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Chapter 1

Introduction générale 1.1 Généralités sur la théorie des valeurs extrêmes

Le problème d'estimation de la fréquence d'événements extrêmes est un problème qui a de nombreuses applications. Ainsi pour mettre en contexte ce problème, dans une ère où le climat est plus que jamais affecté par les activités de l'homme, on considère en exemple l'estimation de la fréquence d'événements météorologiques extrêmes comme les sécheresses en Afrique, les ouragans aux États-Unis et les typhons en Asie qui ont des réalités économiques mais aussi humaines.

Théorie des valeurs extrêmes univariée

Historiquement, l'approche de la théorie des valeurs extrême s'orientait vers le comportement du maximum de variables aléatoires indépendantes et identiquement distribuées (i.i.d.). Ainsi, Fisher et Tippett [START_REF] Fisher | Limiting forms of the frequency distribution of the largest or smallest member of a sample[END_REF] ont établi les premiers résultats fondateurs sur la loi limite des maximums. Gnedenko [START_REF] Gnedenko | Sur la distribution limite du terme maximum d'une série aléatoire[END_REF] a ensuite étendu ces résultats avec le théorème de Gnedenko-Fisher-Tippett qui donne les lois limites non-dégénérées possibles pour les maximums.

Theorem 1.1 (Gnedenko-Fisher-Tippett). Soit X 1 , . . . , X n variables aléatoires i.i.d. avec fonction de répartition commune F et M n = max(X 1 , . . . , X n ). Supposons qu'il existe des suites (a n ) n , (b n ) n avec a n > 0 et b n ∈ R telles que

lim n→∞ P (M n -b n ) a n ≤ x = lim n→∞ (F (a n x + b n )) n = G(x) (1.1)
où G est non-dégénéré. Alors, à une constante de position et d'échelle près, G est de type de l'une des trois classes suivantes :

• Fréchet de paramètre α > 0 avec une fonction de répartition de la forme Φ α (x) := exp(-x -α )1 x≥0 ; 1 • Gumbel avec une fonction de répartition de la forme Λ(x) := exp(-e -x );

• Weibull négative de paramètre α > 0 avec une fonction de répartition de la forme

Ψ α (x) := exp(-(-x) α ) , x < 0 1 , x ≥ 0.
Les lois limites ont été paramétrées par Jenkinson [START_REF] Jenkinson | The frequency distribution of the annual maximum (or minimum) values of meteorological elements[END_REF] en une seule famille, appelée "Generalised Extreme Value" (GEV), donnée par la densité

G(z) = exp -1 + γ z -µ σ -1/γ (1.2) définie sur {z ∈ R : 1 + γ(z -µ)/σ > 0} avec -∞ < µ < ∞, σ > 0 et -∞ < η < ∞.
Le paramètre γ est appelé indice de valeur extrême. La loi limite est de type Fréchet pour γ > 0, de type Weibull négative pour γ < 0 et de type Gumbell pour γ = 0. Lorsque (1.1) a lieu avec la fonction limite

G γ (z) = exp(-(1 + γz) -1/γ )
on dit que F est dans le domaine d'attraction de G γ et on note F ∈ M DA(G γ ). Le problème de trouver les hypothèses de régularité sur les queues de distribution pour avoir une telle convergence est résolu par les travaux de Gnedenko [START_REF] Gnedenko | Sur la distribution limite du terme maximum d'une série aléatoire[END_REF] qui donnent les domaines d'attraction pour les lois GEV avec γ = 0. On citera aussi de Haan [START_REF] De Haan | On regular variation and its application to the weak convergence of sample extremes[END_REF] pour la caractérisation du domaine d'attraction de la loi Gumbel ainsi que ses reformulations des conditions d'appartenance au domaine d'attraction des lois GEV en terme de variations régulières étendues. Theorem 1.2 (de Haan). Pour γ ∈ R, F ∈ M DA(G γ ), si et seulement si

lim t→∞ U (tx) -U (t) a(t) = x γ -1 γ , x > 0, (1.3) 
où U est l'inverse continue à gauche de 1/(1 -F ) ( U = (1/(1 -F )) ← ) et a est une fonction positive. Lorsque γ = 0, le terme de droite est interprété comme log x.

On notera tout particulièrement le domaine d'attraction de la loi de Fréchet Φ α (z) = exp(-z -α )1 z>0 , (1.4) que l'on peut formuler simplement comme une condition de variation régulière : 1 -F doit varier régulièrement en ∞ avec indice -α, c'est-à-dire lim u→∞ 1 -F (ux) 1 -F (u) = x -α , x > 0.

Definition 1.1. Soit X une variable aléatoire avec fonction de répartition F et x F le sup fini ou infini du support de X. Alors, pour u < x F , la fonction

F u (x) = P(X -u ≤ x|X > u), x ≥ 0,
est la fonction de répartition des excès de X au dessus de u.

Ainsi défini, le théorème suivant donne la limite en loi des excès au dessus d'un seuil pour des distributions appartenant au domaine d'attraction d'une loi GEV.

Theorem 1.3 (Pickands-Balkema-de Haan). Soit X une variable aléatoire avec fonction de répartition F . Et soit γ ∈ R alors F ∈ M DA(G γ ) si et seulement si

lim u→x F sup 0<x<x F -u |F u (x) -H γ,β(u) (x)| = 0 (1.5)
avec β une fonction positive et H γ,β est la fonction de répartition de la loi Pareto généralisée

H γ,β (x) = 1 -1 + γ x β -1/γ , 1 + γx/β > 0.
Par ailleurs, la construction du point de vue des processus ponctuels a été introduite par Dwass [START_REF] Dwass | Extremal processes[END_REF] et Lamperti [START_REF] Lamperti | On extreme order statistics[END_REF] sous la notion de processus extrémal. D'un point de vue plus appliqué, l'approche des maximums par bloc (BM) profite de la théorie construite sur la distribution limite des maximums afin de modéliser les événements extrêmes. L'idée étant que la distribution des observations dans le bloc appartient au domaine d'attraction d'une loi GEV de sorte que le maximum du bloc suit approximativement une loi GEV dont on pourra estimer les paramètres. D'un point de vue statistique, plusieurs estimateurs ont été proposés comme l'estimateur du maximum de vraisemblance (MLE) et les estimateurs des moments pondérés par probabilité (PWM) [START_REF] Hosking | Estimation of the Generalized Extreme-Value Distribution by the Method of Probability-Weighted Moments[END_REF]. Sous des conditions du second ordre, de Haan et Ferreira [START_REF] Ferreira | On the block maxima method in extreme value theory: PWM estimators[END_REF] ont obtenu la normalité asymptotique des estimateurs PWM (avec γ < 1/2). Sous des conditions similaires, Dombry et Ferreira [START_REF] Dombry | Maximum likelihood estimators based on the block maxima method[END_REF] ont obtenu la normalité asymptotique pour les estimateurs MLE (avec γ > -1/2). Ainsi, dans le cas de l'estimateur MLE, soit F ∈ M DA(G γ ) avec γ > -1/2, ce qui est équivalent à la convergence des fonctions inverses

lim t→∞ V (tx) -V (t) a(t) = G ← γ =
x γ -1 γ , x > 0, avec V = -(1/ log F ) ← et a une fonction positive. Si de plus, on admet une condition sur la vitesse de convergence, c.-à-d. que pour une fonction A satisfaisant lim t→∞ A(t) = 0, on a lim t→∞ V (tx)-V (t) a(t)

-x γ -1 γ A(t) = x 1 s γ-1 s 1 u ρ-1 duds = H γ,ρ (x), x > 0, ρ ≤ 0 (1.6)
alors, on a le théorème suivant sur la normalité asymptotique de l'estimateur MLE: Gardes et Girard [START_REF] Gardes | Asymptotic properties of a Pickands type estimator of the extreme value index[END_REF] ont montré que les estimateurs type Pickands pour l'indice de valeur extrême sont asymptotiquement normaux dans le cas γ < -1/2 et asymptotiquement GEV distribués dans le cas γ > -1/2.

Une autre approche possible, plus récente, est la modélisation des excès au dessus d'un seuil (PoT). L'idée est simple. Les événements extrêmes sont tellement différents des événements journaliers de sorte que seuls les autres événements extrêmes apportent de l'information. Cette approche repose sur la théorie des excès au dessus d'un seuil. Les estimateurs MLE et PWM ont été proposés et largement étudiés dans la littérature. Ainsi, la normalité asymptotique pour l'estimateur MLE est donnée par Drees et al. [START_REF] Drees | On maximum likelihood estimation of the extreme value index[END_REF]. Pour compléter le tableau, la normalité asymptotique dans le cas PWM peut être trouvée dans de Haan et Ferreira [START_REF] Ferreira | On the block maxima method in extreme value theory: PWM estimators[END_REF]. Des comparaisons numériques ont été faites pour contraster les approches BM/PoT et PWM/MLE (Dombry et Ferreira [70], Ferreira et de Haan [START_REF] Ferreira | On the block maxima method in extreme value theory: PWM estimators[END_REF], etc). Un certain consensus se dresse sur le sujet avec la méthode PoT qui semble plus efficace que la méthode BM même si la méthode PoT requiert en moyenne plus d'observations. La combinaison MLE/PoT obtient la meilleure erreur quadratique moyenne optimale asymptotique. On se référera à Beirlant [START_REF] Beirlant | Statistics of Extremes: Theory and Applications[END_REF] pour une revue plus poussée sur l'approche statistique.

Théorie des valeurs extrêmes multivariée

Les motivations pour une extension multivariée de la théorie des valeurs extrêmes sont diverses et variées. Par exemple, on peut s'intéresser à l'étude spatiale d'événements météorologiques extrêmes. Ou encore, en finance, une question naturelle concerne la dépendance entre les retours extrêmes de produits financiers. Ainsi Tiago de Oliveira [START_REF] Tiago De Oliveira | Extremal distributions[END_REF][170] [START_REF] Tiago De Oliveira | Bivariate extremes; extensions[END_REF], Geffroy [START_REF] Geffroy | Contribution à la théorie des valeurs extrêmes[END_REF], Sibuya [START_REF] Sibuya | Bivariate extreme statistics. I[END_REF] se sont rapidement intéressés au cas bivarié.

L'extension au cadre multivarié n'est pas une simple transposition de la théorie univariée. Ainsi, de nombreux problèmes sont propres au cadre multivarié. L'obstacle qui apparaît immédiatement revient dans la définition même d'extrême vu qu'il n'y a pas de manière naturelle d'ordonner des observations multivariées (Barnett [15]). Par la suite, on définit (1.9)

La notion de dépendance apparaît naturellement dans le cadre multivarié. L'approche naturelle consiste à traiter les marginales puis, après une normalisation des marginales, à étudier la dépendance. Ainsi, de Haan et Resnick [START_REF] De Haan | Limit theory for multivariate sample extremes[END_REF] ont obtenu, en supposant sans perte de généralité que les marginales soient Fréchet distribuées, une caractérisation des lois extrêmes multivariées sous le terme de représentation spectrale. Ce résultat utilise le fait que la classe des lois extrêmes multivariées coïncide avec la classe des distributions max-stable multivariées, qui est une sous classe des lois max-infiniment-divisible [START_REF] Balkema | Max-infinite divisibility[END_REF], ce qui donne alors une autre caractérisation en terme de mesure exponentielle. Le théorème est le suivant : 

G(x) = exp (-µ(x)) , x ∈ (0, ∞) d , (1.10) 
avec µ la fonction de survie de µ définie par

µ(x) = µ([0, x] c ) < ∞, x ∈ (0, ∞) d .
Une autre caractérisation est donnée par Huang [START_REF] Huang | Statistics of Bivariate Extreme Values: Statistiek Van Bivariate Extreme Waarden[END_REF] qui introduit le terme de fonction de dépendance de queue stable (stable tail dependence function).

Finalement, une autre représentation populaire est celle des copules qui ont été introduites pour décrire la structure de dépendance de lois multivariés par Sklar [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF]. Ce choix correspond au cas où les marginales sont uniformément distribuées. Definition 1.2. Une copule C est la fonction de répartition d'un vecteur multivarié Z ∈ [0, 1] d à marginales de loi uniformes sur [0, 1].

Theorem 1.6 (Sklar). Toute fonction de répartition F sur R d avec marginales F 1 , . . . , F d peut être décomposée en

F (x) = C(F 1 (x 1 ), . . . , F d (x d )), x ∈ R d (1.11)
où C est une copule. Si F est continue alors C est unique. La copule C F associée à F est donnée par

C F (u) = F F -1 1 (u 1 ), . . . , F -1 d (u d ) , u ∈ (0, 1) d (1.12)
Deheuvels [START_REF] Deheuvels | Caractérisation complête des lois extrêmes multivariées et de la convergence aux types extrêmes[END_REF][64] a donné la caractérisation des domaines d'attraction sous le point de vue copule.

1.2. R ÉSULTATS OBTENUS DANS LA PARTIE I Theorem 1.7 (Deheuvels). Une loi multivariée F avec marginales F 1 , . . . , F d appartient au domaine d'attraction de la loi GEV multivariée G avec marginales G 1 , . . . , G d si et seulement si Marshall et Olkin [START_REF] Marshall | Domains of attraction of multivariate extreme value distributions[END_REF] présentent des analogues au Théorème de Gnedenko dans le cas multivarié sur la caractérisation des domaines d'attraction.

• F i ∈ M DA(G i ), i =
Plus récemment, Coles et Tawn [START_REF] Coles | Modelling extreme multivariate events[END_REF], Rootzén et Tajvidi [START_REF] Rootzén | Multivariate generalized Pareto distributions[END_REF] ont réintroduit l'approche des excès au dessus d'un seuil.

Du point de vue de la modélisation, de nombreux modèles paramétriques ont été présentés par Gumbel [START_REF] Gumbel | Distributions des valeurs extrêmes en plusieurs dimensions[END_REF], Hüsler et Reiss [START_REF] Hüsler | Maxima of normal random vectors: between independence and complete dependence[END_REF], Coles et Tawn [START_REF] Coles | Modelling extreme multivariate events[END_REF], Brown et Resnick [START_REF] Brown | Extreme values of independent stochastic processes[END_REF], etc. Toute une littérature a été écrite dans ce sens, mais on citera en particulier Tawn [START_REF] Tawn | Bivariate extreme value theory: models and estimation[END_REF][159] [START_REF] Tawn | Modelling Multivariate Extreme Value Distributions[END_REF] [START_REF] Tawn | Estimating Probabilities of Extreme Sea-Levels[END_REF] pour ses travaux. Dombry, Engelke et Oesting donnent des algorithmes pour la simulation exacte de processus max-stable multivariés [START_REF] Dombry | Conditional simulation of max-stable processes[END_REF] et donnent des conditions sur l'existence d'un estimateur du maximum de vraisemblance local asymptotiquement normal et efficace [START_REF] Dombry | Asymptotic properties of the maximum likelihood estimator for multivariate extreme value distributions[END_REF]. Par ailleurs, les récents travaux de Rootzén, Wadsworth et Segers [START_REF] Rootzén | Multivariate peaks over thresholds models[END_REF] [START_REF] Rootzén | Multivariate generalized Pareto distributions: parametrizations, representations, and properties[END_REF] se concentrent sur l'aspect statistique et modélisation des lois Pareto généralisées multivariées.

Résultats obtenus dans la partie I

La première partie regroupe les travaux effectués sous la direction de Clément Dombry. Ces chapitres sont issus d'un article soumis pour publication à Journal of Multivariate Analysis [103] et une première révision est en cours. Notation vectorielle pour la première partie: on note • ∞ norme max sur R d et

• une norme arbitraire, 1 d = (1, . . . , 1) est le vecteur avec toute les composantes égales à 1. Les opérations sur les vecteurs sont, sauf mention du contraire, prises composantes par composantes. Le maximum composante par composante de vecteur est noté max(x 1 , x 2 ) = x 1 ∨ x 2 , la comparaison entre les vecteurs x 1 ≤ x 2 est à prendre composante par composante de sorte que x 1 ≤ x 2 signifie que certaines composantes de x 1 sont plus grandes que les composantes associées de

x 2 . Pour x ∈ [0, ∞) d , on note [0, x] le cube [0, x 1 ] × • • • × [0, x d ] et [0, x] c = [0, ∞) d \ [0, x].

Chapitre 2: Simple models for multivariate regular variations

Dans ce chapitre, on donne une construction de vecteurs aléatoires à variations régulières qui nous permet de retrouver les modèles classiques max-stable multivariés rencontrés dans la 1.2. R ÉSULTATS OBTENUS DANS LA PARTIE I littérature.

On rappelle la notion de fonction à variations régulières en +∞ qui sert de base pour construire la notion de variable aléatoire variant régulièrement. Definition 1.3. Une fonction mesurable f : R + → R + est dite à variation régulière en ∞ avec indice α et notée f ∈ RV α si lim t→∞ f (tx) f (t) = x α , x > 0.

(1.14)

On dira alors qu'une variable aléatoire positive X varie régulièrement si sa queue de distribution 1 -F est à variation régulière, c'est-à-dire

lim t→∞ 1 -F (tx) 1 -F (t) = x α , α ∈ R. (1.15) 
Étant donné l'espace M 0 (R d ) des mesures boréliennes µ sur R d \ {0} tel que µ(R d \ O) est finie pour tout voisinage ouvert O de 0, une suite µ n ∈ M 0 (R d ) converge vers µ ∈ M 0 (R d ) si f dµ n -→ f dµ pour toute fonction f continue, bornée et s'annulant dans un voisinage de 0. On définit alors la notion de variation régulière multivariée d'un vecteur aléatoire X comme étant la convergence nP(X/a n ∈ •)

M 0 -→ Λ, n → ∞ (1.16) 
pour une suite a n → +∞ et mesure limite non-dégénérée Λ ∈ M 0 (R d ). Une telle mesure limite Λ a la propriété d'être homogène, c'est-à-dire qu'il existe un réel α > 0 tel que Λ(uA) = u -α Λ(A) u > 0, A ⊂ R d \ {0} Borélien.

(1.17)

Dans le cas de vecteur aléatoires à composantes positives X, la notion de variation régulière sur [0, ∞) d est caractérisée par la variation régulière de la fonction de survie multivariée. C'est-à-dire que pour F la fonction de répartition de X, on a

lim u→+∞ 1 -F (ux) 1 -F (u1 d ) = V (x), x ∈ [0, ∞) d \ {0}, (1.18) 
où la fonction limite V est donnée par la mesure du complémentaire du pavé [0, x] d qu'on notera Λ([0, x] c ) et

1 d = (1, . . . , 1) ∈ R d .
Pour construire des vecteurs aléatoires variant régulièrement sur R d \ {0}, une possibilité est de considérer le produit X = RZ entre une variable aléatoire R positive et à variation régulière d'indice α > 0 et un vecteur aléatoire Z suffisamment intégrable, par exemple α + ε intégrable avec ε > 0. Cette construction est donnée par la proposition suivante Proposition 1.1. Soit R une variable aléatoire positive et Z un vecteur d-dimensionnel indépendant de R. Alors, si l'une des deux hypothèses suivantes est vérifiée 1.2. R ÉSULTATS OBTENUS DANS LA PARTIE I

• la queue de distribution 1 -F de R varie régulièrement en +∞ avec indice -α < 0 et

E[ Z α+ε ] < ∞ pour ε > 0; • 1 -F (x) ∼ Cx -α lorsque x → ∞ avec C > 0 et E[ Z α ] < ∞,
le produit X = RZ définit un vecteur aléatoire variant régulièrement sur [-∞, ∞] d \{0} avec indice α. C'est-à-dire

nP(a -1 n X ∈ •) M 0 -→ Λ(•) dans M 0 (R d ) lorsque n → ∞, (1.19) 
où a n est le quantile d'ordre 1 -1/n de R et la mesure limite Λ est donnée par

Λ(A) = ∞ 0 P(uZ ∈ A)αu -α-1 du, A ⊂ R d \ {0} Borélien. (1.20)
Par ailleurs, si Z est positif, alors le support de Λ est donné par [0, ∞) d \ {0} et la fonction limite V est caractérisée par

V (x) := Λ([0, x] c ) = E d i=1 Z i x i α , x ∈ [0, +∞) \ {0}. (1.21) 
Cette construction peut être vue dans le cadre plus général de la théorie des valeurs extrêmes multivariées comme le produit entre une composante radiale et une composante angulaire, R étant alors la composante radiale. La preuve de la proposition illustre bien ce point de vue, l'idée étant que sur les ensembles de la forme 1 Borélien , x > 0 qui forment une classe déterminant la convergence, on peut appliquer le lemme de Breiman univarié 2.1 pour obtenir la convergence M 0 et la caractérisation de la mesure limite Λ. D'un point de vue copule, on trouve une interprétation de la proposition précédente. On considère le modèle de convolution avec un seul facteur commun [START_REF] Krupskii | Extreme-value limit of the convolution of exponential and multivariate normal distributions: Link to the Hüsler-Reiß distribution[END_REF] X = αE1 d + Y (1.22) où α > 0, E suivant une loi exponentielle et Y un vecteur d-dimensionnel avec E[e αY i ] < ∞, i = 1, . . . , d. On a alors:

A = z ∈ R d : z > x, z/ z ∈ B , B ⊂ S d-
Proposition 1.2. Soit C X la copule associée au vecteur aléatoire X défini par l'équation (1.22). Alors

C n X (u

1/n 1 , . . . , u 1/n d ) → C V (u 1 , . . . , u d ), (u 1 , . . . , u d ) ∈ [0, 1] d , (1.23) 
où C V (u 1 , . . . , u n ) = exp(-V (σ 1 (-log u 1 ) 1/α , . . . , σ d (-log u d ) 1/α ))

et

σ α i = E[e αY i ] et V (x) = E d i=1 e αY i x α i .
1.2. R ÉSULTATS OBTENUS DANS LA PARTIE I L'idée de la preuve est de remarquer qu'en prenant l'exponentielle de X, on retrouve le produit de exp(αE) et exp Y . Par hypothèse sur Y et par le fait que exp(αE) suit une loi α-Pareto alors le produit forme un vecteur positif variant régulièrement. Puis finalement, il faut remarquer que comme l'exponentielle agit composante par composante, la copule de exp(X) est C X et C X (u 1/n 1 , . . . , u 1/n d ) est la copule du maximum normalisé de n copies de X indépendantes. Finalement, C V est la copule du vecteur α-Fréchet limite.

Une question naturelle se pose sur la caractérisation de la mesure limite lorsque la composante angulaire Z est à densité f Z . D'où la proposition suivante Proposition 1.3. Si Z a une densité f Z , alors la mesure limite Λ a aussi une densité λ donnée par

λ(z) = ∞ 0 f z (z/u)αu -d-α-1 du.
(1.24)

Il devient alors naturel d'étudier la forme de la densité pour des lois classiques multivariées à densité. On retrouve alors des modèles connus comme le modèle max-stable t-extrémal lorsque Z ∼ N (0, Σ) avec

λ(z) = α (2π) d/2 |Σ| 1/2 Γ α + d 2 z Σ -1 z 2 -(α+d)/2 , z ∈ R d \ {0}, (1.25) 
le modèle max-stable Hüsler-Reiss lorsque lnZ ∼ N (m, Σ) avec

λ(z) = Cexp - 1 2 log z Q log z + l log z d i=1 z -1 i , z ∈ (0, ∞) d (1.26) où C = α (2π) (d-1)/2 |Σ| 1/2 1 d Σ -1 1 d exp - 1 2 m Σ -1 m + 1 2 (m Σ -1 1 d -α) 2 1 d Σ -1 1 d , Q = Σ -1 - Σ -1 1 d 1 d Σ -1 1 d Σ -1 1 d , (1.27) 
l = m - α + m Σ -1 1 d 1 d Σ -1 1 d 1 d Σ -1 . (1.28)
ainsi que d'autres modèles max-stable. 

P[u -1 X x|X ua] = V (x ∨ a) V (a) , x ∈ [0, ∞) d \ [0, a] (1.29)
(Q) = vect(1 d ), l ∈ R d vérifiant l 1 d < 0, et a = (a 1 , . . . , a d ) ∈ (0, ∞) d le seuil. Le modèle Hüsler-Reiss-Pareto sur [0, ∞) d \ [0, a] paramétré par (Q, l) est défini par la densité f a (z; Q, l) = 1 C a (Q, l) exp - 1 2 log z Q log z + l log z d i=1 z -1 i 1 {z a} , z ∈ (0, ∞) d (1.30)
avec C a (Q, l) la constante de normalisation. On note alors Z HRPar a (Q, l) si le vecteur aléatoire Z a pour densité f a .

Le cadre donné précédemment permet de relier les paramètres de modèle Hüsler-Reiss à l'indice de variation régulière et aux paramètres de la loi log-normale qui composent le vecteur à variation régulière, par exemple l T 1 d est égal à -α. De la même façon que la loi log-normale, la loi Hüsler-Reiss Pareto est invariant par changement d'échelle, c'est-à-dire

Proposition 1.4. Soit Z HRPar a (Q, l). Alors • pour tout u ∈ (0, ∞) d , uZ HRPar ua (Q, l + log u), et • pour tout β > 0, Z β HRPar a β (β -2 Q, β -1 l).
Ainsi sous réserve de reparamétrisation, il est toujours possible de se ramener au cas a = 1 d . Par la suite, on considère donc a = 1 d . Le bon cadre qui permet l'étude du modèle de Hüsler-Reiss Pareto est le cadre des familles exponentielles. Ainsi, le résultat principal place le modèle Hüsler-Reiss Pareto dans ce cadre avec le théorème suivant Theorem 1.8. Soit E l'espace euclidien d(d + 1)/2-dimensionnel défini par

E = (A, b) ∈ R d×d × R d : A = A, A1 d = 0 muni du produit scalaire (A, a), (A , a ) = 1≤i,j≤d A i,j A i,j + 1≤k≤d a k a k . Soit Θ le sous-ensemble de E défini par Θ = (Q, l) ∈ E : Q semi définie positive, Ker(Q) = vect(1 d ), l 1 d < 0 .
Pour tout a ∈ (0, ∞) d , les lois Hüsler-Reiss Pareto f a (z; θ) θ∈Θ forment une famille exponentielle complète canonique paramétrée par θ = (Q, l) ∈ Θ et ayant comme statistique suffisante L'idée de la preuve est de remarquer que comme 1 d appartient au noyau de Q, un changement de variable accompagné du théorème de Fubini nous permet de séparer l'intégrale en deux parties où chacune des deux parties donne les conditions recherchées. Sous le cadre de la théorie des familles exponentielles [START_REF] Barndorff-Nielsen | Information and exponential families in statistical theory[END_REF], le calcul du terme de normalisation est important car il nous permet de calculer les moments de la statistique naturelle. Les calculs du terme de normalisation nous permettent aussi d'obtenir une méthode de simulation exacte. Puis, on s'intéresse à l'inférence par l'estimateur du maximum de vraisemblance. Notre principal théorème est le suivant concernant l'existence, l'unicité et la normalité asymptotique du maximum de vraisemblance Theorem 1.9. Soient a ∈ (0, ∞) 1) , . . . , z (n) ) est strictement concave sur Θ. Un estimateur du maximum de vraisemblance existe si et seulement si

T (z) = - 1 2 (log z -log z)(log z -log z) , log z , où log z = d -1 (1 d log z)1 d .
d et n ≥ 1. (i) (existence et unicité) Pour des observations z (1) , . . . , z (n) ∈ [0, a] c , la log-vraisemblance (Q, l) → L n (Q, l; z (
V n = 1 n n i=1 log z (i) log z (i)T - 1 n n i=1 log z (i) 1 n n i=1 log z (i) est conditionnellement définie positive dans le sens où v V n v > 0 pour tout v ∈ R d \{0} tel que v 1 d = 0. S'il existe, le maximum de vraisemblance θmle n est l'unique solution de l'équation du score ∂ log C a ∂θ (θ) = T n , θ ∈ Θ. (1.31) 
(ii) (normalité asymptotique) Soit θ = (Q, l) ∈ Θ et supposons que Z (1) , . . . , Z (n) soient générés suivant la loi HRPar a (Q, l). Alors, pour n ≥ d -1, il existe presque sûrement un unique estimateur du maximum de vraisemblance θmle

n qui est asymptotiquement normal et efficace, c'est-à-dire √ n( θmle n -θ) d -→ N (0, I(θ) -1 ), lorsque n → ∞,
où I(θ) est la matrice d'information de Fisher

I(θ) = - ∂ 2 log C a ∂θ∂θ (θ).
L'idée de la preuve repose sur la théorie générale des familles exponentielles [START_REF] Barndorff-Nielsen | Information and exponential families in statistical theory[END_REF] qui donne une caractérisation de l'existence et l'unicité du maximum de vraisemblance par l'appartenance de la statistique suffisante T n à l'intérieur de la fermeture convexe du support de la statistique T . Ainsi, on détermine int(conv(S)) et on montre T n ∈ int(conv(S)) si et seulement si V n est conditionnellement définie positive. La seconde partie du théorème est un résultat général pour les familles exponentielles complètes. Finalement, on s'intéresse à l'extension du modèle Hüsler-Pareto aux variations régulières non-standard. Cette notion qui avait été introduite par Resnick [START_REF] Resnick | Heavy-tail phenomena[END_REF] correspond au cas où les marginales ont des indices de queues différents. On définit alors le modèle Hüsler-Reiss Pareto par

1.2. R ÉSULTATS OBTENUS DANS LA PARTIE I Definition 1.5. Soit d ≥ 2 et Θ l'ensemble défini par Θ = (α, Q, l) ∈ (0, ∞) d × R d×d × R d : Q symétrique semi-définie positive , KerQ = vect(1 d ) et l 1 d = -1 Alors pour le seuil a ∈ (0, ∞) d , le modèle Hüsler-Reiss Pareto généralisé sur [0, ∞) d \ [0, a] paramétré par θ = (α, Q, l) est définie par la densité f a (z; θ) = 1 C a (θ) exp - 1 2 log z D α QD α log z + l D α log z d i=1 z -1 i 1 {z a}
où C a (θ) est la constante de normalisation et D α la matrice diagonale ayant pour diagonale α.

On remarquera la condition supplémentaire l 1 d = -1 que l'on pose pour identifier le modèle. En effet pour λ > 0, la densité est invariante par rapport au changement de variable (α, Q, l) → (λα, λ -1/2 Q, λ -1 l). Dans le cas où tous les indices de variations régulières α i sont égaux alors on retrouve le modèle Hüsler-Reiss Pareto. Par ailleurs, comme le modèle Hüsler-Reiss Pareto, le modèle dit généralisé est aussi stable par changement d'échelle. Cette propriété sera revisitée plus loin lorsqu'on abordera les procédures d'optimisation dans le cadre d'inférence par le maximum de vraisemblance. Les arguments qui ont permis l'étude de l'estimateur de vraisemblance dans le cas non généralisé ne peuvent pas être utilisés dans le cas généralisé. En effet, la famille des distributions Hüsler-Reiss Pareto généralisée forme une famille exponentielle courbée avec statistique minimale suffisante T donnée par T (z) = (log z log z , log z) et l'ensemble Θ des paramètres n'est pas strictement inclus dans l'intérieur de l'espace naturel des paramètres associé à cette famille. Néanmoins, en montrant la différentiabilité en moyenne quadratique du modèle statistique {f 1 d (θ; z), θ ∈ Θ} et en utilisant une expansion uniforme du processus de vraisemblance au voisinage du paramètre θ 0 combinée avec le théorème Argmax ( [START_REF] Van Der | Cambridge Series in Statistical and Probabilistic Mathematics[END_REF], Corollaire 5.58, voir Appendice 3.B), nous parvenons à étudier les propriétés asymptotiques de l'estimateur du maximum de vraisemblance. D'où le résultat suivant Theorem 1.10. Soient θ 0 ∈ Θ avec I θ 0 définie positive et Z (1) , Z (2) , . . . i.i.d suivant une loi HRPar a (θ 0 ). Alors, il existe un estimateur du maximum de vraisemblance θmle

n qui est asymptotiquement normal et efficace, c'est-à-dire √ n( θmle n -θ 0 ) d -→ N (0, I -1 θ 0 ) lorsque n → ∞.
L'idée de la preuve est que sous réserve que I θ 0 soit définie positive, le développement de Taylor d'ordre 2 sur voisinage compact de θ 0 implique la concavité stricte du processus de vraisemblance local avec forte probabilité. Puis, en montrant que la suite des maximums ĥn du processus de vraisemblance est tendue, on applique le théorème Argmax [START_REF] Van Der | Cambridge Series in Statistical and Probabilistic Mathematics[END_REF] qui 1.2. R ÉSULTATS OBTENUS DANS LA PARTIE I nous donne le résultat. Néanmoins, on a montré que la log-vraisemblance est strictement concave sur un voisinage de θ 0 et non pas globalement. On remarquera par contre que la log-vraisemblance est biconcave, c'est-à-dire que les fonctions partielles α → L n (α, Q, l) et (Q, l) → L n (α, Q, l) sont concaves. On propose alors un estimateur des moments pour initialiser une routine d'optimisation de la log-vraisemblance. En utilisant la loi forte des grands nombres, on montre la consistance forte de cet estimateur puis le théorème central limite combiné avec la delta méthode implique la normalité asymptotique que l'on résume dans la proposition suivante Theorem 1.11. Soient θ = (α, Q, l) ∈ Θ et Z (1) , Z (2) , . . . i.i.d suivant une loi HRPar a (θ). Pour j = 1, . . . , d, on définit

N n,j = 1 n n i=1 1 Z (i) j >1 et O n,j = 1 n n i=1 1 Z (i) j >1 log Z (i) j .
Alors l'estimateur θ0 = ( α0 , Q0 , ln ) défini par

α0 = (N n,j /O n,j ) 1≤j≤d et ( Q0 , l0 ) = argmax Q,l L n ( α0 , Q, l)
est fortement consistant et asymptotiquement normal.

