_dsample); (3) robustly subtracting a 10 th order polynomial trend (nt_detrend); (4) removing sensor-specific artifacts (nt_star; de Cheveigné, 2016) (5) linearly regressing out 4 ocular components identified from 6 EOG sensors (nt_tsr); The various versions of the analysis reported hereinafter differ in the variables that are selected to form the two sets of features 𝑋 and 𝑌 analyzed by CCA.

CCA of time-lagged channel signals

In this first analysis, the features that are being correlated are the instant voltage signals obtained after preprocessing of the signals recorded at all sensor sites:

𝑿(𝑡) = [ 𝑥 1 (𝑡) ⋮ 𝑥 𝑁 𝑐 (𝑡) ] and 𝒀(𝑡) = 𝑿(𝑡 + 𝛥𝑡) (4.1)
where 𝑁 𝑐 is the number of EEG channels. We are thus looking for two EEG spatial filter vectors 𝑾 𝑿 = [𝑤 𝑋,1 … 𝑤 𝑋,𝑁 𝑐 ] and 𝑾 𝒀 = [𝑤 𝑌,1 … 𝑤 𝑌,𝑁 𝑐 ] , each yielding two EEG components 𝐶 𝑋 = 𝑾 𝑿 𝑿 and 𝐶 𝑌 = 𝑾 𝒀 𝑿. The CCA performed will optimize the pair (𝑾 𝑿 , 𝑾 𝒀 ) in order to maximize the correlation between 𝐶 𝑋 (𝑡) and 𝐶 𝑌 (𝑡 + Δ𝑡).

Of course, the results obtained will depend on the lag Δ𝑡 separating the two components being correlated. We expect to find significantly correlated components at time lags that are shorter than the lifespan of existing brain states. The evolution of maximized correlation when Δ𝑡 increases may therefore inform us about the typical duration of brain states. Figure 4.1 shows results of this analysis when performed on the recordings of EEG data measured on subjects performing the auditory task presented in Part I, lasting between 19 and 38 minutes depending on the subject. As CCA is prone to overfitting, high correlation coefficients may represent spurious correlations that happen by chance and get automatically detected by the algorithm.

To discard this possibility, each CCA was performed on one half of the recording to optimize spatial filters and correlation coefficients of the corresponding components were computed on the other half of the data. On each recording, 150 CCAs were performed, each for a different value of the lag Δ𝑡 (horizontal axis) ranging from 10 milliseconds to 10 minutes (600 s). Correlation coefficients were then averaged over all 17 subjects. Each line on the graph corresponds to a fixed CCA pair rank. Because the component (training) and the other that was used to assess the correlation (test).

To reduce the impact of slow signal drifts on the CCA, it is helpful to apply highpass filtering beforehand to remove low-frequency activity. The previous analysis was repeated after passing the data through high-pass filters with various cutoffs, allowing to reveal components with various spectral profiles. The higher the cutoff frequency of the filter, the shorter the lifespan of the components that can be revealed. The Examination of the first-rank pairs of components found at these specific lags reveals that these remarkable correlations arise from cyclic activity patterns. This quasi-periodicity makes these components partly self-predictive, which explains why they are found by CCA. Consistently, the associated components 𝐶 𝑋 and 𝐶 𝑌 have again respectively. The first is what can be called an infra-slow oscillation, with a power spectrum that peaks around 0.1 Hz. Oscillations with a similar frequency were previously reported [START_REF] Girton | Observation of very slow potential oscillations in human scalp recordings[END_REF][START_REF] Trimmel | Occurrence of infraslow potential oscillations in relation to task, ability to concentrate and intelligence[END_REF]. It is not clear however whether these typical rhythms are generated by neural activity or if they are related to other physiological phenomena like a hemodynamic rhythm [START_REF] Nikulin | Monochromatic Ultra-Slow (~ 0.1 Hz) Oscillations in the human electroencephalogram and their relation to hemodynamics[END_REF]. The periodicity of the second component is close to 85 cycles per minutes and could reflect cardiac activity, which would explain why this signal is only weakly represented in the channel signals, as indicated by the scalp topography. The third component is not as robustly periodic but clearly looks like theta-band activity.

The fact that different high-pass cutoffs allow to reveal cyclic components with different periods may raise one concern: are these oscillations an artifact created by the filtering process? This can be answered by looking at the time-courses of the fullband version of these components (panels (C) of the corresponding figures). The fullband component signals may be obtained by applying to the full-band (i.e. unfiltered in the time-domain) channel signals the spatial filter provided by the CCA of the highpass filtered data. It can be seen in the figures that the oscillatory patterns are genuinely present in the full-band signal, although superimposed on slower variations. The impact of the high-pass cutoff is in fact quite understandable: if it is too low, CCA results are dominated by different components with low-frequency trends and higher self-correlations; if it is too high, the oscillation gets filtered out. The activity of sweat glands produces galvanic skin potentials and can induce slow drifts of the EEG. The application of the CCA to full-band data could therefore benefit from short-circuit electro-dermal activity to suppress the signal drifts induced by changes in skin conductance. This typically requires to scratch or puncture the scalp skin at recording sites so that the contact gel can penetrate the epithelium [START_REF] Vanhatalo | Full-band EEG (FbEEG): an emerging standard in electroencephalography[END_REF]. The components that are selected by the analysis may serve to characterize stable, slowly evolving or cyclic brain states defined by the instant value of the signal or by the instant phase of the cycle. Such a description of brain state may or may not account for fluctuations of perceptual responses. It has been suggested that infra-slow oscillations reflect cyclic modulations of cortical excitability [START_REF] Vanhatalo | Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep[END_REF], which could in turn modulate perceptual functions. Along these lines, one study reported that infra-slow (< 0.1Hz) EEG fluctuations correlate with behavioral performance in a somatosensory detection task [START_REF] Monto | Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans[END_REF]. Although it is not clear whether they reflect purely neural activity, EEG components that oscillate around 1 Hz, like the component presented in Figure 4.4, may provide an indirect way of probing the influence of the cardiac cycle on auditory perception in our experiments where no electrocardiogram was recorded. Such influence was found on visual perception by [START_REF] Park | Spontaneous fluctuations in neural responses to heartbeats predict visual detection[END_REF] who reported that the amplitude of neural responses evoked by heart beats preceding the presentation of a visual stimulus around the detection threshold predicts whether the this stimulus will be consciously perceived.

Influences of the phase of more described EEG rhythms (e.g. theta or alpha) are also known and will be reviewed later (5.1.2.2).

CCA of time-lagged signal cross products

The previous analyses revealed EEG components that varied either slowly or periodically over time. As just explained, different brain states may be defined based on the instant value of such components, e.g. "up states" versus "down states". A stable brain state may also be reflected in other sustained traits, such as the power of an oscillating component, rather than in its instant value. The previous method can be extended in a way that allows components with slowly (or periodically) varying power to be detected.

A good proxy for a component's instant power is a local average of its squared signal. If this component is a linear one, i.e. if it is a weighted sum of the signals from different EEG channels, its square can be expressed as a linear sum of the pairwise cross-products of the channel signals:

(∑ 𝑤 𝑘 𝑥 𝑘 𝑁 𝑐 𝑘=1 ) 2 = ∑ ∑ 𝑤 𝑘 𝑤 𝑙 𝑥 𝑘 𝑥 𝑙 . 𝑁 𝑐 𝑙=1 𝑁 𝑐 𝑘=1 (4.2)
In the following analyses, to find components with slowly-varying power, the feature vectors 𝑋 and 𝑌 are being replaced by 𝑋 𝑞 and 𝑌 𝑞 that contain the signal cross-products from all existing pairs of channels:

𝑿 𝒒 (𝑡) = [ 𝑥 1 2 (𝑡) 𝑥 1 𝑥 2 (𝑡) ⋮ 𝑥 𝑁 𝑐 2 (𝑡) ]
and 𝒀 𝒒 (𝑡) = 𝑿 𝒒 (𝑡 + 𝛥𝑡).

(4.3)

To get a chance to reveal oscillatory components with slowly varying amplitude, CCA is performed on local averages 〈𝑿 𝒒 〉 and 〈𝒀 𝒒 〉 of these cross-products. These local averages may be computed in a sliding time window with duration 𝑇 and can be obtained by convolving the cross-product time series by a boxcar function Π 𝑇 of length 𝑇:

〈𝑿 𝒒 〉 (𝑡) = (𝑿 𝒒 * 𝛱 𝑇 )(𝑡) (4.4)
where

𝛱 𝑇 (𝑡) = { 1 if |𝑡| ≤ 𝑇 2 ; 0 if |𝑡| > 𝑇 2 .
(

The , then we have found two linear EEG components whose power should be well correlated with a lag Δ𝑡.

To demonstrate the capacity the proposed analysis to reveal components with slowly varying power we first applied it to synthetic data simulating a 20-minute predictive components that vary slowly over time or, when the signals have been highpass filtered with an appropriate cutoff, periodic components with a cycle duration close to Δ𝑡. When performed on the channel signal squares and cross-products, CCA can reveal components with a slowly-varying power, provided the data has been carefully cleaned from artifacts and high-pass filtered, and provided CCA is performed on a reasonable subset of components to avoid overfitting. All these components may serve to describe brain states on shorter or longer time-scales, taking their instant value, or their local power, as a descriptive feature. This approach using CCA can possibly be extended to include other types of features in the variable vectors 𝑋 and 𝑌, taking the precaution to limit overfitting using preliminary dimensionality reduction methods. For instance, they could incorporate the sensor signals at multiple time samples in a local time window. This way, CCA could compute spectro-temporal filters that extract predictive signals. Another useful implementation that we will present and use on the occasion of the next subsection consists in defining one of the datasets as sensor signals (𝑿) and the other as their cross-products (𝑿 𝒒 ), so as to evidence potential phase-amplitude coupling between components oscillating at different speeds.

Brain oscillations and brain state

Lots of studies investigate how an event, such as a stimulus or a response, affects ongoing or latent brain oscillations, but these ongoing oscillations may as well affect the processing of arriving inputs. A whole part of the literature, that will be reviewed in a later chapter of this dissertation (Chapter 5, section 5.1), has been concerned with the effects of both the power and the phase of ongoing oscillations on the processing of visual, auditory and tactile stimuli. These oscillatory features may well form relevant variables for the description of brain state in our approach to sensory variability. In particular, whether some brain source is, at a given time, operating in an oscillating mode or in a non-rhythmic mode may constitute an important feature of brain state. Within periods of oscillating activity, the phase of the ongoing oscillation may on top of that constitute an additional feature. The synchrony between PART II. RELATING SENSORY VARIABILITY TO BRAIN STATE FLUCTUATIONS two oscillating sources may also vary over time and take part in the definition of brain state.

Before even trying to relate ongoing oscillations to subsequent perception, it can be useful to study the structure and dynamics of oscillating activity in the brain, identify the most salient oscillatory patterns, and question their relevance regarding the account of sensory variability based on the speed of their fluctuations. How many independent oscillatory sources can be described from EEG signals and how changeable is their activity during the performance of auditory tasks? Can brain states defined from oscillatory features be clearly clustered into separate categories, corresponding to distinct oscillating modes, or is their distribution rather unimodal?

This section offers to explore the actual oscillatory content of EEG signals recorded during the execution of auditory tasks and to address these questions.

Analysis of brain oscillations in EEG data is often hindered by a low signal-to-noise ratio. Often, the adopted solution appeals to applying a time-domain filter that suppresses power at frequencies below and above the band of interest (band-pass). A resulting pitfall is that the filter may introduce artifacts in the signal, such as spurious oscillations that did not exist in the initial time series, like those present in the filter's impulse response (ringing artifacts), as well as delays and spreads that blur the real time-course of the oscillation. In particular, application, in some cases, of acausal filters, e.g. zero-phase filters, shifts backward the correlates of isolated events and casts doubt on the causality of uncovered effect. As for ringing artifacts, their existence questions the interpretation of some reported effects as being attributed to genuine brain oscillations rather than to transient events. It is not uncommon, for instance, to see reports of spectrograms highlighting an increase of power in the delta band after the onset of a stimulus and interpreted as an ERS, although it may last shorter than an actual delta cycle. In fact, this is likely to correspond to a transient ERP rather than to the amplification of an ongoing delta oscillation.

The analyses presented in this section are built on a multivariate signal decomposition technique that allows to reveal independent linear EEG components displaying visible oscillations without resorting to band-pass filtering in the time domain. This technique is a specific implementation of the more general JD technique.

It is explained in the following subsection.

Joint-decorrelation to reveal narrowband components

JD (de Cheveigné and Parra, 2014) is closely related to Common Spatial Patterns (CSP; [START_REF] Fukunaga | Introduction to statistical pattern recognition[END_REF][START_REF] Fukunaga | Application of the Karhunen-Loève Expansion to Feature Selection and Ordering[END_REF][START_REF] Koles | Spatial patterns underlying population differences in the background EEG[END_REF]. It allows to enhance signal-to-noise ratio of target activity by the means of optimized spatial filters. One possible and efficient implementation of JD relies on the jointdiagonalization of the covariance matrices of two sets of time-series. The first is typically the raw EEG data and the second set of time series is obtained from the first by a linear transformation in the time domain. This linear transformation operates as a "bias filter" which amplifies specifically the activity of interest, and hence represents a selection criterion.

To isolate activity stemming from oscillating sources, the criterion will be to maximize concentration of power in a narrow band of the frequency spectrum. This can be fulfilled using as bias filter a band-pass filter adjusted to the frequency domain of interest (de Cheveigné and [START_REF] De Cheveigné | Scanning for oscillations[END_REF][START_REF] Nikulin | A novel method for reliable and fast extraction of neuronal EEG/MEG oscillations on the basis of spatio-spectral decomposition[END_REF]. Since JD is quick to compute, it is very easy and relatively fast to repeat it using multiple bias filters with different center-frequencies, scanned over the entire spectrum. Frequency regions containing narrowband activity can then be located by visual inspection of a raster plot of the power spectra of the best components extracted by each JD, as the one shown in Figure 4.9.

Scanning the whole frequency spectrum for narrowband activity reveals the presence of interesting targets in multiple bands. Each line of the raster plot displays the color-coded power spectrum of the firstrank component extracted by a JD analysis. The center frequency of the bandpass bias filter is varied in each analysis, from the lowest (first line) to the highest (last line). The presence of narrowband components at a particular frequency manifests as a concentration of power in a narrow region within a line, at locations that are shifted along the horizontal frequency axis as the bias frequency increases downward along the vertical axis. Adapted from de Cheveigné and [START_REF] De Cheveigné | Scanning for oscillations[END_REF].

In most of the recordings analyzed during this thesis, the technique revealed narrowband components at distinct frequency bands. The time-course of these components displays visible rhythmicity despite not being filtered in the time-domain.

The location and orientation of their sources can be approximately inferred from the topography of their projection onto individual sensors. Examples of theta, alpha and high-beta components can be visualized in Figure 4.10.

Examples of narrowband components extracted by JD. Time-courses (left column), spectrograms (middle column) and projection topographies (right column) of a theta (6-Hz, top row), an alpha (10-Hz, middle row) and a high-beta (30-Hz, bottom row) component. Adapted from de Cheveigné and [START_REF] De Cheveigné | Scanning for oscillations[END_REF].

Within a typical EEG frequency band, displacing slightly the bias frequency yields different components, as evidenced by their different waveforms and topographies.

Besides, in multiple cases, several of the ordered components obtained by JD will display narrowband activity at the bias frequency. This suggests that several brain sources oscillate with a similar rhythm. The time-course of their envelope may be correlated or not, e.g. depending on their reciprocal connectivity and on their shared inputs. In those cases, each component should not be regarded as corresponding to a single source. Rather, it can reflect a linear mixture of the activity of these distinct sources. Together, these narrowband components build a subspace of brain activity characterized by high power in a narrow frequency region around a specific frequency.

