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Titre : Science de surface et propriétés chimiques d'hétérostructures NiO/TiO2 

monocristallin 

Résumé : Les photocatalyseurs à base de TiO2 ont été l’objet d’une grande 

attention comme une méthode durable de purification de l’air ou de l’eau, et de 
production d’hydrogène par décomposition de l’eau. Une stratégie avantageuse 
consiste à développer des héterostructures par couplage avec un autre oxyde 
métallique former une jonction de type Schottky ou avec un autre oxyde métallique 
pour créer une jonction p-n à l’interface de manière à prévenir les recombinaisons via 
une séparation de charge « vectorielle » à ces jonctions. De plus, les facettes 
cristallines jouent un rôle crucial dans le piégeage des porteurs de charge et, donc, 
dans les réactions rédox photoactivées. Ainsi, le dépôt sélectif de métal ou d’oxyde 
métallique sur des facettes spécifiques de nanocristaux de TiO2 devrait augmenter 
l’activité photocatalytique par l’amélioration de la séparation des charges. Dans ce 
travail, nous avons combiné l’emploi du cocatalyseur de type p NiO pour former des 
jonctions p-n avec son dépôt sélectif sur des nancristaux de TiO2 anatase exposant 
des facettes bien définies. Par ailleurs, des expériences modèles de physique de 
surface ont été menées pour étudier les propriétés électroniques de ces 
hétérojonctions. 

Mots clés : Photocatalyseur, TiO2, hétérostructure 

 

Title : Surface science and chemical studies of NiO/single crystal TiO2 

heterostructure photocatalysts 

Abstract : Abstract for public: TiO2 photocatalysts have attracted attention as a 

sustainable method for water/air purification and hydrogen production by water 
splitting. An advantageous strategy is the development of heterostructures by 
coupling metal oxides to create a p-n junction at their interface in order to prevent the 
recombination by vectorial charge carrier separation at these energy junctions. In 
addition, crystal facets play a decisive role in the trapping of charge carriers and thus 
photocatalytic redox reactions. Thus, selective deposition of metal or metal oxides 
onto specific facets would enhance the photocatalytic activity by improving charge 
separation. In this work, we have combined the usage of p-type NiO co-catalyst to 
form p-n junction with its selective deposition onto the specific facet of oriented TiO2 
nanocrystal photocatalysts. Furthermore, the physical model experiments have been 
performed to investigate the electronic properties of these heterojunctions. 

Keywords : Photocatalyst, TiO2, heterostructure 
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Résumé détaillé en français 

 

La crise énergétique mondiale combinée aux phénomènes de réchauffement climatique et de 

pollution environnementale a conduit à l’émergence de nombreux problèmes sociétaux qui doivent être 

résolus dans les prochaines décennies par les sociétés modernes pour garantir une économie prospère 

et durable. Par conséquent, il y a un besoin urgent de technologies « vertes » pour produire des 

carburants respectueux de l’environnement alternatifs aux combustibles fossiles ou nucléaire 

conventionnels et pour garantir une eau et un air pur via l’élimination efficace des polluants 

organiques et pharmaceutiques. Dans ce contexte, les réactions photocatalytiques sur les surfaces de 

dioxyde de titane (TiO2) ont suscité une attention particulière au niveau mondial du fait de leur 

capacité à décomposer différents polluants de l’air ou des eaux, à réduire le dioxyde de carbone (CO2) 

et à réaliser la photolyse de l’eau. Cependant, la photocatalyse avec des matériaux TiO2 pur est loin de 

remplir les critères nécessaires pour une application dans les conditions réelles du fait de sérieuses 

limitations telles que les recombinaisons des porteurs de charge et la lenteur des réactions rédix de 

surface. De manière à tracer de nouvelles perspectives dans ce domaine, ce travail a eu pour objectif de 

caractériser soigneusement les propriétés de surface des matériaux à base de TiO2 comme matériaux 

semiconducteurs de type n et des interfaces formées avec un matériau modèle de type p, l’oxyde de 

nickel, puis de développer de nouveaux catalyseurs à base d’hétérojonctions NiO/TiO2 pour la 

photodécomposition de colorants organiques. 

 

Dans le premier chapitre, les propriétés fondamentales de surfaces monocristallines de TiO2 ont 

été décrites en détails au regard de la bibliographie. Cela comprend notamment des travaux récents 

concernant la distribution des lacunes d’oxygène sur des surfaces de TiO2 orientées de manière 

différente et l’effet de ces lacunes sur l’adsorption d’eau sur ces surfaces. Les lacunes d’oxygène 

tendent à résider sous la surface ou dans le volume  tandis qu’elles apparaissent sur les sites oxygène 

pontant à la surface. De plus dans les cristallites de TiO2 anatase, la facette (001) est particulièrement 

stable vis à vis de la création de lacunes d’oxygène tandis que ces dernières sont facilement créées sur 

les faces (101). Ces différences de stoechiométrie pour les différents polymorphes et orientations 

affectent considérablement les propriétés électroniques et ainsi les processus chimique sur ces surfaces 

tels que l’adsorption d’eau. Cependant la vision à l’échelle atomique de ces différences est encore peu 

claire. Les principes de la photocatalyse et les phénomènes spécifiques sur les surfaces de TiO2 ont 

ensuite été rappelés. Puis, le rôle des co-catalyseurs a été exposé. En particulier, les co-catalyseurs 

peuvent non seulement former des zones de charge d’espace telles que des barrières Schottky et de 

jonctions p-n, qui favorisent la séparation des porteurs de charge, mais fournissent également des sites 

de réaction rédox de surface en diminuant les surtensions pour la décomposition photoélectrochimique 
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de l’eau et en réduisant les barrières d’activation pour les réactions photocatalytiques. Il mérite aussi 

d’être mentionné que l’équilibre entre les vitesses des réactions d’oxydation et de réduction doit être 

pris en compte car un déséquilibre conduirait à une accumulation d’électrons et/ou de trous, induisant 

un taux de recombinaison des porteurs de charge plus élevé. D’autre part, la formation d’une interface 

dans les nanocristaux d’oxydes métalliques semiconducteurs issue de l’ingénierie des facettes 

cristallines a aussi été discutée. Partant des études rapportant l’influence de la nature des facettes 

cristallines sur les propriétés photocatalytiques, les rôles respectifs des orientations (001) et (101) de 

l’anatase ont été présentés. Dans le cas de l’anatase, les électrons migrent vers la surface (101) tandis 

que les trous se déplacent vers la surface (001) même si le mécanisme associé demeure pour le 

moment inconnu. Enfin, des développements récents traitant de différentes approches synthétiques 

permettant le contrôle de la nature des facettes exposées par les cristaux d’anatase et des synergies 

issus de l’ingénierie des facettes et du dépôt de co-catalyseurs ont été analysés et résumés. En principe, 

le dépôt d’un co-catalyseur d’oxydation tel qu’un oxyde métallique de type p, comme l’oxyde de 

nickel (NiO), sur une face cristalline riche en électrons peut conduire au transfert spatial de trous vers 

le co-catalyseur d’oxydation tandis que le dépôt d’un co-catalyseur de réduction tel qu’un métal noble 

sur une face cristalline riche en électron peut favoriser la migration des électrons vers le co-catalyseur 

de réduction, maximisant les effets de séparation des porteurs de charge et augmentant ainsi les 

activités photocatalytiques. Néanmoins, le nombre de travaux démontrant ce type de synergie est 

limité aux photocatalyseurs de type oxyde métallique et, en particulier, à TiO2. A partir de l’état des 

connaissances sur les réactions photocatalytiques utilisant TiO2 comme matériau absorbeur, de 

nouvelles approches et considérations mécanistiques ont été récemment proposées par la communauté 

scientifique pour améliorer l’efficacité de ce système. Cependant, une compréhension détaillée des 

phénomènes mis en évidence par ces études demeure nécessaire notamment dans le domaine des 

processus de chimie et de physique des surfaces. 

 

Dans le but d’apporter de nouvelles contributions à ce domaine pluridisciplinaire, les recherches 

menées au cours de ce travail ont consisté à combiner synthèse chimique et caractérisation de 

photocatalyseurs NiO/TiO2, et des études de physique fondamentale sur des surfaces orientées de TiO2 

bien définies associées à des études soignées des interfaces formées par NiO avec ces surfaces de TiO2. 

Ici, NiO a été employé comme semiconducteur de type p car c’est un des matériaux semiconducteurs 

de type p parmi les moins chers et constitués d’éléments abondants. Les travaux réalisés au cours de 

cette ont été organisés en cinq parties principales et les principaux résultats sont résumés dans ce qui 

suit. 
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Tout d’abord, des substrats d’anatase (001) et (101) bien définis ont été préparés et étudiés par 

spectroscopie de photoélectrons X (XPS) et Ultra-Violet (UPS) dans le but d’établir leurs structures 

électroniques. Les surfaces de TiO2 ont été préparées de manière classique par des cycles répétés de 

pulvérisation ionique sous Argon suivis de recuits sous vide. Cependant la surface obtenue, nommée 

ensuite « pulvérisée », contenaient une grande quantité de lacunes d’oxygène et sa structure de surface 

pouvaient être partiellement détruite. Ainsi, pour comparer soigneusement leurs propriétés 

électroniques, les surfaces (101) et (001) ont été préparées in-situ dans la chambre sous vide pour 

obtenir différentes stoechiométries bien définies désignées ensuite par les termes pulvérisée, recuite, 

oxydée et stoechiométrique. L’orientation des surfaces recuites (101) et (001) a été confirmée à partir 

des figures non-reconstruites de diffraction des électrons de faible énergie (LEED). Une forte émission 

à faible énergie de liaison dans le spectre Ti2p caractéristique de Ti3+, ce qui est typique de la présence 

de lacunes d’oxygène, n’a été observé que dans le spectre XPS des surfaces (101) pulvérisée. Bien que 

des lacunes d’oxygène étaient attendues pour d’autres stoechiométries de surface à la fois pour les 

surfaces (101) et (101), ces lacunes ne sont détectables que par spectroscopie de photoélectron sensible 

à la résonance de surface. Les spectres de bande de valence XPS et UPS montrent la présence de 

différentes distribution d’états dans la bande interdite (BGS), consistant en des états peu profonds 

(SGS) et profonds (DGS) dans la bande interdite situés respectivement à 0,5 et 1,6 eV sous le 

minimum de la bande de conduction, en fonction de l’orientation et du pré-traitement de surface. 

Quelles que soient les conditions de surface, les états DGS de la surface (101) sont significativement 

plus larges que ceux de la surface (101) mais présentent une intensité similaire à celle des surfaces 

(101) d’après les données UPS. En tenant compte de la sensibilité différente aux effets de surfaces des 

spectroscopies XPS et UPS, la différence en DGS indique que les défauts sont situés sous la surface, 

profondément sous la surface ou dans le volume pour la surface (001) tandis que pour la surface (101) 

ils sont localisés à la surface ou seulement peu profondément sous la surface. L’intensité SGS de la 

surface pulvérisée (101) est plus importante comparée à celle de la surface (001) pulvérisée à la fois en 

XPS et en UPS, ce qui implique que l’excès d’électrons de la surface (001) est localisé principalement 

sur les défauts tandis que celui de la surface (101) est non seulement localisé sur les défauts mais aussi 

largement délocalisé sur les atomes de titane du réseau. Les états DGS et SGS ainsi que les états de 

surface de la bande de valence (VBSS) des surfaces (001) déduits des mesures XPS s’atténuent 

graduellement avec une diminution de la position du niveau de Fermi mais existent encore même après 

traitement au plasma d’oxygène. D’autre part, les états DGS et SGS de la surface (101) pulvérisée 

déduits des mesures XPS disparaissent immédiatement après réoxydation sous plasma d’oxygène puis 

recuit sous vide. Cela indique que les défauts en position profonde sous la surface pour la surface (001) 

sont relativement stables et tendent à persister tandis que ceux de la surface (101) peuvent être comblés 

par des molécules d’oxygène ou des espèces peroxo. Parallèlement à la variation des états DGS, SGS 
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et VBSS, la modulation du niveau de Fermi, dont les valeurs ont été mesurées à 560 et 860 meV pour 

les surfaces (001) et (101), a été réalisée en contrôlant la stoechiométrie de surface. De manière 

remarquable, une différence de la position des niveaux de Fermi des facettes (001) et (101) du TiO2 

anatase a été mise en évidence. Le niveau de Fermi de la face (001) est située à une énergie inférieure 

à celle de la face (101), de 150 à 450 meV en fonction des conditions de surface (Figure 1). Par 

conséquent, une jonction est attendue entre ces deux facettes avec formation de zones de charge 

d’espace lorsque les électrons et les trous photogénérés sont transférés aux surfaces (101) et (001), 

respectivement. Cette différence des niveaux de Fermi des différentes phases cristallines constitue une 

explication convaincante du fait que les facettes (101) agissent comme des sites de réduction tandis 

que les facettes (001) jouent le rôle de sites d’oxydation.  

 

 

Figure 1 : Processus de séparation des porteurs de charges dans des cristallites d’anatase co-exposant des 

facettes (001) et (101) déduit des diagrammes d’alignement des bandes d’énergie.
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Dans une seconde partie, les potentiels de surface des films minces polycristallins d’anatase, de 

monocristaux d’anatase orientés (001) et (101), et de monocristaux de rutile orientés (001) et (110) 

avec différentes stoechiométries de surface ont été comparés de façon systématique par XPS et UPS. 

Parmi les propriétés électroniques, la détermination du travail de sortie est particulièrement pertinente 

pour les applications dans les domaines de la photocatalyse et des cellules solaires puisqu’il gouverne 

l’alignement des bandes aux différentes interfaces. Des surfaces pulvérisées, recuites, 

stoeichiométriques et oxydées traitées dans des conditions variées ont été préparées et d’amples 

variations du travail de sortie et du niveau de Fermi ont été atteintes en manipulant les états de surface. 

La variation du travail de sortie déterminé par UPS est de 1,74, 1,94, et 1,39 eV pour les surfaces 

anatase (001), anatase (101), et polycristalline, respectivement (Figure 2). La variation du travail de 

sortie a été attribuée principalement à la variation du niveau de Fermi par rapport au maximum de la 

bande de valence puisque le potentiel d’ionisation est presque constant pour toutes les conditions de 

surface monocristalline d’anatase orienté avec un potentiel d’ionisation de 7.9 ±  0.15 eV. Des 

potentiels d’ionisation bien supérieurs, jusqu’à 9.5 eV, ont été observes pour des surfaces traitées sous 

plasma d’oxygène du fait de la formation probable d’espèces de surface de type peroxo ou à oxygène 

pontant. De plus, ces différentes surfaces ont été exposées à de la vapeur d’eau à température ambiante 

et les propriétés électroniques résultantes ont été étudiées par XPS et UPS. L’exposition à l’eau a 

conduit à des déplacements reproductibles des niveaux de cœur Ti2p et O1s et du maximum de la 

bande de valence vers les plus hautes énergies de liaison du fait d’une courbure de bande vers le bas au 

niveau de la surface de TiO2 ce qui induit une accumulation d’électrons à la surface. La différence 

initiale de niveau de Fermi entre les surfaces anatase (001) et (101), qui existait pour tous les états de 

surface, a disparu après exposition à la vapeur d’eau. En ce qui concerne la différence de travail de 

sortie entre phases anatase et rutile, les surfaces anatase recuites ont montré une potentiel d’ionisation 

plus élevé que le rutile jusqu’à 0,5 eV, tandis que les positions du niveau de Fermi étaient similaires.  
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Figure 2 : Travail de sortie de cristaux de TiO2 anatase et rutile d’orientations et stoechiométries variées. 

 

 

L’alignement des énergies dans le vide de l’anatase et du rutile conduit le maximum de la bande de 

valence de l’anatase à être 0,5 eV plus bas en énergie que celui du rutile ce qui est en accord avec des 

études récentes sur l’alignement des bandes basées sur des données expérimentales et théoriques. Ainsi, 

la séparation de charge électron-trou dans des systèmes combinant anatase et rutile aurait lieu à 

l’interface et ce phénomène permet de comprendre l’activité photocatalytique exaltée des phases 

mixtes anatase-rutile comme le photocatalyeur TiO2 commercial de référence connu sous le nom P25.  

 

Pour comprendre l’effet de l’orientation cristallographique et des états de surface de la phase 

rutile de TiO2 sur l’alignement des bandes dans le système NiO/TiO2, les alignements des bandes 

d’énergie de NiO et de substrats  de TiO2 rutile monocristallin exposant  des faces (001) et (110) ont 

été déterminées avec des surfaces réduites et oxydées en utilisant des expériences d’interface comme 

décrit ci-dessus. Tout d’abord, les propriétés électroniques de substrats monocristallins de TiO2 rutile 

exposant des faces (001) et (110) ont été étudiées par XPS et UPS. La région des spectres XPS 

correspondant à la bande de valence indique que la position du niveau de Fermi de 3,12 eV par rapport 

à l’énergie du haut de la bande de valence pour la surface réduite du rutile (110) décroit à 2,68 eV pour 
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la surface oxydée. Le travail de sortie de la surface réduite du rutile (110) déduit du seuil des électrons 

secondaires dans les spectres UPS a été mesurée à 4.3 eV et augmente jusqu’à 6.0 eV pour une surface 

oxydée. Une variation similaire a été observée pour la surface (001). Puis, les expériences d’interfaces 

ont été menées par des mesures spectroscopiques XPS et UPS en fonction du dépôt progressif d’un 

film de NiO par pulvérisation (DC) sur des substrats rutile réduits et oxydés exposant les deux  

orientations. L’attribution et l’interprétation des spectres XPS dans la region caractéristique de NiO 

s’est avérée plutôt complexe du fait du dédoublement des principale raies causé par différentes 

contribution telles que l’écrantage non-local et des effets de surface, et de structures satellites à des 

énergies de liaisons plus élevées notamment dans le cas des épaisseurs de NiO les plus fines. 

Cependant, pour des couches plus épaisses, la signature des émissions typiques de NiO a été obtenue. 

Il a été également observé une augmentation de l’asymétrie de la raie Ti2p à plus faible énergie de 

liaison pour toutes les hétérointerfaces ce qui pourrait indiquer une légère augmentation du nombre 

d’états Ti3+ pendant le dépôt de NiO. Par ailleurs, dans la région O1s, deux épaulements ont été 

détectés. Le premier à énergie de liaison plus élevée de 3 eV que la raie d’émission principale a été 

attribué à des espèces peroxo à la surface des substrats rutile mais cet épaulement disparaît 

immédiatement après le premier dépôt de NiO. Le second à une plus haute énergie de 2,3 eV que celle 

du pic principal pourrait être attribuée à la formation initiale d’espèces de surface pauvres en oxygène 

dont la signature est attendue à plus haute énergie. Dans les quatre cas étudiés, les variations spectrales 

des substrats de TiO2 et des films de NiO en croissance sont similaires. Cependant, la courbure de 

bande sature à une épaisseur de NiO plus fine pour les substrats rutile (001) que pour les substrats 

rutile (001) à la fois pour les substrats recuits et oxydés  du fait d’une plus forte concentration en 

lacunes d’oxygène pour la surface rutile (001) que pour la surface rutile (110). Le niveau de Fermi du 

rutile atteint la même valeur de 1,6 eV quels que soient l’orientation de la surface et le traitement 

effectué. Enfin les quatre alignements de bandes des systèmes NiO/rutile (110) recuit, NiO/ rutile 

(001) recuit, NiO/ rutile (110) oxydé, et NiO/rutile (001) oxydé ont été établis expérimentalement en 

utilisant les données issues des expériences d’interface (Figure 3).  
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Figure 3 : Alignement des bandes d’énergie pour la surface (110) du  p-NiO/n-TiO2 rutile oxydé déterminé à 

partir des expériences d’interface. 

 

La tendance globale d’apparition de zones de charges d’espace dans les deux matériaux liée au contact 

entre le NiO de type p et le TiO2 de type n est à peine affectée par les différences induites par les pré-

traitements effectués. De façon évidente dans NiO de type p, le niveau de Fermi est bloqué par la forte 

concentration en défauts (états reliés à Ni3+) dans le volume du matériau puisque qu’il n’y a pas de 

courbure de bande supplémentaire observée dans les couches de NiO. Ce niveau bloqué a été trouvé à 

une valeur du niveau de Fermi comprise entre 0,5 et 0,9 eV. Le dépôt de NiO conduit à une forte 

courbure de bande dans les substrats de TiO2 dès les faibles épaisseurs en NiO, ce qui pourrait 

contribuer à la séparation des porteurs de charge dans les hétéronanostructures utilisées comme 

photocatalyseurs.   

De manière à démontrer l’efficacité de photocatalyseurs constitutés de systèmes p-NiO/n-TiO2 à 

facettes exposées contrôlées, des hétéronanostructures NiO/(101)-anatase-TiO2 ont été synthétisées en 

déposant NiO sur des nanocristaux de TiO2 anatase exposant des faces (101) par la méthode de dépôt 

chimique en phase supercritique. Tout d’abord, des cristaux bipyramidaux de TiO2 anatase exposant 

uniquement des faces (101) ont été préparés par une méthode solvothermale utilisant des agents de 

blocage pour contrôler la croissance des différentes facettes. Bien qu’un autoassemblage le long de la 

direction [001] des nanoparticules conduisant à la formation de gros agrégats ait été observé, cette 

agglomération ordonnée s’est écroulée lors de l’étape d’élimination des agents de blocage par 



 

xii 

 

traitements aux hydrures et à l’acide sulfurique conduisant à un phénomène d’agrégation résiduel 

aléatoire lié à la faible taille des particules. Cependant, la structure bipyramidale bien définie des 

cristallites de TiO2 anatase reste inchangée après réaction en conditions fluide supercritique et après les 

traitements réducteurs et acide. Puis le NiO a été déposé avec succès sur les particules de TiO2 anatase 

dans des conditions solvothermales en utilisant des conditions supercritiques avec le dioxyde de 

carbone et l’éthanol comme solvants. La nature des phases cristallines présentes dans les 

hétéronanostructures obtenues a été caractérisée par spectroscopie Raman, par diffraction des rayons X 

(DRX) et par microscopie électronique en transmission à haute résolution (MET-hr). La morphologie 

des particules ne change pas pour des teneurs en NiO inférieures à 2 % massique. La dispersion 

uniforme de NiO sur les nanocristallites de TiO2 a été confirmée par analyse élémentaire par 

spectrographie par rayons X à dispersion d’énergie (EDX) des éléments titane, oxygène et nickel. La 

taille des cristallites de TiO2 et de NiO ont été évalués à 7-10 nm et 2-3 nm, respectivement. Quelle 

que soit la teneur en NiO, la taille moyenne des mésopores est globalement constante, avec des valeurs 

comprises entre 4,7 and 5,2 ± 0.2 nm. Les surfaces spécifiques BET des nanocomposites NiO/TiO2 

contenant moins de 2% massique en NiO restent proches de celle des nanoparticules de TiO2 pur, avec 

des valeurs comprises entre 105.1 ± 2.9 et 116.1 ± 3.2 m2.g-1. Par conséquent, le dépôt de NiO par la 

voie fluide supercritique permet de conserver des aires spécifiques élevées ce qui n’est pas le cas pour 

les nanocomposites NiO/TiO2 préparés par d’autres méthodes telles que les voies sol-gel classiques. 

Les hétéronanostructures NiO/TiO2 ainsi obtenues présentent une absorption dans le domaine du 

visible, le seuil d’absorption étant déplacé vers les faibles énergies lorsque la teneur en NiO augmente. 

L’énergie de la bande interdite déterminée à l’aide de la théorie de Kubelka-Munk décroît ainsi de 3,21 

eV pour TiO2 pur à 3,19, 3,15, 3,16, 3,13, 3,07 and 2,98 eV for 0,1, 0,25, 0,5, 1, 2, et 10% massique 

NiO/TiO2, respectivement. Les spectres XPS révèlent un déplacement du niveau de Fermi vers les 

faibles énergies (EF-EVB) de 3,34 eV pour TiO2 pur à 3,31, 3,29, 3.26, 3,26, 3,23, and 2,54 eV pour les 

héteronanostructures 0,1, 0,25, 0,5, 1, 2, et 10% massique NiO-TiO2, respectivement.  Cependant, les 

déplacements observés pour les niveaux de cœur Ti 2p et O 1s sont relativement faibles, inférieurs à 

100 meV. Cet effet contradictoire peut être lié à la taille trop faible des nanoparticules qui ne permet 

pas la formation d’une zone de charge d’espace complète pouvant saturer la courbure de bande. En 

outre, la formation de clusters de NiO distribués de façon homogène à la surface des nanocristallites de 

TiO2 pour les faibles teneurs en NiO et le phénomène de ségrégation de phase des cristallites de NiO 

sur les agrégats de nanoparticules de TiO2 aux plus fortes teneurs de NiO peuvent aussi expliquer cet 

effet. Néanmoins, certaines hétérostructures possèdent des propriétés prometteuses pour la 

photodécomposition de colorants organiques sous illumination UV. Ainsi le nanocomposite 0,25% 

massique NiO/TiO2 s’est avéré le système le plus efficace pour la dégradation du bleu de méthylène, 
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comme exemple de colorant cationique, et du méthyl orange, comme exemple de colorant anionique, 

avec des activités photocatalytiques respectivement 4,8 et 2,3 fois supérieures à celles du TiO2 pur 

(Figure 4). 

 

 

Figure 4 : Alignement des bandes d’énergie et propriétés photocatalytiques des systèmes NiO/(101)-anatase-

TiO2 préparés par la méthode de dépôt chimique en fluide supercritique. 

 

Dans une dernière partie, des nanoparticules NiO/(101)-(001)-anatase TiO2 ont été préparées 

avec succès par photodéposition préférentielle de nanoparticules de NiO, comme co-catalyseur 

semiconducteur de type p, sur les faces (101) de nanocristaux de TiO2 anatase de type n co-exposant 

des facettes (001) et (101). Les  nanoparticules d’anatase orientée ont été obtenues par réaction en 

phase gazeuse du tétrachlorure de titane et du dioxygène. La structure bipyramidale tronquée a été 

confirmée par MET-hr et la taille des cristallites a ainsi été estimée à 50-150 nm. Pour obtenir des 

hétéronanostructures bien définies, l’illumination UV associée à la séparation de charge offerte par les 

propriétés d’oxydo-réduction différentes des facettes (101) et (001) ont été exploitées pour déposer 

sélectivement du Ni-B amorphe sur les faces (101) ce qui a conduit à des particules de NiO après 

calcination sous air. La cartographie EDX enregistrée pour l’échantillon 10% massique NiO/TiO2 

suggère que l’élément nickel est distribué sélectivement sur les faces (101) constituant les bords des 

particules. En outre, les images de microscopie électronique en transmission à haute résolution 

confirment que le nickel sur les faces (101) est du NiO puisque les distances entre plans atomiques 

mesurées de 0,18 et 0,20 nm correspondent aux plans (200) et (111) de la structure cristalline cubique 

face centrée de NiO.  
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Figure 5 : Dépôt sélectif photoinduit de NiO sur les facettes (101) de nanocristaux d’anatase co-exposant des 

faccettes (001) et (101). 

 

Les hétérostructures NiO/TiO2 présentent une légère absorption dans le visible dont le seuil se 

déplace vers les faibles énergies lorsque le taux en nickel augmente. Cette absorption dans le visible a 

été attribuée soit à des liaison Ti-Ni à l’interface des deux oxydes, soit à des défauts interfaciaux. 

L’énergie de la bande interdite déduite de la théorie de Kubelka-Munk diminue de 2,92 eV pour le 

TiO2 pur à 2,81, 2,81, 2,82, 2,79, et 2,78 eV pour les échantillons 0,1, 0,2, 0,5, 1, et 10% massique 

NiO/TiO2, respectivement. Les spectres XPS indiquent que le niveau de Fermi est déplacé vers les plus 

faibles énergies (EF-EVB) de 3,38 eV pour TiO2 pur à 3,07, 3,12, 3,15, et 2,20 eV pour les échantillons 

0,1, 0,2, 1, et 10% massique NiO/TiO2, respectivement. Le pic d’émission des électrons de coeur  

Ti2p3/2 se déplace vers les plus faibles énergies de liaison de 140 meV en présence de NiO, ce qui 

indique une courbure de bande dans les particules de TiO2 à l’interface de la jonction p-n des 

hétéronanostructures NiO/TiO2. Pour obtenir des informations plus précises sur les propriétés 

d’interface des hétérojonctions NiO/anatase-TiO2, des expériences d’interfaces in-situ ont été menées 

par mesures XPS et UPS après chaque étape du dépôt de NiO en augmentant l’épaisseur de NiO sur 

des substrats stoechiométriques de TiO2 anatase  (101) et (001). La courbure de bande à l’interface 

entre le NiO de type p et le TiO2 anatase (001) de type n est plus importante de 210 meV que celle 

mesurée avec le TiO2 anatase (101). Dans NiO le niveau de Fermi est bloqué du fait d’une forte 

concentration en défauts (états reliés à Ni3+) dans le volume puisqu’il n’y a pas de courbure de bande 

observée dans les couches de NiO. Ce niveau de Fermi bloqué dans NiO a été trouvé à une valeur de 
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EF-EVB comprise entre 0,68 et 0,75 eV. La forte courbure de bande dans les substrats de TiO2 a été 

obtenue par dépôt de fines couches de NiO dont l’épaisseur était supérieure à 1 nm, ce qui 

contribuerait à la séparation des porteurs de charge lors des processus photocatalytiques mettant en jeu 

ces matériaux. Pour évaluer l’activité photocatalytique des nanoparticules préparées, la 

photodégradation du bleu de méthylène sous illumination UV a été réalisée. Le système 0,1% 

massique NiO/TiO2 a conduit à des efficacités 50% plus élevées à celles du TiO2 pur. Ces meilleures 

performances ont été principalement attribuées à la séparation de charge spatial induite par le champ 

électrique interne à l’interface de la jonction p-n NiO/TiO2. Pour déterminer plus précisément les 

facteurs principaux régissant les processus de photodécomposition, l’iodure de potassium, 

l’isopropanol et la 1,4-benzoquione ont été employés comme pièges à trous, à radicaux hydroxyles et à 

radicaux superoxydes, respectivement, lors de la photodégradation du bleu de méthylène. Il a été 

trouvé que les électrons jouent le rôle principal lors des processus de photodégrdation de colorants 

lorsque les cristallites de TiO2 anatase orienté pur sont employées comme catalyseurs puisque que 

leurs cristallites exposent  72 % de faces (101) qui sont connues pour accumuler les électrons 

photogénérés. D’autre part, les trous régissent principalement las décomposition photocatalytique des 

colorants lorsque le photocatalyseurs 0.1% massique NiO/TiO2 est utilisé. Bien que les faces (101) de 

l’anatase fonctionnent comme des puits à électrons, les particules de NiO deposées sur ces faces 

peuvent collecter efficacement les trous à la jonction  p-n NiO/ TiO2 (101), mais catalyser aussi la 

réaction en abaissant la barrière énergétique d’activation et, par conséquent, le transfert de trous peut 

devenir compétitif par rapport au transfert d’électrons.  

  

Ce travail de thèse a donc permis d’obtenir des données fondamentales sur la science des 

surfaces de TiO2 orientées de différentes phases cristallines et de stoechiométries variées, ce qui est 

indispensable pour l’étude des transferts de charge de TiO2 vers des métaux, des semiconducteurs, ou 

des liquides. Le concept d’ingénierie des faces cristallines établi dans ce travail pourrait être étendu à 

l’avenir vers d’autres matériaux semiconducteurs. De plus, nous espérons que ce travail permette la 

conception d’hétérostructures optimales pour la photocatalyse en combinant un choix judicieux de co-

catalyseurs et le dépôt sélectif de co-catalyseurs sur certaines facettes d’un matériau absorbeur donné.   

 

Ce mémoire décrit une étude systématique des propriétés électroniques de surface de TiO2 bien 

définies dans des conditions de surface variées. Pour acquérir une meilleure compréhension du 

mécanisme des réactions photocatalytiques sur TiO2, les interactions et les réactions de l’eau ou de 

molécules simples telles que le dioxygène sur ces surfaces nécessitent d’être étudiées par microscopie 

électronique à faible énergie, par microscopie à effet tunnel, par spectroscopie de diffusion à faible 
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énergie et par spectroscopie de photoélectrons. Cette thèse propose une stratégie générale pour 

améliorer les activités photocatalytiques par dépôt de co-catalyseurs sur des facettes spécifiques de 

cristaux de photocatalyseurs. Pour améliorer les performances de ces hétérostructures mettant en jeu 

TiO2, des études supplémentaires sur la synergie entre l’ingénierie des facettes cristallines et le dépôt 

de co-catalyseurs doivent être menées. Dans ce travail, NiO a été déposé sélectivement uniquement sur 

la face (101) de l’anatase. Pour comparer le rôle des faces (001) et (101), le NiO nécessite aussi d’être 

déposé sélectivement sur la facette (001) et les propriétés photocatalytiques correspondantes devront 

être comparées à celles obtenues dans le cas du dépôt sélectif sur les facettes (101). Cependant, du fait 

du manque d’un précurseur adéquat pour un tel dépôt, il n’y a pas jusqu’à présent d’exemple de dépôt 

sélectif de NiO sur les facettes (001) des nanocristaux d’anatase. De plus, le rapport des dimensions 

des facettes (001) et (101) dans les nanocristallites d’anatase doit être pris en compte puisque ce 

rapport pourrait avoir une influence sur la dynamique des porteurs de charge dans les hétérostructures 

NiO/TiO2 et donc influer sur les activités photocatalytiques. Enfin la production d’hydrogène par 

photoréformage d’alcools ou par photolyse de l’eau mériterait d’être étudiée en utilisant les 

hétérostructures NiO/TiO2 développés dans ce travail puisque seuls la photodécomposition de 

colorants a été mise en œuvre pour évaluer leur activité photocatalytique. Pour rendre le procédé 

durable, l’utilisation d’alcools issus de déchets ou de la biomasse devra être privilégiée. La preuve 

d’un tel concept pourrait avoir un impact immense dans le domaine des applications industrielles. 
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ABSTRACT 
 

Photocatalysis on semiconductor metal oxide surfaces has attracted considerable attention as a sustainable 

environmentally friendly method for water/air purification and hydrogen production by water splitting. Among 

semiconducting metal oxides TiO2 has been intensively investigated as a promising photocatalyst candidate. 

However, despite many efforts, its photocatalytic activity is far from a practical level mainly due to inefficient 

charge carrier separation and resulting charge carrier recombination. An advantageous strategy to address this 

issue is the development of heterostructures by coupling to a metal to form a Schottky junction or to metal 

oxides to create a p-n junction at their interface in order to prevent the recombination by vectorial charge carrier 

separation at these energy junctions. On the other hand it was revealed over the past decade that crystal facets 

play a decisive role in trapping of charge carriers and thus photocatalytic redox reactions. Thus, selective 

deposition of metal or metal oxides onto specific facets would enhance the photocatalytic activity by improving 

charge separation. To achieve higher activities, two methods, the supercritical fluid chemical deposition route 

and the photodeposition method, were investigated to deposit selectively p-type NiO onto specific facets of n-

type TiO2 single crystalline nanoparticles to establish a p-n junction. The resulting NiO/TiO2 nanocrystals were 

characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray 

spectroscopy (EDX), N2 sorption measurements, UV-visible diffuse reflectance spectroscopy (DRS), X-ray 

photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). The heterojunction 

photocatalysts showed higher photocatalytic efficiency than pure TiO2 for the decomposition of organic dyes. 

Particularly, 0.1-0.25 wt % of NiO was the optimal loading amount, showing the highest activity. To elucidate 

the role of crystal facets of TiO2 and the effect of selective deposition of NiO, rutile (001), rutile (110), anatase 

(001), and anatase (101) surfaces with different surface states were prepared and their electronic properties were 

systematically compared by XPS and UPS measurements. Furthermore, water adsorption onto the different 

surfaces were also investigated. Regardless of surface stoichiometry, the Fermi level position of the anatase 

(001) surface is situated higher than that of the anatase (101) surface in energy while that of the rutile (001) 

surface is located lower than that of the rutile (110) surface. This can explain why photo-generated electrons and 

holes preferentially migrate to the (101) and (001) facets on TiO2 anatase crystals, respectively. Work function 

values of these oriented surfaces vary depending upon the surface states related to distribution and amount of 

oxygen vacancies as well as adsorbed oxygen peroxo species on the surface. In order to experimentally 

determine energy band alignments, interface experiments were performed by stepwisely depositing NiO onto 

above well-defined oriented TiO2 surfaces. The enhanced photocatalytic activity of NiO/TiO2 heterostructure 

nanoparticles were rationalized on the basis of the obtained band alignments. The information of electronic 

properties of different oriented TiO2 under various surface states would provide a new insight to construct the 

optimal energy band alignment of the heterostructure system with TiO2. In addition, the concept of heterojuction 

nanocrystals where co-catalysts are selectively deposited should find practical application to purify the 

environment and to sustainably produce renewable hydrogen. 
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1 Introduction 

 

Our modern society faces enormous energy issues demanding innovative solutions: phasing down the nuclear 

power, substituting fossil fuels, and reducing emissions of potent climate-damaging and greenhouse gases such 

as carbon dioxide. According to energy forecasts of international energy agency1, global energy needs would 

rise more slowly than in the past decades but still expand by 30 % by 2040. It is obvious that in order to meet 

this growing energy consumption in the long term a fundamental renewal of the energy sector is necessary, 

away from conventional strategy using limited resources and towards use of renewable energy sources. Among 

various energy resources, hydrogen is of particular interest as it can be consumed in a fuel cell to produce 

efficiently electrical energy with water as a byproduct instead of emitting greenhouse gasses. Compressed 

hydrogen and fuel cells can provide electricity with weights which are 8-14 times less than batteries2. The likely 

costs are expected that an electric vehicle using an advanced battery would cost more than a fuel cell vehicle in 

20303. Thus, a hydrogen economy has a clear advantage in reducing the emission of greenhouse gasses and in 

applying for industry owing to its economic rationality. Another environmental challenge is to secure clean 

abundant water without contamination to meet increasing demand for limited supply of freshwater. In this 

context photocatalysis, which usually involve a catalytic process taking place at the surface of semiconductors 

under the light illumination, is considered as a promising technology in the field of renewable energy and 

environment. It is a chemical process that underpins the development of critical renewable energy and 

environmental technology such as hydrogen production from water splitting and photocatalytic water/air 

purification. However, practical applications of photocatalysis are limited due to recombination of the photo-

induced electron-hole pairs in the semiconductor photocatalysts.  

 

Among the available metal oxide semiconductors, anatase titanium dioxide (TiO2) is one of the best understood 

photocatalyst prototype. Recent advances revealed that photo-generated electrons and holes get trapped at and 

migrate toward specific facets of single crystalline TiO2 nanocrystals4. Electrons are preferentially transferred to 

the anatase (101) surface while holes move to the (001) surface. As a result, the (101) and (001) surfaces act as 

reduction and oxidation redox reaction sites, respectively. Simultaneous consumption of both electrons and 

holes is necessary to effectively promote the reactions as accumulated electrons or holes, which are not 

consumed, lead to a higher possibility of the recombination. By selecting an optimal aspect ratio of these facets, 

the highest catalytic activity would be achieved. On the other hand conventional manipulation of charge carrier 

by Schottky or p-n junction created by coupling metal or semiconductor co-catalysts to semiconductor 

photocatalyst has been believed to be an attractive strategy to promote electron-hole pair separation5. In this 

context, currently emerging topic in the field of photocatalysts is to combine facet-engineering with loading co-

catalysts. Selective deposition of appropriate co-catalysts onto specific facets of photocatalysts can lead to 

further less possibility of the recombination, resulting in superior photocatalytic activity. However, the 

mechanism of preferential migration of charge carrier toward different facets of TiO2 still remains unclear and 

information on selective deposition of co-catalysts onto specific faces of TiO2 is sparse. 
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The aim of the present work is to elucidate the mechanism of intrinsic charge carrier transfer in single 

crystalline TiO2 and further improve the charge carrier separation by establishing p-n junction via depositing p-

type NiO selectively onto specific facets of TiO2 nanocrystals. The main objectives are: 

 

1. To prepare differently oriented anatase and rutile substrates under various surface states 

and compare their electronic properties by XPS and UPS in order to elucidate the 

mechanism of charge trapping and separation between different facets. As electronic 

properties Fermi level positions dictate the charge transfer between the facets, variation 

of work function is also a crucial factor when one considers band alignments of TiO2 

and co-catalysts. 