Finalement, on montre que la suite d'estimateurs obtenus par une routine de maximisation alternée initialisée par l'estimateur des moments converge presque sûrement vers l'unique maximiseur de la log-vraisemblance dans le voisinage du vrai paramètre. En effet, le théorème de Prohorov implique que l'estimateur des moments θ0 appartient avec forte probabilité à un voisinage de θ. En utilisant la propriété de biconcavité de la log-vraisemblance, on obtient que chaque itéré de l'algorithme de maximisation alternée reste dans le voisinage de θ. Pour terminer, on propose un test du rapport de vraisemblance pour l'hypothèse H 0 : α 1 = • • • = α d . Encore une fois, on utilise un développement du processus de vraisemblance local pour obtenir le résultat suivant : Theorem 1.12. Soit θ 0 = (α, Q, l) ∈ Θ avec α = (α 1 , . . . , α d ). Soit Z (1) , . . . , Z (n) i.i.d. de loi HRPar(θ 0 ). On note θn l'estimateur du maximum de vraisemblance pour le modèle Hüsler-Reiss Pareto généralisé et θ0 l'estimateur du maximum de vraisemblance dans le modèle Hüsler-Reiss Pareto. On définit alors la différence des log-vraisemblance par

∆ n = L n ( θn ) -L n ( θ0 ). Alors, sous l'hypothèse nulle α 1 = • • • = α d , 2∆ n converge en loi vers une loi du khi-deux à d -1 degrés de liberté, c'est-à-dire 2(L n ( θn ) -L n ( θ0 )) d → χ 2 (d -1). 1.2. R ÉSULTATS OBTENUS DANS LA PARTIE I

Chapitre 4: Numerical study

Dans ce chapitre, on illustre les résultats donnés dans le chapitre précédent par des études de simulations. On étudie ainsi les propriétés de l'estimateur du maximum de vraisemblance dans différents cadres de simulations. L'un des cadres proposés est le cas de la simulation exacte. Plusieurs études sont possibles comme l'étude de l'effet de la dimension d sur les estimateurs. Comme le nombre de paramètre du modèle est égal à d(d + 1)/2, on choisit de comparer les estimateurs pour α = -l i et Q 11 = 1 -i>1 Q 1 i et on impose une structure "symétrique" aux paramètres. Ainsi on fixe les paramètres

Q = I d -1 d 1 d /d et l = -α/d1 d .
Dans ce cas, puisque les l i sont fixés et dépendent uniquement de α, on étudie aussi l'effet de α sur l'estimation. Puis, comme les résultats sur l'estimateur du maximum de vraisemblance sont asymptotiques, on fait varier la taille de l'échantillon n pour observer le comportement de l'estimateur sur des échantillons finis. Finalement, on répète l'expérience 1000 fois pour obtenir un échantillon Monte-Carlo qui nous donne les résultats suivants Sans surprise, la qualité des résultats s'améliore avec la taille de l'échantillon. Les résultats plus surprenants concernent l'effet de α. Les valeurs plus grandes de α produisent des résultats plus mauvais sur l mais meilleurs sur Q. Pour l'effet de la dimension d, on remarque que la variance de l'estimateur α est stable par rapport à d alors que le biais et la variance de Q11 augmentent avec la dimension. Comme Q11 est obtenu a partir des Q1i , on peut justifier l'augmentation du biais et de la variance comme conséquence de l'augmentation du nombre de paramètres. Finalement, on remarque aussi que l'estimateur Q 11 a un biais négatif et donc par construction, les Q1i sont en moyenne positivement biaisés.

α = 0.5 α = 1.0 α = 1.2 α Q11 α Q11 α Q11 d=2 n=10 - 65 
Les autres cadres étudiés sont:

1.3. G ÉN ÉRALIT ÉS SUR LE MACHINE LEARNING
• Dans le cas dimension deux, pour un échantillon HRPar 1 d (Q, l) distribué, on considère une structure asymétrique sur l, c'est-à-dire

l 1 = -α/2 + ε et l 2 = -α/2 -ε.
• Pour un échantillon dans le domaine d'attraction d'une loi Hüsler-Reiss Pareto, on étudie le biais et la variance de l'estimateur du maximum de vraisemblance.

Généralités sur le machine learning

Historiquement, la notion de "machine pensante" a été décrite par Turing [175] [START_REF] Silver | Mastering the Game of Go with Deep Neural Networks and Tree Search[END_REF] a vaincu Lee Sedol, un des meilleurs joueurs du monde de Go. Jusqu'alors le jeu du Go était considéré comme trop complexe pour que les méthodes brutes surpassent les meilleurs joueurs de Go [START_REF] Van Den Herik | Games solved: Now and in the future[END_REF]. D'un autre côté, le monde est plus connecté que jamais depuis l'avènement d'internet (facebook, twitter), et des volumes massifs d'information sont recueillis tout les jours. Devant ce phénomène, de nouveaux problèmes se posent. Des contraintes de temps et de mémoire poussent aux développement de nouvelles méthodes/algorithmes plus rapides pouvant donner en temps limité des solutions partielles. Par exemple, dans le contexte du problème d'estimation de l'inverse parcimonieuse de la matrice de convariance pour des modèles graphiques Gaussien, l'algorithme Graphical-Alternating Minimisation Algorithm (G-AMA), développé par Dalal et Rajaratnam [START_REF] Dalal | G-AMA: Sparse Gaussian graphical model estimation via alternating minimization[END_REF] et basé sur l'estimation par maximum de vraisemblance avec une pénalité 1 , propose de maintenir la parcimonie des itérés. Ceci est utile lorsque des contraintes de temps et/ou de dimensions forcent un arrêt prématuré des calculs.

Dans un contexte d'explosion de l'information et des capacités de calcul, l'apprentissage statistique donne une classe d'outils puissants pour le traitement des données massives. Les applications sont nombreuses et diverses et comprennent les systèmes de recommandation [START_REF] Bennett | The netflix prize[END_REF], la reconnaissance vocale et des formes [START_REF] Fernández | Sequence Labelling in Structured Domains with Hierarchical Recurrent Neural Networks[END_REF][92], la classification de textes [START_REF] Aggarwal | A Survey of Text Classification Algorithms[END_REF], la traduction automatique, etc.

De nombreux problèmes traités peuvent être vus comme des problèmes d'optimisation. Considérons ainsi un simple problème d'apprentissage supervisé. Commençons par quelques définitions qui nous serviront par la suite. Soit X l'espace entrée et Y l'espace réponse. La fonction de coût mesure le coût de prédire y sachant que la vérité est y. Etant donné un n-échantillon aléatoire (X 1 , Y 1 ), . . . , (X n , Y n ) i.i.d. sur X × Y de loi jointe P (X,Y ) supposée inconnue et une classe de prédicteur F, pour une fonction de coût C et une réalisation (x 1 , y 1 ), . . . , (x n , y n ) du n-échantillon, la plupart des problèmes reviennent à minimiser sur la classe F le risque empirique défini par

R n (f ) = 1 n n i=1 C(f (x i ), y i ). (1.32)
En d'autres mots, cela revient à trouver le meilleur prédicteur pour la n-réalisation dans la classe F. Des formulations plus théoriques sont toutefois nécessaires pour l'étude des algorithmes. Une formulation plus probabiliste consiste à remplacer le risque empirique

R n (f ) par le risque théorique R(f ) = E[C(f (X 1 ), Y 1 )].
Bien que minimiser ce risque théorique serait idéal en terme de prédiction, en pratique, le risque théorique est inaccessible car la loi du couple (X 1 , Y 1 ) est inconnue. Si par ailleurs, les prédicteurs f ∈ F sont paramétriques de sorte que chaque prédicteur f est uniquement identifié par β ∈ B (f = f β ), le problème d'optimisation revient à minimiser R(f β ) sur B. Par la suite, on supposera donc que les problèmes sont paramétriques, c'est-à-dire que le prédicteur optimal pour le risque théorique est un prédicteur paramétrique appartenant à un sous-ensemble F B de prédicteurs paramétriques de F. On ne se souciera donc pas du problème de mis-spécification du modèle. Il est aussi fréquent d'introduire une pénalisation comme la pénalité "ridge" ou "lasso" afin de réduire la variance de l'estimateur obtenu. Par exemple, pour le problème de régression avec

X = R p , Y = R, B = R p+1 , on définit f β par f β (x) = β 0 + p j=1
x j β j .

( 

λ = 2σ 2 log(2p) n + 2 log(1/δ) n (1.37) satisfait MSE(X βL ) = 1 n X βL -Xβ * 2 2 ≤ 4 β * 1 σ 2 log(2p) n + 2 log(1/δ) n (1.38)
avec probabilité supérieure à 1 -δ et β * le vrai paramètre du modèle linéaire.

On peut affaiblir l'hypothèse sur le bruit en supposant que le bruit est sous-gaussien, c'est-à-dire satisfaisant la définition suivante Definition 1.8. Une variable aléatoire réelle X est dite sous-gaussienne avec variance proxy σ 2 si E[X] = 0 et sa fonction génératrice des moments vérifie

E[exp(sX)] ≤ exp σ 2 s 2 2 , s ∈ R. (1.39)
Un vecteur aléatoire X ∈ R p est dit sous-gaussien avec variance proxy σ 2 si E[X] = 0 et u X est sous-gaussien avec variance proxy σ 2 pour tout vecteur unitaire u ∈ S p-1 .

On peut par ailleurs renforcer la condition sur X pour obtenir une meilleure vitesse de convergence. Par exemple, en supposant que X satisfait une propriété d'incohérence, on obtient une vitesse de l'ordre de log(2p)/n. On remarquera par ailleurs que le paramètre de régularisation doit dépendre en théorie du niveau du bruit σ alors qu'en pratique il est inconnu. Une extension du lasso, appelée lasso concomitant introduite par Owen [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF] puis étudiée par Sun et Zhang [START_REF] Sun | Scaled sparse linear regression[END_REF].

1.3. G ÉN ÉRALIT ÉS SUR LE MACHINE LEARNING Definition 1.9. Soit λ > 0, l'estimateur du lasso concomitant β(λ) est défini par la solution du problème d'optimisation

( β(λ) , σ(λ) ) ∈ argmin β∈R p ,σ>0 Y -Xβ 2 2nσ + σ 2 + λ β 1 . (1.40)
Une extension du lasso concomitant pour le cas λ petit a été proposée par Ndiaye, Fercoq, Gramfort et Salmon [START_REF] Ndiaye | Efficient Smoothed Concomitant Lasso Estimation for High Dimensional Regression[END_REF] sous le nom de lasso concomitant lissé avec une étude numérique à l'appui. Une autre approche pour le cas où la variance du bruit est supposée inconnue a été étudiée par Chrétien et Darses [START_REF] Chretien | Sparse recovery with unknown variance: a LASSO-type approach[END_REF].

Algorithmes de descente de gradient

Il est commun d'utiliser des algorithmes de type descent de gradient pour optimiser le risque empirique R n (f β ). Par la suite, pour un risque C et une classe de prédicteur {f β } β∈B , on notera C(f β (X), Y ) = G(β, X, Y ). Alors, l'algorithme de descente de gradient (GD) à pas constant consiste à prendre des itérations de la forme

β t+1 = β t -γ 1 n n i=1 ∇ β G(β t , x i , y i ), (1.41) 
où γ > 0 est un paramètre de gain afin de résoudre le problème d'optimisation

min β∈B R n (f β ) := 1 n n i=1 G(β, x i , y i ). (1.42) 
Lorsqu'on initialise l'algorithme suffisamment proche de l'optimum et sous certaines hypothèses de régularité sur G (convexité et différentiabilité dans un voisinage de l'optimum), GD converge vers l'optimum à une vitesse linéaire [START_REF] Dennis | Numerical Methods for Unconstrained Optimization and Nonlinear Equations[END_REF]. En remplaçant γ par l'inverse de la hessienne en β t (ou des approximations), on obtient des algorithmes dits du second ordre. Par exemple, l'algorithme de Newton suivant

β t+1 = β t -Γ t 1 n n i=1 ∇G(β t , x i , y i ), (1.43) 
avec Γ t l'inverse de la hessienne en β t , est un algorithme du second ordre. Sous certaines hypothèses de régularité de G et sous réserve qu'on initialise l'algorithme suffisamment proche de l'optimum, alors l'algorithme converge vers l'optimum avec une vitesse quadratique. On remarquera néanmoins que chaque itération requiert de calculer n gradient, ce qui est un désavantage en terme de temps de calcul pour n très grand. Par ailleurs, lorsque le nombre de paramètres à estimer est trop grand, inverser la matrice hessienne est aussi coûteux en terme de temps de calcul ou de mémoire.

Généralités sur les algorithmes de gradient stochastique

Par la suite, on va considérer une classe d'algorithme pour résoudre le problème d'optimisation sans pénalité min β∈B R(f β ). 

Z t+1 = Z t -η t ∇G(Z t , X 1 , Y 1 ). (1.46)
Etant donné l'échantillon aléatoire (X t , Y t ) t avec sa réalisation (x t , y t ), on retrouve les algorithmes dits online

Z t+1 = Z t -η t ∇G(Z t , x t , y t ) (1.47)
avec Z 0 ∈ O. Une telle interversion peut être obtenue en supposant que G(•, x 1 , y 1 ) est convexe et g finie sur un voisinage de Z t (cf. Strassen [START_REF] Strassen | The Existence of Probability Measures with Given Marginals[END_REF]). D'autres méthodes pour pouvoir contourner le calcul de ∇g sont retrouvées dans le livre de Duflo [START_REF] Duflo | Algorithmes stochastiques. Mathématiques et Applications[END_REF]. Comme l'algorithme online ne garde pas en mémoire les observations passées, il est bien adapté pour les cas où les observations sont obtenues progressivement les unes après les autres. Les premiers résultats établissent la convergence en probabilité de Z t vers l'unique minimiseur de g dans le cas où g est C 2 et fortement convexe [START_REF] Robbins | A Stochastic Approximation Method[END_REF]. Une amélioration a été donnée par Chung [START_REF] Chung | On a Stochastic Approximation Method[END_REF]. • Pour tout δ > 0, il existe une constante positive K(δ) telle que

inf |x-θ * |>δ |∇g(x)| = K(δ), (1.48) 
• Il existe une constante K tel que pour tout β ∈ B

P(|G(β, X 1 , Y 1 )| ≤ K ) = 1.
(1.49)

Alors pour a t = t -1-ε , avec (1 -C)/2 < ε < 1/2, on a E[|Z t -β * | 2 ] ≤ C t 1-2ε (1.50)
où C, C sont des constantes positives.

La normalité asymptotique a été d'abord obtenue, avec des hypothèses supplémentaires, par Chung [START_REF] Chung | On a Stochastic Approximation Method[END_REF] puis par Sacks [START_REF] Sacks | Asymptotic Distribution of Stochastic Approximation Procedures[END_REF].

Algorithme SGD pour l'analyse en composante principale (ACP)

Duflo [START_REF] Duflo | Algorithmes stochastiques. Mathématiques et Applications[END_REF] présente un large panorama sur la théorie des algorithmes stochastiques. En particulier, l'exemple du problème de l'analyse en composante principale (ACP) récursive a été étudiée. Comme cet exemple est lié au sujet de la thèse, on présentera brièvement ce problème.

L'analyse en composante principale revient, pour un vecteur aléatoire Y ∈ R d à variance finie, à faire la décomposition spectrale de la matrice de 

(Y ) -λ 1 u 1 u 1 = λ 1 ≥•••≥λ d λ i u i u i -λ 1 u 1 u 1 . ( 1 
Z t+1 = Z t + η t A t Z t Z t + η t A t Z t 2 (1.61) 
avec (η t ) t une suite positive telle que η t = ∞ et η 2 t < ∞. On retrouve alors le théorème [START_REF] Duflo | Algorithmes stochastiques. Mathématiques et Applications[END_REF] suivant sur la convergence de l'algorithme avec un hypothèse de séparation des valeurs propres Theorem 1.15. Soit A une matrice réelle d × d symétrique semi-définie positive ayant pour valeurs propres

λ 1 > λ 2 ≥ • • • > λ d ≥ 0. Et soit (A t ) t une suite de matrices aléatoires i.i.d de moyenne A telles que A t ≤ K (norme opérateur). Soit Z 0 ∈ R d de norme 2 égal à 1 et (η t ) t ∈ R une suite positive telle que η t < 1/K, t ∈ N et t η t = ∞, t η 2 t < ∞. (1.62)
Alors (Z t ) t converge presque sûrement vers le vecteur propre associé à λ 1 (à signe près).

Pour retourner à l'ACP, on remarque que var(Y) satisfait les conditions sur la matrice A et que la suite de matrices aléatoires i.i.d. semi-définie positive d'espérance var(Y) est donné par E(y t y t . On peut ainsi construire un algorithme de gradient stochastique projeté pour l'ACP. Plus récemment, Shamir [START_REF] Shamir | Convergence of Stochastic Gradient Descent for PCA[END_REF][153] a étudié la convergence de SGD pour le problème de l'analyse en composante principale (ACP) sans hypothèse de séparation entre les deux Theorem 1.17 (Johnson-Zhang). Considérons SVRG où à chaque mise-à-jour de β est pris aléatoirement parmi les m -1 itérés précédant la mise-à-jour. Notons 

g n (•) = 1 n n i=1 G(•, x i , y i ).
G(β, x i , y i ) -G(β , x i , y i ) -∇G(β , x i , y i ) (β -β ) ≤ L 2 β -β 2 .
(1.66)

Supposons en plus que la moyenne g n est fortement convexe, c'est-à-dire

g n (β) -g n (β ) -γ β -β 2 2 ≥ ∇g n (β ) (β -β ) (1.67) avec L ≥ γ > 0 pour tout (x, y) ∈ X × Y. Posons β * ∈ B = argmin β 1 n n i=1 G(β, x i , y i ).
Supposons par ailleurs que m est suffisamment grand et que η soit tel que

α = 1 γη(1 -2Lη)m + 2Lη 1 -2Lη < 1 (1.68)
soit vraie. Alors on a la convergence en espérance à vitesse géométrique

E[g n (β t ) -g n (β * )] ≤ α t [g n (β 0 ) -g n (β * )]. (1.69)
Par exemple, de Sa, Olukotun et Ré [START_REF] Sa | Global Convergence of Stochastic Gradient Descent for Some Non-convex Matrix Problems[END_REF] proposent un algorithme de gradient stochastique sur la variété de Stiefel dans lequel la mise à jour se fait le long des géodésiques de la variété.

Généralités sur l'acquisition comprimée

Par leurs travaux précurseurs, Nyquist [START_REF] Nyquist | Certain Topics in Telegraph Transmission Theory[END_REF], Shannon [START_REF] Shannon | Communication in the Presence of Noise[END_REF] et Whittaker [START_REF] Whittaker | XVIII.-On the Functions which are represented by the Expansions of the Interpolation-Theory[END_REF] ont montré qu'il était possible de reconstruire exactement un signal à temps continu et avec une plage de fréquence finie à partir d'un échantillon (du signal) prélevé à la fréquence de Nyquist, c'est-à-dire au minimum deux fois la plus haute fréquence présente dans le signal. Suivant ces résultats et profitant du développement du numérique et de l'informatique, la quantité de donnée produite a subi une explosion massive. Néanmoins, il arrive souvent que la fréquence de Nyquist soit trop élevée en pratique, et en conséquence on se retrouve avec un échantillon beaucoup trop grand et donc un objet en haute dimension, ou encore, que le coût associé à une telle acquisition soit trop élevé [START_REF] Walden | Analog-to-digital converter survey and analysis[END_REF].

Modèles parcimonieux

Devant ces difficultés, une idée simple serait de trouver une approximation en plus petite dimension du signal de départ qu'on puisse traiter ou stocker efficacement. Mais avant de continuer, on va définir la notion de parcimonie.

Definition 1.10. Un vecteur x ∈ R d est dit k-parcimonieux s'il a au plus k coefficients non nuls, c'est-à-dire x 0 ≤ k où x 0 = d i=1 1 {x i =0} . On notera Σ k le sous-ensemble des vecteurs k-parcimonieux de R d . 1.3. G ÉN ÉRALIT ÉS SUR LE MACHINE LEARNING
Par extension, si x ∈ R d admet une représentation exacte k-parcimonieuse dans une certaine base alors on va dit que x est aussi k-parcimonieux. Grossièrement, si on identifie un signal à temps continu s avec sa représentation digitale x ∈ R d alors on cherche une approximation k-parcimonieuse x de x (dans une certaine base). On peut quantifier l'erreur en faisant la meilleure approximation k-parcimonieuse possible par

σ k (x) = min x∈Σ k x -x 1 .
(1.70) D'une certaine façon, l'idée ressemble beaucoup au cadre de l'ACP, les algorithmes de compression (JPEG, JPG, MPEG, MP3, etc) et de débruitage (décomposition en base d'ondelettes [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF]) où on décompose signaux/images dans des bases bien choisies puis on tronque de sorte à obtenir un signal parcimonieux et un dictionnaire (la base) qui permet de reconstruire une approximation de l'image/signal de départ. Néanmoins, ceci n'est pas le but de l'acquisition comprimée. Son but est de transférer la conversion de la représentation du signal en haute dimension vers une représentation parcimonieuse à l'étape même de l'acquisition du signal. Ce qui se résume à passer de

signal s acquisition -→ représentation digitale x réd. dim. -→ approximation Ax (1.71) à signal s acquisition -→ Ax (1.72) avec x ∈ R d , A ∈ R d ×d , d << d.
Les travaux fondateurs sont dus à Candès, Romberg et Tao [START_REF] Candes | Decoding by linear programming[END_REF][37] [START_REF] Candes | Stable Signal Recovery from Incomplete and Inaccurate Measurements[END_REF] et Donoho [START_REF] Donoho | Compressed sensing[END_REF], qui ont montré qu'il est possible de reconstruire exactement un signal parcimonieux avec un nombre limité de mesures. Pour formuler le problème de reconstruction, posons

y = Ax (1.73) ou alternativement y = Ax + e (1.74) où x ∈ R d est interprété comme l'échantillon de Nyquist du signal de départ, A ∈ R d ×d est
une matrice qui réduit la dimension du signal de sorte que y sont les mesures obtenues par la méthode d'acquisition et e ∈ R d est un terme de bruit. La question naturelle est alors, quelles sont les conditions nécessaires ou suffisantes sur A de sorte qu'on puisse retrouver ou approximer x à partir de y. Candès et Tao [START_REF] Candes | Decoding by linear programming[END_REF] avaient introduit la notion de propriété d'isométrie restreinte (RIP) pour répondre à cette question.

Definition 1.11 (RIP). Une matrice

A ∈ R d ×d satisfait la propriété d'isométrie restreinte d'ordre k avec constante δ k ∈ (0, 1) si (1 -δ k ) x 2 2 ≤ Ax 2 2 ≤ (1 + δ k ) x 2 2 (1.75)
pour tout x k-parcimonieux.

G ÉN ÉRALIT ÉS SUR LE MACHINE LEARNING

Mais la condition nécessaire et suffisante pour la reconstruction exacte de tout vecteur k-parcimonieux a été présentée par Cohen, Dahmen et DeVore [START_REF] Donoho | Compressed sensing[END_REF] avec une condition sur le noyau de A.

Definition 1.12 (NSP). Une matrice

A ∈ R d×d satisfait la propriété NSP d'ordre k avec constante C si h T 2 ≤ C h T c 1 √ k (1.76) pour tout h ∈ Ker(A) et tout T ⊂ {0, . . . , d } tel que |T | ≤ k.
La propriété NSP peut être interprétée de plusieurs manières. Une façon d'interpréter NSP est de voir que si h est k-parcimonieux alors il existe un sous-ensemble T de {0, . . . , d } tel que h T c est le vecteur nul, NSP implique alors que h T est aussi le vecteur nul et donc h est nul. Une matrice ne peut donc pas contenir de vecteur k-parcimonieux dans son noyau. Une matrice qui satisfait la propriété RIP satisfait aussi la propriété NSP [START_REF] Eldar | Compressed sensing: theory and applications[END_REF]. 

Theorem 1.18. Soit A ∈ R d ×d une matrice ayant la propriété RIP d'ordre 2k avec δ 2k < 1. Alors A satisfait la condition NSP d'ordre k avec constante C = 1 + 1 + δ 2k 1 -δ 2k . ( 1 
x -∆(Ax) ≤ C σ k (x) √ k , x ∈ R d (1.78)
alors A satisfait la propriété NSP d'ordre 2k.

Ce théorème implique la nécessité de la propriété NSP dans le cadre de la reconstruction exacte d'un signal k-parcimonieux (σ k (x) = 0) mais aussi dans le cadre de reconstruction approchée d'un signal quelconque. Néanmoins, pour montrer qu'une matrice A ∈ R d ×d vérifie la propriété NSP ou RIP d'ordre k, il faudrait vérifier les inégalités pour toutes les sous-matrices formées par k colonnes de A. Pour des raisons de temps de calcul, il est parfois préférable de vérifier une propriété plus simple comme la cohérence [START_REF] Donoho | Optimally Sparse Representation in General (Nonorthogonal) Dictionaries via 1 Minimization[END_REF].

Definition 1.13 (Cohérence). La cohérence µ(X) d'une matrice X ∈ R d ×d est définie par µ(X) = max j =j | X j , X j | X j 2 X j 2 (1.79)
Le lien entre RIP et la cohérence d'une matrice A est obtenue par le théorème du cercle de Gershgorin [178].

Lemma 1.1. Soit A ∈ R d ×d avec colonnes normalisés et cohérence µ(A). Alors A satisfait la propriété RIP d'ordre k avec δ k = (k -1)µ pour tout k < 1/µ.
On voit facilement que notre intérêt se porte sur les matrices à cohérence faible.
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Reconstruction par le lasso

Après avoir établi les conditions sur la matrice d'acquisition, on peut s'intéresser au problème de reconstruction en lui-même. Une approche naturelle est de considérer le problème d'optimisation min

x∈R d x 0 , tel que Ax = y (1.80)
dans le cas non bruité et min

x∈R d x 0 , tel que Ax -y 2 ≤ ε (1.81)
pour un certain ε > 0 dans le cas bruité. Néanmoins, de tels problèmes sont connus pour être NP-dur [75][93]. L'approche de Candès, Rombert et Tao est de considérer le problème dit basic pursuit [START_REF] Chen | Atomic Decomposition by Basis Pursuit[END_REF] pour le problème, c'est-à-dire en remplaçant la "norme" 0 par la norme 1 , ce qui revient à optimiser min

x∈R d x 1 , tel que Ax = y (1.82) ou min x∈R d x 1 , tel que Ax -y 2 ≤ ε. (1.83) 
Candès [START_REF] Candes | The restricted isometry property and its implications for compressed sensing[END_REF] a montré une borne sur la qualité de l'approximation obtenue par cette méthode Theorem 1.20 (Candès). Supposons que

A soit RIP d'ordre 2k avec δ 2k = √ 2 -1 et y = Ax + e avec e 2 ≤ ε. Alors la solution x du problème (1.83) satisfait x -x 2 ≤ C 0 σ k (x) √ k + C 1 ε (1.84) avec C 0 = 2 1 -(1 - √ 2)δ 2k 1 -(1 + √ 2)δ 2k et C 1 = 4 √ 1 + δ 2k 1 -(1 - √ 2)δ 2k . (1.85) 
On peut énoncer un théorème similaire dans le cas non bruité [START_REF] Candes | The restricted isometry property and its implications for compressed sensing[END_REF].

Theorem 1.21 (Candès). Supposons que A soit RIP d'ordre 2k avec δ 2k < √ 2 -1 et y = Ax. Alors la solution x du problème (1.82) satisfait x -x 2 ≤ C 0 σ k (x) √ k . (1.86)
Un résultat similaire en prenant NSP au lieu de RIP montre que la propriété NSP est suffisante pour le décodeur basic pursuit. Pour compléter le tableau, on présente un théorème pour la propriété de cohérence [START_REF] Donoho | Stable recovery of sparse overcomplete representations in the presence of noise[END_REF]. (Donoho). Supposons que A a une cohérence µ et que le signal x est kparcimonieux avec k < (1/µ + 1)/4. Par ailleurs supposons que y = Ax + e. Alors la solution x du problème (1.83) satisfait

1.3. G ÉN ÉRALIT ÉS SUR LE MACHINE LEARNING Theorem 1.22
x -x 2 ≤ e 2 + ε 1 -µ(4k -1) . (1.87)
Bien entendu, les théorèmes présentés ci-dessus ne sont pas exhaustifs, il existe d'autres formulations avec des constantes différentes.

Pour terminer cette introduction, on fait un retour sur le lasso. La théorie de l'analyse convexe [START_REF] Rockafellar | Convex Analysis. Princeton landmarks in mathematics and physics[END_REF] nous dit que le problème de programmation linéaire à contrainte conique (1.83) est fortement lié au problème convexe min

x∈R d 1 2 Ax -y 2 2 + λ x 1 (1.88)
En particulier, pour un certain λ, les solutions des deux problèmes coincident. On remarquera alors que la solution de (1.88) correspond à l'estimateur du LASSO [START_REF] Tibshirani | The lasso problem and uniqueness[END_REF].

Design de matrices d'acquisition

Une fois des méthodes de reconstruction établies, on peut se poser des questions plus pratiques sur le design de matrices bien conditionnées selon le critère RIP ou de la cohérence. Une approche naturelle est de considérer des matrices déterministes de type Vandermonde par exemple. Mais d'autres approches aléatoires comme les matrices gaussiennes offrent d'autres possibilités. Ainsi, Baraniuk [START_REF] Baraniuk | A Simple Proof of the Restricted Isometry Property for Random Matrices[END_REF] montre des arguments de concentration de la mesure qui impliquent la propriété RIP avec forte probabilité pour des matrices aléatoires. En particulier, les matrices gaussiennes vérifient les conditions nécessaires de concentration.

Theorem 1.23 (Baraniuk). Soient (Ω, A, P) un espace probabilisé et A ∈ R d ×d une matrice aléatoire dont les composantes A ij sont i.i.d. Si, pour tout x ∈ R d , la variable aléatoire Ax 2 2 satisfait, pour tout ε ∈ (0, 1)

P | Ax 2 2 -E[ Ax 2 2 ]| E[ Ax 2 2 ] ≥ ε ≤ 2e -d c(ε) (1.89) où c(ε) est une constante qui ne dépend que de ε alors A a la propriété RIP d'ordre k et δ k ∈ (0, 1) avec probabilité supérieure à 1 -2 12 δ k k exp(-c 0 (δ k /2)n). (1.90)
En particulier les matrices gaussiennes avec composantes

∼ N (0, 1/ √ d ) satisfont l'hypothèse avec constante c(ε) = ε 2 /4 -ε 3 /6.
À partir d'une matrice A, on peut aussi considérer des algorithmes d'extraction de sousmatrices bien conditionnées dans le sens cohérence ou RIP. À ce sujet, la littérature se concentre plutôt sur les propriétés d'inversibilité (le problème d'inversibilité restreinte [START_REF] Youssef | Restricted invertibility and the Banach-Mazur distance to the cube[END_REF]) et de représentation dans le sens où l'image de la sous-matrice approche l'image de A [START_REF] Tropp | Column subset selection, matrix factorization, and eigenvalue optimization[END_REF]. 

Résultats obtenus dans la partie II

La seconde partie regroupe des travaux effectués sous la direction de Stéphane Chrétien. Notation vectorielle pour la seconde partie: on note e le vecteur (1, . . . , 1) avec toute les composantes égales à 1. (e i ) i désigne la base canonique de R d . Pour une matrice X, X j est le vecteur donné par la j-ème colonne de X, X donne la norme opérateur de X.

Chapitre 5: Feature selection in weakly coherent matrices

Ce chapitre a été tiré d'un manuscript [54] accepté pour publication dans les proceedings au LNCS de la conférence LVA ICA 2018.

Dans ce chapitre, on donne une borne sur la valeur singulière minimale après l'ajout d'une colonne à une matrice potentiellement incohérente. On propose ensuite un algorithme de sélection de colonne à partir de cette borne.

Dans le contexte du problème de sélection de colonne, pour une matrice X ∈ R n×p , on cherche à trouver une sous-matrice X T , |T | = t de X ayant de bonnes propriétés spectrales [START_REF] Tropp | Column subset selection, matrix factorization, and eigenvalue optimization[END_REF]. Dans notre cas on cherche à ce que les valeurs singulières

λ i , 1 ≤ i ≤ t de X T vérifient |λ i | ≥ C, C > 0, 1 ≤ i ≤ t. (1.91) 
Ceci revient à trouver X T tel que les valeurs propres non nulles de X T X T soient strictement plus grandes qu'un certain seuil strictement positif K.

Par la suite, on considère des matrices dont les colonnes sont normalisées. Notre résultat principal est le suivant: Theorem 1.24. Soit T 0 ⊂ {1, . . . , p} avec X T 0 une sous-matrice de

X. Soit λ 1 (X T 0 X T 0 ) ≥ • • • ≥ λ s 0 (X T 0 X T 0 ) les valeurs propres de X T 0 X T 0 . Alors, pour X j ∈ R n , on a λ s 0 +1 (X T 0 X T 0 + X j X j ) ≥ λ s 0 (X T 0 X T 0 ) -min X T 0 X j 2 , X T 0 X j 2 2 1 -λ s 0 (X T 0 X T 0 ) . (1.92) 
La preuve se base sur le lemme d'entrelacement de Cauchy. Ainsi les valeurs propres de X T 0 X T 0 + X j X j sont entrelacées avec celles de X T 0 X T 0 . La plus petite valeur propre non nulle de X T 0 X T 0 + X j X j est alors la plus petite racine de

1.4. R ÉSULTATS OBTENUS DANS LA PARTIE II Corollary 1.1. Soit T 0 ⊂ {1, . . . , p} avec X T 0 une sous-matrice de X. Et supposons que X T 0 X j 2 2 ≤ αs 0 µ(X) 2 . Alors λ s 0 +1 X T 0 X T 0 + X j X j ≥ λ s 0 X T 0 X T 0 -min αs 0 µ 2 , αs 0 µ 2 1 -λ s 0 X T 0 X T 0 . (1.94)
Bien entendu, on peut répéter l'opération pour trouver une borne inf pour la valeur singulière minimale après l'ajout de n colonnes.

