N
N

N

HAL

open science

A behavior-driven approach for specifying and testing
user requirements in interactive systems
Thiago Rocha Silva

» To cite this version:

Thiago Rocha Silva. A behavior-driven approach for specifying and testing user requirements in inter-
active systems. Artificial Intelligence [cs.Al]. Université Paul Sabatier - Toulouse III, 2018. English.

NNT: 2018TOU30075 . tel-02129355

HAL Id: tel-02129355
https://theses.hal.science/tel-02129355v1

Submitted on 14 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-02129355v1
https://hal.archives-ouvertes.fr

Université Fédérale

THESE

En vue de I’'obtention du
DOCTORAT DE IUNIVERSITE DE TOULOUSE

Délivré par I'Université Toulouse 3 - Paul Sabatier

Toulouse Midi-Pyrénées

Présentée et soutenue par

Thiago ROCHA SILVA
Le 17 septembre 2018

A Behavior-Driven Approach for Specifying and Testing
User Requirements in Interactive Systems

Ecole doctorale : EDMITT - Ecole Doctorale Mathématiques, Informatique et

Télécommunications de Toulouse
Spécialité :

Unité de recherche :
IRIT : Institut de Recherche en Informatique de Toulouse

These dirigée par
Marco Antonio ALBA WINCKLER

Jury
M. Jean VANDERDONCKT, Rapporteur
Mme Kathia MARCAL DE OLIVEIRA, Rapporteur
Mme Sophie DUPUY-CHESSA, Examinateur
M. Philippe PALANQUE, Examinateur
Mme Célia MARTINIE, Examinateur
M. Marco Antonio ALBA WINCKLER, Directeur de these

A Behavior-Driven Approach for Specifying and Testing User
Requirements in Interactive Systems

PhD Thesis

Thiago Rocha Silva

Advisor: Prof. Marco Winckler, PhD.

Une approche dirigée par le comportement pour la spécification et le
test des exigences utilisateur dans les systémes interactifs

These de doctorat

Thiago Rocha Silva

Directeur de thése : Prof. Marco Winckler, PhD.

To my beautiful and lovely wife. Wictele.

Acknowledgments

First of all, I would like to thank my advisor, Prof. Marco Winckler, for having accepted to receive
me here m Toulouse as his student and having given me all the support, encouragement and
mcentive to pursue this thesis. Marco, your example inspired me, and your ideas and comments
have taken this thesis to another level. I would also like to express my gratitude to you for having
mtroduced us to the French way of life, and for always being our guarantor in everything we
needed. Um mais que sincero, muito obrigado!

I would also like to thank my rapporteurs, Prof. Jean Vanderdonckt and Kathia Marcal, for
accepting the invitation to review this work and for the precious and precise comments and
suggestions. They helped me to see many important points to improve and opened my mind to
several other possibilities to continue this research. Jean, I really admire your work and the
brilliant mind you have, I feel so honored you took the time to revise my work and having been
here m Toulouse to take part n my jury. Kithia, eu nao poderia deixar de registrar um
agradecimento especial a vocé (e em portugués que vocé tanto sente falta ©), por tio detalhada
revisio e comentarios cruciais especialmente sobre a ontologia e sobre os estudos de caso.
Adoramos te conhecer! I also thank all the jury, Prof. Philippe Palanque, Prof. Sophie Dupuy-
Chessa and Célia Martinie, for all your questions, suggestions and for accepting to take part in
this jury even with a tight schedule.

A special thanks to the whole ICS team, past and current members, for having welcomed me and
Michele so well and included us 1n all your events during these four years. I'm very proud of
being part of such a high-level and internationally recognized team. Thanks Phil, for being such
a funny, friendly, and brilliant boss; Célia for being always so friendly and available; Didier for
being an example of kindness, you helped me a lot with technical and practical stuff, making the
daily tasks much easier; David, Regina, Arnaud, Camille, Martin, Elodie, Alexandre(s), Racim,
Dimitri, Francois, Guillaume, a big thanks for all these years together. A special thanks to Jean-
Luc and Pedro Valente, who collaborated with me in some topics of this thesis. I also thank the
IRIT and EDMITT administrative staff, especially Arnaude and the financial department team
(Lorene, Véronique, L.éonor and Matthew) for participating in the case study, Chantal Morand
for having helped us so much i our arrival, Agnes and Martine for always being so kind and
helpful. Un grand merci a vous tous! Agradeco ao Prof. Marcelo Pimenta (UFRGS) pela
disponibilidade em contribuir com o trabalho, fol uma pena nao termos conseguido te trazer
para o jurl. Aos professores da UFMG Clarindo (meu orientador de mestrado), Rodolfo, Raquel
e Marco Tulio por me receberem tio bem e contribuirem com valiosos comentarios sobre o
tema da tese durante a minha ultima passagem pelo DCC. Aos professores e amigos da
Unimontes pelos anos de aprendizado e companheirismo, em especial Guilherme e Chris.

Je remercie a Serge pour les tout premiers cours de Francais a Toulouse et a tout(e)s mes ami(e)s
du groupe Toulouse-B2: Arash, Javier, Josipa, Marie Eline, Jimena, Ponleu, Flavio, Livia, Yuri e
Nina, mercl a vous tous pour les moments amusants et agréables que nous avons passés
ensemble. Aos amigos brasileiros em Toulouse: Paulo, Marina, Fabio, Helena, Thaise, Achilles,
Filipe, Lilian (et Loic, pas brésilien mais presque ©), muitissimo obrigado pela companhia e
pelos 6timos momentos que partilhamos por aqui. Certamente, a jornada fo1 muito mais facil
com vocés!

Agradeco muito especialmente a toda minha famihia e amigos queridos que tanto nos apoiaram
nessa jornada e entenderam a nossa auséncia durante todo esse periodo. Muito obrigado, mae

(Fatima) e pai (Joao), por sempre me motivarem e nsistirem que a educacio era o caminho. Eu
nao teria chegado até aqui sem vocés! Meus queridos irmaos, Lucas e Pedro (também meu
afilhado), pelo incentivo e pelo companheirismo. Sel o quanto todos vocés estio orgulhosos dessa
conquista. Minha grande amiga-irma, Carol, assim como o Emerson, o meu muito obrigado pela
amizade sincera e pelo amor e carinho de sempre. Obrigado por fazerem de tudo e nos deixarem
sempre participar da vida e do crescimento das meninas, mesmo estando de longe. Li, minha
prima-amiga-irma, obrigado por ter compartilhado comigo esse coracio do tamanho do mundo
e ter sempre cuidado tio bem de mum. Gil, por toda a camaradagem de sempre. Aos meus
demais afilhados Lé, Bia e Ju, que tanto alegram os nossos dias e nio nos deixam nunca esquecer
o quanto vocés sao doces e amaveis! Amo muito vocés! Aos meus tios e tias, primos e primas,
em especial Mazza, Zilmio, Zelandia, Kénia, Zildete e Alexandre, o meu mais sincero
agradecimento pelo amor e carinho e por sempre estarem por perto. Aos meus padrinhos Reis
e Lete, obrigado por terem sempre me dado todo o suporte e apoio necessarios. A toda familia
Silva pelo acolhimento, a N1 em especial, que tanto participou da minha criacao.

O meu muito obrigado aos meus demais amigos pela torcida e apolo, em especial Aline (de
quem acabamos perdendo o casamento por conta do doutorado, aqui vai mais um pedido de
desculpas), Marius, Adéha (e Gabriel). Aos grandes amigos da Fabrai/Anhanguera/Una: Jéferson
e Marcela (de quem, como padrinhos, também acabamos perdendo o casamento por conta do
doutorado, aqui vai mais um pedido de desculpas), Hélio e Jordana, Lindenberg e Téania, Dani,
Rodrigo, Sandro, Ernani ¢ Helé. A toda a familia Mendonca, em especial Kathia, Mendonca,
Hugo e Duda que sempre me acolheram com tanto carinho, sobretudo nos momentos em que
eu mais precisel.

A toda familia Rodrigues que me recebeu de bracos tio abertos e sempre foram um grande
exemplo de umao e harmonia. Edvaldo e Albanita, obrigado por todo o carinho e por me
confiarem a Michele ©. Dani, vocé foi o nosso alicerce em muitos momentos ao longo desses
anos fora, e o meu agradecimento a vocé vai muito além de um simples obrigado, eu tive a sorte
de conhecer a pessoa maravilhosa que vocé é. Nos desculpe por nio estarmos tio presentes
como gostariamos. Erik, obrigado por sempre nos receber tao bem. Dieguinho, vocé ajudou a
deixar os dias do tio Thiago bem mais alegres durante esses anos.

A minha linda e querida esposa Michele, a quem dedico essa tese, por todo amor, suporte,
carinho, companheirismo, amizade, doacio e coragem. Sem vocé, meu amor, eu nio teria
chegado até aqui. O teu apoio incondicional, a tua ajuda com os resultados da tese, tudo 1sso foi
mdispensavel nessa caminhada. Tenho muita sorte de poder acordar com os teus lindos olhos
ao meu lado todas as manhas. Sel o quanto essa mudanca fo1 dificil para vocé, sel o quanto vocé
deixou projetos para tras para entrar de cabeca e me acompanhar nesse sonho. Serei eternamente
grato a vocé por 1sso. Espero que com a realizacio desse objetivo venham novos desafios; conto
com vocé ao meu lado para cada um deles. T'e amo infinitamente!

I thank CAPES and the Brazihan government for believing in this project and fully funding it.
Agradeco também ao Serpro pela minha liberacio (em especial aos grandes incentivadores
Braulio e Alexandre Barros) e aos colegas da empresa pelos anos de aprendizado até aqui, em
especial Lara e Maurilio. A Marta, por todo o suporte administrativo.

Por fim, mas definitivamente nio menos importante, agradeco a Deus, a v Benta e aos meus
guias espirituals por estarem sempre comigo, me proporcionarem essa e tantas outras
oportunidades e vitorias, nunca me deixarem desistir ¢ me acompanharem mesmo nas mais
dificeis caminhadas.