2. To experimentally determine the band alignments of NiO/TiO2 by so-called interface 

experiments in order to rationalize the enhanced photocatalytic activities of NiO/TiO2 

heterostructure photocatalysts. Herein, NiO is deposited onto different oriented anatase 

and rutile substrates with different surface stoichiometry. 

3. To prepare heterostructure photocatalysts of NiO/TiO2 where NiO is selectively 

deposited onto the specific facet of TiO2 nanocrystals via the supercritical fluid chemical 

deposition route and a photo-deposition method. 

4. To characterize the prepared photocatalysts by XRD, TEM, EDX, DRS, XPS, and 

nitrogen sorption analysis and examine their photocatalytic activities in dye 

decomposition. 
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2 Fundamentals and state of the art 

 

2.1 The surface science of single crystal 

The relationship between surface structure and physical and chemical properties is an essential topic in surface 

science. Especially the surface structure of metal oxides such as TiO2, which have a mixed ionic and covalent 

bonding, is expected to influence local surface chemistry stronger than expected for metals or elemental 

semiconductors1. The surface science of TiO2 was reported in depth by Diebold in 20032. In this section, surface 

structures of single crystalline rutile and anatase are briefly described and recent development of their 

preparation and surface physical and chemical properties are summarized. 

 

2.1.1 Geometric and electronic structure  

 

TiO2 crystallizes in different structures; brookite (orthorhombic), rutile (tetragonal), and anatase (tetragonal). 

Among these polymorphs, rutile and anatase have been commonly used in applications such as photocatalysis. 

Although crystal structures of rutile and anatase are tetragonal and similar to each other, these two structures 

differ by the distortion of each TiO6 octahedron and by the configuration of the octahedral chains. The unit cell 

of rutile and anatase are shown in figure 2.1. The octahedron of rutile is irregular and shows a orthrombic 

distortion while that of anatase is considerably distorted and shows a lower symmetry than orthorhombic. In 

addition, each octahedron of rutile has contacts with 10 neighbouring octahedrons whereas that of anatase is in 

contact with eight neighbouring octahedrons. These structural differences result in different electronic structures 

between rutile and anatase. 

Figure 2.1. Structures of rutile (top) and anatase (bottom). The bulk unit cell of rutile has the dimensions, a = b = 4.587 Å, 

c = 2.953 Å, and that of anatase has a = b = 3.782 Å, c = 9.502 Å. Reproduced from ref2. 
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Figure 2.2. Equilibrium shapes of rutile (left) and anatase (right) according to the Wulff construction and the calculated 

surface energies. Reproduced from ref3-4. 

 

 

The equilibrium shapes of rutile and anatase were constructed according to Wulff construction and the surface 

energies were calculated3-4 (figure 2.2). The rutile (110) and (001) surface have the lowest and highest energy, 

respectively4. Of different rutile orientations, the rutile (110) surface is the most stable and thus has been studied 

intensively as a model surface of metal oxides for investigations of various chemical phenomena on the surface. 

The anatase (101) and (001) surfaces have the lowest and highest surface energies, respectively3. 

 

2.1.2. Preparation of the anatase (001) and (101) surfaces 

 

Despite the technical importance of anatase, experimental investigations of single crystalline TiO2 surfaces have 

been mostly performed for rutile. This is mainly due to the difficulty in preparing pristine oriented anatase 

surfaces. Rutile surfaces are readily available and their preparation methods were summarized in a literature 

review2. In this section, recently developed preparation methods of oriented anatase surfaces in form of thin 

films and natural crystal substrates are discussed. 

 

Oriented anatase surfaces can be epitaxially grown as thin films. The (001) surface has been grown on SrTiO3 

(001) and LaAlO3 (001) by chemical vapor deposition (CVD)5-6 and molecular beam epitaxy (MBE)7-8. The 

(101) surfaces can be grown on vicinal LaAl3 (110) by MBE9. However, these techniques have not been widely 

employed due to rather complicated procedures. To avoid such difficulties, employing natural stones as TiO2 

single crystal substrates was investigated10. Thus Dulub et al.10 proposed a new strategy to obtain a pristine 

anatase surfaces by cleaving. Anatase natural stones from Russia and Pakistan are readily available from 

mineral dealers as shown in figure 2.3. These crystals often contain impurities of alkali and alkaline earth 

elements. Cleaning cycles of Ar ion sputtering and annealing at elevated temperature in vacuum are the typical 

procedures to prepare clean surfaces of TiO2. However, the annealing step might cause the segregation of the 

impurities of which Fe is the most common. When the amount of impurities is too large, the crystal can be 

hardly used as a clean substrate. Thus, one has to be lucky to get mineral with less impurities. Cutting, orienting, 
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and polishing of natural stones are needed as the surface of as-obtained minerals at mines has a rough surface 

with scratching. Oriented anatase substrates made from natural stones with the above treatments are also 

available at mineral substrate shops. These substrates have contaminations on the surface and rough surfaces 

due to chemical physical polishing. Thus, low energy electron diffraction (LEED) measurements do not show 

any patterns for these substrates. To obtain well oriented smooth surfaces and clear patterns of LEED for both 

cleaved and polished surfaces, additional cleaning cycles of sputtering and annealing are required11. 

Figure 2.3. Photograph of anatase mineral from Pakistan. The top and bottom of the bipyramid structure are truncated. The 

top surface which appears after truncation is the (001) surface, and the side of the pyramid is the (101) surface. 8 x 10 mm 

sized-crystal generally costs around 30 Euros. 

 

 

Setvin et al.11 recently suggested that additional oxidation treatment is required after cleaning cycles of 

sputtering and annealing as they introduce oxygen vacancies, but also might ruin the morphology and partially 

form amorphous phase. Annealing in a partial pressure of oxygen repairs the lattice oxygen. However, STM12 

and LEED13 measurements revealed that this process formed iron oxides layer on the surface as a result of 

oxidation of iron contamination which was diffused from the anatase bulk. To avoid such contaminations on the 

surface and obtain smoother surface, epitaxial growth on the mineral surface can be an useful strategy. Kraus et 

al14. demonstrated homoepitaxial growth of highly ordered and pure layers of anatase on anatase natural stones 

using atomic layer deposition (ALD). This method is preferentially applicable for the (101) surface as the (001) 

surface has many candidates of substrates on which anatase growth is carried out while there are almost no 

substrates, the lattices of which have a similarity with the (101) surface due to its complex structure. 

 

Anatase (001) and (101) surfaces prepared by the cleaning cycles of sputtering and annealing shows (1 x 4) 

reconstruction pattern and (1 x 1) unreconstructed patter in LEED, respectively, although there are some 

experimental reports which show an unreconstructed (001)-(1 x 1) surface2, 5, 15. The unstable (001)-(1 x 

1)surface reconstructs when heated to elevated temperatures16-17 and it is in agreement with theoretical 

calculations18. Herman et al.16 found the (1 x 4) reconstruction after sputtering and annealing the (1 x 1) surface 

in vacuum and proposed three potential models to interpret the results; a) missing row model, b) added row 

model, and c) microfacet model (figure 2.4). On the other hand Lazzeri et al.19 introduced a new concept of 

added molecule (ADM) structure for (1 x 4) reconstruction based on calculations as shown in figure 2.5. Their 

calculations indicate that the ADM structure is energetically more favourable than an unreconstructed (1 x 1) 

surface and other possible models. The ADM structure might form by periodically replacing rows of the surface 
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bridging oxygens of the (1 x 1) surface with rows of TiO3 species in order to relieve the large surface tensile 

stress on the unreconstructed surface. High-resolution scanning tunnelling microscopy (STM) and non-contact 

atomic force microscopy (nc-AFM) images confirmed the ADM model20.  

 

Figure 2.4. Three models of (001)-(1 x 4) reconstruction of anatase; a) The missing row model (MRM), b) The added row 

model (ARM), c) The microfacet model (MFM). Dark and light coloured circles represent Ti and O atoms, respectively. 

Reproduced from ref6. 

 

Figure 2.5. (a) Relaxed unreconstructed (001)-(1 x 1) surface of anatase. (b) Relaxed structure of the ADM (001)-(1 x 4) 

surface. (c) Projection of the atomic positions of the ADM model. Reproduced from ref19. 

 

Anatase single crystals were also grown from the gas phase by a chemical transport reaction employing TeCl4 as 

the transporting agent21. However, its surface area is 1-4 mm2 which would be too small to be used for 

measurements such as X-ray (XPS) and UV (UPS) Photoelectron Spectroscopy, and Scanning Tunneling 

Microscopy (STM). In addition, this preparation procedure is carried out outside the vacuum chamber and thus 

the resulting crystals need to be cleaned outside and inside the vacuum chamber, followed by transferring them 

to the measurement vacuum chambers without breaking vacuum. A heating process for cleaning the surface may 

cause a problem due to surface segregation of contaminated metal elements which are contained in the crystal, 

e,g, 0.22% of Al and traces of V, Zr, Nb, and La. 
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2.1.3 Surface and subsurface defects 

 

TiO2 is considered to be a n-type semiconductor owing to intrinsic oxygen vacancies. Oxygen vacancies can be 

easily introduced by annealing at elevated temperatures, bombarding with electrons and Ar ion, and 

hydrogenation2, 22. Cronemeyer et al.23 was the first to determine the impurity level related to oxygen vacancies 

to be saturated 0.75–1.18 eV below the conduction band edge (figure 2.6). In photoelectron spectroscopy (PES), 

the Ti3+ emission line in Ti2p2/3 core level spectra is assigned to the presence of such defects. The binding 

energy of Ti3+ is situated lower than that of the main emission line of Ti4+ by 1.7 eV24. Defects in TiO2 can also 

be identified with presence of so-called band gap states (BGS) in the band gap region 25-26. BGS are believed to 

be associated with occupied Ti 3d states on Ti3+ sites near the oxygen vacancy sites on the surface, but also due 

to Ti3+ interstitial states in the subsurface region25, 27-29. Reckers et al. 25 proposed that BGS consist of shallow 

gap states (SGS) and deep gap states (DGS), which are situated at 0.5 and 1.6 eV below the conduction band 

edge, respectively. DGS are conventionally assigned to excess electrons localized on Ti3+ interstitial and Ti 

atoms near oxygen vacancies25, 30-32. SGS have different origins. First, excess electrons at step edges or 

imperfect structures on the (101) surface might contribute to form SGS and its intensity is pronounced by 

increased amount of oxygen vacancies25. In addition, Ti3+ interstitial and oxygen vacancy are also related to 

SGS. Remaining excess electrons produced by the formation of Ti3+ interstitial and oxygen vacancy and 

exceeding the number of one electron per d band gap state would be delocalized on lattice Ti atoms due to 

electron-electron correlation, which are the components of the TiO6 octahedra near the defect sites, and thus 

result in the shallow energy level near the conduction band edge30-32. However, the contribution of oxygen 

vacancy to SGS is negligible compared to the effect of Ti3+ interstitial. The Ti3+ emission line in Ti2p2/3 and 

BGS are useful to determine the presence of defects. However, when the concentration of defects is small, it is 

difficult to detect these signals by XPS and UPS and such intensity attenuated emission is only detectable by 

surface sensitive resonant photoelectron spectroscopy25, 27, 33. 

 

Figure 2.6. Band structure model of reduced TiO2 with oxygen vacancies proposed by Cronemeyer et al.23. Reproduced 

from ref34. 
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Based on DFT calculations, Cheng and Selloni35 investigated the relative stabilities of oxygen vacancies at 

surface and subsurface sites of anatase (101), anatase (001), and rutile (110) surface. Their study revealed that 

defects are considerably more stable at the subsurface than on the surface for anatase surfaces while bridging 

oxygen sites on the surface are favoured for oxygen vacancies for rutile (110) surface (Table 2.1). This 

calculation was performed based on the simple generalized gradient approximation (GGA) which tends to 

underestimate the band gap and do not consider the Coulomb interaction in strongly correlated systems36. Thus, 

for TiO2, GGA underestimates the d electron localization and the amount of lattice distortions at oxygen 

vacancy sites, causing a difficulty in comparing defect stability of surface, subsurface, and bulk. To overcome 

this issue, Li et al37. employed hybrid functional of screened exchange (sX) functional38, which give good 

representations of the electronic structure. Their results showed the same trend to that obtained with GGA 

although sX function showed a higher energy than GGA for all the surfaces. These calculations can explain why 

the defect density observed for anatase surfaces is lower than that of the rutile surface. He et al.39 performed 

STM measurements of reduced anatase (101) surface and found evidence for the predominance of subsurface 

defects. DFT calculations also predicted that the surface and subsurface of the (101) surface requires lower 

formation energy (enthalpy) to generate oxygen vacancies than the (001) surface. This is in agreement with 

experimental investigation showing that the (001) surface is more stable against defects than the (101) surface27. 

 
 
Table 2.1. Formation energies of oxygen vacancy defects at different surface and subsurface sites of anatase (101), anatase 

(001), and rutile (110). Lower formation energy means higher possibility of oxygen vacancy. Reproduced form ref35. 

 
 

2.1.4 Adsorption of water on the surfaces 

 

Most applications of TiO2 such as water splitting, water purification, and self-cleaning involve an interaction 

with water molecules. Thus, the investigation of water adsorption on the surface is of importance and has 

focused on its state of adsorption; molecular, dissociative, or multilayer adsorption. Most calculations predicted 

that dissociative adsorption of water is energetically preferred than molecular adsorption on the rutile (110), 

which is the most studied surface and considered as the model surface2. However, there is a consensus 

established by a number of experimental evidence that for rutile (110) surface water dissociates only at the 
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vacancy site of so-called bridging oxygen row while only molecular adsorption takes place on the stoichiometric 

defect-free surface2, 40-41. On the other hand, in spite of the practical importance of anatase, experimental 

research on water adsorption on the well-defined surfaces of anatase is sparse. To the best of my knowledge, so 

far only limited experimental studies on the anatase (101) surface have been performed by temperature 

programmed desorption (TPD) [14], scanning tunnelling microscope (STM)42-44, and different photoelectron 

spectroscopy techniques such as XPS, UPS, and two-photon (2PPE) photoelectron spectroscopy24, 45-48. It has 

been quite controversial whether a dominant state of water adsorption on the anatase (101) surface is molecular 

or dissociative. In 1998, Vittadini et al.49 performed DFT calculations to predict that molecular adsorption is 

favoured on the anatase (101) surface while water dissociates on the anatase (001). Following the calculation, in 

2000s experimental results supported molecular adsorption on the anatase (101). Herman et al.45 observed 

desorption states for water adsorption at 160, 190, and 250 K, which are assigned to multilayer water, water 

adsorbed to 2 fold coordinated oxygen atom, and water adsorbed to 5 fold coordinated titanium atom. 

Furthermore, O 1s emission of high-resolution XPS showed a shoulder peak related to molecularly adsorbed 

water at a binding energy of 534.5 eV although it is noteworthy that the measurements were performed at low 

temperature of 130 K. STM images of the anatase (101) surface exposed to water also implied that molecular 

adsorption most likely took place on the surface42-43. Contrary to the above results, Walle et al.47 demonstrated 

mixed dissociative and molecular water adsorption on the anatase (101) surface by high-resolution XPS at a 

range of temperature from 160-400 K. Dissociative adsorption is predominant at 160-230 K and the intensity of 

O 1s emission related to OH component decreases rapidly compared to that related to molecular water. As a 

result, molecular adsorption is negligible and only dissociative adsorption is observed at temperature higher than 

300 K. This result has triggered further studies of water adsorption on the anatase (101) surface. 

 

It was also proposed by DFT calculations that water would dissociate on the anatase (101) surface with 

subsurface defects24, 46, 50. Liu et al.51 demonstrate dissociation of water on the surface of defective anatase (101) 

particles by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Aschauer et al.46 showed that 

at room temperature no signature of water on the pristine anatase (101) surface was found while the water, 

which was dosed at low temperature, remained molecularly on the reduced surface. Their DFT calculation also 

predicted that the barrier for the water dissociation is decreased by subsurface oxygen vacancies and thus the 

dissociation would take place on the reduced surface. Although the dissociated state is not energetically 

favoured even with subsurface vacancies, dissociation is favourable with subsurface Ti interstitials. Li et al.50 

proposed two possible scenarios of the interplay between molecular water and the anatase (101) surface with 

subsurface oxygen vacancies, explaining the preferable dissociation of water on the surface (figure 2.7). First, 

subsurface oxygen vacancies interact with molecularly adsorbed water and then migrate to the surface layer, 

facilitating water dissociation. Another pathway is that molecular water dissociates via an interaction with 

subsurface oxygen vacancies, which subsequently migrate to the surface layer. Sencer et al.52 also proposed a 

possibility of dissociation, which could be triggered by an excess electron at the water/anatase (101) interface. 

The excess electron would get trapped into a stable surface Ti3+ - bridging OH complex. This interaction 

between molecular water and subsurface oxygen vacancies was suggested by STM53 as well as an interplay 
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between oxygen molecules and the subsurface oxygen vacancies44. However, further experiments are required to 

confirm that. Patrick et al.54 proposed by DFT calculation that even on the stoichiometric surface water would 

adsorb dissociatively with the H-bonded complex of OH and water. However, there is no experimental data 

supporting the concept. These studies apparently indicate that surface condition such as defects or adsorbates on 

the surface plays a crucial role in water adsorption. 

Figure 2.7. Different atomic configurations along the pathway for oxygen vacancy migration from the subsurface to the 

surface with molecularly adsorbed water on the anatase (101) surface. Dark blue, cyan, red, and yellow represent H, Ti, O, 

and oxygen vacancy, respectively. Reproduced from ref50. 

 
 
 
 

2.2 Principles of photocatalysis 

 

Our society has been facing severe energy and environmental issues such as the depletion of fossil resources and 

pollution in air and water55-56. To approach such problems, researchers have explored new energy sources, 

which are sustainable and can replace thermal power generation using fossil fuels and nuclear power, and 

solutions by which contaminated air and water can be purified with cheap and abundant materials. Hydrogen 

has been focused on as an attractive alternative energy source. It can be used in a fuel cell to generate electricity 

with a high efficiency and just leave water instead of emitting greenhouse gases such as carbon dioxide. To 

generate hydrogen, there are various techniques employed nowadays. Steam reforming of methane is mostly 

used in industry. Liquids or gases containing hydrogen first form landfills, reacting with steam at elevated 
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temperature and producing hydrogen. In addition, gasification and electrolysis can be used to produce hydrogen. 

However, these methods require external energies such as heat and electricity. However electricity used for 

electrolysis can be generated from clean energy such as photovoltaic, wind, hydro, and biomass. A new era of 

the hydrogen society is dawning as hydrogen stations are replacing gas stations across the United States, Europe, 

and Japan led by Toyota. Since the discovery in 197257 that water splitting into hydrogen and oxygen can be 

achieved by TiO2 under UV-light irradiation, photocatalysis has received considerable attentions as water can be 

directly split into hydrogen only using light. Photocatalysis is based on photoelectrochemical reactions induced 

by photo-generated charge carriers and involves three main steps: 1) excitation of electron-hole pairs by light 

irradiation, 2) charge carrier separation and transport to the photocatalyst surface, and 3) redox reactions using 

photo-generated charge carriers. For semiconductor photocatalysts, once excitation occurs under light 

irradiation the energy of which should be larger than the band gap of the photocatalyst, charge transfer of the 

photo-generated electron-hole pairs to adsorbed species on the photocatalyst surface takes place as shown in 

figure 2.8. When the photocatalysts are robust during the phenomena and the charge transfer is carried out 

continuously and exothermically, this process is called as heterogeneous photocatalysis.  

 

 

Figure 2.8. Scheme of photo-excitation of electron-hole pairs on the photocatalyst surface under light irradiation, following 

charge transfer to the surface, and redox reactions.  

 

 

Figure 2.9. Different types of photocatalytic reactions. Water splitting (left) and organic decomposition (right). Reproduced 

from ref58. 

 

 

The photo-generated charge carriers can not only split water, but also lead to various beneficial phenomena such 

as decomposition of organic compounds, anti-virus, self-cleaning, and so on. Especially organic decomposition 
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by photocatalysis is relevant for environmental issues. Photocatalytic water splitting is a thermodynamically 

uphill reaction while photocatalytic decomposition is a downhill reaction as shown in figure 2.958. Therefore, 

mechanisms of these different reactions are separately discussed in the following sections. 

 

2.2.1 Water purification 

 

One of the practical applications of photocatalysis is the degradation of the organic pollutants in water. 

Drastically developing world economy leads to the release of huge amounts of side products as pollutants in the 

environment. Cook predicted that tens of millions of dollars will be unavoidably spent to invest in new facilities 

to abate increasing water pollutants in the next decades59. In photocatalytic degradation reactions, generation of 

hydroxyl radicals (OH•) play a decisive role. Most photocatalytic degradation utilizes the strong oxidizing 

power of OH• of 2.8 V versus Normal Hydrogen Electrode (NHE) in spite of its unclear nature60. Its oxidizing 

potential is quite high and just slightly lower than that of fluorine, i.e. 3.03 V60. It is capable of oxidizing most 

organic molecules, leaving carbon dioxide and inorganics. Mao et al. demonstrated that the oxidation rate of 

chlorinated ethanes is related to the C-H bond strengths of the organic molecules. This result indicates that the 

oxidation of organic molecules by OH• would be the hydrogen atom abstraction from the organic molecules. 

Both electrons and holes are relevant although mainly holes contribute to the degradation. Photo-generated 

holes can indirectly oxidize organic compounds via OH• produced by interaction with surface hydroxyl groups 

on the photocatalyst surface (reaction (1)) or molecule water (reaction (2)) as shown below. 

 

ℎ+  +  OH− → OH•    (1) 

ℎ+  +  H2O → OH•+ H+   (2) 

 

In typical photocatalytic reactions, holes oxidized compounds as described above while at the same time 

electrons reduce oxygen molecules, yielding the superoxide radical anion O2
•− (reaction (3)). O2

•− subsequently 

reacts with a water molecule to give hydroperoxyl radicals HO2
•  by protonation (reaction (4)), and finally 

transforms into OH• along with hydrogen peroxide H2O2 as by-product (reaction (5)). 

 

𝑒−  +  O2 → O2
•−    (3) 

O2
•−  +  H2O → HO2

•  + OH−  (4) 

HO2
•  + H2O → HO• +  H2O2  (5) 

 

HO2
•  can also result from reduction of oxygen molecules together with a proton (reaction (6)) and H2O2 can be 

also formed by reduction of dioxygen with the consumption of two electrons (reaction (7)). 

 

O2 + H+ + 𝑒− →  HO2
•    (6) 

O2 + 2H+ + 2𝑒− →  H2O2  (7) 
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Unstable H2O2 is believed to be decomposed into OH• according to the following reaction 

 

𝑒−  +  H2O2 → OH− + OH•    (8) 

 
 

Tatsuma et al.61 found that hydrogen peroxide generated on the photocatalysts via photocatalysis is transferred 

in air to the organic or inorganic substrates and there hydrogen peroxide is further converted into hydroxyl 

radicals, giving rise to oxidation reactions (Figure 2.10). This phenomenon is called as remote oxidation and 

confirms the indirect oxidation reactions by holes. 

Figure 2.10. Schematic mechanism of remote oxidation by photocatalysts. Reproduced from ref61. 

 
 

Through above complicated pathways, electrons generate OH• and oxidize organic compounds. However, it 

takes three electrons to produce one hydroxyl radical for the pathway of interaction with hydrogen peroxide 

(reaction (8)) while it takes only one hole to generate one hydroxyl radical from physisorbed water molecules or 

hydroxyl group (reaction (1) and (2), respectively). Therefore, most hydroxyl radicals contributing to organic 

oxidation reactions are originated from holes. Electrons are trapped at molecular oxygens, preventing the 

recombination of charge carriers and consuming electrons efficiently. Herein simultaneous consumption of 

electrons together with holes is a fatal factor since unreacted electrons are accumulated, recombine with holes, 

and decrease the total reaction rate.  

 

The ability of semiconductor photocatalysts is ruled by its band energy positions and the redox potentials of 

organic compounds. Organic compounds can be reduced and oxidized by electrons and holes if their redox 

potentials are more positive than the flat band potential of the conduction band and more negative than the flat 

band potential of the valence band, respectively62. Thus, criteria for a good semiconductor photocatalyst for 

organic decomposition is that the redox potential of the  H2O/OH• couple is located within the band gap of the 

photocatalyst. An ideal photocatalyst should be: 1) photoactive, 2) biologically and chemically inert, 3) 

physically robust, 4) stable against photo-corrosion, 5) inexpensive, 6) abundant on the earth, and 7) non-toxic. 

TiO2 mostly meets these requirements, but its photocatalytic activity is not sufficient enough for practical use 

and it is only active under UV-light illumination. Therefore, the combination of the intrinsic properties of TiO2 

with the extrinsic modification provided by the deposition of co-catalysts is necessary for practical application63. 
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2.2.2 Water splitting 

 

Hydrogen is relevant not only as a new energy source, but also as a main source of ammonia. Ammonia can be 

produced by the Haber-Bosch process which is one of the most important invention in the last century for the 

prosperity of mankind. Nowadays it is used in various fields such as fertilizer and medicine, feeding and saving 

billions of people64. Thus, sustainable hydrogen evolution is of importance. 

 

Photocatalytic water splitting into hydrogen and oxygen is an uphill reaction with a large positive change in the 

Gibbs free energy (∆G° = +237 kJ mol-1) which occurs according to the following reactions: 

 

2H2O + 4ℎ+ →  O2+ 4H+  (9) 

2H+ + 2𝑒− →  H2    (10) 

2H2O →  2H2 +  O2   (11) 

 

According to Nernst equation, the Gibbs free energy of 237 kJ mol-1 corresponds to ∆E° = 1.23 V per electron 

transferred. Therefore, to induce the water splitting reaction on a semiconductor surface, the semiconductor has 

to possess a large band gap which can absorb light with photons of energy higher than 1.23 eV. An ideal 

semiconductor photocatalyst has a band gap large enough to split water and its valence band and conduction 

band must be located at more negative and positive values than the electro chemical potentials E° (O2/H2O) and 

E° (H+/H2) to drive the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) as shown 

in figure 2.1165. However, overpotentials of a few hundreds meV are required to drive both OER and HER at 

reasonable rates and need also to be taken into consideration. 

 

Band edge positions vs NHE for different semiconductors are shown in figure 2.1266. Some materials have 

enough band gap energies to be excited by UV or visible light and their band edges straddle the potentials of 

both O2/H2O and H+/H2 redox couples. However, due to the instability against water or photo-corrosion, very 

few semiconductors can meet the requirements for photocatalytic overall waters splitting by simultaneous water 

oxidation and reduction reactions. 

Figure 2.11. Overall water splitting with OER and HER on a semiconductor which has an appropriate band gap large 

enough. Reproduced from ref65. 
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Figure 2.12. Bandgaps and band edge positions with respect to the vacuum level and NHE for different semiconductors. 

The red and blue lines represent the conduction and valence band edges, respectively. Reproduced by ref66. 
 
 

2.2.3 Other photocatalytic phenomena 

 

There are many applications of TiO2 photocatalysts in addition to water purification and water splitting. Self-

cleaning has been already applied in industry. TiO2 can decompose organic compounds as discussed above. A 

concept of this technique is keeping the surface clean without maintenance67. Its scheme is shown in figure 

2.1368. This effect can be further enhanced when water flow such as a rain was applied to the surface. In Japan, 

self-cleaning has been practically used and one of the applications is to coat a surface of exterior building as 

shown in figure 2.14. 

Figure 2.13. Scheme of self-cleaning by TiO2 photocatalysts. Reproduced by ref68. 

 
 

Anti-fogging is also an applicable usage of TiO2 photocatalysts. The fogging of the surfaces of mirrors and glass 

ruins visual clarity. TiO2 surface becomes extremely hydrophilic under UV irradiation and thus water spreads 

across the surface. As a result, the water layer gets thinner and subsequently evaporates. When the amount of 

water is large, it forms a sheet-like layer which can also provide high visual clarity (figure 2.15)69. Recently 

biological applications such as photocatalytic anti-virus and anti-bacterial effects70 and photocatalytic cancer 

treatment71 have received more attentions, but their details are omitted here. 
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Figure 2.14. Application of self-cleaning building materials for a) self-cleaning tiles, b) self-cleaning glasses, c) self-

cleaning sound proof wall on a highway, d) self-cleaning of tiles and glasses, and e) self-cleaning roof of a train station. 

Reproduced from ref72. 

 

 

Figure 2.15. Pictures of fogged surfaces of a) uncoated glass and b) TiO2 coated-glass after UV irradiation. Reproduced 

from ref69. 
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2.3 Roles of co-catalysts: manipulation of charge transfer 

 

The photocatalytic activities of semiconductors are still low and far from practical requirement although many 

materials such as TiO2 are capable of evolving hydrogen and/or oxygen from water by photocatalytic reactions. 

This is mainly due to inefficient charge separation and transportation, and instability of photocatalysts related to 

their degradation by undesired side reactions of photocatalysis. Manipulation of the charge transfer and trapping 

apparently plays a key role in photocatalysis63. For this purpose, designing nanostructured composites have 

attracted attention as they possess unique physical and chemical properties different from the bulk properties73-75. 

Co-catalysts together with supporting semiconductor photocatalysts have been employed as the most promising 

strategies to boost the efficiency of photocatalytic reactions and stability of the photocatalysts by effectively 

controlling the transfer of charge carriers76. Generally, noble metals are selected as reduction co-catalysts and 

metal oxides are used as oxidation co-catalysts. Such co-catalysts offer three main benefits: (1) separation and 

trapping of photo-generated electrons and holes by Schottky barrier or p-n junction, (2) providing effective 

reaction sites catalyzing reduction or oxidation reactions by lowering overpotentials for photoelectrochemical 

reaction or activation energies for photocatalytic reaction, and (3) improving stability for photo-corrosion. 

Herein, fundamental concepts, influencing factors to determine physical properties, and recent progresses are 

reviewed regarding on above benefits of co-catalysts. 

 

2.3.1 Charge separation by Schottky barrier and p-n junction 

 

Co-catalysts can promote charge separation and transportation at the interface between semiconductor 

photocatalysts and metals or metal oxides as co-catalysts. In the case of semiconductor and metal with larger 

work function, as a result of thermodynamic equilibrium of electrons a Schottky barrier is formed at the 

interface as shown in figure 2.16. The internal electric field at the interface with the Schottky barrier facilitates 

the charge separation and subsequently traps the electrons on the metal side. Among noble metals, Pt is often 

chosen as a reduction co-catalyst as it has quite large work function forming a Schottky barrier which is large 

enough to separate and trap the charges. Usually it is assumed that electron scavenging by Pt is faster than 

charge recombination or reduction of reactants77. In addition to the Schottky barrier, the double-layer charging 

around the metal nanoparticles stores photo-excited electrons within the nanoparticles78. 

 

Kamat et al.79 found that Fermi level equilibrium between Ag as a co-catalyst and TiO2 as a semiconductor 

photocatlayst is dependent on irradiation condition. The charging and discharging of photo-excited electrons can 

be reversibly switched by on/off of UV irradiation as shown in figure 2.17. The electron storage in Ag induced 

by UV irradiation shifts the Fermi level to more negative potentials. Such a negative shift up to 100 meV has 

been also observed for Au/TiO2 composites80. Electrons are trapped and stored at metals not only due to the 

Schottky barrier at the interface of metal and semiconductor, but also due to double layer charge that screens the 

stored electrons within the metal nanoparticles with size smaller than 10 nm diameter78. These electron storage 

effects should be considered to design photocatalytic systems of semiconductor and metal composites. When a 

n-type semiconductor and a p-type semiconductor are associated, a p-n junction is formed at the interface. 
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Photo-generated electrons and holes migrate to the n-type and p-type semiconductor, respectively, due to the 

electric field at the junction. Although defects could be formed at the interface between the co-catalysts and the 

photocatalyst and act as recombination sites, positive effects generally overcome such a drawback. Whereas the 

formation of Schottky or p-n junctions may be expected in many cases they have not been experimentally 

verified. In addition, very often the physical rules in charge carrier separation has not been considered in a 

straightforward manner. 

Figure 2.16. Schematic energy band diagrams of Schottky barrier and p-n junction. 
 
 

Figure 2.17.  Fermi level position of Ag/TiO2 nanoparticles under UV irradiation and in dark. Reproduced from ref.79 

 

 

Above coupling of metal/semiconductor (Schottky barrier) or semiconductor/semiconductor (p-n junction) are 

generally constructed based on two structures: the core-shell configuration and the Janus structure81 (Figure 

2.18). Seh et al.82 synthesized core-shell and Janus nanoparticles of Au(shell)/TiO2(core) and compared their 

photocatalytic activities for hydrogen evolution. The Janus structure exhibited a 1.7 times higher activity than 

that of the core-shell structure. In the core-shell structure, electrons and holes are separated toward the shell 

(Au) and the core (TiO2), respectively. The holes migrated to the core would not interact effectively with 

reactants on the surface of the nanocomposites. Unused holes in TiO2 are accumulated which favours the 

recombination processes. On the other hand, in the Janus structure, both electrons and holes, which are also 

separated to Au and TiO2, would be able to react directly with reactants. In such a condition, both carriers can 

be simultaneously consumed, hampering the recombination reactions. This result indicates that the morphology 

of heterostructures has to be carefully tuned for their optimal photocatalytic activities.  
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Figure 2.18. Band energy diagram of Janus and core-shell structure of SnO2/ZnO. Reproduced from ref.81 

 

 

2.3.2 Providing effective reaction sites 

 

The main reason why most semiconductors need co-catalysts for reasonable photocatalytic activities is the 

recombination of the photo-generated electrons and holes before migrating to the surface and initiating redox 

reactions. The other reason of inefficient photocatalytic activities is a too slow surface redox reactions to 

efficiently consume both electrons and holes simultaneously. It is believed that the co-catalysts not only 

promote the charge separation by Schottky barriers or p-n junctions, but also catalyse redox reactions, 

decreasing the activation energy of photocatalysis and overpotential of photoelectrocatalytic water splitting. 

Generally noble metals are employed as co-catalysts for the reduction reaction and metal oxides are selected for 

the oxidation reaction. 

 

Trassati et al.83 reported a so-called volcano relationship between the exchange current for hydrogen evolution 

and the metal-hydrogen bond strength calculated from heat of hydride formation as shown in figure 2.19. 

Precious metals demonstrate exceptionally high activities. Especially, Pt is located at the top of the volcano, 

exhibiting the lowest activation energy for hydrogen evolution. In addition, Pt has the largest work function, 

forming a large Schottky barrier at the interface with semiconductors to facilitate the charge separation. 

Therefore, Pt has been conventionally considered as the best co-catalysts for the photocatalytic reduction 

reaction in terms of both catalytic and electronic properties. High catalytic activities have been achieved using 

Pt as co-catalysts on different semiconductor photocatalysts. Except for precious metals, Ni as an abundant non-

precious metal shows the highest activity and thus is considered as a promising co-catalyst candidate for 

practical use of photocatalysis. 

 

The catalytic activity of metal oxides for the oxidation reaction has been expected to be related to the ability of 

oxidation state transition between different valencies. For example, the oxidation state of Co changes from +2 to 

+4 for oxidizing reactants and collecting the holes76. Rasiyah et al.84 proposed that oxygen evolution takes place 

with a redox reaction of metal oxides and thus catalysts, which show such transition reactions close to the 

reversible potential for oxygen evolution, would exhibit the higher catalytic activity. Based on the finding of a 

linear correlation between the minimum potential for oxygen evolution and the redox potentials of transition 
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reactions, Trasatti et al.85 reported a relationship between the overpotential at a fixed current density for 

different metal oxides to the enthalpy of lower-to-higher oxide transition (figure 2.20). As well as the hydrogen 

evolution, precious metal oxides such as RuO2 and IrO2 are located at the top of the volcano and possess the 

optimal bond strength, showing the lowest over potential. 

Figure 2.19. Volcano plot of metals for hydrogen evolution. Exchange currents for electrolytic hydrogen evolution is 

plotted as a function of strength of metal-hydrogen bond based on heat of hydride formation. Reproduced from ref.83 

Figure 2.20. Volcano plot of metal oxides for oxygen evolution. Oxygen overpotential of metal oxides is plotted as a 

function of the enthalpy of lower-to-higher oxide transition. (1) PbO2, (2) Ni2O3, (3) PtO2, (4) MnO2, (5) RuO2, (6) IrO2, (7, 

8) Co3O4, and (9,10) Fe3O4. (•) acid and (o) alkaline solutions. Reproduced from ref.85 

 

2.3.3 Exploring superior co-catalysts 

 

Pt and Rh has been conventionally considered as the best reduction co-catalyst as discussed above since it 

possesses the largest work function among precious metals and is located at the top of the Trassati’s volcano 
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map. However, Pt and Rh also catalyses the undesired back reaction of H2O formation from H2 and O2, limiting 

the photocatalytic activity. Although Au shows a negligible back reaction of H2O formation from H2 and O2, 

activities of Au is 10 times lower than that of Pt. To avoid the adverse reaction, transition metal oxides such as 

Cr2O3, NiOx and RuO2 are often applied as co-catalysts for hydrogen evolution86. MoS2 has been getting 

attention as the best reduction co-catalyst since MoS2 co-catalysts deposited on CdSe exhibited an even higher 

efficiency for hydrogen evolution than that of Pt deposited on CdSe87. Recently, it was also demonstrated that 

PtO2 can suppress the back reaction of H2O formation and performs as an excellent co-catalyst for hydrogen 

evolution88. 

 

IrO2 has been conventionally employed as oxidation co-catalysts89-90. Ma et al.91 deposited IrOx, CoOx, and 

RuOx co-catalysts onto Zn2-xGeO4x-3yN2y and compared photocatalytic activities for oxygen evolution. All the 

co-catalysts showed enhanced activities compared to Zn2-xGeO4x-3yN2y without co-catalysts and CoOx was the 

best one. Liu et al.92 also reported that CoOx deposited on to TiO2 nanosheets showed the best activity for 

oxygen evolution among MnOx, FeOx, CoOx, NiOx, and CuOx. Today one of the most popular oxidation co-

catalysts is cobalt-phosphate (CoPi), which was first employed in 200893. Wang et al.94 also employed CoPi as 

an oxidation co-catalyst deposited onto BiVO4. 1 wt % of CoPi deposited onto BiVO4 showed 6.8 times higher 

photocatalytic activities for oxygen evolution than that of the pristine BiVO4. Furthermore, this group compared 

CoPi with other metal oxides co-catalysts such as IrOx, CoOx, MnOx and RuOx. Of these co-cotalysts, CoPi was 

the best co-catalyst for oxygen evolution, followed by CoOx which showed a slightly lower activity than CoPi. 

Gerard et al. found that the kinetics of water oxidation by CoPi deposited onto Fe2O3 was slower than that of 

bare electrode, but the recombination rate of the former was much lower than that of latter, resulting in the 

enhanced oxidation activity by CoPi loading. 

 

One has to consider morphology of the interface of co-catalysts and photocatalysts as well as selecting 

appropriate co-catalysts for specific reactions. It was found that MoS2 deposited onto CdS showed much higer 

photocatalytic hydrogen evolution activity than Pt deposited onto CdS despite its superior performance of Pt 

compared with MoS2 for the activation of hydrogen in electrochemical systems95-96. Chemically deposited MoS2 

onto CdS showed much higher activity than the simple mixture of MoS2 and CdS. The better photocatalytic 

activity of MoS2 co-catalyst would be attributed to the intimate contact between MoS2 and CdS due to its 

chemical deposition. Smoother charge transfer is expected on the intimate contact at the interface. Similarly a 

lattice match of co-catalysts and photocatalyst would be crucial for the charge transfer. A lattice mismatch 

might give rise to defect levels in the band gap, increasing a ratio of recombination. 