Ce résultat suggère un algorithme "greedy" pour la sélection de colonne. L'idée est simple: pour obtenir une sous-matrice X T de X, on sélectionne les colonnes une à une. La colonne choisie est celle minimisant la norme du produit scalaire avec les colonnes déjà sélectionnées. La condition d'arrêt est alors donnée par la borne inférieure obtenue par le théorème qui sert de garantie sur l'inversibilité de la sous-matrice obtenue. D'où l'algorithme suivant :

Input: a matrix X ∈ R n×p , ε > 0 Output: a submatrix X T Set s = 1 and choose a random singleton T = {j (1) } ⊂ {1, . . . , p}. Set η (1) = 1. while η (s) ≥ 1 -ε do Set j (s) ∈ argmin j∈{1,...,p}\T X T X j 2 . Set α (s) = X T X j (s) 2 2 /(sµ(X) 2 ). Set T = T ∪ {j (s) }. Set η (s+1) = η (s) -min √ α (s) sµ, α (s) µ(X) 2 s 1 -λ s (X T X T )
.

Set s ← s + 1. end return X T .
Algorithm 1: Greedy column selection Remarquons que l'algorithme requiert le calcul de la valeur propre minimale à chaque itération ainsi que µ. Un autre algorithme peut être obtenu en remplaçant la valeur propre minimale λ s (X T X T ) par sa borne inf théorique η (s) et α (s) µ(X) 2 s par X T X j (s) 2 2 . Pour illuster cet algorithme sur des données réelles, nous considérons le problème d'extraction de séries temporelles "représentatives" d'une grande base de données. Ainsi, on considère un ensemble de 1479 séries temporelles de taille 39 obtenues par transformation non-linéaire de données satellite InSAR pour des soucis d'identifiabilité. À partir La figure 1.1 montre le comportement de l'algorithme en fonction des itérations. On remarquera que dans la cas où la cohérence est forte, les bornes obtenues par le théorème sont meilleures que celle obtenues par le théorème de Gershgorin.

Puis, pour comparer avec les méthodes de sélection de colonne "classique" comme l' algorithme CUR, on a généré 100 matrices avec 100 lignes et 10000 colonnes et on a extrait 10 colonnes avec la méthode CUR et l'algorithme greedy puis on a comparé les valeurs singulières minimales des matrices extraites. Figure 1.2: Gauche: nombre de valeurs singulières des sous-matrices extraites par l'algorithme 1 plus grande que celle obtenue par la méthode CUR parmis les 5 plus petites valeurs singulières sur 100 expérience Monte-Carlo. Haut-Droit: histograme des temps de calcul pour l'algorithme 1. Bas-Droit: histogramme des temps de calcul pour la méthode CUR [START_REF] Boutsidis | An improved approximation algorithm for the column subset selection problem[END_REF].

Notre algorithme performe empiriquement mieux que l'algorithme CUR, aussi bien en temps de calcul que sur les valeurs singulières extraites, en effet l'algorithme prend en général moins de 0, 5 seconde alors que CUR prend plus d'une seconde. 

h T 0 2 ≤ C h T c 0 1 / √ s. (1.95) Autrement # T 0 ⊂ {1, . . . , p} : |T 0 | = s & ∀h ∈ Ker(X), h T c 0 1 / √ s # {T 0 ⊂ {1, . . . , p} : |T 0 | = s} ≥ π. (1.96)
Notre résultat principal est le suivant

Theorem 1.25. Soient X ∈ R n×p , s 0 ≤ n et α > 0. Soit µ la cohérence de X. Sous les hypothèses que s 0 et µ vérifient s 0 ≤ 1 16(1 + α)e 2 p X 2 log p (1.97) µ ≤ min (288s 5/2 0 ( 2s 
3/2 0 + 1)) -1/2 , (1.5s 4 0 + 6s 5/2 0 + 2s 0 ) -1/2 , (4(1 + α) log p) -1 (1.98)
Alors la matrice X vérifie la propriété weak-NSP(s 0 , C, π)

avec π = 1 -1944/p α et C = λ 1 -λ s 0 + 3s 0 (ε max + ε min ) λ 1 -3s 0 ε min (1.99) avec ε min = 1 4 s 3 0 µ 2 + s 3/2 0 µ (3 -4s 0 µ 2 ) , ε max = 144s 3 0 µ 2 + 72s 3/2 0 µ.
La preuve repose sur des résultats de perturbations de valeurs propres. Plus concrètement, on montre que si on a

T 0 ⊂ {1, . . . , p}, T 1 ⊂ {1, . . . , p} avec |T 0 | = s 0 , |T 1 | = 3s 0 , T 1 ∩ T 0 et λ 1 ≥ • • • ≥ λ s 0 les
valeurs propres non nulles de X T 0 X T 0 , alors on peut encadrer les valeurs propres non nulles de X T 0 ∪T 1 X T 0 ∪T 1 par une majoration/minoration de λ 1 , λ s 0 plus un terme de perturbation. Sachant ce résultat, pour l'appliquer, on a besoin d'un sous-ensemble T 0 de {1, . . . , p} de cardinal s 0 dont on connaît un encadrement des valeurs propres. Pour cela, on applique un théorème de Chrétien-Darses [START_REF] Chrétien | Invertibility of random submatrices via tail-decoupling and a matrix Chernoff inequality[END_REF] qui nous assure l'existence avec forte probabilité (π) d'un tel sous-ensemble. Si on trouve un tel sous-ensemble, alors en divisant l'ensemble 1.4. R ÉSULTATS OBTENUS DANS LA PARTIE II {1, . . . , p} \ T 0 en des sous-ensembles T 1 , . . . , T ns 0 de taille s 0 et en prenant

T = T 0 ∪ T 1 , on montre que (λ s 0 -3 s 0 ε min ) h T 2 2 ≤ X T h T 2 2 ., (1.100) 
et aussi

X T h T 2 2 ≤ (λ 1 -λ s 0 + 3 s 0 (ε max + ε min )) h T 2 h T c 0 1 √ s 0 . (1.101)
Ce qui nous permet de conclure.

Chapitre 7: Incoherent submatrix selection via approximate independence sets in scalar product graphs

Dans ce chapitre, on considère le problème de sélection de sous-matrice incohérente comme un problème de sélection d'un sous-ensemble indépendent maximal d'un graphe. On propose alors un estimateur de type spectral pour ce problème d'ensemble indépendent. Etant donné une matrice X ∈ R n×p et un seuil η, on cherche la plus grande sous-matrice composée des colonnes de X ayant une cohérence inférieure à η. On associe alors à (X, η) le graphe G = (V, E) avec

• V = {1, . . . , p}, • (j, j ) ∈ E si et seulement si | X j , X j | > η.
Clairement, on veut sélectionner les noeuds isolés dans le graphe G. Ce qui correspond à trouver les ensembles indépendents du graphe. Un sous-ensemble indépendent du graphe G = (V, E) est un sous-ensemble de V dont les sommets sont deux à deux non-adjacent. Comme on cherche la plus grande sous-matrice, cela revient alors à chercher un sous-ensemble indépendent de cardinal maximal. En effet, chaque sous-ensemble indépendent maximal correspond à une sous-matrice de X ayant une cohérence inférieure à η de taille maximale. Le problème d'optimisation associé est donné par max ρ∈{0,1} p e ρ, tel que ρ M ρ = 0 (1.102) où M est la matrice d'adjacence (ou de pseudo-adjacence) du graphe G et e le vecteur 1 p . En effet, pour tout ρ = (ρ 1 , . . . , ρ p ) ∈ {0, 1} p tel que ρ M ρ = 0, l'ensemble {j ∈ {1, • • • , p} : ρ j = 1} forme une sous-ensemble indépendent de G. On peut donc voir ρ comme un indicateur de sélection de colonne de la matrice X et maximiser e ρ (qui est aussi égal ρ 0 ) revient à prendre un maximum de colonnes. Ce problème appartient à la classe des problèmes NP-dur. On propose alors le problème relaxé max ρ∈{0,1} p e ρ, tel que ρ M ρ ≤ r.

(1.103) Soit δ > 0 de sorte que M δ = M + δI soit définie positive. Posons alors λ 1 la plus petite valeur propre de M δ , φ 1 , . . . , φ p les vecteurs orthonormaux de M δ et q 1 , q 2 définis par

q 1 = 1 √ p M δ e, q 2 = - 1 √ p (1 + δ) λ e -M δ e (1.108) 
Posons finalement

γ k,i = φ i q k (1.109) pour k = 1, 2 et i = 1, . . . , p. Alors on a x 2 * -ρ * ∞ ≤ √ p (1 + δ) λ(λ 1 -µ 2 ) + γ 1 2 r * (λ 1 -µ 1 )(λ 1 -µ 2 ) 2 , avec r * donné par r * = (λ p -µ 1 )φ   p γ 2 1,max γ 2 1,min (1+δ) 2 λ 2 + 2 √ p 1+δ λ e M δ e 2 γ 2 2 2   et φ la fonction inverse x → x/(1 + x) 3 .
L'idée de la preuve est de montrer que la problème (1.105) peut être réécrit comme un problème de minimisation (P) de la distance à l'oracle ρ * plus un terme de pénalité linéaire en 1/λ, c'est-à-dire que ρ * est solution de (P) lorsque 1/λ = 0. On note (P 0 ) le problème (P) dans le cas 1/λ = 0. On utilise ensuite un résultat de perturbation qui estime la distance entre les solutions de (P) et (P 0 ) en fonction de γ 1 = (γ 1,i ) i et γ 2 = (γ 2,i ) i . Pour cela, on construit une fonction dont x * 2 est solution (grossièrement car il s'agit en fait d'un paramètre qui identifie x *

2 ) qu'on étudie dans un voisinage de ρ * (de la même façon, il s'agit en fait d'un paramètre qui identifie ρ * ). Le théorème de Neuberger [START_REF] Neuberger | The Continuous Newton's Method, Inverse Functions, and Nash-Moser[END_REF] nous assure alors l'existence d'un zéro de notre fonction dans une boule dont on connaît le rayon. Ce chapitre est tiré d'un manuscrit [53] accepté pour publication dans les proceedings au LNCS de la conférence LOD 2018. Dans ce chapitre, on étudie la version online de l'algorithme du gradient stochastique pour l'analyse en composante principale (ACP). On obtient un contrôle sur la performance de l'algorithme sans hypothèse de séparation entre les deux plus grandes valeurs propres puis on donne une méthode pratique pour gérer le pas de l'algorithme grâce à une version récente [START_REF] Luo | Achieving all with no parameters: Adanormalhedge[END_REF] de l'algorithme "Hedge" [START_REF] Freund | A decision-theoretic generalization of on-line learning and an application to boosting[END_REF] Le problème qu'on étudie est une version en ligne de l'algorithme de gradient stochastique pour ACP. Dans notre contexte, on observe les entrées de la matrice A une à une. Une façon de voir le problème est de considérer une matrice A ∈ R d×d et A 1 , A 2 , . . . matrices aléatoires telles que 

A t = d 2 A It,
V T = w 0 1 t=T (I + ηA t ) * ((1 -ε)I -A) t=1 (I + ηA t )w 0 . (1.112)
Alors, pour T satisfaisant

T > max 4p 2 d 2 ε , log 4pε -1 log(1 + ε pd 2 ) (1.113) et η = ε 4pd 2 , on a E[V T ] ≤ - ε 4p (1 + 2η) T . (1.114)
Une conséquence du théorème est qu'en espérance, après T itérations de l'algorithme, on a E[w T Aw T ] ≥ 1 -ε. La preuve repose sur la majoration récursive de l'espérance de l'erreur commise à chaque itération qu'on obtient grâce à la connaissance de la distribution des A t .

R ÉSULTATS OBTENUS DANS LA PARTIE II

Une question naturelle se pose sur le choix du pas η de l'algorithme qui a un fort impact sur la vitesse. On propose l'algorithme suivant :

Input: The tolerance ∈ (0, 1), and the algorithm's parameters R, K ∈ N * , ρ ∈ (0, 1) and β > 0. Output: convergence criterion L Burn-in period: while max k=1,...,K L (k) t < 1 -10 do For η ∈ {ρ k } k=1:K , run R gradient iterations in parallel whose iterates are denoted by w

(k,r) t , t = 1, . . . , B. Define π (k) 0 = 1/K, k = 1, . . . , K. For t = 1, . . . , B, let L (k) t = 2 R(R -2) r<r =2,...,R w (k,r) t , w (k,r ) t , (1.115) 
and for k = 1, . . . , K, define 

π (k) t+1 = π (k) t exp β L (k) t . ( 1 
t . Cet algorithme consiste à prendre aléatoirement la vitesse de convergence avec des probabilités proportionelles à la "vitesse de convergence moyenne" calculée lors du "burn-in".

Pour illuster la convergence moyenne de notre algorithme ainsi que l'efficacité de notre méthode de sélection de pas de gradient, on propose la simple expérience suivante: on simule une matrice aléatoire gaussienne de taille 1000 × 10000 que l'on renormalise. On affiche la convergence de l'algorithme de gradient stochastique avec une vitesse arbitraire et on fait de même avec le pas obtenu par la méthode proposée. Simple models for multivariate regular variations

Introduction

Regular variation is a fundamental notion in extreme value theory that was widely popularised by Resnick [START_REF] Resnick | Extreme values, regular variation, and point processes[END_REF]. As a simple illustration of the importance a regular variation in univariate extreme value theory, consider an independent and identically distributed (i.i.d.) sequence X, X 1 , X 2 , . . . of positive random variables with cumulative distribution F . For n ≥ 1, let a n = F ← (1 -1/n) be the quantile of order 1 -1/n of F . Then the following statements are equivalent: i) the tail function 1 -F is regularly varying at infinity with index -α < 0, i.e., lim

u→∞ 1 -F (ux) 1 -F (u) = x -α , x > 0; ii) the rescaled maximum a -1 n max(X 1 , . . . , X n ) converges in distribution as n → ∞ to a standard α-Fréchet distribution, i.e., lim n→∞ P a -1 n max(X 1 , . . . , X n ) ≤ x = exp(-x -α ), x > 0; iii) the rescaled exceedance u -1 X of X given X > u converges in distribution as u → ∞ to a standard α-Pareto distribution; i.e., lim u→∞ P u -1 X > x | X > u = x -α , x > 1.
iv) the sample point process {X i /a n , 1 ≤ i ≤ n} converges to a Poisson point process on (0, ∞) with intensity αx -α-1 dx.

The equivalence i)-ii) dates back to Gnedenko [START_REF] Gnedenko | Sur la distribution limite du terme maximum d'une série aléatoire[END_REF], the equivalence ii)-iii) is due to Balkema and de Haan [START_REF] Balkema | Residual life time at great age[END_REF] and the equivalence i)-iv) can be found in Resnick [START_REF] Resnick | Extreme values, regular variation, and point processes[END_REF]. As will be reviewed in Section 2.2.1, a similar result holds in the multivariate setting and multivariate regular variations is crucial in multivariate extreme value theory. Historically, multivariate extreme value theory has been developed by considerations on the asymptotic behaviour of i.i.d. random vectors. Key early contributions are the papers by Tiago de Oliveira [START_REF] Tiago De Oliveira | Extremal distributions[END_REF], Sibuya [START_REF] Sibuya | Bivariate extreme statistics. I[END_REF], de Haan and Resnick [START_REF] De Haan | Limit theory for multivariate sample extremes[END_REF], Deheuvels [START_REF] Deheuvels | Caractérisation complête des lois extrêmes multivariées et de la convergence aux types extrêmes[END_REF]. The general structure of multivariate extreme value distribution has been characterised by de Haan and Resnick [START_REF] De Haan | Limit theory for multivariate sample extremes[END_REF] in terms of the so-called spectral representation. Domain of attractions have been characterised by Deheuvels [START_REF] Deheuvels | Caractérisation complête des lois extrêmes multivariées et de la convergence aux types extrêmes[END_REF] that pointed out the convergence of the dependence structure to an extreme value copula. Since then a rich literature has emerged on modelling or statistical aspects of the theory, of which a nice recent review from the copula viewpoint is provided by Gudendorf and Segers [START_REF] Gudendorf | Extreme-value copulas[END_REF].

More recent developments focus on exceedances over high threshold in a multivariate setting and the so called multivariate generalised Pareto distributions. Seminal papers in that direction are Coles and Tawn [START_REF] Coles | Modelling extreme multivariate events[END_REF] and Rootzen and Tajvidi [START_REF] Rootzén | Multivariate generalized Pareto distributions[END_REF]. Further recent development on modelling and statistical aspects include Rootzen et al. [START_REF] Rootzén | Multivariate peaks over thresholds models[END_REF] and Kiriliouk et al. [START_REF] Kiriliouk | Peaks Over Thresholds Modeling With Multivariate Generalized Pareto Distributions[END_REF].

In this framework, the motivations of the present chapter are twofold. In a first part corresponding to Section 2, we revisit multivariate extreme value theory models and put the emphasis on regular variations and the limiting homogeneous measure. More precisely, a multivariate extension of the celebrated Breiman Lemma due to Davis and Mikosch [START_REF] Davis | Extreme value theory for space-time processes with heavy-tailed distributions[END_REF] allows us to construct a regularly varying random vectors as a product of a heavy tailed random variable (thought of as a radial component) and a sufficiently integrable random vector (thought as a spectral component). The limiting homogeneous measure is easily characterised and, for specific choice of the spectral component, we recover standard parametric models from multivariate extreme value theory such as the Hüsler-Reiss [START_REF] Hüsler | Maxima of normal random vectors: between independence and complete dependence[END_REF], extremal-t [START_REF] Nikoloulopoulos | Extreme value properties of multivariate t copulas[END_REF], logistic, negative logistic or Dirichlet models [START_REF] Coles | Modelling extreme multivariate events[END_REF]. We believe putting the emphasis on the exponent measure is important since it is the fundamental notion that unifies maxima, exceedances or point processes approaches in extreme value theory. On the other hand, from the copula point of view, the multivariate Breiman Lemma provides a general framework for deriving extreme value copula models closely related to the results by Nikoloulopoulos et al. [START_REF] Nikoloulopoulos | Extreme value properties of multivariate t copulas[END_REF] or Belzile and Nešlehová [START_REF] Belzile | Extremal attractors of Liouville copulas[END_REF].

A simple model for multivariate regular variations 2.2.1 Preliminaries on multivariate regular variations

Following Hult and Lindskog [START_REF] Hult | Regular variation for measures on metric spaces[END_REF], we define multivariate regular variation in terms of M 0convergence in R d rather than vague convergence in [-∞, ∞] d \ {0}. This is completely equivalent in the multivariate setting but M 0 -convergence can be more easily generalised to a metric space.

Consider the space M 0 (R d ) of Borel measures µ on R d \ {0} that assigns finite mass on sets bounded away from 0, that is µ

(R d \ O) is finite for all O open neighborhood of 0. A sequence µ n ∈ M 0 (R d ) is said to converge to µ ∈ M 0 (R d ), noted µ n M 0 → µ, if f dµ n → f
dµ for all bounded continuous function f that vanishes on a neighbourhood of 0.

A random vector X on R d is called regularly varying with sequence

a n → +∞ if nP(X/a n ∈ •) M 0 → Λ as n → ∞
with a non-zero limit measure Λ ∈ M 0 (R d ). Necessarily, there exists α > 0, called the tail index of X, such that the limit measure is homogeneous of order α, i.e.,

Λ(uA) = u -α Λ(A) u > 0, A ⊂ R d \ {0} Borel.
Furthermore, the sequence (a n ) is regularly varying at infinity with index 1/α and a possible choice for the normalising sequence a n is

a n = inf{x > 0; P( X ∞ ≤ x) ≥ 1 -1/n}, n ≥ 1. (2.1)
Due to its importance in multivariate extreme value theory, we emphasise here the case of random vectors with non negative components and regular variations on [0, ∞) d . In this simple case, regular variation can be characterised by the convergence of the tail function, see Hult and Lindskog [START_REF] Hult | Regular variation for measures on metric spaces[END_REF]: we have the equivalence i) the random vector X is regularly varying on [0, ∞) d with limit measure Λ, that is

nP(a -1 n X ∈ •) M 0 -→ Λ(•), as n → ∞;
i') the tail function 1 -F is regularly varying with limit function

V (x) = Λ([0, x] c ), i.e., lim u→+∞ 1 -F (ux) 1 -F (u1 d ) = V (x), x ∈ [0, ∞) d \ {0};
Paralleling the univariate extreme value theory and the equivalence i)-iv) mentioned in the introduction, we consider a sequence X, X 1 , X 2 , . . . of non negative random vectors with cumulative distribution F on [0, ∞) d and we assume for convenience P(X = 0) = 0. The following statements are known to be equivalent, see e.g. the monograph by Resnick [START_REF] Resnick | Extreme values, regular variation, and point processes[END_REF] or Coles [START_REF] Coles | An introduction to statistical modeling of extreme values[END_REF]: i) (regular variation) the random vector X is regularly varying on [0, ∞) d with αhomogeneous limit measure Λ;

ii) (componentwise maxima) the rescaled componentwise maximum a -1 n max(X 1 , . . . , X n ) converges in distribution as n → ∞ to a jointly α-Fréchet random vector with exponent function

V (x) = Λ([0, x] c ), i.e., lim n→∞ P a -1 n max(X 1 , . . . , X n ) ≤ x = exp(-V (x)), x ∈ [0, ∞) d \ {0};
iii) (excess above threshold) the rescaled exceedance u -1 X given that some component of X exceeds u > 0 converges in distribution as u → ∞ to an α-Pareto random vector, i.e.,

lim u→∞ P u -1 X ≤ x | X ≤ u1 d = V (x ∨ 1 d ) V (1 d ) , x ∈ [0, ∞) d \ [0, 1] d ; iv) (sample point process) the sample point process {a -1 n X i , 1 ≤ i ≤ n} converges in distribution to a Poisson point process on [0, ∞) d \ {0} with intensity Λ.

A multivariate version of Breiman Lemma

Before considering its multivariate extension, let us recall the celebrated Breiman Lemma (see Breiman [START_REF] Breiman | On some limit theorems similar to the arc-sin law[END_REF]Proposition 3]).

Lemma 2.1 (Breiman's lemma). Let R and Z be independent non negative random variables satisfying either of the following conditions: i) the tail function 1 -F of R is regularly varying at infinity with index -α < 0 and

E[Z α+ε ] < ∞ for some ε > 0; ii) 1 -F (x) ∼ Cx -α as x → ∞ for some C > 0 and E[Z α ] < ∞.
Then, the product RZ is regularly varying with index α and

P(RZ > x) ∼ E[Z α ]P(R > x) as x → ∞.
The following multivariate extension of Breiman's Lemma follows the line of Davis and Mikosch [61, section 4.1] .

Proposition 2.1. Let R be a non negative random variable and Z an independent ddimensional random vector. Assume either of the following conditions is satisfied: i) the tail function 1 -F of R is regularly varying at infinity with index -α < 0 and

E[ Z α+ε ] < ∞ for some ε > 0; ii) 1 -F (x) ∼ Cx -α as x → ∞ for some C > 0 and E[ Z α ] < ∞.
Then the product X = RZ defines a regularly varying random vector on [-∞, ∞] d \ {0} with index α. More precisely, :

nP(a -1 n X ∈ •) M 0 -→ Λ(•), in M 0 (R d ) as n → ∞,
where a n is the quantile of order 1 -1/n of R and the limit measure Λ is homogeneous of order α and given by

Λ(A) = ∞ 0 P(uZ ∈ A)αu -α-1 du, A ⊂ R d \ {0} Borel. (2.2)
Moreover, in the case when Z is non-negative, Λ is supported by [0, ∞) d \ {0} and we have

V (x) := Λ([0, x] c ) = E d i=1 Z i x i α , x ∈ [0, +∞) d \ {0}.
Example 2.1. For example, this applies directly to the multivariate Student distribution with ν degrees of freedom that is the product of an inverse χ 2 (ν) distribution (with heavy tail of order ν/2) and an independent multivariate Gaussian distributions (with moments of all orders). See Nikololoupolos et al. [START_REF] Nikoloulopoulos | Extreme value properties of multivariate t copulas[END_REF] and Section 2.2.4 below.

Proof of Proposition 2.1. Consider an arbitrary norm • on R d-1 and denote by S d-1 the unit sphere. For x > 0 and B ⊂ S d-1 Borel, define

A = z ∈ R d : z > x, z/ z ∈ B . (2.3)
We have, as n → ∞,

nP(a -1 n X ∈ A) = nP (R Z > a n x, Z/ Z ∈ B) = nP R Z 1 {Z/ Z ∈B} > a n x ∼ nE Z α 1 {Z/ Z ∈B} P(R > a n x) ∼ E Z α 1 {Z/ Z ∈B} x -α nP(R > a n ) → x -α E Z α 1 {Z/ Z ∈B} . (2.4)
We have used here the univariate Breiman Lemma 2.1 to go from the first to the second line and then the fact that R has a regularly varying tail with index α > 0 and that nP(R > a n ) → 1. Using the fact that the sets of the form (2.3) form a convergence determining class (Hult and Linskog [START_REF] Hult | Regular variation for measures on metric spaces[END_REF]), we deduce from Equation (2.4) the M 0 -convergence nP(X/a n ∈ •)

M 0 -→ Λ(•)
, where the limit measure Λ is characterised by

Λ(A) = x -α E Z α 1 {Z/ Z ∈B} (2.5)
for all set A of the form (2.3). We then check that Λ admits the integral representation (2.2).

Computing the right hand side of (2.2) with A given by (2.3), we get

∞ 0 P(uZ ∈ A)αu -α-1 du = ∞ 0 E 1 {u Z >x,Z/ Z ∈B} αu -α-1 du = E 1 {Z/ Z ∈B} ∞ 0 1 {u>x/ Z } αu -α-1 du = x -α E Z α 1 {Z/ Z ∈B} = Λ(A).
Since the sets A of the form (2.3) form a determining class, the integral representation (2.2) holds for all A ⊂ R d \ {0} Borel. We can then check directly that Λ is homogeneous: for v > 0,

Λ(vA) = ∞ 0 P(uZ ∈ vA)αu -α-1 du = ∞ 0 P(v -1 uZ ∈ A)αu -α-1 du = v -α ∞ 0 P(uZ ∈ A)αu -α-1 du = v -α Λ(A),
where we used the change of variable u = u/v on the second line.

A SIMPLE MODEL FOR MULTIVARIATE REGULAR VARIATIONS

Finally, when Z is supported by [0, ∞) d , Equation (2.2) implies that Λ is supported by [0, ∞) d \ {0} and the tail function V is computed as follows:

V (x) := Λ([0, x] c ) = [0,∞) d P(uZ / ∈ [0, x])αu -α-1 du = [0,∞) d P (u > Z i x i for some 1 ≤ i ≤ d) αu -α-1 du = [0,∞) d P u > min 1≤i≤d x i Z i αu -α-1 du = E min 1≤i≤d x i Z i -α = E d i=1 Z i x i α .
Proposition 2.2. If Z has a density f Z , then Λ is absolutely continuous with respect to the Lebesgue measure and its Radon-Nikodym derivative is given by

λ(z) = ∞ 0 f Z (z/u) αu -d-α-1 du. (2.6)
and is homogeneous of order -d -α, that is

λ(vz) = v -d-α λ(z), v > 0, z ∈ R d \ {0}. (2.7)
Proof. If Z has a density f Z , the measure Λ writes

Λ(A) = ∞ 0 P(uZ ∈ A)αu -α-1 du = ∞ 0 R d 1 {uz∈A} f Z (z)dzu -α-1 du = ∞ 0 A f Z (z/u) αu -α-d-1 dzdu = A λ(z)dz,
where we use the change of variable z = uz and Fubini Theorem. Furthermore, with the change of variable

u = u/v, λ(vz) = ∞ 0 f Z (vz/u)αu -d-α-1 du = v -d-α ∞ 0 f Z (z/u)αu -d-α-1 du = v -d-α λ(z).

A copula point of view

When focusing on the dependence structure, Proposition 2.1 can be rephrased in terms of copulas (we refer to Joe [START_REF] Joe | Dependence modeling with copulas[END_REF] for a background on copulas and Gudendorf and Segers for extreme value copulas [START_REF] Gudendorf | Extreme-value copulas[END_REF]). Following Krupskii et al. [START_REF] Krupskii | Extreme-value limit of the convolution of exponential and multivariate normal distributions: Link to the Hüsler-Reiß distribution[END_REF], we consider here the simple common factor model

X = αE1 d + Y (2.8)
with α > 0, E exponentially distributed and, independently, Y a d-dimensional random vector such that E[e αY i ] < ∞, for all i = 1, . . . , d. The different component of X share the common factor E that introduces dependence in the extremes, because the components of Y are lighter tailed. Since the exponential distribution has a density, all the components X i = αE + Y i have a continuous distribution. Sklar Theorem entails that the copula C X pertaining to X is uniquely defined by

C X (u 1 , . . . , u d ) = F X (F ← X i (u 1 ), . . . , F ← X d (u d )), (u 1 , . . . , u d ) ∈ [0, 1] d
, where F X denotes the multivariate cumulative distribution of X and F ← X i the quantile function of component X i .

Proposition 2.3. Consider the copula C X associated to the random vector X defined by (2.8). Then

C n X (u 1/n 1 , . . . , u 1/n d ) → C V (u 1 , . . . , u d ), (u 1 , . . . , u d ) ∈ [0, 1] d , where C V (u 1 , . . . , u d ) = exp -V (σ 1 (-log u 1 ) 1/α , . . . , σ d (-log u d ) 1/α )
with

σ α i = E[e αY i ] and V (x) = E ∨ d i=1 e αY i x α i .
In words, C X belongs to the domain of attraction of the extreme value copula C V .

Here, we use the fact that exp(αE) has an α-Pareto distribution but, in view of the proof and the multivariate Breiman Lemma, the result holds as soon as exp(αE) has an heavy tail with index α and (α + ε)Y i has a finite exponential moment for i = 1, . . . , d.

Proof of Proposition 2.3. By Proposition 2.1, e X = e αE e Y is regularly varying with exponent function V and hence, the normalised maximum of n independent copies of X converge to an α-Fréchet vector with distribution function e -V (x) . On the other hand, since the exponential transformation operates separately on each component, e X has copula C X and the normalised maximum of n i.i.d. copies has copula C n X (u

1/n 1 , . . . , u 1/n d ).
It remains to note that C V is the copula associated with the limiting α-Fréchet vector, where the i-th margin as shape parameter α and scale parameter σ. The fact that convergence of point-wise maxima implies convergence of the copula is justified in Deheuvels [START_REF] Deheuvels | Caractérisation complête des lois extrêmes multivariées et de la convergence aux types extrêmes[END_REF].

Examples

In this section, we apply Proposition 2.1 and consider various models for the various random vector Z. For these models, we provide an explicit expression for the limit measure Λ that characterises the regular variation of the product X = RZ. Our computations rely on the general form of the density λ expressed in Proposition 2.2 and technical computations. In the following examples, R is regularly varying with index α.

A SIMPLE MODEL FOR MULTIVARIATE REGULAR VARIATIONS

Gaussian case

The following result states a regular variation result in connection with the extremal-t model, see Nikoloulopoulas et al. [START_REF] Nikoloulopoulos | Extreme value properties of multivariate t copulas[END_REF].

Proposition 2.4. In the framework of the multivariate Breiman's lemma, if Z ∼ N (0, Σ), then the limit measure Λ has density

λ(z) = α (2π) d/2 |Σ| 1/2 Γ α + d 2 z Σ -1 z 2 -(α+d)/2 , z ∈ R d \ {0}.
Proof. Starting from Eq. (2.6) and introducing the Gaussian density, we get

λ(z) = ∞ 0 f Z z u αu -α-d-1 du = ∞ 0 1 √ 2π d |Σ| 1/2 exp - 1 2u 2 z Σ -1 z αu -α-d-1 du.
The change of variable v = 1/u in the integral yields

λ(z) = (2π) -d/2 |Σ| -1/2 α ∞ 0 exp - v 2 2 z Σ -1 z u α+d-1 du = (2π) -d/2 |Σ| -1/2 α 2 z Σ -1 z ∞ 0 z Σz 2 exp - v 2 2 z Σ -1 z u α+d-1 du = (2π) -d/2 |Σ| -1/2 α 2 z Σ -1 z E X α+d-2
where X has a Weibull distribution with shape parameter equal to 2 and scale parameter equal to 2/(z Σ -1 z). We deduce

E X α+d-2 = z Σ -1 z 2 -(α+d-2)/2 Γ α + d 2
and we obtain the claimed formula for λ(z).

Log-normal case

The case of log-normal spectral functions is connected with the Hüsler-Reiss model [START_REF] Hüsler | Maxima of normal random vectors: between independence and complete dependence[END_REF], see also Wadsworth and Tawn [START_REF] Wadsworth | Efficient inference for spatial extreme value processes associated to log-Gaussian random functions[END_REF].