Summary

Part I - Introduction

Chapter 1: Introduction

1.1. Context

1.2. Challenges

1.3. Objectives
1.4. Methodological Approach

1.5. Thesis’ Outline

Chapter 2: Background

2.1. Methods for Modeling User Requirements for Interactive Systems

2.1.1. User Stories and Scenario-Based Design

2.1.2. Task Analysis and Modeling

2.1.3. User Interface Prototyping

2.1.4. User Interfaces and Task-Based Development

2.2. Methods for Evaluating User Requirements

2.2.1. Functional Testing

2.2.2. GUI Testing

2.2.3. Artifacts Inspection and Requirements Traceability

2.3. Software Development Processes

2.3.1. Agle Methods

2.3.2. Behavior-Driven Development

2.4. Conclusion

2.5. Resultant Publications

Part II - Contribution

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

3.1. Rationale for a Scenario-Based Approach

3.1.1. Target Stakeholders

3.2. Multiple Views of the Approach

3.2.1. Architectural View

3.2.2. Workflow View

3.2.3. Alternatives for Performing the Approach

3.3. A Case Study in a Nutshell

3.3.1. Writing Testable User Stories 72

3.3.2. Adding Testing Scenarios 73
3.4. Strategy for Testing 74
3.5. Conclusion 75
3.6. Resultant Publications 77

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing 79
4.1. Related Approaches 80

4.1.1 Compared Overview 80
4.2. A Behavior-Based Ontology for Interactive Systems 81

4.2.1 Object Properties 83

4.2.2 Relations 83

4.2.3 Data Properties 84

4.2.4 Platform Concepts 85

4.2.5 UI Elements Concepts 86

4.2.6 State Machine Concepts 91

4.2.7 Scenario-Based Concepts 91

4.2.8 Consistency Checking 95
4.3. Contributions, Limitations and Perspectives 95
4.4. Resultant Publications 97

Chapter 5: Modeling and Assessing Task Models 99
5.1. An Overview of HAMSTERS 100

5.1.1 Task Types 100

5.1.2. Operators 102

5.1.3. Extracting Scenarios 103

5.1.4 Handling Data 103
5.2. Modeling User’s Tasks 104
5.3. Assessing User’s Tasks 106

5.3.1 Extracting Scenarios and Formatting User Stories 106

5.3.2. Elements Mapped for Testing 109

5.3.3. Implementation 111

5.3.4. Towards an Alternative to the Extraction of Scenarios 118
5.4. Conclusion 120
5.5. Resultant Publications 121

Chapter 6: Modeling and Assessing User Interfaces: From Prototypes to Final Uls ____ 123
6.1. Starting with Balsamiq Wireframes 125

6.1.1. Test Implementation 127

6.2. Using the Ontology to Support the Development of Consistent Prototypes 130

6.3. Evolving UI Prototypes 133
6.3.1. Elements Mapped for Testing 135
6.4. Testing Final User Interfaces 136
6.4.1. Integrated Tools Architecture 136
6.4.2. Implementation 137
6.4.3. Handling Test Data 140
6.5. Conclusion 142
6.6. Resultant Publications 143

Part II1 - Evaluation

Chapter 7: Case Study 1 - Understandability of User Stories 147
7.1. Experimental Design 147
7.2. Methodology 148
7.3. The Business Narrative 149
7.4. Participant’s Profile 151
7.5. The Proposed Exercise 151
7.6. Results 152

7.6.1. User Stories Writing 153
7.6.2. Adherence Analyses 156
7.6.3. Discussion 164
7.7. Findings and Implications 168
7.7.1. Threats to Validity 170
7.8. Conclusion 171

Chapter 8: Case Study II - Assessing User Interface Design Artifacts 173
8.1. Case Study Design 173
8.2. Formatting and Adding New User Stories 175
8.3. Adding Testing Scenarios 178
8.4. Modeling and Assessing Task Models 178

8.4.1 Extracting Scenarios from the Task Models 180
8.4.2 Results 182
8.4.3 Types of Inconsistencies Identified 189
8.5. Modeling and Assessing Ul Prototypes 190
8.5.1. Types of Inconsistencies Identified 202
8.6. Assessing Final Uls 203

8.6.1. Types of Inconsistencies Identified 205

8.7. Results Mapping
8.8. Summary of Main Findings in the Case Study

8.9. Threats to Vahdity

3.10. Conclusion and Lessons Learned

Part IV - Conclusion

Chapter 9: Conclusion

9.1. Tackled Challenges

9.2. Summary of Contributions

9.3. Summary of Limitations

9.4. Future Research Perspectives

9.4.1. Short Term Perspective
9.4.2. Long Term Perspective

9.5. Full List of Resultant Publications

References

Appendix A: Concept Mapping Table

Appendix B: Log of Results - Assessing Task Models

Annex A: Case Study Interview Protocol

Annex B: User Stories Written by the Case Study Participants

Annex C: Transcription of the Interviews

214
218
221
221

225
226
228
228
229
229
229
230
233
243
251
267
275

279

List of Figures

Figure 1. Requirements and artifacts being “photographed” in different phases of the project. 27
Figure 2. An overview of the scenario-based design (SBD) framework (Rosson and Carroll,

2002). 1eeteerietereetere et e et ettt et e st et e r e et e s a e et e bt et e st et e bt et e b e e s tenbeen b e teestenteeaeenseeneenes 36
Figure 3. The logic model of a user interface (Green, 1985).....coccviieviieeiiiecieecieeceeeee e, 45
Figure 20. The Cameleon Reference Framework.ooccuveeeiiicciiiciiicieeceeceeeeeeeee e, 46
Figure 4. The V-model fOr teSUNG. ..ecouiiieiiiiecieeeiieeteeeeeeee et e e ee e ae e e sraeesaeeeseaeenns 49
Figure 5. Simplified versions of waterfall and iterative models.coceeveenieniinninniiniiiniienienen. 52
Figure 6. Agile Model Driven Development (AMDD) (Ambler, 2002).cocoveeeieeeceeecieeenne. 54
Figure 7. “Subway Map” to agile practices (Agile Alliance, 2018). ...ooeeveeeceveveiieeiieeeieeeieeeeen. 54
Figure 8. The cycle of permanent evolution of artifacts in iterative proCesseseeevveeevueeeeveene 62
Figure 9. Modeling business and functional requirements in a scenario-based approach. 63
Figure 10. Conceptual Model for testable requIrements.ccceceveeevieeecieecieescieeseeeeceeeeeeenns 64
Figure 11. Overall view of the approach.ooueeeiiecieceeeeee e 65
Figure 12. Architectural view of the approach.cooccviieiiieiiiceeeeeee e, 66
Figure 13. Workflow view of the approach.occeeeiieiciiceeececeeece e 68
Figure 14. Alternatives for performing the approach.........ccccocoeeeeiiiiiiiciieecceeeeeeeceea, 69
Figure 15. The graph of options for performing our approach.ccceeevveeciieiiieccieccieeee. 70
Figure 16. Business Process Model for the flight ticket e-ticket domain.c.ccceveeecirercieennenn. 71
Figure 17. Activity Of telling USET SEOTIES wuvviierveeiieireeieiireeeeereeeceinreeeesreeeeeereeeeseanereeessseesessnsens 72
Figure 18. Activity of creating teStng SCENATIOSvueeeureererreerireeeireeeeseeeseeesseessseesssseessseesssesssseens 73
Figure 19. OUr Strategy fOI LESHIE. .uvvreiirrrrreierireeeeeireeeeeertereeerreeeesirreeeessseseesesseseesssesesesssesesssnsens 75
Figure 21. Main classes and their properties in the ontology........cccveecveeeeieeccieciieeeeeccieeeen. 82
Figure 22. Object Properties isComposedBy (left) and 1s71riggeredBy (right)........cocuveeenvenn.en. 83
Figure 23. Left: Data Properties. Right: Data Property “message”.coooveeevveeiieesvieeeceeecneenne 85
Figure 24. Example of Web and Mobile implementations of a Calendar.cccccveevvennnennn. 86
Figure 25. Cloud of User Interface (UI) Elements.ceeecveeeeieeceieiiieeeceeecieeceeeceeeevee e 87
Figure 26. State Machine Elements and their Individuals.cocoveeeiieeiieeiiiiiieeeeeeeeiene 91
Figure 27. A Transition being represented in the State Machine.c.coecveeevieeniieeniieenceeecien, 91
Figure 28. Components on the ontology used to specify a behavior.cccoveeeieecvieeniieecnen, 92
Figure 29. Behavior “chooseRefferingTo”. ...t 92
Figure 30. Results of ontology processing: Hermi'T (top) and Pellet (bottom)..........cceeeuveeneee.. 95
Figure 31. One of the alternatives to perform our approach.cccceeeeveeeviierciiecieeccie e, 99
Figure 32. Example of Task Properties. ... uiiiiciiieciecieeceecee ettt 101
Figure 33. Representation of executable and executed tasks during simulation....................... 103
Figure 34. Example of “Information” and “Data” handling.cccccovveeevienienniiniinieniienniennne. 103
Figure 35. Activity of creating task models.oocuieeiieeeiieiieceece e 104
Figure 36. Mapping BPMN business activities to HAMSTERS user tasks......ccoovevvienvvenniennee. 105
Figure 37. Activity of formatting USer STOTIES. ..ccuiieeeeeeieeeieecieeecee et eeee e 106
Figure 38. Scenarios being extracted from task models and then being formatted by the
ONLOLOZY AS TUSET STOTIES. «uvvveieeririeiireeeeieiereeerireeeeeireeeeesteeesessreeessssseeeessssseesssseseessssssesesssssesnnnes 107
Figure 39. Formatting rule for assessing steps and tasks.cc.eeecveeeveeeeiieenieecceeecieeeceeeevee e, 109
Figure 40. Extract of an original (left side) and a resultant (right side) scenario XML files after
the Process Of PrefOrmMatting.vie e ierieireenierieeeeeeeet ettt s re e e saeesaaesaesaeas 111
Figure 41. Example of scenario extracted from a task model and its XML source file. 112
Figure 42. Activity of evaluating task OElS.......coevvvriieiiuiriiiiiiiieiieieceeeec e e 112

Figure 43. Checking consistency of tasks between US scenario and scenarios extracted from
(P10 VoY (<) SRS 112

Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.

Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.

Figure 64.

Testing algorithm for assessing scenarios extracted from task models. 113
File tree for the implementation of task model assessment.........cccceeeeveeeciieennennee. 116
Flow of calls for running tests on task model scenarios.c.ceeeveeeervnveeeenveeeennnen. 116
“MyTest” class indicating the file “search.story” for running.ccceeeveeeevvereeennnen. 117
Console after running the User Story “Flight Tickets Search”.cooovvveeevvreennnnen. 118
Task model (1), extracted scenario (3), and their respective source files (2 and 4). 119
Flow of activities to get SCenarios fOr tESHIG. .ovvrreeervrreerrrveeeeerereeerrereeerreeeesirveeennnns 120
Another alternative for performing our approach.c.coccveeeeiecviincieecceeceeeee, 123
Balsamiq handmade-style UL elements.ccueeeveeecieeiiiieiieeceeeceeeceeeceee e 125
Activity of prototyping ULS. ...t 125

Sketch for the User Story “Flight Tickets Search” built from the scenario “One-Way

TICKELS SCATCI . oottt ee e e e e ae e e aa e e s ae e sbae e nsee s saeensaeeanes 126
Activity of evaluating Ul PrototyPes. couveeueeeceeeeieeeieeeceeeeieeesreeesreesveeeeaeesvaeeenas 127
Button “Search” and its XLLM source file.cuiieieieiieeiiiieiieceeeeeceeeee e, 127
Grouped field “Departure Date” and its XLLM source file.......cocevvueeveinieniennennee. 128
Testing algorithm for assessing Ul prototypes. ..o.ueecueeeeeeceeeciieeecieeeieeeceeseieeenns 128
“MyTestjava”: class for running tests on Balsamiq prototypes.ccceevveeeveecveennen. 129
Flow of calls for running tests on Balsamiq prototypes.cccecveeeeveeeceecceeeccveeennen. 130
PANDA SCIEENSNOL. .cievieeeiieciieeeecteee ettt e e e e e nae e e aaas 131
Example of a step split during its parsing.c..eeeveeecveeeseeeesreeeseeeereesceeeeseeessvesesnnes 132
Properties of a button in the tool PANDA with properties defined by the ontology.
... 132
Example of results given during a Scenario testing.ccueeeeveeeceeeeseeesveeeeseeesvaeennnns 132
Activity of evolvINg UL PrototyPes. c.veeeueeecieeeieeccieeeieeeceeeeeeeeceeeeseeeseeeeseeeesaee e 133

Figure 65.

