
HAL Id: tel-02129355
https://theses.hal.science/tel-02129355v1

Submitted on 14 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A behavior-driven approach for specifying and testing
user requirements in interactive systems

Thiago Rocha Silva

To cite this version:
Thiago Rocha Silva. A behavior-driven approach for specifying and testing user requirements in inter-
active systems. Artificial Intelligence [cs.AI]. Université Paul Sabatier - Toulouse III, 2018. English.
�NNT : 2018TOU30075�. �tel-02129355�

https://theses.hal.science/tel-02129355v1
https://hal.archives-ouvertes.fr

THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Université Toulouse 3 - Paul Sabatier

Présentée et soutenue par

Thiago ROCHA SILVA

Le 17 septembre 2018

A Behavior-Driven Approach for Specifying and Testing
User Requirements in Interactive Systems

Ecole doctorale : EDMITT - Ecole Doctorale Mathématiques, Informatique et

Télécommunications de Toulouse

Spécialité :

Unité de recherche :

IRIT : Institut de Recherche en Informatique de Toulouse

Thèse dirigée par

Marco Antonio ALBA WINCKLER

Jury

M. Jean VANDERDONCKT, Rapporteur
Mme Káthia MARÇAL DE OLIVEIRA, Rapporteur

Mme Sophie DUPUY-CHESSA, Examinateur
M. Philippe PALANQUE, Examinateur
Mme Célia MARTINIE, Examinateur

M. Marco Antonio ALBA WINCKLER, Directeur de thèse

A Behavior-Driven Approach for Specifying and Testing User
Requirements in Interactive Systems

PhD Thesis

Thiago Rocha Silva

Advisor: Prof. Marco Winckler, PhD.

Une approche dirigée par le comportement pour la spécification et le
test des exigences utilisateur dans les systèmes interactifs

Thèse de doctorat

Thiago Rocha Silva

Directeur de thèse : Prof. Marco Winckler, PhD.

To my beautiful and lovely wife, Michele.

Acknowledgments

First of all, I would like to thank my advisor, Prof. Marco Winckler, for having accepted to receive
me here in Toulouse as his student and having given me all the support, encouragement and
incentive to pursue this thesis. Marco, your example inspired me, and your ideas and comments
have taken this thesis to another level. I would also like to express my gratitude to you for having
introduced us to the French way of life, and for always being our guarantor in everything we
needed. Um mais que sincero, muito obrigado!

I would also like to thank my rapporteurs, Prof. Jean Vanderdonckt and Káthia Marçal, for
accepting the invitation to review this work and for the precious and precise comments and
suggestions. They helped me to see many important points to improve and opened my mind to
several other possibilities to continue this research. Jean, I really admire your work and the
brilliant mind you have, I feel so honored you took the time to revise my work and having been
here in Toulouse to take part in my jury. Káthia, eu não poderia deixar de registrar um
agradecimento especial a você (e em português que você tanto sente falta J), por tão detalhada
revisão e comentários cruciais especialmente sobre a ontologia e sobre os estudos de caso.
Adoramos te conhecer! I also thank all the jury, Prof. Philippe Palanque, Prof. Sophie Dupuy-
Chessa and Célia Martinie, for all your questions, suggestions and for accepting to take part in
this jury even with a tight schedule.

A special thanks to the whole ICS team, past and current members, for having welcomed me and
Michele so well and included us in all your events during these four years. I’m very proud of
being part of such a high-level and internationally recognized team. Thanks Phil, for being such
a funny, friendly, and brilliant boss; Célia for being always so friendly and available; Didier for
being an example of kindness, you helped me a lot with technical and practical stuff, making the
daily tasks much easier; David, Regina, Arnaud, Camille, Martin, Elodie, Alexandre(s), Racim,
Dimitri, François, Guillaume, a big thanks for all these years together. A special thanks to Jean-
Luc and Pedro Valente, who collaborated with me in some topics of this thesis. I also thank the
IRIT and EDMITT administrative staff, especially Arnaude and the financial department team
(Lorène, Véronique, Léonor and Matthew) for participating in the case study, Chantal Morand
for having helped us so much in our arrival, Agnès and Martine for always being so kind and
helpful. Un grand merci à vous tous! Agradeço ao Prof. Marcelo Pimenta (UFRGS) pela
disponibilidade em contribuir com o trabalho, foi uma pena não termos conseguido te trazer
para o júri. Aos professores da UFMG Clarindo (meu orientador de mestrado), Rodolfo, Raquel
e Marco Túlio por me receberem tão bem e contribuírem com valiosos comentários sobre o
tema da tese durante a minha última passagem pelo DCC. Aos professores e amigos da
Unimontes pelos anos de aprendizado e companheirismo, em especial Guilherme e Chris.

Je remercie à Serge pour les tout premiers cours de Français à Toulouse et à tout(e)s mes ami(e)s
du groupe Toulouse-B2: Arash, Javier, Josipa, Marie Eline, Jimena, Ponleu, Flávio, Lívia, Yuri e
Nina, merci à vous tous pour les moments amusants et agréables que nous avons passés
ensemble. Aos amigos brasileiros em Toulouse: Paulo, Marina, Fábio, Helena, Thaíse, Achilles,
Filipe, Lilian (et Loïc, pas brésilien mais presque J), muitíssimo obrigado pela companhia e
pelos ótimos momentos que partilhamos por aqui. Certamente, a jornada foi muito mais fácil
com vocês!

Agradeço muito especialmente a toda minha família e amigos queridos que tanto nos apoiaram
nessa jornada e entenderam a nossa ausência durante todo esse período. Muito obrigado, mãe

(Fátima) e pai (João), por sempre me motivarem e insistirem que a educação era o caminho. Eu
não teria chegado até aqui sem vocês! Meus queridos irmãos, Lucas e Pedro (também meu
afilhado), pelo incentivo e pelo companheirismo. Sei o quanto todos vocês estão orgulhosos dessa
conquista. Minha grande amiga-irmã, Carol, assim como o Emerson, o meu muito obrigado pela
amizade sincera e pelo amor e carinho de sempre. Obrigado por fazerem de tudo e nos deixarem
sempre participar da vida e do crescimento das meninas, mesmo estando de longe. Li, minha
prima-amiga-irmã, obrigado por ter compartilhado comigo esse coração do tamanho do mundo
e ter sempre cuidado tão bem de mim. Gil, por toda a camaradagem de sempre. Aos meus
demais afilhados Lê, Bia e Ju, que tanto alegram os nossos dias e não nos deixam nunca esquecer
o quanto vocês são doces e amáveis! Amo muito vocês! Aos meus tios e tias, primos e primas,
em especial Mazza, Zílmio, Zelândia, Kênia, Zildete e Alexandre, o meu mais sincero
agradecimento pelo amor e carinho e por sempre estarem por perto. Aos meus padrinhos Reis
e Lete, obrigado por terem sempre me dado todo o suporte e apoio necessários. À toda família
Silva pelo acolhimento, à Ni em especial, que tanto participou da minha criação.

O meu muito obrigado aos meus demais amigos pela torcida e apoio, em especial Aline (de
quem acabamos perdendo o casamento por conta do doutorado, aqui vai mais um pedido de
desculpas), Marius, Adélia (e Gabriel). Aos grandes amigos da Fabrai/Anhanguera/Una: Jéferson
e Marcela (de quem, como padrinhos, também acabamos perdendo o casamento por conta do
doutorado, aqui vai mais um pedido de desculpas), Hélio e Jordana, Lindenberg e Tânia, Dani,
Rodrigo, Sandro, Ernani e Helê. À toda a família Mendonça, em especial Káthia, Mendonça,
Hugo e Duda que sempre me acolheram com tanto carinho, sobretudo nos momentos em que
eu mais precisei.

À toda família Rodrigues que me recebeu de braços tão abertos e sempre foram um grande
exemplo de união e harmonia. Edvaldo e Albanita, obrigado por todo o carinho e por me
confiarem a Michele J. Dani, você foi o nosso alicerce em muitos momentos ao longo desses
anos fora, e o meu agradecimento a você vai muito além de um simples obrigado, eu tive a sorte
de conhecer a pessoa maravilhosa que você é. Nos desculpe por não estarmos tão presentes
como gostaríamos. Erik, obrigado por sempre nos receber tão bem. Dieguinho, você ajudou a
deixar os dias do tio Thiago bem mais alegres durante esses anos.

À minha linda e querida esposa Michele, a quem dedico essa tese, por todo amor, suporte,
carinho, companheirismo, amizade, doação e coragem. Sem você, meu amor, eu não teria
chegado até aqui. O teu apoio incondicional, a tua ajuda com os resultados da tese, tudo isso foi
indispensável nessa caminhada. Tenho muita sorte de poder acordar com os teus lindos olhos
ao meu lado todas as manhãs. Sei o quanto essa mudança foi difícil para você, sei o quanto você
deixou projetos para trás para entrar de cabeça e me acompanhar nesse sonho. Serei eternamente
grato a você por isso. Espero que com a realização desse objetivo venham novos desafios; conto
com você ao meu lado para cada um deles. Te amo infinitamente!

I thank CAPES and the Brazilian government for believing in this project and fully funding it.
Agradeço também ao Serpro pela minha liberação (em especial aos grandes incentivadores
Bráulio e Alexandre Barros) e aos colegas da empresa pelos anos de aprendizado até aqui, em
especial Lara e Maurílio. À Marta, por todo o suporte administrativo.

Por fim, mas definitivamente não menos importante, agradeço a Deus, à vó Benta e aos meus
guias espirituais por estarem sempre comigo, me proporcionarem essa e tantas outras
oportunidades e vitórias, nunca me deixarem desistir e me acompanharem mesmo nas mais
difíceis caminhadas.

Summary

Part I – Introduction

Chapter 1: Introduction ___ 25

1.1. Context ___ 25

1.2. Challenges __ 27

1.3. Objectives ___ 28

1.4. Methodological Approach __ 30

1.5. Thesis’ Outline ___ 31

Chapter 2: Background __ 35

2.1. Methods for Modeling User Requirements for Interactive Systems _____________ 35

2.1.1. User Stories and Scenario-Based Design _____________________________ 35

2.1.2. Task Analysis and Modeling _______________________________________ 40

2.1.3. User Interface Prototyping __ 44

2.1.4. User Interfaces and Task-Based Development _________________________ 46

2.2. Methods for Evaluating User Requirements _______________________________ 47

2.2.1. Functional Testing __ 48

2.2.2. GUI Testing ___ 50

2.2.3. Artifacts Inspection and Requirements Traceability _____________________ 50

2.3. Software Development Processes _______________________________________ 51

2.3.1. Agile Methods __ 52

2.3.2. Behavior-Driven Development _____________________________________ 55

2.4. Conclusion __ 56

2.5. Resultant Publications ___ 56

Part II – Contribution

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing ____________________ 61

3.1. Rationale for a Scenario-Based Approach ________________________________ 61

3.1.1. Target Stakeholders ___ 65

3.2. Multiple Views of the Approach _______________________________________ 65

3.2.1. Architectural View __ 66

3.2.2. Workflow View ___ 67

3.2.3. Alternatives for Performing the Approach ____________________________ 69

3.3. A Case Study in a Nutshell __ 71

3.3.1. Writing Testable User Stories ______________________________________ 72

3.3.2. Adding Testing Scenarios ___ 73

3.4. Strategy for Testing __ 74

3.5. Conclusion __ 75

3.6. Resultant Publications ___ 77

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing ______________ 79

4.1. Related Approaches ___ 80

4.1.1 Compared Overview ___ 80

4.2. A Behavior-Based Ontology for Interactive Systems ________________________ 81

4.2.1 Object Properties ___ 83

4.2.2 Relations __ 83

4.2.3 Data Properties ___ 84

4.2.4 Platform Concepts __ 85

4.2.5 UI Elements Concepts ___ 86

4.2.6 State Machine Concepts __ 91

4.2.7 Scenario-Based Concepts ___ 91

4.2.8 Consistency Checking __ 95

4.3. Contributions, Limitations and Perspectives ______________________________ 95

4.4. Resultant Publications ___ 97

Chapter 5: Modeling and Assessing Task Models _________________________________ 99

5.1. An Overview of HAMSTERS __ 100

5.1.1. Task Types ___ 100

5.1.2. Operators __ 102

5.1.3. Extracting Scenarios __ 103

5.1.4. Handling Data ___ 103

5.2. Modeling User’s Tasks __ 104

5.3. Assessing User’s Tasks __ 106

5.3.1. Extracting Scenarios and Formatting User Stories _____________________ 106

5.3.2. Elements Mapped for Testing _____________________________________ 109

5.3.3. Implementation ___ 111

5.3.4. Towards an Alternative to the Extraction of Scenarios __________________ 118

5.4. Conclusion ___ 120

5.5. Resultant Publications __ 121

Chapter 6: Modeling and Assessing User Interfaces: From Prototypes to Final UIs ______ 123

6.1. Starting with Balsamiq Wireframes ____________________________________ 125

6.1.1. Test Implementation ___ 127

6.2. Using the Ontology to Support the Development of Consistent Prototypes _____ 130

6.3. Evolving UI Prototypes ___ 133

6.3.1. Elements Mapped for Testing _____________________________________ 135

6.4. Testing Final User Interfaces ___ 136

6.4.1. Integrated Tools Architecture _____________________________________ 136

6.4.2. Implementation ___ 137

6.4.3. Handling Test Data ___ 140

6.5. Conclusion ___ 142

6.6. Resultant Publications __ 143

Part III – Evaluation

Chapter 7: Case Study 1 - Understandability of User Stories ________________________ 147

7.1. Experimental Design ___ 147

7.2. Methodology ___ 148

7.3. The Business Narrative ___ 149

7.4. Participant’s Profile __ 151

7.5. The Proposed Exercise ___ 151

7.6. Results __ 152

7.6.1. User Stories Writing __ 153

7.6.2. Adherence Analyses __ 156

7.6.3. Discussion __ 164

7.7. Findings and Implications ___ 168

7.7.1. Threats to Validity __ 170

7.8. Conclusion ___ 171

Chapter 8: Case Study II - Assessing User Interface Design Artifacts __________________ 173

8.1. Case Study Design ___ 173

8.2. Formatting and Adding New User Stories _______________________________ 175

8.3. Adding Testing Scenarios __ 178

8.4. Modeling and Assessing Task Models __________________________________ 178

8.4.1 Extracting Scenarios from the Task Models __________________________ 180

8.4.2 Results ___ 182

8.4.3 Types of Inconsistencies Identified _________________________________ 189

8.5. Modeling and Assessing UI Prototypes _________________________________ 190

8.5.1. Types of Inconsistencies Identified _________________________________ 202

8.6. Assessing Final UIs ___ 203

8.6.1. Types of Inconsistencies Identified _________________________________ 205

8.7. Results Mapping ___ 214

8.8. Summary of Main Findings in the Case Study ____________________________ 218

8.9. Threats to Validity ___ 221

8.10. Conclusion and Lessons Learned ____________________________________ 221

Part IV – Conclusion

Chapter 9: Conclusion ___ 225

9.1. Tackled Challenges __ 226

9.2. Summary of Contributions ___ 228

9.3. Summary of Limitations ___ 228

9.4. Future Research Perspectives ___ 229

9.4.1. Short Term Perspective ___ 229

9.4.2. Long Term Perspective __ 229

9.5. Full List of Resultant Publications _____________________________________ 230

References __ 233

Appendix A: Concept Mapping Table ___ 243

Appendix B: Log of Results – Assessing Task Models _____________________________ 251

Annex A: Case Study Interview Protocol _______________________________________ 267

Annex B: User Stories Written by the Case Study Participants ______________________ 275

Annex C: Transcription of the Interviews _______________________________________ 279

List of Figures

Figure 1. Requirements and artifacts being “photographed” in different phases of the project. 27
Figure 2. An overview of the scenario-based design (SBD) framework (Rosson and Carroll,
2002). ... 36
Figure 3. The logic model of a user interface (Green, 1985). ... 45
Figure 20. The Cameleon Reference Framework. ... 46
Figure 4. The V-model for testing. .. 49
Figure 5. Simplified versions of waterfall and iterative models. .. 52
Figure 6. Agile Model Driven Development (AMDD) (Ambler, 2002). 54
Figure 7. “Subway Map” to agile practices (Agile Alliance, 2018). ... 54
Figure 8. The cycle of permanent evolution of artifacts in iterative processes 62
Figure 9. Modeling business and functional requirements in a scenario-based approach. 63
Figure 10. Conceptual Model for testable requirements. ... 64
Figure 11. Overall view of the approach. .. 65
Figure 12. Architectural view of the approach. ... 66
Figure 13. Workflow view of the approach. .. 68
Figure 14. Alternatives for performing the approach. ... 69
Figure 15. The graph of options for performing our approach. ... 70
Figure 16. Business Process Model for the flight ticket e-ticket domain. 71
Figure 17. Activity of telling User Stories .. 72
Figure 18. Activity of creating testing scenarios ... 73
Figure 19. Our strategy for testing. .. 75
Figure 21. Main classes and their properties in the ontology. ... 82
Figure 22. Object Properties isComposedBy (left) and isTriggeredBy (right). 83
Figure 23. Left: Data Properties. Right: Data Property “message”. .. 85
Figure 24. Example of Web and Mobile implementations of a Calendar. 86
Figure 25. Cloud of User Interface (UI) Elements. .. 87
Figure 26. State Machine Elements and their Individuals. ... 91
Figure 27. A Transition being represented in the State Machine. .. 91
Figure 28. Components on the ontology used to specify a behavior. ... 92
Figure 29. Behavior “chooseRefferingTo”. ... 92
Figure 30. Results of ontology processing: HermiT (top) and Pellet (bottom). 95
Figure 31. One of the alternatives to perform our approach. ... 99
Figure 32. Example of Task Properties. .. 101
Figure 33. Representation of executable and executed tasks during simulation. 103
Figure 34. Example of “Information” and “Data” handling. .. 103
Figure 35. Activity of creating task models. ... 104
Figure 36. Mapping BPMN business activities to HAMSTERS user tasks. 105
Figure 37. Activity of formatting User Stories. .. 106
Figure 38. Scenarios being extracted from task models and then being formatted by the
ontology as User Stories. ... 107
Figure 39. Formatting rule for assessing steps and tasks. .. 109
Figure 40. Extract of an original (left side) and a resultant (right side) scenario XML files after
the process of preformatting. ... 111
Figure 41. Example of scenario extracted from a task model and its XML source file. 112
Figure 42. Activity of evaluating task models. .. 112
Figure 43. Checking consistency of tasks between US scenario and scenarios extracted from
task models. ... 112

Figure 44. Testing algorithm for assessing scenarios extracted from task models. 113
Figure 45. File tree for the implementation of task model assessment. 116
Figure 46. Flow of calls for running tests on task model scenarios. .. 116
Figure 47. “MyTest” class indicating the file “search.story” for running. 117
Figure 48. Console after running the User Story “Flight Tickets Search”. 118
Figure 49. Task model (1), extracted scenario (3), and their respective source files (2 and 4). 119
Figure 50. Flow of activities to get scenarios for testing. .. 120
Figure 51. Another alternative for performing our approach. .. 123
Figure 52. Balsamiq handmade-style UI elements. ... 125
Figure 53. Activity of prototyping UIs. .. 125
Figure 54. Sketch for the User Story “Flight Tickets Search” built from the scenario “One-Way
Tickets Search”. ... 126
Figure 55. Activity of evaluating UI prototypes. .. 127
Figure 56. Button “Search” and its XLM source file. ... 127
Figure 57. Grouped field “Departure Date” and its XLM source file. 128
Figure 58. Testing algorithm for assessing UI prototypes. .. 128
Figure 59. “MyTest.java”: class for running tests on Balsamiq prototypes. 129
Figure 60. Flow of calls for running tests on Balsamiq prototypes. .. 130
Figure 61. PANDA screenshot. ... 131
Figure 62. Example of a step split during its parsing. .. 132
Figure 63. Properties of a button in the tool PANDA with properties defined by the ontology.
 ... 132
Figure 64. Example of results given during a Scenario testing. ... 132
Figure 65. Activity of evolving UI prototypes. ... 133
Figure 66. The less refined prototype for “Flight Tickets Search” evolving to a more refined
one, and then to a final UI. .. 134
Figure 67. The “Choose Flights” UI prototype in PANDA. .. 135
Figure 68. The “Choose Flights” final UI. .. 135
Figure 69. Activity of evaluating Final UIs. .. 136
Figure 70. A 3-module integrated tools architecture. .. 136
Figure 71. Flow of components in the proposed architecture. ... 137
Figure 72. Packages and classes being structured to implement our testing approach. 137
Figure 73. Parsing a step from a TXT file to a Java method. ... 138
Figure 74. MyPage Java class. .. 138
Figure 75. Automated execution of the scenario “Return Tickets Search”. 139
Figure 76. An attempt to select a return date before the departure date. 139
Figure 77. Package tree (on the left) and MyTest class (on the right). 140
Figure 78. Writing a User Story and getting instant feedback of unknown steps. 140
Figure 79. JUnit green/red bar at the left, and JBehave detailed report at the right. 140
Figure 80. Data in Data Provider: (a) data being associated to a variable to be used in the step.
 ... 141
Figure 81. Data stored in an XML file: (a) data associated to XML file, (b) reference to dataset.
 ... 142
Figure 82. BPMN model for the case study. ... 149
Figure 83. Travel Planet system for booking business trips. ... 150
Figure 84. Structure of a User Story presented to the participants translated to English. 152
Figure 85. Example of a User Story presented to the participants translated to English. 152
Figure 86. User Story written by P1. .. 154
Figure 87. User Story written by P2. .. 154
Figure 88. User Story written by P3. .. 154

Figure 89. User Story written by P4. .. 155
Figure 90. Understandability of Each Statement in the User Story Specification. 164
Figure 92. General Understandability of User Stories (Number of occurrences in each stratum).
 ... 165
Figure 91. Understandability in User Story Specification - Narrative (Number of occurrences in
each stratum). ... 165
Figure 93. Adherence to the Ontology in User Story Specification - Scenario (Number of
occurrences in each stratum). .. 165
Figure 94. Number of occurrences in each category of adherence problems. 167
Figure 95. Boxplot of each type of adherence problems identified in participants’ User Stories.
 ... 168
Figure 96. User Story “Flight Tickets Search”. ... 176
Figure 97. User Story “Select a suitable flight”. ... 177
Figure 98. User Story “Confirm Flight Selection”. .. 178
Figure 99. Test scenarios for the User Stories. ... 178
Figure 100. Task Model for Searching Flights using Travel Planet. ... 179
Figure 101. Task Model for Informing a Flight Leg in Travel Planet. 179
Figure 102. Task Model for Choosing a Flight in Travel Planet. ... 180
Figure 103. Scenarios extracted to be tested. .. 182
Figure 104. Results of matching: scenario “Confirm a Flight Selection”. 183
Figure 105. Results of matching: scenario “Confirm a Flight Selection (Full Version)”. 187
Figure 106. Results of matching: scenario “Confirm a Flight Selection for a One-Way Trip”. 188
Figure 107. Results of matching: scenario “Confirm a Flight Selection for a Multidestination
Trip”. ... 189
Figure 108. Results of matching: scenario “Decline a Flight Selection”. 189
Figure 109. UI prototype for searching flights (first version). ... 192
Figure 110. UI prototype for searching flights (revised version after testing). 192
Figure 111. UI prototype for choosing flights (first version). .. 197
Figure 112. UI prototype for choosing flights (revised version after testing). 197
Figure 113. UI prototype for confirming a booking (first version). .. 199
Figure 114. UI prototype for confirming a booking (revised version after testing). 199
Figure 115. UI prototype: Trip Confirmed. .. 200
Figure 116. UI prototype: Withdrawing confirmation. ... 200
Figure 117. UI prototype: Trip Canceled. .. 200
Figure 118. UI prototype: Multidestination search. .. 201
Figure 119. UI prototype: Flight selected. ... 201
Figure 120. Final UI for searching flights. ... 206
Figure 121. Final UI for searching multidestination flights. .. 206
Figure 122. Final UI for choosing flights. .. 206
Figure 123. Final UI with the selected flights. ... 210
Figure 124. Final UI for confirming the selected flights. ... 210
Figure 125. Final UI: dialog box before canceling. ... 212
Figure 126. Final UI: trip canceled. ... 212

List of Tables

Table 1. Approaches for describing User Stories and Scenarios. ... 39
Table 2. Correlation between scenarios in UCD and SE approaches (adapted from (Santoro,
2005)). .. 40
Table 3. Target stakeholders of the approach. ... 65
Table 4. A compared overview between the ontology and other methods and languages. 81
Table 5. “Relations” as Object Properties in the ontology. ... 84
Table 6. Data Properties in the ontology. ... 85
Table 7. UI Elements in the ontology. .. 91
Table 8. Predefined Behaviors described in the ontology. ... 95
Table 9. Task types in HAMSTERS. ... 101
Table 10. Illustration of the operator types within HAMSTERS. .. 102
Table 11. The correlation between requirements, tasks and scenarios in UCD and SE
approaches for the User Story “Flight Tickets Search”. .. 108
Table 12. The correlation between requirements, tasks and scenarios in UCD and SE
approaches for the User Story “Select the desired flight”. .. 108
Table 13. Task name components construction. .. 110
Table 14. Concept mapping for the scenario “One-Way Tickets Search”. 110
Table 15. Checking consistency of tasks between US scenario and scenarios extracted from task
models. ... 115
Table 16. Example of concept mapping for testing. ... 135
Table 17. Participant’s Profile. .. 151
Table 18. User Story Specification – Participant P1. .. 159
Table 19. User Story Specification – Participant P2. .. 160
Table 20. User Story Specification – Participant P3. .. 162
Table 21. User Story Specification – Participant P4. .. 163
Table 22. Understandability of Each Statement in the User Story Specification. 164
Table 23. Understandability in User Story Specification - Narrative (Number of occurrences in
each stratum). ... 165
Table 24. Adherence to the Ontology in User Story Specification - Scenario (Number of
occurrences in each stratum). .. 165
Table 25. Scenario “Confirm a Flight Selection”. ... 183
Table 26. Type of inconsistencies identified in scenarios extracted from task models. 186
Table 27. Scenario “Confirm a Flight Selection (Full Version)”. ... 187
Table 28. Scenario “Confirm a Flight Selection for a One-Way Trip”. 188
Table 29. Scenario “Confirm a Flight Selection for a Multidestination Trip”. 188
Table 30. Scenario “Decline a Flight Selection”. .. 189
Table 31. Test results in Balsamiq prototypes. ... 200
Table 32. Test results on the final UI. .. 213
Table 33. Mapping of the results after testing. .. 218
Table 34. Main kinds of problems identified in each artifact after testing. 218

Abstract

In a user-centered design process, artifacts evolve in iterative cycles until they meet user
requirements and then become the final product. Every cycle gives the opportunity to revise the
design and to introduce new requirements which might affect the artifacts that have been set in
former development phases. Keeping the consistency of requirements in such artifacts along the
development process is a cumbersome and time-consuming activity, especially if it is done
manually. Nowadays, some software development frameworks implement Behavior-Driven
Development (BDD) and User Stories as a means of automating the test of interactive systems
under construction. Automated testing helps to simulate user’s actions on the user interface and
therefore check if the system behaves properly and in accordance with the user requirements.
However, current tools supporting BDD requires that tests should be written using low-level
events and components that only exist when the system is already implemented. As a
consequence of such low-level of abstraction, BDD tests can hardly be reused with more abstract
artifacts. In order to prevent that tests should be written to every type of artifact, we have
investigated the use of ontologies for specifying both requirements and tests once, and then run
tests on all artifacts sharing the ontological concepts. The resultant behavior-based ontology we
propose herein is therefore aimed at raising the abstraction level while supporting test automation
on multiple artifacts. This thesis presents this ontology and an approach based on BDD and User
Stories to support the specification and the automated assessment of user requirements on
software artifacts along the development process of interactive systems. Two case studies are also
presented to validate our approach. The first case study evaluates the understandability of User
Stories specifications by a team of Product Owners (POs) from the department in charge of
business trips in our institute. With the help of this first case study, we designed a second one to
demonstrate how User Stories written using our ontology can be used to assess functional
requirements expressed in different artifacts, such as task models, user interface (UI) prototypes,
and full-fledged UIs. The results have shown that our approach is able to identify even fine-
grained inconsistencies in the mentioned artifacts, allowing establishing a reliable compatibility
among different user interface design artifacts.

Keywords: Behavior-Driven Development (BDD), User Stories, Automated Requirements
Assessment, Ontological Modeling, Scenario-Based Design, User Interface Design Artifacts.

Résumé

Dans un processus de conception centré sur l’utilisateur, les artefacts évoluent par cycles itératifs
jusqu’à ce qu’ils répondent aux exigences des utilisateurs et deviennent ensuite le produit final.
Chaque cycle donne l’occasion de réviser la conception et d’introduire de nouvelles exigences
qui pourraient affecter les artefacts qui ont été définis dans les phases de développement
précédentes. Garder la cohérence des exigences dans tels artefacts tout au long du processus de
développement est une activité lourde et longue, surtout si elle est faite manuellement.
Actuellement, certains cadres d’applications implémentent le BDD (Développement dirigé par
le comportement) et les récits utilisateur comme un moyen d’automatiser le test des systèmes
interactifs en construction. Les tests automatisés permettent de simuler les actions de l’utilisateur
sur l’interface et, par conséquent, de vérifier si le système se comporte correctement et
conformément aux exigences de l’utilisateur. Cependant, les outils actuels supportant BDD
requièrent que les tests soient écrits en utilisant des événements de bas niveau et des composants
qui n’existent que lorsque le système est déjà implémenté. En conséquence d’un tel bas niveau
d’abstraction, les tests BDD peuvent difficilement être réutilisés avec des artefacts plus abstraits.
Afin d’éviter que les tests doivent être écrits sur chaque type d’artefact, nous avons étudié
l’utilisation des ontologies pour spécifier à la fois les exigences et les tests, puis exécuter des tests
dans tous les artefacts partageant les concepts ontologiques. L’ontologie fondée sur le
comportement que nous proposons ici vise alors à élever le niveau d’abstraction tout en
supportant l’automatisation de tests dans des multiples artefacts. Cette thèse présente tel ontologie
et une approche fondée sur BDD et les récits utilisateur pour soutenir la spécification et
l'évaluation automatisée des exigences des utilisateurs dans les artefacts logiciels tout au long du
processus de développement des systèmes interactifs. Deux études de cas sont également
présentées pour valider notre approche. La première étude de cas évalue la compréhensibilité
des spécifications des récits utilisateur par une équipe de propriétaires de produit (POs) du
département en charge des voyages d’affaires dans notre institut. À l’aide de cette première étude
de cas, nous avons conçu une deuxième étude pour démontrer comment les récits utilisateur
rédigés à l’aide de notre ontologie peuvent être utilisées pour évaluer les exigences fonctionnelles
exprimées dans des différents artefacts, tels que les modèles de tâche, les prototypes d’interface
utilisateur et les interfaces utilisateur à part entière. Les résultats ont montré que notre approche
est capable d’identifier même des incohérences à grain fin dans les artefacts mentionnés,
permettant d’établir une compatibilité fiable entre les différents artefacts de conception de
l’interface utilisateur.

Mots Clés : Développement dirigé par le comportement (BDD), Récits utilisateur, Evaluation
automatisée des exigences, Modélisation ontologique, Conception par scénarios, Artefacts de
conception d'interface utilisateur.

Part I - Introduction

 25

Chapter 1
Introduction

Summary

This chapter introduces and motivates this thesis, providing along five sections its overall context
and problem statement, followed by the set of research challenges we have identified. We also
state our aims and objectives towards the solution, as well as the research scope and the
methodological approach we have followed. This chapter ends with the thesis’ outline.

1.1. Context

Understanding user requirements is critical to the success of interactive systems (Maguire and
Bevan, 2002). As a statement of users’ expectations and needs about the system, user
requirements play a central role in a user-centred design (ISO, 1999). User requirements
specifications must express the needs of different stakeholders with different points of view about
the system. Being stakeholders anyone who is materially impacted by the outcome of the software
solution (Ambler, 2002), such needs may address functional aspects of the system (such as
features that the system must provide) or non-functional aspects (such as issues related to
performance, usability, scalability, and so on). A stakeholder could be a direct (or end) user,
indirect user, manager of users, senior manager, operations staff member, the person who funds
the project, support staff member, auditors, the program/portfolio manager, developers working
on other systems that integrate or interact with the one under development, or maintenance
professionals potentially affected by the development and/or deployment of a software project.
To succeed, a software project needs therefore to understand and synthesize their requirements
into a cohesive vision (Ambler, 2002).

Each stakeholder has their own requirements, their own vision, and their own priorities. While
business people and managers, for example, could be more interested in describing a
requirement in a rigid workflow perspective and demand features complying with that, end-users
could be more insterested in detailing such a requirement in features priorizing shortcuts or
alternative flows in the work process. Such different perspectives about the system behavior can
lead to several misunderstandings or conflicting specifications.

The degree of formality in user requirements vary considerably though. Such requirements
can be expressed from informal natural language statements until formal object-oriented
specifications. The level of formality has a strong impact on the way users and developers can
communicate about the requirements. On one hand, informal statements in natural language
tend to be easier for users to express their needs, and consequently to understand what is being
specified and documented. However, the lack of formalization might allow verbose, incomplete,
and ambiguous description of requirements that are difficult to understand and assess. On the
other hand, despite largely support automation and the system design, formal specifications are
difficult for users and non-technical people to understand, which harm their ability to
communicate with developers effectively.

Chapter 1: Introduction

 26

In an attempt to formalize the user requirements and how they should be addressed during
the implementation, software designers make use of models. Modeling is recognized as a crucial
activity to manage the abstraction and the inherent complexity of developing software systems.
Several aspects of information, from the macro business goals until the most detailed information
about user tasks, are taken into account while modeling. As a consequence, software systems are
designed based on several requirements artifacts which model different aspects and different
points of view about the system (e.g. business models, use cases, task models, etc.). Artifacts
encode a particular interpretation of a problem situation and a particular set of solutions for the
perceived problem (De Souza, 2005). They are the means by which the outcomes of modeling
activities are registered. Considering that different phases of development require distinct
information, artifacts used for modeling tend to be very diverse throughout the development, and
ensuring their consistency is quite challenging (Winckler and Palanque, 2012).

Requirements and artifacts are also expected to evolve along the project according to the users’
changing perception about their own needs. In iterative processes, the cycle of producing and
evolving artifacts permeates all the phases of system development, from requirements and
business analysis until software testing. Artifacts are supposed to be kept and maintained even
after the software development has finished, once they encompass models describing the record
of implemented requirements, which strategies were used to implement the features, how the
system architecture has been structured, etc. They are also useful to software maintenance and
evolution purposes. Therefore, requirements should be described in a consistent way across the
multiple artifacts. Requirements specifications should not, for example, describe a given
requirement in a use case that is conflicting with its representation in an activity diagram.

Most of the research intended to ensure some level of consistency between requirements and
artifacts is centered on tracing requirements throughout the development process. Requirements
traceability is defined as “the ability to follow the life of a requirement, in both forwards and
backwards direction (i.e. from its origins, through its development and specification, to its
subsequent deployment and use, and through periods of on-going refinement and iteration in any
of these phases)” (Ramesh et al., 1995). The traceability of requirements and artifacts is usually
classified as vertical and horizontal (Ebert, 2011). Vertical traceability describes the relationship
between artifacts that can be derived from each other and are in different levels of abstraction,
for example, from customer requirements to acceptance test cases. Horizontal traceability, on the
other hand, refers to trace the evolution of the same artifact along its lifecycle. The problem of
tracing requirements and artifacts has been studied by several authors for decades, and a wide set
of commercial tools have been developed to address this problem in various approaches (Nair,
De La Vara and Sen, 2013). Nonetheless, proposed solutions to promote vertical traceability
between requirements and artifacts can simply identify whether a requirement is present or not
in a given artifact, not allowing to effectively test it by checking the consistency and correct
representation of such a requirement in a given set of artifacts.

Since long time ago, it is a peaceful argument that providing early assessment is very helpful
for detecting errors before making strong commitments with the software implementation (van
Megen and Meyerhoff, 1995). Lindstrom (Lindstrom, 1993) declared that failure to trace tests to
requirements, for example, is one of the five most effective ways to destroy a project. However,
according to Uusitalo et al. (Uusitalo et al., 2008), traceability between requirements and tests is
rarely maintained in practice. This is caused primarily by failure to update traces when
requirements change, due to stringent enforcement of schedules and budgets, as well as
difficulties to conduct testing processes through a manual approach. The authors pointed out that
in most cases, interviewees in industry longed for better tool support for traceability. Some also

Chapter 1: Introduction

 27

noted that poor quality of requirements was a hindrance to maintaining the traces, since there is
no guarantee how well the requirements covered the actual functionality of the product.

1.2. Challenges

Assessing interactive systems is an activity that requires a considerable amount of efforts from
development teams. A first challenge for testing is that requirements are not stable along the
software development process. Stakeholders introduce new demands or modify the existing ones
all along the iterations. This fact makes imperative to retest all the software outcomes in order to
ensure that the system remains behaving properly, and the different artifacts remains in
accordance with the new requirements introduced and/or modified. Manual tests and software
inspections are usually the first approaches to assess these outcomes. However, manually ensuring
the consistency of system and artifacts every time a requirement is introduced and/or modified is
a discouraging activity for software development teams. Manual tests are extremely time-
consuming and highly error-prone. Therefore, promoting automated tests is a key factor to
support testing in an ever-changing environment. They allow a reliable and fast assessment of
requirements and promote a high availability of tests.

A second challenge for testing requirements is that multiple artifacts with different levels of
abstraction might be concerned by the same requirement. Tests therefore should run not only
on the final product, but also in the whole set of modeling artifacts to ensure that they represent
the same information in a non-ambiguous way, and in accordance with the whole requirements
chain. It is indeed a challenge verifying and checking such artifacts while ensuring their
consistency with the other components of a requirements specification.

Figure 1. Requirements and artifacts being “photographed” in different phases of the project.

An example of such challenges is illustrated in Figure 1. Requirements and artifacts are
supposed to evolve continuously along the project’s lifecycle. When looking at different moments
of a project’s lifecycle, we should be able to guarantee that the set of existing requirements in a
given time is consistent with the set of existing artifacts which models such requirements. For
example, at the time “t1”, the project had 3 requirements (1, 2 and 4) and only 1 artifact
concerned by them (A). So, at this time, only the artifact A should be consistent with requirements

Chapter 1: Introduction

 28

1, 2 and 4. At the time “t2”, requirements 2 and 4 evolve and must be retested with respect to the
artifacts. Besides that, a new requirement (3) came up and a new artifact (B) was designed, so
now, it is both artifacts A and B that should be consistent with requirements 1, 2, 3, and 4. By
pursuing the project, the requirement 2 was discontinued and a new artifact (C) was introduced,
so at the time “t3”, artifacts A, B and C should be now consistent with requirements 1 (not yet
evolved), 3 and 4, but not anymore with the requirement 2. That gives the dimension and the
extent of challenges to consider when a large software system with multiple iterations is under
development, not only because there are so many requirements and artifacts to align, but also
because they come up, evolve, and are dismissed all the time along the project.

Another related challenge is that assessing interactive systems implies to assess system features
with respect to the many possible data and system outputs that might occur when a user is
interacting with them. This is an arduous testing activity due to the wide range of user tasks and
the different combinations of testing data to assess. This problem is easier to be noticed in the
testing of late artifacts such as full-fledged user interfaces when real test data are being
manipulated. However, many other artifacts such as task models, and even preliminary versions
of user interface prototypes can handle test data somehow. Verifying the consistency of supported
test data in different artifacts is therefore another important source of testing.

In short, these concerns bring us three main challenges:

• formalize user requirements in such a way to provide testability in an ever-changing
environment;

• guarantee consistency between user requirements and their representation in multiple
artifacts; and

• lay on a flexible approach that could be reused to ensure such a consistency for
newcome artifacts along the project.

1.3. Objectives

The overall goal of this work is investigating methods for formalizing user requirements and
automating the test of their functional aspects along the software development process. More
specific goals include:

• Investigate a scenario-based approach aiming at specifying functional user
requirements and their acceptance criteria in an understandable natural language for
both technical and non-technical stakeholders.

• Allow the automated assessment of functional requirements on multiples user interface
design artifacts.

• Provide assessment since early in the design process in order to ensure a full lifetime
consistency between requirements and artifacts.

• Define a common-ground of concepts to specify user requirements and their
acceptance criteria aiming at establishing a common vocabulary among the target
artifacts.

• Implement a set of automated tools to support the approach and guarantee a high
availability of tests throughout the development process of interactive systems.

Previous works have focused on modeling requirements and tests intrinsically coupled in a
single artifact. The main supporting argument is that the specification of a requirement is only
complete if it specifies the requirement’s acceptance criteria, i.e. under which conditions such a

Chapter 1: Introduction

 29

requirement can be considered as done or accomplished. By doing this, requirements and tests
could be kept updated more easily. In this context, Behavior-Driven Development (BDD)
(Chelimsky et al., 2010) has aroused interest from both academic and industrial communities as
a method allowing specifying natural language user requirements and their tests in a single textual
artifact. BDD benefits from a requirements specification based on User Stories (Cohn, 2004)
which are easily understandable for both technical and non-technical stakeholders. In addition,
User Stories allow specifying “executable requirements”, i.e. requirements that can be directly
tested from their textual specification. By this means, they end up providing a “live”
documentation once it contains, in a single artifact, the specification itself along with the
automated testable scenarios which are able to certify whether some requirement has been
attended or not. BDD also encompasses a scenario-based approach that benefit from an iterative
cycle of producing-evaluating test scenarios in a final and implemented version of the system.

Despite its benefits providing automated testing of user requirements, BDD and other testing
approaches focus essentially on assessing interactive artifacts that are produced late in the
development process, such as full-fledged version of user interfaces. As far as early artifacts (such
as task models, rough user interface prototypes, etc.) are a concern, such approaches offer no
support for automated assessment. Besides that, the assessment of user requirements on user
interfaces (and consequently on their related artifacts) requires the specification of the user’s
interactive tasks that will be performed on such a UI. Despite defining a minimal template for
specifying User Stories, BDD does not propose any other support to specify the user’s interactive
tasks on such stories. While this freedom of writing gives to stakeholders a powerful approach
for freely expressing their user requirements and interactive tasks, it requires that developers
should implement each test scenario individually to allow them running on a fully implemented
user interface and using low-level events that can hardly be reused to assess more abstract artifacts.
In addition, it frequently gives rise to specifications of scenarios that, either do not encompass a
description of interactive tasks, or do it but including several incompatible interactions such as
clicks to be made on text fields in a form or selections to be made in a button.

To address these problems, we have studied the use of a formal ontology to act as common-
ground for describing concepts used by platforms, models and artifacts that compose the design
of interactive systems. The ontology was idealized to allow a wide description of interaction
elements on user interfaces, as well as the behaviors associated with them. The aim of this
ontology is therefore to support specification and testing activities in our approach by allowing
that tests are written once, and then can be used to test all the set of considered artifacts. Whilst
the ontology is aimed at being generic to many types of artifacts, in this thesis we have focused on
its implementation for task models, prototypes and final user interfaces. As the automated
assessment of these target artifacts was our guiding objective, after defining such an ontology, we
designed the proposed approach already providing a fully support to the specification of
consistent User Stories with an automated implementation ready for running the interactive
behaviors recognized by the ontology directly on the target artifacts.

The ultimate goal of this thesis is therefore to present an approach based on BDD and User
Stories to support the specification and the automated assessment of user requirements in
software artifacts along the development process of interactive systems. The common-ground of
concepts for describing the artifacts as well as the set of user-system interactive behaviors is
provided by means of an ontology. By providing automated assessment of user requirements, we
also target the guarantee of vertical traceability between them and the set of considered artifacts.
As we aim to provide automated assessment since early in the design process, we have focused
both on software artifacts describing early featuring aspects of the system, as well as on artifacts

Chapter 1: Introduction

 30

implementing fully interaction aspects. We have limited the scope to user requirements
describing functional aspects of the system, and to software artifacts aiming at describing the
design of user interfaces (UIs). As such, we have focused on task models, user interface prototypes
in different levels of refinement, and full-fledged (final) user interfaces as target artifacts.

1.4. Methodological Approach

Our approach aims at assessing user interface design artifacts from descriptions of interaction
scenarios in User Stories, so two points are fundamental to demonstrate the validity of such an
approach. The first one is the automatic verification of user requirements representation in our
set of target artifacts. The second one is the translation of user requirements written by
stakeholders into a language that allows the implementation of automated tests. To validate these
two points, we have designed two case studies aiming at evaluating distinct aspects of our
approach.

The first study was intended to investigate the level of understandability of User Stories
specifications by a given group of stakeholders. To conduct this study, we have selected a group
of potential Product Owners (POs) from the department in charge of business trips in our
institute. POs are stakeholders that master the current business process and, in the case of this
study, have the potential to eventually integrate a specialized group for specifying user
requirements to maintain or develop a new software system in the business trip field.

During the study, the participants were invited, along structured interviews, to express a User
Story they considered relevant within the group of system-related current tasks they work on daily.
An important aspect we would like to evaluate was the spontaneous use of the interactive
behaviors we had previously implemented in the ontology. With this objective in mind, we
decided to present the BDD template for User Stories to the participants but omit the list of
interactive behaviors we had modeled in the ontology. The stories produced were then evaluated
for us in order to answer research questions related to:

• the level of understandability of User Stories structure by potential POs,
• identify in which extent predefined interactive behaviors presented in our ontology

could be spontaneously used by potential POs, and
• the kind of adherence-to-the-template or adherence-to-the-ontology problems that

would be identified in User Stories produced by potential POs.

With this exercise, we evaluated the set of User Stories produced by the participants and
classified them according to their adherence to the User Story template initially presented, and
to the predefined interactive behaviors modeled in the ontology. This analysis has been made
separately for the first part of the User Story and for the related scenario, observing the existent
gap between the steps each participant specified and the equivalent and available steps in the
ontology. For each statement in the User Story, we have classified its adherence to the template
or to the ontology in scales ranging from null adherence until full adherence. Additionally, we
have categorized each deviation from the proposed template committed by the participants when
writing their User Stories. They have been classified as adherence problems in categories such as
lack of statement or keyword, understatement, misspecification, wrong information, minor writing
complement, high-level of abstraction, and epic behavior. The complete experimental protocol
as well as the results we got are presented in detail in chapter 7.

The second case study was intended to explore the translation of the stories produced by the
participants into testable User Stories by using the set of predefined interactive behaviors as

Chapter 1: Introduction

 31

proposed in the ontology. This study was also intended to demonstrate the potential of our
approach to assess user interface design artifacts after having the User Stories formatted, besides
identifying which kind of inconsistencies we would be able to point out by running our testing
approach on such artifacts. As there is already a software system in production to book business
trips in our institute (so we had no access to the software artifacts which were used to design such
a system), we decided to apply reverse engineering (Chikofsky and Cross II, 1990) to obtain such
artifacts from the software in production. We then redesigned the appropriate task models and
user interface prototypes for the system.

To achieve the goals of this study, we conducted the following activities divided in 6 steps:

• Step 1: Format and add new User Stories based on the assets from the previous study
and based on the current system implementation.

• Step 2: Add test cases to these User Stories.
• Step 3: Reengineer task models for the current system and run our approach to test

the developed scenarios.
• Step 4: Reengineer user interface prototypes for the current system and run our

approach to test the developed scenarios.
• Step 5: Run our approach to test the final user interface of the current system with the

same developed scenarios.
• Step 6: Trace the results and verify the extent of inconsistencies we were able to identify

in these multiple artifacts.

Finally, we analyzed the results of testing in each artifact by mapping such results to identify
the trace of each inconsistency throughout the artifacts. That gave us a complete traceability
overview of each step of the User Stories in the target artifacts. During the execution of each step
of testing described above, we have collected and identified the reasons of failure in the
mentioned artifacts in order to answer our research question concerning the kind of
inconsistencies we are able to identify with this proposed approach. Such results allowed us to
evaluate the effectiveness of the approach and to identify future improvement opportunities.

1.5. Thesis’ Outline

This thesis is presented in nine chapters divided in four parts, as follows.

Part I – Introduction

The part I includes the present chapter and the chapter 2.

Chapter 2
Background

This chapter presents the state of the art about the concepts used in this thesis. It includes the
main methods and techniques used for designing and modeling interactive systems following a
scenario-based approach. It is presented a discussion about how Human-Computer Interaction
(HCI) and Software Engineering (SE) communities handle the concept of User Stories and
scenarios. As modeling activities by which our target artifacts are designed, a discussion about task
modeling and user interface prototyping is also presented. These target artifacts will be explored
respectively in chapters 5 and 6. Afterwards, we discuss the mechanisms for assessing the artifacts
produced by such activities, focusing on the assessment of functional user requirements and GUI
testing. We conclude this chapter with a discuss about software development processes and

Chapter 1: Introduction

 32

methods that are typically used in SE for developing interactive systems, with an emphasis on
Behavior-Driven Development (BDD).

Part II - Contribution

Chapter 3
A Scenario-Based Approach for Multi-Artifact Testing

This chapter is divided in three parts. The first one presents the rationale for the scenario-
based approach we propose for specifying and testing user requirements on different artifacts.
The second part presents the big picture of the micro-process that supports our approach to
assess multi-artifacts, beginning with the proposed process being presented in a high-level view,
with its activities packed and divided in production and quality assurance activities. Afterwards,
an architectural view of the process is presented to point how the diverse software components
and artifacts we consider are related for modeling requirements in a testable way. The chapter
proceeds with the workflow view of the approach that presents how low-level activities are
distributed for modeling and assessing such artifacts. The third and last part introduces the
illustrative case study we base on for presenting the diverse stages of modeling and assessing
artifacts. Therefore, this chapter addresses our specific goal of investigating a scenario-based
approach aiming at specifying functional user requirements and their acceptance criteria in an
understandable natural language for both technical and non-technical stakeholders.

Chapter 4
Towards an Ontology for Supporting UI Automated Testing

This chapter presents the ontological approach we have developed for specifying interactive
behaviors and supporting our automated testing approach. The aim of the ontology described in
this chapter is to support the assessment of user interface design artifacts as well as fully
implemented user interfaces on interactive systems, providing a common and consistent
description of elements that compose the semantics of interaction between users and systems in
web and/or mobile environments. Therefore, this chapter addresses our specific goal of defining
the common-ground of concepts to specify user requirements and their acceptance criteria aiming
at establishing a common vocabulary among the target artifacts.

Chapter 5
Modeling and Assessing Task Models

This chapter details our strategy for modeling and assessing task models following our
approach presented in chapter 3. The chapter begins by resuming the case study proposed in
chapter 3, with task models being used to design user’s tasks. By following this, we present firstly
an orderly strategy for getting task models already consistent with the set of user requirements
specified previously. In the second section, we explore our strategy for assessing the resultant task
models. This section is presented in 3 steps. The first one refers to the extraction of possible
scenarios from a designed task model, formatting them to meet the ontological pattern. The
second one refers to the process of mapping elements from the task model for checking whether
they are consistent with the respective elements in the User Stories, and hence with the ontology.
Finally, the last step presents how our strategy has been implemented to support the testing in an
automated way. Therefore, this chapter addresses our specific goals of providing early automated
assessment of functional requirements on task models, with the support of automated tools to
guarantee a high availability of tests throughout the development process of interactive systems.

Chapter 1: Introduction

 33

Chapter 6
Modeling and Assessing User Interfaces: From Prototypes to Final UIs

This chapter details our strategy for modeling and assessing user interface prototypes following
our approach presented in chapter 3. The chapter begins by resuming the case study proposed
in chapter 3, with Balsamiq prototypes being used to design the user interface in a first stage of
refinement. By following this, we present firstly how to produce UI prototypes already consistent
with the set of user requirements specified previously. In the second section, we present how our
previous developed ontology can support the development of prototyping tools able to produce
consistent UI artifacts. The third section describes how we perform tests on fully implemented
user interfaces by using an integrated multiplatform framework. This framework allows designing
automated acceptance testing with low implementation efforts. The fourth section discuss how
our approach supports the assessment of evolutionary UI prototypes, and how it could keep them
consistent along the software development. Finally, the fifth and last section concludes the chapter
pointing out advantages and limitations of this approach. Therefore, this chapter addresses our
specific goals of providing early automated assessment of functional requirements on user
interface prototypes in different levels of refinement, with the support of automated tools to
guarantee a high availability of tests throughout the development process of interactive systems.

Part III - Evaluation

Chapter 7
Case Study 1 - Understandability of User Stories

This chapter presents the experimental design and the results of our first case study to evaluate
the understandability of User Stories we used to model user requirements in our approach. To
present our findings, this chapter is divided in 7 sections. The first one presents our experimental
design, detailing our research questions and measures we used to assess the outcomes. Following
this, we present the business narrative to give the context of how business travels are booked in
our institute. Next, we detail our methodology to conduct the study, followed by the participant’s
profile, and the exercise we proposed to allow them writing their own User Stories. The sixth
section brings the results of the study, highlighting the set of User Stories written by the
participants, our adherence analyses considering stories and scenarios, our discussion of such
results, our general findings and implications, and the threats to validity of this study. Finally, we
conclude with our last remarks and point out future investigation opportunities in this field.

Chapter 8
Case Study II - Assessing User Interface Design Artifacts

This chapter describes the second case study we performed to evaluate our approach. The
first section of this chapter presents the case study design, detailing how the study was planned
and executed. The second section presents the set of complementary User Stories we have
developed to support the design and testing of the artifacts developed for the case study. The
third section adds a group of selected test cases with the aim of helping to validate such stories.
The following sections present the modeling and testing results for each one of the assessed
artifacts: task models, Balsamiq prototypes, and final UIs. In the seventh section, we build a
traceability mapping to follow the inconsistencies found in each one of the target artifacts. Such
mapping shows an edge-to-edge overall view of the testing scenarios, signalizing where a given step
has failed in each artifact and why. We finish by presenting our findings and lessons learned, as
well as our conclusions on the effectiveness of our testing approach, and the impact of the
inconsistencies identified in the assessment of artifacts.

Chapter 1: Introduction

 34

Part IV - Conclusion

Chapter 9
Conclusion

This chapter presents the final remarks about this thesis’ work. We recapitulate our
achievements and discuss the main contributions and limitations of the approach. We also
provide some directions for future research in this field as well as our future works already
planned to be conducted for improving the proposed approach. The chapter ends with the full
list of publications resultant from this thesis.

Each chapter starts with a summary that presents the inner highlights. Moreover, whereas it is
relevant, publications touching the core contributions of the chapter are presented at the end.

 35

Chapter 2
Background

Summary

This chapter presents the state of the art about the concepts used in this thesis. It includes the
main methods and techniques used for designing and modeling interactive systems following a
scenario-based approach. The first part presents the methods for modeling user requirements for
interactive systems including User Stories and Scenario-Based Design. At this part, it is presented
a discussion about how Human-Computer Interaction (HCI) and Software Engineering (SE)
communities handle the concept of User Stories and scenarios in a complementary perspective.
These concepts are useful to understand how our approach related to previous works on
scenario-based design and how these concepts are articulated to support our specification of User
Stories.

Afterwards, the background about task analysis and modeling is presented along with a synthesis
about how user interface prototyping contributes to the process of modeling interactive systems.
An analysis about UI prototyping tools and how they have supported the modeling of user
requirements over time is also presented. As task models and user interface prototypes constitute
our target artifacts to be modeled and assessed by using our approach, such analysis is useful to
present and align the concepts related to these artifacts.

The second part presents the mechanisms for evaluating user requirements, focusing on
functional testing and GUI testing, which are target in our approach. We conclude this chapter
with a contextualized discussion about software development processes that are typically used in
SE for developing interactive systems. We explore the concepts of macro and micro processes
that are used to define our approach and focus on the concepts related to agile methods and
techniques, especially Behavior-Driven Development (BDD), on which our approach is based.

2.1. Methods for Modeling User Requirements for Interactive Systems

There are several methods for modeling user requirements. From traditional use cases until
specific task models, user requirements modeling can assume different intents and abstraction
levels. User-centered approaches usually model requirements using artifacts such as scenarios,
task models and prototypes. In a scenario-based approach, these artifacts can be additionally
aligned to provide a complete software design specification for interactive systems. Scenarios,
however, have different meanings in the literature. They can also assume multiple forms and
templates depending on the information requirements engineers want to highlight. In recent
years, User Stories have stood out as one of the main scenario-based languages to specify
automatable user requirements.

2.1.1. User Stories and Scenario-Based Design

Scenario-based design (SBD) is a family of techniques in which the use of a future system is
concretely described at an early point in the development process. Narrative descriptions of
envisioned usage episodes are then employed in a variety of ways to guide the development of
the system. Like other user-centered approaches, scenario-based design changes the focus of

Chapter 2: Background

 36

design work from defining system operations (i.e., functional specification) to describing how
people will use a system to accomplish work tasks and other activities (Rosson and Carroll, 2001).

SBD follows an iterative design framework in which scenarios serves as a central representation
of requirements throughout the development cycle, first describing the goals and concerns of
current use, and then being successively transformed and refined through an iterative design and
evaluation process (Figure 2). However, from analysis to evaluation, the SBD cycle does not
tackle how to manage and assess the flow of artifacts that are produced all along these multiple
development phases.

As central representation of requirements, scenarios can admit multiple templates according
to the phase of development and to the level of abstraction that they are addressing for some
information. Free narratives, for example, are useful in the very early phases, when typically, high-
level business requirements are being defined (problem scenarios). Nevertheless, they are a
frequent source of misunderstandings when used to refine requirements in activity or interaction
scenarios in the design phase. Semi-formatted templates like in User Stories are better suitable in
this case.

A large set of requirements can be expressed as stories told by users. Being a common activity
in any requirements process, users and other stakeholders typically talk about their business
process, emphasizing the flow of activities they need to accomplish. However, User Stories have
a large meaning in the literature. The Human-Computer Interaction (HCI) community
understands this concept as stories that users tell to describe their activities and jobs during typical
requirements meetings. Being a common activity in any requirements process, users and other
stakeholders typically talk about their business process emphasizing the flow of activities they
need to accomplish. These stories are captured in requirements meetings and are the main input
to formalize a requirements artifact. These meetings work mainly like brainstorm sessions and
include ideally several stakeholders addressing different needs concerning features that may be
developed. Iterative approaches capture these needs in successive meetings, according to the
subject concerned in a particular iteration.

Figure 2. An overview of the scenario-based design (SBD) framework (Rosson and Carroll, 2002).

Chapter 2: Background

 37

This concept of User Stories is close to the concept of scenarios given by Rosson & Carroll
(Rosson and Carroll, 2001) and widely used in UCD design:

“Scenario spells out what a user would have to do and what he or she
would see step-by-step in performing a task using a given system. The key
distinction between a scenario and a task is that a scenario is design-
specific, in that it shows how a task would be performed if you adopt a
particular design, while the task itself is design-independent: it's
something the user wants to do regardless of what design is chosen.
Developing the scenarios forced us to get specific about our design, and
it forced us to consider how the various features of the system would
work together to accomplish real work.”, (Lewis and Rieman, 1993).

According to Santoro (Santoro, 2005), scenarios are a well-known technique often used during
the initial informal analysis phase. They provide informal descriptions of a specific use in a
specific context of application, so a scenario might be viewed as an instance of a use case,
representing a single path through it. A careful identification of meaningful scenarios allows
designers to obtain a description of most of the activities that should be considered in a task
model. Given task models have already been developed, Scenarios can also be extracted from
them to provide executable and possible paths in the system.

In the Software Engineering (SE) side, User Stories are typically used to describe requirements
in agile projects. This technique was proposed by Cohn (Cohn, 2004) and provides in the same
artifact a narrative, briefly describing a feature in the business point of view, and a set of scenarios
to give details about business rules and to be used as acceptance criteria, giving concrete examples
about what should be tested to consider a given feature as done.

North (North, 2017) says that:

“A story should be the product of a conversation involving several
people. A business analyst talks to a business stakeholder about the
feature or requirement and helps them to frame it as a story narrative.
Then a tester helps define the scope of the story – in the form of
acceptance criteria – by determining which scenarios matter and which
are less useful. A technical representative will provide a ballpark estimate
of the amount of work involved in the story, and to propose alternative
approaches. Many great ideas for systems come from the people
developing them as well as the people who asked for them in the first
place.”

Given requirements can emerge from multiple sources, including previous documentations,
regulations, workflows, etc., after being captured, the User Stories need to be formatted,
considering requirements emerged from other sources and looking for two main goals:

(i) assure testability and non-ambiguous descriptions, and
(ii) provide reuse of business scenarios.

For that, some formats and templates have been proposed (Wautelet et al., 2014). The most
useful template however is given by Cohn and North (Cohn, 2004; North, 2017):

	

Chapter 2: Background

 38

Title (one line describing the story)

Narrative:
As a [role]
I want [feature]
So that [benefit]

Acceptance Criteria: (presented as Scenarios)

Scenario 1: Title
Given [context]
 And [some more context]...
 When [event]
 Then [outcome]
 And [another outcome]...

Scenario 2: ...

This structure is largely used in Behavior-Driven Development (BDD) and has been named
by North (North, 2017) as a “BDD story”. According to this template, a User Story is described
with a title, a narrative and a set of scenarios representing acceptance criteria. The title provides
a general description of the story, referring to a feature this story represents. The narrative
describes the referred feature in terms of role that will benefit from the feature, the feature itself,
and the benefit it will bring to the business. The acceptance criteria are defined through a set of
scenarios, each one with a title and three main clauses: “Given” to provide the context in which
the scenario will be actioned, “When” to describe events that will trigger the scenario and “Then”
to present outcomes that might be checked to verify the proper behavior of the system. Each one
of these clauses can include an “And” statement to provide multiple contexts, events and/or
outcomes. Each statement in this representation is called step.

In the beginning of software development processes, requirements are more declarative and
lead to User Stories in a high level of abstraction. As the project evolves, scenarios descriptions
become more refined and closer to the user’s actions on the expected user interface. Chelimsky
et al. (Chelimsky et al., 2010) call them declarative and imperative scenarios. These two styles of
writing tell the same stories, but at different levels of abstraction. It impacts different parts of the
process in different ways. The first style is more horizontal, wrapping several activities up into a
single step, which means it generally supports more scenarios, covering a larger set of features,
but with fewer steps definitions. Conversely, the second style tends to be more vertical and
customized to each scenario, with steps going step-by-step through performing each interaction
on the user interface. It means that the work of writing steps spreads out more throughout the
development, benefiting the development of test cases.

As we can realize, the approaches for scenarios from UCD and SE share the same concept.
Both of them provide a step-by-step description of tasks being performed by users using a given
system. The main difference between them lies in the testing and the business value components
present in the SE approach. Scenarios from UCD, despite describing events that a given system
can answer, do not describe the expected behavior from the system when those events are
triggered, besides not determine the business motivation to develop the feature being described.
Table 1 summarizes such characteristics.

Referring to what was said above in this section, we can conclude that to some extent, the
approaches mentioned agree that User Stories and scenarios must provide a step-by-step
description of tasks being performed by users using a given system. Nonetheless, there are some
differences as illustrated by Table 1. This analysis gives us the opportunity to establish a
correlation between requirements identified in User Stories, their representation in terms of tasks

Chapter 2: Background

 39

and the extracted scenarios in both UCD and SE approaches. We can notice that the main
difference lies in the degree of formality and their possible value to support automated tests.
Another remark we can make it is about the type of tasks mapped to scenarios in SE. As SE
considers only tasks being performed by users when using an interactive system, User Stories in
this context address only scenarios extracted from interactive tasks in task models. Cognitive tasks,
for example, are not mapped to be SE scenarios because they cannot be performed in the system.

Approaches for User
Stories and Scenarios

Key facts Advantages Shortcomings

Phases of
development

process
Early Late

User Stories and/or
scenarios by Rosson
& Carroll (Rosson
and Carroll, 2002)

Informal description of
user activities
contextualized in a
story.

Highly flexible and
easily comprehensive
for non-technical
stakeholders.

Very hard to
formalize, little
evolutionary and
low reusability.

Yes No

Scenarios extracted
from task models by
Santoro (Santoro,
2005)

A possible instance of
execution for a given
path in a task model.

Highly traceable for
task models.

Dependency of task
models and low
testability.

Yes No

User Stories and/or
scenarios by North
(North, 2017) and
Cohn (Cohn, 2004)

Semi-formal
description of user
tasks being performed
in an interactive system.

Highly testable and
easily understandable
for non-technical
stakeholders.

Very descriptive and
time consuming to
produce.

Yes Yes

Table 1. Approaches for describing User Stories and Scenarios.

This analysis gives us the opportunity to establish a correlation between requirements
identified in User Stories, their representation in terms of tasks and the extracted scenarios in
both UCD and SE approaches. A possible solution for a use case in the domain of air traffic
control is presented in the Table 2 (adapted from (Santoro, 2005)).

Requirement Task
Scenarios

Extracted from Task
Models (UCD approach)

Written in the User Story
template (SE approach)

Controllers should be
able to select a plane in
order to set its frequency

Narrative

As a controller
I want to set frequencies
for planes
So that I can keep a
private communication
channel with them.

Select a plane
(cognitive task)

First the controller
identifies one of the
planes not yet assumed

Given there are planes not
yet assumed

Click plane
(interaction task)

Then the controller
clicks on this plane to
assume it

When I click on one of
them

Select a plane SC
(cognitive task)

Then the controller
decides to change the
current frequency of one
of the flights assumed

-

Click FREQ
(interaction task)

Then the controller clicks
on the label FREQ to
open the data-link menu

And I click on the label
FREQ

Open Menu
(interaction task)

Then the controller opens
the menu of frequency for
this plane

And I open the menu of
frequency for this plane

Select Frequency
(cognitive task)

Then the controller
selects (in his/her head) a
new frequency for this
plane

-

Chapter 2: Background

 40

Click Frequency
(interaction task)

Then the controller clicks
on one of the available
frequencies for this plane

And I click on one of the
available frequencies

Send
(interaction task)

Then the controller clicks
on the SEND button to
send the new frequency to
the aircraft

And I click on the SEND
button

- -
Then the aircraft returns a
double signal to confirm
the new configuration

Table 2. Correlation between scenarios in UCD and SE approaches (adapted from (Santoro, 2005)).

Analyzing this correlation, we can note that the business value (represented in orange in the
narrative) and the testing component (represented in green in the User Story scenario) allow us
to implement test cases to validate the envisioned requirement, as well as checking when, after
being implemented, this feature can be considered as done and correct (that correspond to the
business value being achieved).

Another remark we can make it is about the type of tasks mapped to scenarios in SE. As SE
consider only tasks being performed by users when using an interactive system, User Stories in
this context address only scenarios extracted from interaction tasks in task models. Naturally,
cognitive tasks, for example, are not mapped to be SE scenarios because they cannot be
performed in the system.

2.1.2. Task Analysis and Modeling

Following an approach based on task models, interactive systems can be modeled to represent
the flow of tasks that users should accomplish when using the system. According to Paternò
(Paternò, 1999), tasks are activities that have to be performed to reach a goal. A goal is a desired
modification of state or an attempt to receive state information. Each task is associated with one
goal and each goal is associated with one or multiple tasks that can be represented in multiple
abstraction levels.

2.1.2.1. Task Analysis

Task analysis is a process that aims to determine what the users do, the tools they use to do
their work, the information they know or the information they must know for performing their
work and is targeted to cover all or most cases and users. The general term task analysis can be
applied to a variety of techniques for identifying and understanding the structure, the flow, and
the attributes of tasks. Task analysis identifies the actions and cognitive processes required for a
user to complete a task or achieve a particular goal.

According to the Usability BoK (Usability Body of Knowledge, 2018), a detailed task analysis
can be conducted to understand the current system and the information flows within it. These
information flows are important to the maintenance of the existing system and must be
incorporated or substituted in any new system. Task analysis makes it possible to design and
allocate tasks appropriately within the new system. The functions to be included within the system
and the user interface can then be accurately specified. Some of the outputs of a task analysis
include:

• a detailed description of physical, perceptual, and cognitive activities involved with each
task,

Chapter 2: Background

 41

• task duration and variability,
• task frequency,
• task sequence,
• task allocation,
• task complexity,
• environmental conditions,
• data and information dependencies,
• tools required for the task, and
• user skills, education, and training.

Cognitive Task Analysis (CTA) (Crandall, Klein and Hoffman, 2006) and Hierarchical Task
Analysis (HTA) (Annett, 2003) are commonly used task analysis techniques. According to
Hackos & Redish (Hackos and Redish, 1998), user and task analysis focuses on understanding:

• what users’ goals are,
• what they are trying to achieve,
• what users actually do to achieve those goals,
• what personal, social, and cultural characteristics the users bring to the tasks,
• how users are influenced by their physical environment, and
• how users’ previous knowledge and experience influence how they think about their

work and the workflow they follow to perform their tasks.

A task analysis allows teams, for example, to discover what tasks a web site/app must support,
determine the appropriate scope of content for an user interface, decide what applications your
interface should include, refine or redefine the navigation or search for your website/app to better
support users’ goal, so to make sure the site is efficient, effective, and satisfying to users, build
specific web pages and web applications that match users' goals, tasks, and steps, and ensure later
on that the design supports all the tasks required. Additionally, the data for the task analysis can
be assembled from several places including business requirements, user research, existing
competitive products and brainstorming.

On the other hand, task analysis can be a very time-consuming activity if used with a high
degree of detail on complex problems. It is possible to get caught in what is loosely termed
“analysis paralysis” where more and more detail is investigated (Nicolle, 1999).

a. Procedure

Task decomposition: the aim of “high level task decomposition” is to decompose the high-
level tasks and break them down into their constituent subtasks and operations. This will show
an overall structure of the main user tasks. At a lower level it may be desirable to show the task
flows, decision processes and even screen layouts.

The process of task decomposition is better represented as a structure chart (similar to that
used in HTA). According to Dalkir (Dalkir, 2011), this shows the sequencing of activities by
ordering them from left to right. In order to break down a task, the question should be asked
“how this task is done?”. If a sub-task is identified at a lower level, it is possible to build up the
structure by asking "why is this done?". The task decomposition can be carried out using the
following stages (Dalkir, 2011):

i. Identify the task to be analyzed.

Chapter 2: Background

 42

ii. Break this down into between 4 and 8 subtasks. These subtasks should be specified in
terms of objectives and, between them, should cover the whole area of interest.

iii. Draw the subtasks as a layered diagram ensuring that it is complete.
iv. Decide upon the level of detail into which to decompose. Making a conscious decision

at this stage will ensure that all the subtask decompositions are treated consistently. It
may be decided that the decomposition should continue until flows are more easily
represented as a task flow diagram.

v. Continue the decomposition process, ensuring that the decompositions and
numbering are consistent. It is usually helpful to produce a written account as well as
the decomposition diagram.

vi. Present the analysis to someone else who has not been involved in the decomposition
but who knows the tasks well enough to check for consistency.

Task flow diagrams: task flow analysis will document the details of specific tasks. It can include
details of interactions between the user and the current system, or other individuals, and any
problems related to them. Copies of screens from the current system may also be taken to provide
details of interactive tasks. Task flows will not only show the specific details of current work
processes but may also highlight areas where task processes are poorly understood, are carried
out differently by different staff, or are inconsistent with the higher-level task structure (Dalkir,
2011).

Variations: if the tasks are already well understood, it may be sufficient to just identify and
document the tasks as part of context of use analysis. According to Saffer (Saffer, 2006), the task
analysis can consist in a raw list of features that the final application will have to carry.

2.1.2.2. Task Modeling

Task models provide a goal-oriented description of interactive systems but avoiding the need
for the level of detail required for a full description of the user interface. Each task can be specified
at various abstraction levels, describing an activity that has to be carried out to fulfil the user's
goals. By modeling tasks, designers are able to describe activities in a fine granularity, for example,
covering the temporal sequence of tasks to be carried out by the user or system, as well as any
preconditions for each task (Paternò et al., 2017). The use of task models serves as multiple
purposes such as better understanding the application under development (and in particular its
use), being a “record” of multidisciplinary discussions between multiple stakeholders, helping the
design, the usability evaluation, the performance evaluation, and the user in performing the tasks
(acting as a contextual help). Task models are also useful as documentation of requirements both
related with content and structure.

Task models rely on flexible and expressive notations providing systematic methods able to
indicate how to use information in the task models. Each notation also provides automatic tools
to model task information efficiently. Such notations represent task models by different syntaxes
(both textual and graphical), different levels of formality, and different set of operators for task
composition (Limbourg and Vanderdonckt, 2003). Hierarchical Task Analysis (HTA), GOMS,
CTT and HAMSTERS are the most representative techniques notations for task modeling.

HTA (Annett, 2003) is a simple and flexible method that does not depend on a
methodological context. It enables the representation of a task hierarchy that could be further
detailed. Although HTA is task oriented and to some extent user oriented it still maintains a
strong relationship with traditional software engineering. On the downside, there are no strict
rules for creating an HTA diagram, so different analysts will generate inconsistent hierarchies at

Chapter 2: Background

 43

varying levels of detail. HTA is not a predictive tool, it focuses on existing tasks and HTA
diagrams can become quite complex. When used in large project, HTA requires a lot of overhead
work/revise and maintain task numbers and plans as tasks are edited and moved within the
hierarchy. Also, it is difficult to synchronize the graphical and textual representations. The results
of an HTA is a starting point for more detailed modeling methods, like GOMS. GOMS (Card,
Newell and Moran, 1983) in its turn has some important limitations. It does not consider user
errors or the possibility of interruptions. Only sequential tasks are considered. It can be
inadequate for distributed applications (such as web-based applications).

ConcurTaskTrees (CTT) (Paternò, 2000) focus on activities and follows a hierarchical
structure. It provides a graphical syntax with a rich set of temporal operators, besides task
allocation, objects and task attributes. CTT can also be applied to multi-user applications, where
users take on specific roles. The CTT notation is defined in terms of a hierarchical composition
of temporal operators over named tasks, that relate a parent task to a non-empty set of child tasks.
Tasks are associated with metadata including simple expressions over preconditions.

HAMSTERS (Martinie, Palanque and Winckler, 2011) is a task modeling language with a
supporting tool. It is widely inspired by existing notations and tools and takes advantages from all
of them. HAMSTERS has been implemented with the objective of making it easily extendable
and it results in a CASE tool that contributes to the engineering of task models. HAMSTERS
features a task model simulator as a dedicated API for simulating the execution of task sequences.
It supports task types and temporal ordering, representation of information, knowledge, devices
and objects (required to perform tasks), structuring mechanisms and collaborative activities.

Task modeling has a decisive impact on the design of UI prototypes once a dual-channel
correspondence should be established between them, i.e. tasks described in task models must
take place as an executable sequence of interactions on the user interface, and conversely, the
user interfaces must support the execution of the whole set of possible interaction scenarios
extracted from task models. As such, both artifacts must be kept in-line in order to guarantee the
consistency between models, as well as the consistency between the models and the user
requirements.

Ensuring the quality of models and their consistency with user requirements is an activity that
demands manipulating such models in order to semantically compare their structure with a set of
predefined requirements. Such manipulations result in a set of scenarios in which the model
represents a valid interaction path in the system. This characteristic is particularly useful when
identifying test scenarios for the system. Means of manipulating task models for obtaining test
scenarios is a problem that has been recently studied by us (Silva and Winckler, 2017) and other
authors (Bowen and Reeves, 2011; Campos et al., 2017). Once a task model describes the whole
set of tasks a user can perform in the system, besides providing the set of multiple paths that users
are able to follow to accomplish such a task, test cases are obtained by going through these
multiple paths, gathering a different execution scenario for each possible path. Therefore, all
notations and tools for task modeling provide some kind of mechanism for extracting the set of
possible scenarios by simulating a model execution.

In short, being scenarios informal descriptions of a specific use in a specific context, and task
models, descriptions of possible activities and their relationships, scenarios support task
development while task models can support scenarios identification.

Chapter 2: Background

 44

2.1.3. User Interface Prototyping

A UI prototype is a previous representation of an interactive system. Prototypes are concrete
artifacts and important components of the design process. They encourage communication,
helping designers, engineers, managers, software developers, customers and users to discuss
design options and interact with each other. They also permit early evaluation since they can be
tested in various ways, including traditional usability studies and informal user feedback,
throughout the design process (Beaudouin-Lafon and Mackay, 2000). Prototypes are often used
in an iterative design process where the prototype is refined and become more and more close
to the final user interface through the identification of user needs, constraints and feedbacks on
early prototypes. It makes particularly important the investigation of multiple design options in
the early phases. By running simulations on prototypes, we can determine potential scenarios that
users can perform in the system.

Along this refining process, the prototype can be designed in different levels of fidelity. The
prototype fidelity expresses the similarity between the final user interface (running in a particular
technological space) and the prototyped UI. The UI prototype fidelity is said to be high if the
prototype representation is the closest possible to the final UI, or almost in the same
representation type. The fidelity is said to be low if the prototype representation only partially
evokes the final UI without representing it in full details. Between high-fidelity and low-fidelity
exists the medium-fidelity level, that gives more importance to the contents than the style with
which these contents are presented (Coyette, Kieffer and Vanderdonckt, 2007).

Based on that, the design of user interfaces is expected to evolve along the whole software
development process. While the beginning of the project requires a low-level of formality with
UI prototypes being hand sketched in order to explore design solutions and clarify user
requirements, the development phase requires more refined versions frequently describing
presentation and dialog aspects of interaction. Full-fledged versions of user interfaces are
generally produced only later in the design process, and frequently corresponds to how the user
“see” the system. In the user’s point of view, the user interface actually is the system, so if some
feature is not available there, then it does not exist. Such mature UI versions are also the source
for acceptance testing and will be used by users to assert whether a system can be considered as
done or not.

Prototyping is primarily a design activity in software engineering. It ensures that software
prototypes evolve into technically sound working systems and serves for studying the effectiveness
of particular designs. Several tools can help such an activity and many of them provide resources
to evolve prototypes since sketching representations until the final design. Other features such as
behavior specification, collaborative work, support for usability testing, etc. are also very useful
for designers along the design process. In (Silva, Hak and Winckler, 2015; Silva et al., 2017), we
have evaluated a set of 104 commercial tools and 17 academic tools to investigate the availability
of 13 essential features that emerged over time. Such features have been classified as milestones
and encompass non-programming skills, pen-based interaction, widgets, behavior specification,
collaborative work, reuse mechanism, scenario management, preview mode, support for usability
testing, support for code generation, version control, annotations, and support for the entire
design lifecycle.

From the 121 tools analyzed, we have noticed three milestones of releasing. The first period
(before 1995) is characterized by the emergence of UIMS tools. UIMS tools focus on high-fidelity
prototypes, using mostly design elements from the final interface, and being strongly dependent
on the platform. UIMS tools lack the flexibility needed in the early phases of the development

Chapter 2: Background

 45

process when designers should focus on problems to be solved in terms of business and users’
requirements rather than terms of user interface design.

However, it is from this period the emergence of an important concept related to the design
of user interfaces. The separation of components is a concept introduced by Green (Green, 1985)
to separate the static and the dynamic aspects of an user interface (Figure 3). According to the
author, the presentation component is responsible for the external presentation of the user
interface, while the dialogue control component defines the structure of the dialogue between the
user and the application program. Still according to the author, the dialogue control component
can be viewed as the mediator between the user and the applications program. The user, through
the presentation component, makes requests and supplies data to the application program.
Unlike the presentation component, the dialogue control component must maintain a state and
have control over it. The actions performed by this component will usually depend upon the
context of the dialogue, therefore, any notations for it must be able to handle dialogue states and
state changes. There is also the application interface model which is a component to define the
semantics of the application. This representation includes the data objects that are maintained by
the application, and the routines the user interface can use to communicate with the application.
The concepts of presentation and dialog are part of our ontological definition of a user interface
and will be explored in chapter 4.

Figure 3. The logic model of a user interface (Green, 1985).

It is also from this period many reports of using tools such as PowerPoint and Visio to create
user interface prototypes. Although PowerPoint and Visio are not intended to build prototypes,
they provide functions for drawing presentations and creating transitions, which might have been
helpful to build low-fidelity prototypes when no other UIMS tool was available.

The second identified period (1995-2005) encompassed tools with functionalities to support
the development team when managing prototyping activities (ex. annotations, code generation,
version control, etc.). There was an increasing interest in the period on alternative ways of
prototyping user interfaces as well as in behavior modeling. For example, we observed the
emergence of sketching tools such as SILK (Landay, 1996) and DENIM (Newman et al., 2003).

The third and last period is characterized by a substantial increase of commercial tools and
support for collaborative work. This period goes from 2007 to now. Along the three mentioned
periods, features like Non-Programming Skills, the use of Widgets and Behavior Specification
were the three most implemented by tools (over 70%). This fact can signalize the focus in
providing a friendly environment for non-technical people since the first years. McDonald et al.
(McDonald, Vandenberg and Smartt, 1988) in 1988 had already pointed the need to consider
different skills from the various stakeholders involved and to allow they use tools to design their
own interfaces without technical skills. The way tools started providing that - and still remain until
now - was through Widgets. Widgets have introduced a simple mechanism to encapsulate an idea

Chapter 2: Background

 46

(and sometimes behaviors) for each component normally used to build GUIs. The concept of
Widgets will be explored in chapter 6 when designing prototypes using the Balsamiq tool.

Features like Scenario Management, Support for Usability Testing and Support for the Entire
Design Lifecycle are supported by a few tools (less than 10%). This number suggests a slow
progress towards the support of the whole lifecycle of prototyping. Concerning Pen-Based
Interaction, only 9.92% of tools implement this feature. Pen-Based Interaction feature was
presented in SILK in 1995, and after some years, well-known tools like Adobe Illustrator and
Photoshop implemented it. Nevertheless, it never seems to become a successful feature with
commercial prototyping tools. This might be explained by the fact that sketches are hard to
maintain (ex. ambiguity of sketches) and hard to make them evolve throughout the development
process.