Proposition 2.5. In the framework of the multivariate Breiman's lemma, if Z ∼ LN (m, Σ) with Σ definite positive, then the limit measure Λ has density

λ(z) = C exp - 1 2 log z Q log z + l log z d i=1 z -1 i , z ∈ (0, ∞) d ,
where

C = α (2π) (d-1)/2 |Σ| 1/2 1 d Σ -1 1 d exp - 1 2 m Σ -1 m + 1 2 (m Σ -1 1 d -α) 2 1 d Σ -1 1 d , Q = Σ -1 - Σ -1 1 d 1 d Σ -1 1 d Σ -1 1 d , (2.9 
)

l = m - α + m Σ -1 1 d 1 d Σ -1 1 d 1 d Σ -1 .
(2.10)

and

V (x) = C(2π) (d-1)/2 α d i=1 x -α i |Q -i | -1/2 exp 1 2 l -i Q -1 -i l -i Φ d-1 log x -i x i ; Q -1 -i l -i , Q -1 -i .
Proof. Starting from Eq. (2.6) and introducing the log-normal Gaussian density, we get

λ(z) = ∞ 0 f Z z u αu -α-d-1 du = ∞ 0 d i=1 z -1 i α|Σ| -1/2 exp - 1 2 (log(z) -log(u)1 d -m) Σ -1 (log(z) -log(u)1 d -m) (2π) -d/2 u -α-1 du
The change of variable v = log(u) yields

λ(z) = α|Σ| -1/2 (2π) -d/2 d i=1 z -1 i ∞ -∞ exp {P(v)} dv with P(v) = - 1 2 (log(z) -v1 d -m) Σ -1 (log(z) -v1 d -m) -αv = - 1 2 1 d Σ -1 1 d v 2 + log(z) Σ -1 1 d -m Σ -1 1 d -α v - 1 2 log(z) Σ -1 log(z) - 1 2 m Σ -1 m + log(z) Σ -1 m = - 1 2 C 1 v 2 + C 2 v + C 3 .
Recognising a Gaussian integral, we get with X ∼ N (0,

C -1 1 ), ∞ -∞ exp {P (v)} dv = 2π C 1 e C 3 E[exp{C 2 X}] = 2π C 1 e C 3 e C 2 2 2C 1 .
We deduce the claimed formula for λ(z) after some straightforward simplifications.

A SIMPLE MODEL FOR MULTIVARIATE REGULAR VARIATIONS

Independent Fréchet case

The case of independent spectral components is related to the logistic model [START_REF] Gudendorf | Extreme-value copulas[END_REF].

Proposition 2.6 (Frechet case). Suppose Z = (Z 1 , . . . , Z d ) with Z i ∼ Frechet(λ i , β) independent with β > α. Then, the limit measure Λ in multivariate Breiman's lemma has density

λ(z) = αβ d-1 Γ(d -α/β) d i=1 z -β-1 i λ -β i d i=1 z i λ i -β (α+1)/β-d
with Γ the Gamma function and

V (x) := Λ([0, x] c ) = Γ 1 - α β d i=1 x i λ i -β α/β .
Proof. Starting from Eq. (2.6) and introducing the product Fréchet density yields

λ(z) = ∞ 0 f Z z u αu -α-d-1 du = ∞ 0 d i=1 z -β-1 i u β+1 βλ β i exp -(z i /λ i u) -β αu -α-d-1 du = αβ d d i=1 z -β-1 i λ -β i ∞ 0 u -α+βd-1 exp -u β d i=1 z i λ i -β
du.

The change of variable

v = u β d i=1 z i λ i -β
in the integral gives

λ(z) = αβ d d i=1 z -β-1 i λ -β i 1 β d i=1 z i λ i -β (α+1)/β-d ∞ 0 e -v v d-α/β-1 dv
The last integral is the definition of the Gamma function Γ(d -α/β). Proposition 2.1 gives

V (x) = E d i=1 Z i x i α = ∞ 0 P d i=1 Z i x i α > x dx = ∞ 0 1 - d i=1 P Z i x i α ≤ x dx.
Introducing the Fréchet density function yields

V (x) = ∞ 0 1 -exp -x -β/α d i=1 x i λ i -β
dx.

The change of variable y = x

d i=1 x i λ i -β -α/β gives V (x) = d i=1 x i λ i -β α/β ∞ 0 1 -exp -y -β/α dy
The last integral corresponds to the expectation of a Fréchet(1, β/α) and therefore, assuming β > α, we have the result.

Independent Weibull case

The case of independent spectral components is related to the negative logistic model [START_REF] Gudendorf | Extreme-value copulas[END_REF].

Proposition 2.7 (Weibull case). Suppose Z = (Z 1 , . . . , Z d ) with Z i ∼ Weibull(λ i , β) independent with α > β. Then the limit measure Λ in multivariate Breiman's Lemma has density

λ(z) = αβ d-1 Γ(d + α/β) d i=1 z i λ i β -(α+1)/β-d d i=1 z β-1 i λ β i and V (x) := Λ([0, x] c ) = Γ 1 + α β ∅ =J⊂{1,••• ,d} (-1) |J|+1 j∈J x j λ j β -α/β .
Proof. Starting from Eq. (2.6) and introducing the product Weibull density yields

λ(z) = ∞ 0 f Z z u αu -α-d-1 du = ∞ 0 d i=1 β λ i z i uλ i β-1 exp - z i uλ i β αu -α-d-1 du = αβ d d i=1 1 λ i z i λ i β-1 ∞ 0 exp -u -β d i=1 z i λ i β u -α-βd-1 du. The change of variable v = u -β d i=1 z i λ i β in the integral gives λ(z) = αβ d-1 d i=1 z i λ i β -(α+1)/β-d d i=1 z β-1 i λ β i ∞ 0 e -v v α β +d-1 dv.

A SIMPLE MODEL FOR MULTIVARIATE REGULAR VARIATIONS

Proposition 2.1 yields

V (x) = E d i=1 Z i x i α = ∞ 0 1 - d i=1 P Z i x i α ≤ x dx.
Introducing the Weibull density function yields

V (x) = ∞ 0 1 - d i=1 1 -exp -x β/α x i λ i β dx = ∞ 0 ∅ =J⊂{1,••• ,d} (-1) |J|+1 exp -x β/α j∈J x j λ j β dx.
The change of variable y = x j∈J

x j λ j β α/β yields V (x) = ∅ =J⊂{1,••• ,d} (-1) |J|+1 j∈J x j λ j β -α/β ∞ 0 exp -y β/α dy.
The last integral correspond to the expectation of a Weibull(1, β/α).

Independent Gamma case

This last example is related to the max-stable model with Dirichlet spectral density in the case where β i ≡ 1. The restriction of λ on the simplex is proportional to the Dirichlet density.

Proposition 2.8 (Gamma case). Suppose Z = (Z 1 , . . . , Z d ) with Z i ∼ Γ(θ i , β i ) independent. Then λ(z) = αΓ α + d i=1 θ i d i=1 β i z i -d i=1 θ i -α d i=1 β θ i i z θ i -1 i Γ(θ i ) Proof. λ(z) = ∞ 0 d i=1 β θ i i Γ(θ i ) z i u θ i -1 e -β i z i /u αu -α-1-d du = α d i=1 β θ i i z θ i -1 i Γ(θ i ) ∞ 0 u -d i=1 θ i -α-1 exp -u -1 d i=1 β i z i du. 50 2.2. A SIMPLE MODEL FOR MULTIVARIATE REGULAR VARIATIONS Setting v = u -1 d i=1 β i z i , we obtain λ(z) = α d i=1 β i z i -d i=1 θ i -α d i=1 β θ i i z θ i -1 i Γ(θ i ) ∞ 0 e -v v d i=1 θ i +α-1 du.

Non standard regular variation

Following Resnick [START_REF] Resnick | Heavy-tail phenomena[END_REF], non-standard multivariate regular variations correspond to different tail index for the different components. Proposition 2.1 has a simple extension to this case.

Proposition 2.9. Let R be a non negative heavy-tailed random variable with index 1,

α = (α 1 , • • • , α d ) ∈ (0, ∞) d and Z = (Z 1 , • • • , Z d ) a d-dimensional random vector such that E|Z i | α i +ε < ∞ for some ε > 0. Then the product X = (R 1/α 1 Z 1 , • • • , R 1/α d Z d ) = R 1/α Z satisfies nP(a -1/α n X ∈ •) M 0 -→ Λ(•)
where a n is the quantile of order 1 -n -1 of R and the limit measure Λ satisfies

Λ(A) = ∞ 0 P u -1/α Z ∈ A du, A ⊂ R d \ {0} measurable. (2.11) 
Proof. Proposition 2.1 for X = RZ α = (RZ α 1 1 , . . . , RZ α d d ) yields the regular variations for X. Then, the change of variable X = X1/α together with the continuous mapping theorem for M 0 -convergence [START_REF] Hult | Regular variation for measures on metric spaces[END_REF] imply the non-standard regular variations stated in Proposition 2.9 .

Chapter 3

On the Hüsler-Reiss Pareto distribution

Introduction

Following the chapter 2, we propose a thorough study of the so-called Hüsler-Reiss Pareto model, that is the exceedance Pareto model associated with the max-stable Hüsler-Reiss model [START_REF] Hüsler | Maxima of normal random vectors: between independence and complete dependence[END_REF]. The exceedances of the related Brown-Resnick spatial model were considered recently by Wadsworth and Tawn [START_REF] Wadsworth | Efficient inference for spatial extreme value processes associated to log-Gaussian random functions[END_REF] who proposed inference via censored maximum likelihood, see also Kiriliouk et al. [START_REF] Kiriliouk | Peaks Over Thresholds Modeling With Multivariate Generalized Pareto Distributions[END_REF]. Here, we focus on the finite-dimensional multivariate Hüsler-Reiss Pareto model and notice that it has a simple exponential family structure (see Barndorff-Nielsen [START_REF] Barndorff-Nielsen | Information and exponential families in statistical theory[END_REF]), that seems to have been overlooked in the literature. We propose in Section 3.2 an extensive study of this exponential family structure and consider also maximum likelihood inference as well as perfect simulation. We extend these results in Section 3.3 where we consider the non-standard Hüsler-Reiss Pareto model that incorporates different tail parameters for the different margins. Maximum likelihood estimators are shown again to be asymptotically normal and an alternating optimisation procedure is considered. To conclude, we propose a maximum likelihood ratio test for testing the equality of the different marginal tail parameters.

The Hüsler-Reiss Pareto model 3.2.1 Definition and transformation properties

Motivated by Proposition 2.5, we introduce the family of Hüsler-Reiss Pareto distributions and study their properties. The main reason why we focus on that particular class is that it enjoys an exponential family property, see Barndorff-Nielsen [START_REF] Barndorff-Nielsen | Information and exponential families in statistical theory[END_REF].

Definition 3.1. Let d ≥ 2, a = (a 1 , . . . , a d ) ∈ (0, ∞) d , Q ∈ R d×d a symmetric positive semi- definite matrix such that Ker Q = span(1 d ) and l ∈ R d such that l 1 d < 0. The Hüsler-Reiss Pareto model on [0, ∞) d \ [0, a] with parameters (Q, l) is defined by the density f a (z; Q, l) = 1 C a (Q, l) exp - 1 2 log z Q log z + l log z d i=1 z -1 i 1 {z a} , z ∈ (0, ∞) d ,
with C a (Q, l) the normalisation constant. We call α = -l 1 d > 0 the exponent of the Pareto distribution f a (z; Q, l).

We write Z HRPar a (Q, l) for a random vector Z with density f a (z; Q, l).

Remark 3.1. The Hüsler-Reiss Pareto model is closely connected with the exponent measure λ obtained in Proposition 2.5. Indeed, the parameters Q and l introduced there satisfy the constraint stated in Definition 3.1. The symmetric semi-definite positive matrix Q satisfies

Q1 d = Σ -1 - Σ -1 1 d 1 d Σ -1 1 d Σ -1 1 d 1 d = 0
and, for all vector x ∈ R d \ {0} such that x Σ -1 1 d = 0, we have x Qx > 0 whence we deduce Ker Q = span(1 d ). As for l, we check readily

l 1 d = m - α + m Σ -1 1 d 1 d Σ -1 1 d 1 d Σ -1 1 d = -α < 0.
Conversely, for all (Q, l) as in Definition 3.1, there exist (non unique) Σ ∈ R d×d and m ∈ R d such that Equations (2.9) and (2.10) are satisfied.

Example 3.1. In dimension d = 2, the model parameters are

Q = c -c -c c and l = l 1 l 2 with c > 0, l 1 + l 2 < 0.
The exponent is α = -(l 1 + l 2 ) > 0 and

f a (z; Q, l) = 1 C a (Q, l) exp - c 2 (log z 1 -log z 2 ) 2 + l 1 log z 1 + l 2 log z 2 1 z 1 z 2 1 {z a} .
Interestingly, Hüsler-Reiss Pareto distributions inherit from log-normal distributions a stability property under scale and power transformations. (i) For all u ∈ (0, ∞) d , uZ HRPar ua (Q, l + Q log u).

(ii) For all β > 0, Z β HRPar a β (β -2 Q, β -1 l). In particular, if Z has exponent α, Z β has exponent α/β.
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Proof. The change of variable z = uz implies

P(uZ ∈ A) = A f a (z/u; Q, l) d i=1 u -1 i dz.
Simple computations show that

f a (z/u; Q, l) d i=1 u -1 i = 1 C a (Q, l) exp - 1 2 (log z -log u) Q(log z -log u) + l (log z -log u) d i=1 z -1 i 1 {z ua} = C ua (Q, l + Q log u) exp 1 2 log u Q log u + l log u C a (Q, l) f ua (z; Q, l + Q log u)
This proves (i) as well as the equality

C ua (Q, l + Q log u) = exp 1 2 log u Q log u + l log u C a (Q, l).
Using a similar reasoning, the change of variable z = z β yields

P(Z β ∈ A) = A f a (z 1/β ) d i=1 1 β z1/β-1 i dz
and simple computations show that

f a (z 1/β ) d i=1 1 β z 1/β-1 i = 1 C a (Q, l)β d exp - 1 2 log z β -1 Qβ -1 log z + l β -1 log z d i=1 z -1 i 1 {z a β } = C a β (β -2 , β -1 l) C a (Q, l)β d f a β (z; β -2 Q, β -1 l)
This implies (ii) as well as the equality 

C a β (β -2 Q, β -1 l) = β d C a (Q, l).
C ua (Q, l + Q log u) = exp 1 2 log u Q log u + l log u C a (Q, l) and C a β (β -2 Q, β -1 l) = β d C a (Q, l).
As a consequence, we will often assume without loss of generality that a = 1 d . The general case a ∈ (0, ∞) d follows with the relation

C a (Q, l) = exp - 1 2 log a Q log a + l log a C 1 d (Q, l -Q log a).

Exponential family properties

An important property of the Hüsler-Reiss Pareto distributions introduced above is to form an exponential family. Let E be an inner product space with dot product •, • . A parametric family of densities (f (z; θ)) θ∈Θ with Θ ⊂ E is a canonical exponential family if it can be written in the form

f (z; θ) = 1 C(θ) e θ,T (z) h(z), z ∈ R d , (3.1) 
where T : R d → E is the natural sufficient statistic. The exponential family is called a full exponential family if

Θ = t ∈ E : R d e t,T (z) h(z) dz < ∞
is not contained in a strict subspace of E. For a detailed account on exponential family, the reader should refer to Barndorff-Nielsen [START_REF] Barndorff-Nielsen | Information and exponential families in statistical theory[END_REF].

Our main result in this section is the following Theorem.

Theorem 3.1. Consider the d(d + 1)/2-dimensional inner product space

E = {(A, b) ∈ R d×d × R d : A = A, A1 d = 0} with inner product (A, a), (A , a ) = 1≤i,j≤d A i,j A i,j + 1≤k≤d a k a k . Define Θ = (Q, l) ∈ E : Q semi definite positive, Ker Q = span(1 d ), l 1 d < 0 .
For all fixed a ∈ (0, ∞) d , the Hüsler-Reiss Pareto distributions (f a (z; θ)) θ∈Θ form a full canonical exponential family with parameter θ = (Q, l) ∈ Θ and sufficient statistic

T (z) = - 1 2 log z -log z log z -log z , log z , (3.2 
)

with log z = d -1 (1 d log z)1 d .
Proof. Without loss of generality, let a = 1 d . Consider the intensity function

λ(z) = exp - 1 2 log z Q log z + l log z d i=1 z -1 i , z ∈ (0, ∞) d , (3.3) 
The symmetric matrix Q can be diagonalised in an orthonormal basis Q = U ∆U with ∆ = diag(λ 1 , . . . , λ d ) and U orthonormal. Thanks to the condition Q1 d = 0, we can suppose λ 1 = 0 and the first column of U is equal to

U 1 = 1 d / √ d.
Denote by ∆ -1 (resp. v -1 ) the matrix ∆ (resp. vector v) with its first row and column removed (resp. first component removed), Ũ the d × (d -1) matrix obtained by removing the first column of U . The change of variable log z = U v gives

(0,∞) d 1 {z a} λ(z)dz = R d exp - 1 2 v -1 ∆ -1 v -1 + l Ũ v -1 + l U 1 v 1 1 v∈A dv
where A equals

A = v ∈ R d : v 1 1 d -Ũ v -1 = v ∈ R d : v 1 > a(v -1 ); a(v -1 ) = min i - d-1 j=1 Ũij v j+1 .
By Fubini theorem,

(0,∞) d 1 {z a} λ(z)dz = R d-1 exp - 1 2 v -1 ∆ -1 v -1 + l Ũ v -1 ∞ a(v -1 ) exp l U 1 v 1 dv 1 dv -1 .
The inner integral with respect to v 1 converges if and only if l U 1 < 0 and then

(0,∞) d 1 {z a} λ(z)dz = R d-1 exp - 1 2 v -1 ∆ -1 v -1 + l Ũ v -1 + l U 1 a(v -1 ) dv -1
is finite if and only if ∆ -1 is positive definite. This proves that the integral converge if and only if (Q, l) ∈ Θ and that the exponential family is full.

In a general exponential model (3.1), the logarithm of the normalisation constant C(θ) is related to the cumulant generating function of the natural statistics T by the relation

log E θ e t,T (Z) = log C(θ + t) -log C(θ), θ, θ + t ∈ Θ. If θ is an interior point of Θ, this implies E θ [T (Z)] = ∂ log C ∂θ (θ) and Var θ [T (Z)] = ∂ 2 log C ∂θ∂θ (θ). (3.6.1)
The computation of the normalisation constant C(θ) is hence particularly important. 

C a (Q, l) = (2π) (d-1)/2 1 α d i=1 a -α i det(Q -i ) -1/2 exp 1 2 l -i Q -1 -i l -i Φ d-1 log a -i a i ; Q -1 -i l -i , Q -1 -i
, where α = -1 d l, the notation l -i (resp. a -i ) denotes the vector l (resp. a) with its ith component removed, Q -i the matrix Q with its ith column and row removed and Φ d (z; m, Σ) denotes the cumulative distributive function at z of a d-dimensional multivariate Gaussian distribution with mean m and covariance Σ.

The expression for C a (Q, l) was first established by Huser and Davison [START_REF] Huser | Composite likelihood estimation for the Brown-Resnick process[END_REF]. We provide here a direct proof that will be needed for further reference (proof of Proposition 3.3).

Proof. With λ the function defined by Equation (3.3), the normalisation constant C a (Q, l) is given by

C a (Q, l) = [0,a] c λ(z) dz. Since [0, a] c = ∪ d i=1 A i with A i = z ∈ R d : z i > a i , z -i /z i ≤ a -i /a i , i = 1, . . . , d,
we have

C a (Q, l) = d i=1 A i λ(z) dz.
Using the homogeneity relation (2.7) with x = z i , we get λ

(z) = λ(z i z/z i ) = z -d-α i λ(z/z i ).
Since the ith component of z/z i is equal to 1, we have also

λ(z/z i ) = exp - 1 2 log z -i Q -i log z-i + l -i log z-i d j =i z-1 j , z-i = z -i /z i .

These relations imply

A i λ(z)dz = (0,∞) d 1 {z i >a i , z -i /z i ≤a -i /a i } z -d-α i λ(z/z i ) dz = (0,∞) d 1 {z i >a i , z-i ≤a -i /a i } z -d-α i exp - 1 2 log z -i Q -i log z-i + l -i log z-i d j =i z-1 j dz = ∞ a i [0,a -i /a i ] z -α-1 i exp - 1 2 log z -i Q -i log z-i + l -i log z-i d j =i z-1 j dz i dz -i (3.4) = 1 α a -α i [0,a -i /a i ] exp - 1 2 log z -i Q -i log z-i + l -i log z-i d j =i z-1 j dz -i
where we have used for the third inequality the change of variable z → (z i , z-i ). In the last integral with respect to z-i , we recognise a log-normal density (up to a multiplicative factor), so that

[0,a -i /a i ] exp - 1 2 log z -i Q -i log z-i + l -i log z-i d j =i z-1 j dz -i =(2π) (d-1)/2 det(Q -i ) -1/2 exp 1 2 l -i Q -1 -i l -i Φ d-1 log(a -i /a i ); Q -1 -i l -i , Q -1 -i .
The result follows:

C a (Q, l) = d i=1 A i λ(z) dz = (2π) (d-1)/2 1 α d i=1 a -α i det(Q -i ) -1/2 exp 1 2 l -i Q -1 -i l -i Φ d-1 (log(a -i /a i ); Q -1 -i l -i , Q -1 -i ). Corollary 3.1. Let Z HRPar a (Q, l) with exponent α = -l 1 d > 0. Then, (i) for all u = (u 1 , . . . , u d ) such that d i=1 u i < α, we have E d i=1 Z u i i = C a (Q, l + u) C a (Q, l) .
(ii) The expectation and covariance matrix of log Z are given by

E [log Z i ] = ∂ log C a ∂l i (Q, l) i = 1, . . . , d, and 
Cov (log Z i , log Z j ) = ∂ 2 log C a ∂l i ∂l j (Q, l) i, j = 1, . . . , d.
(iii) Moreover, the expectation and covariance matrix of log Z satisfies

E[(log Z -log Z)(log Z -log Z) ] = ∂ log C a ∂Q (Q, l)
Proof. For θ = (Q, l) ∈ Θ, we have for all u = (u 1 , . . . , u d ) such that d i=1 u i < α θ + (0, u) ∈ Θ by definition of α. Using equality (3.6.1) with t = (0, u), we have

log E θ e u,log Z = log C(Q, l + u) -log C(Q, l),
taking to the exponential and developing the product implies (i). The results (ii) and (iii) are straightforwards applications of (3.6.1).
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Example 3.2. In dimension d = 2 with a = (1, 1) and the same notations as in Example (3.1), we have

C(Q, l) = √ 2π α √ c e l 2 1 /2c Φ -l 1 / √ c + e l 2 2 /2c Φ -l 2 / √ c .
The first order partial derivatives of log C are equal to

∂ log C ∂l 1 = - 1 l 1 + l 2 + cl 1 Φ (-l 1 / √ c) -ϕ(-l 1 / √ c)/ √ c Φ (-l 1 / √ c) + e c(l 2 2 -l 2 1 )/2 Φ (-l 2 / √ c) ∂ log C ∂l 2 = - 1 l 1 + l 2 + cl 2 Φ (-l 2 / √ c) -ϕ(-l 2 / √ c)/ √ c Φ (-l 2 / √ c) + e c(l 2 1 -l 2 2 )/2 Φ (-l 1 / √ c) ∂ log C ∂c = - 1 2c + 1 2 l 1 Φ(-l 1 / √ c) -l 1 c -3/2 φ(-l 1 / √ c) Φ (-l 1 / √ c) + e c(l 2 2 -l 2 1 )/2 Φ (-l 2 / √ c) + 1 2 l 2 Φ(-l 2 / √ c) -l 2 c -3/2 φ(-l 2 / √ c) Φ (-l 2 / √ c) + e c(l 2 1 -l 2 2 )/2 Φ (-l 1 / √ c)
This formulas provides respectively the expectations

E[log Z 1 ], E[log Z 2 ] and -1 8 E[(log Z 1 - log Z 2 ) 2 ]
. Formulas for the general case a = (a 1 , a 2 ) can be deduced using Proposition 3.1.

Simulation of HR-Pareto random vectors

We now consider the simulation of an Hüsler-Reiss Pareto random vector Z HRPar a (Q, l). Thanks to the transformation property (3.1), we focus on the case a = 1 d . In the following proposition, we denote by S = {x ∈ (0, ∞) d : x ∞ = 1} the unit sphere and we use S = ∪ d i=1 S i with S i = {x ∈ S : x i = 1}. Proposition 3.3. Let Z HRPar 1 d (Q, l) with exponent α > 0. Then R = Z and Θ = Z/ Z are independent and such that -R is a Pareto(α)-distributed real random variable, i.e., P(R > r) = r -α , r > 1;

-Θ is a random vector on S satisfying, for i = 1, . . . , d,

P(Θ ∈ S i ) = det(Q -i ) -1/2 exp 1 2 l -i Q -1 -i l -i Φ d-1 0; Q -1 -i l -i , Q -1 -i d j=1 det(Q -j ) -1/2 exp 1 2 l -j Q -1 -j l -j Φ d-1 0; Q -1 -j l -j , Q -1 -j (3.5)
and, given Θ ∈ S i , Θ i = 1 and

L(Θ -i | Θ ∈ S i ) = L(exp(G i ) | G i ≤ 0) with G i N d-1 (Q -1 -i l -i , Q -1 -i ).
Proof. The proof is mostly a reinterpretation of the computations from the proof of Proposition 3.2. The density of Z HRPar 1 d (Q, l) is given by

f 1 d (z; Q, l) = 1 C 1 d (Q, l) 1 { z >1} λ(z), z ∈ (0, ∞) d , 59 
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C 1 d (Q, l) = d i=1 A i λ(z)dz with A i = {z ∈ (0, ∞) d : z > 1, z/ z ∈ S i }, i = 1, . . . , d.
The expression for A i here is slightly different but equivalent since a = 1 d . Consequently, we get

P(Θ ∈ S i ) = (0,∞) d 1 {z/ z ∈S i } f 1 d (z; Q, l)dz = 1 C 1 d (Q, l) A i λ(z)dz
which yields Equation (3.5) in view of Proposition 3.2 and its proof.

On the other hand, when Z ∈ A i or equivalently Θ ∈ S i , we have R = Z = Z i whence the change of variable z → (z i , z-i ) in Equation (3.4) provides exactly the joint distribution of (R, Θ -i ). This amounts to be the product of α-Pareto and log-normal distributions, proving the independence of R and Θ and the form of their distribution.

In order to simulate the Gaussian random vector G i conditioned on G i ≤ 0, we propose a recursive sampling procedure. Let i ∈ {1, . . . , d} be fixed and denote by G i,j the components of G i . We first set G i,i = 0 and J = {1, . . . , d}\{i} the set of indices to sample. For j ∈ J, the conditional distribution of G i,j given the already sampled components G i,J c has a Gaussian distribution with mean and variance

m i,j = Q -1 J,J l J -Q J,J c G i,J c j and σ 2 i,j = Q -1 J,J j,j (3.6) 
subject to the constraint G i,j ≤ 0. By the inversion method, we can sample from G i,j as

G i,j = m i,j + σ i,j Φ -1 Φ(-m i,j /σ i,j )U j , U j Unif([0, 1]),
where Φ denotes the standard normal cumulative distribution function. Then, we replace J by J \ {j} and repeat the procedure with the next component to sample until J is empty. Note that the above computations are closely related to the distribution of extremal functions in the conditional sampling procedure of the Brown-Resnick max-stable process, see Dombry et 

Maximum likelihood inference

The exponential family property of the Hüsler-Reiss Pareto distributions makes maximum likelihood inference particularly convenient. We always suppose the threshold a ∈ (0, ∞) d to be known and estimate the parameter θ = (Q, l) ∈ Θ from observations z (1) 

= (Q, l) ∈ Θ, L n (θ; z (1) , • • • , z (n) ) = 1 n n i=1 log f a (z (i) ; Q, l) = (Q, l), T n -log C a (Q, l) + C
where T n is the sufficient statistic defined by

T n = - 1 2n n i=1 (log z (i) -log z (i) )(log z (i) -log z (i) ) , 1 n n i=1 log z (i)
and the constant term C does not depend on the parameter θ = (Q, l). Using the classical theory of maximum likelihood estimation for exponential families, we obtain the following result, regarding existence, uniqueness and asymptotic normality of the maximum likelihood estimator θn = argmax

θ∈Θ L n (θ; z (1) , • • • , z (n) ).
Theorem 3.2. Let a ∈ (0, ∞) d and n ≥ 1.

(i) (existence and uniqueness) For observations z (1) , . . . ,

z (n) ∈ [0, a] c , the log-likelihood (Q, l) → L n (Q, l; z (1) , • • • , z (n)
) is strictly concave on Θ. A maximum likelihood estimator exists if and only the sample covariance matrix

V n = 1 n n i=1 log z (i) log z (i) - 1 n n i=1 log z (i) 1 n n i=1 log z (i)
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is conditionally definite positive in the sense that v V n v > 0 for all v ∈ R d \ {0} such that v 1 d = 0. If it exists, the maximum likelihood θmle n estimator is the unique solution to the score equation

∂ log C a ∂θ (θ) = T n , θ ∈ Θ. ( 3.7) 
(ii) (asymptotic normality) Let θ = (Q, l) ∈ Θ and assume Z (1) , . . . , Z (n) are generated from the distribution HRPar a (Q, l). Then, for n ≥ d -1, there exists almost surely a unique maximum likelihood estimator θmle n which is asymptotically normal and efficient, that is

√ n( θmle n -θ) d -→ N (0, I(θ) -1 ), as n → ∞,
where I(θ) is the Fisher Information matrix given by

I(θ) = - ∂ 2 log C a ∂θ∂θ (θ).
Remark 3.4. In statement i), if 1 d log z (1) , . . . , 1 d log z (n) are not all equal for i = 1, • • • , n then the condition V n conditionally definite positive is equivalent to V n definite positive.

The proof of Theorem 3.2 relies on the following Lemma. 

C = (Q, l) ∈ E : Q - 1 2 (l -l)(l -l) ,
where

Q 1 Q 2 means that the symmetric matrix Q 2 -Q 1 is semi-definite positive.
Proof of Lemma 3.1. The change of variable u = log z shows that

S = - 1 2 (u -u)(u -u) , u , u 0 where u = d -1 (1 d log z)1 d .
It is easily shown that C is closed, convex and contains S, so that conv(S) ⊂ conv(C) = C. We consider now the reverse inclusion. Consider U, U (1) , U (2) , . . . i.i.d. with mean l, variance Σ and such that U 0 a.s. The random element

S n = 1 n n i=1 - 1 2 (U (i) -U (i) )(U (i) -U (i) ) , U (i) .
belongs to conv(S) and, by the law of large numbers,

S n a.s. -→ S ∞ = - 1 2 E (U -U)(U -U) , E(U) , n → ∞,
so that S ∞ ∈ conv(S). We prove below that for all (Q, l) ∈ C, one can choose Σ such that S ∞ = (Q, l) ∈ conv(S), proving the reverse inclusion C ⊂ conv(S). Using

U = d -1 1 d 1 d U,
we deduce

E (U -U)(U -U) = E (U -d -1 1 d 1 d U)(U -d -1 1 d 1 d U) = E I - 1 d 1 d 1 d UU I - 1 d 1 d 1 d = I - 1 d 1 d 1 d (Σ + ll ) I - 1 d 1 d 1 d
It is proved in Lemma 3.2 that the linear operator on the space of symmetric d × d matrices defined by

P : M → I - 1 d 1 d 1 d M I - 1 d 1 d 1 d
is the orthogonal projection on the linear subspace {M : M 1 d = 0}. Therefore, for Σ such that P (Σ + ll ) = Q, we have

S n -→ (P (Σ + ll ), l) = (Q, l).
In particular, since we can take Σ among all symmetric positive semi-definite matrix, the choice Σ = -2Q -P (ll ) which is positive by definition of C leads to the result. Therefore C ⊂ conv(S).

Proof of Theorem 3.2. We assume here without loss of generality that a = 1 d . The cumulant transform θ ∈ (Q, l) ∈ Θ → log C a (Q, l) is a strictly convex function. Therefore the loglikelihood L n is strictly concave as a difference of a linear function and a strictly convex function. The general theory for exponential families (see e.g. Barndorff-Nielsen [14, Theorem 9.13]) ensures that the maximum likelihood estimator exists if and only if the sufficient statistic T n belongs to the interior of the closed convex hull of the support of T , that is T n ∈ int(conv(S)) = int(C) with S and C defined in Lemma 3.1. In this case, Theorem 9.13 in Barndorff-Nielsen [START_REF] Barndorff-Nielsen | Information and exponential families in statistical theory[END_REF] implies that the maximum likelihood estimator is unique and solves the score equation (3.7). So in order to prove statement (i), it remains to prove that T n ∈ int(conv(S)) if and only if V n is conditionally definite positive. Note that, by Lemma 3.1,

int(conv(S)) = int(C) = (Q, l) ∈ E : Q ≺ - 1 2 (l -l)(l -l) ⊥ on span(1 d ) ,
where

Q 1 ≺ Q 2 on span(1 d ) means that v (Q 2 -Q 1 )v > 0 for all R d \ {0} such that 3.3. THE GENERALISED H ÜSLER-REISS PARETO MODEL v 1 d = 0. For such v and for (Q, l) = T n , we have v -Q - 1 2 (l -l)(l -l) v =v   1 2n n i=1 (log z (i) )(log z (i) ) - 1 2 1 n n i=1 log z (i) 1 n n i=1 log z (i)   v ≥ 0 =v V n v
whence we deduce that T n ∈ int(conv(S)) if and only if V n is conditionally positive.