Figure 66. The less refined prototype for “Flight Tickets Search” evolving to a more refined
one, and then tO @ TINAl Uluuvveiieiiiiiiieeiieeiieeeeiieeeeeeeeeeeeee ettt eeeeseeeesssssseessssssssssssssssssssssssssssssssens 134
Figure 67. The “Choose Flights” UI prototype in PANDA.coooiiiiiieeeeeeeeeeeeeee, 135
Figure 68. The “Choose Flights” final ULcocoiiiiiiiieeceeeeeeeeee e 135
Figure 69. Activity of evaluating Final UIS..........coovviiiieiiiiiiiieieeeieee et eennees 136
Figure 70. A 3-module integrated tools architeCture.ccveeevieeeiieecieeceeceeeeee e 136
Figure 71. Flow of components in the proposed architecture.cccveeeveeeveeeeceeecieeeieeenen. 137
Figure 72. Packages and classes being structured to implement our testing approach............. 137
Figure 73. Parsing a step from a TXT file to a Java method.cceeevvieiiniiiiciecieeieeee, 138
Figure 74. MyPage Java Class. cuueeeererieiiiiieeeiereceiteeecerteecerreeeeeetreeeeeessereeesnesesesseeeesnssesesnsens 138
Figure 75. Automated execution of the scenario “Return Tickets Search”.cccoeevveenveennneen. 139
Figure 76. An attempt to select a return date before the departure date.ceeveeecrveeenneennnenn. 139
Figure 77. Package tree (on the left) and My Test class (on the right).....cccoeeveeeiieicieieiienneen. 140
Figure 78. Writing a User Story and getting instant feedback of unknown steps. 140
Figure 79. JUnit green/red bar at the left, and JBehave detailed report at the right. 140
Figure 80. Data in Data Provider: (a) data being associated to a variable to be used in the step.
... 141
Figure 81. Data stored in an XML file: (a) data associated to XML file, (b) reference to dataset.
... 142
Figure 82. BPMN model for the case Study.....ccueeeeuieeeiieecieccieeeeecee et 149
Figure 83. Travel Planet system for booking business trips.eeeceeeceeeecieeeseeecieeeseeeceeeeeeens 150
Figure 84. Structure of a User Story presented to the participants translated to English. 152
Figure 85. Example of a User Story presented to the participants translated to English.......... 152
Figure 86. User Story WITttel DY Pl....coovei ittt cectreeceereeeecereeeeeeneeeceneeeeennnees 154
Figure 87. User Story WITeI DY P2....couviiiiieieeteeeceteee ettt ceereee e cevreeeseneeecennnaeeenannees 154
Figure 88. User Story WITtte1l DY PS....couviiiiieiecieeeceeeee ettt et eereeeeeneeeeeneeesennnees 154

Figure 89. User Story WITEI DY Plu...coouveiieiiieieceieeeceteee e cetreececveeeeceveeeeenneeecennnesesennnens 155

Figure 90. Understandability of Each Statement in the User Story Specification. 164
Figure 92. General Understandability of User Stories (Number of occurrences in each stratum).
... 165
Figure 91. Understandability in User Story Specification - Narrative (Number of occurrences in
CACK SITATUIN) .1ttt ettt ettt e s e st st e s sbe e s st e st e s be e saesseessbesnsesnss 165
Figure 93. Adherence to the Ontology in User Story Specification - Scenario (Number of
OCCUITENCES TN €ACH STATUIN . 1eevtiriiiieeieerterteete ettt ettt e st e st e s sbe e seesaaesssesssesnnes 165
Figure 94. Number of occurrences in each category of adherence problems. 167
Figure 95. Boxplot of each type of adherence problems identified in participants’ User Stories.
... 168
Figure 96. User Story “Flight Tickets SEarch”.ccoueieeeviiiieiiieeeeiieeeeceeeeeereeeeeereeeeenveeeeenne 176
Figure 97. User Story “Select a suitable fHght”......ccovviveeiiiiieiiieeiereececeee e e 177
Figure 98. User Story “Confirm Flight Selection”..........c.ooooiiieiiiiiiceeceeeeceeeee e, 178
Figure 99. Test scenarios for the UsSer StOTIES. c..uiiiiiecieiiiieecieeeee et eee e 178
Figure 100. Task Model for Searching Flights using Travel Planet.ccccoeevveeeeevnereeenveneennnns 179
Figure 101. Task Model for Informing a Flight Leg in Travel Planet.cooevvveeeevnereeenneneennnns 179
Figure 102. Task Model for Choosing a Flight in Travel Planet.cooovvvieeviieieecereeciveeeennnns 180
Figure 103. Scenarios extracted to be tested. ..uuinuiinniiiniiiiiieeeiieceeeie e 182
Figure 104. Results of matching: scenario “Confirm a Flight Selection”.cccoveeiveeeneenneen. 183
Figure 105. Results of matching: scenario “Confirm a Flight Selection (Full Version)™........... 187
Figure 106. Results of matching: scenario “Confirm a Flight Selection for a One-Way Trip”. 188
Figure 107. Results of matching: scenario “Confirm a Flight Selection for a Multidestination
3 TR SRR 189
Figure 108. Results of matching: scenario “Decline a Flight Selection”.cocevvvvvvieevveeennnnee. 189
Figure 109. Ul prototype for searching flights (first version).ccocceeveeveenieniiennennenneeneenne 192
Figure 110. UI prototype for searching flights (revised version after testing).cccceeeeveeennee. 192
Figure 111. Ul prototype for choosing flights (first version).coeceevevveenieniiennennenneeneenne. 197
Figure 112. UI prototype for choosing flights (revised version after testing).cceceueeeveeenneen. 197
Figure 113. Ul prototype for confirming a booking (first version).cccceeeveervvervierrienneeneenne. 199
Figure 114. UI prototype for confirming a booking (revised version after testing)................... 199
Figure 115. Ul prototype: Trip Confirmed........c.veeeiieeiieecieiceeeeeeceeeee e 200
Figure 116. Ul prototype: Withdrawing confirmation.coceeeeervierienreeneenieenniensenseeneenes 200
Figure 117. Ul prototype: Trip Canceled.oouiiiiiieieeieceeeeeeeeeete et 200
Figure 118. Ul prototype: Multidestination s€arch.ccueeeveeeiieecieeeiieccieeeeecee e 201
Figure 119. Ul prototype: Flight selected.uuiauiiiiiieiieeieeeeeeeeeeeeeeeeee e 201
Figure 120. Final Ul for searching flIghts.eeoeeeveeiieiiiiieiieiceiieecceeec e e e 206
Figure 121. Final UI for searching multidestination flights.ccccuveeeeveieeiieeeeenierecereee e, 206
Figure 122. Final UI for choosINg flIghES. ...cocvueiiieiieiieierececree et cecreeeecereeeeereeecereeeeeneees 206
Figure 123. Final UI with the selected fights.eeeveeeiieeieceeeee e 210
Figure 124. Final UI for confirming the selected flightS......cccueeieevverieriieieeiieieeceeee e, 210
Figure 125. Final Ul dialog box before canceling.eeeeevveeieeirveieenireeeeeeieeeeeereeecerveeeennneen 212

Figure 126. Final UL trip canceled........io ittt 212

List of Tables

Table 1. Approaches for describing User Stories and Scenarios........ocueeecveeecveeeceeecveeeceeeennen. 39
Table 2. Correlation between scenarios in UCD and SE approaches (adapted from (Santoro,
2000D)). ettt ettt ettt e et e et esa b e et e et e e b e e s ht e s at e e st e e bt e aeeesteete et e enseenaeesasesbanas 40
Table 3. Target stakeholders of the approach.cceoevieeciiicieceeceee e 65
Table 4. A compared overview between the ontology and other methods and languages. 81
Table 5. “Relations” as Object Properties i the ontology.........ceeeceeecieeccieccieeeieecieeeieeee, 34
Table 6. Data Properties in the Ontology.ccveeeuieeciiieiiecce et 85
Table 7. Ul Elements 1 the ONtOlOZY. ..cccouveiiieivieieiieieceireecccreeeccereeeeeereeecetreeeeenveeeesseesessnvens 91
Table 8. Predefined Behaviors described in the ontology.ueeeeeveeeeeeveeeieieereceieeeecreee e 95
Table 9. Task types In HAMSTERS. ...oooeeee ettt et saae e 101
Table 10. Illustration of the operator types within HAMSTERS.coooiiiiiiiiniiniiniiiieieee 102
Table 11. The correlation between requirements, tasks and scenarios in UCD and SE
approaches for the User Story “Flight Tickets Search”..........cooovveeiiiioiiiciieeeeceeeeeeeeee, 108
Table 12. The correlation between requirements, tasks and scenarios in UCD and SE
approaches for the User Story “Select the desired flight”.cccvveeiieioiiiiiieeee e, 108
Table 13. Task name components CONSIIUCHON. ..veeeveeerurerereeeieeeereeerteeesreeesseeesseessseeesseeanes 110
Table 14. Concept mapping for the scenario “One-Way Tickets Search”.cocevvieeviennennne 110
Table 15. Checking consistency of tasks between US scenario and scenarios extracted from task
INIOUCIS ettt ettt et e st e st e b e e st e st e et e et e b e e e st e st e e b e et e e s at e et e ebe e taenaaenane 115
Table 16. Example of concept mapping for teStiNg.ccvveeeveeeecieeeiieecieeeeeecee e e aee e 135
Table 17. Participant’s Proflle. ...ttt 151
Table 18. User Story Specification - Participant Pl.cccovviiiiiiiiiiiiieeeeeeceeeeeeee e 159
Table 19. User Story Specification - Participant P2.cccovvioiieiiiieiiieeeeeeeeeeeeeee e 160
Table 20. User Story Specification - Participant P3.cccoeeoiiiiiiniieieeeeeceeceeee e 162
Table 21. User Story Specification - Participant PA.cccooeeoieiriiieiieieieeceeeceecee e 163
Table 22. Understandability of Each Statement in the User Story Specification. 164
Table 23. Understandability in User Story Specification - Narrative (Number of occurrences in
CACK SITATUIN) ¢ttt ettt ettt e s e st et e e be e s bt e s st e e b e e beesstesasesssaesaennes 165
Table 24. Adherence to the Ontology in User Story Specification - Scenario (Number of
OCCUITENCES 1N €ACH STATUIN) . 1evuviiiiirieeieeieestert ettt ettt e e e s e e sabeessaeae 165
Table 25. Scenario “Confirm a Flight Selection”.oovuvieeeieiiiicieieceeeeeceeee e eeereeeeenne 183
Table 26. Type of inconsistencies identified in scenarios extracted from task models............. 186
Table 27. Scenario “Confirm a Flight Selection (Full Version)”.coovvvveeeeveeeeeniveeeeeiveeeennne 187
Table 28. Scenario “Confirm a Flight Selection for a One-Way TTip”. ..cccvvvveieeccieeecieecieens 188
Table 29. Scenario “Confirm a Flight Selection for a Multidestination Trip”.cccccveenneene. 188
Table 30. Scenario “Decline a Flight Selection”.coovviiieieieiieciieieceeeeeereee e eerree e 189
Table 31. Test results in Balsami(ProtOtyPes. .uuuuieaieecieeeeeecieeeieeeeeeeeree e eeveeeeaeeseee e 200
Table 32. Test results on the final Ulcccciiiiiiiiiieeeeee e 213
Table 33. Mapping of the results after teStNG.cveeevieeiiieeeeecieeeee e cee e 218