The five more covered milestones (Non-Programming Skills, the use of Widgets, Behavior
Specification, Preview Mode and Reuse Mechanism) – all of them covered by more than half of
tools – are also the oldest features presented by prototyping tools (since 1988). However, the
availability of features like Behavior Specification, Preview Mode and Reuse Mechanism evolved
along the time. Behavior Specification has benefited from more human-centered approaches
such as Scenario-based specifications, while Preview Mode has incorporated co-execution
between models and prototypes like in PetShop (Navarre, Palanque and Bastide, 2002) and
ScreenArchitect. Since 2001, Reuse Mechanisms started to include technics like Plastic Interfaces
(Calvary, Coutaz and Thevenin, 2001) and Responsive Design (Marcotte, 2014).

2.1.4. User Interfaces and Task-Based Development

Concerning the description of user interfaces, the Camaleon Framework (Calvary et al., 2002)
treats the presentation and the dialog parts of an UI in three levels of abstractions: Abstract,
Concrete and Final User Interfaces. The idea is that abstract user interface components (such as
a Container) could be refined to a more concrete representation (such as a Window) that will
ultimately feature a final implementation in a target platform (e.g. MacOS or Windows). User
Interface (UI) specifications include more or less details according to the level of abstraction as
shown in Figure 4.

The UsiXML (USer Interface eXtensible Markup Language) (Limbourg et al., 2004)
implements the principles of the Cameleon framework in a XML-compliant markup language
featuring many dialects for treating Character User Interfaces (CUIs), Graphical User Interfaces
(GUIs), Auditory User Interfaces, and Multimodal User Interfaces. UsiXML is a declarative
language that captures the essence of User Interface components. At a highest level of abstraction,
UsiXML describes concepts of widgets, controls, containers, modalities and interaction
techniques. UsiXML contain a few basic elements for describing the dialog part such as the
concept of events, conditions and actions. For that, some authors have proposed to use a notation

Figure 4. The Cameleon Reference Framework.

Chapter 2: Background

 47

based on statecharts called SWC (StateWebCharts) (Winckler and Palanque, 2003) to specify
the UsiXML dialog. The same authors (Winckler et al., 2008) have demonstrated that, using
SWC, it is possible to describe the system behavior at different levels of abstraction using
UsiXML.

As far as a common vocabulary is at a concern, the W3C published a glossary of recurrent
terms for presentation components called MBUI (Model-based User Interface) (Pullmann,
2017). For the dialog component, SWC (Winckler and Palanque, 2003) and SXCML (State
Chart XML: State Machine Notation for Control Abstraction) (Barnett, 2017) offer a language
based on the state machine concepts.

There is also an intrinsically relationship between task modeling and user interface design.
Some authors have even tried to establish a linguistic task modeling for designing user interfaces.
Khaddam et al. (Khaddam, Mezhoudi and Vanderdonckt, 2015) presented a linguistic task
model and notation. The model aims to separate the task and the semantic levels by adopting a
well-defined set of task identification criteria. The provided notation enables identification of task
input elements based on the task state diagram that is configured on each task. The notation also
addressed the dynamic aspect of modeling by introducing dynamic tasks and pumping tasks.

Wolff et al. (Wolff et al., 2005) proposes to link GUI specifications to abstract dialogue
models. Specifications are linked to task models describing behavioral characteristics. Prototypes
of interactive systems are refined and interactively generated using a GUI editor. The design cycle
goes from task model to abstract user interfaces and finally to a concrete user interface. It is an
interesting approach to have a mechanism to control changes in interface elements according to
the task to which they are associated in the task models. However, the approach is not iterative
and does not provide the necessary testing component to check and verify user interfaces against
behavior-based user requirements.

Martinie et al. (Martinie et al., 2015), followed by Campos et al. (Campos et al., 2016), propose
a tool-supported framework and a model-based testing approach to support linking task models
to an existing, executable, and interactive application. The framework to define a systematic
correspondence between the user interface elements and user tasks. The problem with this
approach is that it only covers the interaction of task models with a concrete fully-functional user
interfaces, not covering user interface prototypes or other types of requirements artifacts that can
emerge along the process. Another problem is that it requires much intervention of developers
to prepare the source code to support the integration, making it difficult to be adopted in
applications that cannot receive interventions at the code level.

2.2. Methods for Evaluating User Requirements

Assuring the quality of user requirements representation is a complex task. Requirements can
be expressed in so many forms and be represented through so many modeling and specification
techniques that ensuring its consistency along the software development is a quite onerous task.
Considering their representation as software artifacts, these last ones are usually only inspected
manually in order to evaluate the adherence with other requirements representations. This
process is part of what is called software verification. Software verification is defined as:

“(A) The process of evaluating a system or component to determine
whether the products of a given development phase satisfy the conditions
imposed at the start of that phase. (B) The process of providing objective
evidence that the system, software, or hardware and its associated

Chapter 2: Background

 48

products conform to requirements (e.g., for correctness, completeness,
consistency, and accuracy)” (IEEE, 2017).

Boehm (Boehm, 1979) coined a quite famous question to simplify the definition of
verification: “Am I building the product right?”. This question aims to identify whether the
software that is being built (or its intermediate outcomes, i.e. the software artifacts) actually meets
the requirements, even if the software will not be exactly what the user is waiting for. By definition,
verification involves the comparison between the requirements baseline and the successive
refinements descending from it – the product design, detailed design, code, database, and
documentation – in order to keep these refinements consistent with the requirements baseline
(Boehm, 1979).

To certify that the software actually meets what the user is expecting, the software needs to be
validated. Software validation is defined as:

“(A) The process of evaluating a system or component during or at the
end of the development process to determine whether it satisfies
specified requirements. (B) The process of providing evidence that the
system, software, or hardware and its associated products satisfy
requirements allocated to it at the end of each life cycle activity, solve the
right problem (e.g., correctly model physical laws, implement business
rules, and use the proper system assumptions), and satisfy intended use
and user needs.” (IEEE, 2017).

Boehm (Boehm, 1979) also coined an equivalent question to simplify the definition of
validation: “Am I building the right product?”. It means that validation identifies problems which
must be resolved by a change of the requirements specification (Boehm, 1979). This is due to
the fact that if a validation problem has been found, then the system actually does not satisfy the
intended use and the user needs.

From the user point of view, evaluating his/her requirements usually means assessing a
graphical user interface where he/she can effectively use the application and validate its behavior.
This kind of validation made by final users is known as acceptance testing. Acceptance testing is
a level of software testing where a system is tested for acceptability. The purpose of this test is to
evaluate the system’s compliance with the business and user requirements and assess whether it
is acceptable for delivery (Graham et al., 2008). By its nature, acceptance testing is usually focused
on the functional aspect of the system.

2.2.1. Functional Testing

According to Myers (Myers, 2004), the purpose of software testing is to find errors so that they
can be fixed. The term “errors” refers to any sort of problem with the system that could lead to a
failure that could impact a user’s experience. It is important to notice that “testing shows the
presence, not the absence, of errors” (Dijkstra, 1970). It means that if a suite of tests is written,
run, and discovers several errors, the tests have proven that those specific errors exist, and effort
should now be expended to figure out how to fix them. This does not prove that those were the
only errors in the system – in fact, it is impossible to write and/or run enough tests to prove that
even simple functionality is absolutely correct (Dijkstra, 1970). Testing should be seen as an
attempt to gain confidence that a system meets the expectations of its developers and users.
Another important aspect of software testing is the reality that some errors do not matter if no
one cares about them. There are far too many errors in any software system to fix them all, so

Chapter 2: Background

 49

developers must always focus on that ones that are most likely to impact the user in a significant
way (Hellmann, 2015).

In Software Engineering, the testing activity covers several levels of abstraction, from low-level
testing such as unit and integration testing to high-level ones such as system and acceptance testing
(Myers, 2004). The level of the artifact under testing determines the level of testing to be applied.
This correspondence is shown in Figure 5. The V-model (Forsberg and Mooz, 1991) represents
the multiple levels of testing according to the target artifact. The software source code, which is
the lowest level of abstraction in terms of artifacts, is tested by unit testing. The software design
and its architecture are tested by integration testing. At a higher level of abstraction, system
requirements are tested by system testing while user requirements (that are being target in this
thesis) are tested by acceptance testing. Low-level tests are aimed at assessing the quality of the
code produced. As such kind of test is performed directly in the source code of the application,
it is usually called “white box” testing. Contrarily, high-level tests are aimed at assessing the quality
of the final product as a whole. As such kind of test is performed in the presentation layer of the
application, it is usually called “black box” testing.

Tests can also be focused on specific aspects of the system such as functionality, usability,
scalability or performance. Among these several types of testing, we are focused on functional
testing in this thesis. Functional testing aims to assess the functional aspect of user requirements.
Functional testing identifies situations that should be tested to ensure the correct behavior of the
system under development in accordance with the requirements previously specified. The
acceptance testing refers to tests made under the client/user point of view to validate the right
behavior of the system. For that, clients might be able to run their business workflows and to
check if the system behaves in an appropriate manner.

Several techniques are employed to conduct functional testing such as Boundary Value
Analysis, Equivalence Class Testing, Decision Table Base Testing, etc. (Myers, 2004). These
techniques support the development of test cases that might be specified to validate the right

Figure 5. The V-model for testing.

Chapter 2: Background

 50

implementation of requirements. They explore the expected behavior of the system when
performing the software features as well as the potential error situations that could lead to
inconsistencies in the software behavior.

A big challenge related to testing software is that requirements are dispersed in multiple
artifacts which describe such requirements in different levels of abstraction and in different
perspectives according to the target audience. Thus, tests should run not only in the final product,
but also in the whole set of artifacts to ensure that they represent the same information in a non-
ambiguous way, and in accordance with the whole requirements chain. Moreover, testing should
be performed along the development process as clients and users introduce new demands or
modify the existing ones all along the iterations. Regression testing is then crucial to ensure that
the system remains behaving properly and in accordance with the new requirements introduced.
Manual regression testing however is extremely time consuming and highly error-prone.
Therefore, automated testing is a key factor to support testing in an ever-changing environment,
allowing a reliable checking of requirements and promoting a high availability of testing.

2.2.2. GUI Testing

Being the main bridge between the system and the end user, graphical user interfaces (GUIs)
are a crucial target artifact for testing. As Hellmann (Hellmann, 2015) pointed out, the simplest
way to perform GUI testing is with manual testing, wherein a human tester interacts with an
application to verify that its responses are correct. A human tester can easily interact with an
application and recognize when an error occurs, but manual testing is very slow and error-prone.
If testing should be done frequently, then manually testing a GUI quickly becomes unfeasible.
Automated tools exist to simplify and automated this process. Most GUI testing tools work on
the capture/replay paradigm. In capture/replay, testing tools monitor the set of interactions
between a human tester and the system and record these steps so that they can be replayed later
as automated tests. However, capture/replay tools (CRTs) do not tend to record tests in a human-
readable manner, meaning that it is much more difficult to modify an existing test than to record
a new one.

Other tools are designed to make direct calls to the system using the native support for
automation of each user interface environment. When testing user interfaces presented by means
of a web browser, for example, such tools make calls directly to the browser. How these direct
calls are made, and the features they support depends on the target browser. Such approaches
tend to be much more flexible to implement automated testing for GUIs. Tests specified by these
approaches tend to be easier to maintain, but they carry the same problem of low human-
readability. Some tools have then emerged to raise the level of automated test specification. With
tools like JBehave1, users can specify and run their own text-based User Stories to automate
acceptance testing, which allows “out-in” development, i.e. end-users being empowered to guide
the software development by writing their own automated user requirements and tests.

2.2.3. Artifacts Inspection and Requirements Traceability

Artifacts other than user interfaces are not commonly tested. A common argument is that they
cannot be “executed” in order to be tested. The set of user requirements they represent is usually
only inspected manually in a try to verify its consistency. Inspections can be of different types
including formal technical reviews, walkthroughs, peer desk check, informal ad-hoc feedback,
and so on (Tian, 2005). On another front, requirements traceability techniques have been studied

1 http://jbehave.org

Chapter 2: Background

 51

for a long time as a way to trace such requirements along their multiple versions (horizontal
traceability) or along their representation in another artifacts (vertical traceability) (Ebert, 2011).

Some authors concentrated efforts in providing automated tools to keep compatibility between
different artifacts models. Those approaches, regardless providing some mechanism to trace or
assess requirements for particular environments, do not consider how to integrate and test the set
of multiple other artifacts that are commonly used throughout development processes. Luna et
al. (Luna et al., 2010), for example, propose WebSpec, a requirement artifact used to capture
navigation, interaction and UI features in web applications, where diagrams can be validated due
to the automatic derivation of interaction tests. WebSpec can be used in conjunction with
mockups to provide realistic UI simulations, allowing quick requirements validation. It can also
be used to capture requirement changes and use them to semi-automatically upgrade the
application and maintain quality standards.

Buchmann and Karagiannis (Buchmann and Karagiannis, 2017) presented a modeling
method for the elicitation of requirements for mobile apps that enables semantic traceability for
the requirements representation. Instead of having requirements represented as natural language
items that are documented by diagrammatic models, the communication channels are switched:
semantically interlinked conceptual models become the requirements representation, while free
text can be used for requirements annotations/metadata. The authors claim that the method can
support semantic traceability in scenarios of human-based requirements validation but using an
extremely heavy modeling approach which is not suitable for checking requirements in a high
level of abstraction. Besides that, the method is not focused on providing a testing mechanism
through common artifacts, but only in validating the requirements modeled within the approach.

2.3. Software Development Processes

Since the software crisis in 1968, software development processes have emerged as a silver
bullet for delivering high-quality, scalable and reliable software systems. The waterfall model
(Royce, 1970) guided many software development processes over time proposing a seven-step
cascading model to produce software covering activities from system requirements until
operation. This model implements the concept of Big Design Up Front (BDUF) where the
software design phase is fully completed before the implementation is started.

The waterfall model gave rise to several development problems such as the difficulty of
designers to foresee problem areas without extensive prototyping and at least some investment
into implementation, the difficulty of evolving requirements once clients may not know exactly
what their requirements are before they see working software, the taking of bad design decisions
due to the lack of knowledge about the system at the beginning of the project, etc. Contrary to
this model, iterative processes have emerged as a solution to break the software process in small
iterations into continuous cycles of development. Whilst the waterfall model delivers a big
software outcome only at the end of the process, iterative processes give more flexibility focusing
on delivering smaller, but incremental software deliverables along multiple iterations. An
illustration of both waterfall and iterative models is presented in Figure 6.

Both waterfall and iterative models served as basis for many software development processes
since then. Such processes are said to be macro-processes. Macro-processes emphasize the
overall external behaviors of processes, whilst micro-processes emphasize the internal workings
of processes (Osterweil, 2005).

Chapter 2: Background

 52

Macro-processes are concerned by the overall software development lifecycle, i.e. the choice
of models (waterfall, iterative, etc.) to conduct the project’s lifecycle affects the macro-process.
Over time, based on their characteristics and emphasis, macro-processes were being classified as
traditional and agile methodologies. The Unified Process (UP) (Jacobson, Booch and
Rumbaugh, 1999) became the most know example of traditional method. UP is a heavyweight
multi-phase software development process that emphasizes proven design, extensive
documentation, and detailed planning. UP is considered as an architecture-centric, use-case
driven and risk-focused process framework which benefits from a well-structured object-oriented
modeling language, the Unified Modeling Language (UML) (Booch, Rumbaugh and Jacobson,
2005). Opposite to traditional methods, agile methods consist in a lightweight set of methods
focused on communication between users and developers, short-time software delivery, adaptive
planning, and self-organization. Agile methods are adaptive rather than predictive, and people-
oriented rather than process-oriented. Such methods are detailed hereafter in the next subsection.

Differently from macro-processes, micro-processes are concerned by the analysis and design
techniques, i.e. the set of techniques chosen to be used within the different phases of the project’s
lifecycle affects the micro-process instead. The approach we propose in this thesis therefore
defines a micro-process once it affects the strategies for specifying and assessing user requirements
on multiple software artifacts within the different phases of the project. The micro-process
designed for our approach is presented in chapter 3.

2.3.1. Agile Methods

During the 1990’s, a number of lightweight software development methods evolved in reaction
to the prevailing heavyweight methods. They became known in early 2001 as agile methods. Such
methods advocate for an incremental and iterative paradigm with a Rough Design Up Front
(RDUF) (Ambler, 2002). Agile methods follow four main values expressed in the Manifesto for
Agile Software Development (Beck et al., 2001). Such values emphasize:

• individuals and interactions over processes and tools,
• working software over comprehensive documentation,
• customer collaboration over contract negotiation, and
• responding to change over following a plan.

Waterfall

Iterative

Figure 6. Simplified versions of waterfall and iterative models.

Chapter 2: Background

 53

Agile methods are based on sustainable development, collaboration between business people
and developers, self-organizing teams, working software adding business value, continuous
delivery of software, changing requirements, short development timescales, motivated individuals,
face-to-face conversation, technical excellence and emergent design, simplicity, working software
as measure of progress, and continuous evaluation. These principles are declared in the manifesto
as follows:

• Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

• Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.

• Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

• Business people and developers must work together daily throughout the project.
• Build projects around motivated individuals. Give them the environment and support

they need and trust them to get the job done.
• The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.
• Working software is the primary measure of progress.
• Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.
• Continuous attention to technical excellence and good design enhances agility.
• Simplicity - the art of maximizing the amount of work not done - is essential.
• The best architectures, requirements, and designs emerge from self-organizing teams.
• At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behavior accordingly.

This list of twelve principles are implemented through a series of practices that vary from
method to method. The “subway map” to the agile practices implemented by leading approaches
is illustrated in Figure 8. Popular agile software development methods include (but are not limited
to): Adaptive Software Development (ASD) (Highsmith, 1999), Agile Unified Process (AUP)
(Ambler, 2005), Disciplined Agile Delivery (DAD) (Ambler and Lines, 2012), Dynamic Systems
Development Method (DSDM) (Stapleton and Constable, 1997), Extreme Programming (XP)
(Beck and Andres, 2004), Feature-Driven Development (FDD) (Palmer and Felsing, 2002), Lean
Software Development (Poppendieck, Poppendieck and Poppendieck, 2003), Kanban
(Anderson, 2010), Rapid Application Development (RAD) (Martin, 1991), Scrum (Schwaber,
2004), and Scrumban (Ladas, 2009; Reddy, 2015).

The need of modeling is quite controversial in agile methods. They consider in general that,
to be effective, agile modelers should know a wide variety of modeling techniques so that they
have the skills and knowledge to apply the right artifact(s) for the situation at hand (Ambler, 2002).
Modeling practices always include a strong commitment with executable specifications, modeling
only the essential at a given time (keeping the RDUF paradigm), and an automated test-first
approach. Figure 7 illustrates such commitments according to Ambler (Ambler, 2002).

UI prototypes are also an important modeling artifact explored by agile methods. Käpyaho
and Kauppinen (Käpyaho and Kauppinen, 2015) have investigated how prototyping can solve the
challenges of requirements in an agile context. The authors suggest that prototyping can solve
some problems of agile development, such as the lack of documentation, poor communication
tools, but it also needs complementary practices such as the use of ATDD. The authors conclude

Chapter 2: Background

 54

that one of the biggest benefits from prototyping is that prototypes act as tangible plans that can
be relied on when discussing changes.

Figure 8. “Subway Map” to agile practices (Agile Alliance, 2018).

Figure 7. Agile Model Driven Development (AMDD) (Ambler, 2002).

Chapter 2: Background

 55

2.3.2. Behavior-Driven Development

Behavior-Driven Development (BDD) (Chelimsky et al., 2010) is an evolution of Test-Driven
Development (TDD) (Beck, 2002; Astels, 2003), and is intended to make the practice of writing
automated testing more accessible and intuitive to newcomers and experts alike. It shifts the
vocabulary from being test-based to behavior-based. It positions itself as a development paradigm,
emphasizing communication and automation as equal goals. In BDD, the behaviors represent
both the requirements specification and the test cases. According to North (North, 2009):

“BDD is a second-generation, outside-in, pull-based, multiple-
stakeholder, multiple-scale, high-automation, agile methodology. It
describes a cycle of interactions with well-defined outputs, resulting in the
delivery of working, tested software that matters.”

BDD has aroused interest from both academic and industrial communities in the last years.
Supported by a wide development philosophy that includes Acceptance Test-Driven
Development (ATDD) (Pugh, 2010) and Specification by Example (Adzic, 2011), BDD drives
development teams to a requirements specification based on User Stories (Cohn, 2004) in a
understandable natural language format. This format allows specifying executable requirements
by means of a Domain-Specific Language (DSL) provided by Gherkin2. Gherkin is a business
readable DSL that lets users and developers describe software’s behavior without detailing how
that behavior is implemented. Gherkin serves two purposes: documentation and automated tests.
By using this language, requirements specifications can directly be used to implement automated
tests, conducting to a “live” documentation and making easier for clients and other stakeholders
to set their final acceptance tests. It guides the system development and brings the opportunity to
test scenarios directly on the user interface with the aid of testing frameworks for different
platforms.

In BDD, the user’s point of view about the system is captured by the User Stories, described
according to a template. The BDD approach assumes that clients and teams can communicate
using this semi-structured natural language description, in a non-ambiguous way (because it is
supported by test cases). These test cases are developed for each unit of software feature following
a TDD approach which encompasses:

• define a test set for the unit first,
• make the tests fail,
• then implement the unit,
• finally verify that the implementation of the unit makes the tests succeed.

BDD specifies that tests of any unit of software should be specified in terms of the desired
behavior of the unit (North, 2006), i.e. the behavior that adds business value to the product. Such
behaviors are specified in the User Stories. Additionally, BDD extends the TDD philosophy by
(Agile Alliance, 2018):

• Applying the “Five Why’s” principle to each proposed User Story, so that its purpose
is clearly related to business outcomes,

• Thinking “from the outside in”, in other words implement only those behaviors which
contribute most directly to these business outcomes, so as to minimize waste,

2 https://github.com/cucumber/cucumber/wiki/Gherkin

Chapter 2: Background

 56

• Describing behaviors in a single notation which is directly accessible to domain experts,
testers and developers, so as to improve communication,

• Applying these techniques all the way down to the lowest levels of abstraction of the
software, paying particular attention to the distribution of behavior, so that evolution
remains cheap.

BDD is the primary software development method for specifying automated natural language
user requirements. Efforts to specify requirements in a natural language are not recent though.
Language Extended Lexicon (LEL) (Leite and Oliveira, 1995) have been studied since the 90’s.
The authors propose a lexical analysis of requirements descriptions in order to integrate scenarios
into a requirements baseline, making possible tracing their evolution. They were followed by
other attempts to identify test cases from requirements specified in natural language (Sneed, 2007;
Dwarakanath and Sengupta, 2012).

BDD has been evaluated (Lopes, 2012) and its characteristics analyzed and studied (Solís and
Wang, 2011; Egbreghts, 2017) by several authors. Studies have been conducted to explore the
use of BDD as part of empirical analysis of acceptance test-driven development (Melnik, 2007),
to support enterprise modeling within an agile approach (Valente et al., 2017) and within an user-
centered approach (Valente et al., 2016), to support requirements engineering with gamification
(Lombriser et al., 2016), to support a testing architecture for micro services (Rahman and Gao,
2015), to support the analysis of requirements communication (Oran et al., 2017), to support
safety analysis and verification in agile development (Wang and Wagner, 2018), and to enhance
the critical quality of security functional requirements (Lai, Leu and Chu, 2014). Other studies
have concentrated in the use of automated acceptance testing to support BDD traceability
(Lucassen et al., 2017), or in analyzing its compatibility with business modeling (Carvalho,
Carvalho e Silva and Manhaes, 2010; Carvalho, Manhães and Carvalho e Silva, 2010) and with
BPMN (Lübke and Van Lessen, 2016).

BDD has also been used to support implementation of source code. Soeken et al. (Soeken,
Wille and Drechsler, 2012) propose a design flow where the designer enters in a dialog with the
computer where a program processes, sentence by sentence, all the requirements creating code
blocks such as classes, attributes, and operations in a BDD template. The template proposed by
the computer can be revised; which leads to a training of the computer program and a better
understanding of following sentences.

2.4. Conclusion

The background presented in this chapter points towards a gap when integrating different
requirements artifacts throughout a design process. Some methods addressed concerns in
scenarios descriptions, other ones in UI prototyping or task modeling, but none of them
addressed the problem of integrating the assessment of multiple artifacts in order to ensure
correctness and consistency of user requirements modeling along the software development. In
the next chapter, we start to present our approach to address such mentioned gaps, first identifying
a scenario-based approach aiming at addressing the concerns of specification, followed by a
micro-process for implementing such an approach.

2.5. Resultant Publications

Chapter 2: Background

 57

Silva, T. R., Hak, J.-L., Winckler, M. & Nicolas, O. (2017). A Comparative Study of Milestones
for Featuring GUI Prototyping Tools. Journal of Software Engineering and Applications, 10 (06),
pp. 564-589. DOI: http://doi.org/10.4236/jsea.2017.106031. (Silva et al., 2017)

Silva, T. R., Hak, J. L. & Winckler, M. (2015). A Review of Milestones in the History of GUI
Prototyping Tools. In: INTERACT 2015 Adjunct Proceedings: 15th IFIP TC. 13 International
Conference on Human-Computer Interaction, pp. 267-279, vol. 22. University of Bamberg
Press. (Silva, Hak and Winckler, 2015)

Part II - Contribution

 61

Chapter 3
A Scenario-Based Approach for

Multi-Artifact Testing

Summary

This chapter presents an approach based on scenarios to support the specification and the multi-
artifact assessment of functional user requirements along the development process of interactive
systems. The approach is aimed at describing how the different artifacts, inputs and outcomes
should be used to support activities of specification and assessment of requirements. The
approach relies on the premise that user requirements, commonly expressed by the means of
User Stories and scenarios, must be specified in a certain way to be employed in automated testing
of the various artifacts used along the development process. For that purpose, the approach
employs a user interface ontology that ensures that elements described in the scenarios refer to
elements described in the artifacts. The focus of this chapter is to present a big picture of the
approach and its inner rationale. The ontology itself is presented in chapter 4, while the
instantiation of the approach to specific artifacts is presented latter on in chapters 5 (for task
models) and 6 (for user interfaces).

In the present chapter, the approach in presented in 3 different views. The first one is a high-level
view with its activities packed and divided in Production and Quality Assurance activities. We
show in this view how different roles contribute to the approach by writing testable User Stories.
Afterwards, an architectural view of the approach is presented to point how the diverse software
components and artifacts are related for modeling requirements in a testable way. This view is
complemented by a workflow view of the approach that presents how low-level activities are
distributed for modeling and assessing user interface design artifacts. The workflow view
addresses responsibilities for the multiple roles involved in the process as well as the resources
that should be produced or delivered throughout the activities flow. Activities in the workflow are
presented through a set of steps that could be followed by stakeholders for modeling
requirements in a behavior-oriented way, allowing them to be properly tested afterwards. We also
discuss alternatives for performing the approach depending on the stage of the project in which
the approach is employed.

Lastly, an illustrative case study for assessing a generic web system for booking flight tickets is
presented to guide and exemplify the use of the approach. The study is organized following the
set of step-by-step activities proposed by our workflow. The same case study is retaken to provide
consistent examples of use throughout the following chapters.

3.1. Rationale for a Scenario-Based Approach

Requirements are the main source of information for specifying a software system, but they
are not necessarily explicit or formally specified. They can emerge from multiple sources. In
addition to requirements expressed by the stakeholders, requirements might have origin in
documents such as business models, laws and regulations. As such, several aspects of information,
from the macro business goals until the most detailed information about user tasks are modeled

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

 62

in several requirements artifacts, designing different aspects of the system (e.g. business models,
use cases, task models, etc.). As many stakeholders have different views of the system and
different phases of development require distinct information, artifacts used for modeling tend to
be very diverse throughout the development, ranging from business models in the very beginning
of the project, until complete test specifications at the end. In iterative processes, the cycle of
producing and evaluating requirements and artifacts permeates all phases of system development,
from requirements and business analysis until the software testing (Jacobson, Booch and
Rumbaugh, 1999).

When designing new software systems, clients and users are keen to introduce new
requirements along successive iterations and such requirements tend to vary widely, once
different stakeholders bring different requirements to the product. Clients are typically involved
in bringing requirements that limit the budget, the scope and the timeframe available for
development. Requirements are cut and/or introduced based on such requirements. Business
people bring typically high-level and macro requirements that drive the project to a business goal
to be achieved, while users are aimed to set more functional requirements that specify practical
features the software should provide.

Such characteristic has an impact in the forthcoming development as well as in previously
developed artifacts. Given requirements should be verified and tested against not only the
software already produced, but also against the other permanent artifacts produced throughout
the process (Boehm, 1979), it leads us to a cycle of permanent production of multiple artifacts,
in multiple versions, evolving all along of multiple phases of development until they reach the
status of final product. Traces along those multiple evolutions should be maintained for quality
assurance purposes (Ebert, 2011). This cycle is illustrated in Figure 9.

Figure 9. The cycle of permanent evolution of artifacts in iterative processes

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

 63

Among the several types of requirements that can emerge during a specification, we are
especially interested in the ones which model business and functional aspects. Business
requirements relate to a business’ objectives, vision and goals. They also provide the scope of a
business need or problem that needs to be addressed through a specific activity or project.
Functional requirements break down the steps needed to meet the business requirements. When
developing functional requirements, a comprehensive list of steps that will be taken during the
project is developed. Functional requirements are very detailed and provide information on how
business needs and goals will be delivered through a specific project.

Previous works have suggested that Use Cases (Bertolino et al., 2006) can be used to specify
functional requirements and extract scenarios to be tested against the system. Nonetheless,
scenarios can be extracted and/or formalized from information available in many artifacts such
as business models (Carvalho, Carvalho e Silva and Manhaes, 2010; Carvalho, Manhães and
Carvalho e Silva, 2010), task models (Paternò and Mancini, 1999), and prototypes (Elkoutbi,
Khriss and Keller, 2006). Based on that, we suggest that scenarios can be a suitable alternative to
start analyzing the relationship between functional requirements expressed using diverse artifacts.

Figure 10. Modeling business and functional requirements in a scenario-based approach.

Therefore, for modeling business and functional requirements, we propose a scenario-based
approach, taking multiple views of the system into account. Figure 10 illustrates this approach, so
far designed to support three modeling processes: business modeling, task modeling and
prototyping. The processes of business and task modeling as well as the process of prototyping
are iterative and contribute mutually for the development of each one. The relationship between
task modeling and prototyping are quite natural once both composes the typical process of
modeling user requirements for interactive systems. Both of them are also innately scenario-based
as they use scenarios to perform and simulate user activities in the system.

The relationship between business and task models has already been studied by some authors
(Pontico, Farenc and Winckler, 2007; Sousa, Mendonça and Vanderdonckt, 2008; Winckler and
Palanque, 2012). Winckler and Palanque (Winckler and Palanque, 2012) have demonstrated
how – starting from a business process – task models can be designed to specify the flow of
detailed tasks that a user should accomplish to perform a given activity for each business process.

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

 64

With this perspective, the process of business modeling can also fit in a scenario-based approach,
once the overall business view about the system can be easily described using a scenario narrative.

Artifacts produced by the activities of task modeling and prototyping have been chosen as
target artifacts because they compose what we call user interface (UI) design artifacts, i.e. artifacts
typically used to design and support the development of UIs for interactive systems. As these
artifacts are essentially different in their conception, usefulness on different stages of
development, and nature of information modeled, the strategy for testing them is supposed to
vary for each one, or at least for groups of them. We classified such artifacts in two groups. The
first one encompasses artifacts typically used in the early stages of development for modeling
aspects of interaction and/or navigation. We have classified task models and UI prototypes with
a low level of refinement in this group. The second group encompasses artifacts typically used
later in the development process for designing more detailed (or even definitive) aspects of
interaction and navigation. We have classified iterative UI prototypes as well as final UIs in this
group.

The problem raised when using the aforementioned artifacts is that there is not a standard
method to specify scenarios for them. They can be freely described following few or no templates,
from informal descriptions such as textual narratives until more formal ones such as pre-
formatted lists of tasks extracted from task models. It makes very hard the work of identifying
similar requirements that eventually describe the same features but in different perspectives. To
tackle this problem, we explored the use of an ontological support aiming at describing common
behaviors with a standard vocabulary for writing User Stories as scenario artifacts. The main
benefit of this strategy is that User Stories described following a common vocabulary can be
directly automated for running test scenarios on other artifacts. As the common vocabulary has
been set using well-established concepts such as UsiXML (Limbourg et al., 2004), W3C MBUI
(Paternò et al., 2017) and others, the resultant ontology establishes indeed the searched common
ground for a scenario-based approach considering multiple artifacts.

Figure 11. Conceptual Model for testable requirements.

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

 65

The scenario-based approach supported by the mentioned ontology is focused on functional
requirements. As we have stated before, a functional requirement defines statements of services
that the system should provide, how the system should react to particular inputs and how the
system should behave in particular situations. To assure that the system behaves properly,
requirements should be expressed in a testable way. Figure 11 presents the conceptual model that
explains how testable requirements are formalized in our proposed approach. A requirement is
expressed as a set of User Stories (US) as in the template proposed by North (North, 2017) and
Cohn (Cohn, 2004) and presented in chapter 2. User Stories are composed by a Narrative and a
set of Acceptance Criteria. Acceptance Criteria are presented as Scenarios and are composed by
at least three main Steps (“Given”, “When” and “Then”) that represent Behaviors which the
system can answer. Behaviors handle actions on Interaction Elements on the User Interface (UI)
and can also mention examples of data that are suitable for testing them. These concepts and
rules are defined as classes and axioms in the ontology that will be detailed in the next chapter.

3.1.1. Target Stakeholders

Many stakeholders are typically involved in the development of interactive systems. Table 3
summarizes their typical activities when modeling interactive system and the benefits they can get
from using our proposed approach.

Stakeholders Activity Benefit

Client / User Define business and user requirements.
Requirements and automated acceptance
testing implemented in a natural and high-

level language.
Product Owner and

Business Analyst
Write User Stories and define the business

model.
A reliable and consistent compatibility

between User Stories and business models.
Requirements and

Testing Analyst
Write and format User Stories and help to

design task models.
A common and standard vocabulary for

writing and formatting User Stories.

UI Designer Design task models and UI prototypes. A reliable and consistent compatibility
between task models and UI prototypes.

Table 3. Target stakeholders of the approach.

3.2. Multiple Views of the Approach

Our approach describes user requirements modeled in a behavior perspective for interactive
systems. To illustrate its operationalization, we have defined a micro-process where are
represented activities to reach Production and Quality Assurance goals. Figure 12 illustrates User

Figure 12. Overall view of the approach.

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

 66

Stories supporting both Production Activities (which lead to the production of artifacts) and
Quality Assurance Activities (aimed at assessing the artifacts produced during the development
process). Clients and Users provide the main source of information for the User Stories which
will be employed as inputs for Requirements Analysts and User Interface (UI) designers during
the Production Activities, as well as for Testing Analysts during the Quality Assurance Activities.
Testing Analysts are in charge of building test cases and assessing the artifacts. As testing scenarios
are not always explicit in the User Stories told by Clients and Users, Testing Analysts must
complement such stories with representative test cases. That is the reason by which we signalize
User Stories supporting Quality Assurance Activities with a dotted line. The roles were
highlighted separately in the figure in order to emphasize that the activities along the process will
require different skills.

The overall view of the approach presented in Figure 12 can be split in two more detailed
views: architectural and workflow views. Both of them encompass the same elements, but in
different views. Whilst Figure 14 provides a workflow view of activities that have been grouped in
Figure 12, Figure 13 highlights the major components and their interactions to accomplish
requirements and testing specification.

3.2.1. Architectural View

In Figure 13, the architectural model is divided in 5 main groups of components:
Requirements Modeling, Task Modeling, Prototyping Modeling, Ontology Modeling, and other
technical components related to the use of external frameworks to support testing activities. The
model is a high-level representation of elementary components of processes, input and output
artifacts, and data repositories. Transitions between these elements are represented through
direct, optional and/or navigational links.

From the Requirements Modeling perspective, User Needs are grouped with a specific icon
to signalize that these needs can emerge from multiple sources such as business models, laws and

Figure 13. Architectural view of the approach.

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

 67

regulations, etc. User Needs can describe functional and non-functional requirements. When
describing non-functional requirements, User Needs are used as optional inputs (dotted lines) for
prototyping activities. When describing functional requirements, User Needs and the set of
Reusable Requirements - that are fed by common interactive behaviors mapped in the ontology
- are the inputs for the Functional Requirements Specification. This package of activities produces
User Stories that are the resultant artifacts of the requirements specification. However, as
mentioned in the previous chapter, User Stories are artifacts that encompass at once the set of
users’ requirements as well as the acceptance criteria for considering such requirements as
“done”. The acceptance criteria are presented as Testing Scenarios that actually provides the
multiple successful and failure paths for assessing the features. These Testing Scenarios are
produced during the Functional Testing Specification that can benefit of Reusable Tests as well.
Such base of Reusable Tests can be obtained through previous implemented interactive test cases
for a given environment.

As a central artifact in the micro-process proposed, User Stories are then produced as a result
of requirements and testing activities and serve as a basis for task, prototype and UI modeling.
Concerning Task Modeling activities, User Stories are useful when providing the description of
functional requirements and the interactive behaviors in the user point of view. Concerning the
modeling of prototypes, task models (and by consequence User Stories) support the design of
prototypes that are supposed to evolve to fully-fledged User Interfaces. The set of activities that
supports such a design is packed in Prototypes Building and User Interface Building packages.
As the components of prototyping, task modeling, and the writing of User Stories constitute
processes that are dynamic and iterative, they have a bidirectional flow in the architecture
representation once they mutually contribute to the development of each other.

The Ontology Support represents the component by which we provide the aforementioned
ontology. This ontology describes, among other concepts, behaviors that users perform when
interacting with a user interface, besides the correspondent UI elements that support each
behavior. As such, the ontology provides support for both Prototypes Building and the reuse of
requirements when specifying Functional Requirements. The Ontology Support is also useful to
allow checking the consistency of artifacts that will be produced along the development process,
as well as to ensure the automated assessment of such artifacts.

Finally, by using the Testing Scenarios, External Testing Frameworks are employed to support
automated testing activities in the three target artifacts: task models, prototypes and final UIs.
Given development teams can choose the artifacts that will be under testing in each iteration, the
optional paths to test them are indicated by dotted lines.

3.2.2. Workflow View

In Figure 14, we have a detailed workflow of the micro-process we have designed for running
our approach. In this micro-process, User Stories told by Clients/Users support Production
Activities being the main input to produce Scenarios, UI Prototypes and Task Models. User
Stories also support Quality Assurance Activities guiding the test of artifacts. For that, Client/Users
provide User Stories to the Production Activities which are leaded by Requirements Analysts and
UI Designers. These last two roles conduct the process of producing artifacts to be tested by
Testing Analysts using Testing Scenarios. Such artifacts can be targets to Clients and Users
perform their Acceptance Tests as well.

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

 68

Following this, User Stories are then formatted by Requirements Analysts looking for two
goals: assuring testability and non-ambiguous descriptions, as well as providing reuse of scenarios
in the User Stories. For that, Scenarios are defined in order to identify tasks that users should
accomplish using the system. Task Models designed from such Scenarios support a design cycle
of successive UI Prototypes and User Interfaces that are produced along system implementation.
Prototypes are refined until the Final User Interface can be set. These last activities are conduct
by both Requirements Analysts and UI Designers. Notice how Scenarios play a central role in
the approach.

Quality Assurance Activities are conducted by Testing Analysts in order to check and verify
all the artifacts produced during Production Activities. We are in this case especially interested
in testing Scenarios, UI Prototypes and Task Models, as well as the Final User Interface, in an
integrated way, in order to ensure consistency between them throughout the development
process. Therefore, automated testing frameworks like Webdriver, JBehave and JUnit are used
to accomplish these activities, running directly on the artifacts that compose the requirements
specification and providing a genuine “live” documentation.

Figure 14. Workflow view of the approach.

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

 69

All this mechanism is supported by the use of our ontology that describes concepts used by
platforms, models and artifacts that compose the design of interactive systems. The aim is to
provide a wide description of elements (and its behaviors) that can be used to build UIs for
specific environments. We have initially defined ontologies for the web and mobile platforms
and associated the most common behaviors that each element can answer. These behaviors were
described using a natural language vocabulary, useful later to specify steps of Scenarios to set
actions in these elements.

One of the advantages of the approach is the possibility to reuse scenarios in several systems
sharing the same business model. An effective way to provide that is to map steps that compose
specific scenarios. Steps are easily reused to build different behaviors in different scenarios. Our
approach proposes a set of pre-implemented common steps which perform actions in specific
elements on the UI. These actions are described in our ontological model in the next chapter.

Notice lastly that the prototyping of UIs and the modeling of both task models and User Stories
are independent activities, i.e. they can be performed individually and, even though they mutually
contribute to development of each other, the process does not intend to automate their
generation. It means that especially concerning the user interface design, this approach is not
supposed to generate prototypes or even final UIs, but rather allow they can be design separately
then be tested in order to check their consistency and adherence to the requirements. The
designer however can base the design on the ontology description of supported behaviors in order
to design prototypes that are promptly consistent with the behavior expected for each interaction
element.

3.2.3. Alternatives for Performing the Approach

By looking at the possible project stages in which our approach could be applied to, we have
identified two common situations. Figure 15 illustrates these alternatives. The first situation we
identified (represented on the left side of Figure 15) concerns the case where our approach will
be implemented when the project is running, and artifacts have already been designed (2). If the
target artifacts for testing have already been designed, our approach can be used to assess such
artifacts, indicating where they are not in accordance with the specified requirements. In this case,
requirements are supposed to be already identified (1), so we can directly write our User Stories
from these requirements (4), and likewise extract scenarios from the scenarized artifacts (3).
When doing that, tests will be ready for running (5).

Figure 15. Alternatives for performing the approach.

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

 70

The second situation (represented on the right side of Figure 15) refers to a project in the
beginning, where no artifacts have been designed yet. If the target artifacts have not been designed
yet, by using our ontology, they can be modeled in a consistent way since the beginning, taking
into account the possible interactions supported by each interaction element on the UI. To this
project situation, we could follow sequential steps that include: (1) identify the requirements, (2)
design the scenarized artifacts from these requirements, (3) extract scenarios from these artifacts,
(4) write our formatted User Stories based on the extracted scenarios, and finally (5) run tests on
the artifacts. Alternatively, we can perform the activity 4 (write formatted User Stories) before the
activity 2 (design scenarized artifacts). It means that depending on the characteristics of the
project, either the User Stories can support the design of the artifacts, or the artifacts (by means
of their extracted scenarios) can support the writing of User Stories.

Figure 16 illustrates the resultant graph of options considered. Notice that solid lines indicate
mandatory activities, i.e. we must either design scenarized artifacts (2) or write formatted User
Stories (4) only after having identified requirements (1); extract scenarios (3) only after having
designed scenarized artifacts (2); and run tests on scenarized artifacts (5) only after having
extracted scenarios (3) and written formatted User Stories (4). The optional paths represented by
the dotted lines indicate the alternatives shown on the right side of Figure 15, i.e. we can either
use the extracted scenarios (3) to support the writing of formatted User Stories (4) or use the
formatted User Stories (4) to support the design of scenarized artifacts (2).

The high-level operationalization of the approach is made up in four main groups of activities
that are pinpointed in Figure 13 and Figure 14 by numbers as follows:

(1) definition of the ontology,
(2) writing testable User Stories,
(3) adding test scenarios, and
(4) multi-artifact testing.

In the next section (3.3), we detail how we start writing User Stories (group 2) and how we add
test scenarios to those stories (group 3) by means of an illustrative case study. These two groups
of activities in our approach are supported by the definition of the ontology (group 1) that will be
explored in chapter 4. Finally, our actual strategy to conduct automated testing on multiple
artifacts (group 4) will be presented in the section 3.4 and explored along the thesis.

Figure 16. The graph of options for performing our approach.

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

 71

3.3. A Case Study in a Nutshell

To illustrate the operationalization of our approach, we have proposed a generic case study in
the flight tickets e-commerce domain. This study acts a proof of concept for our approach and
will be used along the next chapters to show how the approach can support the assessment of our
target artifacts, i.e. task models, prototypes and final UIs. This case study was chosen because it
is easily comprehensible, and it represents a common activity for most of the readers nowadays.
For the study, we have considered only two actors involved, a user and an airline company. We
have based on a generic flow of activities including users searching their flights, picking them up
from a list of results, and then confirming his/her choices by providing passengers and payment
data. In theory, this generic flow of activities could be applied to any airline company selling
tickets on the web.

Figure 17 presents the business model for this case study, using the Business Process Model
and Notation (BPMN) (Business Process Model And NotationTM (BPMNTM), 2011). At the top,
in the first lane, we have the set of activities performed by users. In the second lane, we have the
set of activities performed by the airline company. In a first moment, the set of activities
performed by the airline company could be made either manually or in an automated way (using
a software system). For this study, we are assuming that the choice is to conduct these activities in
an automated way, using a web software system. The set of functional requirements assumed by
the system is described below through a narrative scenario:

The user starts the process by conducting a search of flight based on his desired parameters
like origin and destination, dates, number of passengers, etc. This set of parameters is then
submitted to the airline system that will process the re-quest and creates a list of matching flights.
The list of flights is then returned to the user that verify this list and chooses a flight that better
suit his needs. After choosing the desired flight, the user provides all passengers data to the airline
system that will process the booking. Thereby, the system confirms the availability of seats and
request user to provide payment data. After the user filled in the forms with bank account details
and confirmed the payment, the system will process the transaction. If the payment is accepted,
then the booking is completed, the user obtains a booking confirmation and the process finishes.
If the payment is declined, then the booking is refused, and the process finishes as well.

The online booking process described above is basically divided into 3 main sub processes:
searches of flights based on a provided set of data, the selection of the desired flight(s) in a list of
flights resultant from the search, and finally providing passenger and payment data to conclude

Figure 17. Business Process Model for the flight ticket e-ticket domain.

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

 72

the booking. We have selected the two first processes for this case study as they are the most
interactive ones and represent the main source of cognitive efforts from users and designers. The
third sub process is basically a data providing form, so it is not so relevant to demonstrate the
concepts we want, even though the whole process can be supported by this approach.

In the following subsections, we use the present case study to illustrate the groups of activities
2 (writing testable User Stories) and 3 (add test scenarios) pinpointed in Figure 13 and Figure 14.

3.3.1. Writing Testable User Stories

Hereafter, we present two User Stories with their respective scenarios to
describe and test the features of our case study. Such User Stories simulate
the identification of requirements in stories told by users according to the
activity in our workflow (Figure 18). This is a first attempt of getting testable
User Stories (1 – Identify Requirements) once they will be still formatted
afterwards to fit the interactive behaviors described in the ontology. These
stories focus on the process of searching flights of our illustrative case study,
with a narrative describing the role involved with the history (“As a”), the
feature that this history describes in the user’s point of view (“I want”), and
finally the benefit (business value) that this feature brings to the user in terms
of business goals (“So that”).

The first story presents the procedure for searching flights in which the
user should provide at least: the type of ticket he wants (one-way or round
trip), the airport he wants to depart from and arrive at, the number of
passengers in the trip, and finally the date of departure and return. In the first
scenario (“One-Way Tickets Search”), a typical search of tickets is presented
concerning a one-way trip from Paris to Dallas for 2 passengers on
12/15/2016. According to the business rule, the expected result for this search
is a new screen presenting the title “Choose Flights”, in which the user might
select the desired flight from a list of flights matching his/her search. The

second scenario (“Return Tickets Search”) simulates a round trip from New York to Los Angeles
for only 1 passenger, departing on 12/15/2016 and returning on 12/20/2016. For this case, the
same behavior is expected from the system, i.e., a new screen presenting the title “Choose
Flights”, in which the user might select the desired flight from a list of flights matching his/her
new search.

User Story: Flight Tickets Search

Narrative:
As a frequent traveler
I want to be able to search tickets, providing locations and dates
So that I can obtain information about rates and times of the flights.

Scenario: One-Way Tickets Search
Given I go to "Find flights"
When I choose "One way"
And I type "Paris" and choose "CDG - Paris Ch De Gaulle, France" in the field
"From"
And I type "Dallas" and choose "DFW - Dallas Fort Worth International, TX" in the
field "To"
And I choose the option of value "2" in the field "Number of passengers"

Figure 18. Activity
of telling User

Stories

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

 73

And I set "12/15/2016" in the field "Depart"
And I click on "Search"
Then will be displayed "Choose Flights"

Scenario: Return Tickets Search
Given I go to "Find flights"
When I choose "Round trip"
And I type "New York" and choose "NYC - New York, NY" in the field "From"
And I type "Los Angeles" and choose "LAX - Los Angeles International, CA" in the
field "To"
And I choose the option of value "1" in the field "Number of passengers"
And I set "12/15/2016" in the field "Depart"
And I set "12/20/2016" in the field "Return"
And I click on "Search"
Then will be displayed "Choose Flights"

The second history focuses on the process of choosing a flight in a list of available flights. The
scenario “Select a diurnal flight”, using the scenario “One-Way Tickets Search”, simulates the
selection in the list of available flights, a couple of diurnal flights, the AA6557 and the AA51. For
this case, the behavior expected from the system is the presentation of a new screen with the
“Optional log in” message, indicating the user is able to login in order to proceed to the booking,
filling the passengers and payment data, which is in line with both business and task models.

User Story: Select the desired flight

Narrative:
As a frequent traveler
I want to get the list of flights and their rates and times
So that I can select the desired flight after a search of available flights.

Scenario: Select a diurnal flight
One-Way Tickets Search
Given "Flights Page" is displayed
When I click on "Flights" referring to "AA flight 6557, AA flight 51"
Then "Optional log in" is displayed

3.3.2. Adding Testing Scenarios

Test cases are represented as Testing
Scenarios in our approach (Figure 19). They
specify potential error situations related to
the scenarios already defined to set
requirements. Testing scenarios are the
component responsible for describing the
situations in which the system should be
verified, covering, as deeply as possible, the
largest set of features. Thereby, requirements
scenarios and testing scenarios compose the
User Stories, providing in the same artifact,

descriptions of functionalities as well as the potential set of tests to verify the correct
implementation of the requirements. Functional testing is the leading element of the acceptance
level and is used to check expected outcomes when pre-defined inputs are provided to the system.

Below we present two testing scenarios: “Search for flights more than one year in advance”
and “Search for a return flight before a departure flight”, that will be added to the User Story
“Flight Ticket Search”. They present specific business rules (and their tests) in the flight-booking
domain. The expected outcome in both cases is the impossibility of searching flights.

Figure 19. Activity of creating testing scenarios

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

 74

It is important to notice that testing scenarios describe a test procedure that may be generic
regarding the data demanded to run a test case. When test data are added to a test procedure
then it becomes a test case. This fact gives us the opportunity to write a single test procedure once
and reuse it, in order to generate multiple test case, based on multiple test data. The two examples
below are already specified with test data, so they can also be seen as test cases.

Scenario: Search for flights with more than one year in advance
Given I go to "Find flights"
When I choose "One way"
And I type "Paris" and choose "CDG-Paris Ch De Gaulle, France" in the field "From"
And I type "Dallas" and choose "DFW-Dallas Fort Worth International, TX" in the
field "To"
And I choose the option of value "1" in the field "Number of passengers"
And I try to choose "12/15/2017" referring to "Depart"
Then the system should not allow performing this task

Scenario: Search for a return flight before a departure flight
Given I go to "Find flights"
When I choose "Round trip"
And I type "New York" and choose "NYC-New York, NY" in the field "From"
And I type "Los Angeles" and choose "LAX-Los Angeles International, CA" in the
field "To"
And I choose the option of value "1" in the field "Number of passengers"
And I try to choose "12/15/2016" referring to "Depart"
And I try to choose "12/10/2016" referring to "Return"
Then the system should not allow performing this task

3.4. Strategy for Testing

Our strategy for running tests on multiple artifacts is shown in Figure 20. The figure illustrates
User Story scenarios being used to ensure consistency in our target artifacts (task models, UI
prototypes and final UIs). Therein are exemplified five steps of scenarios being tested against
equivalent tasks in task model scenarios, and interactive elements in UI prototypes and final UIs.
In the first example, the step “When I select ‘<field>’” has found an equivalent correspondence
with the task “Select <field>” in the task model scenario. Such an equivalence is due to the fact
that the step and the task represent the same behavior, i.e. selecting something, and both of them
are placed in the first position in their respective scenario artifacts. The interaction element “field”
that will be affected by such a behavior will be assessed on the UI prototype and on the final UI.
In both artifacts, such a field has been designed with a CheckBox as interaction element. The
semantics of the interaction in CheckBoxes is compatible with selections, i.e. we are able to select
CheckBoxes, so the consistency is assured.

The same is true in the example with the second step (“When I click on ‘<field>’”). There is
an equivalent task “Click on <field>” in the same second position in the task model scenario, and
the interaction element “Button”, that has been chosen to address this behavior in both the UI
prototype and the final UI, is semantically compatible with the action of clicking, thus the
consistency is assured as well. In the third example, the step “When I choose ‘value’ referring to
‘field’” is also compatible with the task “Choose <field>” in the task model, and with the
interaction elements “DataChooser” and “Calendar”, respectively in the UI prototype and in the
final UI. Notice that, despite being two different interaction elements, “DataChooser” and
“Calendar” are equivalent in their semantics of behaviors supported, i.e. both of them support
the behavior of choosing values referring to a field.

The example provided with the fourth step (“When I click on ‘<field>’”) illustrates an
inconsistency being identified. Therein, despite existing an equivalent task in the task model
scenario, the interactive elements that have been chosen to address this behavior (“TextInput” in

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

 75

the UI prototype and “TextField” in the final UI) are not compatible with the action of clicking,
i.e. such kind of interaction element does not semantically support such an action. The semantics
of TextInputs (or TextFields) is receiving values, not being clicked. Such an example is provided
with the fifth step (“When I set ‘value’ in the field ‘<field>’”). For this step, the consistency is
assured because TextInputs and TextFields support the behavior of having values being set on
them. All this semantic analysis is supported by the use of the ontology.

Figure 20. Our strategy for testing.

The present strategy we defined for testing allows us tracking some key elements in the artifacts
and check whether they are consistent with the user requirements. By simulating user’s actions,
our approach also allows that interactive prototypes and final UIs are directly tested by the users’
acceptance criteria in order to ensure that the artifacts are consistent with the user requirements.
Resuming the classification in groups of artifacts we set up in the beginning of this chapter (section
3.1), when assessing early artifacts from the first group, we are actually complying with the
verification aspect of software testing, once by definition, we are comparing the requirements
baseline with the successive refinements descending from it (i.e. the artifacts) in order to keep
these refinements consistent with the requirements baseline. When assessing late interactive
artifacts from the second group (such as final UIs), we are also complying with the validation
aspect of software testing, once these artifacts are tested simulating the user’s actions, thus
checking if the software product satisfies or fits the intended use according to the user’s acceptance
criteria.

In the current literature, especially when verifying software artifacts, the term “test” is usually
not employed under the argument that such artifacts cannot be “run”, i.e. executed for testing
purposes, so in practice they are just manually reviewed or inspected. As within our approach we
succeed automatically running our target artifacts for assessing their consistency with user
requirements, we actually provide the “test” component for the verification of artifacts in the
software development. We consider this is a big step towards the automated testing (and not only
the manual verification) of software artifacts by means of a consistent approach allowing fully
verification, validation, and testing (VV&T) (Engel, 2010). The complete testing strategy will be
explored in chapters 5, 6 and 8 to show how we perform tests for checking the consistency, thus
verifying and validating, the set of our target artifacts.

3.5. Conclusion

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

 76

The present chapter presented the motivation and the inner background for proposing a
scenario-based approach for testing multiple artifacts. This chapter is aimed at providing a view
at glance of the approach. The instantiation of the approach should be tuned according to the
very specific artifacts target for testing and it is detailed latter on in chapter 5 (for task models)
and in chapter 6 (for user interface prototypes). Nonetheless, it is interesting to notice that the
implementation of this scenario-based approach relies on some basic premises as follows:

(i) To adhere to a model-based approach for describing artifacts produced along the
development process. This is due to the fact of our approach is intended to assess
artifacts resultant from modeling activities.

(ii) Teams must be willing to adopt the template for User Stories as well as the vocabulary
proposed in the ontology. This is due to the need of formalization of user requirements
for testing. As a certain level of adherence to a template is required, this could
eventually be an issue for development teams which already use other approaches for
requirements specification.

(iii) Artifacts and the user interface under testing must comply with the UI-supported set
of interactive behaviors described in the ontology. This is due to the fact that the
ontology encompasses an extensive, but fixed number of interaction elements and
behaviors supported by web and mobile user interfaces.

(iv) Tests must be carried out by our set of tools. This is due to the fact that our strategy
for testing is only implemented in our set of tools, so they must be used to perform the
tests on the target artifacts and on the final UI.

By tackling these challenges, the use of the proposed approach could promote a set of
advantages as follows:

• requirements and tests in a natural and high-level language,
• independence for testing artifacts,
• independence of software development processes,
• no need to prepare artifacts for testing,
• interactive behaviors kept the same regardless the application domain,
• plurality of interaction elements modeled by the ontology,
• fine-grained testing coverage, and
• the use of data-independent scenarios.

From the stakeholders’ point of view, this approach can address multiple concerns related to
requirements specification. For clients and users, requirements and the acceptance testing have
the benefit of being specified and implemented in a natural and high-level language. The benefits
of non-technical stakeholders’ involvement in requirements specification are largely known in the
literature (Bano and Zowghi, 2013). They include reducing requirements misunderstandings,
besides providing faster feedback and more accurate acceptance conditions.

For Product Owners and Business Analysts, which write User Stories and define the business
model, the benefit would be a reliable and consistent approach for checking the compatibility
between User Stories and business models. For Requirements and Test Analysts, a common and
standard vocabulary for writing and formatting User Stories would help to improve
communication between the business people and the development team. Being a single artifact
encompassing both requirement specification and acceptance testing, User Stories also tackle the
typical problem of alignment between requirements and tests (Hotomski, Charrada and Glinz,

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

 77

2017). Finally, UI designers would benefit from a reliable and consistent approach for checking
the compatibility between task models and UI prototypes in different levels of refinement.

The next chapter will describe and present our supporting ontology, followed by two chapters
describing in detail the strategy presented here for modeling and testing our target artifacts: task
models (in chapter 5) and UI prototypes (in chapter 6).

3.6. Resultant Publications

Silva, T. R. (2016). Definition of a Behavior-Driven Model for Requirements Specification and
Testing of Interactive Systems. In: 2016 IEEE 24th International Requirements Engineering
Conference (RE 2016), pp. 444-449. IEEE. DOI: http://doi.org/10.1109/RE.2016.12. (Silva,
2016)

Silva, T. R., Hak, J. L. & Winckler, M. (2016). Testing Prototypes and Final User Interfaces
Through an Ontological Perspective for Behavior-Driven Development. In: 6th International
Working Conference on Human-Centred Software Engineering, and 8th International Working
Conference on Human Error, Safety, and System Development (HCSE 2016 and HESSD 2016),
pp. 86-107, vol. 9856. Lecture Notes in Computer Science, Springer International Publishing.
DOI: http://doi.org/10.1007/978-3-319-44902-9_7. (Silva, Hak and Winckler, 2016b)

Silva, T. R., Hak, J. L. & Winckler, M. (2016). An Approach for Multi-Artifact Testing Through
an Ontological Perspective for Behavior-Driven Development. Complex Systems Informatics
and Modeling Quarterly, 1 (7), pp. 81-107. DOI: http://doi.org/10.7250/csimq.2016-7.05. (Silva,
Hak and Winckler, 2016a)

Silva, T. R. & Winckler, M. (2016). Towards Automated Requirements Checking Throughout
Development Processes of Interactive Systems. In: 2nd Workshop on Continuous Requirements
Engineering, 22nd International Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ). CEUR-WS.org. (Silva and Winckler, 2016)

 79

Chapter 4
Towards an Ontology for Supporting

GUI Automated Testing

Summary

This chapter presents the ontological approach we have developed for specifying interaction and
supporting UI automated testing. The aim of the ontology described in this chapter is to support
the assessment of interactive systems, providing a common and consistent description of elements
that compose the semantic of interaction between users and systems in a web and/or mobile
environment.

The ontology aims to support testing automation of interactive systems specified using a scenario-
based approach, covering UI concepts in both presentation and dialog aspects. For the
presentation layer, we have modeled the semantics of several web and mobile UI elements. For
the dialog layer, we have modeled the semantics of User Stories as a State Machine. Such models
have allowed us to provide a semantically consistent catalog of interactive behaviors that can be
used for automating the test of UIs in different levels of abstraction.

The first subsection of this chapter discusses the related approaches that inspired this ontology,
including a comparative analysis of how each approach has contributed to the development of
the ontology and the contribution it provides in different aspects of modeling. The second
subsection presents the detailed description of the ontology, covering its technical OWL
specification for classes, individuals, datatypes, as well as object and data properties. Results of
our ontology validation are also presented by demonstration of its correctness through an
automated consistency checking. Finally, the third and last subsection presents limitations and
perspectives concerning the use of the ontology for testing purposes.

In chapter 3, we have presented the big picture of the approach being proposed in this thesis
where we pointed out the use of an ontological support for both Production and Quality
Assurance activities. The ontology we proposed for such support is motivated by our previous
experience as requirements/test engineers in industry, developing e-Government web
applications in the biggest public software development company in Brazil. During more than
five years implementing GUI testing, we have observed certain patterns of low-level behaviors
that are recurrent when writing BDD Scenarios for testing functional requirements with the User
Interface (UI). Besides that, we could also observe that User Stories specified in natural language
often contain semantic inconsistencies. For example, it is not rare to find Scenarios that specify
an action such as a selection to be made in semantically inconsistent widget such as a Text Field.
These observations motivated us to investigate the use of a formal ontology for describing pre-
defined behaviors that could be used to specify Scenarios that address interactions with UIs. On
one hand, the ontology should act as a taxonomy for terms removing ambiguities in the
description. On the other hand, the ontology would operate as a common language that could be
used to write tests that can be run on many artifacts used along the development process of
interactive systems. However, it is important to notice that the ontology does not propose a new

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

 80

language for describing UIs, but rather a direct mapping between languages for describing the
interface and common behaviors for testing.

4.1. Related Approaches

Computational ontologies (Guarino, Oberle and Staab, 2009) come to play as a means to
formalize the vocabulary and the concepts used in User Stories, Scenarios and UIs. Without a
common agreement on the concepts and terms used it would be difficult to support the
assessment of user requirements. Especially in the context of User Interface design, some
approaches have tried to define languages or at least a common vocabulary for specifying UIs for
interactive systems. Useful attempts include abstractions for describing interactive systems with
components that compose the presentation of a User Interface (Calvary et al., 2002, 2003; Puerta
and Eisenstein, 2002; Fierstone, Dery-Pinna and Riveill, 2003; Limbourg et al., 2004; Farooq Ali,
Pérez-Quiñones and Abrams, 2005; Pullmann, 2017), or even the dialog for implementing the
system behavior (Calvary et al., 2002, 2003; Winckler and Palanque, 2003; Winckler et al., 2008;
Barnett, 2017). However, the problem raised in such approaches is that they do not provide a
formal model for both presentation and dialog aspects, thus not allowing the specification of
behaviors for UI testing, i.e. there is not a common pattern for such a specification. Such
approaches work much more as a meta-model, letting the formalization of their concepts to be
specified or implemented by third frameworks.

4.1.1 Compared Overview

The contribution of the ontology proposed in this chapter can be analyzed comparing it with
other methods and languages from which it borrows concepts. This analysis is presented in Table
4 for Cameleon Framework (Calvary et al., 2002) and UsiXML (Limbourg et al., 2004), as well
as for W3C MBUI Glossary (Pullmann, 2017) and SWC (Winckler and Palanque, 2003). The
Cameleon Reference Framework decomposes user interface design into a number of different
components that seek to reduce the effort in targeting multiple contexts of use (Calvary et al.,
2002). These components are Task-Oriented Specification, Abstract UI, Concrete UI and Final
UI. The ontology has been built based on this decomposition, with high-level description of tasks
being modeled as a task-oriented specification (based on notation such as CTT and
HAMSTERS). UsiXML implements the Cameleon Framework in an XML specification, which
allows us operating these concepts in the ontology. SWC adds the dialog component for the
Cameleon/UsiXML specification allowing us specifying transitions and adding navigation to the
User Interface. Finally, W3C MBUI Glossary contributes establishing the common vocabulary
used by the other methods and languages. This common vocabulary is used to describe elements
in the ontology.

 Concept Mapping in the ontology

C
am

el
eo

n
an

d
U

si
X

M
L

Task-Oriented Specification: This concept
describes the tasks that the user and the system
carry out to achieve the application's objectives.
The tasks are described at a high level that is
independent of how these are realized on a
particular platform.

Description of Scenario-based concepts,
including the modeling of Users Stories and
Tasks.

Abstract UI: This level describes models of the
user interface that are independent of the choice
of platform and of the modes of interaction (visual,
tactile, etc.).

Description of Interaction Elements in the
Presentation perspective.

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

 81

Concrete UI: This level models the user interface
for a given platform, e.g. desktop PC, tablet, smart
phone, connected TV and so forth.

Platform concepts are described in the ontology,
as well as the list of interaction elements that are
supported by each platform (web and mobile).

Final UI: This level implements the user interface
for a specific class of device, e.g. an iPhone, or an
Android tablet.

The ontology provides means of reading the set
of interaction elements supported by each user
interface platform. It allows designing
automated testing implementations for specific
platforms based on such elements to create
concrete graphical widgets.

SW
C

Task Model (TM): Tasks and dependencies
between tasks.

Description of State Machine concepts. The
dynamic behavior of tasks being performed by
users and systems are described as Scenario-
based concepts.

Abstract User Interface (AUI): Relationship
between logical presentation units (e.g. transition
between windows), logical events, abstract actions.

Description of Interaction Elements in the
Dialog perspective.

Concrete User Interface (CUI): States, (concrete)
events, parameters, actions, controls, changes on
UI dialog according to events, generic method
calls, etc.

Description of the Transition triggers in the
State Machine that each behavior may perform
on the user interface.

Final User Interface (FUI): “Physical” signature of
events, platform specific method calls, etc.

The ontology provides means of reading the set
of behaviors supported by each interaction
element. It allows designing automated testing
implementations for specific platforms based on
such behaviors to create concrete class methods
for automating the “physical” interaction on the
user interface.

W
3C

 M
B

U
I

G
lo

ss
ar

y

It is a glossary of terms recurrent in the Model-
based User Interface domain (MBUI). It contains
informal, commonly agreed definitions of relevant
terms and explanatory resources.

Description and definition of Platform and UI
concepts.

Table 4. A compared overview between the ontology and other methods and languages.

4.2. A Behavior-Based Ontology for Interactive Systems

Our ontology for describing interactive systems is based on concepts borrowed from different
languages found in the literature. From Camaleon and UsiXML we borrow the concepts of
abstract and concrete UIs. Presentation and definition of graphical components come from W3C
MBUI. From W3C Web Ontology Language we get concepts for graphical components
(behavior and presentation aspects) commonly used to build web and mobile applications, and
also the textual representations used to describe how users interact with those graphical
components. SWC inspires concepts used to describe the dialog. Like many other approaches
(Calvary et al., 2002, 2003; Winckler and Palanque, 2003; Winckler et al., 2008; Barnett, 2017),
our description of dialog in the ontology is based on the specification of a classical state machine.
Such a reuse of concepts reduced considerably the modeling effort and allowed us to propose an

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

 82

ontology consistent with well-known approaches for describing both the presentation and the
dialog of user interfaces.

The ontology has been modeled in Protégé 5.0. Figure 21 presents the classes of the ontology
and their properties divided in 4 wide groups: Platform Concepts, UI Concepts, State Machine
Concepts and Scenario-based Concepts. These groups are represented as clouds in the figure.
Classes are represented as rectangular boxes, and the relationships between classes (i.e. their
Object Properties) are represented by solid lines which include the name of the Object Property
and the constraint associated to the relationship. Finally, dotted lines represent a
generalization/specialization relationship, i.e. an “is_a” Object Property. For convenience, lines
representing relationships that share the same Object Property name and the same constraint
were merged to improve the legibility of the image.

The first group of concepts defines the web and mobile platforms covered by the ontology.
The second one encompasses concepts allowing modeling the UI. The classes Dialog,
Presentation and Platform model the concept of a Prototype. A Prototype is built for at least one
Platform and specified by no more than one Dialog and one Presentation. The third group
specifies the State Machine concepts. Therein, a Dialog is composed by States and Transitions,
whilst a Presentation, which is represented by at least one Interaction Element, is concerned by

Figure 21. Main classes and their properties in the ontology.

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

 83

only one State at once. In the fourth group of concepts, the classes Narrative, Scenario, Step and
Task model the concept of a User Story. A User Story is described by exactly one Narrative and
some Scenarios. A Scenario is a set of Steps and a Step is an occurrence of only one Task. A
Step shall represent some Event, Condition or Action which together trigger a Transition in the
State Machine. Finally, a Transition performs a given Scenario from the User Stories.

Concepts have been modeled as Classes. Relationships between concepts have been modeled
as Object Properties (subtype “relations”). Classes that handle data have such descriptions
modeled as Data Properties. As core elements in the ontology, UI Elements and the interactive
behaviors have been modeled respectively as Classes and Object Properties (subtype
“behaviors”).

In the following subsections, we detail the basic concepts of Object (subsection 4.2.1) and Data
Properties (subsection 4.2.3), as well as the four main group of concepts described above:
Platform (subsection 4.2.4), UI (subsection 4.2.5), State Machine (subsection 4.2.6), and finally
Scenario-based concepts (subsection 4.2.7). The current version of the ontology bears an amount
of 677 axioms (being 482 logical axioms), 58 classes, 79 object properties, 16 data properties and
3 individuals. A visual representation of all the concepts can be found at https://goo.gl/IZqSJ0
and its complete specification in OWL can be found at https://goo.gl/1pUMqp.

4.2.1 Object Properties

Relationships of individuals in classes are represented as Object Properties (OP). We have
classified these properties in “Relations” and “Behaviors”. “Relations” groups conceptual
relationships between objects from internal classes, i.e. objects that do not directly address
interactive behaviors. “Behaviors”, on the other hand, groups conceptual relationships between
interactive behaviors and UI Elements on the UI. Besides these two groups of OPs, we have also
modeled two single Object Properties (allowsUnique and allowsMultiple) to express the
relationship between some UI elements and their Data Properties (DP). The “Relations” group
is detailed hereafter, whilst the “Behaviors” group will be detailed in the subsection 4.2.6, and the
single OPs will be presented in the subsection 4.2.5.

4.2.2 Relations

The sub property “relations” defines the semantic correspondence between internal classes.
Table 5 presents the whole set of relationships between objects of internal classes defined in the
ontology. The class that drives the property is called Domain Class and the class affected by the
property is called Range Class. The Restriction Type adds constraints to the modeled property.

Figure 22. Object Properties isComposedBy (left) and isTriggeredBy (right).

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

 84

Figure 22 illustrates the relations between elements in the State Machine. As a sub property of
Relations, objects from the Dialog class are composed by some States and Transitions. This
relationship is described by the property isComposedBy (left side of Figure 22). Accordingly,
objects from the Transition class are triggered by a sequence of some Conditions, Events and
Actions. This relationship is described by the property isTriggeredBy (right side of Figure 22).

Domain Class Object Property Restriction Type Range Class

State concerns only Presentation
Step isAnOccurrenceOf only Task
Scenario isASetOf only Step
Prototype isBuiltFor min 1 Platform

Dialog
isComposedBy some State
isComposedBy some Transition

User Story
isDescribedBy exactly 1 Narrative
isDescribedBy some Scenario

Presentation isRepresentedBy min 1 Interaction Element

Prototype
isSpecifiedBy max 1 Dialog
isSpecifiedBy max 1 Presentation

Transition
isTriggeredBy some Event
isTriggeredBy some Condition
isTriggeredBy some Action

Transition performs only Scenario

Step
shoudRepresent some Event
shoudRepresent some Condition
shoudRepresent some Action

Mobile usesAsAMobileElement some <UI Element>
Web usesAsAWebElement some <UI Element>

Table 5. “Relations” as Object Properties in the ontology.

4.2.3 Data Properties

Data Properties are used to describe semantically data domains used by each class that handles
data. Our ontology has been designed following Ontology Design Principles (Dumontier, 2018),
so Datatypes were specified under the standard XSD specification and constraints were defined
to restrict the set of data domains applied to each Domain Class.

The root tree shown in Figure 23 (left side) gives an overview of the properties created, while
Figure 23 (right side) expands the Data Property “message”, showing that this kind of data is used
by the UI Elements “Message Box”, “Notification”, “Tool Tip” and “Modal Window”.
“Message” has also been defined to range the primitive data String. Table 6 shows the whole set
of Data Properties created, their respective Domain Classes as well as their Datatypes. As some
UI Elements can handle another UI Elements or even different Datatypes, we have defined the
generic type “element” for modeling this property. For example, Menus present options for users,
but these options can be of any type, i.e. images, text, or even another UI Element such as a
Menu Item. Finally, notice that the only Data Property that does not use a Datatype is the property
“Level”, which refers to the level of a Prototype.

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

 85

Figure 23. Left: Data Properties. Right: Data Property “message”.

Data Property Domain Classes Datatype

Actions Menu Item, Link, Message Box, Button, Modal Window element
State - xsd:boolean

Agreement Notification xsd:string
Data and Time Input Calendar xsd:dataTime
Images Image Carousel xsd:hexBinary
Level Prototype -
Locations Breadcrumb xsd:string

State - xsd:boolean
Message Message Box, Notification, Text, Tool Tip, Modal Window xsd:string
Number Input Numeric Stepper xsd:double

Options Tabs Bar, Checkbox, Dropdown List, Toggle, List Box, Radio Button,
Accordion, Menu, Progress Bar, Dropdown Button element

State - xsd:boolean
Pages Pagination xsd:integer
Symbol Icon xsd:hexBinary
Text Input Search Field, Text Field, Autocomplete xsd:string
Title Button, Field Set, Link, Label, Menu Item xsd:string

Value Slider xsd:double
xsd:string

Words Tag xsd:string

Table 6. Data Properties in the ontology.

4.2.4 Platform Concepts

Concepts of supported platforms are modeled in the ontology to determine which kind of UI
is supported by the model and how its interactive elements will behavior for each implementation.
Having different presentations and behaviors depending on the platform they are implemented;
the modeling of interactive elements must consider such particularities. The set of UI Elements
that suits each platform is presented as Object Properties in the subsection 4.2.2.

So far, the ontology supports only interactive behaviors for web and mobile UIs. As shown in
Figure 24, the classes Web and Mobile have been modeled as specializations of the class
Platform, which allows us to eventually cover other platforms in the future. As a consequence of
such choice, only UI Elements that are supported by web and mobile environments have been

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

 86

described in the superclass Interaction Elements. The example below illustrates distinct
implementations of an interactive element “Calendar” for both web and mobile environments.
Notice that even carrying the same semantics in both platforms, the way a user is supposed to
interact with this component may differ in each platform. While in a web environment the user
can directly select a day of a month by clicking backward and forward on the month/year selection
buttons, in a mobile environment the user could be asked to interact with a calendar by scrolling
the month, the day and the year separately.

Figure 24. Example of Web and Mobile implementations of a Calendar.

4.2.5 UI Elements Concepts

UI Elements in the ontology represent an abstraction of GUI components in web and mobile
platforms. Figure 25 illustrates a hierarchy of UI Elements. As we shall see, the four main
superclasses are Container, Information Component, Input Control and Navigational
Component. The first one contains elements that group other elements in a User Interface, such
as Windows and Field Sets. The second one contains elements in charge of displaying
information to the users such as Labels and Message Boxes. The third one represents elements
in which users provide inputs to the system such as Buttons and Text Fields. Finally, the last one
contains elements useful to navigate through the system such as Links and Menus. Some elements
like Dialog Windows, for example, are inherited by more than one superclass, once they keep
semantic characteristics of Containers and Information Components as well.

The complete list of UI Elements modeled in the ontology is presented in Table 7, specifying
for each one: the correspondent superclass, a brief description and both Data and Object
Properties associated. In Data Properties (DP) is identified the type of data handled by the UI
Element itself. In Object Properties (OP) is identified whether the UI Elements are supported
by web (OP: usesAsAWebElement) and/or mobile (OP: usesAsAMobileElement) platforms. It
is also identified whether some UI Element has an Object Property allowsUnique or
allowsMultiple associated to its Data Properties.

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

 87

Figure 25. Cloud of User Interface (UI) Elements.

 Int. Element Description Properties

Container

Accordion

An Accordion is a vertically stacked list of items that
utilizes show/hide functionality. When a label is clicked,
it expands the section showing the content within. There
can have one or more items showing at a time and may
have default states that reveal one or more sections
without the user clicking.

DP: options

OP (usesAsA):
WebElement,
MobileElement

Field Set A Field Set element represents a set of form controls
optionally grouped under a common name.

DP: title

OP (usesAsA):
WebElement,
MobileElement

Tabs Bar
A Tab Bar is a container widget that has typically multiple
Tab Bar Buttons, which controls visibility of views. It can
be used as a tab container.

DP: options

OP (usesAsA):
WebElement,
MobileElement

Window
A Window is an area on the screen that displays
information, with its contents being displayed
independently from the rest of the screen.

-

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

 88

Window

Browser Window

The top of a typical Web browser window contains a title
bar that displays the title of the current page. Below the
title is a toolbar with back and forward buttons, an
address field, bookmarks, and other navigation buttons.
Below the toolbar is the content of the current Web page.
The bottom of the window may contain a status bar that
displays the page loading status.

OP (usesAsA):
WebElement

Window Dialog
A Window or Dialog Box is a small window that
communicates information to the user and prompts
them for a response.

OP (usesAsA):
WebElement

Window Dialog Modal Window A Modal Window requires users to interact with it in
some way before they can return to the system.

DP: actions,
message

OP (usesAsA):
WebElement

Information
Component

Label A Label displays content classification.

DP: title

OP (usesAsA):
WebElement,
MobileElement

Message Box
A Message Box is a small window that provides
information to users and requires them to take an action
before they can move forward.

DP: actions,
message

OP (usesAsA):
WebElement,
MobileElement

Notification

A Notification is an update message that announces
something new for the user to see. Notifications are
typically used to indicate items such as, the successful
completion of a task, or an error or warning message.

DP: agreement,
message

OP (usesAsA):
WebElement,
MobileElement

Progress Bar
A Progress Bar indicates where a user is as they advance
through a series of steps in a process. Typically, progress
bars are not clickable.

DP: options

OP (usesAsA):
WebElement,
MobileElement

Text Informative content in a page.

DP: message

OP (usesAsA):
WebElement,
MobileElement

Tool Tip A Tooltip allows a user to see hints when they hover over
an item indicating the name or purpose of the item.

DP: message

OP (usesAsA):
WebElement,
MobileElement

Window Dialog - -

Input Control

Autocomplete The Autocomplete widgets provides suggestions while
you type into the field.

DP: text_input

OP (usesAsA):
WebElement

Button A Button indicates an action upon touch and is typically
labeled using text, an icon, or both.

DP: actions, title

OP (usesAsA):
WebElement,
MobileElement

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

 89

Calendar
A Calendar (date picker) allows users to select a date
and/or time. By using the picker, the information is
consistently formatted and input into the system.

DP:
data_and_time_
input

OP (usesAsA):
WebElement,
MobileElement

Checkbox

Checkboxes allow the user to select one or more options
from a set. It is usually best to present checkboxes in a
vertical list. More than one column is acceptable as well
if the list is long enough that it might require scrolling or
if comparison of terms might be necessary.

DP: options

OP (usesAsA):
WebElement,
MobileElement
OP:
allowsMultiple

Dropdown Button
The Dropdown Button consists of a button that when
clicked displays a drop-down list of mutually exclusive
items.

DP: options

OP (usesAsA):
WebElement,
MobileElement
OP:
allowsUnique

Dropdown List

Dropdown Lists allow users to select one item at a time,
similarly to radio buttons, but are more compact
allowing you to save space. Consider adding text to the
field, such as ‘Select one’ to help the user recognize the
necessary action.

DP: options

OP (usesAsA):
WebElement,
MobileElement
OP:
allowsUnique

List Box
List Boxes, like Checkboxes, allow users to select
multiple items at a time, but are more compact and can
support a longer list of options if needed.

DP: options

OP (usesAsA):
WebElement,
MobileElement
OP:
allowsMultiple

Numeric Stepper

A Numeric Stepper serves the same function as a
Numeric Input Object. It is a method of entering
numeric data in which the numbers can be typed directly
into the input object. However, numeric values can also
be adjusted by using up and down arrows next to the
numeric input. Clicking the up and down arrows
normally causes the value to increment by one.

DP:
number_input

OP (usesAsA):
WebElement,
MobileElement

Radio Button Radio Buttons are used to allow users to select one item
at a time.

DP: options

OP (usesAsA):
WebElement,
MobileElement
OP:
allowsUnique

Text Field Text Fields allow users to enter text. It can allow either
a single line or multiple lines of text.

DP: text_input

OP (usesAsA):
WebElement,
MobileElement

Toggle
A Toggle button allows the user to change a setting
between two states. They are most effective when the
on/off states are visually distinct.