Statement ii) follows directly from the general theory of exponential families since the Hüsler-Reiss distributions form a full rank exponential family (see e.g. Van 

f a (z; θ) = 1 C a (θ) exp - 1 2 log z D α QD α log z + l D α log z d i=1 z -1 i 1 {z a} (3.8)
with C a (θ) the normalisation constant and D α the diagonal matrix with diagonal α.

We write Z HRPar a (α, Q, l) for a random vector Z with density f a (z; α, Q, l).

For λ > 0, the substitution (α, Q, l) → (λα, λ -1/2 Q, λ -1 l) leaves Equation (3.8) invariant so that the condition l 1 d = -1 is meant to ensure that the model is identifiable. In the case α = ᾱ1 d with ᾱ > 0, the generalised Hüsler-Reiss model coincides with the Hüsler-Reiss Pareto model since f a (z; α, Q, l) = f a (z; ᾱ2 Q, ᾱl) and ᾱ is the tail index.

Similarly as HR-Pareto distributions, generalised HR-Pareto distributions enjoy a stability property under scale and power transformations. Proposition 3.4. Let Z HRPar a (α, Q, l).
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(i) For all u ∈ (0, ∞) d , uZ HRPar ua (α, Q, l + QD α log u).

(ii) For all β ∈ (0, ∞) d , Z β HRPar a β (α/β, Q, l).

Proof. The change of variable z = uz implies

P(uZ ∈ A) = A f a (z/u; α, Q, l) d i=1 u -1 i dz.
Similarly as in the proof of Proposition (3.1), we check that

f a (z/u; α, Q, l) d i=1 u -1 i = C ua (α, Q, l + Q log u) exp 1 2 log u D α QD α log u + l D α log u C a (α, Q, l) f ua (z; α, Q, l + QD α log u)
whence statement (i) follows. The change of variable z = z β implies

P(Z β ∈ A) = A f a (z 1/β ; α, Q, l) d i=1 β -1 i z1/β i -1 i dz
and simple computations result in

f a (z 1/β ; α, Q, l) d i=1 β -1 i z 1/β i -1 i = C a β (α/β, Q, l) C a (α, Q, l) d i=1 β i f a β (z; α/β, Q, l)
whence statement (ii) follows.

We deduce a simple relation between generalised HR-Pareto distribution and (standard) HR-Pareto distribution. 

(i) C ua (α, Q, l + Q log u) = exp 1 2 log u D α QD α log u + l D α log u C a (α, Q, l) (ii) C a β (α/β, Q, l) = C a (α, Q, l) d i=1 β i .
The following proposition relates the moments of generalised Hüsler-Reiss Pareto model with those of the Hüsler-Reiss Pareto model. Proposition 3.5. Without loss of generality, assume a = 1 d and let Z HRPar(α, Q, l). Then, the expectation and the covariance matrix of log Z are given by

E α,Q,l [log Z i ] = α -1 i E 1 d ,Q,l [log Z i ] i = 1, • • • , d and Cov α,Q,l (log Z i , log Z j ) = α -1 i α -1 j Cov 1 d ,Q,l (log Z i , log Z j )
where E Q,l and Cov Q,l are the expectation and covariance of Hüsler-Reiss Pareto distribution with exponent 1.

Proof. Proposition 3.4 yields E α,Q,l [log Z i ] = α -1 i log z i f 1 d (z; 1 d , Q, l)dz. Similarly, we have E α,Q,l [log Z i log Z j ] = α -1 i α -1 j E Q,l [log Z i log Z j ].
Thus the result.

Remark 3.5. The family of the generalised Hüsler-Reiss Pareto distributions form a curved exponential family with minimal sufficient statistic T given by

T (z) = log z log z , log z .
The associated natural parameter space contain positive definite matrices and the set of parameters of interest (α, Q, l) is included in the boundary of the natural parameter space, making the theory difficult.

Maximum likelihood inference

We assume without loss of generality that a = 1 d is the known threshold. Based on independent observation Z (1) , Z (2) , • • • with distribution HRPar 1 d (θ 0 ), θ 0 ∈ θ we define the log-likelihood

L n (θ; Z (1) , • • • , Z (n) ) = n i=1 log f 1 d (z (i) , θ), θ ∈ Θ,
and consider maximum likelihood estimation. It should be noted that we were not able to apply directly the 'classical' maximum likelihood estimation theory from Lehman [START_REF] Lehmann | Elements of large-sample theory[END_REF] that uses differentiability properties of the likelihood. Indeed, despite some substantial efforts, we could not prove the relations 

∂ k ∂θ k (0,∞) d f 1 d (z; θ)dz = (0,∞) d ∂ k ∂θ k f 1 d (θ, z)dz, k = 1, 2,
Ln (h) = L n θ 0 + h/ √ n; Z (1) , • • • , Z (n) , θ 0 + h/ √ n ∈ Θ,
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satisfies, uniformly on compact sets,

Ln (h) = Ln (0) + ∂ Ln ∂h (0) h - 1 2 h I θ 0 h + o p (1), (3.9) ∂ Ln ∂h (h) = ∂ Ln ∂h (0) -I θ 0 h + o p (1), (3.10) 
∂ 2 Ln ∂h∂h (h) = -I θ 0 + o p (1) (3.11) 
with I θ 0 the Fisher information matrix at θ 0 . Furthermore, in Equations (3.9)-(3.10),

∂ Ln ∂h (0) = 1 √ n n i=1 ∂ log f 1 d ∂θ (Z (i) , θ 0 ) N (0, I θ 0 ) (3.12)
and in Equation (3.11), the o P (1)-term is even uniform on { h ≤ n 1/2-ε } for all ε > 0.

Proof. Differentiability in quadratic mean is proved thanks to Lemma 7.6 in van der Vaart [START_REF] Van Der | Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]. It is easily checked that θ → f 1 d (z; θ) is continuously differentiable for every z. Then we need to check that, with (θ, z) = log f 1 d (θ, z), the matrix

I(θ) = E θ ∂ ∂θ (θ, Z) ∂ ∂θ (θ, Z)
is well defined and continuous in θ. This follows easily from the fact that the log-likelihood has the specific form

∂ ∂θ (θ, Z) = A(θ), T (Z) + B(θ)
with A(θ), B(θ) continuous in θ and T (Z) = (log Z log Z , log Z). Since T (z) has moment of all orders that depend continuously on θ (this is true for the exponential family Hüsler-Reiss-Pareto and hence for the generalised Hüsler-Reiss-Pareto distributions), I(θ) is well defined and continuous in θ. From [START_REF] Van Der | Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]Lemma 7.6], we deduce that the model is differentiable in quadratic mean. For further reference, note that by [START_REF] Van Der | Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]Theorem 7.2], we have

E θ ∂ ∂θ (θ, Z) = 0 , I(θ) = E ∂ ∂θ (θ, Z) ∂ ∂θ (θ, Z) (3.13)
and Equation (3.9) holds for all fixed h (we don't have uniformity at this point).

We now prove the uniform asymptotic expansion (3.11). The change of variable

θ = θ 0 + h/ √ n yields ∂ 2 Ln ∂h∂h (h) = 1 n ∂ 2 L n ∂θ∂θ (θ) = 1 n n i=1 ∂ 2 ∂θ∂θ (θ; Z (i) ),
so that, by the law of large numbers,

∂ 2 Ln ∂h∂h (0) a.s. -→ E θ 0 ∂ 2 ∂θ∂θ (θ 0 ; Z) := -J θ 0 , as n → ∞. (3.14)
We don't know at this point that J θ 0 = I θ 0 , this will be proven in a final step. Thanks to the Taylor-Lagrange formula, the second-order derivative increment

∂ 2 Ln ∂h∂h (h) - ∂ 2 Ln ∂h∂h (0)
has norm upper bounded, for h ≤ n 1/2-ε , by

Cn 1/2-ε max h ≤n 1/2-ε ∂ 3 Ln ∂h 3 (h) = Cn -1-ε max θ-θ 0 ≤n -ε ∂ 3 L n ∂θ 3 (θ) .
The specific form

(θ, Z) = - 1 2 log z log z , D α QD α + log z, D α l -log C 1 d (θ)
implies that the third order derivative is upper bounded by

∂ 3 L n ∂θ 3 (θ, z) ≤ C 1 + C 2 n i=1 log Z (i) log Z (i)
for some constants C 1 , C 2 > 0 that does not depend on z ∈ [0, 1 d ] c and θ in a neighbourhood of θ 0 . We deduce

∂ 2 Ln ∂h∂h (h) - ∂ 2 Ln ∂h∂h (0) ≤ cn -ε C 1 + C 2 1 n n i=1 log Z (i) log Z (i) . (3.15)
By the law of large number, the sample mean converges almost surely so that the right hand side is O P (n -ε ) = o P (1) uniformly in h ≤ n 1/2-ε . Equations (3.14) and (3.15) together imply Equation (3.11) with J θ 0 instead of I θ 0 for the moment. Equations (3.10) and (3.9) with J θ 0 instead of I θ 0 follows from (3.9) by integration with the o P (1) term uniform on compact set. We have already noticed that differentiability in quadratic mean implies (3.11) with I θ 0 , so that necessarily the two asymptotic expansion must coincide and J θ 0 = I θ 0 . This proves Equations (3.9), (3.10) and (3.11) in their final form. Finally, in view of (3.13), the asymptotic normality (3.12) is a direct consequence of the central limit Theorem.

The asymptotic development of the likelihood process stated in Proposition 3.6 together with the Argmax Theorem (see Appendix) allows us to study the properties of the maximum likelihood estimator (existence, consistency, asymptotic normality). An important argument is that, provided I θ 0 is definite positive, the asymptotic expansion of the second order derivative (3.11) implies that the local likelihood process Ln (h) is strictly concave on { h < n 1/2-ε } with high probability. As we will see in the proof below, this entails that with high probability, the likelihood process L n (θ) as a unique local maximiser in { θ -θ 0 < n -ε } that we define as θmle n .

Theorem 3.3. Let θ 0 ∈ Θ with I θ 0 definite positive and assume the observations Z (1) , Z (2) , . . . are independent with distribution HRPar a (θ 0 ). Then, there exists a maximum likelihood estimators θmle n that is asymptotically normal and efficient, i.e.,

√ n( θmle n -θ 0 ) d -→ N (0, I -1 θ 0 ) as n → ∞.
Proof. The proof relies on Proposition 3.6 and the Argmax theorem (van der Vaart [START_REF] Van Der | Cambridge Series in Statistical and Probabilistic Mathematics[END_REF] Corollary 5.58). Consider the stochastic processes

M n (h) = Ln (h) -Ln (0), h ≤ n 1/2-ε
and

M (h) = Gh - 1 2 h I θ 0 h
where G is a centered Gaussian random vector with variance I θ 0 . Proposition 3.6 implies the convergence of M n to M in distribution in L ∞ (K) for all compact K. The limit process M is continuous and has a unique maximiser h given by ĥ = I -1 θ 0 G N (0, I -1 θ 0 ). Define the maximiser ĥn = argmax

h ≤n 1/2-ε M n (h),
where the Argmax exists because M n is continuous on a compact set. The Argmax theorem implies that provided ĥn is tight, ĥn d → ĥ as n → ∞.

We now prove the tightness of the sequence ĥn , n ≥ 1. For all δ > 0, there exists R > 0 such that P( ĥ ≤ R) ≥ 1 -δ.

The relation

M (h) = M ( ĥ) - 1 2 (h -ĥ)I θ 0 (h -ĥ) implies M ( ĥ) -max ĥ-h ≥1 M (h) ≥ 1 2 λ min
with λ min > 0 the smallest eigenvalue of I θ 0 . Therefore, with probability at least 1 -δ, we have

max h =R+1 M (h) ≤ M ( ĥ) - 1 2 λ min .
The convergence in distribution of

M n to M in L ∞ (K) with K = {h : h ≤ R + 1} implies, for large n, max h ≤R M n (h) -max h =R+1 M n (h) ≥ 1 4 λ min (3.16)
with probability at least 1-2δ. The convergence (3.11) together with the positive definiteness of I θ 0 implies that M n is strictly concave on { h ≤ n 1/2-ε } with probability at least 1-δ for n large. Hence, Equation (3.16) implies that the maximiser ĥn of M n belongs to { h ≤ R+1}.

We have proved that for large n, P( ĥn ≤ R + 1) ≥ 1 -3δ, establishing the tightness of ĥn .

Finally, on the event ĥn ≤ R + 1, ĥn belongs to the interior of { h ≤ n 1/2-ε } and is therefore a local maximiser of Ln such that ∂ Ln ∂h ( ĥn ) = 0. Then θmle

n = θ 0 + ĥn √ n is a local maximiser of L n such that ∂Ln ∂θ ( θmle n ) = 0
, that is a maximum likelihood estimator. Asymptotic normality of θn is a direct consequence of the convergence of ĥn to ĥ since √ n( θn -θ 0 ) = ĥn d → ĥ ∼ N (0, I -1 θ 0 ).

Optimising the likelihood

We have proved in the previous section that, with high probability, the likelihood function L n is strictly concave on a neighbourhood of θ 0 of size n -ε , ε > 0. However, there is no reason why it should be globally convex. We discuss here two issues associated with the likelihood optimisation. The first is the initialisation of an optimisation algorithm and will be addressed thanks to a simple moment estimator that is √ n-consistent and can serve as a starting point of optimisation routines. The second point is how we can take advantage of the biconcavity of the problem: although not globally concave, the log-likelihood is biconcave in the sense that both partial applications α → L n (α, Q, l) and (Q, l) → L n (α, Q, l) are concave. In this context, it is natural to consider alternate convex optimisation. Proposition 3.7. Let θ = (α, Q, l) ∈ Θ and assume the observations Z (1) , Z (2) • • • independent with distribution HRPar 1 d (θ). For j = 1, . . . , d define

N n,j = 1 n n i=1 1 {Z (i) j >1}
and

O n,j = 1 n n i=1 1 {Z (i) j >1} log Z (i) j .
Then the estimator θ0 = ( α0 , Q0 , l0 ) defined by

α0 = (N n,j /O n,j ) 1≤j≤d and ( Q0 , l0 ) = argmax Q,l L n ( α0 , Q, l)
is strongly consistent and asymptotically normal.

Proof. For j = 1, . . . , d, the thresholded marginal Z j |Z j > 1 are distributed according to a Pareto distribution with parameter α j , so that

E θ [log Z j | Z j > 1] = α -1 j .
Hence, by the law of large numbers

N n,j O n,j a.s -→ P θ (Z j > 1) E θ (1 {Z j >1} log Z j ) = E θ [log Z j | Z j > 1] -1 = α j
and initialised with θ(0) = θ0 . Then, with high probability, the sequence of estimators ( θ(i) ) i≥0 converges almost surely to θmle n , i.e.,

P lim i→∞ θ(i) = θmle n → 1, as n → ∞. (3.18)
Proof. The starting point estimator writes

θ0 = θ 0 + 1 √ n ( √ n( θ0 -θ 0 )).
Proposition 3.7 and Prohorov's theorem implies that θ0 ∈ V n with high probability. Assuming the log-likelihood strictly concave on V n , we show by recurrence that each iterate of the alternating minimisation algorithm belongs to V n . Define the level set

L i = {θ : -L n (θ) ≤ -L n ( θ(i) ) + δ}, i ≥ 0,
where δ > 0 is such that L i ∩ ∂V n = ∅. By convex optimisation theory, the intersection between L i and V n is a convex set. Let B 1 and B 2 be open balls centered at θ(i) and (α (i+1) , Q(i) , l(i) ) such that B 1 and B 2 are subset of L i . The biconvex property of -L n implies that the convex hull conv

(B 1 , B 2 ) is a subset of L i . It results that conv(B 1 , B 2 ) ⊂ L i ∩ V n .
A similar reasoning concludes that θ(i) ∈ V n for all i ≥ 0 and therefore the alternating minimisation estimators θ(i) converge to the unique minimiser in V n .

A likelihood ratio test for

α 1 = • • • = α d
Following the development of generalised Pareto models, a natural question that arises when one is given a i.i.d. sample Z (1) , . . . , Z (n) with distribution HRPar(α, Q, l) is whether the Pareto model would be enough to modelise the data. The following theorem provides a likelihood ratio test for testing 1) , . . . , Z (n) be i.i.d. with distribution HRPar(θ 0 ). Denote by θn the maximum likelihood estimator in the Generalised Hüsler-Reiss Pareto model and θ0 the maximum likelihood estimation in the Hüsler-Reiss Pareto model and define the likelihood log-ratio by

α 1 = • • • = α d . Theorem 3.5. Let θ 0 = (α, Q, l) ∈ Θ with α = (α 1 , . . . , α d ). Let Z (
∆ n = L n ( θn ) -L n ( θ0 ).
Then, under the null hypothesis

α 1 = • • • = α d , the distribution of 2∆ n converge to a chi- squared distribution with d -1 degree of freedom, i.e., 2(L n ( θn ) -L n ( θ0 )) d → χ 2 (d -1).
Proof. Denote by Θ 0 the subset of Θ defined by Θ 0 = {(α, Q, l) ∈ Θ :

α 1 = • • • = α d }.
Consider the local log-likelihood process Ln and its maximiser ĥn on Θ. Likewise, denote by ĥ0 n the maximiser of Ln on Θ 0 . We prove below that 2( Ln ( ĥn ) -

Ln ( ĥ0 n )) d → χ 2 (p -1)

. Simple calculations imply that the Taylor expansion of Ln at ĥn writes

Ln (h) = Ln ( ĥn ) - 1 2 (h -ĥn )I θ 0 (h -ĥn ) + o p (1)
where the o p term is uniform on compact sets containing ĥn . Taking a compact K large enough to contain both ĥn and ĥ0 n , we have

2 Ln ( ĥn ) -Ln ( ĥ0 n ) = min h∈K∩Θ 0 2 Ln ( ĥn ) -Ln (h) = min h∈K∩Θ 0 (h -ĥn )I θ 0 (h -ĥn ) + o p (1)
Defining •, • I θ 0 as the inner product induced by I θ 0 , i.e., a, b

I θ 0 = a I θ 0 b, we get 2 Ln ( ĥn ) -Ln ( ĥ0 n ) = min h∈K∩Θ 0 h -ĥn 2 I θ 0 + o p (1)
The minimum is reached for h the orthogonal projection of ĥn into Θ 0 for the . I θ 0 norm. Thus, we have

2 Ln ( ĥn ) -Ln ( ĥ0 n ) = p-1 i=1
ĥn , e i

2 I θ 0 + o p (1)
where (e 

P : S d → S d , Q → (I - 1 d 1 d 1 d )Q(I - 1 d 1 d 1 d ).
Then P is the orthogonal projection on the linear subspace

S 0 d = {S ∈ E : S1 d = 0}.
Proof. Let S ∈ E, we have

P 2 (S) = I - 1 d 1 d 1 d 2 S I - 1 d 1 d 1 d 2 = I - 2 d 1 d 1 d + 1 d 2 1 d 1 d 1 d 1 d S I - 2 d 1 d 1 d + 1 d 2 1 d 1 d 1 d 1 d = I - 1 d 1 d 1 d S I - 1 d 1 d 1 d = P (S).
Therefore P is idempotent. For S ∈ S 0 d , we have

P (S) = I - 1 d 1 d 1 d S I - 1 d 1 d 1 d = S - 2 d S1 d 1 d + 1 d 2 1 d 1 d S1 d 1 d = S.
Therefore P acts as the identity on S d . For S ∈ (S 0 d ) ⊥ , we have

P (S) = ... = 0
Therefore P is null on (S 0 d ) ⊥ . This concludes the proof.

3.B. ARGMAX THEOREM

3.B Argmax theorem

We recall the Argmax theorem as in [START_REF] Van Der | Cambridge Series in Statistical and Probabilistic Mathematics[END_REF] Theorem 3.6. Let M n and M be stochastic processes indexed by subsets H n and H of a given metric space such that, for every pair of a closed set F and a set K in a given collection K,

(M n (F ∩ K ∩ H n ), M n (K ∩ H n )) (M (F ∩ K ∩ H), M (K ∩ H)). (3.19)
Furthermore, suppose that every sample path of the process h → M (h) possesses a wellseparated point of maximum ĥ in that, for every open set G and every K ∈ K,

M ( ĥ) > M (G c ∩ K ∩ H), if ĥ ∈ G, a.s.. (3.20) If M n ( ĥn ) ≥ M n (H n ) -o P (1)
and for every ε > 0 there exists K ∈ K such that sup n P( ĥn / ∈ K) < ε and P( ĥ / ∈ K) < ε, then ĥn ĥ.

Proof.

If ĥn ∈ F ∩ K, then M n (F ∩ K ∩ H n ) ≥ M n (B) -o p (1)
for any set B. Hence, for every closed set F and every K ∈ K,

P( ĥn ∈ F ∩ K) ≤ P (M n (F ∩ K ∩ H n ) ≥ M n (K ∩ H n ) -o p (1)) (3.21) ≤ P (M (F ∩ K ∩ H) ≥ M (K ∩ H)) + o(1), (3.22) 
by Slutsky's lemma and the portmanteau lemma (on weak convergence). If ĥ ∈ F c , then M (F ∩ K ∩ H) is strictly smaller than M ( ĥ) by (3.20) and hence on the intersection with the event in the far right side ĥ cannot be contained in K ∩ H. It follows that lim sup P( ĥn ∈ F ∩ K) ≤ P( ĥ ∈ F ) + P( ĥ / ∈ K ∩ H).

(3.23)

By assymption we can choose K such that the left and right sides change by less than ε if we replace K by the whole space. Hence ĥn ĥ by the portmanteau lemma.

And as a corollary, we have

Corollary 3.3. Suppose that M n M in ∞ (K)
for every compact subset K of R k , for a limit process M with continuous sample paths that have unique points of maxima ĥ. If

H n → H, M n ( ĥn ) ≥ M n (H n ) -o P (1)
, and the sequence ĥn is uniformly tight, then ĥn ĥ.

Chapter 4

Numerical study

Introduction

In this part, we will illustrate the results obtained in the chapter 3 on the convergence and asymptotic normality of the maximum likelihood estimator in the Hüsler-Reiss Pareto model. We also assess, thanks to a Monte-Carlo study, the finite sample properties of the estimator (bias, variance). Finally, we study the properties of the maximum likelihood estimator when the sample is approximately HRPareto distributed, i.e. the sample is built as in Proposition 2.1. More details on the experimental protocols will be given in the relevant sections. All experiments were reproduced 1000 times to obtain the Monte-Carlo sample.

Numerical simulation: bias and variance in the exact simulation case

In this section, the sample is exactly simulated under the Hüsler-Reiss Pareto distribution. Our first aim is to illustrate the effect of the dimension and α on the properties of the maximum likelihood estimator. Therefore, in our first experiment, we will take the dimension parameter d from 2 to 5 and the α parameter equal to 0.5, 1 or 1.2. From these parameter, we set the distribution parameters (Q, l) to satisfy

Q = I d -1 d 1 d /d and l = -α/d 1 d .
Such construction gives a really "symmetric" structure to our distribution. Finally, we will also illustrate the convergence speed by taking the sample size n from 10 to 1000. Since the number of distribution parameters vary with respect to d, to obtain comparable results, we compute the bias and variance of α and Q11 . Thus, we obtain the following results On the estimation viewpoint, since the minimisation problem is a convex problem in the Hüsler-Reiss Pareto model, we use the non linear minimisation routine of R. In spite of the fact the problem is convex, we have to remark that numerical instability arise when we initialise the algorithm near the domain boundary. Obviously, bigger sample implies better estimation but the more surprising result comes from the influence of α on the estimation. We observe that larger values of α yields worse estimation for l and better estimation for the matrix Q. Surprisingly, the variance for α is quite stable with respect to d. The same cannot be said for Q11 which properties worsen as d increase. Another remark is that the estimator is Q 11 has negative bias and, by construction, the off-diagonal component of Q have positive bias.

Our next aim is to study in details the case d = 2 where the distribution has only three parameters (Q 11 , l 1 , l 2 ). The lower amount of parameter can be tracked and , in that case, we can study the properties under an asymmetric structure on l, i.e. l 1 = -α/2 + ε and l 2 = -α/2 -ε. We will set α = 1 and Q 11 = 1/2 for this experiment. We then obtain the following result Q11 l1 l2 As for the second experiment, the asymmetric structure introduce some bias into the estimation of l that is more obvious for smaller sample but this bias quickly decrease as the sample size increase.

Numerical simulation: bias and variance in the domain of attraction simulation case

In this section, the sample is taken in the domain of attraction of a Hüsler-Reiss Pareto distribution using Proposition 2.1. That is, let Z ∼ LN (m, Σ) with m ∈ R d and Σ ∈ R d×d positive definite and R an α-Pareto-distributed random variable. Then, since R is a non negative regularly varying random variable with index -α, by Proposition 2.1, the product X = RZ is in the domain of attraction of the Hüsler-Reiss max-stable model. We simulate a sample S of random vectors X = RZ and then we take the observations exceeding the sample quantile q S (ε) of order 1 -ε to obtain our n-sample S 1 after dividing by q S (ε). Thus, the n-sample follows approximately a HRPar(Q, l) distribution where the approximation is better as ε is smaller. Moreover, the parameters (m, Σ) where taken such that (Q, l)

= (I d -1 d 1 d , -α/d 1 d ).
As in the last section, we can study the effect of the dimension d and the effect of the parameter α for different sample size. We first consider the case where ε = 0.01 and we obtain the following result In this set-up, we see that the estimators behaves as in the exact simulation case, i.e. worse behaviour for α and better behaviour for Q11 when α increase and stability of α with respect to the dimension. Though the result are in general worse than in the exact simulation case. Even though α has similar bias and variance as in the exact simulation case, Q11 has worse bias and moreover this bias barely decrease as the sample size increase.

In our next experiment, we take ε = 0.001 to obtain the following results We see that the result are about the same as in the case where ε = 0.01 which let us conjecture that the convergence to the Hüsler-Reiss Pareto distribution is slow.

Part II Partie 2 Chapter 5

Feature selection in weakly coherent matrices

Introduction

In this chapter, all considered matrices will be assumed to have their columns 2 -normalised.

Background on singular value perturbation

Spectrum perturbation after appending a column has been addressed recently in the literature as a key ingredient in the study of graph sparsification [START_REF] Batson | Spectral sparsification of graphs: theory and algorithms[END_REF], control of pinned systems of ODE's [START_REF] Porfiri | Criteria for global pinning-controllability of complex networks[END_REF], the spiked model in statistics [START_REF] Nadler | Finite sample approximation results for principal component analysis: A matrix perturbation approach[END_REF]; it can also be useful in Compressed Sensing [START_REF] Chretien | Perturbation bounds on the extremal singular values of a matrix after appending a column[END_REF] or for the column selection problem [START_REF] Chretien | An elementary approach to the problem of column selection in a rectangular matrix[END_REF]. It is also connected to column selection problems in pure mathematics (Grothendieck and Pietsch factorisation and the Bourgain-Tzafriri restricted invertibility problem) [START_REF] Tropp | Column subset selection, matrix factorization, and eigenvalue optimization[END_REF].

The goal of the present paper is to study this particular perturbation problem in the special context of column subset selection. The column selection problem was proved essential in High Dimensional Data Analysis [START_REF] Mahoney | CUR matrix decompositions for improved data analysis[END_REF], [START_REF] Zhao | Spectral feature selection for supervised and unsupervised learning[END_REF], [START_REF] Ben-Hur | Detecting stable clusters using principal component analysis[END_REF], [START_REF] Krzanowski | Selection of variables to preserve multivariate data structure, using principal components[END_REF]. [START_REF] Wolf | Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach[END_REF], etc. Different criteria for column subsect selection have been studied [START_REF] Boutsidis | Near-optimal column-based matrix reconstruction[END_REF]. Deterministic techniques are often preferred over randomised techniques in industrial applications due to repeatability constraints.

Previous approaches to column selection

Several approaches have been extensively discussed in the literature. Other deterministic approaches have been studied recently in the pure mathematics literature, namely [START_REF] Spielman | An elementary proof of the restricted invertibility theorem[END_REF], [START_REF] Youssef | Restricted invertibility and the Banach-Mazur distance to the cube[END_REF]. However, these approaches are computationally expensive because of the necessity to perform a matrix inversion at each step. The method of [START_REF] Tropp | Column subset selection, matrix factorization, and eigenvalue optimization[END_REF] combines randomness with semi-definite programming and although very elegant, is not computationally efficient in practice. A quite efficient techniques is the rank-revealing QR decomposition. Table 1 in [START_REF] Boutsidis | An improved approximation algorithm for the column subset selection problem[END_REF] provides the performance of this approach and compares it with various other methods. Randomised sampling-based approaches sometimes prove to be faster than the deterministic approaches. For instance, methods based on leverage scores often gives satisfactory results in practice. Note also that CUR decomposition is much related to the Column Selection tasks and the associated methods can be relevant in practice. A very interesting and efficient approach is the simple greedy algorithm presented in [START_REF] Farahat | An efficient greedy method for unsupervised feature selection[END_REF] and [START_REF] Farahat | Efficient greedy feature selection for unsupervised learning[END_REF]. However, the method of [START_REF] Farahat | Efficient greedy feature selection for unsupervised learning[END_REF] does not allow for control on the smallest singular value of the selected submatrix, a criterion often considered important for selecting sufficiently decorrelated features.

Coherence

The coherence of a matrix X, usually denoted by µ(X), is defined as

µ(X) = max 1≤k<l≤p | X k , X l | with X k the k-th column of X.
If the coherence is equal to zero, then the matrix is orthogonal. On the other hand, small coherence does not mean that X is close to square and orthogonal. Indeed, as easy computations show, e.g. i.i.d. Gaussian matrices in R n×p and with normalised columns can have a coherence of order log(p) -1 even for n of order log(p) 3 ; see [START_REF] Candes | Near-ideal model selection by 1 minimization[END_REF]Section 1.1]. Situations where small coherence holds arise often in practice, especially in signal processing [START_REF] Candes | Sparsity and incoherence in compressive sampling[END_REF] and statistics [START_REF] Candes | Near-ideal model selection by 1 minimization[END_REF]. The coherence of a matrix has attracted renewed interest recently due to its prominent role in Compressed Sensing [START_REF] Candes | An introduction to compressive sampling[END_REF], Matrix Completion [START_REF] Recht | A simpler approach to matrix completion[END_REF], Robust PCA [START_REF] Candes | Robust principal component analysis?[END_REF] and Sparse Estimation in general. The relationship between coherence and how many columns one can extract uniformly at random which build up a robustly invertible submatrix are studied in [START_REF] Chrétien | Invertibility of random submatrices via tail-decoupling and a matrix Chernoff inequality[END_REF]. When the coherence is not sufficiently small, the results in [START_REF] Chrétien | Invertibility of random submatrices via tail-decoupling and a matrix Chernoff inequality[END_REF] are not so much useful anymore and we should turn to the problem of extracting one submatrix with largest possible number of columns with smallest possible correlation. Using coherence information in the study of fast column selection procedures is one interesting question to address in this field.

Contribution of the paper

We propose a greedy algorithm for column subset selection and apply this algorithm to some practical problems. Our contribution to the perturbation and the column selection problems focuses on the special setting where the matrix under study has low coherence. Interestingly, standard perturbation results, e.g. [START_REF] Bhatia | Perturbation bounds for matrix eigenvalues[END_REF] do not take into account the potential incoherence of the matrix under study. The results presented in this paper seem to be the first to incorporate such prior information into the analysis of a column subset selection procedure.

Our approach here is based on a new eigenvalue perturbation bound for matrices with small coherence. Previous bounds have been obtained using the famous Gershgorin's circles theorem [START_REF] Bandeira | The road to deterministic matrices with the restricted isometry property[END_REF] but Gershgorin's bound is often too crude. Recent advances have been obtained in this direction in [START_REF] Spielman | An elementary proof of the restricted invertibility theorem[END_REF] and [START_REF] Youssef | Restricted invertibility and the Banach-Mazur distance to the cube[END_REF].

MAIN RESULTS

Main results

Our main result is a bound on the smallest singular value after appending a column of a given data matrix with potentially small coherence. Our approach is based on a new result about eigenvalue perturbation. Perturbation after appending a column is a special type of perturbation [START_REF] Chretien | Perturbation bounds on the extremal singular values of a matrix after appending a column[END_REF]. The goal of the next subsections is to prove refined results of this type for this problem.

Theorem 5.1 is our first main result on perturbation. This result gives a perturbation bound on the spectrum of a submatrix X T 0 of a matrix X with T 0 a subset if {1, • • • , p}. Corollary 5.1 takes into account the fact that the coherence of a submatrix can be smaller by a factor α than the coherence of the full matrix. This factor α is crucial in the study of greedy algorithms for column selection where at each step, the selected submatrix has better coherence than the full matrix from which it is extracted. Corollary 5.2 proves a bound on the smallest singular value after successively appending several columns. An example where this result will be useful is the application to greedy column selection algorithms where it can provide a relevant stopping criterion.

Appending one vector: perturbation of the smallest non zero eigenvalue

If we consider a subset T 0 of {1, . . . , p} and a submatrix X T 0 of X, the problem of studying the eigenvalue perturbations resulting from appending a column X j to X T 0 , with j ∈ T 0 can be studied using Cauchy's Interlacing Lemma (see Appendix) as in the following result.