 

2.3.4 Balance of oxidation and reduction reactions 

 

Both reduction and oxidation reactions are relevant to achieve the overall reactions. When it comes to water 

splitting, oxidation reaction might dictate the overall reaction. Oxidation reaction is slower than reduction 
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reaction and thus could be a bottleneck for the overall water splitting. Thus, developing oxidation reaction co-

catalysts is a key step to apply photocatalysts for practical use. Furthermore, one has to carefully select 

photocatalysts and co-catalysts depending on reactions. Ohtani et al.97 showed that some photocatalyst exhibited 

a high performance for water splitting which is an uphill reaction, but did not function at all for organic 

decomposition which is a downhill reaction, and vice versa. Especially careful optimization of an amount of co-

catalysts is crucial. Uddin et al. prepared RuO2/TiO2 heterostructures and performed photocatalytic 

decomposition of methylene blue and methyl orange dyes, and hydrogen production by methanol photo-

reforming under UV light illumination. 1 wt % RuO2/TiO2 showed best activities for degradation of both dyes 

while the best activity for hydrogen evolution was achieved by 5 wt % RuO2/TiO2
98-99. 

 

2.4 Crystal facet engineering 

 

Metal and semiconductor photocatalysts with specific crystallographic facets have attracted considerable 

attention in the last decade due to their facet-dependent properties in photocatalysis and solar energy 

conversion75, 100-101. These reactions are affected by surface atomic structures that can be finely defined since 

surface atomic arrangement and coordination determine the adsorption of molecules, surface transfer of charge 

carriers between the surface and the reactant molecules, and desorption of product molecules. Furthermore, 

when the photocatalysts are enclosed by multiple facets, photo-generated electrons and holes are transferred to 

different facets and they accumulate at the different facets for reduction and oxidation reactions, respectively. 

Therefore, photocatalytic activities sensitively vary on the crystallographic facets. 

 

2.4.1 Roles of crystal facets in anatase 

 

TiO2 is known as the model surface and one of the most studied material with well-defined structures2, 102-104. 

Spherical anatase nanoparticles are commonly employed as photocatalysts because of the high surface-to-

volume ratio, providing a great number of effective active sites on the surface. However, it has not reached to a 

level of practical applications mainly due to a low quantum efficiency originated from recombination of 

electrons and holes favoured by the small size of particles. Based on the rapid development of techniques to 

control the morphologies, research interest has shifted to tuning into the crystal facets to elucidate their roles in 

photocatalysis. So far, the morphology of TiO2 has been investigated for sphere, cube, wire, tube, octahedron, 

belt and sheet structures. These structures are mainly exposed with (001), (101) and (010) facets. In 2002, Ohno 

et al.105 reported the selective deposition of Pt and PbO2 on the specific orientations of rutile and anatase via 

photo-deposition, indicating that the facets help in the separation of photoinduced electrons and holes. Pt4+ ions 

were photocatalytically reduced on the rutile (110) and anatase (101) facet while Pb2+ ions were oxidized on the 

rutile (011) and anatase (001) as shown in Figure 2.21, which suggests that rutile (110) and anatase (101) 

provide the effective reduction site and rutile (011) and anatase (001) work as the oxidation site. However, the 

role of crystal facets still remains under debate. In last decade, in-situ characterization methods have been 

developed considerably and provided indirect evidence with regard to the spatial charge separation on the (101) 



 

23 

 

and (001) facets of anatase. Tachikawa et al.106 investigated facet dependent photocatalysis on anatase with 

single-molecule fluorescence imaging and kinetic analysis by using redox-responsive fluorogenic dyes. On the 

single crystal of anatase co-exposed with the (101) and (001) facets, the fluorogenic dyes are preferentially 

reduced on the (101) facet rather than on the (001) facet (Figure 2.22). This finding confirms the idea that the 

(101) facet functions as the reaction site for the effective reduction and indicates the selective electron trapping 

on the (101) facet. Furthermore, D’Arienzo et al.107 performed electron spin resonance (ESR) measurements for 

shape-controlled nanoparticles exposed with specific crystal facets in order to correlate their photocatalytic 

activities to the charge trapping centres formed upon UV irradiation. Their results in Figure 2.23 verify that O- 

and Ti3+ centres, which are assigned to oxidation and reduction sites where holes and electrons are trapped, 

respectively, are located on the (001) and (101) facets, respectively108-111. 

 

Figure 2.21. SEM images of a) rutile and b) anatase single crystalline nanocrystals. PbO2 and Pt are selectively deposited 

onto rutile (011) and anatase (001) surfaces, and rutile (110) and anatase (011) via photo-deposition, respectively. 

Reproduced from ref105. 
 

 

 

Figure 2.22. A) Scheme of the remote photocatalytic reaction on the anatase (101) surface with DN-BODIPY during 

illumination onto the anatase (001) surface.  (B) Fluorescence image of TiO2 crystals in DN-BODIPY solution under 

irradiation. The scale bars are 4 μm. (C) Fluorescence intensity over the square region of panel B. (D, E) Location of 

fluorescence bursts on the (001) and (101) surfaces. Reproduced from ref106. 
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Figure 2.23. Scheme of charge trapping at the (001) and (101) facets derived from the evidence that the concentration of 

trapped holes (O- centers) increases with (001) surface area whereas the amount of Ti3+ centers increases with (101) surface 

area. Insets represent ESR spectra. Reproduced from ref107. 

 

 

Charge separation and trapping are conventionally rationalized in terms of different energy levels of the 

conduction and valence bands of the different facets due to the surface atomic arrangement. DFT calculation 

predicts that the Fermi level of the (001) facet is located at a lower energy level than that of the (101) facet as 

shown in Figure 2.24112. Thus, the so-called surface heterojunction would be formed between the (101) and 

(001) facets due to the difference of their Fermi levels when both facets are exposed at the surface of the same 

crystallite. As a result, photo-generated electrons and holes could preferentially migrate to the (101) and (001) 

facets, leading thereby to different photocatalytic activities on these facets. Ye et al. investigated optical 

properties of anatase nanocrystals with (101), (001) and (010) single facets of 90 % exposure and found a 

difference in their absorption edge113-114. The order of their estimated band gaps is Eg
(010)> Eg

(101)> Eg
(001) and the 

difference of the band gap would result in forming the surface heterojunction although the band alignment at the 

interface between facets could vary upon their Fermi level position. In addition, Pan et al.115 and Xu et al.116 

found the same band gap order of Eg
(010)> Eg

(101)> Eg
(001) and revealed that the distance between the top of the 

valence band and the Fermi level obtained from the XPS valence band spectra is the same for all the facets. 

However, in such electronic conditions, the electrons migrate to the (001) facet at the interface between the 

(001) and (101) facets, which is contrary to the prevailing consensus. As we discussed above, the origin of the 

charge separation and trapping induced by different facets is still under debate and further fundamental 

investigation are required for a deeper understanding and application purposes. 

 

The difference in photocatalytic activities of different facets could be related not only to the electronic 

properties such as energy levels of valence and conduction bands, but also to the reaction mechanism at the 

molecular level on the surface. For instance, chemisorption properties of anatase strongly depend on the surface 

arrangements. According to both calculations and experimental results, the (101) facet is less favourable for 

dissociative adsorption of water and other typical probe molecules while these molecules are dissociatively 
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adsorbed on the (001) facet45, 47, 49, 117-118. It is generally admitted that the surface atomic structure exposed with 

facets containing under-coordinated atoms is more reactive. On the (001) surface, Ti and O atoms are 

coordinatively unsaturated and more importantly the configuration of the surface atoms are strained. The Ti-O-

Ti bond angles are significantly larger at the surface, meaning that 2p states on the surface oxygen atoms are 

destabilized and quite reactive18, 119. Hence, the (001) facet has been believed to be superior to the (101) facet 

with regard to photocatalytic activities. 

 

Figure 2.24. (a) Density of states plots for anatase (101) and (001) surfaces. (b) Energy junction at the interface between 

(101) and (001) surfaces described based on the calculation. Reproduced from ref112. 

 

 

Reaction selectivity is one of the main challenges in the field of photocatalysis. To achieve a high selectivity, 

strategies based on modifying environments have been developed such as controlling the surface electronic 

charge by adjusting the pH120-124, and anchoring specific molecules onto the surface125. It is also possible to 

enhance the selectivity by using intrinsic surface properties of TiO2. As discussed above, adsorption behaviour 

of reactant molecules is governed by the surface structures which affects the selectivity of photocatalytic 

reactions. It has been proposed that well-known dyes as methylene blue (MB) and methyl orange (MO) were 

selectively adsorbed and degraded by the (001) and (101) facets, respectively126-127. By contrast, Liu et al.128 

suggested a reverse role of the two facets. This might be due to effects of the pH of the solution or remaining 

organic species used as capping agents on the photocatalyst surface depending upon the synthetic methods used 

to prepare the photocatalysts. Indeed, these facets affect the adsorption behaviours of reactive molecules. Very 

recently, Zhou et al.129 showed that the photocatalytic redox preferences of (001) and (101) facets can be 

modulated by the adsorbate-reconstructed surface structure, which can be controlled by surface 

protonation/deprotonation. The proposed scheme based on calculations is shown in Figure 2.25. Therefore, to 

elucidate the selectivity originated from the facets, some efforts still need to be made to investigate it by taking 

into account the above effects. 

 

The photocatalytic order of the different facets has been a controversial topic. Pan et al.115 compared 

photocatalytic activities in terms of generating OḢ̇̇ ̇ radical and H2 evolution of anatase micrometer-sized 
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crystals exposed with dominant (001), (010), and (101) facets. In contrast to the conventional interpretation 

telling that the (001) facet is more reactive than the (101) facet, it was found that the order of the photocatalytic 

activities for both generating the radical and H2 evolution is (010)>(101)>(001). For (101) and (001) facets, the 

order for H2 evolution activity is reasonable as the (101) facet acts as reduction reaction sites with accumulated 

photogenerated electrons, which are of course responsible for H2 evolution. Furthermore, the (010) facets 

possess both a relatively high surface energy with undercoodinated atoms and the more negative conduction 

band edge which allows rationalizing its higher activity. Ye et al.114 showed photocatalytic degradation of RhB 

and the photoreduction of CO2 in contact to gaseous phase, revealing that the activity order for dye degradation 

is (001)>(101) while that for photoreduction is opposite. This could be explained by charge separation between 

the facets where photoexcited electrons and holes transfer to the (101) and (001) facets and provide effective 

reaction sites for gas reduction and dye oxidation, respectively. Dufour et al.130-131 revealed that the acidity plays 

a crucial role in the RhB degradation. The absorption and degradation of the dye are favoured on the stronger 

acid sites. However, the acidity is not of importance for the phenol degradation. This is because the RhB 

degradation mainly takes place via direct oxidation on the photocatalyst surface while the degradation of phenol 

mainly occurs via hydroxyl radicals. As discussed above, understanding of the role of facets in photocatalytic 

activities is not that simple as different factors affect them. One should consider not only the number of 

undercoordinated atoms on the surface, but also the effect of charge carrier separation between the facets. In 

addition, the surfaces acidity of photocatalysts in the solution drastically affects their photocatalytic activities 

and has to be taken into consideration for practical use. 

 

Figure 2.25. The partial density of states of the top O–Ti–O layer in a) H2O adsorbed and b) the deprotonated surfaces of 

(001) and (101) facets, and a proposed mechanism of the charge distribution on c) the H2O adsorbed and d) the 

deprotonated (001) and (101) surfaces. Reproduced from ref129. 
 

 

Since the (101) and (001) facets help to obtain the spatial charge separation due to the surface heterojunction 

and function as reduction and oxidation reaction sites, respectively, the relative ratio between the (101) and 
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(001) facets play a crucial role in photocatalysis112. To achieve a high photocatalytic efficiency, photoexcited 

electrons and holes should be consumed simultaneously at the same rate since excess carries (electrons or holes) 

which did not participate in the redox reactions would favour recombination phenomena of the charge carriers 

and would reduce the efficiency of total photocatalytic reactions. Thus, by a fine tuning of facet’s ratio so that 

both reduction and oxidation reaction take place efficiently, which leeds to consuming both carriers, a 

synergetic effect of the charge separation and the effective reaction sites can be achieved. The aspect ratio of the 

(001) and (101) of anatase crystals is defined by the ratio between the side of the truncated facets of the top or 

bottom (B) and the side sandwiched by the two pyramids (A) as shown in Figure 2.26. For example, the typical 

value of B/A of 0.3 corresponds to about 4 % of the exposed (001) facets. An optimal ratio of the facets would 

depend on the kind of photocatalytic reactions. For instance, 50 % of the (001) facet has been reported as the 

best proportion for CO2 reduction reaction112, 132-133. In the case of the OḢ̇̇ ̇ radical formation and H2 evolution, 

the optimal amount of the (001) facet is still under debate. However, there is a consensus that anatase 

crystallites exposing 70-80 % of the (001) facet exhibit inferior photocatalytic activities than one exposing 18-

60 % of the (001) facet. This finding is in disagreement with the conventional understanding of the (001) facet 

as a more reactive facet than the (101) facet115, 134-135. This indicates that a dominant (001) facet on the surface is 

not always necessary to improve the photocatalytic activities. Furthermore, Wang et al.136 synthesized single 

crystal nanoparticle with various amount of the (001) facet from 0 to nearly 100 % and it was revealed that the 

optimal amount of the (001) was 73 % for RhB degradation. On the other hand, particles with single facets of 

100 % (101) and (001) exhibit worst activities, indicating that the co-existence of the (001) and (101) is crucial 

regardless of the ratio of the facets. Cao et al.137 also performed dye degradation tests using MB, MO and RhB 

by anatase nanoparticles with various amount of the (001) facet and 77 % of the (001) was optimal for each dye 

checked. 

Figure 2.26. Truncated tetragonal bipyramid structure of single crystal anatase co-exposed with (101) and (001) facets. The 

aspect ratio is defined by a ratio between the side of the truncated facets of the top or bottom (B) and the side sandwiched 

by the two pyramids (A). Reproduced from ref119. 
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In summary, the (101) and (001) facets function as reduction and oxidation sites, respectively, since photo-

generated electrons and holes migrate to the (101) and (001) facets, respectively. Moreover, tuning the ratio of 

the two facets plays a crucial role to enhance photocatalytic activities. However, one also has to consider the 

number of the undercoordinated atoms on the surface, which has been conventionally understood as a key 

parameter since it would affect adsorption/desorption behaviours. In addition, other environmental conditions 

such as pH drastically change the surface properties and thus govern the photochemical activity. However, the 

role of facets is still controversial and any consensus has not been achieved so far that attention has not been 

paid carefully to the above effects. In order to elucidate the role of facets and its origin, some efforts still need to 

be made for fundamental investigations while considering not only surface properties of TiO2 themselves, but 

also environmental parameters equally. 

 

2.4.2 Synthetic approaches to control facets 

 

Evolution of crystal structure during the crystal growth proceeds by continuously decreasing the total surface 

energy of the crystal and stops when the minimum surface energy is reached. To tailor the specific facets on the 

surface, there are two available strategies: bottom-up and top-down synthetic routes100. The bottom-up approach 

involves the nucleation and crystal growth from the solution. Two mechanisms have been proposed to explain 

the crystal growth process138-144. First of all, the conventional nucleation theory supports a single-step process 

where bulk nucleation and agglomeration take place. A second potent mechanism is a two-step nucleation. In 

this case, a nucleation might take place during crystallization, in which dense liquid nuclei are initially formed 

and subsequently the nucleuses start to crystallize as shown in figure 2.27141. On the other hand, the top-down 

synthesis route is the partial dissolution of mother-crystal particles and subsequent recrystallization on the 

surface in a solvent environment. Thus, a vital factor of this route is to select appropriate etching and 

morphology-controlling agents in order to achieve desired crystal structures. 

 

Figure 2.27. Two step nucleation observed for colloidal particles. a) Initial dilute liquid phase. b) Amorphous dense 

droplets. c) Crystalline nuclei created from the amorphous phase. Reproduced from ref141. 
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For both cases, capping agents have been mainly employed to prepare well-defined crystals showing controlled 

exposed facets75, 100-101, 107. The capping agents are thought to be selectively adsorbed onto specific facets since 

their affinity to the surface of particles depends on the surface atomic arrangement. The interaction between 

adsorbates and facets would introduce impurities or additives on the surface of the particles. These 

modifications of the surface by adsorbates can change the surface stability of facets and thus affect the growth 

rates to the facets. Thus, tailoring of the specific facets can be achievable by using capping agents and varying 

their ratio in a solution. In contrast to the bottom-up route, the top-down route involves directional chemical 

etching of specific facets145-146. For the top-down route, a role of the capping agents is not only suppressing the 

growth along axes of specific facets, but also preventing specific facets from getting attacked by etching agents. 

It is noteworthy that the organic capping agents would remain on the facets even after some efforts to remove 

them by annealing or cleaning with chemical reagents. The adsorption and activation of reactant molecules on 

the surface are definitely influenced by the remained capping agents. This is a common problem when using 

organic capping agents as one cannot evaluate appropriately the role of facets in photocatalysis. Small inorganic 

ions can also work as capping agents to be selectively adsorbed onto the crystal facets. It was found that this 

kind of capping agents not only allows reactants to access to the capped surface of crystals, but also can be 

easily removed to recover the clean surface. 

 

As discussed above, the strategy using capping agents can achieve crystal growth of which controlled crystal 

facets are thermodynamically unstable. Kinetic control is another effective approach to synthesize 

thermodynamically disfavoured surface facets145. The alteration of growth environments by tunig precursor 

concentration plays a main role to manipulate the growth rate of specific facets. In addition to kinetic control, 

the facets of semiconductor can be controlled in the thermodynamic regime. A polyhedron enclosed by a single 

kind of facet is preferentially created thermodynamically when its surface energy is sufficiently lower than that 

of other facets. According to the Thomson-Gibbs equation, the surface energy is proportional to the 

supersaturation during the crystal growth147. Therefore, it would be possible to control the exposed facets on the 

surface by changing the supersaturation148-149. 

 

2.4.2.1 Anatase (101) 

 

The order of the average surface energies of anatase is reported as 1.61, 0.90, 0.53, and 0.44 J m-2 for (111), 

(001), (010), and (101) facets, respectively2-3, 116, 150-151. Anatase crystal is primarily dominated by the most 

naturally appearing, less reactive, and thermodynamically stable (101) facet, which occupies 94 % of the total 

exposed surface based on the Wuff construction3-4. Therefore, generally the common shape of anatase in nature 

is the truncated octahedral bipyramid consisting of eight (101) facets on the sides and two (001) facets on the 

top and bottom. During the crystal growth under equilibrium conditions, the high energy facets of the (001) 

diminish rapidly and thus the crystal transforms into a specific structure with exposed facets, which minimize 

the total surface free energy152-153. Therefore, (101) facets might dominate the surface of most anatase particles 
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synthesized by conventional methods. Highly oriented (101) facets could be obtained by coarsening. Penn and 

Banfield154 synthesized slightly truncated bipyramid crystals with well defined (101) facets by coarsening 

pristine TiO2 particles from sol-gel route under different hydrothermal conditions. Amano et al.155 demonstrated 

a hydrothermal transformation directly from titanate nanowires into bipyramid single crystals with nearly 100 % 

dominant (101) facets with less truncation (Figure 2.28). Dai et al.156 reported slightly truncated bipyramid 

crystals with 90 % of (101) facets via a hydrothermal route by employing small particles of amorphous TiO2 

prepared by electrospinning. D’Arienzo et al.107 employed titanium tetrabutoxide as a metallo-organic precursor 

using a hydrothermal route to obtain well defined anatase single crystal with slight truncation at the top and 

bottom of pyramids. All these procedures use pre-synthesized amorphous TiO2 particles or titanates as 

precursors. Contrary to these methods, Liu et al.157 developed a new strategy to synthesize anatase with 

dominant (101) facets by using crystalline titanium diboride as precursor via an acidic hydrothermal method. 

Interestingly, Wu et al.158 obtained anatase nanobelts with two large (101) facets by modifying pre-synthesized 

TiO2 powder in NaOH solution, subsequently washing the resulting powder with hydrochloric acid, and finally 

annealing the cleaned particle (Figure 2.29). The beneficial effect of nanobelt structures in photocatalysis was 

attributed to suppressed recombination of charge carriers due to the superior charge mobility, fewer localized 

states in band gap, and effective trapping of oxygen on the surface. 

 

 

Figure 2.28. SEM images of (a) titanate nanowires as precursors and (b,c) anatase nanoparticles with dominant (101) facets 

after hydrothermal reaction of titanate nanowires. (d) TEM image and electron diffraction pattern of anatase nanoparticles 

with dominant (101) facets. Reproduced from ref155. 

 

 

The percentage of (101) facets in anatase crystals can reach to almost 100 % by using various synthetic methods. 

However, it is thermodynamically inevitable to form a few percent of  (001) facets as this surface is required to 

minimize the total surface energy of whole crystals. Indeed, if (001) facets were completely eliminated, the 
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intersection of (101) planes would result in an acute angle, exhibiting higher energy than even the high energy 

surface of (001) facets154. 

 

 

 

Figure 2.29. (a) SEM image and (b) bright-field TEM image of anatase nanobelts. The inset is a selected area electron 

diffraction pattern taken along the [100] direction of the nanobelt. Reproduced from ref158. 

 

 

In summary, it is relatively easy to obtain anatase single crystals with dominant (101) facets in the bipyramid 

structure as it is the most thermodynamically stable shape under usual preparation conditions. The percentage of 

(101) facets could vary by tuning the truncation of the edge at the top and bottom of bipyramids. Contrary to 

thermodynamically stable bipyramids, unique structures such as nanobelts exposing mostly (101) facets can also 

be achieved. 

 

2.4.2.2 Anatase (001) 

 

A large percentage of (001) facets in anatase crystallites has attracted significant attention over the last decade 

since facets with high surface energy were expected to show high photocatalytic activities. Unfortunately, such 

surfaces with high surface energy usually diminish rapidly during the crystal growth process due to the 

minimization of surface energy. Yang et al.159 systematically explored the effect of 12 non-metallic adsorbate 

atoms (H, B, C, N, O, F, Si, P, S, Cl, Br, and I) on the surface energies of both (001) and (101) surfaces by the 

means of first-principle quantum chemical calculations. The calculations predicted that a surface terminated F 

atom not only yields the lowest values of the surface energy for both (001) and (101) surfaces, but also reverses 

the stabilities as shown in figure 2.30. In the presence of F atoms, the (001) is energetically preferable to (101) 

facet. The largest percentage of (001) facet was calculated to be more than 90 %. Based on these theoretical 

calculations, a micro-sized crystal with 47 % of (001) exposed facets was first synthesized by using TiF4 and HF 

as the raw material and capping agents providing fluoride ions, respectively (figure 2.31). The percentage of the 

(001) facets can be increased by the synergetic effects of F and alcohol capping agents. For instance, the 

percentage was increased up to 69 % by using 2-propanol together with HF160. The addition of 2-propanol 

strengthens the stabilization effect associated with F adsorption on the (001) surface and thus stimulates its 

preferred growth. In addition to 2-propanol, ethanol, tert-butanol, isobutyl alcohol, benzyl alcohol, and 1-

butanol have been successfully employed to increase the percentage of the (001) facets161-163. Especially by 
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employing 1-butanol, a paper-like nanosheets with nearly 100 % of (001) facets was successfully synthesized 

(figure 2.31)163. Another advantage of additional alcohol is the greater flexibility in synthesizing anatase crystals 

with uniform shapes and sizes. 

Figure 2.30. Calculated surface energies of (001) and (101) facets surrounded by adsorbate X atoms (left) and optimized 

value of B/A when anatase crystals are surrounded by adsorbate X atoms (right). X represents H, B, C, N, O, F, Si, P, S, Cl, 

Br, and I. Reproduced from ref159. 

 

 

As HF is extremely toxic, corrosive and environmentally undesirable, environmentally friendly HF-free routes 

to obtain (001) facets are required. The fluorine, which plays a key role in stabilizing the (001) facets, would be 

released from different sources. In addition to most frequently used HF, ammonium bifluoride164, ammonium 

fluoride165, titanium tetrafluoride153, and ionic liquids166 have been reported to be suitable fluorine sources. The 

reaction mechanism is well-summarized in different reports100, 167. These compounds containing fluorine are still 

toxic and corrosive when they are released into nature. Therefore, efforts have been made to develop 

methodologies using fluorine-free capping agents for practical mass production. In this context, mesoporous 

anatase spheres with (001) facets were synthesized using a hydrothermal route without fluorine168. H2SO4 was 

employed as mineralizer to hydrolyze and condense tetrabutyl titanate, which functioned as a phase inducer for 

the anatase phase and a capping agent stabilizing only (001) facets. H2SO4 adsorbed on the (001) surface can be 

easily removed due to its weak interactions with the (001) facet. Anatase nanosheets with (001) facets were 

prepared by chemical vapor deposition169. Silicon was selected as a morphology-directing agent instead of 

fluorine. Silicon vapor could suppress the growth of anatase crystals into the [001] direction and thus two-

dimensional (001) nanosheets were formed. Roy et al.170 reported that the fine control of different facets of 

anatase crystals can be achieved by varying the reaction duration using diethanolamine as a fluorine-free shape 

controlling reagent. In addition to the (001) facets, the (100) facets were also obtained simultaneously. Chen et 

al.152 also synthesized hierarchical spheres consisting of ultrathin anatase nanosheets with nearly 100 % (001) 

facets in an amine-mediated environment. In this case, diethylenetriamine was used as an amine-capping agent 

to stabilize the (001) facet. Amano et al.171 developed an original gas-phase process using TiCl4 as a titanium 

source to synthesize faceted decahedral anatase single crystals. Cheng et al.172 fabricated anatase nanosheets 

exposing 82% of (001) facets through a facile toluene-water biphasic interfacial reaction method. The 

nanosheets could only be synthesized through the two-phase interface reaction at high HCl concentration. Dinh 
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et al.173 developed a pragmatic route to synthesize anatase crystals in various shapes such as rhombic, truncated 

rhombic, spherical, dog-bone, truncated and elongated rhombic, bar, and dots, by using a simple solvothermal 

technique employing oleic acid (OA) and oleylamine (OM) as capping agents in the presence of water vapor. 

The scheme is illustrated in figure 2.32. OA binds strongly to the (001) faces174, whereas OM is adsorbed 

preferentially on the (101) facets175. The selective bindings of OA and OM to different facets of anatase prevent 

the growth in the corresponding direction. OA and OM act not only as capping agents but also as an acid base 

pair catalyst, which could increase the condensation rate without affecting the hydrolysis rate. Therefore, the 

shape of anatase crystals can be controlled by tuning the molar ratio of OA/OM. However, there is a drawback 

due to the fact it is difficult to remove the remaining capping agents on the surface of anatase and thus it is 

tricky to evaluate photocatalytic activities of the contaminated crystals.  

Figure 2.31. The first anatase single crystal with 47 % (001) facets via a hydrothermal method using HF reported in 2008 

(left)159 and anatase nanosheet crystals with 98.7 % (001) facets via a developed hydrothermal method employing 1-butanol 

in addition to HF reported in 2011 (right)163. Reproduced from ref159, 163. 

 

Figure 2.32. Schematic illustration of the overall formation and shape evolution of anatase single crystals. The shape 

controlling can be achieved by tuning a ratio of titanium butoxide (TB):oleic acid (OA):oleylamine (OM). Reproduced 

from ref173. 
 

 

FigureⅡ.3-10 The first anatase single crystal with 47 % (001) facets via a hydrothermal method using HF 

reported in 2008 (left) and anatase nanosheet cystals with 98.7 % (001) facets via a developed hydrothermal method 

employing 1-butanol in addition to HF reported in 2011 (right). Reproduced from [67,71]. 
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Various techniques can be used to determine the percentage of (001) facets in anatase crystals such as FESEM, 

TEM, XRD, and Raman spectroscopy. In the case of FESEM and TEM, the dimensions of the crystals are 

measured to calculate the A/B ratio as mentioned above115, 159. XRD can also be employed to estimate the 

percentage of (001) facets even though this technique is not quantitatively precise. According to the Scherrer 

equation, the broadening of  the (004) diffraction corresponds to the decrease of the crystallite size along the 

[001] axis vertical to the (001) facets, meaning that the top and bottom edges of the bipyramids of anatase 

crystals are truncated176. In addition, the sharpened peak of (101) diffraction represents the increased crystallite 

size along the [001] axis perpendicular to the (101) facets, indicating the increased (001) facets. Therefore, the 

percentage of the exposed (001) facets could be roughly estimated by calculating the FWHM of (004) and (101) 

diffraction peaks. Raman spectroscopy can also be used to estimate the percentage of (001) facets177. Figure 

2.33 shows Raman spectra for anatase single crystalline particles with various percentages of (001) facets. The 

intensity of the Raman vibration modes would depend on the coverage of (001) facets on the surface as 

molecular bonds would behave differently on various facets. The percentage of (001) facets exposed in anatase 

crystals could be determined via the peak intensity ratio of the Eg and A1g peaks115, 177-178. The B1g peak is 

assigned to symmetric bending vibration of O-Ti-O at 394 cm−1, the A1g peak is attributed to antisymmetric 

bending vibration of O Ti O at 514 cm−1, and the Eg peak mainly belongs to the symmetric stretching vibration 

of O-Ti-O at 144 and 636 cm−1. 

Figure 2.33. Raman spectra for anatase nanosheets with various percentages of (001) facets. TF0, TF5, TF10, and TF15 

contain 8, 20, 53, and 78 % of (001) facets, respectively. Reproduced from ref177. 
 

 

2.4.2.3 Other facets of anatase 

 

The (010) facet has been also considered as one of the most reactive facets. Although the surface energy of 

(010) was predicted to be between that of (001) and (101) facets, the equilibrium structure of anatase crystal 

exhibits no (010) facets according to calculations based on the Wuff construction and the calculated surface 

energy3. Barnard et al.179 found that the shape of anatase nanoparticles is highly dependent on the surface 

chemistry by employing a thermodynamic model (capable of describing the free energy of nanoparticles as a 
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function of size, shape and surface chemistry), and surface energies and surface tension calculated for anatase 

surfaces terminated by adsorbates with varying amount of hydrogen and oxygen. The predicted shapes for 

various surface chemistries are shown in figure 2.34. A shape of an anatase crystal for hydrogen rich and 

hydrated surfaces was predicted to be same to the equilibrium structure whereas that for hydrogen poor and 

oxygenated surfaces was predicted to exhibit an elongated structure so that the (010) facets would appear. In 

addition, the surface chemistry also affects the aspect ratio of B/A (figure 2.26) as shown in figure 2.35. 

 

Figure 2.34. Predicted morphologies with (a) hydrogenated surfaces (b) with hydrogen-rich surface adsorbates, (c) hydrated 

surfaces, (d) hydrogen-poor adsorbates, and (e) oxygenated surfaces. Reproduced from ref179. 

 

 

Figure 2.35. The optimized ratio of B/A of anatase with various surface chemistries: hydrogenated, hydrogen-rich, hydrated, 

hydrogen-poor, and oxygenated. Reproduced from ref179. 

 

 

 

2.4.3 Synergetic effects of facet controlling and co-catalysts 

 

In addition to the facet engineering technique, the enhancement of the photocatalytic activity can be achieved by 

using co-catalysts. Recently efforts have been made to combine the above two techniques by depositing 

selectively oxidation and reduction co-catalysts onto oxidation and reduction sites, respectively. In such system, 

the photocatalytic activities can be drastically enhanced by the synergetic effects of the charge separation 
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between different facets and dual co-catalysts deposited onto different facets where co-catalysts can fully 

function.  

 

In most cases, co-catalysts are deposited by an impregnation or adsorption method resulting in their random 

distribution on the photocatalyst surface without controlling the location. Li et al.180 first demonstrated the 

selective deposition of Pt and different metal oxides co-catalysts onto the electron rich (010) and hole rich (110) 

facets of BiVO4 via photo-deposition, respectively. Indeed, they had previously found that photo-generated 

electrons and holes were spatially separated into the (010) and (110) facets as already reported for TiO2
181. The 

scheme of selective deposition of dual co-catalysts and SEM images of BiVO4 with selectively deposited dual 

co-catalysts via photo-deposition are shown in figure 2.36. It is known that noble metals are used as efficient 

reduction co-catalysts while metal oxides act as oxidation co-catalysts. Regardless of the co-catalysts, the 

heterojunction photocatalyst with selective deposition of co-catalysts on the corresponding sites exhibits 

superior photocatalytic activities compared to the system with the randomly distributed co-catalysts. In addition, 

a simultaneous deposition of both reduction and oxidation co-catalysts on appropriate facets resulted in 4 times 

higher photocatalytic activities than those observed for the case of a single (reduction or oxidation) co-catalyst 

deposition on appropriate facets. A combination of Pt as a reduction co-catalyst and MnOx as an oxidation co-

catalyst was the best for the photocatalytic dye degradation of MO and RhB whereas Pt as a reduction co-

catalyst and Co3O4 as an oxidation co-catalyst exhibited the best activity for the photocatalytic water oxidation. 

These results validate the idea that the enhanced photocatalytic activities are originated from not only the 

intrinsic nature of charge separation between the (010) and (110) facets of BiVO4, but also the synergetic effect 

of dual co-catalysts deposited on different facets of BiVO4. Moreover, the suitable selection of a combination of 

dual co-catalysts should be considered depending on the photocatalytic reactions. 

Figure 2.36. (Top) Schematic representation of the selective deposition of reduction and oxidation co-catalysts on (010) and 

(110) facets, respectively, via photo-deposition. SEM images of (a) BiVO4 with selectively deposited Pt and MnOx and (b) 

BiVO4 with selectively deposited Pt and CoOx. Reproduced from ref180. 
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The concept of dual co-catalysts should be valid for other anisotropic semiconductor photocatalysts and 

efficient photocatalytic systems could be achieved by a rational design where suitable co-catalysts are deposited 

onto the appropriate facets of the semiconductor crystals. To the best of my knowledge, the enhanced 

photocatalytic activities by dual co-catalysts on different facets of crystals have been demonstrated for anatase 

TiO2
182-183, Cu2O184, BiOI185, SrTiO3

186, and WO3
187. In the cases of anatase, Liu et al.182 prepared a Fe2O3-TiO2-

Pt system where α- Fe2O3 and Pt are selectively deposited onto (001) and (101) facets of anatase via photo-

deposition, respectively. This system showed an enhanced photocatalytic H2 production with selective co-

catalysts deposition by 2.2 and 30 times higher than those delivered with photocatalysts with a random 

deposition and without co-catalysts, respectively. Meng et al.183 deposited Co3O4 and Pt onto the (001) and 

(101) facets of anatase as shown in figure 2.37 and the designed system showed a higher photocatalytic H2 

production activity than anatase with single co-catalysts of Co3O4 or Pt by 9.4 and 1.8 times, respectively. These 

results again support the concept of the dual co-catalyst system where intrinsic electronic properties of different 

facets would suppress the recombination of charge carriers and dual co-catalysts deposited onto appropriate 

facets could not only provide effective reaction sites, but also trap the charge carriers and further prevent the 

recombination. To achieve more efficient photocatalytic activities, further efforts have to be made to explore an 

optimal ratio of different facets of support photocatalysts, suitable combinations of dual co-catalysts, and their 

amount for different reactions such as bacteria inactivation, dye decomposition, and hydrogen and oxygen 

evolution from water splitting. 

 

 
Figure 2.37. (a)FESEM, (b)TEM, (c)HRTEM, and EDS patterns of anatase crystals with Co3O4 and Pt selectively 

deposited onto (001) and (101) facets via photo-deposition, respectively. Reproduced from ref180. 
 

 

While for the above cases selective deposition of dual co-catalysts were performed with specific facets induced 

by intrinsic charge separation between different well-defined facets, very recently Li et al.188 demonstrated that 

photo-generated electrons and holes can be regularly separated on ferroelectric PbTiO3 photocatalysts without 
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regular facets. The reduction and oxidation co-catalysts were selectively deposited on different sites via an in-

situ photochemical deposition method as shown in figure 2.38. The photocatalytic hydrogen production for 

PbTiO3 with spatially separated dual co-catalysts is more than 100 times higher than that measured for the as-

prepared PbTiO3, which is much higher than that with dual co-catalysts with a random distribution. They 

proposed that the intrinsic electric fields and spontaneous electric polarization in the bulk of PbTiO3 would 

trigger the spatial distribution of active sites on irregular PbTiO3 crystals. 

 

Figure 2.38. SEM images of (a)PbTiO3 with selectively deposited Pt and MnOx via photo-deposition and (b) PbTiO3 with 

randomly deposited Pt and MnOx via impregnation. Reproduced from ref188. 

 

 

To summarize the chapter 2, in a last decade both fundamental and practical investigations of photocatalyst 

especially employing TiO2 have been intensively conducted. In terms of surface science, although single crystal 

rutile surfaces the (110) surface of which is considered as a model of metal oxides, have been intensively 

studied, reports on single crystal anatase surfaces are sparse despite their practical advantages as photocatalysts. 

Recently, the role of crystal graphic facets and effects of surface/subsurface defects and their interaction with 

simple molecules got started to be investigated. In addition, synergetic effects of crystal facets and co-catalysts 

selectively deposited on specific facets have drawn attention as this technique has a potential to drastically 

improve photocatalytic activities. However, the mechanistic details of these phenomena and systems are still 

under debate and thus further investigation are required to elucidate the mechanisms and achieve optimal 

photocatalysts especially using cheap and abundant materials such as TiO2 and NiO for practical use. 

 

The objective of this thesis is to reveal the origin of intrinsic charge carrier transfer between different facet of 

single crystalline TiO2 and further enhance the charge carrier separation by establishing p-n junction via 

depositing p-type NiO selectively onto specific facets of TiO2 nanocrystals. In the chapter 3,  we prepared 

differently oriented anatase and rutile substrates with various surface states and compared their electronic 

properties by PES to elucidate the mechanisms of charge trapping and separation between different facets. Then 

we experimentally determined the band allignments of NiO/TiO2 by interface experiments to rationalize the 

improved photocatalytic activities of NiO/TiO2 heterostructured photocatalysts. Furthermore, by employing a 
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supercritical fluid route and a photo-deposition method, we synthesized NiO/TiO2 heterostructed nanoparticles 

where NiO is selectively deposited onto specific facets of the single crystallite TiO2 and found the superior 

photocatlytic activities of these systems in photocatlytc dye decompositions. 
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Pt and PbO2 on the specific orientations 
of rutile and anatase via photodeposi-
tion, indicating that the facets help in the 
separation of photoinduced electrons and 
holes. It was found that electrons tend to 
be transferred to the (101) facets, whereas 
the holes are driven to the (001) surfaces. 
This result suggests that anatase (101) 
surface provides the effective reduction 
site, whereas anatase (001) works as the 
oxidation site. Tachikawa et  al.[5] investi-
gated facet dependant photocatalysis on 
anatase with single-molecule fluorescence 
imaging and kinetic analysis by using 
redox-responsive fluorogenic dyes. On the 
single crystal of anatase coexposed with 
the (101) and (001) facets, the fluorogenic 
dyes are preferentially reduced on the 
(101) facet rather than the (001) facet. This 
finding confirms that photogenerated elec-

trons preferentially migrate to and are trapped at the (101) facet. 
Such a charge carrier separation was observed for different 
metal oxides such as Cu2O, WO3, and BiVO4.[3,6] Furthermore, 
based on the charge separation between different facets in 
the crystal, Li et  al.[7] demonstrated a drastic enhancement of 
photocatalytic activities by selectively depositing reduction and 
oxidation cocatalysts onto the reductive and oxidative facets of 
BiVO4 crystals. In summary, there is a strong need of deeper 
understanding of the mechanism of charge separation between 
different crystal facets.

