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Abstract

Modern surveillance systems often employ multiple controllable sensors that can collect infor-
mation about objects of interest in their field of view. These systems must coordinate their
observation strategies to enhance the information obtained by their future measurements in
order to accurately estimate the states of objects of interest (location, velocity, appearance,
etc). Therefore, adaptive sensor management consists of determining sensor measurement
strategies that exploit a priori information in order to determine current sensing actions.
One of the most challenging applications of sensor management is the multi-object tracking,
which refers to the problem of jointly estimating the number of objects and their states or
trajectories from noisy sensor measurements.

This thesis focuses on real-time sensor management strategies formulated in the Par-
tially Observable Markov Decision Process (POMDP) framework to address the multi-object
tracking problem within the Labeled Random Finite Set (LRFS) approach. The first key
contribution is the rigorous theoretical formulation of the mono-sensor Labeled Probability
Hypothesis Density (LPHD) filter with its Gaussian-mixture implementation. The second
contribution is the extension of the mono-sensor LPHD filter for superpositional sensors,
resulting in the theoretical formulation of the multi-sensor LPHD filter. The third contribu-
tion is the development of the Expected Risk Reduction (ERR) sensor management method
based on the minimization of the Bayes risk and formulated in the POMDP and LRFS frame-
work. Additionally, analyses and simulations of the existing sensor management approaches
for multi-object tracking, such as Task-based, Information-theoretic, and Risk-based sensor
management, are provided.

For the needs of both this and future research, a toolbox for sensor management and
multi-object tracking has been developed using Matlab. It features many filtering methods for
multi-object tracking, including the well-known PHD filters, the Generalized Labeled Multi-
Bernoulli (GLMB) filters, and the new mono- and multi-sensor LPHD filters. Also included in
the toolbox are the Kalman filter, the Extended Kalman filter (EKF), the Unscented Kalman
filter (UKF), and the Particle filters. In addition, the toolbox provides the implementation of
sensor management algorithms such as the Posterior Expected Number of Targets (PENT),
Balanced Explorer and Tracker (BET), Posterior Expected Error of Cardinality and States
(PEECS), the Mission-oriented and Risk-based sensor management, as well as the Rényi,
Kullback-Leibler, and Cauchy-Schwarz divergences. Numerous examples are provided to
demonstrate the usage of each algorithm, making the toolbox useful for building proof-of-
concept implementations of multi-object tracking and sensor management algorithms. The
latest version can be found at www.marcosgomesborges.com.
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Résumé

Cette thèse porte sur la définition de stratégies de gestion des capteurs en temps réel afin
de résoudre le problème du suivi multi-objets dans le cadre d’ensemble aléatoire fini labéllisé
ou « Labeled Random Finite Set (LRFS) ». Les quatre sections de ce résumé suivent les
quatre chapitres de la thèse. La première section présente la base théorique de l’estimation
Bayésienne pour les algorithmes de pistage mono et multi-objets dans le formalisme des
ensembles aléatoires finis (RFS) standard et aussi labellisé. La deuxième section présente
la formulation théorique du filtre mono-capteur LPHD « Labeled Probability Hypothesis
Density » avec son implémentation sous l’hypothèse Gaussienne. La troisième section définit
en détail l’extension du filtre LPHD pour le cas multi-capteurs. La quatrième section présente
le développement des méthodes de gestion de capteurs formulés dans les cadres LRFS et
POMDP « Partially Observable Markov Decision Process », suivi de la conclusion et travaux
futurs.

Principes fondamentaux du pistage multi-objets

Le suivi (ou pistage) d’objets est l’opération consistant à estimer l’état des objets à travers
le temps. Cette opération repose essentiellement sur des techniques de filtrage largement
développées dans le cadre Bayésien. Le point difficile du pistage multi-cibles est l’extraction
optimale d’informations utiles sur l’état de la cible à partir d’observations bruitées [BP99;
BWT11]. En général, les observations ne décrivent pas exactement les positions des différentes
cibles. Il est aussi possible, qu’elles ne correspondent à aucune cible (clutter ou fausses
alarmes). En général, le nombre de cibles observées est inconnu et variable au cours du temps
(les cibles peuvent apparaitre et disparaitre). Il faut donc mettre au point des outils capable
d’estimer correctement le nombre de cibles et d’évaluer le mieux possible les paramètres des
cibles présentes, en ne disposant que d’observations et d’un modèle statistique définis.

Le pistage multi-cibles est généralement réalisé en gardant l’estimation de l’état de la
cible au fil du temps en utilisant des algorithmes tels que les algorithmes : JPDA « Joint
Probabilistic Data Association » et MHT « Multiple Hypothesis Tracking » [BWT11]. La
principale caractéristique de ces approches est la stratégie appliquée pour résoudre le problème
de l’association des données, ce qui entraîne malheureusement une estimation Bayésienne non
optimale [Mah14].

Plus récemment, Mahler a proposé une formulation alternative qui évite les associations
explicites entre les mesures et les cibles. Cette nouvelle approche met en œuvre la théorie
des ensembles aléatoires finis, RFS « Random Finite Set », afin de résoudre le problème
du pistage multi-cibles dans un cadre Bayésien [Mah03a; Mah14]. Les algorithmes basés
sur l’approche RFS consistent à propager au cours du temps une densité de probabilité π
décrivant le nombre de cibles et leurs états en fonction de l’arrivée des nouvelles mesures

1



2 RÉSUMÉ

utilisant le schéma du filtre Bayésien multi-objets comme illustré par le schéma suivant:

· · · → πk−1(Xk−1|Z1:k−1) prédiction−−−−−−→ πk|k−1(Xk|Z1:k−1) mise à jour−−−−−−−→ πk|k(Xk|Z1:k)→ · · ·

L’objectif de l’estimateur Bayésien multi-objets est de déterminer la densité a posteri-
ori de l’état multi-objets πk(Xk|Z1:k) à l’instant k, où Z1:k = {Z1, · · · , Zk} représente la
séquence d’observations jusqu’à l’instant k. Ce filtre nécessite de deux distributions à pri-
ori : la densité de transition multi-objets Markovienne fk|k−1(Xk|Xk−1) et la fonction de
vraisemblance multi-objets gk(Zk|Xk). La densité a posteriori multi-objets peut être calculée
de manière récursive via les étapes de « prédiction » et de « mise à jour » du filtre comme
décrit ci-dessous :

πk|k−1(Xk|Z1:k−1) =
∫
fk|k−1(Xk|Xk−1)πk−1(Xk−1|Z1:k−1)δXk−1 (1)

πk|k(Xk|Z1:k) =
gk(Zk|Xk)πk|k−1(Xk|Z1:k−1)∫
gk(Zk|Xk)πk|k−1(Xk|Z1:k−1)δXk

(2)

Toutefois, le filtre Bayésien multi-cibles utilisant les RFS n’a pas de solution explicite,
il est donc nécessaire d’utiliser des approximations. Les plus connues d’entre elles sont les
méthodes : PHD « Probability Hypothesis Density » [Mah03b], CPHD « Cardinalized PHD
» [Mah07a] et GLMB « Generalized Labeled Multi-Bernoulli » [VV13; VVP14].

Le filtre PHD est une approximation du filtre Bayésien multi-cibles qui restreint les den-
sités de probabilité πk|k−1(Xk|Z1:k−1) et πk|k(Xk|Z1:k) par leurs densités des moments du
premier ordre notées νk|k−1(Xk|Z1:k−1) et νk|k(Xk|Z1:k), qui se propagent dans le temps
comme illustré par le schéma suivant :

· · · → πk−1(Xk−1|Z1:k−1) prédiction−−−−−−→ πk|k−1(Xk|Z1:k−1) mise à jour−−−−−−−→ πk|k(Xk|Z1:k)→ · · ·
↓ ↓ ↓

· · · → νk−1(xk−1|Z1:k−1) prédiction−−−−−−→ νk|k−1(xk|Z1:k−1) mise à jour−−−−−−−→ νk|k(xk|Z1:k)→ · · ·

Le filtre PHD peut être formulé de manière récursive via les étapes de « prédiction » et
de « mise à jour » comme décrit ci-dessous [Mah03a; Mah07b; Mah14] :

νk|k−1(x) = γk(xk) +
∫ (

PS,k(xk−1)fk|k−1(xk|xk−1) + βk|k−1(x|xk−1)
)
νk−1(xk−1)dxk−1 (3)

νk|k(xk) =
(
1− PD,k(xk)

)
νk|k−1(xk) +

∑
z∈Zk

PD,k(xk)gk(z|xk)νk|k−1(xk)
κk(z) +

∫
PD,k(xk)gk(z|xk)νk|k−1(xk)dxk

(4)

où νk−1 est la densité PHD à l’instant k − 1, γk(·) est l’intensité de naissance de cibles à
l’instant k, PS,k(xk−1) la probabilité d’existence d’une cible à l’instant k, fk|k−1 la densité de
la transition Markovienne, βk|k−1(x|xk−1) l’intensité d’un nouvel objet apparaissant basé sur
l’état précédent xk−1 d’un objet déjà existant, PD,k(xk) la probabilité qu’un objet avec l’état
xk soit détecté, et Zk est l’ensemble d’observations à l’instant k.
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Le filtre LPHD mono capteur

Les premiers filtres basés sur l’approche RFS ne peuvent générer que l’estimations de l’état
(filtrage multi-objets), et ces algorithmes ne prennent pas en compte l’estimations de trajec-
toires (suivi multi-objets) en raison de la complexité de calcul. Certaines solutions proposées
pour résoudre ce problème étaient généralement basées sur des méthodes heuristiques. La
théorie RFS labellisée de Ba-Tuong Vo et Ba-Ngu Vo a été la première formulation théorique
rigoureuse pour résoudre le problème du suivi multi-objet [VV13; Mah14; VVP14]. Leur
proposition a abouti au filtre GLMB « Generalized Labeled Multi-Bernoulli », qui est le pre-
mier algorithme reconnu comme une solution Bayésienne optimale pour le suivi multi-objets.

La différence entre le RFS standard et le RFS labellisée réside dans le fait que les filtres
RFS standard ne produisent que de multiples estimations d’état (filtrage multi-objets), tandis
que les filtres LRFS produisent des estimations de trajectoires (suivi multi-objets). La version
originale du filtre GLMB est quasiment inexploitable, et de nombreuses approximations ont
été proposées. Ba-Ngu Vo, Ba-Tuong et Hoang ont proposé une implémentation rapide du
filtre GLMB avec une prédiction et une mise à jour conjointes présentant une complexité
de calcul en O(n2m), où n est le nombre d’objets et m est le nombre de mesures [HVV15;
VVH17]. Cette mise en œuvre efficace a un temps d’exécution moyen au moins deux fois
moindre que la version d’origine.

Dans le Chapitre 2, nous nous attachons à répondre aux questions suivantes : s’il existe-
t-il une version du filtre PHD labellisée (LPHD), quelle est sa relation avec le filtre GLMB ?
Est-ce une alternative sous-optimale mais plus rapide en calcul ? Puis nous montrons qu’une
approximation du filtre GLMB, connue sous le nom de filtre LMB « Labeled Multi-Bernoulli
» [Reu+14], peut être réinterprétée comme un filtre LPHD suivant le schéma ci-dessous :

· · · → νk−1(x, `) prédiction−−−−−−→ νk|k−1(x, `) mise à jour−−−−−−−→ νk|k(x, `)→ · · ·

et selon Mahler [Mah14; Mah17]:

νk−1(x, `) = r
(`)
k−1pk−1(x, `) = r

(`)
k−1p

(`)
k−1(x) (5)

L’équation 5 représente un LPHD, où ù 0 ≤ r(`)
k−1 ≤ 1 et p(`)

k−1(x) représentent la probabilité
d’existence et la distribution spatiale de l’objet avec le label `. L’équation de prédiction pour
le filtre LPHD est la même que pour le filtre LMB. Ainsi, l’étape de prédiction du filtre LPHD
peut être exprimée par :

ν+(x, `) =


∫
pS(x′, `) f+(x|x′) ν(x′, `)dx if ` ∈ L

νB(x, `) if ` ∈ B
(6)

où B ⊆ L+ est l’ensemble labellisé pour les nouveaux cibles (naissance de cibles), L est
l’ensemble de label pour les cibles actuelles, et νB(x, `) = r

(`)
B p

(`)
B (x, `) est la LPHD pour les

nouvelles cibles.
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Les équations de mise à jour pour le filtre LPHD sont les mêmes que pour le filtre LMB.
Ainsi, l’étape de mise à jour du filtre exprimée par :

ν(x′, `′) = LZ(x′, `′)p+(x′, `′) (7)

où LZ(x′, `′) est le modèle d’observation qui dépend de l’application.

La théorie du LRFS fournit la base théorique pour une solution Bayésienne optimale
pour le suivi multi-objets. Contrairement aux solutions heuristiques du filtre PHD avec
label, le filtre LPHD proposé implémente complètement la théorie RFS labellisé. Cependant,
la complexité de calcul de la mise à jour du filtre LPHD est nettement supérieure à celle des
autres implémentations du filtre PHD utilisant le RFS standard.

Le filtre LPHD peut être considéré comme une approximation du filtre δ-GLMB, qui
approxime la densité a posteriori multi-objet à l’aide d’un RFS LMB afin de simplifier l’étape
de prédiction. Cette approximation résulte en un algorithme de suivi de cible précis et en
temps réel. De plus, le filtre LPHD facilite la mise en œuvre à l’aide de mélanges gaussiens
et n’a pas tendance à se dégrader lorsque le clutter est dense ou que les objets sont proches.

Le filtre LPHD multi-capteurs

Le filtre mono-capteur LPHD ne peut être utilisé qu’avec le modèle de mesure multi-objets
standard, ce qui suppose qu’un objet génère au plus une seule mesure (une détection), que
toute mesure est générée par au plus un seul objet, et que les mesures non générées par des
objets sont de fausses détections ou du clutter. En revanche, les capteurs tels que les radars et
les sonars ne respectent pas le modèle de mesure standard car leurs mesures sont composées
d’une somme des signaux observé.

Les systèmes multi-capteurs et les capteurs qui ne suivent pas le modèle de mesure stan-
dard sont partout, et les filtres multi-objets spécialement conçus pour ceux-ci pourraient
apporter une amélioration significative par rapport aux approches de suivi classiques à détec-
tion standard mono-capteurs. En 2009, Mahler a présenté la formulation théorique du filtre
PHD multi-capteurs non labellisé pour le cas avec deux capteurs [Mah09b; Mah09c]. Par la
suite, Delande a introduit un développement rigoureux du filtre PHD non labellisé pour le cas
multicapteurs en 2010 [Del+10; Del12], et Liu a proposé une autre extension multicapteurs
non labellisée limitée aux systèmes de capteurs linéaires en 2011 [LW11].

Cette section résume le développement du filtre LPHD multicapteurs en tant qu’extension
du filtre LPHD monocapteur basé sur les travaux de Papi, Saucan et Mahler et al. [PK15;
SLC17; Mah18]. Le filtre PHD multi-capteurs proposé diffère des filtres mentionnés ci-dessus
en ce sens que son développement est basé sur le formalisme du LRFS et la distribution
RFS LMB, plutôt que d’utiliser la distribution du formalisme RFS standard et distribution
Poisson.

Un modèle de mesure standard peut être exprimé par :

Zk = ηk(x) + Vk (8)

où x est l’état d’un objet, ηk(x) c’est une fonction de mesure non linéaire, et Vk est un vecteur
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de bruit aléatoire de moyenne nulle. La fonction de vraisemblance du capteur de ce modèle
est définie par :

Lz(x) = gk(z|x) = gVk

(
z − ηk(x)

)
(9)

Pour les capteurs comme les radars et les sonars qui n’obéissent pas au modèle de mesure
standard, le modèle de mesure est donné par :

Zk = ηk(X) + Vk = ηk(x1) + · · ·+ ηk(xn) + Vk (10)

où X = {x1, · · · , xn} with |X| = n est l’ensemble des états multi-objets. En général, ηk(x)
et Vk sont des vecteurs. La densité de mesure de ce modèle est :

Lz(X) = gk(z|X)
= gVk(z − ηk(X))
= gVk(z − ηk(x1))− · · · − gVk(z − ηk(xn)) (11)

L’équation de prédiction pour le filtre LPHD multi-capteurs est la même que celle du
filtre LPHD mono-capteur et est donnée par :

νk|k−1(x, `) =


∫
pS(x′, `) fk|k−1(x|x′) ν(x′, `)dx if ` ∈ L

νB(x, `) if ` ∈ B
(12)

où B ⊆ Lk|k−1 est l’ensemble labellisé pour les nouvelles cibles et L est le label définie pour
les cibles courantes.

La mise à jour LPHD multi-capteurs pour une prédiction LPHD νk|k−1(x, `) et de nou-
velles mesures Zk est définie par :

νk(x, `) =


0 if ` 6∈ J

αk νk|k−1(x, `) N (z; zk − η(x, `)− o(`), R+O(`))
max`′∈J

∫
νk|k−1(x′, `′) N (z; zk − η(x′, `′)− o(`′), R+O(`′)) dx′

otherwise

(13)

où 0 < αk ≤ 1 c’est une constante dépendante de l’application, et o(`) et O(`) sont définis
par :

o(`) =
∑

`′∈J−{`}
ν(`′)[η], (14)

O(`) =
∑

`′∈J−{`}

(
ν(`′)[ηηT ]− ν(`′)[η]ν(`′)[η]T

)
(15)
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où T désigne la matrice transposée, et :

ν(`)[η] =
∫
η(x, `)νk|k−1(x, `)dx, (16)

ν(`)[ηηT ] =
∫
η(x, `)η(x, `)T νk|k−1(x, `)dx, (17)

et similaire au filtre LPHD mono-capteur,
∫
νk|k−1(x, `)dx ≤ 1 pour chaque `.

Le filtre multi-objets pour les modelés de mesure non standard est toujours d’une com-
plexité calculatoire trop importante. Mahler a tenté de résoudre ce problème en 2009, en
proposant une formulation du filtre CPHD pour les capteurs qui suivent un modèle de mesure
non standard, suivi d’autres travaux de Nannuru et al. en 2012 et 2013 [ME12; NCM13].
En 2015 et 2017, une extension du filtre GLMB a été proposée par Papi et Saucan et al.
pour le rendre capable de gérer des modèles de mesures labellisées [PK15; SLC17]. Mais les
approches de Papi et de Saucan exigent des calculs complexes pour un grand nombre d’objets.

Cette section peut être considéré comme une continuation aux travaux mentionnés précédem-
ment pour obtenir un filtre multi-capteurs pouvant être traité dans le contexte LRFS. Il est
présenté le développement du filtre multi-capteurs LPHD pour les capteurs qui suivent le
modèle de mesure non standard (équation 10). La formulation proposée est également ap-
plicable à des approximations telles que le filtre LMB car ce filtre est un cas particulier du
GLMB RFS [Reu+14]. Les implémentations possibles du filtre LPHD multicapteurs peuvent
être basées sur les travaux de Papi et Beard et al. [Pap+14; BVV15].

Gestion de capteurs

Dans un environnement où les réseaux de capteurs prennent une dimension de plus en plus
importante, voire stratégique, la gestion des capteurs dans le but d’optimiser un critère opéra-
tionnel est d’un grand intérêt. En effet, un nombre croissant d’applications mettent en œuvre
un réseau de capteurs pour acquérir de l’information dans un contexte donné. Bien, qu’ils ne
soient pas indispensables, ces capteurs, grâce à des caractéristiques différentes, permettent
d’utiliser leurs données de manière complémentaire, afin de disposer d’une information la
plus riche possible. De plus, les capteurs disposent de plusieurs paramètres qui apportent un
contrôle de l’information que l’on souhaite acquérir.

Les développements des technologies des capteurs ont conduit à l’émergence d’un grand
nombre de degrés de liberté pour le contrôle des dispositifs de détection. La gestion de
capteurs devient primordiale lorsque le système de détection devient capable de gérer active-
ment ces ressources en réaction aux mesures précédentes. Le terme « gestion de capteur »
fait référence au contrôle optimal d’un capteur agile (radar, lidar, camera PTZ, etc.) pour
satisfaire les contraintes du système et atteindre des objectifs opérationnels [Her+08; HC11].

La gestion de capteurs multi-objets est un problème de contrôle optimal non linéaire.
Non seulement le nombre de cibles varie au cours du temps, mais aussi les mesures peuvent
varier en fonction de fausses alarmes, clutter ou non-détection de cibles. En ce qui concerne
l’approche RFS, les principales méthodes sont : la gestion de capteurs basée sur les tâches
[MZ04; Mah04; Del+10; Del12], le gain d’information [RV10; RVC11; Hoa+15], les risques
et les menaces selon les objectifs de la mission [PR07; WHE11; Mar15; Gom+16; Gom+17].
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La gestion de capteurs pour le pistage multi-cibles est d’une importance primordiale pour
les systèmes de surveillance et de défense. Les cas d’utilisation proposées dans la thèse
concernent trois domaines principaux : terrestre, aéroporté et maritime. L’objectif est de
contrôler les capteurs de façon à détecter des événements, tels que des intrusions dans des
zones interdites, le suivi des passages de véhicules sur un itinéraire et la détection d’actes de
piraterie sur petites embarcations et leur neutralisation. Les cibles sont : des piétons, des
véhicules, des mini-drones, des hélicoptères volant à basse altitude, et aussi des bateaux.

Cette thèse porte sur l’identification et le développement de stratégies de gestion de cap-
teurs pour le suivi multi-objets pouvant être mises en œuvre en temps réel dans des situations
réalistes. Nous utilisons l’approche RFS pour le suivi multi-objets afin de résoudre le prob-
lème de gestion multi-capteurs formulé dans le cadre du POMDP « Partially Observable
Markov Decision Process ». Le Chapitre 4 présente les analyses et simulations des approches
de gestion des capteurs existantes, telles que la gestion des capteurs basée sur la tâche, la
théorie de l’information, la mission et la nouvelle méthode de gestion de capteur basée sur le
risque Bayésien.

Ouvertures

De nombreuses pistes sont envisageables pour l’approfondissement des travaux conduits dans
cette thèse. Le filtre LPHD fournit plusieurs sujets intéressants pour les recherches futures:
en raison des propriétés LMB RFS, il est possible de calculer la variance du nombre de cibles
de manière simple, en utilisant l’idée proposée par Schlangen et al. [Sch+18] pour créer un
algorithme LPHD du deuxième ordre, qui peut faciliter l’intégration dans les plateformes
de gestion de capteurs. Les techniques d’approximation peuvent être mises en œuvre pour
réduire la complexité des filtres constituent un autre sujet de recherche.

Parmi les autres extensions possibles du filtre LPHD figurent l’implémentation basée sur
les méthodes de Monte Carlo, la prise en charge de l’approche multi-modèle, l’application au
SLAM et le développement d’un modèle de naissance des cibles différent. En plus, explorer
différentes méthodes de « gating », « pruning » d’approximation peuvent être mises en œuvre
pour réduire la complexité calculatoire des filtres LPHD mono-capteurs et multi-capteurs. Et
pour la gestion de capteur, rechercher des solutions efficaces en termes de calcul en utilisant
la nouvelle fonction coût pour la gestion de capteur : « Expected Risk Reduction (ERR) ».
Coupler l’ERR au filtre LPHD avec un contrôle de capteur non myopique ainsi que la gestion
de capteur dans une architecture de fusion de données distribuée.



8 RÉSUMÉ



Introduction

The progress in remote sensing technology led to the appearance of devices with more flexible
configurations and set-up that can be updated in real time. Software command can update
parameters such as center frequency, bandwidth, beam-form, beam-pointing, sampling rate,
position, and many other aspects of sensors’ operating modes. Sensor systems operate un-
der resource constraints that prevent the constant simultaneous use of all resources; for a
given sensing application, sensor management consists of determining sensing actions that
maximize the efficiency of the resulting sensor measurements. Depending on the complex-
ity of the system and the number of sensing actions available, optimal sensor management
can be intractable. For most applications of interest, a large number of decisions must be
made regarding how sensors should collect measurements, which makes sensor management
challenging [BP99; XS02; Her+08; HC11; BWT11].

Sensor management is related to the control that an agile system has over the sensor’s con-
figuration to satisfy operational constraints and accomplish operational objectives [Her+08;
HC11; BWT11]. Systems in which sensor management is currently used include autonomous
robots, Advanced Driver Assistance Systems (ADAS), Unmanned Aerial Vehicles (UAV),
surveillance, multi-function radars, and pan-tilt-zoom cameras, to name a few. Recently
there have also been remarkable advances in networked systems as well as in autonomous
and semi-autonomous vehicles, which are equipped with different types of sensors and inter-
connected by networks, leading to configurable networked sensing systems.

Multi-object tracking is one of the main applications of sensor management. Its objective
is to estimate the number of objects and the state of their trajectories from measurements de-
livered by various types of sensors. The state is understood as a vector containing information
about a target under surveillance, such as its position, velocity, and acceleration. Successive
estimates provide the tracks that describe the trajectory of a target. Multi-object tracking is
applied in several areas such as surveillance, defense, air traffic control, space-related prob-
lems, robotics, autonomous vehicles, collision avoidance, econometrics, oceanography, remote
sensing, signal and image processing, and biomedical research [BP99; BLK01; BWT11; HC11;
Mah14].

Motivation and Scope

The key to a successful multi-object tracking system lies in the optimal extraction of useful
information about the target’s state (position, velocity, acceleration, etc.) from the obser-
vations, despite the sensor’s imperfections. This task is usually realized by maintaining an
estimate of the target’s state over time using algorithms such as the Joint Probabilistic Data
Association filter (JPDAF) [Bar74], Multiple Hypothesis Tracking (MHT) [Rei79], and Ran-
dom Finite Set (RFS) filters [Mah03a; Mah07b; Mah14]. The JPDAF and MHT approaches
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are well established and they seem more relevant to the multi-object tracking systems used
in industry, while the RFS approach is an emerging paradigm. JPDAF and MHT are formu-
lated via data association followed by single-object filtering. Data association refers to the
partitioning of the measurements into potential tracks and false alarms, whereas filtering is
used to estimate the state of the target given its measurement history.

The main characteristic of these approaches is the strategy applied to solve the data
association problem between measurements and targets, which unfortunately results in a
non-Bayes-optimal estimation [Mah14]. More recently, an alternative formulation that avoids
explicit associations between measurements and targets was proposed by Mahler [Mah03a].
This new approach uses the RFS theory in order to solve the multi-object tracking problem
in a Bayesian framework. It offers a mathematically elegant representation of a finite but
time-varying number of targets and measurements [Mah03a; Mah07b; Mah14].

Target tracking is essentially a dynamic state estimation or filtering problem for which the
Bayesian approach provides the theoretical optimal filtering solution [Cla06; Pan07; Vo08;
Pac11; Del12; BWT11; Mah14]. The multi-object Bayes filter is not tractable for real-time
implementations due to the combinatorial complexity of the multiple target likelihoods. To
overcome this limitation, approximations are required. A practical alternative to Bayesian
multi-object tracking was proposed by Mahler to propagate the first-order statistical mo-
ment, or Probability Hypothesis Density (PHD), instead of the multi-object posterior itself
[Mah03a]. In the mid 1990s, Mahler constructed Finite Set Statistics (FISST) from the math-
ematical theory of point processes and the random set theory as a way of extending classical
mono-sensor single-object statistics to multi-sensor multi-object statistics. The multi-object
states and observations are represented as an RFS from which a theoretically optimal Bayesian
multi-sensor multi-object filter can be derived [Mah07b; Mah14].

Nowadays, there are several algorithms based on the RFS approach, such as the PHD filter
[Mah03a], the Cardinalized PHD (CPHD) filter [Mah07a], the Generalized Labeled Multi-
Bernoulli (GLMB) filter [VV13; VVP14; Mah14], and the Labeled Multi-Bernoulli (LMB)
filter [Reu+14]. In addition, beginning in the 1990s, the growing interest in techniques and
theories for sensor management introduced new elements that must be considered in order
to improve the overall performance of the multi-object tracking systems. In many multi-
object tracking applications, a sensor can be controlled by changing the position, orientation,
or motion of the sensor platform or by operating it in a different mode, which may have
a significant impact on the quality of the estimation performance of the target tracking
system. Modern surveillance systems often employ multiple controllable sensors that are
capable of collecting information on objects of interest in their field of view. These sensors
must coordinate their observation strategies in order to enhance the information that will be
collected by their future measurements to estimate the states of objects of interest [BP99;
XS02; Her+08; HC11].

Sensor management for multi-object tracking is typically an optimal nonlinear control
problem. Not only does the number of targets vary in time, but the measurements are sus-
ceptible to missed detections and false alarms. With reference to the RFS approach, Mahler
developed theoretical foundations of the multi-object sensor management reward function
related to the Posterior Expected Number of Targets (PENT) [MZ04] and the Posterior
Expected Number of Targets of Interest (PENTI) [Mah04; Mah14]. Delande introduced a
reward function called Balanced Explorer and Tracker (BET), which provides efficient sensor
management in situations where the sensor’s field of view cannot cover the whole state space
at the same time [Del12]. Ristic and Vo proposed a reward function to sensor management
using the Rényi divergence between the multi-object prior and multi-object posterior den-
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sities [RV10; RVC11]. More recently, Hoang, Vo, and Mahler offered a new intuitive and
tractable objective function based on the Cauchy-Schwarz information functional [Hoa+15].

The scope of this thesis is the identification, analysis, and development of sensor manage-
ment strategies for multi-sensor multi-object tracking algorithms that can be implemented in
real-time under realistic situations. For the needs of both this and future research, a toolbox
for sensor management and multi-object tracking has been developed using Matlab. It fea-
tures many filtering methods for multi-object tracking, including the well-known PHD filters,
the Cardinalized PHD (CPHD) filters, the Generalized Labeled Multi-Bernoulli (GLMB) fil-
ter, the Labeled Multi-Bernoulli (LMB) filter, and the new mono- and multi-sensor LPHD
algorithms. The toolbox also provides the implementation of all sensor management algo-
rithms analyzed in this thesis such as the Posterior Expected Number of Targets (PENT),
Posterior Expected Number of Targets of Interest (PENTI), and the proposed Risk-based
sensor management, as well as the Rényi and Kullback-Leibler divergences.

This thesis is supported by the Brazilian National Council for Scientific and Technologi-
cal Development (CNPq) and the French National Association for Research and Technology
(ANRT) through France’s System of Industrial Agreements for Training through Research,
known as the CIFRE program. Simulations and results presented in this thesis were con-
ducted through the partnership between Safran Electronics & Defense and École Centrale
de Lille by the Research Center in Computer Science, Signal and Automatic Control of Lille
(CRIStAL UMR CNRS 9189).

Key Contributions

This thesis focuses on the identification and development of sensor management strategies
for multi-object tracking that can be implemented in real-time under realistic situations. We
use the Random Finite Set (RFS) approach to multi-object tracking to address the multi-
sensor management problem formulated in the Partially Observable Markov Decision Process
(POMDP) framework. Rigorous analysis and simulations of existing sensor management
approaches, such as Task-based, Information-theoretic, Mission-oriented, and the new Task-
based sensor management for multi-object tracking is performed. Succinct summaries of the
state-of-the-art multi-object tracking algorithms are also presented.

The major contributions established in this thesis are as follows:

• Rigorous theoretical formulation of the mono-sensor Labeled Probability Hypothesis
Density (LPHD) filter to address the multi-object tracking problem with its GM im-
plementation, the Gaussian-Mixture Labeled PHD (GM-LPHD) filter.