C

Table 34. Main kinds of problems identified in each artifact after testing.........ceevvervveeveeenennne 218

Abstract

In a user-centered design process, artifacts evolve in iterative cycles until they meet user
requirements and then become the final product. Every cycle gives the opportunity to revise the
design and to mtroduce new requirements which might affect the artifacts that have been set in
former development phases. Keeping the consistency of requirements in such artifacts along the
development process 1s a cumbersome and time-consuming activity, especially if it 1s done
manually. Nowadays, some software development frameworks implement Behavior-Driven
Development (BDD) and User Stories as a means of automating the test of interactive systems
under construction. Automated testing helps to simulate user’s actions on the user interface and
therefore check if the system behaves properly and in accordance with the user requirements.
However, current tools supporting BDD requires that tests should be written using low-level
events and components that only exist when the system 1s already implemented. As a
consequence of such low-level of abstraction, BDD tests can hardly be reused with more abstract
artifacts. In order to prevent that tests should be written to every type of artifact, we have
mvestigated the use of ontologies for specifying both requirements and tests once, and then run
tests on all artifacts sharing the ontological concepts. The resultant behavior-based ontology we
propose herein 1s therefore aimed at raising the abstraction level while supporting test automation
on multiple artifacts. This thesis presents this ontology and an approach based on BDD and User
Stories to support the specification and the automated assessment of user requirements on
software artifacts along the development process of interactive systems. Two case studies are also
presented to validate our approach. The first case study evaluates the understandability of User
Stories specifications by a team of Product Owners (POs) from the department in charge of
business trips i our institute. With the help of this first case study, we designed a second one to
demonstrate how User Stories written using our ontology can be used to assess functional
requirements expressed in different artifacts, such as task models, user interface (UI) prototypes,
and full-fledged Uls. The results have shown that our approach is able to identify even fine-
grained inconsistencies i the mentioned artifacts, allowing establishing a rehable compatibility
among different user interface design artifacts.

Keywords: Behavior-Driven Development (BDD), User Stories, Automated Requirements
Assessment, Ontological Modeling, Scenario-Based Design, User Interface Design Artifacts.

Résumé

Dans un processus de conception centré sur 'utilisateur, les artefacts évoluent par cycles itératifs
Jusqu’a ce qu’ils répondent aux exigences des utilisateurs et deviennent ensuite le produit final.
Chaque cycle donne 'occasion de réviser la conception et d’introduire de nouvelles exigences
qui pourraient affecter les artefacts qui ont été défimis dans les phases de développement
précédentes. Garder la cohérence des exigences dans tels artefacts tout au long du processus de
développement est une activité lourde et longue, surtout si elle est faite manuellement.
Actuellement, certains cadres d’applications implémentent le BDD (Développement dirigé par
le comportement) et les récits utilisateur comme un moyen d’automatiser le test des systemes
mteractifs en construction. Les tests automatisés permettent de simuler les actions de I'utilisateur
sur I'mterface et, par conséquent, de vérifier si le systtme se comporte correctement et
conformément aux exigences de l'utilisateur. Cependant, les outils actuels supportant BDD
requierent que les tests solent écrits en utilisant des événements de bas niveau et des composants
qui n’existent que lorsque le systeme est déja implémenté. En conséquence d’un tel bas niveau
d’abstraction, les tests BDD peuvent difficilement étre réutilisés avec des artefacts plus abstraits.
Afin d’éviter que les tests doivent étre écrits sur chaque type d’artefact, nous avons étudié
I'utilisation des ontologies pour spécifier a la fois les exigences et les tests, puis exécuter des tests
dans tous les artefacts partageant les concepts ontologiques. L’ontologie fondée sur le
comportement que nous proposons icl vise alors a élever le niveau d’abstraction tout en
supportant 'automatisation de tests dans des multiples artefacts. Cette these présente tel ontologie
et une approche fondée sur BDD et les récits utilisateur pour soutenir la spécification et
I'évaluation automatisée des exigences des utilisateurs dans les artefacts logiciels tout au long du
processus de développement des systemes interactifs. Deux études de cas sont également
présentées pour valider notre approche. La premiere étude de cas évalue la compréhensibilité
des spécifications des récits utilisateur par une équipe de propriétaires de produit (POs) du
département en charge des voyages d’affaires dans notre institut. A Iaide de cette premiere étude
de cas, nous avons conc¢u une deuxieme étude pour démontrer comment les récits utilisateur
rédigés a 'aide de notre ontologie peuvent étre utilisées pour évaluer les exigences fonctionnelles
exprimées dans des différents artefacts, tels que les modeles de tiache, les prototypes d'interface
utilisateur et les interfaces utilisateur a part entiere. Les résultats ont montré que notre approche
est capable didentifier méme des incohérences a grain fin dans les artefacts mentionnés,
permettant d’établir une compatibilité fiable entre les différents artefacts de conception de
I'interface utilisateur.

Mots Clés : Développement dirigé par le comportement (BDD), Récits utilisateur, Evaluation
automatisée des exigences, Modélisation ontologique, Conception par scénarios, Artefacts de
conception d'interface utilisateur.

Part I - Introduction

Chapter 1

Introduction

Summary

This chapter introduces and motivates this thesis, providing along five sections its overall context
and problem statement, followed by the set of research challenges we have 1dentified. We also
state our aims and objectives towards the solution, as well as the research scope and the
methodological approach we have followed. This chapter ends with the thesis’ outline.

1.1. Context

Understanding user requirements 1s critical to the success of interactive systems (Maguire and
Bevan, 2002). As a statement of users’ expectations and needs about the system, user
requirements play a central role mn a user-centred design (ISO, 1999). User requirements
specifications must express the needs of different stakeholders with different points of view about
the system. Being stakeholders anyone who 1s materially impacted by the outcome of the software
solution (Ambler, 2002), such needs may address functional aspects of the system (such as
features that the system must provide) or non-functional aspects (such as issues related to
performance, usability, scalability, and so on). A stakeholder could be a direct (or end) user,
idirect user, manager of users, senior manager, operations staff member, the person who funds
the project, support staff member, auditors, the program/portfolio manager, developers working
on other systems that integrate or interact with the one under development, or maintenance
professionals potentially affected by the development and/or deployment of a software project.
To succeed, a software project needs therefore to understand and synthesize their requirements
mto a cohesive vision (Ambler, 2002).

Each stakeholder has their own requirements, their own vision, and their own priorities. While
business people and managers, for example, could be more interested mn describing a
requirement in a rigid workflow perspective and demand features complying with that, end-users
could be more msterested i detailing such a requirement in features priorizing shortcuts or
alternative flows in the work process. Such different perspectives about the system behavior can
lead to several misunderstandings or conflicting specifications.

The degree of formality in user requirements vary considerably though. Such requirements
can be expressed from informal natural language statements until formal object-oriented
specifications. The level of formality has a strong impact on the way users and developers can
communicate about the requirements. On one hand, informal statements mn natural language
tend to be easier for users to express their needs, and consequently to understand what 1s being
specified and documented. However, the lack of formalization might allow verbose, incomplete,
and ambiguous description of requirements that are difficult to understand and assess. On the
other hand, despite largely support automation and the system design, formal specifications are
difficult for users and non-technical people to understand, which harm their ability to
communicate with developers effectively.

Chapter 1: Introduction

In an attempt to formalize the user requirements and how they should be addressed during
the implementation, software designers make use of models. Modeling 1s recognized as a crucial
activity to manage the abstraction and the inherent complexity of developing software systems.
Several aspects of information, from the macro business goals until the most detailed information
about user tasks, are taken into account while modeling. As a consequence, software systems are
designed based on several requirements artifacts which model different aspects and different
points of view about the system (e.g. business models, use cases, task models, etc.). Artifacts
encode a particular interpretation of a problem situation and a particular set of solutions for the
perceived problem (De Souza, 2005). They are the means by which the outcomes of modeling
activities are registered. Considering that different phases of development require distinct
mformation, artifacts used for modeling tend to be very diverse throughout the development, and
ensuring their consistency 1s quite challenging (Winckler and Palanque, 2012).

Requirements and artifacts are also expected to evolve along the project according to the users’
changing perception about their own needs. In iterative processes, the cycle of producing and
evolving artifacts permeates all the phases of system development, from requirements and
business analysis until software testing. Artifacts are supposed to be kept and maintained even
after the software development has finished, once they encompass models describing the record
of implemented requirements, which strategies were used to implement the features, how the
system architecture has been structured, etc. They are also useful to software maintenance and
evolution purposes. Therefore, requirements should be described in a consistent way across the
multiple artifacts. Requirements specifications should not, for example, describe a given
requirement in a use case that is conflicting with its representation n an activity diagram.

Most of the research intended to ensure some level of consistency between requirements and
artifacts 1s centered on tracing requirements throughout the development process. Requirements
traceability 1s defined as “the ability to follow the life of a requirement, in both forwards and
backwards direction (i.e. from its origins, through its development and specification, to its
subsequent deployment and use, and through periods of on-going refinement and iteration in any
of these phases)” (Ramesh et al., 1995). The traceability of requirements and artifacts 1s usually
classified as vertical and horizontal (Ebert, 2011). Vertical traceability describes the relationship
between artifacts that can be derived from each other and are in different levels of abstraction,
for example, from customer requirements to acceptance test cases. Horizontal traceability, on the
other hand, refers to trace the evolution of the same artifact along its lifecycle. The problem of
tracing requirements and artifacts has been studied by several authors for decades, and a wide set
of commercial tools have been developed to address this problem in various approaches (Nair,
De La Vara and Sen, 2013). Nonetheless, proposed solutions to promote vertical traceability
between requirements and artifacts can simply 1dentify whether a requirement 1s present or not
m a given artifact, not allowing to effectively test it by checking the consistency and correct
representation of such a requirement in a given set of artifacts.