It can be seen from Figure 4.11 to Figure 4.14 how numerous distinct components can be recovered by JD from the same EEG signals even if only in the high-alpha/low-beta frequency region. Different decompositions were performed, at four nearby bias frequencies (11 Hz,11.75 Hz,12.5 Hz,13 Hz). Each reveals one or several components whose power spectrum peaks near the bias frequency and provides a specific subspace of activity whose dimensionality is equal to the number of retained components. The four subspaces are not necessarily orthogonal and may partly overlap. them in spontaneous local field potentials recorded in the auditory cortex of awake rhesus monkeys and suggested that EEG has a hierarchical organization, with the phase of delta-band activity modulating the amplitude of theta-band activity whose phase, in turn, modulates the amplitude of gamma activity. Other studies reported theta-gamma phase-amplitude coupling in task-related EEG activity in humans [START_REF] Demiralp | Gamma amplitudes are coupled to theta phase in human EEG during visual perception[END_REF][START_REF] Schack | Phase-coupling of thetagamma EEG rhythms during short-term memory processing[END_REF]. Coupling between infra-slow (< 0.2 Hz) and higher-frequency (1 -100 Hz) activity during sleep [START_REF] Vanhatalo | Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep[END_REF] and during a somatosensory detection task [START_REF] Monto | Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans[END_REF] were also reported. Other types of coupling between distinct oscillatory sources, like phase locking or amplitude envelope correlation (Buzsaki, 2006, pp. 107-109), as well as what was called "nested synchrony" [START_REF] Monto | Nested synchrony-a novel cross-scale interaction among neuronal oscillations[END_REF], i.e. modulation of the synchrony among a higher rhythm by the phase of a slower rhythm, may also exist. If this is the case, the description of brain state in terms of oscillatory activity may come down to fewer descriptive features than suggested by the richness in distinguishable components found previously.

The canonical correlation analysis approach gives us an opportunity to scan EEG signals for this kind of structures. Several metrics have been proposed to assess phaseamplitude coupling of rhythms at two different frequencies [START_REF] Cohen | Assessing transient cross-frequency coupling in EEG data[END_REF][START_REF] Penny | Testing for nested oscillation[END_REF], but they are usually tested on arbitrarily chosen signals that have been band-pass filtered in the frequency bands of interest, and most often channel signals.

However, cross-frequency coupling found in channel signals likely reflects crossfrequency coupling within or between oscillatory brain sources that project onto several channels and may be better captured as linear components. In fact, such coupling should appear as a correlation between the signal of some linear component and some quadratic component capturing the instant power of the same or another linear component, which could be automatically detected by some appropriate CCA.

We demonstrate this using synthetic data again, as shown in Application of this analysis to our EEG data did not succeed in revealing such cross-frequency coupling, maybe because such coupling was not present in this data, or not dominant enough. It would be interesting, in order to validate its interest for analysis of real data, to test it on data where cross-frequency coupling has been evidenced [START_REF] Canolty | High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex[END_REF][START_REF] Demiralp | Gamma amplitudes are coupled to theta phase in human EEG during visual perception[END_REF][START_REF] Schack | Phase-coupling of thetagamma EEG rhythms during short-term memory processing[END_REF].

Clustering of brain states based on oscillatory features?

Is the distribution of brain states continuous, or do they "cluster" into clearly distinguishable categories, e.g. "high-" and "low-power" states? How fast do these oscillatory features change, i.e. what is the lifespan of a "high" or a "low" state, whether they are separated by abrupt or continuous transitions?

Several narrowband MEG components found by JD peaking around 9 Hz seem to alternate between very distinguishable intervals, some characterized by highamplitude activity and others where the component is silent (Figure 4.16, from de Cheveigné and [START_REF] De Cheveigné | Scanning for oscillations[END_REF]. This rather clear separation of interval types manifests in the distribution of the relative alpha-band power measured in all intervals, which reveals two modes. Some of the oscillating EEG components we found in the pitch discrimination task data also displayed bimodal power distribution, although the two modes were not as markedly separated as in the MEG example of [START_REF] Freyer | Bistability and non-Gaussian fluctuations in spontaneous cortical activity[END_REF]. However, it is not totally clear whether these and our observations really reflect the existence of clearly clustered brain state categories, i.e. states of high alpha power and states of low alpha power, or whether they reflect beating created by the superposition of distinct oscillations with a similar frequency. This motivates the use of multivariate techniques to analyze linear combination of components in the oscillatory subspace defined by this set of oscillatory components, as we will do in the next chapter (see section 5.2). Much evidence for the fact that the variability of physiological and behavioral responses to identical stimuli is explained by state fluctuations has already been reported. We will distinguish two parts of this literature: in the first set of studies and first section of this review, the cognitive state of the subject is manipulated by the experimenter, and consequences of these manipulations on perception are investigated; in the second section, studies of the effects of spontaneous brain state fluctuations on perception are presented.

Modulations by cognitive state

Attention, intentions, prior knowledge and expectations are high-level, cognitive factors that have been proposed to exert top-down effects on perceptual processes. We review here evidence that modulations of cognitive state induced by physical and mental context affect both neural and behavioral responses to external stimulation.

We present studies investigating the traces of this context in ongoing brain activity, and attempts to predict behavioral outcomes from pre-stimulus observations of brain signals.

Orienting of spatial visual attention

Covert direction of attention to a particular location of the visual field facilitates visual processing of a stimulus presented at this location, e.g. resulting in shortened reaction times for the detection of a target at the attended location [START_REF] Posner | Orienting of attention[END_REF].

Evidence supports that this benefit is not only due to changes in speed of processing, but that visual contrast is enhanced at the locus of attention [START_REF] Pestilli | Attention enhances contrast sensitivity at cued and impairs it at uncued locations[END_REF].

The neural correlates of selectively directing visuospatial attention have been considerably studied using intra-cortical single-cell and multi-unit recordings in macaques. Directing attention towards the receptive field of a sensory neuron in area V4 is associated with decreased low-frequency LFP activity in the proximity of this neuron [START_REF] Fries | Modulation of oscillatory neuronal synchronization by selective visual attention[END_REF], as well as with reduced noise correlations and reduced variability of the responses to a repeatedly presented stimulus [START_REF] Mitchell | Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4[END_REF].

In human studies, attentional shifts are associated with increases of alpha-band activity and decreases of blood oxygen level dependent (BOLD, recorded during functional magnetic resonance imaging) activity in retinotopic regions of the visual cortex corresponding to unattended locations, and with decreases of alpha-band activity and increases of BOLD activity in regions corresponding to attended locations [START_REF] Rihs | Mechanisms of selective inhibition in visual spatial attention are indexed by alpha-band EEG synchronization[END_REF][START_REF] Silver | Neural correlates of sustained spatial attention in human early visual cortex[END_REF].

As could be expected, these neural signatures are correlated with the behavioral effects of attention. For instance, an index of the lateralization of occipital alpha EEG activity was found to be correlated with reaction times in a visual detection task. More precisely, detection of a target presented in the right hemifield was faster in trials where alpha activity was higher over right occipital regions than over left occipital regions, and reversely for detection of a target in the left hemifield [START_REF] Thut | Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection[END_REF].

In an MEG study, performance in an orientation discrimination task was correlated with the levels of low-frequency (2-10Hz) phase resetting and suppression of alpha activity induced in the calcarine by a shift of spatial attention [START_REF] Yamagishi | Attentional changes in prestimulus oscillatory activity within early visual cortex are predictive of human visual performance[END_REF].

The amount of suppression of BOLD activity in visual cortex areas corresponding to unattended locations predicts accuracy when discriminating the orientation of the target [START_REF] Sylvester | Anticipatory suppression of nonattended locations in visual cortex marks target location and predicts perception[END_REF].
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Orienting of temporal attention

Accurate expectations about the timing of an upcoming stimulus are also beneficial for the processing of that stimulus. When the temporal predictability of a target increases because it is preceded by a cue with a constant interval, or because it is embedded in a rhythmical stream, detection thresholds are diminished, discriminability is improved, and reaction times are shortened [START_REF] Nobre | The hazards of time[END_REF].

For instance, when two test tones are separated by a rhythmic sequence of auditory distracters, comparison of their two pitches is more accurate if the second tone is presented in phase with the rhythmic flow than when it is presented out of phase [START_REF] Jones | Temporal aspects of stimulusdriven attending in dynamic arrays[END_REF]. Similar effects are found in the visual modality, where a target presented after a rhythmic sequence of "entrainer" stimuli is more often detected if it is presented in phase with the entraining rhythm, compared to out-of-phase presentation [START_REF] Mathewson | Rescuing stimuli from invisibility: Inducing a momentary release from visual masking with pretarget entrainment[END_REF]. It was also suggested that auditory perception is entrained by purely high-level speech features [START_REF] Zoefel | Selective Perceptual Phase Entrainment to Speech Rhythm in the Absence of Spectral Energy Fluctuations[END_REF]. Even unconscious processing may be affected by such temporal orienting of attention. For instance, semantic priming by a subliminal cue requires that the prime be presented in a time-window coinciding with the allocation of attention based on the expected timing of a target [START_REF] Naccache | Unconscious masked priming depends on temporal attention[END_REF].

It was proposed by [START_REF] Large | The dynamics of attending: How people track time-varying events[END_REF] that temporal expectations are supported by internal oscillations, which can be entrained to external rhythms. More recently, the entrainment of low-frequency electrophysiological rhythms of the brain by external rhythms was observed in many studies. When macaques are presented with regularly spaced auditory stimuli in the delta frequency-band, their EEG delta rhythm entrain to the stimuli, leading to a non-uniform distribution of the delta phase at stimulus onset [START_REF] Lakatos | An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex[END_REF]. If they are presented with two competing, periodic, auditory and visual streams, delta activity in a visual area (V1) entrains to that of the two streams which is being attended to [START_REF] Lakatos | Entrainment of Neuronal Oscillations as a Mechanism of Attentional Selection[END_REF]. Such entrainments were also found in humans using EEG. Visual stimuli with a periodicity of 10 Hz were found to entrain the alpha rhythm of the EEG recorded at a parietal site (Pz, [START_REF] Mathewson | Making waves in the stream of consciousness: entraining oscillations in EEG alpha and fluctuations in visual awareness with rhythmic visual stimulation[END_REF]. Low-frequency oscillations (from 0.5 to 8 Hz) can be entrained by auditory stimuli presented at regular intervals [START_REF] Zoefel | Detection of Near-Threshold Sounds is Independent of EEG Phase in Common Frequency Bands[END_REF], by the beat created by an amplitude-modulated auditory stimulus [START_REF] Nozaradan | Tagging the neuronal entrainment to beat and meter[END_REF], by the frequency-or amplitude-modulation of a continuous, auditory stimulus [START_REF] Henry | Entrained neural oscillations in multiple frequency bands comodulate behavior[END_REF][START_REF] Henry | Frequency modulation entrains slow neural oscillations and optimizes human listening behavior[END_REF], or by high-level features of speech [START_REF] Zoefel | EEG oscillations entrain their phase to high-level features of speech sound[END_REF]. When facing these results, it should be pointed out that the mere presence of regularly-spaced sensory responses and motor commands in brain activity, resulting from rhythmic stimulation, is in principle sufficient to enhance EEG spectral power at the frequency corresponding to the stimulus rate.

Persistence of oscillatory activity after the offset of periodic stimulation would indicate genuine entrainment, but to our knowledge, this has not been clearly established.

Crucially, behavioral observations indicate that these modulations of lowfrequency brain rhythms by external inputs are associated with modulations of behavioral performance in perceptual tasks. The phase of the externally entrained delta oscillations in V1 predicts reaction times of "oddball" (i.e. deviant stimuli) detection [START_REF] Lakatos | Entrainment of Neuronal Oscillations as a Mechanism of Attentional Selection[END_REF]. When parietal 12-Hz (alpha) activity is entrained by a stream of rhythmic visual stimuli, the phase of the oscillating activity at the onset of a visual target differs significantly between detected and undetected targets [START_REF] Mathewson | Making waves in the stream of consciousness: entraining oscillations in EEG alpha and fluctuations in visual awareness with rhythmic visual stimulation[END_REF]. There is also a correlation between the rate of audio gap detection and the phase of delta oscillations entrained by a modulated auditory stimulus [START_REF] Henry | Entrained neural oscillations in multiple frequency bands comodulate behavior[END_REF][START_REF] Henry | Frequency modulation entrains slow neural oscillations and optimizes human listening behavior[END_REF]. Detection rates of an auditory target embedded in a "cocktail party"-like background made of superimposed, naturalistic sounds are higher and reaction times shorter when delta activity power is higher, and both are further modulated, again, by the phase of the oscillation [START_REF] Ng | A Precluding But Not Ensuring Role of Entrained Low-Frequency Oscillations for Auditory Perception[END_REF].

These effects of neural phase-locking to external stimulation on perceptual performance could support that entrainment of brain oscillations by the temporal structure of the environment yields the neural basis for the temporal orientation of attention. Obviously, entrainment effects should depend on the reliability and relevancy of the expectations resulting from the temporal statistics. It has been proposed that sensory networks operate either in a "continuous mode" or in a "rhythmic mode" according to environmental conditions and task demand, in a way that optimizes processing of relevant stimuli. When there is no relevant temporal PART II. RELATING SENSORY VARIABILITY TO BRAIN STATE FLUCTUATIONS structure in the environment, a continuous mode in which low-frequency oscillations are suppressed allows for an even processing of unpredictable stimuli. On the other hand, when the timing of relevant stimuli is predictable, low-frequency activity is enhanced and phase-locked so as to align phases of high excitability in sensory cortices with the inflow of relevant inputs [START_REF] Schroeder | Low-frequency neuronal oscillations as instruments of sensory selection[END_REF].

Other forms of attentional selection

Other forms of covert attention may modulate perception. Attention may for instance favor inputs from one sensory modality against others. Within the auditory modality, inputs can be grouped into distinct objects or streams based on a number of cues (e.g. spatial information, timbre, etc.), and attention may be directed to one of the possible streams [START_REF] Shinn-Cunningham | Auditory selective attention[END_REF]. This attentional selection modulates the amplitude of the ERP evoked by the sounds [START_REF] Choi | Quantifying attentional modulation of auditory-evoked cortical responses from single-trial electroencephalography[END_REF], and the strength of this effect can predict the accuracy of judgments a subject makes on the attended stream, e.g. identifying the direction of its pitch contour [START_REF] Choi | Individual differences in attentional modulation of cortical responses correlate with selective attention performance[END_REF].

Selective auditory attention also results in enhanced entrainment of low-frequency MEG and EEG activity to the sound envelope of the attended stream. This effect is so robust that it has been successfully used to decode which of two competing speakers is being attended to [START_REF] Ding | Emergence of neural encoding of auditory objects while listening to competing speakers[END_REF][START_REF] Haghighi | A Graphical Model for Online Auditory Scene Modulation Using EEG Evidence for Attention[END_REF][START_REF] Mesgarani | Selective cortical representation of attended speaker in multi-talker speech perception[END_REF][START_REF] O'sullivan | Attentional Selection in a Cocktail Party Environment Can Be Decoded from Single-Trial EEG[END_REF].