Surface properties of the TiO2 anatase have been studied 
by a number of experimental and theoretical investigations 
without providing a clear reason for different photocatalytic 
efficiencies.[8] However, the charge separation and trapping are 
conventionally explained by the different energy levels of dif-
ferent facets due to the surface atomic arrangement and coor-
dination.[9] Recently, a first-principles calculation predicted that 
the Fermi level of the (001) facet is located at a lower energy 
level than that of the (101) facet.[9a] Thus, a so-called surface het-
erojunction would be formed between the (101) and (001) facets 
due to the original difference of their surface Fermi levels in 
a crystal exposed with both facets. As a result, photogenerated 
electrons and holes could preferentially migrate to the (101) 
and (001) facets, thereby exhibiting different photocatalytic 
activities on these facets. However, the Fermi level shown in the 
density of states is located near valence band maximum for the 
(101) and enters even into valence band for the (001) surface 
meaning that the (101) surface is a p-type semiconductor and 

Single crystalline anatase is used to prepare well defined (001) and (101) 
surfaces in ultrahigh vacuum (UHV) in different states: sputtered, annealed, 
stoichiometric, and oxidized. The electronic properties of the well-defined 
surfaces are investigated by X-ray photoelectron spectroscopy and ultraviolet 
photoelectron spectroscopy after UHV transfer. The Fermi level of (001) 
facets for all applied surface conditions is lower than that of the (101) facets 
by 150–450 meV. The energy difference leads to a potential difference (band 
bending) at the interface between the (101) and (001) facets, resulting in 
the migration of photogenerated electrons and holes to different directions 
namely to the (101) and (001) facets, respectively. Photoelectron spectroscopy 
measurements clearly indicate for the first time that differences in the surface 
electronic structure and related potential of different facets explain a  
vectorial electron–hole pair separation to different reaction sites providing 
design criteria for enhanced photocatalysis.
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Facet Electronic Structure

Titanium dioxide (TiO2) has been intensively investigated 
for a range of applications such as solar energy conversion 
and photocatalysis already for decades.[1] Among different 
polymorphs, anatase TiO2 is generally considered as a superior 
photocatalyst due to its longer carrier lifetime and higher elec-
tron mobility.[2] However, for homogeneous spherical particles 
the achieved quantum efficiencies of photochemical reactions 
are usually quite low.[3] Since the crystallographic orientation 
and the surface termination of metal oxides determine the elec-
tronic properties, there has been an increasing interest in facet 
engineered TiO2 particles as well as in fundamental investiga-
tion on the different surfaces of single crystalline anatase.[3] For 
instance, Ohno et  al.[4] discovered the selective deposition of 
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the (001) surface is metallic although TiO2 is considered as 
an insulator or a n-type semiconductor. This might be due to 
oversimplified approximations used during the calculation. 
However, this paper does not provide any details about the 
calculations, making this comparison of Fermi level positions 
questionable. In addition, a recent simulation[2] revealed that 
an excess electron at the (101) surface and aqueous interface 
would lead to water dissociation and get trapped into a stable 
surface Ti3+-bridging OH complex, whereas the (001) surface is 
strongly repulsive for electrons and subsequently attracts holes. 
Thus, the origin of the role of the different facets has not been 
elucidated by experimental evidence and is still under debate. 
Although scanning tunnelling macroscopy studies have been 
intensively performed for single crystalline anatase,[10] detailed 
information on the surface electronic properties is sparse. One 
detrimental factor is the need to prepare well defined surface 
termination layers for the different surfaces without defects 
or adsorbates, which may strongly interfere with the precise 
evaluation of the electronic surface properties. Especially the 
amount of O vacancies and related Ti3d1 surface states situ-
ated about 1 eV below the conduction band edge will strongly 
interfere with a detailed analysis of differences in the surface 
electronic properties.[8,11] Herein, we report on a systematic 
study of the electronic properties of single crystalline anatase 
(101) and (001) surfaces with various well-defined surface con-
ditions by using X-ray photoelectron spectroscopy (XPS) and 
ultraviolet photoelectron spectroscopy (UPS). Our results help 
to enlighten the surface properties of facetted anatase TiO2 
crystals to conclude on the mechanism of charge separation 
based on intrinsic properties of anatase facets.

(101) and (001) surfaces are in situ prepared inside the 
vacuum chamber to expose different well-defined stoi-
chiometries: sputtered (sp-(001) and sp-(101)), annealed 
(an-(001) and an-(101)), oxidized (ox-(001) and ox-(101)), and 
stoichiometric (st-(001) and st-(101)). As-is samples without 
any surface treatments show several contaminations such as 
carbon, calcium, silicon, and molybdenum and were treated 

by repeating the cycle of Ar ion sputtering and annealing 
in vacuum till the contamination disappears in XPS surface 
spectra, as shown in Figure S1 (Supporting Information). Fe 
contamination, which is the most relevant contamination in 
natural crystals,[12] was not found. Figure S2 (Supporting Infor-
mation) shows sharp (1 × 1) low-energy electron diffraction 
(LEED) patterns for both an-(001) and an-(101), which were 
reoxidized and recrystallized after treated by cycles of Ar sput-
tering and annealing in ultrahigh vacuum (UHV). The LEED 
patterns for an-(001) and an-(101) were obtained for beam ener-
gies of 90.5 and 90.0  eV, respectively. It was reported that a 
two-domain (1 × 4) reconstruction was observed for the (001) 
surface when the surface was sputtered and annealed in UHV 
conditions or O background pressure.[13] In our work, the 
an-(001) does not form this reconstruction, since the lattice O 
was incorporated again by the O plasma treatment.[13a,14]

XP spectra of O1s and Ti2p core level for all prepared surface 
states are shown in Figure 1. The emission of Ti2p spectra for 
sp-(101) shows a strong low binding energy emission of Ti3+ 
and Ti2+ shifted to the main emission line of Ti4+ by around 
1.7 and 3.5 eV, respectively, while sp-(001) exhibits sharp sym-
metric main lines consisting of a Ti4+ oxidation state. This 
indicates that the sp-(001) surface would contain much less O 
vacancies than the sp-(101) in agreement with literature data, 
as the (001) surface is extremely stable compared to the (101) 
surface.[15] The low binding energy shoulder related to defects 
for an-(101) was not observed after reoxidation by O plasma and 
recrystallization by annealing in vacuum for sp-(101). Although 
an-(001) and an-(101) are expected to contain low concentration 
of O vacancies due to annealing in vacuum at the elevated tem-
perature, emissions related to O vacancies were not detected 
probably due to the limited resolution and surface sensitivity 
of XPS. The attenuated shoulder corresponding to Ti3+ and the 
related emissions of Ti3+ deep bandgap states (DGS) below the 
conduction band edge are detectable only by surface sensitive 
resonant photoelectron spectroscopy.[11,15a] Exposing an-(001) 
and an-(101) to an O plasma results in a shoulder emission 
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Figure 1.  XP core level spectra of anatase (001) and (101) in different surface states. a) Ti2p and b) O1s core level emission for sputtered (st-(001) 
and st-(101)), annealed (an-(001) and an-(101)), stoichiometric (st-(001) and st-(101)), and oxidized (ox-(001) and ox-(101)).
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at 3  eV higher than the main peak corresponding to TiO 
bonding. The shoulder might be attributed to mainly peroxo 
species and also to bridging dimers. The Ti atom on the sur-
face is prone to form peroxo complexes with excited O atoms 
from the O plasma.[16] Furthermore, peroxo species on the 
surface were found to transform to a so-called bridging dimer 
at the lattice site via interaction with surface or subsurface O 
vacancies.[10a,17] St-(001) and st-(101) show no shoulder emis-
sion after annealing in vacuum at 473 K, which indicates the 
removal of the surface peroxo species from the ox-(001) and 
ox-(101) surfaces.

XP and UP valence band spectra for all prepared surface 
states are shown in Figure 2 and Figure S3 (Supporting Infor-
mation), respectively. The XP valence band spectra show at 
a first glance the typical valence band emission of TiO2 bulk 
material with the typical double layer structure of the O2p π 
and σ bonding states at binding energy of about 5 and 8  eV, 
respectively.[15a] A more detailed inspection, however, indicates 
additional emissions of different intensity in the bandgap 
region of XPS and UPS depending on the surface treatment. 
The sputtered TiO2 surfaces show the well-known Ti3d1 
emission lines in the bandgap region. It is accepted that the 
so-called bandgap surface state (BGS) would form due to occu-
pied Ti 3d states on Ti3+ sites near the O vacancy sites on the 
surface, but also due to Ti3+ interstitial states in the subsurface 
region.[11,15a,18] BGS consists of shallow gap states (SGS) and 
DGS located at 0.5 and 1.6  eV below conduction band min-
imum, respectively,[11b] even though recent calculations using 
screened exchange functional, which gives accurate bandgaps 
and correct localization of charge near vacancies, implied that 
O vacancies would introduce a gap state above conduction band 
minimum for the (001) and (101) surfaces.[19] DGS are conven-
tionally assigned to excess electrons localized on Ti3+ intersti-
tial and also Ti atoms near O vacancies.[11b,20] SGS would be 
originated from different factors. First, excess electrons at step 

edges or imperfect structures on the (101) surface contribute to 
form SGS and its intensity could be pronounced by increased 
amount of O vacancies.[11b] In addition, Ti3+ interstitial and O 
vacancy also contribute to SGS. Remaining excess electrons 
produced by the formation of Ti3+ interstitial and O vacancy 
and exceeding the number of one electron per d bandgap 
state would be delocalized on lattice Ti atoms due to electron–
electron correlation, which are the components of the TiO6 
octahedra near the defect sites, and thus result in the shallow 
energy level near the conduction band edge.[20] However, the 
contribution of O vacancy to SGS is negligible compared to the 
effect of Ti3+ interstitial.

(001) and (101) surfaces exhibit different distribution of 
DGS and SGS as shown in Figure 3 derived from XP valence 
band spectra in Figure 2. The peaks of XP valence band region 
were fitted with Voigt functions using Gaussian and Lorentzian 
mixed line shapes. For the fits, we have assumed three contri-
butions to the bandgap emissions including the DGS and SGS 
states and a so called valence band surface state (VBSS). The 
SGS and DGS states are well-established from experimental 
and theoretical studies,[11,15a,18] while the latter, which is of O 
2p character, has been reported in theoretical studies only.[19] 
For estimating the concentration of the different states, we have 
used the XPS data as these are mostly determined by the ini-
tial state density, whereas for He UPS data final state density 
of states cannot be neglected for intensity analysis. Although 
the emissions in the bandgap region in the XP valence band 
spectra (Figure 2b) are rather noisy, the different intensities of 
the gap states can clearly be discerned from the background 
intensity, which is achieved for the annealed, stoichiometric, 
and oxidized (101) surface. In any case, the different intensi-
ties of the involved gap states are also reflected in the UP 
spectra, which are shown in Figure S3, Supporting Informa-
tion. Regardless of surface conditions, DGS of the (001) surface 
is significantly larger than that of the (101) surface for XPS 
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Figure 2.  XP valence band spectra of anatase (001) and (101) in different surface states. a) Wide valence band region and b) its focused area of the 
bandgap region by a factor of 3 for sputtered (st-(001) and st-(101)), annealed (an-(001) and an-(101)), stoichiometric (st-(001) and st-(101)), and 
oxidized (ox-(001) and ox-(101)). The spectra in the bandgap region are combinations of VBSS (shaded magenda for (001) surface and shaded cyan 
for the (101) surface), DGS (shaded yellow), and SGS (shaded green).
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and however has a similar intensity to that of the (101) surface 
for UPS. UPS is more surface sensitive allowing to measure 
a shallow surface depth of 1–2 nm, whereas the X-ray reaches 
to 4–5  nm as an inelastic mean free pass of UPS is shorter 
than that of XPS. Therefore, this difference of DGS indicates 
that the defects (Ti3+ interstitial and/or O vacancy) are located  
below the surface to deep subsurface or bulk for the (001) sur-
face while they are situated on the surface or only at a shallow 
subsurface for the (101) surface. On the other hands, SGS of 
sp-(101) is intense compared with sp-(001) for both XPS and 
UPS. This implies that excess electrons of the (001) surface 
induced by Ar ion sputtering and annealing are largely local-
ized on Ti3+ interstitial or Ti atoms neighbouring O vacancies 
while those of the (101) surface are not only localized on the 
defects sites, but also widely delocalized on lattice Ti atoms.

The VBSS is located close to the valence and edge especially 
for the (001) surfaces. Comparing the energetic position of 
this feature, its relative intensity in the XP versus UP valence 
band spectra to recent surface electronic structure versus bulk 
electronic structure calculations, we assign this feature to 
the modified density of states (DOS) distribution of the (001) 
and (101) surface versus the bulk DOS. In the former case, 
the (001) surface, a thin surface layer with a reduced gap and 
energetically upward shifted O 2p states are formed, which for 
XPS will lead to a shoulder in the valence band edge due to 
increased depth (≈2  nm) and for UPS to a shifted band edge 
position due to reduced surface sensitivity (≈0.5  nm). DGS 
and SGS as well as VBSS of the (001) surface for XPS gradu-
ally attenuate with decrease of the Fermi level position but 
still remain even after O plasma treatment. By contrast, DGS 

and SGS of sp-(101) for XPS disappear  
immediately after reoxidation by O plasma 
treatment and subsequent annealing in 
vacuum. Defects in a deep subsurface posi-
tion of the (001) surface are rather stable and 
tend to remain even in the oxidative atmos-
phere while those of the (101) surface could 
be repaired by O molecules or peroxo spe-
cies even though it is expected that O radical 
of the O plasma cannot penetrate the sur-
face and reach to deep subsurface unlike Ar 
plasma. Setvín et  al. demonstrated that O2 
molecules on the surface react with subsur-
face O vacancies of the (101) surface.[10a,17] O2 
molecules are adsorbed as superoxo species 
at fivefold-coordinated Ti sites on the surface, 
transform into peroxo species, and finally are 
inserted into an anion surface lattice site as a 
bridging dimer via interaction with surface O 
vacancy as well as subsurface O vacancy.

As discussed above, we have achieved 
well-controlled different surface conditions 
with different distribution of defects/surface 
states for anatase (001) and (101) surfaces. 
Considering different surface states is a pre-
condition for comparing the dependence of 
Fermi level on surface orientation. The Fermi 
level positions (EVBM − EF) with respect to the 
valence band maximum (VBM) were deter-

mined by applying a linear extrapolation of the valence band 
emission edge. The determination of the Fermi level from the 
XP valence band spectra is hardly affected by the distribution of 
surface/gap states due to their low intensity. This is confirmed 
by the shifts of the Ti and O binding energies, which follow the 
same order and are of similar magnitude (see Table 1). Fermi 
level positions obtained from XP valence band spectra are sum-
marized in Table 1. For both the (001) and (101) facets, the 
order of Fermi level positions is ox-TiO2 < st-TiO2 < an-TiO2 < 
sp-TiO2 and is related to the different surface electronic struc-
tures due to the changed concentration of the different surface 
states of the different surfaces leading to band bending (space 
charge layer) effects. The variation range in the Fermi level, 
which are 560 and 860 meV for the (001) and (101) surfaces, 
respectively, was achieved by controlling surface terminations 
and the amount of intrinsic defects of Ti3+ interstitial and O 
vacancy. As Ti3+ interstitial and O vacancy give rise to the local-
ized impurity level below the lower end of the conduction band, 
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Figure 3.  Distribution of SGS, DGS, and VBSS of anatase (001) and (101) in different surface 
states. Distribution derived from a) UPS and b) XPS for sputtered (st-(001) and st-(101)), 
annealed (an-(001) and an-(101)), stoichiometric (st-(001) and st-(101)), and oxidized (ox-(001) 
and ox-(101)) surfaces.

Table 1.  Binding energy of O1s and Ti2p3/2 and Fermi level positions 
(EVBM − EF) of the (001) and (101) facets.

O1s [eV] Ti2p3/2 [eV] EVBM − EF [eV]

001 101 001 101 001 101

Sputtered 530.35 530.81 459.08 459.21 3.10 3.55

Annealed 530.33 530.52 459.07 459.17 3.06 3.23

Stoichiometric 529.95 530.07 458.70 458.73 2.64 2.84

Oxidized 529.93 529.93 458.64 458.69 2.54 2.69
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the amount of these intrinsic defects as well as the surface ter-
mination is directly related to the Fermi level position.[21]

Most importantly, we consistently found a difference in the 
Fermi level positions between the (001) and (101) facets. As 
shown in Table 1, the Fermi level position of the (001) facet 
is lower than that of the (101) facet by 150–450 meV for any 
surface conditions. The work function φ of st-(101) and st-(001) 
were determined to be 5.23 and 5.35 eV, respectively, from the 
binding energies of the secondary electron edge ESE according 
to Φ = hv − ESE. Thus, we conclude that the difference of the 
Fermi level position between the (001) and (101) facets origi-
nates from the difference in their work function. This differ-
ence in the Fermi level positions leads to a space charge layer 
between the interfaces of the two facets as schematically shown 
in Figure 4 as a result of electronic equilibrium formation. As 
a consequence, photogenerated electrons and holes preferen-
tially migrate to the (101) and (001) surface, respectively, which 
thus function as effective reaction sites for reduction and oxida-
tion reactions, respectively. We do not have a direct measure of 
the Fermi level position inside the crystal and therefore cannot 
exclude an additional space charge layer from the surface into 
the bulk. But as TiO2 is known to be n-doped from experi-
mental transport measurements, such additional space charge 
effects will not strongly affect our conclusion on the orientation 
dependant surface potentials.

This difference of the Fermi level position between the 
(001) and (101) facets can be mainly related to a difference in 
the formation energy of O vacancies for the two facets. Density 
functional theory (DFT) calculation[15b,19] predicted that the sur-
face and subsurface of the (101) facet require lower formation 
energy to create O vacancies than the (001) facet, which is in 

good agreement with experimental investigation.[15a] Therefore, 
the concentration of O vacancies on the (101) facet is higher 
and thus the Fermi level position on the (101) facet is raised 
higher by the defect impurity level than on the (001) facet. In 
addition, Li et al.[19] found that O vacancies are shallow donors 
with a donor level even above the conduction band minimum at 
the (101) surface, whereas the donor level at the (001) surface is 
slightly lower in energy than the calculated gap. Therefore, the 
(001) surface has a lower electron concentration and thus a lower 
Fermi energy than the (101) surface. The lower Fermi level posi-
tion of the (001) surface is attributed not only to the lower for-
mation energy of O vacancies, but also to its lower donor level. 
Although perfectly oxidized and stoichiometric surfaces would 
nominally contain no O vacancies on the surface, real samples 
under operation condition in UHV but also X-ray irradiation 
during XPS measurements will possess O vacancies on these  
surfaces, validating the difference in Fermi level positions.

The difference in Fermi level positions is found also to 
exist even on defect-free clean surfaces. It was reported based 
on a theoretical calculation that the top surfaces of the (001) 
and (101) facets have surface states above the bulk VBM and 
below the bulk conduction band minimum. (CBM).[19] The sur-
face states of the (001) facet near the bulk CBM are lower than 
those of the (101) facet. Therefore, the Fermi level at the (001) 
surface is lower than that at the (101) surface even at defect-
free conditions. The surface states near VBM for the (001) 
and (101) surface are located at 0.2–0.7 eV above VBM and at 
0.3 eV up to VBM, respectively. These surface states near VBM 
were observed in XP and UP valence band spectra, as shown in 
Figure 2 and Figure S3 (Supporting Information), respectively, 
while those near CBM are rather weak as expected from calcu-
lation and could not be detected by XPS and UPS. The relative 
intensity of the surface states is shown in addition to SGS, DGS, 
and Fermi level from XP spectra in Figure 3. Regardless of sur-
face condition, the surface state of the (001) surface is intense 
compared to that of the (101) surface in good agreement with 
calculation in literature.[19] The intensity of surface states for 
ox-(001) and ox-(101) is decreased, as these surfaces are covered 
by surface peroxo species. It is noted that the surface states of 
the (101) surface partially overlap with the VBM, thus resulting 
in underestimating the Fermi level position at a lower position 
than the actual value inside the bulk of the crystal.

So far, a large percentage of (001) facets in anatase photo-
catalysts has attracted significant attention over the last decade, 
as facets with high surface energy were expected to show high 
photocatalytic activities. The related importance of the (101) 
facets thus has been underestimated. Our result indicates that 
the both (001) and (101) facets are equally important in the 
photocatalytic performance, since a simultaneous presence 
of the two facets forms the energy junction which leads to a 
vectorial charge carrier separation of electron–hole pears and 
subsequently each facet has different roles in the photocatalytic 
reactions. It can also be expected that the deposition of different 
but correctly chosen cocatalysts with appropriate contact and 
catalytic properties on the different facets will further improve 
the photocatalytic properties.

In conclusion, we have compared the electronic properties of 
single crystal anatase (001) and (101) facet with various surface 
conditions: sputtered, annealed, oxidized, and stoichiometric. 

Adv. Energy Mater. 2018, 1802195

Figure 4.  Scheme of charge separation on the anatase crystal coexposed 
with the (101) and (001) facets. Band alignment at the interface of the 
(101) and (001) facet was described based on the obtained Fermi level 
difference between these facets.
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The Fermi level position of the (001) and (101) facet in anatase 
was effectively manipulated in a variation range of 560 and 
860 meV, respectively. Regardless of the different surface condi-
tions, the Fermi level of (001) facets is always lower than that 
of the (101) facets by 150–450 meV due to the effect of surface 
states of different origin and concentrations. The energy dif-
ference forms an interfacial energy junction at the interface of 
the (101) and (001) facets, resulting in the spatial charge sepa-
ration and enhancing the photocatalytic activities. Our results 
of XPS and UPS measurements of well-defined single crystal 
surfaces do not only reveal the intrinsic mechanism of the 
charge separation and different photocatalytic reaction sites 
in the anatase single crystal for the first time, but also suggest 
the same phenomena to be operative in other semiconductor 
photocatalysts as well. In addition, this study provides design 
rules for further enhancing the photocatalytic efficiencies. The 
preparation of “Janus” type structures by depositing cocatalysts 
of different work function and different catalytic selectivity will 
provide specifically designed nano-sized heterojunction photo-
catalysts with improved performances.[21]

Experimental Section
Single crystals of anatase with epi-polished (101) and (001) surfaces 
with a specified surface roughness of less than a lattice constant 
were purchased from SurfaceNet GmbH (Rheine, Germany). The 
size of substrates is 5 ×  5 × 1 mm3. The surface orientation has been 
confirmed by low energy electron diffraction (see Figure S2, Supporting 
Information). In addition to the as-is surfaces with contamination from 
air and polishing, unreconstructed (101) and (001) surfaces are in situ 
prepared inside the vacuum chamber to expose different well-defined 
stoichiometries: sputtered (sp-(001) and sp-(101)), annealed (an-(001) 
and an-(101)), oxidized (ox-(001) and ox-(101)), and stoichiometric 
(st-(001) and st-(101)). Sample preparations and measurements were 
carried out in the Darmstadt integrated system for materials research 
(Daisy-Mat)[22] equipped with a multitechnique surface analysis system 
Physical Electronics PHI 5700 capable of XPS and UPS, which is 
connected to different sample preparation chambers without breaking 
vacuum. The sputtered surfaces (sp-(001) and sp-(101)) were prepared 
by repeated cycles of Ar+ ion sputtering with an energy of 1  keV for 
15 min and annealing in UHV conditions at 873 K for 30 min until no 
remaining emissions from contaminations were observed by XPS. 
Although this procedure has been conventionally accepted to prepare 
clean surfaces of single crystal TiO2,[8,23] Ar sputtering not only results in 
a highly reduced surface and thus leads to the formation of O vacancies 
and Ti3+ surface states, but also partially destroys the crystallinity of 
the surface and introduces an amorphous phase.[12] The O vacancy 
concentration for the (101) and (001) surface prepared by the procedure 
is estimated to be 7  ±  2 and 1  ±  2%, respectively.[15a] Therefore, the 
sputtered surface was oxidized by an O plasma at room temperature 
in an atmosphere of 7.5  ×  10−5 mbar O2 for 15  min to reoxidized 
the surface, followed by annealing at 873 K in UHV to recrystallize the 
surface. This surface in a slight reduced state is referred to as an-(001) 
and an-(101). LEED measurements were performed with BDL 800 
IR-LMX for the an-(101) and an-(001). Here the O plasma was selected 
to replenish the lattice O instead of annealing in O2 atmosphere, which 
has been frequently used for oxidation, as the annealing procedure could 
form additional incomplete reconstructions.[24] It may also lead to iron 
oxide surface contaminations, as at elevated temperatures Fe surface 
segregation, which is a typical contamination of natural anatase crystals, 
may be triggered.[12] In addition, atomic O in the O plasma is more 
oxidative than a molecular O2 during annealing in O atmosphere.[25] 
The an-(001) and an-(101) surfaces were treated with an O plasma at 
the same condition mentioned above without subsequent annealing 

and the resulting surfaces are referred to as ox-(001) and ox-(101). 
Finally, the stoichiometric surfaces, which are referred to as st-(001) 
and st-(101), were prepared by removing O atoms by annealing ox-(001) 
and ox-(101) in UHV condition at 473 K for 20 min.[26] The preparation 
procedure for the above different surfaces is described in Figure S4 
(Supporting Information).

Characterization of the prepared surfaces were carried out in the 
Darmstadt integrated system for materials research (Daisy-Mat) 
equipped with a multitechnique surface analysis system Physical 
Electronics PHI 5700 capable of XPS and UPS. The XPS spectra were 
recorded with monochromatic Al K radiation at an emission angle of 
45° and a pass energy of 5.85 eV, which gives a total energy resolution 
of 0.4  eV, as determined from the Gaussian broadening of the Fermi 
edge of a sputter-cleaned Ag sample. Binding energies of core levels 
and valence band maximum EVB can be determined with accuracies of 
50 and 100 meV, respectively. For the determination of work function 
and ionization potentials, UPS spectra were recorded in normal 
emission with He I radiation(hv = 21.2 eV) from a He discharge lamp 
and a negative sample bias of 4.0  V. The total energy resolution is 
0.2  eV. No charging problems were observed during the XPS and UPS 
measurements. Obtained binding energies were calibrated by the Fermi 
level energy of a sputter-cleaned Ag sample. Hence, all the binding 
energies are given with respect to the calibrated Fermi level set to 0 eV.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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Surface contamination: 

There were contaminations of various elements such as carbon, calcium, silicon, and 

molybdenum detected by XPS for both (001) and (101) single crystalline surfaces before 

cleaning by repeated cycles of Ar
+
 ion sputtering and annealing in UHV as shown in Figure 

S1. Carbon is a typical contamination, which originates from air. Calcium and silicon would 

come from a remaining polishing suspension for chemical mechanical planarization, which is 

generally employed to obtain smooth surface topography. An origin of molybdenum is not 

clear, but this might be due to our annealing chamber where samples containing molybdenum 

were processed. Although iron is a typical contamination of natural anatase crystals and 

would be situated not only on the surface, but also in bulk, it was not detected by XPS. The 

cleaning procedure removed the contaminations while it slightly introduced argon as shown in 

Figure S1. However, an effect of argon is negligible as LEED images shown in figure S2 

show clear patters, which can be observed for only well-oriented clean surfaces. 

 

Valence band spectra of UPS: 

An original valence band edge largely overlaps with valence band surfaces states in UPS as 

shown in Figure S3 compared to those of XPS as shown in Figure 2, causing a determination 

of VBM in UPS more complicated. Thus, the exploited values from UPS is quantitatively less 
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reliable than that from XPS, but qualitative comparison should be still valid as the binding 

energy of the two main emissions around 5 and 8 eV follow the shift of VBM. 

 

Scheme of surface treatment steps  

The experimental scheme of the different to preparation steps which were applied to obtain 

well defined surface terminations are summarized in Figure S4. Details are given in the 

Experimental Section of the main paper. 
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Figure S1. Survey spectra of as-is contaminated and cleaned surfaces. The cleaned 

surfaces were obtained by repeating the cycle of Ar sputtering and annealing in UHV. 

 

 

 

Figure S2. Unreconstructed ( ) LEED patterns. a,b, an-(001) (a) and an-(101) surface 

(b) for beam energies of 90.5 and 90.0 eV. (red: primitive unit cell and blue:centered unit cell) 
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Figure S3. UP valence band spectra of anatase (001) and (101) in different surface conditions. 

a,b, wide valence band region (a) and its focused area (b) of the band gap region for sputtered (st-

(001) and st-(101)), annealed (an-(001) and an-(101)), stoichiometric (st-(001) and st-(101)), and 

oxidized (ox-(001) and ox-(101)). The spectra in the band gap region are superpositions of 

(modified) valence band states as well as surface state contributions (magenda arrow for (001) 

surface and cyan allow for the (101) surface), DGS (yellow allow), and SGS (green allow). 

 

 

 

Figure S4. A scheme of the preparation procedure of the different TiO2 surface 

terminations: As-is, sputtered, annealed, oxidized, and stoichiometric surfaces. 
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3.2 The Work function of single crystalline anatase and rutile with different surface states 
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Abstract: Polycrystalline anatase thin films, (001)- and (101)-oriented anatase TiO2 single crystals
and (001)- and (110)-oriented rutile TiO2 single crystals with various surface treatments were studied
by photoelectron spectroscopy to obtain their surface potentials. Regardless of orientations and
polymorph, a huge variation of the Fermi level and work function was achieved by varying the
surface condition. The most strongly oxidized surfaces are obtained after oxygen plasma treatment
with a Fermi level ∼2.6 eV above the valence band maximum and ionization potentials of up to 9.5 eV
(work function 7.9 eV). All other treated anatase surfaces exhibit an ionization potential independent
of surface condition of 7.96 ± 0.15 eV. The Fermi level positions and the work functions vary by up to
1 eV. The ionization potential of rutile is ∼0.56 eV lower than that of anatase in good agreement with
recent band alignment studies.

Keywords: TiO2; anatase; rutile; work function; electron spectroscopy; photocatalysis

1. Introduction

Titanium dioxide (TiO2) is widely applied in photocatalysis [1] and as electrode in solar cells [2],
and has been considered to be a promising material owing to its physical and chemical properties.
Among the different polymorphs of TiO2, mostly fundamental properties of rutile have been studied
experimentally and theoretically despite a superior photocatalytic activity of anatase as compared
to rutile, which is associated with its longer charge carrier life time and higher carrier mobility [3].
Oriented rutile substrates, of which the rutile (110) is the most stable and can be easily prepared, have
been thoroughly investigated as model surfaces for fundamental surface phenomena [4]. In contrast,
information about oriented anatase is sparse because of their difficult preparation [5]. Only recently
novel techniques to prepare oriented anatase substrates have been developed [6]. In 2008 Yang et al. [7]
synthesized anatase single crystals with 47% of the minority (001) facet via a hydrothermal route
employing fluoric acid. This successful synthesis has surged further fundamental investigations of
both anatase (101) and (001) facets [8–11]. However, although the electronic structure of anatase
bulk and surfaces including band gaps and surface states are well known due a wide range of
experimental and theoretical studies using complementary techniques, particularly using electron
spectroscopy (see e.g., [11–21]), the surface potentials—Fermi level position, work function and
ionization potential—have not yet been studied systematically.

The work function ϕ of materials is especially relevant for photocatalysis and solar cells as it
governs the band alignments of interfaces such as TiO2/metal contacts forming Schottky barriers,
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TiO2/p-type semiconductor interfaces forming p-n junctions, and TiO2/liquid junctions related
to redox potentials. Despite its importance for TiO2, only few work function data have been
reported [22–24]. The work function is affected by the Fermi energy EF and by the vacuum energy Evac,
which can be manipulated separately by doping, surface space charge layers, or the surface dipole,
respectively [25]. The latter depends on surface polarity and termination [26]. Changes in the surface
dipole directly affect the ionization potential IP, which is the difference between vacuum energy and
valence band maximum EVB and which does not depend on the Fermi energy.

The ionization potential of metal oxide surfaces depends on surface orientation and surface
termination, where the latter can vary with the oxygen activity during preparation [25,27–31]. Due to
a strong electronegativity of oxygen, less oxygen results in a lower negative surface charge and thus
in a lower IP and ϕ. The oxygen activity also affects the Fermi energy in oxides. A lower oxygen
activity, i.e., more reducing conditions, generally results in a higher Fermi energy and thereby in a
lower ϕ = Evac − EF. Detailed data on the interplay between the surface potentials and oxygen activity
for most TiO2 surfaces are still lacking.

Figure 1 displays a ball-and-stick model of bulk-terminated surfaces of rutile (110) and (001), and
anatase (101) and (001) without structural relaxations. At the rutile (110) surface bridging oxygen
atoms missing one bond to Ti can be easily removed by thermal annealing, whereas at the rutile
(001) surface, oxygen vacancies VO are believed to easily form at a twofold-coordinated surface O
atom [4,32]. It was theoretically predicted and experimentally shown that the point defect is located
at the bridging oxygen row on the rutile (110) surface whereas for the anatase (101) surface VO are
favored to be situated in the subsurface rather than on the surface [18,33–35]. At anatase (101) and (001)
surfaces, the VO has a lower formation energy in the subsurface than on the surface while the rutile
(110) surface exhibits an inverse trend. Thus, at anatase (101) and (001) surfaces, VO are energetically
stable in the subsurface or even in the bulk whereas at rutile (110) and (001) surfaces, the VO form most
likely at the bridging oxygen site on the top surface. This difference in oxygen vacancy distribution is
expected to lead to different electronic properties.

Figure 1. Bulk-terminated surfaces of (a) anatase (101), (b) anatase (001), (c) rutile (110) and (d) rutile
(001), illustrated using VESTA.

Many applications of TiO2 such as water splitting, water purification and self-cleaning, undergo an
interaction with water [36–39]. Thus, the investigation of water adsorption on the surface is important.
Water adsorption has therefore been investigated intensively by many groups with different techniques
(see e.g., [4,40–50] and references therein). Studies of water adsorption on TiO2 are usually performed
at liquid nitrogen or lower temperature, where multilayers of molecular water can be adsorbed in
a vacuum system [51]. Many studies have focused on the initial state of adsorption: molecular,
dissociative, or multilayer adsorption. Most calculations have predicted that on rutile (110) surfaces
dissociative adsorption of water is energetically preferred over molecular adsorption [4]. However,
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there is a consensus established by several experiments that water dissociates only at the vacancy sites
of so-called bridging oxygen rows while only molecular adsorption takes place on the stoichiometric
defect-free rutile (110) surface [4,40,41]. For anatase, it was found that water adsorbs dissociatively
on the surface in the presence of subsurface VO, although it has also been reported that water would
adsorb only molecularly on the anatase surfaces [42–46]. Based on these reports, we assume that
the distribution of VO influences the interface of TiO2 and water, which affects photocatalytic redox
reactions. Despite the wealth of studies on this subject, it remains largely unknown how water
adsorption affects the work function of different surfaces.

In this work, (001)- and (101)-oriented and polycrystalline anatase surfaces in different oxidation
conditions were studied. The same treatments were applied to rutile (110)- and (001)-oriented
surfaces. Polycrystalline anatase thin films prepared by spray pyrolysis are also included in this
study. The chemical and electronic surface properties were accessed using X-ray und UV photoelectron
spectroscopy (XPS and UPS). The reported results provide the variation of the surface potentials of
TiO2, i.e., the Fermi level position (EF) with respect to the valence band maximum (EVB) and the
work function ϕ, with surface condition. For anatase, we have also studied the variation of surface
properties after exposure to water vapor at room temperature without breaking vacuum. Furthermore,
we compare anatase and rutile surfaces and discuss differences in their electronic properties. Overall,
the work provides guidance towards manipulating the work function of TiO2 surfaces.

2. Materials and Methods

Natural anatase crystals were employed for both (101) and (001) surfaces (SurfaceNet GmbH,
Rheine, Germany). Polycrystalline anatase substrates were prepared by spray pyrolysis. Epitaxially
polished rutile (110) and (001) substrates were purchased from CrysTec GmbH (Berlin, Germany).
The size of the substrates is 5 × 5 × 1 mm3. A surface roughness less than a lattice constant was
achieved after epi-polishing the single crystal substrates. For anatase, in addition to the ex-situ surfaces
(ex-a(001), ex-a(101), and ex-a-poly) with contamination from air and polishing, unreconstructed (101)
and (001), and polycrystalline surfaces were in situ prepared inside an integrated vacuum system to
expose different well-defined stoichiometries: sputtered (sp-a(001), sp-a(101), and sp-a-poly), annealed
(an-a(001), an-a(101), and an-a-poly), oxidized (ox-a(001), ox-a(101), and ox-a-poly), and stoichiometric
(st-a(001), st-a(101), and st-a-poly). For rutile, annealed (an-r(110) and an-r(001)) and oxidized (ox-r(110)
and ox-r(001)) were prepared.

Sample preparations and measurements were carried out in the Darmstadt integrated system for
materials research (Daisy-Mat) [52] equipped with a multitechnique surface analysis system Physical
Electronics PHI 5700, which is connected to different sample preparation chambers via a sample
transfer system. The sputtered surfaces were prepared by repeated cycles of Ar+ ion sputtering with
an energy of 1 keV for 15 min and annealing under ultrahigh vacuum (UHV) conditions at 873 K
for 30 min until no remaining emissions from contaminations were observed by X-ray photoelectron
spectroscopy (XPS). Although this procedure has been conventionally accepted to prepare clean
surfaces of single crystal TiO2, Ar sputtering not only results in a highly reduced surface and thus
leads to the formation of oxygen vacancies and Ti3+ surface states, but also partially destroys the
crystallinity of the surface and introduces an amorphous phase [4,6,53].

After Ar ion etching, the sputtered surfaces were oxidized in an Oxygen plasma at room
temperature in an atmosphere of 7.5 × 10−5 mbar O2 for 15 min to re-oxidize the surface, followed by
annealing at 873 K in UHV to re-crystallize the surface. Here the O plasma was selected to replenish
the lattice O instead of annealing in O2 atmosphere, which has been frequently used for oxidation,
as annealing in O2 could form additional incomplete reconstructions [54]. Furthermore, annealing
in O2 may lead to iron oxide layer formation since elevated temperatures may trigger the surface
segregation of Fe, which is a typical contamination of natural anatase crystals [6]. In addition, atomic
O in the O plasma is more oxidative than molecular O2 during annealing in O2 atmosphere, which
leads to partially remaining VO [18,55].



Surfaces 2018, 1 76

The surfaces, which are in this work referred to as annealed, (The term annealing might be used
differently in literature) were prepared by an oxygen plasma treatment and a subsequent reduction
by annealing in vacuum at 873 K. Low energy electron diffraction (LEED) patterns recorded for these
surfaces are shown in Figure A1. They show unreconstructed 1 × 1 patterns with low background
intensity, indicating well-ordered surfaces. Finally, the stoichiometric surfaces were prepared by
removing O adatoms by annealing the oxidized (plasma treated) surfaces in UHV at 473 K for
20 min [56,57]. An overview of the preparation procedures for the above described different surfaces
is given in Figure 2. It is noted that the color of rutile substrates, which are less conductive than
anatase, changed from transparent into dark blue after the reduction procedure, making the surfaces
sufficiently conductive to avoid charging during photoemission measurements.

Figure 2. Scheme of the preparation procedure for ex-situ (ex), sputtered (sp), annealed (an), oxidized
(ox), and stoichiometric (st) surfaces of the TiO2 surfaces.

To further understand the electronic structures of different surfaces in a practical situation for
photocatalytic reactions, water was dosed through a diaphragm valve for atomic layer deposition
in a vacuum chamber [58] onto the annealed, oxidized, and stoichiometric surfaces for the anatase
(001) and (101), and polycrystalline anatase. The water exposure at room temperature was completed
using 15 water pulses of 0.5 s duration followed by evacuation for 60 s. The amount of exposed water
molecules in this process depends on the pumping speed and the chamber geometry. We estimate the
exposure to 106–108 Langmuir. The resulting TiO2 substrates were transferred to the XPS chamber and
investigated immediately after this adsorption procedure. XPS analysis revealed a small C 1s emission
after water exposure.

X-ray photoelectron spectra were recorded with monochromatic Al Kα radiation at an emission
angle of 45◦ and a pass energy of 5.85 eV, which gives a total energy resolution of 0.4 eV, as determined
from the Gaussian broadening of the Fermi edge of a sputter-cleaned Ag sample. Binding energies
of core levels and the valence band maximum EVB can be determined with an accuracy of 50 meV,
and 100 meV, respectively. For the determination of work function ϕ and ionization potentials IP,
ultraviolet photoelectron spectra were recorded in normal emission with He I radiation (hν = 21.2 eV)
from a He discharge lamp and a negative sample bias of 4.0 V. The total energy resolution is 0.2 eV.
No charging problems were observed during the XPS and UPS measurements. Obtained binding
energies for XPS and UPS were calibrated by the Fermi level energy of a sputter-cleaned Ag sample.
Hence, all binding energies are given with respect to the calibrated Fermi level at 0 eV. More details of
the experimental setup and approach in performing the experiments may be found elsewhere [52,59].