Since long time ago, it 1s a peaceful argument that providing early assessment 1s very helpful
for detecting errors before making strong commitments with the software implementation (van
Megen and Meyerhoft, 1995). Lindstrom (Lindstrom, 1993) declared that failure to trace tests to
requirements, for example, 1s one of the five most effective ways to destroy a project. However,
according to Uusitalo et al. (Uusitalo er al., 2008), traceability between requirements and tests 1s
rarely maintained in practice. This 1s caused primarily by failure to update traces when
requirements change, due to stringent enforcement of schedules and budgets, as well as
difficulties to conduct testing processes through a manual approach. The authors pointed out that
In most cases, interviewees in industry longed for better tool support for traceability. Some also

26

Chapter 1: Introduction

noted that poor quality of requirements was a hindrance to maintaining the traces, since there 1s
no guarantee how well the requirements covered the actual functionality of the product.

1.2. Challenges

Assessing Interactive systems 1s an activity that requires a considerable amount of efforts from
development teams. A first challenge for testing 1s that requirements are not stable along the
software development process. Stakeholders introduce new demands or modify the existing ones
all along the iterations. This fact makes imperative to retest all the software outcomes in order to
ensure that the system remains behaving properly, and the different artifacts remains n
accordance with the new requirements introduced and/or modified. Manual tests and software
mspections are usually the first approaches to assess these outcomes. However, manually ensuring
the consistency of system and artifacts every time a requirement is introduced and/or modified 1s
a discouraging activity for software development teams. Manual tests are extremely time-
consuming and highly error-prone. Therefore, promoting automated tests 1s a key factor to
support testing in an ever-changing environment. They allow a reliable and fast assessment of
requirements and promote a high availability of tests.

A second challenge for testing requirements 1s that multiple artifacts with different levels of
abstraction might be concerned by the same requirement. Tests therefore should run not only
on the final product, but also in the whole set of modeling artifacts to ensure that they represent
the same information in a non-ambiguous way, and in accordance with the whole requirements
chain. It 1s indeed a challenge verifying and checking such artifacts while ensuring their
consistency with the other components of a requirements specification.

A
o
Z [\
X N
a g ‘\ﬁ/‘ (O} CTIT R [, TR S| @ oo
z! <
0! & . B/ oeeee @ ... @
o, [
' o
< % oo @) fvvvererereenne
L~ J
-
2 1 @ &) &
g
= 2 | @-0—0O O, @
e
&
5 3 @ @® ©
g
e 4 @O0—0—@ © ®
L P 4
t1 2 t3
e B f----mmm e >
TIME
@ evolved @ versions n remains the same @ has been dismissed

Figure 1. Requirements and artifacts being “photographed” in different phases of the project.

An example of such challenges is illustrated m Figure 1. Requirements and artifacts are
supposed to evolve continuously along the project’s lifecycle. When looking at different moments
of a project’s lifecycle, we should be able to guarantee that the set of existing requirements in a
given time 1s consistent with the set of existing artifacts which models such requirements. For
example, at the time “t1”, the project had 3 requirements (1, 2 and 4) and only 1 artifact
concerned by them (A). So, at this time, only the artifact A should be consistent with requirements

27

Chapter 1: Introduction

1, 2 and 4. At the ime “t2”, requirements 2 and 4 evolve and must be retested with respect to the
artifacts. Besides that, a new requirement (3) came up and a new artifact (B) was designed, so
now, it 1s both artifacts A and B that should be consistent with requirements 1, 2, 3, and 4. By
pursuing the project, the requirement 2 was discontinued and a new artifact (C) was introduced,
so at the time “t3”, artifacts A, B and C should be now consistent with requirements 1 (not yet
evolved), 3 and 4, but not anymore with the requirement 2. That gives the dimension and the
extent of challenges to consider when a large software system with multiple iterations 1s under
development, not only because there are so many requirements and artifacts to align, but also
because they come up, evolve, and are dismissed all the time along the project.

Another related challenge 1s that assessing interactive systems implies to assess system features
with respect to the many possible data and system outputs that might occur when a user 1s
mteracting with them. This 1s an arduous testing activity due to the wide range of user tasks and
the different combinations of testing data to assess. This problem 1s easier to be noticed in the
testing of late artifacts such as full-fledged user interfaces when real test data are being
manipulated. However, many other artifacts such as task models, and even preliminary versions
of user interface prototypes can handle test data somehow. Verifying the consistency of supported
test data in different artifacts 1s therefore another important source of testing.

In short, these concerns bring us three main challenges:

e formalize user requirements i such a way to provide testability in an ever-changing
environment;

e guarantee consistency between user requirements and their representation in multiple
artifacts; and

e lay on a flexible approach that could be reused to ensure such a consistency for
newcome artifacts along the project.

1.3. Objectives

The overall goal of this work 1s investigating methods for formalizing user requirements and
automating the test of their functional aspects along the software development process. More
specific goals include:

o Investigate a scenario-based approach aiming at specifying functional user
requirements and their acceptance criteria in an understandable natural language for
both technical and non-technical stakeholders.

¢ Allow the automated assessment of functional requirements on multiples user interface
design artifacts.

e Provide assessment since early in the design process in order to ensure a full lifetime
consistency between requirements and artifacts.

e Define a common-ground of concepts to specify user requirements and their
acceptance criteria aiming at establishing a common vocabulary among the target
artifacts.

e Implement a set of automated tools to support the approach and guarantee a high
availability of tests throughout the development process of interactive systems.

Previous works have focused on modeling requirements and tests intrinsically coupled in a
single artifact. The main supporting argument 1s that the specification of a requirement 1s only
complete 1f 1t specifies the requirement’s acceptance criteria, 1.e. under which conditions such a

28

Chapter 1: Introduction

requirement can be considered as done or accomplished. By doing this, requirements and tests
could be kept updated more easily. In this context, Behavior-Driven Development (BDD)
(Chelimsky et al., 2010) has aroused interest from both academic and industrial communities as
a method allowing specifying natural language user requirements and their tests 1n a single textual
artifact. BDD benefits from a requirements specification based on User Stories (Cohn, 2004)
which are easily understandable for both technical and non-technical stakeholders. In addition,
User Stories allow specifying “executable requirements”, 1.e. requirements that can be directly
tested from their textual specificaion. By this means, they end up providing a “live”
documentation once it contains, in a single artifact, the specification itself along with the
automated testable scenarios which are able to certify whether some requirement has been
attended or not. BDD also encompasses a scenario-based approach that benefit from an iterative
cycle of producing-evaluating test scenarios in a final and implemented version of the system.

Despite its benefits providing automated testing of user requirements, BDD and other testing
approaches focus essentially on assessing interactive artifacts that are produced late in the
development process, such as full-fledged version of user interfaces. As far as early artifacts (such
as task models, rough user interface prototypes, etc.) are a concern, such approaches offer no
support for automated assessment. Besides that, the assessment of user requirements on user
mterfaces (and consequently on their related artifacts) requires the specification of the user’s
mteractive tasks that will be performed on such a UL Despite defining a minimal template for
specifying User Stories, BDD does not propose any other support to specify the user’s interactive
tasks on such stories. While this freedom of writing gives to stakeholders a powerful approach
for freely expressing their user requirements and interactive tasks, it requires that developers
should implement each test scenario individually to allow them running on a fully implemented
user interface and using low-level events that can hardly be reused to assess more abstract artifacts.
In addition, it frequently gives rise to specifications of scenarios that, either do not encompass a
description of mteractive tasks, or do it but including several incompatible iteractions such as
clicks to be made on text fields in a form or selections to be made in a button.

To address these problems, we have studied the use of a formal ontology to act as common-
ground for describing concepts used by platforms, models and artifacts that compose the design
of interactive systems. The ontology was idealized to allow a wide description of interaction
elements on user interfaces, as well as the behaviors associated with them. The aim of this
ontology 1s therefore to support specification and testing activities in our approach by allowing
that tests are written once, and then can be used to test all the set of considered artifacts. Whilst
the ontology 1s aimed at being generic to many types of artifacts, in this thesis we have focused on
its 1mplementation for task models, prototypes and final user interfaces. As the automated
assessment of these target artifacts was our guiding objective, after defining such an ontology, we
designed the proposed approach already providing a fully support to the specification of
consistent User Stories with an automated mmplementation ready for running the interactive
behaviors recognized by the ontology directly on the target artifacts.

The ultimate goal of this thesis is therefore to present an approach based on BDD and User
Stories to support the specification and the automated assessment of user requirements n
software artifacts along the development process of interactive systems. The common-ground of
concepts for describing the artifacts as well as the set of user-system interactive behaviors 1s
provided by means of an ontology. By providing automated assessment of user requirements, we
also target the guarantee of vertical traceability between them and the set of considered artifacts.
As we aim to provide automated assessment since early in the design process, we have focused
both on software artifacts describing early featuring aspects of the system, as well as on artifacts

29

Chapter 1: Introduction

mmplementing fully interaction aspects. We have lmited the scope to user requirements
describing functional aspects of the system, and to software artifacts aiming at describing the
design of user interfaces (UIs). As such, we have focused on task models, user interface prototypes
mn different levels of refinement, and full-fledged (final) user interfaces as target artifacts.

1.4. Methodological Approach

Our approach aims at assessing user mterface design artifacts from descriptions of interaction
scenarios In User Stories, so two points are fundamental to demonstrate the validity of such an
approach. The first one 1s the automatic verification of user requirements representation in our
set of target artifacts. The second one 1s the translation of user requirements written by
stakeholders into a language that allows the implementation of automated tests. To validate these
two points, we have designed two case studies aiming at evaluating distinct aspects of our
approach.

The first study was intended to mvestigate the level of understandability of User Stories
specifications by a given group of stakeholders. To conduct this study, we have selected a group
of potential Product Owners (POs) from the department in charge of business trips in our
mstitute. POs are stakeholders that master the current business process and, in the case of this
study, have the potential to eventually integrate a specialized group for specifying user
requirements to maintain or develop a new software system in the business trip field.

During the study, the participants were invited, along structured interviews, to express a User
Story they considered relevant within the group of system-related current tasks they work on daily.
An mmportant aspect we would like to evaluate was the spontaneous use of the interactive
behaviors we had previously implemented in the ontology. With this objective in mind, we
decided to present the BDD template for User Stories to the participants but omit the list of
mteractive behaviors we had modeled in the ontology. The stories produced were then evaluated
for us i order to answer research questions related to:

e the level of understandability of User Stories structure by potential POs,

e identify in which extent predefined interactive behaviors presented in our ontology
could be spontaneously used by potential POs, and

e the kind of adherence-to-the-template or adherence-to-the-ontology problems that
would be 1dentified in User Stories produced by potential POs.