• Extension of the mono-sensor LPHD filter for superpositional sensors, resulting in the
theoretical formulation of the multi-sensor LPHD filter to address the multi-sensor
multi-object tracking problem.

• Development of the Expected Risk Reduction (ERR) sensor management method based
on the minimization of the Bayes risk and formulated in the POMDP and RFS frame-
work. The ERR metric is based on the expected cost of an incorrect decision about a
target’s classification and conditioned on the event of losing a target track, which allows
for the combination of classification and kinematic uncertainty in the same metric.
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1. M. E. Gomes-Borges, D. Maltese, P. Vanheeghe, E. Duflos. “Risk-based Sensor Man-
agement using Random Finite Sets,” Proceedings IEEE, 20th International Conference
on Information Fusion, July 2017.

2. M. E. Gomes-Borges, D. Maltese, P. Vanheeghe, G. Sella, E. Duflos. “Sensor Manage-
ment using Expected Risk Reduction approach,” Proceedings IEEE, 19th International
Conference on Information Fusion, July 2016.

Thesis Outline

The thesis is divided into four chapters:

Chapter 1 presents an overview of the Bayesian estimation for single and multi-object
tracking algorithms and the Random Finite Set (RFS) and labeled RFS formalism for filtering
and tracking. Numerous filtering methods such as the PHD filters, the Kalman filter, the
Extended Kalman filter (EKF), the Unscented Kalman filter (UKF), and the Particle filters
are presented in this chapter, as well as tracking methods such as the PHD Tracker (PHDT)
and the Generalized Labeled Multi-Bernoulli (GLMB) filters.

Chapter 2 presents the development of the Labeled Probability Hypothesis Density
(LPHD) filter based on Mahler’s work [Mah07b; Mah14; Mah03a; Mah17]. The first sec-
tion provides an overview of the heuristic labeled PHD. Then the Labeled Multi-Bernoulli
(LMB) filter is introduced as the basis of the rigorous theoretical formulation of the labeled
PHD filter. A Gaussian-mixture implementation is proposed and the implementation of the
Gaussian-Mixture Labeled PHD (GM-LPHD) filter is described in detail. Finally, the main
results obtained on simulated data are discussed.

Chapter 3 describes the development of the multi-sensor LPHD filter for superpositional
sensors. The superpositional measurement model is introduced, followed by the rigorous
theoretical development of the multi-sensor LPHD filter.

Chapter 4 discusses in detail the novel Risk-based sensor management scheme that
combines the RFS theory and the POMDP framework in the form of the Expected Risk
Reduction (ERR) approach. This chapter also presents multiple examples comparing the
ERR approach with other state-of-the-art sensor management algorithms.

Finally, Conclusions summarizes the main contributions of this thesis and outlines pos-
sible future research directions.



Chapter 1

Fundamentals of Multi-Object Tracking

This chapter aims to provide a theoretical background of Bayesian estimations for single and
multi-object tracking algorithms based on the Random Finite Set (RFS). The unlabeled and
labeled RFS for multi-object trajectory estimations are also discussed.

Section 1.1 presents the theory of Bayesian filtering and its relevance to target tracking.
The Kalman filter is derived using properties of Gaussian distributions for linear systems.
The Extended Kalman filter (EKF), the Unscented Kalman filter (UKF), and the Particle
filters are derived for nonlinear systems.

Section 1.2 provides the theoretical tools that are required for the comprehension of the
RFS framework, the multi-object Bayesian filtering, and the Probability Hypothesis Density
(PHD) filter, as well as its closed-form solution known as the Gaussian-Mixture PHD filter.
The Optimal SubPattern Assignment (OSPA) metric is also presented.

Section 1.3 provides a summary of popular state-of-the-art multi-object tracking algo-
rithms, such as the PHD Tracker and the Generalized Labeled Multi-Bernoulli (GLMB)
filter. This section also introduces the Labeled Random Finite Set (LRFS) formalism and
notations used in the development of the Labeled Probability Hypothesis Density (LPHD)
filter.

1.1 Bayesian filtering

The Bayesian approach provides an optimal filtering solution for target state estimation. The
objective is to construct the probability density function (pdf or density) of the state based
on all available information, including the sequence of received observations. Estimation can
be defined as the problem of determining an unknown state x from a noisy observation z.
The state refers to the physical properties such as position, velocity and acceleration of an
object under surveillance. Noise is unwanted or unknown information that may increase the
level of uncertainty in the state estimation. The dynamic system is noisy, and evolves as a
function of time. In the context of this research, the term filtering refers to the process of
filtering out the noise in the observation in order to provide an optimal estimate of the state
based on the observed measurements and the assumptions made about the dynamic system
[BLK01; RAG04; Cha+11].

The objective is to construct the posterior density of the target state using the obser-
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vation history from time 1 to current time k, z1:k = (z1, · · · , zk). The a posteriori density
characterizes all statistical uncertainty in the target state. Consequently, it can be used to
make any inference about the estimated state and its statistical uncertainty. The objective
is to find an estimate of a target state xk given a sequence of observations z1:k. Figure 1.1
illustrates a simplified schematic of a single-object state estimation.
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Figure 1.1: Simplified schematic of a vehicle state estimation. In this example, the blue
Gaussian distribution represents the pdf, providing the initial belief in the estimate of the
car state at time k − 1. The red pdf shows that the confidence in the knowledge of the car
state decreases during the prediction step due to the uncertainty associated with any process
noise from accelerations or decelerations. The observation of the car state and the level of
uncertainty in that noisy measurement are represented by the orange pdf. The green pdf is
generated by multiplying the pdfs associated with the prediction and measurement of the
car state at time k. This new pdf provides the best estimate of the car state by fusing the
data from the prediction and the measurement.

The dynamic model of a target can be described by discrete- or continuous-time models
[BP99; BLK01; Cha+11; BWT11]. This thesis only considers the discrete-time models.
Hence, the target state xk evolves in time according to the state transition equation:

xk = fk−1(xk−1, vk−1) (1.1)

where fk−1 is a known, possible nonlinear function that transforms any given state vector
xk−1 and process noise vk−1 at time k − 1 into a new state vector xk at time k. In general,
the state transition equation can be described in a probabilistic way by a Markov transition
density:

fk|k−1(xk|xk−1) (1.2)

i.e., the probability density that a target with state vector xk−1 at time k − 1 moves to the
state xk at time k. In such a system, with the so-called Markov-property, the state xk given
xk−1 is independent of the history of states and measurements. The objective of filtering is
to recursively estimate xk from observations zk. The relationship between the observation
and the target state is defined by the observation equation:

zk = hk(xk, wk) (1.3)

where hk is a known, possibly nonlinear function that transforms any given state vector xk
and observation noise wk at time k into an observation vector zk. Note that the process and
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observation noise are assumed to be uncorrelated. The observation equation can be described
in a probabilistic way by the likelihood function:

gk(zk|xk) (1.4)

i.e., the probability density that a target with state vector xk generates an observation zk.
The observation zk is independent of the history of observations and states. Figure 1.2 shows
a schematic representation of the dynamic model.

!"#$

!"

%"#$

%"

state -vector

observation-vector

observation space

state space

target motion

Figure 1.2: Simplified schematic of the dynamic model where a single-object state evolves
in the state space. The objective is to estimate the state trajectory from the observation
history.

1.1.1 The Bayes filter

The Bayes filter estimates the state vector xk recursively in time based on the sequence of all
available observations z1:k up to time k. The objective is to construct the posterior density
pk(xk|z1:k) of the state, which is calculated using two steps: prediction and update [BLK01;
BWT11; Cha+11]. Supposing the a priori density pk−1(xk−1|z1:k−1) at time k− 1 is known.
The prediction step involves the implementation of the dynamic model (1.2) to obtain the
prediction density of the state at time k using the Chapman-Kolmogorov equation:

pk|k−1(xk|z1:k−1) =
∫
fk|k−1(xk|xk−1)pk−1(xk−1|z1:k−1)dxk−1 (1.5)

Since a new measurement zk is available at the current time k, the update step updates
the predicted density obtained via (1.4) and (1.5) according to Bayes’ rule:

pk|k(xk|z1:k) =
gk(zk|xk)pk|k−1(xk|z1:k−1)∫
gk(zk|xk)pk|k−1(xk|z1:k−1)dxk

(1.6)

The recurrence relations (1.5) and (1.6) constitute the basis for the optimal Bayesian
solution, i.e., a solution for exact and complete characterization of the posterior density in a
recursive way. Knowledge of the a posteriori density allows for the computing of an optimal
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state estimate concerning different criteria. For example, the Maximum a posteriori (MAP)
estimate is the maximum of pk|k(xk|z1:k) [BLK01; RAG04; BWT11; Cha+11]:

x̂MAP
k|k

def= arg max
xk

pk|k(xk|z1:k) (1.7)

while the Minimum Mean-Square Error (MMSE) estimate is the conditional mean of xk:

x̂MMSE
k|k

def= E[xk|z1:k] =
∫
xkpk|k(xk|z1:k)dxk (1.8)

In theory, the Bayes filter allows the construction of the exact posterior density pk|k(·)
recursively at each time. However, the Bayes filter recursion does not admit closed-form
solutions due to computational intractability, and approximate solutions are often used. The
Bayes filter recursion can be illustrated by the following diagram:

· · · → pk−1(xk−1|z1:k−1) prediction−−−−−−→ pk|k−1(xk|z1:k−1) update−−−−→ pk|k(xk|z1:k)→ · · ·

1.1.2 The Kalman filter

When the dynamic and observation models are linear with additive Gaussian noise, the
estimation problem given in the Bayesian filter has a closed-form solution known as the
Kalman filter (KF) [Kál60; BP99; BLK01; RAG04; BJ05; BWT11; Cha+11; GA14]. It
constitutes the basis for most of the more robust target tracking algorithms. The KF model
assumes a linear discrete-time system given as follows [BLK01; LJ03]:

xk = Fk−1xk−1 + vk−1 (1.9)
zk = Hkxk + wk (1.10)

where Fk−1 is a transition matrix of the dynamic model and Hk is the observation model
matrix used to map state vector parameters into the measurement domain, while vk−1 and
wk are independent zero-mean Gaussian noise variables with covariance matrices Qk−1 and
Rk, respectively. Hence, the transition density and likelihood function can also be expressed
in probabilistic terms:

fk|k−1(xk|xk−1) = N (xk;Fk−1xk−1, Qk−1) (1.11)
gk(zk|xk) = N (zk;Hkxk, Rk) (1.12)

where N (· ;m,P ) denotes a Gaussian density with mean m and covariance P , and has the
form:

N (x;m,P ) def= 1√
|2πP |

exp
(
−1

2(x−m)TP−1(x−m)
)

(1.13)
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The Kalman filter, derived using (1.5) and (1.6), can be expressed as the following recur-
sive form:

pk−1(xk−1|z1:k−1) = N (xk−1;xk−1|k−1, Pk−1) (1.14)
pk|k−1(xk|z1:k−1) = N (xk;xk|k−1, Pk|k−1) (1.15)

pk|k(xk|z1:k) = N (xk;xk|k, Pk|k) (1.16)

The Kalman filter is composed of two steps: the prediction step, where the state of the
system is predicted given the previous measurements, and the update step, where the current
state of the system is estimated with a new measurement at that time step. The corresponding
means and covariances of the KF are given by [BLK01; RAG04; BWT11; Cha+11; GA14]:

1. Prediction:

xk|k−1 = Fk−1xk−1 (1.17)
Pk|k−1 = Fk−1Pk−1F

T
k−1 +Qk−1 (1.18)

2. Update:

Sk = HPk|k−1H
T
k +Rk (1.19)

Kk = Pk|k−1H
T
k S
−1
k (1.20)

zk|k−1 = Hkxk|k−1 (1.21)
xk|k = xk|k−1 +Kk(zk − zk|k−1) (1.22)
Pk|k = (I −KkHk)Pk|k−1 (1.23)

The matrix Kk is referred to as the Kalman gain. The term Sk is the covariance of
the innovation term νk = zk − zk|k−1. Under Gaussian assumptions on the dynamic and
observation equations, an important property of the optimal Bayesian recursion is that a
Gaussian posterior density at time k− 1 will produce a Gaussian posterior density at time k.
See Appendixes C and B for more details. Therefore, the a posteriori density at each time
can be represented by a mean and a covariance matrix [BWT11; Cha+11].

1.1.3 The Extended Kalman filter

The Kalman filter (KF) is not applicable when the dynamic or measurements models are
nonlinear as modeled by (1.1) and (1.3). In this case, the Extended Kalman filter (EKF)
can be used, which consists of linearizing the model about the current mean and variance
before applying the KF equations [Jaz70; GA14]. When the nonlinearities in the model are
relatively weak, i.e., the nonlinear functions can be approximated by the first term in their
Taylor series expansion, it is possible to approximate the predicted and posterior densities
by Gaussian densities:

pk−1(xk−1|z1:k−1) ≈ N (xk−1;xk−1|k−1, Pk−1) (1.24)
pk|k−1(xk|z1:k−1) ≈ N (xk;xk|k−1, Pk|k−1) (1.25)

pk|k(xk|z1:k) ≈ N (xk;xk|k, Pk|k) (1.26)
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Like the KF, the EKF has two steps: prediction and update. Thus, the corresponding
means and covariances of the EKF are given by [Jaz70; BLK01; RAG04; BWT11; Cha+11;
GA14]:

1. Prediction:

xk|k−1 = fk−1(xk−1) (1.27)
Pk|k−1 = Fk−1Pk−1F

T
k−1 +Qk−1 (1.28)

2. Update:

Sk = HPk|k−1H
T
k +Rk (1.29)

Kk = Pk|k−1H
T
k S
−1
k (1.30)

zk|k−1 = hk(xk|k−1) (1.31)
xk|k = xk|k−1 +Kk(zk − zk|k−1) (1.32)
Pk|k = (I −KkHk)Pk|k−1 (1.33)

where the transition and the observation matrices are the local linearizations of the func-
tions fk−1 and hk, and are defined as the following Jacobians:

Fk−1 = ∂fk−1(x)
∂x

∣∣∣∣
x=xk−1|k−1

Hk = ∂hk(x)
∂x

∣∣∣∣
x=xk|k−1

When the system and observation models have strong nonlinearities, the higher order
terms of the Taylor expansion become significant and they cannot be safely ignored. In these
cases the performance of the EKF becomes very poor [Jaz70; JUD95; GA14].

1.1.4 The Unscented Kalman filter

In the Extended Kalman filter (EKF), the state distribution is approximated by a Gaussian
random variable, which is propagated analytically using the first-order linearization of the
nonlinear system. This linearization can introduce large errors in the true posterior mean
and covariance, which may lead to suboptimal performance and, in some cases, divergence
of the filter. The Unscented Kalman filter (UKF) can be seen as an alternative to the EKF,
which shares its computational complexity while avoiding the Jacobian computations [JUD95;
JU97; JUD00; Wv00; JU04; van04; GA14].

The UKF addresses the approximation issues of the EKF by using a deterministic sam-
pling approach called unscented transformation. The state distribution is approximated by
a Gaussian using a minimal set of carefully chosen sample points. These sample points
completely capture the true mean and covariance of the Gaussian random variable to the
third-order (using Taylor series expansion) for any nonlinearity [JU97; Wv00; van04]. The
unscented transformation is a method for calculating the statistics of a random variable that
suffer a nonlinear transformation. Consider propagating the target state x ∈ Rn through a
nonlinear function z = h(xk). Assume x has mean x̄ and covariance Pxx. To calculate the
statistics of z, form a matrix X of 2n + 1 sigma vectors X i with corresponding weights Wi,
according to the following procedure [JU97; van04; GA14]:
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Sample Values:

X 0 = x̄ (1.34)

X i = x̄+
√

(n+ λ)Pxx,i 1 ≤ i ≤ n

X n+i = x̄−
√

(n+ λ)Pxx,i 1 ≤ i ≤ n

Sample Weights:

W(m)
0 = λ

(n+ λ) (1.35)

W(c)
0 =W(m)

0 + (1− α2 + β)

W(m)
i =W(c)

i = 1
2(n+ λ) 1 ≤ i ≤ 2n

where λ = α2(n + κ) − n is a scaling parameter. The value of α, usually set to a small
positive value (e.g., 10−3), determines the spread of the sigma points around the mean x̄. The
term κ is a secondary scaling parameter that is usually set to 0, and β is used to incorporate
prior knowledge of the distribution of x (the optimal value for Gaussian distributions is
β = 2). These sigma vectors are propagated through the nonlinear function:

Zi = h(X i) 1 ≤ i ≤ 2n (1.36)

and the mean z̄ and the covariance Pzz of z are approximated using a weighted sample
mean and covariance of the posterior sigma points:

z̄ ≈
2n∑
i=0
W(m)
i Zi (1.37)

Pzz ≈
2n∑
i=0
W(c)
i (Zi − z̄)(Zi − z̄)T (1.38)

Note that no explicit calculation of Jacobians is necessary to implement the unscented
transformation. Additionally, the overall number of computations are the same order as the
EKF. This transformation results in approximations that are accurate to the third-order
for Gaussian inputs. For non-Gaussian inputs, approximations are accurate to at least the
second-order, and the accuracy of third and higher order moments is determined by the
best choice of alpha and beta [JU97; van04]. The UKF is a straightforward extension of
the unscented transformation to a recursive state estimation, where the state estimated is
redefined as a concatenation of the original state and noise variables as follows [JU97; Wv00;
GA14]:

xak =
[
xTk vTk−1 wTk

]T
where v is the process noise vector with covariance matrix Qk while w is the measurement

noise vector with covariance matrix Rk. The unscented transformation and the prediction
and update steps of the UKF can be summarized as below [JU97; Wv00; Jul02; GA14]:
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Initialization:

xk = E[xk−1|k−1]
Pk = E[(xk−1|k−1 − xk)(xk−1|k−1 − xk)T ]

Initialization of the augumented state:

xak = E[xak−1|k−1] = [xTk 0 0]T

P ak = E[(xak−1|k−1 − x
a
k)(xak−1|k−1 − x

a
k)T ] =

Pk 0 0
0 Qk 0
0 0 Rk


1. Calculate sigma-points:

X ak =
[
xak xak +

√
(n+ λ)P ak xak −

√
(n+ λ)P ak

]
(1.39)

2. Prediction:

X xk|k−1 = f(X xk,X vk) (1.40)

xk|k−1 =
2L∑
i=0
W(m)
i X xi,k|k−1 (1.41)

Pxx,k|k−1 =
2L∑
i=0
W(c)
i (X xi,k|k−1−xk|k−1)(X xi,k|k−1−xk|k−1)T (1.42)

3. Update:

Zk|k−1 = h(X xk|k−1,X
w
k ) (1.43)

zk|k−1 =
2L∑
i=0
W(m)
i Zi,k|k−1 (1.44)

Pzz,k|k =
2L∑
i=0
W(c)
i (Zi,k|k−1 − zk|k−1)(Zi,k|k−1 − zk|k−1)T (1.45)

Pxz,k|k =
2L∑
i=0
W(c)
i (X xi,k|k−1−xk|k−1)(Zi,k|k−1 − zk|k−1)T (1.46)

Kk = Pxz,k|kP
−1
zz,k|k (1.47)

xk|k = xk|k−1 +Kk(zk − zk|k−1) (1.48)
Pxx,k|k = Pxx,k|k−1 −KkPzz,k|kK

T
k (1.49)

where X a =
[
(X x)T (X v)T (Xw)T

]
are the augmented sigma-points, k ∈ {1, · · · ,∞},

L is the dimension of the augmented states, f is the nonlinear dynamic function, h is the
nonlinear observation function, and Wi are the weights calculated in (1.35).

1.1.5 The Particle filters

The advantage of the Kalman filter and its nonlinear extensions is that they have analyt-
ical forms, which makes them efficient to compute. Nevertheless, they are limited to the
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use of Gaussian models to represent the process and measurement noise distributions. An
alternative approach that does not need Gaussian assumptions is known as Particle filters.

Particle filters propagate representative samples of an estimated distribution, which can
be viewed as “particles” that represent the probability densities [DGA00; DFG01; RAG04;
GA14]. They are represented by a family of filters using different sample method that can
improve performance on a given application. It has also been known as a Sequential Monte
Carlo (SMC) [DGA00; DFG01] because the sampling may change as the solution progresses.

Suppose an arbitrary probability density fk|k−1(·) is approximated by a set of random
samples,

{
w

(i)
k−1, x

(i)
k−1

}N
i=1

, where x(i)
k−1 is the state of particle i with its respective weight

w
(i)
k−1. The approximation of the probability density improves as N → ∞, and the weights

are normalized, i.e., ∑N
i=1w

(i)
k−1 = 1. The computation of the weights and particles is based

on the idea of importance sampling. The initial particles at time k are drawn using the
following equation [DFG01; RAG04; Aru+02]:

x̃
(i)
k ∼ qk(xk|x

(i)
k−1, zk) 1 ≤ i ≤ N (1.50)

where qk(·) is called the importance density, whose weights are calculated in the following
form:

w
(i)
k = w̃

(i)
k∑N

j=1 w̃
(j)
k

(1.51)

w̃
(i)
k = w̃

(i)
k−1

gk(zk|x̃(i)
k )fk|k−1(x̃(i)

k |x̃
(i)
k−1)

qk(xk|x(i)
k−1, zk)

(1.52)

The method described above is known as sequential importance sampling, and in most
cases fails after many iterations since almost all particle weights become zero due to particle
degeneracy. This issue can be prevented by resampling the particles. The resampling step
chooses N particles from

{
w

(i)
k−1, x̃

(i)
k−1

}N
i=1

based on their weights, i.e., the probability of

the particle i being selected during resampling is equal to w(i)
k . While this technique avoids

degeneracy of particles, it leads to the loss of diversity because the particles with large weights
are selected more often. To solve the problem of loss of diversity, a Markov Chain Monte Carlo
(MCMC) step is recommended after resampling [RAG04; RBF16]. However, resampling is a
computationally intensive operation and, to avoid repeating it on every iteration, adaptive
resampling strategies can be used [MDJ12].

The definition of the importance density qk(·) plays a crucial role in the implementation
of the Particle filter. There are several designs of the algorithm in the literature, and the
simplest way to define the importance density is to select qk(·) ≡ fk|k−1, i.e., the importance
density is equivalent to the Markov transition density as defined in (1.2). This Particle filter
is referred as the Bootstrap filter [GSS93], and can lead to poor performance since most of
the particles could be sampled from the region of the state space. A better approach is to
use the information contained in the latest measurement zk in the design of the importance
density. Presented below is the simplest Bootstrap Particle filter to illustrate basic principles
of the particle filtering [DGA00; DFG01; RAG04; RBF16]:
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1. Initialization:

i Define the number of particles N
ii Draw initial samples:

x̃
(i)
0 ∼ f0(x0) 1 ≤ i ≤ N (1.53)

iii Compute the initial weights:

w̃
(i)
0 = gk(z0|x̃(i)

0 ) (1.54)

iv Normalize the importance weights:

w
(i)
0 = w̃

(i)
0∑N

j=1 w̃
(j)
0

(1.55)

2. For k ∈ {1, · · · ,∞}:

i Draw samples:
x̃

(i)
k ∼ qk(xk|x

(i)
k−1, zk) 1 ≤ i ≤ N (1.56)

ii Update the weights:

w̃
(i)
k = w̃

(i)
k−1

gk(zk|x̃(i)
k )fk|k−1(x̃(i)

k |x̃
(i)
k−1)

qk(xk|x(i)
k−1, zk)

(1.57)

iii Normalize the weights:

w
(i)
k = w̃

(i)
k∑N

j=1 w̃
(j)
k

(1.58)

iv Resampling, select index ji ∈ {1, · · · , N} with probability w(i)
k :

x
(i)
k = x̃

(ji)
k (1.59)

1.2 Random Finite Set (RFS) for multi-object filtering

The standard Bayesian approach provides an optimal filtering solution for target state esti-
mation when the number of targets is known and fixed, and when it is known which obser-
vation belongs to each target. When the number of targets to be estimated is unknown and
time-varying, a probabilistic model of the underlying random process must be considered to
accommodate variations in the number of targets as well as their states. A more natural
model for this kind of system is called a point process, and it is the subject of a branch of
probability theory known as stochastic geometry [SKM96; Ngu06].

For multi-object tracking applications, a more useful and realistic model is the simple-
finite point process, also known as the Random Finite Set (RFS). The RFS theory was first
systematically investigated in the 1970s by Kendall and Matheron, who carried out studies
using statistical geometry [Ken74; Mat75]. In 1980, Serra applied the RFS theory to two-
dimensional image analysis [Ser80] and, since then, this theory has become an essential tool
in theoretical statistics, inspiring early practical works in data fusion. However, it was only in
the mid-1990s with Mahler’s work on Finite Set Statistics (FISST) and on the approximations
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for the multi-object Bayesian filter that the RFS approach has been consistently adopted in
the filtering community [Mah94a; Mah94b; GMN97].

The main idea behind the RFS approach is to treat the collection of individual states
and observations as multi-object sets, and then to characterize uncertainties present in the
multi-object tracking problem by modeling these sets as random finite sets as illustrated in
Figure 1.3.
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Figure 1.3: Comparison between the classical and the RFS representation of the multi-
object state and observation. In the classical approach, random vectors are conveniently used
to represent the state of the objects, however, this approach presents a missing representation
of the uncertain number of objects. In the random finite set approach, an RFS naturally
represents the uncertainty about the number of objects in a multi-object state and uses
random vectors to represent the state of individual objects.

A random finite setX is defined as a finite set-valued random variable in which the number
of elements (or cardinality) is random and the elements themselves are random, distinct, and
unordered [DV88; SKM96; DV03; Ngu06; Mah07b; Mah14]. The cardinality of X is denoted
by |X|, and is described by a discrete distribution ρ(n) ∈ N, representing the probability that
X has exactly n elements. For each cardinality n ∈ N, there is a joint probability distribution
Pn(·) describing the conditional density of the elements given that the cardinality of the set
is equal to n. These joint distributions, ρ(·) and Pn(·), provide a complete specification of a
random finite set [DV88; DV03; Ngu06].

For the single-object filtering, random vectors are conveniently used to represent the state
of the objects. However, for the multi-object tracking, random vectors approach presents a
missing representation of the uncertain number of objects. An RFS X defined as follows:

X = {x(1), · · · , x(n)} (1.60)

consists of n unordered points with random object states x(1), · · · , x(n) where n ≥ 0 is a
random number. An RFS naturally represents the uncertainty about the number of objects
in a multi-object state and uses random vectors to represent the state of individual objects.
Additionally, an RFS Z defined as follows:

Z = {z(1), · · · , z(m)} (1.61)

is generally used to represent the measurement process which returns a random number of
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measurements whose values z(1), · · · , z(m) are also random. The randomness in the number
of received measurements is due to the possibility of false alarms and missed detections. The
RFS representation of the multi-object state and the measurement process are fundamental
for the derivation of the multi-object Bayes filter (Section 1.2.6) which is an extension of the
Bayes filter (Section 1.1.1) to multi-object tracking applications.

1.2.1 Random Finite Set notations and abbreviations

In order to distinguish random vectors from RFS, single-object states are denoted by small
letters (e.g. x) while multi-object states are denoted by capital letters (e.g. X). Additionally,
identical symbols are used for an RFS and its realization in the following. State spaces are
represented by blackboard bold letters (e.g. X). The finite subsets of a space X are denoted
by F(X) and all possible subsets comprising exactly n elements are represented by Fn(X).

The inner product of two continuous functions f(x) and g(x) is abbreviated as follows:

〈f, g〉 def=
∫
f(x)g(x)dx (1.62)

For discrete sequences, the above integral reduces to a sum. Additionally, the multi-
object exponential notation is used to shorten the notation for real-valued functions h(x),
e.g. probability densities, which have to be evaluated for all state vectors of an RFS X. By
definition, hX = 1 in the case of X = ∅. The multi-object exponential notation is defined by
[VV13]:

hX
def=
∏
x∈X

h(x) (1.63)

The generalized Kronecker delta function is used to facilitate the application of the Kro-
necker delta function to arbitrary arguments like integers, vectors, and sets:

δY (X) def=
{

1 if X = Y

0 otherwise
(1.64)

Additionally, the indicator or inclusion function is used to determine if a set X is a subset
of Y :

1Y (X) def=
{

1 if X ⊆ Y
0 otherwise

(1.65)

1.2.2 Multi-object probability distributions

The spatial uncertainty of a random vector x is represented by a probability density function
p(x). Similarly, a multi-object probability density function π(X) represents the incertitude
about the multi-object state X which incorporates the uncertainty about the number of
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objects and their states. The multi-object probability density depends on the number of
objects represented by X and is given by [Mah07b; Mah14]:

π(X) =



π(∅) if X = ∅
π({x(1)}) if X = {x(1)}
π({x(1), x(2)}) if X = {x(1), x(2)}

...
...

(1.66)

Due to the dependency of π(·) on the number of objects, the evaluation of the integral
over a multi-object probability density function requires the utilization of a set integral (see
Appendix A):

∫
π(X)δX =

∞∑
i=0

1
i!

∫
Xi
π({x(1), · · · , x(i)})dx(1) · · · dx(i) (1.67)

where π({x(1), · · · , x(i)}) = 0 if |{x(1), · · · , x(i)}| 6= i. Since the evaluation of the set integral
for all cardinalities is not computationally tractable, the computation of the set integral is
evaluated only for a subset of all possible cardinalities.

The cardinality distribution of an RFS X provides an estimate for the number of objects
represented by X, i.e., denotes the probability that X contains precisely n vectors, and is
defined as follows:

ρ(n) = Pr(|X| = n) = 1
n!

∫
π({x(1), · · · , x(n)})dx(1) · · · dx(n) (1.68)

There are many important classes of Random Finite Set (RFS) with their own unique
properties. The most important classes of RFS found in multi-object filtering or tracking are
summarized below:

Independent Identically Distributed Cluster RFS

The multi-object probability density of an independent and identically distributed (i.i.d.)
cluster RFS with X = {x(1), · · · , x(n)} is defined by:

π(X) = n!ρ(n)p(x(1)) · · · p(x(n)) (1.69)

where ρ(n) is the cardinality probability distribution for n ≥ 0, and p(x(n)) is the probability
density function representing the spatial distribution of the n-th object.

An i.i.d. cluster RFS X is an RFS that can be uniquely characterized by an intensity
function ν(·) and its cardinality distribution ρ(n) [DV88; DV03]. The cardinality distribution
of an i.i.d. cluster RFS can have an arbitrary form, with the only restriction being that its
mean must match the integral of the intensity function N = ∑∞

n=0 nρ(n) =
∫
ν(x)dx. When
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the individual elements of an RFS set are all distributed according to ν(·)/N , the multi-object
probability density of an i.i.d. cluster can be rewritten as follows:

π(X) = n!ρ(n)
∏
x∈X

ν(x)
N

(1.70)

Poisson RFS

A Poisson RFS is a specific case of an i.i.d. cluster RFS, where the cardinality distribution
ρ(n) is restricted to the form of a Poisson distribution:

ρ(n) = e−λ
λn

n! (1.71)

where λ represents the expected number of objects. In this way, the multi-object Poisson
RFS is given by:

π(X) = e−λλnp(x(1)) · · · p(x(n)) (1.72)

An RFS with intensity ν(·) is known as a Poisson RFS if its cardinality obeys a Poisson
distribution ρ(n), with mean λ =

∫
ν(x)dx [MW03]. Consequently, a multi-object Poisson

RFS is completely characterized by its intensity function ν(·), since knowing the intensity
makes possible to know the cardinality distribution. For a given cardinality, where the el-
ements of an RFS set X are each independent and identically distributed with probability
density ν(·)/λ, the multi-object Poisson RFS can be written as follows:

π(X) = e−λ
∏
x∈X

ν(x) (1.73)

The Poisson RFS is usually employed to represent processes exhibiting complete spatial
randomness. In multi-object tracking applications, a Poisson RFS with intensity density:

κ(z) = λc c(z) (1.74)

is commonly used to model the false alarm process with a mean number of λc false alarms.
In general, the probability density c(z) is assumed to be a uniform distribution over the
complete measurement space due to the absence of precise information.