Intentions, relevance and other values

Sensory processing appears to be highly modulated by top-down regulations related to intentions (i.e. goals), as it can be revealed when intention is manipulated through task instructions. A network of brain regions encompassing bilateral temporo-parietal junctions has been found to respond more strongly to visual and auditory events when those are task-relevant, compared to when they are not [START_REF] Downar | The effect of task relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study[END_REF]. Besides, BOLD activity patterns evoked by auditory stimulation within the auditory cortex are distinct between the execution of discrimination tasks and memory tasks [START_REF] Rinne | Task-dependent activations of human auditory cortex during pitch discrimination and pitch memory tasks[END_REF][START_REF] Rinne | Task-dependent activations of human auditory cortex during spatial discrimination and spatial memory tasks[END_REF]. Sound-evoked ERPs recorded with MEG also depend on the task being performed by the subject [START_REF] Sussman | Top-down effects can modify the initially stimulus-driven auditory organization[END_REF]. In addition to modulations related to their relevance for ongoing task, responses evoked by stimuli may undergo modulations by the reward they are momentarily associated with [START_REF] Ikeda | Reward-dependent gain and bias of visual responses in primate superior colliculus[END_REF], or by a momentarily associated emotional meaning [START_REF] Chammat Rohaut | Affective Modulation of Visual Processes[END_REF].

Modulations of evoked responses by task demand possibly involve rapid cortical plasticity and changes of neuronal receptive fields. Task-related changes of spectrotemporal receptive fields in ferret primary auditory cortex were previously reported [START_REF] Fritz | Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex[END_REF][START_REF] Fritz | Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks[END_REF]. In addition, changes in functional connectivity seem to happen when switching between tasks. For instance, in a motion discrimination task performed by macaques, the noise correlation between pairs of sensory neurons depend on current task instructions. More precisely, they depend on whether the instructions imply cooperative or competitive interactions between the two neurons [START_REF] Cohen | Context-dependent changes in functional circuitry in visual area MT[END_REF].

Contextual stimulation

Relational psychophysics [START_REF] Sarris | Relational Psychophysics in Humans and Animals: A Comparative-Developmental Approach[END_REF] is based on the assumption that stimulusresponse laws are not invariant, but that the subjective percept evoked by one and the same stimulus may depend on the statistical distribution of previous stimuli building a perceptual context termed frame of reference [START_REF] Sarris | Frame of Reference Models in Psychophysics: A Perceptual-Cognitive Approach[END_REF]. Influences of past stimulation can be divided into two antagonistic types of effects: priming, leading to assimilation of current percepts to past stimulation, and adaptation, leading to perceived contrast between current and past stimulations. Whether a stimulus will have a priming or contrastive effect on subsequent perception seems to depend on exposure duration and distance between the stimuli [START_REF] Klink | United we sense, divided we fail: contextdriven perception of ambiguous visual stimuli[END_REF].

Accounting for adaptation effects, a criterion shift rule states that short-term stabilization mechanisms tend to displace perceptual criteria toward the trace of preceding stimuli [START_REF] Warren | Criterion shift rule and perceptual homeostasis[END_REF]. These continuous adjustments give rise to sequential effects, where current responses are negatively correlated with preceding stimuli [START_REF] Petzold | Short-term and long-term frames of reference in category judgments: A multiple-standards model[END_REF].

Rapid modulations of neural responses by the statistical profile of past events are often observed in the so-called oddball paradigm, in which a rare deviant stimulus occurs from time to time within a sequence of regular standard stimuli. In cats, PART II. RELATING SENSORY VARIABILITY TO BRAIN STATE FLUCTUATIONS adaptation to an auditory stimulus repeating over time results within a few seconds in a decrease of neural responses in the auditory cortex which is specific to this stimulus, i.e. does not generalize to deviant stimuli (Ulanovsky et al., 2003). Similar representations of the regularities of preceding stimulation can be seen in human evoked response potentials which display a well-documented component called mismatch negativity [START_REF] Näätänen | Early selective-attention effect on evoked potential reinterpreted[END_REF][START_REF] Paavilainen | The mismatch-negativity (MMN) component of the auditory eventrelated potential to violations of abstract regularities: a review[END_REF]. This negative deflection of the evoked potential occurs between 200 ms and 260 ms after sound onset when the presented stimulus violates a detected regularity in a stream of sounds.

This particular response to the oddball may reflect the existence of more or less conscious expectations that the subject has built regarding the stimuli [START_REF] Paavilainen | The mismatch-negativity (MMN) component of the auditory eventrelated potential to violations of abstract regularities: a review[END_REF]. Some very strong expectations can also be created by statistical associations, when a specific cuing stimulus is systematically, or most of the time, followed by another specific stimulus. It has be shown that such an association between two possible cues and two possible orientations of a following, visual stimulus cause an anticipated activation, observable in MEG signals before the onset of the second stimulus, of the neural representation of this stimulus, and that the strength of this pre-stimulus activation predicts the ability of the subject to discriminate this stimulus against another one with a slightly different orientation [START_REF] Kok | Prior expectations induce prestimulus sensory templates[END_REF].

Conclusion

In summary, both physiological responses to stimuli and perceptual decisions can be affected by the sensory and cognitive contexts, which may be manipulated either by introducing statistical regularities or explicit attentional cues in the environment, or by providing task instructions. Some signatures of an internal representation of this context in brain activity have already been identified, and these traces may serve as predictors for the perception of upcoming stimuli. These signatures may sometimes appear in spontaneous activity during an anticipatory phase, e.g. spontaneous alpha activity patterns are modified when spatial attention is shifted towards a location of the visual field. Some of the already postulated relations between ongoing activity and upcoming perception still need some clarifications. In particular, the causal relation between phase of ongoing oscillations and perceptual performance needs to be addressed with explicit causal analyses. In other cases, internalization of the context appeared in evoked responses (e.g. the MMN), and it is not known whether spontaneous activity also contains traces of this context.

It should be noted that the mechanisms of the previously listed modulation factors may actually overlap. For instance, selectively directing attention to an auditory stream may involve discriminating between the spatial locations of the sources of competitive streams, which may recruit similar mechanisms as directing visuo-spatial attention. It is also possible that expectations created by statistical regularities, as well as internal strategies deployed for a specific task, simply reorient attention towards the most likely or most relevant events or features, leading to a form of attentional modulation of the sensory responses. A better knowledge of the relations between context-induced modulations of ongoing activity and perceptual decisions may shed some light on the underlying neural mechanisms and help clarify the relation between different context effects.

Modulations by ongoing brain state

The previous sub-section showed how cognitive factors can affect perception. In some cases, physiological, neural correlates of manipulating these factors have been identified in ongoing activity which can predict behavioral responses during perceptual tasks Here we will review physiological variables whose spontaneous fluctuations were shown to modulate responses to external stimuli.

Arousal

Transitions across stages of arousal in the sleep-wake cycle are accompanied by large changes in spontaneous electrical activity, reflecting different degrees of synchronization within neural populations. Neural responses to stimuli are highly dependent on these levels of synchronization. In synchronized states, where large population of neurons alternate synchronously between firing and silent activity periods, variability of evoked responses increases [START_REF] Edeline | The thalamo-cortical auditory receptive fields: regulation by the states of vigilance, learning and the neuromodulatory systems[END_REF][START_REF] Krause | Analysis of stimulus-related activity in rat auditory cortex using complex spectral coefficients[END_REF] and cortical activity is highly decoupled from auditory stimuli [START_REF] Marguet | State-dependent representation of amplitude-modulated noise stimuli in rat auditory cortex[END_REF] compared to desynchronized states, where neural activity is more PART II. RELATING SENSORY VARIABILITY TO BRAIN STATE FLUCTUATIONS decoupled and continuous. In the thalamus, most neurons of the auditory system have narrower receptive fields and higher frequency selectivity during slow-wave sleep than during wake [START_REF] Edeline | The thalamo-cortical auditory receptive fields: regulation by the states of vigilance, learning and the neuromodulatory systems[END_REF]. In the somatosensory cortex of rats, the patterns of activity evoked by a whisker deflection are more widespread and last longer during anesthesia than during quiet waking [START_REF] Ferezou | Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice[END_REF].

At first sight, it may seem difficult to link these observations with perceptual variability observed in awake subjects over the duration of an experiment. A connection could follow from the fact that within an awake state, local, cortical populations of neurons can go in a synchronized state very similar to what is observed globally during sleep [START_REF] Vyazovskiy | Local sleep in awake rats[END_REF]. It seems reasonable to infer that modulation of neural response by this local cortical sleep may affect behavior during perceptual tasks. Incidentally, local variations of synchronization levels have been suggested to form be neural basis of selective attention [START_REF] Harris | Cortical state and attention[END_REF]. Indeed, in awake primates, the cortical location representing an attended stimulus exhibit stronger desynchronization compared to areas representing unattended stimuli. Besides, the idea that top-down spatial attention operates through enhanced synchronization in retinotopic regions corresponding to unattended locations is consistent with the increase in low-frequency EEG power observed in these same regions (see 5.1.1.1).

Up-versus down-states, phase of oscillations

Within a synchronized state, fluctuations of the resting membrane potential between less depolarized (up-) and more depolarized (down-) states in turn alter sensory responses. In the rat somatosensory cortex, both sub-threshold and spiketrain activities differ between these states. In a down state, stimuli evoke smaller and shorter post-synaptic potentials as well as more action potentials [START_REF] Civillico | Spatiotemporal properties of sensory responses in vivo are strongly dependent on network context[END_REF][START_REF] Haslinger | Analysis of LFP phase predicts sensory response of barrel cortex[END_REF][START_REF] Petersen | Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex[END_REF][START_REF] Sachdev | Effect of subthreshold up and down states on the whisker-evoked response in somatosensory cortex[END_REF], and the spatial extent of depolarization propagation is larger [START_REF] Civillico | Spatiotemporal properties of sensory responses in vivo are strongly dependent on network context[END_REF][START_REF] Petersen | Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex[END_REF]. Possibly contributing to these effects, the threshold for action potentials was found to be lower in down-states compared to up-states [START_REF] Azouz | Cellular mechanisms contributing to response variability of cortical neurons in vivo[END_REF][START_REF] Sachdev | Effect of subthreshold up and down states on the whisker-evoked response in somatosensory cortex[END_REF]. Similar results were obtained using calcium imaging in the mouse auditory cortex, where the size of sound-evoked calcium transients in local clusters of neurons is negatively correlated with the spontaneous activity level at stimulus onset [START_REF] Grienberger | Sound-evoked network calcium transients in mouse auditory cortex in vivo[END_REF]. In fact, the amplitude of neural responses is even better explained by the phase of the local field potential oscillations resulting from this alternation between up-and down-states [START_REF] Haslinger | Analysis of LFP phase predicts sensory response of barrel cortex[END_REF].

The modulation of neural responses by the phase of local electrical potentials has been extended by similar observations in EEG studies. Recordings in auditory cortex of awake macaques revealed that response amplitude depends on the phase of ongoing delta (1-4 Hz) EEG oscillations, with this dependence being maximal in superficial layers [START_REF] Lakatos | An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex[END_REF]. Similarly, the strength of both BOLD [START_REF] Scheeringa | Modulation of visually evoked cortical FMRI responses by phase of ongoing occipital alpha oscillations[END_REF] and EEG [START_REF] Mathewson | To see or not to see: prestimulus alpha phase predicts visual awareness[END_REF] responses evoked by visual stimuli was found to depend on the ongoing phase of occipital alpha oscillations.

The same and other studies also investigated the effect of these cortical modulations on behavioral reports. Detection of visual targets was found to be modulated by the phase of spontaneous theta [START_REF] Busch | Spontaneous EEG oscillations reveal periodic sampling of visual attention[END_REF][START_REF] Hanslmayr | Prestimulus Oscillatory Phase at 7 Hz Gates Cortical Information Flow and Visual Perception[END_REF] and alpha [START_REF] Busch | The phase of ongoing EEG oscillations predicts visual perception[END_REF][START_REF] Mathewson | To see or not to see: prestimulus alpha phase predicts visual awareness[END_REF] waves.

It was suggested that these effects reflect a gating mechanism, the oscillation modulating the functional connectivity between lower and higher visual areas [START_REF] Hanslmayr | Prestimulus Oscillatory Phase at 7 Hz Gates Cortical Information Flow and Visual Perception[END_REF]. In addition to these effects of absolute oscillatory phase on perception, it can be noted that effects of pre-stimulus phase coupling between distant sensors have also been reported: conscious perception has been associated with low alpha phase coupling and high beta and gamma phase coupling [START_REF] Hanslmayr | Prestimulus oscillations predict visual perception performance between and within subjects[END_REF].

Validity of these results is possibly challenged following a study by [START_REF] Zoefel | Detection of Near-Threshold Sounds is Independent of EEG Phase in Common Frequency Bands[END_REF]. Using a causal time-frequency analysis, in which the analysis window is chosen such that it does not include data posterior to the analysis point, they found that detection of auditory targets is not dependent on the phase of low-frequency oscillations at stimulus onset. More importantly, they showed that an apparent dependence on the phase of delta oscillations appears when phase computation involves acausal, though commonly used, time-frequency analyses. This is easily PART II. RELATING SENSORY VARIABILITY TO BRAIN STATE FLUCTUATIONS explained by the fact that evoked responses, which are stronger for detected than for missed stimuli, can affect phase estimates prior to stimulus onset when the analysis window includes post-stimulus data, as can occur with acausal, but no causal, analysis.

Reports of spontaneous pre-stimulus phase effects abound in visual studies but are less common in auditory studies. All the reported effects of prestimulus phase on auditory perception we are aware of were related to entrained, and not spontaneous, oscillations [START_REF] Henry | Entrained neural oscillations in multiple frequency bands comodulate behavior[END_REF][START_REF] Henry | Frequency modulation entrains slow neural oscillations and optimizes human listening behavior[END_REF][START_REF] Kayser | Prestimulus influences on auditory perception from sensory representations and decision processes[END_REF][START_REF] Neuling | Good vibrations: Oscillatory phase shapes perception[END_REF][START_REF] Ng | A Precluding But Not Ensuring Role of Entrained Low-Frequency Oscillations for Auditory Perception[END_REF]. It is therefore unclear whether these effects reflect an intrinsic rhythmicity of input sampling by the auditory system, or on the structure of the actual stimulus, that combines both the target and the entrainer. One already mentioned study failed to reveal any truly causal effect of the phase of spontaneous, prestimulus oscillations [START_REF] Zoefel | Detection of Near-Threshold Sounds is Independent of EEG Phase in Common Frequency Bands[END_REF]. One suggested explanation is that the visual system samples its inputs periodically, at about 7 -13 Hz, whereas the auditory system does not, or does so at a higher processing level, or on a much faster time-scale that does not allow periodicity to be measured from behavior [START_REF] Vanrullen | On the cyclic nature of perception in vision versus audition[END_REF].

Another explanation is that, in the absence of any dominating rhythmic structure in the environment, auditory perception depends on more complex neural states whose description requires to combine the phases of multiple neural rhythms, as suggested by one recent study [START_REF] Henry | Neural Microstates Govern Perception of Auditory Input without Rhythmic Structure[END_REF].

Conclusion

Two main approaches have provided some account of the role of state fluctuations in sensory variability. One strategy is to observe the consequences of inducing a targeted state through manipulation of the context. The alternative is to monitor a state variable while letting state fluctuate spontaneously, and relate fluctuations of this variable to fluctuations of evoked responses and behavior. Although different, these two approaches somehow bring out a few converging hypotheses. As already mentioned, it was suggested that mechanisms supporting attentional selection involve synchronization and desynchronization of neural population at a local level that have similar consequences as the synchronization and desynchronization phenomena that are regulated at a more global level by sleep-wake rhythms. Also, the effects of spontaneous brain oscillations may be similar to those of externally entrained oscillations. That said, there is a dearth of methodologically sound studies to demonstrate this similarity, or to firmly establish the dependency of behavioral performance on the phase or amplitude of cortical rhythms.