With this exercise, we evaluated the set of User Stories produced by the participants and
classified them according to their adherence to the User Story template imtially presented, and
to the predefined interactive behaviors modeled in the ontology. This analysis has been made
separately for the first part of the User Story and for the related scenario, observing the existent
gap between the steps each participant specified and the equivalent and available steps i the
ontology. For each statement in the User Story, we have classified its adherence to the template
or to the ontology in scales ranging from null adherence until full adherence. Additionally, we
have categorized each deviation from the proposed template committed by the participants when
writing their User Stories. They have been classified as adherence problems in categories such as
lack of statement or keyword, understatement, misspecification, wrong information, minor writing
complement, high-level of abstraction, and epic behavior. The complete experimental protocol
as well as the results we got are presented in detail in chapter 7.

The second case study was intended to explore the translation of the stories produced by the
participants into testable User Stories by using the set of predefined interactive behaviors as

30

Chapter 1: Introduction

proposed i the ontology. This study was also intended to demonstrate the potential of our
approach to assess user mterface design artifacts after having the User Stories formatted, besides
identifying which kind of mconsistencies we would be able to poimnt out by running our testing
approach on such artifacts. As there 1s already a software system i production to book business
trips in our institute (so we had no access to the software artifacts which were used to design such
a system), we decided to apply reverse engineering (Chikofsky and Cross 11, 1990) to obtain such
artifacts from the software i production. We then redesigned the appropriate task models and
user interface prototypes for the system.

To achieve the goals of this study, we conducted the following activities divided n 6 steps:

e Step 1: Format and add new User Stories based on the assets from the previous study
and based on the current system implementation.

e Step 2: Add test cases to these User Stories.

e Step 3: Reengineer task models for the current system and run our approach to test
the developed scenarios.

e Step 4: Reengineer user mterface prototypes for the current system and run our
approach to test the developed scenarios.

e Step 5: Run our approach to test the final user interface of the current system with the
same developed scenarios.

e Step 6: Trace the results and verify the extent of inconsistencies we were able to 1dentify
in these multiple artifacts.

Finally, we analyzed the results of testing in each artifact by mapping such results to identify
the trace of each inconsistency throughout the artifacts. That gave us a complete traceability
overview of each step of the User Stories in the target artifacts. During the execution of each step
of testing described above, we have collected and identified the reasons of failure in the
mentioned artifacts in order to answer our research question concerning the kind of
mconsistencies we are able to 1dentify with this proposed approach. Such results allowed us to
evaluate the effectiveness of the approach and to identify future improvement opportunities.

1.5. Thesis’ Outline
This thesis 1s presented in nine chapters divided in four parts, as follows.
Part I - Introduction
The part I includes the present chapter and the chapter 2.

Chapter 2
Background

This chapter presents the state of the art about the concepts used in this thesis. It includes the
main methods and techniques used for designing and modeling interactive systems following a
scenario-based approach. It is presented a discussion about how Human-Computer Interaction
(HCI) and Software Engineering (SE) communities handle the concept of User Stories and
scenarios. As modeling activities by which our target artifacts are designed, a discussion about task
modeling and user interface prototyping is also presented. These target artifacts will be explored
respectively in chapters 5 and 6. Afterwards, we discuss the mechanisms for assessing the artifacts
produced by such activities, focusing on the assessment of functional user requirements and GUI
testing. We conclude this chapter with a discuss about software development processes and

31

Chapter 1: Introduction

methods that are typically used in SE for developing interactive systems, with an emphasis on
Behavior-Driven Development (BDD).

Part II - Contribution

Chapter 3
A Scenario-Based Approach for Multi-Artifact Testing

This chapter 1s divided in three parts. The first one presents the rationale for the scenario-
based approach we propose for specifying and testing user requirements on different artifacts.
The second part presents the big picture of the micro-process that supports our approach to
assess multi-artifacts, beginning with the proposed process being presented in a high-level view,
with 1its activities packed and divided in production and quality assurance activities. Afterwards,
an architectural view of the process 1s presented to point how the diverse software components
and artifacts we consider are related for modeling requirements in a testable way. The chapter
proceeds with the workflow view of the approach that presents how low-level activities are
distributed for modeling and assessing such artifacts. The third and last part troduces the
llustrative case study we base on for presenting the diverse stages of modeling and assessing
artifacts. Therefore, this chapter addresses our specific goal of mvestigating a scenario-based
approach aiming at specifying functional user requirements and their acceptance criteria in an
understandable natural language for both technical and non-technical stakeholders.

Chapter 4
Towards an Ontology for Supporting UI Automated Testing

This chapter presents the ontological approach we have developed for specifying interactive
behaviors and supporting our automated testing approach. The aim of the ontology described in
this chapter 1s to support the assessment of user interface design artifacts as well as fully
mmplemented user interfaces on interactive systems, providing a common and consistent
description of elements that compose the semantics of interaction between users and systems n
web and/or mobile environments. Therefore, this chapter addresses our specific goal of defining
the common-ground of concepts to specify user requirements and their acceptance criteria aiming
at establishing a common vocabulary among the target artifacts.

Chapter 5
Modeling and Assessing Task Models

This chapter details our strategy for modeling and assessing task models following our
approach presented i chapter 3. The chapter begins by resuming the case study proposed
chapter 3, with task models being used to design user’s tasks. By following this, we present firstly
an orderly strategy for getting task models already consistent with the set of user requirements
specified previously. In the second section, we explore our strategy for assessing the resultant task
models. This section 1s presented i 3 steps. The first one refers to the extraction of possible
scenarios from a designed task model, formatting them to meet the ontological pattern. The
second one refers to the process of mapping elements from the task model for checking whether
they are consistent with the respective elements in the User Stories, and hence with the ontology.
Finally, the last step presents how our strategy has been implemented to support the testing in an
automated way. Therefore, this chapter addresses our specific goals of providing early automated
assessment of functional requirements on task models, with the support of automated tools to
guarantee a high availability of tests throughout the development process of interactive systems.

32

Chapter 1: Introduction

Chapter 6
Modeling and Assessing User Interfaces: From Prototypes to Final Uls

This chapter details our strategy for modeling and assessing user interface prototypes following
our approach presented in chapter 3. The chapter begins by resuming the case study proposed
i chapter 3, with Balsamiq prototypes being used to design the user interface in a first stage of
refinement. By following this, we present firstly how to produce Ul prototypes already consistent
with the set of user requirements specified previously. In the second section, we present how our
previous developed ontology can support the development of prototyping tools able to produce
consistent Ul artifacts. The third section describes how we perform tests on fully implemented
user interfaces by using an integrated multiplatform framework. This framework allows designing
automated acceptance testing with low implementation efforts. The fourth section discuss how
our approach supports the assessment of evolutionary Ul prototypes, and how it could keep them
consistent along the software development. Finally, the fifth and last section concludes the chapter
pointing out advantages and limitations of this approach. Therefore, this chapter addresses our
specific goals of providing early automated assessment of functional requirements on user
mterface prototypes in different levels of refinement, with the support of automated tools to
guarantee a high availability of tests throughout the development process of interactive systems.

Part 111 - Evaluation

Chapter 7
Case Study 1 - Understandability of User Stories

This chapter presents the experimental design and the results of our first case study to evaluate
the understandability of User Stories we used to model user requirements in our approach. To
present our findings, this chapter is divided in 7 sections. The first one presents our experimental
design, detailing our research questions and measures we used to assess the outcomes. Following
this, we present the business narrative to give the context of how business travels are booked in
our institute. Next, we detail our methodology to conduct the study, followed by the participant’s
profile, and the exercise we proposed to allow them writing their own User Stories. The sixth
section brings the results of the study, highlighting the set of User Stories written by the
participants, our adherence analyses considering stories and scenarios, our discussion of such
results, our general findings and implications, and the threats to validity of this study. Finally, we
conclude with our last remarks and point out future investigation opportunities in this field.

Chapter 8
Case Study II - Assessing User Interface Design Artifacts

This chapter describes the second case study we performed to evaluate our approach. The
first section of this chapter presents the case study design, detailing how the study was planned
and executed. The second section presents the set of complementary User Stories we have
developed to support the design and testing of the artifacts developed for the case study. The
third section adds a group of selected test cases with the aim of helping to validate such stories.
The following sections present the modeling and testing results for each one of the assessed
artifacts: task models, Balsamiq prototypes, and final Uls. In the seventh section, we build a
traceability mapping to follow the inconsistencies found in each one of the target artifacts. Such
mapping shows an edge-to-edge overall view of the testing scenarios, signalizing where a given step
has failed in each artifact and why. We finish by presenting our findings and lessons learned, as
well as our conclusions on the effectiveness of our testing approach, and the impact of the
mconsistencies identified in the assessment of artifacts.

33

Chapter 1: Introduction

Part IV - Conclusion

Chapter 9
Conclusion

This chapter presents the final remarks about this thesis’ work. We recapitulate our
achievements and discuss the main contributions and hmitations of the approach. We also
provide some directions for future research in this field as well as our future works already
planned to be conducted for improving the proposed approach. The chapter ends with the full
list of publications resultant from this thesis.

Each chapter starts with a summary that presents the mner highlights. Moreover, whereas it 1s
relevant, publications touching the core contributions of the chapter are presented at the end.

34

Chapter 2

Background

Summary

This chapter presents the state of the art about the concepts used 1in this thesis. It includes the
main methods and techniques used for designing and modeling interactive systems following a
scenario-based approach. The first part presents the methods for modeling user requirements for
mteractive systems including User Stories and Scenario-Based Design. At this part, it 1s presented
a discussion about how Human-Computer Interaction (HCI) and Software Engineering (SE)
communities handle the concept of User Stories and scenarios in a complementary perspective.
These concepts are useful to understand how our approach related to previous works on
scenario-based design and how these concepts are articulated to support our specification of User
Stories.

Afterwards, the background about task analysis and modeling 1s presented along with a synthesis
about how user mterface prototyping contributes to the process of modeling interactive systems.
An analysis about Ul prototyping tools and how they have supported the modeling of user
requirements over time 1s also presented. As task models and user interface prototypes constitute
our target artifacts to be modeled and assessed by using our approach, such analysis 1s useful to
present and align the concepts related to these artifacts.

The second part presents the mechanisms for evaluating user requirements, focusing on
functional testing and GUI testing, which are target in our approach. We conclude this chapter
with a contextualized discussion about software development processes that are typically used in
SE for developing interactive systems. We explore the concepts of macro and micro processes
that are used to define our approach and focus on the concepts related to agile methods and
techniques, especially Behavior-Driven Development (BDD), on which our approach is based.