Bernoulli RFS

A Bernoulli RFS is used in cases where an RFS has probability 1 − r of being empty and
probability r of holding a single element distributed according to a probability density p(·).
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The Bernoulli RFS is completely characterized by the parameters r and p, and its density is
defined accordingly:

π(X) =


1− r if X = ∅
rp(x) if X = {x}
0 if |X| > 1

(1.75)

The Bernoulli RFS is convenient in situations involving at most one target, where it is
not certain whether the target is present.

Multi-Bernoulli RFS

The multi-Bernoulli RFS is the union of a fixed number of independent Bernoulli RFS, where
the elements are statistically independent of each other, and the i-th element has probability
of existence r(i) and spatial probability density p(i), for i ∈ [1, · · · ,M ]. The multi-Bernoulli
of an RFS X is completely defined by the set of parameters

{(
r(i), p(i))}M

i=1, and its density
can be described by [Mah07b; Mah14]:

π({x(1), · · · , x(n)}) =



M∏
j=1

(
1− r(j)

)
n = 0

M∏
j=1

(
1− r(j)

) ∑
1≤i1 6=···6=in≤M

n∏
j=1

r(ij)p(ij)(x(j))
1− r(ij)

1 ≤ n ≤M

0 n > M

(1.76)

where the probability density function for n = 0 and X = ∅, i.e. π(∅) = ∏M
j=1

(
1− r(j)),

corresponds to the probability that none of the M objects exists. In order to obtain the
probability density function for X = {x(1), · · · , x(n)}, it is necessary to sum over all n possible
permutations of the vector x(i).

The multi-Bernoulli RFS is convenient in cases involving multi-objects where the presence
of any particular object is not assured. The cardinality distribution of a multi-Bernoulli RFS
X is obtained by ignoring the spatial distribution in (1.76):

ρ(n) =
M∏
j=1

(
1− r(j)

) ∑
1≤i1 6=···6=in≤M

n∏
j=1

r(ij)

1− r(ij)
(1.77)

According to Mahler, the Probability Hypothesis Density (PHD) of a multi-Bernoulli RFS
is given by [Mah07b; Mah14]:

ν(x) =
M∑
j=1

r(j)p(j)(x) (1.78)
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and consequently, the mean cardinality of a multi-Bernoulli can be calculate by:

N̂ =
M∑
j=1

r(j) (1.79)

1.2.3 Multi-object filtering using RFS

In the multi-object filtering problem, not only do the states of the objects are time-varying,
but the number of items also changes due to objects that can appear and disappear. The
targets can be observed by different types of sensor (or sensors) such as radar, sonar, lidar,
camera, and infrared camera, and the sensor signals are preprocessed into a set of points
or detections. Thus, the goal is to jointly estimate the number of objects and their states
from the accumulated observations. In the random finite set framework, the objective is to
estimate an RFS of multi-object states Xk ∈ X at time k: in other words, to estimate the
cardinality |Xk| = n and the constituent object states xi,k, i ∈ [1, · · · , n] given a sequence
of measurement sets Z1:k = {Z1, · · · , Zk}. The symbols X and Z represent the state and
observation spaces. Figure 1.4 shows a schematic representation of the multi-object filtering
using random finite sets.

!"#$
State-set

observation space

%"#$
Observation-set

state space

%"

!"
target motion

Figure 1.4: Simplified schematic of a dynamic model where a multi-object state evolves
in the state space. In this example, the number of objects in the state space changes from
five at time k − 1 to three at time k, and each target may generate a random number of
measurements due to clutter and false alarms, while some targets may not be detected. As
a result, at each time k, the multi-object observation is a set of detections where only some
are generated by the targets, and there is no information on which targets generated which
detections.

Modeling states and observations as random finite sets is essential to generalizing the
single-object Bayes filter to the multi-object Bayes filter, because the RFS framework natu-
rally models the time evolution of the multi-object state as well as the object dynamic, birth,
death, and spawning. Thus, random finite sets are used to model uncertainty in the state
Xk ⊂ X and observation Zk ⊂ Z at each time k. Due to imperfections of sensors, it is possi-
ble that at time k, some of the targets in Xk are not detected. Furthermore, the observation
set Zk normally includes false alarms or clutter in addition to target detection. Considering
that the number of objects and observations are variables, it is mathematically reasonable
to represent the collections of states and observations as random finite sets as shown below
[Mah03a; Mah07b; Mah14]:
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Xk = {x1,k, · · · , xM(k),k} ⊂ X
Zk = {z1,k, · · · , zN(k),k} ⊂ Z

where M(k) is the number of existing targets at time k, while N(k) is the number of current
measurements gathered by a sensor at time k. Random finite sets for target and observation
spaces are represented by F(X ) and F(Z), where F(·) denotes the set of all finite subsets.

1.2.4 Multi-object dynamic model

In general, multi-object filtering algorithms assume a standard multi-object transition model,
where every existing target state xk−1 ∈ Xk−1, either continues to exist at time k with
probability PS,k|k−1(xk−1) or dies with probability 1− PS,k|k−1(xk−1). Each surviving target
moves to a new state xk with probability density fk|k−1(xk|xk−1), while each target that
dies becomes an empty set ∅. Thus, the set of surviving objects, represented by the RFS
Sk|k−1(Xk−1), is modeled by a multi-Bernoulli RFS as defined in (1.76) with parameter set{(
PS,k|k−1(xk−1), fk|k−1(xk|xk−1)

)}
.

Additionally, a random number of objects can appear or disappear from random loca-
tions in the state space at time k. New objects may appear either by spontaneous birth
independently of existing objects or by spawning from an existing object. Consequently, the
set of born objects at time k is represented by the RFS Γk, whose model depends on the
particular filtering algorithm in use. Different multi-object filtering approaches employ dif-
ferent models for target births and deaths. The set of spawned objects at time k are denoted
by Bk|k−1(Xk−1). It is assumed that the RFS Sk|k−1(·), Bk|k−1(·) and Γk are independents.
Consequently, the multi-object state modeled by the RFS Xk and illustrated in Figure 1.5,
is defined accordingly:

Xk = Sk|k−1(Xk−1) ∪Bk|k−1(Xk−1) ∪ Γk (1.80)
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Figure 1.5: Multi-object dynamical model assumptions.
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Let πS,k|k−1(·) and πB,k|k−1(·) denote the density of Sk|k−1 and Bk|k−1 respectively, then,
the predicted density of Xk can be represented by the following convolution:

fk|k−1(Xk|Xk−1) =
∑

W⊆Xk

πS,k|k−1(W |Xk−1)πB,k|k−1(Xk −W ) (1.81)

1.2.5 Multi-object observation model

The observation model incorporates the measurement likelihood, object detection uncertainty
at the sensor, and false alarms or clutter. Each object xk ∈ Xk either is detected with
probability PD,k|k(xk) and generates an observation zk with likelihood gk(zk|xk), or is missed
with probability 1− PD,k|k(xk) and generates an empty set ∅. It is assumed that the object
measurements are conditionally independent; thus, the RFS of detections, represented by
Dk(Xk), is modeled by a multi-Bernoulli RFS with parameter set

{(
PD,k|k(xk), gk(zk|xk)

)}
.

In addition to the detections of real objects, the sensor can gather a random number of
false alarms from random locations in the measurement space. The set of false alarms at
time k is represented by an RFS Kk, which, in general, is modeled as a Poisson RFS. The
multi-object observation modeled by the RFS Zk and illustrated in Figure 1.6 is defined by:

Zk = Dk(Xk) ∪Kk (1.82)
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Figure 1.6: Multi-object observation model assumptions.

Let πD,k(·) and πK,k(·) denote the density of Dk and Kk respectively, then, the density
of Zk can be defined by the following convolution:

gk(Zk|Xk) =
∑

W⊆Zk

πD,k(W |Xk)πK,k(Z −W ) (1.83)

1.2.6 The Multi-object Bayes filter

Once the multi-object state and observation are modeled as an RFS, the estimate can be
recursively calculated using the multi-object Bayesian filtering. The idea is to jointly estimate
the number of objects and their states from the noisy observations. Thus, the objective of
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the multi-object Bayesian estimator is to determine the posterior density of multi-object
state πk(Xk|Z1:k) at each time k, where Z1:k = {Z1, · · · , Zk} denotes the observation set
sequence up to time k. The multi-object posterior density can be computed recursively via the
prediction and update steps. The predicted density at time k, denoted as πk|k−1(Xk|Z1:k−1),
is computed by the multi-object Chapman-Kolmogorov equation [GMN97; Mah03a; Mah07b;
Mah14]:

πk|k−1(Xk|Z1:k−1) =
∫
fk|k−1(Xk|Xk−1)πk−1(Xk−1|Z1:k−1)δXk−1 (1.84)

When a new observation set Zk is received at time k, the new posterior density is computed
via the multi-object Bayes’ rule [Shi84; DV88; DV03; Ros14]:

πk|k(Xk|Z1:k) =
gk(Zk|Xk)πk|k−1(Xk|Z1:k−1)∫
gk(Zk|Xk)πk|k−1(Xk|Z1:k−1)δXk

(1.85)

The multi-object Bayes filter requires two a priori distributions: the multi-object Markov
transition density fk|k−1(Xk|Xk−1), which is the probability density that the multi-object
state will move from state Xk−1 at time k − 1 to state Xk at time k, and the multi-object
likelihood function gk(Zk|Xk), which is the probability density that the observation set Zk
will be collected if the objects at time k have state set Xk. Given a sequence of observation
sets, the multi-object Bayes filter propagates the probability density of the multi-object RFS
over time as illustrated by the following diagram:

· · · → πk−1(Xk−1|Z1:k−1) prediction−−−−−−→ πk|k−1(Xk|Z1:k−1) update−−−−→ πk|k(Xk|Z1:k)→ · · ·

The multi-object Bayes equations (1.84) and (1.85) look very similar to the single-object
Bayes equations (1.5) and (1.6), and the difference is that the multi-object Bayes equations use
set-integrals and the functions involved have units whereas the former are unitless (for more
details, see Appendix A). Thus, due to the combinatorial nature of multi-object densities and
set-integrals, the multi-object Bayes recursion is intractable in most practical applications.
However, it serves as the basis for deriving multi-object filtering and tracking algorithms
using the RFS framework.

1.2.7 The Probability Hypothesis Density (PHD) filter

In a single-object filtering problem, two essential statistics of the posterior density are the first-
order moment, a vector representing the posterior expectation, and the second-order moment,
a matrix representing the covariance. In general, these two order moments are assumed to be
sufficient statistics for the posterior density, and higher-order moments are ignored. In some
specific cases, even the second-order moment can be neglected, and the posterior density
can be described by only the first-order moment, similarly to the Kalman filter approach.
However, representing a complete density by its first-order moment is plausible if the density
is unimodal and has low variance.

Representing and propagating a density with only the first-order moment is useful, and
the same logic has been extended to derive multi-object filters within the random finite set
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formalism. In 2000, Mahler proposed approximating the multi-object Bayes recursion by
propagating a first-order statistical moment, the posterior expectation, in the place of the
posterior distribution [Mah00; Mah01a; Mah01b]. For an RFS X on X , with a probability
distribution π, its first-order moment is a non-negative function ν on X , called intensity or
Probability Hypothesis Density (PHD) function, defined by the following expectation:

ν(x) = E[δX(x)] =
∫
δX(x)π(X)δX (1.86)

where the Dirac delta function δX(x) is defined as:

δX(x) =


0 if X = ∅∑
w∈X

δX(w) otherwise (1.87)

The PHD function is defined based on the single-object state space, and has the primary
property that its integral for any closed subsets S ⊆ X gives the expected number of objects
contained in S. The PHD is not a probability density, since its integral may result in a value
greater than one:

∫
S
ν(x)dx = E[|X ∩ S|] (1.88)

Using the first-order moment of an RFS (in other words, the PHD function), it is pos-
sible to develop a computationally tractable approximation to the multi-object Bayes filter
[Mah03a]. This approximation, called the PHD filter, is a recursive process that propagates
the intensity, or the first-order moment, of the target random finite set. A Poisson assump-
tion is made to derive a closed-form solution for the PHD filter. The predictive density is
approximated by a Poisson point process to estimate potentially many targets, including
the birth, death, and spawning of targets automatically. The PHD filter approximates the
predicted and updated probability densities πk|k−1(Xk|Z1:k−1) and πk|k(Xk|Z1:k) with the re-
spective first-order moment densities, denoted by νk|k−1(Xk|Z1:k−1) and νk|k(Xk|Z1:k), which
are propagated over time as illustrated by the following diagram:

· · · → πk−1(Xk−1|Z1:k−1) prediction−−−−−−→ πk|k−1(Xk|Z1:k−1) update−−−−→ πk|k(Xk|Z1:k)→ · · ·
↓ ↓ ↓

· · · → νk−1(xk−1|Z1:k−1) prediction−−−−−−→ νk|k−1(xk|Z1:k−1) update−−−−→ νk|k(xk|Z1:k)→ · · ·

Suppose here that νk−1 is the posterior PHD at time k − 1, γk(·) is the intensity of
spontaneous target births at time k, PS,k(xk−1) is the probability that a target still exists at
time k, fk|k−1 is the single-object Markov transition density from time k − 1 to time k, and
βk|k−1(x|xk−1) is the intensity of the object spawned from another object with previous state
xk−1 at time k. The probability that an object with state xk is detected is PD,k(xk), and a
set of observations Zk is received at time k, which contains false alarms with intensity κk.
The posterior intensity can then be propagated via the PHD recursion [Mah03a; Mah07b;
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Mah14]:

νk|k−1(x) = γk(xk) +
∫ (

PS,k(xk−1)fk|k−1(xk|xk−1) + βk|k−1(x|xk−1)
)
νk−1(xk−1)dxk−1

(1.89)

νk|k(xk) =
(
1−PD,k(xk)

)
νk|k−1(xk) +

∑
z∈Zk

PD,k(xk)gk(z|xk)νk|k−1(xk)
κk(z) +

∫
PD,k(xk)gk(z|xk)νk|k−1(xk)dxk

(1.90)

There are many implementations of the PHD filter. The first is based on the sequential
Monte Carlo method, and was independently proposed in 2003 by Sidenbladh [Sid03], Zajic
and Mahler [Tim03], and Vo, Singh, and Doucet [VSD03]. This is called the Sequential Monte
Carlo PHD (SMC-PHD) filter, and its analysis of convergence was realized by Clark and
Johansen [CB06; Joh+06]. In 2006, Vo and Ma proposed the first analytic implementation
of the PHD filter based on Gaussian mixtures, the Gaussian-Mixture PHD (GM-PHD) filter,
which included an application for linear-Gaussian models based on Kalman filters, and for
nonlinear-Gaussian models based on the EKF or UKF [VM05; VM06]. Convergence analysis
of the GM-PHD filter, including a version based on the Gaussian Particle filter, was presented
by Clark [CVV07]. In 2010, Macagnano proposed a PHD version based on the cubature
Kalman filter to deal with nonlinearity existing between observations and state model [Md10].

1.2.8 The Gaussian-mixture PHD filter

The Probability Hypothesis Density (PHD) filter given in (1.89)-(1.90) does not, in general,
admit closed-form solutions. Under linear Gaussian assumptions, the multi-object posterior
density can be approximated using the Gaussian-Mixture PHD (GM-PHD) filter [VM05;
VM06]. The linear Gaussian multi-object model includes certain assumptions about the
birth, death and detection of targets [VM06].

Each target follows a linear Gaussian dynamic model, i.e.:

fk|k−1(xk|xk−1) = N (xk;Fk−1xk−1, Qk−1) (1.91)
gk(zk|xk) = N (zk;Hkxk, Rk) (1.92)

where the term N (·;m,P ) is the Gaussian density with mean m and covariance P , Fk−1
is the state transition matrix, Qk−1 is the process noise covariance, Hk is the observation
matrix, and Rk is the observation noise covariance.

The detection and survival probabilities are both state-independent:

pD,k(x) = pD,k (1.93)
pS,k(x) = pS,k (1.94)

The intensities of the birth and spawn RFSs are both Gaussian mixtures of the form:



34 CHAPTER 1. FUNDAMENTALS OF MULTI-OBJECT TRACKING

γk(xk) =
Jγ,k∑
i=1

w
(i)
γ,kN

(
xk;m(i)

γ,k, P
(i)
γ,k

)
(1.95)

βk|k−1(xk|xk−1) =
Jβ,k∑
j=1

w
(j)
β,kN

(
xk;F (j)

β,k−1xk−1 + d
(j)
β,k−1, Q

(j)
β,k−1

)
(1.96)

where w(i)
γ,k, m

(i)
γ,k, P

(i)
γ,k, and Jγ,k are, respectively, the weights, means, covariance, and

total number of Gaussian mixtures for birth intensity, and w(j)
β,k, F

(j)
β,k−1 +d

(j)
β,k−1, Q

(j)
β,k−1, and

Jβ,k are, respectively, the weights, means, covariance, and total number of Gaussian mixtures
for spawning intensity.

The prediction and update steps of the GM-PHD filter can be described as follows [VM05;
VM06]:

1. Prediction:
Given {w(i)

k−1,m
(i)
k−1, P

(i)
k−1} and the measurement Zk, suppose that the posterior inten-

sity at time k − 1 is a Gaussian mixture of the form:

νk−1(x) =
Jk−1∑
i=1

w
(i)
k−1N

(
x;m(i)

k−1, P
(i)
k−1

)
(1.97)

Then, considering γk(x) defined in (1.95), the predicted intensity for time k is also a
Gaussian mixture given by:

νk|k−1(x) = νS,k|k−1(x) + νβ,k|k−1(x) + γk(x) (1.98)

where:

νS,k|k−1(x) = pS,k

Jk−1∑
j=1

w
(j)
k−1N

(
x;m(j)

S,k|k−1, P
(j)
S,k|k−1

)
(1.99)

m
(j)
S,k|k−1 = Fk−1m

(j)
k−1 (1.100)

P
(j)
S,k|k−1 = Qk−1 + Fk−1P

(j)
k−1F

T
k−1 (1.101)

νβ,k|k−1(x) =
Jk−1∑
j=1

Jβ,k∑
`=1

w
(j)
k−1w

(`)
β,k−1N

(
x;m(j,`)

β,k|k−1, P
(j,`)
β,k|k−1

)
(1.102)

m
(j,`)
β,k|k−1 = F

(`)
β,k−1m

(j)
k−1 + d

(`)
β,k−1 (1.103)

P
(j,`)
β,k|k−1 = Q

(`)
β,k−1 + F

(`)
β,k−1P

(j)
β,k−1(F (`)

β,k−1)T (1.104)

2. Update:

νk|k(x) = (1− pD,k)νk|k−1(x) +
∑
z∈Zk

νD,k(x; z) (1.105)

where:
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νD,k(x; z) =
Jk|k−1∑
j=1

w
(j)
k (z)N

(
x;m(j)

k|k(z), P
(j)
k|k

)
(1.106)

w
(j)
k (z) =

pD,kw
(j)
k|k−1q

(j)
k (z)

κk(z) + pD,k
∑Jk|k−1
`=1 w

(`)
k|k−1q

(`)
k (z)

(1.107)

q
(j)
k (z) = N

(
z;Hkm

(j)
k|k−1, Rk +HkP

(j)
k|k−1H

T
k

)
(1.108)

m
(j)
k|k(z) = m

(j)
k|k−1 +K

(j)
k

(
z −Hkm

(j)
k|k−1

)
(1.109)

P
(j)
k|k =

[
I −K(j)

k Hk

]
P

(j)
k|k−1 (1.110)

K
(j)
k = P

(j)
k|k−1H

T
k (HkP

(j)
k|k−1H

T
k +Rk)−1 (1.111)

1.2.9 Optimal Subpattern Assignment (OSPA) metric

Since there are several implementations of the PHD filter and different algorithms based on
RFS framework, a metric to analyze and compare the performance of these algorithms be-
comes necessary. Also to the state estimation error considered by single-object miss distances
like the Euclidean or Mahalanobis distance, the metric should incorporate the cardinality er-
ror.

The Optimal Mass Transfer (OMAT) metric was one of the first approaches for a multi-
object miss distance [HM04]. The OMAT is based on the Wasserstein distance and resolves
some issues of the Hausdorff metric in multi-object filtering applications. This metric is not
defined if one of the two sets is empty and it does not penalize multiple estimates for a single
object. To overcome the OMAT weaknesses, Schuhmacher et al. proposed a new metric, the
Optimal SubPattern Assignment (OSPA) metric [SVV08].

The OSPA is a metric used to quantify the distance between two finite sets, allowing to
compare results between different algorithms based on the RFS framework [SVV08]. This
metric accounts for differences in the cardinality and the individual elements between any
two finite sets X and Y in a mathematically consistent way. For any two state vectors x and
y the distance is calculated according:

dc(x, y) = min(c, d(x, y)) (1.112)

where c > 0 is the cut-off parameter. For two finite sets X = {x(1), · · · , x(m)} and Y =
{y(1), · · · , y(n)}, where m ≤ n, the OSPA distance of order p ≥ 1 and cut-off c > 0 is given
by:

d(c)
p (X,Y ) =



0 m = n = 0(
1
n

(
min
π∈Πn

m∑
i=1

dc(xi, yπ(i))p + cp(n−m)
)) 1

p

m ≤ n

d(c)
p (Y,X) m > n

(1.113)
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where Πn is the set of permutations on {1, · · · , n}. In the case of m > n, the parameters X
and Y have to be switched. The order parameter p determines the sensitivity of the metric
in penalizing outlier estimates, and the cut-off parameter c restricts the maximum distance.

In the context of multi-object performance evaluation, it is possible to calculate the lo-
calization error using the OSPA metric as follows:

d(c, loc)
p (X,Y ) =

(
1
n

min
π∈Πn

m∑
i=1

dc(xi, yπ(i))p
) 1
p

(1.114)

and the cardinality error:

d(c, card)
p (X,Y ) =

(
cp(n−m)

n

) 1
p

(1.115)

Although the separated errors are no longer a metric on the space of finite subsets, and they
provide only additional information for further improvements of the multi-object tracking
algorithms [SVV08].

1.3 Random Finite Set (RFS) for multi-object tracking

The Probability Hypothesis Density (PHD) filter was proposed by Mahler for jointly estimat-
ing the time-varying number of targets and their states from a noisy sequence of measurements
[Mah03a]. Under linear Gaussian assumptions, the multi-object posterior density can be ap-
proximated using the Gaussian-Mixture PHD (GM-PHD) filter [VM05; VM06]. The original
implementation of the GM-PHD filter provided estimates for the set of objects states but did
not ensure continuity of the individual object tracks [CPV06; PVC06].

In the GM-PHD filter, the posterior intensity function is approximated by a sum of
weighted Gaussians whose means, weights, and covariances can be propagated analytically
in time. In general, the means and covariances are estimated using a Kalman filter. The
algorithm to determine the targets uses the weights of the Gaussians and does not take into
account temporal continuity. However, the trajectories of the targets can be determined by
taking into account the evolution of the Gaussian mixture.

To accurately estimate the number of objects and their states at each time, it is also
essential to know the trajectory of each object and distinguish it from different objects. There
are several methods to create the objects’ trajectory reported in the literature. Panta et al.
used the PHD filter to pre-filter the data input to a Multiple Hypothesis Tracking (MHT)
algorithm [Pan+04]. Clark suggested associating target estimates between iterations, also
known as estimate-to-track association [CB05]. For the Sequential Monte Carlo PHD (SMC-
PHD) filter, Panta et al. proposed partitioning particle data to assign labels to particles
within the same cluster as well as linking clusters between time frames if there is a large
intersection of particles with the same label from the previous time [PVS05]. This latter
technique uses the empirical PHD distribution and is similar to the technique used in the
development of a tracker algorithm based on the GM-PHD, the Gaussian-Mixture PHD
Tracker (GM-PHDT).
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1.3.1 The Probability Hypothesis Density Tracker (PHDT)

The Gaussian-Mixture PHD Tracker (GM-PHDT) is an extension of the GM-PHD filter. The
GM-PHDT has the ability to estimate the number of targets, track the trajectories of the
targets over time, operate with missed detections, and give the trajectories of the targets in
the past once a target has been identified.

In the GM-PHDT each target follows a linear Gaussian dynamical model as described
in (1.91) and (1.92). The GM-PHDT algorithm is initialized and then iterates through
prediction, update, pruning, merging, and target state estimation steps:

1. Initialization:
At time k = 0, the initial intensity ν0 is the sum of J0 Gaussians,

ν0(x) =
J0∑
i=1

w
(i)
0 N

(
x;m(i)

0 , P
(i)
0

)
(1.116)

These are distributed across the state space where each Gaussian N (x;m(i)
0 , P

(i)
0 ) has

mean state vector m(i)
0 , covariance P (i)

0 and weight w(i)
0 . An identifier or tag is assigned

to each Gaussian to form the following set:

T0 =
{
τ

(1)
0 , · · · , τ (J0)

0

}
(1.117)

where τ (j)
k denotes the tag of the jth Gaussian.

2. Prediction:
The predicted intensity to time k is a Gaussian mixture of the form:

νk|k−1(x) = νS,k|k−1(x) + γk(x) (1.118)

where:

νS,k|k−1(x) = pS,k

Jk−1∑
j=1

w
(j)
k−1N

(
x;m(j)

S,k|k−1, P
(j)
S,k|k−1

)
(1.119)

m
(j)
S,k|k−1 = Fk−1m

(j)
k−1 (1.120)

P
(j)
S,k|k−1 = Qk−1 + Fk−1P

(j)
k−1F

T
k−1 (1.121)

The term βk|k−1 for spawned objects has been omitted to keep the explanation simple.
In this step it is necessary to concatenate the set of tags from the previous time with
new tags from the Gaussians introduced by the spontaneous birth model:

Tk|k−1 = Tk ∪
{
τ

(1)
γk , · · · , τ

(Jγk)
γk

}
(1.122)

where τ (j)
γk is the tag assigned to the jth Gaussian generated by γk.
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3. Update:

νk|k(x) = (1− pD,k)νk|k−1(x) +
∑
z∈Zk

νD,k(x; z) (1.123)

where:

νD,k(x; z) =
Jk|k−1∑
j=1

w
(j)
k (z)N

(
x;m(j)

k|k(z), P
(j)
k|k

)
(1.124)

w
(j)
k (z) =

pD,kw
(j)
k|k−1q

(j)
k (z)

κk(z) + pD,k
∑Jk|k−1
`=1 w

(`)
k|k−1q

(`)
k (z)

(1.125)

q
(j)
k (z) = N

(
z;Hkm

(j)
k|k−1, Rk +HkP

(j)
k|k−1H

T
k

)
(1.126)

m
(j)
k|k(z) = m

(j)
k|k−1 +K

(j)
k

(
z −Hkm

(j)
k|k−1

)
(1.127)

P
(j)
k|k =

[
I −K(j)

k Hk

]
P

(j)
k|k−1 (1.128)

K
(j)
k = P

(j)
k|k−1H

T
k (HkP

(j)
k|k−1H

T
k +Rk)−1 (1.129)

Each Gaussian in the predicted Gaussian mixture gives rise to 1 + |Z| new Gaussians.
The new Gaussians receive the same tag identifier from the original Gaussian. Note that
Equations (1.120)-(1.121) and (1.127)-(1.129) represent the Kalman Filter prediction
and update steps.

4. Pruning:
In this step the Gaussians with low weights are eliminated. Given a trucation threshold
Tth, the updated Gaussian mixture after pruning of Gaussians with weights w(i)

k < Tth
is defined as:

ν̃k(x) =
Jk∑

i=1,w(i)
k
<Tth

w̃
(i)
k N

(
x;m(i)

k , P
(i)
k

)
(1.130)

where:

w̃
(i)
k = w

(i)
k∑Jk

j=Np+1w
(j)
k

5. Target State Estimation:
The individual object state estimate is given by the means of the Gaussians whose
associated weights are above a chosen threshold wth:

X̂k =
{
m

(i)
k : w(i)

k > wth
}

(1.131)

and the set of tags associated with the state estimates is given by:

T̂k =
{
τ

(i)
k : w(i)

k > wth
}

(1.132)

6. Target Trajectories Estimation:
The targets’ trajectories and their labels can be extracted according to the following
scheme:
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Figure 1.7: A tree structure used to propagate a Gaussian with measurement available at
time k. The term mil

k denotes the mean of the Gaussian resulting when m(i)
k|k−1 is updated

with measurement zl, where l = 0 represents the case of misdetection. Each Gaussian
initiated at time k = 0 and new Gaussians from γk form the root of a tree that grows
linearly with the number of measurements available at each time. Each tree has its unique
label that is the same as the tag associated with the Gaussian at the root of the tree. The
branches form a possible target trajectory associated with a target over time. Image from
[PVC06]

1.3.2 Labeled Random Finite Set (LRFS)

The algorithms based on the standard Random Finite Set (RFS) framework can jointly
estimate the number of objects and their states but are unable to estimate target trajectories
over time. Filters like the PHD, CPHD, GM-PHD, and SMC-PHD can generate sets of
disconnected point estimates at each time, instead of continuous trajectories. The Gaussian-
Mixture PHD Tracker (GM-PHDT) try to address the problem of multi-object tracking using
some heuristical methods, and it cannot distinguish well between objects that are very close to
each other. To overcome this limitation, a Labeled Random Finite Set (LRFS) was introduced
by Ba-Tuong Vo and Ba-Ngu Vo [VV13]. The following sections provides a summary of the
main techniques utilized in this thesis based on this concept.

In order to distinguish the standard RFS from the labeled RFS it is necessary to define
some new notations. Single-object states are denoted by small letters, e.g. x,x, while multi-
object states are denoted by capital letters, e.g. X,X. Spaces are represented by blackboard
bold letters, e.g. X,Z,L,N. Following the same idea, labeled states and their distributions
(single-object or multi-object) are bolded to differenciate them from the unlabeled represen-
tation, e.g. x,X,π.

A labeled RFS can be defined as a set in which every element x ∈ X has been augmented
with a label ` ∈ L. Suppose an unlabeled set X = {x(1), · · · , x(n)}; a labeled version of this
set is obtained by augmenting each x(i) with a label `(i):

X =
{

(x(1), `(1)), · · · , (x(n), `(n))
}

(1.133)

The labeled RFS uses an indicator function to invalidate labeled multi-object states whose
labels are not distinct. The indicator function that extracts the labels of a labeled set X is
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defined as follows:

L(X) = {L(x) : x ∈X} (1.134)

If the labeled set X contains multiple elements with the same label, then the cardinality
of L(X) will not be equal to the cardinality of X. Since by definition, a labeled RFS cannot
contain repeated elements, then the following function can be used to determine whether the
set X contains repeated labels [VV13]:

∆(X) = δ|X|(|L(X)|) (1.135)

A labeled RFS with state space X and discrete label space L is an RFS on X×L where the
labels within each realization are always distinct, i.e., ∆(X) = 1. The unlabeled version of a
labeled RFS is defined as the projection of the labeled state space X× L into the unlabeled
state space X applying marginalization [VV13; Mah14]:

π({x(1), · · · , x(n)}) =
∑

(`(1),··· ,`(n))∈Ln
π({(x(1), `(1)), · · · , (x(n), `(n))})

The following subsections introduce the labeled RFS distributions used in this thesis,
the Labeled Multi-Bernoulli (LMB) and the Generalized Labeled Multi-Bernoulli (GLMB)
[VV13; Reu+14; Mah14].