In conclusion, several patterns of ongoing brain activity were shown to be informative about responses to upcoming stimuli. Such predictions were made with different imaging and recording techniques (fMRI, MEG, EEG, intra-cortical recordings). Among them, EEG proved to be an appropriate tool to monitor cognitive factors such as selective attention, as well as dynamical brain state features, such as phases of neural oscillations, that predict responses to upcoming stimuli. In the following sections, we reanalyze jointly the behavioral and EEG data of the sliding 2-AFC pitch discrimination and test whether we can find similar or other dependencies between ongoing EEG signals and subsequent behavior. We lean on the results of the previous chapter for the description of ongoing activity, restricting our investigation to the effects of selected components. In a first step (section 5.2), we focus on improving the trial-by-trial prediction of listeners' responses. In a second step (5.3), we look for correlations between continuous EEG signals and our time-dependent measure of the ongoing discrimination threshold.

Modulation of auditory perception by ongoing brain oscillations?

Pre-stimulus low-frequency oscillations have been found to modulate visual perception [START_REF] Busch | The phase of ongoing EEG oscillations predicts visual perception[END_REF][START_REF] Hanslmayr | Prestimulus oscillations predict visual perception performance between and within subjects[END_REF][START_REF] Hanslmayr | Prestimulus Oscillatory Phase at 7 Hz Gates Cortical Information Flow and Visual Perception[END_REF][START_REF] Mathewson | To see or not to see: prestimulus alpha phase predicts visual awareness[END_REF][START_REF] Thut | Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection[END_REF][START_REF] Yamagishi | Attentional changes in prestimulus oscillatory activity within early visual cortex are predictive of human visual performance[END_REF]. We investigate here whether there is evidence, in our data, of similar effects on the pitch discrimination judgments of pure tones. remain invisible in the analysis of sensor waveforms. We assume that the study of the impact of ongoing brain oscillations on stimulus processing should benefit from the decomposition of oscillatory activity into a reduced number of distinct components with a truly narrowband power spectrum. We therefore apply our analyses to the oscillatory components identified with the method presented in the previous chapter, rather than on sensor signals.

Effects

In a first step, we tested these pre-identified oscillatory components one-by-one for pre-stimulus effects of power and phase on pitch discrimination accuracy. As the number and aspect of extracted components was different between subjects, these analyses were conducted subject by subject and component by component. The analysis for an example component is illustrated in Figure 5.1 The time-course of the signals' envelope and phase were extracted by means of the Hilbert transform, after passing them through a forward (i.e. causal) band-pass filter (quality factor Q=20) centered around the component's peak frequency. A comparison of the distributions of the signal's phase at the time of stimulus onset was performed between stimuli followed by a correct response and those followed by an incorrect response. This comparison was quantified by computing the Phase Bifurcation Index (PBI) [START_REF] Busch | The phase of ongoing EEG oscillations predicts visual perception[END_REF], which is based on the strength of the inter-trial phase coherence within each class of trials and on the difference of their respective preferred direction. A PBI of 1 would indicate perfect within-class phase synchronizations in exactly opposite phases between the two classes, while similar phase distributions in the two classes would be associated with a PBI close to 0. The average power over a 500-ms window preceding stimulus onset was also compared between correct and incorrect trials. The significance of the power and phase distribution differences were assessed by estimating the distributions of the mean power difference and of the PBI associated with the null hypothesis of equal distributions in the two classes of trials, using a resampling method [START_REF] Busch | The phase of ongoing EEG oscillations predicts visual perception[END_REF] with 10,000 iterations. This analysis was performed on any component that was found with a narrowband spectrum peaking between 6 Hz and 25 Hz. As an example, the results are reported hereinafter for the 22 components, with peak frequencies between 8 Hz and 12 Hz, identified in the EEG of one illustrative participant ( PART II. RELATING SENSORY VARIABILITY TO BRAIN STATE FLUCTUATIONS Several of the narrowband components were obtained using the same bias filter in the JD decomposition method, meaning they span a subspace of the EEG data containing narrowband activity around the same frequency. There is usually not a oneto-one mapping between these components and their brain sources. To detect an effect originating from one, or a subset of these sources, it might be necessary to analyze these components jointly, rather than separately. In order to do this, the data were reanalyzed using machine learning techniques. A Support Vector Machine (SVM) classifier was trained to classify trials as correct or incorrect based on the pre-stimulus features of the set of components, its performance being evaluated by a leave-one-(trial)-out procedure. When testing for effects of pre-stimulus power, the features included an average of the components' squares in a 500-ms interval, but also the average, over the same time interval, of all their pair-wise cross-products. The interest is that by linearly combining all these features, the SVM can recover, if it is relevant, the power of any weighted sum of the linear components. However, the performance of the classifiers was not significantly better that chance, indicating pre-stimulus power was no predictive of response accuracy.

A similar approach was adopted to re-analyze phase effects. The oscillation signal at stimulus onset can by represented in the complex plane by its analytic version, i.e. using the values of the original signal and of its Hilbert transform at the considered time point as 2-dimensional coordinates. The polar angle of this point corresponds to the phase of the oscillation. If there is a preferred phase for correctly perceiving the stimulus, the corresponding trials should cluster around a specific direction in the complex plane and be separable from the remaining trials. Again, this separation can be assessed by the performance of an SVM trained to discriminate between the two classes based on the two coordinates. This approach can be extended to test for the simultaneous effects of and potential interactions between the phases of several components. The classification is then performed in a space of 2 times n dimensions, where n is the number of oscillatory components under consideration. As with the power features, the classifier using these phase features did not perform better than chance.

It is possible that the previous analyses were weakened by the existence of trialspecific behavioral biases that were observed in Chapter 3 and add noise to the behavioral data. To check this possibility, we corrected the labeling of trials as "correct" or "incorrect" when necessary, i.e. we replaced the point of objective equality by the trial-specific point of subjective equality, which could result in a change of label when the trial-specific bias was opposite to and larger than the actual pitch change.

However, this correction did not result in any improvement of the results. These analyses were inspired by previous studies (e.g. [START_REF] Busch | The phase of ongoing EEG oscillations predicts visual perception[END_REF] but may not be the most appropriate for our data. One reason is that the number of correct and incorrect responses is highly unbalanced due to the 2-AFC design. A second reason is there is large trial-to-trial variability in the stimulus condition, in particular in the amount of evidence for the frequency change, that is not taken into account in these analyses. This led us to perform a different type of analyses in which we tested whether oscillation features can predict how well the listener's report matches our initial prediction based on the frequency interval and trial history. The principle is to use the model developed in Chapter 3 to compute response probability on each trial, compute the model residual, i.e. the difference between this predicted probability and the actual response (Figure 5.6), and test whether there is any relationship between this residual and pre-stimulus oscillations. In practical terms, we performed a linear regression of the absolute value of the residual from the EEG features whose predictive content was assessed, once again, using a leave-one-out procedure. The prediction of the residuals obtained with this regression was not better than the prediction obtained without the EEG features, i.e. predicting the average value of all residuals. It could be even worse sometimes, especially for those subjects who had a high number of selected components and, thus, of features, in which case overfitting was more likely.
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Response residuals. The probability P ("up") that the listener reports an upward pitch change (black line) is predicted by the history-sensitive SDT model presented in Chapter 3 and depends on the trial-dependent variable X that incorporates the frequency interval and trial history (Eq. (3.3)). The residual is the difference between the observed response (quantified by 1 if the response is "up", by 0 is the response is "down") and the probability of an "up" response.

Predicting threshold variations from ongoing EEG

In this section, we propose to use the local thresholds obtained with the method developed in Chapter 2 as an index of the global psychological state of the subject and to look for EEG features that reflect this state. We performed this set of analyses on the data from the pitch discrimination study. For each trial, an estimate of the local threshold (here the Frequency Difference Limen, FDL) is obtained from the stimulus levels in neighboring trials, using an optimized linear transform (see 2.5). This series of thresholds is then interpolated into a signal with the same sampling rate as the EEG.

By construction, the local threshold is estimated from the outcome of multiple, consecutive trials that are typically separated by a few seconds. Consequently, the threshold estimate varies on a time scale of several seconds or minutes, depending on the size of the estimation window, i.e. the number of trials considered. Small windows favor temporal resolution, while larger windows favor reliability of the estimate.

Results from Chapter 2, section 2.5, suggested that the estimation is more reliable when the estimation window is larger. On the other hand, large estimation windows tend to attenuate fast variations, which may blur their correlation with EEG features. A slow EEG component that appears uncorrelated with the threshold. These signals were obtained similarly as in Figure 5.7 but from the dataset of a different subject.

It is difficult to know whether the correlation found in the first case reflects an actual relation between the slow EEG component and the psychological state of the subject, or whether it happens by chance. The scattered scalp topography makes it hard to interpret the sources of this EEG signal. It is possible that the two time-courses appear correlated just because they turn out by chance to oscillate with similar periods.

Removing the slowest trends from the EEG signal using a high-pass filter in a preliminary step allowed us to reveal EEG components with faster, periodical rhythms. As mentioned previously, 0.1-Hz oscillations were found in several subjects, with quite consistent scalp topographies. We wondered if, provided the temporal resolution is sufficient, the threshold estimate may display variations with a similar rhythm. Given that most trials are separated by an interval of approximately 1 second (the interval depends on the response time), we assumed that threshold variations occurring over a period of 10 seconds should be best visible if the threshold estimate was computed from around 10 consecutive trials. Corresponding threshold estimates however appear to be uncorrelated with the 0.1 -Hz EEG oscillations, as can be observed in the example of Figure 5.9. Correlation does not increase if the number of trials used to estimate the threshold is changed.

Infra-slow oscillations with 10-s cycles do not modulate measured thresholds. The displayed FDL time-course was obtained as a 10trial weighted mean of stimulus levels with optimized weights. The component PART II. RELATING SENSORY VARIABILITY TO BRAIN STATE FLUCTUATIONS is obtained by CCA of high-pass filtered signals (0.05-Hz cutoff) with a lag of 10 seconds.

Looking for EEG components whose amplitude relates to the ongoing threshold

This second analysis gets closer to supervised learning as it computes optimized linear EEG components based on a continuous quantity computed from the subject's behavior, namely the estimated threshold. Here, we make use of Joint Decorrelation (JD, see p. 143) to find components whose variance co-varies with the threshold.

One version of JD, called Common Spatial Pattern (CSP), extracts components that have maximum differences in variance between two time intervals, or between two sets of time intervals. CSP consists in the joint-decorrelation of two covariance matrices 𝐶 0 and 𝐶 1 , each being computed on one of the two sets of intervals. One of our options would be to define a set of "low-threshold" time intervals and another set of "high-threshold" intervals and to compute the corresponding CSP. This would require to set two criteria, namely a lower-bound for what is regarded as a high threshold and an upper bound for what is regarded as a low one.

Instead of segmenting the recordings according to arbitrarily-defined threshold categories, we adopt here a different strategy that uses the ongoing threshold as a quantitative bias for JD. To do so, the matrices 𝐶 0 and 𝐶 1 are both computed on the entire signals, but with time samples being differently weighted according to the associated local threshold. When computing matrix 𝐶 0 , the weight of each sample is higher when the threshold is high; when computing 𝐶 1 , the weight is higher when the threshold is low.

JD of 𝐶 0 and 𝐶 1 results in a list of components, the number of which is equal to the number of channels (𝑛 = 72), ordered based on the ratio of their variances computed with the two previous weight schemes. In principle, the first-rank component has large variance when threshold is low and small variance when threshold is high; the opposite holds for the last-rank component. Illustrative results can be seen in Figure 5.10. In this example, the amplitude of the first component seems to increase along time, which is also the global trend of the threshold starting from a few minutes. The threshold (black trace) that we regard here as the "true" value to predict. However, this does not generalize to the test interval, where the prediction (green trace) wanders away from the target.

One way to limit overfitting is to reduce the number of explanatory variables, which can be achieved by selecting a subset of channels or, preferably, a subset of chosen components. We tried two different component selection criteria. The first was component variance, i.e. components were computed and ranked by a PCA of channel signals and only the best-ranked components were selected. The second criterion was variation speed, that is, components were computed and ranked by the CCA presented earlier (4.1.1), favoring slowly-varying components, and again only the best-ranked components were selected.

It is difficult to know a priori what the ideal number of components to select is.

The danger of reducing the number to much is to discard informative dimensions. The second set of traces in Figure 5.11 shows the results of the linear regression when only two slowly-varying components were retained ( 𝑁 𝑐 = 2 ), in the same illustrative dataset as previously. These two components do not suffice to account for the threshold variations in the training interval: the best prediction that can be obtained lies very close to the average value and does not follow the "true" variations.

Unsurprisingly, the prediction stays bad in the test interval.

The adequate number of components to retain may be somewhere between these two extremes. The fit of the prediction to the "true" threshold time-course will always Each line represents the results obtained for a particular recording.

Linear regression of the threshold from EEG evoked response features

In a different linear regression analysis, we tried to predict the ongoing threshold directly from the stimulus-evoked EEG responses. EEG data was divided into stimulus-locked epochs, and the channel by time matrix of each epoch was reshaped into a one-dimensional vector of features. To eliminate redundant information and reduce the dimensionality of the feature space, a PCA of the features was performed and the first 20 principal feature components were then selected as the final features for prediction. We also included an addition constant feature to enable correction for the fact that the average threshold is not zero. Finally, a linear model was trained by linear regression, predicting the ongoing threshold, estimated from the stimulus level series using an optimized weighted mean in a 50-trial sliding window, from the selected set of features. For each subject-specific analysis, more than 1000 trials were initially available for model training, which could be partly reduced after rejection of outlier EEG epochs.

It can be seen in the example from Figure 5.12 that the model predicts a value that corresponds roughly to the average threshold, with slight deviations that do not correlate with the actual threshold variations but rather represent overfitting of the model. Judging by these results, the stimulus-evoked EEG features probably do not contain relevant information about the ongoing threshold.

Thresholds predicted by a linear model from principal components of stimulus-evoked EEG do not follow the expected time-course. These results were obtained from the session of a particular subject and reflect a general trend. These first results were obtained for a threshold computed as a weighted mean over 50 trials, using an optimized set of weights. The calculated threshold time-course changes if it is computed from a different number of trials, which could in turn change its linear relation to the considered EEG features. To clarify this, the analysis was repeated using optimized linear filter of different orders to compute the threshold from the stimulus level series. No improvement in the prediction was observed. This dissertation aimed to investigate the link between the variability of human subjects' behavioral reports in psychophysical, auditory tasks and the fluctuations of the subjects' brain state that may be visible in EEG signals. To study this link, we sharpened our description of subjects' behavior on one side and our description of EEG-defined brain state on the other side. To this end, we developed and assessed several tools for psychophysics and several others for multivariate signal processing.

We focused particularly on variability during pitch discrimination and used a custom pitch discrimination paradigm, the sliding 2-AFC. In comparison to standard 2-interval forced choice designs, this paradigm provided several advantages for our study of discrimination variability. One is a higher yield in terms of number of judgments per unit of time, which is valuable when aiming to track variations of sensory thresholds over time with a good temporal resolution. Another advantage is the simplification of stimulus history for the study of context effects that contribute to response variability.

In Chapter 2, we proposed, developed and assessed a methodology for an overlooked problem, the tracking of changing sensory thresholds during psychophysics experiment. The method consists in adapting stimulus levels during the experiment using a weighted up-down staircase procedure and estimating local thresholds as a local mean of stimulus levels from trials contained in a limited, sliding temporal window. We assessed the performance of the method in the case of a 2altenative forced choice task. We showed that local threshold estimates can be optimized by assigning non-uniform weights to trials within the estimation window, and that the method allows to follow threshold variations with a 1/𝑓 or 1/𝑓² spectrum with an above-chance confidence level, meaning that the obtained local threshold estimates are better than the best possible constant estimate. These results are rather encouraging and led us to use the continuous threshold measure as a proxy for the psychological state of the subject to compare with brain state measures in a later chapter. Other applications may benefit from this tracking method, in particular learning and other studies that focus on performance variations per se. Further work is needed to test how the method would perform in other situations, including different types of tasks, and if, as expected, threshold estimates are more reliable in tasks with lower chance-level performance compared to 2-AFC.