2.1. Methods for Modeling User Requirements for Interactive Systems

There are several methods for modeling user requirements. From traditional use cases until
specific task models, user requirements modeling can assume different intents and abstraction
levels. User-centered approaches usually model requirements using artifacts such as scenarios,
task models and prototypes. In a scenario-based approach, these artifacts can be additionally
aligned to provide a complete software design specification for interactive systems. Scenarios,
however, have different meanings in the literature. They can also assume multiple forms and
templates depending on the mformation requirements engineers want to highlight. In recent
years, User Stories have stood out as one of the main scenario-based languages to specify
automatable user requirements.

2.1.1. User Stories and Scenario-Based Design

Scenario-based design (SBD) 1s a family of techniques in which the use of a future system 1s
concretely described at an early pomnt in the development process. Narrative descriptions of
envisioned usage episodes are then employed n a variety of ways to guide the development of
the system. Like other user-centered approaches, scenario-based design changes the focus of

35

Chapter 2: Background

design work from defining system operations (i.e., functional specification) to describing how
people will use a system to accomplish work tasks and other activities (Rosson and Carroll, 2001).

SBD follows an iterative design framework i which scenarios serves as a central representation
of requirements throughout the development cycle, first describing the goals and concerns of
current use, and then being successively transformed and refined through an iterative design and
evaluation process (Figure 2). However, from analysis to evaluation, the SBD cycle does not
tackle how to manage and assess the flow of artifacts that are produced all along these multiple
development phases.

As central representation of requirements, scenarios can admit multiple templates according
to the phase of development and to the level of abstraction that they are addressing for some
iformation. Free narratives, for example, are useful in the very early phases, when typically, high-
level business requirements are being defined (problem scenarios). Nevertheless, they are a
frequent source of misunderstandings when used to refine requirements in activity or interaction
scenarios in the design phase. Semi-formatted templates like in User Stories are better suitable in
this case.

ANALYZE
Problem scenarios

claims about

analysis of
stakeholders,
field studies

current
practice

DESIGN
metaphors, Activity iterative
information scenarios ana/}{;is of
technology, usability
HCI theory, ; . claims and
guidelines Information scenarios re-design

Interaction scenarios

!

PROTOTYPE & EVALUATE
summatlve l«—— Usability specifications

formative
evaluation

Figure 2. An overview of the scenario-based design (SBD) framework (Rosson and Carroll, 2002).

A large set of requirements can be expressed as stories told by users. Being a common activity
In any requirements process, users and other stakeholders typically talk about their business
process, emphasizing the flow of activities they need to accomplish. However, User Stories have
a large meaning in the hterature. The Human-Computer Interaction (HCI) community
understands this concept as stories that users tell to describe their activities and jobs during typical
requirements meetings. Being a common activity in any requirements process, users and other
stakeholders typically talk about their business process emphasizing the flow of activities they
need to accomplish. These stories are captured in requirements meetings and are the main input
to formalize a requirements artifact. These meetings work mainly like brainstorm sessions and
mnclude 1deally several stakeholders addressing different needs concerning features that may be
developed. Iterative approaches capture these needs in successive meetings, according to the
subject concerned n a particular iteration.

36

Chapter 2: Background

This concept of User Stories 1s close to the concept of scenarios given by Rosson & Carroll
(Rosson and Carroll, 2001) and widely used in UCD design:

“Scenario spells out what a user would have to do and what he or she
would see step-by-step in performing a task using a given system. The key
distinction between a scenario and a task is that a scenario Is design-
specilic, in that it shows how a task would be performed if you adopt a
particular design, while the task itsell” 1s design-independent: it's
something the user wants to do regardless of what design is chosen.
Developing the scenarios forced us to get specific about our design, and
1t forced us to consider how the various features of the system would
work together to accomplish real work.”, (Lewis and Rieman, 1993).

According to Santoro (Santoro, 2005), scenarios are a well-known technique often used during
the mitial informal analysis phase. They provide mformal descriptions of a specific use mn a
specific context of application, so a scenario might be viewed as an instance of a use case,
representing a single path through it. A careful identification of meaningful scenarios allows
designers to obtain a description of most of the activities that should be considered mn a task
model. Given task models have already been developed, Scenarios can also be extracted from
them to provide executable and possible paths in the system.

In the Software Engineering (SE) side, User Stories are typically used to describe requirements
i agile projects. This technique was proposed by Cohn (Cohn, 2004) and provides in the same
artifact a narrative, briefly describing a feature in the business point of view, and a set of scenarios
to give details about business rules and to be used as acceptance criteria, giving concrete examples
about what should be tested to consider a given feature as done.

North (North, 2017) says that:

“A story should be the product of a conversation mvolving several
people. A business analyst talks to a business stakeholder about the
feature or requirement and helps them to frame it as a story narrative.
Then a tester helps define the scope of the story - i the form of
acceptance criteria - by determining which scenarios matter and which
are less usetul. A technical representative will provide a ballpark estimate
of the amount of work mvolved in the story, and to propose alternative
approaches. Many great ideas for systems come from the people
developing them as well as the people who asked for them in the first
place.”

Given requirements can emerge from multiple sources, including previous documentations,
regulations, workflows, etc., after being captured, the User Stories need to be formatted,
considering requirements emerged from other sources and looking for two main goals:

() assure testability and non-ambiguous descriptions, and
(1) provide reuse of business scenarios.

For that, some formats and templates have been proposed (Wautelet et al., 2014). The most
useful template however 1s given by Cohn and North (Cohn, 2004; North, 2017):

37

Chapter 2: Background

Title (one line describing the story)

Narrative:
As a [role]
I want [feature]
So that [benefit]

Acceptance Criteria: (presented as Scenarios)

Scenario 1: Title
Given [context]
And [some more context]. ..
When [event]
Then [outcome]
And [another outcome]...

Scenario 2:

This structure 1s largely used in Behavior-Driven Development (BDD) and has been named
by North (North, 2017) as a “BDD story”. According to this template, a User Story 1s described
with a title, a narrative and a set of scenarios representing acceptance criteria. The title provides
a general description of the story, referring to a feature this story represents. The narrative
describes the referred feature in terms of role that will benefit from the feature, the feature itself,
and the benefit it will bring to the business. The acceptance criteria are defined through a set of
scenarios, each one with a title and three main clauses: “Given” to provide the context in which
the scenario will be actioned, “When” to describe events that will trigger the scenario and “Then”
to present outcomes that might be checked to verify the proper behavior of the system. Fach one
of these clauses can include an “And” statement to provide multiple contexts, events and/or
outcomes. Each statement in this representation 1s called step.

In the beginning of software development processes, requirements are more declarative and
lead to User Stories in a high level of abstraction. As the project evolves, scenarios descriptions
become more refined and closer to the user’s actions on the expected user interface. Chelimsky
et al. (Chelimsky et al., 2010) call them declarative and imperative scenarios. These two styles of
writing tell the same stories, but at different levels of abstraction. It impacts different parts of the
process 1n different ways. The first style 1s more horizontal, wrapping several activities up nto a
single step, which means it generally supports more scenarios, covering a larger set of features,
but with fewer steps definitions. Conversely, the second style tends to be more vertical and
customized to each scenario, with steps going step-by-step through performing each interaction
on the user mterface. It means that the work of writing steps spreads out more throughout the
development, benefiting the development of test cases.

As we can realize, the approaches for scenarios from UCD and SE share the same concept.
Both of them provide a step-by-step description of tasks being performed by users using a given
system. The main difference between them lies in the testing and the business value components
present in the SE approach. Scenarios from UCD, despite describing events that a given system
can answer, do not describe the expected behavior from the system when those events are
triggered, besides not determine the business motivation to develop the feature being described.
Table 1 summarizes such characteristics.

Referring to what was said above in this section, we can conclude that to some extent, the
approaches mentioned agree that User Stories and scenarios must provide a step-by-step
description of tasks being performed by users using a given system. Nonetheless, there are some
differences as illustrated by Table 1. This analysis gives us the opportunity to establish a
correlation between requirements 1dentified in User Stories, their representation in terms of tasks

38

Chapter 2: Background

and the extracted scenarios in both UCD and SE approaches. We can notice that the main
difference lies in the degree of formality and their possible value to support automated tests.
Another remark we can make it 1s about the type of tasks mapped to scenarios in SE. As SE
considers only tasks being performed by users when using an interactive system, User Stories in
this context address only scenarios extracted from interactive tasks in task models. Cognitive tasks,
for example, are not mapped to be SE scenarios because they cannot be performed in the system.

Phases of
Approaches for User . development
. . Key facts Advantages Shortcomings
Stories and Scenarios Y process
Early | Late
User Stories and/or | Informal description of | Highly flexible and Very hard to
scenarios by Rosson | user activities easily comprehensive formalize, little
N ; Yes No
& Carroll (Rosson contextualized n a for non-technical evolutionary and
and Carroll, 2002) story. stakeholders. low reusability.
Scenarios extracted - . .
. A possible mstance of . . Dependency of task
from task models by .. . Highly traceable for
| . ° | execution for a given models and low Yes No
Santoro (Santoro, . task models. o
- path in a task model. testability.
2005)
User Stories and/or | Semi-formal Highly testable and , .
. .. . i Very descriptive and
scenarios by North description of user casily understandable . .
on time consuming to Yes Yes
(North, 2017) and tasks being performed | for non-technical roduce
Cohn (Cohn, 2004) | in an interactive system. | stakeholders. I o

Table 1. Approaches for describing User Stories and Scenarios.

This analysis gives us the opportunity to establish a correlation between requirements
identified m User Stories, their representation i terms of tasks and the extracted scenarios in
both UCD and SE approaches. A possible solution for a use case in the domain of air traffic
control 1s presented in the Table 2 (adapted from (Santoro, 2005)).

!

As a controller
I want to set frequencies
for planes

(cognitive task)

Scenarios
Requirement Task Extracted from Task Written in the User Story
Models (UCD approach) | template (SE approach)
. irs : 11 .
Select a plane .F" St the controfler Given there are planes not
.. identifies one of the
(cognitive task) yet assumed
planes not yet assumed
“ontrollers shoul - : . .
Controllers should be Click plane T.hen the . controller When 1 click on one of
able to select a plane in | . clicks on this plane to
N (interaction task)) . them
order to set its frequency assume 1t
Then the controller
Narrative Select a plane SC decides to change the

current frequency of one
of the flights assumed

Click FREQ

(interaction task)

Then the controller clicks
on the label FREQ to
open the data-link menu

And I click on the label
FREQ

Open Menu
(interaction task)

Then the controller opens
the menu of frequency for
this plane

And I open the menu of
frequency for this plane

Select Frequency
(cognitive task)

Then the controller
selects (in his/her head) a
new frequency for this
plane

39

Chapter 2: Background

Click Frequency
(interaction task)

Then the controller clicks
on one of the available
frequencies for this plane

And I click on one of the
available frequencies

Send

(interaction task)

Then the controller clicks
on the SEND button to
send the new frequency to

And I click on the SEND
button

the aircraft

Table 2. Correlation between scenarios in UCD and SE approaches (adapted from (Santoro, 2005)).