DP: options

OP (usesAsA):
WebElement,
MobileElement

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

 90

OP:
allowsUnique

Grid A Grid or a Datagrid is a graphical control element that
presents a tabular view of data.

DP: text_input

OP (usesAsA):
WebElement,
MobileElement

Navigational
Component

Breadcrumb
Breadcrumbs allow users to identify their current
location within the system by providing a clickable trail
of proceeding pages to navigate.

DP: locations

OP (usesAsA):
WebElement

Icon
An Icon is a simplified image serving as an intuitive
symbol that is used to help users to navigate the system.
Typically, icons are hyperlinked.

DP: symbol

OP (usesAsA):
WebElement,
MobileElement

Image Carousel
Image Carousels allow users to browse through a set of
items and make a selection of one if they so choose.
Typically, the images are hyperlinked.

DP: images

OP (usesAsA):
WebElement

Link
A Link is a reference to data that can be directly follow
by clicking. It points to a whole document or to a specific
element within a document.

DP: actions, title

OP (usesAsA):
WebElement

Menu Menu is a list of options or commands presented to an
operator.

DP: options

OP (usesAsA):
WebElement,
MobileElement

Menu Item
A Menu Item is a resultant item in a list of options or
commands presented to an operator by clicking in a
menu.

DP: actions, title

OP (usesAsA):
WebElement,
MobileElement

Pagination
Pagination divides content up between pages and allows
users to skip between pages or go in order through the
content.

DP: pages

OP (usesAsA):
WebElement

Search Field

A search box allows users to enter a keyword or phrase
(query) and submit it to search the index with the
intention of getting back the most relevant results.
Typically, search fields are single-line text boxes and are
often accompanied by a search button.

DP: text_input

OP (usesAsA):
WebElement,
MobileElement

Slider

A slider, also known as a track bar, allows users to set or
adjust a value. When the user changes the value, it does
not change the format of the interface or other info on
the screen.

DP: value

OP (usesAsA):
WebElement,
MobileElement

Tag
Tags allow users to find content in the same category.
Some tagging systems also allow users to apply their own
tags to content by entering them into the system.

DP: words

OP (usesAsA):
WebElement

Tree

With a Tree, we can display hierarchical data. Each row
displayed by the Tree contains exactly one item of data,
which is called a node. Every Tree has a root node from
which all nodes descend. By default, the Tree displays
the root node. A node can either have children or not.
We refer to nodes that can have children — whether or
not they currently have children — as branch nodes.
Nodes that cannot have children are leaf nodes.

DP: actions

OP (usesAsA):
WebElement

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

 91

Table 7. UI Elements in the ontology.

4.2.6 State Machine Concepts

The dialog part of a User Interface, as illustrated by Figure 26, is described in the ontology
using concepts borrowed from abstract State Machines. A Scenario meant to be run in a given
UI is represented as a Transition, illustrated by Figure 27. States are used to represent the original
and resulting UIs after a transition occur (States A and B in Figure 27). Scenarios in the Transition
state always have at least one or more Conditions (represented in Scenarios by the “Given”
clause), one or more Events (represented in Scenarios by the “When” clause), and one or more
Actions (represented in Scenarios by the “Then” clause). These constraints have been guaranteed
in our tools which implement these ontological concepts. The clauses “Given”, “When” and
“Then” have been modeled as Individuals of each respective class.

State A

Condition

[X] Given I go to “#page”

Event

[V] When I choose “#value” in the field “#field”

Action

[X] Then will be displayed “#message” State B

Figure 27. A Transition being represented in the State Machine.

4.2.7 Scenario-Based Concepts

Scenario-based concepts allow us modeling behaviors that describe how users are supposed
to interact with the systems whilst manipulating graphical elements of the User Interface. An
example of behavior specification is illustrated by Figure 28.

Behaviors are structured and described in natural language, so that they can also be read by
humans. The specification of behaviors encompasses when the interaction can be performed
(using “Given”, “When” and/or “Then” clauses – which are Individuals in the ontology), and
which graphical elements (i.e. Radio Button, CheckBox, Calendar, Link, etc. – which are classes

Figure 26. State Machine Elements and their Individuals.

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

 92

in the ontology) can be affected. Altogether, behaviors and graphical elements are used to
implement the test of expected system behavior. In the example in Figure 28, the behavior
receives two parameters: a “$elementName” and a “$locatorParameters”. The first parameter is
associated to data, the second parameter refers to the Interaction Element supported by this
behavior: “Radio Button”, “CheckBox”, “Calendar” and “Link”. To comply with semantic rules,
the behavior “I chose \”$elementName\” referring to \”$locatorParameters\”” shown in Figure
28 can be modelled into a predefined behavior “chooseReferringTo” as shown in Figure 29.

In the ontology, behaviors are modeled as Object Properties (OP). The ontology includes a
large set of predefined behaviors grouped by context of use, as shown in Table 8. Notice that
each Behavior is associated to diverse transition components (Context, Event and/or Action) that
compose a Transition. The column UI Elements enlists the set of Interaction Elements that can
fit to trigger a particular behavior.

Figure 28. Components on the ontology used to specify a behavior.

Figure 29. Behavior “chooseRefferingTo”.

Checkbox and Radio Button Behaviors

Behavior
Transition

UI Elements
C E A

theFieldIsUnchecked
Checkbox
Radio Button

theFieldIsChecked
Checkbox
Radio Button

assureTheFieldIsUnchecked Checkbox

assureTheFieldIsChecked Checkbox

Common Behaviors

Behavior
Transition

UI Elements
C E A

choose ≡ select

Calendar
Checkbox
Radio Button
Link

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

 93

chooseByIndexInTheField Dropdown List

chooseReferringTo

Calendar
Checkbox
Radio Button
Link

chooseTheOptionOfValueInTheField Dropdown List

clickOn

Menu
Menu Item
Button
Link

clickOnReferringTo

Menu
Menu Item
Button
Link
Grid

doNotTypeAnyValueToTheField ≡
resetTheValueOfTheField Text Field

goTo Browser Window

goToWithTheParameters Browser Window

isDisplayed Browser Window

setInTheField ≡ tryToSetInTheField

Dropdown List
Text Field
Autocomplete
Calendar

setInTheFieldReferringTo
Dropdown List
Text Field

typeAndChooseInTheField ≡
informAndChooseInTheField Autocomplete

willBeDisplayed Text

willNotBeDisplayed Text

willBeDisplayedInTheFieldTheValue Element

willNotBeDisplayedInTheFieldTheValue Element

willBeDisplayedTheValueInTheFieldReferringTo Element

willNotBeDisplayedTheValueInTheFieldReferringTo Element

isNotVisible Element

valueReferringToIsNotVisible Element

waitTheFieldBeVisibleClickableAndEnable Element

waitTheFieldReferringToBeVisibleClickableAndEnable Element

theElementIsVisibleAndDisable Element

theElementReferringToIsVisibleAndDisable Element

setInTheFieldAndTriggerTheEvent Text Field

clickOnTheRowOfTheTree Tree

Data Generation Behaviors

Behavior
Transition

UI Elements
C E A

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

 94

informARandomNumberWithPrefixInTheField Text Field

informARandomNumberInTheField Text Field

Data Provider Behaviors

Behavior
Transition

UI Elements
C E A

inform Grid

informTheField ≡ informTheFields Grid

selectFromDataSet -

informTheValueOfTheField Element

informKeyWithTheValue ≡
defineTheVariableWithTheValue -

obtainTheValueFromTheField Element

Debug Behaviors

Behavior
Transition

UI Elements
C E A

printOnTheConsoleTheValueOfTheVariable -

Dialog Behaviors

Behavior
Transition

UI Elements
C E A

confirmTheDialogBox Window Dialog

cancelTheDialogBox Window Dialog

informTheValueInTheDialogBox Window Dialog

willBeDisplayedInTheDialogBox Window Dialog

Mouse Control Behaviors

Behavior
Transition

UI Elements
C E A

moveTheMouseOver

Menu
Menu Item
Button
Link

Table Behaviors

Behavior
Transition

UI Elements
C E A

clickOnTheRowOfTheTableReferringTo Grid

storeTheCellOfTheTableIn Grid

storeTheColumnOfTheTableIn Grid

compareTheTextOfTheTableCellWith Grid

compareTheTextOfTheTableColumnWith Grid

clickOnTheCellOfTheTable Grid

clickOnTheColumnOfTheTable Grid

chooseTheOptionInTheCellOfTheTable Grid

chooseTheOptionInTheColumnOfTheTable Grid

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

 95

Table 8. Predefined Behaviors described in the ontology.

The vocabulary chosen to express each behavior emerged from Scenarios specified in our past
projects. It outlines only one of the several possible vocabularies to represent the same user’s
behaviors and could be extended in the future by more representative phrases or expressions.
Some synonyms concerning the user’s goal have been also identified in order to increase the
expressivity of the ontology. For example, the behavior doNotTypeAnyValueToTheField is
considered equivalent to the behavior resetTheValueOfTheField as they perform or assert
exactly the same action on the affected UI element, looking for the same output. Likewise, the
behavior setInTheField is equivalent to the behavior tryToSetInTheField as they refer to the
same action. However, tryToSetInTheField better expresses violation attempts in the business
rules.

4.2.8 Consistency Checking

Figure 30. Results of ontology processing: HermiT (top) and Pellet (bottom).

Consistency checking was done using the reasoners FaCT++, ELK, HermiT and Pellet.
FaCT++ started identifying no support for the datatypes xsd:base64Binary and xsd:hexBinary
used to range images and symbols in the Data Properties. Those properties have been used to
define domains for objects in the classes Image Carousel and Icon, respectively. ELK has failed
by no support to Data Property Domains as well as Data and Object Property Ranges. HermiT
and Pellet have succeeded processing the ontology respectively in 4926 and 64 milliseconds, as
presented in Figure 30.

4.3. Contributions, Limitations and Perspectives

The ontology presented in this chapter describes behaviors that report Steps of Scenarios
performing actions directly on the UI through Interaction Elements. Thus, the ontological model
is domain-free, which means that it is not dependent of business characteristics that are described
in the User Stories. Specific business behaviors must be specified only for the systems to which
they refer, not affecting the whole ontology. Therefore, it is possible to reuse Steps in multiple
testing Scenarios of other systems requiring such kinds of user’s actions. It brings a limitation

typeTheTextInTheCellOfTheTable Grid

typeTheTextInTheColumnOfTheTable Grid

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

 96

once Scenarios must be specified in the user interaction level, writing Steps for each click,
selection, typing, etc. A possible solution to avoid this level of detail would be to work with higher-
level behaviors that are described by user’s tasks. Nonetheless, user’s tasks often contain
information from specific application domains. For example, high-level Steps like “When I
search for flights to ‘Destination’” encapsulate all low-level behaviors referring to individual clicks,
selections, etc.; however, it also contains information that refers to the airline domain (i.e.
behavior “search for flights”). Therefore, that Step would only makes sense on that particular
application domain. For further researches, it could be interesting to investigate domain
ontologies to be used in parallel with our ontology, defining a higher-level business vocabulary
database in which business behaviors could be mapped to a set of interactive behaviors, covering
recurrent Scenarios for a specific domain, and avoiding them to be written every time a new
interaction may be tested.

When representing the diverse Interaction Elements that can attend a given behavior, the
ontology also allows extending multiple design solutions for the UI, representing exactly the same
requirement in different perspectives. Besides modeling several concepts of the target artifacts,
the ontology covers more than 60 interactive behaviors and almost 40 Interaction Elements for
both web and mobile user interfaces. Thus, even if a Dropdown List has been chosen to attend
for example a behavior setInTheField in a Prototype, an Auto Complete field could be chosen
to attend this behavior on the Final UI, once both UI elements share the same ontological
property for this behavior under testing. This kind of flexibility makes tests pass, leaving the
designer free for choosing the best solutions in a given time of the project, without modifying the
behavior specified for the system.

Another aspect to consider is that even having mapped synonyms for some specific behaviors,
our approach does not provide any kind of semantic interpretation, i.e. the Steps might be
specified exactly as they were defined on the ontology. The JBehave plugin for Eclipse shows
(through different colors) if the Step being written exists or not on the ontology. This resource
reduces the workload to remember as exactly some behavior has been described on the ontology
and will be presented in chapter 6. On one hand, the restricted vocabulary seems to bring less
flexibility to designers, testers and requirements engineers. Nonetheless, on the other hand, it
establishes a common vocabulary, avoiding typical problems of ambiguity and incompleteness in
requirements and testing specifications. Further studies on Natural Language Processing (NLP)
techniques might help to improve the process of specification adding more flexibility to write
Scenarios that could be semantically interpreted to meet the behaviors described on the ontology.
This issue is certainly a worthwhile topic for further research.

It is also worthy of mention that the concepts and definitions in the ontology presented herein
include one of the possible solutions for addressing and describing behaviors and their relations
with UIs. Despite the fact that our ontology covers concepts available in well-known languages
such as MBUI, UsiXML and SCXML, we do not assume that the coverage is exhaustive. In
principle, the adequacy of a given set of elements present in the ontology to the system or project
under development is our modeling stopping criterion. We envision that other behaviors,
concepts and relationships might be included in the future to express idiosyncrasies of specific
interaction techniques (ex. multimodal interaction techniques) and/or specific platforms (ex.
ambient systems), or even to increase the coverage of Interaction Elements due to the emergence
of new elements for web and mobile platforms. To do so, new elements can be added by direct
imports into the ontology or simply by adding new more expressive behaviors to the Object
Property “behaviors” and linking them to the appropriate set of Interaction Elements.

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

 97

Finally, this ontology has been developed primarily to support the assessment of GUIs.
Nevertheless, along this thesis, we will explore the use of the ontology to also support the
assessment of different artifacts that compose the design of a User Interface. As the ontology has
been designed in a behavior-based way and supported by a state machine, only scenario-based
artifacts, i.e. artifacts that use scenarios to perform and/or simulate user activities in the system,
are supported for testing purposes. This characteristic will be explored in the next chapters.

4.4. Resultant Publications

Silva, T. R., Hak, J.-L. & Winckler, M. (2017). A Formal Ontology for Describing Interactive
Behaviors and Supporting Automated Testing on User Interfaces. International Journal of
Semantic Computing, 11 (04), pp. 513-539. DOI: http://doi.org/10.1142/S1793351X17400219.
(Silva, Hak and Winckler, 2017b)

Silva, T. R., Hak, J. L. & Winckler, M. (2017). A Behavior-Based Ontology for Supporting
Automated Assessment of Interactive Systems. In: 2017 IEEE 11th International Conference on
Semantic Computing (ICSC 2017), pp. 250-257. IEEE. DOI:
http://doi.org/10.1109/ICSC.2017.73. (Silva, Hak and Winckler, 2017a)

 99

Chapter 5
Modeling and Assessing

Task Models

Summary

This chapter details our strategy for modeling and assessing task models following our approach
presented in chapter 3. The chapter begins by presenting the HAMSTERS notation which will
be used for modeling and assessing our task models. The chapter continues by resuming the case
study proposed previously, with task models being used to design user’s tasks. In the sequence,
we present firstly an orderly strategy for getting task models already consistent with the set of user
requirements specified by users. The example of tasks we explore is an excerpt of the searching
flight activity already modeled in a high level of abstraction in the BPMN model presented in
chapter 3.

In the second section, we explore our strategy for assessing the resultant task models. This section
is presented in 3 steps. The first one refers to the extraction of possible scenarios from a designed
task model, formatting them to meet the ontological pattern. The second one refers to the process
of mapping elements from the task model for checking whether they are consistent with the
respective elements in the User Stories, and hence with the ontology. The third and last step
presents how our strategy has been implemented to support testing in an automated way. Lastly,
we present a discussion concerning the challenges of assessing task models and the limits of the
approach.

As discussed in chapter 2, task models can serve many purposes, from modeling users’
activities in early phases of development, until supporting test case generation in later phases of
development (Campos et al., 2017). They can evolve along the different phases of development
or be throw away as soon as user requirements have been settled up, and a consistent design of
the user interface has been concluded. In this chapter, we adopt a use of task models serving as
an early and evolutive design artifact for modeling aspects of functional user requirements.

Our strategy concerning the assessment of task models consists
in checking their consistency with respect to a previously-defined
requirements specification. As highlighted in chapter 3 (section
3.2.3), there are alternatives for performing our approach. As
such, task models can be designed from the beginning for
matching the requirements specification or, if they have already
been designed, for supporting the development of the
requirements specification which will benefit from a preliminary
analysis of user’s tasks. One of these alternatives is reproduced in
Figure 31. It will be used in this chapter to present the approach.
Following this alternative, we had already identified the
requirements to be modeled (1) in chapter 3 (section 3.3.1). Thus,
in this chapter, we will in the sequence: design the task models (as
part of the scenarized artifacts) (2), extract scenarios from them Figure 31. One of the alternatives

to perform our approach.

Chapter 5: Modeling and Assessing Task Models

 100

(3), write our formatted User Stories based on such extracted scenarios (4), and finally run tests
on the artifacts (5).

Task models can be designed through a diverse set of notations and tools. For being assessed
under our approach though, they need to comply with two premises:

• Allow extraction of scenarios by running the model.
• Export source files of both reference model and extracted scenarios in a markup

language.

Although in theory task models in any notation may be assessed since they comply with these
two premises, our implementation should be adapted to understand the formalism used by such
notations to describe the task model and the scenarios extracted from them. Our strategy for
testing performs a static assessment of the source files by means of a syntactic and semantic
analyzes of the target source files. An advantage of this approach is that, unlike co-execution
approaches where both artifacts under testing must be prepared for assessment by annotating or
modifying their source files, with our approach we have no need to intervene in the source code
of the target artifacts, i.e. artifacts do not need to be prepared for testing by designers, so task
models and requirements specifications can be assessed in their original state.

For the demonstration we propose in this chapter, we make use of task models modeled by
HAMSTERS once the notation and tool fit our two premises stated above. HAMSTERS exports
its reference models and extracted scenarios using the XML standard, a well-adopted markup
language, so recognized by our approach. The task modeling and the extraction of scenarios that
will be presented hereafter has been made by using the HAMSTERS tool, whilst the
implementation of the assessment has been made by using the respective XML source files
produced by the HAMSTERS tool for each model. The next section presents a brief overview
of the HAMSTERS’ notation and tool support, and the following sections present our strategy
for modeling and testing based on the alternative for running described in Figure 31.

5.1. An Overview of HAMSTERS

Human-centered Assessment and Modeling to Support Task Engineering for Resilient
Systems (HAMSTERS) (Martinie, Palanque and Winckler, 2011) is a notation inspired by other
existing ones for task modeling, especially CTT (Paternò, 2003), and, according to the authors,
has been designed to remain compatible with it (from the point of view of people building the
models) as models are hierarchical and are graphically represented featuring operators between
the tasks. However, HAMSTERS includes extensions such as pre-conditions associated with task
executions, data flow across task models, and more detailed interactive tasks. HAMSTERS’
models can be edited and simulated in a dedicated environment which also provides a dedicated
API for observing, editing, and simulating events, making it possible to connect task models to
system models (Navarre et al., 2001; Barboni et al., 2010). HAMSTERS has been introduced in
2011 and several versions have been released since them. In this thesis, we are adopting the
version 4.0 of HAMSTERS. Thus, the components we present hereafter, and which be used
along the case studies are based on existing elements until such a version.

5.1.1. Task Types

Table 9 illustrates some of the HAMSTERS’ constructs that are required for structuring
models, including:

Chapter 5: Modeling and Assessing Task Models

 101

• Abstract task is a task that involves sub-tasks of different types.
• System task is a task performed only by the system.
• User task is a generic task describing a user activity. It can be specialized as a Motor

task (e.g. a physical activity), a Cognitive task (e.g. decision making, analysis), or
Perceptive task (e.g. perception of alert).

• Interactive task represents an interaction between the user and the system; it can be
refined into Input task when the users provide input to the system, Output task when
the system provides an output to the user and Input/Output task which is a mix of both
but performed in an atomic way.

Table 9. Task types in HAMSTERS.

Tasks can also have properties. Tasks may be optional, iterative or both optional and iterative.
The representation of these properties is depicted in Figure 32 below. In addition, minimum and
maximum execution time can also be set for tasks, and particularly for iterative tasks, it can also
be set the number of iterations they support.

The notation also provides a composition mechanism to describe sub-routines. A sub-routine
is a group of activities that a user performs several times, possibly in different contexts which
might exhibit different types of information flows. The sub-routine is then modeled in a dedicated
model where the root task is the icon of that sub-routine. A sub-routine contains:

• The name of the sub-routine.
• The icon of an “Abstract” task type (as the sub-routine consists of a group of tasks that

can belong to different types).
• Specialized input and output ports attached both to the left side and to the right side

of the icon. The graphical symbol of these specialized ports can be filled (if they handle
parameters) or not (if they do not). These ports are mechanisms for representing
required parameters to and/or from sub-routines, thus providing explicit
representation of data flow during task execution.

Figure 32. Example of Task Properties.

Chapter 5: Modeling and Assessing Task Models

 102

5.1.2. Operators

Additionally, temporal relationships between tasks are represented by means of operators.
The operator “Enable” (>>) describes that the tasks T1 and T2 occur sequentially, one after the
other. The operator “Concurrent” (|||) describes that the tasks T1 and T2 can be performed
simultaneously. The operator “Choice” ([]) describes the user performing the tasks T1 or T2, but
the choice of one implies that the other will be disabled. The operator “Disable” ([>) describes
that the starting of the task T1 leads to a definitive interruption of the task T2. The operator
“Suspend-resume” (|>) describes that the starting of the task T1 leads to a temporary interruption
of the task T2; T1 can be restarted at any time and then be interrupted again by the task T2, while
T1 is not complete. Finally, the operator “Order independent” (|=|) describes that the user can
choose whether he will perform the tasks T1 or T2 first. This operator also indicates that the task
selected to be executed first will be completed before moving to the next. Table 10 summarizes
such operators.

It is the use of these operators to link tasks in the model that allows extracting of the possible
scenarios to be performed in the system. This is done by following the multiple achievable paths
in the model, with each combination of them generating an executable scenario.

Table 10. Illustration of the operator types within HAMSTERS.

Chapter 5: Modeling and Assessing Task Models

 103

5.1.3. Extracting Scenarios

HAMSTERS tool allows models to be executed through the simulation mode (illustrated in
Figure 33). By using the it, we can view the current tasks that are available for execution (list in
the upper part of the simulation panel in Figure 33), and the scenario, i.e. the tasks that have been
executed (list in the lower part of the simulation panel in Figure 33). Additionally, the tasks which
are available for execution are highlighted in green in the task model (in the central part in Figure
33). By extracting all the possible scenarios that could be performed in the model, we have a big
picture about everything (in terms of tasks) that can be done with the system.

5.1.4. Handling Data

Figure 34. Example of “Information” and “Data” handling.

HAMSTERS expressive power goes beyond most other task modeling notations particularly
by providing detailed means for describing data that is required and manipulated (Martinie et al.,
2013) in order to accomplish tasks. Information (“Inf:” followed by a text box) may be required
for execution of a system task, but it also may be required by the user to accomplish a task.
Objects (“Obj:” followed by a text box), on the other hand, are used for indicating that some data
will be provided when performing an input task by the user. These elements are exemplified in
Figure 34, where the user considers a given information for performing and input task (arrow
from the information to the input task) and then, when performing such task, he/she uses such
information as an actual data that will be provided for the system (arrow from the input task to

Figure 33. Representation of executable and executed tasks during simulation.

Chapter 5: Modeling and Assessing Task Models

 104

the object). By using the HAMSTERS’ simulation mode, we can set test data on runtime when
performing an input task that points to an object in the model.

5.2. Modeling User’s Tasks

The task models presented hereafter have
been modeled using the HAMSTERS
notation and are based on the BPMN model
designed in chapter 3 (section 3.3). The
activity of modeling user’s tasks described in
this section corresponds to “Design Task
Models” in our micro-process presented in
chapter 3 (Figure 35). This activity is
performed in collaboration between
Requirements Analysts and UI Designers.

By resuming the illustrative case study
started in chapter 3, we assume a generic workflow for flight reservations, not following any
specific business process of a given company. The tasks represented below are focused on the
processes of searching and choosing flights presented in the BPMN model.

Figure 36 presents respectively the extract of the business process selected for modeling and
the resultant task models. In the transition (a), the initial business activity “Search Flights” has
been mapped to the abstract/iterative task “Search Flights” once it is performed by the user. This
task is refined in an ordered sequence of input/output tasks (operator “enable”). First, the user
goes to the web page where he provides data for search (input task “Go to Find Flights”). Next,
the user effectively provides a set of data for searching his flights (abstract task “Provide Data”),
submits the search (input task “Submit Search”), and finally verifies the resultant list of flights
(abstract task “Verify List of Flights”). These are sequential user tasks (operator “Enable”). For
the abstract task “Verify List of Flights”, the system actually provides the list of available flights
(output task “Present List of Available Flights”) and then the subtask “Choose Flights” becomes
available to be performed by the user. It matches with the business activity “Verify List of Flights”
in the BPMN model.

For providing the set of data for searching (“Inf:”), the user can inform in any other (operator
“Order independent”): departure (abstract task “Inform Departure”), destination (abstract task
“Inform Destination”), number of passengers (input task “Inform Number of Passengers”),
departure date (input task “Set Departure Date”), and trip type (abstract task “Choose Trip
Type”). Notice that the use of the operator “Order independent” allows the extraction of
scenarios from this model with those tasks presented in any order.

The abstract tasks “Inform Departure” and “Inform Destination” originate a sequence of three
tasks. The first one in which the user informs a departure (or arrival) city (respectively the input
tasks “Inform Departure City” and “Inform Arrival City”). The second one in which the system
provides a list of airports in the city (output task “Provide List of Airports”). Finally, the third one
in which the user chooses the departure (or arrival) airport (respectively the input tasks “Choose
Departure Airport” and “Choose Arrival Airport”). The abstract task “Choose Trip Type” is
actually a decision task once the user can choose (operator “Choice”) between a one-way (input
task “Select One-way Trip”) and a round trip (input task “Select Round Trip”). If he chooses a
round trip, he needs to inform the arrival date (input task “Set Arrival Date”) as well.

Figure 35. Activity of creating task models.

Chapter 5: Modeling and Assessing Task Models

 105

Figure 36. Mapping BPMN business activities to HAMSTERS user tasks.

In the transition (b) of Figure 36, we present the sequence of the flow. The business activity
“Choose a Flight” has been mapped to the abstract/interactive task “Choose Flights” in the task
model (notice that this same task has already been represented as the last abstract task in the first
transition). Following the task “Choose Flights”, the system requests user for choosing a flight
(output task “Request for Choosing a Flight”). Next, the user evaluates the availability of flights
(cognitive analysis task “Evaluate the Availability of Flights”) and then makes a decision, choosing
the desired flight (cognitive decision task “Choose the Desired Flight”). After the cognitive
decision about which flight choose, the user finally performs the input task of selecting the desired
flight (input task “Select the Desired Flight”). As a result, the system asks the user to provide his
login information to proceed the booking with passengers and payment data (output task
“Request for Login”).

Notice that business and task models are complementary. The business process model
provides an overview of the activity flow of the system, emphasizing high-level processes involving
diverse business actors. In a different way, the task model is more focused in describing detailed
user tasks while interacting with the system, emphasizing lower level tasks. Thereby, task models
provide more refined resources and descriptors to model user interactions than those provided
by business process models.

(b)

(a)

Chapter 5: Modeling and Assessing Task Models

 106

5.3. Assessing User’s Tasks

By following the alternative that we set up in the beginning of this chapter for performing the
approach, the next activity for getting task models ready for testing is extracting scenarios from
them. In the alternative we are following, such scenarios will serve as basis for formatting our
previously specified User Stories in an attempt to get steps in User Stories and tasks in scenarios
extracted from task models already consistent. After extracting scenarios from task models, and
formatting the User Stories, we can run our tests on the task models.

5.3.1. Extracting Scenarios and Formatting User Stories

As task models are designed to support the multiple paths that users may accomplish to
perform their tasks, assessing such models in a scenario-based approach involves initially
extracting the possible scenarios that are supposed to be tested in a given interaction. It means
that after modeling, designers should define which scenarios (or even all of them) from the model
will be tested.

Based on the task model developed for the process of searching and choosing flights, we have
used HAMSTERS to extract some possible scenarios that a user could perform in the system.
HAMSTERS tool supports innately the extraction of scenarios from task models, by running
them and extracting the possible achievable paths (3 – Extract Scenarios). Figure 38 illustrates an
extraction result. The presented path simulates a scenario for a one-way trip. The ordered
sequence of tasks for this scenario is listed at the top.

The extracted scenario is then
formatted to meet the User Story
template (4 – Write formatted User
Stories), with each ordered task
being mapped to a testable common
behavior described on the ontology
presented in chapter 4. Thus, this
mapping of common behaviors
serves as a reuse approach for
formatting the steps in the User
Stories. The advantage of reusing
such common behaviors is that they
are already implemented for running
tests on the target artifacts. The
activity of formatting the User Stories

(illustrated in Figure 37 and exemplified below the Figure 38) is performed manually in
collaboration between Requirements Analysts and UI Designers, so there is not any automatic
transformation rule.

As an example, the illustrated scenario “One-Way Tickets Search” follows a possible path in
the task model and describes the behavior for a one-way trip, using only data domains for testing.
According to the business rule, the expected result for this search is a new screen presenting a
“List of Available Flights”, in which the user might select the desired flight in a list of flights
matching his search.

Figure 37. Activity of formatting User Stories.

Chapter 5: Modeling and Assessing Task Models

 107

Figure 38. Scenarios being extracted from task models and then being formatted by the ontology as User Stories.

Scenario: One-Way Tickets Search
Given I go to "Find Flights"
When I choose "One way" referring to "Trip Type"
And I inform "Departure City" and choose "Departure Airport" in the field "Departure"
And I inform "Arrival City" and choose "Arrival Airport" in the field "Destination"
And I set "Valid Departure Date" in the field "Departure Date"
And I choose the option of value "2" in the field "Number of passengers"
And I click on "Search"
Then will be displayed "Choose Flights"

Exploring the set of possible scenarios that can be extracted from the task models we have
designed in the previous section, we can establish a correlation between requirements identified
in User Stories, their representation in terms of tasks and the extracted scenarios in both UCD
and SE approaches, as stated in chapter 2. A possible solution for this correlation, considering
two scenarios, and in accordance with the proposed ontology is presented in Table 11 and Table
12.

Requirement
Scenario

Extracted from Task Models (UCD
approach)

Written in the BDD template
(SE approach)

Travelers should be able to
search for flights

Narrative:

As a frequent traveller, I
want to be able to search
tickets, providing locations
and dates, So that I can
obtain information about
rates and times of the
flights.

Search Flights
(abstract task)

Scenario: One-Way Tickets Search

Go to Find Flights (input task) Given I go to “Find flights”

Select One-way Trip (input task)
When I choose “One way” referring to
“Trip Type”

Inform Departure (abstract task)
And I type “Paris” and choose “CDG -
Paris Ch De Gaulle, France” in the
field “Departure”

Inform Destination (abstract task)

And I type “Dallas” and choose
“DFW - Dallas Fort Worth
International, TX” in the field
“Destination”

Set Departure Date (input task)
And I set “12/15/2016” in the field
“Departure Date”

Chapter 5: Modeling and Assessing Task Models

 108

Choose Number of Passengers
(input task)

And I choose the option of value “2”
in the field “Number of passengers”

Submit Search (input task) And I click on “Search”
Present List of Available Flights
(output task)

Then will be displayed “Choose
Flights”

Choose Flights
(sub-routine) -

Table 11. The correlation between requirements, tasks and scenarios in UCD and SE approaches for the User
Story “Flight Tickets Search”.

Requirement
Scenario

Extracted from Task Models (UCD
approach)

Written in the BDD template (SE
approach)

Travelers should be able to
select available flights

Narrative:

As a frequent traveller, I
want to get the list of flights
and their rates and times,
So that I can select the
desired flight after a search
of available flights.

Choose Flights
(sub-routine)

Scenario: Select a diurnal flight

Choose Flights
(abstract task) One-Way Tickets Search

Request for Choosing a Flight (output
task)

Given “Flights Page” is displayed

Evaluate the Availability of Flights
(cognitive analysis task) -

Choose the Desired Flight (cognitive
decision task) -

Select the Desired Flight
(input task)

When I click on “Flights” referring to
“AA flight 6557, AA flight 51”

Request for Login (output task) Then “Optional log in” is displayed

Table 12. The correlation between requirements, tasks and scenarios in UCD and SE approaches for the User
Story “Select the desired flight”.

Analyzing these correlations, we can make a set of important remarks. The first one is that the
business value (such as defined in chapter 2 and represented in orange in the Narratives) and the
testing component (represented in purple in the BDD scenario) allow us to implement test cases
to validate the envisioned requirement, as well as checking when, after being implemented, this
feature can be considered as “done” and correct (that correspond to the business value being
achieved).

A second remark is that concerning the type of tasks mapped to scenarios in SE, as SE
considers only tasks being performed by users when using an interactive system, User Stories in
this context address only scenarios extracted from interactive tasks in task models. As highlighted
in red in Table 12, cognitive tasks, for example, are not mapped to SE scenarios because they
cannot be performed in the system.

Another remark is that the abstract tasks “Inform Departure” and “Inform Destination”
highlighted in blue in Table 3 were detailed in the task model as a sequence of Input/Output
interactive tasks. This happens because first the user informs a departure/destination city (Input
task “Inform City”), then the system returns a list of airports in this city (Output task “Provide
List of Airports”), and finally the user selects the desired airport (Input task “Select the Airport”).
This behavior is typically represented by the interaction element AutoComplete in the UI design,
in which the user types some text and the element dynamically returns a set of values that matches
it. After that, the user is able to choose which value he wants. Because of that, this behavior was

Chapter 5: Modeling and Assessing Task Models

 109

represented with the step “…type and choose…” in the SE scenario, thus describing a double
action in the UI.

A fourth point is that the sub-routine “Choose Flights” was represented in the first model
(scenario: One-Way Tickets Search) as a result of the sequence of user tasks, and then detailed
in the second model (scenario: Select a diurnal flight) as an abstract task. As the second scenario
depends on the execution of the first one, the abstract task was represented in the SE scenario as
a reference for the scenario “One-Way Tickets Search” that has just been performed. Thereby,
the results of the scenario “One-Way Tickets Search” allow the choice of flights in the scenario
“Select a diurnal flight”.

Finally, a last remark is that data are not directly modeled on task models. They should be
informed during the extraction of scenarios. However, SE scenarios need these data to perform
tests on the UI. Therefore, in the task modeling level, tasks are described in a generic way, as in
the input task “Set Departure Date”, for example. When these tasks are extracted from the task
models, in order to be testable, they need to receive an example of some representative data in
that context (for example, the value “12/15/2016” as it has been done in the correspondent step
“And I set ‘12/15/2016’ in the field ‘Depart’”). For testing purposes, when describing SE
scenarios, it is crucial to design them with data that make the results succeed as well as with data
that make the results fail. It is this mechanism that makes possible to bring a large and
representative testing component for the requirements. These data can be provided for SE
scenarios by multiple sources. They will be described in detail in the section 6.4.3 in chapter 6.

5.3.2. Elements Mapped for Testing

The equivalence of steps in User Stories and tasks in scenarios extracted from task models is
assured by a formatting rule presented in Figure 37. Our testing algorithm (that will be presented
in detail in the next section) performs such a rule in order to verify whether a behavior described
in a step has an equivalent task to model it in the task model. The full mapping table considered
by our algorithm is presented in the Appendix A of this thesis.

Step of Scenario Task Name

When I set “Valid Departure Date” in the
field “Departure Date”

Set Departure Date

Figure 39. Formatting rule for assessing steps and tasks.

This rule aims to eliminate unnecessary components of the step that do not need to be present
in the task. The component “When” refers to the transition in the state machine which is not
addressed in a task model. The subject “I” signalizes that is the user who performs the task. Tasks
models encompass the definition of user role, so the statement “I” refers to any users that might
correspond to the role assigned to the task model. The verb “set” indicates the action that will be
performed by the user, so it begins naming the task in the task model. The value “Valid Departure
Date” indicates a data domain that will be used to perform and test the task (information that is
not present in the task name). The phrase complement “in the field” just signalizes that an
interaction component (a “field”) will be called. Finally, the target field “Departure Date”
indicates the name of the interaction component that will be affected by this task, so it composes
the final name of the task in the task model. The Table 13 below summarizes the use of such
components for mapping steps of scenarios and tasks. A complete concept mapping table for the
tasks and behaviors supported by the ontology is presented in the Appendix A.

Chapter 5: Modeling and Assessing Task Models

 110

Component Description Use for naming tasks

When Refers to the transition in the state
machine.

Not used because it is not addressed
in a task model.

I Signalizes that is the user who performs
the task.

Not used because the task models
encompass the definition of user
role.

set Indicates the action that will be performed
by the user.

Used for beginning the naming of
the task in the task model.

“Valid Departure Date” Indicates a data domain that will be used
to perform and test the task.

Not used because such information
is not present in the task name.

in the field Signalizes that an interaction component
(a “field”) will be called.

Not used because it is just a phrase
complement.

“Departure Date” Indicates the name of the interaction
component that will be affected by this
task.

Used for composing the final name
of the task in the task model.

Table 13. Task name components construction.

The testing of UI design artifacts like task models is conducted by automatically checking
whether user and business requirements have been consistently modeled. By way of example,
Table 14 gives the correspondence of concepts in the task model, in the ontology, and in the step
that would be performed by our algorithm when assessing the scenarios. Therein, the consistency
of the requirements representation for the scenario “One-Way Tickets Search” is being checked
in the respective task model.

Concepts
Step of Scenario

Task Model Ontology

Input Task: Go to Find Flights Behavior: goTo Given I go to “Find Flights”

Abstract Task: Choose Trip Type Behavior: chooseReferringTo
When I choose “One way” referring
to “Trip Type”

Abstract Task: Inform Departure
Behavior:
informAndChooseInTheField

And I inform “Departure City” and
choose “Departure Airport” in the
field “Departure”

Abstract Task: Inform Destination
Behavior:
informAndChooseInTheField

And I inform “Arrival City” and
choose “Arrival Airport” in the field
“Destination”

Input Task: Set Departure Date Behavior: setInTheField
And I set “Valid Departure Date” in
the field “Departure Date”

Input Task: Choose Number of
Passengers

Behavior:
chooseTheOptionOfValueInTheFie
ld

And I choose the option of value “2”
in the field “Number of passengers”

Input Task: Submit Search Behavior: clickOn And I click on “Search”

Output Task: Present List of
Available Flights

Behavior: willBeDisplayed
Then will be displayed “List of
Available Flights”

Table 14. Concept mapping for the scenario “One-Way Tickets Search”.

Chapter 5: Modeling and Assessing Task Models

 111

5.3.3. Implementation

We have conducted automated consistency checking on task models by parsing their resultant
XML source files from the extracted scenarios produced by the HAMSTERS tool. To do so, we
have implemented an integrated algorithm in Java using JDOM and JUnit for parsing and testing
User Stories against these artifacts. This section describes how it has been implemented.

5.3.3.1. Pre-formatting Source Files

The first step for assessing the set of scenarios extracted from task models is to preformat their
XML files. As each task model notation and tool has its own way to implement and export
scenarios and models, and there is no such a standard for that, each notation would demand a
different preformatting to be tested by our approach. We have implemented a solution for
HAMSTERS in its current version (v4.0), but we have designed a flexible and open architecture
where other notations could benefit from our approach by just implementing a new preformatting
java class in accordance with their own patterns to implement scenarios and models.

HAMSTERS tool exports scenarios with only a reference to the task ID and the object ID
that compose the flow. As such, we have to prepare the files for testing. So, before starting the
assessing, we edit each scenario XML file to add:

• The name of the task referenced by each task ID.
• The information about the optionality of each referenced task.
• The object value associated with each task, if it has been provided during the task

execution.

All the information is recovered from the reference task model XML file that actually
contains the whole set of information about each task that has been modeled. Figure 40 illustrates
an extract of the original (left side) XML scenario file, and the resultant (right side) XML scenario
file after the process of preformatting.

Besides preformatting the XML files of the extracted scenarios, our algorithm also adds, for
each scenario, an equivalent scenario without the optional tasks. This is made due to a limitation
in the current version of the HAMSTERS tool that does not allow to extract scenarios without
the optional tasks. The tool necessarily includes both optional and non-optional tasks present in
the model during the process of extracting scenarios. Thus, in order to obtain scenarios without
the optional tasks, we algorithmically generate new scenarios eliminating all the tasks signalized

…
<step referencemodel="Inform a Flight Leg"
role="subroutines" taskdate="Thu Apr 19 15:01:29 CEST
2018" taskdatelong="1524142889116">
 <task taskid="t13"/>
</step>
<step referencemodel="Search Flights" role="tasks"
taskdate="Thu Apr 19 15:01:40 CEST 2018"
taskdatelong="1524142900016">
 <task taskid="t23">
 <stepObject objectID="6"/>
 </task>
</step>
…

…
<step referencemodel="Inform a Flight Leg"
role="subroutines" taskdate="Thu Apr 19 15:01:29 CEST
2018" taskdatelong="1524142889116">
 <task taskid="t13" taskname="Set Departure Time Frame"
optional="true" />
</step>
<step referencemodel="Search Flights" role="tasks"
taskdate="Thu Apr 19 15:01:40 CEST 2018"
taskdatelong="1524142900016">
 <task taskid="t23" taskname="Set Arrival Date"
optional="false">
 <stepObject objectID="6" objectContent="Lun, Déc 10,
2018" />
 </task>
</step>
…

Figure 40. Extract of an original (left side) and a resultant (right side) scenario XML files after the process of
preformatting.

Chapter 5: Modeling and Assessing Task Models

 112

as optional in the set of scenarios extracted from HAMSTERS. Such new scenarios are named
as “No Optional” followed by the original name of the scenario extracted from HAMSTERS. As
a result, for each scenario extracted from HAMSTERS (necessarily including all optional tasks),
we generate an additional similar scenario, but without all the optional tasks.

5.3.3.2. Automated Assessment

To illustrate how the assessing process is
performed (Figure 42), we will follow the
example already presented in the previous
sections. As such, the left side of Figure 41
presents a scenario extracted from our
HAMSTERS task model for modeling the
User Story “Flight Tickets Search”. An

extract of its before-preformatting XML source file is presented in the right side. The extract
represents the sequence of the 4 first tasks to perform the scenario “One-Way Tickets Search”.

Scenario: One-Way Tickets Search
Given I go to "Find Flights"
When I choose "One way" referring to "Trip
Type"
And I inform "Departure City" and choose
"Departure Airport" in the field "Departure"
And I inform "Arrival City" and choose
"Arrival Airport" in the field "Destination"
And I set "Valid Departure Date" in the
field "Departure Date"
And I choose the option of value "2" in the
field "Number of passengers"
And I click on "Search"
Then will be displayed "Choose Flights"

<steps>
 <step referencemodel="TaskModel" role="tasks" taskdate="Tue
Mar 21 18:27:38 CET 2017" taskdatelong="1490117258218">
 <task taskid="t18" taskname="Go to Find Flights"
optional="false" />
 </step>
 <step referencemodel="TaskModel" role="tasks" taskdate="Tue
Mar 21 18:27:53 CET 2017" taskdatelong="1490117273043">
 <task taskid="t28" taskname="Select One-way Trip"
optional="false" />
 </step>
 <step referencemodel="TaskModel" role="tasks" taskdate="Tue
Mar 21 18:28:05 CET 2017" taskdatelong="1490117285008">
 <task taskid="t10" taskname="Inform Departure City"
optional="false" />
 </step>
 <step referencemodel="TaskModel" role="tasks" taskdate="Tue
Mar 21 18:28:18 CET 2017" taskdatelong="1490117298780">
 <task taskid="t12" taskname="Provide List of Airports"
optional="false" />
 </step>
 …
</steps>
<steps>
 …

Figure 43. Checking consistency of tasks between US scenario and scenarios extracted from task models.

<steps>
 <step referencemodel="TaskModel" role="tasks" taskdate="Tue
Mar 21 18:27:38 CET 2017" taskdatelong="1490117258218">
 <task taskid="t18"/>
 </step>
 <step referencemodel="TaskModel" role="tasks" taskdate="Tue
Mar 21 18:27:53 CET 2017" taskdatelong="1490117273043">
 <task taskid="t28"/>
 </step>
 <step referencemodel="TaskModel" role="tasks" taskdate="Tue
Mar 21 18:28:05 CET 2017" taskdatelong="1490117285008">
 <task taskid="t10"/>
 </step>
 <step referencemodel="TaskModel" role="tasks" taskdate="Tue
Mar 21 18:28:18 CET 2017" taskdatelong="1490117298780">
 <task taskid="t12"/>
 </step>
 …
</steps>
<steps>
 …
</steps>

Figure 41. Example of scenario extracted from a task model and its XML source file.

Figure 42. Activity of evaluating task models.

Chapter 5: Modeling and Assessing Task Models

 113

The process of consistency checking between US scenarios and scenarios extracted from task
models consists of verifying, for each step in the US scenario, if there are one or more right
correspondences for such a step in the XML source files of the scenarios extracted from the task
models. To do so, as illustrated in Figure 43, our algorithm fixes a step in the US scenario (“Given
I go to ‘Find Flights’” for example) and retrieves from the ontology the correspondent task to be
verified in the task model, following the mapping presented in the section 5.3.2 (“Go to ‘Find
Flights’” in the example). Then we parse each task of each scenario in the XML source file
looking for one or more correspondences to the task retrieved from the ontology. If matches are
found, then a list of matches is created, keeping the position in each scenario-task where the
match has been found. The algorithm presented below in Figure 44 implements such a strategy.

foreach step from US Scenarios do
 taskToFind <- correspondent task from the ontology
 foreach task from each XML source file do
 if the attribute taskname is equal to taskToFind then
 ListOfMatches <- position(scenario,task)
 endif
 endforeach
endforeach
show ListOfMatches

Figure 44. Testing algorithm for assessing scenarios extracted from task models.

The results of testing are shown in a log indicating, for each step of the US scenario, if and
where a given step has found an equivalent task in the XML file analyzed, and once it carries an
object value associated, which value it is. In the example below, the first step (“Given I go to ‘Find
Flights’”) of the scenario “One-Way Tickets Search” has found an equivalent task (i.e. a task
named “Go to Find Flights”) in the first position of the first scenario (task 1). The second step,
however, did not find a correspondent task once it was expected a task named “Choose Trip
Type” and the task model brings a task named “Select One-way Trip” (task 2), so this represents
an inconsistency in the model.

The third and fourth steps have a structure encompassing two user tasks, a first one to
inform/select a departure city/airport, and a second one to inform/select an arrival city/airport
from a list provided by the system. Both steps have not found correspondent tasks in the task
model (respectively tasks 3/5 and 6/8), once it was expected respectively the tasks “Inform
Departure”/“Choose Departure” when the task model actually brings “Inform Departure
City”/“Choose Departure Airport”, and “Inform Destination”/“Choose Destination” when the
task model actually brings “Inform Arrival City”/“Choose Arrival Airport”. The intermediate
system tasks “Provide List of Airports” (tasks 4 and 7) in the scenario extracted from the task
model have not been identified once there is not a correspondent step in the US scenario to
represent them.

Tasks 9 and 10 are actually inverted in the US scenario. For the task 9, it was expected the
task “Choose the option of value in the field Number of passengers” in the ninth position while
it is actually found in the tenth position with the name “Choose Number of Passengers” (which
would be an inconsistency anyway). For the task 10, “Set Departure Date” is expected in the tenth
position when it is actually found in the ninth position, signalizing another inconsistency in the
model. Finally, the task “Submit Search” has been correctly identified in the eleventh position,
while the task “Present List of Available Flights” despite being correctly placed in the twelfth
position, it was expected with the name “Display List of Available Flights” instead, which signalizes
an inconsistency in the model. Table 15 summarizes such results.

Chapter 5: Modeling and Assessing Task Models

 114

Running story stories/search.storyConverted
Feature: Flight Tickets Search
(stories/search.storyConverted)
Narrative:
In order to obtain information about rates and times of the flights
As a user
I want to be able to search tickets, providing locations and dates.
Scenario: One-Way Tickets Search
<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Go to Find Flights - Found in Position:
1 >>
<< Scenario: ReturnTicketsSearch.scen - Searched Task: Go to Find Flights - Found in Position: 1 >>
<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Go to Find Flights - Found in Position:
1 >>
<< Scenario: OneWayTicketsSearch.scen - Searched Task: Go to Find Flights - Found in Position: 1 >>
Given I go to "Find Flights"
<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Choose Trip Type - Task not found! >>
<< Scenario: ReturnTicketsSearch.scen - Searched Task: Choose Trip Type - Task not found! >>
<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Choose Trip Type - Task not found! >>
<< Scenario: OneWayTicketsSearch.scen - Searched Task: Choose Trip Type - Task not found! >>
When I choose "One way" referring to "Trip Type"
<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: ReturnTicketsSearch.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: OneWayTicketsSearch.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: ReturnTicketsSearch.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: OneWayTicketsSearch.scen - Searched Task: Choose Departure - Task not found! >>
When I inform "Departure City" and choose "Departure Airport" in the field "Departure"
<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: ReturnTicketsSearch.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: OneWayTicketsSearch.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: ReturnTicketsSearch.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: OneWayTicketsSearch.scen - Searched Task: Choose Destination - Task not found! >>
And I inform "Arrival City" and choose "Arrival Airport" in the field "Destination"
<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Choose Number of passengers - Task not
found! >>
<< Scenario: ReturnTicketsSearch.scen - Searched Task: Choose Number of passengers - Task not found! >>
<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Choose Number of passengers - Task not
found! >>
<< Scenario: OneWayTicketsSearch.scen - Searched Task: Choose Number of passengers - Task not found! >>
When I choose the option of value "2" in the field "Number of passengers"
<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Set Departure Date - Found in Position:
9 - Associated Value: No Value >>
<< Scenario: ReturnTicketsSearch.scen - Searched Task: Set Departure Date - Found in Position: 10 -
Associated Value: No Value >>
<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Set Departure Date - Found in Position:
10 - Associated Value: No Value >>
<< Scenario: OneWayTicketsSearch.scen - Searched Task: Set Departure Date - Found in Position: 9 -
Associated Value: No Value >>
And I set "Valid Departure Date" in the field "Departure Date"
<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: ReturnTicketsSearch.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: OneWayTicketsSearch.scen - Searched Task: Submit Search - Found in Position: 11 >>
When I submit "Search"
<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Display List of Available Flights - Task
not found! >>
<< Scenario: ReturnTicketsSearch.scen - Searched Task: Display List of Available Flights - Task not found!
>>
<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Display List of Available Flights - Task
not found! >>
<< Scenario: OneWayTicketsSearch.scen - Searched Task: Display List of Available Flights - Task not found!
>>
Then will be displayed "List of Available Flights"

As scenarios in User Stories and scenarios in task models may be ordered differently, the
algorithm checks the whole set of XML files to ensure we are looking for all the instances of the
searched task. So, notice that the log of results presented above shows, for each step of US
scenario, the results of searching in each XML scenario file (“.scen”). Each line of results brings
then:

• the name of the scenario in which the search has been carried out,
• the task name that has been searched for,
• the position in which the task has been found (if so), otherwise is shown the message

“Task not found!”, and

Chapter 5: Modeling and Assessing Task Models

 115

• the object value associated with each task (if any), otherwise is shown the message “No
Value”.

Due to that, if there are several XML files of scenarios, the results in the log will show where
a correspondent task has been found in each one of them. A consequence of such a strategy is
that the process of analyzing if a given task is correctly positioned in the evaluated scenarios is
made manually after getting the whole log of results.

Step in US scenario Expected Task in the XML source file
Test

Result
Given I go to “Find Flights” Go to Find Flights 1 - Go to Find Flights V
When I choose “One way”
referring to “Trip Type” Choose referring to Trip Type 2 - Select One-way Trip X

And I inform “Departure City”
and choose “Departure Airport”
in the field “Departure”

Inform Departure 3 - Inform Departure City X
- 4 - Provide List of Airports X

Choose Departure 5 - Choose Departure Airport X

And I inform “Arrival City” and
choose “Arrival Airport” in the
field “Destination”

Inform Destination 6 - Inform Arrival City X

- 7 - Provide List of Airports X
Choose Destination 8 - Choose Arrival Airport X

And I choose the option of
value “2” in the field “Number
of passengers”

Choose the option of value in
the field Number of passengers 9 - Set Departure Date X

And I set “Valid Departure
Date” in the field “Departure
Date”

Set Departure Date 10 - Choose Number of
Passengers

X

And I submit “Search” Submit Search 11 - Submit Search V
Then will be displayed “List of
Available Flights” Display List of Available Flights 12 - Present List of Available

Flights
X

Table 15. Checking consistency of tasks between US scenario and scenarios extracted from task models.

5.3.3.3. Tool Support

The algorithm we have just described for testing task models (Figure 44) has been
implemented in the Eclipse IDE for Java EE. The project has been structured in two packages.
The first one encompasses the classes for implementing the solution. As shown in Figure 45, this
package contains four classes: MySteps, MyTest, MyXML and PrepareFiles. MySteps
implements the mapping between the Common Steps described in the ontology and the assertion
that should be made when checking scenarios from task models. MyXML implements methods
for parsing scenario files extracted from task models in their XML files. MyTest is the JUnit class
that triggers the set of User Stories that have been selected for testing. Finally, PrepareFiles is the
class in charge of preformatting the scenario source files extracted from task models, as described
in section 5.3.3.1.

The second package encompasses the resources demanded for running the tests. In the folder
“stories”, we have the whole set of User Stories text files that have been specified for the project.
Even being text files, each User Story file must be named with a “.story” extension. In the
example, the project has one single User Story, with different scenarios for testing a given feature.
The folder “scenarios” contains the current scenario’s XML files extracted from task models
under testing, before and after the process of preformatting described in section 5.3.3.1. Finally,
the folder “task models” keeps the reference XML source files for the task models under testing.
Such files are useful to allow the process of preformatting.

Chapter 5: Modeling and Assessing Task Models

 116

Figure 46 represents the flow of calls we have designed in our algorithm for running a battery
of tests on task model scenarios. The flow starts with the class “MyTest.java”. First of all, this class
instantiates an object from “PrepareFiles.java” (flow 1) in order to trigger the process of
preformatting mentioned before. Such a process runs on the package of task model scenarios
(flow 2), naming the extracted tasks and adding useful complementary information for testing.
For that, the process asks the reference source file (.hmst) of the correspondent task model
mentioned by each task in the scenario. After getting the scenario files formatted, “MyTest.java”
includes the User Story (or the set of User Stories) that will be tested (flow 3).

Figure 46. Flow of calls for running tests on task model scenarios.

Each one of the steps in the User Story under testing makes a call to the class “MySteps.java”
(flow 4) that knows which behaviors are supported by the ontology. Based on the behavior
referenced by the step, this class makes a call to the class “MyXML.java” (flow 5) in charge of
parsing all the set of task model scenarios (flow 6). This parsing aims to check if the behavior
addressed by the step is also present in the same position in at least one of the scenarios extracted

Figure 45. File tree for the implementation of task model assessment.

Chapter 5: Modeling and Assessing Task Models

 117

from the task models. The result of this parsing is then returned to the class “MySteps.java” (flow
7). At this point, based on the algorithm presented in the previous section, a list of all the matches
found during the parsing for each step is presented as a result. Finally, the class “MySteps.java”
returns the result to the class “MyTest.java” (flow 8) that made the original call.

Notice the independence of the components assigned at the core of the structure represented
in Figure 46 (highlighted in yellow). Those components are related to the particularities of test
implementation for HAMSTERS task models and scenarios. As mentioned before,
“PrepareFiles.java” is in charge of preformatting the extracted scenario files and reading the
reference source file of task models, while “MyXML.java” is in charge of parsing the scenario
files, searching for the elements under testing. Therefore, we deliver a flexible architecture
allowing, in the future, that task models and scenarios modeled by other modeling tools (or even
by other versions of HAMSTERS) could also be tested by just implementing new interfaces for
this core.

5.3.3.4. Setup and Running

Considering the presented architecture, to setup and run a battery of tests, we must:

• Place the set of task model scenario files (“.scen”) that will be tested in the package
“Task Model Scenarios”.

• Place the set of task model files (“.hmst”) that will support the test in the package “Task
Models”.

• Place the set of User Stories files (“.story”) that will be tested in the package “User
Stories”.

• Indicate in the “MyTest” class which User Story will be tested, or which folder
(“/stories”) contains all the User Stories that will be tested.

• Run the “MyTest” class as a JUnit Test.

Figure 47. “MyTest” class indicating the file “search.story” for running.

Thus, for running the tests, the MyTest class is triggered. This JUnit class specifies exactly
which User Story (or which set of User Stories) will be run. Figure 47 illustrates the
implementation for running the User Story “Flight Tickets Search” (in the file “search.story”).
This story has the following scenarios:

User Story: Flight Tickets Search

Narrative:
In order to obtain information about rates and times of the flights
As a user
I want to be able to search tickets, providing locations and dates.

Scenario: One-Way Tickets Search

Given I go to "Find Flights"
When I choose "One way" referring to "Trip Type"
And I inform "Departure City" and choose "Departure Airport" in the field "Departure"
And I inform "Arrival City" and choose "Arrival Airport" in the field "Destination"
And I choose the option of value "2" in the field "Number of passengers"

Chapter 5: Modeling and Assessing Task Models

 118

And I set "Valid Departure Date" in the field "Departure Date"
And I submit "Search"
Then will be displayed "List of Available Flights"

Scenario: Return Tickets Search

Given I go to "Find Flights"
When I choose "Round trip" referring to "Trip Type"
And I inform "Departure City" and choose "Departure Airport" in the field "Departure"
And I inform "Arrival City" and choose "Arrival Airport" in the field "Destination"
And I choose the option of value "1" in the field "Number of passengers"
And I set "Valid Departure Date" in the field "Departure Date"
And I set "Valid Arrival Date" in the field "Arrival Date"
And I submit "Search"
Then will be displayed "List of Available Flights"

Finally, Figure 48 shows the console with the results of tests running the two scenarios specified
in this story above. Notice that, as described in the previous section, for each step of the US
scenario, it has been shown where some correspondent task has been found and which value was
associated to it (if any).

5.3.4. Towards an Alternative to the Extraction of Scenarios

Task models can be tricky to manipulate once the number of possible scenarios can scale
exponentially due to the complexity of the model. Different operators, the presence of optional
tasks, the number of times an iterative task can be executed, etc. make the extraction of scenarios
for testing a very complex activity. Campos et al. (Campos et al., 2017) illustrate this problem and
propose a catalog of strategies for modifying the models in order to manage the complexity of the
resultant set of extracted scenarios. An easy-to-see consequence of such kind of strategy is that
models are not fully manipulated, i.e. the reference model for extracting test scenarios is a
simplified instance (a subset) of the original model. Consequently, several nuances of modeling
(such as the use of multiple operators, non-interactive tasks, etc.), which allow task models being
a rich representation of human activities when interacting with the system, are lost and cannot be
verified or even taken into account when obtaining scenarios.

Figure 48. Console after running the User Story “Flight Tickets Search”.

Chapter 5: Modeling and Assessing Task Models

 119

In order to exemplify this problem, Figure 49 retakes an example of our current approach for
extracting scenarios from task models. The model presents a short extract of some tasks (1 in
Figure 49) involved in the process of booking flight tickets through a generic flight booking system.
Therein, an abstract task named “Provide Data” generalizes a sequence of 5 tasks that can be
performed in any other. This attribute is signalized by the operator “Order Independent” (|=|)
placed between “Provide Date” and the other 5 tasks. Thus, one of the possible scenarios that
could be extracted from this model is presented further (3 in Figure 49). Therein, tasks are
performed in the order they are visually presented in the model, i.e. first the user informs a
destination and a departure, then he/she chooses the number of passengers, sets the departure
date, and finally chooses his/her trip type.

Notice that the XML source file of the extracted scenario (4 in Figure 49) is just a sequential
description of tasks in the model that have been settled for execution. The file brings for each
task only a reference for its ID (it does not even bring the name of the task), the source task
model, and the date/time of execution. The XML source file of the task model itself (2 in Figure
49) is, on the other hand, a richer description of task modeling elements, including tasks of several
types, operators, constraints related to the number of iterations each task supports, tasks that are
optional, maximum and minimum time of execution, levels of criticality and so on.

Therefore, we can easily realize that the manipulation of XML source files of task models
brings us a full range of challenges. For example, as pointed by Campos et al. (Campos et al.,
2017), the presence of “order independent” operators between subtasks is a major contributor to
the state explosion in the state machine generated from a task model. Considering a simple
example in Figure 49, although the task model has only five subtasks following the abstract task
“Provide Data”, the resultant number of possible combinations of tasks (resulting in scenarios) is
equal to 120. This happens because we must consider all the permutations of the five tasks’
execution. By following all the leaves in a task model with multiple operators, we notice that the
number of possible scenarios for extraction gets exponential in function of the types of these
operators. That is the reason by which authors working with task model exploitation for
generating scenarios or test cases usually control such an extraction, in order to reduce the

Figure 49. Task model (1), extracted scenario (3), and their respective source files (2 and 4).

1

2

3

4

Chapter 5: Modeling and Assessing Task Models

 120

complexity and the resultant number of combinations. This becomes especially challenging if
task models specify collaborative activities with several instances of the same role.

We have also followed a strategy based on the extraction of scenarios from task models for
obtaining test scenarios to check the quality of models, but unlike other approaches, we have not
controlled such an extraction, which allowed us to keep important aspects of interaction.
However, as current tools do not allow us to automatically extract, from a given model, the full
set of possible scenarios for execution, this process is made manually by following all the
achievable paths and formatting them to get the resultant scenario prepared for testing. Figure 50
illustrates the flow of activities we have performed so far to obtain scenarios for testing based on
the current approaches in the literature. Notice that the source file of a task model is manipulated
only for extracting scenarios (continuous black line at the top). Such a feature is usually included
in tool-supported notations for designing task models. After such an extraction, the resultant
source files of scenarios are manipulated and formatted to obtain a given scenario for testing
(continuous black line at the right).

This approach, regardless keeping important aspects of the interaction during the extraction
process, has limitations once it is still fully dependent on the extraction of scenarios, i.e. it does
not allow us to manipulate the source file of task models directly. An approach that does not
necessarily pass through extracted scenarios (dotted red line at the left) would allow us to
manipulate the model with its full capabilities, opening a wide range of opportunities to assess the
quality of such models and to obtain not-simplified scenarios for testing. In short, being able to
manipulate and check the consistency of task models directly in their source files, instead of
passing by the process of extracting scenarios, could represent a crucial step forward a solution
that includes a complete and not-simplified assessment strategy for artifacts modeling user
requirements.

5.4. Conclusion

This chapter presented our approach to assess task models by following a strategy in which
task models are designed, scenarios are extracted from them, and then User Stories are written
and formatted based on such extracted scenarios. This is one of the strategies we designed to
perform our approach. As presented in chapter 3, alternatively, we can write formatted User
Stories before designing our task models. It means that depending on the characteristics of the
project, either the User Stories can support the design of task models, or the task models (by
means of their extracted scenarios) can support the writing of User Stories.

Despite the limitations related to the process of extracting scenarios from task models, the
strategy for assessment we present in this chapter has many advantages over co-execution

Figure 50. Flow of activities to get scenarios for testing.

Chapter 5: Modeling and Assessing Task Models

 121

approaches. When opting for a static analysis of the source files, we gain in performance and
availability of tests. Specially in environments requiring a high-availability of tests to be executed
continuously along multiple iterations, static approaches benefit from an instantaneous
consistency checking analyzing several hundreds of scenario files at the same time. Co-execution
approaches have the benefit of allowing running models simultaneously with a visual feedback at
real-time about the correspondence of entities that are being assessed in each model. However,
such approaches demand a high investment to prepare the models before, annotating the source
code/files or even modifying its structure to support the co-execution. Besides that, as the great
benefit of co-execution is providing a visual feedback during the execution signalizing which entity
is being assessed in each model at a given time, this process is usually slow and require an
evaluation being conducted manually to reveal its benefits.

Another benefit of our approach when compared with co-execution ones is that we defined
an open and flexible architecture where different notations and tools for designing task models
could fit in the future. For that, it is enough to implement a new core interface for describing the
way such notations and tools deal with tasks and scenarios, and how they can be identified in their
source files.

Finally, strategies for running automated tests over software artifacts indeed define a step
forward within the process of software verification. Such a process, that is usually conducted
manually by just inspecting or reviewing the artifacts in an attempt to identify inconsistencies and
modeling errors, can benefit from an automated approach giving high-available instantaneous
feedback about the consistency of artifacts with the user requirements all along the iterations.

The chapter 8 employs our automated approach in a large case study including the design of
task models to the booking system of business trips in our institute. The chapter details a broad
set of inconsistencies our approach is able to identify and provides results about its potential. The
next chapter follows presenting our approach for multi-artifact testing detailing our strategy for
assessing user interface prototypes in different levels of refinement. As each artifact has its own
characteristics, the strategy slightly differs from the one for task models we have just presented in
this chapter. However, as an integrated approach, the same User Stories will be assigned to assess
the set of UI prototypes in different levels of abstraction in order to keep a consistent model-
checking approach for interactive systems.

5.5. Resultant Publications

Silva, T. R. & Winckler, M. (2017). A Scenario-Based Approach for Checking Consistency in
User Interface Design Artifacts. In: Proceedings of the XVI Brazilian Symposium on Human
Factors in Computing Systems (IHC), pp. 21-30. ACM. DOI:
http://doi.org/10.1145/3160504.3160506. (Silva and Winckler, 2017)

Silva, T. R., Hak, J. L. & Winckler, M. (2016). An Approach for Multi-Artifact Testing Through
an Ontological Perspective for Behavior-Driven Development. Complex Systems Informatics
and Modeling Quarterly, 1 (7), pp. 81-107. DOI: http://doi.org/10.7250/csimq.2016-7.05. (Silva,
Hak and Winckler, 2016a)

 123

Chapter 6
Modeling and Assessing User

Interfaces: From Prototypes to Final UIs

Summary

This chapter details our strategy for modeling and assessing user interface prototypes following
our approach presented in chapter 3. The chapter begins by resuming the case study proposed
previously, assuming that Balsamiq prototypes will be used to design the user interface in a first
stage of refinement. By following this, we present firstly how to produce UI prototypes already
consistent with the set of user requirements specified previously. The example of UI prototype
we explore is based on the searching flight activity already modeled in the task model presented
in the previous chapter.

In the second section, we present how our previous developed ontology can support the
development of prototyping tools able to produce consistent UI artifacts. PANDA is a tool
supporting such a mechanism. It provides a full pallet of widgets based on the presentation layer
of prototypes described in the ontology, and a full range of behavior properties, based on the
common interactive behaviors, also described in the ontology. PANDA prototypes also feature a
state machine for modeling the dialog, exactly as described in the ontology.

The third section describes how we perform tests on fully implemented user interfaces by using
an integrated multiplatform framework. This framework allows designing automated acceptance
testing with low implementation efforts. The fourth section discuss how our approach supports
the assessment of evolutionary UI prototypes (using PANDA and/or other tools), and how it
could keep them consistent along the software development. Finally, the fifth and last section
concludes the chapter pointing out advantages and limitations of this approach.

In iterative processes, the design of user interfaces can evolve all
along the software development process as a result of requirements
evolution and change, or the need of understanding and validating a
given interpretation of requirements (Wood and Kang, 1992). While
the beginning of the project usually requires a low-level of formality
with UI prototypes being hand sketched to explore design solutions
and clarify user requirements, the development phase requires more
refined versions frequently describing presentation and dialog
aspects of interaction. Full-fledged versions of user interfaces are
generally produced only later in the design process, and frequently
corresponds to how the user “see” the system. In the users’ point of
view, if some feature is not available on the user interface, this feature
does not exist for them. Besides that, acceptance testing is generally
conducted by users on full-fledged versions of user interfaces, which
should be fully functional at this stage.

In this chapter, we adopt a use of user interface prototypes serving
as an early and evolutive design artifact for modeling aspects of functional user requirements. The

Figure 51. Another alternative
for performing our approach.

Chapter 6: Assessing User Interfaces: From Prototypes to Final UIs

 124

evolution process of such artifacts brings the need of assessing them in their multiple stages of
development. Our strategy concerning the assessment of user interface prototypes consists, like
for task models, in checking their consistency with respect to a previously-defined requirements
specification. Unlike the chapter 5 however, in this chapter, we present the approach by following
a different alternative (Figure 51). As formatted User Stories have already been designed from
the scenarios extracted from task models, these same stories will be used to design UI prototypes
in an attempt to get such prototypes already consistent with the user requirements. The process
of extracting scenarios from task models has defined which scenarios would be considered for
testing, therefore as such scenarios have already been defined and gave rise to the formatted User
Stories that will be used, this activity will be skipped for the UI prototypes. Thus, in this chapter,
we will in the sequence only: design the user interface prototypes (as part of the scenarized
artifacts) (2), and finally run tests on the artifacts (5).

Like task models, user interface prototypes can be designed through a diverse set of notations
and tools. For being assessed under our approach though, they only need to comply with the
premise of exporting the source files of prototypes in a markup language. As any other scenarized
artifacts, user interface prototypes could perfectly be a candidate to have scenarios extracted from
them. If it is such a case, such scenarios should also be provided with their source files in a
markup language. In this case, they may also serve as input to get formatted User Stories following
the strategy presented for task models in chapter 5.

Like task models again, although in theory user interface prototypes in any notation may be
assessed since they comply with the premise stated above, our implementation should be adapted
to understand the formalism used by such notations to describe the UI prototype and eventually
the scenarios extracted from them. Our strategy for testing performs a static assessment of the
source files of prototypes by means of a syntactic and semantic analyzes of such files. As signalized
in chapter 5, an advantage of this approach is that, unlike co-execution approaches where both
artifacts under testing should be prepared for assessment by annotating or modifying their source
files, with our approach we have no need to intervene in the source files of the target artifacts, i.e.
artifacts do not need to be prepared for testing by designers, so both user interface prototypes
and requirements specifications can be assessed in their original state.

For the demonstration we propose in this chapter, we make use of user interface prototypes
designed by Balsamiq once the notation and tool fit our premise stated above. Balsamiq exports
its prototypes using the XML standard, a well-adopted markup language, so recognized by our
approach. The task modeling and the extraction of scenarios that will be presented hereafter has
been made by using the Balsamiq tool, whilst the implementation of the assessment has been
made by using the respective XML source files produced by the Balsamiq tool for each model.

In a last stage of refinement, we also make of use of final user interfaces to assess user
requirements with respect to the definitive aspect of the interaction. We call final user interfaces
(final UIs), the fully functional versions of a UI prototype implemented in a given programming
language for a given platform. Unlike task models and Balsamiq prototypes, the assessment of a
final UI is made by dynamically running tests on its presentation layer with the aid of external
testing frameworks. Our premise for assessing such final UIs is then the availability of an external
testing framework able to run tests on a given environment. So far, our approach can implement
integration with Selenium WebDriver3 for assessing user interfaces of web applications, which will

3 https://www.seleniumhq.org/projects/webdriver/

Chapter 6: Assessing User Interfaces: From Prototypes to Final UIs

 125

be used in this chapter). For assessing final UIs implemented for other environments such as
desktop or mobile applications, our approach should integrate with other testing frameworks.

We have also experienced the use of our ontology to develop a new prototyping tool in order
to allow the design of prototypes already consistent with the set of interactive behaviors defined
in the ontology. PANDA tool allows the description of prototypes with a more refined description
of the interaction when compared with Balsamiq. This tool is presented in the section 6.2. We
also describe in the next sections our strategy for performing tests since the low-refined Balsamiq
wireframes until full-fledged versions of the user interface running on the web.

6.1. Starting with Balsamiq Wireframes

For designing UI prototypes in a low level of refinement, we have chosen the sketches
produced by Balsamiq Mockups4. Balsamiq is a rapid wireframing tool that reproduces the
experience of sketching on a whiteboard but using a computer. Balsamiq has a large set of
handmade-style UI elements for composing a user interface sketch. Figure 52 gives an overview
of such elements.

Figure 54 presents the scenario “One-Way
Tickets Search” (formatted in chapter 5 after
extracting scenarios from the task models),
supporting the development of a Balsamiq sketch
prototyped for the User Story “Flight Tickets
Search”. The activity of design the prototypes is
performed in collaboration by Requirements
Analysts and UI Designers (Figure 53).

By following the steps of the scenario “One-
Way Tickets Search” and consulting the ontology
to identify matching interactive elements, the

prototype can be designed already considering the set of interactive elements supported by each

4 https://balsamiq.com/

Figure 52. Balsamiq handmade-style UI elements.

Figure 53. Activity of prototyping UIs.

Chapter 6: Assessing User Interfaces: From Prototypes to Final UIs

 126

behavior. For example, when consulting the ontology, we find that the behavior “goTo” in the
first step (“I go to ‘Find Flights’”) is supported only by the interaction element Browser Window.
Thus, the designer has no other option to address this behavior. Indeed, in the prototype, it has
been used a Browser Window for this behavior. On the other hand, the fifth step (“I set ‘Valid
Departure Date’ in the field ‘Departure Date’”) addresses the interaction element “Departure
Date” that refers in the prototype to the Calendar used for picking up a date of departure. The
behavior “setInTheField” is also supported by Dropdown Lists, Text Fields and Autocompletes.
Thus, the designer could have picked any of them instead, but not a Button, for instance, once it
does not support the behavior “setInTheField”.

Scenario: One-Way Tickets Search
Given I go to "Find Flights"
When I choose "One way" referring to "Trip Type"
And I inform "Departure City" and choose "Departure Airport" in the field
"Departure"
And I inform "Arrival City" and choose "Arrival Airport" in the field
"Destination"
And I set "Valid Departure Date" in the field "Departure Date"
And I choose the option of value "2" in the field "Number of passengers"
And I click on "Search"
Then will be displayed "List of Available Flights"

The second step addresses the interaction element “Trip Type” that refers to the Link bar
used for choosing between a one-way and a round trip. The third and fourth steps addresses the
interaction elements “Departure” and “Destination” that refers to the Text Fields, but with a
searching feature. It means that this element supports an operation auto-complete where, with a
single interaction, the user attains to inform some partial text and (based on the instant matching
results) choose the desired option. The sixth step addresses the interaction element “Number of
passengers” that refers to the Combo Box used for choosing the number of passengers in a finite
list. Finally, the seventh step addresses the interactive element “Search” that refers to the Button
used for submitting the search.

Figure 54. Sketch for the User Story “Flight Tickets Search” built from the scenario “One-Way Tickets Search”.

1

2

3

4
5

6

7

1

2

3 4
6

5

7

Chapter 6: Assessing User Interfaces: From Prototypes to Final UIs

 127

6.1.1. Test Implementation

Just like task models, there are multiple
notations and tools with different
implementations for designing and
modeling UI prototypes (Silva et al., 2017).
Among these multiple tools, we have
chosen to implement a proof of concept
with Balsamiq in its current version (2.2.28)

once it fits our premise for getting user interface prototypes ready for testing. However, as we
have done for the implementation of task models, we have designed a flexible and open
architecture where other notations and tools could benefit from our approach by just
implementing a new java class in accordance with their own patterns to implement and model
prototypes.

The assessing of UI prototypes is an automated process as illustrated in Figure 55. The source
code of Balsamiq prototypes is provided by the use of an XML specification. Thus, our strategy
for testing such prototypes is parsing their XLM source files, looking for UI elements that match
the ontology description for each mapped behavior. Then the first step for assessing such
prototypes is to get from the ontology the list of UI elements that support the behavior under
testing. Taking the step “And I set ‘Valid Departure Date’ in the field ‘Departure Date’” as an
example, by parsing the ontology OWL file, we find that the associated interactive behavior
“#setInTheField” is supported by the UI elements “Dropdown List”, “Text Field”,
“Autocomplete” and “Calendar”, when performing an “Action” (Then) or an “Event” (When) in
a state machine transition.

After getting such a list of supported UI elements, we pursue to analyze the Balsamiq XML
file to identify firstly if a field named “Departure Date” exists. This is made by reading the tag
“<text>” identified in the parent tag “<controlProperties>” for a given “<control>” element. If
such a field exists, i.e. there is a tag “<text>” carrying its name (case insensitive), so we retrieve
which interaction element is associated with it. At this point, we have implemented a reference
file containing the mapping between the abstracted interaction elements in the ontology and the
Balsamiq concrete implementation of such elements.

In our sketch, we can notice that the field “Departure Date” has been modeled with a
“Calendar” (extract in Figure 57), i.e. the UI designer has chosen the UI element “Calendar” to
attend the field “Departure Date”. Thus, by checking the list of supported UI elements, we find
that the behavior “#setInTheField”, addressed by the field “Departure Date”, is supported by a
“Calendar” element, so the test would pass. If other elements than “Dropdown List”, “Text
Field”, or “Autocomplete” had been chosen, the test would fail.

<control controlID="14" controlTypeID="com.balsamiq.mockups::Button" x="1051" y="459"
w="-1" h="-1" measuredW="63" measuredH="27" zOrder="8" locked="false" isInGroup="-1">
 <controlProperties>
 <text>Search</text>
 </controlProperties>
</control>

Figure 56. Button “Search” and its XLM source file.

Figure 55. Activity of evaluating UI prototypes.

Chapter 6: Assessing User Interfaces: From Prototypes to Final UIs

 128

<control controlID="15" controlTypeID="__group__" x="588" y="403" w="96" h="117"
measuredW="96" measuredH="117" zOrder="6" locked="false" isInGroup="-1">
 <groupChildrenDescriptors>
 <control controlID="0" controlTypeID="com.balsamiq.mockups::Label" x="0" y="0" w="-
1" h="-1" measuredW="92" measuredH="21" zOrder="0" locked="false" isInGroup="15">
 <controlProperties>
 <text>Departure%20Date</text>
 </controlProperties>
 </control>
 <control controlID="1" controlTypeID="com.balsamiq.mockups::Calendar" x="0" y="21"
w="96" h="96" measuredW="96" measuredH="96" zOrder="1" locked="false" isInGroup="15"/>
 </groupChildrenDescriptors>
</control>

Figure 57. Grouped field “Departure Date” and its XLM source file.

Balsamiq has two methods for representing UI elements on its XML source files. They can
be directly assigned with a unique controlID (Figure 56) or be part of a group that encompasses
a label and the UI element itself (Figure 57). In the first case, the label “Search” is directly
associated with the element “Button” itself (com.balsamiq.mockups::Button). In the second case,
we can notice the label for “Departure Date” is part of a group (isInGroup=’15’). In the same
group, but with other controlID, we find the element “Calendar” itself
(com.balsamiq.mockups::Calendar). Our testing algorithm implements then a solution that
covers both situations. The algorithm presented in Figure 58 illustrates this implementation.

When looking for matching elements, the algorithm identifies which Balsamiq method has
been used to design the element. If the parent tag is a label, it means that the element is part of a
group that contains the element itself in a sibling tag. This sibling tag is then identified by reading
the attribute “isInGroup”. If the parent tag is not a label, so it is already the element itself. After
identifying it, the algorithm checks if some of the UI elements received from the ontology matches
with the element from the prototype that is being investigated. If so, the variable “numTasks” is
increased by one. After investigating the whole set of tags, the value of this variable is returned
and must be equal to “1”, which means only one UI element for representing the “fieldname”
has been found. If this value is equal to “0”, it means that no UI element has been found in the
prototype with that “field-name”, while if it is greater than “1”, it means that more than one UI
element has been found with the same “fieldname”. In both cases, the algorithm identifies the
failure and the test does not pass. This process is conducted for each step of the scenario.

foreach step from US Scenarios do
 supportedUIElements <- correspondent UI Elements from the ontology
 fieldName <- name of the UI Element from the step
 foreach UI Element from the Balsamiq prototype do
 if the attribute text is equal to fieldName && is not in group then
 if the attribute controlTypeID is equal to one of the
 supportedUIElements then
 numElements++
 endif
 else if the attribute text is equal to fieldName && is in group then
 if the attribute controlTypeID of some member of the group is
 equal to one of the supportedUIElements then
 numElements++
 endif
 endif
 endforeach
endforeach

if numElements == 1 show Success
else show Fail

Figure 58. Testing algorithm for assessing UI prototypes.

Chapter 6: Assessing User Interfaces: From Prototypes to Final UIs

 129

Notice that for prototypes at this level of refinement, we only assess the presentation
component. We are not considering for testing at this level the dialog modeling and the
consequent dynamic aspect of the interaction. It means that to check the consistency of the UI
elements modeled in the prototype, we only consider the presence (or the absence) of the right
interaction elements on the screen where the interaction is supposed to occur. Behaviors that
perform a state transition (e.g. navigating from one screen to another or getting mock values from
the fields as a result of an interaction) are not being taken into account in the results. The next
section presents our strategy for considering the dialog aspect of prototypes that are one step
forward in the level of refinement.

6.1.1.1. Running Tests

Figure 60 represents the flow of calls we have designed in our algorithm for running a battery
of tests on Balsamiq prototypes. The flow starts with the class “MyTest.java” that is a JUnit class
in charge of triggering the battery of tests (its content is illustrated in Figure 59). This class indicates
which files will be used for testing (flow 1). There files are distributed in two packages. The first
one contains the User Story files (where are the scenarios for testing), and the second one contains
the Balsamiq UI Prototypes files (that are the BMML source files of Balsamiq prototypes). So,
in the example below, it has been indicated for testing the story “Flight Ticket Search.story” on
the Balsamiq UI prototype “Book Flights.bmml”.

Figure 59. “MyTest.java”: class for running tests on Balsamiq prototypes.