We also studied subjects' behavior in the sliding 2-AFC pitch discrimination task in terms trial-to-trial changes in choice probability. Chapter 3 evidenced decisive effects of trial history on pitch change judgments. This chapter can be seen as a study of molecular psychophysics, according to Green's view (1964). Green contrasts molar psychophysics and molecular psychophysics. The former provides a description of an average observer, taking into account the stimulus determinants of the responses, averaged across judgments and across observers. The latter, in contrast, deals with individual judgments and allows to assess how the non-stimulus variables (e.g. the context) influence judgments. Its success depends on the relative influences of the observable non-stimulus variables, of the stimulus variables, and of the noise. One finding that was particularly consistent across all participating subjects, except one, was a positive (i.e. assimilative) dependency of the current decision on the direction of the preceding pitch interval. Preceding reports also had a significant contribution to ongoing decisions in all subjects, although the direction of this contribution was more subject-dependent. Crucially, when not taken into account, the identified history effects led to overestimating the internal noise parameter in a Signal-Detection Theory model, i.e. the amount of response variability we may attribute to endogenous, internal factors.

Chapters 2 and 3 are complementary in that they each concern within-individual variations of one of the two detrimental factors to perceptual decisions: internal noise and bias. In Chapter 2, the amount of internal noise was assumed to be varying during the experiment while bias, including trial-dependent bias, was assumed non-existent.

In Chapter 3, bias was assumed to be trial-dependent while the amount of internal noise was assumed to be constant. Combining the ideas that both bias and noise amount may change over time is technically difficult but could in principle lead to an even more accurate description of subjects' behavior. The two chapters are also complementary in that they examined sensory variability on distinct time-scales, the biases evidenced in Chapter 3 varying from one trial to the next, while the threshold changes measured in Chapter 2 reflect changes of the response statistics in time intervals containing several tens of trials. We did not investigate variability on timescales that go beyond the session duration, but it should be pointed that significant, within-individual variations of idiosyncratic perceptual biases have been reported that can take evolve progressively over several months [START_REF] Wexler | Persistent states in vision break universality and time invariance[END_REF].

Our first examination of EEG signals recorded during task performance focused on identifying remarkable activity patterns that may be useful in describing brain state. We used advanced, linear signal processing techniques to reduce the description of ongoing EEG activity using a limited number of linear components with remarkable properties (level or power stability, oscillations). These techniques allowed to reveal rhythmical patterns on various time-scales. A remarkable finding was the observation, in several subjects, of so-called infra-slow oscillations with very clear cycles lasting around 10 seconds, corroborating existing but relatively rare previous reports [START_REF] Girton | Observation of very slow potential oscillations in human scalp recordings[END_REF][START_REF] Nikulin | Monochromatic Ultra-Slow (~ 0.1 Hz) Oscillations in the human electroencephalogram and their relation to hemodynamics[END_REF][START_REF] Trimmel | Occurrence of infraslow potential oscillations in relation to task, ability to concentrate and intelligence[END_REF]. Another important contribution was the decomposition of EEG signals using Joint-Decorrelation revealing distinct activity subspaces characterized by a narrow-band spectrum around a particular frequency. Beyond ongoing brain state description, such decomposition may be useful to better understand the role of brain oscillations in cognitive functions and their modulation by specific events, focusing analyses on genuinely oscillating components rather than on band-pass filtered channel signals.

We performed in Chapter 5 a range of analyses, ranging from hypothesis testing to more data-driven search methods, to evidence possible links between the variability of behavioral reports and EEG features of interest. These links were studied on two different time-scales: a shorter time-scale, on which we tried to correlate trial-to-trial changes in choice probability to EEG features measured in sub-second intervals, and a longer time-scale, on which we compared variations of overall performance quantified by a time-varying threshold to slowly-varying EEG components. Neither of these approaches revealed any consistent relation between behavioral variability and the considered EEG features.

Sequential response dependencies suggest predictive latent brain states

It could be argued that the evidenced effects of stimulus and response history on individual judgments reflect in a way an effect of brain state on decisions. This history must indeed be encoded somehow in the brain's memory to possibly influence later decisions. For this reason, the distinction between "internal" (or endogenous) and "external" (or exogenous) factors of variability is not clear-cut. It is possible that this latent memory trace is electrically silent and does not show through ongoing EEG activity. It may be the case that there are correlates of the memory trace within the EEG, but our analysis methods did not reveal any. This latter possibility has in fact been denounced as a potential problem in the study of the neural correlates of perceptual decision making: it was argued that sequential dependencies in perceptual judgements, when ignored, can lead to identifying spurious correlations between ongoing brain activity and decisions, both being independently determined by recent stimuli and responses [START_REF] Fründ | Quantifying the effect of intertrial dependence on perceptual decisions[END_REF][START_REF] Lages | How predictable are "spontaneous decisions" and "hidden intentions"? Comparing classification results based on previous responses with multivariate pattern analysis of fMRI BOLD signals[END_REF]. The contextsensitive analysis of Chapter 3 offered tools that could be of use to factor out the contribution of a context-coding trace to a "predictive" brain activity feature.

Expectations created by a preceding cue regarding the spatial orientation of an upcoming visual stimulus have been found to appear as a pre-activation of the neural representation of this orientation observed before the onset of the stimulus in MEG signals [START_REF] Kok | Prior expectations induce prestimulus sensory templates[END_REF]. In our experiment, an expectation created by trial history regarding the direction of the upcoming pitch change may have led to a similar prestimulus activation of neural population encoding this direction. An obstacle to evidencing it is that the neural representation of pitch change direction may not be as well represented in scalp signals compared to the orientation of visual stimuli and, to our knowledge, has never been decoded from such signals so far. GENERAL DISCUSSION data. Methods involving signal squares and cross-products are sensitive to high amplitude outliers (particularly quadratic component analysis), and the outcome is highly dependent on the quality of preprocessing. Also, some significant variability factors may simply not appear in EEG signals. If "internal" refers to sources located within the brain, then other "external" sources of variability are those that have an effect before the stimulus information even reaches the brain, i.e. before or during the transduction process. For auditory stimuli, this includes the physical noise in the sound presentation system, as well as variations in the physical conditions affecting the sound propagation from the sound transducer to the eardrum. We expect these contributions to be negligible, and delivering auditory stimuli through insert earphones must have reduced variability due to head movement, in comparison to free-field sound presentation, although we cannot totally exclude that displacements of the insert within the ear canal do occur and affect the sound pressure level at the eardrum. External variability factors would also include any variations in the physiological conditions affecting the propagation of the sound vibration from the outer ear to the inner ear (elasticity of the tympanic membrane, state of the ossicles, state and elasticity of the basilar membrane, etc.) [START_REF] Ashby | Perceptual Variability as A Fundamental Axiom of Perceptual Science[END_REF], including the stapedial reflex that acts on the middle ear muscles in response to sounds [START_REF] Musiek | The auditory system: anatomy, physiology and clinical correlates[END_REF]. It is unlikely that EEG signals would capture the resulting differences in the responses of the cochlea. Even differences occurring at later, sub-cortical stages in the auditory pathways would be very difficult to observe with EEG, given its poor sensitivity to deep brain structures. Thereby, although of central origin, variations of the states of the most peripheral auditory brain nuclei (e.g. cochlear nucleus, superior olivary complex, inferior colliculus) are unlikely to be detectable by EEG. Yet, they could bear a significant role in the variability of downstream neural activations and in the final report by the subject.

In fact, the large number of synaptic relays and cerebral structures that are at play when processing an auditory stimulus adds to the difficulty of our objective and constitutes another explanation for its lack of success. It could be the case that each of these cerebral structures independently undergoes state fluctuations modulating its response to inputs, so that predicting response behavior would require to take into account all of these structures' state simultaneously, and possibly their interactions.

Going along these lines, behavioral performance in auditory task was found to be independently affected in the same listeners by subcortical coding efficiency and by top-down attentional control abilities [START_REF] Dai | Contributions of Sensory Coding and Attentional Control to Individual Differences in Performance in Spatial Auditory Selective Attention Tasks[END_REF]. In the end, the dimensions of the brain state we would need to define to take into account the contributions of the various processing stages would be too many to be identifiable by supervised learning techniques with the amount of data we had at our disposal, supposing that they were present in the EEG signals we rely on.

This consideration leads us to the following question: Is EEG an appropriate tool for measuring brain state? EEG has undeniable advantages: non-invasiveness, portability, (relative) low cost, fine temporal resolution, but has poor spatial resolution and poor sensitivity to deep brain structures. It provides (only) a macroscopic view on brain activity. Conscious experience is believed to require widespread neural activations [START_REF] Dehaene | Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework[END_REF] and EEG may thus be a good tool to capture some of the neural correlates of consciousness. However, some structures determining whether an input stimulus or attribute will reach consciousness may be much more localized and/or deep and therefore hardly observable in EEG. Unfortunately, brain recording and imaging techniques all have their drawbacks and there is not an ideal technique for brain state measurement. In fact, some crucial aspects of brain state, like ongoing neurochemical concentrations, may not even be observable with any of the existing techniques.

Perspectives for brain state reading from EEG Our EEG-based characterization of brain state did not reveal useful to the problem of auditory variability. Despite that, it is undeniable that EEG provides a valuable window onto brain processes and dynamics, and the signal processing tools we introduced may turn out helpful and successful in other problems and applications, as well as the EEG components we identified in Chapter 5. EEG feature selection is a widespread necessity in the field of Brain-Computer Interfaces (BCIs). For the particular category of BCIs that have been termed sometimes asynchronous [START_REF] Besserve | Classification methods for ongoing EEG and MEG signals[END_REF] and sometimes endogenous [START_REF] Mason | A Comprehensive Survey of Brain Interface Technology Designs[END_REF] BCIs, features need to be extracted from ongoing brain activity, as opposed to stimulus-locked activity,

similarly to what we have done in this thesis. EEG analyses for clinical problems like sleep stage labeling, whether online of offline, also involve classification of continuous brain activity. The selection of EEG components based on intrinsic structure, e.g. slowly-varying and oscillating EEG components, is one strategy that can be applied for feature selection in these contexts too.

Endogenous BCIs can be used as remote communication devices when the user voluntarily modulates their brain activity, but they also include what have been called passive BCIs, which perform online monitoring of spontaneous internal states to guide or improve the functioning of a system [START_REF] Zander | Towards passive brain-computer interfaces: applying braincomputer interface technology to human-machine systems in general[END_REF]. The Canonical Correlation Analysis (CCA) technique may also be used in that context to jointly process EEG signals and markers of the targeted states so as to identify the most informative EEG features. Beyond the BCI field, CCA may be used in neuroscience to shed lights on neural processes by identifying correlations between brain signals and what they encode, in particular to identify which stimulus features are encoded by the brain and under which neural representation. This approach has for example been applied to evidence encoding of the envelope of heard speech in MEG signals [START_REF] Koskinen | Identifying fragments of natural speech from the listener's MEG signals[END_REF].

The fact that we did not find a consistent correlate of ongoing threshold might be because our measure of ongoing threshold is not accurate enough or not enough resolved in time. CCA could provide a refined measure of the ongoing threshold, or of any other relevant dimension of the subject's behavior that has a correlate in EEG activity. Just like we used linear regression to optimize linear filters for the reconstruction of ongoing threshold from the stimulus time series by minimizing the error of the estimate, we could consider optimizing a linear filter by CCA by maximizing the correlation of the threshold estimate with a linear component of EEG features. This reconstruction method could possibly incorporate additional behavior observations such as reaction times.

In summary, in this thesis, we investigated the hypothesis that trial-to-trial variations in perceptual ability are attributable to changes in brain state as measurable using EEG. Despite the use of sensitive procedures and analysis techniques, we failed to find strong evidence for this hypothesis. In order to arrive at this conclusion, we developed a novel psychophysical procedure designed to optimize the sampling of behavioral performance over time, together with novel techniques to analyze the time series of subjects' responses so as to minimize extraneous variance sources (such as context dependencies) and optimize the estimate of a time-varying threshold. This allowed me to clarify the nature of the serial dependency of pitch judgments on prior context (both stimulus and response context), that had been investigated previously in the literature with weaker methods. I believe these novel methods are a noteworthy contribution to psychophysical methodology, in particular for tracking time-varying performance. They are applicable to other percepts than pitch, and to other modalities beyond auditory. We also explored and developed novel techniques to analyze the time series of continuous EEG data, so as to improve the signal-to-noise ratio of components with serial predictive properties, both linear and quadratic, components with narrow-band characteristics (e.g. oscillatory activity), and components predictive of behavioral thresholds. These techniques belong to a general methodology, based on canonical correlation analysis and other linear techniques applied to convolutional and nonlinear (e.g. quadratic) transforms of the data, that promises to be of wider use, for the analysis of brain data recorded in the laboratory, as well as for applications such as brain-computer interfaces.

  La même entrée sensorielle ne provoque pas toujours la même réaction. Dans les expériences en laboratoire, un stimulus donné peut engendrer une réponse différente à chaque nouvel essai, en particulier à proximité du seuil sensoriel. Ce phénomène est généralement attribué à une source de bruit non spécifique qui affecte la représentation sensorielle du stimulus ou le processus décisionnel. Dans cette thèse, nous examinons l'hypothèse selon laquelle cette variabilité des réponses peut être attribuée en partie à des fluctuations mesurables et spontanées de l'état cérébral. Dans ce but, nous développons et évaluons deux ensembles d'outils. L'un est un ensemble de modèles et de méthodes psychophysiques permettant de suivre les variations de la performance perceptive avec une bonne résolution temporelle et avec précision, sur différentes échelles de temps. Ces méthodes s'appuient sur des procédures adaptatives initialement développées pour mesurer efficacement les seuils de perception statiques et sont étendues ici dans le but de suivre des seuils qui varient au cours du temps. Le deuxième ensemble d'outils que nous développons comprend des méthodes d'analyse de données pour extraire de signaux d'électroencéphalographie (EEG) une quantité prédictive de la performance comportementale à diverses échelles de temps. Nous avons appliqué ces outils à des enregistrements conjoints d'EEG et de données comportementales collectées pendant que des auditeurs normo-entendants réalisaient une tâche de discrimination de fréquence sur des stimuli auditifs proche du seuil de discrimination. Contrairement à ce qui a été rapporté dans la littérature concernant des stimuli visuels, nous n'avons pas trouvé de preuve d'un quelconque effet des oscillations EEG spontanées de basse fréquence sur la performance auditive. En revanche, nous avons trouvé qu'une part importante de la variabilité des jugements peut s'expliquer par des effets de l'historique récent des stimuli et des réponses sur la décision prise à un moment donné. Mots clés (français) : Etat cérébral, perception auditive, électro-encéphalographie, variabilité perceptive.
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  functions, they tend to be modeled independently, the analyses generally being based on either the one or the other. A common feature of the previous families of parametric functions is that they have two main parameters that determine (1) the position of the function center along the (horizontal) axis and (2) the slope of the curve. The position of the curve relates to the threshold in the case of the accuracy function, to the PSE in the case of the choice function. The slope relates to sensitivity in the case of the choice function; it characterizes how fast accuracy varies with the absolute stimulus strength in the case of the accuracy function. The reliability of measured thresholds varies

  and standard deviation 𝜎. This quantity represents the part of the area under the normal probability density function of 𝜓 that stands on the part of the axis assigned to category A, i.e. above criterion 𝑐 (Figure1.2, left panel). The subject's sensitivity, i.e. their capacity to discriminate stimuli from the two different categories, will depend on two things: one is the width of the internal noise distribution (𝜎), dictating how stable is the representation of one stimulus from one presentation to the next; the other is how distant are the two distributions of representations associated with the two stimulus categories. In a simple case where 𝑠 is constant within one stimulus category, i.e. taking a unique value 𝑠 𝐴 in category A and another 𝑠 𝐵 in category B, this distance could be defined as 𝑑 = 𝑓 𝑡𝑟𝑎𝑛𝑠 (𝑠 𝐴 ) -𝑓 𝑡𝑟𝑎𝑛𝑠 (𝑠 𝐵 ). A common sensitivity measure is called 𝑑′. In a simplified case where the variance of the noise is assumed not to depend on 𝑠, 𝑑′ is defined as the ratio of the distance between the distribution centers and their standard deviation: 𝑑 ′ = 𝑑/𝜎. This 𝑑 ′ can be estimated empirically from the response statistics, taking into account what proportion of stimuli from category A are correctly identified and what proportion of stimuli from category B are incorrectly labeled as belonging to A.It should be noted that sensitivity measures are meant to reflect the separability of the two distributions and, conveniently, 𝑑′ is independent of the position of the criterion 𝑐. Nonetheless, the criterion impacts the response statistics. Because the noise distribution is assumed to be symmetric, the probability of reporting the PART I. CHARACTERIZATION OF SENSORY VARIABILITY stimulus as belonging to A or B are equal when 𝑠 = 𝑐. In other words, 𝑐 is the PSE. A neutral (i.e. unbiased) criterion is located exactly at equal distances between the two distribution centers. A criterion displaced in the direction of one distribution corresponds to a tendency of reporting more often the other category when stimulus occurrences are in fact balanced between the two categories.