Labeled Independent Identically Distributed Cluster RFS

The multi-object probability density of a labeled independent and identically distributed
(l.i.i.d.) cluster RFS X is defined to be [VV13; Mah14]:

π(X) = δL(n)(|{`(1), · · · , `(n)}|)ρ(|X|)pX (1.136)

where L(n) = {αi ∈ L}ni=1, ρ(n) is the cardinality probability distribution for n ≥ 0, and
p(x) is the probability density on x representing the spatial distribution of a target object.

IfX = {(x(1), `(1)), · · · , (x(n), `(n))} with |X| = n, then the above equation can be written
as [Mah14]:

π(X) = δ{α(1),··· ,α(n)}({`(1), · · · , `(n)})ρ(n)p(x(1)) · · · p(x(n)) (1.137)
(1.138)

=
{
ρ(n)p(x(1)) · · · p(x(n)) if {α(1), · · · , α(n)} = {`(1), · · · , `(n)}
0 otherwise

(1.139)

Consequently, for each n > 1, π({(x(1), `(1)), · · · , (x(n), `(n))}) = 0 for all (`(1), · · · , `(n))
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exception for the selections given by:

{`(1), · · · , `(n)} = {ασ(1), · · · , ασ(n)} (1.140)

where σ is the n! permutations of 1, · · · , n. Thus, the set integral
∫
π(X)δX exists and is

finite [Mah14].

Labeled Multi-Bernoulli RFS

A Labeled Multi-Bernoulli (LMB) RFS is a labeled RFS with state space X and the discrete
label space L distributed according to [VV13; Mah14]:

π({(x(1), `(1)), · · · , (x(n), `(n))}) = δn(|{`(1), · · · , `(n)}|)
∏
i∈L

(
1− r(i)

) n∏
`=1

1L(`)r
(`)p(`)(x)
1− r(`)

(1.141)

where details about the notation can be found in Section 1.2.1 and Appendix A. An LMB
RFS is not a multi-Bernoulli RFS on X × L, but its unlabeled version is a multi-Bernoulli
on X. A compact representation of an LMB density is obtained employing the multi-object
exponential notation [VV13]:

π(X) = ∆(X)w(L(X))pX (1.142)

where:

w(L) =
∏
i∈L

(
1− r(i)

) ∏
`∈L

1L(`)r(`)

1− r(`) (1.143)

p(x, `) = p(`)(x) (1.144)

where r(`) and p(`) are the existence probability and probability density corresponding to
label ` ∈ L. Thus, an LMB distribution can be represented using the notation π(X) =
{(r(`), p(`))}`∈L. In addition, the PHD and mean cardinality of the unlabeled LMB RFS are
defined by (1.78) and (1.79).

Generalized Labeled Multi-Bernoulli RFS

The Generalized Labeled Multi-Bernoulli (GLMB) is a more sophisticated and flexible class
of labeled RFS with state X and discrete label space L satisfying the following probability
distribution [VV13; Mah14]:

π(X) = ∆(X)
∑
c∈C

w(c)
(
L(X)

)[
p(c)

]X
(1.145)
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where C is an arbitrary index set, and enables multiple realizations for a set of track labels
L = L(X). The weights w(c)(L) should be normalized, and as well as the spatial distribution
p(c), must be a probability density function as follows:

∑
L⊆L

∑
c∈C

w(c)(L) = 1 (1.146)
∫
x∈X

p(c)(x, `)dx = 1 (1.147)

Analyzing (1.142) and (1.145) one can see that the LMB RFS is a particular case of
the GLMB RFS with only a single component c for each realization X. An LMB RFS
encloses statistically independent objects. However, due to the existence of one object af-
fects the association probabilities for other objects, the measurement updated objects are no
longer statistically independent. Due to this, an LMB RFS may not precisely represent the
multi-object posterior. Unlike the LMB RFS, the GLMB RFS allows multiple components
or hypotheses for a set of object labels L, and naturally embodies the data association un-
certainty of the measurement update by generating hypothesis c for each possible object to
measure association.

δ-Generalized Labeled Multi-Bernoulli RFS

A more specific type of GLMB RFS is the δ-Generalized Labeled Multi-Bernoulli (δ-GLMB)
RFS with state X and discrete label space L satisfying the following probability distribution:

C = F(L)× Ξ
w(c)(L) = w(I,ξ)(L) = w(I,ξ)δI(L)

p(c) = p(I,ξ) = p(ξ)

where Ξ is an arbitrary discrete space, and the distribution of a δ-GLMB RFS can be repre-
sented as follows:

π(X) = ∆(X)
∑

(I,ξ)∈F(L)×Ξ
w(I,ξ)δI

(
L(X)

)[
p(I,ξ)

]X
(1.148)

The sum is taken over by the Cartesian product between the space of finite subsets of
L, and the discrete space Ξ. For tracking applications, each subset of L represents the
target labels and Ξ the space of measurement-to-label association histories. An element
(I, ξ) ∈ F(L)×Ξ can be considered a hypothesis that the set of currently existing targets are
those with labels I and association history ξ. The weight w(I,ξ) represents the probability of
this hypothesis. p(ξ)(·, `) is the pdf of the target with label ` under association history ξ.

The δ-GLMB representation of an LMB RFS with state space X, discrete finite label
space L, and parameter set π = {r(`), p(`)}`∈L can be expressed as [VV13]:
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π(X) = ∆(X)
∑

I∈F(L)
w(I)δI

(
L(X)

)
pX (1.149)

= ∆(X)w
(
L(X)

)
pX (1.150)

where the weights w(L) and the spatial distribution p(x, `) are defined by (1.143) and (1.144).
The Equation 1.150 uses the property that the sums in Equation 1.149 is zero except for
i = L(X). Additionally, (1.150) is equivalent to the LMB density (1.142).

1.3.3 Labeled multi-object dynamic model

Algorithms based on the Labeled Random Finite Set (LRFS) assume a standard multi-object
transition model with the inclusion of target labels. Given the current multi-object state
X, every existing target (x, `) ∈ X has probability PS(x, `) of surviving to the next time
and evolves to a new state (x+, `+) with probability density f(x+|x, `)δ`(`+), or dies with
probability 1−PS(x, `). The set of surviving objects at the next time is distributed according
to:

fS (S|X) = ∆(S) ∆(X) 1L(X) (L(S)) [Φ(S; ·)]X (1.151)

where:

Φ(S;x, `)] =
∑

(x+,`+)∈S
δ`(`+)PS(x, `)f(x+|x, `) +

(
1− 1L(S)

)(
1− PS(x, `)

)
(1.152)

and the set of new objects born at the next time step is distributed as follows:

fB(B) = ∆(B)wB(L(B))[PB(·)]B (1.153)

where PB(·, `) is the single object target birth density associated with label `, and wB(·)
is the birth weight. The multi-object state at the next time X+ is the union of surviving
and newborn targets. Assuming that targets’ states evolve independently of each other, and
that birth targets are independent of surviving targets, the multi-object transition can be
expressed in the following form [VV13]:

f(X+|X) = fS(X+ ∩ (X× L)|X) fB(X+ − (X× L)) (1.154)

1.3.4 Labeled multi-object observation model

For a given multi-object state at time kX, each state (x, `) ∈X has probability PD(x) of gen-
erating a detection z with likelihood g(z|x), and probability 1−PD(x) of being misdetected.
Assuming that the set of detected objects W with elements are conditionally independent
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and W is a multi-Bernoulli RFS with parameter set {(PD(x), g(·|x)) : x ∈X}, it is possible
to represent the probability density of W as:

πD(W |X) =
{

(PD(x), g(·|x)) : x ∈X
}

(W ) (1.155)

Considering K the set of clutter observations independent of target detections, and mod-
eled by a Poisson RFS with intensity κ(·), its distribution can be represented accordingly:

πK(K) = e−〈κ,1〉κK (1.156)

The multi-object observation Z = {z1, · · · , z|z|} is the union of the detected objects and
Poisson clutter with intensity κ as follows:

g(Z|X) = e−〈κ,1〉κ
∑
θ∈Θ

[
ΨZ(·; θ)

]X
(1.157)

where:

ΨZ(x, `; θ) =


PD(x, `)g(zθ(`)|x, `)

κ(zθ(`))
θ(`) > 0

1− PD(x, `) θ(`) = 0
(1.158)

The set Θ is called the association map space, where θ : L → {0, 1, · · · , |Z|}, such that
[θ(i) = θ(j) > 0]⇒ [i = j].

1.3.5 Labeled Optimal Subpattern Assignment (LOSPA) metric

Performance evaluation of multi-object tracking algorithms is necessary for the design, param-
eter optimization and comparison of tracking systems. The goal of performance evaluation
is to measure the distance between two sets of objects: the ground truth objects and the
set of estimated objects. The Optimal SubPattern Assignment (OSPA) metric is defined on
the space of finite sets of vectors and is inadequate for the evaluation of the labeled RFS
[Ris+11].

The OSPA metric evaluates the differences with respect to the number of objects and
the residual between the estimated and the true object states for each time k. Consequently,
the OSPA does not incorporate information about track continuity or switching of track
IDs. To overcome this drawback, Ristic et al. proposed the Labeled Optimal SubPattern
Assignment (LOSPA), which extends the OSPA metric by incorporating labeling information
in the distance calculation. The distance of two labeled state vectors x = (x, `) and y = (y, s)
in the LOSPA is defined by:

d(x,y) =
(
d(x, y)p +

(
α(1− δ`(s))

)p) 1
p (1.159)
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where ` and s are the labels of the objects. The parameter α ∈ [0, c] influences the penalty
due to labeling errors. Chosing α = 0, makes the second term of (1.159) disappears, and
consequently the LOSPA distance becomes equivalent to the OSPA distance. When α = c,
the LOSPA distance of two objects with labels ` 6= s is d(x,y) = c, and can be interpreted
as the mismatching labels are penalized like a missed detection [Ris+11].

1.3.6 The Generalized Labeled Multi-Bernoulli (GLMB) filter

The Generalized Labeled Multi-Bernoulli (GLMB) filter is the first implementable and prov-
ably Bayes-optimal multi-target tracking algorithm [Mah14; Mah18]. In the GLMB filter,
targets are labeled by an ordered pair of intergers ` = (k, i), where k is the time of birth,
and i is a unique index that distinguish objects born at the same time. An existing target at
time k has state (x, `) consisting of the kinematic state x ∈ X and label ` ∈ L0:k. To ensure
that the labels are distinct, it’s required that X and the set of labels of X have the same
cardinality. The function ∆(X) def= δ|X|(|L|), called the distinct label indicator, can be used
to verify the cardinality.

The assignement of labels to measurements at time k is an association mapping θ : L0:k →
{0, 1, · · · , |Z|} such that θ(`) = θ(`′) > 0 implies ` = `′. The set of all association maps at
time k is denoted Θk. In the GLMB filter, the multi-object filtering density at time k − 1 is
a GLMB of the form:

πk−1(X|Z0:k−1) = ∆(X)
∑

ξ∈Θ0:k−1

w
(ξ)
k−1(L(X))[p(ξ)

k−1]X (1.160)

The cardinality distribution of the GLMB is given by:

ρk−1(n) =
∑

L∈F(L)

∑
ξ∈Θ0:k−1

δn(|L|)w(ξ)
k−1(L) (1.161)

Each ξ = (θ0, · · · , θk−1) ∈ Θ0:k−1 represents a history of association maps up to time
k − 1, and contains the history of target labels encapsulating object births and deaths.

The GLMB density is a conjugate prior with respect to the standard multi-object like-
lihood function and is also closed under the multi-object prediction. Under the standard
multi-object model, and if the multi-object density πk−1 at time k− 1 is a GLMB as defined
above, then the multi-object prediction density πk|k−1 is a GLMB as follows [VV13; Mah14]:

πk|k−1(X|Z0:k−1) = ∆(X)
∑

ξ∈Θ0:k−1

w
(ξ)
k|k−1(L(X))[p(ξ)

k|k−1]X (1.162)

where
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w
(ξ)
k|k−1(L) = w

(ξ)
S,k|k−1(L ∩ L0:k−1)wΓ,k(L ∩ Lk) (1.163)

p
(ξ)
k|k−1(x, `) = 1L0:k−1(`)p(ξ)

S,k|k−1(x, `) + 1Lk(`)pΓ,k(x, `) (1.164)

w
(ξ)
S,k|k−1(L) =

[
P̄

(ξ)
S,k|k−1

]L ∑
I⊇L

[
1− P̄ (ξ)

S,k|k−1

]I−L
w

(ξ)
k−1(I) (1.165)

P̄
(ξ)
S,k|k−1(`) = 〈PS,k|k−1(·, `), p(ξ)

k−1(·, `)〉 (1.166)

p
(ξ)
S,k|k−1(x, `) =

〈PS,k|k−1(·, `)fk|k−1(x|·, `), p(ξ)
k−1(·, `)〉

P̄
(ξ)
S,k|k−1(`)

(1.167)

and the multi-object filtering density πk is a GLMB given by:

πk(X|Z0:k) = ∆(X)
∑

ξ∈Θ0:k−1

∑
θ∈Θk

w
(ξ,θ)
k (L(X)|Zk)

[
p(ξ,θ)(·|Zk)

]X
(1.168)

where

w
(ξ,θ)
k (L|Zk) ∝ 1Θk(L)(θ)

[
Ψ̄(ξ,θ)
Z,k

]L
w

(ξ)
k|k−1(L) (1.169)

Ψ̄(ξ,θ)
Z,k (`) = 〈Ψ(θ)

Z,k(·, `), p
(ξ)
k|k−1(·, `)〉 (1.170)

Ψ(θ)
Z,k(x, `) =


ψk(zθ(`); (x, `))

λF,k
if θ(`) > 0

1− PD,k(x, `) if θ(`) = 0
(1.171)

p
(ξ,θ)
k (x, `|Z) =

Ψ(θ)
Z,k(x, `)p

(ξ)
k|k−1(x, `)

Ψ̄(ξ,θ)
Z,k (`)

(1.172)

The above recursion is the first exact closed-form solution to the Bayes multi-object
filter [Mah14; Mah18; VV13]. Due to the growing number of components at each iteration,
truncating the GLMB sum is needed. Vo, Vo, and Phung proposed an implementation of the
GLMB filter that discards components with weak weights. This truncation also minimizes
the L1 error of the multi-object density, and it has a cubic complexity in the number of
observations in the worst case [Mah14; Pap+14]. Another well-known approximation of the
GLMB filter is the Labeled Multi-Bernoulli (LMB) filter [Reu+14], which is the labeled
analog of an unlabeled Poisson RFS, and, consequently, the LMB filter can be interpreted
as a Labeled Probability Hypothesis Density (LPHD) filter for the standard multi-object
measurement model [Mah17]. This insight is employed in this thesis to derive and implement
a new filter: the LPHD filter.

1.4 Conclusion

This chapter presented the main features of the Bayesian estimation for single and multi-
object tracking, followed by the Random Finite Set (RFS) and labeled RFS formalism used
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for the derivation of the new filters proposed in Chapter 2 and 3. Numerous filtering methods
such as the PHD filters, the Kalman filter, the Extended Kalman filter (EKF), the Unscented
Kalman filter (UKF), and the Particle filters were presented. Two metrics that will be
applied to evaluate the performance of the tracking algorithms were introduced. Finally, we
introduced the PHD Tracker (PHDT) and the Generalized Labeled Multi-Bernoulli (GLMB)
filters that serve as a basis for the development of the new filters proposed in this thesis.
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Chapter 2

The labeled version of the PHD filter

This chapter introduces the labeled version of the PHD filter to address the multi-object
tracking problem within the Labeled Random Finite Set (LRFS). The difference between
the standard RFS and the labeled RFS is that the standard RFS filters produce only mul-
tiple state estimates (multi-object filtering) while the LRFS filters produce multiple object
trajectory estimates (multi-object tracking). The first implementations of RFS filters did
not address multi-object tracking because of computational concerns, and some solutions
proposed to solve the multi-object tracking and labeling problem were in general based on
heuristics. The labeled RFS theory of Ba-Tuong Vo and Ba-Ngu Vo, introduced in Sec-
tion 1.3.2, was the first rigorous theoretical formulation of true multi-object tracking [VV13;
Mah14; VVP14]. Their proposal led to the Generalized Labeled Multi-Bernoulli (GLMB)
filter, which is the first computationally tractable and provably Bayes-optimal multi-object
tracking algorithm (see Section 1.3.6).

The original version of the GLMB filter is almost intractable, and many approximations
were proposed. Ba-Ngu Vo, Ba-Tuong, and Hoang proposed a fast implementation of the
GLMB filter with joint prediction and update that has computational complexity O(n2m),
where n is the current number of objects andm the current number of measurements [HVV15;
VVH17]. This efficient implementation has average run time at least two orders of magnitude
faster than the original algorithm. Thus, the purpose of this chapter is to answer the following
questions: if an analogous labeled version of the PHD filter exists, what is its relationship
with the GLMB filter? Is it a suboptimal but computationally faster alternative?

In this chapter, we will show that an approximation of the GLMB filter, known as the
Labeled Multi-Bernoulli (LMB) filter [Reu+14], can be reinterpreted as a rigorous theoretical
labeled PHD filter with the following form:

· · · → νk−1(x, `) prediction−−−−−−→ νk|k−1(x, `) update−−−−→ νk|k(x, `)→ · · ·

and according to Mahler [Mah14; Mah17]:

νk−1(x, `) = r
(`)
k−1pk−1(x, `) = r

(`)
k−1p

(`)
k−1(x) (2.1)

represents a labeled PHD, where 0 ≤ r
(`)
k−1 ≤ 1 and p(`)

k−1(x) are the probability of existence
and the spatial distribution of the object with label `.

49
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This chapter addresses the derivation and implementation of a labeled version of the
Probability Hypothesis Density (PHD) filter and is organized as follows: Section 2.2 presents
a sumary of heuristic labeled PHD approaches. The Labeled Multi-Bernoulli (LMB) filter
necessary to the labeled PHD derivation is introduced in Section 2.3. Then, the Labeled PHD
filter and its implementation using Gaussian-mixture method is proposed as a reinterpretation
of the LMB filter.

2.1 Labeled PHD notations and abbreviations

Throughout this chapter, we use the notations and abbreviations presented in Sections 1.2.1,
1.3.2, and Appendix A. We also use the Probability Generating Functional (PGFl) to prove
the propositions necessary for the derivation of the LPHD filter. The following sections
presents some complementary definitions.

Let X be an RFS of the space X, and π(X) its probability distribution. Then its PGFl
is defined by:

G[h] =
∫
hXπ(X)δX (2.2)

where for all test functions 0 ≤ h(x, `) ≤ 1 and hX is given by:

hX =


1 if X = ∅∏
(x,`)∈X

h(x, `) otherwise (2.3)

It is possible to reconstruct the distribution π(X) from the PGFl G[h] as follows [Mah14]:

π(X) = δG

δX
[0] (2.4)

where δ/δX represents an iterated functional derivative. For X = {(x, `)}, the functional
derivative can be heuristically determined by:

δG

δ(x, `) [h] = lim
ε→0

G[h+ εδ(x,`) −G[h]
ε

(2.5)

where δ(x,`)(x′, `′) = δ`(`′)δx(x′) is the Dirac delta function on X concentrated at (x, `).

2.2 Heuristic labeled PHD filter

The first implementations of the PHD filter presented in Section 1.2.7 appeared in 2003 and
were based on the particle methods. Due to computational complexity, track labeling was
ignored. The solutions presented were based on heuristics such as nearest-neighbor to address
the problem of joint estimation of the number of tracks and their states.
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The Gaussian-Mixture PHD (GM-PHD) filter introduced in Section 1.3.1 presented an
essential role in the development of PHD filters with labels. A label is assigned to each
Gaussian component, and simple heuristics rules allow the propagation of the labels for the
prediction and update steps [CPV06; PVC06; Mah14]. However, tracking performance tends
to degrade when the clutter is dense. The PHD implementations based on this idea can be
interpreted as an approximation of the Labeled Random Finite Set (LRFS) [Mah17]:

π({(x(1), `(1)), · · · , (x(n), `(n))}) ∼= 0 (2.6)

where (`(1), · · · , `(n)) are not distinct, and since it is an approximation, the requirement that
the labels are distinct can be ignored. In the real world a target cannot simultaneously have
different kinematic states, so that is why the labels should be distinct. This heuristic PHD
with label implementation substitutes the state x with x = (x, `) whenever x occurs. The
naïve labeled PHD filter has the following form [Mah14; Mah17]:

νk|k−1(x, `) = βk|k−1(x, `) +
∑
`′

∫
pS(x′, `′)fk|k−1(x, `|x′, `′)νk−1(x′, `′)dx′ (2.7)

νk|k(x, `) =
(

1− pD(x, `) +
∑
z∈Zk

pD(x, `)gk(z|x, `)
κk(z) + τk(z)

)
νk|k−1(x, `) (2.8)

τk(z) =
∑
`

∫
pD(x, `)gk(z|x, `)νk|k−1(x, `)dx (2.9)

where fk|k−1(x, `|x′, `′) = δ`(`′)fk|k−1(x, x′). The labeled PHD ν
(`)
k|k(x) = νk|k(x, `) is equiva-

lent to propagating multiple kinematic PHDs in parallel, one for each label `. Additionally,
the assumption in (2.6) if (`(1), · · · , `(n)) are not distinct breaks down when target tracks or
clutter are very close. In this situation, this naïve labeled PHD filter tends to perfom poorly.
Formal definition of LRFS theory is therefore necessary.

2.3 The Labeled Multi-Bernoulli (LMB) filter

The GLMB filter, introduced in Section 1.3.6, keeps a history of association maps between
tracks and measurements, which makes the number of posterior components grow exponen-
tially. The δ-GLMB filter was proposed to reduce both the computation and the need to
store a huge history of associations by approximating the number of hypotheses using a di-
rect truncation of the multi-object posterior [VV13]. Tractable techniques for truncating the
posterior and prediction densities were proposed based on the k-shortest paths and ranked
assignment algorithms [Mur68; Yen71; Epp98].

The Labeled Multi-Bernoulli (LMB) filter proposed by Reuter et al. is an approximation
of the δ-Generalized Labeled Multi-Bernoulli (δ-GLMB) filter [Reu+14]. The LMB filter
propagates the predicted and posterior multi-object densities using an LMB RFS rather than
a GLMB RFS or a δ-GLMB RFS. The main advantages are that the LMB approximation
significantly reduces the computational cost in scenarios with a large number of objects, and
that its number of components grows linearly whereas the growth of the δ-GLMB filter is
exponential.
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The multi-object posterior of the LMB filter is assumed to follow an LMB RFS (see
Section 1.3.2) with state space X and label space L given as [Reu+14]:

π(X) = ∆(X)w(L(X))pX (2.10)

where:

w(L) =
∏
i∈L

(
1− r(i)

) ∏
`∈L

1L(`)r(`)

1− r(`) (2.11)

p(x, `) = p(`)(x) (2.12)

Additionally, the multi-object birth density of an LMB RFS with state space X and label
space B has the following form:

πB(X) = ∆(X)wB(L(X))[pB]X (2.13)

with:

wB(L) =
∏
i∈B

(
1− r(i)

B

) ∏
`∈L

1B(`)r(`)
B

1− r(`)
B

(2.14)

pB(x, `) = p
(`)
B (x) (2.15)

where the labels ` ∈ B of the newborn objects must be distinct and the sets L and B have to
be disjoint to ensure unique labels, i.e., L ∩ B = ∅.

2.3.1 LMB prediction

Considering that an LMB RFS is a special case of a GLMB RFS, the prediction of an LMB
RFS can be expressed by a GLMB RFS [Reu+14; Mah14] as follows:

π+(X+) = ∆(X+)w+(L(X+))[p+]X+ (2.16)

where the symbol + is used to express the predicted values, and the time index notation k−1
and k|k − 1 are suppressed to maintain the simplicity. The state space L+ = L ∪ B, the
predicted weights w+ and the predicted spatial distribution p+ are:
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w+(I+) = wB(I+ ∩ B)wS(I+ ∩ L) (2.17)
p+(x, `) = 1L(`)p+,S(x, `) + 1B(`)pB(x, `) (2.18)

p+,S(x, `) = 〈pS(·, `)f+(x|·, `), p(·, `)〉
ηS(`) (2.19)

ηS(`) =
∫
〈pS(·, `)f+(x|·, `), p(·, `)〉dx (2.20)

wS(L) =
[
ηS
]L ∑

I⊇L

[
1− ηS

]I−L
w(I) (2.21)

where I+ denotes a set of track labels, pS(x, `) is the state dependent survival probability,
f+(x|·, `) is the single-object Markov transition density. The term wS(L) denotes the proba-
bility that all tracks with label ` ∈ L of a superset I ⊇ L survive while all objects with label
` 6∈ L disappear. The above equations correspond to a prediction of a δ-GLMB RFS, but due
to the LMB prior, the history of association maps ξ is missing. As the LMB RFS is a special
case of the GLMB RFS which comprises only a single component c (see Section 1.3.2), the
sum over all hypotheses (I, ξ) in (1.148) reduces to the single term in (2.16).

The predicted multi-object density (2.16) is the GLMB representation of the LMB RFS
[Reu+14]:

π+ =
{(
r

(`)
+ , p

(`)
+

)}
`∈L+

=
{(
r

(`)
+,S , p

(`)
+,S

)}
`∈L

⋃{(
r

(`)
+,B, p

(`)
+,B

)}
`∈B

(2.22)

with:

r
(`)
+,S = η

(`)
S r(`) (2.23)

p
(`)
+,S = 〈pS(·, `)f+(x|·, `), p(·, `)〉/η(`)

S (2.24)

where pS(x, `) is the state dependent survival probability, f+(x|·, `) is the single-object
Markov transition density, and ηS(`) is given by (2.20).

2.3.2 LMB update

Suppose that the multi-object predicted density is an LMB RFS with state space X, finite
label space L+, and parameter set π+ = {(r(`)

+ , p
(`)
+ )}`∈L+ as defined in (2.22). The updated

LMB RFS, given a set of observation Z, is expressed as [Reu+14]:

π(X|Z) =
{(
r(`), p(`)

)}
`∈L+

(2.25)

with parameters:
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r(`) =
∑

(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z)1I+(`) (2.26)

p(`) = 1
r(`)

∑
(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z)1I+(`)p(θ)(x, `) (2.27)

and:

w(I+,θ)(Z) =
δθ−1({0:|Z|})(I+)w+(I+)[η(θ)

Z ]I+∑
(I+,θ)∈F(L+)×ΘI+

δθ−1({0:|Z|})(I+)w+(I+)[η(θ)
Z ]I+

(2.28)

p(θ)(x, `|Z) = p+(x, `)ψZ(x, `; θ)
η

(θ)
Z (`)

(2.29)

η
(θ)
Z (`) = 〈p+(·, `), ψZ(·, `; θ)〉 (2.30)

ψZ(x, `; θ) = δ0(θ(`))qD(x, `) +
(
1− δ0(θ(`))

)pD(x, `)g(z)θ(`)|x, `)
κ(zθ(`))

(2.31)

where I+ denotes a set of track labels and ΘI+ represents the space of mappings θ : I+ →
{0, · · · , |Z|} in a manner that θ(i) = θ(i′) > 0 infers i = i′. The term pD(x, `) is the
detection probability of the track, qD(x, `) = 1−pD(x, `) is the probability of missed detection,
g(zθ(`)|x, `) is the single likelihood of the measurement zθ(`) given a track with label `, and
κ(z) = λcc(z) represents the intensity of Poisson clutter.

2.4 The Labeled Probability Hypothesis Density (LPHD) filter

This section introduces the Labeled Probability Hypothesis Density (LPHD) filter. Using the
Labeled Random Finite Set (LRFS) to derive a labeled PHD would be done by approximating
an evolving labeled RFS as a labeled independent and identically distributed (l.i.i.d.) cluster
as defined in Section 1.3.2. However, this approach can be problematic; as considered in
(1.136), the only possible realizations of L(X) are L(n) = {α(1), · · · , α(n)} for n ≥ 0. The
impasse is that the objects with labels (α(1), · · · , α(n)) are affirmed to exist with certainty,
which is rarely the case in real scenarios. Targets may disappear, in which case their labels
also disappear. What, then, should be done alternatively?

Proposition 1. Considering that the PHD of a Multi-Bernoulli RFS, defined in (1.78), has
the form ν(x) = ∑M

j=1 r
(j)p(j)(x), a labeled PHD of an Labeled Multi-Bernoulli (LMB) RFS

with state space X and discrete label space L can be defined by:

ν(x′, `′) =
∑
`∈L

δ`(`′)r(`)p(`)(x′) (2.32)

where 0 ≤ r(`) ≤ 1 and p(`)(x) are, respectively, the probability of existence and the spatial
distribution of the object with label `.
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Proof. Considering the behavior that a multi-object tracker exhibits, for each time k there is
a total number of labels represented by vk in a way that a set of labels assigned to tracks at
that time has the following form:

Lk|k = L(vk) = {α(1), · · · , α(vk)} (2.33)

If νk|k(x, `) is the labeled PHD at time k, then the total number of expected targets at
time k is:

Nk|k =
∑
`∈Lk|k

∫
νk|k(x, `)dx =

∑
`∈Lk|k

r
(`)
k|k (2.34)

where the expected number of targets that have label `, i.e., the probability of existence, can
be expressed as:

r
(`)
k|k =

∫
νk|k(x, `)dx 0 ≤ r(`)

k|k ≤ 1 (2.35)

Because the multi-object probability density of an LMB RFS (see Equation 2.10) is a
mono-GLMB distribution, w(L) has the form:

w(L)J =
∏

`∈J−L

(
1− r(`)

) ∏
`∈L

1L(`)r(`)

1− r(`) (2.36)

for some J ⊆ L with 0 ≤ r(`) ≤ 1 for all ` ∈ J . According to Mahler, its PGFl is defined by
[Mah14; Mah17]:

Gk|k[h] =
∏

`∈Lk|k

(1− r(`)
k|k + r

(`)
k|kp

(`)
k|k[h]) (2.37)

where p(`)
k|k[h] =

∫
pk|k(x, `)dx with the spatial distribution of an object with label ` is

represented by:

pk|k(x, `) =
νk|k(x, `)
r

(`)
k|k

(2.38)

Then the PHD of Gk|k[h] is given by [Mah14; Mah17]:
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νk|k(x′, `′) =
[
δGk|k
δ(x′, `′) [h]

]
h=1

(2.39)

=
[( ∏

`∈Lk|k

(1− r(`)
k|k + r

(`)
k|kp

(`)
k|k[h])

)( ∑
`∈Lk|k

δ`(`′)r(`)
k|kp

(`)
k|k(x

′)

1− r(`)
k|k + r

(`)
k|kp

(`)
k|k[h]

)]
h=1

(2.40)

=
∑
`∈Lk|k

δ`(`′)r(`)
k|kp

(`)
k|k(x

′) = r
(`′)
k|k pk|k(x

′, `′) (2.41)

Thus, an LMB RFS is completely described by its labeled PHD ν(x, `) = r(`)p(x, `), i.e.,
it is a labeled analog of an unlabeled Poisson RFS. �

We conclude that the Labeled Multi-Bernoulli (LMB) filter proposed by Reuter et al. can
be reinterpreted as a Labeled Probability Hypothesis Density (LPHD) filter. Additionally,
Equation 2.37 shows that any LRFS can be approximated as an LMB RFS, which has the
same labeled PHD [Mah14; Mah17]. The following subsections discuss the expression of the
prediction and update steps of the LPHD filter.