Each one of the steps in the User Story under testing makes calls to the class “MySteps.java”
(flow 2) that knows which behaviors are supported. Based on the behavior referenced by the step,
this class makes a call to the class “Balsamiq.java” to get the list of Balsamiq interaction elements
that supports such a behavior (flow 3). The class “Balsamiq.java” in its turn makes a call to the
class “MyOntology.java” (flow 4) in charge of reading the OWL file of the ontology and
recovering the list of abstract interaction elements supported by a given behavior. Such a list is
then returned to the class “Balsamiq.java” (flow 5) that checks, for each element returned by the
ontology, which are the correspondent concrete interaction elements in Balsamiq in charge of
implementing the mentioned behavior (flow 6). This mapping is recovered from the file
“Balsamiq.mapping” (flow 7).

Afterward, the class “Balsamiq.java” returns such a list with the concrete Balsamiq elements
to the class “MySteps.java” (flow 8) that originally made the call. With the list of supported
Balsamiq elements for the step under testing, the class “MySteps.java” makes a call to the class
“MyXML.java” (flow 9) in charge of parsing the Balsamiq “.bmml” file (flow 10). This parsing
aims to check if the prototype carries the interaction element mentioned in the step under testing,
and if so, if such an element supports the behavior mentioned in the step. The result of this
parsing is then returned to the class “MySteps.java” (flow 11). At this point, based on the algorithm
presented in the previous section, we verify how many instances have been found for the searched
element. Finally, the class “MySteps.java” asserts the value and returns the result to the class
“MyTest.java” (flow 12) that indicates if the test has failed or not.

Chapter 6: Assessing User Interfaces: From Prototypes to Final UIs

 130

Figure 60. Flow of calls for running tests on Balsamiq prototypes.

Notice the independence of the components assigned at the core of the structure represented
in Figure 60 (highlighted in yellow). Those components are related to the particularities of test
implementation for Balsamiq prototypes. “Balsamiq.java” treats the demands for getting the
correspondent abstract interactive elements from the ontology and translates them to the concrete
interactive elements implemented by Balsamiq. “Balsamiq.mapping” provides such a translation.
Finally, “MyXML.java” is in charge of parsing the BMML files of Balsamiq, searching for the
element under testing. Therefore, we deliver a flexible architecture allowing, in the future, that
UI prototypes modeled by other prototyping tools could also be tested by just implementing new
interfaces for this core.

6.1.1.2. Setup

Considering the presented architecture, to setup and run a battery of tests, we must:

• Place the set of BMML files that will be tested in the package “Balsamiq UI
Prototypes”.

• Place the set of User Stories files (“.story”) that will be tested in the package “User
Stories”.

• Indicate in the “MyTest” class which prototype will be tested with which User Story
(only a prototype with a User Story at a time).

• Run the “MyTest” class as a JUnit Test.

6.2. Using the Ontology to Support the Development of Consistent
Prototypes

The ontology presented in chapter 4 could also be used to support presentation and behavior
descriptions for prototyping tools. A prototyping environment named PANDA (Prototyping
using Annotation and Decision Analysis) (Hak, Winckler and Navarre, 2016) has been
developed based on this principle. The development of a prototype using this tool is made thanks
to a toolbar containing widgets automatically generated from our ontology. Once the toolbar is
generated, the user can create his prototype by placing widgets, whose properties are described
in the ontology and presented in the edition area as illustrated in Figure 61. The use of this

Chapter 6: Assessing User Interfaces: From Prototypes to Final UIs

 131

technique allows a mapping between the elements described in the ontology (and thus, their
properties and supported behaviors) and each of the prototype’s widgets.

A PANDA prototype features a state machine where states of the system are populated with
the elements in the display when the state is active. By linking states with transitions, it is possible
to specify the structure and the behavior of the prototype. After having developed the prototype,
it is possible to replace a transition with a scenario. Indeed, in Figure 61 we have a testing scenario
used as a transition in the state machine. This scenario links together the state “Find Flight”
represented by the rectangle with a gray header in the upper part of the prototype with the state
“Choose Flight” located in the lower part. The state “Find Flight” represents the initial condition
(indicated by the “Given” clause) and the state “Choose Flight” represents the result of the
scenario execution (indicated by the “Then” clause).

PANDA supports scenarios described in a text format which are imported in the edition area.
When importing a scenario, PANDA parses the different steps and analyzes them by identifying
the events, the tasks, the associated values and the targets of the task. This identification is done
by splitting each line of the scenario and identifying keywords like “Given” or “Then” and the
quote character. Quoted segments are interpreted as values except for the last quoted element of
each line, which is identified as the target of the task. Segments before the quoted elements are
considered as actions related to the values read. Each line read is then registered as a Step of the
Scenario. Figure 62 shows an example for the Step “And I type ‘Paris’ and choose ‘CDG – Paris
Ch De Gaulle, France’ in the field “From”. The value “Paris” is associated with the action “I

Figure 61. PANDA screenshot.

Chapter 6: Assessing User Interfaces: From Prototypes to Final UIs

 132

type”, “CDG – Paris Ch De Gaulle, France” is associated to the action “choose” and “From” is
associated with the locator “in the field”. Keywords are ignored except for the word “Given” and
“Then” which introduce conditions and the final actions.

And I type “Paris” and choose “CDG - Paris Ch De Gaulle,
France”

in the field “From”

Figure 62. Example of a step split during its parsing.

Once the scenario has been parsed and attached between an initial and a resultant state, it can
be executed in order to find out if the scenario is supported by the prototype. This execution can
be made step-by-step or with the whole set of steps of the scenario being executed at the same
time. PANDA checks the state in which the prototype is, as well as the properties defined in the
ontology loaded. Thereby, it verifies if each step of the scenario is able to be run according to the
set of supported tasks. To do so, the system starts by mapping between the widgets of the
prototype and the target of the tasks during the execution, since scenarios and states of the
prototype are independent. So far, this mapping is based on the name of the widget, but other
mapping methods will also be considered. Then, for each step whose target has been mapped,
the system checks if each action or property matches with the properties of the widget which were
defined in the ontology. As an example, in the step “And I click on “Search”, PANDA looks for
any widget named “Search” in the initial state and checks if the description of the corresponding
widget in the ontology supports the behavior “clickOn” (see Figure 63).

The results of the tests are displayed by a colored symbol next to each step as shown in Figure
64. A red “X” represents failure, a green “V” represents success, and a black “?” represents an
untested step. There is currently no distinction between the different reasons for test failure (e.g.
widget not found, property not supported, etc.). In our example, the button supports the event
“#clickOn” which matches with the action “I click on” of the scenario. However, none of the UI
Elements (Calendar, CheckBox, Link or Radio Button) described in the ontology to support the
behavior “chooseReferringTo” was found.

Figure 63. Properties of a button in the tool PANDA

with properties defined by the ontology.
Figure 64. Example of results given during a Scenario

testing.

In a prototyping context, the automated interface testing could be used as a way to validate a
version of a prototype that passes the tests or points out parts of the prototype that require
attention and further analysis, for example. PANDA is focused on the evolution of a prototype,
as signalized by the evolutionary cycle in the workflow shown in chapter 3. Thereby, the same

Chapter 6: Assessing User Interfaces: From Prototypes to Final UIs

 133

scenario can be used on different versions of the prototype, until the prototype reaches the final
UI.

6.3. Evolving UI Prototypes

When evolving UI prototypes (activity
represented in Figure 65), we get artifacts modeling
detailed or even definitive design solutions for UIs.
Such evolved artifacts represent a design refinement
regarding the previous solutions presented in less
refined versions of UI prototypes. Thereby, it is
worthy keeping the track and check the consistency
of such multiple design solutions along the design
process.

For the purpose of illustration concerning how
our approach can support such a traceability and
consistency checking, Figure 66 presents the

successive mapping of a less refined Balsamiq prototype, a PANDA prototype, and a final UI
when testing the User Story “Flight Tickets Search”. In the first transition, the Balsamiq prototype,
designed in Figure 54 previously, is evolving to a more refined level by using PANDA. Notice
that more detailed decisions about the design solution have already been taken. For example,
suppose that during the project a business decision has been taken to evolve the user
requirements in order to provide a new option for booking hotels along with the flights. Thereby,
instead of using a simple “Round trip / One way” ButtonBar, the PANDA prototype has been
modeled using a three-button solution with a third option to book hotels in addition to the round
trip / one-way flight options. None of the solutions however is covered by the ontology for the
behavior “I choose … referring to …”, so the test fails. The ButtonBar used in the Balsamiq
prototype is not an interaction element modeled and recognized by the ontology, and the three-
button solution used in the PANDA prototype does not allow an action of choosing, once such
a kind of behavior are not supported by buttons. On the final UI, links have been chosen instead,
so the test passes.

In the following example, fields like “Departure” and “Destination” became simple Text
Fields once PANDA has not a specific widget for modeling the auto-complete behavior. As the
step specified in the scenario is “I inform … and choose …”, and such a behavior is only supported
by AutoComplete fields, the test fails in the PANDA prototype. For the field “Number of
passengers”, the test fails as well, once the step in the User Story specifies the behavior “I choose
the option of value … in the field …” for this interaction element, and such a behavior is not
supported by the “Text Field” which has been chosen in the PANDA prototype. Notice that the
PANDA prototype and, obviously, the final UI, both support the dialog description and changes
the UI according to the selection made in another field. In the example, as the a “One-way” trip
has been selected, then the field for specifying an arrival date is not shown. The other fields have
been correctly addressed in the 3 versions of the UI. Figure 67 and Figure 68 give another
example to compare the user interface refinement for performing the User Story “Choose
Flights”.

Figure 65. Activity of evolving UI prototypes.

Chapter 6: Assessing User Interfaces: From Prototypes to Final UIs

 134

Figure 66. The less refined prototype for “Flight Tickets Search” evolving to a more refined one, and then to a
final UI.

1

2

3 4
6

5

7

1

2

3

4

6

5

7

1

2

3 4 6

5
7

Chapter 6: Assessing User Interfaces: From Prototypes to Final UIs

 135

Figure 67. The “Choose Flights” UI prototype in

PANDA.
Figure 68. The “Choose Flights” final UI.

6.3.1. Elements Mapped for Testing

The testing of UI design artifacts like UI prototypes is conducted by automatically checking
whether user requirements in the User Stories have been consistently modeled in the various
levels of UI refinement. Table 16 exemplifies the correspondence of concepts (model and
ontology) used by our testing algorithm for the different UI instances (Balsamiq and PANDA
prototypes, and final UI). In the example, the consistency of the requirements representation for
the Scenario “One-Way Tickets Search” is being checked in the respective UI prototypes.

Artifact
Concepts

Step of Scenario
Model (UI Elements) Ontology

Balsamiq prototype BrowserWindow
Interaction Element:
Browser Window

Given I go to “Find
Flights”

PANDA prototype Browser Window
Final UI Screen

Balsamiq prototype ButtonBar Interaction Elements:
Calendar, Checkbox,
Radio Button, and Link.

When I choose “One way”
referring to “Trip Type”

PANDA prototype Button
Final UI Link

Balsamiq prototype SearchBox
Interaction Element:
Autocomplete

And I inform “Departure
City” and choose
“Departure Airport” in the
field “Departure”

PANDA prototype Text Field

Final UI AutoComplete

Balsamiq prototype SearchBox
Interaction Element:
Autocomplete

And I inform “Arrival
City” and choose “Arrival
Airport” in the field
“Destination”

PANDA prototype Text Field

Final UI AutoComplete

Balsamiq prototype Calendar Interaction Elements:
Dropdown List, Text
Field, Autocomplete, and
Calendar

When I set “Valid
Departure Date” in the
field “Departure Date”

PANDA prototype Text Field

Final UI TextField

Balsamiq prototype ComboBox
Interaction Element:
Dropdown List

And I choose the option of
value “2” in the field
“Number of passengers”

PANDA prototype Text Field
Final UI Select

Balsamiq prototype Button Interaction Elements:
Menu, Menu Item,
Button, and Link

And I click on “Search” PANDA prototype Button
Final UI Button

Balsamiq prototype Paragraph
Interaction Element: Text Then will be displayed

“List of Available Flights”
PANDA prototype Text

Final UI Text

Table 16. Example of concept mapping for testing.

Chapter 6: Assessing User Interfaces: From Prototypes to Final UIs

 136

Notice that as PANDA charges a pallet of UI elements gathered from the ontology, so in the
mapping, concepts related to the model and to the ontology are exactly the same. A complete
concept mapping table for all Balsamiq and final UI elements supported by the ontology is
presented in the Appendix A.

6.4. Testing Final User Interfaces

Figure 69 reproduces the automated
activity of testing final UIs. The testing of
final user interfaces we present in this
section involves running tests directly on
the web browser of a web application. As
stated in the beginning of this chapter,
different testing frameworks would be

required for performing tests on different environments. Despite our ontology supports a
specification for both web and mobile environments, so far, we have only explored an architecture
to perform tests on a web environment, i.e. running on a web browser.

Besides using a framework to control navigation on a web browser, other frameworks are
required to parse the text on User Stories, to build the test suit, or even to generate reports from
the execution. To test final UIs directly from User Stories, we use external frameworks to provide
automated execution on the final UI. Such frameworks are able to mimic user interactions with
the final UI by running the set of scenarios described in the User Stories. Therefore, we have
built an architecture of tools to bring together the multiple set of required frameworks for
performing our testing approach on final user interfaces. Such an architecture is presented
hereafter.

6.4.1. Integrated Tools Architecture

The integrated tools architecture we propose for testing final user interfaces is essentially based
on Demoisele Behave, JBehave, Selenium WebDriver, JUnit and Maven. We use Selenium
WebDriver to run navigational behavior, and JBehave and Demoiselle Behave to parse the
scenario script. Test results provided by the JUnit API indicate visually which tests are passed and
which ones failed and why. Execution reports of User Stories, scenarios and steps can also be
obtained by using the JBehave API.

Figure 70. A 3-module integrated tools architecture.

Figure 69. Activity of evaluating Final UIs.

Chapter 6: Assessing User Interfaces: From Prototypes to Final UIs

 137

Figure 71. Flow of components in the proposed architecture.

Such an architecture allows users to automate testing on web user interfaces by following our
behavior-based approach. The architecture has three main modules: Core, Parser, and Runner
(Figure 70). Core is responsible for the main interfaces of the framework by orchestrating the
information among the other 3 modules. The Parser is responsible for the abstraction of the
component that will transform the story into Java code, to send to the Runner through standard
or project-specific sentences. The Runner is responsible for the abstraction of the component
that will perform navigation on the user interface, such as Selenium WebDriver or even JUnit
directly. The framework identifies stories written in TXT to be sent to the Parser module and
later to Runner, which is responsible for interacting with a web browser using the Selenium
WebDriver. Figure X illustrates such modules.

To run tests in such an architecture, story files are charged as inputs for the parser, that
translates the natural language behaviors into java methods, and then selects a runner to perform
the navigational commands on a given target web browser. This flow of components is illustrated
in Figure 71.

6.4.2. Implementation

Figure 72. Packages and classes being structured to implement our testing approach.

Figure 72 details how we have structured packages and classes in different layers to implement
our architectural approach. The ontology described in chapter 4 provides to the model a pre-
defined set of behaviors used in the Requirements and Testing Layer. Artifacts produced in
Prototyping and Task Modeling Layers are suitable to not only benefit from the ontology
description in order to model better requirements, but also to contribute with the development
of new User Stories. Pre-defined behaviors charged from the ontology are implemented by the

Chapter 6: Assessing User Interfaces: From Prototypes to Final UIs

 138

CommonSteps class. New extended behaviors, that are not initially covered by the ontology, can
be implemented in the MySteps class. Steps in User Stories are mapped to either CommonSteps
or MySteps behaviors in order to be run as Java methods. Figure 73 illustrates this mechanism.

Figure 73. Parsing a step from a TXT file to a Java method.

The Presentation Layer includes the MyPages class which implements the link between
abstract UI components defined in the ontology and the concrete UI components instantiated on
the interface under testing. This link is crucial to allow the Selenium WebDriver and other
external testing frameworks to automatically run scenarios in the right components on the UI. To
link these components, the MyPages class identifies a screen map (“@ScreenMap”) which address
the web page location, and several element maps (“@ElementMap”) which link the various
abstract UI elements in the User Stories with their concrete UI siblings on the user interface. This
link is made by manually associating the name of each abstract UI element with their concrete
locators (such as IDs, XPaths, or any other web element identifier). Figure 74 illustrates this
mechanism.

Finally, the MyTest class is a JUnit class in charge of triggering the tests, pointing which
scenarios should be executed at a time, besides making the bridge between UI components in
the Presentation Layer and executable behaviors in the Requirements and Testing Layer.

Figure 74. MyPage Java class.

These three basic classes (MySteps, MyPages and MyTest) can also be modeled with different
names into packages “steps”, “pages” and “tests”, in order to separate concerns and implements
different classes for different pages or features.

Chapter 6: Assessing User Interfaces: From Prototypes to Final UIs

 139

Figure 75. Automated execution of the scenario “Return Tickets Search”.

Figure 76. An attempt to select a return date before the departure date.

The environment for implementing and running the tests is the Eclipse IDE with a Maven
project instantiated. Figure 75 shows such an environment with the MyTest class automatically
running the Scenario “Return Tickets Search” presented in our illustrative case study. Thereafter
is also presented in Figure 76 an example of test running when assessing the business rules for
“Search for flights more than one year in advance” and “Search for a return flight before a
departure flight”. In the example, the designers have chosen to block the inappropriate dates in
the calendar according to the business rules. The figure actually shows our algorithm trying to set
those invalid dates to test the rules.

The structure of the Java project is presented in Figure 77. Notice that the three
aforementioned classes are packed in the package “java” and the User Stories in the package
“resources”. On the right side of the figure, the structure of the MyTest class is presented
highlighting the addition of the new extended behaviors in the MySteps class, and all the stories
in the “/stories” folder being triggered by a JUnit test method.

A resource that facilitates the written of User Stories (and that is also available when writing
and editing User Stories for assessing task models and UI prototypes) is the immediate feedback
concerning the existence of behaviors in the ontology to address the step that is being written.
Figure 78 illustrates this resource. Notice that all the steps in the scenario have been recognized,

Chapter 6: Assessing User Interfaces: From Prototypes to Final UIs

 140

i.e. there are equivalent behaviors in the ontology to address them, except the step “When I set
the date ‘12/20/2017’ in the field ‘Return’” that has been underlined to alert that such a step is
not recognized by the ontology (actually the right step in this case is generic: “… I set ‘<value>’ in
the field ‘<element>’”, like has been used in the following line). When clicking in the alert icon,
a message to say that “no step is matching” will be shown. Additional feedback is also given
recognizing in the step the mention to values and interactive elements when they are surrounded
by quotation marks.

Figure 78. Writing a User Story and getting instant feedback of unknown steps.

The testing results are presented through the classical JUnit green/red bar within the Eclipse
IDE. By the end of the tests, a JBehave detailed report is automatically generated in the project
folder. Additionally, for each error found, screenshots are taken and stored to allow a better
analyze of the results afterwards. Examples of these features are presented in Figure 79.

Figure 79. JUnit green/red bar at the left, and JBehave detailed report at the right.

6.4.3. Handling Test Data

Test data are an important component of software testing. They are very useful providing
concrete examples for scenarios, but they must be carefully planned to explore the multiple black-

Figure 77. Package tree (on the left) and MyTest class (on the right).

Chapter 6: Assessing User Interfaces: From Prototypes to Final UIs

 141

box test design techniques such as equivalence partitioning, boundary value analysis, domain
analysis and so on. Test data also become out of date easily, especially those ones that reference
time variables such as dates, ages, etc. Providing strategies for organizing and maintaining such
test data is therefore crucial for getting well-succeed test scenarios.

In our approach test data can be specified directly in the step of User Stories or be specified
as data domains (variables) in the step, keeping the real test data out of the scenario. Our approach
offers two main strategies to set test data out of scenarios. The first one is to use Data Providers
to store values for variables which can be used to write the steps of scenarios. Data Providers
associate such variables (specified in the step) to the real test data (specified in the test source
code) in a Java method directly in the source code. The real test data is then injected into the
scenario at runtime. This mechanism is useful to render flexible the reuse of data dynamically
and to hide data in scenarios without losing readability. The downside is that data are
encapsulated in the source code which harms their maintainability. Figure 80 illustrates this
mechanism.

The second mechanism is the use of data storages in XML files. With data stored in XML
files, the test source code is kept clean and the maintainability of test data is considerably
improved. Unlike Data Providers, data storages associate the variables (specified in the step) to
the real test data by using steps of scenarios referencing specific behaviors provided by the
ontology. Figure 81 illustrates this mechanism. In the example, data stored for the variables
“Number of passengers” and “Depart” are associated respectively to the values “2” and
“12/15/2016” for a “Europe USA” trip scenario, and to the values “3” and “12/31/2016” for a
“Inside USA” trip scenario. At runtime, these real test data are assigned to the respective steps
(transition “a” in Figure 81) and then used in the respective scenarios of searching flights “Europe
USA” and “Inside USA” (transition “b” in Figure 81). This mechanism is useful to work with a
large set of data that should be introduced in scenarios at runtime. The downside is that scenarios
can eventually lose readability due to the multiple references to other steps of other scenarios
which indeed get the data from the storages.

Specific interactive behaviors for manipulating data providers and data storages are classified
in the ontology as “Data Provider Behaviors” (Table 8) in chapter 4.

dataProvider.put("valid date", "12/30/2016");

(a)

And I choose "valid date" referring to "Depart" …

Figure 80. Data in Data Provider: (a) data being associated to a variable to be used in the step.

<DataSet>
 <dataRecords>
 <DataRecord id="Europe USA">
 <dataItems>
 <DataItem key="Number of passengers" value="2" />
 <DataItem key="Depart" value="12/15/2016" />
 </dataItems>
 </DataRecord>
 <DataRecord id="Inside USA">
 <dataItems>
 <DataItem key="Number of passengers" value="3" />

Chapter 6: Assessing User Interfaces: From Prototypes to Final UIs

 142

 <DataItem key="Depart" value="12/31/2016" />
 ...
</DataSet>

(a)

... When I provide the value of the field "Number of passengers"
And I provide the value of the field "Depart" ...

(b)

Scenario: Search of flights stored in the dataset
When I search for flights "Europe USA"
Then "Choose Flights" is displayed
When I search for flights "Inside USA"
Then "Choose Flights" is displayed

Figure 81. Data stored in an XML file: (a) data associated to XML file, (b) reference to dataset.

6.5. Conclusion

The approach we describe in this chapter for assessing user interface prototypes has the main
advantage of ensuring a reliable correspondence between different interaction elements modeled
in prototypes with different levels of refinement. By using an ontology to support a wide
description of interaction elements and their related behaviors when subject to a user interaction,
this approach succeeds to provide automated testing for Balsamiq prototypes, as well as for final
UIs developed under whatever technology for designing the presentation layer on web pages.
Additionally, the ontology can be used as a base specification for developing new prototyping
tools like PANDA, which will be able to produce UI prototypes already consistent with a large
set of user-system interactive behaviors.

For implementing this approach, we have also proposed an open and flexible architecture
where different approaches and tools for designing UI prototypes could fit in the future. For
prototypes with a low level of refinement, it is enough to implement a new core interface for
describing the way such tools deal with their interaction elements and how they can be identified
in their source files. For final UIs, it is enough to replace Selenium WebDriver by another testing
framework adapted to running tests on user interfaces in other environments such as mobile and
desktop.

In this chapter we make use of both static and co-execution strategies for assessing user
interface prototypes depending on their level of refinement. Like for task models, when opting
for a static analysis of Balsamiq source files, we gain in performance and availability of tests.
Specially in environments requiring a high-availability of tests to be executed continuously along
multiple iterations, static approaches benefit from an instantaneous consistency checking
analyzing several hundreds of source files at the same time.

For final UIs, we implemented the strategy of co-execution. Co-execution approaches have
the benefit of allowing running models simultaneously with a visual feedback at real-time about
the correspondence of entities that are being assessed in each model. As we stated before, such
approaches usually have the drawback of demanding a high investment to prepare and adapt the
artifacts for testing. In our approach however, such an investment is restricted to the mapping of
interactive elements on the respective user interfaces under testing. As the great benefit of co-
execution on final UIs is providing a visual feedback during the execution simulating a real user

Chapter 6: Assessing User Interfaces: From Prototypes to Final UIs

 143

interacting with interaction elements at real-time, this process can end up being very slow with the
growing number of user interfaces and scenarios to be tested. As far as the simulation of real user
actions is not a concern, such a drawback can be reduced by using GUI-less browser
implementations such as HtmlUnit5, which benefits from high-level manipulation of web pages
without the need of bringing the browser to the front and co-executing the simulated user actions.
Like static approaches, this strategy is suitable for environments demanding high-availability and
continuous testing.

Finally, with both strategies for running automated tests on UI prototypes together with our
static strategy for assessing task models, we set out a step forward within the process of fully
automating software verification, validation and testing (VV&T). As an integrated approach, the
same set of User Stories is assigned to automatically assess both task models and UI prototypes
in different levels of abstraction, ensuring a consistent VV&T approach for interactive systems
with high-availability of instantaneous feedback about the consistency of artifacts with the user
requirements.

Further in this thesis, the chapter 8 will demonstrate how this approach performed when
applied to a large case study, and how the UI prototypes we produced have been ensured as
consistent with other user interface design artifacts like task models. The chapter also details a
broad set of inconsistencies our approach is able to identify and provides results about its
potential.

6.6. Resultant Publications

Silva, T. R. & Winckler, M. (2017). A Scenario-Based Approach for Checking Consistency in
User Interface Design Artifacts. In: Proceedings of the XVI Brazilian Symposium on Human
Factors in Computing Systems (IHC 2017), pp. 21-30. ACM. DOI:
http://doi.org/10.1145/3160504.3160506. (Silva and Winckler, 2017)

Silva, T. R., Hak, J. L. & Winckler, M. (2016). Testing Prototypes and Final User Interfaces
Through an Ontological Perspective for Behavior-Driven Development. In: 6th International
Working Conference on Human-Centred Software Engineering, and 8th International Working
Conference on Human Error, Safety, and System Development (HCSE 2016 and HESSD 2016),
pp. 86-107, vol. 9856. Lecture Notes in Computer Science, Springer International Publishing.
DOI: http://doi.org/10.1007/978-3-319-44902-9_7. (Silva, Hak and Winckler, 2016b)

Silva, T. R., Hak, J. L. & Winckler, M. (2016). An Approach for Multi-Artifact Testing Through
an Ontological Perspective for Behavior-Driven Development. Complex Systems Informatics
and Modeling Quarterly, 1 (7), pp. 81-107. DOI: http://doi.org/10.7250/csimq.2016-7.05. (Silva,
Hak and Winckler, 2016a)

5 http://htmlunit.sourceforge.net

Part III - Evaluation

 147

Chapter 7
Case Study 1 - Understandability

of User Stories

Summary

This chapter presents the experimental design and the results of our first case study to evaluate
the understandability, by potential Product Owners, of the User Stories template which we have
used to describe user requirements in our approach. For that, it has been chosen the department
in charge of business trips in our institute. The experiment has been conducted with 4 members
of the team in one-hour sections of interviews. During this time, it has been captured their user
impressions about the current system support for booking business travels and how it could be
better. Based on that, the participants were invited to write their own User Stories to describe a
feature they are used to perform. The results have been used to analyze their understandability
of User Stories structure and the adherence of such stories to the ontological pattern we defined
for our approach.

To present our finding, this chapter is divided in 7 sections. The first one (section 7.1) presents
our experimental design, detailing our research questions and measures we used to assess the
outcomes. Following this, we present the business narrative to give the context of how business
travels are booked in our institute (section 7.2). Next, we detail our methodology to conduct the
study (section 7.3), followed by the participant’s profile (section 7.4), and the exercise we
proposed to allow them writing their own User Stories (section 7.5). Section 7.6 brings the results
of the study, highlighting the set of User Stories written by the participants, our adherence analyses
considering stories and scenarios, our discussion of such results, our general findings and
implications, and the threats to validity of this study. Finally, section 7.7 concludes our remarks
and points out future investigation opportunities in this field.

The travel department from our research institute (Toulouse Institute of Computer Science
Research - IRIT) has been selected as a target group to conduct the present case study. This
choice has been made because the travel department team is in the target population of
stakeholders in our approach. They receive multiple and varied demands of business trips to
follow and validate, which come from the whole team of researchers at the institute. Demands
are likely to bring difficulties and problems experienced by researchers when trying to book their
business trips directly through intern systems, which has a huge potential to bring prospective
features to be developed or improved in such systems. By acting as such a hub, the participants
from the travel department considered in this study act actually as Product Owners (POs)
(Schwaber, 2004), once they master the current business process and have the potential to
integrate a specialized group for eventually specifying requirements to maintain or develop a new
software system in this business field.

7.1. Experimental Design

The present case study has been designed around two research questions:

Chapter 7: Case Study 1 - Understandability of User Stories

 148

RQ 1. Are participants able to read/understand a basic User Story template and use it to write
their own stories?

To answer this research question, we measure the adherence of the User Stories produced by
the participants to the structure of the template initially presented to them. This adherence is
measured following the scale presented below.

RQ 2. Which is the vocabulary the participants make use when writing their own User Stories?

To answer this research question, we measure the adherence of the vocabulary used by the
participants when writing their User Stories to the predefined interactive behaviors modeled in
the ontology. This adherence is measured following the scale presented below.

The adherence analysis has been made separately for the first part of the User Story (narrative
section) and for the related scenario (scenario section), observing the existent gap between the
steps each participant specified and the equivalent and available steps in the ontology. For each
statement in the User Story, we have classified its adherence to the template or to the ontology
by using the following scale:

• Null adherence – scale 0 ○○○○○○
• Very Low adherence – scale 1 ●○○○○○
• Low adherence – scale 2 ●●○○○○
• Medium adherence – scale 3 ●●●○○○
• High adherence – scale 4 ●●●●○○
• Very High adherence – scale 5 ●●●●●○
• Full adherence – scale 6 ●●●●●●

The experiment has been organized around interview and exercise sections with each one of
the participants. These sections were structured in steps as follows:

• A first step aimed at capturing the profile of the participants and their impressions
about the current software system.

• A second step to present and exemplify the structure of a User Story to the participants
(but not the ontology).

• And a third step asking them to write their own stories.

7.2. Methodology

The study has been conducted with the group of participants along 2 weeks in May 2017. The
participants were selected by their availability and heterogeneity of profiles. In total, 4 (four)
participants have participated to the study. Each one of them were interviewed by us for about 1
hour. The interview conducted with each participant had three distinguished components. The
first part was aimed to identify the participants’ profile and their experience working with business
trips. The second part was aimed to collect information concerning their impressions about the
current in-use systems at the travel department. Finally, the third and last part was aimed to
conduct the exercise that allowed us to observe their ability in writing the intended User Stories.

Before each session of interviews, participants were required to sign a disclosure agreement
stating the exclusively use of the data for researching purposes and that their identities and
personal opinions would not be used individually under any circumstances. With the agreement

Chapter 7: Case Study 1 - Understandability of User Stories

 149

of participants, all the interviews were fully audio recorded. Thus, after the beginning of each
session, in the first section of the interview, the participants were invited to answer a set of 6 (six)
questions about their profile. The questions covered information about their gender, age,
education, for how long they were involved with that job in the travel department at our institute,
whether they were previous experiences in that kind of job before joining the department, and
finally a general and open question about an overview of their job and daily activities in the
department. The details of this part are described in the next section “Participant’s Profile”
hereafter.

In the second part of the interview, we were interested in collecting participants’ impressions
about the current intern system used for booking the business trips. A total of 16 questions have
been made at this second part of the interview concerning both factual and interpretation points.
They were asked about how booking demands are processed and threated along a life cycle in
the travel department, and about their personal opinion about constraints and improvement
opportunities in the current workflow, as well as in the current in-use system they use daily for
processing the booking requests.

In the third and last part of the interview, the participants received an example of User Story
with a brief explanation about its general goals, structure and a single example in the context of
business trips. In the sequence they were asked to produce their own User Stories for describing
a feature they have faced recently when using the current software system for booking the business
trips. The details of this part are described in the section “The Proposed Exercise” hereafter.

7.3. The Business Narrative

The process of booking business trips for researchers in our department is supported by two
information systems. The first one is named Travel Planet and is used by researchers for

Figure 82. BPMN model for the case study.

Chapter 7: Case Study 1 - Understandability of User Stories

 150

searching their flights and getting a quotation of rates for a given itinerary. The second one is
named GLPI and is used for managing demands of services for different departments by
approving or declining travel quotations based on the budget available for each project or
researcher. Both systems are currently in operation. In this case study, we are focused on the
services demanded by researchers to the travel department related to the process of booking
business trips, so our focus falls on the Travel Planet system. Figure 83 presents a screenshot of
this system which both researchers and the department team have access.

Figure 83. Travel Planet system for booking business trips.

The overall process of booking was described and detailed during the cycle of interviews with
the participants and is illustrated in Figure 82 through a BPMN model. The researcher starts the
process by conducting a search of flights based on a given set of parameters (such as departure
and arrival cities or airports, date of departure and return, timeframe, etc.). Such search
parameters are processed by the system that creates a list of matching flights, returning it to the
user. The researcher then verifies the list of available flights and makes his/her choice. When
he/she confirms his/her choice, passenger and flight data are saved by the system and the booking
is put on hold. At this point, the researcher needs to open a ticket in the management system in
order to formalize the demand of payment for the travel department. When the ticket is open,
the travel department team process the payment, checking whether the research has enough
budget for the trip. If the budget is enough, the payment is accepted, and the travel department
team authorizes the booking. If not, the booking is refused, and the process is ended. For
approved trips, the travel system finally processes the booking and the researcher receives his/her
electronic ticket as a result of the booking confirmation.

For this case study, we will work on the travel system’s sub process (circled in red in Figure
82). As such, the participants were invited to produce some examples of User Stories related to
a feature they consider important to the system. The goal of this exercise is to get reasonably-
formatted requirements from critical stakeholders in the travel department. Such requirements
have been used to identify examples of use they consider relevant and to build a consistent set of
requirements for assessing travel system’s development artifacts. This exercise had also as
objective to evaluate the level of adherence of our pre-defined behaviors specified in the ontology
and their understanding and acceptance by non-technical people for writing their own
requirements specification through User Stories.

Chapter 7: Case Study 1 - Understandability of User Stories

 151

7.4. Participant’s Profile

The first participant (P1) was a woman, 50 year’s old, secondary school level plus a
complementary year of study, with 10 years of experience managing business trips, being 4 years
in the targeted travel department. P1 has informed his/her daily tasks are based on managing
travel demands from researches besides doing research of flights and rates for guests visiting the
institute.

The second participant (P2) was a woman, 30 year’s old, secondary school level plus two
complementary years of study, with 6 years of experience managing business trips, being 3 years
in the targeted travel department. P2 has informed his/her daily tasks are based on managing the
budget of researchers, the different aspects of their business trips like housing, flight tickets, billing
cycles, etc. but his/her main activity is to manage their trips.

The third participant (P3) was a woman, 52 year’s old, secondary school level, with 4 years of
experience managing business trips, all of them in the targeted travel department. P3 has
informed his/her daily tasks are based on managing the demands, check their correctness, besides
open tickets and make quotations for the trips.

Finally, the fourth and last participant (P4) was a man, 25 year’s old, secondary school level,
with 4 years of experience managing business trips, being just 1 month in the targeted travel
department. P4 has informed his/her daily tasks are based on requests for processing the trips,
booking them through the system and manage the billings.

Table 17 summarizes the participant’s profile. We notice therein a homogeneity in their level
of education, with P3 and P4 having completed only the secondary level, while P1 has completed
one year more of undergraduate studies, and P2 two years more. We notice as well P1 is the most
experienced participant with almost twice the experience of the other 3 participants. Although
P1, P2 and P3 have also the same level of seniority at this charge in the institute (about 4 years in
average), P4 had been hired only 1 month prior to this study, so his/her participation was
interesting to compare his/her view with possible work habits acquired by the older employees.
Finally, we had a predominance of women (3 of 4 participants) with a good range of ages, from
25 to 52.

Participant Gender Age Education
Experience

(Years in total)

Experience
(Years in the

institute)
P1 Female 50 SSL+1 10 4
P2 Female 30 SSL+2 6 3
P3 Female 52 SSL 4 4
P4 Man 25 SSL 4 1 month

Table 17. Participant’s Profile.

7.5. The Proposed Exercise

For the proposed exercise, aim of this study, participants were invited to write manually one
single User Story with one single scenario for describing a feature they have faced recently when
using the current software system for booking the business trips. This activity has taken about the
last twenty minutes of each interview. To do the exercise, participants were introduced to the
structure and to the main components of a typical User Story based on the extended format
proposed by North (North, 2017) which is the same used by our approach. Then, an example of

Chapter 7: Case Study 1 - Understandability of User Stories

 152

User Story describing a searching feature of a one-way flight for a general business trip has been
presented. As the participants were French native speakers and had no English proficiency, the
story provided as example and the stories produced by the participants were all written in French,
and then translated to English by us.

For this exercise, apart from the short beginning explanation about the structure of a typical
User Story and the single example we provided, we decided to not give any prior training to the
participants. As such, we did not mention the existence of common and predefined interactive
behaviors in the ontology which were supposed to be used for writing the stories, although the
example of User Story we provided to them had been written following such behaviors presented
in the ontology. This decision was made because one of the goals of this study was to investigate
the ability of non-technical core POs to specify their own User Stories and in which extent the
interactive behaviors described in the ontology would be perceived as useful enough to be
spontaneously reproduced by the participants.

Herein, Figure 84 and Figure 85 are respectively the translated/equivalent version (in English)
of the User Story structure and the example of a User Story we presented to the participants:

Title (one line describing the story)

Narrative:
As a [role]
I want [feature]
So that [benefit]

Scenario 1: Title
Given [context]
 And [some more context] ...
 When [event]
 Then [outcome]
 And [another outcome] ...

Scenario 2: ...

Figure 84. Structure of a User Story presented to the participants translated to English.

Title: Flight Tickets Search

Narrative:
As a frequent traveler
I want to be able to search tickets, providing locations and dates
So that I can obtain information about rates and times of the flights.

Scenario: One-Way Tickets Search
Given I go to the page "Find flights"
When I choose "One way"
And I type "Paris" and choose "Paris, Charles de Gaulle (CDG)" in the field "From"
And I type "Toulouse" and choose "Toulouse, Blagnac (TLS)" in the field "To"
And I choose "2" in the field "Total number of passengers"
And I choose "12/15/2016" in the field "Depart"
And I click on "Search"
Then will be displayed the list of available flights

Figure 85. Example of a User Story presented to the participants translated to English.

7.6. Results

In the first and second parts of the interview, participants highlighted they manage about 400
travel demands per year, being a means of 12 per week in off-peak seasons, and 12 per day in

Chapter 7: Case Study 1 - Understandability of User Stories

 153

peak seasons. They are in general pretty satisfied about the current system’s support, nonetheless
they frequently need to contact the researchers asking for complementary information about the
trip. As far as new features are a concern, a participant pointed out that having a list of departure
times for the less expensive flight rates could be very interesting. Another participant pointed out
the need of a feature to book several trips for a group in the same demand. They almost
unanimously pointed out that features for searching multi-destination trips have certainly a room
for improvement.

In the third and last part of the interview, focus of this study, we captured the User Stories
written by the participants. They are detailed hereafter.

7.6.1. User Stories Writing

1

2

3

Chapter 7: Case Study 1 - Understandability of User Stories

 154

Narrative:
As a guest
I want airline tickets with defined time and flights
So that I can book tickets

Scenario: Searching demanded tickets
Given I go to the site SIMBAB/TRAVEL
When I choose the demanded flight (destination and times, TOULOUSE/PARIS, departure
7 a.m., return 7 p.m. at the same day)
And I choose type of traveler "Guest"
And I search
Then several propositions
And I choose the desired flights

When I inform the data concerning the traveler (name, given name, birthdate, phone,
mail), and eventually the loyalty card (Flying Blue and Season Ticket)
Then ticket waiting for validation

Figure 86. User Story written by P1.

As a frequent traveler
I want to search for tickets, providing locations and dates for a multi-destination
trip
So that I can obtain information about rates and flight times

Scenario: Multi-destination searching
Given I go to the page "Searching Flights"
When I choose "Multi-destinations"
And I type "Paris" and choose "Paris, Charles de Gaulle" in the field "Departure"
And I type "Rio de Janeiro" in the field "Destination"
And I choose "15/02/17" in the field "Departure Date"
And I choose "20/02/17" in the field "Return Date"
And I type "Rio de Janeiro" in the field "Departure"
And I type "Porto Alegre" in the field "Destination"
And I choose "17/02/17" in the field "Departure Date"
And I choose "19/02/17" in the field "Return Date"
And I click on "Search"
Then will be displayed the list of available flights

Figure 87. User Story written by P2.

As a travel manager
I want to check travel authorizations
So that I can ensure the confirmed bookings

Scenario: Listing travel authorizations
Given I go to the tab "Travel Authorization"
When I type the "Booking Reference"
And I check if the request is well registered
Then at this time, I can know for sure (or not) the request has been taken into
account
And it’s shown a tab: authorized / non-authorized

Figure 88. User Story written by P3.

As an intern
I want to book a flight to Paris departing on May 2nd until May 10th
So that I can attend a seminar

Scenario:
Given I’m going to book my flight
When I provide all the information

1

2

3

Chapter 7: Case Study 1 - Understandability of User Stories

 155

And I choose search by fares
Then all the available flights for the date are classified by ascending order of
fares.

Figure 89. User Story written by P4.

Figure 86, Figure 87, Figure 88, and Figure 89 present the translated versions of the User
Stories written by the participants in their first attempts. Figure 86 brings additionally an example
of the User Story handwritten by the participant P1.

The participant P1 (Figure 86) presents a User Story to describe the process of booking trips
for a guest, i.e. an external person, normally a researcher from outside of the institute. We notice
clearly that the first participant has chosen to describe the US in a high level, free of format, not
necessarily paying attention to the ontology pattern step presented in the example. Thus, each
step of scenarios could be identified as domain-dependent behaviors, i.e. behaviors that make
direct reference to jargons used for booking flights. In the first identified point (1 in Figure 86),
we can see the user states a narrative concerning a guest searching for airline tickets with defined
time and flights in order to book tickets. Here we notice as well, the user has committed a mistake
when identifying the role that benefits from the story. In fact, he/she identified that the guest
would be the right role for this story when indeed the account managers of the travel department
would be the beneficiaries, once it is them that would perform the booking using the system on
behalf of the guest.

In the second identified point (2 in Figure 86), we notice the first scenario he/she identified.
The scenario specifies the use of two intern systems for booking business flights. It simulates in a
high-level a travel from Toulouse to Paris departing at 7 a.m. and returning at 7 p.m. at the same
day. So, he/she informs this trip concerns a guest and based on the submitted search, he/she
chooses the desired flights. At this point (3 in Figure 86), our user mixed a second scenario with
the first one. He/she continues specifying actions for informing traveler’s data and putting the
ticket on hold, waiting for validation.

The participant P2 (Figure 87) reported a story for booking a multi-destination trip. We notice
here that, unlike the first one, the second participant has chosen to describe the User Story closely
paying attention to the ontology pattern step presented in the example. Thus, each step of the
scenario could be identified as domain-independent behaviors, i.e. behaviors that refers to the
actions on the user interface, without mentioning jargons used for booking flights. In the first
identified point (1 in Figure 87), we can see the user states a narrative concerning a frequent
traveler searching for a multi-destination ticket in order to obtain rates and flight times. In the
second identified point (2 in Figure 87), a scenario for searching return flights from Paris to Rio
de Janeiro with a stopover in Porto Alegre is presented. We can see the user clearly understood
the structure of the scenario, once he/she adjusted the sequence of steps to cover a multi-trip data
entrance with different cities and dates.

The participant P3 (Figure 88) reported a story for checking travel authorizations. In such a
story, a travel manager checks travel authorizations in order to ensure that a given booking has
been effectively taken into account. For that, a scenario for listing travel authorizations is specified.
Therein, once the user goes to the tab “Travel Authorization”, types the booking reference and
checks if the request is well registered, then, according to him/her, at this time, he/she is able to
ensure whether the request has been taken into account or not. The resultant behavior of the
system is to show a tab with a message signalizing that the booking is authorized or non-
authorized. For this user, we noticed a medium-level of adherence and understandability of the
language patterns defined in the ontology.

Chapter 7: Case Study 1 - Understandability of User Stories

 156

The fourth and last participant P4 (Figure 89) reported a story in the role of a travel
department’s intern. He/she describes a research of flights to Paris for attending a seminar from
2nd until 10th May. The participant however has mistakenly informed data details for a specific
scenario in the narrative section of the story. As a consequence, when specifying a scenario for
this story, he/she supposedly makes reference to the data already informed previously in the
wrong section (“When I provide all the information”). The scenario also features a search of
flights classified by their ascending order of fares. We can notice, in general, the participant had
difficulties to understand the structure of the stories. It makes his/her User Story hardly adherent
to the implicit proposed language patterns.

Considering the seven levels of Nielsen’s linguistic model of interaction (Nielsen, 1986), the
stories produced by the participants contain elements that could be classified from the level
1(goal) until the level the level 5 (lexical).

7.6.2. Adherence Analyses

We have categorized each deviation from the proposed template committed by the
participants when writing their User Stories. Such categories have been defined as adherence
problems and have been classified under the Meyer’s seven sins (Meyer, 1985). They are
described as follows.

• Lack of statement or keyword (Silence), refers to clause or keyword present in the
template, and not used by the participant.

• Understatement (Silence), refers to statements/behaviors specified following the structure
presented in the template, but with less information than necessary.

• Misspecification (Noise), refers to statements/behaviors that have been misspecified
according to the structure defined in the ontology.

• Wrong information (Contradiction), refers to statements which states a correct template
structure, but presents wrong (or partially wrong) information for that statement.

• Minor writing complement (Silence), refers to the need of minor complements (or
modifications) in the phrase in order to comply with the template structure or clarify the
behavior’s meaning.

• High-level of abstraction (Wishful Thinking), refers to behaviors specified in such a high-
level of abstraction which not allow to assume the actual expected interaction on the UI.

• Epic behavior (Overspecification), refers to behaviors that encompass a wide number of
implicit interactions. This kind of behavior should typically be broken into several low-level
interactive behaviors. This concept is based on the concept of epics that has been introduced by
Cohn (Cohn, 2004) and which refers to a large User Story that cannot be delivered as defined
within a single iteration or is large enough that it can be split into smaller User Stories.

Below we present 4 tables (Table 18, Table 19, Table 20 and Table 21) detailing, for each
participant, each behavior specified by him/her, the adherence of each behavior in the scale
presented in the methodology, and a section of comments, where we classify the type of
adherence problem identified (if any) and strive the reasons for such a kind of problem.
Additionally, we propose possible corrections for problems identified in the template (we called
it understandability in User Story specification), and when interactive behaviors are concerned,
the correction demanded to meet the actual behavior in the ontology (we called it adherence to
the ontology in User Story specification).

Chapter 7: Case Study 1 - Understandability of User Stories

 157

User Story Specification – Participant P1:

Behaviors Specified by the Participant Possible Correction Adherence Comments

- Title: Booking flights for guests ○○○○○○
Lack of statement or keyword. Participant did
not title the story.

Narrative: - ●●●●●● Participant correctly used the keyword.

As a guest As a travel manager ●●●○○○

Wrong information. Participant correctly
identified a role, but mistakenly specified the
guest as the role who would benefit from the
story, when actually it would be the travel
manager.

I want airline tickets with defined time and flights
I want to search airline tickets with defined time and
flights ●●●●●○

Understatement. Participant only forgot the
action he/she expects from the system (lack of
a verb)

So that I can book tickets So that I can book tickets for guests ●●●●●○
Minor writing complement. Participant did
not complement the benefit specifying for
whom tickets will be booked.

Scenario: Searching demanded tickets - ●●●●●●
Participant correctly used the keyword with a
name for the scenario.

Behaviors Specified by the Participant Behaviors Defined in the Ontology Adherence Comments

Given I go to the site SIMBAB/TRAVEL Given I go to “SIMBAB/TRAVEL” ●●●●●○
Minor writing complement. Participant added
the term “the site” in the behavior “I go to”
which is not present in the ontology.

When I choose the demanded flight (destination and
times, TOULOUSE/PARIS, departure 7 a.m.,
return 7 p.m. at the same day)

When I choose “Toulouse” in the field “Departure”

●●○○○○

Epic behavior. Participant did not break the
actions in multiple steps, having informed all
the required data for searching in brackets.
The behavior “I choose” is nonetheless
adherent to the ontology.

And I choose “Paris” in the field “Destination”
And I choose “same day” in the field “Departure
Date”
And I choose “same day” in the field “Return Date”
And I choose “7 a.m.” in the field “Departure Time”
And I choose “7 p.m.” in the field “Return Time”

And I choose type of traveler “Guest”
And I choose “Guest” in the field “Type of
Traveler” ●●●●●○

Misspecification. Participant did not inform
“Type of Traveler” as a field name.

And I search And I click on “Search” ●●●●○○
Understatement. Participant omitted the type
of behavior that will trigger the searching.

Chapter 7: Case Study 1 - Understandability of User Stories

 158

Then several propositions Then will be displayed “List of Flights” ●●○○○○

High-level of abstraction. Participant omitted
the expected system behavior, only informing
that the result will be “several propositions” of
flights. “Several propositions” indeed will be
proposed in a “List of Flights”, so this is the
expected system output behavior.

And I choose the desired flights And I choose “the desired flights” ●●●●●○

Misspecification. Regardless being possible to
specify a sequential input behavior in a
“Then” clause, the participant is actually
describing a second scenario, where he/she
provides passenger’s data to effectively book
the flight (an input behavior). Considering this
step as part of a second scenario, the behavior
of choosing the desired flight is highly
adherent to the ontology.

When I inform the data concerning the traveler
(name, given name, birthdate, phone, mail), and
eventually the loyalty card (Flying Blue and Season
Ticket)

When I inform “name” in the field “Passenger’s
Name”

●●○○○○

Epic behavior. Once more, the participant
did not break the actions in multiple steps,
having informed all the required data in
brackets. The behavior “I inform” is
nonetheless adherent to the ontology.

When I inform “given name” in the field
“Passenger’s Given Name”
When I inform “birthdate” in the field “Passenger’s
Birthdate”
When I inform “phone” in the field “Passenger’s
Phone”
When I inform “mail” in the field “Passenger’s Mail”
When I inform “loyalty card” in the field
“Passenger’s Loyalty Card”

Then ticket waiting for validation
Then will be displayed “Ticket waiting for
validation” ●●●○○○

Misspecification. Once more, the participant
omitted the expected system behavior, only
informing that the expected result will be
“ticket waiting for validation”, without
describing which system’s behavior would be
responsible for doing this action. Considering
this is meant to be a system behavior, we
should note that a behavior defining a status
verification for tickets is typically a domain-
specific behavior, i.e. it only refers to (and

Chapter 7: Case Study 1 - Understandability of User Stories

 159

would make sense for) booking systems, so it
is not covered by the ontology.

Table 18. User Story Specification – Participant P1.

User Story Specification – Participant P2:

Behaviors Specified by the Participant Possible Correction Adherence Comments

- Title: Multi-destination flight search ○○○○○○
Lack of statement or keyword. Participant did
not title the story.

- Narrative: ○○○○○○
Lack of statement or keyword. Participant did
not use the keyword for describing the story.

As a frequent traveler - ●●●●●● Participant correctly identified the role.
I want to search for tickets, providing locations and
dates for a multi-destination trip

- ●●●●●● Participant correctly defined a clear feature.

So that I can obtain information about rates and
flight times - ●●●●●●

Participant correctly defined a clear business
benefit.

Scenario: Multi-destination searching - ●●●●●●
Participant correctly used the keyword with a
name for the scenario.

Behaviors Specified by the Participant Behaviors Defined in the Ontology Adherence Comments

Given I go to the page “Searching Flights” - ●●●●●●
Participant correctly used the behavior “I go
to the page”.

When I choose “Multi-destinations” - ●●●●●●
Participant correctly used the behavior “I
choose”.

And I type “Paris” and choose “Paris, Charles de
Gaulle” in the field “Departure” - ●●●●●●

Participant correctly used the behavior “I type
and choose in the field”.

And I type “Rio de Janeiro” in the field
“Destination” - ●●●●●●

Participant correctly used the behavior “I type
in the field”.

And I choose “15/02/17” in the field “Departure
Date” - ●●●●●●

Participant correctly used the behavior “I
choose in the field”.

And I choose “20/02/17” in the field “Return Date” - ●●●●●●
Participant correctly used the behavior “I
choose in the field”.

And I type “Rio de Janeiro” in the field “Departure” - ●●●●●●
Participant correctly used the behavior “I type
in the field”.

Chapter 7: Case Study 1 - Understandability of User Stories

 160

And I type “Porto Alegre” in the field “Destination” - ●●●●●●
Participant correctly used the behavior “I type
in the field”.

And I choose “17/02/17” in the field “Departure
Date” - ●●●●●●

Participant correctly used the behavior “I
choose in the field”.

And I choose “19/02/17” in the field “Return Date” - ●●●●●●
Participant correctly used the behavior “I
choose in the field”.

And I click on “Search” - ●●●●●●
Participant correctly used the behavior “I
click on”.

Then will be displayed the list of available flights Then will be displayed “the list of available flights” ●●●●●○

Minor writing complement. Participant only
forgot quotation marks to indicate (as a
variable) that “the list of available flights” is
the output expected from the system.

Table 19. User Story Specification – Participant P2.

User Story Specification – Participant P3:

Behaviors Specified by the Participant Possible Correction Adherence Comments

- Title: Checking Travel Authorizations ○○○○○○
Lack of statement or keyword. Participant did
not title the story.

- Narrative: ○○○○○○
Lack of statement or keyword. Participant did
not use the keyword for describing the story.

As a travel manager - ●●●●●● Participant correctly identified the role.
I want to check travel authorizations - ●●●●●● Participant correctly defined a clear feature.

So that I can ensure the confirmed bookings - ●●●●●●
Participant correctly defined a clear business
benefit.

Scenario: Listing travel authorizations - ●●●●●●
Participant correctly used the keyword with a
name for the scenario.

Behaviors Specified by the Participant Behaviors Defined in the Ontology Adherence Comments

Given I go to the tab “Travel Authorization” Given I go to “Travel Authorization” ●●●●●○
Minor writing complement. Participant added
the term “the tab” in the behavior “I go to”
which is not present in the ontology.

When I type the “Booking Reference”
When I type “XXX” in the field “Booking
Reference”

●●●●●○
Understatement. Participant has omitted
either the field name or the value that will be
affected by (or affect) this behavior.

Chapter 7: Case Study 1 - Understandability of User Stories

 161

OR

When I type “Booking Reference” in the field
“Booking Reference Field”

And I check if the request is well registered Then will be displayed “Request well registered” ●●○○○○

Misspecification. The participant did not
identify that the information about the
booking registration will be provided by the
system as an output. For that, a “Then” clause
should be used instead of a “When”. Besides
that, he/she also specified a domain-
dependent behavior, without identify how the
checking is supposed to be made. He/she
could instead use a common interactive
behavior presented in the ontology such as
“will be displayed”.

Then at this time, I can know for sure (or not) the
request has been taken into account

- ○○○○○○

Misspecification. This is not an interactive
behavior, but rather a cognitive task. This
could also be considered as a business benefit
of this story, and as such, it has been correctly
specified in the clause “So that” in the
beginning of the story.

And it’s shown a tab: authorized / non-authorized

And will be displayed “Authorized”

OR

And will be displayed “Non-Authorized”

●●●○○○

Misspecification. This step brings the
expected output of the system. The
participant expects to see a tab with a message
signalizing whether the booking is authorized
or not. This behavior has been put in a
“Then” clause, indicating the participant
actually understood that showing some
information after his/her interaction is a
system’s output. However, the participant did
not realize that he/she is supposed to inform
a valid *or* an invalid state, i.e. he/she should
have specified a scenario in which the system
would present an authorized booking, and
another (if he/she wants) specifying a scenario
in which the system would present an
unauthorized booking.

Chapter 7: Case Study 1 - Understandability of User Stories

 162

Table 20. User Story Specification – Participant P3.

User Story Specification – Participant P4:

Behaviors Specified by the Participant Possible Correction Adherence Comments

- Title: Searching flights to Paris ○○○○○○
Lack of statement or keyword. Participant did
not title the story.

- Narrative: ○○○○○○
Lack of statement or keyword. Participant did
not use the keyword for describing the story.

As an intern - ●●●●●● Participant correctly identified the role.

I want to book a flight to Paris departing on May 2nd
until May 10th - ●●●○○○

Wrong information. Participant mixed a
feature description with data for specifying a
testable scenario.

So that I can attend a seminar - ●●●●●●
Participant correctly defined a clear business
benefit.

Scenario: Scenario: Searching demanded tickets ●●●○○○
Lack of statement or keyword. Participant did
not title the scenario but used the appropriate
keyword.

Behaviors Specified by the Participant Behaviors Defined in the Ontology

Given I’m going to book my flight - ●○○○○○

Understatement. Participant did not identify
how or where the activity of booking will be
performed in the system. This step is
described more as an intent than as an actual
behavior.

When I provide all the information When I inform “…” ●○○○○○

High-level of abstraction. Participant did not
describe which kind of information should be
provided for the scenario. The supposed data
to be used here was mistakenly put when
specifying the feature in the narrative.

And I choose search by fares

And I click on “Search by fares”

OR

And I choose “Search by fares”
And I click on “Search”

●●●●●○

Misspecification. Supposing the system
provides different buttons for different types
of search, the participant could simply have
used the behavior “click on” (supported by
buttons) instead of the behavior “choose”.
Otherwise, “Choose by fares” is a domain-
dependent behavior, so for specifying a

Chapter 7: Case Study 1 - Understandability of User Stories

 163

domain-independent behavior, the participant
should rather have informed which option
he/she would choose (or select) to “search by
fares” and then submitting the search by
clicking on the respective button, for instance.

Then all the available flights for the date are
classified by ascending order of fares

Then will be displayed “List of available flights”
●○○○○○

Misspecification. Again, the participant did
lean on a domain-dependent behavior. To
specify an action for verifying the
arrangement of a list, it would be necessary an
ontological behavior allowing to classify
datasets in ascending (or even descending)
order. -

Table 21. User Story Specification – Participant P4.

Chapter 7: Case Study 1 - Understandability of User Stories

 164

7.6.3. Discussion

We present below a set of tables and charts consolidating different views of data extracted
from the tables above. Table 22 and Figure 90 illustrate the understandability of each statement
in the User Story specification. Therein, we isolated each one of the statements presented in the
template and analyzed, for each participant, the dispersion of results in each degree of adherence
stated in the methodology. Such a dispersion has been calculated as a median of the adherence
for each stratum proposed in the experimental design.

P1 P2 P3 P4

Title 0,00 0,00 0,00 0,00
Narrative 6,00 0,00 0,00 0,00

As a 3,00 6,00 6,00 6,00
I want 5,00 6,00 6,00 3,00
So that 5,00 6,00 6,00 6,00

Scenario 6,00 6,00 6,00 3,00
Given 5,00 6,00 5,00 1,00
When 3,00 6,00 3,50 3,00
Then 3,00 5,00 1,50 1,00

Table 22. Understandability of Each Statement in the User Story Specification.

Figure 90. Understandability of Each Statement in the User Story Specification.

Table 23 and Figure 92, and Table 24 and Figure 93 illustrate the general understandability
of each participant for User Story specification. The charts were built taken into account, for each
participant, the number of events in each stratum ranging from a null understanding of statements
to a full understanding of them. In this first chart (Figure 92) we consolidate only statements
presented in the template, but not covered by the ontology as an interactive behavior (narrative
section). Figure 93, on the other hand, illustrates the same information, but now considering only
the adherence to interactive behaviors addressed in the ontology (scenario section). Finally, Figure
91 gives us the general understandability of User Stories based on the data from all the four
participants. The chart summarizes the total amount of occurrences in each stratum of the
adherence scale.

Chapter 7: Case Study 1 - Understandability of User Stories

 165

Participants Null Very Low Low Medium High Very High Full
P1 1 0 0 1 0 2 2
P2 2 0 0 0 0 0 4
P3 2 0 0 0 0 0 4
P4 2 0 0 2 0 0 2

Table 23. Understandability in User Story Specification - Narrative (Number of occurrences in each stratum).

Participants Null Very Low Low Medium High Very High Full
P1 0 0 3 1 1 3 0
P2 0 0 0 0 0 1 11
P3 1 0 1 1 0 2 0
P4 0 3 0 0 0 1 0

Table 24. Adherence to the Ontology in User Story Specification - Scenario (Number of occurrences in each
stratum).

Figure 93. Adherence to the Ontology in User Story Specification - Scenario (Number of occurrences in each

stratum).

RQ 1. Are participants able to read/understand a basic User Story template and use it to write
their own stories?

First of all, concerning the understandability of User Stories (narrative section), we notice the
majority of participants neglected in titling and using the keyword “Narrative” in the beginning of
the stories. Only P1 used the keyword, but even him/her did not title the story. We are not sure

Figure 92. Understandability in User Story
Specification - Narrative (Number of occurrences in

each stratum).

Figure 91. General Understandability of User Stories
(Number of occurrences in each stratum).

Chapter 7: Case Study 1 - Understandability of User Stories

 166

about the main reasons for that. In a first approach, it seems more like a lack of attention from
the participants. All participants, except P1, identified a correct role (statement “As a”) for the
stories. P1 correctly identified a role, but mistakenly specified the guest as the role who would
benefit from the story, when actually it would be the travel manager. Concerning the feature
description (statement “I want”), we noticed a very good understanding of this statement, with
participants ranging from 5 to 6 in our scale, except P4. P4 has mixed the feature description with
data for specifying a testable scenario. Concerning the business benefit expected from the feature
(statement “So that”), all participants shared a very good understanding as well, ranging likewise
from 5 to 6.

We have also observed in these charts that the stories produced by P2 and P3 had identical
results, both with a majority of full adherence and a medium-to-low number of null adherence
statements. These last ones due to the lack of “Title” and “Narrative” sections of the story. P1
had a low level of null (absence of title) and medium (wrong information when identifying the
role) adherent statements, and a clear majority of very-high and full adherent statements. P4 had
an equal mix of null, medium and full adherent statements, with problems varying from absence
of keywords or sections until the presence of wrong information.

RQ 2. Which is the vocabulary the participants make use when writing their own User Stories?

Concerning the adherence to the ontology in User Stories specification, i.e. the adherence in
the section “Scenarios:”, we have noticed all the participants titled their scenarios, except P4, that
regardless use the right keyword, not titled his/her scenario. For the statement “Given”, we have
observed a tendency in users specifying more information to define where they are going to access
some feature. The ontology has specified a generic behavior named “I go to” and a variation to
“I go to the page”. However, while P1 used this convention, P2 and P3 have specified respectively,
“I go to the site” and “I go to the tab”, so at this point, somehow the ontology could be enriched
to recognize those variants as well. P4, on the other hand, specified a very generic behavior
(“Given I’m going to book my flight”), not identifying how or where the activity of booking will
be performed in the system. This step is described more as an intent than as an actual behavior.
For this statement then, P1, P2 and P3 scored a very high adherence (between 5 and 6), while P4
scored a very low adherence (1).

Concerning the statement “When”, we notice a mid-range understanding (between 3 and 3,50)
for P1, P3 and P4, and a full understanding (6) for P2. P1 produced what we classify as epic
behaviors, providing in a same step, several independent actions to be performed on the UI. P3
shared a well formulated step with a misspecification. The participant either confused an output
information (that should be specified in a “Then” statement) or specified a domain-dependent
behavior, not supported by the ontology scope. P4 specified a behavior with a high-level of
abstraction without describing which kind of information should be provided, along with a
domain-dependent behavior.

Finally, concerning the statement “Then”, we notice a pretty low understanding (between 1
and 1,50) for P3 and P4, a mid-range understanding (3) for P1 and a very high understanding (5)
for P2. P3 specified a kind of cognitive task in his/her first “Then” statement, defining much more
a business benefit than an interactive task. His/her second “Then” statement brings a
misspecification that despite specifying the expected output of the system, it does not comply with
a single valid or invalid state, expressing both states in the same expected output. P4 wrote a single
misspecified “Then” statement, indicating once more the use of a domain-dependent behavior.
P1 specified “Then” statements with a high-level of abstraction, along with small misspecifications,
being one of them related to the use of a new input interaction, and another related to the use of

Chapter 7: Case Study 1 - Understandability of User Stories

 167

a domain-specific behavior. P2 committed a really minor writing mistake, only forgetting to use
quotation marks to indicate a variable in the interactive behavior.

We have also observed P2 wrote a very high-adherent story with only some minor deviations,
especially when describing the narrative. In contrast, P4 wrote a very low-adherent story with the
majority of statements classified as having a very low adherence. P1 had half of low and medium
adherent statements along with half of high and very high ones. P3 had a slight majority of
statements flirting with the low-level stratum (a mix of null, low and medium) and the remaining
ones classified as very high adherence.

Looking at the general understandability of User Stories, we notice however a large majority
of statements classified as full or very high adherence to the template. From a total of 53
statements, 33 (62,26%) were classified in the top stratum (full, very high, and high adherence), 3
(5,66%) in the medium stratum, and the remaining 17 (32,08%) in the bottom stratum (low, very
low, and null adherence).

Figure 94. Number of occurrences in each category of adherence problems.

We have also analyzed the type of adherence problems found in the stories specified by the
participants. As explained in the adherence analysis section above, we have identified 7 types of
problems as follows: lack of statement or keyword, understatement, misspecification, wrong
information, minor writing complement, high-level of abstraction, and epic behavior. Figure 94
brings the number of occurrences in each category.

In a total of 30 adherence problems identified, we can observe in the chart that the most
common types of adherence problems have been the “lack of statement or keyword” and the
“misspecification” with 8 occurrences each. It is more than 50% of the problems found (53,33%).
“Wrong information”, “high-level of abstraction”, and “epic behavior” were, on the other hand,
the types of adherence problems less observed in the participants’ User Stories. With a total of 2
occurrences each, they represent singly no more than 7% of occurrences (6,67%).
“Understatement” and “Minor writing complement” complete the set, with each type reporting 4
occurrences, i.e. 13,33% of occurrences each.

Chapter 7: Case Study 1 - Understandability of User Stories

 168

Figure 95. Boxplot of each type of adherence problems identified in participants’ User Stories.

Figure 95 brings the boxplot of each type of adherence problems. Y-axis brings the scale of
adherence defined for this study and presented in the methodology section. We observe therein
that the category “misspecification” had the largest dispersion, ranging from 0 (null, with the lower
quartile near 1) to 5 (very high, coinciding with the upper quartile), with a median (and a mean)
at the medium stratum of adherence problems. “Understatement” had the second largest
dispersion, ranging from 1 (low, with the lower quartile near 2) to 5 (very high, coinciding with
the upper quartile) with a median at the top stratum (4,5) and the mean near the level 4 of
adherence. “High-level of abstraction” comes next with a dispersion between 1 (very low,
coinciding with the lower quartile) to 2 (low, coinciding with the upper quartile), with median and
mean in 1,5. “Lack of statement or keyword”, “wrong information”, “minor writing complement”,
and “epic behavior” had no dispersion, and achieved respectively a median of 0, 3, 5 and 2. Equal
results have been observed for the mean of these types of adherence problems (“lack of statement
or keyword” had a mean slightly above the median). Outliers have been observed for “lack of
statement or keyword” with just an occurrence of an adherence problem classified in the medium
stratum with all the others classified in the null stratum.

7.7. Findings and Implications

Based on the results discussed above, we can highlight some important findings about the
writing profile of User Stories specified by the participants. The wide dispersion of adherence
problems classified as “misspecification” means participants had a varied level of compliance for
the problems found in this class, since a slight mistaken identification of fieldnames until heavy
domain-dependent behaviors. By the way, we clearly noticed, by analyzing the type of adherence
problems committed by the participants, that the specification of domain-dependent behaviors
was one of the most frequent issues. Even with the high number of misspecifications, participants,
most of time, completely understood the purpose of a scenario, but as they did not know there
was a set of predefined interactive behaviors supposed to be followed, they freely specified the
desired behavior describing exactly what they expected from the system. This fact is confirmed
by the medium to low adherence in the “When” and “Then” statements of the story, where
typically reside the most interactive behaviors in a scenario, and consequently, where the ontology
is more used to specify them.

Chapter 7: Case Study 1 - Understandability of User Stories

 169

Concerning the general understandability of User Stories, we notice a clear concentration of
occurrences in the top stratum (62,26%), which signalizes an overall very good understanding of
User Stories in the proposed template and a limited but spontaneously use of our predefined
interactive behaviors presented in the ontology. Analyzing each statement of the stories
individually, we also notice a clear concentration of occurrences in the top stratum, exception
made for the aforementioned “When” and “Then” statements which are dispersed mostly
between the medium and the low stratum, and for “Title” and “Narrative” statements that were
almost always omitted by the participants, which occasioned consequently a null adherence for
both of them with only one exception.

“Understatement” problems, despite their high dispersion, presented a median at the top
stratum (4,5), which means the level of noncompliance for this kind of problem is very low, so
we conclude participants made, in general, just slight deviations from the proposed template.
“Lack of statement or keyword”, despite the high number of occurrences, was primarily found in
the “Title” and “Narrative” statements that were frequently omitted by the participants, which
explains the prevalence of null adherence for this type of problem. “High-level of abstraction”
and “epic behaviors” presented problems with a low level of adherence to the proposed template
once these kinds of problems are associated to descriptions with a low level of interaction details,
which is opposed to what is defined in the ontology. As expected, “minor writing complement”
had a very high rate of adherence with behaviors presenting only minor deviations from the
proposed template.

By looking for individual causes of the problems found, we observed P1 and P3 signalized a
medium understanding of the structure and the purpose of acceptance scenarios in the stories.
P1 and P3 stories performed primarily at the top stratum (very high and full adherences for P1,
and full adherence for P3) for the narrative section. For the scenario section however, P1 mixed
a performance of half occurrences at the top stratum (high and very high adherences) and half at
the medium to low stratum (medium and low adherences), while P3’s story performed primarily
at the medium to low stratum (null, low and medium adherences for 2/3 of occurrences) with the
remaining occurrences being classified as very high. P1 and P3 had the largest number of
behaviors marked as “misspecification”, confirming a particular difficulty to assimilate some
structures of User Stories in the proposed template, mixing primarily the writing of some domain-
dependent behaviors with “understatement” and “minor writing complement”.

Epic behaviors have been only specified by P1. In the context it has been made, a sequence
of data input in a form, this error could signalize the need of tables to enter a set of data in forms.
This kind of solution has been proposed by the FIT Framework6, however it is not covered by
our ontology so far. “High-level of abstraction” however has been observed in stories written by
P1 and P4. P4’s low performance (2/3 of occurrences classified in the null and medium
adherences for the narrative section, and the clear majority of occurrences classified as very low
for the scenario section) could find an explanation in the participant’s lack of experience in the
business processes at our institute (just a month), despite having 4 years of experience working
for other companies.

Analyzing the greatest performance and the highest adherence of P2’s stories (primarily at the
top stratum – very high and full adherences for the narrative section – with an overwhelming
majority of full adherent statements – with a single very high adherence – for the scenario section),
and being the second younger participant besides the second more experienced one, we wonder
about the role played by the sum of age and experience factors in the willingness and commitment

6 http://fit.c2.com/

Chapter 7: Case Study 1 - Understandability of User Stories

 170

to adopt new ways of work. P2 had clearly the better performance with the lowest ratio
age/experience in the group.

These findings bring us some opportunities for improving our current set of interactive
behaviors in the ontology. As stated before, the adoption of tables with data examples together
with the ontology could reduce the workload of describing input of data in forms and stimulate a
complete specification by users. The ontology could also be enriched to recognize variants for
the same interactive behavior. Participants of this study specified some behaviors very close to
the ontology statements, but with minor variants. The ontology has indeed a restricted vocabulary.
Even mapping synonyms for some specific behaviors, it does not provide any kind of semantic
interpretation, i.e. behaviors must be specified on stories exactly as they were defined in the
ontology. Further studies on Natural Language Processing (NLP) techniques might help to
improve the process of specification adding more flexibility to write scenarios that could be
semantically interpreted to meet the behaviors described in the ontology. This issue is certainly a
worthwhile topic for further research.

Another aspect to be considered is the high number of domain-dependent behaviors specified
by the participants. This point us out the need of considering a still higher level of descriptions
for our behaviors. Domain-specific behaviors have the disadvantage of being dependent on the
jargon used for each type of business processes, which would implicate in developing different
ontologies for different business processes, with each one encompassing the proper jargon of
each domain. Domain-specific ontologies nonetheless could act as a top layer in a multi-layer
ontology architecture to allow the use of multiple domain ontologies associated to the current
domain-independent ontology, which would remain describing only the fundamental interactive
behaviors for a given environment.

Going back to our stated research questions, we can conclude that results point to a high level
of understandability of User Stories when their structure is considered (narrative section and
scenario/given/when/then intents), i.e. the participants were able to read/understand a basic User
Story template and use it to write their own stories (RQ 1). We can also conclude the vocabulary
of the interactive behaviors described in the ontology was spontaneously used, even without a
specific prior training in the adopted vocabulary (RQ 2). As we highlighted in chapter 4, the
vocabulary chosen to describe such interactive behaviors emerged from our previous experiences
in scenarios specified for real projects, so we can infer it reflects somehow a natural writing
vocabulary for stakeholders. Nevertheless, this vocabulary could eventually be extended in the
future to support more representative phrases or expressions. Finally, we identified a total of 7
types of adherence problems in the participants’ User Stories, being “lack of statement or
keyword” and “misspecification” the most common ones.

7.7.1. Threats to Validity

Generalization of results. We have selected a representative group of participants as Product
Owners (POs) in a system for booking airline tickets for business trips. Such kind of system has
usually a strong search-based feature, once they are centered in providing and comparing rates,
times and availability of flights given a set of provided parameters. However, as the ontology in
which we based our analyses is designed for domain-independent interactive behaviors, we
assume our results would be reproduced in other interactive systems domains. The profile and
previous experiences of the participants could, nonetheless, bring different results. Experiments
involving Product Owners previously introduced to User Stories and/or test automation could
bring different and less frequent adherence problems.

Chapter 7: Case Study 1 - Understandability of User Stories

 171

Length of the sample. We have conducted this experiment with 4 participants that could
eventually assume a role of Product Owners in a typical scenario of software development. Our
results are certainly limited to the profile and experience of these four participants. Experiments
conducted with a bigger sample could bring different adherence problems and/or reduce the
variability of occurrences when looking to the whole group. It could eventually bring more
homogeneous results.

Absence of training. This experiment has been conducted without training the participants in
the adoption of interactive behaviors presented in the ontology. As stated before, this decision
was made because one of the goals of this study was to investigate in which extent the interactive
behaviors described in the ontology would be perceived as useful enough to be spontaneously
reproduced by the participants. Experiments involving prior training in the vocabulary used in
the ontology would certainly bring different results due to the background knowledge. However,
such results would not capture the spontaneous factor of users choosing their own vocabulary to
express their interaction needs. This factor is useful to identify the suitability of the predefined
interactive behaviors to naturally express the user’s intents.

Possible interpretation bias. Both the conduction of the experiment and the interpretation and
analysis of the results have been made by us. So, it is possible there has been a bias in the
interpretation of such results, especially when scaling the adherence of each statement in the
stories produced by the participants. At this point, the results are being cross-checked by an
independent reviewer in an attempt to reduce such a bias and mitigate this threat.

7.8. Conclusion

This chapter presented a study we have conducted to evaluate the understandability of User
Stories by potential Product Owners, represented by team members of the travel department in
our research institute. When analyzing the adherence of the User Stories produced by the
participants, the study has shown they had an overall good understanding of User Stories
statements and structure, and a moderate-to-high spontaneous understanding of the implicit
ontological patterns presented in the template they received.

An important remark we can notice is that all the stories written by the participants are, in
general, well suited to communicate a business intent or even a concrete feature of the system, if
testing automation is not a concern. Other studies (Wautelet et al., 2014) have investigated the
suitability of different templates for User Stories and how they could be improved to set an
agreement in their semantics and methodological elements, which could help to improve
communication between stakeholders. However, our focus in this study is mainly to investigate
how far off such stories are from the specification of our common ontological behaviors which
allow us running automated testing.

We also consider this study is highly reproducible once the ontology has general use intent
and specifies domain-independent interactive behaviors. As such, similar studies could be
conducted to evaluate the adherence of the ontology in different contexts. We also consider our
results can be generalized given the need of describing low level interactive behaviors for
automated User Stories would permeate software testing activities in any domains.

In short, we can summarize our findings as follows:

• Concerning the general understandability of User Stories, we notice a clear
concentration of occurrences in the top stratum (62,26%), which signalizes an overall

Chapter 7: Case Study 1 - Understandability of User Stories

 172

very good understanding of User Stories by the participants, with a limited but
spontaneously use of our predefined interactive behaviors presented in the ontology.

• We clearly noticed, by analyzing the type of adherence problems committed by the
participants, that the specification of domain-dependent behaviors was one of the most
frequent issues.

• “Understatement” problems, despite their high dispersion, presented a median at the
top stratum (80% of adherence), which means the level of noncompliance for this kind
of problem is very low.

• “Lack of statement or keyword”, despite the high number of occurrences, was
primarily found in the “Title” and “Narrative” statements that were frequently omitted
by the participants.

• “High-level of abstraction” and “epic behaviors” presented problems with a low level
of adherence to the proposed template.

As future works, we wonder about the impact of absence of training on the results. New studies
should be conducted to evaluate the potential impact of prior training sections with the
participants concerning the predefined interactive behaviors presented in the ontology before
conducting the experiment. Regardless this current study has as objective to evaluate the
spontaneous use of such behaviors by the participants, our hypothesis is that prior training could
probably enhance the level of adherence of the stories produced. We also wonder whether results
could have been influenced by the high-level of experience of the participants in the business
process. Studies with a larger sample and/or with participants with experience in User Stories
instead could attenuate this factor and bring different results.

 173

Chapter 8
Case Study II - Assessing User

Interface Design Artifacts

Summary

In this chapter, we reuse the User Stories created by our potential Product Owners in chapter 7.
This second study proposes to redesign (by the means of a reverse engineering of the current
software system) task models and user interface prototypes to assess their compatibility with the
user requirements expressed in such a system. To do that, we apply our proposed testing
approach to check the consistency of such artifacts along with the final user interface of the current
software system. The aim of this study is to identify which kind of inconsistency problems we can
found with our testing approach and to demonstrate its potential.

The first section of this chapter (section 8.1) presents the case study design, detailing how the
study was planned and executed. The second section (section 8.2) presents the set of
complementary User Stories we have developed to support the design and testing of the artifacts
developed for the case study. The third section (section 8.3) adds a group of selected test cases
with the aim of helping to validate such stories. The following sections present the modeling and
testing results for each one of the assessed artifacts: task models (in section 8.4), Balsamiq
prototypes (in section 8.5), and final UIs (in section 8.6).

In the section 8.7, we build a traceability mapping to follow the inconsistencies found in each one
of the target artifacts. Such mapping shows an edge-to-edge overall view of the testing scenarios,
signalizing where a given step has failed in each artifact and why. We finish by presenting our
findings and lessons learned in the section 8.8, as well as our conclusions on the effectiveness of
our testing approach and the impact of the inconsistencies identified in the assessment of artifacts
(section 8.9).

The present chapter considers the outputs of the study presented in the previous chapter by
exploiting new User Stories and modeling new reengineered user interface design artifacts for
testing. The following sections present how we have designed such a study, and in which extent
the results helped us to analyze the kind of inconsistency problems we can identify with the testing
approach we propose in this thesis.

8.1. Case Study Design

To conduct this study, we have refined the User Stories written by the participants to simulate
the assessment of user interface design artifacts obtained by reengineering the current system for
booking business trips presented in chapter 7. To do that, we have studied the current
implementation of user requirements in this current system, and by applying reverse engineering
(Chikofsky and Cross II, 1990), we redesigned the appropriate task models and user interface
prototypes for the system. The aim of this software reengineering is to have such artifacts to run
our tests and verify in which extent our approach is able to identify inconsistencies between them.

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 174

Our motivation for this study is to understand which kind of inconsistencies we can identify by
using this approach. Therefore, the main objectives of this case study are:

• To demonstrate the potential of the approach to assess user interface design artifacts;
• To identify which kind of inconsistencies we are able to point out by running our

testing approach in the set of reengineered artifacts for the business trip case study;
• To exemplify our approach as presented in chapters 5 and 6.

To achieve these goals, we planned our study divided in 6 steps as follows:

• Step 1: Format and add new User Stories based on the outputs from the previous study
and based on the current system implementation.

• Step 2: Add test cases to these User Stories.
• Step 3: Reengineer task models for the current system and run our approach to test

the developed scenarios.
• Step 4: Reengineer user interface prototypes for the current system and run our

approach to test the developed scenarios.
• Step 5: Run our approach to test the final user interface of the current system with the

same developed scenarios.
• Step 6: Trace the results and verify the extent of inconsistencies we were able to identify

in these multiple artifacts.

All these steps were performed by ourselves after conducting the previous study with the POs
in the business travel department. With the aim of simulating a software development lifecycle,
we firstly developed an initial version of User Stories and their test cases to act as our user
requirements and acceptance criteria. We then reengineered initial versions of the respective task
models and user interface prototypes to model such requirements. After getting ready a first
version of task models, we extracted a representative set of scenarios from them. By following
our strategy for testing, we run this initial version of User Stories to the initial set of scenarios
extracted from task models. Results were then evaluated, and we could observe the type of
inconsistency we succeeded identifying. As the strategy we follow for testing scenarios in both task
models and User Stories parses all the steps of each scenario at once, the first round of results is
obtained with a single battery of tests.