Theorem 5.1. Let T 0 ⊂ {1, . . . , p} with |T 0 | = s 0 and X T 0 a submatrix of X. Let λ 1 X T 0 X T 0 ≥ ... ≥ λ s 0 X T 0 X T 0 be the eigenvalues of X T 0 X T 0 . We have

λ s 0 +1 X T 0 X T 0 + X j X j ≥ λ s 0 X T 0 X T 0 -min X T 0 X j 2 , X T 0 X j 2 2 1 -λ s 0 X T 0 X T 0 . (5.1) Proof. Setting v = X j A = X T 0 X T 0
we obtain from Proposition 5.1 that the smallest nonzero eigenvalue of X T 0 X T 0 + X j X j is the smallest root of

f (x) = 1 - n i=1 v, u i 2 x -λ i X T 0 X T 0 .
We can decompose this function into two terms

f (x) = 1 - s 0 i=1 v, u i 2 x -λ i X T 0 X T 0 - n i=s 0 +1 v, u i 2 x -λ i X T 0 X T 0 .

MAIN RESULTS

Since λ i X T 0 X T 0 = 0 for i = s 0 + 1, . . . , n, we get

f (x) = 1 + s 0 i=1 v, u i 2 λ i X T 0 X T 0 -x - n i=s 0 +1 v, u i 2 x .
Notice that

s 0 i=1 v, u i 2 ≤ 1 λ s 0 X T 0 X T 0 s 0 i=1 λ i X T 0 X T 0 v, u i 2 = 1 λ s 0 X T 0 X T 0 X T 0 v 2 2 .
Therefore, upper-bounding

s 0 i=1 v, u i 2 by 1 λs 0 (XT 0 X T 0 ) X T 0 v 2 2
and lower-bounding

n i=s 0 +1 v, u i 2 by 1 - 1 λs 0 (XT 0 X T 0 ) X T 0 v 2 2
, we obtain an upper-bound for f on ]0, λ s 0 (X T 0 X T 0 [. Since f is increasing on the set ]0, λ s 0 X T 0 X T 0 [, the smallest root of f is larger than the smallest positive root of f with

f (x) = 1 + X T 0 v 2 2 λ s 0 X T 0 X T 0 (λ s 0 X T 0 X T 0 -x) - 1 -λ s 0 X T 0 X T 0 -1 X T 0 v 2 2
x .

Thus, after some easy calculations, we find that the smallest root of f is the smallest root of

g(x) = -x 2 + x(1 + λ s 0 (X T 0 X T 0 )) -λ s 0 (X T 0 X T 0 )) + X T 0 v 2 2 . Hence, λ s 0 +1 X T 0 X T 0 + vv j ≥ 1 + λ s 0 X T 0 X T 0 -(1 -λ s 0 X T 0 X T 0 ) 2 + 4 X T 0 v 2 2 2 which, using √ a + b ≤ √ a + √ b and √ 1 + a ≤ 1 + a 2 ,

easily gives (5.1).

This theorem is useful in the case where µ small enough so that X T 0 X j 2 2 ≤ 1. In practice, the submatrices X T 0 of X have better coherence than X, up to a factor α. Moreover, we have X T 0 X j 2 2 ≤ s 0 µ 2 . The following corollary rephrases Theorem 5.1 using the parameter α.

Corollary 5.1. Let X and T 0 be defined as in Theorem 5.1 and assume

X T 0 X j 2 2 ≤ αs 0 µ 2 . Then λ s 0 +1 X T 0 X T 0 + X j X j ≥ λ s 0 X T 0 X T 0 -min αs 0 µ 2 , αs 0 µ 2 1 -λ s 0 X T 0 X T 0 .
(5.2)

5.3. A GREEDY ALGORITHM FOR COLUMN SELECTION

Successive perturbations

If we append s 1 columns successively to the matrix X T 0 , we obtain the following result Corollary 5.2. Let T 0 ⊂ {1, . . . , p} with |T 0 | = s 0 and X T 0 a submatrix of X. Let T 1 ⊂ {1, . . . , p} with

|T 1 | = s 1 and T 0 ∩ T 1 = ∅. Let ε min = min αµ 2 s 0 +s 1 i=s 0 √ i, αµ 2 s 0 1 -λ s 0 X T 0 X T 0 + 2(1 -λ s 0 X T 0 X T 0 ) s 0 s 0 +s 1 i=s 0 +1 i i -1 . (5.3) 
Then

λ s 0 +s 1 X T 0 ∪T 1 X T 0 ∪T 1 ≥ λ s 0 X T 0 X T 0 -ε min (5.4)

A greedy algorithm for column selection

Greedy algorithm are commonly used for model selection or feature selection, see for example the forward selection algorithm [START_REF] Bendel | Comparison of Stopping Rules in Forward "Stepwise" Regression[END_REF] or the forward stagewise selection algorithm [START_REF] Weisberg | Applied Linear Regression. Third[END_REF][79] [START_REF] Hastie | Forward stagewise regression and the monotone lasso[END_REF]. See also [START_REF] Guyon | An introduction to variable and feature selection[END_REF] for more references. The analysis in Section 5.2 suggest that a greedy algorithm can be easily devised for efficient column extraction. The idea is quite simple: append the column which minimises the norm of the scalar products with the columns selected up to the current iteration. This algorithm is described with full details in Algorithm 3 below. Note that Algorithm 3 requires the computation of the smallest eigenvalue at each step, which might be computationally expensive in large dimensional settings.

Numerical experiments

Extracting representative time series

Time series are ubiquitous in a world where so many phenomena are monitored via sensor networks. One interesting application of greedy column selection is to

• extract representative time series among large datasets and • understand the intrinsic "dimension" of the dataset, i.e. the maximum number of different dynamics that are present.

• extract potential outliers.

Input: a matrix X ∈ R n×p , ε > 0 Output: a submatrix X T Set s = 1 and choose a random singleton T = {j (1) } ⊂ {1, . . . , p}. Set η (1) = 1. while η (s) ≥ 1 -ε do Set

j (s) ∈ argmin j∈{1,...,p}\T X T X j 2 . Set α (s) = X T X j (s) 2 2 /(sµ(X) 2 ). Set T = T ∪ {j (s) }. Set η (s+1) = η (s) -min √ α (s) sµ, α (s) µ(X) 2 s 1 -λ s (X T X T )
.

Set s ← s + 1. end return X T .
Algorithm 3: Greedy column selection

In this experiment, we considered a set of 1479 times series of length 39 which consist in nonlinear transformation of satellite InSAR data 1 . Then, starting from a random time series, we extracted 150 times series sequentially minimising X T X j 2 , j / ∈ T at each step. Figure 5.1 shows the behaviour of our algorithm over time. For large µ, we see that the bound provided by Corollary 5.2 are worse than the Gershgorin bound and successive applications of Theorem 5.1 provides again a better bound. 

Extracting representative images from a dataset

Extracting representative objects in a dataset is of great importance in data analytics. It can be used to detect outliers or clusters. In this example, we applied our technique to the Yale Faces database shown in Figure 5.2 (Left). In order to cluster the set of images, we performed a preliminary scattering transform [START_REF] Mallat | Group invariant scattering[END_REF], [START_REF] Bruna | Invariant scattering convolution networks[END_REF] of the images in the dataset. We then reshaped the resulting scattering transform matrices into column vectors that we further concatenated into a single matrix X. We selected 9 faces using our column selection algorithm and we obtained the result shown in Figure 5.2 (Right). The total time for this computation was .07 seconds. Larger Pictures are given in the associated report [54]. 

Comparison with CUR

We compared the behaviour of our method with the CUR algorithm proposed in [START_REF] Boutsidis | An improved approximation algorithm for the column subset selection problem[END_REF]. We generated 100 matrices with i.i.d. standard Gaussian entries, with 100 rows and 10000 columns and performed both Algorithm 1 from the present paper and the CUR method. We restricted the study to the case of 10 columns to be extracted. The following histograms in Figure 5.3 show the relative performance of our method as compared to CUR [START_REF] Boutsidis | An improved approximation algorithm for the column subset selection problem[END_REF] The Monte Carlo experiments shown in Figure 5.3 suggest that our method performs better than the CUR method, both from the viewpoint of providing submatrices with larger singular values on average and for a much smaller computational effort (our method was around 50 times faster for these experiments). These experiments are extracted from a more extensive set of experiments, including comparison with other methods, proposed in [54].

Conclusion and perspectives

In this paper, we established a relationship between the coherence and a perturbation bound for incoherent matrices. Our approach is based on perturbation theory and no randomness assumption on the design matrix is used to establish this property. Coherence plays an important role in many pure and applied mathematical problems and perturbation results may help go significantly further. Two such problems for which we are planning further investigations are the following.

• Random submatrices are well conditioned. Matrices with small coherence have a very nice property: most submatrices with s columns have their eigenvalues concentrated around 1 for s of the order n/ log(p). This was first studied in [START_REF] Tropp | Norms of random submatrices and sparse approximation[END_REF], [42, Theorem 3.2 and following comments] and then improved in [START_REF] Chrétien | Invertibility of random submatrices via tail-decoupling and a matrix Chernoff inequality[END_REF]. The study of such properties is of tremendous importance in the study of designs for sparse recovery [START_REF] Candes | Near-ideal model selection by 1 minimization[END_REF]. An interesting potential application of studying spectrum perturbations after appending a column is the one of spectrum concentration via the bounded difference inequality [START_REF] Boucheron | Concentration inequalities: A nonasymptotic theory of independence[END_REF]. Such concentration bounds should also appear essential in understanding the behaviour of random column sampling algorithms [START_REF] Deshpande | Efficient volume sampling for row/column subset selection[END_REF], [START_REF] Boutsidis | Near-optimal column-based matrix reconstruction[END_REF].

• The restricted invertibility problem. Given any matrix X, the Restricted Invertibility problem of Bourgain and Tzafriri is the one of extracting the largest number of columns X j , j ∈ T form X while ensuring that the smallest singular value of X T stays away from zero. Different procedures have been proposed for this problem. Some of them are randomised and some are deterministic. The original results obtained by Bourgain and Tzafriri were based on random selection [START_REF] Bourgain | Invertibility of 'large' submatrices with applications to the geometry of Banach spaces and harmonic analysis[END_REF]. The current best results were recently obtained by Youssef in [START_REF] Youssef | Restricted invertibility and the Banach-Mazur distance to the cube[END_REF] based on an remarkable inequality discovered by Batson, Spielman and Srivastava in [START_REF] Batson | Twice-ramanujan sparsifiers[END_REF]. In [START_REF] Chretien | An elementary approach to the problem of column selection in a rectangular matrix[END_REF], using an elementary perturbation approach, S. Chrétien and S. Darses recently obtained a very short proof of a weaker version of the Bourgain-Tzafriri theorem (up to a log(s) multiplicative term). Our next goal is to refine these types of perturbation results in the small coherence setting and extend the applicability to Big Data analytics.

Appendices 5.A Interlacing and the characteristic polynomial

Recall that for a matrix A in R n×n , p A denotes the characteristic polynomial of A. 

p A+vv (x) = p A (x) 1 - n i=1 v, u i 2 x -λ i . (5.5) 
The previous lemma states in particular that the eigenvalues of A interlace those of A + vv . See [START_REF] Hwang | Cauchy's Interlace Theorem for Eigenvalues of Hermitian Matrices[END_REF] for a short proof and other references.

5.B Proof of Corollary 5.2

Define λ s 0 +s,min by λ s 0 ,min = λ s 0 X T 0 X T 0 λ s 0 +s+1,min = λ s 0 +s X T 0 ∪T X T 0 ∪T -min αµ 2 (s 0 + s), αµ 2 (s 0 +s)

1-λ s 0 +s,min

There are two step to prove for the theorem. The first step set up the basis for some recursive relation. We show that, for s ≥ 0, to obtain a lower-bound of λ s 0 +s+1 , it is enough to use λ s 0 +s,min as the basis for Corollary 5.1. Or simply that we have

λ s 0 +s,min -min αµ 2 (s 0 + s), α(s 0 + s)µ 2 1 -λ s 0 +s,min ≤ λ s 0 +s X T 0 ∪T X T 0 ∪T -min αµ 2 (s 0 + s), α(s 0 + s)µ 2 1 -λ s 0 +s X T 0 ∪T X T 0 ∪T ≤ λ s 0 +s+1 X T s+1 X T s+1 .
It is obvious that the case where one minimum is equal to αµ(s 0 + s) satisfy the property. Therefore, we study the following inequality

λ s 0 +s,min - α(s 0 + s)µ 2 1 -λ s 0 +s,min ≤ λ s 0 +s - α(s 0 + s)µ 2 1 -λ s 0 +s X T 0 ∪T X T 0 ∪T .
It is easily verified that the property is true for s = 0. Denote

ε = λ s 0 +s X T 0 ∪T X T 0 ∪T -λ s 0 +s+1 X T s+1 X T s+1 . (5.6)
Then the recursion step is equivalent to proving that

αµ 2 s 0 + s 1 -λ s 0 +s X T 0 ∪T X T 0 ∪T + αµ 2 s 0 + s + 1 1 -λ s 0 +s+1,min ≥ ε + αµ 2 s 0 + s + 1 1 -λ s 0 +s X T 0 X T 0 + ε . (5.7)
This inequality can be interpreted as the sum of errors obtained by applying Corollary 5.1 twice is greater than the sum of errors obtained if we knew the true value after one perturbation then apply Corollary 5.1.

Let g be defined by

g s 0 +s (x) = x + αµ 2 s 0 + s + 1 1 -λ s 0 +s (X T 0 ∪T X T 0 ∪T ) + x .
Since ε ≤ αµ 2 (s 0 + s)/(1 -λ s 0 +s (X T 0 ∪T X T 0 ∪T )) by Corollary (5.1), it is enough to prove g increasing.

A simple analysis show that g is strictly increasing if

αµ 2 s 0 + s + 1 (1 -λ s 0 +s (X T 0 ∪T X T 0 ∪T )) 2 < 3 4 .
In the case αµ 2 (s 0 + s + 1)((1 -λ s 0 +s (X T 0 ∪T X T 0 ∪T )) 2 ) > 3/4, we can show that the left side of Inequation (5.7) is larger than 1 -λ s 0 +s (T 0 ∪ T ) and this means that we obtain the trivial bound 0 and therefore of not relevant interest.

For the second part, we aim at bounding the sum of errors. We have

s 0 +s i=s 0 min αµ 2 i, αµ 2 i 1 -λ i,min ≤ min s 0 +s i=s 0 αµ 2 i, s 0 +s i=s 0 αµ 2 i 1 -λ i,min
.

The second sum writes 

αµ 2 i 1 -λ s 0 (X T 0 X T 0 ) + i-1 j=s 0 αµ 2 j 1-λs 0 (X T 0 X T 0 ) = s 0 +s i=s 0 αµ 2 i 1 -λ s 0 (X T 0 X T 0 ) + αµ 2 1-λs 0 (X T 0 X T 0 ) i-1 j=s 0 j
This is equal to

s 0 +s i=s 0 αµ 2 i 1 -λ s 0 (X T 0 X T 0 ) + i-1 j=s 0 αµ 2 j 1-λs 0 (X T 0 X T 0 ) = s 0 +s i=s 0 +1 αµ 2 i 1 -λ s 0 (X T 0 X T 0 ) + αµ 2 s 0 (i-1) 1-λs 0 (X T 0 X T 0 ) + αµ 2 s 0 1 -λ s 0 (X T 0 X T 0 )
Simple computations lead to the result. Therefore applying s 1 times Corollary 5.1 and each time upper-bounding, we have (5.4).

Chapter 6

Small coherence implies the weak Null Space Property 6.1 Introduction

Motivation

Compressed Sensing is a new paradigm for data acquisition which was discovered in [START_REF] Candes | Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[END_REF] and [START_REF] Donoho | Compressed sensing[END_REF] and has had a paramount impact on modern Signal Processing, Statistics, Applied Harmonic Analysis, Machine Learning, to name just a few. The whole field started after it was discovered that if β is sufficiently sparse, one could recover the support and sign pattern of a high dimensional vector β ∈ R p from just a few linear measurements

y = Xβ + ,
where X ∈ R n×p , with n p, by solving a simple convex programming problem of the form

min b∈R p 1 2 y -Xb 2 2 + λ b 1 .
In the remainder of this chapter, we will assume that the columns of X are 2 normalised.

One condition implying that both support and sign pattern can be recovered is called the Restricted Isometry Property (RIP) [START_REF] Candes | The restricted isometry property and its implications for compressed sensing[END_REF]. More precisely, RIP is the property that for all index subset T 0 ⊂ {1, . . . , p} with |T 0 | = s 0 , all the singular values of the submatrix X T 0 whose columns are the columns of X indexed by T 0 , lie in the interval (1 -δ, 1 + δ).

One key result relating RIP and recovery of the basic features of a sparse vector is the fact that RIP implies the so-called Null Space Property, which says that the kernel of X does not contain any sparse vector. More precisely, the NSP is the property that for all T 0 ⊂ {1, . . . , p} with |T 0 | = s 0 , and for all h ∈ Ker(X),

h T 0 2 ≤ C h T c 0 1 / √ s 0 (6.1)
with C ∈ (0, 1). It is well known that the NSP is the key property behind sparse recovery using Basis Pursuit type of methods, whereas RIP is not. The main reason for introducing the RIP is that it provides a pedagogical step for proving the NSP in the case of random matrices. See [START_REF] Cahill | The gap between the null space property and the restricted isometry property[END_REF] for a set of very interesting results in this direction. It was recently shown that the NSP can also be derived without the RIP for random design [START_REF] Azaïs | A rice method proof of the null-space property over the Grassmannian[END_REF]. Thus, understanding more precisely what are the conditions on the design matrix for which we can obtain a kind of NSP is quite an important question in this field. Some very interesting work has been published recently in order to test if the NSP or weaker version of this property hold for a given matrix using convex programming; see e.g. [START_REF] Ghaoui | Testing the nullspace property using semidefinite programming[END_REF]. On the other hand, one of the main drawbacks of the Restricted Isometry Property is that one cannot in general check if a given matrix X satisfies it in polynomial time. Therefore, RIP is usually not considered of practical interest. Another property often used in many sparse recovery problems is the property of small coherence.

The coherence of a matrix is an important quantity in the study of designs for sparse recovery is the coherence. It will be denoted by µ, will be defined as

µ = max 1≤k<l≤p | X k , X l |. (6.2) 
If the columns are almost orthogonal, then, one usually expects that the performance of Basis Pursuit should be almost as good as in the orthogonal case. This have been rigorously studied in e.g. [START_REF] Candes | Near-ideal model selection by 1 minimization[END_REF]. The main motivation for using the coherence is that it is conceptually intuitive and also very easy to compute. On the other hand, it was also proved in [START_REF] Tropp | Norms of random submatrices and sparse approximation[END_REF], [42, Theorem 3.2 and following comments] that if a matrix X has small coherence, then for most index subsets T 0 with cardinal |T 0 | = s 0 , the singular values of X T 0 lie in the interval (1 -δ, 1 + δ) 1 . In other words, small coherence implies a kind of weak RIP where the singular value concentration property holds for most instead of all submatrices with s 0 columns from X. However, such results, although conceptually very interesting do not address the main problem of proving NSP type properties.

Goal of the paper

Our aim in the present paper is to understand better the role of the coherence for Compressed Sensing by understanding how a small coherence implies a weaker version of the Null Space Property. The main result of the present work is the following. We prove that if a matrix X has small coherence, then, for most index subsets T 0 ⊂ {1, . . . , p} with cardinal |T 0 | = s 0 , and for all h ∈ Ker(X), (6.1) holds for some positive C µ . In other words, small coherence implies a kind of weak Null Space Property which holds for most, instead of all, T 0 with |T 0 | = s 0 .

Additional notation

For T ⊂ {1, . . . , p}, we denote by |T | the cardinal of T . Given a vector x ∈ R p , we set x T = (x j ) j∈T ∈ R |T | . The canonical scalar product in R p is denoted by •, • .

For any matrix A ∈ R d 1 ×d 2 , we denote by A t its transpose. The set of symmetric real matrices is denoted by S n . We denote by A the operator norm of A. We use the Loewner ordering on symmetric real matrices: if A ∈ S n , 0 A denotes positive semi-definiteness of A, and A B stands for 0 B -A. The singular values of A will be denoted by

σ max (A) = σ 1 (A) ≥ • • • ≥ σ min{d 1 ,d 2 } = σ min (A).

Background

In this section, we recall some well known previous results relating coherence, singular value concentration, RIP and NSP. We begin with some definitions.

Weak NSP and weak RIP Weak Null Space Property

First, the weak-Null Space Property. Definition 6.1. A matrix X ∈ R n×p satisfies the Weak Null Space Property weak-NSP(s 0 ,C,π) if for at least a proportion π of all index subsets T 0 ⊂ {1, . . . , p} with |T 0 | = s 0 , and for all h ∈ Ker(X),

h T 0 2 ≤ C h T c 0 1 / √ s 0 . (6.3) 
Notice that when π = 1, we recover the definition of the standard Restricted Isometry Property.

The main consequence of the weak Null Space Property is that exact recovery holds for the basis pursuit problem. Since the work [START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF], this can be proved swiftly as follows. Let us first recall the framework: we assume that y = Xβ, i.e. we are in the noise free setting and β has support T 0 with |T 0 | ≤ s 0 . Then, we solve

min b∈R p b 1 s.t. y = Xb.
Let β denote a minimiser. Then, we have

β 1 ≤ β 1 , which gives βT c 0 -β T c 0 1 ≤ βT 0 -β T 0 1 + 2 β T c 0 (6.4)
and thus, by the Cauchy-Schwartz inequality

βT c 0 -β T c 0 1 ≤ √ s 0 βT 0 -β T 0 2 + 2 β T c 0 (6.5)
Since β has support T 0 , we obtain that β T c 0 = 0. Using the fact that ββ lies in the kernel of X and using (6.3), we obtain from (6.5) that βT c 0 -β T c 0 1 = 0. Using (6.3) again, we conclude that ββ 1 = 0, i.e. exact recovery holds. More results of this type can be found in [START_REF] Candes | The restricted isometry property and its implications for compressed sensing[END_REF] and [START_REF] Eldar | Compressed sensing: theory and applications[END_REF].

Weak Restricted Isometry Property

The weak-Restricted Isometry Property is the subject of the next definition. Definition 6.2. A matrix X ∈ R n×p satisfies the Weak Restricted Isometry Property weak-RIP(s,ρ,π) if for at least a proportion π of all index subsets T 0 ⊂ {1, . . . , n} with |T 0 | = s 0 ,

1 -ρ ≤ σ min (X T 0 ) ≤ • • • ≤ σ max (X T 0 ) ≤ 1 + ρ. (6.6) 
Notice that when π = 1, we recover the definition of the standard Restricted Isometry Property.

On the relationship between RIP and NSP

One of the cornerstones of Compressed Sensing is the Null Space Property. It is well known that RIP implies NSP as stated in the next theorem. We will use the standard notations RIP(s 0 ,ρ) for RIP(s 0 ,ρ,1) and NSP(s 0 ,C) for NSP(s 0 ,C,1). Theorem 6.1. [START_REF] Candes | The restricted isometry property and its implications for compressed sensing[END_REF] Any matrix X ∈ R n×p satisfying RIP(2s 0 ,δ) satisfies NSP(s 0 ,C) with C ≤ √ 2(1 + δ)/(1 -δ).

On the relationship between the Coherence and weak-RIP

The first result relating small coherence with weak-RIP was established by [START_REF] Candes | Near-ideal model selection by 1 minimization[END_REF] based on a result about column selection due to Tropp [START_REF] Tropp | Norms of random submatrices and sparse approximation[END_REF]. A refinement of this result is recalled in the next theorem.

Theorem 6.2. Chrétien and Darses [START_REF] Chrétien | Invertibility of random submatrices via tail-decoupling and a matrix Chernoff inequality[END_REF] Let r ∈ (0, 1), α ≥ 1. Let us be given a full rank matrix X ∈ R n×p and a positive integer s 0 , such that µ ≤ r (1 + α) log p (6.7)

s 0 ≤ r 2 (1 + α)e 2 p X 2 log p . (6.8)
Let T 0 ⊂ {1, . . . , p} be a random support with uniform distribution on index sets satisfying |T 0 | = s 0 . Then the following bound holds:

P X T 0 X T 0 -I ≥ r ≤ 1944 p α . (6.9)
This theorem was used in, e.g. [START_REF] Chretien | Sparse recovery with unknown variance: a LASSO-type approach[END_REF] for a study of the LASSO when the variance is unknown. It has been also used in remote sensing [START_REF] Hügel | Remote sensing via 1 -minimization[END_REF], in the study of Gaussian erasure channels [START_REF] Ozçelikkale | Unitary precoding and basis dependency of MMSE performance for Gaussian erasure channels[END_REF], Kaczmarcz type methods for least squares [START_REF] Needell | Randomized block Kaczmarz method with projection for solving least squares[END_REF], extensions of RIP [START_REF] Barg | Restricted isometry property of random subdictionaries[END_REF]; see also [START_REF] Foucart | Recovery of Random Signals using Deterministic Matrices[END_REF].

The Gershgorin bound

The Gershgorin theorem gives a bound on the operator norm as a function of the coherence. More precisely, as discussed e.g. in [START_REF] Bandeira | The road to deterministic matrices with the restricted isometry property[END_REF], for each index subset T ⊂ {1, . . . , p} with cardinal

|T 0 | = s 0 , X T 0 X T 0 -I ≤ µ(s 0 -1). (6.10)
Clearly, this result starts being useful when µ is much smaller than s 0 . In the application for the LASSO, it is often assumed that this indeed the case as in e.g. [START_REF] Candes | Near-ideal model selection by 1 minimization[END_REF].

Main results: small coherence implies weak-NSP

In this section, we state and prove the main result of this paper, namely that small coherence implies weak-NSP. Our main theorem is the following.

Theorem 6.3. Let X ∈ R n×p , s 0 ≤ n and α > 0. Assume that

s 0 ≤ 1 16(1 + α)e 2 p X 2 log p . (6.11) 
Let µ denote the coherence of X. Let

ε min = 1 4 s 3 0 µ 2 + s 3/2 0 µ (3 -4s 0 µ 2 ) ε max = 144s 3 0 µ 2 + 72s 3/2 0 µ. Assume that µ ≤ min        1 288s 5/2 0 2s 3/2 0 + 1 , 1 3 2 s 4 0 + 6s 5/2 0 + 2s 0 , 1 4(1 + α) log p        .
Then, the matrix X verifies the weak-NSP(s 0 ,C,π) with π = 1 -1944/p α and

C = λ 1 -λ s 0 + 3 s 0 (ε max + ε min ) λ 1 -3 s 0 ε min .
In particular, if

µ ≤ min c 0 s 5/2 0 , 1 4(1 + α) log p (6.12)
for some positive constant c 0 , then the matrix X verifies the weak-NSP(s 0 ,C,π) with π = 1 -1944/p α and

ε min = 1 4 c 2 0 s -2 0 /4 + c 0 s -1 0 1/2 -c 2 0 s -4 0 ε max = 1 4 144s -1 0 c 2 0 + 72c 0 s -2 0 λ 1 - 1 
Then, the matrix X verifies the weak-NSP(s 0 ,C,π) with π = 1 -1944/p α and where and

C = 1 + 3 4 c 2 0 s -1 0 /4+c 0 1/2-c 2 0 s -4 0 + 144c 2 0 +72c 0 s -1 0 λ 1 -1 1 -3 4 c 2 0 s -1 0 /4+c 0 1/2-c 2 0 s -4 0 . ( 6 
λ 1 := λ 1 (X T 0 X T 0 ) (6.
λ s 0 := λ s 0 (X T 0 X T 0 ). ( 6 

.18)

Let h ∈ Ker(X) and let T 0 be a subset of {1, . . . , p} with cardinality |T 0 | = s 0 verifying (6.16), (6.17) and (6.18). Define (i) T 1 as the index set of the s 0 largest entries of h T c 0 in absolute value, (ii) T 2 as the index set of the s 0 largest entries of h (T 0 ∪T 1 ) c in absolute value, (iii) etc . . . Let J denote the number of subsets obtained in this process2 . Let T = T 0 ∪ T 1 . By (6.29) in Corollary 6.1, we have that

(λ s 0 -3 s 0 ε min ) h T 2 2 ≤ X T h T 2 2 . (6.19)
Moreover, since h belongs to the kernel of X,

X T h T 2 2 = | X T h T , Xh -X T h T , X T c h T c | , = j=2,...,J X T h T , X T j h T j .
On the other hand, by Lemma 6.5, we have for j = 2, . . . , J,

X T h T , X T j h T j ≤ (λ 1 + 3 s 0 ε max ) h T 2 h T j 2 .
Therefore,

X T h T 2 2 = j=2,...,J X T h T , X T j h T j ≤ j=2,...,J X T h T , X T j h T j ≤ (λ 1 -λ s 0 + 3 s 0 (ε max + ε min )) h T 2 j=2,...,J h T j 2 .
By Lemma [START_REF] Eldar | Compressed sensing: theory and applications[END_REF]Lemma A.4], we get j=2,...,J

h T j 2 ≤ h T c 0 1 √ s 0 (6.20)
and we can deduce that 

X T h T 2 2 ≤ (λ 1 -λ s 0 + 3 s 0 (ε max + ε min )) h T 2 h T c 0 1 √ s 0 . ( 6 
h T 2 ≤ λ 1 -λ s 0 + 3 s 0 (ε max + ε min ) λ s 0 -3 s 0 ε min h T c 0 1
√ s 0 .

6.4. CONCLUSION

Conclusion

In this paper, we established a relationship between the coherence and a weak version of the Null Space Property for design matrices in Compressed Sensing. Our approach is based on perturbation theory and no randomness assumption on the design matrix is used to establish this property. We expect that this result will be helpful to study a larger class of designs than usually done in the literature. In a future paper, we will show that such bounds can be fruitfully applied to simplify the analysis of Robust PCA. Appendices 6.A Technical lemmae

6.A.1 Some perturbation results

Perturbation after appending a column to a given matrix is a special type of perturbation. A survey on this topic is [START_REF] Chretien | Perturbation bounds on the extremal singular values of a matrix after appending a column[END_REF].

Background

Recall that for a matrix A in R n×n , p A denotes the characteristic polynomial of A. The previous lemma states in particular that the eigenvalues of A interlace those of A + vv .

6.A.2 Appending one vector: perturbation of the smallest non zero eigenvalue

If we consider a subset T 0 of {1, . . . , p} and a submatrix X T 0 of X, the problem of studying the eigenvalue perturbations resulting from appending a column X j to X T 0 , with j ∈ T 0 can be studied using Cauchy's Interlacing Lemma as in the following result.

Lemma 6.2. Let T 0 ⊂ {1, . . . , p} with |T 0 | = s 0 and X T 0 a submatrix of X. Let λ 1 ≥ ... ≥ λ s 0 be the eigenvalues of X T 0 X T 0 . Let λs 0 ≤ λ s 0 . Assume that λs 0 < 1 -s 0 µ 2 , we have

λ s 0 +1 X T 0 X T 0 + X j X j ≥ λs 0 -s 0 ,min with s 0 ,min = 1 2 s 3 0 µ 2 X T 0 2 + 4s 3 2 0 µ X T 0 λs 0 2 1 -s 0 µ 2 -λs 0 . 6.A. TECHNICAL LEMMAE Proof. Setting v = X j A = X T 0 X T 0
we obtain that the smallest nonzero eigenvalue of X T 0 X T 0 + X j X j is the smallest root ρ min of

f (x) = 1 - n i=1 v, u i 2 x -λ i .
Therefore, ρ min is larger than the smallest positive root of

f (x) = 1 - s 0 γ x -λs 0 - 1 -s 0 µ 2 x
for any upper bound γ to v, u i 2 for i = 1, . . . , s 0 . Thus, we find that

ρ min ≥ 1 2 s 0 (γ -µ 2 ) + λs 0 + 1 -s 2 0 γ 2 + 2s 0 γ λs 0 + 1 -s 0 µ 2 + 1 -s 0 µ 2 -λs 0 2 . (6.23) 
As long as 1 -s 0 µ 2 > λ s 0 , we have

ρ min ≥ 1 2     s 0 (γ -µ 2 ) + λs 0 + 1 -1 -s 0 µ 2 -λs 0 1 + s 2 0 γ 2 + 2s 0 γ( λs 0 + 1 -s 0 µ 2 ) 1 -s 0 µ 2 -λs 0 2     .
Moreover, since √ 1 + a ≤ 1 + 1 2 a, we get

ρ min ≥ 1 2 s 0 (γ -µ 2 ) + λs 0 + 1 -1 -s 0 µ 2 -λs 0 1 + s 2 0 γ 2 + 2s 0 γ( λs 0 + 1 -s 0 µ 2 ) 2 1 -s 0 µ 2 -λs 0 2 which gives ρ min ≥ λs 0 -s 0 ,min (6.24) 
with s 0 ,min = 1 2

s 2 0 γ 2 + 4s 0 γ λs 0 2 1 -s 0 µ 2 -λs 0 .
Let us now find out a reasonable value of γ. Let X T 0 = U 0 Σ 0 V 0 denote the singular value decomposition of X T 0 . We have

| X j , u j 0 | = | X j , X T 0 V 0 Σ 0 e j 0 | = X T 0 X j 2 V 0 Σ 0 e j 0 2 ≤ √ s 0 µ X T 0 .

6.A. TECHNICAL LEMMAE

Therefore we can take

γ = √ s 0 µ X T 0 .
Combining this result with (6.24), we get the desired result.