2.4.1 LPHD prediction

The concept behind the Labeled Probability Hypothesis Density (LPHD) filter is the rep-
resentation of the predicted and posterior multi-object densities using an LMB RFS, which
ensures the same advantages of the LMB filter.

Proposition 2. The prediction equation for the LPHD filter is the same as that for the LMB
filter. Thus, the prediction step of the LPHD filter can be expressed by:

ν+(x, `) =


∫
pS(x′, `) f+(x|x′) ν(x′, `)dx if ` ∈ L

νB(x, `) if ` ∈ B
(2.42)

where B ⊆ L+ is the labeled set for the birth targets, L is the labeled set for the current
targets, and νB(x, `) = r

(`)
B p

(`)
B (x, `) is the birth target LPHD.

Proof. Defining the multi-object target birth and the posterior PGFls as follows:

GB[h] =
(∏
`∈B

(1− r(`)
B + r

(`)
B p

(`)
B [h])

)
(2.43)

G[h] =
(∏
`∈L

(1− r(`) + r(`)p(`)[h])
)

(2.44)

where the labels ` ∈ B of the newborn objects must be distinct and the sets L and B have
to be disjoint to ensure unique labels, i.e., L ∩ B = ∅. Note that to maintain the simplicity,
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time index notations k − 1 and k|k − 1 are suppressed. Using the symbol + to express the
predicted values, and defining the predicted state space as L+ = L ∪ B, the predicted PGFl
can be expressed by:

G+[h] =
∏
`∈L+

(
1− r(`)

+ + r
(`)
+ p

(`)
+ [h]

)
(2.45)

where:

r
(`)
+ =

r
(`)
B if ` ∈ B

r(`)p(`)[pS ] if ` ∈ L
(2.46)

p
(`)
+ (x) =


p

(`)
B (x) if ` ∈ B∫
p(`)(x′)pS(x′)f+(x|x′)dx′

p(`)[pS ]
if ` ∈ L

(2.47)

�

2.4.2 LPHD update

Consider the predicted LPHD ν+(x, `) and PGFl G+[h]:

ν+(x, `) = 1J(`)r(`)
+ p

(`)
+ (x) = 1J(`)r(`)

+ p+(x, `)

G+[h] =
∏
`∈L+

(
1− r(`)

+ + r
(`)
+ p

(`)
+ [h]

)

Proposition 3. The update equations for the LPHD filter is the same as that for the LMB
filter. Thus, the update step of the LPHD filter can be expressed as:

ν(x′, `′) = LZ(x′, `′)p+(x′, `′) (2.48)

where LZ(x′, `′) is the application-dependent measurement noise model.

Proof. Suppose a Poisson clutter with PGFl G[g] = eκ[g−1], where κ[g] =
∫
g(z) ·κ(z)dz. Let

Z be the new measurement set, and the predicted PGFl given by:

G+[h] =
∏
`∈L+

(
1− r(`)

+ + r
(`)
+ p

(`)
+ [h]

)
(2.49)

and defining Rα as:

Rα =
( ∏
`∈Lcα

(
1− r(`)

+ p
(`)
+ [pD]

))( ∏
`∈Lα

r
(`)
+ p

(`)
+ [pDLZα(`) ]
κ(Zα(`))

)
(2.50)
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According to Mahler [Mah17], the measurement-update PGFl is given by:

G[h] =

∑
α

(∏
`∈Lcα

(
1− r(`)

+ + r
(`)
+ p

(`)
+ [h(1− pD)]

))(∏
`∈Lα

r
(`)
+ p

(`)
+ [hpDLZα(`) ]
κ(Zα(`))

)
∑
α

(∏
`∈Lcα

(
1− r(`)

+ p
(`)
+ [pD]

))(∏
`∈Lα

r
(`)
+ p

(`)
+ [pDLZα(`) ]
κ(Zα(`))

) (2.51)

where Lα = {` ∈ L+|α(`) > 0}, and α : L+ → {0, · · · , |Z|} is an association α(`) = α(`′) > 0
that means that ` = `′. The summations are performed over all associations α. With these
elements, we can derive the measurement-updated PHD as follows:

ν(x′, `′) = δG

δ(x′, `′) [1] = LZ(x′, `′)p+(x′, `′) (2.52)

where:

LZ(x′, `′) =

∑
αRα

(
1Lcα (`′)r(`′)

+ (1−pD(x′,`′))

1−r(`′)
+ p

(`′)
+ [pD]

+
1Lα (`′)pD(x′,`′))LZα(`′)

(x′,`′)

p
(`′)
+ [pDLZα(`′)

]

)
∑
αRα

(2.53)

where the updated value for r(`′) can be obtained from (2.35):

r(`′) =

∑
αRα

(
1Lcα (`′)r(`′)

+ p
(`′)
+ [1−pD]

1−r(`′)
+ p

(`′)
+ [pD]

+ 1Lα(`′)
)

∑
αRα

(2.54)

and the updated value for p(x′, `′) can be obtained from (2.38):

p(x, `′) = L̂Z(x′, `′)p+(x′, `′) (2.55)

where:

L̂Z(x′, `′) =

∑
αRα

(
1Lcα (`′)r(`′)

+ (1−pD(x′,`′))

1−r(`′)
+ p

(`′)
+ [pD]

+
1Lα (`′)pD(x′,`′))LZα(`′)

(x′,`′)

p
(`′)
+ [pDLZα(`′)

]

)
∑
αRα

1Lcα (`′)r(`′)
+ p

(`′)
+ [1−pD]

1−r(`′)
+ p

(`′)
+ [pD]

+ 1Lα(`′)
(2.56)

�
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Additionally, an LMB RFS is a special case of the GLMB RFS and the δ-GLMB RFS
(see Section 1.3.2). Using the property defined in (1.142), the predicted LMB RFS can be
equivalently expressed in the δ-GLMB form see (2.22):

π+(X+) = ∆(X+)
∑

I+∈F(L+)
w+(I+)δI+

(
L(X+

)[
p+
]X+

(2.57)

The next step is to calculate the δ-GLMB update. Due to the LMB tracks’ representation,
the history of association maps is no longer available in the above equation. Thus, the δ-
GLMB update can be expressed by [VV13]:

π(X|Z) = ∆(X)
∑

(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z)δI+

(
L(X

)[
p(θ)(·|Z)

]X
(2.58)

where w(I+,θ)(Z) is the measurement updated weights defined in (2.28) and p(θ)(·|Z) is the
spatial distribution defined in (2.29). The cardinality distribution of a δ-GLMB RFS is
obtained by [VV13]:

ρ(n) =
∑

(I,θ)∈F(L)×Θ

∑
L∈Fn(L)

w(I,θ)δI
(
L
)

=
∑

(I,θ)∈Fn(L)×Θ
w(I,θ) (2.59)

Then the probability of cardinality n is calculated with the summation of the weights of
all Hypotheses (I, θ) with |I| = n. The δ-GLMB representation makes it possible to extract
information about a track label ` using its PHD:

ν(x) =
∑

(I+,θ)∈F(L+)×Θ

∑
`∈L+

p(θ)(x, `)
∑
L⊆L+

1L(`)w(I,θ)(Z)δI+(L) (2.60)

=
∑
`∈L+

∑
(I+,θ)∈F(L+)×Θ

w(I,θ)(Z)1I+(`)p(θ)(x, `) (2.61)

with the PHD of track label ` given by:

ν(`)(x) =
∑

(I+,θ)∈F(L+)×Θ
w(I,θ)(Z)1I+(`)p(θ)(x, `) (2.62)

The integral over the PHD of a track with label ` can be interpreted as the existence
probability of the track `. Thus, the track’s existence probability is:

r(`) = 〈ν(`), 1〉 =
∑

(I+,θ)∈F(L+)×Θ
w(I,θ)(Z)1I+(`) (2.63)

and its spatial distribution, calculated by normalization, is:

p(`)(x) = ν(`)(x)
〈ν(`), 1〉

= 1
r(`)

∑
(I+,θ)∈F(L+)×Θ

w(I,θ)(Z)1I+(`)p(θ)(x, `) (2.64)
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According to (1.78), the PHD of (2.25) is given by:

νLMB(x) =
∑
`∈L+

r(`)p(`)(x) =
∑
`∈L+

〈ν(`), 1〉 ν
(`)(x)
〈ν(`), 1〉

=
∑
`∈L+

ν(`)(x) (2.65)

2.5 The Gaussian-Mixture LPHD (GM-LPHD) filter

The proposed Labeled Probability Hypothesis Density (LPHD) filter is a reinterpretation of
the Labeled Multi-Bernoulli (LMB) filter with a few modifications. Compared to the Proba-
bility Hypothesis Density (PHD) filter, the LPHD filter is computationally more expensive,
but more accurate with no cardinality bias. Although, the LPHD filter significantly reduces
the computational complexity of the prediction step. Similar to the LMB filter, the repre-
sentation of the predicted LMB RFS in δ-GLMB form is still computationally expensive and
requires many hypotheses in scenarios with a large number of objects.

The following subsections provide full details of the LPHD filter implementation as well
as explicit equations for the Gaussian-mixture (GM) implementation: Gaussian-Mixture La-
beled PHD (GM-LPHD).

2.5.1 GM-LPHD prediction

The prediction step of the LPHD filter directly implements the result of Equation 2.39 and
Section 2.4.1. If the multi-object posterior is an LMB RFS with label space L, its LPHD and
parameter set is defined by:

ν(x′, `′) =
∑
`∈L

δ`(`′)r(`)p(`)(x′) = r(`′)p(x′, `′)

π =
{(
r(`), p(`)

)}
`∈L

thus, the predicted LPHD with the LMB RFS distribution with label space L+ = L ∪ B is
given by:

ν+(x, `) =


∫
pS(x′, `) f+(x|x′) ν(x′, `)dx if ` ∈ L

νB(x, `) if ` ∈ B

π+ =
{(
r

(`)
+,S , p

(`)
+,S

)}
`∈L

⋃{(
r

(`)
B , p

(`)
B

)}
`∈B

where B ⊆ L+ is the labeled-set for the birth targets, L is the labeled set for the surviving
targets, and νB(x, `) = r

(`)
B p

(`)
B (x, `) is the birth target LPHD. The labels for the newborn

objects should be distinct. The posterior probability densities p(`) of all tracks ` ∈ L are
given by a mixture of Gaussians as follows:
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p(`)(x) =
j(`)∑
j=1

w(`,j)N
(
x; x̂(`,j), P (`,j)

)

where x̂(`,j) is the mean value of each Gaussian, and P (`,j) is the estimation error covariance.
Similar to the LMB filter, the weights w(`,j) should be normalized. The hypothesis is that each
object follows a linear Gaussian process model with a state independent survival probability,
i.e., pS(x), pS , a state transition matrix F , and a process noise covariance Q. The linear
Gaussian process model can be expressed by:

f+(x|ξ) = N
(
x;Fξ,Q

)
(2.66)

Thus, the predicted existence probability r
(`)
+,S and the predicted spatial distribution

p
(`)
+,S(x) of a survival object ` are given by:

r
(`)
+,S = r(`)pS (2.67)

p
(`)
+,S(x) =

j(`)∑
j=1

w(`,j)N
(
x; x̂(`,j)

+ , P
(`,j)
+

)
(2.68)

where:

x̂
(`,j)
+ = Fx̂(`,j) (2.69)

P
(`,j)
+ = FP (`,j)F T +Q (2.70)

where each of j` Gaussian distributions of an object ` is predicted using the standard Kalman
filter. For nonlinear problems, it is possible to use the Extended Kalman filter (EKF) or the
Unscented Kalman filter (UKF). The prediction equations are analogous to those of the
Kalman filter; see Section 1.1.2 for further detail.

The number of newborn objects and their existence probability are application dependent.
For a birth model with number of Gaussian components JB, object states x̂`,jB , and estimation
error covariance P (`,j)

B , the spatial distribution of the newborn Bernoulli object is given by:

p
(`)
+,B =

JB∑
j=1

w
(`,j)
B N

(
x; x̂(`,j)

B , P
(`,j)
B

)
(2.71)

where the expected number of newborn objects is given by N̂B = ∑
`∈B r

(`)
B .

2.5.2 GM-LPHD update

In order to calculate the posterior existence probability and the posterior spatial distribution
of individual objects defined in Section 2.4.2, the update step of the LPHD filter needs the
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innovations of each object ` with all observations zθ(`).

This section proposes explicit forms for the GM implementation of the likelihoods η(θ)
Z (`)

and the measurement updated posterior distributions p(θ)(x, `|Z) defined in (2.30) and (2.29).
Given the predicted PHD:

ν+(x, `) = 1J(`)r(`)
+ p

(`)
+ (x) = 1J(`)r(`)

+ p+(x, `)

with the predicted spatial distribution of an object ` is a Gaussian-mixture given by:

p+(x, `)(x) =
J

(`)
+∑
j=1

w
(`,j)
+ N

(
x; x̂(`,j)

+ , P
(`,j)
+

)
(2.72)

Similar to the PHD filter (see Section 1.2.8) and the LMB filter, the detection probability
is assumed state independent, i.e., pD(x) = pD. To simplify notations, the measurement
matrix H and the measurement noise R are assumed to be constant. The likelihood of the
assignment of observations zθ(`) to object ` is defined as folllows:

η
(θ)
Z (`) = pD

κ(zθ(`))

J
(`)
+∑
j=1

w
(`,j)
+ N

(
zθ(`); z

(`,j)
+ , S

(`,j)
+

)
(2.73)

where κ(·) is the intensity of the false alarm process that follows a Poisson distribution. The
innovation covariance S(`,j)

+ and the predicted measurement z(`,j)
+ are calculated using the

Kalman filter equations:

S
(`,j)
+ = HP

(`,j)
+ HT +R (2.74)

z
(`,j)
+ = Hkx̂

(`,j)
+ (2.75)

The posterior spatial distribution of the update of object ` with observation z(`,j)
+ is defined

by:

p(θ)(x, `|Z) =
J

(`)
+∑
j=1

w
(`,j,θ)
+ (Z)N

(
x; x̂(`,j,θ)

+ , P (`,j)
)

(2.76)

where the posterior weight of each Gaussian component j has the following form:

w(`,j,θ)(Z) =
1

κ(zθ(`)) pD w
(`,j)
+ N

(
zθ(`); z

(`,j)
+ , S(`,j)

)
η

(θ)
Z (`)

(2.77)

with:
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x̂
(`,j,θ)
+ (Z) = x̂

(`,j)
+ +K(`,j)

(
zθ(`) − z

(`,j)
+

)
(2.78)

K(`,j) = P
(`,j)
+ HT

[
S(`,j)

]−1
(2.79)

P (`,j) = P
(`,j)
+ −K(`,j)S(`,j)

[
K(`,j)

]T
(2.80)

The proposed measurement update equations can be extended for nonlinear problems
using the EKF or the UKF filter. The missed detection probability η

(θ)
Z (`) = qD, where

qD = 1 − pD, corresponds to a missed detection of an object `, i.e., θ(`) = 0. In the case of
the probability of missed detection is state independent, the posterior spatial distribution of
the track corresponds to the predicted spatial distribution in the following form:

p(θ)(x, `|Z) =
J

(`)
+∑
j=1

w
(`,j,θ)
+ (Z)N

(
x; x̂(`,j,θ)

+ , P (`,j)
)

(2.81)

where:

w(`,j,θ)(Z) = w
(`,j)
+ (2.82)

x̂(`,j,θ)(Z) = x̂
(`,j)
+ (2.83)

P (`,j) = P
(`,j)
+ (2.84)

2.5.3 GM-LPHD track extraction and prunning

In general, algorithms for target extraction estimate the number of objects N̂ using the Max-
imum a posteriori (MAP) estimate of the cardinality distribution. Similar to the LMB filter,
the track extraction in the LPHD filter is not restricted to the MAP estimate of the cardinal-
ity distribution approach. Since the LPHD filter represents its posterior distribution as an
LMB RFS, it is possible to perform the track extraction selecting all tracks whose existence
probability exceeds a threshold T . Thus, the set of extracted tracks can be calculated by:

X̂ = {(x̂, `)|r(`) > T} (2.85)

The threshold T is application dependent. A high value for T increases the delay for
including newborn tracks in the output of the tracking system and decreases the number
of false tracks. Smaller values for T increases the number of false tracks and decreases the
output delay for newborn tracks.

In the case where the pD ≈ 1, a missed detection considerably reduces the existence
probability, what might suppress the output of a previously confirmed track with r(`) ≈ 1.
To mitigate this issue, a hysteresis can be used to return outputs only if the maximum
existence probability r(`)

max of a track ` has once exceeded an upper threshold Tupper and if
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the current existence probability r(`) is higher than a lower threshold Tlower:

X̂ = {(x̂, `) : r(`)
max > Tupper ∧ r(`) > Tlower} (2.86)

2.6 Numerical simulation using the LPHD filter

In this section, a nonlinear Gaussian scenario is presented in order to demonstrate and verify
the performance of the proposed Labeled Probability Hypothesis Density (LPHD) filter. The
LPHD filter is implemented in the Gaussian-mixture form, using an Extended Kalman filter
(EKF) to perform the update step. A performance comparison is also presented with the
δ-GLMB filter and the PHD Tracker (PHDT) filter (see Section 1.3.1).

The nonlinear scenario is the same used by Ba-Ngu Vo, Ba-Tuong, and Reuter et al. to
evaluate the GLMB filter and the LMB filter [VV13; Reu+14]. It counts with a time-varying
number of objects observed in clutter, i.e., the scenario comprises a total of ten objects that
appear and disappear at different times. Figure 2.1 shows the trajectories of the objects with
the start and stop positions of each track.

Figure 2.1: Trajectories of ten time-varying observed targets during 100s. The number of
objects varies over time, and the simulation starts with one object, followed by three new
objects that appear at time 10s; one new object arises at time 20s followed by three other
objects that appear at time 40s; finally, two objects appear at time 60s. The radar is at the
origin of the axes. Start and stop positions for each track are shown with • and N.

The object states are represented by a vector x = [Px, Vx, Py, Vy, ω]T that contains the
positions (Px, Py), the velocities (Vx, Vy), and the turn rate ω. The transition turn model
used in this example is defined by:

x̃k = F (ωk−1)x̃k−1 +Gwk−1

ωk = ωk−1 + ∆uk−1



2.6. NUMERICAL SIMULATION USING THE LPHD FILTER 65

where:

F (ω) =


1 sinω∆

ω 0 −1−cosω∆
ω

0 cosω∆ 0 − sinω∆
0 1−cosω∆

ω 1 sinω∆
ω

0 sinω∆ 0 cosω∆

 , G =



∆2

2 0
T 0

0 ∆2

2

0 ∆


with wk−1 ∼ N (·; 0, σ2

wI), uk−1 ∼ N (·; 0, σ2
uI), I is the identity matrix, ∆ = 1s, σw = 15m/s2,

and σu = (π/180)rad/s. The probability of survival objects is pS(x) = 0.99, and when the
object is detected, the observation is a noise bearing range defined by:

zk =

arctan(PxPy )√
P 2
x + P 2

y

+ εk (2.87)

where εk ∼ N (·; 0, Rk), with Rk = diag([σ2
θ , σ

2
r ]T ), σθ = (π/180) rad, and σr = 5m. The birth

objects may only appear at four different locations, which are modeled by a multi-Bernoulli
RFS:

πB =
{(
r

(i)
B , p

(i)
B

)}4

i=1

where the spatial distribution of the birth objects is Gaussian p
(i)
B ∼ N (x; x̂(i)

B , PB). The
existence probability r(i)

B of the Bernoulli distributions, the mean values x̂(i)
B of the Gaussian

distributions, and the covariance of Gaussian birth terms PB are given by:

r
(1)
B = r

(2)
B = 0.02

r
(3)
B = r

(4)
B = 0.03

x̂
(1)
B = [−1500, 0, 250, 0, 0]T

x̂
(2)
B = [−250, 0, 1000, 0, 0]T

x̂
(3)
B = [250, 0, 750, 0, 0]T

x̂
(4)
B = [1000, 0, 1500, 0, 0]T

PB = diag([50, 50, 50, 50, 6(π/180)]T )2

The probability of detection is state-dependent and reaches a peak value of 0.98 at the
origin and 0.92 at the edge of the surveillance region. The probability of detection can be
calculated as follows:

pD,k(x) = 0.98N ([Px,k, Py,k]T ; 0, 60002I2)
N (0; 0, 60002I2)
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where I2 denotes the identity matrix of dimension two. Additionally, clutter follows a Poisson
RFS with intensity given by:

κ(z) = λc
V
U(z)

where U(z) denotes a uniform density in the observation region, and V =
∫
U(z)dz. For this

example we set λc = 15 false alarms per scan.

The LPHD filter output for a single run is depicted in Figure 2.2, showing the true and
estimated tracks in x and y coordinates versus time. The filter produces accurate estimates
of individual target states with a small delay. No track switching is observed, assuring that
the estimated track identities are consistent for the entire scenario. However, track label
switching can occur during target crossings, as is expected of any tracking algorithm due to
the high process noise of motion model, and the presence of false alarms, missed detections,
and clutter.

Figure 2.2: Tracks and estimates for x and y coordinates.

The performance of the proposed filter is compared to the δ-GLMB filter and the PHDT
filter. For the prediction and update steps, the δ-GLMB keeps 1000 components with the
highest weights selected using the k-shortest paths and the Murthy’s algorithm [Mur68]. For
the LPHD and δ-GLMB, the components with weights w < 10−5 are discarded. The number
of new components calculated and stored in each propagation is defined as proportional to
the weight of the original component such that at least 100 terms are kept to represent each
cardinality hypothesis, and the entire density is truncated to a maximum of 1000 terms. For
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the PHDT filter, gating is performed at each time step using a 99% validation gate. Pruning
and merging are performed at each time step using a weight threshold of Tth = 10−5 and a
merging threshold of U = 4m (see Section 1.3.1).

We compare the performance of the proposed algorithm by running a Gaussian-mixture
(GM) implementation of the PHDT and the δ-GLMB filters with 100 Sequential Monte Carlo
(SMC) trials. Figure 2.3 shows the cardinality statistics averaged over 100 SMC runs for all
the filters. The results confirm that, for this specific scenario and set-up, the LPHD and the
δ-GLMB produce similar results, outperforming the PHDT filter. The poor performance of
the PHDT filter is associated with the maner in which this filter estimates the cardinality
distribution in scenarios where targets appear and disappear.

Figure 2.3: Cardinality statistics for the LPHD, δ-GLMB, and PHDT filters with clutter
rate λc = 15 and pD = 0.98, averaged over 100 Monte Carlo runs.

Figure 2.4 compares the Optimal SubPattern Assignment (OSPA) metric, with p = 1
and c = 100m (see Section 1.2.9). As expected, the LPHD filter provides smaller OSPA
distance than the PHDT filter. However, the computational complexity of the LPHD filter
update using the labeled RFS is significantly higher than the PHDT filter that implements
the standard RFS. The OSPA distance for the LPHD filter is similar to the δ-GLMB filter.
However, the OSPA metric can be influenced by the different algorithms’ setups.
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Figure 2.4: OSPA distance (p = 1, c = 300m) for LPHD, δ-GLMB, and PHDT filters with
clutter rate λc = 15 and pD = 0.98, averaged over 100 Monte Carlo runs.

Figure 2.5 and 2.6 show the OSPA distance and the cardinality statistics for a similar
simulation with a lower detection probability, pD = 0.75, and a lower clutter rate, λc = 10
false alarms per scan. Compared to Figure 2.3 and 2.4, the OSPA distance and the cardinality
variance are slightly higher, but the performance of the filters are still very similar. This
numerical simulation presented the pratical application of the proposed algorithm; further
studies and rigorous performance analysis are beyond the scope of this chapter, and will need
to be the subject of future research.

Figure 2.5: Cardinality statistics for the LPHD, δ-GLMB, and PHDT filters with clutter
rate λc = 10 and pD = 0.75, averaged over 100 Monte Carlo runs.
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Figure 2.6: OSPA distance (p = 1, c = 300m) for LPHD, δ-GLMB, and PHDT filters with
clutter rate λc = 10 and pD = 0.75, averaged over 100 Monte Carlo runs.

2.7 Conclusion

The theory of Labeled Random Finite Set (LRFS) provides a theoretical foundation for
Bayes-optimal multi-target tracking. A well-known method based on this approach is the
Generalized Labeled Multi-Bernoulli (GLMB) filter, the first computationally tractable and
provably Bayes-optimal multi-target tracker (see Section 1.3.6). This chapter explored the
following questions: if an analogous labeled version of the PHD filter exists, what is its
relationship with the GLMB filter? Is it a suboptimal but computationally faster alternative?
This chapter proved that these questions can be answered affirmatively, and the Labeled
Multi-Bernoulli (LMB) filter proposed by Reuter et al. can be reinterpreted as a Labeled
Probability Hypothesis Density (LPHD) filter.

In contrast to the heuristic solutions for the PHD filter with labels discussed in Section
2.2, the proposed LPHD filter completely implements the labeled RFS theory, which facili-
tates the representation of labeled objects and presents a more accurate approximation of the
multi-object Bayes filter. However, the computational complexity of the LPHD filter update
is significantly higher than other implementations of the PHD filter using the standard RFS.
On the other hand, the LPHD filter can be considered an approximation of the δ-GLMB
filter, which approximates the multi-object posterior using an LMB RFS in order to simplify
the prediction step. This approximation results in an accurate and real-time target track-
ing algorithm. Additionally, the LPHD filter facilitates an implementation using Gaussian
mixtures and does not tend to degrade when the clutter is dense or the objects are close.

The LPHD filter provides several interesting topics for future research: due to the LMB
RFS properties, it is possible to calculate the variance of the number of targets in a sim-
ple manner, using the idea proposed by Schlangen et al. [Sch+18] to create a second-order
LPHD, which can aid integration with sensor management platforms. Another topic requiring
further exploration are the truncation techniques that can be implemented to reduce filter
complexity. Further possible extensions of the LPHD filter include the Sequential Monte
Carlo (SMC) implementation, the support of multi-model approach, the application to Si-
multaneous Localization and Mapping (SLAM), and the development of a different birth
model.
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Chapter 3

The multi-sensor version of the LPHD filter

The mono-sensor Labeled Probability Hypothesis Density (LPHD) filter can only be used with
the standard multi-object measurement model, which presumes that an object generates at
most a single measurement (a detection), that any measurement is generated by at most a
single object, and that measurements not generated by objects are false detections or clutter.
In contrast, sensors such as radars and sonars do not obey the standard measurement model
because their measurements are a sum of the signals collected by all objects in the scene:
they are superpositional sensors.

Multi-sensor systems and superpositional sensors are everywhere, and multi-object track-
ing filters specifically designed for them could offer a significant improvement over con-
ventional, mono-sensor standard-detection tracking approaches. In 2009, Mahler presented
the theoretical derivation of the unlabeled multi-sensor PHD filter for the two-sensor case
[Mah09b; Mah09c]. Later, Delande introduced a rigorous development of the unlabeled PHD
filter for the multi-sensor case in 2010 [Del+10; Del12], and Liu proposed another unlabeled
multi-sensor extension limited to linear sensor systems in 2011 [LW11].

This chapter presents the rigorous development of the multi-sensor LPHD filter as an
extension of the mono-sensor LPHD filter for superpositional sensors based on the work of
Papi, Saucan, and Mahler et al. [PK15; SLC17; Mah18]. The proposed multi-sensor labeled
PHD filter differs from the filters mentioned above in that its development is based on the
Labeled Random Finite Set (LRFS) formalism and the Labeled Multi-Bernoulli (LMB) RFS
distribution, rather than using the standard RFS formalist and Poisson RFS distribution.

3.1 Superpositional measurement model

The Labeled Random Finite Set (LRFS) theory is the first rigorous theoretical formulation
of true multi-object tracking, and is the basis for the first implementable and provably Bayes-
optimal multi-object tracking algorithm known as the Generalized Labeled Multi-Bernoulli
(GLMB) filter [Mah14]. The GLMB filter is an exact closed-form solution to the multi-object
Bayes filter with respect to the standard multi-object measurement model and the separable
model for pixelized image data [Pap+13; PPH14; Mah14; Mah17; Mah18]. A standard
measurement model can be expressed by:

Zk = ηk(x) + Vk (3.1)

71
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where x is the state of a single object, ηk(x) is a nonlinear measurement function, and Vk is
a zero-mean random noise vector. The measurement density (sensor likelihood function) for
this model is defined by:

Lz(x) = gk(z|x) = gVk

(
z − ηk(x)

)
(3.2)

For sensors like radars and sonars that do not obey the standard measurement model
because they are superpositional, the measurement model is given by:

Zk = ηk(X) + Vk = ηk(x1) + · · ·+ ηk(xn) + Vk (3.3)

where X = {x1, · · · , xn} with |X| = n is the multi-object state set. In general, ηk(x) and Vk
are complex-valued vectors. The measurement density of this model is:

Lz(X) = gk(z|X)
= gVk(z − ηk(X))
= gVk(z − ηk(x1))− · · · − gVk(z − ηk(xn)) (3.4)

The multi-object Bayes filter for superpositional models is computationally intractable.
To address this issue, Mahler proposed a theoretical formulation for the general superposi-
tional Cardinalized PHD (CPHD) filter in 2009 [Mah09a]. In 2012 and 2013, Mahler and
Nannuru et al. introduced computationally tractable unlabeled superpositional PHD and
CPHD filters [ME12; NCM13]. During 2015 and 2017, Papi and Saucan et al. proposed
some extension to the GLMB filter to make it capable of handling labeled superpositional
measurements models [PK15; SLC17]. Both approaches are computationally demanding for
a large numbers of objects.

To model the superpositional tracking filters within the LRFS, Papi and Kim generalized
the GLMB filter’s measurement-update step to arbitrary multi-object measurement models
[PK15]. They explored the fact that the measurement-updated multi-object distribution is
generally not a GLMB, and any labeled multi-object distribution can be approximated by a
GLMB distribution that has the same PHD and cardinality distribution [Pap+14]. However,
their superpositional GLMB filter is computationally tractable only for a few number of ob-
jects. In 2017, Saucan et al. proposed a modified approach to the Papi and Kim filter to make
it less computationally expensive [SLC17]. However, their approach is still computationally
demanding for larger number of targets.