Following this step, we run the same initial version of User Stories to initial versions of user
interface prototypes designed using Balsamiq. Unlike the strategy for testing task models, the
strategy we follow for testing user interface prototypes and final UIs parses each step of the
scenario at a time, so if an error is found out, the test stops until the error is fixed. That requires
to run several batteries of tests until having the entire scenario tested. It leads us to fix all the
inconsistencies step-by-step, and consequently to get fully consistent scenarios at the end of
running. However, when analyzing the reason related of each inconsistency, we can eventually
conclude the origin of the inconsistency is actually in the specification of the step in the User
Story scenario, and not in the artifact itself. As a result of such, to fix such an inconsistency, steps
of User Story scenarios may also be modified along the battery of tests to comply with a consistent
specification of the user requirements. An immediate consequence of this fact is that the steps
used to test a given version of an artifact can be different than that ones used to test another artifact
previously. It means that regression tests are crucial to ensure that a given modification in the set
of User Stories scenarios did not break some previous test in other artifacts and made some
artifact (that so far was consistent with the requirements) inconsistent again.

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 175

We applied the same strategy to test the final user interfaces, once essentiality they are fully-
fledged versions of previous user interface prototypes. The difference here is that, by applying a
reverse engineering approach, we assume that the released version of the current booking system
(and evidently its final UI) represents the unequivocal statement of the user requirements, once
for the purpose of this study, we cannot modify them. As such, we have not the opportunity to
eventually redesign the final UI to comply with the User Stories we developed. As a consequence,
all the identified inconsistencies necessarily resulted in modifications in the steps, not in the final
UI.

Finally, we analyzed the results of testing in each artifact by mapping such results to identify
the trace of each inconsistency throughout the artifacts. That gave us a complete traceability
overview of each step of the User Stories in the target artifacts. During the execution of each step
of testing described above, we have collected and identified the reasons of failure in the
mentioned artifacts in order to answer our research question concerning the kind of
inconsistencies we are able to identify with this proposed approach. Such results allowed us to
evaluate the effectiveness of the approach and to identify future improvement opportunities.

8.2. Formatting and Adding New User Stories

Based on the stories identified during the interview sections and presented in the previous
chapter, we formatted them by following the ontology vocabulary and the template proposed in
chapter 3. We also added some new stories that we have identified as user requirements in the
current software system for booking business trips in our institute. In the User Story “Flight
Tickets Search” (Figure 96), we have scenarios for searching flights for a roundtrip (with and
without selecting all the optional fields), a one-way trip, and a multidestination trip. In the second
User Story “Select a suitable flight” (Figure 97), we have scenarios for selecting suitable flights
according to the results of searching. Finally, in the third User Story “Confirm Flight Selection”
(Figure 98), we have scenarios for confirming or declining the respective trips.

First User Story: informing multiple criteria to search flights:

User Story: Flight Tickets Search

Narrative:
As a IRIT researcher
I want to be able to search air tickets for my business trips, providing
destinations and dates
So that I can obtain information about rates and times of the flights.

Scenario: Successful Roundtrip Tickets Search
Given I go to "Flight Search"
When I select "Round Trip"
And I inform "Toulouse" and choose "Toulouse, Blagnac (TLS)" in the field
"Departure"
When I inform "Paris" and choose "Paris, Charles-de-Gaulle (CDG)" in the field
"Destination"
And I set "Sam, Déc 1, 2018" in the field "Departure Date"
When I set "Lun, Déc 10, 2018" in the field "Arrival Date"
And I submit "Search"
Then will be displayed "2. Sélectionner un voyage"

Scenario: Successful Roundtrip Tickets Search With Full Options
Given I go to "Book Flights"
When I inform "Toulouse" and choose "Toulouse, Blagnac (TLS)" in the field
"Departure"
And I inform "Paris" and choose "Paris, Charles-de-Gaulle (CDG)" in the field
"Destination"
When I set "Sam, Déc 1, 2018" in the field "Departure Date"

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 176

And I set "08:00" in the field "Departure Time Frame"
When I choose "Round Trip"
And I set "Lun, Déc 10, 2018" in the field "Arrival Date"
When I set "10:00" in the field "Arrival Time Frame"
And I choose the option of value "2" in the field "Number of Passengers"
When I set "6" in the field "Timeframe"
And I select "Direct Flights Only"
When I choose the option of value "Economique" in the field "Flight Class"
And I set "Air France" in the field "Companies"
When I submit "Search"
Then will be displayed "2. Sélectionner un voyage"

Scenario: Successful One-way Tickets Search
Given I go to "Book Flights"
When I inform "Toulouse" and choose "Toulouse, Blagnac (TLS)" in the field
"Departure"
And I inform "Paris" and choose "Paris, Charles-de-Gaulle (CDG)" in the field
"Destination"
When I set "Sam, Déc 1, 2018" in the field "Departure Date"
And I choose "One-way Trip"
When I submit "Search"
Then will be displayed "2. Sélectionner un voyage"

Scenario: Successful Multidestination Tickets Search
Given I go to "Book Flights"
When I choose "Multidestination Trip"
And I inform "Toulouse" and choose "Toulouse, Blagnac (TLS)" in the field
"Departure"
When I inform "Paris" and choose "Paris, Charles-de-Gaulle (CDG)" in the field
"Destination"
And I set "Sam, Déc 1, 2018" in the field "Departure Date"
When I inform "Paris" and choose "Paris, Charles-de-Gaulle (CDG)" in the field
"Departure"
And I inform "Nice" and choose "Nice, Côte D'Azur (NCE)" in the field "Destination"
When I set "Sam, Déc 10, 2018" in the field "Departure Date"
And I submit "Search"
Then will be displayed "2. Sélectionner un voyage"

Figure 96. User Story “Flight Tickets Search”.

Second User Story: selecting flights from a given list of available flights:

User Story: Select a suitable flight

Narrative:
As a IRIT researcher
I want to get a list of compatible flights (including their rates and times) in
accordance with my search criteria
So that I can select a suitable flight based on my needs.

Scenario: Select a Return Flight Searched Without Full Options
Successful Roundtrip Tickets Search
Given "Availability Page" is displayed
When I click on "No Bag" referring to "Air France 7519"
And I click on "No Bag" referring to "Air France 7522"
When I click on "Book"
Then will be displayed "J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s)."

Scenario: Select a Return Flight Searched With Full Options
Successful Roundtrip Tickets Search With Full Options
Given "Availability Page" is displayed
When I click on "No Bag" referring to "Air France 7519"
And I click on "No Bag" referring to "Air France 7522"
When I click on "Book"
Then will be displayed "J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s)."

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 177

Scenario: Select a One-way Flight
Successful One-way Tickets Search
Given "Availability Page" is displayed
When I click on "No Bag" referring to "Air France 7519"
And I click on "Book"
Then will be displayed "J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s)."

Scenario: Select a Multidestination Flight
Successful Multidestination Tickets Search
Given "Availability Page" is displayed
When I click on "No Bag" referring to "Air France 7519"
And I click on "No Bag" referring to "Air France 7700"
When I click on "Book"
Then will be displayed "J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s)."

Figure 97. User Story “Select a suitable flight”.

Third User Story: confirming (or declining) a selected trip:

User Story: Confirm Flight Selection

Narrative:
As a IRIT researcher
I want to get all the required data to confirm my flights
So that I can check the information, the fare rules and then finalize my booking.

Scenario: Confirm a Flight Selection
Select a Return Flight Searched Without Full Options
Given "Confirmation Page" is displayed
When I choose "J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s)."
And I click on "Finalize the trip"
Then will be displayed "Votre voyage a été confirmé!"

Scenario: Confirm a Flight Selection (Full Version)
Select a Return Flight Searched With Full Options
Given "Confirmation Page" is displayed
When I choose "I accept the General Terms and Conditions."
And I click on "Finalize the trip"
Then will be displayed "Votre voyage a été confirmé!"

Scenario: Confirm a Flight Selection for a One-Way Trip
Select a One-way Flight
Given "Confirmation Page" is displayed
When I choose "J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s)."
And I click on "Finalize the trip"
Then will be displayed "Votre voyage a été confirmé!"

Scenario: Confirm a Flight Selection for a Multidestination Trip
Select a Multidestination Flight
Given "Confirmation Page" is displayed
When I choose "J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s)."
And I click on "Finalize the trip"
Then will be displayed "Votre voyage a été confirmé!"

Scenario: Decline a Flight Selection
Select a One-way Flight
Given "Confirmation Page" is displayed
When I choose "J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s)."
And I click on "Decline the trip"
Then will be displayed "Votre voyage a été annulé!"

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 178

Figure 98. User Story “Confirm Flight Selection”.

8.3. Adding Testing Scenarios

By analyzing the business rules for this kind of system, we added two common test cases
(already explored in chapter 3) to the first User Story (“Flight Tickets Search”). These two test
cases (Figure 99) scenarize two error situations when trying to book a trip: (1) try to book it more
than one year in advance, and (2) try to book a return flight before the departure flight.

Scenario: Search for Flights More Than One Year in Advance
Given I go to "Book Flights"
When I inform "Toulouse" and choose "Toulouse, Blagnac (TLS)" in the field
"Departure"
And I inform "Paris" and choose "Paris, Charles-de-Gaulle (CDG)" in the field
"Destination"
When I set "Dim, Déc 1, 2019" in the field "Departure Date"
And I choose "One-way Trip"
When I submit "Search"
Then will be displayed "Erreur : Vous devez choisir une date de départ ultérieure
comprise entre 4 heures et 11 mois. Veuillez sélectionner une autre date. (10032)"

Scenario: Search for a Return Flight Before a Departure Flight
Given I go to "Book Flights"
When I inform "Toulouse" and choose "Toulouse, Blagnac (TLS)" in the field
"Departure"
And I inform "Paris" and choose "Paris, Charles-de-Gaulle (CDG)" in the field
"Destination"
When I set "Lun, Déc 10, 2018" in the field "Departure Date"
And I choose "Round Trip"
When I set "Sam, Déc 1, 2018" in the field "Arrival Date"
And I submit "Search"
Then will be displayed "Erreur : La date de retour ne peut pas être antérieure à la
date de départ."

Figure 99. Test scenarios for the User Stories.

8.4. Modeling and Assessing Task Models

Task models have been developed for this study by using the HAMSTERS tool. As we have
focused in the process of searching and demanding a booking of flights (without focusing on the
administrative procedure to confirm the flight), the four models below have been divided to cover
the processes of searching the flights, informing a flight leg (or a new flight leg in case of a
multidestination trip), and choosing and confirming (or declining) the selected trip.

Figure 100 presents the task model for searching flights using Travel Planet (the current system
of booking). All the tasks have been designed to be performed by end users of the system, i.e.
researchers from our institute booking their own flights, or the travel department team booking
flights on behalf of the researchers. The Search Flight feature encompasses accessing the search
flight page (task “Go to Book Flights”), informing at least one flight leg (abstract task “Inform a
Flight Leg”), providing flight data for searching (abstract task “Provide Data to Search”),
submitting the search (task “Submit Search”), and verifying the resultant list of flights (abstract
task “Verify List of Flights”). These four tasks are supposed to be performed exactly in this
sequence, so the operator “Enable” has been used.

To inform a flight leg (Figure 101), the user is supposed to inform departure and destination
data. Such data include informing a departure and arrival cities and based on a list of available
airports in those cities, selecting the ones he/she wants. Both tasks are mandatory and should be

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 179

performed sequentially, so the operator “Enable” has been used. After selecting the airports of
departure and arrival, the user must set in any order the departure date and the departure time
frame, being these last one an optional task.

Going back to providing flight data to search, the user can perform in any order (operator
“Order independent”) the following tasks: “Choose Trip Type”, “Adjust Timeframe”, “Select
Direct Flights Only”, “Define Flight Class”, and “Define Companies”, being the four last tasks
optional. For choosing trip types, the user has three options. If a round-trip is chosen, then a
sequence of two order-independent tasks can be performed by the user: “Set Arrival Date” and
“Set Arrival Time Frame”, being this last one optional. If a multi-destination trip is chosen, then
the user must inform at least one more flight leg (abstract task “Inform a New Flight Leg”),
performing the same interactive tasks from “Inform a Flight Leg”. Finally, if a one-way trip is
chosen, there is no additional tasks to perform for the abstract task of choosing a trip type. For

Figure 100. Task Model for Searching Flights using Travel Planet.

Figure 101. Task Model for Informing a Flight Leg in Travel Planet.

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 180

all the input tasks, notice that the data handling is shown with information being provided as input
for the task and objects being the output of these tasks.

After providing the data, the user can submit the search and get, as a result, a list of available
flights matching his/her criteria. At this point, the system returns such a list and the user can then
pick one of the available flights and confirm or decline his/her booking. For performing such
tasks, the abstract task “Choose Flights” has been modeled (Figure 102). To get it done, the user
must firstly evaluate the availability of flights (which is a cognitive analysis task), choose the desired
flight (which is a cognitive decision task), and then select the desired flight (which is indeed an
interactive input task). Optionally the user can change the fare profile for the flight he/she has
chosen, and then submit his/her choice. Lastly, the user checks the selected flights (a cognitive
task) and verify the fare conditions (a perceptive task). He/she then finally chooses between
decline the booking or conclude it.

8.4.1 Extracting Scenarios from the Task Models

Based on the task models presented above, we have extracted 10 scenarios to be tested. The
set of 10 scenarios are shown below in Figure 103. The first scenario is intended to book a regular
roundtrip (return trip) without including any data, whilst the second one is intended to the same
purpose but providing data for the objects values during the execution (data are shown between
brackets). The third scenario is intended to book a one-way trip, the fourth one to decline a one-
way trip, and the fifth one to book a multidestination trip. Each one of these last five scenarios
are accompanied by a similar scenario (presented at the right side of the figure), which does not
include the optional tasks, so totalizing the 10 scenarios to be tested.

Scenario 1: Successful Return Trip – Regular
Case

1 – Go to Book Flights
2 - Inform Departure City
3 - Provide List of Airports
4 - Choose Departure Airport
5 - Inform Arrival City
6 - Provide List of Airports
7 - Choose Arrival Airport
8 - Set Departure Date
9 - Set Departure Time Frame
10 - Set Arrival Date
11 - Set Arrival Time Frame
12 - Choose Number of Passengers
13 - Adjust Timeframe
14 - Select Direct Flights Only
15 - Define Flight Class
16 - Define Companies

Scenario 6: No Optional Successful Return Trip
- Regular Case

1 - Go to Book Flights
2 - Inform Departure City
3 - Provide List of Airports
4 - Choose Departure Airport
5 - Inform Arrival City
6 - Provide List of Airports
7 - Choose Arrival Airport
8 - Set Departure Date
9 - Set Arrival Date
10 - Choose Number of Passengers
11 - Submit Search
12 - Present List of Available Flights
13 - Request for Choosing a Flight
14 - Evaluate the Availability of Flights
15 - Choose the Desired Flight
16 - Select the Desired Flight

Figure 102. Task Model for Choosing a Flight in Travel Planet.

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 181

17 - Submit Search
18 - Present List of Available Flights
19 - Request for Choosing a Flight
20 - Evaluate the Availability of Flights
21 - Choose the Desired Flight
22 - Select the Desired Flight
23 - Submit the Choice
24 - Check the Selected Flights
25 - Conclude the Booking

17 - Submit the Choice
18 - Check the Selected Flights
19 - Conclude the Booking

Scenario 2: Return Trip With Data

1 – Go to Book Flights
2 - Inform Departure City ("Paris")
3 - Provide List of Airports
4 - Choose Departure Airport ("Paris, Charles-
de-Gaulle (CDG)")
5 - Inform Arrival City ("Dallas")
6 - Provide List of Airports
7 - Choose Arrival Airport ("Dallas, Aéroport
international de Dallas-Fort Worth (DFW)")
8 - Set Departure Date ("Sam, Déc 1, 2018")
9 - Set Departure Time Frame
10 - Set Arrival Date ("Lun, Déc 10, 2018")
11 - Set Arrival Time Frame
12 - Choose Number of Passengers ("1")
13 - Adjust Timeframe
14 - Select Direct Flights Only
15 - Define Flight Class
16 - Define Companies
17 - Submit Search
18 - Present List of Available Flights
19 - Request for Choosing a Flight
20 - Evaluate the Availability of Flights
21 - Choose the Desired Flight
22 - Select the Desired Flight ("Air France
6111, Air France 6134")
23 - Submit the Choice
24 - Check the Selected Flights
25 - Conclude the Booking

Scenario 7: No Optional Return Trip With Data

1 - Go to Book Flights
2 - Inform Departure City ("Paris")
3 - Provide List of Airports
4 - Choose Departure Airport ("Paris, Charles-
de-Gaulle (CDG)")
5 - Inform Arrival City ("Dallas")
6 - Provide List of Airports
7 - Choose Arrival Airport ("Dallas, Aéroport
international de Dallas-Fort Worth (DFW)")
8 - Set Departure Date ("Sam, Déc 1, 2018")
9 - Set Arrival Date ("Lun, Déc 10, 2018")
10 - Choose Number of Passengers ("1")
11 - Submit Search
12 - Present List of Available Flights
13 - Request for Choosing a Flight
14 - Evaluate the Availability of Flights
15 - Choose the Desired Flight
16 - Select the Desired Flight ("Air France
6111, Air France 6134")
17 - Submit the Choice
18 - Check the Selected Flights
19 - Conclude the Booking

Scenario 3: Successful One-Way Trip - Regular
Case

1 – Go to Book Flights
2 - Inform Departure City
3 - Provide List of Airports
4 - Choose Departure Airport
5 - Inform Arrival City
6 - Provide List of Airports
7 - Choose Arrival Airport
8 - Set Departure Date
9 - Set Departure Time Frame
10 - Choose One-way Trip
11 - Choose Number of Passengers
12 - Adjust Timeframe
13 - Select Direct Flights Only
14 - Define Flight Class
15 - Define Companies
16 - Submit Search
17 - Present List of Available Flights
18 - Request for Choosing a Flight
19 - Evaluate the Availability of Flights
20 - Choose the Desired Flight
21 - Select the Desired Flight
22 - Submit the Choice
23 - Check the Selected Flights
24 - Conclude the Booking

Scenario 8: No Optional Successful One-Way Trip
- Regular Case

1 - Go to Book Flights
2 - Inform Departure City
3 - Provide List of Airports
4 - Choose Departure Airport
5 - Inform Arrival City
6 - Provide List of Airports
7 - Choose Arrival Airport
8 - Set Departure Date
9 - Choose One-way Trip
10 - Choose Number of Passengers
11 - Submit Search
12 - Present List of Available Flights
13 - Request for Choosing a Flight
14 - Evaluate the Availability of Flights
15 - Choose the Desired Flight
16 - Select the Desired Flight
17 - Submit the Choice
18 - Check the Selected Flights
19 - Conclude the Booking

Scenario 4: One-Way Trip Declined

1 – Go to Book Flights
2 - Inform Departure City
3 - Provide List of Airports
4 - Choose Departure Airport
5 - Inform Arrival City
6 - Provide List of Airports
7 - Choose Arrival Airport
8 - Set Departure Date
9 - Set Departure Time Frame
10 - Choose One-way Trip
11 - Choose Number of Passengers

Scenario 9: No Optional One-Way Trip Declined

1 - Go to Book Flights
2 - Inform Departure City
3 - Provide List of Airports
4 - Choose Departure Airport
5 - Inform Arrival City
6 - Provide List of Airports
7 - Choose Arrival Airport
8 - Set Departure Date
9 - Choose One-way Trip
10 - Choose Number of Passengers
11 - Submit Search

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 182

Figure 103. Scenarios extracted to be tested.

8.4.2 Results

According to the testing strategy we presented in chapter 5, testing results are shown in a log
indicating, for each step of the User Story scenario, if and where a given step has found an
equivalent task in the XML file analyzed, and once it carries an object value associated, which
value it is. We have then assessed the task models, based on the set of extracted scenarios
presented above (Figure 103). Results of testing for a first complete scenario successfully booking
a roundtrip are show hereafter. Such a scenario was obtained by running the scenario “Confirm
a Flight Selection” from the User Story with the same name. This scenario calls the scenario
“Select a return flight searched without full options” which in turn calls the scenario “Successful
Roundtrip Tickets Search”. Corresponding tasks in the scenarios were searched according to the
Concept Mapping Table in the appendix of this thesis (appendix A).

Table 25 (and its correspondent chart in Figure 104) brings the results produced by our
algorithm when searching for the position of each one of the tasks that composes the scenario.
So, the lines of the table (and the legend of the chart) bring the steps in the User Story scenarios,
and the columns (and the series of the chart) bring the XML files of the scenarios extracted from
the task models. Zeros (0) in the table indicate that a correspondent task for a given step has not

12 - Adjust Timeframe
13 - Select Direct Flights Only
14 - Define Flight Class
15 - Define Companies
16 - Submit Search
17 - Present List of Available Flights
18 - Request for Choosing a Flight
19 - Evaluate the Availability of Flights
20 - Choose the Desired Flight
21 - Select the Desired Flight
22 - Submit the Choice
23 - Check the Selected Flights
24 - Decline the Booking

12 - Present List of Available Flights
13 - Request for Choosing a Flight
14 - Evaluate the Availability of Flights
15 - Choose the Desired Flight
16 - Select the Desired Flight
17 - Submit the Choice
18 - Check the Selected Flights
19 - Decline the Booking

Scenario 5: Successful Multidestination Trip -
Regular Case

1 – Go to Book Flights
2 - Inform Departure City
3 - Provide List of Airports
4 - Choose Departure Airport
5 - Inform Arrival City
6 - Provide List of Airports
7 - Choose Arrival Airport
8 - Set Departure Date
9 - Set Departure Time Frame
10 - Inform Departure City
11 - Provide List of Airports
12 - Choose Departure Airport
13 - Inform Arrival City
14 - Provide List of Airports
15 - Choose Arrival Airport
16 - Set Departure Date
17 - Set Departure Time Frame
18 - Choose Number of Passengers
19 - Adjust Timeframe
20 - Select Direct Flights Only
21 - Define Flight Class
22 - Define Companies
23 - Submit Search
24 - Present List of Available Flights
25 - Request for Choosing a Flight
26 - Evaluate the Availability of Flights
27 - Choose the Desired Flight
28 - Select the Desired Flight
29 - Submit the Choice
30 - Check the Selected Flights
31 - Conclude the Booking

Scenario 10: No Optional Successful
Multidestination Trip - Regular Case

1 – Go to Book Flights
2 - Inform Departure City
3 - Provide List of Airports
4 - Choose Departure Airport
5 - Inform Arrival City
6 - Provide List of Airports
7 - Choose Arrival Airport
8 - Set Departure Date
9 - Inform Departure City
10 - Provide List of Airports
11 - Choose Departure Airport
12 - Inform Arrival City
13 - Provide List of Airports
14 - Choose Arrival Airport
15 - Set Departure Date
16 - Choose Number of Passengers
17 - Submit Search
18 - Present List of Available Flights
19 - Request for Choosing a Flight
20 - Evaluate the Availability of Flights
21 - Choose the Desired Flight
22 - Select the Desired Flight
23 - Submit the Choice
24 - Check the Selected Flights
25 - Conclude the Booking

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 183

been found in the target file. Values different than zero indicate the position where a
correspondent task has been found in the target file. We highlighted in gray at the table which
column(s) bring(s) the most suitable target file(s) where the correspondence with the User Story
scenario was supposed to be found. For a fully consistent model, it would be necessary that each
step in the User Story scenario has found its correspondent task in the same position in the target
file. So, in this case, a straight vertical line of points would be seen in the chart below, indicating
that a sequential correspondence for each step was found. In the first tested scenario presented
above, such a correspondence was supposed to be found in the target file “No Optional
Successful Return Trip - Regular Case” once, theoretically, it represents the same user activities
in the task model.

8.4.2.1. First Scenario

Table 25. Scenario “Confirm a Flight Selection”.

Figure 104. Results of matching: scenario “Confirm a Flight Selection”.

Analyzing the results of this first round of tests, we can notice that most of steps has not found
a correspondent task in the target files, i.e. steps in the US scenarios and tasks in the task models
are not consistent somehow. The step at the position 1 (“Given I go to ‘Flight Search’”) has not
found a correspondent task in any target file because, in the task model, the equivalent task has
been modeled as “Go to Book Flights”, so an inconsistency has been found in the name, despite

Scenario: Confirm a Flight Selection
No Optional
Return Trip
With Data

No
Optional

Successful
Multidesti

nation
Trip -

Regular
Case

(Copy) No
Optional

Successful
Multidesti

nation
Trip -

Regular
Case

Successful
Return
Trip -

Regular
Case

Successful
Multidesti

nation
Trip -

Regular
Case

(Copy)
Successful
Multidesti

nation
Trip -

Regular
Case

No
Optional
One-Way

Trip
Declined

Return
Trip With

Data

No
Optional

Successful
Return
Trip -

Regular
Case

Successful
One-Way

Trip -
Regular

Case

One-Way
Trip

Declined

No
Optional

Successful
One-Way

Trip -
Regular

Case

Given I go to "Flight Search" 0 0 0 0 0 0 0 0 0 0

When I select "Round Trip" 0 0 0 0 0 0 0 0 0 0

And I inform "Toulouse" 0 0 0 0 0 0 0 0 0 0

and choose "Toulouse, Blagnac (TLS)" in the field "Departure" 0 0 0 0 0 0 0 0 0 0

When I inform "Paris" 0 0 0 0 0 0 0 0 0 0

and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Destination" 0 0 0 0 0 0 0 0 0 0

And I set "Sam, Déc 1, 2018" in the field "Departure Date" 8 8 15 8 16 8 8 8 8 8 8 8

When I set "Lun, Déc 10, 2018" in the field "Arrival Date" 9 0 10 0 0 10 9 0 0 0

And I submit "Search" 11 17 17 23 11 17 11 16 16 11

Then will be displayed "2. Sélectionner un voyage" 0 0 0 0 0 0 0 0 0 0

Given "Availability Page" is displayed 0 0 0 0 0 0 0 0 0 0

When I click on "No Bag" referring to "Air France 7519" 0 0 0 0 0 0 0 0 0 0

And I click on "No Bag" referring to "Air France 7522" 0 0 0 0 0 0 0 0 0 0

When I click on "Book" 0 0 0 0 0 0 0 0 0 0

Then will be displayed "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)." 0 0 0 0 0 0 0 0 0 0

Given "Confirmation Page" is displayed 0 0 0 0 0 0 0 0 0 0

When I choose "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)." 0 0 0 0 0 0 0 0 0 0

And I click on "Finalize the trip" 0 0 0 0 0 0 0 0 0 0

Then will be displayed "Votre voyage a été confirmé!" 0 0 0 0 0 0 0 0 0 0

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 184

the position is correct. The step at the position 2 (“When I select ‘Round Trip’”) has not found
a correspondent task in any target file due to a different reason. As the interactive task “Choose
Round Trip” in the task model (see Figure 100) has been modeled as a parent task of two leave
tasks (“Set Arrival Date” and “Set Arrival Time Frame”), when extracting scenarios from such a
model, only the leave tasks are kept, so the extracted scenario does never show the interactive
task “Choose Round Trip”. Particularly in this case, two other inconsistencies would be found as
well: the name of step and task would be different “Select ‘Round Trip’” vs. “Choose ‘Round
Trip’”, and the position in which such a task would appear is not the second one, once it is not
among the first user tasks according to the model.

Steps at the positions 3-4 and 5-6 concern respectively the set informing/choosing departure
and informing/choosing destination. Such tasks have been modeled (and extracted to scenarios)
as the triad “Inform Departure City / Provide List of Airports / Choose Departure Airport” and
“Inform Arrival City / Provide List of Airports / Choose Arrival Airport”. The intermediate task
“Provide List of Airports” (that models the output of the system to the user) has not been modeled
in the User Stories, so the step is just composed by the informing and choosing activities. For this
reason, such sequence would never find a correspondence in the model, which inevitably would
break the forward sequence of tasks in the scenarios. Additionally, another inconsistency that
would be identified is that the task model brings tasks named “Inform Departure (Arrival) City”
and “Choose Departure (Arrival) Airport”, while the algorithm would search for tasks named
“Inform Departure (Destination)” and “Choose Departure (Destination)”.

The step at the position 7 (“And I set ‘Sam, Déc 1, 2018’ in the field ‘Departure Date’”) has
found a correspondent task in all the target files, almost always at the position 8. This one-position
gap is due to the absence of the task “Choose Round Trip” that was not exported to the scenario
as explained above. Besides that, such a step has found two (instead of one) correspondent tasks
in the same file. This happened in the target files “Successful Multidestination Trip - Regular
Case” and “No Optional Successful Multidestination Trip - Regular Case”, exactly the two ones
that describe scenarios for a multidestination trip. As in a multidestination trip, the user must
inform at least two flight legs, he/she necessarily needs to inform a “Departure Date” two times,
one for each flight leg. That is the reason the algorithm finds the correspondent task “Set
Departure Date” two times in these two target files. In the first one, such a task has been found
at the positions 8 and 16, and in the second one at the positions 8 and 15. The second occurrence
of the task in these files has been marked as “(Copy)” in the table of results presented above.
Notice that the associated value informed during the extraction of scenario can also be checked
with the value specified in the step. The extracted scenario “Return Trip With Data” in both
versions (with and without optional tasks) brings the associated value “Sam, Déc 1, 2018” in the
results, that is exactly the same value informed for the correspondent step in the User Story.

The step at the position 8 (“When I set ‘Lun, Déc 10, 2018’ in the field ‘Arrival Date’”) has
found a correspondent task at the position 9 in the target files “No Optional Return Trip With
Data” and “No Optional Successful Return Trip - Regular Case”, and at the position 10 in the
target files “Successful Return Trip - Regular Case” and “Return Trip With Data”. The task “Set
Arrival Date” has been found only in those four files because it is only performed in scenarios
involving roundtrips (return trips), where an arrival data should be informed. Concerning the
position where this task has been found, in the “no-optional” files, it has been found at the
position 9 because despite the absence of the task “Choose Round Trip” (which would bring the
task “Set Arrival Date” to the position 7), the presence of the two tasks “Provide List of Airports”
to inform both departure and destination brings the task “Set Arrival Date” two positions forward,
putting it at the position 9. The position 10 in the target files with optional tasks is due to the

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 185

presence of the optional task “Set Departure Time Frame” right before the task “Set Arrival
Date”.

The step at the position 9 (“And I submit ‘Search’”) has found a correspondent task at
different positions in all the target files. The task “Submit Search” has been found at the position
11 in the “no-optional” files (except for the multidestination case that involves informing another
flight leg). Looking at the roundtrip case, it highlights an important inconsistency between the
scenario presented in the User Story and those extracted from the task model. Apart from the
aforementioned absence of the task “Choose Round Trip” and the presence of the two tasks
“Provide List of Airports” (which would bring the task “Submit Search” to the position 10), the
fact of being found at the position 11 is due to the presence of a previous task named “Choose
Number of Passengers” intended to choose the number of passengers that will be included in the
booking. This is a mandatory task in the task model but has not been specified as a step in the
User Story. It is up to requirements engineers and designers to analyze the models and identify if
such a task has been correctly modeled as a mandatory task (so the task model would be correct,
and the error would be in the User Stories), or if it is not the case and such a task should be
marked as optional in the task model (so the error would be in the task model and not in the
User Stories).

Steps from the position 10 until 19 have not found a correspondent task in any target file. At
the position 10, it was expected the task “Display 2. Sélectionner un voyage” and the task model
brings the task “Present List of Available Flights”. Actually, the task model describes the system
task intent which is to present the resulting list of available flights after the search. However, the
step in the User Story has opted to specify a given message that would be seen after submitting
the search. We can infer that the overall goal of both is the same, but they were specified
differently, so there is an inconsistency anyway. At the position 11, it was expected the task
“Display Availability Page” and the task model brings the task “Request for Choosing a Flight”.
The system action of requesting the user to choose a flight is performed in the availability page,
so both tasks could eventually aim at the same purpose, but they are not equivalent once they use
different specification strategies. The same occurs with the previous tasks discussed right before.

At the positions 12 and 13, the searched tasks “Click on No Bag” and “Click on No Bag”
would find a correspondence with the task “Select the Desired Flight”, but as they specify different
behaviors, they cannot be recognized as equivalent. At the position 14, it was expected the task
“Click on Book” and the task model brings the task “Submit the Choice”. Due to the use of
different semantic behaviors and the lack of context when analyzing only the tasks individually, it
is hard to conclude if both tasks intend actually to model the same behavior.

Steps at the positions 15, 16, 17 and 19 do not have tasks modeling the same behaviors in the
task model. The searched task “Click on Finalize the trip” at the position 18, just like the ones at
the positions from 12 until 14, would find a correspondence with the task “Conclude the
Booking” extracted from the task model, however they actually specify different behaviors, so
they cannot be recognized as equivalent. Notice finally that the tasks “Evaluate the Availability of
Flights”, “Choose the Desired Flight” and “Check the Selected Flights”, both of them included
in the scenarios extracted from the task models, are cognitive tasks, so they would not be
identifiable by the steps anyway.

Table 26 summarizes the main reasons of failure discussed above for each step of the User
Story. Tables (Table 27, Table 28, Table 29 and Table 30) and charts (Figure 105, Figure 106,

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 186

Figure 107 and Figure 108) which show the testing results for other scenarios are also presented
hereafter. The full log of execution for all scenarios can be found in the appendix B of this thesis.

Step Main reason of failure
1 - Given I go to ‘Flight Search’ Task with different name
2 - When I select ‘Round Trip’ Task not extracted to the scenario

3 - And I inform "Toulouse" Triple and not double sequence
of tasks in the task model

4 - … and choose "Toulouse, Blagnac (TLS)" in the field "Departure" Triple and not double sequence
of tasks in the task model

5 - When I inform ‘Paris’ … Triple and not double sequence
of tasks in the task model

6 - … and choose ‘Paris, Charles-de-Gaulle (CDG)’ in the field ‘Destination’ Triple and not double sequence
of tasks in the task model

7 - And I set ‘Sam, Déc 1, 2018’ in the field ‘Departure Date’ Wrong position
8 - When I set ‘Lun, Déc 10, 2018’ in the field ‘Arrival Date’ Wrong position

9 - And I submit ‘Search’ Inconsistency between modeling
and specification

10 - Then will be displayed ‘2. Sélectionner un voyage’ Different specification strategy
11 - Given ‘Availability Page’ is displayed Different specification strategy
12 - When I click on ‘No Bag’ referring to ‘Air France 7519’ Unpaired behaviors
13 - And I click on ‘No Bag’ referring to ‘Air France 7522’ Unpaired behaviors
14 - When I click on ‘Book’ Unpaired behaviors
15 - Then will be displayed ‘J'accepte les Conditions d'achat concernant le(s)
tarif(s) aérien(s).’

Equivalent behavior missing

16 - Given ‘Confirmation Page’ is displayed Equivalent behavior missing
17 - When I choose ‘J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s).’ Equivalent behavior missing

18 - And I click on ‘Finalize the trip’ Unpaired behaviors
19 - Then will be displayed ‘Votre voyage a été confirmé!’ Equivalent behavior missing

Table 26. Type of inconsistencies identified in scenarios extracted from task models.

8.4.2.2. Second Scenario

The second scenario “Confirm a Flight Selection (Full Version)” (Table 27, Figure 105)
describes the same roundtrip booking but using all the optional fields. Notice that this scenario
brings some fixtures for the inconsistency problems identified with the testing of the previous
scenario. For example, the first step has been modified to “Given I go to ‘Book Flights’” instead
of “Given I go to ‘Flight Search’”, and the step describing the roundtrip selection has been moved
forward. Other remarks can be made, notice that as this scenario describes a roundtrip by using
the full range of search options, optional steps are never found in the “no optional” target files.

Also notice that despite being found a correspondent task in all the target files, we can see
that the step “And I choose the option of value ‘2’ in the field ‘Number of Passengers’” sets the
value “2” for the field “Number of Passengers” while in the target file “Return Trip With Data”
in its both versions (with and without optional tasks), it has been informed the value “1” during
the execution. Considering that values specified for test cases are generally representative of a

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 187

data domain that may point out some failure in the system, it is important to look carefully at such
kind of inconsistency in the assessed artifacts.

Table 27. Scenario “Confirm a Flight Selection (Full Version)”.

Figure 105. Results of matching: scenario “Confirm a Flight Selection (Full Version)”.

8.4.2.3. Other Scenarios

Below are presented the results for other assessed scenarios, including scenarios to confirm
and decline a one-way trip, and confirm a multidestination trip. As discussed in chapter 5, as task
models are not designed to model user’s errors, scenarios from the User Stories which test error
situations were not assessed with the extracted task model scenarios. As user errors are not part
of a user goal, they are usually omitted from tasks descriptions, making this kind of test fail. Means
of representing these potential errors on task models is being recently studied (Fahssi, Martinie
and Palanque, 2015). Once it is implemented in the model, tests could run using the same
approach to identify this kind of error.

Scenario: Confirm a Flight Selection (Full Version)
No Optional
Return Trip
With Data

No
Optional

Successful
Multidesti

nation
Trip -

Regular
Case

(Copy) No
Optional

Successful
Multidesti

nation
Trip -

Regular
Case

Successful
Return
Trip -

Regular
Case

Successful
Multidesti

nation
Trip -

Regular
Case

(Copy)
Successful
Multidesti

nation
Trip -

Regular
Case

No
Optional
One-Way

Trip
Declined

Return
Trip With

Data

No
Optional

Successful
Return
Trip -

Regular
Case

Successful
One-Way

Trip -
Regular

Case

One-Way
Trip

Declined

No
Optional

Successful
One-Way

Trip -
Regular

Case

Given I go to "Book Flights" 1 1 1 1 1 1 1 1 1 1

When I inform "Toulouse" 0 0 0 0 0 0 0 0 0 0

and choose "Toulouse, Blagnac (TLS)" in the field "Departure" 0 0 0 0 0 0 0 0 0 0

And I inform "Paris" 0 0 0 0 0 0 0 0 0 0

and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Destination" 0 0 0 0 0 0 0 0 0 0

When I set "Sam, Déc 1, 2018" in the field "Departure Date" 8 8 15 8 16 8 8 8 8 8 8 8

And I set "08:00" in the field "Departure Time Frame" 0 0 9 17 9 0 9 0 9 9 0

When I choose "Round Trip" 0 0 0 0 0 0 0 0 0 0

And I set "Lun, Déc 10, 2018" in the field "Arrival Date" 9 0 10 0 0 10 9 0 0 0

When I set "10:00" in the field "Arrival Time Frame" 0 0 11 0 0 11 0 0 0 0

And I choose the option of value "2" in the field "Number of Passengers" 10 16 12 18 10 12 10 11 11 10

When I set "6" in the field "Timeframe" 0 0 0 0 0 0 0 0 0 0

And I select "Direct Flights Only" 0 0 14 20 0 14 0 13 13 0

When I choose the option of value "Economique" in the field "Flight Class" 0 0 0 0 0 0 0 0 0 0

And I set "Air France" in the field "Companies" 0 0 0 0 0 0 0 0 0 0

When I submit "Search" 11 17 17 23 11 17 11 16 16 11

Then will be displayed "2. Sélectionner un voyage" 0 0 0 0 0 0 0 0 0 0

Given "Availability Page" is displayed 0 0 0 0 0 0 0 0 0 0

When I click on "No Bag" referring to "Air France 7519" 0 0 0 0 0 0 0 0 0 0

And I click on "No Bag" referring to "Air France 7522" 0 0 0 0 0 0 0 0 0 0

When I click on "Book" 0 0 0 0 0 0 0 0 0 0

Then will be displayed "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)." 0 0 0 0 0 0 0 0 0 0

Given "Confirmation Page" is displayed 0 0 0 0 0 0 0 0 0 0

When I choose "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)." 0 0 0 0 0 0 0 0 0 0

And I click on "Finalize the trip" 0 0 0 0 0 0 0 0 0 0

Then will be displayed "Votre voyage a été confirmé!" 0 0 0 0 0 0 0 0 0 0

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 188

Table 28. Scenario “Confirm a Flight Selection for a One-Way Trip”.

Figure 106. Results of matching: scenario “Confirm a Flight Selection for a One-Way Trip”.

Table 29. Scenario “Confirm a Flight Selection for a Multidestination Trip”.

Scenario: Confirm a Flight Selection for a One-Way Trip

No Optional

Return Trip

With Data

No

Optional

Successful

Multidesti

nation

Trip -

Regular

Case

(Copy) No

Optional

Successful

Multidesti

nation

Trip -

Regular

Case

Successful

Return

Trip -

Regular

Case

Successful

Multidesti

nation

Trip -

Regular

Case

(Copy)

Successful

Multidesti

nation

Trip -

Regular

Case

No

Optional

One-Way

Trip

Declined

Return

Trip With

Data

No

Optional

Successful

Return

Trip -

Regular

Case

Successful

One-Way

Trip -

Regular

Case

One-Way

Trip

Declined

No

Optional

Successful

One-Way

Trip -

Regular

Case

Given I go to "Book Flights" 1 1 1 1 1 1 1 1 1 1

When I inform "Toulouse" 0 0 0 0 0 0 0 0 0 0

and choose "Toulouse, Blagnac (TLS)" in the field "Departure" 0 0 0 0 0 0 0 0 0 0

And I inform "Paris" 0 0 0 0 0 0 0 0 0 0

and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Destination" 0 0 0 0 0 0 0 0 0 0

When I set "Sam, Déc 1, 2018" in the field "Departure Date" 8 8 15 8 16 8 8 8 8 8 8 8

And I choose "One-way Trip" 0 0 0 0 9 0 0 10 10 9

When I submit "Search" 11 17 17 23 11 17 11 16 16 11

Then will be displayed "2. Sélectionner un voyage" 0 0 0 0 0 0 0 0 0 0

Given "Availability Page" is displayed 0 0 0 0 0 0 0 0 0 0

When I click on "No Bag" referring to "Air France 7519" 0 0 0 0 0 0 0 0 0 0

And I click on "Book" 0 0 0 0 0 0 0 0 0 0

Then will be displayed "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)." 0 0 0 0 0 0 0 0 0 0

Given "Confirmation Page" is displayed 0 0 0 0 0 0 0 0 0 0

When I choose "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)." 0 0 0 0 0 0 0 0 0 0

And I click on "Finalize the trip" 0 0 0 0 0 0 0 0 0 0

Then will be displayed "Votre voyage a été confirmé!" 0 0 0 0 0 0 0 0 0 0

Scenario: Confirm a Flight Selection for a Multidestination Trip
No Optional
Return Trip
With Data

No
Optional

Successful
Multidesti

nation
Trip -

Regular
Case

(Copy) No
Optional

Successful
Multidesti

nation
Trip -

Regular
Case

Successful
Return
Trip -

Regular
Case

Successful
Multidesti

nation
Trip -

Regular
Case

(Copy)
Successful
Multidesti

nation
Trip -

Regular
Case

No
Optional
One-Way

Trip
Declined

Return
Trip With

Data

No
Optional

Successful
Return
Trip -

Regular
Case

Successful
One-Way

Trip -
Regular

Case

One-Way
Trip

Declined

No
Optional

Successful
One-Way

Trip -
Regular

Case

Given I go to "Book Flights" 1 1 1 1 1 1 1 1 1 1

When I choose "Multidestination Trip" 0 0 0 0 0 0 0 0 0 0

And I inform "Toulouse" 0 0 0 0 0 0 0 0 0 0

and choose "Toulouse, Blagnac (TLS)" in the field "Departure" 0 0 0 0 0 0 0 0 0 0

When I inform "Paris" 0 0 0 0 0 0 0 0 0 0

and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Destination" 0 0 0 0 0 0 0 0 0 0

And I set "Sam, Déc 1, 2018" in the field "Departure Date" 8 8 15 8 16 8 8 8 8 8 8 8

When I inform "Paris" 0 0 0 0 0 0 0 0 0 0

and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Departure" 0 0 0 0 0 0 0 0 0 0

And I inform "Nice" 0 0 0 0 0 0 0 0 0 0

and choose "Nice, Côte D'Azur (NCE)" in the field "Destination" 0 0 0 0 0 0 0 0 0 0

When I set "Sam, Déc 10, 2018" in the field "Departure Date" 8 8 15 8 16 8 8 8 8 8 8 8

And I submit "Search" 11 17 17 23 11 17 11 16 16 11

Then will be displayed "2. Sélectionner un voyage" 0 0 0 0 0 0 0 0 0 0

Given "Availability Page" is displayed 0 0 0 0 0 0 0 0 0 0

When I click on "No Bag" referring to "Air France 7519" 0 0 0 0 0 0 0 0 0 0

And I click on "No Bag" referring to "Air France 7700" 0 0 0 0 0 0 0 0 0 0

When I click on "Book" 0 0 0 0 0 0 0 0 0 0

Then will be displayed "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)." 0 0 0 0 0 0 0 0 0 0

Given "Confirmation Page" is displayed 0 0 0 0 0 0 0 0 0 0

When I choose "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)." 0 0 0 0 0 0 0 0 0 0

And I click on "Finalize the trip" 0 0 0 0 0 0 0 0 0 0

Then will be displayed "Votre voyage a été confirmé!" 0 0 0 0 0 0 0 0 0 0

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 189

Figure 107. Results of matching: scenario “Confirm a Flight Selection for a Multidestination Trip”.

Table 30. Scenario “Decline a Flight Selection”.

Figure 108. Results of matching: scenario “Decline a Flight Selection”.

8.4.3 Types of Inconsistencies Identified

By summarizing the results presented above, below we formalize the types of inconsistencies
found by our testing approach when assessing the task models:

Scenario: Decline a Flight Selection

No Optional

Return Trip

With Data

No

Optional

Successful

Multidesti

nation

Trip -

Regular

Case

(Copy) No

Optional

Successful

Multidesti

nation

Trip -

Regular

Case

Successful

Return

Trip -

Regular

Case

Successful

Multidesti

nation

Trip -

Regular

Case

(Copy)

Successful

Multidesti

nation

Trip -

Regular

Case

No

Optional

One-Way

Trip

Declined

Return

Trip With

Data

No

Optional

Successful

Return

Trip -

Regular

Case

Successful

One-Way

Trip -

Regular

Case

One-Way

Trip

Declined

No

Optional

Successful

One-Way

Trip -

Regular

Case

Given I go to "Book Flights" 1 1 1 1 1 1 1 1 1 1

When I inform "Toulouse" 0 0 0 0 0 0 0 0 0 0

and choose "Toulouse, Blagnac (TLS)" in the field "Departure" 0 0 0 0 0 0 0 0 0 0

And I inform "Paris" 0 0 0 0 0 0 0 0 0 0

and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Destination" 0 0 0 0 0 0 0 0 0 0

When I set "Sam, Déc 1, 2018" in the field "Departure Date" 8 8 15 8 16 8 8 8 8 8 8 8

And I choose "One-way Trip" 0 0 0 0 9 0 0 10 10 9

When I submit "Search" 11 17 17 23 11 17 11 16 16 11

Then will be displayed "2. Sélectionner un voyage" 0 0 0 0 0 0 0 0 0 0

Given "Availability Page" is displayed 0 0 0 0 0 0 0 0 0 0

When I click on "No Bag" referring to "Air France 7519" 0 0 0 0 0 0 0 0 0 0

And I click on "Book" 0 0 0 0 0 0 0 0 0 0

Then will be displayed "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)." 0 0 0 0 0 0 0 0 0 0

Given "Confirmation Page" is displayed 0 0 0 0 0 0 0 0 0 0

When I choose "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)." 0 0 0 0 0 0 0 0 0 0

And I click on "Decline the trip" 0 0 0 0 0 0 0 0 0 0

Then will be displayed "Votre voyage a été annulé!" 0 0 0 0 0 0 0 0 0 0

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 190

• Task with different names, refers to tasks that are present both in the task model and in
the User Story scenario but written with a different name.

• Task not extracted to the scenario, refers to tasks that are effectively modeled in the task
model but, due to the type of operators used or the presence (or not) of other refined
tasks after them in the model, causes that, during the extraction process, such tasks do
not be taken to the extracted scenarios.

• Different number of sequences of tasks in the task model, occurs when there are more
tasks in the task model scenario than steps in the User Story scenario to accomplish the
same behavior.

• Wrong position, which is related to tasks that are found in different positions than their
equivalent steps in User Stories.

• Conflict between specification and modeling, refers to tasks modeled in the task model
(and consequently exported to its scenarios) that are not present the requirements
specification in the User Stories.

• Different specification strategies, refers to the specification of behaviors that could
eventually aim at the same purpose, but were specified using different strategies, i.e.
requiring to perform (or verify) different actions.

• Unpaired behaviors, refers to tasks that would find a correspondence with the steps in the
User Stories, but as they actually specify different behaviors, they cannot be recognized as
such.

• Equivalent behaviors missing, refers to behaviors that are really missing in the extracted
task model scenario, like steps that are present in the User Story, but cannot find
correspondent tasks in the task model.

8.5. Modeling and Assessing UI Prototypes

UI prototypes for this case study have been developed using Balsamiq Mockups. The
sequence of figures in Table 31 shows the different states and designs of the developed
prototypes. Figure 109 illustrates our first approach for a UI prototype to search flights. The
figure designs a UI for searching flights based on a round trip (and Figure 118 based on a one-
way/multidestination trip). On the right side (Figure 110), we present a changed UI redesigned to
fix the problems found during the batteries of tests. Figure 111 (and its redesign in Figure 112)
illustrates the next UI in sequence, showing the list of flights matching the selection criteria. When
the user selects one of the available flights, then the system turns out to the state shown in Figure
119. The user, at this state, can confirm his/her selection or change the fare profile of his/her
flight.

Figure 113 (redesigned in Figure 114) finally shows screens of confirmation of a flight
selection. On the prototype presented, the user can accept the general terms and conditions and
confirm his/her booking or withdraw his/her trip. In such a case, the system asks the user to
confirm his/her choice (Figure 116), and if confirmed, cancel the trip (Figure 117). If the user
does not confirm the withdrawing or opt to confirm the trip at the first stage, then the system
shows a message confirming the book has been taken into account (Figure 115).

Unlike the assessing of task models where we parse all the steps at once, to assess the UI
prototypes, we parse each step at a time. It means that if an error is found in a given step, the test
stops until it has been fixed. To discuss the results that we got by testing different versions of
Balsamiq prototypes, we present hereafter results of several batteries of testing in each version of
the prototypes developed to perform a successful roundtrip booking. We present sequentially
each step of the target scenario, the correspondent extracts of interaction elements in the

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 191

Balsamiq XML file, errors that have been found in a given battery, the solution proposed to fix
them, and finally the subsequent battery of tests following the fixes. Once the goal is to assess the
most possible number of interaction elements in the prototype, we have chosen to run our tests
presented below on the full versions of the scenarios, i.e. in those ones interacting with all the
optional fields.

We notice that the first battery of tests found an error already in the first step (“Given I go to
‘Book Flights’”). It was expected a correspondent element “BrowserWindow” associated to the
name “Book Flights” in the prototype, but the element found was a “SubTitle”. The
“BrowserWindow” was named “Travel Planet”, the name of the system under testing. As the
behavior “goTo” is supposed to be performed only in a window (and its variants), such a step
could not be performed in a field describing a subtitle, which is a semantically inconsistent filed
for that behavior. Actually, at this point, the designer realized that “Book Flights” was not a good
name for a window, once it refers to the whole process of booking a trip, and not only to the
window for searching flights specifically. As a solution to fix it, the window was named “Flight
Search” and both the scenario and the prototype have been updated.

In the second battery of tests, the steps 1, 2 and 3 passed, and an error was found in the step
4 (“When I set ‘Sam, Déc 1, 2018’ in the field ‘Departure Date’”). This error refers to the label
“Departure Date” that has been found in a different group than the element “DataChooser”
which was used to model it. As detailed in chapter 6, Balsamiq models elements either as
independent instances (i.e. with the name and the interaction element defined in the same tag),
or as part of a group (i.e. defining the name in the tag “label” and the interaction element itself in
another tag). In the second case, the group must be modeled as a single unit, with a unique
identifier. The label “Departure Date” was found in a given group and its interaction element
“DataChooser” in another one, so they could not be recognized as a single unit. To fix the error,
they were regrouped.

In the third battery of tests, the steps 4, 5 and 6 passed, and the same error was found in the
step 7 (And I set ‘Lun, Déc 10, 2018’ in the field ‘Arrival Date’”). The label “Arrival Date” and
its correspondent element “DataChooser” were found in different groups. The same solution to
fix it was applied. In the fourth battery of tests, the steps 7 and 8 passed, and an error was found
in the step 9 (And I choose the option of value ‘2’ in the field ‘Number of Passengers’”). The
field “Number of Passengers” was not found in the prototype. It was added to fix the error.

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 192

Figure 109. UI prototype for searching flights (first version).

Figure 110. UI prototype for searching flights (revised version after testing).

Scenario: Successful Roundtrip Tickets Search With Full Options

Battery Step Balsamiq extract (XML source file) Error

1 Given I go to “Book Flights” (FAILED)
(java.lang.AssertionError: expected:<1> but was:<0>)

<control controlID="2" controlTypeID="com.balsamiq.mockups::SubTitle"
x="588" y="244" w="-1" h="-1" measuredW="133" measuredH="27" zOrder="2"
locked="false" isInGroup="-1">
 <controlProperties>
 <text>Book%20Flights</text>
 </controlProperties>
</control>

Expected “BrowserWindow”, but
the element was “SubTitle”.

2 Given I go to “Flight Search”

<control controlID="0"
controlTypeID="com.balsamiq.mockups::BrowserWindow" x="567" y="146"
w="651" h="566" measuredW="450" measuredH="400" zOrder="0" locked="false"
isInGroup="-1">
 <controlProperties>
 <text>Flight%20Search</text>
 </controlProperties>
</control>

-

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 193

When I inform “Toulouse” and choose “Toulouse,
Blagnac (TLS)” in the field “Departure”

<control controlID="0" controlTypeID="com.balsamiq.mockups::SearchBox"
x="0" y="21" w="277" h="-1" measuredW="120" measuredH="25" zOrder="0"
locked="false" isInGroup="17">
 <controlProperties>
 <text>From</text>
 </controlProperties>
</control>
<control controlID="1" controlTypeID="com.balsamiq.mockups::Label" x="0"
y="0" w="88" h="-1" measuredW="60" measuredH="21" zOrder="1"
locked="false" isInGroup="17">
 <controlProperties>
 <text>Departure</text>
 </controlProperties>
</control>

-

And I inform “Paris” and choose “Paris, Charles-de-
Gaulle (CDG)” in the field “Destination”

<control controlID="0" controlTypeID="com.balsamiq.mockups::SearchBox"
x="0" y="21" w="277" h="-1" measuredW="120" measuredH="25" zOrder="0"
locked="false" isInGroup="18">
 <controlProperties>
 <text>To</text>
 </controlProperties>
</control>
<control controlID="1" controlTypeID="com.balsamiq.mockups::Label" x="0"
y="0" w="98" h="-1" measuredW="67" measuredH="21" zOrder="1"
locked="false" isInGroup="18">
 <controlProperties>
 <text>Destination</text>
 </controlProperties>
</control>

-

When I set “Sam, Déc 1, 2018” in the field
“Departure Date” (FAILED)
(java.lang.AssertionError: expected:<1> but was:<0>)

<control controlID="0" controlTypeID="com.balsamiq.mockups::Label" x="0"
y="0" w="-1" h="-1" measuredW="92" measuredH="21" zOrder="0"
locked="false" isInGroup="0">
 <controlProperties>
 <text>Departure%20Date</text>
 </controlProperties>
</control>
...
<control controlID="1" controlTypeID="com.balsamiq.mockups::DateChooser"
x="0" y="21" w="-1" h="-1" measuredW="90" measuredH="25" zOrder="1"
locked="false" isInGroup="22">
 <controlProperties>
 <text>%20%20/%20%20/%20%20%20%20</text>
 </controlProperties>
</control>

The label “Departure Date” and
the element “DataChooser” are in
different groups.

3

When I set “Sam, Déc 1, 2018” in the field
“Departure Date”

<control controlID="0" controlTypeID="com.balsamiq.mockups::Label" x="0"
y="0" w="-1" h="-1" measuredW="92" measuredH="21" zOrder="0"
locked="false" isInGroup="38">
 <controlProperties>
 <text>Departure%20Date</text>
 </controlProperties>
</control>
<control controlID="1" controlTypeID="com.balsamiq.mockups::DateChooser"
x="0" y="21" w="-1" h="-1" measuredW="90" measuredH="25" zOrder="1"
locked="false" isInGroup="38">
 <controlProperties>
 <text>%20%20/%20%20/%20%20%20%20</text>
 </controlProperties>
</control>

-

And I set “08:00” in the field “Departure Time
Frame”

<control controlID="24" controlTypeID="com.balsamiq.mockups::ComboBox"
x="702" y="396" w="-1" h="-1" measuredW="163" measuredH="24" zOrder="6"
locked="false" isInGroup="-1">
 <controlProperties>
 <text>Departure%20Time%20Frame</text>

-

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 194

 </controlProperties>
</control>

When I choose “Round Trip”

<control controlID="0" controlTypeID="com.balsamiq.mockups::RadioButton"
x="0" y="0" w="-1" h="-1" measuredW="77" measuredH="22" zOrder="0"
locked="false" isInGroup="32">
 <controlProperties>
 <state>selected</state>
 <text>Round%20trip</text>
 </controlProperties>
</control>

-

And I set “Lun, Déc 10, 2018” in the field “Arrival
Date” (FAILED)
(java.lang.AssertionError: expected:<1> but was:<0>)

<control controlID="0" controlTypeID="com.balsamiq.mockups::Label" x="0"
y="0" w="-1" h="-1" measuredW="69" measuredH="21" zOrder="0"
locked="false" isInGroup="0">
 <controlProperties>
 <text>Arrival%20Date</text>
 </controlProperties>
</control>
...
<control controlID="1" controlTypeID="com.balsamiq.mockups::DateChooser"
x="0" y="21" w="-1" h="-1" measuredW="90" measuredH="25" zOrder="1"
locked="false" isInGroup="23">
 <controlProperties>
 <text>%20%20/%20%20/%20%20%20%20</text>
 </controlProperties>
</control>

The label “Arrival Date” and the
element “DataChooser” are in
different groups.

4

And I set “Lun, Déc 10, 2018” in the field “Arrival
Date”

<control controlID="0" controlTypeID="com.balsamiq.mockups::DateChooser"
x="0" y="21" w="-1" h="-1" measuredW="90" measuredH="25" zOrder="0"
locked="false" isInGroup="41">
 <controlProperties>
 <text>%20%20/%20%20/%20%20%20%20</text>
 </controlProperties>
</control>
<control controlID="1" controlTypeID="com.balsamiq.mockups::Label" x="0"
y="0" w="-1" h="-1" measuredW="69" measuredH="21" zOrder="1"
locked="false" isInGroup="41">
 <controlProperties>
 <text>Arrival%20Date</text>
 </controlProperties>
</control>

-

When I set “10:00” in the field “Arrival Time Frame”

<control controlID="25" controlTypeID="com.balsamiq.mockups::ComboBox"
x="1048" y="396" w="-1" h="-1" measuredW="141" measuredH="24" zOrder="7"
locked="false" isInGroup="-1">
 <controlProperties>
 <text>Arrival%20Time%20Frame</text>
 </controlProperties>
</control>

-

And I choose the option of value “2” in the field
“Number of Passengers” (FAILED)
(java.lang.AssertionError: expected:<1> but was:<0>)

- The field “Number of Passengers”
does not exist.

5
And I choose the option of value “2” in the field
“Number of Passengers”

<control controlID="0" controlTypeID="com.balsamiq.mockups::ComboBox"
x="151" y="0" w="-1" h="-1" measuredW="36" measuredH="24" zOrder="0"
locked="false" isInGroup="44">
 <controlProperties>
 <text>1</text>
 </controlProperties>
</control>

-

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 195

<control controlID="1" controlTypeID="com.balsamiq.mockups::Label" x="0"
y="2" w="-1" h="-1" measuredW="136" measuredH="21" zOrder="1"
locked="false" isInGroup="44">
 <controlProperties>
 <text>Number%20of%20Passengers</text>
 </controlProperties>
</control>

When I set “6” in the field “Timeframe” (FAILED)
(java.lang.AssertionError: expected:<1> but was:<0>)

<control controlID="28" controlTypeID="com.balsamiq.mockups::ComboBox"
x="588" y="478" w="-1" h="-1" measuredW="100" measuredH="24" zOrder="9"
locked="false" isInGroup="-1">
 <controlProperties>
 <text>Time%20Frame</text>
 </controlProperties>
</control>

Expected field “Timeframe” but
was “Time Frame”.

6

When I set “6” in the field “Timeframe”

<control controlID="28" controlTypeID="com.balsamiq.mockups::ComboBox"
x="588" y="478" w="-1" h="-1" measuredW="100" measuredH="24" zOrder="9"
locked="false" isInGroup="-1">
 <controlProperties>
 <text>Timeframe</text>
 </controlProperties>
</control>

-

And I select “Direct Flights Only” (FAILED)
(java.lang.AssertionError: expected:<1> but was:<0>)

<control controlID="33" controlTypeID="com.balsamiq.mockups::CheckBox"
x="912" y="479" w="-1" h="-1" measuredW="125" measuredH="22" zOrder="11"
locked="false" isInGroup="-1">
 <controlProperties>
 <text>Only%20direct%20flights</text>
 </controlProperties>
</control>

Expected field “Direct Flights
Only” but was “Only direct flights”.

7

And I select “Direct Flights Only”

<control controlID="33" controlTypeID="com.balsamiq.mockups::CheckBox"
x="912" y="479" w="-1" h="-1" measuredW="125" measuredH="22" zOrder="11"
locked="false" isInGroup="-1">
 <controlProperties>
 <text>Direct%20Flights%20Only</text>
 </controlProperties>
</control>

-

When I choose the option of value “Economique” in
the field “Flight Class” (FAILED)
(java.lang.AssertionError: expected:<1> but was:<0>)

<control controlID="35" controlTypeID="com.balsamiq.mockups::ComboBox"
x="606" y="552" w="-1" h="-1" measuredW="64" measuredH="24" zOrder="12"
locked="false" isInGroup="-1">
 <controlProperties>
 <text>Class</text>
 </controlProperties>
</control>

Expected field “Flights Class” but
was “Class”.

8

When I choose the option of value “Economique” in
the field “Flight Class”

<control controlID="35" controlTypeID="com.balsamiq.mockups::ComboBox"
x="606" y="552" w="-1" h="-1" measuredW="64" measuredH="24" zOrder="12"
locked="false" isInGroup="-1">
 <controlProperties>
 <text>Flight%20Class</text>
 </controlProperties>
</control>

-

And I set “Air France” in the field “Companies”
(FAILED)
(java.lang.AssertionError: expected:<1> but was:<3>)

<control controlID="0" controlTypeID="com.balsamiq.mockups::SearchBox"
x="0" y="21" w="67" h="-1" measuredW="120" measuredH="24" zOrder="0"
locked="false" isInGroup="27">
 <controlProperties>
 <text/>
 </controlProperties>
</control>
<control controlID="1" controlTypeID="com.balsamiq.mockups::Label" x="0"
y="0" w="88" h="-1" measuredW="67" measuredH="21" zOrder="1"
locked="false" isInGroup="27">

Three elements “SearchBox” to
address the same field
“Companies”.

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 196

 <controlProperties>
 <text>Companies</text>
 </controlProperties>
</control>
<control controlID="2" controlTypeID="com.balsamiq.mockups::SearchBox"
x="81" y="21" w="67" h="-1" measuredW="120" measuredH="24" zOrder="2"
locked="false" isInGroup="27">
 <controlProperties>
 <text/>
 </controlProperties>
</control>
<control controlID="3" controlTypeID="com.balsamiq.mockups::SearchBox"
x="164" y="21" w="67" h="-1" measuredW="120" measuredH="24" zOrder="3"
locked="false" isInGroup="27">
 <controlProperties>
 <text/>
 </controlProperties>
</control>

9

And I set “Air France” in the field “Company 1”

<control controlID="0" controlTypeID="com.balsamiq.mockups::SearchBox"
x="0" y="21" w="67" h="-1" measuredW="120" measuredH="24" zOrder="0"
locked="false" isInGroup="27">
 <controlProperties>
 <text>Company%201</text>
 </controlProperties>
</control>
<control controlID="1" controlTypeID="com.balsamiq.mockups::Label" x="0"
y="0" w="88" h="-1" measuredW="67" measuredH="21" zOrder="1"
locked="false" isInGroup="27">
 <controlProperties>
 <text>Companies</text>
 </controlProperties>
</control>
<control controlID="2" controlTypeID="com.balsamiq.mockups::SearchBox"
x="81" y="21" w="67" h="-1" measuredW="120" measuredH="24" zOrder="2"
locked="false" isInGroup="27">
 <controlProperties>
 <text>Company%202</text>
 </controlProperties>
</control>
<control controlID="3" controlTypeID="com.balsamiq.mockups::SearchBox"
x="164" y="21" w="67" h="-1" measuredW="120" measuredH="24" zOrder="3"
locked="false" isInGroup="27">
 <controlProperties>
 <text>Company%203</text>
 </controlProperties>
</control>

-

When I submit “Search”

<control controlID="14" controlTypeID="com.balsamiq.mockups::Button"
x="1126" y="678" w="-1" h="-1" measuredW="63" measuredH="27" zOrder="5"
locked="false" isInGroup="-1">
 <controlProperties>
 <text>Search</text>
 </controlProperties>
</control>

-

Then will be displayed “2. Sélectionner un voyage”
(FAILED)
(java.lang.AssertionError: expected:<1> but was:<0>)

-
Dynamic behavior between
screens. Untraceable interaction.

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 197

Figure 111. UI prototype for choosing flights (first version).

Figure 112. UI prototype for choosing flights (revised version after testing).

Scenario: Select a Return Flight Searched With Full Options

Battery Step Balsamiq extract (XML source file) Error

1 Given “Availability Page” is displayed (FAILED)
(java.lang.AssertionError: expected:<1> but was:<0>)

- “Availability Page” does not exist.

2

Given “Availability Page” is displayed

<control controlID="0"
controlTypeID="com.balsamiq.mockups::BrowserWindow" x="567" y="146"
w="651" h="622" measuredW="450" measuredH="400" zOrder="0" locked="false"
isInGroup="-1">
 <controlProperties>
 <text>Availability%20Page</text>
 </controlProperties>
</control>

-

When I click on “No Bag” referring to “Air France
7519” (FAILED)
(java.lang.AssertionError: expected:<1> but was:<0>)

<control controlID="27" controlTypeID="com.balsamiq.mockups::DataGrid"
x="607" y="346" w="570" h="219" measuredW="518" measuredH="219"
zOrder="3" locked="false" isInGroup="-1">
 <controlProperties>
 <align>center</align>
 <borderStyle>none</borderStyle>
 <hLines>false</hLines>

Expected field “No Bag” but was
“Discount”.

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 198

 <map>%3Carea%20shape%3D%22rect%22%20coords%3D%22366...</map>
 <rowHeight>33</rowHeight>
 <text>Flight%2C%20Discount%2C%20Classic%2C%20Flex%...</text>
 <value>15</value>
 <verticalScrollbar>true</verticalScrollbar>
 <vLines>true</vLines>
 </controlProperties>
</control>

3

When I click on “No Bag” referring to “Air France
7519”

<control controlID="27" controlTypeID="com.balsamiq.mockups::DataGrid"
x="607" y="346" w="570" h="219" measuredW="516" measuredH="219"
zOrder="3" locked="false" isInGroup="-1">
 <controlProperties>
 <align>center</align>
 <borderStyle>none</borderStyle>
 <hLines>false</hLines>
 <map>%3Carea%20shape%3D%22rect%22%20coords%3D%22366...</map>
 <rowHeight>33</rowHeight>
 <text>Flight%2C%20No%20Bag%2C%20Classic%2C%20Flex%...</text>
 <value>15</value>
 <verticalScrollbar>true</verticalScrollbar>
 <vLines>true</vLines>
 </controlProperties>
</control>

-

And I click on “No Bag” referring to “Air France
7522”

<control controlID="27" controlTypeID="com.balsamiq.mockups::DataGrid"
x="607" y="346" w="570" h="219" measuredW="516" measuredH="219"
zOrder="3" locked="false" isInGroup="-1">
 <controlProperties>
 <align>center</align>
 <borderStyle>none</borderStyle>
 <hLines>false</hLines>
 <map>%3Carea%20shape%3D%22rect%22%20coords%3D%22366...</map>
 <rowHeight>33</rowHeight>
 <text>Flight%2C%20No%20Bag%2C%20Classic%2C%20Flex%...</text>
 <value>15</value>
 <verticalScrollbar>true</verticalScrollbar>
 <vLines>true</vLines>
 </controlProperties>
</control>

-

When I click on “Book”

<control controlID="34" controlTypeID="com.balsamiq.mockups::Button"
x="1097" y="665" w="-1" h="-1" measuredW="51" measuredH="27" zOrder="6"
locked="false" isInGroup="-1">
 <controlProperties>
 <state>disabled</state>
 <text>Book</text>
 </controlProperties>
</control>

-

Then will be displayed “J'accepte les Conditions
d'achat concernant le(s) tarif(s) aérien(s).” (FAILED)
(java.lang.AssertionError: expected:<1> but was:<0>)

-
Dynamic behavior between
screens. Untraceable interaction.

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 199

Figure 113. UI prototype for confirming a booking (first version).

Figure 114. UI prototype for confirming a booking (revised version after testing).

Scenario: Confirm a Flight Selection (Full Version)

Battery Step Balsamiq extract (XML source file) Error

1 Given “Confirmation Page” is displayed (FAILED)
(java.lang.AssertionError: expected:<1> but was:<0>)

-
“Confirmation Page” does not
exist.

2

Given “Confirmation Page” is displayed

<control controlID="0"
controlTypeID="com.balsamiq.mockups::BrowserWindow" x="567" y="146"
w="651" h="425" measuredW="450" measuredH="400" zOrder="0" locked="false"
isInGroup="-1">
 <controlProperties>
 <text>Confirmation%20Page</text>
 </controlProperties>
</control>

-

When I choose “J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s).”

<control controlID="30" controlTypeID="com.balsamiq.mockups::CheckBox"
x="588" y="455" w="-1" h="-1" measuredW="276" measuredH="22" zOrder="5"
locked="false" isInGroup="-1">
 <controlProperties>
 <text>I%20accept%20the%20General%20Terms%20and%20Conditions.</text>
 </controlProperties>
</control>

-

And I click on “Finalize the trip” (FAILED)
(java.lang.AssertionError: expected:<1> but was:<0>)

<control controlID="29" controlTypeID="com.balsamiq.mockups::Button"
x="1074" y="493" w="-1" h="-1" measuredW="119" measuredH="27" zOrder="4"
locked="false" isInGroup="-1">
 <controlProperties>
 <text>Confirm%20Booking</text>
 </controlProperties>
</control>

Expected field “Finalize the trip”
but was “Confirm Booking”.

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 200

Table 31. Test results in Balsamiq prototypes.

3

And I click on “Finalize the trip”

<control controlID="29" controlTypeID="com.balsamiq.mockups::Button"
x="1074" y="493" w="-1" h="-1" measuredW="119" measuredH="27" zOrder="4"
locked="false" isInGroup="-1">
 <controlProperties>
 <text>Finalize%20the%20trip</text>
 </controlProperties>
</control>

-

Then will be displayed “Votre voyage a été confirmé!”
(FAILED)
(java.lang.AssertionError: expected:<1> but was:<0>)

-
Dynamic behavior between
screens. Untraceable interaction.

Figure 115. UI prototype: Trip Confirmed.

Figure 116. UI prototype: Withdrawing confirmation.

Figure 117. UI prototype: Trip Canceled.

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 201

In the fifth battery of tests, the step 9 passed, and an error was found in the step 10 (When I
set ‘6’ in the field ‘Timeframe’”). The field “Timeframe” was named as “Time Frame”. The field
was renamed in the prototype to fix the inconsistency. The same occurred in the sixth and seventh
battery of tests, respectively with the fields “Direct Flights Only” (step 11) and “Flight Class” (step
12). They were named as “Only direct flights” and “Class” respectively. They were also renamed,
so the test passed.

In the eighth battery of tests, an error was found in the step 13 (And I set ‘Air France’ in the
field ‘Companies’”). Three elements “SearchBox” were found to address the same field named
only as “Companies”. The solution was to identify uniquely each one of the fields “SearchBox”,
once each one of them is able to receive different values during the interaction. If we redesign
the step to call specifically one of the fields (e.g. Company 1) the test passes, as we are interacting
with just a unique and determined field. If otherwise we call the group Companies as a whole, we
do not know with which field we should interact. The three fields were named respectively as
“Company 1”, “Company 2” and “Company 3”, leaving the name “Companies” to reference only
the group as a whole. Once again, both the scenario and the prototype have been updated.

In the ninth battery of tests, the steps 13 and 14 passed. For the step 15, at the end of the first
scenario, the message referenced by the last step is supposed to be displayed in another screen
as a result of the interaction. As stated in chapter 6, tests on prototypes at this level of refinement
do not consider the dynamic aspect of the interaction, so tests like this, involving navigation
between screens, will always fail.

Figure 118. UI prototype: Multidestination search.

Figure 119. UI prototype: Flight selected.

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 202

Following the booking process, the second scenario “Select a Return Flight Searched With
Full Options” ran only 3 batteries of tests until get a consistent prototype. The first battery found
an error in the element “Availability Page” that had not been found in the prototype. In the
second battery, the field “No Bag” was named as “Discount” in the grid. Finally, the third battery
fell in the case mentioned previously, which consists in checking a message that is supposed to
be displayed in the next screen as a result of the interaction.

The third and last scenario to conclude the booking (“Confirm a Flight Selection Full
Version”), also ran only 3 batteries of tests until get a consistent prototype. The first one found
the same error related to the name of the page. In the second one, the button “Finalize the trip”
was named as “Confirm Booking”, and the third and last battery felt in the case of dynamic
behavior between screens. Notice that the message “I accept the General Terms and Conditions”
in English was considered equivalent to the message “J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s).” in French.

In our further test releases with other scenarios, we got errors when testing the steps “And I
choose ‘One-way Trip’” and “When I choose ‘Multidestination Trip’” because these options do
not exist in the UI prototypes for searching flights. In fact, the correspondent option was named
“One-way / Multidestination”. Here we get an important inconsistency identified with the task
model. In the test of our extracted scenarios from the task models presented in the previous
section, we can notice that three tasks were modeled to select the trip type: one-way, roundtrip,
or multidestination. However, in this version of the prototype, it has been modeled only two
options: one for choosing a roundtrip, and another for choosing a one-way / multidestination trip.
This option has been made for the prototype because, in terms of interaction, the action required
for providing data for multidestination flights is actually the same of the one for providing data
for a set of one-way flights. In terms of user requirements, this is a conflicting specification, so
such an inconsistency must be shown up. Thus, either the prototype should follow what is
specified in the task model, or the task model should be fixed to support the interaction in the
way proposed by the prototype.

In the scenario “Successful Multidestination Tickets Search”, our algorithm has identified, as
expected, three fields named “Departure” and “Destination” when running respectively the steps
“And I inform ‘Toulouse’ and choose ‘Toulouse, Blagnac (TLS)’ in the field ‘Departure’” and
“When I inform ‘Paris’ and choose ‘Paris, Charles-de-Gaulle (CDG)’ in the field ‘Destination’”
[(FAILED) (java.lang.AssertionError: expected:<1> but was:<3>)]. As the designer just probably
replicated (copied and pasted) the three fields with the same name, with the purpose of illustrating
the change on the UI when the “One-way / Multidestination” option is selected, the group to
which such fields belonged has been maintained, so this set up the inconsistency. Otherwise, if
the fields had the same name, but belonged to different groups, an inconsistency would not be
signalized as it would indicate that the fields were intentionally modeled as different objects.

Finally, for the following step “And I set ‘Sam, Déc 1, 2018’ in the field ‘Departure Date’” in
the same scenario, the field “Departure Date” was also replicated, but the designer did not
associate the pair of elements (labels and actual fields) to a group, i.e. each element (label and
field) has been found belonging to distinct groups in each instance of the field “Departure Date”.
The inconsistency was also detected and signalized.

8.5.1. Types of Inconsistencies Identified

By summarizing the results presented above, below we formalize the types of inconsistencies
found by our testing approach when assessing the Balsamiq prototypes:

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 203

• Conflict between expected and actual elements, refers to elements that are specified
with different names in the step and in the prototype.

• Element and label in different groups, refers to the absence of group links between labels
and the actual interactive element in the prototype.

• Inexistent elements, refers to the real absence in the prototypes of elements that are
specified in the step.

• Element semantically inconsistent, refers to the use of interaction elements in the
prototype that are semantically inconsistent with the behavior they are supposed to model.

• More than one element to represent the same field, is caused when there are at least two
elements (or more) in the prototype which are of the same type and are placed in the
same group (or have the same name) of the searched field.

• Untraceable interaction between screens, refers to the cases where the interaction changes
the state of the interface, which is not identified in prototypes with the level of requirement
we are considering.

8.6. Assessing Final UIs

Unlike Balsamiq prototypes, testing on final UIs runs directly on the user interface, mimicking
all the actions that would be performed by a real user. However, despite the fact that we should
manually locate the identifiers of each interaction element on the interface and assign them in the
“MyPage” class (as detailed in chapter 6), the process of testing runs exactly like on the UI
prototypes, i.e. the algorithm parses each step of the User Stories at a time. It means that if an
error is found in a given step, the test stops until it has been fixed. The testing of the final UIs in
our case study was conducted directly on the UIs of the current system for booking business travel
in our institute. The system is hosted in our intranet, so an additional story to access the system
from our intranet login page was necessary. This story is presented below:

User Story: Access to Travel Planet

Narrative:
As a UPS registered user
I want to be able to reach the system feature of searching flights
So that I get access to the Travel Planet system

Scenario: Proceed to Login

Given I go to "UPS Login Page"
When I set "username" in the field "Username"
And I set "password" in the field "Password"
When I click on "Login"
Then will be displayed "Intranet (Personnel administratif et technique-
Enseignants)"

Scenario: Reach the Travel Planet Search Page

Given I go to "Travel Planet Search Page"
When I click on "Réservations Online"
And I click on "Réserver"
When I click on "Avion"
Then will be displayed "Avion"

The first battery of tests has identified an error with the step “Then will be displayed ‘2.
Sélectionner un voyage’” in the first scenario “Successful Roundtrip Tickets Search”. The current
message displayed by the system is actually “Choisissez vos vols aller et retour, puis cliquez sur
Réserver.”, so the step was updated. Following this, when running the second scenario “Successful
Roundtrip Tickets Search With Full Options”, the second battery of tests identified a problem

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 204

with the identification/location of the field “Departure Time Frame”. The same occurred with
the field “Arrival Time Frame” (third battery). In the fourth battery, the test identified the absence
of the field “Number of Passengers” on the UI. In fact, unlike the task model and the Balsamiq
prototype, the final UI did not implement this field, so it is an important inconsistency to be
verified. In fifth and sixth batteries, the fields “Timeframe” and “Flight Class” were not located
as well, due to the same reason of the fields “Departure Time Frame” and “Arrival Time Frame”.
We noticed that these four fields are Selects (Combo Boxes), so for some unknown reason, the
implementation of such fields on the final UI does not allow to identify them either using IDs or
XPaths. As during this study, we had no access to the source code of the application to implement
some correction and run the test again, we decided to cut the respective steps off the scenario.

In the seventh battery, the test identified an error with the length of the field “Company 1”.
The Text Field implemented on the UI supports only two characters, so the value “Air France”
does not fit. In fact, the user must inform a two-character internal code for the company he/she
wants to select. In this case, the appropriate code for “Air France” is “AF”, so the value in the
step was updated to this value. In the eight battery of tests, all the steps for the second scenario
succeeded running, and the third scenario “Successful One-way Tickets Search” started to run.
An error was identified just in the last step where the message “Choisissez vos vols aller et retour,
puis cliquez sur Réserver.” was expected, but the message shown on the UI was “Choisissez vos
vols, puis cliquez sur Réserver.”. The step was adjusted appropriately to make the test passes.

In the ninth battery running the scenario “Successful Multidestination Tickets Search”, the
step “When I inform ‘Paris’ and choose ‘Paris, Charles-de-Gaulle (CDG)’ in the field
‘Departure’” has failed once the field “Departure” had already been field before with “Toulouse,
Blagnac (TLS)” as the first departure of a multidestination trip. The field had to be renamed to
correctly identify the second departure field. It was named as “Departure 2”. The same solution
was applied to the second instances of “Destination” (that was renamed to “Destination 2”), and
“Departure Date” (that was renamed to “Departure Date 2”).

In the tenth battery of tests, an error was identified just in the last step where the message
“Choisissez vos vols, puis cliquez sur Réserver.” was expected, but the system actually showed a
different message for multidestination trips. It shows “Choisissez vos vols ou trains, puis cliquez
sur Réserver.”. The step was adjusted appropriately to make the test passes. Finally, the eleventh
battery got all the scenarios passed and then the User Story “Flight Ticket Search” could be
entirely validated.

In the twelfth battery of tests, an error was found in the step “And I click on ‘No Bag’ referring
to ‘Air France 7522’” for the scenario “Select a Return Flight Searched Without Full Options”.
The field “No Bag” has already been filled by the previous step “When I click on ‘No Bag’
referring to ‘Air France 7519’”, so the test fails. Besides that, the flight Air France 7522 was not
available for booking anymore, so we changed for the flight Air France 7518. At the end, the
solution was to give different names for each field referencing each mentioned flight. So, both
steps were rewritten to “When I click on ‘Air France 7519’ referring to ‘No Bag’” and “And I
click on ‘Air France 7518’ referring to ‘No Bag’” in order to create unique identifiers for the
flights.