6.A.3 Appending one vector: perturbation of the largest eigenvalue

For the largest eigenvalue, we obtain Lemma 6.3. Let T 0 ⊂ {1, . . . , p} with |T 0 | = s 0 and X T 0 a submatrix of X. Let λ 1 ≥ ... ≥ λ s 0 be the eigenvalues of X T 0 X T 0 . Let λ1 ≥ λ 1 , with λ1 > 1. Then, we have

λ 1 X T 0 X T 0 + X j X j ≤ λ1 + s 0 ,max . with s 0 ,max = 1 2 s 3 0 µ 2 X T 0 2 + 4s 3/2 0 µ X T 0 λ1 2(λ 1 -1) . Proof. Setting v = X j A = X T 0 X T 0
we obtain that the largest nonzero eigenvalue of X T 0 X T 0 + X j X j is the largest root ρ max of

f (x) = 1 - n i=1 v, u i 2 x -λ i .
Therefore, ρ max is smaller than the largest positive root of

f (x) = 1 - s 0 γ x -λ1 - 1 x
for any upper bound γ to v, u i 2 for i = 1, . . . , s 0 . Hence, we find that

ρ max ≤ 1 2 s 0 γ + λ1 + 1 + s 2 0 γ 2 + 2s 0 γ λ1 + 1 + 1 -λ1 2 . (6.25)
Since the columns of X have unit 2 -norm, we have 1 < λ 1 , and thus one obtains from (6.25) that

ρ max ≤ 1 2     s 0 γ + λ1 + 1 + λ1 -1 1 + s 2 0 γ 2 + 2s 0 γ( λ1 + 1) λ1 -1 2     6.A. TECHNICAL LEMMAE which gives ρ max ≤ λ1 + s 0 ,max with s 0 ,max = 1 2
s 2 0 γ 2 + 4s 0 γ λ1 2( λ1 -1) .

We finally plug in the value of γ found earlier in the proof of Lemma 6.2 to get the desired result.

6.A.4 Successive perturbations

If we append s 0 columns successively, we obtain the following result.

Lemma 6.4. Let T 0 ⊂ {1, . . . , p} with |T 0 | = s 0 and X T 0 a submatrix of X. Let λ 1 ≥ ... ≥ λ s 0 be the eigenvalues of

X T 0 X T 0 . Let λ1 ≥ λ 1 and λs 0 ≤ λ s 0 . Let T 1 ⊂ {1, . . . , p} with |T 1 | = s 1 and T 0 ∩ T 1 = ∅. Assume 1. 1 -(s 0 + s 1 )µ > λs 0 > η; 2. 1 < λ1 < 2 -η; 3. s 1 < min λs 0 -η ε min , 2-η-λ1 εmax ; with ε min = 1 4 s 3 0 µ 2 η 2 + 4s 3/2 0 µ η 2 (1 -s 0 µ 2 -η) ε max = 1 4 (s 0 + s 1 ) 3 µ 2 (2 -η) 2 + 4(s 0 + s 1 ) 3/2 µ(2 -η) 2 ( λ1 -1)
Then

λ 1 X T 0 ∪T 1 X T 0 ∪T 1 ≤ λs 0 -s 1 ε min (6.26) and λ s 0 +s 1 X T 0 ∪T 1 X T 0 ∪T 1 ≥ λ1 + s 1 ε max (6.27)
Proof. The proof relies on induction. First of all, note that from assumption (3) (i) λs 0 -s 1 ε min > η; 

2 s 4 0 + 6s 5/2 0 + 2s 0        . Then, | X T g T , X T h T | ≤ (λ 1 + 3 s 0 ε max ) g T 2 h T 2 . (6.30) Proof. Assume first that g T 2 = h T 2 = 1. The parallelogram law now gives | X T g T , X T h T | ≤ 1 4 X T g T + X T h T 2 2 -X T g T -X T h T 2 2 ≤ 1 4 X T g T + X T h T 2 2 -X T g T -X T h T 2 2 3 
Notice that

X T g T ± X T h T 2 2 = X T ∪T (g T ± h T ) 2 2 .
By Corollary 6.1, we have

(λ s 0 -3 s 0 ε min ) g T + h T 2 2 ≤ g T + h T 2 2 X T g T ± X T h T 2 2 ≤ (λ 1 + 3 s 0 ε max ) g T + h T 2 2 .
From this, and the fact that g T and h T are unit norm, we deduce that

| X T g T , X T h T | ≤ λ 1 -λ s 0 + 3 s 0 (ε max + ε min ) .
The proof is completed using homogeneity.

Chapter 7

Incoherent submatrix selection via approximate independence sets in scalar product graphs

Introduction

The goal of the present paper is to address the problem of incoherent submatrix extraction.

Recall that the coherence of a matrix X with 2 -normalised columns is the maximum absolute value of the scalar product of any two different columns of X. It is usually denoted by µ(X).

Controlling the coherence of a matrix is of paramount importance in statistics [START_REF] Candes | Near-ideal model selection by 1 minimization[END_REF], [START_REF] Chrétien | Invertibility of random submatrices via tail-decoupling and a matrix Chernoff inequality[END_REF], [START_REF] Chretien | Sparse recovery with unknown variance: a LASSO-type approach[END_REF], [START_REF] Van De Geer | On the conditions used to prove oracle results for the Lasso[END_REF], signal processing, compressed sensing and image processing, [START_REF] Candes | An introduction to compressive sampling[END_REF], [START_REF] Candes | Sparsity and incoherence in compressive sampling[END_REF], [START_REF] Cevher | Near-optimal Bayesian localization via incoherence and sparsity[END_REF], [START_REF] Romberg | Imaging via compressive sampling[END_REF], [START_REF] Baraniuk | Compressive sensing [lecture notes[END_REF], [START_REF] Mallat | A wavelet tour of signal processing: the sparse way[END_REF], [START_REF] Foucart | A mathematical introduction to compressive sensing[END_REF], [START_REF] Adcock | Breaking the coherence barrier: asymptotic incoherence and asymptotic sparsity in compressed sensing[END_REF], etc. Incoherence is associated with interesting questions in combinatorics [START_REF] Nelson | On the size of incoherent systems[END_REF]. Efficient recovery of incoherent matrices, an important problem in dictionary learning, was addressed by the computer science community in [START_REF] Arora | New algorithms for learning incoherent and overcomplete dictionaries[END_REF]. Incoherence is a key assumption behind the current approaches of sparse estimation based on convex optimisation [START_REF] Candes | Mathematics of sparsity (and a few other things)[END_REF]. In many real life problems from statistics, and signal and image processing, the incoherence assumption breaks down [START_REF] Candes | Compressed sensing with coherent and redundant dictionaries[END_REF], [START_REF] Adcock | Breaking the coherence barrier: asymptotic incoherence and asymptotic sparsity in compressed sensing[END_REF], [START_REF] Adcock | BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING[END_REF], etc. Several approaches helping to get around this problem have been proposed in the literature but, to the best of our knowledge, the problem of extracting a sufficiently incoherent submatrix from a given matrix has not yet been studied in the literature. On the other hand, incoherent submatrix extraction is an important problem and a computationally efficient method for it will definitely allow to select sufficiently different features from data and make high dimensional sparse representation of the data possible in difficult settings where naive use of 1 penalised estimation was previously doomed to slow learning rates, [START_REF] Bühlmann | Statistics for high-dimensional data: methods, theory and applications[END_REF], [START_REF] Bellec | Localized Gaussian width of M -convex hulls with applications to Lasso and convex aggregation[END_REF].

In the present paper, we propose a new approach to address the incoherent submatrix selection problem seen as a weighted version of the independent set problem in a graph. More precisely, we propose a new spectral-type estimator for the column subset selection problem and study its performance by bounding its scalar product with the indicator vector of the best column selection, in the case it is unique.

INCOHERENT SUBMATRIX EXTRACTION AS AN APPROXIMATE INDEPENDENT SET COMPUTATION

The plan of the paper is as follows. In Section 7.2, we reformulate the problem as an independent set computation problem. Section 7.3 presents a new spectral estimator of the weighted stable set and provides a theoretical error bound.

Incoherent submatrix extraction as an approximate independent set computation

The problem of extracting the largest submatrix with coherence less than a given threshold η, by appropriate column selection, can be expressed as an instance of the maximum stable set in graph theory. In order to achieve this, we associate with our matrix X a graph G = (V, E) as follows:

• V = {1, . . . , p} • E is defined by (j, j ) ∈ E if and only if | X j , X j | > η. (7.1) 
Then, clearly, finding the largest stable set in this graph will immediately provide a submatrix with coherence less than η.

The main difficulty with the independent set approach is that it belongs to the class of NP-hard problems.

Relaxing on the sphere: a new extraction approach

In this section, we present a new spectral-type estimator for the independent set.

The spectral estimator

We start from the following relaxed problem max x∈{0,1} p e x s.t. x M x ≤ r.

(7.2)

The approach of the previous section was addressing the special case corresponding to the value λ = 0 and M chosen as e.g. the adjacency matrix of G. As in the previous section, we can reformulate this problem using a binary ±1 variable z as follows: for some Lagrange multiplier λ > 01 .

Theoretical guarantees

In this section, we provide our main theoretical result concerning the performance of our approach.

Theorem 7.1. Let ρ * denote the indicator vector of the maximal independent set defined by max ρ∈{0,1} p e ρ s.t. ρ M ρ = 0.

Let x *

2 be solution of (7.5). Let δ > 0 be such that M δ = M + δI is positive definite. Let λ 1 be the smallest eigenvalue of M δ and φ 1 ,. . . ,φ p be the pairwise orthogonal, unit-norm eigenvectors of M δ . Set

q 1 = 1 √ p M δ e and q 2 = - 1 √ p (1 + δ) λ e -M δ e
and set γ k,i = φ i q k for k = 1, 2 and i = 1, . . . , p. Then,

ρ * -x 2 * ∞ ≤ √ p (1 + δ) λ(λ 1 -µ 2 ) + γ 1 2 r * (λ 1 -µ 1 )(λ 1 -µ 2 ) 2 , with r * given by r * = (λ p -µ 1 )φ   p γ 2 1,max γ 2 1,min (1+δ) 2 λ 2 + 2 √ p 1+δ λ e M δ e 2 γ 2 2 2  
where φ denotes the inverse function of x → x/(1 + x) 3 .

Proof. The proof will consist of three steps. The first step re-expresses the problem as the one of minimising the distance to the oracle plus a linear penalisation term. The second step identifies the oracle as the solution to a perturbed problem. The third step then uses a perturbation result proved in the Appendix. 

Set M δ = M + δ. We can now expand the term

1 4 (z + e) M δ (z + e) = z + e 2 -ρ * + ρ * M δ z + e 2 -ρ * + ρ * = z + e 2 -ρ * M δ z + e 2 -ρ * + 2 z + e 2 M δ ρ * ,
where we used the fact that ρ * M ρ * = 0 in the last equality. Therefore, (7.6) is equivalent to min

z 2 2 =p 2M δ ρ * - (1 + δ) λ e z + e 2 + z + e 2 -ρ * M δ z + e 2 -ρ * . (7.7) 
Second step. When 1/λ = 0, the solution to (7.7) is readily seen to be equal to the oracle ρ * .

Third step. We will now use a perturbation result proved in Lemma 7.3. For this purpose, we first make a change of variable in order to transform the problem into an optimisation problem on the unit sphere. Let z = 1/ √ pz. Then problem (7.7) is equivalent to min

z 2 2 =1 2M δ ρ * - (1 + δ) λ e √ pz + e 2 + √ pz + e 2 -ρ * M δ √ pz + e 2 -ρ * .
This is equivalent to solving the problem min 

z 2 =1 1 2 z Qz -q z. ( 7 
Q = M δ and q = - 1 √ p (1 + δ) λ e -M δ e .
Let λ 1 ≤ . . . ≤ λ p be the eigenvalues of Q and φ 1 ,. . . ,φ p be associated pairwise orthogonal, unit-norm eigenvectors. Set

q 1 = 1 √ p M δ e and q 2 = - 1 √ p (1 + δ) λ e -M δ e and set γ k,i = φ i q k
for k = 1, 2 and i = 1, . . . , p. Thus, we have

γ 1 -γ 2 2 = (1 + δ) λ . and γ 2 1 -γ 2 2 1 ≤ (1 + δ) 2 λ 2 + 2 √ p 1 + δ λ e M δ e.
Combining these bounds with Lemma 7.3, we obtain the announced result.

Conclusion and future works

In the present paper, we proposed an alternative approach to the problem of column selection, viewed as quadratic binary maximisation problem. We studied the approximation error of the solution to the easier spherically constrained quadratic problem obtained by relaxing the binary constraints. Future work will consist in further exploring the quality of the bound obtained in Theorem 7.1. In particular, we will try to clarify for which types of graphs the error bound can be small, i.e. |λ 1 -µ 1 | is bounded from below by an appropriate function of p. Our next plans will also address practical assessment of the efficiency of the method. The following result can be found in [START_REF] Hager | Minimizing a quadratic over a sphere[END_REF].

Lemma 7.1. For Q ∈ S p and q ∈ R p , consider the following quadratic programming problem over the sphere:

min x 2 =1 1 2 x Qx -q x. (7.9) 
Let λ 1 ≤ . . . ≤ λ p be the eigenvalues of Q and φ 1 ,. . . ,φ p be associated pairwise orthogonal, unit-norm eigenvectors. Let γ 

k,i = q φ i , i = 1, . . . , p. Let E 1 = {i s.t. λ i = λ 1 } and E + = {i s.t. λ i > λ 1 }.
+ γ 2 i (λ i -λ 1 ) 2 ≤ 1. then c * i = γ i /(λ i -λ 1 ), i ∈ E 1 and c * i , i ∈ E 1 are arbitrary under the constraint that i∈E 1 c * 2 i = 1 -i∈E + c * 2 i . 2. non-degenerate case: If not in the degenerate case, c * i = γ i /(λ i -µ), i = 1, . . . , n for µ > -λ 1 which is a solution of i=1,...,n γ 2 i (λ i -µ) 2 = 1. ( 7 
min i=1 {(λ i -µ) 2 } ≤ γ 2 2 (7.12)
Proof. The proof is divided into three parts, corresponding to each (double) inequality.

Proof of (7.11): We have

p max i=1 γ 2 max (λ i -µ) 2 ≥ p max i=1 γ 2 i (λ i -µ) 2 ≥ 1 p p i=1 γ 2 i (λ i -µ) 2 = 1 p .
This immediately gives pγ max ≥ max p i=1 {(λ i -µ) 2 }. On the one hand, we have

1 = p i=1,...,p γ 2 i (λ i -µ) 2 ≥ pγ 2 min max p i=1 {(λ i -µ) 2 }
.

Therefore, we get max p i=1 {(λ i -µ) 2 } ≥ p γ 2 min . On the other hand, we have Proof of (7.12):

γ 2 i (λ i -µ) 2 ≤ 1 which gives (λ i -µ) 2 ≥ γ 2 i
for i = 1, . . . , p. Thus, the lower bound follows. For the other bound, since

p i=1 γ 2 i (λ i -µ) 2 = 1, (7.13) we get 1 ≤ p i=1 γ 2 i (λ i -µ) 2 ≤ γ 2 2 min p i=1 (λ i -µ) 2
and the proof in completed. 

7.A.3 ∞ perturbation of the linear term

We now consider the problem of controlling the solution under perturbation of q.

Lemma 7.3. Consider the two quadratic programming problems over the sphere:

min x 2 =1 1 2 x Qx -q k x, (7.14) 
for k = 1, 2. Assume that the solution to (7.14) is non-degenerate in both cases k = 1, 2 and let x * 1 and x * 2 be the corresponding solutions. Assume further that i=1,...,n γ 2 k,i /λ 2 i < 1, k = 1, 2. Let φ denote the inverse function of x → x/(1 + x) 3 . Then, we have

x * 1 -x * 2 ∞ ≤ √ p γ 1 -γ 2 2 (λ 1 -µ 2 ) + γ 1 2 r * (λ 1 -µ 1 )(λ 1 -µ 2 ) 2 , with r * given by r * = (λ p -µ 1 )φ p γ 2 1,max γ 2 1,min γ 2 1 -γ 2 2 1 2 γ 2 2 2
Proof. Let Φ denote the matrix whose columns are the eigenvectors of A. More precisely, λ 1 ≤ • • • ≤ λ p and let φ i be an eigenvector associated with λ i , i = 1, . . . , p. Let γ i = q φ i , i = 1, . . . , p. Let c * 1 (resp. c * 2 ) be the vector of coefficients of x * 1 (resp. x * 2 ) in the eigenbasis of A. For each k = 1, 2, there exists a real µ k such that

c * k,i = γ k,i (λ i -µ k ) , i = 1, . . . , p for µ k > -λ 1 which is a solution of p i=1 γ 2 k,i (λ i -µ) 2 = 1.
Now, apply Neuberger's Theorem 7.2 to obtain an estimation of |µ 1 -µ 2 | as a function of γ 1 and γ 2 . For this purpose, set

F (µ) = p i=1 γ 2 2,i (λ i -µ) 2 -1, i.e. F (µ) = 2 p i=1 γ 2 2,i (λ i -µ) 3 .
Now, we need to find the smallest value of r such that, for all µ ∈ B(µ 1 , r), we need to find a number h ∈ B(0, r) such that

h = F (µ) -1 F (µ 1 )
We therefore have that 

h = p i=1 γ 2 2,i (λ i -µ 1 ) 2 -1 2 p i=1 γ 2 2,i (λ i -µ) 3 = p i=1 γ 2 1,i (λ i -µ 1 ) 2 -1 + p i=1 γ 2 2,i -γ 2 1,i (λ i -µ 1 ) 2 2 p i=1 γ 2 2,i (λ i -µ) 3
(λ i -µ 1 ) 2 = 1, we have h ≤ (min p i=1 {(λ i -µ 1 ) 2 }) -1 γ 2 1 -γ 2 2 1 2 γ 2 2 2 (max{(λ i -µ) 3 }) -1
where • 2 is to be understood component-wise. Moreover, since i=1,...,p γ

2 k,i /λ 2 i < 1, k = 1, 2, max{(λ i -µ) 3 } = (λ p -µ 1 + r) 3 and p min i=1 {(λ i -µ 1 ) 2 } = (λ 1 -µ 1 ) 2 .
Thus, for r > 0 such that

r ≥ γ 2 1 -γ 2 2 1 (λ p -µ 1 + r) 3 2 γ 2 2 2 (λ 1 -µ 1 ) 2 ,
we get from Theorem 7.2 that there exists a solution to the equation F (u) = 0 inside the ball B(µ 1 , r). Make the change of variable

r = α(λ p -µ 1 )
and obtain that we need to find α ∈ (0, 1) such that

α (1 + α) 3 ≥ γ 2 1 -γ 2 2 1 (λ n -µ 1 ) 2 2 γ 2 2 2 (λ 1 -µ 1 ) 2 . Lemma 7.2 now gives (λ n -µ 1 ) 2 (λ 1 -µ 1 ) 2 ≤ p γ 2 1,max γ 2 
1,min from which we get that the value r * of r given by

r * = (λ p -µ 1 )φ p γ 3 1,max γ 2 1,min γ 2 1 -γ 2 2 1 2 γ 2 2 2
is admissible, for γ 2 1 -γ 2 2 1 such that the term involving φ is less than one.

γ 1,i (λ i -µ 1 ) - γ 2,i (λ i -µ 2 ) = γ 1,i (λ i -µ 1 + µ 1 -µ 2 ) -γ 2,i (λ i -µ 1 ) (λ i -µ 1 )(λ i -µ 2 ) = (γ 1,i -γ 2,i ) λ i -µ 2 + γ 1,i (µ 1 -µ 2 ) (λ i -µ 1 )(λ i -µ 2 )
.

Chapter 8

Average performance analysis of the projected gradient method for online PCA 8.1 Introduction

Background

Principal Component Analysis (PCA) is a paramount tool in an amazingly wide scope of applications. PCA belongs to the small list of algorithms which are extensively used in data science, medicine, finance, machine learning, etc. and the list is almost infinite. PCA is one of the basic blocks in the Geometric Science of Information. Computing singular/eigenvectors easily provides nonlinear embedding of data living on low dimensional manifold in a straightforward manner [START_REF] Bandeira | Ten Lectures and Forty-Two Open Problems in the Mathematics of Data Science[END_REF]. The other main geometric aspect of PCA lies in the fact that eigenvectors belong to the sphere and orthogonal families of eigenvectors belong to the Stiefel manifold, an information that we should take into account when computing these objects.

In the era of Big Data though, computing a set of singular vectors might turn to be a formidable task to achieve in practice since in many cases, one is not even able to store the data matrix itself in the RAM, not even mentioning running an algorithm on it. In the recent years, the need to handle massive datasets has revived a tremendous soaring of online techniques and algorithms which incorporate the data in an incremental fashion. Online convex optimisation is now a thriving field for dozens of important contributions a year, and a remarkable impact on the way statistical estimation and machine learning is undertaken in practice [START_REF] Hazan | Introduction to online convex optimization[END_REF][START_REF] Sra | Optimization for machine learning[END_REF][START_REF] Shalev-Shwartz | Online learning and online convex optimization[END_REF]. On the other hand, however, PCA lives in yet another realm, which cannot be directly reached using the techniques recently developed for convex optimisation. PCA can be performed using optimisation over the sphere and online versions of this nonconvex optimisation problem. Online or stochastic version of PCA have been extensively studied quite recently; see in particular the review [START_REF] Cardot | Online Principal Component Analysis in High Dimension: Which Algorithm to Choose?[END_REF] for a thorough analysis of the practical performance of online methods for PCA. On the theoretical side, [START_REF] Shamir | A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate[END_REF][START_REF] Shamir | Convergence of Stochastic Gradient Descent for PCA[END_REF][START_REF] Jin | Robust shift-and-invert preconditioning: Faster and more sample efficient algorithms for eigenvector computation[END_REF][START_REF] Allen-Zhu | LazySVD: Even faster SVD decomposition yet without agonizing pain[END_REF] propose very interesting results about the behaviour of stochastic gradient
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type algorithms with different implementation details and under various assumptions. In particular, [START_REF] Shamir | Convergence of Stochastic Gradient Descent for PCA[END_REF] provides a very elegant approach to the analysis of the stochastic projected gradient descent without any assumption on the spectral gap between the largest eigenvalue and the second largest eigenvalue.

Our contribution

The goal of the present paper is to study the online version of the stochastic gradient algorithm for PCA. In the setting we are interested in, the entries of the matrix we want to employ PCA on are observed online, i.e. one empirical correlation coefficient at a time. Our two main contributions are the following.

• We extend the analysis presented in [START_REF] Shamir | Convergence of Stochastic Gradient Descent for PCA[END_REF] to the online setting. In particular, we obtain a precise control on the average performance of the online method which does not depend on the separation between the first and the second eigenvalue.

• We provide a practical method to tune the learning rate, i.e. the step-size of the gradient algorithm, based on a recent version proposed in [START_REF] Luo | Achieving all with no parameters: Adanormalhedge[END_REF] of the Hedge Algorithm [START_REF] Freund | A decision-theoretic generalization of on-line learning and an application to boosting[END_REF].

Organisation of the paper

Our main results are presented in Section 8.2 where the algorithm is described and our main theorem is given. The proof of our main theorem is exposed in Section 8.3. Implementation and numerical experiments are given in Section 8.4. In particular, a simple method for choosing the learning rate is described in Section 8.4.1. The technical lemmae which are used in the proof of Section 8.3 are gathered in Section 8.A at the end of the paper.

Main results

Presentation of the problem and prior result

We use bold-faced letters to denote vectors, and capital letters to denote matrices unless specified otherwise. Given a matrix A, we denote by A its transpose matrix, A its spectral norm and A 1→2 = max A j 2 the maximum 2 norm of its column. For a vector v, we denote by v its transpose. Moreover (e i ) i denote the canonical basis of R d . The optimisation problem can be written where d > 1 and A is a symmetric positive semi-definite matrix supposed unknown. We suppose that we have access to a stream of i.i.d. matrices A t defined as where η is a step-size parameter and w 0 is the initial estimate for a leading eigenvector of A. This algorithm correspond to initialising at w 0 then make a gradient step at each iteration followed by a projection into the unit sphere. However, since A is unknown, the stochastic gradient we will study in this paper is simply defined as w t+1 = (I + ηA t )w t / (I + ηA t )w t 2 (8.4) obtained by replacing A with the random matrix A t . Since the projection on the unit sphere is a rescaling operation which is commutative with respect to the matrix product, we can leave the projection operation to the end. That is, for our analysis, it is enough to consider the equivalent algorithm which only performs projection at the end:

A t =
• Initialise w 0 on a unit sphere,

• Perform T > 0 stochastic gradient step : w t+1 = (I + ηA t )w t

• Return w T / w T 2 .

Since our work is based on the analysis of Shamir [START_REF] Shamir | Convergence of Stochastic Gradient Descent for PCA[END_REF], it is only fair we recall its setting and main result to highlight the differences between both approach. In [START_REF] Shamir | Convergence of Stochastic Gradient Descent for PCA[END_REF], the stream of i.i.d. matrices A t are also supposed positive semidefinite. In which case, the following theorem holds Theorem 8.1. Suppose that for some leading eigenvector v of A, 1 p < w 0 , v 2 for some p > 0 and that for some b ≥ 1, both A t / A and A t -A / A are at most b with probability 1. Then, if we run the algorithm (8.4) for T itération with η = 1 b √ pT , then with probability at least 1 cp , the return w T satisfies

1 - w T Aw T A ≤ c log(T )b √ p √ T , (8.5) 
where c and c are positive constants.

Note that our setting does not fit the hypothesis for which this theorem holds. In fact, the matrices A t in the online setting are not positive semidefinite, otherwise the matrix A is necessarily a non-negative matrix.

Main theorem

Without loss of generality, we will assume that A = 1. We wish to show that for ε > 0, the returned w T satisfies 1 -w T Aw T ≤ ε (8.6) in expectation when η and T satisfies some explicit conditions. Since w T 2 = 1, this is equivalent to showing that w T ((1 -ε)I -A)w T ≤ 0.

Theorem 8.2. Let ε > 0 and assume that 0 < 1 p < w 0 , v 2 for a leading eigenvector v of A. Define 8.3 Proof of the Theorem 8.9

In this section, we prove our main result, namely Theorem 8. To simplify computation, we want to have a uniform bound on the spectral norm of 123 We can show that for well chosen η and T , the term under parenthesis is less that -ε/4p. Taking for example η = ε 4Cpd 2 for some constant C such that 1 + η 2 d 2 +4η

1-η(ηd 2 +2)

≤ 2 and T > max(4p 2 d 2 C/ε, log(4pε -1 )/ log(1 + ε/(Cpd 2 ))) gives the result. For a small enough ε, we can take C = 1.

Implementation

Choosing the learning rate

In this section, we address the question of choosing the learning rate, i.e. the step-size η in iterations (8.4). Tuning the learning rate is essential in practice as it is well known to have a huge impact on the convergence speed of the method. Our idea to tune the learning rate is as follows:

• Choose the tolerance ∈ (0, 1), and the algorithm's parameters R, K ∈ N * , ρ ∈ (0, 1) and β > 0.

• Burn-in period:

-For η ∈ {ρ k } k=1:K , run R gradient iterations in parallel whose iterates are denoted by w • After burn-in:

-Reset R to 1 and K to 1.

-Normalise π.

-At each step t = B + 1, . . ., choose the stepsize with probability π B .

-Stop when L

t ≥ 1 -.

Choosing the parameter β is more robust than choosing the learning rate. Moreover, a reasonably effective value for β is given by (see [START_REF] Freund | A decision-theoretic generalization of on-line learning and an application to boosting[END_REF]): 

β = log(K) B . ( 8 

Numerical experiment

In this section, we present a simple numerical experiment which shows that

• The stochastic gradient method actually works in practice

• The adaptive selection of the learning rate/step-size described in the previous subsection actually accelerates the method's convergence drastically.

We run a simple experiment on a random i.i.d. Gaussian matrix of size 10000 × 10000. The convergence of (L

t ) t∈N to 1 of the plain stochastic gradient method is shown in Figure 8.1a below. The accelerated version's convergence for the same experiment is shown in Figure 8.1b below. These results show that the method of the previous Section actually provides a substantial acceleration. We carefully checked that the selected learning rate is not equal to the smallest nor the largest value on the proposed grid of values between 2 -3 , 2 -2 , . . . 2 17 . The observed gain in convergence speed was by a factor of 8.75. Extensive numerical experiment demonstrating this behaviour at larger scales will be included in an expanded version of this work. 

Conclusion

In the present paper, we studied the convergence of the projected stochastic gradient for online principal component analysis without eigengap assumption. We showed that in expectation, the algorithm converge to a leading eigenvector. Future possible work include adapting the result in a batch setting where k > 1 eigenvectors are extracted at once. Otherwise, we can try to find concentration results which would help proving a convergence with high probability.

Proof. Expanding the recurrence and using equations (8.27), (8.30), and (8.31) yields the following system

  E[B T ] E[B T ] 1→2 diag(E[B T ])   ≤   I + η   2 0 ηd 2 1 1 ηd 2 0 2 ηd 2       E[B T -1 ] E[B T -1 ] 1→2 diag(E[B T -1 ])   (8.33)
To obtain the result, we expand the inequality by recurrence. Therefore, we are interested in computing the T -th power of the matrix in inequality (8.33). We have 

  I + η   2 
η i 2(ηd 2 + 2) i-1 -1 ηd 2 + 1 E[B 0 ] + T i=1 η i 2ηd 2 (ηd 2 + 2) i-1 + 1 ηd 2 + 1 E[B 0 ] 1→2 + 1 + η 2 d 2 T i=1 (η 2 d 2 + 2η) i-1 diag(E[B 0 ]) . (8.35) 
We conclude after computing the sums and bounding from above E[B 0 ] by max j (1 -εs j ). Overall, the maximum value that f can reach is less than max{1, (1+2η(1-ε)) T η(T +1)

} ≤ 1 + (1+2η(1-ε)) T η(T +1)
}. Hence the result.

Chapter 9

Perspectives

Dans cette section, on présentera quelques ouvertures possibles aux travaux présentés.

Perspectives suivant les travaux rencontrés dans la partie I

Les différents chapitres conduisent à quelques questions et perspectives. On présentera ici trois ouvertures possibles. La première ouverture consisterai à une étude de comparaison entre la méthode de vraisemblance exacte et la méthode de vraisemblance censurée pour le modèle Hüsler-Reiss Pareto. Plus précisément, dans le cas où le modèle est misspécifié (données dans le domaine d'attraction), Wadsworth et Tawn [START_REF] Wadsworth | Efficient inference for spatial extreme value processes associated to log-Gaussian random functions[END_REF] ont montré que, dans le cas max-stable, la censure des "petites valeurs" permet de réduire le biais d'estimation. On peut alors commencer par une étude numérique pour comparer les deux méthodes pour voir si la méthode censurée est utile pour améliorer les résultats. Puis, on peut passer à une étude théorique des propriétés asymptotique de convergence et de normalité des estimateurs dans le cas censurée.

La seconde ouverture est plus appliquée. On peut exploiter la structure exponentielle du modèle Hüsler-Reiss Pareto pour modéliser la dépendance des extrêmes multivariés en présence de covariable à l'aide de modèle Vector Generalised Linear Models (VGLM) ou Vector Generalised Additive Model (VGAM). Une telle approche n'est pas sans précédent. Ainsi Chavez-Demoulin et Davison [START_REF] Chavez-Demoulin | Generalized additive modelling of sample extremes[END_REF] ont considéré dans le cas des excès au-dessus d'un seuil univarié un modèle GAM utilisant des splines comme lisseurs. Dans le cas d'extrèmes multivariés, Carvalho et Davison [START_REF] Carvalho | Spectral Density Ratio Models for Multivariate Extremes[END_REF] ainsi que Sharma, Chavez-Demoulin et Dillenbourg [START_REF] Sharma | Nonstationary modelling of tail dependence of two subjects' concentration[END_REF] ont considérés des modèles VGLM/VGAM. La difficultés qui semblent apparaître concernant l'usage de modèle VGLM ou VGAM sont les contraintes sur les paramètres du modèle Hüsler-Reiss Pareto qui doivent être respecté dans les modèles VGLM/GAM, en particulier, la propriété sur Q d'être semi-définie positive semble être une difficulté à surmonter. Un exemple d'application avec des données réelles serait de considérer les log-rendements de plusieurs actifs du CAC40 avec comme covariable le log-rendement de l'indice du CAC40. Les références sur les modèles VGAM/VGLM qui nous serviront dans cette approche sont 9.2. PERSPECTIVES SUIVANT LES TRAVAUX PR ÉSENT ÉS DANS LA PARTIE II Yee [START_REF] Yee | Vector Generalized Linear and Additive Models: With an Implementation in R. 1st[END_REF] pour la théorie générale avec des implémentations sur R et sa mise en contexte dans la théorie des extrêmes de Yee [START_REF] Yee | Vector generalized linear and additive extreme value models[END_REF].

Finalement, étant donné la structure de famille exponentielle du modèle Hüsler-Reiss Pareto, on retrouve une famille conjuguée [Proposition 3.3.13 [START_REF] Robert | The Bayesian choice: from decision-theoretic foundations to computational implementation[END_REF]] pour des approches bayésiennes. La question naturelle est la suivante : peut-on utiliser la propriété famille exponentielle du modèle Hüsler-Reiss Pareto pour une méthodologie bayésienne multivariés? Une méthodologie bayésienne dans le cas max-stable à été proposé par Dombry, Engelke, Oesting [START_REF] Dombry | Bayesian inference for multivariate extreme value distributions[END_REF]. Mais le cas des modèles des excès au-dessus d'un seuil multivarié, il n'existe pas à nos connaissance de travaux de type bayésien. La difficulté première d'une telle approche est la complexité de la famille conjuguée qui mérite d'être l'objet d'une étude plus poussée.