3.2 The multi-sensor LPHD filter

This section presents the development of the multi-sensor LPHD filter, which is based on
the superpositional measurement model. Throughout the sections, we use the notations and
abbreviations presented in Sections 1.2.1, 1.3.2, and Appendix A. We also use the Probability
Generating Functional (PGFl) to prove the propositions necessary for the derivation of the
proposed filter (see Section 2.1). The following presents complementary information based
on Mahler’s work [Mah14; Mah17; Mah18].
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A Labeled Multi-Bernoulli (LMB) distribution can be represented by:

π(X) = ∆(X)wJ(L(X))pX , w(L)J =
∏

`∈J−L

(
1− r(`)

) ∏
`∈L

1L(`)r(`)

1− r(`) (3.5)

for some J ⊆ L with 0 ≤ r(`) ≤ 1 for all ` ∈ J . Its PGFl is defined by:

G[h] =
∏
`∈L

(1− r(`) + r(`)p(`)[h]) (3.6)

Similar to a Poisson RFS characterized by its PHD, an LMB RFS Ξ is also characterized
by its labeled PHD [Mah17]:

νΞ(x, `) =
[
δGk|k
δ(x′, `′) [h]

]
h=1

= 1J(`)r(`)p(`)(x) = 1J(`)r(`)p(x, `) (3.7)

however, an LMB RFS presents additional advantages over a Poisson RFS employed in the
conventional unlabeled PHD filter. The cardinality distribution of an LMB RFS can be
calculated by [Mah18]:

GΞ(x) =
∏
`∈J

(1− r(`) + r(`)x) (3.8)

consequently, the mean and variance of its cardinality distribution are easily calculated by:

µΞ =
∑
`∈J

r(`), σ2
Ξ =

∑
`∈J

r(`)(1− r(`)) (3.9)

where σ2
Ξ ≤ µΞ, while the more restrictive case σ2

Ξ = µΞ holds a Poisson RFS.

3.2.1 Multi-sensor LPHD prediction

The prediction equation for the multi-sensor LPHD filter is the same as that for the mono-
sensor LPHD filter, and is given by:

νk|k−1(x, `) =


∫
pS(x′, `) fk|k−1(x|x′) ν(x′, `)dx if ` ∈ L

νB(x, `) if ` ∈ B
(3.10)

where B ⊆ Lk|k−1 is the labeled set for the birth targets and L is the labeled set for the
current targets (see Section 2.4.1 for further details).
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3.2.2 Multi-sensor LPHD update

For a labeled RFS X = {(x1, `1), · · · , (xn, `n)} with |X| = n and (`1, · · · , `n) distinct, the
superpositional measurement model has the following form:

Zk = ηk(X) + Vk = ηk(x1, `1) + · · ·+ ηk(xn, `n) + Vk (3.11)

with the measurement distribution defined by:

Lz(X) = gk(z|X) = gVk(z − ηk(X)) (3.12)

Assume that at any time k, the measurement noise for the superpositional measurement
model is approximately Gaussian and expressed by gVk(z) ≈ N (·; z,Rk). Also consider that
the distribution of Zk = ηk(Ξk|k−1) is Gaussian.

Proposition 4. Then the multi-sensor LPHD update for a predicted LPHD νk|k−1(x, `) and
for new superpositional measurements Zk is defined by:

νk(x, `) =


0 if ` 6∈ J

αk νk|k−1(x, `) N (z; zk − η(x, `)− o(`), R+O(`))
max`′∈J

∫
νk|k−1(x′, `′) N (z; zk − η(x′, `′)− o(`′), R+O(`′)) dx′

otherwise

(3.13)

where 0 < αk ≤ 1 is an application-dependent constant, and o(`) and O(`) are defined by:

o(`) =
∑

`′∈J−{`}
ν(`′)[η], (3.14)

O(`) =
∑

`′∈J−{`}

(
ν(`′)[ηηT ]− ν(`′)[η]ν(`′)[η]T

)
(3.15)

where T denotes the matrix transpose, and:

ν(`)[η] =
∫
η(x, `)νk|k−1(x, `)dx, (3.16)

ν(`)[ηηT ] =
∫
η(x, `)η(x, `)T νk|k−1(x, `)dx, (3.17)

and similar to the mono-sensor LPHD filter,
∫
νk|k−1(x, `)dx ≤ 1 for every `.
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Proof. The approach is similar to that used by Mahler to derive the unlabeled superposi-
tional PHD and CPHD [ME12; Mah14; Mah17; Mah18]. Considering that the measurement-
updated multi-object probability distribution is given by Bayes’ rule:

πk(Xk|Z1:k) =
gk(Zk|Xk)πk|k−1(Xk|Z1:k−1)

gk(Zk|Z1:k−1) (3.18)

gk(Zk|Z1:k−1) =
∫
gk(Zk|Xk)πk|k−1(Xk|Z1:k−1)δXk (3.19)

then the measurement-updated PHD is:

νk(x, `) =
∫
πk({(x, `)}) ∪W )δW

=
∫
gVk(zk − η(x, `)− η(W ))πk|k−1({(x, `)}) ∪W )δW

gk(Zk|Z1:k−1) (3.20)

The derivation is realized in two steps following Nannuru and Mahler’s approximations
[NCM13; Mah14; Mah18].

Step 1: Approximate the Bayes normalization factor. This is possible via the change
of variables for the set integral (see Appendix A):

gk(Zk|Z1:k−1) =
∫
N (z; zk − η(X), R)πk|k−1(Xk|Z1:k−1)δX

=
∫
N (z; zk − z,R)P (z)dz (3.21)

where P (z) represents the distribution of the random vector Z = η(Ξ). Assuming that
πk|k−1(Xk|Z1:k−1) is an LMB RFS with LPHD and PGFl:

ν(x, `) = ν(`)(x) = 1J(`)r(`)p(x, `),
G[h] =

∏
`∈L

(1− r(`) + r(`)p(`)[h])

define o and O as the expected value and covariance matrix of P (z), and approximate
it with P (z) ≈ N (z; z − o,O). Then the Bayes normalization factor is given by:

gk(Zk|Z1:k−1) ≈ N (z; zk − o,R+O) (3.22)

then writing o and O for the labeled case:
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o =
∑
`

∫
η(x, `)ν(x, `)dx (3.23)

O =
∑
`

∫
η(x, `)η(x, `)T ν(x, `)dx

+
∑
`1,`2

∫
η(x1, `1)η(x2, `2)T

[
ν2,k|k−1(x1, `1, x2, `2)

− νk|k−1(x1, `1)νk|k−1(x2, `2)
]
dx1dx2 (3.24)

and finally it can be shown that:

o =
∑
`

ν(`)[η], O =
∑
`

(
ν(`)[ηηT ]− ν(`)[η]ν(`)[η]T

)
Step 2: For a determined (x, `), define the new labeled multi-object distribution and
calculate the approximate PHD:

π
(x,`)
k|k−1(Xk|Z1:k−1) = ν(x, `)−1π({(x, `)} ∪X) (3.25)

and using the change of variables formula for the set integral (see Appendix A):

νk(x, `)
ν(x, `) =

∫
N (z; zk − η(X)− η(X), R)π(x,`)

k|k−1(Xk|Z1:k−1)δX
gk(Zk|Z1:k−1) (3.26)

=
∫
N (z; zk − η(X)− z,R)P (x,`)(z)dz

gk(Zk|Z1:k−1) (3.27)

where P (x,`)(z) is the distribution of the random vector Z(x,`) = η(Ξ(x,`)) while π(x,`)
k|k−1(·)

is the distribution of the LRFS Ξ(x,`). Define o(x,`) and O(x,`) as the expected value
and covariance matrix of P (x,`)(z). These values become independent of x and we can
express o(`) =(x,`), O(`) = O(x,`), and by approximating P (x,`)(z) ≈ N (z; z − o(`), O(`)),
we have:

νk(x, `) ≈
νk|k−1(x, `) N (z; zk − η(x, `)− o(`), R+O(`))

N (z; zk − o(`′), R+O(`′))
(3.28)

then integrate both sides of the above equation:

∫
νk(x, `)dx ≈

∫
νk|k−1(x, `) N (z; zk − η(x, `)− o(`), R+O(`))dx

N (z; zk − o(`′), R+O(`′))
(3.29)

the left side must be no larger than 1; however, the same is not necessarily true of the
right side because it is an approximation. According to Mahler [Mah18], to ensure that
the right side of the above equation never exceeds 1, it is necessary to utilize heuristic
reasoning, such as normalizing the PHD as follows:

νk(x, `) ≈
νk|k−1(x, `) N (z; zk − η(x, `)− o(`), R+O(`))

max`′∈J
∫
νk|k−1(x′, `′) N (z; zk − η(x′, `′)− o(`′), R+O(`′)) dx′

(3.30)
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where
∫
νk|k−1(x′, `′)dx′ ≤ 1 for all ` ∈ J . However, this would mean that there is always

at least one track with a unity probability of existence where
∫
νk|k−1(x′, `′)dx′ = 1,

which is physically improbable. This can be fixed using an heuristic factor 0 < αk ≤ 1
as follows:

νk(x, `) =
αk νk|k−1(x, `) N (z; zk − η(x, `)− o(`), R+O(`))

max`′∈J
∫
νk|k−1(x′, `′) N (z; zk − η(x′, `′)− o(`′), R+O(`′)) dx′

(3.31)

�

3.3 Conclusion

Most of the multi-object tracking algorithms in the current literature are developed for single
sensors. The use of multiple sensors can reduce uncertainty about object states, the probabil-
ity of object existence, and the variance in the cardinality estimation. However, this problem
is generally computationally intractable, especially for more than two sensors.

The multi-object Bayes-optimal filter for non-standard measurement models is still com-
putationally intractable. An attempt to address this issue started with Mahler in 2009, who
proposed a theoretical formulation of the general superpositional CPHD filter, followed by
other publications with Nannuru et al. in 2012 and 2013. During 2015 and 2017, an extension
of the GLMB filter was proposed by Papi and Saucan et al. to make it capable of handling
labeled superpositional measurements models. But both Papi and Saucan’s approaches are
computationally demanding for a large number of objects.

This chapter can be seen as a continuation of the aformentioned works to derive a tractable
multi-sensor multi-object Bayes filter within the labeled RFS. It was presented the rigor-
ous development of the multi-sensor LPHD filter for superpositional sensors. The proposed
derivation is also applicable to approximations such as the Labeled Multi-Bernoulli (LMB)
filter since this filter requires a special case of the GLMB RFS [Reu+14]. Possible implemen-
tations of the multi-sensor LPHD filter can be based on the work of Papi and Beard et al.
[Pap+14; BVV15].
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Chapter 4

Sensor Management for multi-object tracking

Advances in sensor technologies led to the emergence of a large number of controllable degrees
of freedom in sensing devices, which allow software command update parameters such as
center frequency, bandwidth, beam-pointing, and many other aspects of sensors’ resources
and operating modes. Sensor systems operate under resource constraints that prevent the
constant simultaneous use of all resources; sensor management becomes relevant when the
sensing system has the capability of actively managing these resources in reaction to previous
measurements [Her+08; HC11]. Mutli-object sensor management is typically an optimal non-
linear control problem. Its objective is to allocate resources optimally by directing the right
sensor on the proper platform to the appropriate target at the correct time [Mah03b; Her+08].
In order to accomplish this objective, mutli-object sensor management must address issues
such as the number of targets varying in time and the measurements’ susceptibility to missed
detections and false alarms.

With reference to the Random Finite Set (RFS) approach, Mahler developed theoretical
foundations of the mutli-object sensor management reward function related to the Posterior
Expected Number of Targets (PENT) [MZ04], and its variation to prioritize targets of interest,
the Posterior Expected Number of Targets of Interest (PENTI) [Mah04; Mah14]. Delande,
in turn, introduced a reward function called Balanced Explorer and Tracker (BET) that
provides efficient sensor management in situations where the sensor’s field of view (FOV)
cannot cover the whole state space at the same time [Del12]. Ristic and Vo proposed a reward
function to sensor management using the Rényi divergence between the mutli-object prior
and posterior densities [RV10; RVC11]. More recently, Hoang, Vo, Vo, and Mahler offered
a new intuitive and tractable objective function based on the Cauchy-Schwarz information
functional [Hoa+15].

When only a subset of the total targets can be successfully tracked, the prioritization of
target tracks is crucial and cannot be achieved by means of information gain-based metrics.
To overcome the limitations of existing metrics, recent research started to apply a statistical
risk model used to calculate an expected cost as a metric. Papageorgiou et al. proposed a
Risk-based approach to sensor resource management for the problem of missile defense [PR07].
Wang et al. developed a Bayesian Risk-based sensor management for integrated detection
and estimation [WHE11]. Martin introduced a statistical Risk-based metric for a field of
view problem [Mar15]. This thesis differs from the above-mentioned studies presenting a
Risk-based sensor management using the RFS and the Partially Observable Markov Decision
Process (POMDP) framework.

79
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This chapter is devoted to sensor management using the Extended Kalman filter (EKF)
and the Probability Hypothesis Density (PHD) filter and provides a clarified version of the
author’s conference papers [Gom+16; Gom+17]. Section 4.1 presents the existing sensor
management approaches, such as Task-based, information-theoretic, and mission-oriented.
This section also discusses in detail the existing sensor management schemes that combine the
RFS theory and the POMDP framework. Section 4.2 introduces the newly derived analytical
expression of the Expected Risk Reduction (ERR) metric between two densities. We define
the Expected Risk Reduction (ERR) approach to mutli-object sensor management as similar
to that in [PR07; WHE11; Mar15; Gom+16]; however, to jointly estimate the number of
targets and their states, the Gaussian-Mixture PHD (GM-PHD) tracker is implemented.
Finally, Sections 4.3 and 4.4 demonstrate the performance of the proposed reward function
in the context of multi-object tracking in a radar beam-pointing problem where targets need
to be prioritized.

4.1 Fundamentals of Sensor Management

The term sensor management refers to the control that an agile system has over the sensor
configuration parameters to satisfy operational constraints and achieve operational objec-
tives. To accomplish this, one typically seeks a policy for determining the optimal sensor
configuration at each time, within constraints, as a function of information available from
a priori measurements and other sources [BP99; XS02; Her+08; HC11; BWT11]. For a
given sensing application, sensor management consists of determining sensing actions that
maximize the efficiency of the resulting sensor measurements. Depending on the complexity
of the system and the number of sensing actions available, optimal sensor management can
be intractable. For most applications of interest, a large number of decisions must be made
regarding how sensors should collect measurements, making sensor management challenging
[BP99; XS02; Her+08; HC11; BWT11].

One of the earliest and most challenging applications of sensor management is known as
multi-object tracking, which refers to the problem of jointly estimating the number of targets
and their states or trajectories from noisy sensor measurements [BP99; BWT11; Mah14].
Sensor management in multi-object tracking is typically an optimal nonlinear control problem
where the number of targets varies randomly in time and the measurements are susceptible to
missed detections and false alarms. Thus, the goal is to allocate resources optimally, directing
the right sensor on the proper platform to the appropriate target at the correct time [Mah03b;
Her+08].

In many multi-object tracking applications, a sensor can be controlled by changing the
position, orientation, or motion of the sensor platform or by operating it in a different mode,
which may have a significant impact on the quality of the estimation performance of the target
tracking system. Modern surveillance systems often employ multiple controllable sensors
capable of collecting information on objects of interest in their field of view. These sensors
must coordinate their observation strategies to enhance the information that will be collected
by their future measurements in order to estimate the states of objects of interest [BP99;
XS02; Her+08; HC11].

Beginning in the 1990s, the rapidly growing interest in sensor management was associated
in large part with developments in sensor and communications technologies. Recently, new
sensor management approaches based on modeling sensor management as a decision process
have emerged that provide a unifying perspective for current state-of-the-art sensor manage-
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ment research. A decision process is a time sequence of measurements and control actions in
which each action in the sequence is followed by a measurement acquired as a result of the
previous action. A sensor manager is designed to allow for the specification of a decision rule,
often called a policy, that generates realizations of the decision process. An optimal policy
will generate decision processes that, on average, will maximize an expected reward [Her+08;
HC11; BWT11; Mah14].

A natural way to simplify the task of policy optimization is to assume that the general
decision process satisfies some additional Markovian properties. To make the general decision
process Markovian, the assumption is that the state sequence is dependent only on the most
recent state and the action given only on the entire past. When the state can be recovered
from the measurements, the resultant process is called a Markov Decision Process (MDP).
When the state is not recoverable, the resultant process is called a Partially Observable
Markov Decision Process (POMDP) [Her+08; HC11].

4.1.1 Partially Observed Markov Decision Problems

Sensor management represents sequential decision-making systems where each decision gen-
erates new observations that provide additional information. The decisions are made in the
presence of uncertainty, both in the state and the observation, and are based only on the past
measurement. This class of problems has been studied in the Partially Observable Markov
Decision Process (POMDP) framework.

In this framework, the multi-object dynamics are modeled as a Markov process, but
only the posterior probability density function of the multi-object state is known, and the
true underlying state is unknown. The measurements follow a known distribution, which is
conditional on the multi-object state and the sensor control action. The benefit of performing
a given action is expressed by a reward function, which characterizes the objectives of the
control system. Every time a decision is needed, the goal is to find the control action that
maximizes this reward function.

Sensor management as a decision process assumes that a sensor collects a data sam-
ple zk at time k after taking a sensing action uk−1 at time k − 1. It is typically assumed
that the possible actions are selected from a finite action space Uk, which may change over
time. The selected action uk depends only on past samples {zk, zk−1, · · · , z1} and past
actions {uk−1, uk−2, · · · , u0}, where the initial action u0 is determined offline. The func-
tion that maps previous data samples and actions to current actions is called a policy.
That is, at any time k, a policy specifies a mapping γk and, for a specific set of sam-
ples, an action uk = γk({uk}, {zk+1}). A decision process is a sequence {uk, zk+1}k≥0 =
{u0, z1, u1, z2, u2, z3, · · · , uk, zk+1}, which is typically random and can be viewed as a realiza-
tion from a generative model specified by the policy and the sensor measurement statistics
[Her+08; HC11].

The elements of a POMDP include object state at time k represented by the predicted
multi-object posterior pdf πk|k−1(Xk|Z1:k−1), a set of admissible sensor actions Uk, and a
reward function associated with different control selection R(·). The problem lies in the
fact that at the time we want to carry out a control action, we have no knowledge of the
posterior density that would arise from taking that action. The optimal control action is
given by maximizing the expected value of a reward function over the set of admissible
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actions illustrated in Figure 4.1 is defined accordingly [Her+08]:

uk = argmax
u∈Uk

E
[
R
(
u, πk|k−1(Xk|Z1:k−1), Zk(u)

)]
(4.1)
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Figure 4.1: The Partially Observable Markov Decision Process framework for Sensor Man-
agement and multi-object Tracking. The term uk denote the best control to be applied at
time k; R

(
u, πk|k−1(Xk|Z1:k−1), Zk(u)

)
is the real-valued reward function associated with

the control u; Zk(u) is a predicted measurement obtained if the control u is applied, and
can be obtained using the Predicted Ideal Measurement Set (PIMS) as proposed by Mahler
[Mah04; Mah14]. The function R(·) is generally based either on a decrease of uncertainty or
increase of information gain between the predicted and posterior multi-object densities. The
following presents an overview of the existing sensor management approaches and how they
calculate the reward function.

4.1.2 Task-based Sensor Management

In order to produce Bayes-optimal sensor management results, one proposed suggestion is
to optimize quantities that are relevant to the sensing tasks and the operational goal of
a system, hence the name Task-based sensor management. The objective function of this
approach is formulated as a cost function which usually depends on the performance metrics
such as error or cardinality variance. For example, when an area surveillance is performed
using radar measurements, one could a) maximize the expected probability of detecting a
target, b) maximize the expected signal-to-noise ratio of a measurement, or c) minimize the
expected uncertainty in the position estimate of the target [BP99; XS02; KHK05; Her+08].

Task-based schemes result in Bayes-optimal solutions. However, their main disadvantage
is that, most often, they optimize quantities that are relevant to the operational goal but
are not explicitly what the user actually needs. Consider, for example, an air-traffic-control
scenario: minimizing the uncertainty in position and velocity of all aircrafts is beneficial but
what an operator is truly interested in is whether two aircrafts are going to collide.

One of the most common approaches when tracking a target is to select the sensing action
that will optimize a covariance-based measure. The trace of the covariance matrix is usually
considered when tracking a target using a Kalman filter and a sensing action is selected so that
its expected value is minimized. The trace is preferred over other matrix functions because
it is simple to evaluate and intuitive to explain. The uncertainty in the estimated density is
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managed, assuming that it can be described sufficiently well by a covariance matrix. Under
the Task-based sensor management approach, one can also obtain myopic and non-myopic
solutions given certain assumptions that allow the problem to be formulated as a Partially
Observable Markov Decision Process (POMDP) [Her+08; Mah14].

In multi-object tracking, when the true number of targets is not known, the trace of
the covariance matrix, or any of the other commonly used covariance-based schemes, cannot
be used as measure of uncertainty because the state space is not Euclidean [Mah14]. This
is due to the existence variable of each track taking values in [0,1] instead of the reward
function R(·). To overcome this problem and to take into account the limited field of view
of a sensor, Mahler developed theoretical foundations of the multi-object sensor management
reward function within the Random Finite Set (RFS).

Posterior Expected Number of Targets

The Posterior Expected Number of Targets (PENT) sensor management was developed by
Mahler to solve the problem of the optimal placement of the sensor’s field of view (FOV)
[MZ04]. PENT is an objective function developed using the Predicted Ideal Measurement Set
(PIMS), and it selects the control action that maximizes the number of targets seen by the
sensor [Mah14]. By maximizing the value of the PENT reward function, the sensor’s FOV
can be directed to those places where the sensor is most likely to collect the PIMS. When a
Probability Hypothesis Density (PHD) filter is used, the PENT reward function is given as
follows:

uk = argmax
u∈Uk

[ ∫
νk|k

(
x|ZPIMS

k (u)
)]

(4.2)

where uk is the best sensor control to be applied at time k, and ZPIMS
k (u) is a simulated

ideal set of measurements based on PIMS, which will be obtained if the control u is applied,
as proposed by Mahler [Mah04; Mah14].

Given a selected sensor command, the PIMS is comprised of clutter-free and noise-free
measurements that are most likely to be obtained from the selected sensor. Considering
Nk|k−1 the predicted number of objects, Xk|k−1 = {x(i)

k|k−1}
Nk|k−1
i the predicted multi-object

state, u ∈ Uk the sensor control, and g(z|x, u) a measurement likelihood function that is
dependent on the control u applied to the sensor, then the PIMS can be obtained as follows
[Mah04; Mah14]:

ZPIMS
k (u) =

Nk|k−1⋃
i=1

{
argmax

z
g(z|x(i)

k|k−1, u)
}

(4.3)

Posterior Expected Number of Targets of Interest

The PENT sensor management was also extended to consider the tactical significance of a
target, resulting in the Posterior Expected Number of Targets of Interest (PENTI) sensor
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management. The PENTI reward function for the PHD filter is given by [Mah04; Mah14]:

uk = argmax
u∈Uk

[ ∫
τ(x) νk|k

(
x|ZPIMS

k (u)
)]

(4.4)

where τ(x) ∈ [0, 1] is the tactical importance function of each target.

4.1.3 Information-Theoretic Sensor Management

The information-theoretic sensor management aims to improve the information content of the
multi-object distribution by optimizing some measure of information gain. It has attracted
substantial research interest due to its performance for multi-object tracking [Kas97; Her+08;
HC11; Mah14].

The idea of measuring information gain as a reward function in the sensor control problem
first appeared in 1991 with the works of Hintz and McVey [Hin91; HM91]. In 1992, Manyika
and Durrant-Whyte proposed the expected value of the information gain to address the
sensor management problem [MD92]. Information gain functions are theoretically rigorous;
however, they express no discernible relationship with operational requirements and in general
do not have an intuitive physical interpretation. The following presents the most important
information measures used for multi-object tracking.

Rényi divergence

Rényi or alpha divergence measures information gain between two probability densities. The
Rényi divergence between any two densities, p0(x) and p1(x), is defined by [KKH03; Her+08;
vH14; Mah14]:

Dα(p0, p1) = 1
α− 1 log

∫ [
p1(x)

]α [
p0(x)

]1−α
dx (4.5)

where the parameter α ≥ 0 determines how much the tails of the two distributions are empha-
sized. In the special case where α → 1, the Rényi divergence becomes the Kullback-Leibler
divergence [Her+08; vH14]. Kreucher, Ristic and Hoang employed the Rényi divergence as
the generalization of the Kullback-Leibler divergence in order to solve the multi-object sen-
sor management problem [KKH03; KHK05; RV10; RVC11; HV14]. They used the Rényi
divergence to calculate the reward function between the multi-object posterior and predicted
densities as shown below:

Dα(πk|k, πk|k−1) = 1
α− 1 log

∫ [
πk|k(·)

]α [
πk|k−1(·)

]1−α
dx (4.6)

where:

πk|k(·) = πk|k(xk|Z1:k−1, u0:k−1, Zk(uk))
πk|k−1(·) = πk|k−1(xk|Z1:k−1, u0:k−1)
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The divergence Dα(·) can be used to replace R(·) in (4.1). The multi-object prior density
πk|k−1(·) represents the target state obtained until the last sensor control u0:k−1, while the
multi-object posterior density πk|k(·) is the target state that will be obtained if the sensor
control action uk is performed. The objective is to maximize the information gain by com-
puting the Rényi divergence between the predicted and updated distribution choosing the
right sensor control uk. Any choice of the sensor control uk can lead to different measurement
Zk(uk), and consequently can lead to different information gain.

Kullback-Leibler divergence

Kullback-Leibler divergence or cross-entropy is perhaps the well-known quantity in infor-
mation theory and its applications. The Kullback-Leibler divergence of p0(x) and p1(x) is
defined as [MD95; Kas97; Mah03b; vH14; Mah14]:

DKL(p0, p1) =
∫
p0(x) log p0(x)

p1(x)dx (4.7)

In multi-object sensor management problem, the purpose of an optimal sensor control uk
at time k is to maximize the amount of information known about the target state x at time k+
1; therefore, the Kullback-Leibler divergence of the prior density πk|k(xk|Z1:k−1, u0:k−1, Zk(uk))
from the predicted density πk|k−1(xk|Z1:k−1, u0:k−1) is defined as [Mah14]:

DKL(πk|k, πk|k−1) =
∫
πk|k(·) log

πk|k(·)
πk|k−1(·)dx (4.8)

where:

πk|k(·) = πk|k(xk|Z1:k−1, u0:k−1, Zk(uk))
πk|k−1(·) = πk|k−1(xk|Z1:k−1, u0:k−1)

The predicted multi-object prior density πk|k−1(·) represents the target state before the
control action uk, while the updated multi-object prior πk|k(·) represents the target state fol-
lowing the control action uk. The objective is to maximize the information gain by computing
the Kullback-Leibler divergence between these two densities choosing the sensor control uk
that can lead to maximum information gain.

Cauchy-Schwarz divergence

The Kullback-Leibler divergence, and more generally the Rényi divergence, are the most
used measures of information gain. However, their form make difficult analytic solutions for
the probability density functions, even the most elementary ones, and in the case of more
complicated pdfs, approximate numerical methods must be used. To address this problem,
Hoang, Ba-Ngu Vo, Ba-Tuong, Mahler and Beard proposed a new intuitive and tractable
objective function based on the Cauchy-Schwarz information functional [Mah14; Hoa+15;
Bea+15].



86 CHAPTER 4. SENSOR MANAGEMENT FOR MULTI-OBJECT TRACKING

The Cauchy-Schwarz divergence between the probability densities p0(x) and p1(x) of two
point processes with respect to the reference measure z is defined by:

DCS(p0(x), p1(x)) = − log 〈p0(x), p1(x)〉z
||p0(x)||z ||p1(x)||z

(4.9)

where ||f || def=
√
〈f, f〉 is the L2-norm, and 〈f, g〉 def=

∫
f(x)g(x)dx is the inner product.

As shown by Hoang, the Cauchy-Schwarz divergence of two Poisson Random Finite Set
(RFS) is half the squared distance between their densities. In addition, an analytical expres-
sion for the Cauchy-Schwarz divergence between two Poisson RFS was derived by Hoang and
can be written as follows [Mah14; Hoa+15; Bea+15]:

DCS(πk|k, πk|k−1) = − log
∫
πk|k(·) πk|k−1(·) dx√∫
πk|k(·)2 πk|k−1(·)2 dx

(4.10)

where:

πk|k(·) = πk|k(xk|Z1:k−1, u0:k−1, Zk(uk))
πk|k−1(·) = πk|k−1(xk|Z1:k−1, u0:k−1)

4.2 Risk-based Sensor Management

Risk-based methods aim to explicitly take into account the operational goals of a radar
system by allocating the radar resources according to the risk posed to mission success. In
this approach, the notion of operational risk is used for performing sensor management; hence,
the name Risk-based sensor management. The Risk-based approach to sensor management
appeared as a result of attempts to a) consider quantities that are directly of interest to the
operational goal of the system, and b) obtain better situational awareness within a given
operational context.

Risk-based sensor management can also be categorized under the heuristic or rules-based
approaches. Following the rules-based approache, more sensor resources can be allocated
to targets that are considered to be more threatening to mission while risk-based sensor
management is considered a separate class due to the novelty of considering higher-level
quantities that are defined according to the operational context.

The main advantage of Risk-based sensor management is that it explicitly takes into
account the operational goal of a system. The disadvantage is that it does not focus on
managing the uncertainty in the quantities of interest such that an operator can make deci-
sions under lower uncertainty. To overcome this, priorities can be assigned to tasks or the
reduction of operational risk can be considered [PR07]. Risk cannot be reduced by the sensor
itself but rather with the use of an actuator.

To minimize the expected risk reduction, a decision is made on target classification. If it
is incorrect, it results in a cost, i.e., a loss of a target of interest or a loss of sensor resources.
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In this thesis, an incorrect decision is tagged as a type 1 error during statistical hypothesis
testing. A type 1 error corresponds to an incorrect rejection of a true null hypothesis H0,
and occurs when it is true yet rejected.

The matrix CM1, as defined by Equation 4.11, contains the cost of committing a type 1
error. Each column represents the true classification, and each row stands for the decision on
a classification. The diagonal is zero since there is no cost when the correct decision is made.

CM1 =



1 2 . . . n

1 0 c112 . . . c11n

2 c121 0 . . . c12n
...

...
... . . . ...

n c1n1 c1n2 . . . 0

 (4.11)

where each c1ij entry occurs when a decision falsely rejects H0, resulting in a type 1 error.

4.2.1 Expected cost of committing a type 1 error

The expected cost of making a type 1 error when deciding on the classification of a target
track is influenced by many factors, including the current classification, the probability of
the actual target being lost (or not), and the decision about this classification. The above-
mentioned factors are modeled by random variables. The expected cost can be obtained by
applying the law of total expectation, as described in [Mar15] and detailed below.