The thirteenth battery of tests run successfully the scenarios “Select a Return Flight Searched
With Full Options” and “Select a One-way Flight”, but stopped with an error in the step “And I
click on ‘Air France 7700’ referring to ‘No Bag’” for the scenario “Select a Multidestination
Flight”. For multidestination trips, the final version of the UI actually added an additional step
before reaching the second flight leg. The user must now select the first flight leg, put the flight in

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 205

a basket, and only then select the flight for the second flight leg. In terms of interaction, such a
decision is inconsistent with the user requirements previously described in task models and
prototypes, so the test failed, and the inconsistency is shown up. Once more, in a real case of
software development, designers and requirements engineers must decide which interaction
solution would be picked up, update the models accordingly, and then run new batteries of
regression tests to ensure everything is consistent. For the fourteenth battery of tests, we updated
the respective scenario to add this additional step. Additionally, we also changed for the flight
“easyJet 3985” once the “Air France 7700” was not available anymore. That got all the scenarios
passed and then the User Story “Select a Suitable Flight” could be entirely validated.

In the fifteenth and last battery of tests, we got all the remaining scenarios for the User Story
“Confirm Flight Selection” passed. Nonetheless, we intentionally did not conclude the four first
scenarios once they would effectively register a fake business trip for the user, so they were set as
pending. Notice that the last scenario “Decline a Flight Selection” was updated both in Balsamiq
prototypes and in the final UIs. A last step for confirming the withdrawal through a dialog box
was added, and the agreement with the general terms and conditions was removed.

Table 32 below shows all the results of the 15 batteries of tests, highlighting step by step all
the errors found, and the respective interaction elements affected by them. Screenshots of the
final UIs under testing are also presented along with the scenarios (Figure 120, Figure 121, Figure
122, Figure 123, Figure 124, Figure 125 and Figure 126).

8.6.1. Types of Inconsistencies Identified

By summarizing the results presented above, below we formalize the types of inconsistencies
found by our testing approach when assessing the final UIs:

• Message not identified, refers to messages that are changing constantly, or to the presence
of conflicting messages.

• Element or value not found, refers to fields or values that are expected to be shown on
the user interface (and are able to be identified by the locators there) but, due the dynamic
data behavior in the system, are not shown up.

• Inexistent elements, refers to elements that are mentioned in the step as part of the
requirements specification, but simply have not been implemented on the final UI.

• Values that do not fit the field, refers to values mentioned in the step that do not fit the
field they were designed to fill in.

• Fields already filled in, refers to fields that were already filled in when a given step tries to
reach them.

• Element not identified, refers to elements that do not carry a unique and single identifier
(or carry a dynamic generated one) and/or cannot be reached by using their XPaths.

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 206

Figure 120. Final UI for searching flights.

Figure 121. Final UI for searching multidestination
flights.

Figure 122. Final UI for choosing flights.

Battery
Scenario: Successful Roundtrip Tickets Search

Step Error Interaction Element Affected

1

Proceed to Login - -

Reach the Travel Planet Search Page - -

Given I go to “Flight Search” - -

When I select “Round Trip” - -

And I inform “Toulouse” and choose “Toulouse, Blagnac (TLS)” in the field “Departure” - -

When I inform “Paris” and choose “Paris, Charles-de-Gaulle (CDG)” in the field “Destination” - -

And I set “Sam, Déc 1, 2018” in the field “Departure Date” - -

When I set “Lun, Déc 10, 2018” in the field “Arrival Date” - -

And I submit “Search” - -

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 207

Then will be displayed “2. Sélectionner un voyage” (FAILED) Message not identified <p class="availHint">Choisissez vos vols aller et
retour, puis cliquez sur Réserver.</p>

2

Then will be displayed “Choisissez vos vols aller et retour, puis cliquez sur Réserver.” - -

Scenario: Successful Roundtrip Tickets Search With Full Options

Reach the Travel Planet Search Page - -

Given I go to “Flight Search” - -

When I inform “Toulouse” and choose “Toulouse, Blagnac (TLS)” in the field “Departure” - -

And I inform “Paris” and choose “Paris, Charles-de-Gaulle (CDG)” in the field “Destination” - -

When I set “Sam, Déc 1, 2018” in the field “Departure Date” - -

And I set “08:00” in the field “Departure Time Frame” (FAILED) Element not identified

@ElementMap(name = "Departure Time Frame",
locatorType = ElementLocatorType.XPath, locator =
"//*[@id='tripDate_1']/fieldset/div/span/div/sele
ct")
private Select DepartureTime;

3

And I set “08:00” in the field “Departure Time Frame” - -

When I choose “Round Trip” - -

And I set “Lun, Déc 10, 2018” in the field “Arrival Date” - -

When I set “10:00” in the field “Arrival Time Frame” (FAILED) Element not identified

@ElementMap(name = "Arrival Time Frame",
locatorType = ElementLocatorType.XPath, locator =
"//*[@id='tripDate_2']/fieldset/div/span/div/sele
ct")
private Select ReturnTime;

4

When I set “10:00” in the field “Arrival Time Frame” - -

And I choose the option of value “2” in the field “Number of Passengers” (FAILED) Element not found in
“Flight Search”

-

5

And I choose the option of value “2” in the field “Number of Passengers” - -

When I set “6” in the field “Timeframe” (FAILED) Element not identified
@ElementMap(name = "Timeframe", locatorType =
ElementLocatorType.XPath, locator =
".//*[@id='atwsel29']")
private Select TimeFrame;

6

When I set “6” in the field “Timeframe” - -

And I select “Direct Flights Only” - -

When I choose the option of value “Economique” in the field “Flight Class” (FAILED) Element not identified
@ElementMap(name = "Flight Class", locatorType =
ElementLocatorType.XPath, locator =
"//*[@id='acssel24']")
private Select FlightClass;

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 208

7

When I choose the option of value “Economique” in the field “Flight Class” - -

And I set “Air France” in the field “Company 1” (FAILED) Value does not fit the
field

@ElementMap(name = "Company 1", locatorType =
ElementLocatorType.XPath, locator =
"//*[@id='FP1']")
private TextField CompanyOne;

8

And I set “AF” in the field “Company 1” - -

When I submit “Search” - -

Then will be displayed “Choisissez vos vols aller et retour, puis cliquez sur Réserver.” - -

Scenario: Successful One-way Tickets Search

Reach the Travel Planet Search Page - -

Given I go to “Flight Search” - -

When I inform “Toulouse” and choose “Toulouse, Blagnac (TLS)” in the field “Departure” - -

And I inform “Paris” and choose “Paris, Charles-de-Gaulle (CDG)” in the field “Destination” - -

When I set “Sam, Déc 1, 2018” in the field “Departure Date” - -

And I choose “One-way / Multidestination” - -

When I submit “Search” - -

Then will be displayed “Choisissez vos vols aller et retour, puis cliquez sur Réserver.”
(FAILED) Message not identified <p class="availHint">Choisissez vos vols, puis

cliquez sur Réserver.</p>

9

Then will be displayed “Choisissez vos vols, puis cliquez sur Réserver.” - -

Scenario: Successful Multidestination Tickets Search

Reach the Travel Planet Search Page - -

Given I go to “Flight Search” - -

When I choose “One-way / Multidestination” - -

When I inform “Toulouse” and choose “Toulouse, Blagnac (TLS)” in the field “Departure” - -

And I inform “Paris” and choose “Paris, Charles-de-Gaulle (CDG)” in the field “Destination” - -

When I set “Sam, Déc 1, 2018” in the field “Departure Date” - -

When I inform "Paris" and choose “Paris, Charles-de-Gaulle (CDG)” in the field “Departure”
(FAILED)

“Departure” already
filled

@ElementMap(name = "Departure", locatorType =
ElementLocatorType.XPath, locator =
{".//*[@id='B_LOCATION_1']","/html/body/div[1]/di
v[1]/table/tbody/tr/td[2]/div[5]/div[2]/div[2]/fo

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 209

rm/div/div[2]/div/div[3]/div[1]/div/div[1]/div[1]
/div/div/div[2]/div"})
private AutoComplete From;

10

When I inform "Paris" and choose “Paris, Charles-de-Gaulle (CDG)” in the field “Departure 2” - -

And I inform “Nice” and choose “Nice, Côte D'Azur (NCE)” in the field “Destination 2” - -

When I set “Lun, Déc 10, 2018” in the field “Departure Date 2” - -

And I submit “Search” - -

Then will be displayed “Choisissez vos vols, puis cliquez sur Réserver.” (FAILED) Message not identified <p class="availHint">Choisissez vos vols ou
trains, puis cliquez sur Réserver.</p>

11

Then will be displayed “Choisissez vos vols ou trains, puis cliquez sur Réserver.” - -

Scenario: Search for Flights More Than One Year in Advance

Reach the Travel Planet Search Page - -

Given I go to “Flight Search” - -

When I inform “Toulouse” and choose “Toulouse, Blagnac (TLS)” in the field “Departure” - -

And I inform “Paris” and choose “Paris, Charles-de-Gaulle (CDG)” in the field “Destination” - -

When I set “Dim, Déc 1, 2019” in the field “Departure Date” - -

When I choose “One-way / Multidestination” - -

And I submit “Search” - -

Then will be displayed “Erreur : Vous devez choisir une date de départ ultérieure comprise
entre 4 heures et 11 mois. Veuillez sélectionner une autre date. (10032)” - -

Scenario: Search for a Return Flight Before a Departure Flight

Reach the Travel Planet Search Page - -

Given I go to “Flight Search” - -

When I inform “Toulouse” and choose “Toulouse, Blagnac (TLS)” in the field “Departure” - -

And I inform “Paris” and choose “Paris, Charles-de-Gaulle (CDG)” in the field “Destination” - -

When I set “Lun, Déc 10, 2018” in the field “Departure Date” - -

And I choose “Round Trip” - -

When I set “Sam, Déc 1, 2018” in the field “Arrival Date” - -

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 210

And I submit “Search” - -

Then will be displayed “Erreur : La date de retour ne peut pas être antérieure à la date de
départ.” - -

Figure 123. Final UI with the selected flights.

Figure 124. Final UI for confirming the selected flights.

12

Scenario: Select a Return Flight Searched Without Full Options

Successful Roundtrip Tickets Search - -

Given “Availability Page” is displayed - -

When I click on “No Bag” referring to “Air France 7519” - -

And I click on “No Bag” referring to “Air France 7522” (FAILED) “No Bag” already filled
@ElementMap(name = "No Bag", locatorType =
ElementLocatorType.XPath, locator =
"//*[@id='w1_0_c0_r1']")
private Button NoBag;

13 When I click on “Air France 7519” referring to “No Bag” - -

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 211

And I click on “Air France 7518” referring to “No Bag” - -

When I click on “Book” - -

Then will be displayed “J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s).” - -

Scenario: Select a Return Flight Searched With Full Options

Successful Roundtrip Tickets Search With Full Options - -

Given “Availability Page” is displayed - -

When I click on “Air France 7519” referring to “No Bag” - -

And I click on “Air France 7522” referring to “No Bag” - -

When I click on “Book” - -

Then will be displayed “J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s).” - -

Scenario: Select a One-way Flight

Successful One-way Tickets Search - -

Given “Availability Page” is displayed - -

When I click on “Air France 7519” referring to “No Bag” - -

And I click on “Book” - -

Then will be displayed “J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s).” - -

Scenario: Select a Multidestination Flight

Successful Multidestination Tickets Search - -

Given “Availability Page” is displayed - -

When I click on “Air France 7519” referring to “No Bag” - -

And I click on “Air France 7700” referring to “No Bag” (FAILED) Element “Air France
7700” not found

@ElementMap(name = "Air France 7700", locatorType
= ElementLocatorType.XPath, locator =
"//*[@id='w1_0_c0_r22']")
private Button AirFrance7700;

14

And I click on “Book” - -

When I click on “easyJet 3985” referring to “No Bag” - -

And I click on “Book” - -

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 212

Then will be displayed “J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s).” - -

Figure 125. Final UI: dialog box before canceling.

Figure 126. Final UI: trip canceled.

15

Scenario: Confirm a Flight Selection

Select a Return Flight Searched Without Full Options - -

Given "Confirmation Page" is displayed - -

When I choose “I accept the General Terms and Conditions.” - -

And I click on “Finalize the trip” (NOT PERFORMED) - -

Then will be displayed “Votre voyage a été confirmé!” (NOT PERFORMED) - -

Scenario: Confirm a Flight Selection (Full Version)

Select a Return Flight Searched With Full Options - -

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 213

Table 32. Test results on the final UI.

Given “Confirmation Page” is displayed - -

When I choose “I accept the General Terms and Conditions.” - -

And I click on “Finalize the trip” (NOT PERFORMED) - -

Then will be displayed “Votre voyage a été confirmé!” (NOT PERFORMED) - -

Scenario: Confirm a Flight Selection for a One-Way Trip

Select a One-way Flight - -

Given “Confirmation Page” is displayed - -

When I choose “I accept the General Terms and Conditions.” - -

And I click on “Finalize the trip” (NOT PERFORMED) - -

Then will be displayed “Votre voyage a été confirmé!” (NOT PERFORMED) - -

Scenario: Confirm a Flight Selection for a Multidestination Trip

Select a Multidestination Flight - -

Given “Confirmation Page” is displayed - -

When I choose “I accept the General Terms and Conditions.” - -

And I click on “Finalize the trip” (NOT PERFORMED) - -

Then will be displayed “Votre voyage a été confirmé!” (NOT PERFORMED) - -

Scenario: Decline a Flight Selection

Select a One-way Flight - -

Given “Confirmation Page” is displayed - -

When I click on “Decline the trip” - -

Then will be displayed “Voulez-vous vraiment annuler ce voyage ?” in the dialog box - -

When I confirm the dialog box - -

Then will be displayed “Votre voyage a été annulé.” - -

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 214

8.7. Results Mapping

In the last three sections, we have presented the results of tests conducted individually in each
one of the three target artifacts we selected: task models, UI prototypes and the final user
interfaces. By mapping such results and putting them together, we can build a complete
traceability overview of the steps in User Stories and identify how inconsistent they were modeled
in the different artifacts.

Table 33 brings, for each considered artifact, the mapping of results of the first battery of tests
in each step of the full scenario for booking a roundtrip. As some steps were being updated after
having previously failed in a given artifact, the results shown in yellow in the table below indicate
that, for the artifact in question, the test run with an updated version of the step and still failed.
Results shown in blue indicate that, for the artifact in question, the test run with an updated
version of the step and the test passed with such a version. Results shown in green indicate steps
that passed the test in that artifact, and results in red indicate steps that failed in that artifact.
Finally, results shown in orange indicate that such a step has been pending in that artifact, it is the
case of the steps that effectively conclude the booking on the final UI. We avoided such steps to
do not create fake reservations in the booking system of your institute. In the column User
Stories/Scenarios, we considered the original steps, as conceived before starting the first battery
of tests in any artifact. Notice that once some step of scenario for some artifact fails, the scenario
is considered as failed as well.

Analyzing the results of mapping presented above for the first scenario “Successful Roundtrip
Tickets Search With Full Options”, we notice that the first step (that has succeeded in the task
model) failed when tested with the Balsamiq prototypes. The reason is that the prototype had not
addressed the web pages correctly, i.e. the “Book Flights” page could not be identified there. In
a following battery of tests, this page has ended up being named “Flight Search” instead, which
made the test passes when running on the Final UI.

The two following steps have failed for task models but passed for Balsamiq prototypes and
Final UI. As analyzed in section 8.4, the reason of failure in task models is due to the additional
tasks “Provide List of Airports” for the group of tasks which provides information of departure
and destination in the task model, from the second step until the eighth step, the gap between the
expected position and the actual one was exactly two positions. However, both steps passed when
tested for the Balsamiq prototype and the Final UIs, once the UI element was correctly
represented, i.e. as a “SearchBox” in the prototype, and as an “Autocomplete” field in the Final
UI. The step testing the field “Departure Date” nonetheless failed for the Balsamiq prototype
but passed for the Final UI (the same has occurred with the field “Arrival Date”). The reason of
failure in the prototype is that the label of the field and the UI element itself were not represented
in the same group of elements. Contrasting with that, the step testing the field “Departure Time
Frame” passed for the Balsamiq prototype but failed for the Final UI (the same has occurred with
the field “Arrival Time Frame”). The reason is that was not possible to locate unique identifiers
for the element on the Final UI.

At the sixth step (“When I choose ‘Round Trip’”), as the task for choosing the “Round Trip”
has not been exported from the task model to the scenario, the gap from the eighth position in
task model scenarios until the end of the scenario (excluding the tasks not found) dropped down
from two to one position. Such step succeeded when identifying the element “Round Trip” in
the Balsamiq prototype and in the Final UI. The element “Number of Passengers” at the ninth
step was not found both in the Balsamiq prototype and in the Final UI, despite being specified

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 215

in the task model scenario (although not in the right position). The element “Timeframe” at the
tenth step was written as “Time Frame” in the Balsamiq prototype and was misspecified with an
unknown behavior “Adjust Timeframe” in the task model, so it could not be identified in these
artifacts. The same has occurred with the element “Flight Class” at the twelfth step which was
written as just “Class” in the Balsamiq prototype and specified as “Define Fight Class” in the task
model, an unknown behavior. In the Final UI, they have not been identified as well, but due to
the problem of unique identifiers.

The element “Direct Flights Only” at the following step was written as “Only direct flights” in
the Balsamiq prototype, so was not identified, but was correctly written in the Final UI and was
rightly identified there. The correspondent task for this step was in the wrong position in the task
model scenario. The element “Companies” was misspecified with an unknown behavior “Define
Companies” in the task model. In the Balsamiq prototype, it was addressing three different
“SearchBoxes”, so it could not be identified as a unique and single element. After both the
correspondent step and the prototype are redesigned to identify each field separately, the step
should pass the test in the Final UI but was failed as well because the value informed on it (“Air
France”) did not fit the correspondent Text Field which only accepted 3 characters. In this case,
the step was fixed to inform only the value “AF”, the correspondent code defined to be used in
the Final UI.

The button “Search” was correctly identified both in the Balsamiq prototype and the Final UI,
but the referenced task in the scenario extracted from the task model was found in the wrong
position. Finally, for the first scenario, the message resultant from the user interaction when
searching flights was not identified in the scenario tasks and was not reachable in the Balsamiq
prototype due to the untraceable interaction between screens. In the Final UI, the message to
check was modified, so the step was refactored to reference the new message. Thereby, after the
modification, the test passed for this artifact.

For the steps in the second and third scenarios, all of them failed for the task model and a
deep work for fixing the compatibility issues would be required. Specification of tasks did not
follow the behaviors mapped in the ontology, so none of them could be identified during the test.
The prototyping of web pages that should be displayed when starting those scenarios failed once
they addressed wrong page names. They were correct in the final UIs nonetheless. The choice
of flights in the second and third steps of the second scenario failed in the Balsamiq prototype
(the name of the element was misidentified) and were refactored to requiring an action of clicking
on the number of the flights (instead of on the fare profile), so they passed the test in the Final
UI. The behavior of clicking on the button “Book” was correctly addressed in both the Balsamiq
prototype and in the final UI. The checking of message after the interaction was succeeded in the
final UI but failed as expected in the Balsamiq prototype due to the untraceable interaction
between screens.

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 216

User Stories
Scenario from
Task Model

Balsamiq
Prototype

Final UI

User Story: Flight Tickets Search

Narrative:
As a IRIT researcher
I want to be able to search air tickets for my business trips, providing
destinations and dates
So that I can obtain information about rates and times of the flights.

- - -

Scenario: Successful Roundtrip Tickets Search With Full Options FAILED FAILED FAILED

Given I go to “Book Flights”
Expected: 1 Expected: 1

Expected: Flight
Search

Actual: 1 Actual: 0
Actual: Flight
Search

When I inform “Toulouse” and choose “Toulouse, Blagnac (TLS)”
in the field “Departure”

Expected: 2/3 Expected: 1 Expected:
Departure

Actual: 0 Actual: 1
Actual:
Departure

And I inform “Paris” and choose “Paris, Charles-de-Gaulle (CDG)”
in the field “Destination”

Expected: 4/5 Expected: 1
Expected:
Destination

Actual: 0 Actual: 1
Actual:
Destination

When I set “Sam, Déc 1, 2018” in the field “Departure Date”
Expected: 6 Expected: 1

Expected:
Departure Date

Actual: 8 Actual: 0
Actual:
Departure Date

And I set “08:00” in the field “Departure Time Frame”
Expected: 7 Expected: 1

Expected:
Departure Time
Frame

Actual: 9 Actual: 1
Actual: Element
not identified

When I choose “Round Trip”
Expected: 8 Expected: 1

Expected:
Round Trip

Actual: 0 Actual: 1
Actual: Round
Trip

And I set “Lun, Déc 10, 2018” in the field “Arrival Date”
Expected: 9 Expected: 1 Expected:

Arrival Date

Actual: 10 Actual: 0
Actual: Arrival
Date

When I set “10:00” in the field “Arrival Time Frame”
Expected: 10 Expected: 1 Expected: Arrival

Time Frame

Actual: 11 Actual: 1 Actual: Element
not identified

And I choose the option of value “2” in the field “Number of
Passengers”

Expected: 11 Expected: 1
Expected:
Number of
Passengers

Actual: 12 Actual: 0
Actual: Element
not found in
“Flight Search”

When I set “6” in the field “Timeframe”
Expected: 12 Expected: 1

Expected:
Timeframe

Actual: 0 Actual: 0
Actual: Element
not identified

And I select “Direct Flights Only”
Expected: 13 Expected: 1 Expected: Direct

Flights Only

Actual: 14 Actual: 0
Actual: Direct
Flights Only

When I choose the option of value “Economique” in the field
“Flight Class”

Expected: 14 Expected: 1 Expected: Flight
Class

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 217

Actual: 0 Actual: 0
Actual: Element
not identified

And I set “Air France" in the field "Companies”

Expected: 15 Expected: 1
Expected:
Company 1

Actual: 0 Actual: 0
Actual: Value
does not fit the
field

When I submit “Search”
Expected: 16 Expected: 1 Expected: Search
Actual: 17 Actual: 1 Actual: Search

Then will be displayed “2. Sélectionner un voyage”
Expected: 17 Expected: 1

Expected:
Proper Message

Actual: 0 Actual: 0 Actual: Proper
Message

User Story: Select a Suitable Flight

Narrative:
As a IRIT researcher
I want to get a list of compatible flights (including their rates and
times) in accordance with my search criteria
So that I can select a suitable flight based on my needs.

- - -

Scenario: Select a Return Flight Searched With Full Options FAILED FAILED PASSED

Given “Availability Page” is displayed
Expected: 18 Expected: 1

Expected:
Availability Page

Actual: 0 Actual: 0
Actual:
Availability Page

When I click on “No Bag” referring to “Air France 7519”
Expected: 19 Expected: 1

Expected: Air
France 7519

Actual: 0 Actual: 0 Actual: Air
France 7519

And I click on “No Bag” referring to “Air France 7522”
Expected: 20 Expected: 1 Expected: Air

France 7522

Actual: 0 Actual: 0
Actual: Air
France 7522

When I click on “Book”
Expected: 21 Expected: 1 Expected: Book
Actual: 0 Actual: 1 Actual: Book

Then will be displayed “J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s).”

Expected: 22 Expected: 1 Expected:
Proper Message

Actual: 0 Actual: 0
Actual: Proper
Message

User Story: Confirm Flight Selection

Narrative:
As a IRIT researcher
I want to get all the required data to confirm my flights
So that I can check the information, the fare rules and then finalize
my booking.

- - -

Scenario: Confirm a Flight Selection (Full Version) FAILED FAILED PENDING

Given “Confirmation Page” is displayed

Expected: 23 Expected: 1
Expected:
Confirmation
Page

Actual: 0 Actual: 0
Actual:
Confirmation
Page

When I choose “I accept the General Terms and Conditions.”
Expected: 24 Expected: 1

Expected:
Proper Field

Actual: 0 Actual: 1
Actual: Proper
Field

And I click on “Finalize the trip” Expected: 25 Expected: 1
Expected:
Finalize the trip

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 218

Table 33. Mapping of the results after testing.

In the third and last scenario, the behavior of accepting the general terms and conditions to
confirm the booking of flights was correctly addressed in both the Balsamiq prototype and the
final UI. The button “Finalize the trip” was not identified in the Balsamiq prototypes (it was
“Confirm Booking”). As already explained, the action of clicking the button and verifying the
confirmation message in the final UI was not performed in order to not effectively place a fake
booking in the system. Due to that, both steps were signalized as “pending” in the final UI. Once
more, the checking of message after the interaction failed as expected in the Balsamiq prototype
due to the untraceable interaction between screens. Lastly, regarding to the final testing results in
each artifact, we notice that only the second scenario was successfully executed in the final UI.
The other two scenarios have failed in the other artifacts or got pending (the last scenario in the
final UI).

8.8. Summary of Main Findings in the Case Study

Looking back at the types of inconsistencies we managed to identify for each artifact, we
present below a summarized table (Table 34) with such types enlisted and discuss thereafter the
impact of such inconsistencies when assessing the artifacts.

Task Models Balsamiq Prototypes Final UIs

• Task with different names
• Task not extracted to the
scenario
• Different number of sequences
of tasks in the task model
• Wrong position
• Conflict between specification
and modeling
• Different specification strategies
• Unpaired behaviors
• Equivalent behaviors missing

• Conflict between expected and
actual elements
• Element and label in different
groups
• Inexistent elements
• Element semantically
inconsistent
• More than one element to
represent the same field
• Untraceable interaction between
screens

• Message not identified
• Element or value not found
• Inexistent elements
• Values that do not fit the field
• Fields already filled in
• Element not identified

Table 34. Main kinds of problems identified in each artifact after testing.

For task models, we succeeded identifying 8 different types of inconsistencies in the tested
scenarios. The most common ones were the “different number of sequences of tasks in the task
model”, “unpaired behaviors”, and “equivalent behaviors missing”. The first type occurs when
there are more tasks in the task model scenario than steps in the User Story scenario to
accomplish the same behavior. In the example presented in section 8.4, to inform a departure
(or a destination) there was a sequence of 3 tasks in the scenario extracted from the task model,
while in the step of the User Story scenario, a double action of informing and choosing was
enough. For the second type, “unpaired behaviors” refers to tasks that would find a
correspondence with the steps in the User Stories, but as they actually specify different behaviors
(e.g. “Define <something>” instead of “Select <something>”), they cannot be recognized as such.
“Equivalent behaviors missing” refers to behaviors that are really missing in the extracted task

Actual: 0 Actual: 0
Actual: Finalize
the trip

Then will be displayed “Votre voyage a été confirmé!”
Expected: 26 Expected: 1

Expected:
Proper Message

Actual: 0 Actual: 0
Actual: Proper
Message

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 219

model scenario, like steps that are present in the User Story, but cannot find correspondent tasks
in the task model.

“Different specification strategies” comes next as the type of inconsistency incurred from
specification of behaviors that could eventually aim at the same purpose, but were specified using
different strategies, i.e. requiring to perform (or verify) different actions. An example from this
case study is the situation in which a step of User Story scenario had described a behavior in
which the system showed a message introducing a list of available flights, and the task model, a
behavior in which the system provided the aforementioned list. Even with the resultant state of
the system being the same in this case, the specified behaviors could not be considered
equivalents once they use different specification strategies.

Tasks in “wrong positions” comes next being the type of error related to tasks that are found
in different positions than their equivalent steps in User Stories. As scenarios in different
conceptions are being compared when testing User Stories and task models, we consider that
errors found in the sequence of tasks in the task models (compared with User Stories) are
generally the most sensitive type of error, once it impacts in all other tasks in the sequence. A
simple change of task positions in the beginning of a scenario invalidates the whole scenario
because all the tasks in the sequence would be in wrong positions. A correction to a simple error
like this would include finding the root of the problem, redesign either the step (that would impact
the consistency in other artifacts) or the task model (that would imply in extracting new scenarios
for testing) and run a complete battery of regression tests again. Considering that there are no
other types of inconsistencies in the model, by fixing this issue (either by updating the User Story
scenario to comply with the scenario extracted from the task model or updating the task model
to comply with the sequence of steps from the User Story), both scenarios would become fully
consistent.

“Conflicts between specification and modeling” refers to tasks modeled in the task model (and
consequently exported to its scenarios) that are not present the requirements specification in the
User Stories. The contrary can occur as well. This kind of inconsistency generally puts in evidence
important conflicts between what is specified in the user requirements and what is effectively
modeled in the artifacts. “Tasks with different names” and “Tasks not extracted to the scenario”
complete the list of type of errors encountered during the tests. The first one refers to tasks that
are present both in the task model and in the User Story scenario but written with a different
name. The second one refers to tasks that are effectively modeled in the task model but, due to
the type of operators used or the presence (or not) of other refined tasks after them in the model,
causes that, during the extraction process, such tasks do not be taken to the extracted scenarios.

Concerning the type of inconsistencies registered during the test of Balsamiq prototypes, we
succeeded identifying 6 different types in the tested scenarios. “Conflict between expected and
actual elements” was the most frequent type and refers to elements that are specified with different
names in the step and in the prototype. “Inexistent elements” and “untraceable interaction
between screens” comes next and refer respectively to the real absence in the prototypes of
elements that are specified in the step, and to the cases where the interaction changes the state of
the interface (e.g. transitioning between screens or making appear a given value in a field). As
such cases are not identified in the prototype with the level of requirement we are considering,
an inconsistency is shown up.

“Elements and labels in different groups” is the next type in line and refers to one of the
mechanisms of modeling used by Balsamiq. When a given UI element is composed by a label
name and the interaction element itself, this encompassed structure is modeled by an entity

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 220

named “group”. Thus, to be considered as a unique and single element, both the label and the
interaction element itself must be placed at the same group. If it is not the case, we are not able
to reach the element and then an inconsistency is detected.

“More than one element to represent the same field” is a type of inconsistency caused when
there are at least two elements (or more) in the prototype that are of the same type and are placed
in the same group (or have the same name) of the searched field. Finally, the type of inconsistency
named “elements semantically inconsistent” refers to the core problem we address with the
ontology, i.e. the use of interaction elements in the prototype that are semantically inconsistent
with the behavior they are supposed to model. This kind of inconsistency is detected when we
get the list of supported interactive elements from the ontology and check if the interactive
element used in the prototype is equivalent to one of them.

Concerning the type of inconsistencies registered during the test of Final UIs, we also
succeeded identifying 6 different types in the tested scenarios. “Elements not identified” was the
most frequent type and refers to elements that do not carry a unique and single identifier (or carry
a dynamic generated one) and/or cannot be reached by using their XPaths. When observing the
unsuccessful tries to find the fields “Departure Time Frame” and “Arrival Time Frame”, for
example, we remarked that is a recurrent problem when automating testing on user interfaces.
Some web frameworks for developing the presentation layer dynamically generates different
identifiers each time the UI is charged, which makes very hard the work of previously identifying
them to implement the test. Besides that, some developers skip informing unique identifiers for
the fields. XPath identifiers help in most cases, but there still are some situations where the
identification of locators gets very compromised.

Constant changing, or conflicting messages is another frequent issue (type of inconsistency
“message not identified”). Messages sometimes change in the Final UI and the requirements
specification is not updated accordingly. As a consequence, the message specified in the step to
be verified in the user interface is not found on the screen. Not identifying elements or values
due to dynamic data behavior is also an issue. The type of inconsistency “element or value not
found” refers to fields or values that are expected to be shown on the user interface (and are able
to be identified by the locators there) but, due the dynamic data behavior in the system, are not
shown up. An example from the case study is a flight, which was mentioned to be verified as an
example of data value in the step and was not identified in the list of resultant flights because it
was not available for booking anymore. There is also the case of elements that are really inexistent
on the user interface (type of inconsistency “inexistent elements”). These elements are mentioned
in the step as part of the requirements specification, but simply have not been implemented on
the final UI.

Fields that were already filled in when a given step tries to reach them are also a source of
inconsistencies (type of inconsistency “fields already filled in”). As happened in the case study
when testing the fields “Departure” and “Destination” for a multidestination trip, due to the
second flight leg, the elements were referenced with the same name more than once. When the
test tried to fill in the same field a second time for the second flight leg, the inconsistency has
shown up. In this case, both the step and the mapping of interaction elements on the user
interface must be updated to reference unequivocally different elements for each desired
interaction.

The last type of inconsistency identified refers to values mentioned in the step that do not fit
the field they were designed to fill in (type of inconsistency “values that do not fit the field”).
During the case study, the field “Company 1” was expected to receive the value “Air France” as

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 221

described in the step, but the concrete field “Company 1” on the user interface had been modeled
to support only 3 characters. This type of inconsistency can also be extended to other
incompatibilities between the type of data expected and what the field actually supports. Examples
include strings to be filled in number-only fields, unformatted numbers to be filled in date-time
fields, and so on.

8.9. Threats to Validity

Generalization of results. We have conducted this second study by modeling and assessing a
system for booking airline tickets for business trips. Such kind of system has usually a strong
search-based feature, once they are centered in providing and comparing rates, times and
availability of flights given a set of provided parameters. However, as the ontology in which we
based our analyses is designed for domain-independent interactive behaviors, we assume our
results concerning the usefulness of our interactive behaviors would be reproduced in other
interactive systems domains. Concerning the types of inconsistencies identified, we understand
the list presented in this chapter is just an initial set of inconsistencies that our approach is able
to identify. Further studies, especially with systems implementing different features, might reveal
a broader set of inconsistencies able to be identified.

Manual reverse engineering. This study performed a manual reverse engineering of the
current system in production to obtain its respective models for testing. The goal of the study was
to investigate which kind of inconsistencies our approach would be able to identify in the models
and in the system. Therefore, as a manual process, it was expected that inconsistencies would be
naturally introduced during the modeling. Indeed, these inconsistencies were identified and that
allowed us to evaluate our approach. Nonetheless, if an automated approach of reverse
engineering had been used instead, such inconsistencies would probably not have taken place.
Future studies should confirm this hypothesis.

Possible modeling bias. Both the conduction of the study and the interpretation and analysis
of the results have been made by us. So, it is possible there has been a bias in the interpretation
of such results and/or in the modeling process. To mitigate such a threat, we plan future studies
considering third-part modeling and cross-checking of results by an independent reviewer in an
attempt to reduce such a bias.

8.10. Conclusion and Lessons Learned

By analyzing the variety of inconsistency problems that have been identified in this case study,
we can remark that some types of inconsistencies have shown to be more critical than others.
While simple inconsistencies like differences in names of tasks and fields are easy to be solved,
some other inconsistencies can reveal crucial problems of modeling or important
incompatibilities between the requirements specification and its modeling in the artifacts.
Conflicts between expected and actual elements in prototypes (usually due to different names),
or messages and elements not found (or even inexistent) in prototypes or final UIs are other
examples of inconsistencies that are easy to solve.

Conflicts between specification and modeling along with different specification strategies for
task models compose a more critical group of problems and must be prioritized. Concerning
user interface prototypes in different levels of refinement, the presence of semantically
inconsistent elements and the presence of more than one element to represent the same field are
also critical groups of problems. On final UIs, fields already filled-in denotates inconsistencies
that exposes important design errors.

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

 222

Unpaired behaviors and equivalent behaviors missing on task models are inconsistencies
directly related to the wideness of the referenced ontology. The ontology we present here (and
which has been used in the case study) is always evolving and can eventually in the future support
new behaviors, which would increase its capacity of recognizing other task descriptions. Tasks not
extracted to the scenario, different number of task sequences in the task model, and the presence
of tasks in wrong positions are problems that can have the same origin in scenarios extracted from
task models, i.e. due to tasks not extracted to scenarios, those ones that have been extracted may
be placed in wrong positions which will affect how many sequences of tasks the scenario lists. So,
by fixing the root cause, the designer can avoid three kinds of different problems.

Element and label in different groups is an inconsistency related to the way Balsamiq
implements its prototypes. It leads to a misidentification of elements but could eventually not be
an issue in other prototyping tools. Likewise, elements not identified in the final UI is a specific
problem of web interfaces, where not even robust XPaths can be able to identify some elements
on the screen. Values that do not fit the field is another exclusive problem of final UIs, once it
emerges from real data handling along the interaction.

Untraceable interaction between screens is a particular type of inconsistency due to the level
of refinement we are considering for prototypes. Balsamiq is a prototype tool that actually
supports a basic dialog description, allowing building links between prototypes and simulating a
real navigation on user interfaces. However, we have chosen to not consider such a feature once
the ontology we propose can already support more robust interactions in other levels of prototype
refinements, such as the one that has been implemented by PANDA.

We notice finally that our approach makes task models, user interface prototypes and final
UIs intrinsically related in such a way that a modification in the User Stories scenarios requires a
full battery of regression tests in the other artifacts. For example, after having fixed the Balsamiq
prototype to name the three-company field independently, we had to modify the step “And I set
‘Air France’ in the field ‘Companies’” to reference only one of them. We modified the step to
“And I set ‘AF’ in the field ‘Company 1’”. When doing this, we should retest all our task model
scenarios in order to ensure we did not introduce any inconsistency there due to such a
modification. Maybe the task model has to be modified as well, in order to comply with the
modification in the prototype. The modification has also the potential to identify new
inconsistencies in the task model, that had not been identified before with the older scenario.
Thus, it is imperative to work with the perspective of regression tests in mind, which reinforce
the crucial importance of automated testing.

As noticed, this case study helped us to identify a wide group of inconsistency problems that
can be shown up by our approach. With little effort for specifying high-level scenarios in natural
language only once, we succeeded running several automated tests on the target artifacts in
seconds. These results open a great range of opportunities for assessing multiple artifacts and for
keeping them consistent throughout the whole software development process. Some features like
the use of data providers to assess final UIs could not be tested in this case study though. This
resource presented previously allows modeling steps only with data domains and injecting data
on them at runtime. As we have not specified steps using this feature, we could not get results
about its effectiveness in a broader case study than that one presented in chapter 6. This is indeed
a good opportunity for future works.

Part IV - Conclusion

 225

Chapter 9
Conclusion

Summary

This chapter presents the final remarks about this thesis’ work. We recapitulate our achievements
and discuss the main contributions and limitations of the approach. We also provide some
directions for future research in this field as well as our future works already planned to be
conducted for improving the proposed approach. The chapter ends with the full list of
publications resultant from this thesis.

Model-based and iterative approaches are a suitable alternative to cope with the complexity of
the development process of interactive systems. For that, models fulfill three main roles in the
development process: decompose problems in specialized views, specify the intentions reducing
ambiguity, and promote communication among stakeholders. Multiple artifacts provide
specialized views for concepts handled by models, thus ensuring that aspects of the system in
consideration are properly described and understood by stakeholders. Multiple cycles of design
and evaluation allow to tune the design and fix problems iteratively until all requirements are met.
Whereas models and iterative processes are in use, a dangling question remains: how to ensure
that models and artifacts remain consistent along an iterative development process. In this
context, the present work contributes by providing an approach for specifying and testing user
requirements in order to keep the consistency of such requirements with core software artifacts
commonly used to build interactive systems.

As we highlighted along this thesis, when assessing software artifacts, the term “test” is usually
not employed under the argument that such artifacts cannot be “run”, i.e. executed for testing
purposes, so in practice they are just manually reviewed or inspected in a process called
verification. Manual verification of the software outcomes (which include modeling artifacts,
documentation, source code, database, the product design, etc.) is though highly time-consuming,
error-prone and even impracticable for large software systems. Fully interactive artifacts such as
final user interfaces can in addition be validated by users who can interact with the artifact and
assess whether its behavior is aligned with their actual needs. As within our approach we succeed
automatically running User Stories on software artifacts for assessing their consistency with user
requirements, we actually provide the “test” component for both verification and validation of
artifacts in the software development. We consider this is a big step towards the automated testing
(and not only the manual verification) of software artifacts by means of a consistent approach
allowing fully verification, validation, and testing (VV&T).

For supporting our approach, an ontology was provided to act as a base of concepts shared by
different artifacts, defining a semantic description of user-system interactions. The proposed
ontology provides a common vocabulary that is articulated to map interactive behaviors to
interaction elements, allowing testing automation of user requirements in multiple user interface
design artifacts. The ontology also supports the design of user interfaces by providing a consistent
set of interaction elements that are supposed to meet particular behaviors. When representing
the behaviors that each interaction element is able to answer, the ontology also allows extending
multiple design solutions for the user interface.

Chapter 9: Conclusion

 226

Behaviors described in the ontology are already implemented for automating tests on UIs,
which means we can freely reuse them to write new scenarios in natural language, providing test
automation with little effort from development teams. It allows specifying tests in a generic way,
which benefits reuse along the development process. In practice, the vocabulary of interactive
behaviors in the ontology also extends the vocabulary provided by the Gherkin DSL (which is
implemented by BDD), so indeed we increase the power of expressivity of such a language to
automate the assessment of software artifacts. The concepts and definitions in the ontology
presented here are nevertheless just one of the possible solutions for addressing and describing
behaviors and their relationships with user interface elements. The ontology is provided ready to
use for a new development project, but it is not changeless and could be updated with other
behaviors, concepts and relationships which could eventually be more representative for some
contexts of development. This fact opens the door to consider having ontologies as knowledge
bases, keeping specific behaviors for specific groups of business models.

Being core modeling artifacts to design user interfaces, in this thesis we have focused on the
assessment of task models, user interface prototypes and final UIs. Compared with co-execution
approaches which require a high-level of effort for annotating and modifying the source code/files
of the artifacts to make them support automated assessment, we provide a lightweight fully
automated approach which provide assessment with no intervention in the source files of the
artifacts. This solution allowed us to test prototypes at different stages of the design process,
especially from the early phases, following their cycle of evolution and successive refinements,
while ensuring that different artifacts are sharing the same goals in terms of requirements.
Additionally, tests on web final UIs can run independently of the frameworks used to build the
presentation layer. This is possible because tests provided by our tool assess the concrete UI
elements found on the user interface, directly in the target web browser, simulating a real user
interacting with the interface.

To benefit the testing integration, our approach makes artifacts considered for testing
intrinsically related in such a way that a modification in the User Stories scenarios requires a full
regression battery of tests in the other artifacts. It is this characteristic that makes our approach
ensures fully consistent artifacts for modeling user requirements. As stated before, User Stories
in our approach are the main source of requirements and tests, so BDD scenarios are the core
of testing. To have a given artifact consistent with them, we should identify the source of
inconsistency and fix it either in the artifact or in the BDD step. In principle, if we fix
inconsistencies in the artifact which is failing, there is no additional impact in other artifacts.
Otherwise, if we keep the design of the artifact and fix the step, we can introduce fails in other
artifacts, that are also being tested by the same stories. Thus, it is imperative to work with the
perspective of regression tests in mind, which reinforce the crucial importance of automated
testing.

Our approach could also be extended to verify and validate other model-based artifacts,
allowing more integration and ensuring a wider traceability of requirements. The degree of
formality of such artifacts, however, can influence the process of traceability and testing, making
it either more or less tricky to conduct. These variations should be investigated in the future.

9.1. Tackled Challenges

Based on the strategy we defined for implementing this approach, we have set out in chapter
3 four main challenges to accomplish it. They are listed as follows:

Chapter 9: Conclusion

 227

(i) To adhere to a model-based approach for describing artifacts produced along the
development process.

(ii) Teams must be willing to adopt the template for User Stories as well as the vocabulary
proposed in the ontology.

(iii) Artifacts and the user interface under testing must comply with the UI-supported set
of interactive behaviors described in the ontology.

(iv) Tests must be carried out by our set of tools.

With the results we have obtained and addressing these four challenges we stated above, we
can highlight a set of advantages and some shortcomings we have identified so far. Concerning
the adherence to a model-based approach, this approach benefits from the independence for
testing artifacts. Once the approach performs a micro-process, theoretically suited to run with any
macro software development process, testing can be conducted in an independent manner, only
in the set of artifacts designed at a given time, which benefits early artifacts. However, so far, we
are only covering artifacts modeled with HAMSTERS and Balsamiq. We also did not evaluate
yet the impact of maintaining and evolving such artifacts throughout the development process.

Concerning the adoption of the template for User Stories and the vocabulary proposed in the
ontology, an advantage is that requirements and tests in User Stories are kept in a natural and
high-level language. Keeping them as such helps to establish a common vocabulary for the whole
team and allows non-technical stakeholders to effectively participate at the specification and
testing processes. Although the studies we have conducted so far did not cover evaluation with
potential users instantiating the approach, we plan to investigate its use in a broader case study to
evaluate aspects such as workload, maintainability and scalability.

Concerning the expressiveness of the ontology and the compliance of artifacts and user
interfaces with the UI-supported set of interactive behaviors, an advantage is that the approach is
domain-independent, once the low-level interactive actions on UI elements (such as clicks,
selections, settings, etc.) are the same regardless the application business domain. So far, we are
applying our ontology to cover the assessment of GUI-based/web-based applications. As the
ontology already describes the concepts related to mobile user interfaces, its implementation for
covering the assessment of mobile applications is expected to be straightforward. Nonetheless,
for covering other types of interaction techniques (such as multimodal interaction), the ontology
would need to be extended to model the new concepts related to user interfaces and user-system
interactive behaviors on such new environments.

Another advantage of the ontology is the plurality of interaction elements modeled by the
ontology used. As many of them can answer the same behavior, even if a Combo Box has been
chosen to attend some behavior in a previous prototype, an Auto Complete field could be chosen
to attend this behavior on a further and more refined version, once both elements share the same
ontological property for the behavior under testing. A shortcoming we have identified is related
to the restricted vocabulary of the ontology. Even with the ontology mapping synonyms for some
specific behaviors, it does not provide any kind of semantic interpretation, i.e. the behaviors must
be specified on stories exactly as they were defined. At a first glance, nonetheless, the restricted
vocabulary seems to bring less flexibility to designers, testers and requirements engineers, but at
the same time, it establishes a common vocabulary, avoiding typical problems of ambiguity and
incompleteness in requirements and testing specifications.

Finally, concerning our tools, one of the advantages they provide is the fine-grained testing
coverage. Each small modification in the User Stories or in the artifacts is able to be captured
during the testing process. The use of data-independent scenarios is another advantage. Data can

Chapter 9: Conclusion

 228

be specified through data domains to be injected on runtime, or directly in the scenario
description. The first strategy is very useful in the beginning of the project, when typically, there
are few definitions about representative data for testing. A limitation in our set of tools, however,
is the absence of classification for errors. There is currently no automatic distinction between the
different reasons of test failure (e.g. UI element not found, behavior not supported, etc.). Such
analysis should be made manually by the designer. As shown in the case study, our approach
signalizes in which step of the scenario some inconsistency has been found, but do not classify it
according to the solution that should be employed to solve the problem. Classifying errors would
help to better identify if a given inconsistency detected is due to an actual error in the
requirements representation or if it is due just to a limitation of the artifact.

9.2. Summary of Contributions

A summary of the thesis contributions is presented as follows:

• A scenario-based approach that benefits from the independence for testing model-
based artifacts (chapter 3).

• A full and consistent VV&T approach which actually allows running automated tests
on artifacts, expanding the possibilities for software verification and validation
(chapters 3, 5, 6 and 8).

• A flexible and adaptable micro-process to instantiate the approach, which could fit
different macro software development processes (chapter 3).

• A natural and high-level specification language for requirements and test through a
User Story template (chapters 3, 4 and 7).

• A common vocabulary to be used by different stakeholders, avoiding typical problems
of ambiguity and incompleteness in requirements and testing specifications (chapters
4 and 7).

• A consistent and domain-independent ontology for specifying interaction (chapter 4).
• An extended vocabulary for the Gherkin DSL increasing the power of expressivity of

such a language to automate the assessment of user interfaces (chapters 4, 6 and 8).
• Testing provided with no intervention in the source code of the application or in the

source file of the artifacts (chapters 5, 6 and 8).
• Automated tools with a fine-grained testing coverage and implementing data-

independent scenarios through the use of data providers (chapters 5, 6 and 8).
• A flexible implementation architecture that can support in the future tests using other

notations and tools than HAMSTERS (for task models) and Balsamiq (for UI
prototypes) by just implementing new classes for mapping the concepts of the ontology
to such notations (chapters 5 and 6).

• A fully compatible approach for testing final UIs which is independent from the
technology chosen to implement the presentation layer of web sites (chapters 6 and 8).

9.3. Summary of Limitations

A summary of the thesis limitations is presented as follows:

• A limited vocabulary for the ontology with no semantic interpretation (chapter 4).
• Restricted coverage of artifacts, including so far HAMSTERS task models, Balsamiq

prototypes and web final UIs (chapters 5 and 6).

Chapter 9: Conclusion

 229

• The need of extracting scenarios from task models to perform testing in such artifacts
(chapter 5).

• Tools that do not support yet the classification of errors (chapters 5 and 6).
• Unknown impact of maintaining and successively evolving the mentioned artifacts

throughout a real software development process (chapter 8).

9.4. Future Research Perspectives

9.4.1. Short Term Perspective

Although the results presented in this thesis are still preliminary, they are quite promising. The
current version of the approach opened the door to many interesting research questions which
motivate our future works. First of all, in a short term, we are planning to investigate the
acceptability of the approach with development teams, including technical and non-technical
people. The idea is to evaluate if people involved in the development process of interactive
systems are able to employ our approach to specify user requirements with the proposed template
and the concepts present in the ontology. We are planning to conduct such empirical studies with
developers, requirement engineers, clients and end-users, in order to determine the potential of
improvement in the context of multidisciplinary and complex development teams. These studies
should also evaluate the effectiveness of the approach and aspects such as workload,
maintainability and scalability when running the approach in real cases of software development.

We are also refining our set of tools to better support the creation, visualization and execution
of the tests. An important improvement to address as future works concerns the presentation of
task model assessment results. Despite being useful to locate exactly where the correspondent
tasks have been found, a presentation based on a detailed list of matching tasks, positions and
values tends to be hard to read with the growing of the number of scenarios. Additional features
to automatically generate charts, such as the one we used to present the results in chapter 8, might
probably help designers to evaluate and better analyzing the results.

Another improvement in the task model assessment that is in the pipeline consists in
implementing a better strategy to assess “displaying” tasks, i.e. tasks that involve the system
displaying a message to the user, or the user checking that such a message has been displayed. In
the current implementation, we search for a task named “Display <message>”, but indeed it is
not a common practice to describe system messages literally in a task name, so this kind of tasks
are never matched with the equivalent steps in the User Stories. Our first strategy in mind is to
look for a generic task named “Display message”, for example, and then check the actual message
in the object value associated to this task. While this strategy solves the matching of equivalent
tasks, if the designer skips informing the actual message when extracting a scenario from the task
model, such a task would still be unidentifiable. Anyway, so far it seems to be the best strategy to
address such a problem.

9.4.2. Long Term Perspective

Previous works have proposed the use of Model-Driven Architecture (MDA) to support the
development of user interfaces (Vanderdonckt, 2005). In a longer run, we also prospect
interesting research opportunities in the field of Model-Driven Development (MDD) for
obtaining User Stories and consistent UI prototypes directly from task models. Once it is
desirable that scenarios in User Stories and scenarios extracted from task models are compatible,
an approach aiming at the automated generation of User Stories scenarios from the scenarios
extracted from task models could bring promising results. The first reason is that such scenarios

Chapter 9: Conclusion

 230

would be generated already compatible with the task models and would dismiss the need of
assessing their XML files, whether the reference XML file or the one extracted with scenarios.
The second reason is that, supported by the ontology, this approach could generate scenarios
already ready to GUI test automation, allowing automated acceptance testing on user interfaces
with low level of implementation effort. It would raise a set of research questions related to the
adequacy of user requirements specified only as models in MDD approaches. As such, both
modeling and modification on user requirements would be made only in the task model, from
where scenarios would be automatically generated to run tests on other artifacts, including
acceptance tests on the final UI.

Concerning the automated assessment of user interface prototypes, another potential future
work consists in investigating the assessment of prototypes designed by UsiXML prototyping
tools. As a well-known standard to describe user interfaces, UsiXML provides the User Interface
Description Language (UIDL), a unified notation in which our approach could rely on for
providing automated assessment of prototypes designed by different tools. Such an adoption
could reduce the need of specializing our implementation for supporting different notations each
time a new prototyping tool should be covered. UsiXML could also support the future extension
of our ontology to implement automated assessment on other interaction environments by
providing description of the concepts related to new interaction techniques.

Further studies on Natural Language Processing (NLP) techniques might help to improve the
process of requirements and testing specification adding more flexibility to write scenarios that
could be semantically interpreted to meet the behaviors described in the ontology. The ontology
could also be enriched to recognize variants for the same interactive behavior. This issue is
certainly a worthwhile topic for future research. Evaluate the suitability of our approach to reuse
tests for assessing multiple user interface design options is another promising future work. We
plan to conduct new case studies to collect data about reusability, workload, and degree of
adaptability required to use a same group of business scenarios to test different design solutions.
Our hypothesis is that scenarios written based on our common ontology can be easily reused to
assess different design solutions for systems sharing the same business model.

Finally, other studies including interactions in different contexts beyond the web, especially in
mobile platforms, are also planned. In a longer run, we also want to explore idiosyncrasies of
interaction techniques and/or platforms to check hypothesis related to the coverage of concepts
in the current ontology. Additional work is also necessary to identify potential problems and
inconsistencies when manipulating more complex task models and more complex interactive
behaviors. Such studies would contribute to increase the ontology expressiveness. Future works
should also consider ontologies as knowledge bases, keeping specific behaviors for specific groups
of business models in domain ontologies. Domain-specific ontologies could act as a top layer in
a multi-layer ontology architecture to allow the use of multiple domain ontologies associated to
the current domain-independent ontology, which would remain describing only the fundamental
interactive behaviors for a given environment.

9.5. Full List of Resultant Publications

Journals

Silva, T. R., Hak, J.-L. & Winckler, M. (2017). A Formal Ontology for Describing Interactive
Behaviors and Supporting Automated Testing on User Interfaces. International Journal of
Semantic Computing, 11 (04), pp. 513-539. DOI: http://doi.org/10.1142/S1793351X17400219.
(Silva, Hak and Winckler, 2017b)

Chapter 9: Conclusion

 231

Silva, T. R., Hak, J.-L., Winckler, M. & Nicolas, O. (2017). A Comparative Study of Milestones
for Featuring GUI Prototyping Tools. Journal of Software Engineering and Applications, 10 (06),
pp. 564-589. DOI: http://doi.org/10.4236/jsea.2017.106031. (Silva et al., 2017)

Silva, T. R., Hak, J. L. & Winckler, M. (2016). An Approach for Multi-Artifact Testing Through
an Ontological Perspective for Behavior-Driven Development. Complex Systems Informatics
and Modeling Quarterly, 1 (7), pp. 81-107. DOI: http://doi.org/10.7250/csimq.2016-7.05. (Silva,
Hak and Winckler, 2016a)

Conferences

Silva, T. R. & Winckler, M. (2017). A Scenario-Based Approach for Checking Consistency in
User Interface Design Artifacts. In: Proceedings of the XVI Brazilian Symposium on Human
Factors in Computing Systems (IHC 2017), pp. 21-30. ACM. DOI:
http://doi.org/10.1145/3160504.3160506. (Silva and Winckler, 2017)

Silva, T. R., Hak, J. L. & Winckler, M. (2017). A Behavior-Based Ontology for Supporting
Automated Assessment of Interactive Systems. In: 2017 IEEE 11th International Conference on
Semantic Computing (ICSC 2017), pp. 250-257. IEEE. DOI:
http://doi.org/10.1109/ICSC.2017.73. (Silva, Hak and Winckler, 2017a)

Silva, T. R. (2016). Definition of a Behavior-Driven Model for Requirements Specification and
Testing of Interactive Systems. In: 2016 IEEE 24th International Requirements Engineering
Conference (RE 2016), pp. 444-449. IEEE. DOI: http://doi.org/10.1109/RE.2016.12. (Silva,
2016)

Silva, T. R., Hak, J. L. & Winckler, M. (2016). Testing Prototypes and Final User Interfaces
Through an Ontological Perspective for Behavior-Driven Development. In: 6th International
Working Conference on Human-Centred Software Engineering, and 8th International Working
Conference on Human Error, Safety, and System Development (HCSE 2016 and HESSD 2016),
pp. 86-107, vol. 9856. Lecture Notes in Computer Science, Springer International Publishing.
DOI: http://doi.org/10.1007/978-3-319-44902-9_7. (Silva, Hak and Winckler, 2016b)

Silva, T. R. & Winckler, M. (2016). Towards Automated Requirements Checking Throughout
Development Processes of Interactive Systems. In: 2nd Workshop on Continuous Requirements
Engineering, 22nd International Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ). CEUR-WS.org. (Silva and Winckler, 2016)

Silva, T. R., Hak, J. L. & Winckler, M. (2015). A Review of Milestones in the History of GUI
Prototyping Tools. In: INTERACT 2015 Adjunct Proceedings: 15th IFIP TC. 13 International
Conference on Human-Computer Interaction, pp. 267-279, vol. 22. University of Bamberg
Press. (Silva, Hak and Winckler, 2015)

References

Adzic, G. (2011) Specification by Example: How Successful Teams Deliver the Right Software. Manning
Publications.

Agile Alliance (2018). Available at: https://www.agilealliance.org (Accessed: 1 June 2018).

Ambler, S. (2002) Agile Modeling: Effective Practices for eXtreme Programming and the Unified Process.
1st edn. Wiley.

Ambler, S. W. (2005) The Agile Unified Process (AUP). Available at:
http://www.ambysoft.com/unifiedprocess/agileUP.html (Accessed: 1 June 2018).

Ambler, S. W. and Lines, M. (2012) Disciplined Agile Delivery (DAD): A Practitioner’s Guide to Agile
Software Delivery in the Enterprise. IBM Press.

Anderson, D. J. (2010) Kanban: Successful Evolutionary Change for Your Technology Business. Blue
Hole Press.

Annett, J. (2003) ‘Hierarchical Task Analysis’, in Hollnagel, E. (ed.) Handbook of Cognitive Task Design.
Lawrence Erlbaum Associates, pp. 17–35.

Astels, D. (2003) Test-Driven Development: A Practical Guide. 1st edn. Prentice Hall.

Bano, M. and Zowghi, D. (2013) ‘User Involvement in Software Development and System Success: A
Systematic Literature Review’, in EASE ’13: Proceedings of the 17th International Conference on
Evaluation and Assessment in Software Engineering, pp. 125–130. doi: 10.1145/2460999.2461017.

Barboni, E. et al. (2010) ‘Beyond Modelling: An Integrated Environment Supporting Co-Execution of
Tasks and Systems Models’, in Proceedings of the 2nd ACM SIGCHI Symposium on Engineering
Interactive Computing Systems - EICS ’10, pp. 165–174. doi: 10.1145/1822018.1822043.

Barnett, J. (2017) State Chart XML (SCXML): State Machine Notation for Control Abstraction, W3C.
Available at: http://www.w3.org/TR/scxml/.

Beaudouin-Lafon, M. and Mackay, W. E. (2000) ‘Prototyping Tools and Techniques’, in Prototype
Development and Tools, pp. 1–41.

Beck, K. et al. (2001) Manifesto for Agile Software Development. Available at: http://agilemanifesto.org
(Accessed: 1 June 2018).

Beck, K. (2002) Test Driven Development: By Example. 1st edn. Addison-Wesley Professional.

Beck, K. and Andres, C. (2004) Extreme Programming Explained: Embrace Change. 2nd edn. Addison-
Wesley.

Bertolino, A. et al. (2006) ‘Product Line Use Cases: Scenario-Based Specification and Testing of
Requirements’, in Software Product Lines. Springer, Berlin, Heidelberg, pp. 425–445. doi:
https://doi.org/10.1007/978-3-540-33253-4_11.

Boehm, B. W. (1979) ‘Guidelines for Verifying and Validating Software Requirements and Design
Specifications’, in Euro IFIP 79, pp. 711–719. doi: 10.1109/MS.1984.233702.

References

Booch, G., Rumbaugh, J. and Jacobson, I. (2005) The Unified Modeling Language User Guide. 2nd edn.
Addison-Wesley Professional. Available at: http://portal.acm.org/citation.cfm?id=1088874.

Bowen, J. and Reeves, S. (2011) ‘UI-Driven Test-First Development of Interactive Systems’, in
Proceedings of the 3rd ACM SIGCHI symposium on Engineering interactive computing systems - EICS
’11, pp. 165–174. doi: 10.1145/1996461.1996515.

Buchmann, R. A. and Karagiannis, D. (2017) ‘Modelling mobile app requirements for semantic
traceability’, Requirements Engineering. Springer London, 22(1), pp. 41–75. doi: 10.1007/s00766-015-
0235-1.

Business Process Model And NotationTM (BPMNTM) (2011) Object Management Group. Available at:
http://www.omg.org/spec/BPMN/2.0/ (Accessed: 1 December 2017).

Calvary, G. et al. (2002) The CAMELEON Reference Framework, R&D Project IST-2000-30104.
Available at: http://giove.isti.cnr.it/projects/cameleon.html.

Calvary, G. et al. (2003) ‘A Unifying Reference Framework for multi-target user interfaces’, Interacting
with Computers, 15(3 SPEC.), pp. 289–308. doi: 10.1016/S0953-5438(03)00010-9.

Calvary, G., Coutaz, J. and Thevenin, D. (2001) ‘Supporting Context Changes for Plastic User Interfaces:
A Process and a Mechanism’, in People and Computers XV — Interaction without Frontiers. Springer,
pp. 349–363.

Campos, J. C. et al. (2016) ‘Systematic Automation of Scenario-Based Testing of User Interfaces’, in
Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive Computing Systems - EICS
’16, pp. 138–148. doi: 10.1145/2933242.2948735.

Campos, J. C. et al. (2017) ‘A More Intelligent Test Case Generation Approach through Task Models
Manipulation’, Proceedings of the ACM on Human-Computer Interaction, 1(1), pp. 1–20. doi:
10.1145/3095811.

Card, S. K., Newell, A. and Moran, T. P. (1983) The Psychology of Human-Computer Interaction. L.
Erlbaum Associates Inc.

Carvalho, R. A. de, Carvalho e Silva, F. L. de and Manhaes, R. S. (2010) Mapping Business Process
Modeling constructs to Behavior Driven Development Ubiquitous Language, arXiv:1006.4892. Available
at: http://arxiv.org/abs/1006.4892.

Carvalho, R. A. de, Manhães, R. S. and Carvalho e Silva, F. L. de (2010) Filling the Gap between Business
Process Modeling and Behavior Driven Development, arXiv preprint arXiv:1005.4975. Available at:
http://arxiv.org/abs/1005.4975.

Chelimsky, D. et al. (2010) The RSpec Book: Behaviour Driven Development with RSpec, Cucumber,
and Friends. Pragmatic Bookshelf.

Chikofsky, E. J. and Cross II, J. H. (1990) ‘Reverse Engineering and Design Recovery: A Taxonomy’,
IEEE Software, pp. 13–17. doi: 10.1109/52.43044.

Cohn, M. (2004) User Stories Applied for Agile Software Development. Addison-Wesley.

Coyette, A., Kieffer, S. and Vanderdonckt, J. (2007) ‘Multi-fidelity Prototyping of User Interfaces’, in Proc.
of the IFIP TC.13 International Conference on Human-Computer Interaction, pp. 150–164. doi:
10.1007/978-3-540-74796-3_16.

References

Crandall, B., Klein, G. and Hoffman, R. R. (2006) Working Minds: A Practitioner’s Guide to Cognitive
Task Analysis. MIT Press.

Dalkir, K. (2011) Knowledge Management in Theory and Practice. MIT Press. doi: 10.1002/asi.21613.

Dijkstra, E. W. (1970) On The Reliability of Mechanisms.

Dumontier, M. (2018) Ontology Design Principles, GitHub. Available at:
https://github.com/micheldumontier/semanticscience/wiki/Ontology-Design-Principles (Accessed: 6
August 2018).

Dwarakanath, A. and Sengupta, S. (2012) ‘Litmus: Generation of Test Cases from Functional
Requirements in Natural Language’, in Int. Conference on Application of Natural Language to
Information Systems, pp. 58–69. doi: 10.1007/978-3-642-31178-9_6.

Ebert, C. (2011) Global Software and IT: A Guide to Distributed Development, Projects, and
Outsourcing. John Wiley & Sons.

Egbreghts, A. (2017) ‘A Literature Review of Behavior Driven Development using Grounded Theory’, in
27th Twente Student Conference on IT. Available at:
https://pdfs.semanticscholar.org/4f03/ec0675d08cfd1ecdbaac3361a29d756ce656.pdf.

Elkoutbi, M., Khriss, I. and Keller, R. K. (2006) ‘Automated Prototyping of User Interfaces Based on
UML Scenarios’, in Automated Software Engineering. Volume 13,. Kluwer Academic Publishers, pp. 5–
40. doi: https://doi.org/10.1007/s10515-006-5465-5.

Engel, A. (2010) Verification, Validation, and Testing of Engineered Systems. John Wiley & Sons, Inc.

Fahssi, R., Martinie, C. and Palanque, P. (2015) ‘Enhanced Task Modelling for Systematic Identification
and Explicit Representation of Human Errors’, in Proc. of the IFIP TC.13 International Conference on
Human-Computer Interaction, pp. 192–212. doi: 10.1007/978-3-319-22723-8.

Farooq Ali, M., Pérez-Quiñones, M. A. and Abrams, M. (2005) ‘Building Multi-Platform User Interfaces
with UIML’, in Seffah, A. and Javahery, H. (eds) Multiple User Interfaces: Cross-Platform Applications
and Context-Aware Interfaces. John Wiley & Sons, pp. 93–118. doi: 10.1002/0470091703.ch6.

Fierstone, J., Dery-Pinna, A.-M. and Riveill, M. (2003) Architecture Logicielle pour l’adaptation et la
composition d’IHM – Mise en œuvre avec le langage SUNML.

Forsberg, K. and Mooz, H. (1991) ‘The Relationship of System Engineering to the Project Cycle’, in
Proceedings of the First Annual Symposium of National Council on System Engineering, pp. 57–65. doi:
10.1002/j.2334-5837.1991.tb01484.x.

Graham, D. et al. (2008) Foundations of Software Testing: ISTQB Certification. Cengage Learning Emea.

Green, M. (1985) ‘Report on Dialogue Specification Tools’, in User Interface Management Systems.
Springer, Berlin, Heidelberg, pp. 9–20. doi: https://doi.org/10.1007/978-3-642-70041-5_2.

Guarino, N., Oberle, D. and Staab, S. (2009) ‘What Is an Ontology?’, in Handbook on Ontologies.
Springer, pp. 1–17.

Hackos, J. T. and Redish, J. C. (1998) User and Task Analysis for Interface Design. 1st edn. John Wiley
& Sons, Inc.

Hak, J., Winckler, M. and Navarre, D. (2016) ‘PANDA : Prototyping using ANnotation and Decision

References

Analysis’, in Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, pp. 171–176.

Hellmann, T. D. (2015) Automated GUI Testing for Agile Development Environments. University of
Calgary.

Highsmith, J. R. (1999) Adaptive Software Development: A Collaborative Approach to Managing
Complex Systems. Dorset House.

Hotomski, S., Charrada, E. Ben and Glinz, M. (2017) ‘Aligning Requirements and Acceptance Tests via
Automatically Generated Guidance’, in 2017 IEEE 25th International Requirements Engineering
Conference Workshops, pp. 339–342. doi: 10.1109/REW.2017.37.

IEEE (2017) IEEE Standard for System and Software Verification and Validation IEEE. IEEE Computer
Society. doi: 10.1109/IEEESTD.2012.6204026.

ISO (1999) ISO 13407: Human-centred design processes for interactive systems.

Jacobson, I., Booch, G. and Rumbaugh, J. (1999) The Unified Software Development Process. 1st edn.
Addison-Wesley Professional.

Käpyaho, M. and Kauppinen, M. (2015) ‘Agile Requirements Engineering With Prototyping: A Case
Study’, in 2015 IEEE 23rd International Requirements Engineering Conference, RE 2015 - Proceedings,
pp. 334–343. doi: 10.1109/RE.2015.7320450.

Khaddam, I., Mezhoudi, N. and Vanderdonckt, J. (2015) ‘Towards Task-Based Linguistic Modeling for
Designing GUIs’, in 27th Conference on l’Interaction Homme-Machine.

Ladas, C. (2009) Scrumban - Essays on Kanban Systems for Lean Software Development. Modus
Cooperandi Press.

Lai, S.-T., Leu, F.-Y. and Chu, W. C.-C. (2014) ‘Combining IID with BDD to Enhance the Critical
Quality of Security Functional Requirements’, in 2014 Ninth International Conference on Broadband
and Wireless Computing, Communication and Applications (BWCCA). IEEE.

Landay, J. A. (1996) ‘SILK: Sketching Interfaces Like Krazy’, in CHI 96, pp. 398–399. doi:
10.1145/257089.257396.

Leite, J. C. S. do P. and Oliveira, A. D. P. A. (1995) ‘A Client Oriented Requirements Baseline’, in
International Conference on Requirements Engineering, pp. 108–115. doi: 10.1109/ISRE.1995.512551.

Lewis, C. and Rieman, J. (1993) Task-Centered User Interface Design: A Practical Introduction. doi:
10.1017/CBO9781107415324.004.

Limbourg, Q. et al. (2004) ‘USIXML: A Language Supporting Multi-path Development of User
Interfaces’, in EHCI/DS-VIS, pp. 200–220. doi: 10.1007/11431879_12.

Limbourg, Q. and Vanderdonckt, J. (2003) ‘Comparing Task Models for User Interface Design’, in
Diaper, D. and Stanton, N. (eds) The Handbook of Task Analysis for Human-Computer Interaction.
Taylor & Francis, pp. 135–154. doi: 10.1.1.58.1444.

Lindstrom, D. R. (1993) ‘Five Ways to Destroy a Development Project’, IEEE Software, 10(5), pp. 55–
58. doi: 10.1109/52.232400.

Lombriser, P. et al. (2016) ‘Gamified Requirements Engineering: Model and Experimentation’, in

References

Proceedings of the 22nd International Working Conference on Requirements Engineering: Foundation
for Software Quality (REFSQ 2016). Springer-Verlag Berlin, pp. 171–187.

Lopes, J. H. (2012) Evaluation of Behavior-Driven Development. Delft University of Technology.

Lübke, D. and Van Lessen, T. (2016) ‘Modeling Test Cases in BPMN for Behavior- Driven
Development’, IEEE Software, (October), pp. 15–21. doi: 10.1109/MS.2016.117.

Lucassen, G. et al. (2017) ‘Behavior-Driven Requirements Traceability via Automated Acceptance Tests’,
Proceedings - 2017 IEEE 25th International Requirements Engineering Conference Workshops, REW
2017, pp. 431–434. doi: 10.1109/REW.2017.84.

Luna, E. R. et al. (2010) ‘Capture and Evolution of Web Requirements Using WebSpec’, in Proc. of the
Int. Conference on Web Engineering, pp. 173–188. doi: 10.1007/978-3-642-13911-6_12.

Maguire, M. and Bevan, N. (2002) ‘User Requirements Analysis: A Review of Supporting Methods’, in
IFIP World Computer Congress. Kluwer Academic Publishers, pp. 133–148.

Marcotte, E. (2014) Responsive Web Design. 2nd Editio. A Book Apart, LLC.

Martin, J. (1991) Rapid Application Development. Macmillan Publishing Co.

Martinie, C. et al. (2013) ‘Extending Procedural Task Models by Systematic Explicit Integration of
Objects, Knowledge and Information’, in Proceedings of the 31st European Conference on Cognitive
Ergonomics, p. European Association for Cognitive Ergonomics (EAC. doi: 10.1145/2501907.2501954.

Martinie, C. et al. (2015) ‘A Generic Tool-Supported Framework for Coupling Task Models and
Interactive Applications’, in Proceedings of the 7th ACM SIGCHI Symposium on Engineering Interactive
Computing Systems - EICS ’15, pp. 244–253. doi: 10.1145/2774225.2774845.

Martinie, C., Palanque, P. and Winckler, M. (2011) ‘Structuring and Composition Mechanisms to
Address Scalability Issues in Task Models’, in Proc. of the IFIP TC.13 International Conference on
Human-Computer Interaction, pp. 589–609. doi: 10.1007/978-3-642-23765-2_40.

McDonald, J. E., Vandenberg, P. D. J. and Smartt, M. J. (1988) ‘The mirage rapid interface prototyping
system’, in UIST ’88 Proceedings of the 1st annual ACM SIGGRAPH symposium on User Interface
Software, pp. 77–84.

van Megen, R. and Meyerhoff, D. B. (1995) ‘Costs and benefits of early defect detection: experiences
from developing client server and host applications’, Software Quality Journal, 4(4), pp. 247–256. doi:
10.1007/BF00402646.

Melnik, G. I. (2007) Empirical Analyses of Executable Acceptance Test Driven Development. University
of Calgary.

Meyer, B. (1985) ‘On Formalism in Specifications’, IEEE Software, 2(1), pp. 6–26. doi:
10.1109/MS.1985.229776.

Myers, G. J. (2004) The Art of Software Testing. 2nd edn. John Wiley & Sons, Inc.

Nair, S., De La Vara, J. L. and Sen, S. (2013) ‘A Review of Traceability Research at the Requirements
Engineering Conference RE@21’, in 2013 21st IEEE International Requirements Engineering
Conference, RE 2013 - Proceedings, pp. 222–229. doi: 10.1109/RE.2013.6636722.

Navarre, D. et al. (2001) ‘A Tool Suite for Integrating Task and System Models Through Scenarios’, in

References

DSV-IS, pp. 88–113. doi: 10.1007/3-540-45522-1_6.

Navarre, D., Palanque, P. and Bastide, R. (2002) ‘Model-Based Interactive Prototyping of Highly
Interactive Applications’, in Computer-Aided Design of User Interfaces III. Springer, pp. 205–216.

Newman, M. et al. (2003) ‘DENIM: An Informal Web Site Design Tool Inspired by Observations of
Practice’, Human-Computer Interaction, 18(3), pp. 259–324. doi: 10.1207/S15327051HCI1803_3.

Nicolle, C. A. (1999) ‘USERfit - Design for all methods and tools’, in COST 219bis Seminar ‘Human
Aspects of Telecommunications for Disabled and Older People’’’. Donostia-San Sebastian, Spain, Spain.
Available at: http://hdl.handle.net/2134/1026.

Nielsen, J. (1986) ‘A Virtual Protocol Model for Computer-Human Interaction’, International Journal of
Man-Machine Studies, 24(3), pp. 301–312. doi: 10.1016/S0020-7373(86)80028-1.

North, D. (2006) ‘Introducing BDD’, Better Software.

North, D. (2009) ‘Agile Specifications, BDD and Testing eXchange: How to sell BDD to the business’.
London: Skills Matter. Available at: https://skillsmatter.com/skillscasts/923-how-to-sell-bdd-to-the-
business#video.

North, D. (2017) What’s in a Story? Available at: https://dannorth.net/whats-in-a-story/ (Accessed: 1
December 2017).

Oran, A. C. et al. (2017) ‘Analysing Requirements Communication Using Use Case Specification and
User Stories’, in Proceedings of the 31st Brazilian Symposium on Software Engineering (SBES 2017).
ACM, pp. 214–223. doi: https://doi.org/10.1145/3131151.3131166.

Osterweil, L. J. (2005) ‘Unifying Microprocess and Macroprocess Research’, in Unifying the Software
Process Spectrum. Springer, Berlin, Heidelberg, pp. 68–74. doi: https://doi.org/10.1007/11608035_7.

Palmer, S. R. and Felsing, J. M. (2002) A Practical Guide to Feature-Driven Development. 1st edn.
Prentice Hall.

Paternò, F. (1999) ‘ConcurTaskTrees : An Engineered Approach to Model-based Design of Interactive
Systems’, in The Handbook of Analysis for Human Computer Interaction, pp. 1–18. doi: 10.1111/j.1467-
923X.1954.tb00152.x.

Paternò, F. (2000) Model-Based Design and Evaluation of Interactive Applications. Springer-Verlag
London.

Paternò, F. (2003) ‘ConcurTaskTrees: An Engineered Notation for Task Model’, in The Handbook of
Task Analysis for Human-Computer Interaction. Lawrence Erlbaum Associates, pp. 483–503.

Paternò, F. et al. (2017) W3C, MBUI - Task Models. Available at: http://www.w3.org/TR/task-models/.

Paternò, F. and Mancini, C. (1999) ‘Developing task models from informal scenarios’, in CHI EA ’99
CHI ’99 Extended Abstracts on Human Factors in Computing Systems. ACM, pp. 228–229. doi:
https://doi.org/10.1145/632716.632858.

Pontico, F., Farenc, C. and Winckler, M. (2007) ‘Model-Based Support for Specifying eService
eGovernment Applications’, in Task Models and Diagrams for Users Interface Design: 5th International
Workshop, TAMODIA 2006, Hasselt, Belgium, October 23-24, 2006. Revised Papers, pp. 54–67. doi:
10.1007/978-3-540-70816-2_5.

References

Poppendieck, M., Poppendieck, T. D. and Poppendieck, T. (2003) Lean Software Development: An
Agile Toolkit. Addison-Wesley Professional.

Puerta, A. and Eisenstein, J. (2002) ‘XIML: A Universal Language for User Interfaces’, in Proceedings of
the 7th International Conference on Intelligent User Interfaces. Available at:
http://www.ximl.org/documents/XimlWhitePaper.pdf.

Pugh, K. (2010) Lean-Agile Acceptance Test-Driven-Development. Pearson Education.

Pullmann, J. (2017) MBUI - Glossary - W3C. Available at: https://www.w3.org/TR/mbui-glossary/
(Accessed: 1 December 2017).

Rahman, M. and Gao, J. (2015) ‘A Reusable Automated Acceptance Testing Architecture for
Microservices in Behavior-Driven Development’, in Proceedings - 9th IEEE International Symposium on
Service-Oriented System Engineering, IEEE SOSE 2015, pp. 321–325. doi: 10.1109/SOSE.2015.55.

Ramesh, B. et al. (1995) ‘Implementing Requirements Traceability: A Case Study’, in Proceedings of the
Second IEEE International Symposium on Requirements Engineering. York, United Kingdom, pp. 89–
95.

Reddy, A. (2015) Scrumban [R]Evolution, The: Getting the Most Out of Agile, Scrum, and Lean Kanban.
1st edn. Addison-Wesley Professional.

Rosson, M. B. and Carroll, J. M. (2001) Usability Engineering: Scenario-Based Development of Human-
Computer Interaction. Morgan Kaufmann.

Rosson, M. B. and Carroll, J. M. (2002) ‘Scenario-Based Design’, in The Human-Computer Interaction
Handbook: Fundamentals, Evolving Technologies and Emerging Applications, pp. 1032–1050. doi:
10.1016/j.jbi.2011.07.004.

Royce, D. W. W. (1970) ‘Managing the Development of Large Software Systems’, IEEE Wescon,
(August), pp. 328–338.

Saffer, D. (2006) Designing for Interaction: Creating Smart Applications and Clever Devices. 1st edn.
New Riders.

Santoro, C. (2005) A Task Model-Based Approach for the Design and Evaluation of Innovative User
Interfaces. Consiglio Nazionale Delle Ricerche.

Schwaber, K. (2004) Agile Project Management with Scrum. Microsoft Press.

Silva, T. R. (2016) ‘Definition of a Behavior-Driven Model for Requirements Specification and Testing
of Interactive Systems’, in Proceedings - 2016 IEEE 24th International Requirements Engineering
Conference, RE 2016, pp. 444–449. doi: 10.1109/RE.2016.12.

Silva, T. R. et al. (2017) ‘A Comparative Study of Milestones for Featuring GUI Prototyping Tools’,
Journal of Software Engineering and Applications, 10(06), pp. 564–589. doi: 10.4236/jsea.2017.106031.

Silva, T. R., Hak, J.-L. and Winckler, M. (2016a) ‘An Approach for Multi-Artifact Testing Through an
Ontological Perspective for Behavior-Driven Development’, Complex Systems Informatics and Modeling
Quarterly, (7), pp. 81–107. doi: 10.7250/csimq.2016-7.05.

Silva, T. R., Hak, J.-L. and Winckler, M. (2016b) ‘Testing Prototypes and Final User Interfaces Through
an Ontological Perspective for Behavior-Driven Development’, in 6th International Working Conference
on Human-Centred Software Engineering, and 8th International Working Conference on Human Error,

References

Safety, and System Development (HCSE 2016 and HESSD 2016), pp. 86–107. doi: 10.1007/978-3-319-
44902-9.

Silva, T. R., Hak, J.-L. and Winckler, M. (2017a) ‘A Behavior-Based Ontology for Supporting Automated
Assessment of Interactive Systems’, in Proceedings - IEEE 11th International Conference on Semantic
Computing, ICSC 2017, pp. 250–257. doi: 10.1109/ICSC.2017.73.

Silva, T. R., Hak, J.-L. and Winckler, M. (2017b) ‘A Formal Ontology for Describing Interactive
Behaviors and Supporting Automated Testing on User Interfaces’, International Journal of Semantic
Computing, 11(04), pp. 513–539. doi: 10.1142/S1793351X17400219.

Silva, T. R., Hak, J.-L. and Winckler, M. A. (2015) ‘A Review of Milestones in the History of GUI
Prototyping Tools’, in IFIP TC.13 International Conference on Human-Computer Interaction –
INTERACT 2015 Adjunct Proceedings, pp. 1–13.