  𝜎 has a sigmoid shape. At the PSE, the slope of the tangent line to the function's curve is inversely proportional to 𝜎 (Figure 1.2, right panel). As mentioned earlier, subjects are more sensitive if the noise distribution is narrow, i.e. if 𝜎 is smaller. Consistently, this corresponds to the choice psychometric function being steeper. A Signal Detection Theory model. (a) Internal representation of the stimulus attribute. The internal variable ψ encoding the stimulus attribute s has a normal probability density function (PDF) centered on ftrans (s ) with the standard deviation σ of the noise ϵ.The subject assigns the stimulus to category A (resp. B) whenever ψ is higher (resp. lower) than some criterion c. For a given value of s, the choice probability of assigning the stimulus to category A is given by the cumulative probability that ψ be higher than c (gray area). (b) The predicted choice psychometric function. In the case where ftrans (s ) = s , P(A|s )=fchoice (s ) is a cumulative normal function ϕσ (s -c ) centered on -c. The tangent to the curve at the center has a slope proportional to 1/σ.

  Detection Theory model on the accuracy psychometric function. Accuracy functions were obtained assuming the listener's behavior is determined by equations (1.9) and (1.10). σ and c are expressed in the same arbitrary units as the stimulus variable s. (A) Effect of sensitivity: each colored line is obtained for a different value of the sensitivity parameter σ and the same criterion parameter c = 0. If sensitivity varies over the course of an experiment, the overall accuracy function is an average of individual functions, depicted as the black line, with a shallower slope. (B) Effect of bias: each colored line is obtained for a different value of the bias parameter c and for the same sensitivity parameter σ = 0.05.

  relations, like maximum-likelihood estimators. Possible functions therefore differ in when and how they change the value of the stimulus level.
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  after incorrect responses. Each participant performed one block with each type of procedure (single-or 4-track), with a break between the 2 procedures. The procedure order was assigned randomly and counterbalanced across participants. Before these two main blocks, participants performed two training blocks, both with a single-track procedure. The first training block comprised 100 trials, all with 320-ms tones. When necessary, it was repeated until the participant reached the minimally required discrimination threshold. If the subject failed to attain the criterion threshold after several attempts they quit the study. The second training block was intended to familiarize the participant with tone-duration changes. It comprised 150 trials and 9 tone-duration transitions separating 7-trial long duration plateaus.

  Time courses of threshold estimates from raw and averaged stimulus levels. In all 6 panels, black lines represent the time course of expected true thresholds. Each thin, colored line is the time course of threshold estimates for one participant. Thick, colored lines represent the trialby-trial mean of estimates over participants. In the top plots, estimates are the raw series of log(| Δf / f |) (Nw = 1). In the two lower plots, estimates are local averages of log(| Δf / f |) in a window of Nw = 16 trials (middle row) or Nw = 100 trials (bottom row). The left column corresponds to the results of the singletrack procedure, the right column to the results of the 4-track procedure. These observations are confirmed by the results of global squared bias, variance and MSE presented in Figure 2.6 as a function of window size (horizontal axes).

  PART I. CHARACTERIZATION OF SENSORY VARIABILITYIllustrative time-courses of the stimulus level and threshold estimate time series obtained under such conditions are shown in Figure2.7. Four procedures are represented that use one of two step sizes ('small' or 'large') and either a single adaptive track or 10 interleaved tracks. In each case, an extract of the time series of stimulus levels from a typical sequence is represented as a black staircase line and two additional colored lines are plotted which correspond to the time series of estimates obtained as a moving local average of the stimulus levels, in a window of either 3 trials or 15 trials. Secondarily, the raw stimulus level series can also be seen as a threshold estimate, corresponding to a 1-trial estimation window (𝑁 𝑤 = 1). It can be observed that procedures using large steps (lower row) favor important deviations of the stimulus level and associated threshold estimates from the target threshold (green line), in comparison to procedures that use smaller steps (upper row). However, the deviation of the local average estimate is limited in the case of the procedure with 10 interleaved tracks (right column), in comparison to the single-track procedure (left column) with similar step size, although the overall distribution of stimulus levels is the same in the two cases. This effect can be explained by the higher serial correlation of stimulus levels in the single-track procedures, due to the interdependency of consecutive stimulus levels imposed by the adaptive rule. A large deviation from the target is equally probable in single-and multiple-track procedures, but large deviations occurring in successive trials are much less likely when these successive trials belong to independent tracks. Consequently, large deviations of a local average are also less likely in this case. Finally, it can be observed that the two represented estimates are subject to about the same average deviation from the target, but the estimate computed using a larger window (15 trials) has a smaller variance across trials.Examples of simulation results inthe case of invariant thresholds. The four panels correspond to four different procedures. The procedures entail either a single adaptive track (left column) or 10 interleaved tracks (right column). Procedures additionally differ in the size of stimulus level steps, either small (upper row) or large (lower row). In each case, illustrative time-courses of 3 threshold estimates series are shown: one is the raw stimulus level series (black line, equivalent to a local arithmetic mean over a window of size Nw = 1 trial), the other two are local arithmetic means of the stimulus levels over windows of size Nw = 3 trials (light red) and Nw = 15 trials (dark red), respectively. The green lines indicate the position of the true (target) threshold.

  CHARACTERIZATION OF SENSORY VARIABILITY consecutive stimulus levels. The results reported here correspond to a given step size, similar for all procedures, but this variation pattern is similar for other step sizes, only displaced along the vertical axis. The change in MSE as a function of step size is reported in panel (B). All other parameters being fixed, the logarithm of the MSE seems to increase linearly as the logarithm of the step size increases linearly.Effect of method parameters on the Mean Squared Error (MSE) of the threshold estimate in the case of an invariant threshold. (A) Effect of the size of the estimation window. The MSE is plotted as a function of the number Nw of trials in the estimation window. It is dependent on the number of trials in the estimation window that belong to a common adaptive track. Results for 5 procedures with different numbers of independent tracks, ranging from 1 to 16, all with a similar step size, are plotted as different lines. (B) Effect of the procedure's step size. The MSE reported here as a function of step size is that of an estimate computed using an estimation window containing trials that are all from independent adaptive tracks. The five lines correspond to five different window sizes (N = Nw ≤ Ntracks), ranging from 1 trial to 16 trials.

  Example of a simulated threshold step. The behavior of the listener is dictated by two consecutive psychometric functions shifted relative to each other along the stimulus level (horizontal) axis by 1 stimulus unit, shown in the upper left panel. The lower left panel shows the time course of the 75%correct threshold that jumps from the initial value θ0 to the final value θ∞ = θ0 + 1 s.u. after the 50 th trial in the course of the experiment.

  Effects of method parameters on the threshold estimate in the case of a threshold step when the experimental procedure contains a single adaptive track. (A) Effect of the procedure's step size on the outcome of the procedure. The green lines represent the time-course of the true threshold. The black line is the average time course of the stimulus level series over simulated experiments and the gray shades delimits the intervals containing stimulus levels in 95% of experiments (Nexp = 1,000). The upper plot presents the results for a procedure with a step size S = 1 s.u., i.e. equal to the threshold step, the lower plot presents results for a procedure with S = 0.1 s.u. . (B) Effect of locally averaging stimulus levels. The time course of the estimate obtained by averaging stimulus levels over a 37-trial sliding window is plotted as a red line, on top of the average stimulus level time-course obtained with a step size S = 1 s.u. (upper plot from panel (A)). The red shade delimits the intervals containing the estimates in 95% of experiments (Nexp = 1,000). (C) Effect of the procedure's step size on the Mean Squared Error (MSE) when using a 37-trial estimation window. (D) Effect of the size of the estimation window on the MSE when the baseline step size of the procedure is S = 0.38 s.u.. (E) Combined effects of procedure step size and estimation window size on the MSE. The red arrow indicates the position of a minimum of the MSE on the surface obtained by varying both parameters independently. The position corresponds to a window size of 37 trials and a step size S = 0.38.

  Effect on tracking performance of the number of independent tracks in the experimental procedure in the case of an illustrative threshold step. (A) Mean Squared Error (MSE) as a function of procedure step size when the threshold estimate is a local average of stimulus levels over 37 consecutive trials. (B) MSE as a function of estimation window size Nw when the experimental procedure has a step size of 0.38 s.u. multiplied by the number of tracks. Results are plotted for procedures with 3 different track numbers (Ntracks = 1, 2 or 4), color-coded.

  Dependency of the performance of single-track procedure methods with different parameters on the size of the threshold step. Results are shown for experiments lasting for 100 trials, with an upward threshold step occurring after the 50 th trial. The two plots show the combined effects of procedure step size and estimation window size on the Mean Squared Error (MSE) of the threshold estimate, and are analogous to Figure2.10(E). The left plot corresponds to the results in the case of a threshold step that is smaller (0.4 s.u.) than in the situation reported in Figure2.10; the right plots corresponds to results in the case of a larger (2-s.u.) threshold step.

  MSE and its two additive contributions in the case of 2 alternating thresholds. Same conventions as in Figure 2.6. The agreement of simulation and experimental results is reassuring and validates the relevance of the present simulation study.

A

  question that is appealing to address in the present case of random variations is how tracking can be improved by assigning, in the estimation process, different weights to individual trials as a function of their distance from the time point of the estimated threshold. Before even changing the weighting parameters of the local mean, it is interesting to observe how shifting the position of the window in relation to the estimation time point affects the estimation error. The MSE is plotted as a function of window position in Figure 2.16(C), for different window sizes corresponding to different lines. It can be noticed that the position yielding the best performance does not generally correspond to a window exactly centered on the estimation time point (corresponding to the 0 on the abscissa axis). Rather, the best position corresponds to a window slightly shifted towards later trials, by approximately 10 to 20 trials, depending on the size of the window. The direction of PART I. CHARACTERIZATION OF SENSORY VARIABILITY the shift is consistent with causality, the threshold determining the listener's response, itself determining the stimulus levels that get averaged during the estimation process. Tracking performance in the case of threshold variations generated by a pink noise (𝟏/𝒇) process with a standard deviation of 𝟎. 𝟓 s.u. . The results reported here are obtained using a procedure that entails a single track and estimating local threshold as a local arithmetical mean of stimulus levels. (A) Example of tracking time-courses. The green line represents true threshold variations, the black line represents a time series of stimulus level obtained in a single-track adaptive procedure using the optimal step size of ~0.15 s.u., the blue line is the moving average of these stimulus levels over an optimal window of 140 trials. (B) Effect of procedure step size and estimation window size on the Mean Squared Error (MSE). Here the estimates were computed from a window that is centered on the trial where the threshold is being estimated. The red arrow indicates the position of a minimum of the MSE. (C) Effect of the position of the estimation window center with regard to the trial where the local threshold is estimated. Each line corresponds to one of four window sizes Nw (10, 50, 100 or 200 trials).

  The shape of optimized linear filters adapts to the number of tracks interleaved in the experimental procedure. Filter weights are shown for the 20 most central trials in the estimation window, to highlight the most noticeable differences.

2 .

 2 Tracking performance with optimized linear filters for the reconstruction of pink-noise-like threshold variations. The left panel shows the time-course true threshold variations (green line) along with the reconstructed estimate (blue line) in a portion of a simulated experiment. The estimate was computed as a local weighted mean in a window of 100 trials, with weights optimized by linear regression. The right panel shows the decrease of the MSE when the number Nw of trials in the estimation window is increased from 1 to 500.

  (2.15)), that determined both the threshold and the slope of the accuracy psychometric function underlying response probability. In other words, it relied on very strong assumptions. The PART I. CHARACTERIZATION OF SENSORY VARIABILITY

Figure 2 .

 2 Figure 2.23. The iterative process was initialized by computing a first series of threshold estimates 𝜃 ̂= {𝜃 𝑛 ̂: 𝑛 ∈ {1, … , 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 }} as a local arithmetic means, using a 4trial sliding window (Eq. (2.3) with 𝑁 𝑤 = 4). This window size was chosen to equal the

  Figure 2.27. The MSE was estimated from the 500 simulated repetitions of the experiment obtained in the final iteration of the weight optimization process, assuming the true threshold time-course was the one finally estimated from the real data. The variance of estimated threshold variations depends on the dataset and on the size of the filter. To obtain a comparable measure, the estimated MSEs were normalized by the threshold variance. The general trend, except for the results of one participant, is a decrease of the normalized MSE when the estimation window increases. In multiple cases, estimated performance reaches normalized MSEs that are smaller than 1. This indicates that the weighted means used as estimates yield
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Table 3. 1

 1 Models. The 5 models differ based on which of the additive terms in Eq. (3.3) are assumed to be zero. All models have in common a free parameter σ corresponding to the standard deviation of internal noise. Each model has between 0 and 3 additional free parameters: b representing systematic bias, α weighting the contribution of the previous interval to the decision, and β weighting the contribution of the 104 PART I. CHARACTERIZATION OF SENSORY VARIABILITY previous report. Non-free parameters are set to 0. Models in which α ≠ 0 or β ≠ 0 are history-sensitive.

  (3.1) and (3.2)) yielding an estimate of the 𝜎 parameter for each subject. Values of 𝜎 for each subject are plotted as closed symbols in Figure3.2. For convenience, subjects are ordered according to increasing 𝜎 . The average value of 𝜎 was 0.18 semitones (geometric mean) with a deviation factor of 2.2 (geometric s.d.). Assuming a Gaussian model with zero response bias, discrimination thresholds are expected to be ~0.67𝜎,

  Estimated noise parameter 𝝈 for the Baseline model (closed symbols) derived from a fit of the choice psychometric function and thresholds (open symbols) derived from a fit of the accuracy psychometric function for each subject. Subjects are ordered on the horizontal axis by increasing noise.

  quality of fit and model comparisons. Tested models were Baseline ( 𝟎 ), systematic Bias (B), Bias + Prior Stimulus (BPS), Bias + Prior Response (BPR), bias + prior stimulus + prior response (Full). (A) Mean Log-Likelihood (MLL) per model. Lines correspond to individual subjects. Models are ordered by increasing complexity on the horizontal axis, MLL of BPS and BPR models have the same number of parameters and are plotted in distinct colors for better readability. (B) Summary of all pair-wise model comparisons. Each box displays the number of participants for which the model on the vertical axis was retained against the model on the horizontal axis after F-test. BPR and BPS models were not compared because they are not nested.