3. Results and Discussion

The Ti 2p3/2 and O 1s core level spectra of the differently treated surfaces are shown in Figure 3.
The Ti 2p3/2 emission of the sputtered anatase (101) surface shows a strong low binding energy
emission associated with Ti3+ and Ti2+ shifted relative to the main emission line of Ti4+ by ∼1.7 and
∼3.5 eV, respectively [45,60,61]. All other samples, including the sputtered anatase (001), exhibit sharp
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and symmetric lines consisting of a single Ti4+ oxidation state. Evidently, the anatase (101) surface
is much easier reduced than the (001) surface. The low binding energy Ti 2p3/2 emissions related to
surface reduction of anatase (101) are neither observed after re-oxidation by O plasma treatment nor
after re-crystallization by annealing in vacuum.

Figure 3. X-ray photoelectron spectra of the Ti 2p3/2 (top) and the O 1s (bottom) core level emissions
of (left) anatase (001), (middle) anatase (101), and (right) polycrystalline anatase substrates with
sputtered, annealed, stoichiometric, and oxidized surfaces. Solid and dash lines represent spectra
before and after water exposure, respectively.

Exposing an-a(001) and an-a(101) to an O plasma results in a shoulder in the O 1s emission at 3 eV
higher binding energy compared to the O 1s emission related to TiO2 (see bottom row of Figure 3).
This shoulder is likely attributed to peroxo (O2−

2 ) surface species, like for example in bridging oxygen
dimers [62]. The stoichiometric anatase (001) and (101) surfaces show no shoulder in the O 1s emission
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after annealing in vacuum at 473 K. The surface peroxo species observed after oxygen plasma treatment
at ox-a(001) and ox-a(101) is therefore effectively removed by annealing.

X-ray and ultraviolet valence band spectra are shown in Figure 4. UP spectra are usually more
sensitive to surface defects than XP spectra, which is mostly due to the higher surface sensitivity of
UPS and the higher intensities. It is accepted that the so-called band gap surface states would form due
to occupied Ti 3d states (Ti3+) near the O vacancy sites on the surface, but also due to Ti3+ interstitials
in the subsurface region [4,11,18,63,64]. It is clear from Figure 4 that all sputtered TiO2 surfaces show
the well-known Ti 3d1 emission lines in the band gap region.

Figure 4. X-ray (top) and ultraviolet (bottom) valence band spectra of sputtered, annealed,
stoichiometric, and oxidized surfaces for (left) anatase (001), (middle) anatase (101), and (right)
polycrystalline anatase substrates before and after water exposure.

The emission of the gap states is different for the (001) and (101) surface orientation of anatase.
The state energically closer to the Fermi energy at a binding energy of ∼0.5 eV is more pronounced for
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the (101) surface. As this emission is clearly observed only for the sputtered (101) surface, this shallow
gap state is likely related to the observation of the reduced Ti species.

The intensity of the band gap states is generally reduced with surface oxidation for both
orientations and all treatments. However, the deep gap state, which is closer to the onset of the
valence band maximum at 1.5–2.0 eV binding energy, is still observed in the XP and the UP valence
spectra for the (001) surface even after O plasma treatment. In contrast, the deep gap state is completely
attenuated for the oxidized and the stoichiometric (101) surface.

The valence band maximum binding energies EF − EVB are determined by a linear extrapolation
of the low binding energy valence band emission edge. Only XPS data are used here as they are less
affected by the gap state emissions. The extracted values are summarized in Table 1 together with the
core level binding energies, which are determined from the spectra shown in Figure 3.

Table 1. Binding energies (Ti 2p and O 1s), Fermi level position EF − EVB, work function ϕ, and
ionization potential IP for anatase (001), anatase (101), and polycrystalline anatase, as well as for
rutile (001) and rutile (110) with different surface stoichiometries: sputtered, annealed, stoichiometric,
oxidized and ex-situ prepared surfaces. Number in brackets are obtained after in situ exposure to water
vapor at room temperature.

Sputtered Annealed Stoichiometric Oxidized Ex-Situ

Ti 2p3/2 (eV)
a-(001) 459.08 459.07 (459.36) 458.70 (459.20) 458.64 (459.06) 459.27
a-(101) 459.21 459.17 (459.31) 458.73 (458.93) 458.69 (458.91) 459.28
a-poly 459.25 459.28 (459.44) 459.06 (459.37) 458.95 (459.09)
r-(001) 459.38 458.78
r-(110) 459.35 458.95

O 1s (eV)
a-(001) 530.35 530.33 (530.62) 529.95 (530.47) 529.93 (530.32) 530.60
a-(101) 530.81 530.52 (530.68) 530.07 (530.27) 529.93 (530.19) 530.62
a-poly 530.57 530.56 (530.71) 530.35 (530.64) 530.20 (530.44)
r-(001) 530.69 530.04
r-(110) 530.62 530.21

EF − EVB (eV)
a-(001) 3.10 3.06 (3.39) 2.64 (3.06) 2.53 (2.87) 3.44
a-(101) 3.55 3.23 (3.40) 2.84 (3.08) 2.69 (2.91) 3.35
a-poly 3.23 3.09 (3.37) 3.12 (3.31) 2.94 (3.16)
r-(001) 3.07 2.57
r-(110) 3.12 2.68

ϕ in (eV)
a-(001) 4.70 4.72 (4.36) 5.35 (4.34) 6.44 (4.97) 3.61
a-(101) 4.62 4.72 (4.36) 5.23 (4.40) 6.76 (5.03) 3.65
a-poly 4.51 4.23 (4.22) 5.16 (4.38) 5.62 (4.94)
r-(001) 4.29 6.08
r-(110) 4.31 5.96

IP (eV)
a-(001) 7.80 7.78 (7.75) 7.99 (7.40) 8.97 (7.84) 7.05
a-(101) 8.17 7.95 (7.76) 8.07 (7.48) 9.45 (7.94) 7.00
a-poly 7.74 7.32 (7.59) 8.28 (7.69) 8.56 (8.10)
r-(001) 7.36 8.65
r-(110) 7.43 8.64

Independent of surface orientations, the valence band maximum binding energy decreases in the
order sputtered, annealed, stoichiometric, and oxidized treatment. The valence band maximum and
the core levels show comparable binding energy shifts. In particular, the binding energy difference
between the O 1s and the Ti 2p core level is 71.29 ± 0.04 eV, with the only exception of the sputtered
anatase surface, where the binding energy of the Ti 2p core level is more uncertain due to the strong
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reduction of the surface. The binding energy differences between the core levels and valence band
maxima also remain within ±0.15 eV, which can also be considered to be constant considering the
changes of the valence bands in dependence on treatment. The binding energy shifts can therefore be
attributed to different Fermi energies. These are likely caused by different concentrations of oxygen
vacancies at the surface or in the bulk. The former would cause binding energy shifts due to surface
electron accumulation, the latter due to enhanced doping.

The overall variation of the Fermi energy is 0.46 eV for the (001) and 0.71 eV for the (101) surface
orientation, respectively. It is noteworthy that EF − EVB of the (101) surface is always higher than
that of the (001) surface. This difference of EF − EVB results in a variation of surface potential with
orientation, which will drive photogenerated electrons and holes towards the (101) and (001) surfaces,
respectively. This charge separation mechanism agrees with literature reports [65,66].

The secondary electron edges of the UP spectra of anatase are shown in Figure 5. Their energetic
position is determined at the middle of the steep rise of the edge. (Most authors use the intersection of
the secondary electron edge with the baseline to determine the work function. We take the middle of
the steep rise instead as we assume that the onset is broadened by the resolution of the spectrometer
system. We use this procedure when the width of the steep part of the edge is ≤0.2 eV, which is the
case for all spectra in this manuscript. In this case, the difference between the two approaches is less
than 0.1 eV.) The extracted work functions ϕ and ionization potentials IP are summarized in Table 1
and the work function is plotted as a function of the Fermi energy in Figure 6. More extended data
including polycrystalline and water exposed samples are provided in the appendix in Figure A2 and
Table A1. The work functions are decreasing in the order oxidized > stoichiometric > annealed >
sputtered for both single crystal anatase surface orientations. It therefore decreases monotonically with
the increase of the Fermi level to valence band maximum distance, EF − EVB. This is to be expected as
both depend on the oxidation state of the surface and subsurface. Similar dependencies have been
reported for ZnO, In2O3 and SnO2 [25].

Figure 5. UP spectra of SEE of sputtered, annealed, stoichiometric, and oxidized surfaces for anatase
(001), anatase (101), and polycrystalline anatase substrates before and after water exposure.

The overall variation of the work function is 1.74, 2.14 and 1.39 eV for anatase (001), anatase
(101) and polycrystalline anatase, respectively. The change of ϕ between stoichiometric, annealed, and
sputtered single crystal surfaces is caused mainly by a change of EF − EVB as the ionization potential
is almost constant for these surface conditions with IP = 7.96 ± 0.15 eV. Such a behavior has also been
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reported by Henrich et al. for rutile (110) surfaces [22]. The ionization potential of the polycrystalline
surfaces varies more with preparation conditions than at the single crystalline surfaces. This is likely
attributed to a less pure surface condition, as the surfaces typically show residual carbon contamination.
Considerably higher ionization potentials of up to 9.45 eV are observed for the oxygen plasma treated
surfaces. This matches with the assumed peroxo or bridging oxygen species on the surface, which are
induced by radical oxygen atoms of the oxygen plasma. Electronegative oxygen accumulates with a
negative charge, leading to high work functions and ionization potentials of oxidized surfaces due to
an increase of the surface dipole [31,67].

Figure 6. Work function versus Fermi level to valence band maximum distance, EF − EVB, of sputtered,
annealed, stoichiometric, and oxidized surfaces for anatase (001), anatase (101), and polycrystalline
anatase substrates before and after water exposure. Values for annealed and oxidized rutile (001) and
(110) surfaces are added for comparison.

Water vapor was exposed to the surfaces at room temperature and the resulting electronic
properties were investigated by XPS and UPS. Obtained core level binding energies and surface
potentials of the surfaces exposed to water are included in brackets in Table 1. The chemical
modification of the surface resulting from water exposure is not clear. During low temperature
adsorption, a mixture of molecular and dissociative adsorption is reported [4,40–46]. The adsorption of
water molecules is not expected at room temperature in ultra-high vacuum but formation of hydroxides
is likely. However, we do not have a clear confirmation for this. The O 1s peaks do not show the high
binding energy shoulder typical for hydroxides. Nevertheless, the O 1s spectra do exclude a low OH
coverage. Further studies, which are beyond the scope of the present work, are required to resolve the
interaction of water vapor with TiO2 surfaces.

Irrespective of the uncertainty of the chemical state of the surface, water exposure reproducibly
induces shifts of the Ti 2p and O 1s core levels and the valence band edge towards higher binding
energies. The shifts can therefore be attributed to a downward band bending at the TiO2 surface,
resulting in an accumulation of electrons at the surface. This observation emphasizes the importance of
adsorbates for the frequently reported electron accumulation layers at oxide surfaces [68–70]. The final
Fermi level positions, which are extracted from the valence band maximum and the core level binding
energies do not depend on surface orientation and are ∼3.4, ∼3.1 and ∼2.9 eV for the annealed,
stoichiometric and oxidized (001) and (101) surfaces, respectively. The original difference in EF − EVB
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between the anatase (101) and (001), which was present for all surface conditions, thus disappeared
after water exposure.

The work function after water exposure is ∼4.4 eV for the annealed and stoichiometric surfaces,
while it is significantly higher (∼5.0 eV) for the oxidized surface. Apparently, the adsorbed peroxo or
bridging oxygen species, which cause the increased ionization potential, are not completely removed
by water exposure. These species are therefore strongly enough bound to the surface to withstand the
reduction of the sample by water exposure. The latter is indicated by the rise of the Fermi energy.

XP spectra of the valence band region, the Ti 2p3/2, and the O 1s core levels of annealed and
oxidized rutile (001) and (110) surfaces are shown in Figure 7. Corresponding core level binding
energies and surface potentials are included in Table 1. Obtained work functions and ionization
potentials are plotted together with the anatase data in Figure 6. A large difference of EF − EVB and
ϕ between the two treatments but no significant dependence on surface orientation are observed.
The ionization potential of the annealed surfaces amounts to 7.40 ± 0.04 eV, which is 0.56 eV lower
than that of the corresponding anatase surfaces.

Figure 7. XP spectra of Ti 2p, O 1s, and valence band emission lines, and UP spectra of secondary
electron edge and valence band region for rutile (001) and (110) substrates with reduced and oxidized
surfaces.

The ionization potentials of the anatase and rutile surfaces (except for the ones treated in the O
plasma), which are 7.96 and 7.40 eV, respectively, are comparable to those of ZnO surfaces exposed
to oxidizing conditions (∼7.6 eV) [25,29]. Similar ionization potentials are also found for surfaces
of Sn-doped In2O3 (∼7.7 eV) and reduced SnO2 surfaces [25,29,71,72]. The latter are characterized
by a Sn2+ oxidation state [28,73–75]. Except for the sputtered anatase (101) surfaces, which exhibits
substantial reduction of Ti, most of the Ti adopts a +IV oxidation state. One might therefore expect
that the ionization potential is comparable to that of the stoichiometric SnO2 surface, which amounts
to ∼8.9 eV [25,29,71,72]. The deviation is quite substantial, even for rutile, which has the same crystal
structure as SnO2. The ionization potential of TiO2 is therefore substantially lower than that of SnO2.
TiO2 surfaces do also not show the variation of cation oxidation state and the associate change of IP,
which is characteristic for SnO2. The origin of these remarkable differences remains to be resolved.
Due to the similar ionization potentials and work functions of TiO2, ZnO and In2O3, the superior
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photocatalytic and solar cell properties of TiO2 are probably not caused by an advantageous energy
band alignment.

The difference in ionization potential between anatase and rutile amounts to ∼0.5 eV. Aligning
the vacuum energies of the two polytypes does therefore result in a valence band maximum of
anatase being ∼0.5 eV lower in energy than that of rutile. This is the same direction and of the same
magnitude as the energy band alignment established recently by different experimental and theoretical
approaches [19,76,77], supporting the conclusion that the energy bands of rutile are higher than those
of anatase.

4. Summary and Conclusions

Chemical and electronic properties of anatase (001), anatase (101), polycrystalline anatase, rutile
(110) and rutile (001) with different surface treatments were studied using XPS and UPS. The Fermi
energy and work function depend drastically on surface conditions, which are characterized by
different oxygen vacancy concentrations and surface adsorbates. We have shown how the surface
Fermi energy, work function and ionization potentials are affected and can therefore be adjusted by
different surface treatments.

For anatase, the Fermi level can be manipulated between EF − EVB = 2.53–3.10, 2.69–3.55, and
2.94–3.23 eV for the (001), (101) and polycrystalline surfaces, respectively. Along with the different
Fermi energies goes a variation of work function between ϕ = 4.70–6.44, 4.62–6.76, and 4.51–5.62 eV for
the (001), (101) and polycrystalline surfaces, respectively. Apart from the plasma treated samples, which
have exceptionally high work functions likely due to the presence of peroxo species, the ionization
potential is rather insensitive to the surface treatments and exhibits a value of IP = 7.96 ± 0.15 eV. This
is approximately 0.5 eV higher than of rutile, which agrees with the band alignment obtained from
other techniques. For the anatase samples, the Fermi energy at the (101) surface is furthermore higher
than at the (001) surface for all surface treatments.

Exposure of the samples to water vapor at room temperature reproducibly causes a downward
band bending on all surfaces (rise of the Fermi energy). For the anatase surfaces, the dependence
of Fermi energy on surface orientation is removed by water exposure. Water exposure also affects
the ionization potential. Together, both effects result in a lowering of the work function down to
4.34 ± 0.06 eV (IP = 7.61 ± 0.15 eV) for the annealed and the stoichimetric surfaces. The ionization
potential of the plasma treated surfaces remains rather high (7.96± 0.13 eV), resulting in work functions
of 4.98 ± 0.05 eV after water exposure.
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Abbreviations

The following abbreviations are used in this manuscript:

XPS X-ray photoelectron spectroscopy
UPS ultraviolet photoelectron spectroscopy
UHV ultra-high vacuum
LEED low-energy electron diffraction

Appendix A. LEED Pattern for Annealed Anatase Surfaces

Figure A1. LEED pattern of the annealed anatase (001) (a) and (101) (b) surfaces. The unit cells are
indicated.

Appendix B. Further Work Function Data

Figure A2. Extended set of work function and Fermi energy data. The description of the sample
numbers are given in Table A1.
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Table A1. Sample descriptions and surface potentials for Figure A2. All values are in eV with a typical
uncertainty of ±0.1 eV.

No. Sample Description EF ϕ IP

1 rutile (110) (i) same as #2; (ii) O2 plasma, RT, 15 min 2.68 5.96 8.64
2 rutile (110) (i) 500 ◦C, 0.5 Pa O2, 2h; (ii) 600 ◦C,

10−6 Pa, 1 h
3.24 4.43 7.67

3 rutile (110) same as #2 3.12 4.31 7.43
4 rutile (001) same as #1 2.57 6.08 8.65
5 rutile (001) same as #2 3.26 4.31 7.57
6 rutile (001) same as #2 3.07 4.29 7.36
7 anatase (101) same as #2 2.93 4.26 7.19
8 anatase (101) same as #2 + air exposure 3.35 3.65 7.00
9 anatase (101) O2 plasma, RT, 15 min 2.83 5.55 8.38
10 anatase (101) same as #9 + air exposure 2.90 3.90 6.80
11 anatase (101) (i) same as #12; (ii) O2 plasma, RT,

15 min; (iii) annealing in 10−6 Pa, 200
◦C, 20 min

3.25 5.05 8.30

12 anatase (101) cycles of sputtering + annealing 600 ◦C,
10−6 Pa, 1 h

3.55 4.62 8.17

13 anatase (101) (i) same as #12; (ii) O2 plasma, RT,
15 min

2.80 5.91 8.71

14 anatase (101) stoichiometric as in manuscript 2.84 5.23 8.07
15 anatase (101) (i) same as #14; (ii) H2O adsorption 3.08 4.40 7.48
16 anatase (101) reduced as in manuscript 3.23 4.72 7.95
17 anatase (101) (i) same #16; (ii) H2O adsorption 3.4 4.36 7.76
18 anatase (101) oxidized as in manuscript 2.69 6.76 9.45
19 anatase (101) (i) same as #18; (ii) H2O adsorption 2.91 5.03 7.94
20 anatase (001) same as #7 3.05 4.36 7.41
21 anatase (001) same as #8 3.44 3.61 7.05
22 anatase (001) same as #9 2.83 5.55 8.38
23 anatase (001) same as #10 2.90 3.90 6.80
24 anatase (001) same as #11 3.25 5.05 8.30
25 anatase (001) same as #12 3.55 4.62 8.17
26 anatase (001) same as #13 2.80 5.91 8.71
27 anatase (001) same as #14 2.84 5.23 8.07
28 anatase (001) same as #15 3.08 4.4 7.48
29 anatase (001) same as #16 3.23 4.72 7.95
30 anatase (001) same as #17 3.40 4.36 7.76
31 anatase (001) same as #18 2.69 6.76 9.45
32 anatase (001) same as #19 2.91 5.03 7.94
33 powder sol-gel, as prepared 3.18 3.94 7.12
34 powder hydrothermal, as prepared 3.44 3.87 7.31
35 nanocrystals (101) facetted 3.41 4.32 7.73
36 sprayed film 0.5 Pa O2, 400 ◦C, 12 h 3.21 5.25 8.46
37 sprayed film 0.5 Pa Ar, 400 ◦C, 12 h 3.24 5.14 8.38

38–42 sprayed film same as #36 2.98–3.45 4.85–5.25 7.88–8.62
43–50 sprayed film as received 3.47–3.60 3.75–3.96 7.29–7.46

51 thin film (i) in situ magnetron sputtering at RT;
(ii) 0.5 Pa O2, 600 ◦C, 1 h

2.98 5.53 8.51

52 thin film (i) in situ magnetron sputtering at RT;
(ii) 0.5 Pa O2, 400 ◦C, 1 h

3.09 5.37 8.46

53 sprayed film same as #11 3.24 4.82 8.06
54 sprayed film same as #12 3.23 4.51 7.74
55 sprayed film same as #13 2.85 5.70 8.55
56 sprayed film stoichiometric as in manuscript 3.12 5.16 8.28
57 sprayed film (i) same as #58; (ii) H2O adsorption 3.31 4.23 7.32
58 sprayed film reduced as in manuscript 3.09 4.23 7.32
59 sprayed film (i) same as #60; (ii) H2O adsorption 3.37 4.22 7.59
60 sprayed film stoichiometric as in manuscript 3.12 5.16 8.28
61 sprayed film (i) same as #62; (ii) H2O adsorption 3.16 4.94 8.10
62 sprayed film oxidized as in manuscript 2.94 5.62 8.56
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Andreas Klein and Wolfram Jaegermann participated in the discussions of the results and revised the manuscript. 
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Abstract: 

TiO2 is a promising material to address the energy and environmental issues in terms of 

photoelectrochemical reactions. Electronic properties of TiO2 surfaces which play a crucial 

role in such reactions are drastically affected by surface stoichiometries. The surface states of 

TiO2 are also of importance as it might govern energy band alignments of n-type TiO2 and p-

type NiO as a highly reactive co-catalyst among non-precious metals, which may form a p-n 

junction and help in separating photo-generated charge carriers. In this work, well-defined 

reduced and oxidized surfaces of oriented rutile (001) and (110) are prepared and their 

electronic properties are compared. A variation of the Fermi level is 2.6 to 3.3 eV depending 

upon the stoichiometry. Furthermore, energy band alignments of p-NiO/n- TiO2 with above 

surfaces are experimentally established by in-situ photoelectron spectroscopy during stepwise 

deposition of NiO onto the TiO2. The Fermi level of NiO is pinned a value of EF EVB 

between 0.5 and 0.9 eV. A steep bending on the (001) surface occurs at the thinner layer of 
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NiO than that on the (110) surface and completes already within a thin layer of a few nm, 

helping in separating the charge carriers in the nanoparticle photocatalysts. 

 

1. Introduction 

Among the metal oxides semiconductors, titanium dioxide (TiO2) is one of the most often 

studied material, which has been applied in photocatalysis[1], solar energy conversion[2], and 

gas sensing[3]. However, the given variations in the electronic properties of different surface 

orientation have not been systematically investigated yet despite the expected decisive 

influence on device performance. Epitaxially polished TiO2 substrates of different phases and 

orientations are commercially available. Especially the most stable rutile (110) surface has 

often been used to study fundamental phenomena. Hence, this well-defined surface of rutile 

TiO2 is well known and has been often employed as the model system for the investigation of 

fundamental physical and chemical properties in the surface science of metal oxides[4, 5]. 

 

Oxygen vacancies have been considered as a key factor in the surface chemistry of TiO2 as 

vacancy sites form reactive centers that dissociate adsorbed molecules on the generally inert 

oxides surface[6, 7]. Despite its high importance, detailed information of the interplay between 

the electronic properties and the oxygen vacancies at the surface of TiO2 is still lacking at this 

point[8, 9]. Of the structural phases of TiO2, anatase and rutile have attracted most attentions in 

view of applications. Figure 1 displays a ball-and-stick model of the rutile (110) and (001) 

bulk-terminated surface without structural relaxations[10]. The (110) and (001) surfaces have 

the lowest and highest surface energy, respectively[11]. At rutile (110) the so-called bridging 

oxygen atoms miss one bond to Ti atom in the missing layer and thus can be easily removed 

by thermal annealing, whereas at rutile (001), oxygen vacancies are believed to be easily 

formed at a twofold-coordinated surface O atom similar to the (110) surface though this is still 

subject of debate[4, 12]. The energetic position of surface or subsurface defect states can be 
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deduced from experimental and theoretical studies[9, 12, 13]. Also, there are variations in 

ionization potential and work function. The surface and subsurface distribution of oxygen 

vacancies in anatase is different from that in rutile. At anatase (101) and (001), oxygen 

vacancies have lower formation energy in the subsurface than at the surface and thus 

energetically prefer to reside in the subsurface and bulk, whereas at rutile (110), oxygen 

vacancies form most likely at the bridging oxygen site on the surface[14]. Therefore, at anatase 

(101) and (001) surfaces, which are the two dominant surface orientations, a lower vacancy 

concentration has been found and they are more difficult to be reduced than the rutile (110)[15]. 

Hence, one could assume that oxygen vacancies in rutile would have more crucial impact on 

the electronic surface and interface properties than that in anatase. The surface electronic 

properties of TiO2 anatase has been recently studied in our group[16]. Despite the importance 

of the surfaces of rutile and anatase, a clear correlation between the electronic properties and 

oxygen vacancies on the different surfaces of rutile and anatase cannot be given yet. 

 

One of the dominant application of TiO2 is the use as a photocatalyst due to its relatively high 

photocatalytic activity, low cost, nontoxicity, and chemical and physical stability against 

photo-corrosion and thus it has been intensively investigated[1, 4]. The photocatalytic activity 

is however still limited by the recombination of photogenerated electron and hole pairs 

probably on surface defects[17]. Ohno et al.[18] investigated the selective deposition of Pt and 

PbO2 on specific facets of rutile and anatase particles. These studies indicate that the different 

crystal facets of TiO2 possess different electronic properties and help to separate 

photoinduced electrons and holes[18]. This effect seems to be stronger for rutile than for 

anatase. Heterostructures of TiO2 to metals or semiconductors have been developed for many 

oxide semiconductors in order to separate the charge carriers efficiently at the interface, 

resulting in more effective photocatalysis[19, 20]. Recently many efforts have been extended to 

elucidate the effect of co-catalysts selectively deposited onto the surfaces of semiconductor 
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photocatalysts forming Schottky or p-n junction at the interface, which may help in separating 

the photoexcited charge carriers[20, 21, 22]. Also here different facets are considered to influence 

the contact properties[22]. However, little information on the role of specific orientations in the 

contact formation of heterostructures is available yet. The work function and related Fermi 

level position are a crucial property when two materials form a contact since it governs the 

band alignment at the interface. For metal oxides, the value of the work function can be 

controlled effectively by determining surface density of states and the related surface 

potentials of a specific surface orientation[23]. With contact formation the relative influence of 

the surface dipole or local space charge layers will determine charge carrier flow. Among 

these factors, the oxygen stoichiometry plays a crucial role. Hence, the conditions of the metal 

oxide surface should be taken into consideration in contact formation. However, both 

experimental and theoretical studies on the interplay between the surface condition and 

resulting band alignments at the interface of metal oxides are still sparse despite some recent 

results from our group[20, 24]. 

  

In this work, as a first step we have investigated reduced and oxidized surfaces of rutile (110) 

and (001) substrates by X-ray photoelectron spectroscopy (XPS) and Ultraviolet 

photoelectron spectroscopy (UPS) measurements. The electronic properties of 

heterostructures consisting of p-type NiO and n-type rutile (110) and (001) interfaces, where a 

p-n junction may form and contribute to separating the photo-excited charge carriers 

vectorially, are investigated in order to determine the energy band alignment of the NiO/rutile 

junction and elucidate the effect of the surface condition. Interface experiments [25, 26] are 

carried out by XPS and UPS measurements during in-situ stepwise NiO film deposition using 

DC sputtering on reduced and oxidized rutile substrates. Thus, four band alignments of 

NiO/reduced rutile (110), NiO/reduced rutile (001), NiO/oxidized rutile (110), and 

NiO/oxidized rutile (001) are experimentally established. 
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2. Result and discussion 

2.1. Reduced and oxidized rutile substrates 

For reduced and oxidized surfaces of the rutile (110) and (001) substrates, XPS spectra of the 

Ti2p3/2 and O1s core level emission lines and valence band region, and UPS spectra of a 

secondary electron edge and the valence band region are shown in Figure 2 and 3, 

respectively. The work function  and ionization potential IP of the rutile substrates were 

determined from the binding energies of the secondary electron edge ESE according to 

 ESE and valence band maximum EVBM according to IP  EVac  EVBM, respectively. 

Table 1 summarizes the obtained values of binding energies of Ti2p3/2 and O1s, valence band 

maximum, work function, and ionization potential.  

 

The values of the EVBM onsets are determined by applying a linear extrapolation for the edge 

of the valence band emission obtained by XPS. The valence band spectra of XPS show that 

the Fermi level of 3.12 eV of the reduced rutile (110) is decreased to 2.68 eV with surface 

oxidation. A similar shift was observed for the (001) surface. The lower Fermi level position 

of the oxidized rutile can be attributed to the removal of intrinsic oxygen vacancies on the 

surface after the annealing step. Generally, oxygen vacancies give rise to so called band gap 

states (BGS), which forms at a binding energy of around 1 eV due to occupied Ti 3d states on 

Ti3+ sites near the surface vacancy sites, but also Ti3+ interstitial states in the subsurface 

region[15, 16, 27, 28]. For the reduced rutile of both orientations, the valence band spectra of UPS 

show a shoulder peak corresponding to the BGS in the band gap region even though no 

evident emission from the Ti3+ related BGS are found in the valence band spectra of XPS. 

More pronounced emissions from oxygen vacancies located within the bandgap of TiO2 is 

clearly evident only from the very sensitive resonant photoelectron spectroscopy[15, 16]. 
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The secondary electron cut off exhibits steep slopes in all UPS spectra shown in Figure 3. 

Hence, its energetic position was determined accurately. It is noteworthy that there are two 

intense peaks at 16.8 and 15.1 eV near the secondary electron cutoff in UPS spectra and the 

one at the higher binding energy disappears after oxidation. The oxidized rutile exhibits a 

drastically higher work function of 6.0-6.1 eV compared to 4.3-4.4 eV of the reduced surfaces. 

The huge shift of work function is attributed to clearly different surface terminations. 

Electronegative oxygen accumulates with a negative charge on the O plasma treated surface, 

resulting in the low and high value of work function of reduced and oxidized surfaces, 

respectively[29]. Note that previously reported highest values of the work function determined 

by UPS and two-photon photoemission spectroscopy are between 5.3-5.5 eV[9, 30] and 5.5-5.8 

eV[7], respectively. This indicates a high density of adsorbed oxygen ions, which is expected 

to be peroxo species, on the oxidized surface after oxygen plasma treatment. Peroxo species 

formed at the surface after oxygen plasm treatment are also expected to explain the additional 

O1s emission line at binding energy of 533.1 eV. The Ti atom on the surface is prone to form 

peroxo complexes with excited oxygen atoms from the plasma[31]. Characteristics of such 

peroxo species on rutile are not well understood. Pesoxo species on anatase were found to 

transform to a so-called bridging dimer via reaction with surface or subsurface oxygen 

vacancies[32]. We tend to exclude H2O or OH adsorbates because of our in-situ UHV approach 

even though it was found based on STM works that residual moisture in UHV chamber can 

adsorb on the surface[33], which however could not increase the work function. The work 

function of the reduced rutile (001) is lower than that of reduced rutile (110) by 120 meV. 

This might be due to more oxygen vacancies at the (001) than at the (110) surface. It has been 

expected that oxygen vacancies form more likely on the (001) surface rather than the (110) 

surface[12]. Band diagrams of different TiO2 substrates obtained by above XPS and UPS are 

shown in figure 4. 
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The Ti2p and O1s core levels of reduced rutile, which show a binding energy at 459.4 and 

530.7 eV, respectively, also shift in parallel after oxidation towards lower binding energy by 

0.4-0.6 eV corresponding to Fermi level shifts for the both (110) and (001) surfaces (Figure 2). 

It is widely accepted that a shoulder peak related to Ti3+ at the lower binding energy of the 

main peak of the Ti4+ emission shifted by around 1.7 eV appears with the oxygen 

deficiencies[15, 28]. However, in our case the Ti2p3/2 line show sharp and symmetric shapes 

consisting of dominant Ti4+ oxidation state even after reduction. No clear emission from the 

shoulder peaks is observed, indicating rather low Ti3+ concentrations. 

 

2.2. NiO/rutile TiO2 heterostructures 

To get an improved understanding of the interface properties of NiO/rutile heterojunction, in-

situ interface experiments were carried out by XPS and UPS measurements after each 

deposition steps of NiO with increasing thickness onto the reduced and oxidized rutile (110) 

and (001) substrates. Figure 5 presents the core level photoelectron spectra recorded during 

the stepwise deposition for the oxidized rutile (110) (spectra for other substrates are shown in 

figure S1 in supplementary information). The emission of Ti2p shows the typical doublet 

peak and but only the Ti2p3/2 line is used to follow the peak shift during the deposition. The 

identification and interpretation of the NiO spectra are complicated due to complex main line 

splitting caused by multiplet contributions and satellite structures at higher binding energies. 

Binding energies of 852.6, 854.6, and 856.1 eV are assigned to Ni2p3/2 spectra for Ni, Ni2+, 

and Ni3+, respectively[34]. The spectral feature within the main satellite at binding energy of 

around 861 eV indicates that mostly NiO is deposited already from the very beginning of the 

deposition sequence. The shoulder appearing at 1.5 eV higher binding energy compared to the 

main emission is related to a satellite emission of the Ni2+ rather than Ni3+ species. This 

satellite is known as a nonlocal screening satellite and appears by a screening process due to 

oxygen atoms belonging to the octahedral NiO6 coordination clusters[35]. However, at a low 



  

87 

 

coverage of NiO, a broad emission is evident and can be related to the nonlocal satellite 

emissions associated with imperfect octahedra due to surface effects[36]. For thicker layers, the 

typical NiO emission signature is obtained. The contribution of both the nonlocal and surface 

effect results in difficulties to determine the exact binding energy peak position. Therefore, 

the main satellite peak of Ni2p3/2 at about 7 eV higher binding energy from the main line of 

Ni2p3/2, which is characteristic for Ni2+, is adopted instead of the main peak for following the 

peak shift in the course of NiO deposition. 

 

The Ti2p3/2 peak in Figure 5 is rather sharp and symmetric indicating a mostly stoichiometric 

surface with dominant Ti4+ oxidation state. However, there is a clear tendency of an increase 

of the asymmetry of the Ti2p line to lower binding energy for all heterointerfaces, which may 

indicate a slight increase of Ti3+ states during NiO deposition. A reduction of TiO2 substrates 

is often accompanied by oxidation of the overlayer metals or metal oxides when the overlayer 

is deposited onto the TiO2 substrates[4]. However, the heat of formation of the most stable Ni 

oxides (NiO) indicate that such a substrate reduction is not thermodynamically preferable as 

the heat of NiO formation of -250 kJ/mol is more positive than the change in the standard free 

energy of -364 or -483 kJ/mol at room temperature for the formation of lower oxidation states 

as Ti3+ or Ti2+, respectively[37]. In the O1s region, there are two shoulder peaks observed. The 

first shoulder at a higher binding energy than the main peak of 3.0 eV is assigned to peroxo 

species on the top of the rutile substrates, which disappears immediately after the first NiO 

deposition. The second one at a higher binding energy than the main peak by 2.3 eV might be 

attributed to the initial formation of the O poor surface species, which should show a higher 

binding energy. 

 

For all the four cases of NiO and different rutile heterostructures, the spectral changes of the 

TiO2 substrates and growing NiO films are very similar to each other (see figure S1 in 
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supplementary information). The evolution of the Fermi level (EF EVBM) of NiO and rutile 

substrates obtained by following the core level of Ni2p satellite and Ti2p3/2, respectively, is 

shown in Figure 6. The values of EF EVBM of uncovered rutile substrates and the NiO top 

layer correspond to the values of EVB as determined from the valence band spectra. The Fermi 

level of both NiO and rutile shifts to lower binding energy in parallel. This indicates that band 

bending occurs only in the rutile substrates and the emission line of Ni2p just follows the 

band bending in rutile. For the reduced samples, the Fermi level of TiO2 shifts in two steps for 

both orientations. A first and immediate Fermi level shift of about 0.6 eV occurs after the first 

deposition step. We assign this to the oxidation of the rutile substrates, which is caused by the 

sputter conditions. This shift corresponds to the Fermi level difference EF EVBM of reduced 

and oxidized rutile substrates. A second Fermi level shift occurs due to a contact formation 

between NiO and rutile forming the p-n junction leading to band bending in contact. For the 

oxidized samples, both orientations do not show the initial Fermi level shifts. Only the Fermi 

level shifts, which are induced by the contact formation between NiO and rutile, were 

observed. As is clear from Figure 6, the band bending saturates at a thinner NiO thickness for 

the rutile (001) compared to the rutile (110) for both reduced and oxidized substrates. This 

might be related to higher oxygen vacancy concentration as these are expected to form easily 

at the (001) surface. These electrons containing defects states are related to the O2- vacancies, 

which are correlated with Ti3+ 3d1 electron states of Ti3+ surface sites. It has been shown by 

resonance photoelectron spectroscopy that these states do also exist on TiO2 surface up to 1/3 

of a monolayer even when they can hardly be identified by standard XPS[15, 38]. Thermal 

equilibrium of electrons with the Fermi level of the growing NiO could thus be easily 

completed for the (001) surface. Therefore, the bending on the (001) surface starts and 

completes at the thinner layer of NiO. It is worth mentioning that the Fermi level of rutile 

finally reaches the same value of about 1.6 eV independent of surface orientation and 

treatment. 
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The work function of the uncovered rutile substrates and top layers of deposited NiO was 

derived from the binding energies of the secondary electron edge ESE according to  

ESE. The work function of NiO on the reduced rutile (110) and (001) substrates is 5.15 and 

5.10 eV whereas that on the oxidized rutile (110) and (001) substrates is 5.31 and 5.38 eV, 

respectively. The higher value of the work function of NiO on the oxidized rutile might be 

attributed to mainly the formation of O2
2- surface adsorbates of which the value of work 

function is higher than that of NiO without surface adsorbates, and possibly a change in the 

ionization potential of NiO that corresponds to a change of the O2
2- induced surface dipole 

related to the stoichiometric surface termination. 

 

Finally, the band alignments at the interface of NiO/reduced rutile (110) and NiO/oxidized 

rutile (110) as experimentally established using above data are shown in Figure 7 (band 

alignments for the rutile (001) are shown in figure S2 in supplementary information). As is 

evident from these diagrams, the overall trend of the development of space charge layers in 

the two materials in contact of p-doped NiO and n-doped TiO2 are hardly affected by the pre-

treatment induced differences. Evidently in p-NiO the Fermi level is pinned by a high 

concentration of defect states (Ni3+ related states) in the bulk of the material as there is no 

additional band bending found in the NiO layers. The pinning level is found at a value of 

EF EVBM between 0.5 and 0.9 eV.  

 

The Fermi level of n-TiO2 is shifted downward with the deposition of p-NiO as it is expected 

for the contact formation between a p-doped and a n-doped semiconductor. However, the 

distribution of the original differences in work function NiO TiO2 shows two different 

distribution. At first for the low NiO coverage a strong interfacial dipole  develops and its 
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value is larger for the oxidized TiO2 of both surface orientations. This surface dipole is 

evidently due to the peroxo induced increase of work function of the oxidized surfaces. Also, 

on the band alignment a difference of valence band levels between NiO and the different TiO2 

surfaces is found to be reduced for the oxidized TiO2. We attribute these facts to a 

modification of the NiO deposition in the low coverage regime, which is also related to the 

later onset of a well-defined overlayer Fermi level formation (see Figure 6). The band bending 

in the TiO2 is found to be larger for the higher doped n+-TiO2 (reduced rutile) as to be 

expected from its original Fermi level position within the conduction band. There are 

additional small deviations in the interfacial surface potential differences of the four different 

cases. However, if these are mostly due to intrinsic differences in band alignment or extrinsic 

differences to different concentration of interfacial defects related to processing effects cannot 

be concluded from the given set of experiments. Despite these facts there is a still a dominant 

factor valid for all interfaces. The deposition of NiO leads to strong band bending within the 

TiO2 substrates already for thin NiO layers, which would contribute to charge carrier 

separation in photocatalytic particles. 

 

3. Conclusion 

We have compared the surface potentials of rutile TiO2 (001) and (110) surfaces with reduced 

and oxidized conditions. The Fermi position varies from 2.6-2.7 to 3.1 eV upon the amount of 

oxygen vacancies introduced by different surface pre-treatment to prepare clean surfaces. 