Silva, T. R. and Winckler, M. (2017) ‘A Scenario-Based Approach for Checking Consistency in User
Interface Design Artifacts’, in IHC’17, Proceedings of the 16th Brazilian Symposium on Human Factors
in Computing Systems, pp. 21–30. doi: 10.1145/3160504.3160506.

Silva, T. R. and Winckler, M. A. A. (2016) ‘Towards Automated Requirements Checking Throughout
Development Processes of Interactive Systems’, in 22nd International Working Conference on
Requirements Engineering – Foundation for Software Quality, REFSQ 2016, pp. 1–2.

Sneed, H. M. (2007) ‘Testing against Natural Language Requirements’, in Proc. of the Seventh
International Conference on Quality Software, pp. 380–387. doi: 10.1109/QSIC.2007.4385524.

Soeken, M., Wille, R. and Drechsler, R. (2012) ‘Assisted Behavior Driven Development Using Natural
Language Processing’, in TOOLS Europe 2012, pp. 269–287. Available at:
http://www.scopus.com/inward/record.url?eid=2-s2.0-
84862188111&partnerID=40&md5=3f9e6990f0071f032a96c05dea733985.

Solís, C. and Wang, X. (2011) ‘A Study of the Characteristics of Behaviour Driven Development’, in
Proceedings - 37th EUROMICRO Conference on Software Engineering and Advanced Applications,
SEAA 2011, pp. 383–387. doi: 10.1109/SEAA.2011.76.

Sousa, K. S. K., Mendonça, H. and Vanderdonckt, J. (2008) ‘A Model-Driven Approach to Align
Business Processes with User Interfaces’, Journal of Universal Computer Science, 14(19), pp. 3236–3249.

De Souza, C. S. (2005) ‘Semiotic engineering: Bringing designers and users together at interaction time’,
Interacting with Computers, 17(3), pp. 317–341. doi: 10.1016/j.intcom.2005.01.007.

Stapleton, J. and Constable, P. (1997) DSDM: Dynamic Systems Development Method: The Method in
Practice. 1st edn. Addison-Wesley Professional.

Tian, J. (2005) ‘Software Inspection’, in Software Quality Engineering: Testing, Quality Assurance, and
Quantifiable Improvement. John Wiley & Sons, Inc., pp. 237–250. doi:
https://doi.org/10.1002/0471722324.ch14.

Usability Body of Knowledge (2018) User Experience Professionals’ Association. Available at:
http://www.usabilitybok.org (Accessed: 1 June 2018).

Uusitalo, E. J. et al. (2008) ‘Linking Requirements and Testing in Practice’, in Proceedings of the 16th
IEEE International Requirements Engineering Conference, RE’08, pp. 265–270. doi:
10.1109/RE.2008.30.

References

Valente, P. et al. (2016) ‘Bridging Enterprise and Software Engineering Through an User-Centered Design
Perspective’, in Web Information Systems Engineering – WISE 2016, pp. 349–357. doi: 10.1007/978-3-
319-48743-4.

Valente, P. et al. (2017) ‘The Goals Approach: Agile Enterprise Driven Software Development’, in
Complexity in Information Systems Development, pp. 201–219. doi: 10.1007/978-3-319-52593-8.

Vanderdonckt, J. (2005) ‘A MDA-Compliant Environment for Developing User Interfaces of Information
Systems’, in CAiSE 2005, pp. 16–31. doi: 10.1007/11431855_2.

Wang, Y. and Wagner, S. (2018) ‘Combining STPA and BDD for Safety Analysis and Verification in
Agile Development: A Controlled Experiment’, in International Conference on Agile Software
Development (XP 2018). Springer, pp. 37–53. doi: https://doi.org/10.1007/978-3-319-91602-6_3.

Wautelet, Y. et al. (2014) ‘Unifying and Extending User Story Models’, in International Conference on
Advanced Information Systems Engineering (CAiSE 2014). Springer, pp. 211–225. doi: 10.1007/978-3-
319-07881-6_15.

Winckler, M. et al. (2008) ‘Cascading dialog modeling with UsiXML’, in International Workshop on
Design, Specification, and Verification of Interactive Systems, pp. 121–135.

Winckler, M. and Palanque, P. (2003) ‘StateWebCharts: A Formal Description Technique Dedicated to
Navigation Modelling of Web Applications’, in Interactive Systems. Design, Specification, and
Verification, pp. 61–76. doi: 10.1007/978-3-540-39929-2_5.

Winckler, M. and Palanque, P. (2012) ‘Models as Representations for Supporting the Development of e-
Procedures’, in Usability in Government Systems. Elsevier, pp. 301–315. doi: 10.1016/B978-0-12-391063-
9.00051-1.

Wolff, A. et al. (2005) ‘Linking GUI Elements to Tasks – Supporting an Evolutionary Design Process’, in
Proceedings of the 4th International Workshop on Task Models and Diagrams, pp. 27–34. doi:
10.1145/1122935.1122941.

Wood, D. P. and Kang, K. C. (1992) A Classification and Bibliography of Software Prototyping,
Requirements Engineering Project. Pittsburgh, Pennsylvania. Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.6660&rep=rep1&type=pdf.

Appendix A: Concept Mapping Table

Checkbox and Radio Button Behaviors

Ontological Behavior Task Step of Scenario

Interactive Elements Affected

Ontology
Balsamiq Prototype

(com.balsamiq.mockups::)
Final UI

theFieldIsUnchecked Verify the field <fieldname>
is unchecked

Given/When/Then the field
“<fieldname>” is unchecked

Checkbox CheckBox CheckBox

Radio Button RadioButton Radio

theFieldIsChecked Verify the field <fieldname>
is checked

Given/When/Then the field
“<fieldname>” is checked

Checkbox CheckBox CheckBox

Radio Button RadioButton Radio

assureTheFieldIsUnchecke
d

Assure the field <fieldname>
is unchecked

When I assure the field “<fieldname>” is
unchecked Checkbox CheckBox CheckBox

assureTheFieldIsChecked Assure the field <fieldname>
is checked

When I assure the field “<fieldname>” is
checked Checkbox CheckBox CheckBox

Common Behaviors

Ontological Behavior Task Step of Scenario

Interactive Elements Affected

Ontology
Balsamiq Prototype

(com.balsamiq.mockups::)
Final UI

choose Choose <option> Given/When/Then I choose “<option>”

Calendar Calendar or DateChooser Calendar

Checkbox CheckBox CheckBox

Radio Button RadioButton Radio

Link Link Link

select Select <option> Given/When/Then I select “<option>”

Calendar Calendar or DateChooser Calendar

Checkbox CheckBox CheckBox

Radio Button RadioButton Radio

Link Link Link

Appendix A: Concept Mapping Table

chooseByIndexInTheField Choose in the field
<fieldname>

When/Then I choose “<index>” by index
in the field “<fieldname>” Dropdown List ComboBox Select

chooseReferringTo

Choose <fieldname>
referring to <option> When/Then I choose “<fieldname>”

referring to “<option>”

Calendar Calendar or DateChooser Calendar

Checkbox CheckBox CheckBox

Choose <fieldname>
Radio Button RadioButton Radio

Link Link Link

chooseTheOptionOfValueI
nTheField

Choose in the field
<fieldname>

When/Then I choose the option of value
“<value>” in the field “<fieldname>” Dropdown List ComboBox Select

clickOn Click on <fieldname> When/Then I click on “<fieldname>”

Menu MenuBar Menu

Menu Item Accordion MenuItem

Button Button Button

Link Link Link

clickOnReferringTo

Click on <fieldname>
referring to <option> When/Then I click on “<fieldname>”

referring to “<option>”

Menu MenuBar Menu

Menu Item Accordion MenuItem

Button Button Button

Click on <fieldname>
Link Link Link

Grid DataGrid Grid

doNotTypeAnyValueToTh
eField

Do not type any value to the
field <fieldname>

When I do not type any value to the field
“<fieldname>” Text Field TextInput TextField

resetTheValueOfTheField Reset the value of the field
<fieldname>

When I reset the value of the field
“<fieldname>” Text Field TextInput TextField

goTo Go to <address> Given/When/Then I go to “<address>” Browser Window BrowserWindow Screen

goToWithTheParameters Go to <address> with the
parameters <parameters>

Given/When/Then I go to “<address>”
with the parameters “<parameters>” Browser Window BrowserWindow Screen

isDisplayed Display <page> Given/When/Then “<page>” is displayed Browser Window BrowserWindow Screen

setInTheField Set <fieldname> When/Then I set “<value>” in the field
“<fieldname>”

Dropdown List ComboBox Select

Text Field TextInput TextField

Autocomplete SearchBox AutoComplete

Appendix A: Concept Mapping Table

Calendar Calendar or DateChooser Calendar

tryToSetInTheField Try to set <fieldname> When/Then I try to set in the field
“<fieldname>”

Dropdown List ComboBox Select

Text Field TextInput TextField

Autocomplete SearchBox AutoComplete

Calendar Calendar or DateChooser Calendar

setInTheFieldReferringTo Set <fieldname> When/Then I set “<value>” in the field
referring to “fieldname>”

Dropdown List ComboBox Select

Text Field TextInput TextField

typeAndChooseInTheField
Inform <value 1>
Choose <value 2>

When/Then I type “<value 1>” and
choose “<value 2>” in the field
“<fieldname>”

Autocomplete SearchBox AutoComplete

informAndChooseInTheFie
ld

Inform <value 1>
Choose <value 2>

When/Then I inform “<value 1>” and
choose “<value 2>” in the field
“<fieldname>”

Autocomplete SearchBox AutoComplete

willBeDisplayed Display <content> Then “<content>” will be displayed Text Paragraph Text

willNotBeDisplayed Not display <content> Then “<content>” will not be displayed Text Paragraph Text

willBeDisplayedInTheField
TheValue Display <value> Then will be displayed in the field

“<fieldname>” the value “<value>” Element UI Element Element

willNotBeDisplayedInTheFi
eldTheValue Not display <value> Then will not be displayed in the field

“<fieldname>” the value “<value>” Element UI Element Element

willBeDisplayedTheValueIn
TheFieldReferringTo Display <value>

Then will be displayed the value “<value>”
in the field “<fieldname>” referring to
“<element>”

Element UI Element Element

willNotBeDisplayedTheVal
ueInTheFieldReferringTo Not display <value>

Then will not be displayed the value
“<value>” in the field “<fieldname>”
referring to “<element>”

Element UI Element Element

isNotVisible Hidden <fieldname>
Given/When/Then “<fieldname>” is not
visible Element UI Element Element

valueReferringToIsNotVisib
le Hidden <value> Given/When/Then “<value>” referring to

“<element>” is not visible Element UI Element Element

Appendix A: Concept Mapping Table

waitTheFieldBeVisibleClick
ableAndEnable

Wait the field <fieldname>
be visible, clickable and
enable

Given/When/Then I wait the field
“<fieldname>” be visible, clickable and
enable

Element UI Element Element

waitTheFieldReferringToBe
VisibleClickableAndEnable

Wait the field <fieldname>
be visible, clickable and
enable

Given/When/Then I wait the field
“<fieldname>” referring to “<element>” be
visible, clickable and enable

Element UI Element Element

theElementIsVisibleAndDis
able

Check the element
<element> is visible and
disable

Given/When/Then the element
“<element>” is visible and disable Element UI Element Element

theElementReferringToIsVi
sibleAndDisable

Check the element
<element> is visible and
disable

Given/When/Then the element
“<fieldname>” referring to “<element>” is
visible and disable

Element UI Element Element

setInTheFieldAndTriggerT
heEvent

Set <fieldname>
Trigger <event>

When/Then I set in the field
“<fieldname>” and trigger the event
“<event>”

Text Field TextInput TextField

clickOnTheRowOfTheTree Select value for <tree>
Given/When/Then I click on the row
“<row>” of the tree “<tree>” Tree - Tree

Data Generation Behaviors

Ontological Behavior Task Step of Scenario

Interactive Elements Affected

Ontology
Balsamiq Prototype

(com.balsamiq.mockups::)
Final UI

informARandomNumberW
ithPrefixInTheField

Inform a random number
with prefix in the field
<fieldname>

Given/When/Then I inform a random
number with prefix “<prefix>” in the field
“<fieldname>”

Text Field TextInput TextField

informARandomNumberIn
TheField

Inform a random number in
the field <fieldname>

When I inform a random number in the
field “<fieldname>” Text Field TextInput TextField

Data Provider Behaviors

Ontological Behavior Task Step of Scenario

UI Elements

Ontology
Balsamiq Prototype

(com.balsamiq.mockups::)
Final UI

inform Inform <value> Given/When I inform “<value>” Grid DataGrid Grid

Appendix A: Concept Mapping Table

informTheField Inform the field <fieldname> When I inform the field “<fieldname>” Grid DataGrid Grid

informTheFields Inform the fields
<fieldnames>

When I inform the fields “<fieldnames>” Grid DataGrid Grid

selectFromDataSet Select from dataset <dataset>
Given/When I select from dataset
“<dataset>” - - -

informTheValueOfTheFiel
d

Inform the value of the field
<fieldname>

When/Then I inform the value of the field
“<fieldname>” Element UI Element Element

informKeyWithTheValue Inform key <key>
Given/When/Then I inform key “<key>”
with the value “<value>” - - -

defineTheVariableWithThe
Value

Define the variable
<variable>

Given/When/Then I define the variable
“<variable>” with the value “<value>” - - -

obtainTheValueFromTheFi
eld

Obtain the value from the
field <fieldname>

Given/When/Then I obtain the value from
the field “<fieldname>” Element UI Element Element

Debug Behaviors

Ontological Behavior Task Step of Scenario

UI Elements

Ontology
Balsamiq Prototype

(com.balsamiq.mockups::)
Final UI

printOnTheConsoleTheVal
ueOfTheVariable

Print on the console the
value of the variable
<variable>

When/Then I print on the console the
value of the variable <variable> - - -

Dialog Behaviors

Ontological Behavior Task Step of Scenario

UI Elements

Ontology
Balsamiq Prototype

(com.balsamiq.mockups::)
Final UI

confirmTheDialogBox Confirm the dialog box
Given/When/Then I confirm the dialog
box Window Dialog Alert Dialog

cancelTheDialogBox Cancel the dialog box Given/When/Then I cancel the dialog box Window Dialog Alert Dialog

informTheValueInTheDial
ogBox

Inform the value in the
dialog box

Given/When/Then I inform the value
“<value>” in the dialog box Window Dialog Alert Dialog

Appendix A: Concept Mapping Table

willBeDisplayedInTheDialo
gBox

Display <message> in the
dialog box

Then will be displayed “<message>” in the
dialog box

Window Dialog Alert Dialog

Mouse Control Behaviors

Ontological Behavior Task Step of Scenario

UI Elements

Ontology
Balsamiq Prototype

(com.balsamiq.mockups::)
Final UI

moveTheMouseOver Move the mouse over
<element>

When I move the mouse over
“<element>”

Menu MenuBar Menu

Menu Item Accordion MenuItem

Button Button Button

Link Link Link

Table Behaviors

Ontological Behavior Task Step of Scenario

UI Elements

Ontology
Balsamiq Prototype

(com.balsamiq.mockups::)
Final UI

clickOnTheRowOfTheTabl
eReferringTo

Click on the row of the table
<table>

When/Then I click on the row “<row>” of
the table “<table>” referring to
“<element>”

Grid DataGrid Grid

storeTheCellOfTheTableIn Store the cell of the table
<table> in <place>

When/Then I store the cell “<cell>” of the
table “<table>” in “<place>” Grid DataGrid Grid

storeTheColumnOfTheTab
leIn

Store the column of the table
<table> in <place>

When/Then I store the column
“<column>” of the table “<table>” in
“<place>”

Grid DataGrid Grid

compareTheTextOfTheTa
bleCellWith

Compare the text of the
table cell with <text>

When/Then I compare the text of the
table cell “<table text>” with “<text>”

Grid DataGrid Grid

compareTheTextOfTheTa
bleColumnWith

Compare the text of the
table column with <text>

When/Then I compare the text of the
table column “<table text>” with “<text>” Grid DataGrid Grid

clickOnTheCellOfTheTabl
e

Click on the cell of the table
<table>

When/Then I click on the cell “<cell>” of
the table “<table>” Grid DataGrid Grid

clickOnTheColumnOfThe
Table

Click on the column of the
table <table>

When/Then I click on the column
“<column>” of the table “<table>”

Grid DataGrid Grid

Appendix A: Concept Mapping Table

chooseTheOptionInTheCel
lOfTheTable

Choose the option in the cell
of the table <table>

When/Then I choose the option
“<option>” in the cell of the table
“<table>”

Grid DataGrid Grid

chooseTheOptionInTheCol
umnOfTheTable

Choose the option in the
column of the table <table>

When/Then I choose the option
“<option>” in the column of the table
“<table>”

Grid DataGrid Grid

typeTheTextInTheCellOfT
heTable

Type the text in the cell of
the table <table>

When/Then I type the text “<text>” in the
cell of the table “<table>” Grid DataGrid Grid

typeTheTextInTheColumn
OfTheTable

Type the text in the column
of the table <table>

When/Then I type the text “<text>” in the
column of the table “<table>” Grid DataGrid Grid

Appendix B: Log of Results – Assessing Task
Models

Running story stories/Confirm Flight Selection.storyConverted
User Story: Confirm Flight Selection
(stories/Confirm Flight Selection.storyConverted)
Narrative:
As a IRIT researcher
I want to get all the required data to confirm my flights
So that I can check the information, the fare rules and then finalize my booking.
Scenario: Confirm a Flight Selection
Proceed to Login
Reach the Travel Planet Search Page
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Go to Flight Search - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Go to Flight Search - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Go to Flight Search - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Go to Flight Search - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Go to Flight Search - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Go to Flight Search - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Go to Flight Search - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Go to Flight Search - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Go to Flight Search - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Go to Flight Search - Task not found! >>
Given I go to "Flight Search"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Select Round Trip - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Select Round Trip - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Select Round Trip - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Select Round Trip - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Select Round Trip - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Select Round Trip - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Select Round Trip - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Select Round Trip - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Select Round Trip - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Select Round Trip - Task not found! >>
When I select "Round Trip"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
And I inform "Toulouse" and choose "Toulouse, Blagnac (TLS)" in the field "Departure"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
When I inform "Paris" and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Destination"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: Sam, Déc 1, 2018 >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in
Position: 8 - Associated Value: No Value >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in
Position: 15 - Associated Value: No Value >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 16
- Associated Value: No Value >>

Appendix B: Log of Results – Assessing Task Models

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 -
Associated Value: No Value >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>
<< Scenario: Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: Sam, Déc
1, 2018 >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8
- Associated Value: No Value >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: No Value
>>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position:
8 - Associated Value: No Value >>
And I set "Sam, Déc 1, 2018" in the field "Departure Date"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Arrival Date - Found in Position: 9 - Associated Value:
Lun, Déc 10, 2018 >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Arrival Date - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Arrival Date - Found in Position: 10 - Associated
Value: No Value >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Arrival Date - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Arrival Date - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Set Arrival Date - Found in Position: 10 - Associated Value: Lun, Déc
10, 2018 >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Arrival Date - Found in Position: 9 -
Associated Value: No Value >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Arrival Date - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Arrival Date - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Arrival Date - Task not found! >>
When I set "Lun, Déc 10, 2018" in the field "Arrival Date"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position:
17 >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 17 >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 23 >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: Return Trip With Data.scen - Searched Task: Submit Search - Found in Position: 17 >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 16 >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Submit Search - Found in Position: 16 >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 11 >>
And I submit "Search"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage
- Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found!
>>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not
found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task
not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found!
>>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task
not found! >>
Then will be displayed "2. Sélectionner un voyage"
Using timeout for story Confirm Flight Selection.storyConverted of 21600 secs.
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Availability Page - Task
not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found!
>>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found!
>>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not
found! >>
Given "Availability Page" is displayed
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found!
>>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
When I click on "No Bag" referring to "Air France 7519"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found!
>>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
And I click on "No Bag" referring to "Air France 7522"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on Book - Task not found! >>

Appendix B: Log of Results – Assessing Task Models

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Book - Task not found!
>>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
When I click on "Book"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display J'accepte les Conditions d'achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions
d'achat concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display J'accepte les Conditions d'achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
Then will be displayed "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)."
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task
not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found!
>>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found!
>>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not
found! >>
Given "Confirmation Page" is displayed
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions
d'achat concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
When I choose "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)."
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Finalize the trip -
Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found!
>>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not
found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not
found! >>
And I click on "Finalize the trip"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Votre voyage a été
confirmé! - Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found!
>>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task
not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! -
Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found!
>>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! -
Task not found! >>
Then will be displayed "Votre voyage a été confirmé!"

Scenario: Confirm a Flight Selection (Full Version)

Appendix B: Log of Results – Assessing Task Models

Proceed to Login
Reach the Travel Planet Search Page
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in
Position: 1 >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1
>>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: Return Trip With Data.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1
>>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position:
1 >>
Given I go to "Book Flights"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
When I inform "Toulouse" and choose "Toulouse, Blagnac (TLS)" in the field "Departure"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
And I inform "Paris" and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Destination"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: Sam, Déc 1, 2018 >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in
Position: 8 - Associated Value: No Value >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in
Position: 15 - Associated Value: No Value >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 16
- Associated Value: No Value >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 -
Associated Value: No Value >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>
<< Scenario: Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: Sam, Déc
1, 2018 >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8
- Associated Value: No Value >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: No Value
>>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position:
8 - Associated Value: No Value >>
When I set "Sam, Déc 1, 2018" in the field "Departure Date"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Departure Time Frame - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Time Frame - Task
not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Time Frame - Found in Position: 9 -
Associated Value: No Value >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Time Frame - Found in Position:
17 - Associated Value: No Value >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Time Frame - Found in Position:
9 - Associated Value: No Value >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Departure Time Frame - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Set Departure Time Frame - Found in Position: 9 - Associated Value:
No Value >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Time Frame - Task not found!
>>

Appendix B: Log of Results – Assessing Task Models

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Time Frame - Found in Position: 9 -
Associated Value: No Value >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Departure Time Frame - Found in Position: 9 - Associated Value:
No Value >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Time Frame - Task not found!
>>
And I set "08:00" in the field "Departure Time Frame"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Round Trip - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Round Trip - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Round Trip - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Round Trip - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Round Trip - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose Round Trip - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Round Trip - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Round Trip - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Round Trip - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Round Trip - Task not found! >>
When I choose "Round Trip"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Arrival Date - Found in Position: 9 - Associated Value:
Lun, Déc 10, 2018 >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Arrival Date - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Arrival Date - Found in Position: 10 - Associated
Value: No Value >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Arrival Date - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Arrival Date - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Set Arrival Date - Found in Position: 10 - Associated Value: Lun, Déc
10, 2018 >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Arrival Date - Found in Position: 9 -
Associated Value: No Value >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Arrival Date - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Arrival Date - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Arrival Date - Task not found! >>
And I set "Lun, Déc 10, 2018" in the field "Arrival Date"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Arrival Time Frame - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Arrival Time Frame - Task
not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Arrival Time Frame - Found in Position: 11 -
Associated Value: No Value >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Arrival Time Frame - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Arrival Time Frame - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Set Arrival Time Frame - Found in Position: 11 - Associated Value: No
Value >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Arrival Time Frame - Task not found!
>>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Arrival Time Frame - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Arrival Time Frame - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Arrival Time Frame - Task not found!
>>
When I set "10:00" in the field "Arrival Time Frame"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Number of Passengers - Found in Position: 10 -
Associated Value: 1 >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Number of Passengers -
Found in Position: 16 - Associated Value: No Value >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Number of Passengers - Found in Position: 12 -
Associated Value: No Value >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Number of Passengers - Found in
Position: 18 - Associated Value: No Value >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Number of Passengers - Found in Position: 10 -
Associated Value: No Value >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose Number of Passengers - Found in Position: 12 - Associated Value:
1 >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Number of Passengers - Found in
Position: 10 - Associated Value: No Value >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Number of Passengers - Found in Position: 11
- Associated Value: No Value >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Number of Passengers - Found in Position: 11 - Associated Value:
No Value >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Number of Passengers - Found in
Position: 10 - Associated Value: No Value >>
And I choose the option of value "2" in the field "Number of Passengers"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Timeframe - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Timeframe - Task not found!
>>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Timeframe - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Timeframe - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Timeframe - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Set Timeframe - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Timeframe - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Timeframe - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Timeframe - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Timeframe - Task not found! >>
When I set "6" in the field "Timeframe"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Select Direct Flights Only - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Select Direct Flights Only -
Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Select Direct Flights Only - Found in Position: 14 >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Select Direct Flights Only - Found in
Position: 20 >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Select Direct Flights Only - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Select Direct Flights Only - Found in Position: 14 >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Select Direct Flights Only - Task not
found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Select Direct Flights Only - Found in Position: 13
>>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Select Direct Flights Only - Found in Position: 13 >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Select Direct Flights Only - Task not
found! >>
And I select "Direct Flights Only"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Flight Class - Task not found! >>

Appendix B: Log of Results – Assessing Task Models

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Flight Class - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Flight Class - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Flight Class - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Flight Class - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose Flight Class - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Flight Class - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Flight Class - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Flight Class - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Flight Class - Task not found! >>
When I choose the option of value "Economique" in the field "Flight Class"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Companies - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Companies - Task not found!
>>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Companies - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Companies - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Companies - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Set Companies - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Companies - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Companies - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Companies - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Companies - Task not found! >>
And I set "Air France" in the field "Companies"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position:
17 >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 17 >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 23 >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: Return Trip With Data.scen - Searched Task: Submit Search - Found in Position: 17 >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 16 >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Submit Search - Found in Position: 16 >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 11 >>
When I submit "Search"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage
- Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found!
>>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not
found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task
not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found!
>>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task
not found! >>
Then will be displayed "2. Sélectionner un voyage"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Availability Page - Task
not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found!
>>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found!
>>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not
found! >>
Given "Availability Page" is displayed
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found!
>>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
When I click on "No Bag" referring to "Air France 7519"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found!
>>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
And I click on "No Bag" referring to "Air France 7522"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Book - Task not found!
>>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

Appendix B: Log of Results – Assessing Task Models

When I click on "Book"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display J'accepte les Conditions d'achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions
d'achat concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display J'accepte les Conditions d'achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
Then will be displayed "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)."
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task
not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found!
>>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found!
>>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not
found! >>
Given "Confirmation Page" is displayed
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose I accept the General Terms and Conditions. - Task
not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose I accept the General
Terms and Conditions. - Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose I accept the General Terms and Conditions. -
Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose I accept the General Terms and
Conditions. - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose I accept the General Terms and Conditions. - Task
not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose I accept the General Terms and Conditions. - Task not found!
>>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose I accept the General Terms and
Conditions. - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose I accept the General Terms and Conditions. -
Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose I accept the General Terms and Conditions. - Task not found!
>>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose I accept the General Terms and
Conditions. - Task not found! >>
When I choose "I accept the General Terms and Conditions."
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Finalize the trip -
Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found!
>>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not
found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not
found! >>
And I click on "Finalize the trip"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Votre voyage a été
confirmé! - Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found!
>>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task
not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! -
Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found!
>>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! -
Task not found! >>
Then will be displayed "Votre voyage a été confirmé!"

Scenario: Confirm a Flight Selection for a One-Way Trip
Proceed to Login
Reach the Travel Planet Search Page
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in
Position: 1 >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1
>>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: Return Trip With Data.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

Appendix B: Log of Results – Assessing Task Models

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1
>>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position:
1 >>
Given I go to "Book Flights"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
When I inform "Toulouse" and choose "Toulouse, Blagnac (TLS)" in the field "Departure"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
And I inform "Paris" and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Destination"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: Sam, Déc 1, 2018 >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in
Position: 8 - Associated Value: No Value >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in
Position: 15 - Associated Value: No Value >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 16
- Associated Value: No Value >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 -
Associated Value: No Value >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>
<< Scenario: Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: Sam, Déc
1, 2018 >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8
- Associated Value: No Value >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: No Value
>>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position:
8 - Associated Value: No Value >>
When I set "Sam, Déc 1, 2018" in the field "Departure Date"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose One-way Trip - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose One-way Trip - Found in Position: 9 >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose One-way Trip - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Found in Position: 10 >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose One-way Trip - Found in Position: 10 >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Found in Position:
9 >>
And I choose "One-way Trip"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position:
17 >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 17 >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 23 >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: Return Trip With Data.scen - Searched Task: Submit Search - Found in Position: 17 >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 16 >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Submit Search - Found in Position: 16 >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 11 >>

Appendix B: Log of Results – Assessing Task Models

When I submit "Search"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage
- Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found!
>>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not
found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task
not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found!
>>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task
not found! >>
Then will be displayed "2. Sélectionner un voyage"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Availability Page - Task
not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found!
>>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found!
>>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not
found! >>
Given "Availability Page" is displayed
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found!
>>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
When I click on "No Bag" referring to "Air France 7519"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Book - Task not found!
>>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
And I click on "Book"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display J'accepte les Conditions d'achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions
d'achat concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display J'accepte les Conditions d'achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
Then will be displayed "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)."
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task
not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found!
>>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found!
>>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not
found! >>
Given "Confirmation Page" is displayed
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions
d'achat concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>

Appendix B: Log of Results – Assessing Task Models

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
When I choose "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)."
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Finalize the trip -
Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found!
>>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not
found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not
found! >>
And I click on "Finalize the trip"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Votre voyage a été
confirmé! - Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found!
>>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task
not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! -
Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found!
>>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! -
Task not found! >>
Then will be displayed "Votre voyage a été confirmé!"

Scenario: Confirm a Flight Selection for a Multidestination Trip
Proceed to Login
Reach the Travel Planet Search Page
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in
Position: 1 >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1
>>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: Return Trip With Data.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1
>>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position:
1 >>
Given I go to "Book Flights"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Multidestination Trip - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Multidestination Trip -
Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Multidestination Trip - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Multidestination Trip - Task not
found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Multidestination Trip - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose Multidestination Trip - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Multidestination Trip - Task not
found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Multidestination Trip - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Multidestination Trip - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Multidestination Trip - Task not
found! >>
When I choose "Multidestination Trip"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
And I inform "Toulouse" and choose "Toulouse, Blagnac (TLS)" in the field "Departure"

Appendix B: Log of Results – Assessing Task Models

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
When I inform "Paris" and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Destination"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: Sam, Déc 1, 2018 >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in
Position: 8 - Associated Value: No Value >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in
Position: 15 - Associated Value: No Value >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 16
- Associated Value: No Value >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 -
Associated Value: No Value >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>
<< Scenario: Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: Sam, Déc
1, 2018 >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8
- Associated Value: No Value >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: No Value
>>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position:
8 - Associated Value: No Value >>
And I set "Sam, Déc 1, 2018" in the field "Departure Date"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
When I inform "Paris" and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Departure"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
And I inform "Nice" and choose "Nice, Côte D'Azur (NCE)" in the field "Destination"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: Sam, Déc 1, 2018 >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in
Position: 8 - Associated Value: No Value >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in
Position: 15 - Associated Value: No Value >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>

Appendix B: Log of Results – Assessing Task Models

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 16
- Associated Value: No Value >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 -
Associated Value: No Value >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>
<< Scenario: Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: Sam, Déc
1, 2018 >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8
- Associated Value: No Value >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: No Value
>>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position:
8 - Associated Value: No Value >>
When I set "Sam, Déc 10, 2018" in the field "Departure Date"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position:
17 >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 17 >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 23 >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: Return Trip With Data.scen - Searched Task: Submit Search - Found in Position: 17 >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 16 >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Submit Search - Found in Position: 16 >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 11 >>
And I submit "Search"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage
- Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found!
>>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not
found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task
not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found!
>>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task
not found! >>
Then will be displayed "2. Sélectionner un voyage"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Availability Page - Task
not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found!
>>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found!
>>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not
found! >>
Given "Availability Page" is displayed
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found!
>>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
When I click on "No Bag" referring to "Air France 7519"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found!
>>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
And I click on "No Bag" referring to "Air France 7700"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Book - Task not found!
>>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
When I click on "Book"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display J'accepte les Conditions d'achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions
d'achat concernant le(s) tarif(s) aérien(s). - Task not found! >>

Appendix B: Log of Results – Assessing Task Models

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display J'accepte les Conditions d'achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
Then will be displayed "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)."
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task
not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found!
>>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found!
>>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not
found! >>
Given "Confirmation Page" is displayed
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions
d'achat concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
When I choose "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)."
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Finalize the trip -
Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found!
>>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not
found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on Finalize the trip - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not
found! >>
And I click on "Finalize the trip"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Votre voyage a été
confirmé! - Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found!
>>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task
not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! -
Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found!
>>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! -
Task not found! >>
Then will be displayed "Votre voyage a été confirmé!"

Scenario: Decline a Flight Selection
Proceed to Login
Reach the Travel Planet Search Page
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in
Position: 1 >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1
>>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: Return Trip With Data.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1
>>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

Appendix B: Log of Results – Assessing Task Models

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position:
1 >>
Given I go to "Book Flights"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
When I inform "Toulouse" and choose "Toulouse, Blagnac (TLS)" in the field "Departure"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
And I inform "Paris" and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Destination"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: Sam, Déc 1, 2018 >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in
Position: 8 - Associated Value: No Value >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in
Position: 15 - Associated Value: No Value >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 16
- Associated Value: No Value >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 -
Associated Value: No Value >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>
<< Scenario: Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: Sam, Déc
1, 2018 >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8
- Associated Value: No Value >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: No Value
>>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position:
8 - Associated Value: No Value >>
When I set "Sam, Déc 1, 2018" in the field "Departure Date"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose One-way Trip - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Task not
found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose One-way Trip - Found in Position: 9 >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose One-way Trip - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Found in Position: 10 >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose One-way Trip - Found in Position: 10 >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Found in Position:
9 >>
And I choose "One-way Trip"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position:
17 >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 17 >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 23 >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: Return Trip With Data.scen - Searched Task: Submit Search - Found in Position: 17 >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 16 >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Submit Search - Found in Position: 16 >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 11 >>
When I submit "Search"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage
- Task not found! >>

Appendix B: Log of Results – Assessing Task Models

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found!
>>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not
found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task
not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found!
>>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task
not found! >>
Then will be displayed "2. Sélectionner un voyage"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Availability Page - Task
not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found!
>>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found!
>>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Availability Page - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not
found! >>
Given "Availability Page" is displayed
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found!
>>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
When I click on "No Bag" referring to "Air France 7519"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Book - Task not found!
>>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on Book - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>
And I click on "Book"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display J'accepte les Conditions d'achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions
d'achat concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display J'accepte les Conditions d'achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
Then will be displayed "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)."
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task
not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found!
>>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found!
>>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Confirmation Page - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not
found! >>
Given "Confirmation Page" is displayed
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions
d'achat concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>

Appendix B: Log of Results – Assessing Task Models

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose J'accepte les Conditions d'achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
When I choose "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)."
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on Decline the trip - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Decline the trip - Task
not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on Decline the trip - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Decline the trip - Task not found!
>>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on Decline the trip - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Click on Decline the trip - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on Decline the trip - Task not found!
>>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Decline the trip - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on Decline the trip - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Decline the trip - Task not
found! >>
And I click on "Decline the trip"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Votre voyage a été annulé! - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Votre voyage a été
annulé! - Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Votre voyage a été annulé! - Task not found!
>>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Votre voyage a été annulé! - Task
not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Votre voyage a été annulé! - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display Votre voyage a été annulé! - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Votre voyage a été annulé! - Task
not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Votre voyage a été annulé! - Task not found!
>>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Votre voyage a été annulé! - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Votre voyage a été annulé! - Task
not found! >>
Then will be displayed "Votre voyage a été annulé!"

Annex A: Case Study Interview Protocol
Bonjour !

Tout d’abord, merci d’avoir accepté cet entretien.

Je m’appelle Thiago Silva et je suis doctorant dans l'équipe ICS de l'IRIT.

Dans le cadre de ma thèse de doctorat j’étudie des techniques pour spécifier les besoins des
utilisateurs et puis les tester sur le logiciel.

Aujourd’hui je souhaite récupérer des informations pour réaliser une étude de cas sur le
traitement des voyages d'affaires. A ce titre, je vous propose un entretien d’environ une heure au
cours duquel vous serez invité à répondre à des questions sur différents aspects du processus de
réservation de voyages d'affaires pour les membres de l'institut.

L’objectif principal de cet entretien est de récupérer des informations qu’on pourra spécifier en
tant que besoin de voyageurs sur un format qu’on appelle « récit utilisateur/user story ». Une fois
que je vous aurais expliqué ce qu’on entend par « récit utilisateur/user story » je vous demanderais
de me faire parvenir quelques exemples de récits utilisateurs que vous auriez entendu/reçu cette
semaine.

Avec votre accord, cet entretien sera enregistré. Néanmoins je vous rassure que tout ce que vous
dites restera anonyme et confidentielle.

Si vous avez des questions ou des doutes sur l'entretien ou sur les questions qui seront posées,
n'hésitez pas à nous interrompre et à demander plus d'informations.

Faire signer consentement éclairé.

Initier l’enregistrement.

Annex A: Case Study Interview Protocol

Partie I : Questionnaire démographique et de contexte

Question 1. Pourriez-vous répondre à l'ensemble des informations de base ci-dessous ?

A. Votre sexe :

B. Votre âge :

C. Votre niveau d’étude :

D. Depuis combien de temps vous êtes au service de mission de l’IRIT ?

E. Avez-vous déjà eu des expériences dans de services similaires auparavant ?

Question 2. Pourriez-vous nous donner un aperçu de ce travail, en fournissant une brève
description de vos tâches ?

Partie II : Processus de traitement de demandes

Nous sommes intéressés par les préférences et les difficultés que les voyageurs de l’IRIT ont
rencontrées et vous ont signalées lorsqu'ils essaient de réserver leurs voyages d'affaires. Nous
sommes également intéressés par votre opinion sur les demandes reçues.

Label : * faits, • interprétation

Section A : Réception de demandes de réservation

Question 1. Comment les demandes de réservation des voyageurs arrivent-elles à vous et avec
quelle fréquence ? Avez-vous des suggestions pour faire mieux ? *

Annex A: Case Study Interview Protocol

Question 2. Combien de demandes de réservation de voyage avez-vous reçues la semaine
dernière ? Avez-vous des suggestions pour faire mieux ? *

Question 3. Pensez-vous qu’il manque quelque chose dans la description des demandes de
réservation que vous recevez ? Comment cela pourrait-il être mieux ? •

Question 4. Est-ce que vous devez prendre des notes (ex. post-it, email, etc.) sur les demandes
de réservations ? Si oui, combien de notes en moyenne ? Comment cela pourrait-il être mieux ?
Combien de notes avez-vous pris la semaine dernière ? *

Question 5. Si vous prenez des notes, comment vous les conservée et sur quel format ?
Comment améliorer l'enregistrement de ces notes ? *

Annex A: Case Study Interview Protocol

Question 6. Pensez-vous que l'enregistrement de ces notes est important ? Comment cela
pourrait-il être mieux ? •

Question 7. Pouvez-vous fournir quelques exemples de demandes de réservation que vous
recevez ? Comment cela pourrait-il être mieux ? *

Section B : Traitement des demandes de réservation

Question 8. Quelle est la procédure type pour traiter une demande de réservation ? Comment
cela pourrait-il être mieux ? *

Question 9. Est-ce que dans les demandes des voyageurs que vous traitez il y a des
informations qu’on pourrait identifier comme des besoins et/ou des exigences pour améliorer un
système de réservation de voyage ? Si oui, pouvez-vous les quantifier et les identifier ? •

Annex A: Case Study Interview Protocol

Question 10. Quelles sont vos besoins/exigences pour le système de réservation que vous
utilisez actuellement ? •

Question 11. Avec quelle fréquence vous devez demander l’aide des autres membres de
l'équipe pour résoudre les demandes des voyageurs ? Comment cela pourrait-il être mieux ? *

Question 12. Avec quelle fréquence vous devez demander aux voyageurs de clarifier les
informations concernant leur demande ? Comment cela pourrait-il être mieux ? *

Question 13. Selon votre propre expérience, quelles seraient les fonctionnalités qui vous
seraient utiles et qui devraient être rajoutées au logiciel de réservation ? •

Annex A: Case Study Interview Protocol

Question 14. Selon votre propre expérience, quelles seraient les fonctionnalités qui seraient
utile pour les voyageurs ? •

Question 15. Pourriez-vous lister 3 fonctionnalités que vous aimerait garder pour ce type de
système ? •

Question 16. Pourriez-vous lister 3 fonctionnalités que vous aimerait changer pour ce type de
système ? •

Annex A: Case Study Interview Protocol

Section C : Rédaction des Récits Utilisateurs

Veillez trouver ci-joint un exemple de spécification d’un « récit utilisateur/user story ».

Présentez et expliquez le modèle des Récits Utilisateur :

Titre (Une ligne décrivant l'histoire)

Préambule:
En tant que [rôle ou personne]
 Je veux [fonctionnalité]
 Afin de [but, bénéfice ou valeur de la fonctionnalité]

Scénario 1: [description]
Etant donné [un contexte initial (les acquis)]
 Et [un autre contexte]...
 Quand [un événement survient]
 Alors [on s’assure de l’obtention de certains résultats]
 Et [un autre résultat]...

Scenario 2: ...

Un exemple :

Titre: Recherche de billets d'avion

Préambule:
En tant que voyageur fréquent,
Je veux rechercher des billets, en fournissant des emplacements et des dates,
Afin de pouvoir obtenir des informations sur les tarifs et les horaires des vols.

Scénario: Recherche de tickets "aller simple"
Etant donné que je vais à la page "Recherche de vols"
Quand je choisis "aller simple"
Et je tape "Paris" et choisis "Paris, Charles de Gaulle (CDG)" dans le champ
"Départ de"
Et je tape "Toulouse" et choisis "Toulouse, Blagnac (TLS)" dans le champ "Arrivée
à"
Et je choisis "2" dans le champ "Nombre total de passagers"
Et je choisis "15/12/2017" dans le champ "Date de départ"
Et je clique sur "Rechercher"
Alors il sera affiché la liste des vols disponibles

Question 1. Est-ce que vous pourriez spécifier un exemple des demandes de réservation en
utilisant ce format de description ? •

• Pensez-vous pouvoir rédiger une liste de demandes/problèmes que vous recevrez au
cours de cette semaine sur les problèmes rencontrés par les utilisateurs lors de la
réservation de leurs voyages d’affaires ?

Annex A: Case Study Interview Protocol

• Si oui, pensez-vous que vous pouvez formater ces demandes/problèmes en suivant le
modèle « récits utilisateur/user stories » que j’ai présenté tout à l’heure ?

L'entretien est maintenant fini, merci beaucoup de votre participation !

Annex B: User Stories Written by the Case
Study Participants

Annex B: User Stories Written by the Case Study Participants

Annex B: User Stories Written by the Case Study Participants

Annex B: User Stories Written by the Case Study Participants

Annex C: Transcription of the Interviews

1. TRANSCRIPTION : Participant 1 (P1)

Partie I : Questionnaire démographique et de contexte.

Interviewer : Bon, voilà ! La première partie, c’est un bref questionnaire démographique. Votre sexe ?
Votre âge ?

P1 : Féminin, Cinquante.

Interviewer : Niveau d’étude ?

P1 : Bac + 1

Interviewer : Depuis combien de temps, vous êtes au service de mission de l’IRIT ?

P1 : Quatre ans

Interviewer : Avez-vous déjà eu des expériences dans de services similaires auparavant ?

P1 : Oui

Interviewer : Combien du temps ?

P1 : Six ans.

Interviewer : Pourriez-vous nous donner un aperçu de ce travail, de vos tâches spécifiquement ?

P1 : De tout ?

Interviewer : Non, non ! La partie de la réservation de voyage.

P1 : De réservation de voyage ?

Interviewer : Oui.

P1 : En ce qui me concerne maintenant les agents de laboratoire, ils ont fait la réservation sur le site. Et
ensuite pour les invités, on fait que le bon de commande et le valide le billet et en c’est qui concerne les
invités on va faire, nous-même la réservation.

Interviewer : Donc, parfois c’est les chercheurs que fassent la programmation de voyage et parfois c’est
vous-même ?

P1 : C’est ça.

Annex C: Transcription of the Interviews

Interviewer : D’accord ! Et ça dépend de quoi ?

P1 : Alors… c’est que nous… on fait pour les invités.

Interviewer : D’accord !

P1 : Les invités, les stagiaires qui n’ont pas l’accès à l’intranet.

Interviewer : D’accord ! Et si les chercheurs n’arrivent pas de faire tout seul ?

P1 : On les aide. D’abord, on fait ensemble. S’ils n’arrivent pas on peut faire la demande directement par
mail.

Interviewer : D’accord !

Partie II : Processus de traitement de demandes

Nous sommes intéressés par les préférences et les difficultés que les voyageurs de l’IRIT ont rencontrées
et vous ont signalés lorsqu'ils essaient de réserver leurs voyages d'affaires. Nous sommes également
intéressés par votre opinion sur les demandes reçues.

Label : ∗ faits, • interprétation

Section A : Réception de demandes de réservation

Interviewer : Concernant dans le traitement de demande. D’abord la réception de demande. Comment
les demandes de réservation des voyageurs arrivent-elles à vous et avec quelle fréquence ? ∗

P1 : La fréquence c’est compliquée.

Interviewer : En moyenne ?

P1 : 400 missions par an.

Interviewer : Par an ?

P1 : Par an ! Oui !

Interviewer : 400 missions par an ? Pour chacun ?

P1 : Pour moi. Moi, je traite 400 demandes de mission par an. Comment elles arrivent ? Je ne sais pas si
vous connaissez le GLPI ou le « Travel planet » ?

Interviewer : Pas trop.

P1 : Voilà, les demandes d’ordre de mission sont dans le GLPI et parallèlement les chercheurs font leurs
demandes de réservation sur le site.

Annex C: Transcription of the Interviews

Interviewer : D’accord !

P1 : Donc, on reçoit d’un côté la demande d’ordre de mission et ça sera la justificative de la mission. Et
parallèlement on a le billet de la demande de réservation que nous arrive par mail.

Interviewer : D’accord ! Donc, vous utilisez deux systèmes. Le GLPI et le système de réservation ?

P1 : Le GLPI c’est pour le labo ; pour la réservation du billet on est obligé de toute façon d’aller
sur…souvent si la mission est sur l’université ou CNRS, on est obligé d’aller sur la plateforme, donc, le
marché. On doit aller sur la plateforme.

Interviewer : D’accord ! Et s’appelle comment cette plateforme ?

P1 : Pour l’université s’appelle « Travel Planet » pour le CNRS… je n’ai pas dans la tête.

Interviewer : D’accord !

P1 : Bon, s’appelle SIMBAD.

Interviewer : D’accord ! Et c’est quel l’ordre des choses ? D’abord on va au GLPI et après on vas au
« Travel Planet » par exemple ?

P1 : Il fait comme ils veulent. L’importance c’est quand on… (audio inaudible), nous, on va tout voir sur
le GLPI, la demande d’ordre de mission, parce qu’on ne peut pas les aider si on ne voit pas les éléments
nécessaires.

Interviewer : D’accord !

P1 : Voilà… (audio inaudible).

Interviewer : D’accord ! Dans le côté chercheur peu importe quel ordre il fait les choses.

P1 : Soit il fait parallèlement… (audio inaudible).

Interviewer : D’accord ! Combien de demandes de réservation de voyage avez-vous reçues la semaine
dernière ? Quelques idées ? Après prêt ? ∗	

P1 : Une dizaine de demande.

Interviewer : Une dizaine dans la semaine dernière ?

P1 : Oui !

Interviewer : D’accord Concernant l’arrivée de demande, avez-vous de suggestion ? ∗

P1 : Sincèrement, ça dépend.

Annex C: Transcription of the Interviews

Interviewer : Oui, oui. C’est en moyenne.

P1 : En fin d’année, par contre, voilà c’est douze.

Interviewer : Douze par jour ?

P1 : Ça arrive !

Interviewer : D’accord ! En moyenne c’est douze par semaine ?

P1 : À la semaine dernière oui. Mais, voilà, il y a de semaine que c’est deux ou trois demandes. Mais, il y
a d’autres qu’on peut voit plus.

Interviewer : D’accord ! Concernant l’arrivée de demande avez-vous de suggestion pour faire mieux ce
processus, ou il est déjà bon ?

P1 : Bah ! Voilà ! (Audio inaudible).

Interviewer : D’accord ! C’est bon comme ça.

P1 : C’est très bien.

Interviewer : Mais vous pensez qu’il y a de problème pour faire ça, dans deux systèmes différents ?

P1 : Non !

Interviewer : Ça ne pose pas de souci ?

P1 : Non, parce que le portail de réservation de billets, ils sont… donc, on peut faire en parallèle.

Interviewer : D’accord ! Pensez-vous qu’il manque quelque chose dans la description des demandes de
réservation que vous recevez ? ·

P1 : Dans la description ?

Interviewer : Le description de réservation de voyage.

P1 : Dans la demande d’ordre de mission qu’on a de problème dans le voyage…

Interviewer : Le voyage, la demande de réservation de billet d’avion.

P1 : C’est pareil. Tout dépend comme est la formule. Quand le chercheur a une disponibilité, on fait la
demande… (audio inaudible).

Interviewer : D’accord ! Mais en moyenne, ça arrive assez complet la description ?

Annex C: Transcription of the Interviews

P1 : Pas trop.

Interviewer : D’accord.

P1 : Ça dépend du chercheur.

Interviewer : D’accord ! Comment cela pourrait-il c’est mieux ? La description de demande ? Vous avez
de suggestion ?

P1 : Voilà. C’est ça. Si le chercheur avait de disponibilité des horaires, donner les informations, ça nous
facilite le travail. Voilà !

Interviewer : D’accord ! Est-ce que vous devez prendre des notes, par exemple : un post-it, mail, quelque
note, etc., sur les demandes de réservations ? Ou non, c’est assez complet ? ∗

P1 : Non, sincèrement, si on a besoin, on va relier, parce que le GLPI est, peut-être, notre post-it.

Interviewer : D’accord

P1 : Parce qu’il y a un suivi dans le GLPI. Car nous manque quelque chose, on peut demander au-dessous
et ils répondent à la fin de compte. Voilà, c’est tous les éléments sur les autres.

Interviewer : D’accord !

P1 : Après, évidemment on note de choses pour clarifier les choses… (audio inaudible).

Interviewer : D’accord ! Donc, bon, ça arrive. Combien de notes en moyenne ? et avec quelle fréquence
? Vous avez d’idée ? ∗

P1 : Ça dépend. Pour le billet du train c’est plus que par le billet d’avion. (Audio inaudible).

Interviewer : D’accord ! Quelque suggestion pour faire mieux, pour améliorer c’est processus de prendre
de notes ? Dans le système ou dehors le système ?

P1 : Améliorer c’est que la demande soit plus claire et précise au départ. Si la demande au départ elle est
bien faite, normalement, nous, on n’a pas de problème. C’est super-facile.

Interviewer : D’accord ! Mais vous croyez que ça c’est n’est pas un problème du système en fait.

P1 : Je ne pense pas.

Interviewer : Non ?

P1 : Non !

Interviewer : Pour les utilisateurs, les chercheurs, par exemple. S’ils ne suivent pas forcément la procédure
pour la réservation, vous ne pensez pas que c’est à cause d’un problème du système ?

Annex C: Transcription of the Interviews

P1 : Après, je pense qu’au départ, je ne généralise pas. Les demandes sont, ou peut-être, souvent … (audio
inaudible).

Interviewer : D’accord ! Si vous prenez des notes, comment vous les conservées, c’est le cas. Vous avez
me dit à tout à l’heure c’est au GLPI ? ∗	

P1 : GLPI

Interviewer : Il n’y a pas de note dehors le système ? Normalement ?

P1 : Si, on est tous pareil, un mettre un petit rappelle sur le dossier.

Interviewer : Mais vous enregistrer sur le système après ?

P1 : Oui !

Interviewer : Ou non ?

P1 : Ils sont tous dans le système.

Interviewer : D’accord.

P1 : Tout est dedans.

Interviewer : Bon, comment améliorer ce processus-là ?
Je crois que vous avez dit à tout à l’heure, c’est avoir une demande claire et précise au départ, c’est ça ?

P1 : Oui !

Interviewer : Pensez-vous que l'enregistrement de ces notes est important ? ·

P1 : Oui !

Interviewer : Oui ?

P1 : Oui, parce que le dossier suivi sur le GLPI… (audio inaudible).

Interviewer : D’accord. Il y a quelque suggestion ? Sur l’enregistrement de ces notes supplémentaires ?

P1 : Non !

Interviewer : Non ?

P1 : Non ! C’est bon comme ça !

Interviewer : Donc, pour l’instant pas de suggestion ?

Annex C: Transcription of the Interviews

P1 : Non.

Interviewer : Pouvez-vous fournir quelques exemples de demande de réservation que vous recevez ? Dans
quel format ? ∗

P1 : Vous voulez un exemple de demande ?

Interviewer : Oui !

P1 : En fait ?

Interviewer : Oui !

P1 : (Audio inaudible).

Interviewer : D’accord !

P1 : Dans la demande il y a tout qu’on a besoin. Il y a de compte, il y a les dates, il y a…

Interviewer : Donc, s’il y a tout rempli…

P1 : Dans l’ordre de mission on a tous les infos nécessaires pour faire la mission. Après on ajoute les
justificatifs et voilà.

Interviewer : D’accord !

P1 : (Audio inaudible).

Interviewer : D’accord ! Donc, cette demande, elle arrive par mail, c’est ça ? Avec tous les éléments ?

P1 : GLPI

Interviewer : Oui, mais le GLPI, Il envoie le mail, avec…

P1 : Non.

Interviewer : Non ? Il faut que vous connectiez ?

P1 : Et voilà !

Interviewer : D’accord !

P1 : (Audio inaudible).

Interviewer : D’accord ! Mais arrive d’un chercheur faire la demande directement par mail ? Sans passer
par le GLPI ?

Annex C: Transcription of the Interviews

P1 : Oui !

Interviewer : Oui ? Ça arrive ?

P1 : Oui !

Interviewer : D’accord !

Section B : Traitement des demandes de réservation.

Interviewer : Concernant le traitement des demandes. Quelle est la procédure-type de traiter une
demande de réservation ? Comment ça arrive ? Tout d’abord on fait ça, après on fait ça. C’est quel le
processus ? ∗

P1 : Ça c’est la mission en général. Donc, pour la demande de validation payée, on fait de bon de
commande, ensuite, on va retourner sur le portail pour mettre le bon de commande. Voilà !

Interviewer : D’accord. Donc, c’est la demande, le bon de commande et le portail pour mettre le bon de
commande pour valider. C’est dans le portail qu’on valide ?

P1 : Oui !

Interviewer : Le portail ce n’est pas le « travel ».

P1 : Le portail c’est le SIMBAD.

Interviewer : Portail et « travel planet » c’est la même chose ?

P1 : Il y a deux systèmes différents. (Audio inaudible).

Interviewer : D’accord ! Est-ce que dans les demandes des voyageurs, que vous traitez, il y a des
informations qu’on pourrait identifier comme des besoins et/ou des exigences pour améliorer un système
de réservation de voyage ? ·

P1 : Un problème c’est quand on a des voyages multiples-destinations. C’est un peu compliqué à gérer.

Interviewer : Pourquoi ?

P1 : Au niveau de la réservation le portail et le logiciel sont compliqués les multiples-destinations. Parce
qu’on n’arrive pas à ajouter une ville, même s’il a in départ Toulouse, mais on part de Brive, d’autre ville…
(audio inaudible).

Interviewer : D’accord !

P1 : Ça c’est l’agence de voyages.

Annex C: Transcription of the Interviews

Interviewer : Mais vous croyez que c’est un problème de logiciel ?

P1 : Certains pays avec le multiple-destination, c’est un peu compliqué.

Interviewer : De train et d’avion aussi ?

P1 : Sur tout de train, parce que de train on n’arrive pas de le faire. C’est un peu compliqué pour récupérer
de billet. On ne peut pas toujours faire de réservation de billet de train à l’Allemagne ou à l’Italie.

Interviewer : D’accord !

P1 : (Audio inaudible).

Interviewer : D’accord. Quelles sont vos besoins/exigences pour le système de réservation de voyage que
vous utilisez actuellement ? ·
Bon ! Donc, j’imagine que c’est gérer les multiples- destinations. C’est ça ?

P1 : Oui ! Voilà !

Interviewer : Il y a quelque d’autre ?

P1 : Quelque chose d’autre ?

Interviewer : Oui !

P1 : Voyage en train à l’étranger, que c’est un peu compliqué, mais… C’est tout !

Interviewer : D’accord ! Avec quelle fréquence vous devez demander l’aide des autres membres de
l’équipe pour résoudre les demandes des voyageurs ? ∗

P1 : Rarement !

Interviewer : Rarement ?

P1 : Rarement vraiment.

Interviewer : Est-ce que vous avez de suggestion pour améliorer cet échange d’information entre l’équipe ?

P1 : Entre nous ?

Interviewer : Oui !

P1 : Non ! entre nous non. Parce qu’on est dans un « open space » donc, ça marche bien les échanges.

Interviewer : D’accord ! Donc, ça marche bien ?! Avec quelle fréquence vous devez demander aux
voyageurs de clarifier les informations concernant leur demande ? ∗

Annex C: Transcription of the Interviews

P1 : Plutôt souvent.

Interviewer : Plutôt souvent ?

P1 : Non, non ! Ce n’est pas ! Parce qu’on n’a pas de soucis. Dans le dossier, c’est juste un petit « delay ».
Donc, c’est rare quand il y a tout complet. (Audio inaudible).

Interviewer : D’accord.

P1 : (Audio inaudible).

Interviewer : D’accord ! Avez-vous des suggestions pour faire ça mieux ? La clarification des choses avec
les voyageurs. Voie système, je ne sais pas.

P1 : Après c’est qu’ils soient plus précis possible. Voilà. Parce que, nous, on a besoin de précision au
niveau d’horaire et tout ça. C’est plus facile pour nous.

Interviewer : D’accord ! Selon votre propre expérience, quelles seraient les fonctionnalités qui vous
seraient utiles et qui devraient être rajoutées au logiciel de réservation ? ·

P1 : Ce n’est pas trop. Parce qu’au niveau des tarifs il nous propose le moins cher aussi !

Interviewer : Ça n’existe pas ?

P1 : Ah ! La date de validation !

Interviewer : Comment ?

P1 : La date de validation est après le devis. C’est la date qu’on doit valider. Notre problème c’est qu’à ce
moment-là, le « delay » est court… (audio inaudible).

Interviewer : Donc, le problème dans c’est cas-là c’est que le « delay » est trop court.

P1 : On perd le billet entre le devis et le moment de validation. Principalement pendant le week-end.
(Audio inaudible).

Interviewer : D’accord ! Bon ! Quelles seraient les fonctionnalités qui seraient utile pour les voyageurs ?
À votre avis ? ·

P1 : Je ne sais pas. Parce que pour moi, la réservation d’un vol c’est pareil.

Interviewer : Donc, il n’y a pas de choses que pourrait améliorer à ce niveau-là.

P1 : Non. (Audio inaudible).

Interviewer : D’accord ! Pourriez-vous lister 3 fonctionnalités que vous aimeriez garder pour ce type de
système ? Le système de voyage, pas le GLPI. ·

Annex C: Transcription of the Interviews

P1 : Garder ?

Interviewer : Oui ! Que vous aimez plus ou que vous considérez essentiel.

P1 : Les différents propositions au niveau des horaires, des tarifs. (Audio inaudible).

Interviewer : D’accord ! Pourriez-vous lister trois fonctionnalités que vous aimeriez changer pour ce type
de système ? ·

P1 : Changer ou complètement changer ?

Interviewer : Oui !

Interviewer : Après le système est bien présenté. Pour les multiples-destinations, il ne marche pas toujours.
Et le changement qu’on peut voir c’est quand il y a plusieurs voyageurs qui partent au même temps, et au
même endroit. On doit faire des réservations différentes.

Section C : Rédaction des Récits Utilisateurs.

Interviewer : Bon ! Dans cette dernière partie, c’est le modèle qu’on va essayer de tester avec vous.

Comme j’ai dit à tout à l’heure, c’est un modèle pour décrire une fonctionnalité, décrire une
demande, D’accord ? Donc, il est toujours comme ça. Il a un titre pour décrire le type d’histoire, on
appelle ce modèle, de récit utilisateur. Donc on a un préambule.

En tant que [rôle ou personne]
Je veux [fonctionnalité́]
Afin de [but, bénéfice ou valeur de la fonctionnalité́]

Scenario 1 : [description]
Étant donné [un contexte initial (les acquis)]
Et [un autre contexte] ...
Quand [un évènement survient]
Alors [on s’assure de l’obtention de certains résultats]
Et [un autre résultat] ...

Un exemple :

En tant donné que je vais à la page “Recherche des vols”
Quand je choisis : “aller simple”
Et je tape “Paris” et choisis “Paris, Charles de Gaulle (CDG)” dans le champ “Départ de”
Et je tape “Toulouse” et choisis “Toulouse, Blagnac (TLS)” dans le champ “Arrivée à”
Et je choisis “2” dans le champ “Nombre total de passagers”
Et je choisis “15/12/2017” dans le champ “Date de départ”
Et je clique sur “Recherche”
Alors le système va afficher la liste des vols disponibles.

Donc, c’est un récit en fait, un modèle pour décrire la demande.

Annex C: Transcription of the Interviews

P1 : Mais c’est individuelle la demande.

Interviewer : Oui, mais ça ce n’est pas fixe, c’est un exemple général. On n’est pas obligé de décrire les
choses comme ça. On est obligé d’utiliser ces éléments-là. Pour avoir une histoire on est obligé d’avoir :
Étant que, Je veux, Afin de, et pour chaque scénario on est obligé d’avoir : Étant Donnée, Quand, Et,
Alors. Mais, quoi on met dedans n’import. Il faut décrire le processus d’une demande avec ce modèle.
Donc, c’est ça qu’on va évaluer. Si c’est modèle est bien adapté, s’il est facile d’utiliser ou pas. Vous pensez
que c’est possible d’écrire une demande en suivant ce modèle-là ?

P1 : Oui, on va faire.

Interviewer : D’accord ! Quel type de demande ?

P1 : Invité.

Interviewer : D’accord ! Avec un voyage en train ou même un voyage multiples-destinations. On n’est pas
obligé de faire la tâche recherche du vol.

P1 : (Elle écrit et parle en voix bas)

Interviewer : Vous avez besoin donner un contexte. Quand quelque chose arrive…

P1 : (Elle écrit et parle en voix bas)

Interviewer : Donc, si c’est un invité, vous n’êtes pas obligé de choisir l’utilisateur ?

P1 : Non. C’est après qu’on a fait le billet. (Elle écrit et parle en voix bas).

Interviewer : D’accord !

P1 : (Elle écrit et parle en voix bas).

Interviewer : Vous devez rempli ça après avoir soumis ?

P1 : Oui !

Interviewer : Donc, à ce modèle-là, si vous faites…

P1 : Je choisis… (Elle écrit et parle en voix bas).

Interviewer : D’accord ! Il manque juste une conclusion !

P1 : (Elle écrit en lisant quelque chose en voix bas).

Interviewer : Quand il fait la recherche c’est quoi qu’arrive ? C’est quelle conséquence ? Ça c’est important
de dire.

Annex C: Transcription of the Interviews

P1 : (Elle écrit)

Interviewer : D’accord ! Très bien ! C’est bon comme ça ! Donc, pensez-vous pouvoir rédiger une liste de
demande/ problème, surtout de problème que vous recevrez au cours cette semaine et de la semaine
prochaine ? Par exemple, que les voyageurs vont vous demander ? Par exemple. Je n’arrive pas à chercher
de vol moins cher.

P1 : Oui.

Interviewer : Donc, vous pouvez faire une liste de problèmes que vous recevez. Si oui, bon, c’est le cas,
pensez-vous pouvoir formater ces demandes/ problèmes dans ce modèle-là ? C’est juste que vous avez
fait.

P1 : Oui !

Interviewer : Donc, c’est ça que je vous demande. Une liste de demande/ problème. Dans le cadre d’une
semaine. Aujourd’hui c’est mardi, jusqu’à mardi prochain, par exemple. Et après vous écrivez. Vous
pensez que c’est beaucoup de problèmes ?

P1 : Non.

Interviewer : Non ?

P1 : On ne sait pas.

Interviewer : On est attache juste à la recherche du vol, de train, les autres problèmes lien au système,
vous pouvez laisser à côté. Donc, je vous demande d’envoyer par courriel électronique les erreurs et les
demandes formatées. D’accord ?

P1 : Oui !

Interviewer : Et après, je vais vous envoyer un petit questionnaire pour que vous puisez évaluer ce type de
format-là.

P1 : D’accord !

Interviewer : Donc, voilà ! Merci beaucoup !

Annex C: Transcription of the Interviews

2. TRANSCRIPTION : Participant 2 (P2)

Partie I : Questionnaire démographique et de contexte.

Interviewer : Donc, la première partie, concerne un questionnaire démographique. D’accord ?

P2 : D’accord !

Interviewer : Donc, votre sexe ?

P2 : Féminin. On ne sait jamais.

Interviewer : Il faut demander. Votre âge ?

P2 : 30 ans

Interviewer : Votre niveau d’étude ?

P2 : Bac + 2

Interviewer : Depuis combien de temps, vous êtes au service de mission de l’IRIT ?

P2 : Trois ans

Interviewer : Avez-vous déjà eu des expériences dans des services similaires ? D’autre part ?

P2 : Oui

Interviewer : Combien du temps ?

P2 : Avant le IRIT, trois ans.

Interviewer : Donc. Vous avez six ans d’expérience dans ce type de service ?

P2 : Oui.

Interviewer : D’accord ! Pourriez-vous nous donner un aperçu de ce travail, en fournissant une brève
description de vos tâches ?

P2 : Description de mes tâches ?

Interviewer : Oui ! D’une manière générale.

P2 : De manière générale, déjà notre mission, c’est de gérer le portefeuille de chaque équipe. J’ai eu septe
d’un projet, tous qui est mission, donc de réservation de vols, d’hébergement, ensuite je m’occupe des
missions de côté de remboursement et ensuite je m’occupe d’achat, des livrassions, des facturations et,
voilà, en gros, voilà, c’est ça.

Annex C: Transcription of the Interviews

Interviewer : Donc, le traitement de voyage c’est qu’une petite partie.

P2 : C’est une grande partie.

Interviewer : C’est une grande partie !

P2 : Parce qu’il y a beaucoup de missions, il y a beaucoup d’achat. On doit faire attention au marché et
tout ça. Il y a beaucoup de missions effectivement, donc, c’est une grande partie de réservation de
transport.

Interviewer : D’accord ! Très bien !

Partie II : Processus de traitement de demandes

Nous sommes intéressés par les préférences et les difficultés que les voyageurs de l’IRIT ont rencontrées
et vous ont signalés lorsqu'ils essaient de réserver leurs voyages d'affaires. Nous sommes également
intéressés par votre opinion sur les demandes reçues.

Label : ∗ faits, • interprétation

Section A : Réception de demandes de réservation

Interviewer : Bon, concernant sur la réception de demandes. Comment les demandes de réservation des
voyageurs arrivent-elles à vous et avec quelle fréquence ? ∗

P2 : Alors, la demande de réservation on reçoit par mail.

Interviewer : Par mail ?

P2 : Voilà ! Comme vous, je pense que vous recevez aussi par mail. C’est une demande d’accord d’abord.
Ensuite, donc, c’est à ce moment-là que nous, on établit un bon de commande, pour réserver l’argent et
ensuite, on retourne sur le site et on mentionne le numéro de commande. Comme ça, l’agence comptable
possède la facture.

Interviewer : D’accord ! Et avec quelle fréquence ces demandes arrivent ?

P2 : Ça dépend, bien sûr, ça dépend de mois, ça dépend du jour.

Interviewer : En moyenne ?

P2 : En moyenne, il y a, on va dire, trois quatre par jour.

Interviewer : Trois, quatre par jour ?

P2 : Après prêt ! Après, ça dépend.

Annex C: Transcription of the Interviews

Interviewer : D’accord. Et avez-vous de suggestion pour améliorer ce processus de réception de
demande ?

P2 : Non !

Interviewer : Non ? Vous pensez que c’est bon comme ça ?

P2 : Parce qu’avant de passer, on reçoit le mail, on consulte le GLPI, on appelle la plateforme, donc, là
on n’a pas le risque d’erreur.

Interviewer : Donc, tout d’abord ils essaient de faire la réservation et s’ils ont des soucis c’est juste dans ce
cas-là qu’ils font de contact avec vous ? Ou non ? Ils font contact dans tous les cas, n’importe pas s’ils ont
de problème ou pas ?

P2 : Bon de toute façon ils mettre en place, ils rappellent nous avant de faire quoique ce soit parce qu’ils
ne savent pas, c’est-à-dire. Après, sinon, à cause d’un problème ils rappellent nous. Parce qu’après, en
parallèle ils font la demande, parce qu’on n’a pas la demande de mission à côté, donc, en parallèle ils
nous contactent par le GLPI. On n’a pas encore une relation... (audio inaudible).

Interviewer : D’accord ! Donc il faut que la demande arrive par mail. C’est idéal ? La demande qui vous
intervenez.

P2 : Oui, mais d’abord c’est idéal de déposer la demande de mission sur le GLPI et ensuite on reçoit la
demande par mail.

Interviewer : Donc, si arrive par téléphone ça pose de problèmes normalement

P2 : Par téléphone… (audio inaudible).

Interviewer : D’accord ! Très bien ! Combien de demandes de réservation de voyage avez-vous reçues la
semaine dernière ? Savez-vous ? Après prêt ? ∗

P2 : Une dizaine.

Interviewer : Une dizaine ?

P2 : Oui !

Interviewer : D’accord ! Bon, avez-vous des suggestions pour faire mieux dans cette réception ? ∗

P2 : Non !

Interviewer : Avec le volume aussi, bien sûr !

P2 : Avec ?

Interviewer : Le volume de demandes.

Annex C: Transcription of the Interviews

P2 : Non, non !

Interviewer : Pensez-vous qu’il manque quelque chose dans la description des demandes de réservation
que vous recevez ? ·

P2 : La description ?

Interviewer : Oui !

P2 : Non !

Interviewer : Non ? Elles viennent toutes complètes normalement ?

P2 : Oui !

Interviewer : Vous voyez une façon de faire mieux ?

P2 : Non !

Interviewer : C’est bon comme ça ?

P2 : C’est bon comme ça.

Interviewer : Dans la description spécifiquement ?

P2 : Oui !

Interviewer : Est-ce que vous devez prendre des notes, par exemple : un post-it, dehors le système, sur les
demandes de réservations que vous recevez ? ∗

P2 : Non !

Interviewer : Non ? Elles viennent toutes complètes ?

P2 : Oui !

Interviewer : Donc, si oui, combien de notes en moyenne ? Donc, ça ne fait pas de sens. Comment cela
pourrait-il être mieux ? Pas de suggestion ? ∗

P2 : Non, mais… franchement non.

Interviewer : Si vous prenez des notes, comment vous les conservées et sur quel format ? Au cas où ! ∗

P2 : Si on prend des notes on va pendre un post-it et on va mettre dans une poche avec le dossier.

Interviewer : D’accord ! Donc, vous imprimez ces notes ?

Annex C: Transcription of the Interviews

P2 : De toute façon on va imprimer, la demande de réservation, s’il y a de choses à rajouter ou des
informations on va noter sur le post-it et avec cette demande de réservation on va mettre dans le dossier.

Interviewer : D’accord.

P2 : On fait tout pour que le dossier soit complet. Quand on a besoin les informations du dossier, il est
bien ranger.

Interviewer : Oui ! Comment améliorer ces notes ? Vous-avez des suggestions ?

P2 : Après, si j’avais des altérations à faire aussi, autant que pour les chercheurs que pour nous dans le
GLPI et dans ce cas, on se vérifie sur le ticket et là… (audio inaudible).

Interviewer : D’accord.

P2 : Ça aussi c’est sympa. Car on récapitule tous les échanges.

Interviewer : Ça existe déjà ?

P2 : Et voilà !

Interviewer : Donc, pensez-vous que l'enregistrement de ces notes est important ? ·

P2 : Ah ! Oui !

Interviewer : Oui ?

P2 : Oui.

Interviewer : Bon, et la façon de faire mieux, c’est même le suivi des notes que vous avez déjà dans le
système ?

P2 : On a un bon système de suivi.

Interviewer : D’accord.

P2 : (Audio inaudible).

Interviewer : D’accord. Le GLPI ce n’est pas le système de réservation de voyage ?

P2 : Non.

Interviewer : Non ? C’est un système à part ?

P2 : C’est un système de laboratoire pour déposer la demande et suivi de demande.

Annex C: Transcription of the Interviews

Interviewer : D’accord. Donc, vous travaillez avec deux systèmes. Un système de réservation de voyage et
après le GLPI.

P2 : C’est ça.

Interviewer : D’accord. Et même ensuite vous utilisez l’Excel et le GLPI aussi ?

P2 : Oui !

Interviewer : D’accord. Donc.

P2 : Le GLPI c’est justement si la demande est, par exemple, dans le même jour. En cas d’urgence…
(audio inaudible) … mes collègues peuvent intervenir pour traiter les urgences. Un petit problème avec
les réservations, on ne peut pas donner la main… (audio inaudible).

Interviewer : D’accord. Et ils voient la demande pour le système de réservation ?

P2 : Ils voient par le GLPI. Heureusement que dans le GLPI provoque une demande, mais sinon, s’ils
envoient à moi, non. Si on reçoit par mail ils ne vont pas le voir. Donc, ce qui est intéressant c’est qu’on
puisse donner une habilitation a une personne pour traiter une demande de réservation en fait quand on
n’est pas là.

Interviewer : D’accord. Et Il n’y a aucune intégration dans ces deux systèmes-là de réservation et le GLPI ?

P2 : Non.

Interviewer : Non ? Toutes les infos doivent être… (audio inaudible).

P2 : Oui.

Interviewer : Bon. Pouvez-vous fournir quelques exemples de demande de réservation que vous recevez ?
∗

P2 : Demande de réservation ?

Interviewer : Demande de réservation de voyage, comment cette demande arrive ? En quel format ? Et.

P2 : Dans un format, c’est un portail.

Interviewer : Quel type d’information que vous êtes…

P2 : La ville, les horaires, ce qui est important de voir, la date de confirmation, parce qu’on a un « delay »
pour confirmer ce voyage. Sinon… (audio inaudible) … évidemment c’est la compagnie qui met de date…
(audio inaudible) … parce qu’on ne peut pas garder ce vol, parce que, du coup, plus réserver. Quoiqu’on
ne puisse pas le garder pendant deux mois, donc on a de date, c’est ça.

Interviewer : C’est un numéro automatique que le système envoie ?

Annex C: Transcription of the Interviews

P2 : Oui.

Interviewer : Le système de réservation ? Pas le GLPI ?

P2 : Oui !

Interviewer : Donc. La ville, les dates.

P2 : Les villes, les dates, les horaires, le « delay », les prix, les frais d’agence, c’est ça.

Interviewer : Après pouvez-vous m’envoyer un exemple de ce type de demande ? Bien sûr, en élevant le
nom, les infos…

P2 : Bien sûr.

Interviewer : Bon sur le traitement des demandes.

Section B : Traitement des demandes de réservation.

Interviewer : Quelle est la procédure-type de traiter une demande de réservation ? Quel est le processus…
tout d’abord on fait ça et après ça… ∗

P2 : Donc. Alors, la première chose à faire c’est déposer sur le GLPI la demande d’ordre de mission…
(audio inaudible) … ensuite quand vous rentrer sur le site de réservation, un document est déjà créé, parce
qu’il prend des infos à la base de l’université, CNRS, voilà. Donc, souvent il demande de mettre en jour,
parce qu’il manque des infos (date de naissance, etc.) … audio inaudible… et ensuite la recherche… (audio
inaudible) … la destination que vous souhaitez, une proposition de tarif sans bagage, la classe : première
classe, deuxième classe et etc. Et là vous choisissez un tarif que vous voulez, si c’est remboursable ou pas
et ensuite, à la fin de votre sélection ou de votre validateur, là vous avez leur destinataire… (audio inaudible)
… et là vous recevez par mail la demande d’autorisation.

Interviewer : D’accord. Donc, vous commencer ce processus-là, après avoir reçu le mail d’utilisateur, c’est
ça ?

P2 : Non, là ce le cas où le chercheur fait sa réservation de date sur la demande d’accord.

Interviewer : D’accord ! Dans ce cas-là, il n’y a pas de soucis. Si tout va bien il fait, le chercheur fait la
demande, vous recevez le mail avec la demande et donc, c’est après ça que vous commence à saisir les
infos dans le GLPI ?

P2 : Non. Le GLPI c’est la base. C’est d’abord le GLPI, c’est avec l’ordre de mission.

Interviewer : Donc, le chercheur fait la demande sur le GLPI directement ?

P2 : Parce qu’il fait la demande d’ordre de mission.

Annex C: Transcription of the Interviews

Interviewer : D’accord.

P2 : Avec le justificatif de déplacement, parce qu’on ne peut pas réserver le billet si ce n’est pas justifié.
Donc, voilà, en parallèle il va faire sa demande de réservation. Donc, nous, on va la recevoir et si on a
toutes les choses sur le GLPI on va faire le bon de commande et… (audio inaudible).

Interviewer : D’accord. Donc, et à quel moment le système de réservation le « Travel », je ne sais pas quoi,
il entre en scène en fait ? Dans quel moment on utilise ce système-là ?

P2 : Dans la réservation du transport.

Interviewer : Mais avant ou après le processus GLPI ?

P2 : Alors, nous disons au même temps ou après, mais pas avant.

Interviewer : D’accord. Donc, on commence toujours par la demande dans le GLPI et en parallèle ou
après, on fait la demande sur le système de voyage, après que le voyage soit déjà approuvé par le
responsable, etc.

P2 : Voilà. C’est ça !

Interviewer : D’accord.

P2 : C’est que nous justement…la demande d’ordre de mission et assigné, justifié avec un programme…
(audio inaudible) … là c’est bon pour réserver.

Interviewer : D’accord.

P2 : Audio inaudible.

Interviewer : D’accord. Quelle suggestion pour améliorer ce processus de traitement de la demande ?

P2 : Voilà ! Non, c’est très bien… (audio inaudible).

Interviewer : D’accord ! Est-ce que dans les demandes des voyageurs, que vous traitez, il y a des
informations qu’on pourrait identifier comme des besoins et/ou des exigences pour améliorer un système
de réservation de voyage ? ·
On suppose qu’on va commencer à construire un système de réservation de voyage. Est-ce que dans cette
demande vous identifiez des exigences utilisateur, des besoins utilisateur. Comment on peut utiliser
comme source pour ce type de système.

P2 : Pas encore.

Interviewer : Non ?

P2 : Non.

Annex C: Transcription of the Interviews

Interviewer : Vous pensez que dedans il n’y a pas d’informations utiles pour aider la construction d’un
système dans ce type-là ?

P2 : Malheureusement je ne vois pas.

Interviewer : Non ?

P2 : Non.

Interviewer : Même sur le problème que vous recevez, par exemple, les chercheurs, ils n’arrivent pas à
chercher les vols qu’ils veulent. Donc, même dans ce cas-là, vous ne pensez pas qu’il y a des choses qu’on
doit porter pour améliorer ce type de système ?

P2 : Je pense qu’après c’est voulu. Parce que voulus ne mettent pas tous les vols en ligne. Les vols
compliqués, il y a des frais d’agence, peut-être, du coup… je ne sais pas… il y a beaucoup de destination…
Oui… peut-être on peut améliorer ça en cas de vols compliqués.

Interviewer : Donc, vous pensez qui ça peut être une chose qu’on peut identifier comme besoin utilisateur,
que le système doive prendre en compte ?

P2 : Oui !

Interviewer : C’est un problème.

P2 : On fait la demande par mail… (audio inaudible).

Interviewer : À cause de ce « delay » il n’y a pas de problème ?

P2 : On dit que ce « delay » … En ligne, on valide tout ensuite, il n’y a pas de « delay ».

Interviewer : D’accord. Quelles sont vos besoins/exigences pour le système de réservation de voyage que
vous utilisez actuellement ? ·
Quelque chose que vous voudrez avoir dans ce type de système, ou que vous considérez essentielle ?

P2 : Non, là c’est assez complet.

Interviewer : Quel type de fonctionnalité dans le système vous considérez plus important ?

P2 : Fonctionnalité ?

Interviewer : Oui ! La partie, par exemple, d’ordonner le vol par prix, c’est important ou non, par
exemple ?

P2 : C’est important !

Interviewer : Il n’y a pas de fonctionnalité que vous considérez…

Annex C: Transcription of the Interviews

P2 : Tirer par horaires… (audio inaudible) après les informations des passeports.

Interviewer : D’accord ! Avec quelle fréquence vous devez demander l’aide des autres membres de
l’équipe pour résoudre les demandes des voyageurs ? ∗	

P2 : Les autres membres de l’équipe ?

Interviewer : Oui, si vous avez besoin, bien sûr.

P2 : Oui ! Mois, tous les jours. Nous sommes dans un « open space », donc on pose les questions
naturellement… (audio inaudible) … la fréquence…

Interviewer : Tous les jours, peut-être ?

P2 : Voilà, tous les jours.

Interviewer : Donc, c’est assez fréquent. Quelque suggestion pour faire ça mieux ?

P2 : Non !

Interviewer : Non ?! Avec quelle fréquence vous devez demander aux voyageurs de clarifier les
informations concernant leur demande ? ∗

P2 : On est toujours obligé de demander, sur tout par rapport au service au GLPI, parce que, après la
réservation dans le même service est claire, pas de problème. Tandis que ce nous qui faisons… (audio
inaudible). Quand ce le chercheur qui fait sa réservation, c’est sûr, c’est clair. Après ce juste par rapport
au document rempli, l’émission d’ordre de mission, etc.