Let C1 be a discrete random variable representing the cost of the type 1 error. The cost
matrix CM1 contains entries {c1ij} where each c1ij entry occurs when a decision falsely rejects
H0, resulting in a type 1 error. J corresponds to a categorical random variable representing
the current classification, {j|j ∈ [1, n]}. I is a categorical random variable denoting the
decision on a classification, {i|i ∈ [1, n]}. Î is a discrete, uniformly distributed, random
variable denoting the classification decision on a reacquired target after it has been lost,
{i|i ∈ [1, n]}. L is a Bernoulli random variable representing whether or not the actual target
is lost, where the event space is {0, 1}. We use the law of the iterated expectation for each
random variable that determines the expected cost described as:

Ec1(C1|I = i) = Ec1(C1|I = i, L = 1, J = i)P (L = 1)P (J = i)
+ Ec1(C1|I = i, L = 1, J 6= i)P (L = 1)P (J 6= i)
+ Ec1(C1|I = i, L = 0, J = i)P (L = 0)P (J = i)
+ Ec1(C1|I = i, L = 0, J 6= i)P (L = 0)P (J 6= i)

= Ec1(C1|I = i, L = 1, J = i)P (L = 1)P (J = i)
+ Ec1(C1|I = i, L = 1, J 6= i)P (L = 1)P (J 6= i)
+ 0
+ Ec1(C1|I = i, L = 0, J 6= i)P (L = 0)P (J 6= i) (4.12)

In the above summation, the first term is the expected cost resulting from a situation in
which a correct decision is made but the target is lost. The second term represents a wrong
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decision and a loss of a target. The third term becomes zero since the decision is correct and
the target is not lost. As for the fourth term, one can observe that a target is not lost in spite
of a wrong decision being made. At this point, it would be necessary to consider the case in
which the target would be reacquired. Note that regardless of the classifier’s accuracy, it is
possible that the acquired target is not the original one. Thus, (4.12) would be as follows:

Ec1(C1|I = i) = Ec1(C1|I = i, L = 1, J = i, Î = i)P (L = 1)P (J = i)P (Î = i)
+ Ec1(C1|I = i, L = 1, J = i, Î 6= i)P (L = 1)P (J = i)P (Î 6= i)
+ Ec1(C1|I = i, L = 1, J 6= i, Î = i)P (L = 1)P (J 6= i)P (Î = i)
+ Ec1(C1|I = i, L = 1, J 6= i, Î 6= i)P (L = 1)P (J 6= i)P (Î 6= i)
+ Ec1(C1|I = i, L = 0, J 6= i)P (L = 0)P (J 6= i)

= 0
+ Ec1(C1|I = i, L = 1, J = i, Î 6= i)P (L = 1)P (J = i)P (Î 6= i)
+ Ec1(C1|I = i, L = 1, J 6= i, Î = i)P (L = 1)P (J 6= i)P (Î = i)
+ 0
+ Ec1(C1|I = i, L = 0, J 6= i)P (L = 0)P (J 6= i) (4.13)

In the above summation, the first term becomes zero once the correct decision has been
made, even though the track has been lost and later reacquired. Hence, there is no cost. In
the second term, the cost is observed when the target is lost and reacquired and a wrong
decision about its classification is made. In the third term, the cost is present and the target
classification decision is never correct, even after the target has been lost and reacquired. The
fourth term of summation represents the case in which the classification decision is incorrect
(i.e. I = i and J 6= i), and the reacquired target is characterized by a different classification
(i.e., Î 6= i and J 6= i). Consequently, the cost is zero because it does not exist with regard
to the initial decision of I = i before the track was lost. The last term illustrates the cost
stemming from a wrong target classification since the target is never lost. These terms are
related to specific rows and columns of the cost matrix CM1 as shown below:

Ec1(C1|I = i) = Ec1(C1|I = i, L = 1, J = i, Î 6= i)P (L = 1)P (J = i)P (Î 6= i)
+ Ec1(C1|I = i, L = 1, J 6= i, Î = i)P (L = 1)P (J 6= i)P (Î = i)
+ Ec1(C1|I = i, L = 0, J 6= i)P (L = 0)P (J 6= i)

=
∑
c1ij

c1ij

(
P (C1 = c1ij |I = i, L = 1, J = i, Î 6= i)P (L = 1)P (J = i)P (Î 6= i)

)
+
∑
c1ij

c1ij

(
P (C1 = c1ij |I = i, L = 1, J 6= i, Î = i)P (L = 1)P (J 6= i)P (Î = i)

)
+
∑
c1ij

c1ijP (C1 = c1ij |I = i, L = 0, J 6= i)P (L = 0)P (J 6= i) (4.14)
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Ec1(C1|I = i) =
∑
r∈I

c1riP (L = 1)P (J = i)P (Î 6= i)

+
∑
r∈J

c1irP (L = 1)P (J = r)P (Î = i)

+
∑
r∈J

c1irP (L = 0)P (J = r) ∀r 6= i (4.15)

In Equation 4.15, the cost of the type 1 error C1 for all r = i is zero since there is no
cost when the correct decision is made. Note that the first term in (4.15) is a function of
the rows of the cost matrix over column J = i. This implies an incorrect decision was made
after the target was reacquired. Finally, assuming Î is uniformly distributed, and Plost is the
probability of the actual target being lost, (4.15) can be rewritten as below:

Ec1(C1|I = i) =
∑
r∈I

criP (J = i)Plost
n− 1
n

+
∑
r∈J

cirP (J = r)Plost
1
n

+
∑
r∈J

cirP (J = r)(1− Plost) ∀r 6= i

(4.16)

The probability Plost is assumed to be the portion of a multivariate normal distribution
N (x̂k, P̂k) not contained in the sensor’s FOV when the sensor’s aim-point is centered on
the kinematic state of the target (x̂ is the mean state estimate and P̂ is the state estimate
covariance). The expected cost obtained in (4.16) was introduced by Martin [Mar15] based
on works of Papageorgiou and Wang [PR07; WHE11].

4.2.2 The Expected Risk Reduction (ERR) metric

When a decision on a target classification is made, the goal is to minimize the risk, so the
minimum expected cost is chosen among all possible decisions for each track classification.
The risk always decreases with new measurements, reducing the probability of the target
being misclassified or lost [PR07; WHE11; Mar15; Gom+16].

The Expected Risk Reduction (ERR) is achieved using the minimum expected cost pre-
sented in (4.16). Note that the probabilities in this equation change as measurements are
accumulated by a sensor. It is assumed that these probabilities change as a Bayesian up-
date. Denoting R as the minimum cost before a measurement update, we can calculate the
Expected Risk Reduction (ERR) as:

Ri , Ec1(C1|I = i) (4.17)
R = min

i
{Ri} (4.18)
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Assuming that the posterior probabilities are denoted by P ′lost and P ′(J = i), the risk
using these updated probabilities is:

R′ = min
i
{R′i} = min

i



∑
r∈I

criP
′(J = i)P ′lost n−1

n

+ ∑
r∈J

cirP
′(J = r)P ′lost 1

n

+ ∑
r∈J

cirP
′(J = r)(1− P ′lost)


(4.19)

When the classification probability is updated through the direct application of Bayes’
theorem, then (4.19) can be rewritten as follows:

R′ = min
i
{R′i} = min

i



∑
r∈I

cri
P (M=m|J=i)P (J=i)

P (M=m) P ′lost
n−1
n

+ ∑
r∈J

cir
P (M=m|J=r)P (J=r)

P (M=m) P ′lost
1
n

+ ∑
r∈J

cir
P (M=m|J=r)P (J=r)

P (M=m) (1− P ′lost)


(4.20)

Since any classification measurement M is possible, it is necessary to calculate an addi-
tional expectation of all possible measurements 〈R′〉 that can be illustrated as:

〈R′〉 =
∑
m∈M

R′P (M = m)

=
∑
m∈M

min
i



∑
r∈I

cri
(
P (M = m|J = i)P (J = i)P ′lost n−1

n

)

+ ∑
r∈J

cir
(
P (M = m|J = r)P (J = r)P ′lost 1

n

)
+ ∑

r∈J
cir (P (M = m|J = r)P (J = r)(1− P ′lost))


(4.21)

Taking into consideration that the expected cost decreases in value with new measures
[PR07; Mar15; Gom+16], the radar-beam direction based on ERR is given as follows:

uk = argmax
u∈Uk

[
ERR(u)

]
(4.22)

where u = arctan(x(j)/y(j)), ∀j ∈ [1, · · · , Ntargets] is the sensor control, and ERR(u) =
R(j) − 〈R′(j)〉. The sensor control that provides the greatest reduction in this ERR value is
chosen to take the actual measurement.
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4.3 ERR numerical example using the EKF filter

This example introduces the Expected Risk Reduction (ERR) approach to sensor manage-
ment and multi-target tracking in a surveillance context that implements an IR-Radar sensor
system. Due to operational restrictions (for instance, electromagnetic emission constraints),
it is assumed that there are more targets than given sensors are capable of tracking simulta-
neously when a radar emission control is applied. It is also presumed that an incorrect target
classification entails a cost that is different for each target class. The ERR is then applied
to a simulated IR-Radar sensor management to preserve an acceptable level of kinematic
accuracy on targets of high cost. The task of a sensor manager is to decide which targets
the sensor should focus on in order to reduce the expected cost of an incorrect classification
decision. Finally, empirical statistical tests show that a track on high priority targets is
maintained better when the aforementioned approach is introduced than in the case of other
conventional methods, such as the information-theoretic sensor management or the round
robin assignment.

In order to evaluate the performance of the sensor management processing the ERR
metric, we run a set of two scenarios. Each concerns a 300-second duration. The first
scenario involves 10 maneuvering targets, 4 of which are targets of interest (targets 2, 3, 8,
and 10) and consequently should be tracked. The second scenario embraces 15 maneuvering
targets, 4 of which are targets of interest (targets 3, 5, 12, and 15). The ground truth over
300 seconds for scenario 1 and 2 is shown in Figure 4.2 and Figure 4.3.

Figure 4.2: Scenario 1: targets of interest (in red), targets not of interest (in green), and
the sensor location (cyan triangle).
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Figure 4.3: Scenario 2: targets of interest (in red), targets not of interest (in green), and
the sensor location (cyan triangle).

The sensor system combines an Infrared Search and Track (IRST) and a Radar. Both
are located at the reference position (x = y = z = 0). The IR sensor obtains measurements
of all targets every second, while the radar sensor takes a measurement of only one target
every 2 seconds (using electromagnetics emission constraints). Thus, every 2 seconds a sensor
management algorithm based on the risk metrics decides which target track to estimate using
the radar sensor report. The radar sensor field of view (FOV) is a 500 m2 region centered
on the estimated track position. The target is considered lost if the ground truth position is
outside of this FOV. In such a case, a state estimate is very poor and no further measurements
are made on targets.

For each target, there is information about the kinematic true state and its classification,
and both are represented by X as follows:

X = [Xkinematic Xclassification]

The varying turn rate of a nearly constantly turning kinematic model (see Appendix D)
is considered [BLK01; LJ03]. Thus, the true kinematic state consists of a three dimensional
position, velocity and turn rate. An Extended Kalman filter (EKF), as introduced in Chapter
1.1.3, is employed to estimate the position, velocity, and acceleration of a target. Both targets
and sensors are defined in a three dimensional space. Consequently, the true kinematic state
consists of a three dimensional position and velocity:



4.3. ERR NUMERICAL EXAMPLE USING THE EKF FILTER 93

Xkinematic =



x
ẋ
y
ẏ
z
ż



IR measurements basically provide angular information, an azimuth angle θ and an eleva-
tion angle φ, whereas radar measurements consist of an azimuth angle θ, an elevation angle
φ, a range r, and range rate ṙ as shown hereafter:

ZIR =
[
θ
φ

]
ZRadar =


θ
φ
r
ṙ


where:

θ = arctan
(
y

x

)
r =

√
x2 + y2 + z2

φ = arctan
(

z√
x2 + y2

)
ṙ = (xẋ+ yẏ + zż)

r

To avoid singularities in the linearization process, measurements are converted to Carte-
sian coordinates. The linearization on the noise is achieved by following the description
presented by Bar-Shalom [BWT11], and measurements are represented as:

ZCartesianIR =

xy
z

 ZCartesianRadar =


x
y
z
ṙ


where,

x = r cos(φ) cos(θ), y = r cos(φ) sin(θ), z = r sin(φ)

It is assumed that the initial position of targets is known. The matrix H is given as shown
below. Note that it corresponds here to a linear filter.

H =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0


The measurement error covariance matrix R is defined as follows:
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R =

Σxx Σxy Σxz

Σyx Σyy Σyz

Σzx Σzy Σzz


The subsequent paragraph demonstrates how to calculate the matrixR using linearization.

Measures θm, φm, and rm are defined with respect to true θ, φ, and r data as follows:

θm = θ + θ̃

φm = φ+ φ̃

rm = r + r̃

where errors θ̃, φ̃, and r̃ are assumed to be independent with zero mean and standard devi-
ations σθ, σφ, σr respectively. Denoting (x, y, z) the true Cartesian position and using first
order terms of the Taylor series expansion of the Cartesian measurements at (θm, φm, rm),
i.e., applying linearization, yields the Cartesian coordinate errors as follows:

xm − x ≈ r̃ cos(φ) cos(θ)− φ̃ rm sin(φ) cos(θ)− θ̃rm cos(φ) sin(θ)
ym − y ≈ r̃ cos(φ) sin(θ)− φ̃ rm sin(φ) sin(θ) + θ̃rm cos(φ) cos(θ)
zm − z ≈ r̃ sin(φ) + φ̃ rm cos(φ)

The mean of the errors, as given by the above equations, is zero. Consequently, the
elements of the corresponding covariance matrix R are:

Σxx = σ2
r cos2(φ) cos2(θ) + σ2

φ r
2 sin2(φ) cos2(θ) + σ2

θr
2 cos2(φ) sin2(θ)

Σyy = σ2
r cos2(φ) sin2(θ) + σ2

φ r
2 sin2(φ) sin2(θ) + σ2

θr
2 cos2(φ) cos2(θ)

Σzz = σ2
r sin2(φ) + σ2

φ r
2 cos2(φ)

Σxy = σ2
r cos2(φ) cos(θ) sin(θ) + σ2

φ r
2 sin2(φ) cos(θ) sin(θ)− σ2

θr
2 cos2(φ) cos(θ) sin(θ)

Σxz = σ2
r cos(φ) sin(φ) cos(θ)− σ2

φ r
2 cos(φ) sin(φ) cos(θ)

Σyz = σ2
r cos(φ) sin(φ) sin(θ)− σ2

φ r
2 cos(φ) sin(φ) sin(θ)

we set σ2
r = 1 m2 and σ2

θ = σ2
φ = 3.0462×10−4 rad2 (i.e. the standard deviation of 1 degree).

The process noise covariance matrix Q is given by:

Q = Φs



T 4

4
T 3

2 0 0 0 0
T 3

2 T 2 0 0 0 0
0 0 T 4

4
T 3

2 0 0
0 0 T 3

2 T 2 0 0
0 0 0 0 T 4

4
T 3

2
0 0 0 0 T 3

2 T 2
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The scan rate of the IR sensor is TIR = 1 second, while for the Radar sensor TRadar = 2
seconds, and Φs = 5 m/s2. Finally, the state transition model F is a basic constant velocity
model:

F =



1 T 0 0 0 0
0 1 0 0 0 0
0 0 1 T 0 0
0 0 0 1 0 0
0 0 0 0 1 T
0 0 0 0 0 1



The classification state estimate is formulated below. Assuming that there are n pos-
sible classification states for each target, J is a random variable that stands for the true
classification with support {j|j ∈ [1, n]}.

Xclassification =

P (J = 1)
...

P (J = n)

 (4.23)

The classification probability is updated by applying the Bayes’ theorem as shown below.
The classification measurement is represented by a discrete random variable M with support
{m|m ∈ [1, n]}.

P ′(J = i) def= P (J = i|M = m)

= P (M = m|J = i)P (J = i)
P (M = m)

= P (M = m|J = i)P (J = i)∑n
r=1 P (M = m|J = r)P (J = r) (4.24)

where P ′ indicates the posterior probability. To simplify classification notations in this
chapter, measurement likelihoods P (M = m|J = i) are represented by a normalized confusion
matrix CC.

CC =


1 . . . n

1 P (M = 1|J = 1) . . . P (M = 1|J = n)
...

... . . . ...
n P (M = n|J = 1) . . . P (M = n|J = n)



For comparison purposes, the ERR approach was contrasted with three different sensor
management methods including the Kullback-Leibler divergence (KL) divergence, the random
assignment, and the round robin assignment. In the latter, the targets are repeatedly selected
in a specific order. 1000 Monte Carlo runs were conducted using each method. The track
error was calculated between the ground truth position and the estimate for all tracks. For
each analysis below, the 5% of the highest and the lowest error measurements were discarded
to remove outliers.
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To calculate the KL divergence we used two multivariate normal distributions, with means
µ1, µ2 and covariance matrices Σ1, Σ2. The two distributions have the same dimension, k.
In this case, the KL divergence corresponds to:

DKL(N1||N2) = 1
2

(
(µ2 − µ1)T Σ−1

2 (µ2 − µ1)− k + trace(Σ−1
2 Σ1) + log

(det Σ2
det Σ1

))

For evaluating ERR metric, a binary classification state is considered where the target to
be tracked is either a target of interest (J = 1) or a target not of interest (J = 2). The binary
classification measurement M has support {m|m ∈ [1, 2]}. Cost matrix CM1 and confusion
matrix CC are:

CM1 =
( 1 2

1 0 1
2 30 0

)
CC =

( 1 2
1 0.8 0.2
2 0.2 0.8

)

4.3.1 Binary classification - known initial classification

In this case, all target classifications are initially known. Table 4.1 presents the resulting
median error on each target for each sensor manager method in scenario 1.

Table 4.1: The median position error in meters for scenario 1. Targets of interest are 2, 3,
8, and 10.

Class Target ERR KLdiv Random Round Robin
2 1 8949 8949 7943 107
1 2 27 122 1976 112
1 3 40 7191 5875 6215
2 4 4900 29 2365 46
2 5 7777 36 4605 62
2 6 6053 6053 3500 85
2 7 5778 5778 25001 88
1 8 31 40 3765 91
2 9 7848 7848 7600 120
1 10 41 6867 4218 105

For all targets of interest, the ERR approach maintains the value of an acceptable error
that is lower when compared to others’ methods. The sensor manager using ERR maintains
a track on targets 2, 3, 8, and 10 with the error’s value lower than the sensor’s FOV radius
(250m). The KL divergence has poor performance for target 3 and 10. The random method
performs very poorly and the round robin method has poor performance for target 3.

When using ERR, more measurements can be assigned to targets 2, 3, 8, and 10, since
they are targets of interest. Thus, tracking performance is improved yet the track quality for
targets of no interest is diminished.

To examine the results presented by metrics more accurately, it is necessary to notice that
the average track error is less than 250 meters, and therefore still within the sensor’s FOV.
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If the average error on targets 2, 3, 8, and 10 is greater than 250 meters, it means that the
sensor management method was ineffective on average.

Table 4.2 focuses on p-values for a Student t-test (H0: true mean error is ≤ 250 meters).
We can observe that the ERR approach is the only method that effectively maintains track
on all targets of interest.

Table 4.2: p-values for H0: residual error ≤ 250 meters

Target ERR KLdiv Random Round Robin
2 1 1 0 1
3 1 0 0 0
8 1 1 0 1
10 1 0 0 1

Table 4.3 represents the resulting median error on each target for each sensor manager
method in scenario 2. For all targets of interest, the ERR approach maintains track on targets
3, 5, 12, and 15. The error does not exceed sensor’s FOV radius (250m). The KL divergence
performs well only for target 15. The random method performs very poorly, and the round
robin method performs well only for target 5.

Table 4.3: The median position error in meters for scenario 2. Targets of interest are 3, 5,
12, and 15.

Class Target ERR KLdiv Random Round Robin
2 1 8949 8949 7880 8949
2 2 4965 4965 2826 132
1 3 226 7191 6336 6220
2 4 4900 44 3165 56
1 5 33 7777 5571 72
2 6 6053 6053 4274 104
2 7 5778 5778 6617 101
2 8 5497 68 4361 102
2 9 7848 7848 7416 115
2 10 6867 6867 5154 114
2 11 4841 4841 3539 105
1 12 39 7102 5280 7102
2 13 7657 32 5694 7657
2 14 6913 6913 4733 124
1 15 34 35 4992 6690

Table 4.4 provides p-values for a Student t-test (H0: true mean error is ≤ 250 meters).

Table 4.4: p-values for H0: residual error ≤ 250 meters

Target ERR KLdiv Random Round Robin
3 1 0 0 0
5 1 0 0 1
12 1 0 0 0
15 1 1 0 0
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4.3.2 Binary classification - unknown initial classification

In this case, all target classifications are initially unknown. Table 4.5 provides the resulting
median error on each target for each sensor manager method in scenario 1. For all targets of
interest, the Expected Risk Reduction (ERR) approach and the Kullback-Leibler divergence
(KL) divergence perform well for targets 2 and 8. The random method performs very poorly,
and the round robin method only fails to track target 3.

Table 4.5: The median position error in meters for scenario 1. Targets of interest: 2, 3, 8,
and 10. All target classifications are initially unknown.

Class Target ERR KLdiv Random Round Robin
2 1 8487 8949 8029 107
1 2 30 122 1980 112
1 3 7191 7191 6082 6216
2 4 1578 29 2440 46
2 5 1748 36 4369 62
2 6 1405 6053 3382 85
2 7 2539 5778 22672 88
1 8 34 40 3703 91
2 9 2749 7848 7981 120
1 10 3269 6867 4468 105

Table 4.6 shows the resulting median error on each target for each sensor manager method
in scenario 2 where all target classifications are initially unknown. For all targets of interest,
the ERR approach maintains tracks on targets 5 and 15 with the error not exceeding the
sensor’s FOV radius (250m). The KL divergence performs well only for target 15. The
random method performs very poorly, and the round robin method performs well only for
target 5.

Table 4.6: Median position error in meters for scenario 2. Targets of interest are 3, 5, 12,
and 15. Initially, all target classifications are unknown.

Class Target ERR KLdiv Random Round Robin
2 1 8597 8949 7880 8949
2 2 637 4965 2826 132
1 3 7191 7191 6336 6220
2 4 571 44 3165 56
1 5 54 7777 5571 72
2 6 5676 6053 4274 104
2 7 3825 5778 6617 101
2 8 1057 68 4361 102
2 9 7848 7848 7416 115
2 10 6867 6867 5154 114
2 11 1516 4841 3539 105
1 12 7102 7102 5280 7102
2 13 2539 32 5694 7657
2 14 3832 6913 4733 124
1 15 138 35 4992 6690
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4.3.3 Ternary classification - unknown initial classification

In order to evaluate the ERR metric, we also consider a ternary classification state where
the target being tracked is either a target of high interest (J = 1), of medium interest
(J = 2), or of low interest (J = 3). The ternary classification measurement M has support
{m|m ∈ [1, 2, 3]}. Cost matrix CM1 and confusion matrix CC are:

CM1 =


1 2 3

1 0 20 1
2 30 0 1
3 30 20 0

 CC =


1 2 3

1 0.8 0.1 0.1
2 0.1 0.8 0.1
3 0.1 0.1 0.8



Initially, all target classifications are unknown. Table 4.7 shows the resulting median error
on each target for each sensor manager method for scenario 1. For all targets of interest, the
ERR approach performs well only for target 2. The KL divergence performs well for targets
2 and 8. The random method performs very poorly, and the round robin method only fails
to track target 3. While comparing Table 4.5 and 4.7, we can observe that the ERR method
improves results in the ternary classification on target 10 (hight interest) despite the opposite
impact on targets 2 and 8 (medium interest).

Table 4.7: The median position error in meters for scenario 1. There are the following
targets of interest: 2, 8, and 10. Initially, all target classifications are unknown.

Class Target ERR KLdiv Random Round Robin
3 1 8704 8949 7909 107
2 2 47 122 2182 112
3 3 7191 7191 5543 6220
3 4 2112 29 2228 46
3 5 1994 36 3600 62
3 6 4193 6053 3346 85
3 7 5660 5778 10838 88
2 8 293 40 4290 91
3 9 2716 7848 7616 120
1 10 1825 6867 3587 105

Table 4.8 illustrates the resulting median error on each target for each sensor manager
method in scenario 2. For all targets of interest, the ERR approach performs well only in
the case of target 5, and shows that the value of the average error on targets 12 and 15 is
lower than when other methods are employed, but higher than the sensor’s FOV. The KL
divergence performs well only for target 8. The random method performs very poorly, and
the round robin method can only track target 5.

If we compare Table 4.6 and 4.8, we notice improved results for the ternary classification
of tracks on target 12 when the ERR method is applied. As for tracks on targets 5 and 15
(medium interest), the outcomes are less satisfactory. However, the value of an average error
on target 12 turns out to be higher than the sensor’s FOV.
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Table 4.8: The median position error in meters for scenario 2. There are the following
targets of interest: 5, 12, and 15. Initially, all target classifications are unknown.

Class Target ERR KLdiv Random Round Robin
3 1 8251 8949 7823 8949
3 2 2174 4965 2495 132
3 3 7191 7191 6205 6211
3 4 1890 44 2765 56
2 5 157 7777 5230 72
3 6 6053 6053 4324 104
3 7 5778 5778 22830 101
3 8 2438 67 4193 102
3 9 7848 7848 7209 115
3 10 6867 6867 5104 114
3 11 3727 4841 3656 105
1 12 2095 7102 5119 7102
3 13 7657 32 5950 7657
3 14 6913 6913 4822 124
2 15 308 35 5208 6690

4.4 ERR numerical example using the GM-PHD Tracker

In order to demonstrate the proposed approach we use a numerical example where a multi-
function radar (MFR) is controlled to track an unknown number of targets. It is able to track
targets in the sector defined by [0, 2000] meters in range and [−π/2, π/2] rad in bearing using
its “pencil” beam. The radar has a 4-degree beamwidth. The true trajectories are shown in
Figure 4.4. The duration of the scenario is 300 seconds.

Figure 4.4: The trajectories of three observed targets. The radar is at the origin of the
axes. Start and stop positions for each track are shown with ◦ and 4.

We take into consideration a surveillance context with electromagnetic emission con-
straints as presented in [ML99]. It is assumed that there are too many maneuverable targets
to be tracked by the radar system. Only a subset of all the targets need to be tracked and,
initially, we have knowledge of their kinematic states, yet their classification states are un-
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known. Finally, it is also presumed that there is a cost resulting from an incorrect decision
of a target’s true classification. Thus, the task of a sensor manager is to decide which targets
the sensor should focus on in order to reduce the expected cost of an incorrect classification
decision.

For each target, there is information about the kinematic true state and its classification.
Both data are represented by X as follows:

X = [Xkinematic Xclassification]

The varying turn rate of a nearly constantly turning kinematic model (see Appendix D)
is considered [LJ03]. Thus, the true kinematic state consists of a two dimensional position,
velocity and turn rate:

Xkinematic =
[
x, ẋ, y, ẏ, ω

]T
The transition model in target tracking can be formulated as follows:

xk = F (ωk−1)xk−1 +Gwk−1

ωk = ωk−1 + Tuk−1

where,

F (ω) =


1 sinωT

ω 0 −1−cosωT
ω

0 cosωT 0 − sinωT
0 1−cosωT

ω 1 sinωT
ω

0 sinωT 0 cosωT

 G =


T 2

2 0
T 0
0 T 2

2
0 T



T = 1s is the sampling period; wk−1 ∼ N (·; 0, σ2
wI) and uk−1 ∼ N (·; 0, σ2

uI) are the
process noise with standard deviation σw = 15m/s2 and σu = (π/180)rad/s. The targets are
observed via a radar that provides range and bearing measurements. Each target is detected
with probability pD,k = 0.98, and the measurement uses the observation model given by:

zk =
[
arctan(x/y)√

x2 + y2

]
+ εk

where εk ∼ N (·; 0, Rk); Rk = diag([σ2
θ , σ

2
r ]) is the measurement noise covariance matrix,

with σθ = (0.5π/180)rad, and σr = 10m. The detected measurements are immersed in
clutter, which is typically modeled as a Poisson RFS with intensity function:

κk(z) = λcV u(z)

where u(·) represents the uniform density over the surveillance region, V = 3.14 ×
105(radm) is the area of the surveillance region, and λc = 3.18× 10−5(radm)−1 is the aver-
age clutter intensity. In that case, an average of 10 clutter points per scan is received with
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PFA = 0.10 at each time instance. The classification state estimate is formulated similarly
to the previous example in Section 4.3, using the Extended Kalman filter (EKF). Assuming
that there are n possible classification states for each target, J is a random variable that
stands for the true classification with support {j|j ∈ [1, n]}.

Xclassification =

P (J = 1)
...

P (J = n)



The classification probability is updated by applying the Bayes’ theorem (4.24). The radar
has a 4-degree beamwidth. If the target ground truth corresponding to the track position
is outside this FOV (i.e. the state estimate is very poor), the track is considered lost. The
probability Plost is assumed to be the portion of a multivariate normal distribution N (x̂k, P̂k)
not contained in the sensor’s FOV when the sensor’s aim-point is centered on a kinematic
state of the target (x̂ is the mean state estimate and P̂ is the state estimate covariance).

In this chapter we use the Gaussian-Mixture PHD Tracker (GM-PHDT) to propagate a
parametrized approximation of the multi-target posterior by applying the gating and prun-
ing/merging procedures (see Chapter 1.3.1). Gating is performed at each time step using a
99% validation gate (the region centered on the predicted measurement with a 0.99 probabil-
ity of containing a primary object generated measurement), as described in [BP99; BWT11].
Pruning and merging are performed at each time step using a weight threshold of Tth = 10−5

and a merging threshold of U = 4m, see [PVC06].

For comparison purposes, the ERR approach was contrasted with three different sensor
management methods involving the Posterior Expected Number of Targets (PENT), the Pos-
terior Expected Number of Targets of Interest (PENTI), and the random assignment. 1000
Monte Carlo runs were conducted using each method. All target classifications are initially
unknown and each target starts with a high accuracy kinematic track. Therefore, the main
tasks of the radar are to correctly classify and track the targets, and allocate measurements to
the target of interest. Tracking accuracy is measured using the Optimal SubPattern Assign-
ment (OSPA). The OSPA, presented in Chapter 1.2.9, measures the error between the true
and the estimated multi-target states, Xk and X̂k, respectively. Two simulation examples
are used to test the proposed approach to sensor management. Additional examples can be
found in[Gom+16; Gom+17].

4.4.1 Binary classification

In order to evaluate the Expected Risk Reduction (ERR) metric, a binary classification state
is considered where the target to be tracked is either a target of interest (J = 1) or a target
not of interest (J = 2). The binary classification measurementM has support {m|m ∈ [1, 2]}.
Cost matrix CM1 and confusion matrix CC are:

CM1 =
( 1 2

1 0 1
2 30 0

)
CC =

( 1 2
1 0.8 0.2
2 0.2 0.8

)
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In this example, targets 2 and 3 are those of interest. Figure 4.5 shows a typical run of
the proposed algorithm at the instant k = 40 seconds.

Figure 4.5: Typical run to the ERR approach at instant k = 40 seconds. The radar is at
the origin of the axes. Target tracking and identification are provided using the GM-PHD
tracker.

The ERR was compared with the PENTI and the random sensor management. On all
three sensor management approaches, the OSPA metric, along with the cardinality estimation
and localization error, is averaged over 1000 independent Monte Carlo runs. In Figure 4.6,
the Monte Carlo average of the OSPA distance for p = 1 and c = 100m is shown. It can be
observed that the curves stabilize to an average error close to 60m per target for the PENTI
and the random schemes, and close to 50m per target for the ERR approach.

Figure 4.6: OSPA metric. Error performance of the three sensor management approaches
with target prioritization, averaged over 1000 Monte Carlo runs.



104 CHAPTER 4. SENSOR MANAGEMENT FOR MULTI-OBJECT TRACKING

Examining the cardinality estimation and the localization error given in Figures 4.7 and
4.8, it can be seen that in terms of localization error, the PENTI and ERR sensor management
settle to an error consistent with the standard deviation of the measurement noise, while the
random schedule achieves an unexpectedly lower localization error.

Figure 4.7: Localization error performance of the three sensor management approaches
with target prioritization, averaged over 1000 Monte Carlo runs.

Figure 4.8: Estimated number of targets for three sensor management approaches with
target prioritization, averaged over 1000 Monte Carlo runs.