Work function exhibits an even larger variation from 4.3 to 6.0-6.1 eV due to the surface 

adsorbate of poroxo species in addition to the difference of the Fermi level position. However, 

no noticeable difference in the Fermi level position and work function between the two facets 

are observed. 
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We have also experimentally established energy band diagrams of p-NiO and n-type rutile 

TiO2 (001) and (110) with reduced and oxidized surfaces. The results indicate that one has to 

take into account the surface condition when considering the band alignments. The Fermi 

level of NiO is pinned at a value of EF EVB between 0.5 and 0.9 eV. Although there is no 

difference in the final energy band alignments between the two facets, the bending on the 

(001) surface occurs at the thinner layer of NiO than that on the (110) surface. The steep band 

bending on the (001) surface completes already within a thin layer of a few nm and help in 

separating the charge carriers in the nanoparticle photocatalysts. 

 

4. Experimental Section 

4.1. Reduced rutile substrate preparation 

Epitaxially polished rutile (110) and (001) substrates were purchased from Crystec GmbH 

(Berlin, Germany). The size of the substrates is 5 x 5 x 1 mm. Surface defect states can be 

controlled by annealing temperature. The most reduced surface is expected for annealing in 

vacuum, which can be performed up to at temperatures of 900 K without ruining the 

morphology[8]. In this work, reduced rutile (110) and (001) substrates were prepared by 

annealing at 773 K and oxygen partial pressure of 0.5 Pa for 2 hours, followed by annealing at 

873 K in vacuum for 1 hour. The colour of the substrates changes from transparent into dark 

blue after reduction. As well known, thermal annealing in vacuum at an elevated temperature 

generates surface oxygen vacancies, which are mostly located in the bridging oxygen row for 

the rutile surface[39]. The n-type doping by introduction of bulk oxygen vacancies results in a 

high conductivity, which avoids a charging problem with XPS and UPS. 

 

4.2. Oxidized rutile substrate preparation 

Oxidized surfaces were prepared by the above reduction procedure at first in order to make 

them conductive. The samples were subsequently exposed to an oxygen plasma for 15 
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minutes at room temperature. The resulting surface is expected to be a quasi-stoichiometric 

surface as it is nearly impossible to avoid oxygen vacancies completely. We use the oxygen 

plasma to oxidize the surface instead of annealing them at an elevated temperature in oxygen. 

Imperfect complex features such as rosettes or strands can form when reduced TiO2 substrates 

are re-oxidized at high temperature in oxygen[40]. Moreover, the competition of bulk vacancy 

formation and surface oxidation cannot be easily controlled[4, 41]. 

 

4.3. NiO/rutile heterostructure preparation 

NiO was grown on reduced and oxidized rutile (110) and (001) substrates using a direct 

current (DC) reactive magnetron sputter deposition from a metallic Ni target with 40 W of DC 

power under 20 % O2/ 80 % Ar mixture atmosphere at 0.5 Pa pressure and room temperature. 

The gas flow of oxygen and argon is kept of 4 and 16 sccm, respectively, during the 

deposition. The target-to-substrate distance was set to 8.4 cm. The deposition rate is about 2.0 

nm/min. We are aware of possibly additional defect states induced by sputter deposition of 

oxides. However, a number of systematic studies on different oxides have proven that for our 

experimental conditions this approach seems applicable[26]. 

 

4.4. Characterization method 

The experiments were carried out in the Darmstadt integrated system for materials research 

(Daisy-Mat) equipped with a multitechnique surface analysis system (Physical Electronics 

PHI 5700) capable of XPS and UPS and different deposition chambers. This system allows 

the in-situ characterization of the prepared surfaces and interfaces. XPS spectra were recorded 

with monochromatic Al Kα radiation at an emission angle of 45° and a pass energy of 5.85 

eV, which gives a total energy resolution of 0.4 eV, as determined from the Gaussian 

broadening of the Fermi edge of a sputter-cleaned Ag sample. Binding energies of core levels 

and valence band maximum can be determined with an accuracy of 50 meV and 100 meV, 
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respectively. For the determination of work function and ionization potentials, UPS spectra 

were recorded in normal emission with He I radiation ( 21.2 eV) from a He discharge 

lamp and a negative sample bias of 4.0 V. The total energy resolution is 0.2 eV. No charging 

problems were observed during the XPS and UPS measurement. Binding energies obtained by 

XPS and UPS were calibrated by the Fermi level energy of the sputter-cleaned Ag sample. 

Hence, all the binding energies are given with respect to the calibrated Fermi level position 

set to 0 eV. More details of the Daisy-Mat system, which unfortunately does not contain a 

LEED setup, and the experimental approach in performing the experiments may be found 

elsewhere[25, 26]. 

 

The reduced and oxidized rutile (110) and (001) surfaces were studied by in-situ XPS and 

UPS measurements without breaking the vacuum. Afterwards, in order to obtain the band 

alignment of NiO and the rutile substrates, interface experiments were performed in Daisy-Ｍ

at. After each stepwise deposition of NiO onto the rutile substrates, XPS spectra were 

recorded without breaking vacuum to follow shifts of the binding energies of core level 

emission lines and the evolution of peak shapes. Thus, the energy band alignments of 

NiO/reduced rutile(110), NiO/reduced rutile(001), NiO/oxidized rutile(110), and 

NiO/oxidized rutile(001) heterostructures were experimentally established. 
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Figure 1. Ball and stick model of the unrelaxed bulk-terminated surface structures of a) rutile 

(110) and b) (001) surfaces 

 

 
Figure 2. XP spectra on reduced and oxidized rutile (110) and (001): XPS Ti2p3/2, O1s, and 

VB region 

 

 

 
Figure 3. UP spectra on reduced and oxidized rutile (110) and (001): a) SEE and VB region 

and b) VB region focused by a factor of 5. 
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Figure 4. Band diagrams of different rutile substrates: a) reduced rutile (110), b) oxidized 

rutile (110), c) reduced rutile (001), and d) oxidized rutile (001). 

 

 
Figure 5. XP and UP spectra of the interface experiment performed by NiO deposition onto 

oxidized TiO2 rutile (110) substrate. 

 

 

 

 
Figure 6. Fermi level (EF EVBM) as measured by NiO/TiO2 interface of a) reduced and b) 

oxidized TiO2 rutile substrates for (001) and (110) surfaces. 
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Figure 7. Band energy diagrams of p-NiO/n-TiO2 for reduced and oxidized rutile (110) as 

determined from the experimental data. The important values are given in the figures. It is 

evidential that the Fermi level of p-NiO, as determined in the experiments, is pinned at a 

value of EF EVB ~ 0.5 – 0.9 eV. 

 

 

Table 1. Values of Φ, EF - EVBM, and Ip of reduced and oxidized rutile substrates 

Sample Ti2p3/2 [eV] O1s [eV] EF - EVBM [eV] Φ [eV] IP [eV] 

Reduced (110) 459.35 530.62 3.12 4.31 7.43 

Reduced (001) 459.38 530.69 3.07 4.29 7.36 

Oxidized (110) 458.95 530.21 2.68 5.96 8.64 

Oxidized (001) 458.78 530.04 2.57 6.08 8.65 
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Supporting Information  
 

Dependence of crystallographic surface orientation of rutile TiO2 surfaces on band 

alignments of NiO/TiO2 

 

Shun Kashiwaya, Thierry Toupance, Andreas Klein, Wolfram Jaegermann* 

 

 

 

Photoelectron spectroscopy for interface experiments 

XP and UP spectra of interface experiments performed by NiO deposition onto 

oxidized rutile (001), reduced rutile (110), and reduced rutile (001) are shown in figure S1. 
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Figure S1. XP and UP spectra of the interface experiments performed by NiO deposition onto 

different TiO2 rtuile substrates: a) oxidized rutile (001), b) reduced rutile (110), and c) 

reduced rutile (001). 
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Energy band alignments 

 

Energy band alignments of NiO/reduced rutile (001) and NiO/oxidized rutile (001) are shown 

in figure S2. 

 

 Figure S2. Band energy diagrams of p-NiO/n-TiO2 for reduced and oxidized rutile (001)  
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Supercritical CO2-assisted deposition of NiO on
(101)-anatase-TiO2 for efficient facet engineered
photocatalysts†

S. Kashiwaya,ab C. Aymonier, c J. Majimel,c C. Olivier, a A. Klein,b

W. Jaegermannb and T. Toupance *a

NiO/(101)-anatase-TiO2 heterostructure nanoparticles were synthesized by depositing NiO onto the

(101) facet of anatase crystals via the supercritical fluid chemical deposition (SFCD) route. Thorough

characterization experiments performed by various techniques (XRD, UV-Vis DRS, N2 sorption, HR-TEM,

EDX, and XPS) indicate that the SFCD method allowed a good dispersion of NiO onto the TiO2

nanoparticles for NiO amounts below 2 wt%. Compared to pure TiO2, the 0.1–1 wt% NiO–TiO2 nano-

composites showed enhanced photocatalytic properties for methylene blue (MB) and methyl orange

(MO) decomposition under UV light irradiation, the 0.25 wt% NiO–TiO2 system leading to the highest

efficiencies. The photocatalytic properties were then rationalized in terms of the acidic properties and

electronic structures of the NiO–TiO2 nanocomposites. This higher photocatalytic activity was mainly

related to the heterocontact at the interface of the NiO–TiO2 crystallites and to the enhanced reaction

rates at the NiOx surface.

1. Introduction

Since the pioneering work of Fujishima et al. in 1972 dealing
with the photodecomposition of water on titanium dioxide
(TiO2) without any applied electric power,1 photocatalytic reac-
tions on TiO2 surfaces have attracted worldwide attention due
to their capability of decomposition of various air and water
pollutants, CO2 reduction, and water splitting.2–4 Photocatalytic
processes with semiconductors involve three main steps:
(i) creation of electron–hole pairs upon light irradiation;
(ii) diffusion and transfer of photo-generated carriers after
charge separation and (iii) redox reactions at the semiconductor
surface. However, owing to the highly preferred recombination
of photo-generated carriers in photocatalysts and slow surface
redox reactions, photocatalysis with pure TiO2 materials is of
no practical use.5

In this context, crystal facet engineering of TiO2 has
attracted much attention since Ohno et al. performed the

selective deposition of Pt and PbO2 on specific orientations of
rutile and anatase, revealing the key role of facets in the
separation of photoinduced electron–hole pairs.6–10 The photo-
catalytic activities of semiconductors are drastically affected by
their crystallographic surface orientation and structures as the
surface atomic structures govern the adsorption of molecules,
surface transfer and trapping of photo-generated carriers, and
thus redox reactions.11–13 In the past decade, main efforts have
been devoted towards maximizing the surface area of the
highest energy {001} facet to enhance the photocatalytic
activity.14 However, it was also found that the coexistence of
both the high energy {001} facet as oxidation sites and the low
energy {101} facet as reduction sites results in spatial charge
separation because of a selective migration and/or trapping of
electrons and holes to specific exposed crystal faces. This
indicates that the {101} facet also plays a key role in photo-
catalytic processes.15–17

Another efficient strategy to enhance the photocatalytic
activity is to combine TiO2 nanoparticles with cocatalysts,
thereby providing oxidation or reduction active sites and
improving the kinetic rates by lowering the activation energies,
trapping charge carriers and inhibiting the recombination of
the photo-generated charge carriers.18 Noble metals, such as Au
or Pt particles, have been proven to be very efficient cocatalysts
for the improvement of TiO2 photocatalytic activity.19,20 How-
ever, noble metals are scarce and expensive, and also catalyze
the back reaction leading to the formation of water from
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hydrogen and oxygen, thus limiting their ability as cocatalysts for
water splitting. To avoid this reverse reaction, transition metal
oxides that show a negligible activity for water formation are
conventionally chosen as cocatalysts. On the other hand, another
approach to improve the photocatalytic activity is to load p-type
semiconductors onto n-type TiO2 nanostructures, establishing a
p–n heterojunction at the interfacial contact between a n-type
material such as TiO2 and a p-type semiconductor. As a result,
photo-generated electrons and holes are spatially separated to TiO2

and the p-type semiconductor, respectively, thus hampering the
recombination phenomena and leading to a longer charge carrier
lifetime. Notably, p-type metal oxides such as NiO, IrO2, and Co3O4

provide oxidation reaction sites, decrease the activation energy, and
suppress reverse reactions.18,21,22 Amongst p-type metal oxide
semiconductors, nickel oxide (NiO) is one of the most reactive
materials that is abundant on Earth and can act as both a reduction
and oxidation cocatalyst. Thus, many reports deal with NiO/poly-
crystalline TiO2 systems, usually prepared by impregnation,23

precipitation,24 hydrothermal25 or sol–gel methods,26,27 which
show improved photocatalytic properties for organic pollutant
decomposition25,26 or hydrogen production.23,24,27,28 Combining
crystal facet engineering of TiO2 and cocatalyst deposition would
therefore provide promising heterostructures exhibiting synergetic
effects for photocatalysis purposes. Although noble metals such as
Pt have been selectively deposited onto the {101} facet, which is the
most common and stable one, the selective deposition of NiO as
the metal oxide onto the {101} facet has not been demonstrated.

In this context, we developed highly active NiO–TiO2 photo-
catalysts obtained by the deposition of NiO at the {101} facet of
anatase by employing the supercritical fluid chemical deposi-
tion (SFCD) route. SFCD using carbon dioxide (scCO2) is indeed
considered as a green and effective method for chemical
deposition as no liquid or solvent residue is left on the particles
after deposition.29,30 ScCO2 exhibits unique properties such as
hybrid gas-like and liquid-like properties in which solutes can be
dissolved like a liquid. The reaction environment such as density,
viscosity, diffusivity or surface tension can be easily manipulated
through the control of pressure and temperature. The deposition
of transition metals onto different supports has already been
achieved by this method but,31–34 to the best of our knowledge,
the use of SFCD for NiO deposition on TiO2 has not been reported
yet. The structural, morphological and textural properties of the
obtained heterostructures were thoroughly characterized and their
photocatalytic activity was examined by the degradation of
methylene blue (MB) and methyl orange (MO) dye under UV
irradiation. MB and MO, which can be positively and negatively
charged in solution, respectively, were selected to investigate
the dye sensitization effects of the TiO2 photocatalyst.35,36

2. Experimental section
2.1. Materials preparation

Titanium(IV) butoxide (Ti(OBu)4, 97%, company), oleic acid
(C18H33CO2H, 90%, Aldrich), oleylamine (C18H35NH2, 70%, Aldrich),
and a superhydride solution (1 M lithium triethylboronhydride,

LiEt3BH in THF, Aldrich), and nickel(II) nitrate hexahydrate
(Ni(NO3)2�6H2O, 98%, Acros organics) were employed without
any further purification.

Oriented single crystalline anatase nanoparticles exposing
{101} facets were synthesized by a solvothermal method adapt-
ing previously reported procedures based on the use of water
vapor as the hydrolysis agent to accelerate the hydrothermal
reaction and the use of oleic acid and oleylamine as capping
agents, which exhibit different binding strengths to control the
crystal growth of anatase TiO2 nanoparticles.37,38 Typically 2.5 g
of Ti(OBu)4 were added to a mixture of 9.2 g of oleic acid and
16.8 g of oleylamine in 6.6 mL of absolute ethanol, which
corresponds to a molar ratio of 1 : 4 : 6 in Ti(OBu)4, oleic acid,
and oleylamine. The resulting solution was stirred for 30 min
and transferred into a 225 mL autoclave containing 22.4 g of
absolute ethanol and 1.17 g of deionized water. The autoclave
was heated at 180 1C for 18 h to reach a pressure of about
1.8 MPa. A white powder was then recovered from the solution
by centrifugation, washed with ethanol 4 times, and dried in air
and then under vacuum for 2 h. Elimination of oleic acid
molecules strongly bonded to the surface was achieved by
treatment of TiO2 powders with 10 mL of lithium triethyl-
borohydride (1 M), a strong reducing agent,38,39 under a nitrogen
atmosphere. After sonication, the suspension was stirred over-
night, and the resulting dark blue suspension was centrifuged and
the powder obtained was washed with distilled water, acetone, and
dichloromethane. The TiO2 nanoparticles were finally dried in air
and under vacuum for 2 h. To get rid of remaining oleylamine
on the surface, the powders were finally treated by sonication in
70 mL of a 0.4 M H2SO4 solution. The powders recovered by
centrifugation were washed with CH2Cl2, and dried in air and
under vacuum for 2 h to yield 500 mg of a white powder, hereafter
named pure TiO2.

NiO deposition was then performed in a 30 mL custom-built
reactor made of stainless steel and equipped with a magnetic
stirrer. The pressure in the reactor was controlled using a high-
pressure pump. In a typical procedure, an appropriate amount of
nickel(II) nitrate hexahydrate was dissolved in 3 mL of ethanol, and
200 mg of TiO2 nanoparticles were dispersed into the solution
followed by sonication for 10 min. The mixture was then trans-
ferred into the reactor. The reactor was filled with CO2 to reach a
pressure of 5 MPa at room temperature, heated to 200 1C, pumped
up to 22 MPa using the high-pressure pump, and kept under these
conditions under stirring at 40 rpm for 30 min. To recover the dry
and clean powders, the reactor was flushed under a scCO2 flow at a
pressure of 10–12 MPa and a temperature of 120 1C. ScCO2 is an
effective drying and cleaning solvent as it is nontoxic, non-
flammable, and inert towards the obtained nanoparticles. The
recovered NiO–TiO2 samples were annealed in air at 400 1C for
1 h to achieve a high crystallinity of NiO and an intimate contact at
the interface of NiO–TiO2. The amounts of nickel nitrate hexa-
hydrate to prepare NiO–TiO2 photocatalysts containing 0.1, 0.25,
0.5, 1, 2 and 10 wt% of NiO were 0.8, 2.0, 4.0, 8.0, 15.9 and 79.5 mg,
respectively. The resulting samples are hereafter named 0.1 wt%
NiO–TiO2, 0.25 wt% NiO–TiO2, 0.5 wt% NiO–TiO2, 1.0 wt%
NiO–TiO2, 2.0 wt% NiO–TiO2, and 10 wt% NiO–TiO2.
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2.2. Materials characterization

Raman spectra were recorded using a Thermo Scientific DXR
Raman microscope with a 633 nm wavelength excitation laser
operating at 7 mW output power, 20 times with an exposure
time of 1 s, between 50 and 3500 cm�1 with 1 cm�1 spectra
resolution. XRD spectra were acquired with a Bruker AXS
diffractometer (D2 PHASER A26-X1-A2B0D3A) using a Cu anode
(Ka radiation). A continuous scan mode was used to collect 2y
data from 5 to 801 with a sampling pitch of 0.021 and at a scan
rate of 2.41 min�1. The average crystallite size of the prepared
nanoparticles was estimated by fwmh (full width at half max-
imum) according to Scherrer’s formula (applied to the {101}
reflection), D = (0.9l)/(b1/2 cos yB), where D, l, b1/2, and yB

represent the average grain size, the wavelength of Cu Ka
(=1.5405 Å), the fwhm, and the diffraction angle, respectively.
UV-Vis diffuse reflectance spectra were measured at room
temperature in the 200–800 nm wavelength range using an
UV-Vis-NIR Cary 5000E spectrometer equipped with an inte-
grating sphere. Samples were placed in a Suprasil1 cell
equipped with a quartz window. Halon standard (6 mm deep
and 1 g cm�3 density) was used as a reference. The textural
properties were evaluated by nitrogen sorption porosimetry
using ASAP2010 Micromeritics equipment. The specific surface
area (BET (Brunauer–Emmett–Teller) method applied in the
0.1–0.3 relative pressure range)40 and the pore size distribution
(BJH (Barrett–Joyner–Halenda) model applied to the adsorption
branch)41 were determined after degassing the samples at
120 1C to reach a constant pressure (o10 mmHg).28 HR-TEM
was carried out using a JEOL 2200FS (JEOL, Tokyo, Japan)
microscope operating at an acceleration voltage of 200 kV
(wavelength l = 2.51 pm) equipped with a Schottky type
FEG and an EDX system (Oxford, Wiesbaden, Germany). For
HR-TEM, HR-STEM and EDX studies, the photocatalyst nano-
particles were dispersed in ethanol by sonication and a few
droplets of the suspension were deposited over holey carbon
grids (Cu-300HD, Pacific Grid-Tech). Moreover, in order to be
representative and statistically meaningful, many images from
several regions of various samples were recorded and the most
characteristic results are represented here.

The electronic properties of the prepared samples were
investigated with DAISY-MAT,42 which is an integrated surface
science system consisting of a Physical Electronics PHI 5700
multi-technique surface analysis system and various technique
deposition chambers with an ultrahigh vacuum sample trans-
fer. XPS spectra were recorded using monochromatic Al Ka
(1486.6 eV) radiation with an energy resolution of 0.4 eV as
determined from the broadening of the Fermi edge of a sputter-
cleaned Ag sample. The binding energies of core levels, and
the valence band maximum EVB can be determined with an
accuracy of 50 meV and 100 meV, respectively. The binding
energies determined by XPS were calibrated by the Fermi level
energy of the sputter-cleaned Ag sample. Hence, all the binding
energies are given with respect to the calibrated Fermi level.
The powder samples are pressed onto indium foil as a con-
ductive substrate to avoid a charging problem, and transferred
into the XPS chamber without any further treatment.

2.3. Photocatalytic tests

The photocatalytic properties of the as-synthesized samples
were evaluated by the degradation of methylene blue (MB) or
methyl orange (MO) dye (Alfa Aesar, reagent grade, used as
supplied) under UV-light at room temperature. 50 mg of a
photocatalyst were dispersed in 50 mL aqueous solution of
MB or MO (10 mg L�1) to obtain a photocatalyst concentration
of 1.0 g L�1. The experiments were performed in a Pyrex beaker
illuminated with a 125 W high-pressure mercury lamp (Philips,
HPL-N 125 W/542 E27) emitting UV light. The lamp was
positioned above the beaker solution and the distance between
the lamp and the top of the solution was 60 mm. The suspension
was initially stirred in the dark for 30 min to reach the adsorption/
desorption equilibrium. During the experiments, the solutions
were continuously stirred at room temperature in open air. At
given irradiation time intervals, 2 mL aliquots of the suspensions
were collected and centrifuged (4000 rpm, 10 min) to remove the
photocatalyst particles from the dye solution. Monitoring the
absorption intensity of MB at 664 nm or MO at 515 nm using a
UV-Visible spectrophotometer (Shimadzu, UV-1650 pc) led to the
determination of the remaining amount of dyes. The intensity of
the maximum absorption was investigated as the wavelength of
the peak depends on the pH of the solution for MO. A calibration
plot based on Beer–Lambert’s law was established by relating the
absorbance to the concentration. Blank experiments were also
conducted with the catalysts in the absence of light and without
the catalysts while the dye was illuminated.

3. Results and discussion
3.1. Materials characterization

Changes in the morphology and sizes of the pure TiO2 particles
depending on the chemical and thermal treatment employed
were first evaluated by HRTEM as depicted in Fig. 1. Before
treatment with superhydride and sulfuric acid solutions, the
nanoparticles agglomerated along the [001] direction (Fig. 1A
and B). The selected area electron diffraction patterns (SAED)
shown in Fig. 1A (inset) confirm the formation of the highly
oriented anatase phase. The first and second rings can be
indeed assigned to the diffraction features originating from
the (101) and (004) planes of anatase TiO2, respectively. How-
ever, the well-ordered agglomeration has collapsed upon post-
treatment with superhydride and sulphuric acid, forming
partially isolated particles and mainly random agglomeration
due to the small nanoparticle size, i.e. 7 nm, and possibly due
to the surfactant molecules remaining on the surface (Fig. 1C
and D). The nanoparticles exhibit a bipyramidal, i.e. rhombic,
shape exposing only the {101} facet of anatase that remains
unchanged after both reductive and acidic treatments. Inter-
planar spacings of 0.350 and 0.467 nm at an angle of 68.11
match very well with the (101) and (001) planes of anatase. As
shown by Dinh et al.37 and D’Arienzo et al.,38 the use of an
excess of oleylamine compared to oleic acid actually favours the
formation of well-defined rhombic structures. Moreover, the
supercritical fluid treatment (without a nickel precursor) does
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not affect both morphology and sizes of the TiO2 nanoparticles
exposing the {101} facets (Fig. 1E). As a consequence, NiO was
then deposited on the oriented anatase TiO2 rhombic particles
employing a SFCD route with carbon dioxide and ethanol as
solvents. Ethanol was chosen as a co-solvent for enhancing the
solubility of the precursor in carbon dioxide.

Crystalline phase identification for the obtained NiO–TiO2

nanocomposites was first performed by Raman spectroscopy
and powder XRD analyses (Fig. 2). As depicted in Fig. 2A, the
Raman spectra of the samples containing up to 2 wt% NiO
exhibited main resonances at 152, 203, 405, 522 and 647 cm�1,
which can be ascribed to the Eg, Eg, B1g, A1g + B1g and Eg modes
of anatase TiO2.43 These data are fully consistent with the factor
group analysis, which predicts six Raman-active modes
(A1g + 2B1g + 3Eg) for anatase TiO2.43,44 The absence of energy shift
and line-broadening of the Raman peaks as the NiO content was
increased up to 2 wt% indicates that NiO deposition by the SFCD
method did not lead to imperfections or alloying effect in the
anatase TiO2 nanocrystals (Fig. 2A, inset).45 However, the Raman
shifts detected were significantly different from those reported by
Arsov et al. for anatase TiO2 single crystals, i.e. 144 (Eg), 197 (Eg),

399 (B1g), 516 (A1g), 516 (B1g), and 639 (Eg) cm�1.46 These differ-
ences could be rationalized on the basis of the size of the anatase
TiO2 nanocrystals. Indeed, according to previously reported
works,43,47 8 cm�1 shift towards a higher energy of the peak at
144 cm�1 is consistent with a nanocrystal size of 7 � 1 nm. As a
consequence, nickel oxide deposition did not induce any signifi-
cant change in the anatase nanocrystal size. It is also worth
mentioning that the absence of typical features for the nickel oxide
species is likely due to the combination of weak NiO loading and
low crystallite size.48 The crystalline structure was also confirmed
by XRD (Fig. 2B). Thus, whatever the NiO amount XRD patterns
showed main features, which can be indexed to the (101), (004),
(200), (105), (211), (204), (116), (220) and (215) diffraction peaks of
the pure anatase polymorph according to literature data (Joint
Committee on Powder Diffraction Standards, JCPDS, card no.
21-1272). In addition, the Scherrer formula applied to the line
width of the (101) diffraction peak led to an average crystallite
size of 7.1 � 0.4 nm for pure TiO2 and between 7.5 � 0.4 and
7.9 � 0.4 nm for the NiO–TiO2 heteronanostructures (Table 1),
which is in good agreement with the TEM and Raman spectro-
scopy results. Furthermore, plotting the XRD patterns with the
enhanced intensity in the 2y region from 40 to 461 revealed the
presence of a broad extra line around 2y = 431 for the NiO–TiO2

heteronanostructures (Fig. 2C), the intensity of which increases
with the NiO amount. This feature can be assigned to the (200)
diffraction line of the face-centered cubic (fcc) crystalline structure

Fig. 1 HR-TEM images (SAED (inset)) of: (A and B) pure TiO2 before
treatment with superhydride and sulphuric acid; (C and D) pure TiO2 after
treatment with superhydride and sulphuric acid; (E) pure TiO2 after treat-
ment with superhydride and sulphuric acid followed by supercritical fluid
treatment; (F) 0.25 wt% NiO–TiO2.

Fig. 2 (A) Raman spectra (inset: expansion of the 100–200 cm�1 region);
(B) XRD patterns; (C) expansion of the 2y region for the pure TiO2 (black),
0.1 wt% NiO–TiO2 (orange), 0.25 wt% NiO–TiO2 (magenta), 0.5 wt%
NiO–TiO2 (blue), 1 wt% NiO–TiO2 (red), 2 wt% NiO–TiO2 (olive) and
10 wt% NiO–TiO2 (brown) nanomaterials.
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of NiO (JCPDS, card no. 04-0835) and was also found in the XRD
pattern of pure NiO prepared by the SFCD method (Fig. S1, ESI†).
The broad and attenuated peak typical of cubic NiO is in favour of a
high dispersion at NiO contents below 2 wt%, which provides
small particles hardly detectable by XRD.28 Finally it is worth
underlining that the introduction of a high NiO loading by the
SFCD route seems to induce some changes in the TiO2 nanocrys-
tals. Thus, the shift of the main Raman peak and new diffraction
lines at 2y = 27.1 and 43.61 observed for the 10 wt% NiO–TiO2

nanocomposite suggests a slight modification in the crystallite size
and the formation of a small amount of a rutile polymorph.

On the other hand, the crystal morphology of the hetero-
structures does not change for NiO amounts up to 2 wt%
(Fig. 1F and Fig. S2, ESI†). The uniform dispersion of NiO on
the TiO2 nanocrystallites was confirmed by the energy disper-
sive X-ray spectroscopic (EDX) elemental maps of titanium,
oxygen and nickel elements as shown in Fig. 3 and Fig. S3
(ESI†) for 2 wt% NiO content. In this case, the semiquantitative
electron mapping shows that 1.5 wt% NiO is dispersed on the
TiO2 crystallites, which is in good agreement with the nominal
NiO content. By contrast, for 10 wt% NiO content, the NiO
nanoparticles agglomerate and establish a micro heterostruc-
ture of NiO/TiO2 according to the HR-STEM images and EDX
element maps shown in Fig. S4 (ESI†). The TiO2 and NiO
regions are composed of individual nanocrystals, the sizes of
which are about 7–10 nm and 2–3 nm, respectively (Fig. S2,
ESI†). However, it is noteworthy that the TiO2 agglomeration
also contains Ni species homogeneously distributed onto the
TiO2 nanocrystals.

The textural properties of the different nanocomposites
prepared were then scrutinized by N2 sorption analysis. Regard-
less of the NiO loading, the adsorption–desorption isotherms
exhibit characteristic type-IV sorption behavior with type-H2
hysteresis loops, which are typical of mesoporous solids accord-
ing to the IUPAC classification (Fig. S5, ESI†).49 Moreover, the
mean pore size distributions are rather broad, indicating non-
uniform channels in the mesoporous region. It is also worth
mentioning that the isotherm’s desorption branch is not very
steep, N2 desorption occurring in two main steps in certain
cases as for 0.1 wt% NiO–TiO2. This can be rationalized by
considering that the type-H2 hysteresis loop arises, on the one
hand, from capillary condensation in narrow-neck and wide-
body, known as the single pore mechanism, and, on the other

hand, from the pore network topology, often referred to as pore
block effects.26,49,50 This finding is fully consistent with the
TEM images, indicating that the nanocomposites consist of a
porous network of aggregated nanoparticles, and the meso-
porosity detected is stemming from the interparticle voids.
The Brunauer–Emmet–Teller (BET) specific areas, total pore
volumes and average mesopore sizes are reported in Table 1.
Whatever the NiO loading, the mean mesopore size is rather
constant, i.e. ranges between 4.5 and 5.2 � 0.2 nm. Further-
more, the BET surface areas of the NiO–TiO2 nanocomposites
containing less than 2 wt% NiO remain close to that of the pure
TiO2 nanoparticles, i.e. range between 105.1 � 2.9 and 116.1 �
3.2 m2 g�1. As a result, the supercritical fluid deposition of NiO
allowed high surface areas to be maintained, which was not the
case for NiO–TiO2 nanocomposites prepared by other methods
such as sol–gel derived methods.26,28

Table 1 Crystallite size, textural properties and apparent rate constants for the degradation of MO and MB for the TiO2 and NiO–TiO2 photocatalysts

Sample
Mean crystallite
size XRDa (nm)

SBET
b

(m2 g�1)
Total pore
volumec (cm3 g�1)

Mean pore
sized (nm)

Apparent rate constant
kapp MBe (min�1)

Apparent rate constant
kapp MOf (min�1)

TiO2 7.1 � 0.4 116.4 � 3.2 0.096 � 0.013 4.8 � 0.6 0.0102 0.0340
0.1 wt% NiO–TiO2 7.9 � 0.4 109.2 � 3.0 0.113 � 0.015 4.5 � 0.6 0.0341 0.0677
0.25 wt% NiO–TiO2 7.6 � 0.4 111.1 � 3.1 0.101 � 0.013 4.7 � 0.6 0.0464 0.0742
0.5 wt% NiO–TiO2 7.7 � 0.4 105.1 � 2.9 0.098 � 0.013 5.0 � 0.6 0.0263 0.0358
1 wt% NiO–TiO2 7.6 � 0.4 112.1 � 3.1 0.118 � 0.015 5.1 � 0.7 0.0252 0.0356
2 wt% NiO–TiO2 7.5 � 0.4 116.1 � 3.2 0.125 � 0.016 4.9 � 0.6 0.0225 0.0276
10 wt% NiO–TiO2 7.6 � 0.4 101.3 � 2.8 0.103 � 0.013 5.2 � 0.7 0.0018 0.0246

a Calculated according to the Scherrer relationships using the full width at half-maximum of the (101) diffraction line. b Surface areas determined
by BET. c Total pore volume determined at a relative pressure of 0.99. d Mean pore diameters calculated by the BJH theory (applied to the
adsorption branch of the isotherm).41 e MB: methylene blue dye. f MO: methyl orange dye.

Fig. 3 (A) Bright field STEM micrograph of the 2 wt% NiO–TiO2 nano-
materials and EDX elemental mapping of (B) Ti, (C) O, and (D) Ni. (E) 3-Colours
image obtained by superimposed chemical elemental mapping.
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3.2. Optical and electronic properties

The optical properties of the NiO–TiO2 heteronanostructures were
investigated by UV-Vis diffuse reflectance spectroscopy (Fig. 4). The
steep absorption edge for pure TiO2 at 385 nm stems from electron
transitions between the valence band (mainly O 2p orbitals) and
the conduction band (mainly Ti 3d orbitals) of the anatase TiO2

nanoparticles.11 The NiO–TiO2 heteronanostructures showed
visible light absorption, the edge of which shifts towards lower
energies with increasing amount of NiO. To obtain deeper insight
into the dependence of the optical properties on NiO amount, the
band gap energy (Eg) of the different samples prepared was
determined from their absorption spectra using the Kubelka–
Munk theory.51 In the case of powder materials, the optical band
gap can be inferred from the plot of [F(R)hn]1/n vs. hn where F(R)
is the remission function related to the reflectance R (F(R) =
(1 � R)2/2R),52 h is the Planck constant, n is the light frequency
and n = 2 for an indirect transition semiconductor such as
anatase TiO2.11,53 The intercept of the linear extrapolation for
the main slope with the abscissa axis yields the energy band
gap value (Fig. 4, inset). The band gaps decrease from 3.21 eV
for pure TiO2 to 3.19, 3.15, 3.16, 3.13, 3.07 and 2.98 eV for 0.1,
0.25, 0.5, 1, 2, and 10 wt% NiO/TiO2, respectively. This trend
cannot be interpreted as the simple addition of the anatase
TiO2 and NiO optical properties since the band gap of nickel
oxide has been reported to range between 3.4 and 4.3 eV.54,55

DFT calculations have shown that the modification of the
anatase TiO2 surface with NiO clusters leads to new states
located above the valence band and just below the conduction
band of TiO2.56 Thus, the valence band maximum of anatase
TiO2 increases due to mixing with the Ni 3d level, where new
vacant levels appear close to the conduction band minimum
of anatase TiO2. This results in a narrowed band gap of the
NiO–TiO2 samples, and thus in visible light absorption. The
evolution of the energy band gap with the NiO loading therefore
reveals a strong interaction of the NiO particles with the
anatase TiO2 surface through the Ni–O–Ti bonds.56

The composition and electronic properties of the pure TiO2

and hetereostructure NiO–TiO2 nanocomposites were further
investigated by XPS analyses. In addition to carbon, nitrogen,
and calcium species, which are typical contaminants of ex situ
samples synthesized chemically, emissions from titanium,
oxygen, nickel, and indium were detected in the survey spectra
(Fig. S6, ESI†). High resolution XPS spectra for the valence band
region, Ti 2p, Ni 2p, and O 1s are depicted in Fig. 5A–D. The
Fermi level shifts toward a lower energy level from 3.34 eV for
pure TiO2 to 3.31, 3.29, 3.26, 3.26, 3.23, and 2.54 eV for 0.1,
0.25, 0.5, 1, 2, and 10 wt% NiO–TiO2, respectively. Except for
10 wt% NiO–TiO2, the Fermi level is located above the conduc-
tion band minimum (Fig. 5A). The valence band spectrum of
10 wt% NiO–TiO2 shows two edges at 2.54 and 0.54 eV, which
would come from the NiO–TiO2 heterostructure and the NiO
agglomeration, respectively. For the pure anatase TiO2, the
emission from the Ti 2p3/2 doublet shows only the Ti4+ line at
459.55 eV without the presence of Ti3+ since no feature at about
457.5 eV was detected.57 The peak shifts to a lower binding
energy by 80–100 meV in the presence of various amounts
of NiO (Fig. 5B). The O 1s spectra show an intense peak at
530.72 eV corresponding to the Ti–O bonds with a shoulder at a
higher binding energy of 1.6 eV from the main emission line,
which also shows an upward shift of 40–90 meV with NiO as well
as Ti 2p3/2 peaks (Fig. 5C). The observed shift in the Ti 2p and O 1s
core levels is relatively small. One reason may be that the particle
size of the photocatalyst is too small to form a complete space
charge layer enough to saturate the bending. Another reason could
be that the NiO nano-deposits are too homogeneously distributed
on the TiO2 for small coverage or form a phase separated NiO
cluster onto the TiO2 nanocrystallites (Fig. S3 and S4, ESI†). The
shoulder of the O 1s line mainly results from the hydroxide species
due to the water molecules adsorbed on the TiO2 surface and
might partially come from a Ni3+ oxidation state at the surface
layers of NiO. No clear signal of NiO was found in XPS, which also
indicates that the morphology of the composites was not very well
developed. The spectra may be assigned to an overlap of the Ni2+

and Ni3+ oxides.58 Using an energy band gap value of 3.58 eV for
NiO as previously reported in the literature,54 a band alignment of
the NiO/TiO2 photocatalysts derived from the Fermi levels and the
optical band gaps determined by XPS and DR UV-Vis is shown in
Fig. 6. We expected that a p–n junction would be formed between
NiO and TiO2 in the NiO/(101)-anatase–TiO2 heterostructure and it
would help in separation of electrons and holes, the former
migrating towards the TiO2 surface and the latter towards the
NiO one. However, the experimental results show no indication of
a well developed space charge layer in the TiO2 substrates in
contrast to similar experiments performed before with related
heterostructures.28 Therefore, it cannot be concluded that a space
charge layer developed at the heterostructure contact contributes
to charge carrier separation or that only the catalytic effects of the
NiOx layers will contribute to the photocatalytic properties.

3.3. Photocatalytic properties

The photocatalytic activity of the pure TiO2 and NiO–TiO2

nanomaterials was examined by photodecomposition under

Fig. 4 UV-Visible diffuse reflectance spectra (DRS) and (F(R)hn)1/2 vs. hn
plots (inset) for the pure TiO2 (black), 0.1 wt% NiO–TiO2 (orange), 0.25 wt%
NiO–TiO2 (magenta), 0.5 wt% NiO–TiO2 (blue), 1 wt% NiO–TiO2 (red),
2 wt% NiO–TiO2 (olive) and 10 wt% NiO–TiO2 (brown) nanocomposites.