Interviewer : D’accord ! Savez-vous me dire avec quelle fréquence ? Tous les jours, tout le temps ?

P2 : Deux à trois fois par jour.

Interviewer : D’accord. Quelque suggestion pour faire ça mieux ? Pour améliorer la clarification de
problème avec les voyageurs ? Quelque fonctionnalité ?

P2 : Laissez de se communiquer avec la… (audio inaudible). En ligne, sur l’internet a une procédure
d’utilisation. On fait passer des messages, voilà, sauf, je pense que beaucoup de personnes ne réalisent
pas et voilà.

Interviewer : D’accord !

P2 : On a fait le service général, quand ils ont mis quelque… (audio inaudible). En place, il avait une
dizaine de personne… (audio inaudible) … donc, voilà, on ne sait pas trop comme on fait pour savoir quel
vous intéresse et voilà.

Interviewer : Selon votre propre expérience, quelles seraient les fonctionnalités qui vous seraient utiles et
qui devraient être rajoutées au logiciel de réservation ? ·

Annex C: Transcription of the Interviews

P2 : Pour la réservation, je ne dirais rien.

Interviewer : Non ? D’accord ! Aucune. Selon votre propre expérience, quelles seraient les fonctionnalités
qui seraient utiles pour les voyageurs ? ·

P2 : Que seraient quoi ?

Interviewer : Utile pour les voyageurs. Dans le système de réservation de voyage, il y a quelque
fonctionnalité que vous pensez qui pourrait aider les voyageurs à faire le processus de réservation de
manière plus facile ?

P2 : C’est très simple. Je pense que c’est comme une réservation sur l’internet. C’est pareil.

Interviewer : C’est pareil avec tous les autres qu’on a déjà sur l’internet ?

P2 : C’est très bon. On registre notre destin, les horaires, vous sélectionner et juste à la fin, mettre le vol
et c’est très simple. Souvent, on se retrouve sur les vols « EasyJet », justement parce que… (audio inaudible)
…. Ils ne savent pas, nous ne pouvons pas vous renseigner… (audio inaudible). Oui, c’est normal, parce
que on ne peut pas le faire.

Interviewer : D’accord.

P2 : (Audio inaudible).

Interviewer : Donc, le problème c’est plutôt avec les « low-cost »

P2 : Oui !

Interviewer : Pourriez-vous lister 3 fonctionnalités que vous aimeriez garder pour ce type de système ? Le
système de voyage, pas le GLPI. ·

P2 : Oui ! Tirer par horaire et par le prix, c’est super ! L’effet que le profil est complet… (audio inaudible).
Le profile est déjà et complet et voilà. Quoi d’autre ? Quoi d’autre ? Je ne vois pas plus.

Interviewer : Non ?

P2 : Non.

Interviewer : D’accord ! Pourriez-vous lister trois fonctionnalités que vous aimeriez changer pour ce type
de système ? Faire de manière différente. Rajouter la question de multiples-destinations ce ne pas une
bonne fonctionnalité, que vous avez dire ·

P2 : Oui, oui ! Pour les multiples-destinations, ça c’est sûr que ce n’est pas évident. Après ça, c’est tout
simple.

Interviewer : D’accord ! Très bien.

Annex C: Transcription of the Interviews

Section C : Rédaction des Récits Utilisateurs.

Interviewer : Bon ! Dans cette partie concernant la rédaction, que nous, on s’appelle le récit utilisateur.
C’est un « template », c’est un modèle pour écrire les histoires, les récits, quand, l’utilisateur fait une action
sur le système. D’accord ?
 Donc, le modèle c’est plutôt comme ça. On a un titre, d’accord ? Que décrit l’histoire et on a un
préambule avec un rôle qui fait cette fonction-là. Qu’est-ce qu’il veut comme fonctionnalité, afin de voir
quelque but, quelque bénéfice. Voilà ! Et Donc, on a plusieurs scénarios pour décrire plusieurs situations
qu’on peut utiliser avec le système. Donc, on a toujours une clause « En tant donnée », qui va nous donner
un contexte d’application de ce scénario. On peut avoir plusieurs contextes, donc on rajoute la clause
« Quand » un évènement arrive et une conséquence « Alors », cette chose ou plusieurs choses arrivent,
donc un exemple :

En tant donné que je vais à la page “Recherche des vols”
Quand je choisis : “aller simple”
Et je tape “Paris” et choisis “Paris, Charles de Gaulle (CDG)” dans le champ “Départ de”
Et je tape “Toulouse” et choisis “Toulouse, Blagnac (TLS)” dans le champ “Arrivée à”
Et je choisis “2” dans le champ “Nombre total de passagers”
Et je choisis “15/12/2017” dans le champ “Date de départ”
Et je clique sur “Recherche”
Alors le système va afficher la liste des vols disponibles.

Donc, la question que je pose : est-ce que vous pourriez spécifier un exemple des demandes de réservation
en utilisant ce format-là description ? Bien sûr, différent de celui-là ?

P2 : Elle lit.

Interviewer : Ça vous semblez comment ce format-là ?

P2 : Oui, c’est ça ! C’est un peu ce contexte en fait.

Interviewer : Donc, c’est quoi ? C’est un modèle que vous considérez qu’on peut faire, qu’on peut écrire
l’activité utilisateur comme ça ?

P2 : (Audio inaudible).

Interviewer : Par exemple, si on veut chercher un vol multiples-destinations quoi vous me donnez comme
exemple ? Qui est le problème !

P2 : Oui !

Interviewer : Vous arrivez le décrire comme ça ?

P2 : Oui !

Interviewer : Oui ? Bon, si vous pouvez le faire un exemple comme ça.

Annex C: Transcription of the Interviews

P2 : Oui !

Interviewer : Oui ! En vers qu’en suivant ce modèle-là. Vous devez maintenir juste les clauses que sont là,
d’accord ? Ici, bien sûr, vous pouvez tout changer.

P2 : (Elle écrit).

Interviewer : On doit, par exemple, arriver hors Paris. Sortir de Frankfurt…

P2 : Parce que de toute façon, par exemple, les multiples-destinations…

Interviewer : Par exemple.

P2 : (Audio inaudible).

Interviewer : Il n’y a pas une option multiples-destinations ?

P2 : (Audio inaudible).
 (Elle écrit en lisant quelque chose en voix bas).

Interviewer : C’est comme plusieurs allers-simples ?

P2 : On fait des allers-retours aussi… (audio inaudible).

Interviewer : Mais dans cette même interface-là ?

P2 : Oui… (Elle écrit encore).

Interviewer : D’accord ! Donc, c’est encore plus compliqué, si par exemple, il fait Toulouse, Rio et il ne
part pas de Rio, il part de São Paulo à Porto Alegre, par exemple ?

P2 : Oui !

Interviewer : Il faut faire d’aller-simple. Il ne peut pas faire ça comme multiples-destinations ?

P2 : Non !

Interviewer : Donc, Il faut partir dans la même ville que vous êtes arrivée ?

P2 : Comme ça.

Interviewer : Oui ?

P2 : Après c’est pareil.

Annex C: Transcription of the Interviews

Interviewer : D’accord ! Normalement les tarifs sont plus chers pour les allers-simples que pour les
multiples-destinations. Donc, ça pose beaucoup de problèmes.

P2 : Oui !

Interviewer : Bon, c’est bon ? Il faut juste une conclusion, je pense.

P2 : (Elle écrit après elle a lu en voix bas).

Interviewer : D’accord ! Bon, la dernière partie, pensez-vous pouvoir rédiger une liste de demande/
problème, surtout de problème que vous recevrez au cours de la semaine que va venir ? Que les
utilisateurs rencontrent sur la recherche du vol etc. ?

P2 : Oui.

Interviewer : Une liste simple, avec bon, ça c’est un problème, ça c’est d’autres problèmes qu’ils ont
racontés.

P2 : Oui !

Interviewer : C’est possible ?

P2 : Oui, bien sûr.

Interviewer : Vous avez une idée de combien de problème vous avez normalement pour la semaine ?
Que vous recevoir ?

P2 : Deux par semaine.

Interviewer : Deux ? Donc, ce n’est pas beaucoup.

P2 : Ce n’est pas beaucoup, mais ça dépend de période. Souvent les plus compliqués c’est quand on a
des invités que viennent des pays qui sont très loin.

Interviewer : D’accord ! Donc, si Oui, c’est le cas. Pensez-vous que vous pouvez formater ces demandes/
problèmes, en suivant ce modèle-là ?

P2 : Oui !

Interviewer : Oui ? Par exemple, on n’arrive pas mettre le parcours de voyage donc, c’est un problème,
donc, vous-pouvez arriver à formater la demande à c’est format-là ? Vous-croyez que c’est possible ?

P2 : Oui ! Vous voudrez que je rédige

Interviewer : Une liste de problèmes que vous rencontrez et après formater dans c’est format-là.

P2 : Oui !

Annex C: Transcription of the Interviews

Interviewer : Oui ? C’est possible ? Donc, dans ce cas-là, je veux vous envoyer par courriel électronique,
la semaine prochaine peut-être.

P2 : C’est un temps court.

Interviewer : Oui ! Désolé !

P2 : Pas de souci.

Interviewer : Et après ça, je vais vous envoyer un bref questionnaire pour évaluer ce type de « template ».
D’accord ?

P2 : Oui

Interviewer : Donc, ton adresse mail ?

P2 : Oui !

Interviewer : Donc, on fait comme ça. Voilà ! Merci beaucoup.

Annex C: Transcription of the Interviews

3. TRANSCRIPTION : Participant 3 (P3)

Partie I : Questionnaire démographique et de contexte.

Interviewer : Bon, voilà ! Donc, la première partie, c'est une partie démographique, on veut savoir votre
sexe, c’est évident.

P3 : C’est évident – Féminin.

Interviewer : Votre âge ? S’il vous plaît.

P3 : 52 ans

Interviewer : Votre niveau d’étude ?

P3 : Bac

Interviewer : Depuis combien de temps, vous êtes au service de mission de l’IRIT ?

P3 : Bientôt quatre ans.

Interviewer : Avez-vous déjà eu des expériences dans des services similaires auparavant ?

P3 : Non, pas pour de réservation. Non, non.

Interviewer : Bon, pourriez-vous nous donner un aperçu de ce travail, en fournissant une brève
description de vos tâches ?

P3 : Ben ! On reçoit la demande par ticket en fonction de la demande, de la date, de l'heure de la
destination nous, on va faire une demande devis qu’on reçoit un peu du temps après et qu’on confirme
par bon de commande.

Interviewer : D’accord et vous êtes en charge de tous les tâches pendant le processus. Il n’y a pas de tâche
spécialisée pour chacun ?

P3 : Non, non. On fait tous la même chose et on traite chacun un certain nombre d’équipes, voilà.

Interviewer : Et comment on fait la distribution de demande ?

P3 : De demande ?

Interviewer : Oui. Qui prend quoi ?

P3 : Ah ! C’est par équipe, par exemple vous, vous faites partis d'une équipe, la gestionnaire de cette
équipe va récupérer la demande et elle va traiter la demande de la mission, du billet d'avion, de train
jusqu'au retour de mission. C’est tout !

Annex C: Transcription of the Interviews

Interviewer : D’accord ! Mais ma demande qui prend charge ? Vous, P1, Lorraine ? Il y a un sort de tâche
spécialisée qui quelqu’un fait de l’équipe ?

P3 : Non ça dépend des comptes, sinon, chacune est responsable d’un nombre de compte.

Interviewer : Ah ! D’accord ! Vous êtes responsable par un sort de compte ?

P3 : Oui.

Partie II : Processus de traitement de demandes

Nous sommes intéressés par les préférences et les difficultés que les voyageurs de l’IRIT ont rencontrées
et vous ont signalés lorsqu'ils essaient de réserver leurs voyages d'affaires. Nous sommes également
intéressés par votre opinion sur les demandes reçues.

Label : ∗ faits, • interprétation

Section A : Réception de demandes de réservation

Interviewer : D’accord ! Bon, sur le processus de traitement de demandes – À la réception de demandes
de réservation : Comment les demandes de réservation des voyageurs arrivent-elles à vous et avec quelle
fréquence ? Avez-vous des suggestions pour faire mieux ? ∗

Interviewer : Bon, elle arrive par ticket !

P3 : Par ticket, voilà !

Interviewer : C’est toujours par ticket ?

P3 : Ou par mail, mais le plus souvent c’est par ticket, parce qu'on essaie de le mettre en place le plus
possible, pour avoir une visibilité plus générale, justement entre les gestionnaires. Parce qu’on a l’absence
du gestionnaire justement, du ou la gestionnaire qui pourrait être malade ou absente, pour quelque motif
que c’est soin, sa collègue ou son collègue peut reprendre le ticket pendant ces temps-là, comme ça, s'il y
a une urgence, il ne passera pas l’attrape, on va le gérer, on ne va pas attendre que la gestionnaire, qui était
absente, va revenir pour traiter ces tickets.

Interviewer : D’accord ! Ils arrivent dans quelle fréquence ? En Moyenne.

P3 : De ticket, on a tous les jours, de demande !

Interviewer : Un peu prêt ? Combien ? Vous savez dire ? En Moyenne ?

P3 : En moyenne ? Je dirai entre 5 et 10 par jour.

Interviewer : D’accord ! Avez-vous des suggestions dans ce processus ? De comment la demande arrive ?

P3 : Non, ça fonctionne très bien.

Annex C: Transcription of the Interviews

Interviewer : D’accord ! Bon, combien de demandes de réservation de voyage avez-vous reçues la semaine
dernière ? ∗

P3 : On va dire, de réservation de voyage. Je dirai 10.

Interviewer : Donc, ça c’est une semaine typique. Parce que bon…

P3 : Ça fluctue, parce que, quand tu as de soutenance de thèse, ben ! On a plus à ce moment-là, après on
a en moins, après on peut avoir une semaine où il y a deux soutenances, donc, ça fait beaucoup plus de
demande, donc ça fluctue vraiment.

Interviewer : D’accord !

P3 : Mais, on a toujours au minimum, je pense, 5 par semaine au minimum.

Interviewer : Avez-vous des suggestions dans cette partie, sur la demande ? ∗

P3 : Sur la demande des chercheurs ?

Interviewer : Oui ! Si elles viennent tous ensemble…si…bon, je ne sais pas !

P3 : Elle ne peut pas venir tous ensemble, parce qu’ils n’ont pas les démarches au même moment. Parce
que chaque jour a sa propre organisation, donc, mais s’il peut anticiper le maximum, ça serait meilleur,
parce que chacun ne pas "c'est le monde", donc, il faut deviner et savoir que nous on n'attend pas cette
demande pour travailler. On fait les demandes, on fait la mesure qu'elles arrivent. Souvent pour une
demande on perdre beaucoup de temps, parce que dans la demande il n'y a pas que le billet d'avion il y a
aussi les gens qui ne sont pas créés, donc, par exemple, donc ça fait la demande de document mal rempli,
c'est que retarder la demande de temps et il ne faut pas faire. En général, quand l’agent fait la demande
vendredi, mais on ne peut pas forcément le temps de le valider le vendredi même. Donc, si vous, c’est un
exemple. Vous faites une demande de devis le vendredi après-midi à 16 h, nous, on part 16h30, maximum
17h30. Si on traite de demande d'urgence avant de recevoir votre ticket, le devis que vous allez demander,
si vous regardez bien, sur votre devis, ça être validé avant le même jour, minuit par exemple, on ne peut
pas valider. C'est qui fait que le lundi, vous allez être obligé de faire une nouvelle demande de devis, donc
voilà, il faut faire très attention à la date de validité sur la demande de devis.

Interviewer : D’accord ! Pensez-vous qu’il manque quelque chose dans la description des demandes de
réservation que vous recevez ? ·

P3 : En ce qui me concerne, non.

Interviewer : C’est complet ? Ne manque aucun donné ?

P3 : Non pas, il ne manque rien ! En règle générale, non !

Interviewer : D’accord ! Avez-vous de suggestion à ce sujet-là ? ·

Annex C: Transcription of the Interviews

P3 : Oui, j’ai juste une suggestion à faire. Si l’agent nous envoie des horaires précis et alors, que dans sa
tête : « c'est bon, je mets ces horaires-là, mais ça peut changer ». Il faudrait qu'ils le président dans sa
demande, parce que nous, on va se précipiter pour faire la réservation et si après l’agent va dire :
« finalement non, finalement, ça me range plus une heure après ou une heure plus tôt ». Nous, on va
retravailler dessus, ça va faire perdre de temps, par une heure du temps. Alors que s'il y a un moins de
doute, qu'ils précisent au départ, ça, nous éviterons de nous précipiter et de perdre de l'argent aussi parce
que souvent pour une modification, il y a une pénalité, voilà.

Interviewer : La plupart des demandes arrivent avec un horaire fixe. C’est ça ?

P3 : Oui, oui.

Interviewer : Donc, si on peut avoir des horaires flexibles, ça sera mieux ?

P3 : Pour la personne qui a un doute, ils vont mieux avoir des horaires flexibles, oui.

Interviewer : D’accord ! Il y a des champs comme ça, pour faire cette option d’horaire flexible dans
l’ouverture de ticket ? Ou il faut l’écrit ?

P3 : Non, il faut l’écrit.

Interviewer : D’accord.

P3 : Quand c'est nous qui faisons la demande de devis. Après quand c'est vous qui la faites, là, si vous
engagement. Vous, propre, après une fois qu'on a le devis que vous, vous avez demandé on a obligé de
suivre vous horaire, mais dans le ticket, si vous avez un doute, il faut le préciser, voilà.

Interviewer : D’accord.

P3 : Ça sera meilleur, ça, nous faisons gagner du temps et à vous de l’argent.

Interviewer : D’accord ! Est-ce que vous devez prendre des notes (ex. post-it, email etc.) sur les demandes
de réservations ? ∗

P3 : Non.

Interviewer : Non ?

P3 : Non

Interviewer : Bon, si oui, combien de notes en moyenne ? Donc, ça ne fait pas de sens. ∗

P3 : On ne peut pas de note, parce qu’on a deux écrans, donc, si on a besoin d'information, on peut
travailler, on peut le réserver sur un écran puis on peut regarder les horaires sur la demande sur l'autre
écran. Donc comme ça, on n’a pas besoin de noter. Sur un doute, on regarde la demande.

Annex C: Transcription of the Interviews

Interviewer : D’accord ! Mais, par exemple, même si vous prenez une demande par téléphone ou
d’information, il n’y a pas de note que vous prenez ? En dehors du système ?

P3 : Voilà, quand on a tout le suivi de toutes les demandes, on peut remonter jusqu'au départ. On ne
prend pas des notes par téléphone, c’est trop fragile. S’il y a au moins d’erreur, après, on n’a aucune trace.

Interviewer : Même s'il y a une demande formalisée par ticket et il y a un doute, par exemple ?

P3 : Non, toujours par écrit.

Interviewer : Donc, toujours par écrit ?

P3 : Toujours par écrit, parce que dans le ticket, on peut faire un suivi.

Interviewer : D’accord !

Interviewer : Quelque suggestion dans ce processus-là ?

P3 : Non, ça fonctionne très bien, je pense. Je n’ai jamais rencontré, au niveau des demandes, des agents.
À part le fait qu’il faut qu'il soit sûr de leurs horaires, quand ils demandent un devis. Bon après, on sait
qui peut avoir les contretemps de dernière minute, ça arrive à tout le monde, mais voilà. Le plus possible
évité de nous refaire travailler plusieurs fois sur une même demande.

Interviewer : D’accord ! Vous prenez les annotations, tout ça, sur le suivi de ticket, c’est ça ?

P3 : Oui.

Interviewer : D’accord ! Et vous avez une idée du combien de suivi en demande elle prend normalement ?

P3 : De suivi ? Ça varie aussi. On ne peut pas, je ne sais pas si on peut le chiffrer, parce qu’il peut avoir
un ou deux problèmes et puis le suivant, il va y avoir un échange de mail demande, quatre textes pour
une seule demande, par exemple. Donc je ne sais pas si on peut vraiment le chiffrer. Voilà, ça varie
vraiment en fonction de la personne, de la demande et voilà, je pense que c’est ça.

Interviewer : D’accord ! Si vous prenez des notes, comment vous les conservée et sur quel format ? Donc,
vous le conservées sur le suivi de demande, c’est ça ? ∗

P3 : Oui, et on fait souvent une copie papier dans le dossier.

Interviewer : Physiquement ? Vous imprimez ?

P3 : Oui

Interviewer : Comment améliorer l'enregistrement de ces notes ? Il y a quelque chose ?

P3 : Non, parce que… Il n'y a aucune, le suivi. Je ne sais pas si vous voyez. Vous avez déjà regardé ?

Annex C: Transcription of the Interviews

Interviewer : Oui, Oui. GLPI, c’est ça ?

P3 : GLPI, voilà ! Non, et vous cliquez sur le traitement de texte, je crois, et vous avez tous les suivis que
s’affiche, ainsi que les documents.

Interviewer : Je ne connais pas l’interface de votre côté, mais bon.

P3 : Mais c’est bien ! On a tous les suivis.

Interviewer : D’accord ! Très bien ! Pensez-vous que l'enregistrement de ces notes est important ? ·

P3 : Oui, c’est très important !

Interviewer : Bon, c’est important, mais il n'y a pas de suggestion d'amélioration dans cet enregistrement ?

P3 : Non, pas ce qui me concerne.

Interviewer : D’accord.

Interviewer : Pouvez-vous fournir quelques exemples de demande de réservation que vous recevez ? Par
exemple, c’est un voyage qui apporte plusieurs moyens des transports, il y a une partie en avion, une partie
en train et c’est tout dans le même billet. ∗

P3 : Il y a plusieurs destinations, il y a de billet d’avion avec de changement d’aéroport.

Interviewer : C’est surtout de billet d’avion et de train ?

P3 : Oui.

Interviewer : D’accord. Par exemple, il y a de réservation de la voiture ?

P3 : Oui, il y a de location de la voiture aussi.

Interviewer : D’accord. Au niveau du système, ça, c’est traiter de la même façon ?

P3 : Oui, sur l’interface, on peut réserver.

Interviewer : D’accord. Quelque suggestion à ce sujet-là ? D’amélioration ?

P3 : Oui, d’amélioration, oui. J’ai eu un problème la semaine dernière, parce que j’ai eu un vol pour aller
sur une compagnie et le retour sur une autre, et le retour, c’est sur un vol « low-cost ». J'ai dû faire une
demande indirecte au marché, je ne suis pas passé par le site, parce que, je n’ai pas trouvé, il ne voulait
pas prendre les deux compagnies en même temps j'étais obligé de prendre le vol séparément, or
séparément c’est très cher, il ne voulait pas faire aller et retour. Donc, j’étais obligé de faire une demande
par mail au marché, qu’eux m'envoyer un devis, alors que, c’est plus rapide, voilà.

Interviewer : D’accord, quand vous dites au marché, c’est l’agent de voyage ?

Annex C: Transcription of the Interviews

P3 : Oui, l’agent de voyage.

Interviewer : D’accord. Il fait ça et il vous retourne un billet aller-retour avec deux compagnies différentes,
c’est ça ?

P3 : Oui, c’est le devis qu'il nous envoyait avec la compagnie qu’on souhaitait. Par exemple, vous, vous
allez regarder sur l’internet, vous allez voir, le départ, je peux prendre Air France et le retour, je peux
revenir avec « EasyJet ». Vous voyez que les horaires vous conviennent, donc, vous m'envoyez une
demande, moi, je vais sur le site, je regarde les horaires et les compagnies. Je ne vois pas la compagnie
« EasyJet » sur leur site. Bon, on dit ! Vous n’avez pas inventé quand même.

Interviewer : Mais, ça arrive toujours ? Les « low-costs » ne sont pas concernés dans le système ?

P3 : Non, on a des « low-costs ».

Interviewer : Mais pourquoi vous ne voyiez pas ?

P3 : Parce que, quand il y a de vol aller-retour, on ne prend pas forcément le « low-cost », donc ça va
perturber, je pense.

Interviewer : D‘accord, donc vous croyiez que c’est un problème du système plutôt ?

P3 : Je pense que… Je ne sais pas. Non, en tout cas quand leur demande, quand moi, je vais faire la
demande par mail à l'agence, voilà, il m’envoie exactement les horaires et les compagnies que vous, vous
m'avez demandé, donc, c’est possible pourquoi on n’arrive pas à voir sur le site. Donc ça, vous faites
perdre du temps.

Interviewer : D’accord. Donc, la suggestion c’est de pouvoir faire ça sur le site ?

P3 : De pouvoir faire ça sur le site.

Interviewer : D‘accord.

Section B : Traitement des demandes de réservation.

Interviewer : Bon, concernent le traitement de demandes. Quelle est la procédure-type pour traiter une
demande de réservation ? ∗

P3 : Alors, la procédure type.

Interviewer : Comment ça commence, après qu’est-ce qu’arrive ?

P3 : Uniquement de la réservation ou de la globalité ?

Interviewer : De voyage, de voyage, surtout.

Annex C: Transcription of the Interviews

P3 : Bon, l’agent nous met un ticket GLPI. C’est lui qui n’y a pas l’accès. Parce qu'il y a deux possibilités.
Il y a de gens doctorant qui il n’y a pas accès à l’intranet qui ne pouvez pas faire leur demande de devis,
donc il passe directement par nous.

Interviewer : Par mail ?

P3 : Il faut un ticket.

Interviewer : Mais c’est un ticket différent des autres qui ont d’accès ?

P3 : Non, c’est toujours GLPI. Sauf que vous, si vous êtes, si vous avez-vous identifiant intranet UPS, vous
pourrez faire directement votre demande de devis et nous mettre en tant que valider.

Interviewer : D’accord.

P3 : Donc nous, on va recevoir la demande, d’accord ?

Interviewer : D’accord. Donc, ça c’est le premier part.

P3 : Voilà, après il y a les gens qui n’ont pas leur identifiant, qui vont être obligés de passer par nous.
Donc, ils vont faire un ticket également, ils vont nous transmettre la date, la destination et les horaires par
mail. Nous, on va les enregistrer en tant qu’inviter, parce que, ils ne sont pas créés. Et on va faire la
demande. On va réserver pour eux et on va demander un devis.

Interviewer : D’accord. Et la demande de devis, comment ont fait cette demande ? Vous allez au site ?
C’est ça ?

P3 : Voilà.

Interviewer : Ou vous appelez l’agence ?

P3 : Non, non. Je vais sur le site.

Interviewer : C’est toujours sur le site ?

P3 : Oui, toujours en priorité c’est sur le site.

Interviewer : D’accord. C’est le « Travel Planet ».

P3 : Oui, « Travel Planet ».

Interviewer : D’accord. Donc après le devis ?

P3 : Après le devis, donc, on fait une demande de devis qu’on va recevoir par mail et qu’on va confirmer
par un bon de commande. Bon, nous, on fait le bon de commande et sur le site on va repartir pour
finaliser le voyage, finaliser la demande, donc on va…

Annex C: Transcription of the Interviews

Interviewer : Finaliser ça veut dire quoi, exactement ?

P3 : Finaliser c’est donner notre accord par numéro de bon de commande. Voilà. Au départ, on demande
l’accord par devis. Une fois, qu’on a le devis, on va finaliser la commande en précisant le numéro de bon
de commande qui a attaché à cette demande, comme ça, eux n’a pas besoin de recevoir le bon de
commande, ils ont juste le numéro pour attacher la facture, le billet à ce numéro.

Interviewer : D’accord ! Et après ça c’est fini ?

P3 : Après on reçoit l'itinéraire, qu'on soit en le reçois uniquement nous et n’est pas l’agent ou alors,
l’agent reçoit aussi une copie. Mais, nous, par défaut, l'envoie quand même dès qu'on reçoit l'itinéraire on
le renvoie à l'agent pour être sûr qu'il puisse enregistrer en ligne.

Interviewer : Que c’est déjà le billet ?

P3 : Ce n’est jamais le billet en général, c’est pour qu’il s’enregistre en ligne et qu’il imprime son billet.

Interviewer : D’accord.

P3 : On ne reçoit pas immédiatement. Ça, peut-être un déstabilisant, si on peut avoir dans les 48 h, suivant
la demande, ça sera bien.

Interviewer : Mais aujourd’hui c’est combien du temps ?

P3 : On le reçoit trois, quatre jours après. Donc, nous, on passe à l’autre chose et puis un jour on reçoit
l’itinéraire puis on est obligé de perdre du temps. Ah ! Oui, c’est vrai, on est obligé de ressortir le dossier
pour savoir où est le dossier, s’il n’y a pas d'erreur. Voilà !

Interviewer : D’accord !

P3 : Si ça pouvait être plus rapide, ça serait mieux.

Interviewer : Donc la suggestion dans ce cas-là, c’est de pouvoir, par exemple, confirmer la demande
directement sur le site ? Ou non ? C’est même de la recevoir dans un « delay » plus court ?

P3 : Non, c’est plutôt de la recevoir dans un « delay » plus court. Donc, c'est encore frais dans notre esprit.

Interviewer : Est-ce que dans les demandes des voyageurs que vous traitez, il y a des informations qu’on
pourrait identifier comme des besoins et/ou des exigences pour améliorer un système de réservation de
voyage ? ·

P3 : Des besoins, des exigences… moi, je n’ai pas eu. Ou peut-être ?

Interviewer : Par exemple vous voyez quelque sort de problème qu’arrive souvent pour le chercheur,
quand ils vont chercher du voyage sur le système. Ça pourrait devenir un besoin utilisateur pour améliorer
un système futur de réservation de voyage ? Ou même le système qui existe déjà ?

Annex C: Transcription of the Interviews

P3 : Je ne vois pas trop qu’est-ce que pourrait...Bon, moi, j’ai une, que je n’ai pas utilisée. C’est le voyage
groupé, avec plusieurs personnes. Ça je n’ai encore fait depuis que...c’était bien en place, donc, je ne peux
pas vous en parler, je ne peux pas dire si c’est efficace ou pas.

Interviewer : C’est quoi un voyage groupe exactement.

P3 : Par exemple il y a une dizaine de personnes qui prennent le billet d'avion le même jour. Donc, qui
vont à la même conférence, voilà. Et vous voudriez aller dans le même vol et la même heure.

Interviewer : Donc, c’est possible de faire une seule demande pour les dix ?

P3 : Ah, non ! Il faut faire la même, mais...Il faut avoir, si on peut avoir…Non, peut-être pas...Peut-être il
faut faire une demande… Je ne peux pas vous en parler, parce que je jamais essayais, je ne sais pas en fait
si on peut faire...c’est possible. Je pense que c’est possible de faire une seule demande pour un groupe de
personnes.

Interviewer : D’accord. Donc, c’est que concerne le besoin, les exigences, il y a quelque chose que vous
identifiez ?

P3 : Les grandes personnes. Sont des exigences dans déplacement, donc, ce n’est pas évident, parce que,
sont des grandes jambes et les vols ont des lieux trop précis.

Interviewer : Ça, on ne peut pas faire aujourd’hui ?

P3 : Ça dépend. On peut le faire s’il le prend tout, mais ce n'est pas évident.

Interviewer : Mais vous pouvez demander ça par téléphone, par exemple, à l’agent de voyage que va faire...
?

P3 : Par téléphone, non, Il ne renseigne jamais par téléphone. On a toujours besoin de faire un mail. Il
ne donne jamais de réponse par téléphone. Mais en fonction… on a un plan d’emplacement dans l'avion
et on voit si c'est disponible ou pas disponible. Quand ne plus disponible, ce n’est pas possible.

Interviewer : Même s’il intervient, l’agence ? Même si l’agence fait une intervention pour… ?

P3 : Oui ! Non.

Interviewer : On ne peut pas. D’accord !

Interviewer : Quelles sont vos besoins/exigences pour le système de réservation de voyage que vous utilisez
actuellement ? Par exemple, il y a de fonctionnalité que vous voudriez voir, en ce que concerne votre
activité ? ·

P3 : Alors, laisse-moi réfléchir. Je voudrais que, peut-être, entre le moment où on a fait la demande de
devis et le moment où, on fait le bon de commande, souvent, ce à ce rapide. On retourne sur le site et il
ne trouve pas notre demande d'autorisation. Donc on est obligé de repartir à zéro ou d'être obligé de taper
la référence pour retrouver le voyage, pour retomber dans la liste d’autorisations. Donc, c’est un peu…

Annex C: Transcription of the Interviews

Un vrai lien direct entre le moment où on fait le bon de commande et où on donne l’accord. Il que se
passe, un petit peu de temps et après on est obligé de tout, de revenir en arrière et souvent il ne trouve
pas ça perturbe, donc on est obligé de retaper la référence du vol, du devis, pour revenir sur l’accord

Interviewer : D’accord ! Et ce que concerne la recherche du vol, l'interface pour trouver de vol disponible,
tout ça vous plaît aujourd’hui ? Il n’y a pas de besoins que vous identifiez dans cette partie, par exemple
?

P3 : Non, ça va ! C’est à c’est vaste, quand même. On a de la marge. Oui, oui.

Interviewer : D’accord ! Avec quelle fréquence vous devez demander l’aide des autres membres de
l’équipe pour résoudre les demandes des voyageurs ? ∗

P3 : De l’aide de, de…

Interviewer : De l’aide interne. De votre équipe.

P3 : De mes collègues ?

Interviewer : Oui, oui, oui.

P3 : C’est très, très rare.

Interviewer : Rare ?

P3 : Oui, c’est rare. Très rare.

Interviewer : Il y a de suggestion dans ce sujet-là ? De demander l’aide quand il y a de besoin évidemment
?

P3 : En règle générale quand on a un souci on en parle entre nous et on a la chance d’être en quatre, ce
qui fait, que sur le quatre il y a toujours, au moins une personne que rencontrer, peut-être, ce genre de
problème et, donc, du coup, le règle…

Interviewer : Ça marche bien ?

P3 : Oui, ça marche bien. En règle générale quand on a un doute, on envoie un mail à l’agence, au marché
et puis… on n’a pas la réponse immédiatement, mais ils sont à ce réactifs, quand même.

Interviewer : D’accord. Avec quelle fréquence vous devez demander aux voyageurs de clarifier les
informations concernant leur demande ? ∗

P3 : Ah...Ça c’est toujours par ticket ou préalable, donc.

Interviewer : Mais ça arrive souvent ? Des informations manquent ? Des choses qui ne sont pas très claires
?

Annex C: Transcription of the Interviews

P3 : Non, mais souvent que manque en fonction de la destination, ce sont le passeport, les numéros de
passeport. Ça c’est important. Parce qu’on sait qu’il faut le passeport pour voyager, au moment de prendre
son vol, mais pour certaines destinations s'il n’y a pas le numéro du passeport ils ne vont pas le valider.

Interviewer : D’accord.

P3 : Donc, ça il faut que ce sache.

Interviewer : D’accord ! Mais au niveau de fréquence vous arrivez d'identifier ? À quelle fréquence vous
avez de demander une clarification ?

P3 : Non, on a très peu.

Interviewer : Donc, c’est rare aussi ?

P3 : Oui, c’est rare.

Interviewer : D’accord. Des suggestions de ce sujet-là ? Comment vous pouvez faire cette clarification au
demandeur ? Comment on peut faire ça meilleur ?

P3 : Bah ! Peut-être qu’il a un petit truc qu'il dit à l’agent, au moment de faire sa réservation, de vérifier
son profil, de mettre à jour le profil systématiquement avant chaque demande.

Interviewer : D’accord. Selon votre propre expérience, quelles seraient les fonctionnalités qui vous
seraient utiles et qui devraient être rajoutées au logiciel de réservation ? ·

P3 : Bah ! Comme c’est l’internet, un question un conseil, ça ne sera pas mal. Quelqu'un qui sont en
direct en ligne.

Interviewer : D’accord. Un chat ?

P3 : Un chat, voilà !

Interviewer : Avec le demandeur ?

P3 : Bien sûr. Ou nous, ou nous, si on est bloqué, au moment donné, plutôt que de perdre du temps
d'envoyer un mail, ou d’attendre. Poser la question directe en ligne, avec l’écran.

Interviewer : Avec l’agence ?

P3 : Et voilà, avec l’agence.

Interviewer : D’accord. D’autres choses ?

P3 : Non, parce que c’est bien fait.

Interviewer : Vous considérez que c’est complet le système ?

Annex C: Transcription of the Interviews

P3 : Pour nous besoins, je pense que oui. Bon il y a des améliorations à apporter, mais…

Interviewer : Par exemple ?

P3 : Je ne sais pas, han ! Il y a toujours des améliorations.

Interviewer : Vous n’avez pas identifié à ce moment ?

P3 : Pas vraiment. Pas quelque chose que soulte les yeux.

Interviewer : Selon votre propre expérience, quelles seraient les fonctionnalités qui seraient utiles pour
les voyageurs ? ·

P3 : Ah ! Pour les voyageurs ?

Interviewer : Oui.

P3 : Ah ! ils ne peuvent pas faire le bon de commande, ça ce n’est pas possible, mais...

Interviewer : Mais ça peut être utile ? S’ils pouvaient le faire ?

P3 : Oui, mais ce n’est pas possible. Parce qu’il y a le compte, ils ne peuvent pas le faire. Han...Oui ça
pourrait être utile s’ils pouvaient le faire en direct.

Interviewer : Oui ?

P3 : Oui, bien sûr ! Ça nous ferait gagner du temps.

Interviewer : D’accord !

P3 : Mais… Oui, ça sera bien si vous pouvez faire leur demande de devis, et une fois que vous avez, vous,
le devis, par exemple, vous avez le montant, vous connaissez le numéro de compte, sur lequel vous allez
prendre la mission, vous tapez le numéro de compte, si vous savez que c’est montant-là va se déduire de
ce compte

Interviewer : Et c’est moi-même que gère le budget, donc...

P3 : Voilà ! Mais, par contre, il faut que nous, nous soyons informés, quand même. Ça pourrait être bien.
Mais je ne sais pas comment ça peut être réalisable. Mais ça pourrait être...ça résoudre le problème du
vendredi, de la demande de devis du vendredi, par exemple.

Interviewer : D’autres suggestions ?

P3 : Non !

Interviewer : Pourriez-vous lister 3 fonctionnalités que vous aimeriez garder pour ce type de système ? ·

Annex C: Transcription of the Interviews

P3 : Alors ! Trois ?

Interviewer : Oui !

P3 : Le suivi de vol qu'on a pris. Ça c’est bien, toute la liste des vols en cours et qu’on a été autorisé. Ça
c’est important pour moi. L’effet de taper la référence aussi, en direct, ce n’est pas mal. Puisqu’il reçoit
tout le suivi du billet.

Interviewer : La référence ?

P3 : La référence de réservation. Après la troisième...on est obligé d’élire trois ?

Interviewer : Non ! S’il n’y a pas trois, non ! Vous pensez que c’est juste les deux qui sont plus importants
pour vous ?

P3 : Non. Puis, avoir un panel large de vol, ça c'est important, parce que…

Interviewer : Panel large de vols, ça veut dire, couvrir plusieurs compagnies aériennes ?

P3 : Oui ! Plusieurs compagnies et plusieurs horaires différents.

Interviewer : Pourriez-vous lister trois fonctionnalités que vous aimeriez changer pour ce type de système
? ·

P3 : Il y a une que m’angoisse. Quand on va sur le site, on tombe systématiquement sur le train. Et on
prend plus de billet d'avion que de train. Et si on ne fait pas attention dans la précipitation on fait une
demande d’aller et retour et puis on tombe sur la SNCF et pas sur...donc, on est obligé de changer
d’onglet… je ne sais pas.

Interviewer : D’accord.

P3 : Ça c’est pénible...après… c’est quoi la question ?

Interviewer : Les trois fonctionnalités que vous aimeriez changer pour ce type de système ?

P3 : J'aimerais qu’ils nous envoient les billets « EasyJet », beaucoup plus vite, parce que...ça…

Interviewer : Juste pour « EasyJet » ?

P3 : Oui, les autres…les autres aussi, mais « EasyJet », c’est beaucoup plus long, donc…

Interviewer : D’accord. Une troisième peut-être ?

P3 : Troisième ? Non, je ne vois pas.

Interviewer : Non ?

Annex C: Transcription of the Interviews

Section C : Rédaction des Récits Utilisateurs.

Interviewer : Bon ! Dans cette troisième partie on va évaluer un modèle pour décrire le processus besoin
d’utilisateur, quand il utilise le système en fait. Donc, on est intéressé d'évaluer si ce modèle marche bien,
ou s’il ne marche pas bien, si vous jugez que c’est un modèle qu’on pourrait utiliser, peut-être, et bon. Le
modèle est plutôt comme ça.
 On a l’histoire, un récit utilisateur, avec un titre, d’accord ? Avec un préambule, qu’on identifie
en tant que le rôle, particulier...je veux faire quelque chose, je veux une fonctionnalité, afin de pouvoir
obtenir un bénéfice, un but etc, etc…

Donc, pour ce récit-là, on a plusieurs scénarios. D’accord ?

P3 : D’accord !

Interviewer : Donc ; on a le scénario 1.
 En tant que : donner un contexte, ou, plusieurs contextes, qu’on fait quelque chose, qu’on a un
événement, alors, il y a un résultat ou plusieurs résultats.

P3 : D’accord !

Interviewer : Par exemple.

En tant que voyageur fréquent, je veux rechercher des billets, en fournissant des emplacements
et des dates, afin de pouvoir obtenir des informations sur les tarifs et les horaires des vols. Donc, un
scénario possible, c’est une recherche de ticket ‘aller-simple”. D’accord ?

P3 : D’accord !

Interviewer : Par exemple :

En tant donné que je vais à la page “Recherche de vols”
Quand je choisis : “aller simple”
Et je tape “Paris” et choisis “Paris, Charles de Gaulle (CDG)” dans le champ “Départ de”
Et je tape “Toulouse” et choisis “Toulouse, Blagnac (TLS)” dans le champ “Arrivée à”
Et je choisis “2” dans le champ “Nombre total de passagers”
Et je choisis “15/12/2017” dans le champ “Date de départ”
Et je clique sur “Recherche”
Alors le système va afficher la liste des vols disponibles.

Donc, comme ça on fait une description de l’activité qu’on doit faire pour obtenir c’est but-là.

D’accord ?

P3 : Oui !

Interviewer : Donc, c’est ça le modèle, on peut, bien sûr, décrire toutes les fonctionnalités, toutes les
activités que l’utilisateur, il demande de faire sur le système, et quelle sera la réponse du système à cette
demande-là. D’accord ?

P3 : D’accord !

Annex C: Transcription of the Interviews

Interviewer : Donc, ça c’est le modèle. Est-ce que vous pouvez écrire pour nous un exemple d’une
situation, d’un problème, d’une demande utilisateur que vous identifiez, que vous recevez, par exemple,
souvent ou que vous avez reçu récemment. Dans ce modèle-là ?

P3 : Oui ! Je dois écris ?

Interviewer : Oui, s’il vous plaît ! Vous pouvez prendre un exemple.

P3 : Ça va être la même figure, mais au lieu d'aller simple, c'est aller/retour.

Interviewer : Oui, c'est une option. Vous pouvez aussi faire un scénario comme ça, pour enregistrer les
données de passeport, pour enregistrer le bon de commande, pour confirmer la réservation, bon vous
pouvez imaginer quelque scénario que vous voulez.

P3 : Alors, attendez !

Interviewer : Donc, on a toujours un contexte, d'accord ?

P3 : Oui !

Interviewer : Quand le scénario, il arrive, on a toujours une réponse. D'accord ?

P3 : D'accord !

Interviewer : Donc, on fait une action sur le système et on reçoit une réponse. D'accord ? En accord avec
cette action qu’on a faite.
Donc, on va avoir ce qui l'utilisateur, qu'est-ce qu'il va faire, avec quel but. Et après on va avoir plusieurs
scénarios, vous pouvez d'écrire un, par exemple, avec un contexte, une action et une réponse.

P3 : Mais, ça sera toujours dans le but d'une recherche d’un billet d'avion.

Interviewer : Ou après le rechercher. Faire la réservation, mettre les données ou mettre le bon de
commande, bon voilà. Ça pourrait être fait après la recherche, après qu'on a déjà la liste, parce que, bon,
on a la liste de vol disponible, après ça, qu'est-ce qu'on pouvait faire, par exemple, donc, mais, bien sûr, si
vous voulez faire un scénario recherche, il n’y a pas de soucis. C'est juste pour clarifier que vous pouvez
utiliser ce type de modèle pour décrire, n'importe quelle action sur le système.

P3 : D'accord !

Interviewer : C'est possible à vous de faire un exemple que vous plaît ?

P3 : Mais, je suis obligé de l'écrire ?

Interviewer : Oui, s'il vous plaît. Ce n'est pas forcément une obligation, mais bon.

P3 : À c'est moment elle écrit. Après elle lit rapidement.

Annex C: Transcription of the Interviews

Interviewer : Mais dans c'est cas-là, comment le système, il donne la réponse ? C'est quoi qu'il montre ?
Par exemple.

P3 : Si c'est autorisé, il écrit : Autorisé.

Interviewer : C'est un champ ou c'est écrire autorisé ?

P3 : C'est un petit onglet, qui est écrit : Autorisé. D'accord ?

Interviewer : D'accord ! Vous pouvez juste faire cette addition-là ? C'est comme le système donne la
réponse.

P3 : À c'est moment-là, elle écrit.

Interviewer : C'est parfait ! C'est très bien, c'est exactement qu'on veut. Donc, pensez-vous pouvoir rédiger
une liste de demandes/problèmes que vous recevrez au cours de cette semaine, c'est-à-dire, d'ici à mardi
prochain ? Sur les problèmes que les utilisateurs vont rencontrer lors de la réservation de leurs voyages et
qui va vous appeler pour résoudre ? Une liste simple.

P3 : Mais, si je n'ai pas un problème ?

Interviewer : Bon, s'il n'y a pas de demande que vous considérez comme important pour la réservation de
voyage, même si ce n’est pas forcément un problème…

P3 : Si c'est une demande spécifique ?

Interviewer : Oui, une demande que vous considérez que c'est important, que c'est …

P3 : D'accord !

Interviewer : Ou même la demande que vous ayez l'habitude de recevoir dans cette semaine. Donc, on a
besoin d'une semaine de « delay ». Donc, d'ici à mardi prochain. Si vous pouvez, bien sûr. Enregistrer
cette liste de demande, de problème, de demande ou de problème. D'accord ?

P3 : D'accord.

Interviewer : En qui concerne la réservation de voyage de manière intéressante et bonne. En faisant ça
notre but est d'évaluer l'écrit de ce type d'histoire, donc, si possible, on vous demande pour chaque
problème, que vous identifiez ou pour chaque demande que vous puissiez écrire cette demande aussi sur
ce format-là. Vous pensez que c'est possible ? Donc, si, par exemple, ça a été arrivée hier, vous notez que
ce une demande que vous ayez reçue et à côté vous ferez un exemple, en utilisant ce type de format. Vous
pensez que c'est possible ?

P3 : Je ne sais pas. Je peux essayer de vous faire, mais je ne peux pas vous certifier.

Annex C: Transcription of the Interviews

Interviewer : C'est que nous intéresse, c'est plutôt d'avoir l'utilisateur comme vous, qu'écrivez ses histoires,
pour qu’on puisse évaluer l'effectivité de ce type d'histoire dans une spécification de vision utilisateur.
Donc, bon, si vous pouvez envoyer quelque exemple, que vous jugez simple, mais qui vont pouvez nous
aider, ça sera bien.

P3 : Je vais essayer.

Interviewer : Je veux vous envoyer par mail aussi. Bon, merci beaucoup par vous aide.

Annex C: Transcription of the Interviews

4. TRANSCRIPTION : Participant 4 (P4)

 Partie I : Questionnaire démographique et de contexte.

Interviewer : Bon, donc, la première partie, concerne un questionnaire démographique. Bon votre sexe.

P4 : Masculin.

Interviewer : Votre âge ?

P4 : 25 ans.

Interviewer : 25 ? D’accord ! Votre niveau d’étude ?

P4 : Bac

Interviewer : Depuis combien de temps, vous êtes au service de mission de l’IRIT ? Ça fait un mois, que
vous avez me dit ?

P4 : Un moi, tout justement.

Interviewer : D’accord. Avez-vous déjà eu des expériences dans de services similaires ?

P4 : Oui

Interviewer : Pendant combien du temps ?

P4 : 04 ans à INSA de Toulouse.

Interviewer : Bon, pourriez-vous nous donner un aperçu de ce travail, en fournissant une brève
description de vos tâches ?

P4 : D’accord ! Alors, on reçoit une demande d’auto mission des chercheurs. Donc, avec une demande
de déplacement de voyage et avec cette demande-là, nous, on va sur le portail et puis on réserve, donc, le
déplacement ou le train.

Interviewer : D’accord et après ? Ça finit avec la réservation ?

P4 : Voilà, nous, on fait la réservation et puis, après on reçoit une facture qui est directement payée avec
nos services. On gagne la copie de la facture, mais c’est directement traiter par logiciel.

Interviewer : D’accord. Et la facture est envoyée par l’agence de voyages ?

P4 : Voilà, c’est pour courriel, du coup par l’agence de voyages.

Interviewer : D’accord

Annex C: Transcription of the Interviews

Partie II : Processus de traitement de demandes
Nous sommes intéressés par les préférences et les difficultés que les voyageurs de l’IRIT ont rencontrées
et vous ont signalés lorsqu'ils essaient de réserver leurs voyages d'affaires. Nous sommes également
intéressés par votre opinion sur les demandes reçues.

Label : ∗ faits, • interprétation

Section A : Réception de demandes de réservation

Interviewer : Bon, concernant le processus de traitement de demandes. Comment les demandes de
réservation des voyageurs arrivent-elles à vous et avec quelle fréquence ? Avez-vous des suggestions pour
faire mieux ? ∗

P4 : Donc, du coup, via logiciel. Ils peuvent le faire directement sur le logiciel, où, on, nous mettons en
valideur. Nous, on doit recevoir un mail pour valider le voyage ou sinon, on fait directement ou, ils nous
passent des informations directement par mail, les chercheurs, et c’est nous qui réservons directement
avec leur nom, prénom et le voyage.

Interviewer : Donc, d’accord. L’arrivée est directement via logiciel ou par mail ?

P4 : Voilà ! Ou sinon par mail avec toutes les infos.

Interviewer : D’accord ! Et avec quelle fréquence ?

P4 : Quelle fréquence ça peut dépendre.

Interviewer : Oui, en moyenne ?

P4 : En moyenne, dans le mois, je pense, 10 déplacements.

Interviewer : 10 déplacements par semaine ?

P4 : Non, par mois.

Interviewer : Par mois ?

P4 : Par mois, après, ça peut dépendre, comme des équipes que voyage beaucoup, alors, d’autres
équipes…

Interviewer : qui ne voyagent pas de tout !

P4 : Et…voilà ! Donc, ça peut dépendre, on peut avoir 10, comme on peut avoir une vingtaine, ça dépend
s’il y a des invités, s’il y a… et tout ça peut vraiment…je pense une dizaine par mois.

Interviewer : C’est la moyenne ?

P4 : Voilà, c’est la moyenne. Je pense !

Annex C: Transcription of the Interviews

Interviewer : D’accord. Et avez-vous de suggestion concernant ce sujet-là ? L’arrivée de demande ?

P4 : L’arrivée de demande ?

Interviewer : Oui, D’améliorer le processus. Avez-vous de suggestion ?

P4 : Moi, je trouve que ça marche vraiment bien. Quand le chercheur faisait directement la demande sur
le logiciel. Comme ça, on a toutes les infos et puis, on a juste à faire le bon de commande, pour avoir un
budget serré. Si c’est directement fait ou sinon, avec toutes les infos, ça nous fait perdre plus du temps,
mais après, pour améliorer, je pense que les chercheurs peuvent aller sur le site pour réserver et en temps
qu’on met comme valideur, ça va vite.

Interviewer : Combien de demandes de réservation de voyage avez-vous reçues la semaine dernière ? ∗

P4 : La semaine dernière, la demande de voyage, je n’ai eu quatre. Je n’ai pas beaucoup à ce moment.
Comme je suis en train d’arriver…donc.

Interviewer : D’accord ! Bon, avez-vous des suggestions à ce sujet-là ? Bon, je pense que sur l’arrivée de
demande, ce que le voyager fasse directement sur le système. ∗

P4 : Voilà ! Directement, c’est plus simple pour nous et je pense que pour eux, aussi. Je pense. Comme
ça, il fait directement la demande.

Interviewer : D’accord ! Pensez-vous qu’il manque quelque chose dans la description des demandes de
réservation que vous recevez ? ·

P4 : Dans la description ? Non, je pense que c’est à ce clair.

Interviewer : Ce arrive assez complet ?

P4 : Normalement, c’est complet, après, voilà, si ce n’est pas fait directement par logiciel et que c’est le
chercheur qui va nous envoyer, il peut avoir des modifications après, car ils ne sont pas sûrs, ils ne sont
pas certains des horaires, mais, voilà. Si c’est directement par logiciel, au moins, c’est très bien, son vol,
normalement. Si c’est fait directement. Les horaires, la description de vol entier.

Interviewer : Pensez-vous que c’est assez complet ?

P4 : Ah, oui ! C’est assez complet.

Interviewer : Il y a, par contre, de suggestion, pour faire mieux ? C’est…

P4 : Pour faire mieux ?

Interviewer : Dans la description spécifique…

P4 : Dans la description ?

Annex C: Transcription of the Interviews

Interviewer : Oui, de demande.

P4 : En plus, je ne pas sûr. Car je suis ici ne pas longtemps, donc…

Interviewer : Oui, c’est avec…Mais c’est juste ça qu’on va voir la différence.

P4 : C’est assez compliqué. Moi, pour l’instant. Moi, j’ai pu eu de complication vraiment. Mais là, je ne
vois pas. Non, directement.

Interviewer : D’accord ! Est-ce que vous devez prendre des notes, par exemple : un post-it, dehors le
système, sur les demandes de réservations que vous recevez ? ∗

P4 : Prendre de note…

Interviewer : De notes informelles, de choses…

P4 : Voilà ! Les numéros de vol, voilà, que demandent souvent les chercheurs. Le numéro de vol, puis
et…après qui est que j’ai eu aussi ? Ah ! Et la gare aussi. Parce qu’à Lion, par exemple, j’ai eu un problème
aussi avec Lion. Où on a plusieurs gares, à Lion…

Interviewer : Oui.

P4 : Et on ne sait pas forcément, le chercheur, dans quelle gare il va partir.

Interviewer : D’accord !

P4 : Donc, c’est sur tout ça, aussi. Et puis, après les horaires. Voilà.

Interviewer : D’accord.

P4 : C’est un complément d’information qu’on peut donner, du coup, pour le chercheur.

Interviewer : D’accord ! Et vous notez comment ?

P4 : Sur post-it.

Interviewer : Post-it ?

P4 : Sur post-it.

Interviewer : D’accord, et combien de notes par demande avez-vous dire normalement, vous prenez ? ∗

P4 : Généralement…combien de notes ? Je dirais deux.

Interviewer : Deux ?

P4 : Oui.

Annex C: Transcription of the Interviews

Interviewer : D’accord.

P4 : Après ça, c’est rapide, parce que c’est noté sur post-it, donc, du coup…

Interviewer : Bien sûr. Comment cela pourrait être meilleur ? La prise de notes au-dehors de système ou
non ? Il faut noter tout sur le système. Vous imaginez quelle façon de faire ça, de manière plus
productive ? Une partie du système pour faire ça, par exemple ?

P4 : Peut-être une partie du système, peut-être qui mettait en place une casse avec le numéro de vol, peut-
être, ou même la gare, pour la gare. Pour le cas de Lion, préciser exactement quelle gare…

Interviewer : Ça n’existe pas dans le système ?

P4 : Non, non, non. C’est n’existe pas.

Interviewer : D’accord. Vous parlez du système le Travel agent ou GLPI ?

P4 : Alors. Sur le GLPI il n’y a pas.

Interviewer : Sur GLPI n’y a pas ?

P4 : Non, non.

Interviewer : Et sur le Travel ?

P4 : Après, là…

Interviewer : Non ?

P4 : Je ne sais pas de tout.

Interviewer : D’accord ! Vous n’avez pas encore utilisé ?

P4 : Non, non, du coup, non. Donc, c’est pour ça. Je ne pas encore toutes les autorisations, donc…

Interviewer : D’accord. Savez-vous me dire le nombre de notes que vous avez prises la semaine dernière,
pour la demande ?

P4 : Là, j’ai pris beaucoup. Parce que comme je suis en train de commencer, j’ai pris beaucoup de notes
sur le post-it.

Interviewer : D’accord. Savez-vous quantifier ? Peut-être ?

P4 : Là, je suis en train d’apprendre, au moins une vingtaine.

Interviewer : Au moins une vingtaine ?

Annex C: Transcription of the Interviews

P4 : Une vingtaine, parce que j’ai eu un gros déplacement de plusieurs personnes et…huit personnes,
donc, pour tout gérer, j’ai tout noté, parce que, comme je suis en train de commencer, je ne voulais pas,
non plus, manquer un truc. Donc, à ce moment j’ai pris beaucoup.

Interviewer : D’accord.

P4 : Mais généralement…généralement, je ne prends pas énormément.

Interviewer : D’accord ! Bon. Si vous prenez des notes, c’est le cas, comment vous les conservées et sur
quel format ? Donc, c’est sur le post-it, c’est ça ? ∗

P4 : Post-it, voilà.

Interviewer : Et la suggestion d’amélioration… c’est de pouvoir…

P4 : C’est de directement sur le logiciel, avoir une casse, ou un…

Interviewer : Un post-it virtuel ? Peut-être ?

P4 : Voilà, ou un complément, voilà.

Interviewer : D’accord.

P4 : Un complément avec toutes les notes qu’on ne peut pas mettre ailleurs, ça serait pas mal.

Interviewer : D’accord ! Pensez-vous que l'enregistrement de ces notes est important ? ·

P4 : Ah ! Oui, oui.

Interviewer : Oui ?

P4 : Oui, oui.

Interviewer : Pourquoi ? Et comment vous pouvez améliorer ça ?

P4 : Ah ! Pourquoi et comment ? Dans la demande de l’ordre de mission, avoir un complément, une
casse complément avec vraiment toutes les informations. Comme ça, nous évitons de nous reprendre de
notes après.

Interviewer : D’accord. Et vous croyez que c’est important pourquoi ?

P4 : Moi, je sais que ça me sert beaucoup, parce que, comme ça, je vraiment toutes les informations que
sont claires. Je n’ai pas besoin de retourner à la réservation, pour avoir ces informations. Donc, pour moi
je noterai tout ça sur le papier et puis pouvoir faire des post-it.

Annex C: Transcription of the Interviews

Interviewer : D’accord. Pouvez-vous fournir quelques exemples de demande de réservation que vous
recevez ? ∗

P4 : Comment ?

Interviewer : Pouvez-vous fournir quelques exemples de demande de réservation que vous recevez ?

P4 : Demande ?

Interviewer : Oui ! De réservation de voyage. C’est quel contenu normalement ? Il y a de…

P4 : Alors, il y a de date, des horaires. Quoi d’autre ?! La destination, bien sûr, et je pense que c’est tout.

Interviewer : Le moyen de transport ?

P4 : Et le moyen de transport.

Interviewer : D’accord ! Il vient avec des données des passagers déjà, oui ou non ?

P4 : Avec le… ?

Interviewer : Avec les données des passagers. Le nom, la date de naissance.

P4 : Ah ! Oui, bien sûr ! Parce que nous, on a quand même une fiche avec la demande d’ordre de mission.

Interviewer : D’accord.

P4 : Donc, il y a déjà le nom, si c’est un chercheur, s’il est de notre… s’il est chez nous ou s’il est d’ailleurs.

Interviewer : D’accord !

P4 : Là, pour ça, c’est vraiment rempli, donc…

Interviewer : D’accord.

Section B : Traitement des demandes de réservation.

Interviewer : Bon, concernant le traitement de demandes de réservation. Quelle est la procédure-type de
traitement de réservation ? On commence, pourquoi ? Après qu’est-ce que vient ? ∗

P4 : Nous, on a déjà la demande d’ordre de mission qui est déjà rempli par le chercheur.

Interviewer : D’accord.

P4 : Avec ça, nous, on fait l’ordre de mission, l’OM. Donc, voilà. Après nous, on fait, la réservation de
voyage, donc, le bon de commande et depuis le numéro d’ordre de mission qu’on renseigne sur le bon
de commande de voyage et voilà. Et après, le chercheur part en mission et juste après sa mission, c’est le

Annex C: Transcription of the Interviews

retour de la mission et il revient avec toutes les pièces justificatives que nous, après, on traite et qu’on
remplit l’état de frais, qu’on envoie, du coup à l’agence comptable pour le remboursement.

Interviewer : D’accord ! Vous avez de suggestion dans ce processus-là, pour améliorer ?

P4 : C’est peut-être avec les pièces justificatives, après je ne vois pas comment on peut améliorer, mais…

Interviewer : Pour quoi ? Qu’est-ce qu’arrive la pièce ?

P4 : Parce que, parfois, il y a vraiment de gros paquets de pièces de métro. Bah ! S’il peut avoir une fiche
que renseignant toutes les pièces, parce que, en plus, on peut le perdre aussi.

Interviewer : D’accord.

P4 : Si, on peut le faire une fiche avec le nombre de tickets de métro, le nombre de tickets de bus et avec,
directement le prix qui sont à côté, parce que, parfois, on cherche les tickets métro, on cherche le prix et
voilà…

Interviewer : D’accord, mais ça c’est après le voyage.

P4 : Voilà !

Interviewer : Après le voyage ?

P4 : C’est le retour.

Interviewer : D’accord. C’est pour faire…

P4 : L’état de frais.

Interviewer : D’accord.

P4 : Voilà.

Interviewer : Très bien ! Est-ce que dans les demandes des voyageurs que vous traitez il y a des
informations qu’on pourrait identifier comme des besoins et/ou des exigences pour améliorer un système
de réservation de voyage ? ·

P4 : Pour l’instant je n’ai eu un, mais ça pourrait arriver, oui.

Interviewer : Oui ?

P4 : Après… Qu’est-ce qu’on peut avoir ? Après, je ne vois pas, parce que je suis en train de commencer.
J’essaye de repenser à un cas que j’ai eu.

Interviewer : Dans le cas que vous recevez récemment, il y a…

Annex C: Transcription of the Interviews

P4 : Il n’y a pas d’exigence particulière, mais…c’est depuis que j’ai commencé ici, non ? Ça ne me pas
arrivée encore. Ma j’essaie de me rappeler avant.

Interviewer : Mais tout que vous avez reçu, vous avez bien réussi pour le faire à le chercher sur le système,
par exemple ?

P4 : Oui, oui, Bien sûr. Oui, oui.

Interviewer : D’accord.

P4 : Après le chercheur, nous, on dit aussi. Donc, s’il y a vraiment de choses particulières. Donc, il va
nous dire, mais c’est vrai qui là, par instante, moi, ça n’est pas encore arrivée.

Interviewer : Quelles sont vos besoins/exigences pour le système de réservation de voyage que vous utilisez
actuellement ? ·

P4 : Des exigences ?

Interviewer : Qu’est-ce que vous considérez comme important et que vous pensez de c’est utile ?

P4 : Pour moi, ça me plaît. Je ne sais pas. Je pense que nous, on peut améliorer en fait.

Interviewer : D’accord.

P4 : Juste la demande qui doit faire directement par le chercheur. Ça nous avance beaucoup.

Interviewer : D’accord.

P4 : Et après…non. Parce que c’est vraiment vit, si on a toutes les infos. Il n’y a pas à améliorer. Bon, je
ne vois pas.

Interviewer : D’accord ! Avec quelle fréquence vous devez demander l’aide des autres membres de
l’équipe pour résoudre les demandes ? ∗

P4 : Bon, du coup, beaucoup. Mais quand j’ai travaillé à INSA Toulouse, pendant quatre ans. C’est que
j’ai fait aussi. Et, non, ça ne m’arrivait pas. Alors, quand on prend vraiment de cas particulier, où on
vraiment demande de l’aide, parce que, mais…pendant le mois, deux fois.

Interviewer : Deux fois ?

P4 : Deux fois dans le mois.

Interviewer : D’accord.

P4 : Après, c’est vrai que j’ai beaucoup demandé, mais…

Interviewer : D’accord. Comment on peut améliorer ça. Il y a une façon de …

Annex C: Transcription of the Interviews

P4 : Alors, d’améliorer…Après c’est vrai que pour nous on est dans un « open space » donc, on dialogue
directement tous ensemble. Mais, c’est vrai que, quand, je travaillais aussi à Marseille et j’étais tout seul
dans mon bureau et c’est vrai, que, quand il avait de cas comme ça, que m’arrivais, c’était un peu
compliqué, parce que je travaillais un peu plus par mail, où je n’avais pas forcément la réponse
directement. Et c’est vrai que là, du coup, quand on est tous à côté, ça facilite beaucoup.

Interviewer : D’accord.

P4 : Pour moi, le problème est directement résolu. Voilà.

Interviewer : D’accord. Mais, aujourd’hui, même avec ce bureau ouvert, il y a de suggestion que vous
pensez que c’est utile ? Améliore encore plus ?

P4 : Encore plus ? Pour le cas comme ça ?! Peut-être avoir de fournisseur aussi. Si on a de cas particulier
sur le voyage qui sont à l’étranger, qui sont un peu compliqués, peut-être avoir une aide de fournisseur,
du coup.

Interviewer : C’est l’agent de voyage ?

P4 : Voilà ! du coup, voilà. Peut-être une petite note, une procédure pour de cas particulier, comme ça
que sort, comme à mettre au jour.

Interviewer : D’accord. Avec quelle fréquence vous devez demander aux voyageurs de clarifier les
informations concernant leur demande ? ∗

P4 : Beaucoup de fois. Beaucoup de foi oui.

Interviewer : Et comment on pourrait améliorer ça ?

P4 : Bah ! C’est assez un peu compliqué. Parce que, c’est un peu le chercheur de tout nous dire, du coup,
parce que, c’est vrai que nous, à chaque fois on revient vers eux, on alors le redemande et puis. Et c’est
pour ça que, quand si est fait directement sur le logiciel, nous, on avait juste à valider et puis, c’est
directement fait.

Interviewer : D’accord.

P4 : Donc, du coup, sinon, on est obligé de courir après les informations et…

Interviewer : D’accord, très bien. Selon votre propre expérience, quelles seraient les fonctionnalités qui
vous seraient utiles et qui devraient être rajoutées au logiciel de réservation ? Qui n’est pas là aujourd’hui,
par exemple. ·

P4 : Ah ! C’est peut-être de garder les voyages qu’on a réservés.

Interviewer : Ça n’existe pas ?

Annex C: Transcription of the Interviews

P4 : Non, parce qu’il s’élève directement, après la date de retour le voyage part et on ne sait pas, du
coup…Et c’est vrai que la dernière fois, j’ai cherché…j’ai cherché un voyage, en plus, quand j’étais ici et
c’est à élever du module de réservation. J’ai dû retourner sur l’OM pour avoir exactement les dates, les
horaires de vols et tout ça.

Interviewer : D’accord. Vous parlez de quel système ici exactement ? De GLPI ?

P4 : SIMBAD

Interviewer : SIMBAD ! D’accord !

P4 : De que le voyage est passé, il s’élevait directement de la base.

Interviewer : Quelque chose de plus ?

P4 : Non, après je ne crois pas. Non !

Interviewer : Non ?

P4 : Non !

Interviewer : Selon votre propre expérience, quelles seraient les fonctionnalités qui seraient utile pour les
voyageurs ? ·

P4 : Pour les voyageurs ?

Interviewer : Oui, pour les chercheurs.

P4 : Pour les chercheurs, moi je dirais plutôt pour…pour nous, pour les gestionnaires avoir vraiment à
qui demander la validation.

Interviewer : À qui ? C’est ça ?

P4 : Voilà, c’est ça. Parce que nous on gère tous les budgets des équipes et c’est que les chercheurs
viennent dans le bureau juste pour demander à qui il doit mettre valideur.

Interviewer : D’accord. Donc, ils ne savaient pas ça normalement ?

P4 : Pas forcément, parce que, vu que moi, je suis nouveau, donc, j’ai la peine d’arriver, donc, c’est vrai
ils ne savaient pas trop, parce qu’on a changé, du coup, les équipes, et, donc, ils ne savaient pas trop, si
c’était moi, si c’est une autre gestionnaire. Voilà.

Interviewer : D’accord !

P4 : Un petit rappelle sur ça, ça les évite de rentrer dans le bureau juste pour demander, une information
comme ça.

Annex C: Transcription of the Interviews

Interviewer : D’accord ! Quelque chose en plus ?

P4 : Non, non. Après je ne vois pas.

Interviewer : Pourriez-vous lister 3 fonctionnalités que vous aimeriez garder pour ce type de système de
réservation de voyage ? ·

P4 : Que je voudrais garder ?

Interviewer : Oui. Quels sont les plus utiles ? Que vous pensez être indispensable à votre avis.

P4 : Je ne sais pas de tout.

Interviewer : La partie de chercher de vol. La partie d’ordonner par data, la partie de renseigne des infos.
Voilà. Quelque chose que vous considérez, le trois, que vous considérez plus importants.

P4 : Après, c’est vrai que le site c’est fluide, donc, il va vachement vite. Après il est assez complet aussi,
parce qu’on a tous les vols, avec tout. Je ne sais pas comme en dire. En fait, il y a beaucoup d’informations
qui est sur le site. Quoi je peux dire de plus ?

Interviewer : Mais, par exemple, en termes de fonctionnalité vous considérez que la partie plus importante
c’est pouvoir chercher dans plusieurs compagnies. Pouvoir ordonner par prix, par exemple. Pouvoir
renseigne les infos directement par un autre système, parce que les données sont déjà dans la base. Bon,
voilà ! Quelque chose que vous considérez…

P4 : Voilà ! C’est… moi. Je préfère, parce que nous, on renseigne toutes les infos à la fin. Quand on a
réservé le vol et c’est vrai que c’est complet, comme ça on a tout directement et c’est nous qui renseignons.
Après, il s’est assez compliqué, parce que, oui, on a pleine de compagnie. Je pense que s’est classé par
horaires, mais aussi, on peut chercher aussi par tarif, c’est qui est pas mal aussi. Puis, on a toutes les infos
à la fin que c’est bien aussi et la validation est aussi simple. Une fois qu’on a réservé le vol pour pouvoir
valider, on a juste copié le numéro de bon de commande et puis comme ça, c’est validé.

Interviewer : D’accord ! Pourriez-vous lister trois fonctionnalités que vous aimeriez changer pour ce type
de système ? ·

P4 : Changer ? Après c’est totalement… je ne sais pas, Non ! Changer je ne vois pas, je ne vois pas en fait.
Parce que ce n’est pas totalement sur le logiciel. Le logiciel est vraiment bien.

Interviewer : Vous ne changiez rien ?

P4 : Non ! Je ne pense pas. Je ne pense pas !

Section C : Rédaction des Récits Utilisateurs.

Interviewer : Bon ! Dans cette partie on va évaluer le modèle, qu’on a prescrit pour décrire les actions
d’utilisateur et les réponses que le système donne sur ses actions. Donc, on appelle ça : le récit utilisateur.
Et, on suit un modèle d’écrire ça. Donc, dans le modèle on a un préambule, d’accord ?

Annex C: Transcription of the Interviews

P4 : D’accord !

Interviewer : Donc ;

En tant que [rôle ou personne]
Je veux [fonctionnalité́]
Afin de [but, bénéfice ou valeur de la fonctionnalité́]

D’accord ?

P4 : D’accord !

Interviewer : Bon, et pout c’est préambule-là on a plus de scénarios possibles. Donc, chaque scénario, on
a une description de scénario, un contexte qu’on donne par la clause « En tant donné » ; ou plusieurs
contextes. On peut ajouter plusieurs contextes, ou une action, un évènement, et le résultat que le système
va nous donner. Après cet évènement, on registre ça dans la clause « Alors ».

P4 : D’accord !

Interviewer : Donc, comme exemple :

En tant que voyageur fréquent,
Je veux rechercher des billets, en fournissant des emplacements et des dates,
Afin de pouvoir obtenir des informations sur les tarifs et les horaires des vols.

D’accord ?

P4 : D’accord !

Interviewer : Donc, dans cette histoire, scénario possible ; une recherche de ticket aller simple, par
exemple. Donc,

En tant donné que je vais à la page “Recherche de vols”
Quand je choisis : “aller simple”
Et je tape “Paris” et choisis “Paris, Charles de Gaulle (CDG)” dans le champ “Départ de”
Et je tape “Toulouse” et choisis “Toulouse, Blagnac (TLS)” dans le champ “Arrivée à”
Et je choisis “2” dans le champ “Nombre total de passagers”
Et je choisis “15/12/2017” dans le champ “Date de départ”
Et je clique sur “Recherche”
Alors le système va afficher la liste des vols disponibles.

C’est la réponse que le système va me donner suite à cette action-là. D’accord ?

P4 : D’accord !

Interviewer : Donc, c’est un modèle qu’on utilise pour décrire l’interaction entre l’utilisateur et le système,
D’accord ?

Annex C: Transcription of the Interviews

 Donc, en tant donné un scénario on va, quand certes évènement va arriver, le système va nous
donner quelque réponse. D’accord ? Donc, le but c’est de prendre quelques exemples que vous avez eus
à la semaine dernière ou bon, dès que vous êtes ici, et bon, je voudrais que vous fassiez un exemple pour
moi, en utilisant ce modèle. D’accord ?

P4 : D’accord !

Interviewer : Vous pouvez choisir le contexte, bon, vous le décrivez, par exemple, la partie de renseigne
le donné passager, vous voulez décrire une recherche du billet de train pour…je ne sais pas quoi, pour
plusieurs destinations. Vous pouvez décrire, par exemple la partie validation. Je veux valider un billet et
après, vous pouvez décrire un problème, une situation d’erreur, par exemple. Quand vous n’informez pas
l’aéroport d’arrivée, qu’est-ce qu’arrive, quel type de sortie le système donne ? Bon, vous pouvez décrire
qu’est-ce que vous voulez, d’accord ? Donc, vous prenez un exemple et s’il vous plaît, vous décrivez cet
exemple, en utilisant ce modèle. Vous pensez que c’est possible ?

P4 : D’accord !

Interviewer : Je vous donne une feuille. Bon, je peux vous aider, si vous voulez faire ensemble, je peux
vous aider, bien sûr.

P4 : Donc, du coup, je dois décrire une tâche.

Interviewer : Oui ! Sur le système de réservation de voyage.

P4 : D’accord ! Où je dois cliquer sur le module de la réservation.

Interviewer : Oui, oui. La première partie c’est définir qu’est-ce que vous voulez faire. Vous avez pensé à
quelle tâche, par exemple ? Vous pouvez choisir.

P4 : D'accord ! La destination.

Interviewer : Non, non ! Une tâche complète, vous voulez faire, vous voulez donner, les données des
passagers, par exemple. Dès qu’on a pris déjà la liste de vol disponible, par exemple, d’accord ? Vous
voulez renseigner les données passagères. Ça c’est un exemple. Ça c’est une tâche.

P4 : D’accord !

Interviewer : Donc, un contexte ça sera la liste déjà disponible, par exemple, d’accord ? Je veux faire une
action, c’est renseigner les données des passagers, les infos personnelles etc. et etc…et je peux décrire par
exemple quel type de sorti, par exemple, le système pourra me donner, il va me montrer une page avec
la confirmation des données, pour que je puisse confirmer que les données sont bon, par exemple.

P4 : D'accord !

Interviewer : Ça c’est une tâche, d’autre tâche, vous pouvez décrire commet vous faites un voyage par
train pour plusieurs destinations. Alors je vais sur la page SNCF, je vais trouver la gare, etc., etc. Et le
système va me donner le voyage en train disponible. D’autre situation, vous pouvez faire un enregistrement

Annex C: Transcription of the Interviews

de demande. Après que la voyage a été approuvé. Donc, le voyageur déjà envoyé l’itinéraire, tout ça, il
déjà utilisé le système de voyage et vous allez juste mettre le numéro de bon de commande. C’est une
option. Donc, la première partie c’est de choisir une tâche n’importe pas quelle tâche, d’accord ?

P4 : D’accord !

Interviewer : Que vous voulez décrire ?

P4 : D’accord !

Interviewer : Quel tâche vous pensez que c’est intéressant de décrire, comme exemple ?

P4 : La réservation ! Afin de la réservation, de prendre le billet de train ou de vol, avec tout le résultat, les
horaires et puis sur une journée.

Interviewer : D’accord, mais dans un cas spécifique, par exemple. Sur c’est tâche-là. Donnez à moi un
scénario. Moi, je suis un voyageur, je vais faire. Non, vous. Vous êtes un voyageur, vous voulez allez où ?

P4 : À Paris !

Interviewer : Oui ! Pour combien de temps ? Dans quelle date ?

P4 : Une semaine. Donc, du coup, je décrire comment je fais sur le…

Interviewer : Sur le système !

P4 : D’accord !

Interviewer : Oui !

P4 : Alors, je vais insérer mon nom et mon prénom, je vais sur la réservation, j’avance au lieu de départ
et le lieu d’arrivée, les dates, les horaires, après je clique sur la recherche, je toute une liste, je choisis,
donc, du coup, je choisis mon vol, avec le prix que m’intéresse, avec tout que m’intéresse. Une fois que
je fais ça, je valide, j’ai une autre fenêtre que ça fiche avec mon aller et mon retour, qui sont bien pris à
charge avec le prix, je réserve et puis je renseigne, du coup, mon nom et mon prénom, l’objet de mon
départ et je choisis et je vais valider.

Interviewer : D’accord ! Très Bien ! Bon, vous pouvez décrire tout ça, vous pouvez décrire une partie.
D’accord ?

P4 : D'accord !

Interviewer : Donc, l’importance que vous faites cette description de ce scénario, que vous avez me donner
à toute l’heure, dans ce modèle-là. Donc, vous avez décrit un préambule, d’accord ?

P4 : D'accord.

Annex C: Transcription of the Interviews

Interviewer : En tant que…
 Je veux…
 Afin de…

Et vous pouvez décrire un ou plusieurs scénarios, dans ce contexte-là et pour chaque scénario,
vous allez donner un contexte, une action et un résultat que le système va donner.

P4 : D’accord !

Interviewer : D’accord ?

P4 : Moi, je le fais maintenant ?

Interviewer : Oui, s’il vous plaît. Si vous pouvez.

P4 : Il écrit.

Interviewer : Vous êtes obligé juste à utiliser :
 En tant que…
 Je veux …
 Alors, etc.

P4 : Il écrit.
Donc, là le scénario. Et là j’ai choisi quelque chose que je vois.

Interviewer : Oui ! Vous avez donné un contexte…En tant que quelque chose arrive, quand je fais quelque
action, alors le système va me montrer quelque chose.

P4 : D’accord ! Il écrit.

Interviewer : Si vous avez de doute, n’excite pas.

P4 : Il écrit et lit en voix bas – Je pense que c’est bon.

Interviewer : Donc, en tant que je… Il lit en voix bas.

D’accord ! Très bien ! Donc, c’est que je vous demande c’est…d’ici à mardi prochain, donc, dans

un « delay » d’une semaine. Est-ce que vous pouvez rédiger une liste de demande, de problème que vous
allez recevoir ?

P4 : Oui, Bien Sûr !

Interviewer : Oui ? C’est une liste simple, donc, bon…j’ai eu une demande pour faire ça, pour faire ça,
l’utilisateur il y a rencontré de problème pour chercher ça, ça, dans ce contexte-là, et par ce problème-là
vous pouvez aussi le décrire sur cette forme-là.

P4 : D’accord !

Annex C: Transcription of the Interviews

Interviewer : Oui ? Vous pensez que c’est possible ?

P4 : Oui, bien sûr. Je peux garder la fiche ?

Interviewer : Oui, oui ! Bien sûr ! Je vais vous envoyer par mail aussi, avec un modèle, juste pour faciliter
la tâche, et donc, d’ici à mardi prochain, donc, ça va faire une semaine. Si vous pouvez m’envoyer jusqu’à
vendredi prochain. D’accord ?

P4 : Vendredi prochain ?

Interviewer : La fin de la semaine prochaine.

P4 : D’accord !

Interviewer : Ça sera bien. Par mail aussi.

P4 : Ok.

Interviewer : Donc, c’est une liste simple de problèmes de demandes que vous avez reçue et une autre
liste de ces problèmes décrire de cette façon-là, en utilisant ce modèle.

P4 : Ok !

Interviewer : Vous pensez que c’est possible ?

P4 : Bien sûr !

Interviewer : Très bien ! Donc, je vous demande de me donner votre mail et après à la fin, je vais vous
envoyer un petit questionnaire, aussi sur l’utilisation de ce modèle-là. Très bien P4 ! Merci beaucoup. Je
vais vous envoyer le mail et je vais attendre votre retour la semaine prochaine.

P4 : La semaine prochaine.

Interviewer : D’accord !

P4 : Et du coup, ça sera pour vendredi.

Interviewer : Oui, le prochain.

P4 : Vendredi prochain.

Interviewer : Oui ! Parce qu’on va prendre une semaine de demande, donc, d’ici à mardi prochain et de
mardi prochain à vendredi, vous pouvez m’envoyer le résultat.

P4 : D’accord ! Ok !

Interviewer : D’accord ! C’est bon ?

Annex C: Transcription of the Interviews

P4 : Oui ! Bien sûr !

Interviewer : Merci beaucoup, bon après-midi et avoir !

P4 : Merci, avoir !