Analyzing Figure 4.8, we can observe that, on average, the random method can keep
track only of 2 targets, while the ERR method is capable of tracking about 2.5 targets. The
ERR approach is penalized much more than the PENTI and the random scheme since it is
more successful at keeping track of more targets at the expense of the localization estimation,
which is less accurate. In fact, in terms of cardinality estimation, the ERR scheme is at a
significant advantage in this scenario.
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4.4.2 Mono classification

In order to evaluate the ERR metric without prioritization, a mono classification state is
considered. In that case, each target belongs to precisely the same class (J = 1), and targets
1, 2, and 3 should be tracked with the same priority. In this example, the ERR is compared
with the PENT and the random sensor management. The OSPA metric, as well as the
cardinality estimation and localization error of all three sensor management approaches, are
averaged over 1000 independent Monte Carlo runs.

Figure 4.9 shows the Monte Carlo average of the OSPA distance for p = 1 and c = 100m.
The ERR sensor management presents a behavior quite similar to the PENT approach. After
the initial settle-in phase the curves stabilize to an average error close to 50m per target for
the PENT and the ERR approaches, and close to 60m per target for the random schemes.

Figure 4.9: OSPA metric. Error performance of the three sensor management approaches
without target prioritization, averaged over 1000 Monte Carlo runs.

Examining the cardinality estimation and the localization error given in Figures 4.10 and
4.11, it can be observed that the random schedule achieves an unexpectedly lower localization
error, with a similar result to example of binary classification. As far as the localization error
is concerned, the results indicate that the ERR and the PENT approaches are penalized
much more than the random scheme since they are more successful at keeping track of more
targets at the expense of the localization estimation, which is less accurate. Even though
the PENT and the PENTI approaches turned out to be effective in this case study, they
are not expected to perform well when confronted with target localization problems [RVC11;
Del12]. To get a deeper insight into pros and cons of each method, the performance analyses
regarding other scenarios are required.
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Figure 4.10: Localization error performance of the three sensor management approaches
without target prioritization, averaged over 1000 Monte Carlo runs.

Figure 4.11: Estimated number of targets for three sensor management approaches without
target prioritization, averaged over 1000 Monte Carlo runs.
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4.5 Conclusion

This chapter introduces the Expected Risk Reduction (ERR) approach to sensor management
in the case of a radar beam-pointing problem by combining POMDP theory and the RFS
framework. The ERR is based on the expected cost of an incorrect decision about a target’s
classification. This cost is then conditioned on the event of losing a target track, which allows
for achieving the combination of a classification and kinematic uncertainty in the same metric.
It has been suggested that the ERR approach can maintain a track on targets of interest when
it is not possible for a sensor to track all targets in the environment. The GM-PHD tracker
was employed to efficiently but approximately propagate the mutli-object posterior density,
which was then used to calculate a reward function in order to determine the sensor control.
The numerical examples demonstrated the effectiveness of the proposed reward function for
PHD filtering in a radar beam-pointing problem where targets need to be prioritized.
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Conclusion and future work

This dissertation presented new methods of estimation and sensor control for tracking an
unknown time-varying number of objects using the Labeled Random Finite Set (LRFS) for-
malism and the Partially Observable Markov Decision Process (POMDP) framework. Two
new multi-object tracking methods were proposed, the mono- and multi-sensor Labeled Prob-
ability Hypothesis Density (LPHD) filter. The former can be considered an approximation
of the δ-GLMB filter, which approximates the multi-object posterior using an LMB RFS in
order to simplify the prediction and update steps. This approximation results in an accurate
and real-time target tracking algorithm. The second proposed algorithm derives a tractable
multi-sensor multi-object Bayes filter within the labeled RFS and superpositional sensors.
Lastly, the problem of sensor control was addressed with the use of newly derived analytical
expressions for the Expected Risk Reduction (ERR) metric between two densities.

The Labeled Random Finite Set (LRFS) provides a theoretical foundation for Bayes-
optimal multi-target tracking. A well-known method based on this approach is the General-
ized Labeled Multi-Bernoulli (GLMB) filter, the first computationally tractable and provably
Bayes-optimal multi-target tracker. Using this as a base, this thesis explored the relation-
ship between the Labeled Multi-Bernoulli (LMB) filter, an approximation of the GLMB filter
that uses the PHD density to represent its posterior density, and an analogous labeled ver-
sion of the PHD filter. As a result, we presented the rigorous theoretical formulation of
the mono-sensor Labeled Probability Hypothesis Density (LPHD) filter with its Gaussian-
mixture implementation.

In contrast to the heuristic solutions to the PHD filter with labels, the proposed LPHD
filter completely implements the labeled RFS theory, which facilitates the representation of
labeled objects and presents a more accurate approximation of the multi-object Bayes filter.
However, the computational complexity of the LPHD filter update is significantly higher than
other implementations of the PHD filter using the standard RFS. Additionally, the LPHD
filter facilitates an implementation using Gaussian mixtures and does not tend to degrade
when the clutter is dense or the objects are close.

The second contribution of this thesis is the extension of the mono-sensor LPHD filter
for superpositional sensors, resulting in the theoretical formulation of the multi-sensor LPHD
filter. The multi-object Bayes-optimal filter for non-standard measurement models is still
computationally intractable. Numerous efforts were invested by Mahler, Nannuru, Papi,
Saucan et al. to propose a computationally tractable multi-sensor algorithm within the
standard and labeled RFS. Thus, as a continuation of their work, we derive a fast multi-
sensor multi-object Bayes filter within the labeled RFS that can computationally tractable.
The computational cost reduction can be expected to be achieved at the expense of object
state estimation performance. The proposed derivation is also applicable to approximations
such as the Labeled Multi-Bernoulli (LMB) filter since this filter requires a special case of
the GLMB RFS.

109
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Finally, the Expected Risk Reduction (ERR) sensor management method based on the
minimization of the Bayes risk was introduced. The ERR approach is derived from the
expected cost of an incorrect decision about a target’s classification. This cost is then condi-
tioned on the event of losing a target track, which allows for the combination of a classification
and kinematic uncertainty in the same metric. We have suggested that the ERR approach
can maintain a track on targets of interest when it is not possible for a sensor to track all
targets in the environment. The GM-PHD tracker was employed to efficiently but inexactly
propagate the multi-target posterior density, which was then used to calculate a reward func-
tion in order to determine the sensor control. The numerical examples demonstrated the
effectiveness of the proposed reward function for PHD filtering in a radar beam-pointing
problem where targets need to be prioritized.

The algorithms developed in this thesis can be used for practical tracking applications and
compare well with conventional algorithms such as the Joint Probabilistic Data Association
filter (JPDAF) and the Multiple Hypothesis Tracking (MHT). We focused on real-time solu-
tions, and even the algorithms based on the RFS framework avoid explicit data association,
it is still demanding many approximations to be computationally tractable and able to turn
in quasi-real-time. The difference between the conventional algorithms and those based on
the RFS framework is more connected to the rigorous mathematical formalism than to the
computational performance. However, the mathematical rigor used in the RFS formalism
allows derivations and approximations for general cases, whereas solutions based on heuris-
tics are limited to specific solutions. Much effort will still be needed to achieve real-time
algorithms for sensor control and multi-object tracking within the standard and labeled RFS
framework. However, the advances in accelerated computing will make it possible by using
computational parallelization and possibly a new mathematical formalism.

Future work

The following are some potential areas for future research in multi-object estimation and
control based on this thesis:

• Develop a second-order LPHD using the idea proposed by Schlangen et al. [Sch+18].
Due to the LMB RFS properties, it is possible to calculate the variance of the number of
targets in a simple manner, which can facilitate the second-order LPHD implementation
and integration with sensor management platforms.

• Explore different methods for gating, pruning, and truncation techniques that can be
implemented to reduce the complexity of mono- and the multi-sensor LPHD filters.

• Development of the Sequential Monte Carlo (SMC) version of the LPHD filter, as
well as support of the multi-model approach, simulations applicable to Simultaneous
Localization and Mapping (SLAM), and different birth models.

• Develop and implement a GM and SMC version of the multi-sensor LPHD filter. This
could potentially be based on works of Papi and Beard et al. [Pap+14; BVV15].

• Investigate computationally efficient solutions using the ERR metric for the LPHD filter
with multiple-steps-ahead sensor control as well as sensor management in distributed
fusion architecture.



Appendix A

Finite Set Statistics

This appendix presents the rules necessary to use Finite Set Statistics (FISST). They are
summarized below for reference. For details, see Mahler [Mah07b; Mah14].

A.1 Sum rule

δ

δZ

[
a1β1(S) + a2β2(S)

]
= a1

δβ1
δZ

(S) + a2
δβ2
δZ

(S) (A.1)∫ [
a1F1(S) + a2F2(S)

]
δZ = a1

∫
F1(S)δZ + a2

∫
F2(S)δZ (A.2)

A.2 Product rule

δ

δz

[
β1(S)β2(S)

]
= δβ1

δz
(S)β2(S) + δβ2

δz
(S)β1(S) (A.3)

δ

δZ

[
β1(S)β2(S)

]
=
∑
W⊆Z

δβ1
δW

(S) δβ2
δ(Z −W )(S) (A.4)

A.3 Constant rule

δ

δZ
K = 0 (A.5)
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A.4 Chain rule

δ

δz
f(β(S)) = df

dx (β(S))δβ
δz

(S) (A.6)

δ

δz
f(β1(S) · · ·βn(S)) =

n∑
i=1

∂f

∂xi

(
β1(S) · · ·βn(S)

)δβi
δz

(S) (A.7)

A.5 Power rule

Let p(S) be a probability mass function with density function fp(z), where Z = {z1, · · · , zk}.
Then:

δ

δZ
p(S)n =


n!

(n− k)!p(S)n−kfp(zk) if k ≤ n

0 if k > n

(A.8)

A.6 Random set model for target dynamic and sensors

Random set notation for target motion model is defined by:

Γk+1 = Φk(Xk, Vk) ∪Bk(Xk) (A.9)

where Φ represents the change of target dynamics from time k to k + 1. B caters to the
target birth process in the multiple target case. Similarly, the sensor model in random set
notation is defined by:

Σ = T (X) ∪ C(X) (A.10)

where T defines the measurements that originated from true targets, while C accounts for
clutter measurements.

A.7 Belief-mass function of sensor model

The probability mass p(S|x) = P (Z ∈ S) captures the statistical behavior of observation set
Z. In random set domain, the statistics of Σ are characterized by its belief-mass function
β(S|X). The belief-mass measure is defined by:

β(S|X) = βΣ|Γ(S|X) = P (Σ ⊆ S) (A.11)

This belief-mass measure is the total probability that all observations in a sensor scan
will be found in any region S.
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A.8 Belief-mass function of target model

The probability mass p(S|xk) = P (Xk+1 ∈ S) gives the probability that the target state Xk=1
will be found in the region S conditioned on previous state xk. Thus, the Markov transition
density can be calculated from the belief-mass measure as follows:

βΓk+1 = P (Γk+1 ⊆ S) (A.12)

The belief-mass measure of a certain random finite set is given by the following equation:

β(S|B) = P (A ∈ S|B)
∫
S
f(A|B)δA (A.13)

where A denotes either the target dynamic set Γk or the sensor observation set Σ. The
integration refers to the sum of densities or likelihood of all possibilities suggested by the
random set.

A.9 Set integral

Assuming a function F (Y ) is given for a finite set variable Y , the function F (Y ) can be
represented by the following forms:

F (∅) = probability that Y = ∅ (A.14)
F ({y}) = likelihood that Y = {y}

F ({y1, y2}) = likelihood that Y = {y1, y2}
...

F ({y1, · · · , yj}) = likelihood that Y = {y1, · · · , yj}

In general, F (Y ) can be a likelihood F (Z) = f(Z|X) or a Markov density F (X) =
fk+1(X|Xk). The random finite set integral is defined by:

∫
F (Y )δY =

∞∑
i=0

1
i!

∫
F ({y1, · · · , yi})dy1 · · · dyi (A.15)

= F (∅) +
∞∑
i=1

1
i!

∫
F ({y1, · · · , yi})dy1 · · · dyi

def= F (∅) +
∞∑
i=1

∫
Fi(y1, · · · , yi)dy1 · · · dyi
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where Fi(·) is defined by:

Fi(y1, · · · , yi) =


1
i!F ({y1, · · · , yi}) if |{y1, · · · , yi}| = i

0 otherwise
(A.16)

A.10 Set derivative

For a random finite set Y = {y1, · · · , ym}, the set derivatives are defined as follows:

δβ

δyj
(S) = δ

δyj
β(S) = lim

λEy

β(S ∪ Ey)− β(S)
λ(Ez)

(A.17)

δβ

δY
(S) = δm

∂y1 · · · δym
β(S) = δ

δy1
· · · δ

δym
β(S) (A.18)

δβ

δφ
(S) = β(S) (A.19)

A.11 Likelihood and Markov densities

According to the random finite set derivative and integral rules, the belief-mass measure and
densities are related to each other as follows:

β(S) =
∫
S

δβ

δX
(φ)δX (A.20)

F (X) =
[
δ

δX

∫
S
F (Y )δY

]
S=φ

(A.21)

Based on the target dynamic model and sensor model, the densities can be calculated
after constructing the belief-mass measure of the appropriate sets. After the likelihood and
Markov density are obtained, the Bayesian recursion updates the target state in the usual
manner.

The true likelihood f(Z|X) is given by:

f(Z|X) = δβ

δZ
(φ|X) (A.22)

The true Markov density is given by:

fk+1|k(Xk+1|Xk) =
δβk+1|k
δXk+1

(φ|Xk) (A.23)



Appendix B

Gaussian identities

The derivation of the Gaussian-Mixture Labeled PHD (GM-LPHD) filter often uses the fol-
lowing Gaussian identities introduced by Ho and Lee, which have been used to derive the
Kalman filter in the Bayesian form [HL64].

Lemma B.1. Considering a Gaussian process model with system matrix F and covariance
matrix Q:

f(x|ζ) ∼ N
(
x;Fζ,Q

)

and a Gaussian distribution with mean x̂ and covariance P given by:

p(x|ζ) ∼ N
(
ζ; x̂, P

)

then the prediction of the Gaussian distribution p(x|ζ) is defined by:

∫
N
(
x;Fζ,Q

)
N
(
ζ; x̂, P

)
dζ = N

(
x;Fx̂, FPF T

)
(B.1)

Lemma B.2. Considering a linear Gaussian measurement model with observation matrix H
and observation noise covariance R given by:

g(z|x) ∼ N
(
z;Hx,R

)

and a predicted Gaussian distribution state with mean x̂+ and covariance matrix P+ repre-
sented by:

p+(x) ∼ N
(
x; x̂+, P+

)
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then the innovation of the Gaussian distribution p+(x) is defined by:

N (z;Hx,R) N
(
ζ; x̂, P

)
N
(
x; x̂+, P+

)
= q(z) N

(
x; x̂, P

)
(B.2)

where:

q(z) = N
(
z;Hx̂+, HP+H

T +R
)

x̂ = x̂+ +K(z −Hx̂+)
P = P+ −KSKT

S = HP+H
T +R

K = P+H
TS−1



Appendix C

Kalman filter derivation

Our goal is to estimate the state x of a stochastic system within a process of the form:

xk = Fk−1xk−1 + vk−1 (C.1)

It is assumed that the measurement is linearly related to the state by an equation of the
form:

zk = Hkxk + wk (C.2)

where

x ∈ Rn is the state vector of the process at time k

z ∈ R` is the measurement vector of x at time k

F ∈ Rn×n is the transition matrix of the process

H ∈ R`×n is the observation model matrix used to map the state x into the measurement
domain

v ∈ Rr is the process noise vector

w ∈ R` is the measurement noise vector

Accordingly, it suffices to look for an updated estimate xk|k that is a linear function of a
priori estimate and the measurement zk:

xk|k = Kkxk|k−1 +Kkzk (C.3)

where xk|k−1 and xk|k are the a priori and a posteriori estimate of xk. The matrices Kk and
Kk are unknown. We seek those values of Kk and Kk such that the new estimate xk|k will
satisfy the following orthogonality condition:
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E[(xk − xk|k)zTi ] = 0, i = 1, 2, · · · , k − 1 (C.4)
E[(xk − xk|k)zTk ] = 0 (C.5)

Substituting (C.3) into (C.4), the expression becomes:

E[(xk −Kkxk|k−1 −Kkzk)zTi ] = 0 (C.6)

The measurement zk is given by (C.2). Then the above expression can be rewritten as:

E[(xk −Kkxk|k−1 −KkHkxk −Kkwk)zTi ] = 0 (C.7)

It is possible to rewritte the above equation subtracting and adding Kkxk:

0 = E[(xk −Kkxk −Kkxk|k−1 +Kkxk −KkHkxk −Kkwk)zTi ]
= E[(xk −Kkxk −Kk(xk|k−1 − xk)−KkHkxk −Kkwk)zTi ]
= E[xkzTi ]−Kk E[xkzTi ]−Kk E[(xk|k−1 − xk)zTi ]−KkHk E[xkzTi ]−Kk E[wkzTi ] (C.8)

The term E[(xk|k−1 − xk)zTi ] = 0 due to the orthogonality condition. The measurement
noise wk is assumed uncorrelated with the measurement zi, i.e., E[wkzTi ] = 0 for i = 1, · · · , k−
1. Thus, the equation can be reduced to the form:

0 = E[xkzTi ]−Kk E[xkzTi ]−KkHk E[xkzTi ]
= (I −Kk −KkHk)E[xkzTi ] (C.9)

The above equation can be satisfied for any given xk if:

Kk = I −KkHk (C.10)

The errors can be calculated as follows:

x̃k|k
def= xk|k − xk (C.11)

x̃k|k−1
def= xk|k−1 − xk (C.12)

z̃k
def= zk|k−1 − zk = Hkxk|k−1 − zk (C.13)
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where x̃k|k−1 and x̃k|k are the estimation errors before and after updates. The estimation
xk|k depends linearly on xk, which depends linearly on zk. Accordingly, from (C.5):

E[(xk − xk|k)zTk|k−1] = 0 (C.14)

and subtracting (C.5) from the above equation:

E[(xk − xk|k)z̃Tk ] = 0 (C.15)

Substituting xk|k and z̃k from (C.3) and (C.13). Then:

E[(xk −Kkxk|k−1 −Kkzk)(Hkxk|k−1 − zk)T ] = 0 (C.16)

Replacing Kk, zk, x̃k|k, the above equation que be modified as follows:

0 = E[(xk − xk|k−1 +KkHkxk|k−1 −KkHkxk −Kkwk)(Hkxk|k−1 −Hkxk − wk)T ]
= E[((xk − xk|k−1) +KkHk(xk|k−1 − xk)−Kkwk)(Hk(xk|k−1 − xk)− wk)T ]
= E[(−x̃k|k−1 +KkHkx̃k|k−1 −Kkwk)(Hkx̃k|k−1 − wk)T ] (C.17)

Since E[x̃k|k−1w
T
k ] = 0, and defining E[wkwTk ] to be the measurement noise covariance Rk,

and Pk|k−1 to be the a priori covariance Pk|k−1
def= E[x̃k|k−1x̃

T
k|k−1], then the above equation

becomes:

0 =E[−x̃k|k−1x̃
T
k|k−1H

T
k + x̃k|k−1w

T
k +KkHkx̃k|k−1x̃

T
k|k−1H

T
k

−KkHkx̃k|k−1w
T
k −Kkwkx̃

T
k|k−1H

T
k +Kkwkw

T
k ]

=− E[x̃k|k−1x̃
T
k|k−1]HT

k + E[x̃k|k−1w
T
k ] +KkHk E[x̃k|k−1x̃

T
k|k−1]HT

k

−KkHk E[x̃k|k−1w
T
k ]−Kk E[wkx̃Tk|k−1]HT

k +Kk E[wkwTk ]
=− Pk|k−1H

T
k +KkHkPk|k−1H

T
k +KkRk

=− Pk|k−1H
T
k +Kk(HkPk|k−1H

T
k +Rk) (C.18)

in this way, the Kalman gain can be expressed as:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)−1 (C.19)

Using the expressions derived for Kk and Kk, it is possible to derive an expression for the
a posteriori covariance error, which is defined in a similar manner to the a priori covariance
error Pk|k−1:

Pk|k = E[x̃k|kx̃Tk|k] (C.20)
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Substituting (C.10) into (C.3):

xk|k = Kkxk|k−1 +Kkzk

= (I −KkHk)xk|k−1 +Kkzk (C.21)

Subtracting xk from both sides of the above equation and replacing zk from (C.2), we
have:

xk|k − xk = −xk + (I −KkHk)xk|k−1 +KkHkxk +Kkwk

xk|k − xk = −xk + xk|k−1 −KkHkxk|k−1 +KkHkxk +Kkwk

xk|k − xk = −xk + xk|k−1 −KkHk(xk|k−1 − xk) +Kkwk

x̃k|k = x̃k|k−1 −KkHkx̃k|k−1 +Kkwk

x̃k|k = (I −KkHk)x̃k|k−1 +Kkwk (C.22)

Replacing the above equation into (C.20) and considering that E[x̃k|k−1w
T
k ] = 0, we have:

Pk|k =E[x̃k|kx̃Tk|k]
=E[((I −KkHk)x̃k|k−1 +Kkwk)((I −KkHk)x̃k|k−1 +Kkwk)T ]
=E[(I −KkHk)x̃k|k−1(I −KkHk)T x̃Tk|k−1 +Kkwkw

T
kK

T
k ]

=(I −KkHk)E[x̃k|k−1x̃
T
k|k−1](I −KkHk)T +Kk E[wkwTk ]KT

k

=(I −KkHk)Pk|k−1(I −KkHk)T +KkRK
T
k (C.23)

This last equation is known as “Joseph form” of the covariance update equation [BJ05].
This equation can be rewritten replacing Kk from (C.19):

Pk|k =Pk|k−1 − Pk|k−1H
T
k K

T
k −KkHkPk|k−1 +KkHkPk|k−1H

T
k K

T
k +KkRK

T
k

=(I −KkHk)Pk|k−1 − Pk|k−1H
T
k K

T
k +Kk(HkPk|k−1H

T
k +R)︸ ︷︷ ︸

Pk|k−1H
T
k

KT
k

=(I −KkHk)Pk|k−1 (C.24)

This form is the one most often used in computation. The a priori covariance Pk|k−1 can
be expressed considering the a priori state estimate:

xk|k−1 = Fk−1xk−1|k−1 (C.25)

subtracting xk from both sides of the above equation, then using (C.1) we have:
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xk|k−1 − xk = Fk−1xk−1|k−1 − xk
x̃k|k−1 = Fk−1xk−1|k−1 − xk

= Fk−1xk−1|k−1 − Fk−1xk−1 − vk−1

= Fk−1(xk−1|k−1 − xk−1)− vk−1

= Fk−1x̃k−1|k−1 − vk−1 (C.26)

using the above equation and defing E[vkvTk ] as the process noise covariance Qk:

Pk|k−1
def= E[x̃k|k−1x̃

T
k|k−1]

=E[(Fk−1x̃k−1|k−1 − vk−1)(Fk−1x̃k−1|k−1 − vk−1)T ]
=Fk−1 E[x̃k−1|k−1x̃

T
k−1|k−1]F Tk−1 − Fk−1 E[x̃k−1|k−1v

T
k−1]

− E[vk−1x̃
T
k−1|k−1]F Tk−1 + E[vk−1v

T
k−1]

=Fk−1Pk−1|k−1F
T
k−1 +Qk (C.27)

which gives the a priori covariance matrix of estimation uncertainty as a function of the
previous a posteriori covariance matrix.
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Appendix D

Kinematic models for Target Tracking

The key to successful target tracking lies in the effective extraction of the useful information
about the target’s state. The information extraction is performed using models to describe
the target dynamics and sensor characteristics. Most of the target tracking algorithms base
their performance on a priori knowledge of the target’s kinematic and the sensor system
which is assumed to be sufficiently accurate.

The primary objective of target tracking is to estimate the state trajectories of a moving
object. Almost all maneuvering target tracking algorithms are model-based. They assume
that the target motion and its observations can be represented by some known mathematical
models in a precise way. In general, the target is modeled as a punctual mass and its dynamic
described by a linear state-space model. A target dynamic model describes the evolution of
the target state with respect to time. The dynamic model of a target can be described
by discrete- or continuous-time models [BP99; BLK01; Cha+11; BWT11]. This thesis only
considers the discrete-time models. Hence, the target state xk evolves in time according to
the state transition equation:

{
xk = fk−1(xk−1, vk−1)
zk = hk(xk, wk)

(D.1)

where fk−1 is a known, possible nonlinear function that transforms any given state vector xk−1
and process noise vk−1 at time k−1 into a new state vector xk at time k. The function hk is a
known, possibly nonlinear function that transform any given state vector xk and observation
noise wk at time k into an observation vector zk. Note that the process and observation noise
are assumed to be uncorrelated. The discrete-time model described in (D.1) is often obtained
by discretizing the following continuous-time model [BLK01; LJ03; BWT11; Cha+11]:

ẋ(t) = A(t)x(t) +D(t)ṽ (D.2)
z(t) = C(t)x(t) + w̃(t)

where

x ∈ Rn is the state vector

z ∈ Rm is the measurement vector
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A ∈ Rn×n is the transition matrix of the dynamic model

ṽ ∈ Rp is the process noise vector

D ∈ Rn×p is the process noise gain

C ∈ Rm×n is the measurement model matrix

w̃ ∈ Rm is the measurement noise

One of the major challenges for target tracking arises from the target motion uncertainty.
This uncertainty refers to the fact that an accurate dynamic model of the target being tracked
is not available to the tracker. Target motion modeling is thus one of the first tasks for
maneuvering target tracking. It aims at developing a tractable model that accounts well for
the effect of target motion.

Constant-velocity model

It is well known that a point moving in 3D can be described by its 3D position and velocity
vectors. For instance, x = [x, ẋ, y, ẏ, z, ż] can be used as a state vector of such a point in the
Cartesian coordinate system, where (x,y,z) are the position coordinates along x, y, and z axes,
respectively, and [ẋ, ẏ, ż] is the is the velocity vector. When a target is treated as a point
object, the nonmaneuvering motion is thus described by the vector-valued equation ẋ(t) = 0,
where x = [ẋ, ẏ, z]. Note that z direction is treated differently because a nonmaneuvering
motion is assumed in the horizontal x− y plane.

In practice, this ideal equation is usually modified as ẋ(t) = v(t) ≈ 0, where w(t) is
white noise with a “small” effect on x that accounts for unpredictable modeling errors. The
corresponding state-space model is given by, with state vector x = [x, ẋ, y, ẏ, z]T :

ẋ(t) =

A
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0



x(t)
x
ẋ
y
ẏ
z

+

D
0 0 0
1 0 0
0 0 0
0 1 0
0 0 1


v(t)vxvy
vz

 (D.3)

The direct discrete-time counterpart of the above continuous-time model is [BLK01;
LJ03]:

xk+1 =

F
1 T 0 0 0
0 1 0 0 0
0 0 1 T 0
0 0 0 1 0
0 0 0 0 1



xk
x
ẋ
y
ẏ
z

+

G
T 2

2 0 0
T 0 0
0 T 2

2 0
0 T 0
0 0 T


vkvxvy
vz

 (D.4)

where T is the sampling interval. Note that vk and vy correspond to noisy accelerations along
x and y axes, while vz corresponds to noisy velocity along z axis. If w is uncoupled across
its components, then the nonmaneuvering motion modeled by the above models is uncoupled
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across x, y, and z directions. In this case, the covariance of the noise term in (D.4) is given
by:

cov(Gwk) =



var(vx)T 4

4 var(vx)T 3

2 0 0 0 0
var(vx)T 3

2 var(vx)T 2 0 0 0 0
0 0 var(vy)T

4

4 var(vy)T
3

2 0 0
0 0 var(vy)T

3

2 var(vy)T 2 0 0
0 0 0 0 var(vz)T

4

4 var(vz)T
3

2
0 0 0 0 var(vz)T

3

2 var(vz)T 2


(D.5)

The direct discrete-time equivalent of the above model is [BLK01; LJ03]:

xk+1 =

F
1 T 0 0 0
0 1 0 0 0
0 0 1 T 0
0 0 0 1 0
0 0 0 0 1



xk
x
ẋ
y
ẏ
z

+

vkvxvy
vz

 (D.6)

where

cov(wk) =



Sx
T 3

3 Sx
T 2

2 0 0 0 0
Sx

T 2

2 SxT 0 0 0 0
0 0 Sy

T 3

3 Sy
T 2

2 0 0
0 0 Sy

T 2

2 SyT 0 0
0 0 0 0 Sz

T 3

3 Sz
T 2

2
0 0 0 0 Sz

T 2

2 SzT


(D.7)

where S is the power spectral density of the discrete-time process noise. The above mod-
els (D.3) and (D.4) are known as the continuous- and discrete-time constant-velocity (CV)
models.
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Détermination et implémentation temps-réel de stratégies de gestion de capteurs pour
le pistage multi-cibles

Les systèmes de surveillance modernes doivent coordonner leurs stratégies d’observation
pour améliorer l’information obtenue lors de leurs futures mesures afin d’estimer avec préci-
sion les états des objets d’intérêt (emplacement, vitesse, apparence, etc.). Par conséquent, la
gestion adaptative des capteurs consiste à déterminer les stratégies de mesure des capteurs
exploitant les informations a priori afin de déterminer les actions de détection actuelles.
L’une des applications la plus connue de la gestion des capteurs est le suivi multi-objets, qui
fait référence au problème de l’estimation conjointe du nombre d’objets et de leurs états ou
trajectoires à partir de mesures bruitées. Cette thèse porte sur les stratégies de gestion des
capteurs en temps réel afin de résoudre le problème du suivi multi-objets dans le cadre de
l’ensemble aléatoire fini labélisé ou « Labeled Random Finite Set (LRFS) ». La première
contribution est la formulation théorique rigoureuse du filtre mono-capteur LPHD « Labeled
Probability Hypothesis Density » avec son implémentation Gaussienne. La seconde contri-
bution est l’extension du filtre LPHD pour le cas multi-capteurs. La troisième contribution
est le développement de la méthode de gestion de capteurs basée sur la minimisation du
risque bayésien et formulé dans les cadres LRFS et POMDP « Partially Observable Markov
Decision Process ».

Mots-clés : Gestion de Capteur, Pistage Multi-Cibles, PHD labelisée, PHD la-
belisée multi-capteur

Real-Time Sensor Management Strategies for Multi-Object Tracking

Modern surveillance systems must coordinate their observation strategies to enhance the
information obtained by their future measurements in order to accurately estimate the states
of objects of interest (location, velocity, appearance, etc). Therefore, adaptive sensor manage-
ment consists of determining sensor measurement strategies that exploit a priori information
in order to determine current sensing actions. One of the most challenging applications of sen-
sor management is the multi-object tracking, which refers to the problem of jointly estimating
the number of objects and their states or trajectories from noisy sensor measurements. This
thesis focuses on real-time sensor management strategies formulated in the POMDP frame-
work to address the multi-object tracking problem within the LRFS approach. The first key
contribution is the rigorous theoretical formulation of the mono-sensor LPHD filter with its
Gaussian-mixture implementation. The second contribution is the extension of the mono-
sensor LPHD filter for superpositional sensors, resulting in the theoretical formulation of the
multi-sensor LPHD filter. The third contribution is the development of the Expected Risk
Reduction (ERR) sensor management method based on the minimization of the Bayes risk
and formulated in the POMDP and LRFS framework. Additionally, analyses and simulations
of the existing sensor management approaches for multi-object tracking, such as Task-based,
Information-theoretic, and Risk-based sensor management, are provided.

Keywords: Sensor Management, Multi-Object Tracking, Labeled PHD filter,
multi-sensor Labeled PHD filter
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