Paper NJC



This journal is©The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018 New J. Chem., 2018, 42, 18649--18658 | 18655

UV-illumination of conventional cationic or anionic organic
pollutants such as methylene blue (MB) and methyl orange
(MO).59,60 Before irradiating with UV light, the dye solution was
stirred in the presence of the photocatalysts for 30 min in the
dark. A significant decrease of the pH value down to 3.15–4.35 was
observed for the 0–2 wt% NiO–TiO2 nanomaterials, evidencing the
acidic properties of the materials studied (Table S1, ESI†). This
finding confirms that the TiO2 nanobipyramids exposing mainly
{101} facets are acidic as previously reported in the literature.13

After taking into account the influence of the pH change upon the
absorption properties of both dyes, no significant dye adsorption
onto the photocatalysts was detected. While both MB and MO

solutions remained unchanged under UV light irradiation without
any catalyst, a stepwise attenuation of all characteristic absorption
peaks in the wavelength range of 200–800 nm for both dyes was
observed (Fig. 7A and C). It is worthwhile to mention that the main
absorption peak of MB shifts progressively from 664 nm to 644 nm
after 80 min of illumination, which can be related to the
formation of Azur B and Azur A dye intermediates arising from
the N-demethylation of MB.61,62 Nonetheless, the collapse of
the absorption bands in the UV region for both MO and MB
solutions in the presence of the 0.25 wt% NiO–TiO2 nanoma-
terials indicates complete decomposition of these dyes within
80 min (Fig. 7A, C and Fig. S7, ESI†). Moreover, as shown in
Fig. 7B and D, the photodecomposition of MB and MO by the
pure TiO2 and NiO–TiO2 nanomaterials followed a pseudo first-
order law, ln(C/C0) = �kappt, where kapp is the pseudo first-order
rate constant and, C and C0 represent the concentration of the
dye in the solution at time t and 0. The corresponding apparent
rate constants are reported in Table 1. To take into account the
specific surface areas, normalized rate constant (Knorm) defined
as Knorm = kapp/SBET have been calculated and plotted as a
function of the NiO loading (Fig. 8).

First of all, MO was preferentially decomposed in compar-
ison to MB for a given NiO loading, all samples exposing only
{101} anatase TiO2 facets. The selective decomposition of MO
might be related to the {101} facet as it has been previously
proposed that MB and MO were selectively adsorbed and
degraded by the (001) and (101) planes, respectively.63,64 On
the other hand, Liu et al. suggested a reverse role of the two
facets and thus the origin of the selectivity stemming from the
facet still remains controversial.65 Herein, the amphoteric
behaviour of the nanoparticles likely plays a key role in the
selectivity for MO degradation. Indeed, the surface charge
attracts the dyes with opposite charge from the solution and
depends on the pH of the solution, which is affected by the
surrounding of the nanoparticles.35,36,59,60 Below the point of
zero charge (pHpzc) of anatase TiO2, particles adsorb protons,

Fig. 5 High resolution XPS spectra of the valence band (A), Ti 2p3/2 (B), O 1s (C), and Ni 2p3/2 (D) for the pure TiO2 (black), 0.1 wt% NiO–TiO2 (orange),
0.25 wt% NiO–TiO2 (magenta), 0.5 wt% NiO–TiO2 (blue), 1 wt% NiO–TiO2 (red), 2 wt% NiO–TiO2 (olive) and 10 wt% NiO–TiO2 (brown) nanocomposites.

Fig. 6 Energy band alignment at the interface of NiOx and TiO2. EF, ECB,

EVB, ENiO
G , E

TiO2
G , and E

TiO2
bb represent the Fermi level, the conduction band

minimum, the valence band maximum, the band gap of NiOx, band gap of
TiO2, and band bending, respectively.

NJC Paper



18656 | New J. Chem., 2018, 42, 18649--18658 This journal is©The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

thus leading to a positive charge surface, whereas above the
pHpzc they release protons resulting in a negative surface
charge in the reaction medium. Ku et al. found that the pHpzc

of pure TiO2 was 5.3 and that of NiO–polycrystalline TiO2

increased from 5.6 to 6.7 when the NiO amount was augmented
from 0.1 to 5.0 wt%.66 Due to the acidity of the sample studied,
the pH of the solutions ranges between 3.15 and 4.35 resulting
in a positively charged surface. As a result, the chemisorption of
the positively charged MB dye is disfavoured, which precludes
any dye sensitization processes for MB decomposition, whereas
the anionic form of MO (according to the acidity constant of
MO, i.e. 3.45, the anionic form of MO is present in a significant
amount in the reaction medium) is preferentially adsorbed
onto the photocatalysts due to the electrostatic interaction.
This would explain the enhanced photodecomposition rate of
MO compared to that of MB.

Nonetheless, pH effects and surface charges are not the only
main factors governing the high photocatalytic activity of
the materials prepared for dye decomposition. Indeed, the
NiO–TiO2 nanocomposites showed higher photocatalytic activ-
ities than pure TiO2 for NiO loading in the 0.1–1 wt% range
(Fig. 8). Moreover, the evolution of the photocatalytic activities
as a function of the NiO amount is similar for both anionic and
cationic dyes, the 0.25 wt% NiO/TiO2 nanocomposite leading to
the highest activities. Thus, the normalized rate constants for
0.25 wt% NiO–TiO2 are 4.8 and 2.3 times higher than those of
pure TiO2 for MB and MO, respectively. The introduction of NiO
therefore strongly influences the photocatalytic properties. As
described above, the surface properties (specific surface area,
adsorption properties for a given dye. . .) and light harvesting
ability of the 0.1–1 wt% NiO–TiO2 composites are similar. As a
consequence, the change in the photocatalytic properties can
either be attributed to the enhanced photo-generated charge-
separation efficiency or to the catalytic effects of the homo-
geneously distributed NiOx surface layers. According to the
energy diagram shown in Fig. 6, the photo-excited electron
and holes may be transferred to TiO2 and NiO, respectively. The
electrons transferred to TiO2 then take part in the reduction of
dissolved oxygen, forming a superoxide radical, O2

��. The O2
��

radicals react with H2O to produce hydroxyl radicals OH�,
which are strong oxidizing agents for the decomposition of
the dyes. At the same time, the holes transferred to NiO directly
react with the surface adsorbed dyes, leading to dye decom-
position, and also oxidize the surface hydroxyl groups or
physisorbed H2O, forming OH�. Nonetheless, as the energy
level differences reported in Fig. 6 are weak, the enhanced
reaction rates at the NiOx surface can also account for the high
photocatalytic activities.

4. Conclusions

Heterostructure NiO-(101)-anatase–TiO2 nanoparticles were
successfully synthesized by depositing NiO nanoparticles onto
the {101} facet of the oriented TiO2 nanoparticles using the
supercritical fluid chemical deposition route. The materials
characterization results reveal that the SFCD method allows a
good dispersion of NiO at loadings below 2 wt% without
affecting the textural and morphological properties of the
starting bipyramid TiO2 nanoparticles. Only small downward
shifts of the core levels of the NiO–TiO2 photocatalysts com-
pared with that of the pure TiO2 photocatalyst were observed by
XPS, which does not allow conclusions about the presence of
band bending at the p–n junction of the NiO–TiO2 interface.
Nonetheless, the nanocomposites containing NiO loadings
below 1 wt% showed higher photocatalytic activity than pure
anatase TiO2 for the photodegradation of both anionic and
cationic dyes. The 0.25 wt% NiO–TiO2 nanocomposite was the
most efficient system for MB and MO dye decomposition, with
activities 4.8 and 2.3 times higher than those of pure TiO2. The
better performances were mainly attributed to the heterocon-
tact at the interface of the NiO–TiO2 crystallites and to the

Fig. 7 (A) (resp. C) Absorbance changes of the MB (resp. MO) solution
after different irradiation times in the presence of the 0.25 wt% NiO–TiO2

nanocomposite: equilibrium (black), 10 min (purple), 20 min (royal), 30 min
(blue), 40 min (cyan), 50 min (green), 60 min (olive), 70 min (orange) and
80 min (red). (B) (resp. D) ln(C/C0) as a function of the irradiation time for
MB (resp. MO) decomposition in the presence of pure TiO2 (black), 0.1 wt%
NiO–TiO2 (orange), 0.25 wt% NiO–TiO2 (magenta), 0.5 wt% NiO–TiO2

(blue), 1 wt% NiO–TiO2 (red), 2 wt% NiO–TiO2 (olive) and 10 wt% NiO–
TiO2 (brown) nanomaterials.

Fig. 8 Normalized rate constant Knorm as a function of the NiO amount
for the degradation of MB (squares, blue) and MO (circles, orange).
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improved reaction rates at the NiOx surface. However, the
morphology is not yet ideal and needs further optimization.
Finally, this work suggests a potential strategy to enhance
photocatalytic activity by depositing co-catalysts onto specific
facets of photocatalyst crystals.
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Powder X-ray diffraction 

 

XRD pattern of pure NiO prepared by the supercritical fluid chemical deposition (SFCD) 

method is shown in Fig. S1.   
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Fig. S1: XRD pattern of pure NiO synthesized by the SFCD route. 
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Transmission electron microscopy analyses 

 

Bright field TEM images of 0.25wt%, 1wt% and 10 wt% NiO-TiO2 nanocomposites are 

shown in Fig. S2. 
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Fig. S2: Bright field TEM images of 0.25wt% NiO-TiO2 (A), 2wt% NiO-TiO2 (B) and 10 wt% NiO-

TiO2 (C) nanomaterials. 

 

 
 

 
Fig. S3: Expand of STEM-EDX elemental mapping of (A) Ti, (B) O, and (C) Ni for 2wt% NiO-TiO2 

nanomaterials. 



Bright field STEM image of 10 wt% NiO-TiO2 nanocomposite and corresponding 

elemental mapping for O, Ni and Ti are shown in Fig. S4. Semiquantitative analysis indicates 

that this sample contains 9wt% NiO which is in accordance with the nominal NiO amount. 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. S4 (A) Bright field STEM image of the 10 wt% NiO-TiO2 nanomaterials and EDX elemental 

mapping of (B) O, (C) Ni and (D) Ti.  



N2 sorption analysis  

 

N2 adsorption-desorption isotherms and pore size distribution (BJH model applied to the 

adsorption branch) are shown in Fig. S5. 
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Fig. S5: Nitrogen gas adsorption-desorption isotherms and pore-size distribution (inset) of (A) pure 

TiO2 (black), 0.25wt% NiO/TiO2 (magenta) and 0,5wt% NiO/TiO2 (blue) nanomaterials; (B) 0.1wt% 

NiO/TiO2 (orange), 1wt% NiO/TiO2 (red), 2wt% NiO/TiO2 (olive) and 10 wt% NiO/TiO2 (brown) 

nanomaterials.  
 

Before the N2 sorption study of TiO2-NiO nanocomposites, the accuracy of the 

Micromeritics ASAP2010 equipment was checked by recording the adsorption-desorption 

isotherm of a silica-alumina reference material from Micromeritics (Ref: 004-16821-02), the 

characteristics of which are: SBET = 214 ± 6 m
2
.g

-1
; Total pore volume = 0.63 ± 0.08 cm

3
.g

-1
; 

BJH mean pore size = 11.5 ± 1.5 nm. As a consequence, the relative uncertainty concerning 

SBET, total pore volume and BJH mean pore size, determine by this method, are therefore 

about ± 3%, ± 13% and ± 13%, respectively. These relative uncertainties have been used to 

report the values given in Table 1. 

 



X-ray Photoelectron Spectroscopy 
 

XPS survey spectra of pure TiO2 and NiO-TiO2 nanocomposites are depicted in Fig. S6. 
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Fig. S6: XPS survey spectra of pure TiO2 (black), 0.1wt% NiO-TiO2 (orange), 0.25wt% NiO-TiO2 

(magenta), 0,5wt% NiO-TiO2 (blue), 1wt% NiO-TiO2 (red), 2wt% NiO-TiO2 (olive) and 10 wt% NiO-

TiO2 (brown) nanomaterials.  
 

 



Photocatalysis studies 

 

The optical density (OD) increased by up to 10 % and changed randomly by up to 10 % 

after stirring with the photocatalysts for MB and MO solution, respectively (Table S1). Also, 

the position of the main peak in MO showed a red shift while that of MB remains at the same 

position. This modification of absorption spectra arises from change of pH. Absorption 

spectra of MB and MO solutions with various pH values were investigated by adjusting pH 

with ammonia and changes of the absorption intensity are summarized in Table S2. For MB, 

the OD increases by 5.0-12.1 % with decrease of pH from 7.0 to 3.0-5.0 which corresponds to 

the value of pH measured after stirring the solution with photocatalysts for 30 min and before 

the irradiation of UV light. For MO, the OD decreases slightly with decrease of pH from 7.0 

to 5.0 and changes drastically and randomly with pH between 3.0 and 4.0. The random 

change of the OD with the photocatalysts can be explained by the pH effect as the pH of the 

solution with the photocatalysts are between 3.25 and 4.05 almost corresponding to the above 

mentioned pH region which causes drastic changes of OD. Thus, it could be assumed that the 

changes of the OD after stirring with the photocatalysts are mainly attributed to pH effect and 

adsorption of dye onto the samples would be negligible for both MB and MO. The position of 

the main peak of MO shifts towards red region with decrease of pH, confirming that the pH 

effect is responsible for the red shift of the peak position in MO with the photocatalysts. 

 
Table S1. Change of OD of the most intense peak in MB and MO solution with the pure TiO2 and the 

NiO-TiO2 nanocomposites with respect to that without the photocatalysts. 

 

 MB MO 

 

Sample 

 

 

pH 

 

OD change 

(%) 

 

pH 

 

OD change 

(%) 

 

TiO2 

 

3.15 

 

8.1 

 

3.25 

 

- 6.2 

0.1wt% NiO-TiO2 4.13 7.4 4.03 - 3.1 

0.25wt% NiO-TiO2 3.43 3.7 3.43 9.9 

0.5wt% NiO-TiO2 3.85 3.7 3.75 6.7 

1wt% NiO-TiO2 3.71 10.3 3.70 0.1 

2wt% NiO-TiO2 4.35 7.4 4.05 - 3.4 

10wt% NiO-TiO2 

 

6.44 0.6 5.87 0.2 

 
Table S2. Change of OD of the most intense peak in MB and MO solution with various pH values 

between 2.0 and 6.0 with respect to that with pH = 7. 

 

  OD Change  

 pH MB MO  

  
2.0 

 
27.4 

 
53.4 

 

 3.0 6.7 39.8  
 4.0 7.1 - 7.2  
 5.0 12.1 - 3.6  
 6.0 

 
5.0 - 2.1  
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Fig. S7: Kinetic of the degradation of MB (A, left) and MO (B, right) of pure TiO2 (black), 0.1wt% 

NiO-TiO2 (orange), 0.25wt% NiO-TiO2 (magenta), 0,5wt% NiO-TiO2 (blue), 1wt% NiO-TiO2 (red), 

2wt% NiO-TiO2 (olive) and 10 wt% NiO-TiO2 (brown) nanomaterials.  
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3.5 Photocatalytic activity and band alignment of NiO selectively deposited onto (101) facet of 

TiO2 anatase co-exposed with (001) and (101) facets 

 

Shun Kashiwaya conducted experiments, data analysis and preparation of the manuscript. Yannick 

Herman participated in the experimental work Jerome Majimel participated in experimental works and 

the discussions of the results. Celine Olivier, Andreas Klein, Wolfram Jaegermann and Thierry 

Toupance participated in the discussions of the results and revised the manuscript. 
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Photocatalytic activity and band alignment of NiO selectively 

deposited onto {101} facet of TiO2 anatase co-exposed with 

{001} and {101} facets 

Abstract 

Facet-engineered anatase TiO2 with NiO nanoparticles heterocontacts were successfully prepared by 

selective photodeposition of NiO nanoparticles onto the {101} facet of the top-truncated bipyramidal 

TiO2 anatase nanocrystals co-exposed with {001} and {101} facets. The morphology and electronic 

properties of the resulting 0.1-10 wt% NiO-decorated TiO2 were investigated by X-ray diffraction, high 

resolution electron microscopy, N2 sorption analysis, and UV-vis spectroscopy. Furthermore, a careful 

determination of the energy band alignment diagram was conducted by a model experiment using XPS 

and UPS in order to verify charge separation at the interface of the NiO/TiO2 heterostructure. The model 

experiment was performed by stepwise deposition of NiO onto oriented TiO2 substrates and in-situ 

photoelectron spectroscopy measurements without breaking vacuum. Core levels showed shifts of 0.58 

eV toward lower binding energies, meaning an upward band bending in TiO2 at the NiO-TiO2 interface. 

Furthermore, 0.1 wt % NiO-TiO2 exhibited 50 % higher activities than the pure TiO2 for methylene blue 

(MB) photodecomposition under UV irradiation. This enhanced photocatalytic activity of NiO-TiO2 

nanocomposites was related to the internal electric field developed at the p-n NiO/TiO2 heterojunction, 

leading to vectorial charge separation. Finally, mechanistic studies conducted in the presence of carrier or 

radical scavengers revealed that holes dominantly contributed to the photocatalytic reactions in the case of 

NiO-TiO2 photocatalysts while electrons played a main role in photocatalysis for the pure TiO2 materials. 

I Introduction 

Chemical reactions on titanium dioxide (TiO2) surfaces have attracted worldwide attention in the fields 

of energy conversion,1-3 energy storage4-5 and photocatalysis6-8 owing to the relatively high abundance, 

low cost, environmental friendliness, high chemical stability and, both outstanding optical and electronic 

properties of TiO2-based systems. Thus, TiO2 materials, mainly as anatase polymorph, showed great 

ability for decomposition of various pollutants in air or water,7 carbon dioxide reduction,9 and water 

splitting6 under light illumination. Nonetheless, pure TiO2 materials still suffer from some limitations for 
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practical use in photocatalysis stemming from too fast recombination of photogenerated electron-hole 

pairs and too slow redox reactions.10  A first efficient way to improve the photocatalytic activity consists 

in coupling TiO2 nanoparticles to noble metal co-catalysts with large work function, e.g. platinum and 

rhodium, in order to enhance the quantum yield in minority carrier photogenerating by separating 

electron-hole pairs with a Schottky barrier at the interface and subsequently transferring them to acceptor 

molecules.7,11-12 Furthermore, along with providing reaction sites, these noble metals have beneficial 

effects on the kinetics of the photocatalytic reactions, for instance by decreasing the overpotential and the 

activation energy for hydrogen evolution from water according to Volcano plot for metal hydrogen 

bonding energy.13 However, the use of noble metals led to further drawbacks such as their scarcity and 

cost, and their ability to catalyze the back reaction of the formation of water from hydrogen and oxygen, 

limiting the photocatalytic activity for water splitting. Thus, transition metal oxides that have a negligible 

activity for water formation have been chosen as co-catalysts to avoid back reactions.14 Another 

conventional strategy for enhancing the photocatalytic activity is to deposit a p-type semiconductor onto a 

n-type semiconductor in order to establish a p-n heterojunction where photogenerated electrons and holes 

can be spatially separated to the n-type and the p-type components, respectively. Thus, oxidation 

reactions are promoted by p-type metal oxide co-catalysts such as nickel oxide (NiO), iridium oxide 

(IrO2), and cobalt oxide (Co3O4) since these oxides provide oxidation reaction sites, decrease the 

activation energy, and suppress back reactions.7,12,15-16 

On the other hand, the selective deposition of Pt and PbO2 on specific orientations of rutile and anatase 

particles was first reported by Ohno et al.,17 revealing that the different facets of a crystal exposed to the 

surface promote the separation of photoinduced electrons and holes.18-21 This finding has therefore 

triggered crystal facet engineering of TiO2 particles. Crystallographic surface orientation and structures 

indeed play a crucial role in photocatalysis with metal oxide semiconductors since the surface atomic 

structures rule the physi/chemisorption of reactive species, surface transfer and trapping of photoinduced 

charge carriers, and, as a consequence, redox processes.22 Over the past decade, many efforts have been 

devoted to maximizing the surface area of the highest energy {001} facet of anatase crystals, which was 

believed to be the most reactive, to reach high photocatalytic efficiencies.23-25 By contrast, improved 

photocatalytic efficiencies were reported for particles exposing both low energy facets {101} as reduction 

reaction sites and high energy facets {001} as oxidation reaction sites.26-29  This was ascribed to the 

selective migration and/or trapping of electrons and positive holes to specific exposed crystal faces 

favoring spatial charge separation. As a result, the presence of both {101} and {001} facets in anatase 

nanocrystals are relevant to get high photocatalytic activities. Moreover, enhanced photocatalytic 

activities could be reached with TiO2-based materials by combining appropriate co-catalysts together with 

facet engineering of TiO2 nanocrystals for their synergetic effect. In this context, nickel oxide (NiO), 
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which is rather abundant and reactive, is one of the most investigated co-catalyst in combination with 

TiO2, and can act as both reduction and oxidation co-catalysts. Even though various NiO-TiO2 

nanostructures with a random distribution of NiO onto TiO2 have been previously studied,30-35 the 

selective deposition of NiO onto oriented TiO2 nanoparticles has never been achieved and both electronic 

and photocatalytic properties of the resulting heterostructures have not been investigated yet. 

In the following, we described the selective deposition of NiO onto the {101} facet of anatase TiO2 

nanoparticles co-exposed with {001} and {101} facets by employing an original photodeposition method. 

The formation of cubic NiO particles on the {101} facet was clearly evidenced by high resolution 

transmission electron microscopy (HRTEM), high resolution scanning transmission electron microscopy 

(HRSTEM) and energy dispersive X-ray spectroscopy (EDX) mapping. Furthermore, a so-called interface 

experiment36 was performed by in-situ X-ray (XPS) and ultraviolet (UPS) photoelectron spectroscopy 

measurements during stepwise NiO deposition via DC sputtering onto a stoichiometric single crystal 

anatase (101) surface. An energy band alignment of the NiO-anatase (101) interface was experimentally 

derived from the obtained XP and UP spectra of the interface experiment. Finally, photocatalytic 

activities of the obtained nanocomposites as a function of NiO loading were examined by degradation of 

methylene blue (MB) under UV irradiation and mechanistic aspects were investigated by comparing the 

degradation rate determined with those obtained in the presence of hole and radical scavengers. The main 

species ruling the photocatalytic properties of the NiO-TiO2 nanomaterials appeared to be different from 

that governing those of pure TiO2 nanocrystals. 

 

2. Experimental section 

2.1. Photocatalyst preparation 

All the chemicals were purchased in analytical grade and used without any further purification. Single 

crystalline TiO2 anatase particles co-exposed with {001} and {101} facets obtained by gas-phase reaction 

were provided by Prof. Ohtani’s group.27 NiO-TiO2 anatse heterostructured  photocatalysts were 

synthesized in two steps. First, Ni-B was selectively deposited onto the {101} facet of the anatase 

particles by photo-deposition.37 1.27 g of boric acid (Sigma-Aldrich) was added to 70 mL of distilled 

water under stirring. The solution was sonicated for 5 min. Potassium hydroxide was then progressively 

added to the solution until reaching pH = 9.2 under stirring and 30 mL of distilled water was added to the 

solution. The resulting solution is referred as a KBi buffer. The KBi buffer, deionized water, and 

nickel(II) nitrate hexahydrate solution (34 mM, Sigma-Aldrich) were stirred and subsequently centrifuged 

at 4000 rpm for 10 min to remove slight amount of  precipitated nickel hydroxide, which has light green 

color. 500 mg of the single crystalline anatase particles were dispersed into the solution, treated with 
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sonication for 10 min, and stirred for 1 h. To realize the photo-deposition of Ni-B onto the anatase 

particles, the solution was irradiated by UV light under stirring for 3 h. After washing with distilled water 

for three times, the resulting particles were dried at 70 °C and dried in vacuum for 1 h to obtain Ni-B 

deposited onto the {101} facet of the anatase particles. The {101} facet of anatase crystals was found to 

accumulate photo-generated electrons,18 and thus nickel nitrate (Ni2+) is supposed to be reduced to Ni-B 

(Ni0) selectively on the {101} facet of anatase crystals under UV irradiation. The resulting Ni-B/TiO2 

heterostructured particles were then annealed at 400 °C for 4 h to oxidize deposited Ni-B and achieve the 

target NiO-TiO2 photocatalysts where NiO is selectively deposited onto the {101} facet of the anatase 

particles co-exposed with {001} and {101} facets. Photocatalysts containing 0.1, 0,2, 0.5, 1, and 10 wt % 

of NiO were obtained by adding 0.2, 0.4, 1, 2, 20 mL of nickel nitrate solution (34 mM), respectively, as 

a precursor added to 500 mg of anatase particles. The KBi buffer/nickel nitrate solution ratio was fixed at 

2.5 and distilled water was also added to reach 100 mL of total volume of the precursor solution 

containing KBi buffer and nickel nitrate. The resulting photocatalyst are hereafter named as 0.1wt% NiO-

TiO2, 0.2wt% NiO-TiO2, 0.5wt% NiO-TiO2, 1wt% NiO-TiO2, and 10wt% NiO-TiO2. 

2.2. Photocatalyst characterization 

XRD analyses were carried out using a Bruker AXS diffractometer (D2 PHASER A26-X1-A2B0D3A) 

equipped with a Cu anode (Kα radiation).38 DRS spectra were recorded with an UV-vis-NIR Cary 5000E 

spectrophotometer endowed with an integrating sphere and by using a Suprasil cell bearing a quartz 

window. Halon standard (6 mm deep and 1 g.cm-3 density) was employed as a reference. Specific surface 

areas (SBET) were determined by applying the BET (Brunauer−Emmett−Teller) equation39 between 0.1 

and 0.3 relative pressures of N2 adsorption−desorption isotherms recorded at 77K with an ASAP2010 

Micromeritics apparatus. HRTEM images were taken using a JEOL JEM 2200F (JEOL, Tokyo, Japan) 

operating at an acceleration voltage of 200 kV (wavelength λ = 2.51 pm) equipped with a Schottky type 

FEG and an EDX system (Oxford, Wiesbaden, Germany). For the sample preparation for HRTEM, 

HRSTEM and EDX, the photocatalysts nanoparticles were dispersed in ethanol under ultrasound 

sonication and a few droplets of the suspension was placed on holey carbon grids (Cu-300HD, Pacific 

Grid-Tech).  

Electronic properties of the synthesized photocatalysts were investigated with DAISY-MAT40 

consisting of a multi-technique surface analysis system (Physical Electronics PHI 5700). XP spectra were 

measured by using monochromatic Al Kα (1486.6 eV) radiation with an energy resolution of 0.4 eV as 

determined from the broadening of the Fermi edge of a sputter-cleaned Ag substrate. Binding energies of 

core levels, and valence band maximum EVB can be obtained with an accuracy of 50 meV, and 100 meV, 

respectively. Binding energies determined by XPS were calibrated by the Fermi level position of the 

sputter-cleaned Ag sample. Thus, all binding energies are provided with respect to the calibrated Fermi 



119 

 

level set to 0 eV. Photocatalysts samples were pressed onto indium foils as a conductive substrate to 

avoid a charging problem and transferred into the XPS chamber without any further treatments. 

2.3. Photocatalytic experiments 

Photocatalytic properties of the different NiO-TiO2 nanocomposites were determined by decomposition 

of MB (Alfa Aesar) under UV-light illumination using a previously established procedure.41 Typically, a 

suspension of photocatalyst (50 mg) in a MB aqueous solution (10 mg/L, 50 mL) was introduced into a 

Pyrex beaker and was then illuminated with a 125 W high-pressure mercury lamp (Philips, HPL-N 125 

W/542 E27) positioned 60 mm above the solution. After stirring in the dark for 30 min to reach 

adsorption/desorption equilibrium and switching on the light, 2 mL of the suspensions were collected at 

given irradiation time intervals, and then centrifuged (4000 rpm, 10 min) to remove the photocatalyst 

particles from the MB solution. The remaining MB amount was monitored by UV-visible spectroscopy 

following the change in absorption at λmax = 664 nm using a Shimadzu, UV-1650 pc spectrophotometer. 

Blank experiments were also conducted with the catalysts in the absence of light and without the catalysts 

with light irradiation. 

Furthermore, the same experiments were also conducted in the presence of different scavengers for 

charge carriers and radicals to investigate the role of radicals in the photocatalytic reactions. Potassium 

iodide (KI), isopropanol (IPA), and 1,4-benzoquinone (BQ) were selected as holes, hydroxyl radicals 

(OH), and superoxide radicals (•O2-) scavengers, respectively.42-45 The concentration of KI, IPA, and BQ 

were 4 x 10-4, 1 x 10-3 and 1 x 10-3 M, respectively. 

2.4. Interface model experiment 

Natural anatase crystals were employed for both (101) and (001) surfaces (SurfaceNet GmbH, 

Germany). The size of substrates is 5 x 5 x 1 mm. A surface roughness less than a lattice constant was 

achieved after epi-polishing. As-it-is surfaces are contaminated from air and the polishing step. Cleaning 

cycles of Ar+ ion sputtering with an energy of 1 keV for 15 min and annealing in vacuum at 873 K for 30 

min were repeated until no remaining emissions from contaminations were observed by XPS. This 

cleaning procedure has been often employed to remove the contamination and achieve clean TiO2 

surfaces.46 However, Ar sputtering not only leads to a highly reduced surface and thus forms O vacancies 

and Ti3+ surface states, but also partially ruins the crystallinity of the surface and introduces an amorphous 

phase.47 The O vacancy concentration for the (101) and (001) surface prepared by the procedure is 

expected to be 7±2 and 1±2 %, respectively.48 Therefore, the sputtered surfaces were oxidized by an O 

plasma at room temperature in an atmosphere of 7.5 x 10-5 mbar O2 for 15 min to re-oxidize the surface 

and subsequently annealed at 873 K in UHV to re-crystallize the surface. Here the O plasma was selected 
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to replenish the lattice O instead of annealing in O2 atmosphere, which has been generally used for 

oxidation, as this annealing procedure can form additional incomplete reconstructions for rutile surfaces,49 

which could be also formed for anatase surfaces. It may also result in iron oxide surface contaminations 

as at elevated temperatures Fe surface segregation, which is a typical contamination in natural anatase 

crystals, may take place.42 Furthermore, atomic O in the O plasma is more oxidative than a molecular O2 

during annealing in O atmosphere.50 The re-oxidized and re-crystallized surfaces were treated with an O 

plasma at the same condition mentioned above to oxidized them as they were slightly reduced due to 

annealing in vacuum at the elevated temperature. This further oxidation procedure is expected to 

introduce adsorbed O atoms such as peroxo species adsorbed on the surfaces. Finally, the stoichiometric 

surfaces were obtained by removing adsorbed O atoms by annealing the oxidized surfaces in UHV 

condition at 473 K for 20 min.51 

To experimentally determine energy band alignments of NiO and oriented anatase surfaces, the 

interface model experiments were carried out in DAISY-MAT capable of XPS and UPS and different 

deposition chambers in UHV without breaking vacuum. This system allows the in-situ characterization of 

the prepared surfaces and interfaces. NiO was grown on the stoichiometric anatase (001) and (101) 

substrates using a direct current (DC) reactive magnetron sputter deposition from a metallic Ni target with 

40 W of DC power under 20 % O2/ 80 % Ar mixture atmosphere at 0.5 Pa pressure and room temperature. 

The gas flow of oxygen and argon is kept of 4 and 16 sccm, respectively, during the deposition. The 

target-to-substrate distance was set to 8.4 cm. The deposition rate is about 2.0 nm.min-1. We are aware of 

possibly additional defect states induced by sputter deposition of oxides. However, a number of 

systematic studies on different oxides have proven that for our experimental conditions this approach is 

applicable. After each stepwise deposition of NiO by DC sputtering onto the substrates, XPS spectra were 

recorded without breaking vacuum to follow shifts of the binding energies of core level emission lines 

and the evolution of peak shapes. To determine work function and ionization potentials of the 

stoichiometric anatase substrates and NiO films at the end of all the stepwise deposition, UPS spectra 

were recorded in normal emission with He I radiation (hν =21.2 eV) from a He discharge lamp and a 

negative sample bias of 4.0 V. The total energy resolution of UPS is 0.2 eV. No charging problems were 

observed during the XPS and UPS measurements. Binding energies obtained by XPS and UPS were 

calibrated by the Fermi level energy of the sputter-cleaned Ag sample. Hence, all the binding energies are 

given with respect to the calibrated Fermi level position set to 0 eV. More details of the DAISY-MAT 

system and the experimental approach in performing the experiments may be found elsewhere.36 
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3. Results and Discussion 

3.1. Characterization of photocatalysts 

To prepare well-defined heterostructure NiO-TiO2 particles, the electroless nickel plating strategy was 

adapted to deposit amorphous Ni-B catalyst on specific facets of TiO2 nanocrystals.37 Instead of using 

silver-based materials as a reducing agent, UV-light combined with the charge separation offered by the 

different redox properties of {101} and {001} facets were exploited for the selective deposition of 

amorphous Ni-B on the {101} facets which led to NiO particles after further calcination (Scheme 1).  

 

Scheme 1. Preparation strategy for selective deposition of NiO onto {101} anatase TiO2 facets. 

Regardless of the NiO loading, the main diffraction peaks observed in the XRD patterns can be indexed 

as the (101), (004), (200), (105), (211), (204), (116), (220), and (215) diffraction lines of the anatase 

phase of TiO2 (Figure 1). The weak feature at 27.5° (2) can be attributed to the presence of small 

amounts of the rutile polymorph (110 diffraction line) due to the high temperature (1573 K) used to 

synthesize the oriented TiO2 particles.26  Peaks assigned to NiO were not observed clearly probably due to 

the small crystalline domain size (nm order) of the NiO species. It is indeed well-known that the 

crystallite size is inversely proportional to the full-width at half-maximum (FWHM) of each peak which 

yields broadened and attenuated signals in the XRD patterns.52 

The morphology of the different materials was then studied by TEM, HR-TEM and EDX analyses 

(Figures 2 and 3). A square shape of the particle indicates that the {001} facet of the anatase single crystal 

is parallel to the sample carbon grid as anatase single crystals co-exposed with {001} and {101} facets 

have a bi-pyramidal shape with truncation of their top and bottom edges (Figure 2A). A gradation of the 

contrast observed at the edge of the particle can be caused by thinner parts of the sample and might 

represent a slope of the {101} facet. Figure 2B shows TiO2 particles with other angle showing both {001} 

and {101} facets. STEM images, EDX elemental mapping, and HR-TEM images of 10wt% NiO-

TiO2 depicted in Figure 3 clearly indicate that Ni elements are selectively distributed at the 

{101} facets, which constitute the edge of the particle (Figure 3E and 3F). HR-TEM images 

confirm the selective deposition of 2-3 nm of NiO particles onto the {101} facet (Figure 3G and  
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Figure 1. XRD pattern of the pure TiO2 (a, black), 0.1 (b, orange), 0.2 (c, magenta), 0.5 (d, blue), 1.0 (e, red), and 10 

wt % (f, olive) NiO-TiO2 composites. 

3H). The interplanar spacing of 0.18 and 0.20 nm matches with the {200} and {111} planes of the face-

centered cubic (fcc) crystalline phase of NiO. STEM images before and after electron beam irradiation 

also indicate the selective deposition of NiO onto the {101} facet of anatase (Figure 3A and 3B).  

 

Figure 2. Bright field TEM images of the pure TiO2 recorded along (A) the [001] zone axis and (B) the tilted along 

the [010] direction. 
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Figure 3. Bright field STEM image of 10 wt % NiO/TiO2 (A) before and (B) after electron beam irradiation, EDX 

elemental mapping of (C) Ti, (D) O, (E) Ni, and (F) overlay, and HRTEM images (G and H). 

N2 sorption analyses were performed to determine the textural properties of the nanocomposites 

prepared. Regardless of the nickel oxide content, the sample showed a type-II adsorption-desorption 

isotherm typical of non porous or macroporous solids with BET specific areas of about 13.4-14.0 ± 0.4 

m2.g-1 and total pore volumes of 0.036-0.044 ± 0.001 cm3.g-1 (Table 1 and Figure S1). These data are 

consistent with TEM data showing rather well dispersed nanoparticles with few aggregates. Moreover 

depositing up to 10 wt% NiO does not change significantly specific surface areas and total pore volumes. 

 

Table 1. Textural properties (SBET and total pore volume) along with apparent (Kapp) and normalized rate constant 

(Knorm) for the photodecomposition of MB using TiO2 and NiO-TiO2 photocatalysts. 

 

Sample SBET
 

(m2.g-1) 

Total pore 

volume 

(cm3.g-1) 

Kapp
 

(min-1) 

Knorm
 

(mg.m-2.min-1) 

Pure TiO2                                                                  13.4 ± 0.4 0.036 ± 0.001 0.0483 3.60 

0.1wt% NiO-TiO2 13.5 ± 0.4 0.041 ± 0.001 0.0708 5.25 

0.2wt% NiO-TiO2 14.0 ± 0.4 0.042 ± 0.001 0.0177 1.27 

0.5wt% NiO-TiO2 14.0 ± 0.4 0.032 ± 0.001 0.0094 0.67 

1wt% NiO-TiO2 14.0 ± 0.4 0.044 ± 0.001 0.0099 0.71  

10wt% NiO-TiO2 13.7 ± 0.4 0.042 ± 0.001 0.0028 0.21 
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Optical properties of photocatalysts were investigated by DRS (Figure 4). Heterostructured NiO-TiO2 

samples exhibit visible light absorption of which edges shift toward lower energies with increasing the 

NiO loading even though the band gap of NiO has been reported to be 3.4-4.3 eV which corresponds to 

an absorption edge of 288-365 nm.53,54 The origin of the visible light absorption exhibited by NiO-TiO2 

nanocomposites can be ascribed to Ti-Ni bondings at the NiO-TiO2 interface or interfacial defect states.55 

DFT calculations revealed that after modification of the TiO2 surface with NiO clusters, new states appear 

above the valence band and just below the conduction band of TiO2.31,56 Then, this might result in the 

narrowed band gap found for NiO-TiO2 samples and thus the visible light absorption. 

 

Figure 4. UV-Visible diffuse absorption and Tauc plot of [F(R)hν] 1/2 vs hν (inset) of the pure TiO2 (a, black), 

NiO/TiO2 containing 0.1 (b, orange), 0.2 (c, magenta), 0.5 (d, blue), 1.0 (e, red), and 10 wt % (f, olive). 

Since titanium dioxide is generally considered as an indirect semiconductor,57,58 the band gap energy 

(Eg) of the nanocomposites can be estimated from their UV-visible absorption employing the following 

equation: α(hν) = A(hν − Eg)
2, where α, ν, Eg, and A are the absorption coefficient, light frequency, band 

gap energy and a constant, respectively.41 The optical band gap of the materials can be then deduced by 

extrapolating to zero the plot of [α(hν)]1/2 vs hν (also known as Tauc plot). The band gap decreases from 

2.92 eV for pure TiO2 to 2.81, 2.81, 2.82, 2.79, and 2.78 eV for 0.1, 0.2, 0.5, 1, and 10 wt % NiO/ TiO2, 

respectively. Pure TiO2 exhibited a smaller band gap energy than the one expected for pure anatase, i.e. 

3.2 eV,57 which can be related to the slight contamination of rutile and/or the presence of intrinsic bulk 

oxygen vacancies.  

To get a deeper understanding of electronic properties of pure TiO2 and heterostructured NiO-TiO2, 

XPS measurements were carried out. In addition to carbon, nitrogen, and calcium species which is a 

typical contamination of ex-situ samples synthesized chemically, emissions from titanium, oxygen, nickel, 

and indium were detected in the survey spectra (Figure S2). High resolution scanning for Ni2p, O1s, and 
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Ti2p core level emissions, and valence band region emissions are shown in Figure 5. The Fermi level 

shifts toward a lower energy level from 3.38 eV for pure TiO2 to 3.07, 3.12, 3.15, and 2.20 eV for 0.1, 0.2, 

1, and 10 wt % NiO-TiO2,  

 

Figure 5. XP spectra of (A) Ni2p, (B) O1s, (C) Ti2p and (D) valence band emissions for the pure TiO2 (a, black), 

NiO/TiO2 containing 0.1 (b, orange), 0.2 (c, magenta), 0.5 (d, blue), 1.0 (e, red), and 10 wt % (f, olive). 

respectively (Figure 5D). 0.5 wt % NiO-TiO2 sample does not show any bending, most likely due to 

charging problem, leading to unexpected shifts toward higher binding energy to compensate the Fermi 

level shift. Core levels of prepared samples follow the shift of the Fermi level position except for 10 wt % 

NiO-TiO2 sample, the valence band edge of which is affected not only by the Fermi level shift of the TiO2, 

but also directly by the presence of O2p orbitals of NiO. The emission from Ti 2p3/2 doublet contains only 

the Ti4+ line at 459.47 eV without Ti3+ for the pure TiO2 and the peak shifts to the lower binding energy 

by 140 meV with the presence of NiO (Figure 5C). O1s spectra show an intense peak assigned to Ti-O 

bonds accompanying a shoulder at 1.6 eV lower binding energy from the main emission line (Figure 5B). 