Figure 3 .

 3 Figure 3.4 shows parameter estimates of the Full model for all subjects (parameters 𝑏 and 𝛽 are normalized by the value of 𝜎 obtained for this model, for visual convenience). Estimates of 𝜎 (geometric mean: 0.12 semitones, geometric s.d.:

  the Full model. (A) Noise parameter σ obtained under the Full model (orange), and under the Baseline model (black). (B) Parameter b quantifying systematic choice bias. (C) Parameter α weighting the relative contribution of the previous interval. (D) Parameter β weighting the relative contribution of the previous response. Bars represent bootstrap estimates of 95-% confidence intervals, faded symbols denote no significant difference from 112 PART I. CHARACTERIZATION OF SENSORY VARIABILITY the Baseline model. Subjects are ordered by increasing internal noise (σ ) as estimated under the Baseline model (same as Figure 3.2).

  5 shows the amount by which 𝛼 is overestimated when the contribution of the prior response is ignored (model BPS) relative to the Full model as a function of normalized 𝛽 . The parameter is overestimated for 𝛽 positive, and underestimated otherwise. Error on the 𝜶 estimate when the contribution of the prior response is ignored. The difference between the estimate of α obtained by a fit of the BPS model and that obtained by a fit of the Full model is plotted against the ratio of β and σ estimates obtained with the Full-model fit. Dots correspond to individual participants.
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( 6 )

 6 removing remaining artifacts by channel interpolation (nt_inpaint); (7) re-* Available at audition.ens.fr/adc/NoiseTools/ 130 PART II. RELATING SENSORY VARIABILITY TO BRAIN STATE FLUCTUATIONS referencing signals by subtracting the average over all channels; (8) centering signals by removing a channel-specific average over all time samples.

  resulting correlations are shown in Figure 4.3 for 3 values of the high-pass cutoff frequency ( 0.05 Hz, 0.5 Hz and 5 Hz). The high-pass filters reduce to zero the correlations at lags that are longer than the inverse of the cutoff frequency. It also decreases the correlations found at short lags because these correlations were mainly driven by the long-term variations of the components found in the absence of highpass filtering. Interestingly, the correlation lines display "rebounds" at intermediate lags. The position of these rebounds depend on the high-pass cutoff and are generally characterized by the detachment of a small number (1-4) of the best-ranked component pair(s) above the overall pattern. Results of CCAs of time-lagged channel signals after removal of low-frequency trends. The analyses reported in Figure 4.1 were repeated after high-pass filtering of the data. Results shown here were obtained using three high-pass filters with different cutoff frequencies (0.05 Hz, 0.5 Hz, and 5 Hz).

  similar time-courses and projection topographies, indicating they are predictors of themselves. Examples of these periodic components with periods of ~10 seconds, 134 PART II. RELATING SENSORY VARIABILITY TO BRAIN STATE FLUCTUATIONS ~0.7 seconds and ~150 ms are show in Figure 4.4, Figure 4.5 and Figure 4.6,

  Cyclic component extracted by CCA of time-lagged channel signals with 𝚫𝒕 = 𝟏𝟎 s after high-pass filtering with a 𝟎. 𝟎𝟓-Hz cutoff frequency. (A) Projection topography. (B) Time-course of the highpass filtered component. (C) Time-course of the full-band component. Cyclic component extracted by CCA of time-lagged channel signals with 𝚫𝒕 = 𝟎. 𝟔 s after high-pass filtering with a 𝟎. 𝟎𝟓-Hz cutoff frequency. (A) Projection topography. (B) Time-course of the high-pass filtered component. (C) Time-course of the full-band component. Component extracted by CCA of time-lagged channel signals with 𝚫𝒕 = 𝟕𝟎 ms after high-pass filtering with a 𝟓-Hz cutoff frequency. (A) Projection topography. (B) Time-course of the high-pass filtered component. (C) Time-course of the full-band component. In sum, the analysis of canonical correlations between channel signals at times 𝑡 and channel signals at times 𝑡 = Δ𝑡 constitutes a method to reveal EEG components that have either large, slow trends or periodic patterns. The low-frequency (<1Hz) part of the EEG is typically contaminated by artifacts caused by electro-dermal activity.

  recording(Figure 4.7). This data represented channel signals 𝑿 (𝑁 𝑐 = 12) resulting from a linear mixture of the signals of a target source and of 11 interfering white noise sources. The target consisted of a 10-Hz oscillation with slow amplitude modulations.The target amplitude time-course was generated as a 1/f noise process and additionally smoothed by convolution with a 500-ms boxcar function. The target signal was scaled so that its standard deviation was 0.01 times the standard deviation of the interfering signals (SNR = 10 -4 ). Target and interfering sources were projected by a random 12 × 12 mixing matrix to form the 12 channel mixture signals. Channel cross-products were smoothed by convolution with a 100-ms boxcar function and a CCA was performed with a lag Δ𝑡 = 50 ms separating the two sets of signals. The two quadratic components 𝐶 𝑋 𝑞 and 𝐶 𝑌 𝑞 of the pair with maximal correlation are almost perfectly identical and their smoothed time-course is well correlated with the envelope of the target. The linear component 𝐶 𝑋 𝑙 with closest square looks very similar to the target itself. CCA of channel cross-products recovers an oscillating target with slowly-varying envelope from synthetic mixture with interfering noise. The traces represent a 2-second extract from the 20minute signal time-courses. The 12 simulated channel signals (middle) were made of a linear mixture of 12 source signals (left) including an amplitudemodulated 10-Hz oscillation target (upper trace) and 11 white noises (lower traces). The thick lines surrounding the oscillation represent the target's envelope. The low signal-to-noise ratio (10 -4 ) makes it impossible to make out the target from the mixture. The most correlated pair found by CCA contains a quadratic component CXq (top right, thin line) and a very similar one CYq. The thick line represents the local average in a 100-ms sliding window. The linear component CXl with closest square (bottom right) looks very much like the 10-Hz target.

  Decomposition of one subject's EEG signals into multiple components peaking at 𝟏𝟏 Hz. Each spectrum in the left panel corresponds to one of the topographies on the right, identifiable by the color of the topography's contour. Decomposition into multiple components peaking at 𝟏𝟏. 𝟕𝟓 Hz.

  Figure 4.15. This time the simulated 12-channel mixture contained two target signals in addition to 10 interfering noise signals. One target was a "slow" frequency-modulated oscillation with a 5-Hz carrier frequency. The oscillation was frequency-modulated by a 1/f-like signal smoothed by convolution with a 400-ms boxcar function. The second target was a "fast" amplitude-modulated 60-Hz oscillation whose instant amplitude was proportional to the signal of the first target. The signal-to-noise ratio for the two targets in the mixture was 10 -2 . Two sets of variables were co-analyzed by CCA: one contained the channel signals 𝑋 at times 𝑡, the other one contained the 16-ms local average of signal cross-products 〈𝑋 𝑞 〉 at the same times 𝑡 . The analysis therefore provides a pair of signals made of a linear component 𝐶 𝑋 and a quadratic component 𝐶 𝑋 𝑞 that are maximally correlated. The time-course of the linear component is very similar to that of the slow target. In addition, the linear component 𝐶 𝑋 𝑙 with closest square to 𝐶 𝑋 𝑞 has a time course that is similar to that of the fast target. CCA of channel signals and cross-products recovers two cross-frequency coupled components from synthetic mixture with interfering noise. The traces represent a 1-second extract from the 1-minute signal time-courses.

Figure 4 .

 4 Figure 4.16, maybe because of a lower SNR. Other components had a rather unimodal power distribution. Switching between low-amplitude and high-amplitude alpha modes in resting state EEG signals, suggesting a bi-stable dynamics, have been reported previously[START_REF] Freyer | Bistability and non-Gaussian fluctuations in spontaneous cortical activity[END_REF]. However, it is not totally clear whether these

  Enhancement of oscillation SNR by JD reveals distinct alpha modes in MEG data. JD was performed with a bias filter peaking at 9-Hz. The local root mean square of the first 15 components was computed over a 1-s sliding window and is plotted as a raster plot in the left panel, red pixels indicating a high value and yellow a low value. The right panel shows in dark blue a histogram of the relative alpha-band power of the first component measured in short time-intervals. The red, dashed line corresponds to the contour of the histogram obtained from a single MEG channel, chosen for being the most correlated with the previous component. The existence of two separable types of intervals (high-and low-power) is much more visible in the histogram from the JD component. Adapted from de Cheveigné and Arzounian (2015). PART II. RELATING SENSORY VARIABILITY TO BRAIN STATE FLUCTUATIONS 5.3.2 Looking for EEG components whose amplitude relates to the ongoing threshold ............................................................................ 176 5.3.3 Linear regression of the threshold from ongoing EEG channel signals ............................................................................................... 178 5.3.4 Linear regression of the threshold from EEG evoked response features ............................................................................................ 180 5.1 Literature about the modulations of perception by brain states

  of oscillations are usually investigated by a time-frequency analysis of individual sensor signals, the results being possibly averaged over sensors in a second step. At each sensor, oscillatory source signals are superposed with multiple competing signals that may obscure their presence. Weak oscillatory sources may PART II. RELATING SENSORY VARIABILITY TO BRAIN STATE FLUCTUATIONS

  Comparing pre-stimulus power and phase of an illustrative low-frequency oscillating component between correct and incorrect responses. The projection topography of this 8.5-Hz component is shown in the top left corner. The adjacent panel shows the time interval where power was measured and the time point at which phase was measured within the time-course of an example trial epoch, 0 corresponding to the time of the stimulus onset. In the middle panels, the distributions of prestimulus power (left) and phase at stimulus onset (right) are shown with different colors for correct (green) and incorrect (red) trials. Statistical differences are assessed by means of a resampling method, providing estimates of the power difference and PBI distribution under the null hypothesis of no difference, shown in the bottom panels. The blue vertical lines indicate the position of the value measured in the original dataset. There is a small effect of response accuracy on pre-stimulus power (p=0.029) but no difference of the phase distribution between the two types of trials (p=0.69).

Figure 5 .

 5 2 to Figure 5.5). Setting a significance p-value threshold 𝛼 of 0.05, only 6 components show a (weak) effect of pre-stimulus power and 2 show a (weak) effect of pre-stimulus phase, and none of PART II. RELATING SENSORY VARIABILITY TO BRAIN STATE FLUCTUATIONS these effects is significant if 𝛼 is corrected for multiple comparisons. These results are quite representative of what is found in all subjects, although the number of tested components is variable, between 6 and 27. Set of 𝟖. 𝟓-Hz components and p-values for the effects of their pre-stimulus power and phase on response accuracy. Set of 𝟗. 𝟓-Hz components and p-values for the effects of their pre-stimulus power and phase on response accuracy.

  PART II. RELATING SENSORY VARIABILITY TO BRAIN STATE FLUCTUATIONS A slow EEG component that displays some correlation with the threshold time-course. The threshold (FDL, upper line) and the slowly-varying EEG component (lower line) are displayed on the left. The EEG component was obtained by a CCA of de-trended full-band EEG data with a lag of 1 second, its projection topography is shown in the bottom right panel. The threshold time-course was computed as an optimized 50-trial weighted mean of stimulus levels. The cross-correlation function between the two signals is shown in the upper right panel. Positive lags correspond to the threshold time course being shifted forward relative to the EEG signal.

  figure highlights the relation to the ongoing threshold of the variances on the two axes, corresponding to these two extreme components. These components are not only uncorrelated, but their variance are anti-correlated (the scatter has a cross-like shape).Most of the variance on the horizontal axis is mainly attributable to high-threshold samples (lighter color), while low-threshold samples (darker color) contribute more to the variance on the vertical axis. Again, it is unclear what these components reflect, their projection topographies lacking an organized geometrical structure.

  consists in learning from the data the linear model that best predicts the ongoing threshold from the ongoing EEG signals. If the explanatory variables used for prediction are the instant signals of individual channels, the result of the linear regression is an EEG component that has maximal correlation with the threshold time-course. While the previous JD analysis aimed at components whose variance co-varies with the ongoing threshold, the present regression analysis aims at components whose instant signal co-varies with the threshold. To attenuate rapid signal variations that are unlikely to correlate with the relatively slow time-course of the threshold, a low-pass filter with a 0.1-Hz cutoff was applied on the channel signals prior to the regression. Performing linear regression on the entire set of channels leads in this situation to massive overfitting, probably intensified by the high serial correlation of the interpolated threshold measure, reducing the number of truly independent training examples. To assess overfitting, each recordings was cut into two equal intervals, linear regression was performed one interval (training set) and the correlation between the resulting prediction and the actual threshold was computed on the other interval (test set). The top panel of Figure 5.11 shows the results of the linear regression on one illustrative recording. When the signals from all EEG channels or almost (𝑁 𝑐 = 70) are included as explanatory variables, the prediction of the threshold from the signals of the training set (purple trace) fits quite well the time-course of the estimated

  improve when the number of components is increased. The question is, what number yields the best prediction on the test interval? The bottom panel ofFigure 5.11 indicates that the average prediction performance on the test set is actually quite independent from the number of selected components. These results suggest that EEG channel signals do not contain any component that is really correlated with the ongoing threshold, or that such a component may be present in the entire set of signals, but the amount of data available to train the linear model is not enough to extract it. Results are similar when components are selected by PCA rather for their slow variations. Prediction of threshold measures computed with larger or smaller estimation windows do not generalize well to the test set either. PART II. RELATING SENSORY VARIABILITY TO BRAIN STATE FLUCTUATIONS Linear regression of the ongoing threshold from EEG channel signals. The upper panels display results obtained on an illustrative recording. The "true" threshold time-course is computed as an optimized weighted mean of stimulus levels in a 50-trial sliding window and plotted as a black trace in the upper two panels. Colored lines show the predicted threshold obtained by linear regression. Only the first half of the recording was used to train the linear model, the second half is used to test the generalization capacity of the model. The set of upper traces was obtained by regression of 70 EEG components, the set below by regression of 2 selected, slowly-varying components. The predictions correspond to the signals of linear EEG components whose projections topographies are shown on the right. The bottom panel shows the correlation between the prediction and the "true" ongoing threshold, separately for training (purple) and test (green) intervals, as a function of the number Nc of slow components retained for the regression.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  PART I. CHARACTERIZATION OF SENSORY VARIABILITY log 2 (|𝑠|) or log 10 (|𝑠|), depending on field-specific conventions. This has the advantage of yielding shallower curves on which the threshold is easier to locate with precision.

|𝑠|, either log(|𝑠|),
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  CHARACTERIZATION OF SENSORY VARIABILITY{𝑥 𝑛,𝑁 : 𝑛 ∈ {1, … , 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 }} of stimulus levels will be obtained, leading to a specific series {𝜃 ̂𝑛,𝑁 : 𝑛 ∈ {1, … , 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 }} of threshold estimates. It is then possible to assess the tracking performance trial by trial, by computing trial-specific performance metrics,