Perspectives suivant les travaux présentés dans la partie II

Les chapitres de la second partie conduisent aussi à quelques questions et perspectives. Certaines sont présentés à la fin de chaque chapitre mais d'autres non. On rappellera ici quelques ouvertures possibles. Suite aux travaux du chapitre 7, la question est de savoir quand est-ce que la borne du théorème est petite? Ce qui se ramènerai à trouver des conditions sur le graphe original. Ainsi si on peut obtenir des conditions facilement vérifiable pour des grands graphes, alors notre approche serait intéressante que se soit pour le problème de sélection de sous-ensemble indépendant maximal ou encore le problème d'extraction initial (sous réserve qu'on puisse traduire la condition sur le graphe vers une condition sur la matrice de départ). Par ailleurs, ce chapitre est pour l'instant sans étude numérique, un autre projet serai donc d'illustrer numériquement l'efficacité de la méthode proposée.

Suite aux travaux du chapitre 8, une piste de recherche est l'étude d'inégalité de concentration autour de l'espérance afin d'obtenir la convergence avec forte probabilité des itérés. Trouver une telle inégalité serait idéale, néanmoins, il est possible de montrer la convergence avec forte probabilité sans avoir une telle inégalité (par exemple [START_REF] Shamir | A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate[END_REF]). Par ailleurs, on avait considéré l'analyse en composante principale pour un problème de complétion matricielle. Un sujet d'ouverture possible serait de considérer le cas où l'échantillon serait en partie censurée. Par exemple, si on n'observe que deux composantes, on peut au mieux étudier la covariance entre les deux composantes (et la variance). La question est alors : est-ce qu'on converge toujours vers la bonne matrice de covariance? Sous quelle condition sur la censure? D'autres pistes de recherche seraient des études plus poussée sur l'applicabilité des algorithmes stochastique pour les problèmes de sélection de sous-matrices. On avait proposé un algorithme greedy dans le chapitre 5 mais est-ce qu'on ne pourrait améliorer l'algorithme en prenant les colonnes aléatoirement tout en se servant de nos résultats?
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 18 G ÉN ÉRALIT ÉS SUR LA TH ÉORIE DES VALEURS EXTR ÊMES Theorem 1.4 (Dombry-Ferreira). Soit X 1 , X 2 , . . . i.i.d. avec fonction de répartition commune F ∈ M DA(G γ ), γ > -1/2 et satisfaisant la condition du second ordre (1.6). Soit k = k n → ∞ le nombre de block et m = m n → ∞ la taille des blocks de sorte que √ kA(m) → λ ∈ R. Alors il existe une suite d'estimateurs θn = (γ n , μn , σn ), n ≥ 1, telle que lim n→∞ P θn est un MLE = avec I θ 0 la matrice d'information de Fisher, a n et b n les suites normalisantes des maximums partiels et b = b(γ, ρ) un facteur de biais qui dépend de la condition du second ordre.
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 1 G ÉN ÉRALIT ÉS SUR LA TH ÉORIE DES VALEURS EXTR ÊMES le maximum dans le cas multivarié comme étant le maximum composante par composante, c-à-d que pour x, y ∈ R d x ∨ y := (x 1 ∨ y 1 , . . . , x d ∨ y d ).
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 15 de Haan-Resnick). Soit G une loi extrême multivariée à marginales Fréchet unitaire. Alors il existe une mesure µ sur [0, ∞) d \ {0} homogène d'ordre -1, c-à-d telle que µ(uA) = u -1 µ(A), A ⊂ [0, ∞) d \ {0} Borélien, de sorte que

  1, . . . , d (cf Théorème 1.1).• la copule associée à F est dans le domaine d'attraction de la copule associée à G dans le sens C G (u 1 , . . . , u d ), u ∈ (0, 1) d .(1.13)
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 1617 Un prédicteur f est une fonction mesurable f : X -→ Y. Une fonction de coût C : Y × Y → [0, +∞) est une fonction mesurable telle que C(y, y) = 0 et C(y, y ) > 0, y = y .
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 77 Etant donné un décodeur ∆ : R d → R d , alors le théorème suivant relie la capacité de reconstruction du signal avec NSP Theorem 1.19 (Cohen-Dahmen-DeVore). Soit A : R d ×d une matrice d'acquisition et ∆ : R d → R d un algorithme de reconstruction tel que
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 4 R ÉSULTATS OBTENUS DANS LA PARTIE II de ces données, nous avons extrait 150 séries temporelles sequentiellement en minimisant X T X j 2 , j / ∈ T à chaque itération.
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 11 Figure 1.1: Gauchet: Evolution de la plus petite valeur singulière de la sous-matrice obtenue par l'algorithme 1. Droite: Séries temporelles extraites.
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 4114 R ÉSULTATS OBTENUS DANS LA PARTIE II 1.4.2 Chapitre 6: Small coherence implies the weak Null Space Property Dans ce chapitre, on montre qu'une faible cohérence implique une version faible de la propriété NSP. On dit que X ∈ R n×p vérifie weak-NSP(s, C, π) si pour au moins une proportion π des sous-ensembles d'indices T 0 ⊂ {1, . . . , p} tels que |T 0 | = s et pour tout h ∈ Ker(X), on a
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 4 R ÉSULTATS OBTENUS DANS LA PARTIE II 1.4.4 Chapitre 8: Average performance analysis of the projected gradient method for online PCA
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 42013 Figure 1.3: Convergence de (L (1) t ) t∈N en fonction du nombre d'itérations: (a) est pour le cas d'un choix arbitraire de pas égal à 2 -4 et (b) montre le comportement de la méthode en utilisant la procédure de la Section 8.4.1 pour des valeurs potentielles égales à 2 -3 , 2 -2 , 2 -1 , 1, 2, . . . , 2 17 .
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 3254233 As a consequence of Proposition 3.1, Hüsler-Reiss Pareto vectors with a = 1 d and α = 1 are particularly important, especially for simulation. Indeed, the random vector Z HRPar a (Q, l) with exponent α = -l 1 d satisfies Z d = a Z 1/α where the random vector Z HRPar 1 d (α -2 Q, α -1 (l -Q log a)) takes values in [0, ∞) d \ [0, 1 d ] and has exponent 1. THE H ÜSLER-REISS PARETO MODEL Remark The following equalities on the normalising constant seen in the proof of Proposition 3.1 are worth noting:

3. 2 . 3 . 2 .

 232 THE H ÜSLER-REISS PARETO MODEL Proposition In the Hüsler-Reiss Pareto model described in Theorem 3.1, we have

  al. [69, section 2.2]. Based on Proposition 3.3 and the above recursive scheme, Algorithm 2 describes a simulation procedure for Hüsler-Reiss Pareto random vectors.

2 :

 2 , . . . , z (n) ∈ Input: the parameters Q and l of the HR-Pareto distribution Output: a sample Z HRPar 1 d (Q, l) Compute α = -l 1 d and sample R Pareto(α). Compute p i = P (Θ ∈ S i ), i = 1, . . . , d, according to Eq. (3.5). Sample i from the distribution (p 1 , . . . , p d ) and set J = {1, . . . , d} \ {i}. Initialise G = 0 d (d-dimensional null vector). for j ∈ J do Compute m, σ 2 according to Eq. (3.6). Sample U Unif([0, 1]) and set G j = m + σΦ -1 Φ(-m/σ)U . Set J = J \ {j}. end Set Θ = exp(G) and Z = RΘ. return Z. Algorithm Simulation of a Hüsler-Reiss Pareto random vector (0, ∞) d \ [0, a]. In the Hüsler-Reiss Pareto model, the log-likelihood of the sample writes, for θ

Lemma 3 . 1 .

 31 Recall the definition (3.1) of the sufficient statistic T (z). Then, the closed convex hull of the set S = T (z) ; z ∈ (0, ∞) d , z 1 d is equal to

3. 3

 3 The generalised Hüsler-Reiss Pareto model 3.3.1 Definition and transformation properties Definition 3.2. Let d ≥ 2 and define Θ the set of all θ = (α, Q, l) such that: -α ∈ (0, ∞) d , -Q ∈ R d×d is symmetric semi-definite positive and KerQ = span(1 d ), -l ∈ R d satisfies l 1 d = -1. For a ∈ (0, ∞) d , the generalised Hüsler-Reiss Pareto model on [0, a] c = [0, ∞) d \ [0, a] with parameters θ = (α, Q, l) is defined by the density

Corollary 3 . 2 .

 32 Let Z HRPar a (α, Q, l) with α ∈ (0, ∞) d . We have Z d = a Zc/α where Z HRPar 1 d (Q, l -QD α log a) with exponent c > 0. Moreover, we have the relationships

Figure 5 . 1 :

 51 Figure 5.1: Left: Evolution of the smallest singular value in the greedy column selection Algorithm 1. Right: Main extracted Features.

Figure 5 . 2 :

 52 Figure 5.2: Left: Faces from the Yale database. Right: Faces selected by our algorithm.

  2 .

Figure 5 . 3 :

 53 Figure 5.3: Left: counts of the number of singular values of the submatrix extracted with Algorithm 1 larger than for CUR among the 5 smallest singular spectrum for 100 independent Monte Carlo trials. Right-top: histogram of the computation time for Algorithm 1. Rightbottom: histogram of the computation time for the CUR method [28].
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 3 MAIN RESULTS: SMALL COHERENCE IMPLIES WEAK-NSP

Lemma 6 . 1 .

 61 Cauchy's Interlacing theorem. If A ∈ R n×n is a symmetric matrix with eigenvalues λ 1 ≥ • • • ≥ λ n and associated eigenvectors v 1 ,. . . ,v n , and v ∈ R n , then p A+vv (x) = p A (x) 1 -

6.A. 5

 5 Bounding scalar products Lemma 6.5. Let |T 0 | = s 0 and |T 1 | = s 0 , T 0 , T 1 disjoint. Let T = T 0 ∪ T 1 and T be two disjoint subsets of {1, . . . , p} with |T | = 2s 0 . Let g and h be vectors in R p . Assume that

  first step. Let us now note that since z 2 2 = p, we may incorporate any multiple of the term z z -p into the objective function and obtain min e) M (z + e) -r + 1 4 δ(z z -p), without changing the solution. Using the fact that z z -p = (z + ee) (z + ee) -p = (z + e) (z + e) -2e (z + e) e) (M + δI)(z + e).

Appendices 7 .

 7 A Minimising quadratic functionals on the sphere 7.A.1 A semi-explicit solution

7 .

 7 A. MINIMISING QUADRATIC FUNCTIONALS ON THE SPHERE

V T = w 0 1 i=T(Since V T = w T 2 2

 12 I + ηA i ) ((1 -)I -A) T i=1(I + ηA i )w 0 . w T ((1 -ε)I -A)w T , the theorem implies the desired result.

Lemma 8 . 1 .+ η 2 d 2 T i=1 ( 1 +( 1 + 2 T i=1 ( 1 +( 1 ++ η 2 d 2 T i=1 ( 1 ++ η 2 d 2 T i=1 ( 1 ++ η 2 d 2 T i=1 ( 1 +

 812i=1112i=1112i=112i=112i=11 ηA i ) ((1 -)I -A) T i=1 (I + ηA i ) (8.10)so that V T = w 0 B T w 0 . We have thatE[B T ] = E[B T -1 ] + η A E[B T -1 ] + E[B T -1 ]A (8.11) + η 2 d 2 diag A diag(E[B T -1 ])A .Proof. Expand the recurrence relationship and take the expectation. Finally use Lemma 8.2 to obtain the last term of the inequality.Expanding the recurrence in Lemma 8.1, we haveE[V T ] ≤ w 0 (I + 2ηA) ((1 -ε)I -A)w 0 2η) T -i diag(E[B i-1 ]) term was obtained by using inequality (8.28) and A 1→2 ≤ 1. Using an eigendecomposition of A and w 2ηsj ) T (1 -ε -s j )w 2 0,j + η 2 d 2η) T -i diag(E[B i-1 ]) . (8.13)where s 1 > • • • > s d denote the eigenvalues of A and w 0,j = w 0 , v j denotes the j -th component of w 0 in the basis of the eigenvectors of A. Since s 1 = 1, this inequality rewritesE[V T ] ≤ -ε(1 + 2η) T w 2 0,1 + d j=2 2ηs j ) T (1 -ε -s j )w 2 0,j 2η) T -i diag(E[B i-1 ]) .(8.14)Now, we've identified a negative term -ε(1 + 2η) T w 2 0,1 that we want to dominate the positive terms with. The w 2 0,j sums to 1 -w 2 0,1 . Therefore the sum d j=2 (1 + 2ηs j ) T (1 -ε -s j )w 2 0,j is less than max s∈[0,] (1 + 2ηs) T (1 -ε -s). Lemma 8.7 gives a bound on this maximum. In consequence, we have the following inequalityE[V T ] ≤ -ε(1 + 2η) T w 2 0,1 + (1 + (1 + 2η(1 -ε)) T η(T + 1) ) 2η) T -i diag(E[B i-1 ]) .(8.15)Factoring out (1 + 2η) T , the inequality writesE[V T ] ≤ (1 + 2η) T -2η(1 -ε)) T (1 + 2η) T η(T + 1) 2η) -i diag(E[B i-1 ]) (8.16)

E

  [V T ] ≤ (1 + 2η) T -2η(1 -ε)) T (1 + 2η) T η(T + 1) + η 2 d 2 1 + η 2 d 2 + 4η 1 -η(ηd 2 + 2) 2η) -i by its infinite series ∞ i=1 (1 + 2η) -i = (2η) -1 yields E[V T ] ≤ (1 + 2η) T -2η(1 -ε)) T (1 + 2η) T η(T + 1) (8.21) + η/2d 2 1 + η 2 d 2 + 4η 1 -η(ηd 2 + 2) . (8.22) 

  K, k = 1, . . . , K. For t = 1, . . . , B, let L for k = 1, . . . , K, define π

  (a) K = 1 (b) K = 20

Figure 8 . 1 :

 81 Figure 8.1: Convergence of (L (1) t ) t∈N as a function of the iteration index: (a) is for the case of the arbitrary choice of learning rate equal to 2 -4 and (b) shows the behaviour of the method using the learning procedure of Section 8.4.1 for values of the learning rate equal to 2 -3 , 2 -2 , 2 -1 , 1, 2, . . . , 2 17 .

34 )

 34 After computing the power matrices, it result thatdiag(E[B T ]) ≤ T i=1

Lemma 8 . 7 . 1 T 1 1 T 1 - 1 ≤ 1 ≤ ( 1 +

 871111111 For η < 1 and ε > 0, we havemax s∈[0,1] (1 + 2η s) T (1 -ε -s) ≤ 1 + (1 + 2η(1 -ε)) T η(T + 1) (8.36) Proof. Denote f (s) = (1 + 2η s) T (1 -ε -s).Differentiating f and setting to zero, we obtain2ηT (1 + 2η s) T -1 (1 -ε -s) -(1 + 2η s) T = 0 ⇐⇒ 2ηT (1 -ε -s) -(1 + 2η s) = 0 ⇐⇒ T (1 -ε) -1/2η T + 1 = s Let s c = T -ε-1/2η T +1denote this critical point. Consider the two following cases :-if s c / ∈ [0, 1], then f has no critical point in the domain and therefore is maximised at either domain endpoint, i.e.max s∈[0,1] f (s) = max{f (0) = 1 -ε, f (1) = -ε(1 + 2η) T } ≤ 1 129 8.A. TECHNICAL LEMMAE -if s c ∈ [0, 1], then f is maximised at s c and the value of f at s c is 1 + 2η T (1 -ε) -1/2η T + ε + 1/2η T + (1 + 2η(1 -ε)) T 1 + 1/2η T + 2η(1 -ε)) T η(T + 1).

  1.2. R ÉSULTATS OBTENUS DANS LA PARTIE I avec X dans le domaine d'attraction d'un modèle max-stable Hüsler-Reiss. Partant de la caractérisation de la densité de la loi limite donnée précédemment, on retrouve la densité associée qui définit ainsi le modèle de Hüsler-Reiss-Pareto. Definition 1.4. Soient d ≥ 2, Q ∈ R d×d une matrice symétrique semi-définie positive telle que Ker

Table 1 .

 1 

				39 -161	121 -120 143 -133	66	-136 195 -126	52
		n=50	-10 5	-25	8	-22	20	-21	6	-37	29	-24	6
		n=100	-7	3	-13	4	-13	10	-8	3	-19	14	-12	3
		n=1000 -1	1	-2	1	-1	1	-1	1	-2	1	-1	1
		n=10	-54 36 -505	560 -123 138 -379	232 -123 138 -379	232
	d=3	n=50 n=100	-11 5 1 3	-140 -103	24 11	-15 3	20 9	-100 -66	16 7	-15 3	20 10	-100 -66	16 7
		n=1000	3	1	-79	1	10	1	-50	1	10	1	-50	1
		n=10	-54 35 -993 1350 -112 133 -697	739 -112 183	620	726
	d=4	n=50 n=100	-5 3	5 3	-238 -188	35 15	8 17	16 8	-170 -122	24 10	-5 23	27 12	-148 -104	21 8
		n=1000	7	1	-149	1	24	1	-91	1	29	1	-74	1
		n=10	-53 46 -1555 4064 -91 138 -1170 3367 -90 157 -1010 1839
	d=5	n=50 n=100	3 6	5 2	-327 -255	66 26	11 25	16 8	-223 -163	43 18	17 33	24 11	-192 -149	40 15
		n=1000 11	2	-201	2	38	1	-127	1	48	1	-103	1

1: Bias and variance: figures where multiplied by 1000

  dans son travail séminal où il présente un célèbre test pour l'intelligence artificielle. Depuis, les avancées dans le domaine de l'intelligence artificielle ont fait d'énormes progrès, dus en particulier aux développements des capacités de calculs. Ainsi, en 1997, Deep Blue a battu Kasparov, alors champion du monde d'échecs. En 2016, Alpha Go, une combinaison entre réseaux de neurones profonds, entraînés par apprentissage supervisé et apprentissage renforcé, et d'arbres de recherche

  SGD (projeté) reste un algorithme viable. Avant de présenter le résultat sur la convergence de SGD projeté, on va étendre le contexte du problème. Soit A ∈ R d×d une matrice semi-définie positive et soit le problème d'optimisation suivant

	1.3. G ÉN ÉRALIT ÉS SUR LE MACHINE LEARNING
	précédente. Néanmoins, min u∈R d , u 2 =1	-u Au.	(1.58)
	Le gradient de la fonction objectif du problème (1.58) au point u s'écrit -2Au. L'algorithme
	GD à pas constant pour le problème (1.58) sans contrainte est donné par les itérations
	Z t+1 = Z t + ηAZ t .	(1.59)
	Supposons maintenant que A est inconnu mais qu'on a accès à une suite de matrice aléatoire
	(A t ) t i.i.d. semi-définie positive d'espérance A. On a alors accès à un estimateur non biaisé
	du gradient au point Z égal à -2A t Z. L'algorithme SGD à pas décroissant s'écrit alors
	Z t+1 = Z t + η t A t Z t .	(1.60)
	Dans la formulation (1.44), ceci revient à poser π t+1 = 2A t Z t -2AZ t . Finalement, il reste
	à prendre en compte la contrainte en projetant l'itéré sur l'espace {z ∈ R d : z 2 = 1}.
	Ceci revient à normaliser chaque itéré. On définit ainsi l'algorithme de gradient stochastique
	projeté à pas décroissant par		
			.57)
	Donc la solution de (1.56) est bien la seconde composante principale de Y. Alternativement,
	il est possible de trouver la seconde composante principale en optimisant une autre variante
	de (1.55) où on rajoute une contrainte u 1 , u = 0. En conclusion, il est possible d'obtenir
	séquentiellement les composantes principales de Y. Néanmoins, comme le problème (1.55)
	n'est pas résolvable exactement, calculer successivement les composantes principales induit
	une erreur à chaque itération.		
	Pour faire le lien avec l'algorithme SGD, on remarque que la fonction objective est bien
	convexe mais on a une contrainte qui est en dehors du cadre présenté dans la sous-section

  Jt e I t e J

t (1.110) où (I t , J t ) est uniformément distribuée sur {1, . . . , n} 2 . L'algorithme de gradient stochastique projeté à pas constant est alors donné par w t+1 = (I + ηA t )w t / (I + ηA t )w t 2 (1.111) avec w 0 ∈ R d . Sans perte de généralité, on supposera par la suite que A = 1. Notre résultat est le suivant Theorem 1.27. Soit ε > 0 et supposons que 1/p < w 0 , v pour un vecteur propre v associé à la plus grande valeur propre de A. Soit V T défini par

  Let S d denote the linear space of symmetric d × d matrices and P the linear operator defined as

	Appendices
	3.A Lemmas
	Lemma 3.2.

, • • • , e p-1 ) is an orthonormal basis of Θ ⊥ 0 . Theorem (3.3) implies ĥn , e i I θ 0 1≤i≤p-1 d → N (0 p-1 , I p-1 ) which in turn results in 2 Ln ( ĥn ) -Ln ( ĥ0 n ) d → χ 2 (p -1).

Table 4 .

 4 

	4.2. NUMERICAL SIMULATION: BIAS AND VARIANCE IN THE EXACT SIMULATION
														CASE
					α = 0.5			α = 1.0			α = 1.2	
			α		Q11		α		Q11		α		Q11	
		n=10	-65 39 -161	121 -120 143 -133	66	-136 195 -126	52
	d=2	n=50 n=100	-10 5 -7 3	-25 -13	8 4	-22 -13	20 10	-21 -8	6 3	-37 -19	29 14	-24 -12	6 3
		n=1000 -1	1	-2	1	-1	1	-1	1	-2	1	-1	1
		n=10	-54 36 -505	560 -123 138 -379	232 -123 138 -379	232
	d=3	n=50 n=100	-11 5 1 3	-140 -103	24 11	-15 3	20 9	-100 -66	16 7	-15 3	20 10	-100 -66	16 7
		n=1000	3	1	-79	1	10	1	-50	1	10	1	-50	1
		n=10	-54 35 -993 1350 -112 133 -697	739 -112 183	620	726
	d=4	n=50 n=100	-5 3	5 3	-238 -188	35 15	8 17	16 8	-170 -122	24 10	-5 23	27 12	-148 -104	21 8
		n=1000	7	1	-149	1	24	1	-91	1	29	1	-74	1
		n=10	-53 46 -1555 4064 -91 138 -1170 3367 -90 157 -1010 1839
	d=5	n=50 n=100	3 6	5 2	-327 -255	66 26	11 25	16 8	-223 -163	43 18	17 33	24 11	-192 -149	40 15
		n=1000 11	2	-201	2	38	1	-127	1	48	1	-103	1

1: Bias and variance: figures where multiplied by 1000

Table 4 .

 4 

		n=10	-140 63 -58 94 -53 101
	ε=0	n=50 n=100	-21 6 -5 11 -19 11 -12 3 -9 6 -5 6
		n=1000 -1	1	0	1	-1	1
		n=10	-117 56 -22 102 -83 108
	ε=0.1	n=50 n=100	-20 6 -9 2 -1 1	12 -15 12 6 -10 5
		n=1000 -1	1 -1	1	0	1
		n=10	-140 77 8 150 -138 139
	ε=0.2	n=50 n=100	-24 6 -12 3	3 0	14 -23 14 5 -11 6
		n=1000	0	1	0	1	0	1
		n=10	-146 74 56 190 -166 175
	ε=0.3	n=50 n=100	-24 6 -10 3 -1 8	17 -24 16 8 -13 7
		n=1000 -1	1	1	1	-2	1

2: Bias and variance in the asymmetric case: figures where multiplied by 1000

Table 4 .

 4 

			4.3. NUMERICAL SIMULATION: BIAS AND VARIANCE IN THE DOMAIN OF
									ATTRACTION SIMULATION CASE
					α = 0.5				α = 1			α = 1.2	
			α		Q11		α		Q11		α		Q11	
		n =	-59 34 -473	242 -101 142 -421	171 -143 219 -437	145
	d=2	n = n =	-12 5 -2 2	-256 -240	18 8	-20 -6	21 10	-254 -239	14 5	-33 -10	31 16	-255 -237	12 5
		n = -1	1	-222	1	-1	1	-221	1	1	1	-222	1
		n =	-73 43 -890	873 -122 133 -800	853 -143 208 -741	438
	d=3	n = n =	-13 5 -5 2	-37 -320	39 15	-19 -13	20 9	-359 -326	29 12	-41 -7	29 12	-361 -318	26 11
		n = -1	1	-298	1	-2	1	-299	1	0	1	-296	1
		n =	-52 34 -1183 1627 -141 157 -1268 1815 -145 201 -1062 1235
	d=4	n = n =	-8 -4	5 2	-449 -379	55 20	-20 -10	20 9	-431 -382	43 17	-31 -5	30 14	-411 -370	37 16
		n = -1	1	-338	1	0	1	-336	1	0	1	-336	1
		n =	-59 39 -1599 4121 -110 146 -1508 2602 -148 226 -1454 2820
	d=5	n = n =	-13 5 -2 2	-480 -404	70 33	-32 -6	21 9	-468 -410	65 26	-17 -4	28 14	-463 -397	58 26
		n =	1	1	-349	4	8	2	-351	3	-14	2	-347	3

3: Bias and variance when ε = 0.01: figures where multiplied by 1000

Table 4 .

 4 

			4.3. NUMERICAL SIMULATION: BIAS AND VARIANCE IN THE DOMAIN OF
									ATTRACTION SIMULATION CASE
					α = 0.5				α = 1			α = 1.2	
			α		Q11		α		Q11		α		Q11	
		n =	-64 41 -467	218 -103 148 -414	157 -134 203 -415	134
	d=2	n = n =	-11 5 -5 2	-261 -238	18 8	-22 -17	22 10	-258 -242	14 6	-25 -10	30 14	-257 -236	12 6
		n = -1	1	-223	1	-1	1	-222	1	-1	1	-222	1
		n =	-60 35 -804	648 -124 154 -717	589 -132 184 -692	448
	d=3	n = n =	10 -7	5 2	-366 -329	34 15	-24 -12	21 9	-356 -325	28 12	-27 -14	30 14	-354 -317	27 11
		n =	0	1	-297	1	-1	1	-298	1	0	1	-296	1
		n =	-59 41 -1272 1671 -125 131 -1190 1507 -184 238 -1088 1078
	d=4	n = n =	-16 5 -6 2	-435 -376	51 22	-15 -11	20 9	-422 -382	39 16	-28 -12	29 14	-412 -380	34 15
		n =	0	1	-335	1	0	1	-334	-1	0	1	-336	1
		n =	-68 38 -1813 6228 -139 141 -1708 4147 -161 209 -1586 3899
	d=5	n = n =	-12 5 -4 3	-494 -414	86 34	-25 -7	20 9	-485 -412	66 26	-27 -20	28 9	-441 -423	64 23
		n =	0	1	-362	3	-1	1	-361	2	0	1	-358	1

4: Bias and variance when ε = 0.001: figures where multiplied by 1000

  Proposition 5.1. Cauchy's Interlacing theorem. If A ∈ R n×n is a symmetric matrix with eigenvalues λ 1 ≥ • • • ≥ λ n and associated eigenvectors v 1 ,. . . ,v n , and v ∈ R n , then

  .13) 

	Proof. Using Theorem 6.2, for				
		µ ≤	1 4(1 + α) log p	(6.14)
	with probability larger that π, an index subset T 0 with cardinality s 0
	s 0 ≤	1 16(1 + α)e 2	p X 2 log p	.	(6.15)
	satisfies				
		5 4	≥ λ 1 ≥ λ s 0 ≥	3 4	.	(6.16)

  This follows immediately from the intermediate value theorem. From (7.10), we can get the following easy bounds on µ. Lemma 7.2. Let γ min = min p i=1 γ i and γ max = max p i=1 γ i . Then, we have

	7.A.2 Bounds on µ			
	pγ 2 max ≥	p max i=1	{(λ i -µ) 2 } ≥ pγ 2 min .	(7.11)
	and			
	min ≤ γ 2	p		
				.10)
	Moreover, we have the following useful result.	

Corollary 7.1. If Q is positive definite, and i=1,...,p γ 2 i /λ 2 i < 1, then 0 < µ < λ 1 . Proof.

  d 2 A it,jt e it e jt(8.2) and (i t , j t ) is drawn uniformly at random from {1, . . . , n} 2 . It is easily seen that E[A t ] = A, therefore each matrix A t can be seen as a properly rescaled noiseless random component of A. It can be readily seen that any leading eigenvector of A is a solution of the optimisation problem.8.2.2 The stochastic projected gradient algorithmGiven a symmetric matrix A ∈ R d×d , the projected gradient algorithm writes w t+1 = (I + ηA)w t / (I + ηA)w t 2(8.3) 

f (x) = 1 -n i=1 X j , u i 2 x -λ i (X T 0 X T 0 ) . (1.93)Comme cette fonction est croissante sur (0, λ s 0 (X T 0 X T 0 )), on trouve alors une fonction majorante à f dont on connaît la racine sur l'intervalle qui permet de conclure. En pratique, les sous-matrices de X T ont une meilleure cohérence que X qu'on peut quantifier par un facteur α ∈ (0, 1]. On peut alors réécrire le théorème précédent en terme du paramètre α.

2.2. A SIMPLE MODEL FOR MULTIVARIATE REGULAR VARIATIONS

3.3. THE GENERALISED H ÜSLER-REISS PARETO MODEL

a non-linear transformation was performed in order to make the time-series locations and sources impossible to identify

we used the Matlab implementation provided on Christos Boutsidis webpage

the precise result underpinning this statement will be recalled in Section 6.2.3 below

The last set contains the remaining smallest terms in absolute value and may not contain s terms

here, positivity is trivial

Remerciements

THE GENERALISED H ÜSLER-REISS PARETO MODEL

so that α0 is a consistent estimator for α.

On the other hand, the vector Z α has Hüsler-Reiss distribution HRP(Q, l), so that Theorem 3.2 suggests the maximum-likelihood estimator

L n (α, Q, l) = Ψ T n (D α log Z (1) , . . . , D α log Z (n) ) , where Ψ( t) denotes the unique solution of the score equation ∂ log C ∂θ (Q, l) = t. As a general result for full exponential families (see e.g. Barndorff-Nielsen [START_REF] Barndorff-Nielsen | Information and exponential families in statistical theory[END_REF]), Ψ is a diffeomorphism. Since α is unknown and estimated by α0 , we set rather θ0 = ( Q0 , l0 ) = Ψ T n (D α0 log Z (1) , . . . , D α0 log Z (n) ) .

Some simple computations show

where N n , O n and N n /O n denotes the vectors with components N n,j , O n,j and N n,j /O n,j respectively, and

Hence θ0 can be written in the form

with differentiable function Θ. The law of large number ensures the almost sure convergence of N n , O n , M n , V n as n → ∞, whence strong consistency θ0 a.s.

→ θ follows. The central limit theorem ensures the asymptotic normality of (N n , O n , M n , V n ), whence the asymptotic normality of θ0 is deduced via the δ-method (van der Vaart [176, Theorem 3.1]). Theorem 3.4. Let θ 0 = (α 0 , Q 0 , l 0 ) ∈ Θ and assume the observations Z (1) , Z (2) , • • • independent with distributions HRPar(θ 0 ). Define θ0 as in Proposition (3.7) and

Define θmle n as the unique minimiser of the negative log-likelihood on V n , i.e.,

Consider the alternating minimisation estimators θ(i) = ( bα

, Q(i) , l(i) ) defined by the recursive algorithm

We apply lemma 6.2 to X T 0 X T 0 + X j 1 X j 1 with j 1 ∈ T 1 . We have

with ε defined in 6.2. Since ε s 0 ,min ≤ ε min , we get

Thus, the induction hypothesis is verified and we can apply Lemma 6.2 for the next step of the induction. This leads to (6.26).

For the lower bound (6.27), we have from lemma 6.A.3

We can then apply lemma 6.A.3 to the next step. The result follows by induction.

Corollary 6.1. Let T 0 ⊂ {1, . . . , p} with |T 0 | = s 0 and X T 0 a submatrix of X. Let λ 1 ≥ ... ≥ λ s 0 be the eigenvalues of X T 0 X T 0 . Let λ1 ≥ λ 1 and λs 0 ≤ λ s 0 . Let T 1 ⊂ {1, . . . , p} with

and

Proof. Set η = 1 2 , assumption (3) writes

and

4 + 9(s 0 + s 1 ) 3/2 µ which leads to

and

Since µ < 1

and

The result follows by factoring out µ 2 and setting s 1 = 3s 0 .
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Therefore,

Finally, using that |µ 1 -µ 2 | ≤ r * , we get

as announced.

7.A.4 Neuberger's theorem

In this subsection, we recall Neuberger's theorem. Theorem 7.2. Suppose that r > 0, that x ∈ R p , and that F is a continuous function from B(x, r) to R m with the property that for each y in B(x, r), there is an h in B(0, r) such that lim t→0+ (F (y + th) -F (y)) t = -F (x). (7.15)

Then, there exists u in B(x, r) such that F (u) = 0.

Appendices 8.A Technical lemmae

Recall that

Lemma 8.2. In the case of matrix completion, given a matrix X, we have

Proof. The resulting matrix writes

Therefore the expected matrix writes

Using the symmetry of A gives the result.

Now our next goal is to see how diag A diag(E[B T -1 ]

)A evolves with the iterations. For this purpose, take the diagonal of (8.11), multiply from the left by A and from the right by A and take the diagonal of the resulting expression. Lemma 8.3. We have that

Proof. Expanding the recurrence relationship (8.11) gives Therefore, by taking the operator norm on both sides of the equality, we have

We conclude using diag

We also have to understand how the 1→2 norm evolves.

Lemma 8.4. We have

.30)

Proof. Expanding the recurrence relationship gives

For a diagonal matrix ∆, we have ∆ 1→2 = ∆ . This leads to

) . Finally, using A 1→2 ≤ 1 concludes the proof.

We then have to understand how the operator norm of E[B T ] evolves Lemma 8.5. We have Then using similar inequalities as in the proof of the lemmas above, we have the result.

Lemma 8.6. Let A = 1, then we have

where