The main line of O1s emission also shows an upward bending with NiO as well as the Ti 2p3/2 peaks. The 

presence of Ni was evidenced by the Ni 2p3/2 emission line at 856.64 eV with a satellite line at a binding 

energy higher than that of the main peak by 7.7 eV for the NiO-TiO2 samples (Figure 5A). Although 

typical NiO shows a main peak of Ni2p3/2 accompanying a shoulder peak at 1.5 eV higher binding energy 

position which is known as induced by a non-screening effect,59,60 the emission of our samples shows 

broadened shapes, typical also for small thicknesses, from which the main and satellite peaks cannot be 

distinguished. This broadening might be attributed to the ultra-thin layer of NiO on the anatase particles 
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as the typical intensity pattern of the satellite of NiO is pronounced when the thickness is less than a few 

nm resulting in the overlapping of the main and satellite peaks which cannot be clearly identified. 

3.2. Interface analysis 

To obtain further insight into the interface properties of NiO-anatase heterojunction, in-situ interface 

experiments were carried out by XPS and UPS measurements after each deposition steps of NiO with 

increasing thickness onto the stoichiometric anatase (101) and (001) substrates. Figure 6 presents the core 

level photoelectron spectra recorded during the stepwise deposition for the stoichiometric anatase (101) 

substrate (for anatase (001) see Figure S3).  

 

Figure 6. (A) XP and (B) UP spectra of the interface experiment performed by stepwise NiO deposition onto the 

stoichiometric anatase (101) substrate. 

The emission of Ti2p shows the typical doublet peak but only the Ti2p3/2 line is employed to follow the 

peak shift during the deposition. Complex main line splitting caused by multiplet contributions and 

satellite structures at higher binding energies cause difficulty in identifying and interpreting NiO spectra. 

A binding energy of 853.8 eV is assigned to Ni2p3/2 spectra for Ni2+ of NiOx which is clearly observed 

after completing NiO deposition of thicker than 2.5 nm which shows the expected two satellite peaks. The 

spectral feature within the main satellite at binding energy of around 861 eV indicates that mostly NiO 

starts to form already from the very beginning of the deposition sequence. The shoulder appearing at 1.5 

eV higher binding energy compared to the main emission is assigned to a satellite emission of the Ni2+ 

rather than Ni3+ species. This satellite is a so-called nonlocal screening satellite which appears by a 

screening process due to oxygen atoms belonging to the octahedral NiO6 coordination.59 A broad 

emission at a low coverage of NiO is evident and might be associated with an imperfect octahedral 

structure due to surface effects.60 With increasing the thickness of the NiO layer, the typical NiO emission 
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signature is detected. The contribution of both the nonlocal and surface effect prevents a determination of 

the exact binding energy peak position. Thus, the main satellite peak of Ni2p3/2 at about 7 eV higher 

binding energy from the main line of Ni2p3/2, which is characteristic for Ni2+, is adopted instead of the 

main peak to follow the peak shift in the course of NiO deposition. 

The Ti2p3/2 peak at the beginning of the NiO deposition is rather sharp and symmetric indicating a 

mostly stoichiometric surface with dominant Ti4+ oxidation state (Figure 6). However, the asymmetry of 

the Ti2p line to lower binding energy evidently increases, suggesting a slight increase of Ti3+ states during 

NiO deposition. In the O1s region, a shoulder peak is observed at higher binding energy than the main 

peak by 2.3 eV which might be related to the initial formation of the O poor surface species and possible 

contributions of adsorbed OH-. 

The evolution of the Fermi level (EF − EVBM) of NiO and anatase substrates obtained by following the 

core level of Ni2p satellite and Ti2p3/2, respectively, is shown in Figure 7.  

 

Figure 7. Fermi level (EF − EVBM) measured during stepwise deposition of NiO onto the stoichiometric anatase 

(101) substrate. 

The values EF − EVBM of pristine stoichiometric anatase substrates and the NiO top layer correspond to 

the values of EVB as determined from the valence band spectra. The Fermi level of the uncovered anatase 

(101) substrate is higher than that of the (001) substrate by 90 meV. This might be due to a higher density 

of oxygen vacancies on surface and subsurface of the (101) substrate than that of the (001). The Fermi 

level of both NiO and anatase shows a parallel shift to lower binding energy, indicating that the band 

bending occurs only in the anatase substrates and the emission line of Ni2p just follows the band bending 

in anatase. The Fermi level shift is attributed to the contact formation between NiO and anatase forming 

the p-n junction leading to band bending in contact. It is worth mentioning that the Fermi level of anatase 

(101) shows a smaller band bending than that of the anatase (001) by 210 meV. This is attributed to stable 

oxygen subsurface oxygen vacancies of the anatase (101) which would pin the Fermi level at 2.16 eV. 
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The work function of the uncovered anatase substrates and top layers of deposited NiO was derived 

from the binding energies of the secondary electron edge ESE according to 𝛷 = ℎ𝜈 − ESE. The work 

function of the stoichiometric anatase (101) and (001) substrates is 5.58 and 5.63 eV, respectively. The 

work function of NiO on the anatase (101) and (001) substrates is 5.15 and 5.17 eV, respectively. No 

noticeable difference in work function of NiO indicates that NiO on both orientations of anatase would 

possess similar stoichiometry without being influenced by different surface coordination of these 

orientations. 

Finally, the band alignments at the interface of NiO-anatase (101) and NiO-anatase (001) as 

experimentally established using above data are shown in Figure 8 and in Figure S4.  

 

Figure 8. Band energy diagrams of p-NiO/n-TiO2 anatase (101) before and after contact as determined from the 

experimental data. The important values are given in the figures. 

As is evident from these diagrams, the band bending at the interface of p-doped NiO and n-doped TiO2 

for the anatase (001) is larger than that for the anatase (101) by 210 meV. In p-NiO the Fermi level is 

pinned by a high concentration of defect states (Ni3+ related states) in the bulk of the material as there is 

no additional band bending observed in the NiO layers. The pinning level is found at a value of EF − EVBM 

between 0.68 and 0.75 eV. Strong band bending within the TiO2 substrates is achieved by the deposition 

of thin NiO layers of thicknesses larger than 1 nm, which would contribute to charge carriers separation in 

nanoparticle photocatalyst systems. The facts that the space charge layer observed for the NiO particles 

on the {101} facets of TiO2 is considerably smaller can be understood based on two facets which have 

already been discussed in details in a previous paper. For small particles the space charge layer is 

inhomogeneous and only a small fraction is detected for the rare areas. Secondly, for small dimensions of 

the NiO overlayer onto TiO2 substrates the complete space charge layer may not be found due to 

exhaustion of charge carriers. 

3.3. Photocatalytic properties 
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To examine the photocatalytic activity of the pure TiO2 and NiO-TiO2 nanomaterials, the 

photodecomposition of MB was performed under UV illumination.  

 

Figure 9. (A) Absorbance change in the visible range of methylene blue solution after various illumination time for 

0.1wt% NiO-TiO2: before irradiation (black), 10 min (red), 20 min (blue), 30 min (magenta), 40 min (olive), 50 min 

(cyan) and 60 min (purple). (B) Pseudo-first order kinetic expressed by ln(C/C0) vs irradiation time t of the 

degradation of MB for the pure TiO2 (a, black), NiO/TiO2 containing 0.1 (b, orange), 0.2 (c, magenta), 0.5 (d, blue), 

1.0 (e, red), and 10 wt % (f, olive). 

Figure 9A shows stepwise attenuation of the characteristic absorption peaks of MB during its 

photocatalytic decomposition in the presence of 0.1wt% NiO-TiO2. In this case, MB was completely 

decolorized within 60 min under UV-light irradiation. The photocatalytic activities of pure TiO2 and NiO-

TiO2 photocatalysts with various NiO contents are shown in Figure 9B. For quantitative evaluation of the 

reaction kinetics of the MB degradation, a pseudo-first model expressed as ln(C/C0) = -Kappt was applied. 

Here, C0 and C correspond to the concentration of MB in solution at time 0 and t, respectively, and Kapp 

stands for the apparent 1st order rate constant for MB degradation. Kapp can be obtained from the slope of 

the curve ln(C/C0) vs t. Whatever the photocatalyst the MB degradation follows the pseudo-first order 

reaction kinetics at the beginning of the process. Furthermore, to avoid the influence of the surface area of 

the photocatalysts on the rate constant, the normalized rate constant (Knorm) defined as Knorm = Kapp/SBET 

was calculated as summarized in Table 2. 0.1 wt % NiO-TiO2 photocatalyst shows the highest activity 

and its Knorm is higher than that of the pure TiO2 by 50 %. This result confirms the key role of the 

combination of NiO with TiO2 for enhancing the photocatalytic activities which can be attributed to the 

enhanced charge separation due to the electric field at the interface of the p-n junction between NiO and 

TiO2 as described below.   

3.4. Mechanistic consideration 
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According to literature data, the following mechanism can be proposed.32 After light absorption by the 

photocatalyst, the photoexcited electron and holes are transferred to TiO2 and NiO, respectively, at the p-n 

junction. The electrons transferred to TiO2 take part in the reduction of dissolved oxygen, forming a 

superoxide radical O2
•−. The O2

•− radicals react with H2O to produce hydroxyl radicals OH• which are 

strong oxidizing agents leading to dye decomposition. At the same time, the holes transferred to NiO 

directly react with surface adsorbed dyes leading to the dye degradation and also oxidize the surface 

hydroxyl groups or physisorbed H2O forming OH•. Thus, the charge carriers, the life time of which is 

prolonged by spatial charge separation at the p-n junction, would acquire a higher probability to encounter 

reactants producing radicals in the solution and then account for the high photocatalytic activities. 

To get a deeper understanding of the photodecomposition mechanism in the presence of TiO2 and NiO-

TiO2 nanomaterials, potassium iodide (KI), isopropyl alcohol (IPA) and 1,4-benzoquinone (BQ) were 

employed as hole (h+), hydroxyl radical (OH•) and superoxide radical (•O2-) scavengers, respectively, for 

MB degradation. The corresponding kinetic rate constants for MB decomposition normalized by that 

without scavengers are reported in Figure 10.  
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Figure 10. Kinetic rate constants for MB decomposition normalized by that without scavengers 

for pure TiO2 (black) and 0.1wt% NiO/TiO2 (orange) without scavengers or in the presence of  

potassium iodide (KI), isopropanol (IPA), and 1,4-benzoquinone (BQ). 

First of all, it can be clearly seen that the species involved in the photocatalytic decomposition of MB 

depend on the photocatalyst used. Thus, for pure TiO2 photocatalyst, the degradation efficiency of MB 

decreased obviously in the presence of BQ while it was almost not affected by addition of KI and IPA. 

This means that •O2- radicals, which are created via photo-generated electrons, are the dominant active 

species in the photocatalytic reaction whereas OH• radicals play a minor role. The TiO2 crystals used in 

this study have an averaged aspect ratio (B/A),61 which is defined by the ratio of the short B and long A 



131 

 

sides of the top-truncated bipyramidal crystal, of around 0.7.27 The value corresponds to 72 % exposure of 

the (101) facet and thus it is expected that electrons, which are supposed to be accumulated onto the 

majority (101) facet, are relevant in photocatalysis for the pure TiO2. By contrast, photocatalytic activities 

of 0.1wt% NiO-TiO2 nanomaterials were decreased by addition of KI and IPA whereas BQ has almost no 

effect. Although both holes and electrons would contribute to create OH• and oxidize the MB, BQ as a 

scavenger of •O2- created by only electrons did not affect much the photocatalytic activities. This reveals 

that holes mainly dictate the photocatalytic MB decomposition on the 0.1wt% NiO-TiO2 photocatalysts. 

Despite the TiO2 crystals used mainly expose (101) facets acting as electron sinks, NiO deposited onto the 

(101) facets would effectively collect holes at the p-n NiO/TiO2 (101) junction, but would also catalyze 

the reaction by lowering the activation energy and therefore holes can be competitive rather than electrons. 

However, simultaneous consumption of both electrons and holes are required to achieve optimal 

photocatalytic performances since the accumulation of electrons or holes might result in a higher 

recombination rate. Deposition of NiO in more than 0.2wt% of TiO2 might cover the naked (101) anatase 

surface more than enough and lead to unreacted electrons, which will be accumulated and trigger a higher 

possibility of the recombination. Thus, for this NiO-TiO2 (101) system, 0.1wt% NiO-TiO2 photocatalyst 

showed the best photocatalytic activity. 

 

4. Conclusion 

The selective photodeposition of NiO nanoparticles onto the {101} facets of oriented TiO2 anatase 

nanocrystals co-exposed with {001} and {101} facets was achieved for the first time to yield efficient 

NiO-anatase TiO2 photocatalysts. The NiO-TiO2 heterostructure nanoparticles showed light absorption 

properties shifted toward visible light region compared to those of pure TiO2. Furthermore, interface 

model experiments of NiO deposited onto TiO2 substrates were conducted and compared to NiO-TiO2 

facetted nanostructures to experimentally determine the energy band alignment diagrams of the NiO-

oriented TiO2 heterostructure. The 0.58 eV shifts of core levels toward lower binding energy were 

assigned to an upward band bending in TiO2 anatase (101) substrates which is expected to favor electron-

hole charge separation at the interface. The difference of band bending of only smaller than 0.3 eV is 

related to size effects. The 0.1wt% NiO-TiO2 actually showed 50 % higher photocatalytic activity than 

the pure TiO2 for MB photodegradation due to effective charge separation by the internal electric field 

formed at the p-n NiO-TiO2 heterojunction. Finally further mechanistic studies performed by using carrier 

and radical scavengers revealed that holes dominantly dictate the photocatalytic reactions for NiO-TiO2 

nanocomposites whereas electrons mainly participate in the photocatalytic reactions rather than holes for 

the pure TiO2. These results underline the key role of selective deposition of NiO onto anatase TiO2 
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nanocrystals on photocatalyic processes. This work will inspire optimal designs of heterostructure 

systems for efficient photocatalytic process by combining an appropriate choice of co-catalysts and 

selective deposition onto the specific facet of supported photocatalyst crystals. 
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6. Supplementary information 

 

N2 sorption analyses  

The N2 adsorption-desorption isotherms recorded in the 0-0.99 relative pressure range of pure TiO2 

and NiO-TiO2 nanocomposites are shown in Fig. S1. Before analysis, each sample has been degassed 

under vaccum at 120°C overnight. 
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Figure S1: N2 adsorption-desorption isotherms of TiO2 (black), 0.1wt% NiO-TiO2 (orange); 0.2wt% NiO-TiO2 

(magenta), 0.5wt% NiO-TiO2 (blue), 1wt% NiO-TiO2 (red) and 1wt% NiO-TiO2 (olive). 

 

Before the N2 sorption study of the TiO2-NiO nanomaterials, the accuracy of the Micromeritics 

ASAP2010 equipment was checked by recording the adsorption-desorption isotherm of a silica-alumina 

reference material from Micromeritics (Ref: 004-16821-02), the characteristics of which are: SBET = 214 ± 

6 m2.g-1; Total pore volume = 0.63 ± 0.08 cm3.g-1. As a consequence, the relative uncertainty concerning 

SBET and total pore volume, determined by this method, are therefore about ± 3% and ± 13%, respectively. 

These relative uncertainties have been used to report the values given in Table 1. 
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XPS analysis  

 

The XPS survey of pure TiO2 and NiO-TiO2 nanocomposites are shown in Fig. S2. 

 

 
 

 
Figure S2: XP survey spectra of the pure TiO2 (a, black), NiO/TiO2 containing 0.1 (b, orange), 0.2 (c, magenta), 0.5 

(d, blue), 1.0 (e, red), and 10 wt % (f, olive). 

 

 

 



139 

 

Interface experiments for NiO-anatase (001) substrate 

 

 

Figure S3. XP (A) and UP (B) spectra of the interface experiment performed by stepwise NiO deposition onto the 

stoichiometric anatase (001) substrate. 

 

 

 

Figure S4. Band energy diagrams of p-NiO/n-TiO2 anatase (001) as determined from the experimental data. The 

important values are given in the figures. 
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Summary of the main results and improvement in understanding 

 

Energy depletion along with global warming and environmental pollution gives rise to the main issues that have 

to be addressed in coming decades by our modern societies to provide global sustainability and human 

prosperity.  As a consequence, there is an urgent need for the development of “green” technologies to produce 

alternative and environmentally friendly fuels to conventional fossil fuels or nuclear energy resources and to 

secure safe water and air by the efficient removal of harmful pharmaceutical or organic pollutants. In this 

context, photocatalytic reactions on TiO2 surfaces have attracted worldwide attention due to the capability of 

decomposition of various air or water pollutants, CO2 reduction, and water splitting. However, photocatalysis 

with pristine TiO2 materials is far less than its practical level due to several drawbacks including charge carrier 

recombination and slow surface redox reactions. To draw new prospects in this field, this work aims at 

characterizing properly the surface properties of TiO2 materials as n-type semiconductor and of the interface 

formed with a model p-type material, nickel oxide, and to develop new NiO-TiO2 heterojunction photocatalysts 

for dye photodecomposition. 

 

First of all, fundamental properties of the single crystal TiO2 surfaces were investigated in detail including 

recent investigations concerning various distributions of oxygen vacancies on the differently oriented TiO2 

surfaces and their effects on water adsorption on these surfaces. Oxygen vacancies tend to reside in the 

subsurface or the bulk whereas they form at the site of bridging oxygen on the surface. In addition, on the 

anatase crystallite, the (001) facet is extremely stable against oxygen vacancies while they are easily created on 

the (101) facet. These differences of the stoichiometry of different polymorphs and orientations considerably 

affect the electronic properties and thus chemical phenomena on their surfaces such as water adsorption. 

However, an atomistic view of the origin of these differences is still unclear. In the second subchapter, we have 

introduced the basic principles of photocatalysis and specific phenomena on the TiO2 surface were then outlined. 

Subsequently the role of co-catalysts was summarized. Co-catalysts can not only form space charge layers such 

as Schottky barrier and p-n junctions, which may help in charge carrier separation, but also provide effective 

redox reaction sites by lowering the overpotential for photoelectrochemical water splitting and reducing the 

activation energy for photocatalytic reactions. It is noteworthy that a balance of oxidation and reduction 

reactions has to be taken into consideration as their unbalance might result in accumulating electrons and/or 

holes, leading to higher rates of charge carrier recombination. Furthermore, the possible interface of so-called 

crystal facet engineering was discussed. Starting from the general concept of the influence of crystal facets on 

the photocatalytic properties, the different roles of anatase (001) and (101) orientation were summarized. As far 

as anatase is concerned, electrons migrate to the (101) surface while holes move to the (001) surface although 

the corresponding mechanism still remains unclear. Finally, recent development dealing with the different 

synthetic approaches allowing for the control of the exposed facets of anatase crystals as well as synergetic 

effects of facet engineering and co-catalyst deposition was reviewed. In principle, loading oxidation co-catalysts 

such as metal oxides onto the hole-rich facet can spatially transfer holes to the oxidation co-catalysts while 

depositing reduction co-catalysts such as noble metals onto the electron-rich facet can help electrons to migrate 
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to the reduction co-catalysts, maximizing the effect of charge carrier separation and further enhancing 

photocatalytic activities. However, the number of reports demonstrating this kind of synergetic effect is limited 

to metal oxides photocatalysts and especially for TiO2. Summarizing the states of research on photocatalytic 

reactions using TiO2 as an absorber material there have been recently a number of new approaches and 

mechanistic considerations in the international community. However, a detailed understanding of the discovered 

effects is still missing especially in interesting physical and chemical concepts. 

 

To draw new prospects in this interdisciplinary field, the research conducted in this work consist of mixed 

chemical synthesis and characterization of NiO/TiO2 photocatalysts, and fundamental physical analysis of well-

defined oriented TiO2 surfaces along with the thorough study of the interfaces formed by NiO and these TiO2 

surfaces. Herein, nickel oxide is employed as a p-type semiconductor as it is one of the cheapest and most 

abundant materials among p-type semiconductors on the earth. The series of works, which has been carried out 

within this thesis can be concluded as follow. 

 

To begin with, well- defined anatase (001) and (101) substrates were prepared and studied by XPS and UPS in 

order to establish their fundamental electronic structures (See chapter 3.1). TiO2 surfaces have been 

conventionally prepared by repeated-cycles of Ar ion sputtering and annealing in vacuum. But the resulting 

surface, which is referred as to sputtered, contains large amount of oxygen vacancies and its surface structure 

might be partially destroyed. Thus, to compare their electronic properties carefully, (101) and (001) surfaces are 

in-situ prepared inside the vacuum chamber to examine different well-defined stoichiometries: sputtered, 

annealed, oxidized, and stoichiometric. The orientation of the annealed (101) and (001) surfaces was confirmed 

by unreconstructed LEED patterns. A strong low binding energy emission of Ti3+ in the emission of Ti2p 

spectra, which is a typical evidence of oxygen vacancies, was observed by XPS for only the sputtered (101) 

surface. Although oxygen vacancies are expected for other surface stoichiometry of the (101) and (101) surface 

as well, they are detectable only by surface sensitive resonant photoelectron spectroscopy. XP and UP valence 

band spectra show various distribution of band gap states (BGS), which consists of shallow gap states (SGS) 

and deep gap states (DGS) located at 0.5 and 1.6 eV below conduction band minimum, depending on the 

orientation and surface pretreatment. Regardless of surface conditions, DGS of the (101) surface is significantly 

larger than that of the (101) surface and however shows a similar intensity to that of the (101) surface for UPS. 

Considering a difference of surface sensitivity of XPS and UPS, this difference of DGS indicates that the 

defects are situated below the surface to deep subsurface or bulk for the (001) surface while they are located on 

the surface or only at a shallow subsurface for the (101) surface. The SGS intensity of sputtered (101) surface is 

larger compared to sputtered (001) surface for both XPS and UPS, implying that excess electrons of the (001) 

surface are largely located on defects sites while those of the (101) surface are not only localized on the defects 

sites but also widely delocalized on lattice Ti atoms. DGS and SGS as well as valence band surface states 

(VBSS) of the (001) surface for XPS gradually attenuate with decrease of the Fermi level position but still 

remain even after O plasma treatment. On the other hand DGS and SGS of the sputtered (101) surface for XPS 

have immediately disappeared after re-oxidation by O plasma and subsequent annealing in vacuum. This 
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indicates that defects in a deep subsurface position of the (001) surface are rather stable and tend to remain 

while those of the (101) surface could be refilled by O molecules or peroxo species. Along with a variation of 

DGS, SGS, and VBSS, the variation range in the Fermi level, which are 560 and 860 meV for the (001) and 

(101) surface, was achieved by controlling the surface stoichiometry. Most importantly, we consistently found a 

difference in the Fermi level positions between the (001) and (101) facets. The Fermi level of the (001) facet is 

located at a lower energy than that of the (101) facet by 150-450 meV for any surface conditions. As a result, we 

expect an energy junction between these facets with space charge layers where photo-generated electrons and 

holes are transferred to the (101) and (001) surfaces, respectively. This difference in the Fermi level for the 

different facets can explain why the (101) surface functions as reduction reaction sites while the (001) acts as 

oxidation reaction sites. 

 

Furthermore, the surface potentials of polycrystalline anatase thin films, (001) and (101)-oriented anatase single 

crystals and (001) and (110)-oriented rutile single crystals with different surface stoichiometry were 

systematically compared by XPS and UPS (See chapter 3.2). Among electronic properties, the work function is 

especially relevant for photocatalysis and solar cells since it governs the band alignments of various interfaces. 

Differently treated surfaces of sputtered, annealed, stoichiometric, and oxidized surfaces were prepared and a 

large variation of work function as well as of the Fermi level was achieved by manipulating surface states. The 

variation of work function determined by UPS is 1.74, 1.94, and 1.39 eV for the anatase (001), anatase (101), 

and polycrystalline surface, respectively. The change of work function is attributed mainly to a change of the 

Fermi level position with respect to the valence band maximum as the ionization potential is almost constant for 

all surface conditions of oriented anatase single crystals with ionization potential of 7.9 ±  0.15 eV. 

Considerably higher ionization potentials of up to 9.5 eV are observed for the oxygen plasma treated surfaces 

due to peroxo or bridging oxygen species possibly formed on the surface. In addition, water vapor was exposed 

to the above differently prepared surfaces at room temperature and the resulting electronic properties were 

investigated by XPS and UPS. Water exposure resulted in reproducible shifts of the Ti2p and O1s core levels 

and the valence band edge toward higher binding energies due to a downward band bending at TiO2 surfaces 

which leads to an accumulation of electrons at the surface. The original difference in the Fermi level difference 

between the anatase (001) and (101), which was present for all surface states, disappeared after water exposure. 

Concerning the difference of work function between anatase and rutile, for the annealed surfaces anatase was 

found to show a higher ionization potential than rutile by up to 0.5 eV while their Fermi level positions were 

similar. Aligning the vacuum energies of anatase and rutile therefore results in a valence band maximum of 

anatase being 0.5 eV lower in energy than that of rutile in agreement with recently established band alignment 

by experimental and theoretical approaches. Thus, charge separation of electrons and holes to anatase and rutile, 

respectively, would take place at the interfaces and this phenomenon allows for rationalizing the enhanced 

photocatalytic activity of mixed phases of anatase and rutile such as the commercial benchmark TiO2 

photocatalyst named P25. 
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To understand the effect of crystallographic orientation and surface states of rutile TiO2 on band alignments of 

NiO/TiO2, the energy band alignments of NiO and (001) and (110)-oriented rutile TiO2 single crystal substrates 

was performed with reduced and oxidized surfaces by so-called interface experiment (See chapter 3.3). As a 

first step, electronic properties of (001) and (110)-oriented rutile TiO2 single crystal substrates with reduced and 

oxidized surfaces were investigated by XPS and UPS. The valence band spectra of XPS show that the Fermi 

level position of 3.12 eV above the VBM of the reduced rutile (110) is decreased to 2.68 eV with surface 

oxidation. The work function of the reduced (001) derived from the secondary electron edge of UPS spectra was 

4.3 eV and increased to 6.0 eV with surface oxidation. A similar shift was observed for the (001) surface. 

Interface experiments were carried out by XPS and UPS measurements during in-situ stepwise NiO film 

deposition using DC sputtering on reduced and oxidized rutile substrates for both orientations. Both 

identification and interpretation of the NiO spectra are rather complex due to severe main line splittings caused 

by multiplet contributions such as nonlocal screening and surface effects, and satellite structures at higher 

binding energies especially for thinner layers of NiO. However, for thicker layers, the typical NiO emission 

signature was obtained. There is a clear tendency of an increase of the asymmetry of the Ti2p line to lower 

binding energy for all heterointerfaces during, which may indicate a slight increase of Ti3+ states during NiO 

deposition. In the O1s region, there are two shoulder peaks observed. The first shoulder at a higher binding 

energy than the main emission by 3.0 eV is assigned to peroxo species on the top of the rutile substrates, which 

disappears immediately after the first NiO deposition. The second one at a higher binding energy than the main 

peak by 2.3 eV might be attributed to the initial formation of the O poor surface species, which should show a 

higher binding energy. For all the four cases of NiO and different rutile heterostructures, the spectral changes of 

the TiO2 substrates and growing NiO films are very similar to each other. However, the band bending saturates 

at a thinner NiO thickness for the rutile (001) compared to the rutile (110) for both annealed and oxidized 

substrates due to higher oxygen vacancy concentration of the rutile (001) surface than that of the rutile (110) 

surface. The Fermi level of rutile finally reaches the same value of about 1.6 eV independent of surface 

orientation and treatment. Finally, four band alignments of NiO/annealed rutile (110), NiO/annealed rutile (001), 

NiO/oxidized rutile (110), and NiO/oxidized rutile (001) are experimentally established using data from the 

interface experiments. The overall trend of the development of space charge layers in the two materials in 

contact of p-doped NiO and n-doped TiO2 are hardly affected by the pretreatment induced differences. 

Evidently in p-NiO the Fermi level is pinned by a high concentration of defect states (Ni3+ related states) in the 

bulk of the material as there is no additional band bending found in the NiO layers. The pinning level is found at 

a value of the Fermi level between 0.5 and 0.9 eV. The deposition of NiO leads to strong band bending within 

the TiO2 substrates already for thin NiO layers, which would contribute to charge carrier separation in 

photocatalytic particles. 

 

In order to demonstrate the efficiency of facet engineered photocatalysts of the p-NiO/n-TiO2 heterostructures, 

NiO/(101)-anatase-TiO2 heterostructure nanoparticles were synthesized by depositing NiO onto the (101) facet 

of bipyramid anatase crystals via the supercritical fluid chemical deposition (SFCD) route (See chapter 3.4). 
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First, bi-pyramidal anatase single crystal nanoparticles exposed to only the (101) facet was synthesized by a 

solvothermal method employing capping agents to control the growth of specific facets. Although the 

nanoparticles homogeneously agglomerate along the [001] direction before the treatment with superhydride and 

sulfuric acid solution, the well-ordered agglomeration has collapsed upon post-treatment with superhydride and 

sulphuric acid, forming partially isolated particles and mainly random agglomeration due to the small 

nanoparticle size. However, the well-defined structure of the bipyramidal shape of the crystallites remains 

unchanged after reductive, acidic, and supercritical fluid treatments. NiO was deposited on the oriented anatase 

particles via hydrothermal reactions employing a SFCD route with carbon dioxide and ethanol as solvents. The 

crystalline phase of the nanoparticles was characterized as anatase by Raman, XRD, nitrogen sorption and TEM. 

The crystal morphology of the heterostructures does not change for NiO amounts up to 2wt%. The uniform 

dispersion of NiO on the TiO2 nanocrystallites was confirmed by EDX elemental maps of titanium, oxygen and 

nickel. The size of TiO2 and NiO crystallites is 7-10 and 2-3 nm, respectively. Whatever the NiO loading, the 

mean mesopore size is rather constant, i.e. ranging between 4.7 and 5.2 ± 0.2 nm. The BET surface areas of 

NiO/TiO2 nanocomposites containing less than 2wt% NiO remain close to that of pure TiO2 nanoparticles, i.e. 

ranging between 105.1 ± 2.9 and 116.1 ± 3.2 m2.g-1. As a result, the supercritical fluid deposition of NiO 

allowed for the keeping high surface areas which was not the case for NiO/TiO2 nanocomposites prepared by 

other methods such as sol-gel derived methods. The NiO/TiO2 heteronanostructures showed visible light 

absorption, the edge of which shifts towards lower energies with increasing amount of NiO. The band gaps 

determined using Kubelka-Munk theory decrease from 3.21 eV for pure TiO2 to 3.19, 3.15, 3.16, 3.13, 3.07 and 

2.98 eV for 0.1, 0.25, 0.5, 1, 2, and 10 wt % NiO/TiO2, respectively. XPS spectra showed the Fermi level shift 

toward a lower energy level (EF-EVB) from 3.34 eV for pure TiO2 to 3.31, 3.29, 3.26, 3.26, 3.23, and 2.54 eV for 

0.1, 0.25, 0.5, 1, 2, and 10 wt % NiO/TiO2 heteroparticles, respectively. However, the observed shifts in Ti 2p 

and O 1s core levels remain relatively small, i.e. less than 100 meV.  We attribute this contradictory effect either 

to the too small size of the particles to form a complete space charge layer which can saturate the band bending. 

But also a too homogeneously distributed NiO clusters on the TiO2 for small coverage or the formation of a 

phase separated NiO cluster onto TiO2 nanocrystallites may attribute to this effect. The 0.25wt% NiO/TiO2 

nanocomposite was the most efficient system for the decomposition of methylene blue (MB) as cationic dye and 

methyl orange (MO) dye as anionic dye, with activities 4.8 and 2.3 times higher than those of the pure TiO2. 

 

Finally, NiO/(101)-(001)-co-exposed anatase TiO2 nanoparticles were successfully prepared by photo-

deposition of NiO nanoparticles as a p-type co-catalyst preferentially onto the (101) facet of oriented n-TiO2 

anatase nanocrystals co-exposed with (001) and (101) facets (See chapter 3.5). The oriented anatase 

nanoparticles were prepared by gas-phase reaction of titanium(IV) chloride and oxygen. The top-truncated bi-

pyramidal structures were confirmed by HRTEM images and the size of the crystallites is 50-150 nm. To 

prepare well-defined heterostructured NiO-TiO2 particles, UV-light combined with the charge separation 

offered by the different redox properties of the (101) and (001) facets were exploited for the selective deposition 

of amorphous Ni-B on the (101) facets which led to NiO particles after further calcination in air. EDX elemental 
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mapping for 10 wt% NiO/TiO2 shows that Ni is selectively distributed at the (101) facets, which constitute the 

edge of the particle. Furthermore, HRTEM images confirms that the Ni compounds selectively deposited onto 

the (101) facet is NiO as the interplanar spacing of 0.18 and 0.20 nm matches with the (200) and (111) planes of 

the face-centered cubic crystalline phase of NiO. Heterostructured NiO/TiO2 samples exhibit visible light 

absorption of which edges shift toward lower energies with increasing the NiO due to Ti-Ni bonding at the 

interface or interfacial defect states. The band gaps determined using Kubelka-Munk theory decrease from 2.92 

eV for pure TiO2 to 2.81, 2.81, 2.82, 2.79, and 2.78 eV for 0.1, 0.2, 0.5, 1, and 10 wt % NiO/TiO2, respectively. 

XPS spectra showed the Fermi level shift toward a lower energy level (EF-EVB) from 3.38 eV for pure TiO2 to 

3.07, 3.12, 3.15, and 2.20 eV for 0.1, 0.2, 1, and 10 wt % NiO/TiO2, respectively. The peak of the emission from 

Ti2p3/2 shifts to lower binding energy by 140 meV with the presence of NiO, which indicates band bending in 

the TiO2 particles at the interface of the p-n junction of NiO/TiO2 heterostructure nanoparticles. To obtain 

further insight into the interface properties of NiO-anatase heterojunctions, in-situ interface experiments were 

carried out by XPS and UPS measurements after each deposition steps of NiO with increasing thickness onto 

the stoichiometric anatase (101) and (001) substrates. The band bending at the interface of p-doped NiO and n-

doped TiO2 for anatase (001) is larger than that for the anatase (101) by 210 meV. In p-NiO the Fermi level is 

pinned by a high concentration of defect states (Ni3+ related states) in the bulk as there is no additional band 

bending observed in the NiO layers. The pinning level is found at a value of EF-EVB between 0.68 and 0.75 eV. 

Strong band bending within the TiO2 substrates is achieved by the deposition of thin NiO layers of thicknesses 

larger than 1 nm, which would contribute to charge carrier separation in nanoparticle photocatalyst systems. To 

evaluate the photocatalytic activity of the prepared nanoparticles, the photodecomposition of MB was carried 

out under UV irradiation. The 0.1 wt % NiO/TiO2 showed 50 % higher activities than the pure TiO2. For both 

cases, these better performances were mainly attributed to spatial charge carrier separation due to the internal 

electric field at the interface of the NiO/TiO2 p-n junction. To understand the main factor of the 

photodecomposition, potassium iodide, isopropyl, and 1,4-benzoquione were employed as hole, hydroxyl 

radical and superoxide radical scavengers, respectively for MB decomposition. It was found that electrons play 

a main role in photocatalysis for the pure TiO2 as its crystallites are exposed with 72 % of the (101) facet which 

is considered to accumulate the photogenerated electrons. On the other hand, holes mainly dictate the 

photocatalytic dye decomposition on the 0.1 wt % NiO/TiO2 photocatalysts. Although the (101) facet functions 

as electrons sink, NiO deposited onto the (101) facets would effectively collect holes at the p-n NiO/ TiO2 (101) 

junction, but would also catalyse the reaction by lowering the activation energy and therefore hole charge 

transfer can be competitive compared to electron charge transfer. 

 

This thesis has provided fundamental insights of oriented TiO2 with various polymorphs and surface 

stoichiometry in terms of surface science, which are indispensable when considering the charge transfers of the 

TiO2 with metals, semiconductors, or liquid. The concept of facet engineered surfaces established in this work 

would be operational to other metal oxide semiconductors as well. In addition, we hope that this work will 

inspire optimal designs of heterostructure systems for efficient photocatalytic process by combining a suitable 
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choice of co-catalysts and the selective deposition of the co-catalysts onto the specific facet of supported 

photocatalyst crystallites. 

 

Outlook 

 

This work systematically investigated the electronic properties of well-defined TiO2 surfaces under various 

surface conditions. To further understand the mechanism of photocatalytic reactions on the TiO2, interactions 

and reactions of water and simple molecules such as oxygen on these surfaces need to be investigated by low 

energy electron microscopy, scanning tunnelling microscopy, scanning tunnelling spectroscopy, Low-energy 

ion scattering spectroscopy, and PES. This thesis suggests a potent strategy to enhance photocatalytic activities 

by depositing co-catalysts onto specific facets of photocatalyst crystals. To further improve the performance of 

heterostructure systems with TiO2, further investigation of the synergetic effects of facet engineering and co-

catalysts has to be carried out. In this work, NiO was deposited selectively onto only the anatase (101) facet. To 

compare the role of facets of the (001) and (101) facets, NiO needs to be deposited onto the (001) facet and its 

photocatalytic activity should be compared with the case where NiO is selectively deposited on the (101) facet. 

However, due to the lack of appropriate precursor for photo-deposition, so far there has been no reports which 

demonstrate the selective deposition of NiO onto the (001) facet. In addition, the aspect ratio of the (001) and 

(101) facets in anatase crystallites has to be taken into consideration since the ratio might affect the dynamics of 

charge carriers in the NiO/TiO2 heterostructure system and thus be related with photocatalytic activities. Finally, 

hydrogen production by alcohol photoreforming or by water-splitting would warrant to be studied by using the 

NiO/TiO2 heterostructures developed in this work as so far only dye decomposition was performed to evaluate 

the photocatalytic activity. To make the process sustainable, the use of alcohols obtained from waste or from 

biomass should be emphasised. The proof of such a concept could have a huge impact for industrial purposes. 
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Résumé :  

Les photocatalyseurs à base de TiO2 ont été l’objet d’une grande attention comme une méthode 

durable de purification de l’air ou de l’eau, et de production d’hydrogène par décomposition de l’eau. 

Une stratégie avantageuse consiste à développer des héterostructures par couplage avec un autre oxyde 

métallique former une jonction de type Schottky ou avec un autre oxyde métallique pour créer une 

jonction p-n à l’interface de manière à prévenir les recombinaisons via une séparation de charge 

« vectorielle » à ces jonctions. De plus, les facettes cristallines jouent un rôle crucial dans le piégeage 

des porteurs de charge et, donc, dans les réactions rédox photoactivées. Ainsi, le dépôt sélectif de métal 

ou d’oxyde métallique sur des facettes spécifiques de nanocristaux de TiO2 devrait augmenter l’activité 

photocatalytique par l’amélioration de la séparation des charges. Dans ce travail, nous avons combiné 

l’emploi du cocatalyseur de type p NiO pour former des jonctions p-n avec son dépôt sélectif sur des 

nancristaux de TiO2 anatase exposant des facettes bien définies. Par ailleurs, des expériences modèles 

de physique de surface ont été menées pour étudier les propriétés électroniques de ces hétérojonctions. 
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Abstract for public: TiO2 photocatalysts have attracted attention as a sustainable method for water/air 

purification and hydrogen production by water splitting. An advantageous strategy is the development 

of heterostructures by coupling metal oxides to create a p-n junction at their interface in order to 

prevent the recombination by vectorial charge carrier separation at these energy junctions. In addition, 

crystal facets play a decisive role in the trapping of charge carriers and thus photocatalytic redox 

reactions. Thus, selective deposition of metal or metal oxides onto specific facets would enhance the 

photocatalytic activity by improving charge separation. In this work, we have combined the usage of p-

type NiO co-catalyst to form p-n junction with its selective deposition onto the specific facet of 

oriented TiO2 nanocrystal photocatalysts. Furthermore, the physical model experiments have been 

performed to investigate the electronic properties of these heterojunctions. 

Keywords : photocatalyst, TiO2, heterostructure 

Unité de recherche 

[l’Institut des Sciences Moléculaires, Chimie Moléculaire et Matériaux (C2M), UMR 5255 CNRS 351 

Cours de la Libération F-33405 Talence Cedex] 

  