	Once the models of the listener's and the procedure's behavior are settled, the experiment can be simulated numerically. I will simulate a large number 𝑁 𝑒𝑥𝑝 of MSE 𝑛 = 1 𝑁 𝑒𝑥𝑝 ∑ (𝜃 ̂𝑛,𝑁 -𝜃 𝑛 ) 2 𝑁 𝑒𝑥𝑝 𝑁=1 (2.17) The trial-specific MSE might vary over the experiment, and looking at its time-course experiments assuming each time the exact same time-course {𝜃 𝑛 : 𝑛 ∈ {1, … , 𝑁 like the estimated MSE associated with a particular trial 𝑛 ∈ {1, … , 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 }: may be helpful in revealing what kind of threshold variations are easier or harder to

.16) This psychometric function is in accordance with the SDT model presented in Chapter 1, section 1.2, provided the listener has a neutral choice criterion (see Eq. (1.11) and (1.12)). It corresponds to the sample of accuracy functions shown in Figure 1.3(A). 𝑡𝑟𝑖𝑎𝑙𝑠 }} for the threshold. Despite being equal, these threshold variations may each time result in a different experimental outcome, due to the stochasticity of the Bernoulli process occurring on each trial. In experiment number 𝑁 (𝑁 ∈ {1, … , 𝑁 𝑒𝑥𝑝 }), a specific series PART I. follow with the tracking method under study. A global performance index may nevertheless be computed as the estimated global MSE by averaging the trial-specific MSEs over the entire experiment:

  CCA of 〈𝑿 𝒒 〉 and 〈𝒀 𝒒 〉 will optimize two weight vectors 𝑾 𝑿 𝒒 and 𝑾 𝒀 𝒒 in such a way that 𝑾 𝑿 𝒒 〈𝑿 𝒒 〉 and 𝑾 𝒀 𝒒 〈𝒀 𝒒 〉 are maximally correlated. Note that these linear transforms of the local averages of the cross-products are nothing else than the local averages of the linear transforms of the cross-products, i.e. 𝑾 𝑿 𝒒 〈𝑿 𝒒 〉 = 〈𝑾 𝑿 𝒒 𝑿 𝒒 〉. The signal 𝐶 𝑋 𝑞 = 𝑾 𝑿 𝒒 𝑿 𝒒 can be called a quadratic component of the EEG signals. Such a quadratic component is not necessarily the square of a linear component, but it is possible to find the linear component 𝐶 𝑋 𝑙 whose square is the closest to this quadratic component (de Cheveigné, 2012). This holds for the quadratic component 𝐶 𝑌 𝑞 = 𝑾 𝑿 𝒒 𝒀 𝒒 , to which corresponds one linear component 𝐶 𝑌 𝑙 with closest square. If the square of these linear components are close enough to the quadratic components, i.e. 𝐶 𝑋 𝑞 ≈ 𝐶 𝑋 𝑙 2 and 𝐶 𝑌 𝑞 ≈ 𝐶 𝑌 𝑙 2

Arzounian, D., de Kerangal, M., de Cheveigné, A., submitted. Sequential dependencies in pitch judgments.

Appendix C, p. 193 

A 𝟏𝟏. 𝟐𝟓-Hz component and p-values for the effects of its pre-stimulus power and phase on response accuracy. Set of 𝟏𝟎. 𝟓-Hz components and p-values for the effects of their pre-stimulus power and phase on response accuracy.

that information can be accumulated over repetitions of a recurring "reference" stimulus to form a perceptual anchor [START_REF] Durlach | Intensity Perception. I. Preliminary Theory of Intensity Resolution[END_REF][START_REF] Matthews | The effect of stimulus range on two-interval frequency discrimination[END_REF][START_REF] Nahum | From Comparison to Classification: A Cortical Tool for Boosting Perception[END_REF]. Both hypotheses imply a model more complex than embodied by Eq. (3.3) that assumes fixed weights.

The model proposed here considers only the contribution of the previous interval (𝑠 𝑛-1 ) to the decision variable (Eq. (3.3)). We tested linear models including even earlier intervals (𝑠 𝑛-2 , 𝑠 𝑛-3 , not reported here) and found that effects can extend over several trials, with effects decreasing with anteriority, as reported in previous studies [START_REF] Alais | Auditory frequency perception adapts rapidly to the immediate past[END_REF][START_REF] Cicchini | Compressive mapping of number to space reflects dynamic encoding mechanisms, not static logarithmic transform[END_REF][START_REF] Fischer | Serial dependence in visual perception[END_REF][START_REF] Fründ | Quantifying the effect of intertrial dependence on perceptual decisions[END_REF][START_REF] Raviv | How recent history affects perception: the normative approach and its heuristic approximation[END_REF]Taubert et al., 2016a). In the extreme, we could hypothesize that subjects performed the task by comparing each new tone to a weighted average of all preceding stimuli (e.g. [START_REF] Morgan | The use of an implicit standard for measuring discrimination thresholds[END_REF]. Other models can be proposed to capture sensory integration over multiple stimuli, such as the implicit memory model of [START_REF] Raviv | How recent history affects perception: the normative approach and its heuristic approximation[END_REF], or the Bayesian integration model of [START_REF] Cicchini | Compressive mapping of number to space reflects dynamic encoding mechanisms, not static logarithmic transform[END_REF]. Such models lead to similar predictions as the generalized linear model (as shown by Raviv et al.).

The sliding 2AFC procedure used in this study differs from the classic two-interval procedure used in most pitch discrimination studies in two important ways. The first is that each tone was involved in two successive comparisons, first as a test tone then as a reference tone. In particular, the need to store the representation of tone 𝑛 -2 (to compare it with 𝑛 -1 on the previous trial) might have increased its salience and weight within the current trial. The second is that each tone was followed by a response in our procedure, whereas no response follows the reference tone in the classic procedure. The response to tone 𝑛 -1 might require additional cognitive resources, reducing its weight relative to tone 𝑛 -2. However, in both cases we would expect a performance difference between procedures, whereas our previous study found none [START_REF] Arzounian | A sliding two-alternative forcedchoice paradigm for pitch discrimination[END_REF]. The motivation for the new procedure was to ensure effects such as these, if they exist, affect uniformly all tones in the sequence, so that tones preceding a trial differ only by their rank. It would be useful to repeat our analyses with data from the classic procedure to clarify these issues. the recordings entailed 72 channels, each analysis yielded 72 pairs of EEG components, ordered from the most correlated (dark blue line) to the least correlated (light yellow line). As expected, correlations tend to decrease when the lag increases.

However, this decay is more pronounced at lags above 1 second. Below 1 second, almost all pairs of components have correlation coefficients higher than 0.8. When the lag is between a few seconds and a few tens of seconds, only a small number of component pairs have a correlation higher than 0.2.

CCA of time-lagged channel signals: evolution of maximized correlations with time lag (𝚫𝒕).

A CCA was performed for each of 150 values of the time lag Δt (horizontal axis). Each CCA yields 72 pairs of EEG components ordered from the most correlated (1 st rank) to the least correlated (72 nd rank); each line correspond to a fixed pair rank, color-coded. To discard overfitting, Pearson's correlation coefficients were computed on one half of the recording that was not used to learn maximal-correlation components. The correlation coefficients reported here were averaged over 17 recordings.

The reason why even the lowest-ranked component pairs end up having high correlations at short lags is probably because EEG signals typically have a 1/f-like power spectrum. As an illustration, the 𝐶 𝑋 component of the most correlated pair found by CCA with a 1-second lag in one recording is shown in Figure 4.2. The corresponding component 𝐶 𝑌 is not shown because it looks almost perfectly similar, indicating these components were selected because 𝐶 𝑋 highly correlates with a slightly delayed version of itself. The time-course of this component (panel (B)) displays a succession of large, progressive, upward and downward deviations that occur over PART II. RELATING SENSORY VARIABILITY TO BRAIN STATE FLUCTUATIONS several minutes. Signal variations that may occur within 1 second are negligible in comparison, which explains why the self-correlation at 1-second is high (0.99). In sum, the analysis extracts the EEG components with the highest relative power at lowfrequencies.

The component's projection topography can be recovered by cross-correlation of its signal and the sensor signals. Note that this topography can be very different from the topography of the filter weights [START_REF] Haufe | On the interpretation of weight vectors of linear models in multivariate neuroimaging[END_REF]. The projection topography of the previous component is scattered over the entire scalp, with positive and negative polarities here and there (panel (A)). It seems unlikely that this slow signal stems from synchronized neural sources with such a spatial distribution. Some large deviations of EEG traces over long time scales are known to be induced by variations of skin conductance and may be regarded as artifacts since they don't reflect purely neural activity. Note that the removal of a polynomial trend during the preprocessing of the EEG data (see the introduction of this chapter) suppressed the largest drifts. However, small drifts may remain, especially as no high-pass filtering was applied to the data, and these remaining drifts may be amplified by the spatial filters provided by CCA. It can be noted that the component's variations have a higher amplitude on the half of the recording that was used to train the spatial filters (first 11.5 minutes) than on the other half (last 11.5 minutes), indicating that the filters were probably slightly overfitted to maximize the amplitude of slow variations on the specific part of the data that was used for training. Once the CCA has identified a slowly-varying quadratic component and the associated linear component with closest square, the latter can be regressed out from the channel signals and the analysis can be re-iterated to identify further components.

The number of distinct cross-products of 𝑁 𝑐 channels is 𝑁 𝑐 (𝑁 𝑐 -1)/2. Applying the previous analysis to our EEG recordings is made difficult by the large number of channels recorded: 72 channels are associated with 2556 distinct cross-products.

Computing CCA on such a larger number of variables leads to memory issues and is susceptible to exaggerated overfitting. To avoid these issues, we chose to run the CCA on the cross-products of a subset of linear EEG components, instead of running it on the channel cross-products. The selected linear components were the first of the principal components obtained by PCA and ranked by decreasing variance. Note that when 12 linear components are selected, they have 66 distinct cross-products, which is of the same order as the number of variables we had previously in the linear CCA (subsection 4.1.1). 

Conclusion

CCA, when computed on two sets of EEG features that are separated by a fixed time lag Δ𝑡, can in principle detect variables that are predictive of upcoming activity. In effect, when the analysis is performed on the channel signals, the analysis reveals self-Decomposition into components peaking at 𝟏𝟐.5 Hz.

One component peaking at 𝟏𝟑 Hz.

Dimensionality of the oscillation state

Brain oscillations display both amplitude-and phase-modulations, which is reflected in the not-so-narrow peak of their power spectrum. The variations of oscillation amplitude over time may reflect functional changes that may impact the processing of sensory stimuli. Whether irregular or not, evolution of the oscillation phase over time may be seen as a continuous alternation between opposite states, e.g. "up" and "down" states that coincide with the peaks and troughs of the oscillation, respectively. Consequently, both the amplitude and the phase of brain oscillations at a given time-point constitute possibly relevant descriptors of the ongoing brain state.

What is the dimensionality of brain state defined based on these oscillatory features? Cross-frequency phase-amplitude coupling refers to a co-variation of the phase of a slower rhythm with the amplitude of a faster rhythm. Such coupling of brain electrical rhythms has been reported in the literature. [START_REF] Lakatos | An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex[END_REF] 

observed

In the approach presented in this section, the time-courses obtained with various resolutions may be compared with various EEG components that vary with similar rhythms.

Do infra-slow EEG components co-vary with the frequency discrimination threshold?

In the previous chapter, a canonical correlation analysis (CCA) allowed to reveal, in the recordings, EEG components characterized by large infra-slow (i.e. <0.2 Hz) fluctuations. A first exploration aims at identifying possible correlations between the threshold measure and these slowly-varying components. This quantity is unchanged when the size of the threshold estimation window is changed, as can be seen in the left panel of Figure 5.13.

The analysis was also repeated extracting EEG features from epochs with different sizes, which did not change the results either (Figure 5.13, central panel). One possibility is that these EEG epochs do contain threshold-related features, but that these features have been removed after selection of the first principal components, or that they do not get learned by the model because of insufficient training data. As shown in the right panel of Figure 5.13, prediction quality only worsens when the number of retained principal components is increased, which manifests as an increase in the MSE computed on the test data that was not used to train the model. The MSE computed on the training data, by contrast, decreases when the number of features increases, but it remains comparable to the generalization MSE computed on the test set, which suggests that the number of examples available was low enough to limit overfitting when using these relatively small number of features.

The quality of linear threshold prediction from stimulus-evoked EEG does not vary much with the parameters of the analysis. In the three panels, the normalized MSE, averaged over all 14 participants, is reported on the vertical axis. Error bars represent the standard deviation over participants. Nw designates the number of trials used to compute the threshold from stimulus levels, i.e. the order of the optimized linear filter. PCs stands for Principal Components (of the stimulus-evoked EEG features).

Explaining the absence of correlations between brain state measures and behavior

There are several possible explanations for our failure to find a reliable EEG-based predictor of behavioral responses. One is that our description of behavior is not accurate enough. The high-density sampling procedure (sliding 2AFC) should have increased sensitivity to rapid fluctuations of state, and our prediction of trial-by-trial responses was significantly improved when we took stimulus and response history into account, factoring out a source of nuisance variance. It is possible that we still ignore other significant external factors that prevail over brain state effects. As for the correlations of brain state with ongoing threshold, they may be blurred by the noise in our estimate of ongoing threshold which is inevitably imperfect.

A second explanation is that our EEG analysis methods were lacking. A major difficulty is that there are very many candidate state features. For instance, some authors describe brain states through the parameters of local dynamical models of brain activity, e.g. auto-regressive models [START_REF] Anderson | Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks[END_REF][START_REF] Gersch | Parametric time series models for multivariate EEG analysis[END_REF][START_REF] Kuhlmann | Tracking electroencephalographic changes using distributions of linear models: application to propofol-based depth of anesthesia monitoring[END_REF][START_REF] Ogawa | An application of autoregressive model to pattern discrimination of brain electrical activity mapping[END_REF][START_REF] Pardey | A review of parametric modelling techniques for EEG analysis[END_REF], or as belonging to one of a small number of categories, sometimes named microstates, preidentified by clustering of voltage topographies [START_REF] Koenig | Millisecond by Millisecond, Year by Year: Normative EEG Microstates and Developmental Stages[END_REF] or of functional connectivity patterns [START_REF] Betzel | Synchronization dynamics and evidence for a repertoire of network states in resting EEG[END_REF]. Exploring all candidate features is timeconsuming, and akin to performing multiple statistical tests. This motivated our attention to "standard" features, such as oscillatory amplitude or phase, that are popular in the literature and have been found to modulate visual processing (e.g. [START_REF] Busch | The phase of ongoing EEG oscillations predicts visual perception[END_REF][START_REF] Busch | Spontaneous EEG oscillations reveal periodic sampling of visual attention[END_REF][START_REF] Hanslmayr | Prestimulus oscillations predict visual perception performance between and within subjects[END_REF][START_REF] Hanslmayr | Prestimulus Oscillatory Phase at 7 Hz Gates Cortical Information Flow and Visual Perception[END_REF][START_REF] Mathewson | To see or not to see: prestimulus alpha phase predicts visual awareness[END_REF]. However the possibility that sources of interest might have poor SNR at the electrodes, but better SNR or predictive power in some linear combination yet to be determined, was a strong motivation to try out data-driven optimization schemes as well, the downside of which is an enhanced risk of overfitting, or double-dipping [START_REF] Kriegeskorte | Circular analysis in systems neuroscience: the dangers of double dipping[END_REF]. It may be the case that we would have had more success with variants of these methods, for example using advanced feature selection methods to control dimensionality, or to tap additional features within the Appendix A.
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Appendix B.

Explanation for reduced variance of weighted-mean threshold estimators when independent tracks are interleaved

The variance of an estimator of the form given in Eq. (2.4) 

Statistics for nested model comparisons

In the table below, the first column corresponds to subject (S) rank as in Figure 3.