Analyzing this correlation, we can note that the business value (represented in orange in the
narrative) and the testing component (represented in green in the User Story scenario) allow us
to implement test cases to validate the envisioned requirement, as well as checking when, after
being implemented, this feature can be considered as done and correct (that correspond to the
business value being achieved).

Another remark we can make it 1s about the type of tasks mapped to scenarios in SE. As SE
consider only tasks being performed by users when using an interactive system, User Stories in
this context address only scenarios extracted from interaction tasks in task models. Naturally,
cognitive tasks, for example, are not mapped to be SE scenarios because they cannot be
performed n the system.

2.1.2. Task Analysis and Modeling

Following an approach based on task models, interactive systems can be modeled to represent
the flow of tasks that users should accomplish when using the system. According to Paterno
(Paterno, 1999), tasks are activities that have to be performed to reach a goal. A goal 1s a desired
modification of state or an attempt to receive state information. Fach task 1s associated with one
goal and each goal 1s associated with one or multiple tasks that can be represented in multiple
abstraction levels.

2.1.2.1. Task Analysis

Task analysis 1s a process that aims to determine what the users do, the tools they use to do
their work, the mformation they know or the information they must know for performing their
work and is targeted to cover all or most cases and users. The general term task analysis can be
applied to a variety of techniques for identifying and understanding the structure, the flow, and
the attributes of tasks. Task analysis 1dentifies the actions and cognitive processes required for a
user to complete a task or achieve a particular goal.

According to the Usability BoK (Usability Body of Knowledge, 2018), a detailed task analysis
can be conducted to understand the current system and the information flows within it. These
mformation flows are mmportant to the maintenance of the existing system and must be
mcorporated or substituted in any new system. Task analysis makes it possible to design and
allocate tasks appropriately within the new system. The functions to be included within the system
and the user interface can then be accurately specified. Some of the outputs of a task analysis
mclude:

e adetalled description of physical, perceptual, and cognitive activities involved with each
task,

40

Chapter 2: Background

task duration and variability,

task frequency,

task sequence,

task allocation,

task complexity,

environmental conditions,

data and information dependencies,
tools required for the task, and

user skills, education, and traiing.

Cognitive Task Analysis (CTA) (Crandall, Klein and Hoffman, 2006) and Hierarchical Task
Analysis (HTA) (Annett, 2003) are commonly used task analysis techniques. According to
Hackos & Redish (Hackos and Redish, 1998), user and task analysis focuses on understanding:

what users’ goals are,

what they are trying to achieve,

what users actually do to achieve those goals,

what personal, social, and cultural characteristics the users bring to the tasks,
how users are ifluenced by their physical environment, and

how users’ previous knowledge and experience influence how they think about their
work and the workflow they follow to perform their tasks.

A task analysis allows teams, for example, to discover what tasks a web site/app must support,
determine the appropriate scope of content for an user interface, decide what applications your
mterface should include, refine or redefine the navigation or search for your website/app to better
support users’ goal, so to make sure the site 1s efficient, effective, and satisfying to users, build
specific web pages and web applications that match users' goals, tasks, and steps, and ensure later
on that the design supports all the tasks required. Additionally, the data for the task analysis can
be assembled from several places including business requirements, user research, existing
competitive products and brainstorming.

On the other hand, task analysis can be a very time-consuming activity if used with a high
degree of detaill on complex problems. It 1s possible to get caught in what 1s loosely termed
“analysis paralysis” where more and more detail 1s investigated (Nicolle, 1999).

a. Procedure

Task decomposition: the aim of “high level task decomposition” 1s to decompose the high-
level tasks and break them down mnto their constituent subtasks and operations. This will show
an overall structure of the main user tasks. At a lower level it may be desirable to show the task
flows, decision processes and even screen layouts.

The process of task decomposition 1s better represented as a structure chart (similar to that
used in HTA). According to Dalkir (Dalkir, 2011), this shows the sequencing of activities by
ordering them from left to right. In order to break down a task, the question should be asked
“how this task 1s done?”. If a sub-task 1s 1dentified at a lower level, it 1s possible to build up the
structure by asking "why 1s this done?". The task decomposition can be carried out using the
following stages (Dalkir, 2011):

1. Identfy the task to be analyzed.

41

Chapter 2: Background

1. Break this down into between 4 and 8 subtasks. These subtasks should be specified in
terms of objectives and, between them, should cover the whole area of interest.

nm. Draw the subtasks as a layered diagram ensuring that it 1s complete.

v. Decide upon the level of detail into which to decompose. Making a conscious decision
at this stage will ensure that all the subtask decompositions are treated consistently. It
may be decided that the decomposition should continue until flows are more easily
represented as a task flow diagram.

v. Continue the decomposition process, ensuring that the decompositions and
numbering are consistent. It 1s usually helpful to produce a written account as well as
the decomposition diagram.

vi. Present the analysis to someone else who has not been mvolved in the decomposition
but who knows the tasks well enough to check for consistency.

Task flow diagrams: task flow analysis will document the details of specific tasks. It can include
details of interactions between the user and the current system, or other individuals, and any
problems related to them. Copies of screens from the current system may also be taken to provide
details of interactive tasks. Task flows will not only show the specific details of current work
processes but may also highlight areas where task processes are poorly understood, are carried

out differently by different staff, or are inconsistent with the higher-level task structure (Dalkir,
2011).

Variations: if the tasks are already well understood, it may be sufficient to just identify and
document the tasks as part of context of use analysis. According to Saffer (Saffer, 2006), the task
analysis can consist in a raw list of features that the final application will have to carry.

2.1.2.2. Task Modeling

Task models provide a goal-oriented description of interactive systems but avoiding the need
for the level of detail required for a full description of the user interface. Each task can be specified
at various abstraction levels, describing an activity that has to be carried out to fulfil the user's
goals. By modeling tasks, designers are able to describe activities in a fine granularity, for example,
covering the temporal sequence of tasks to be carried out by the user or system, as well as any
preconditions for each task (Paterno et al., 2017). The use of task models serves as multiple
purposes such as better understanding the application under development (and in particular its
use), being a “record” of multidisciplinary discussions between multiple stakeholders, helping the
design, the usability evaluation, the performance evaluation, and the user in performing the tasks
(acting as a contextual help). Task models are also useful as documentation of requirements both
related with content and structure.

Task models rely on flexible and expressive notations providing systematic methods able to
idicate how to use information in the task models. Each notation also provides automatic tools
to model task information efficiently. Such notations represent task models by different syntaxes
(both textual and graphical), different levels of formality, and different set of operators for task
composition (Limbourg and Vanderdonckt, 2003). Hierarchical Task Analysis (HTA), GOMS,
CTT and HAMSTERS are the most representative techniques notations for task modeling.

HTA (Annett, 2003) 1s a simple and flexible method that does not depend on a
methodological context. It enables the representation of a task hierarchy that could be further
detailed. Although HTA 1s task oriented and to some extent user oriented it still maintains a
strong relationship with traditional software engineering. On the downside, there are no strict
rules for creating an HTA diagram, so different analysts will generate inconsistent hierarchies at

42

Chapter 2: Background

varying levels of detaill. HTA 1s not a predictive tool, it focuses on existing tasks and HTA
diagrams can become quite complex. When used in large project, HT'A requires a lot of overhead
work/revise and maintain task numbers and plans as tasks are edited and moved within the
hierarchy. Also, it 1s difficult to synchronize the graphical and textual representations. The results
of an HTA 1s a starting point for more detailed modeling methods, like GOMS. GOMS (Card,
Newell and Moran, 1983) 1n its turn has some important limitations. It does not consider user
errors or the possibility of mterruptions. Only sequential tasks are considered. It can be
madequate for distributed applications (such as web-based applications).

ConcurTaskTrees (CTT) (Paterno, 2000) focus on activities and follows a hierarchical
structure. It provides a graphical syntax with a rich set of temporal operators, besides task
allocation, objects and task attributes. CTT can also be applied to multi-user applications, where
users take on specific roles. The CT'T notation 1s defined i terms of a hierarchical composition
of temporal operators over named tasks, that relate a parent task to a non-empty set of child tasks.
Tasks are associated with metadata including simple expressions over preconditions.

HAMSTERS (Martinie, Palanque and Winckler, 2011) 1s a task modeling language with a
supporting tool. It 1s widely inspired by existing notations and tools and takes advantages from all
of them. HAMSTERS has been implemented with the objective of making it easily extendable
and 1t results in a CASE tool that contributes to the engineering of task models. HAMSTERS
features a task model simulator as a dedicated API for simulating the execution of task sequences.
It supports task types and temporal ordering, representation of information, knowledge, devices
and objects (required to perform tasks), structuring mechanisms and collaborative activities.

Task modeling has a decisive impact on the design of Ul prototypes once a dual-channel
correspondence should be established between them, 1.e. tasks described in task models must
take place as an executable sequence of interactions on the user interface, and conversely, the
user interfaces must support the execution of the whole set of possible mteraction scenarios
extracted from task models. As such, both artifacts must be kept in-line in order to guarantee the
consistency between models, as well as the consistency between the models and the user
requirements.

Ensuring the quality of models and their consistency with user requirements 1s an activity that
demands manipulating such models in order to semantically compare their structure with a set of
predefined requirements. Such manipulations result in a set of scenarios in which the model
represents a valid interaction path in the system. This characteristic 1s particularly useful when
identifying test scenarios for the system. Means of manipulating task models for obtaining test
scenarios 1s a problem that has been recently studied by us (Silva and Winckler, 2017) and other
authors (Bowen and Reeves, 2011; Campos et al., 2017). Once a task model describes the whole
set of tasks a user can perform in the system, besides providing the set of multiple paths that users
are able to follow to accomplish such a task, test cases are obtained by going through these
multiple paths, gathering a different execution scenario for each possible path. Therefore, all
notations and tools for task modeling provide some kind of mechanism for extracting the set of
possible scenarios by simulating a model execution.

In short, being scenarios informal descriptions of a specific use in a specific context, and task

models, descriptions of possible activiies and their relationships, scenarios support task
development while task models can support scenarios identification.

43

Chapter 2: Background

2.1.8. User Interface Prototyping

A Ul prototype 1s a previous representation of an interactive system. Prototypes are concrete
artifacts and important components of the design process. They encourage communication,
helping designers, engineers, managers, software developers, customers and users to discuss
design options and interact with each other. They also permit early evaluation since they can be
tested in various ways, including traditional usability studies and informal user feedback,
throughout the design process (Beaudouimn-Lafon and Mackay, 2000). Prototypes are often used
in an iterative design process where the prototype 1s refined and become more and more close
to the final user interface through the identification of user needs, constraints and feedbacks on
early prototypes. It makes particularly important the investigation of multiple design options n
the early phases. By running simulations on prototypes, we can determine potential scenarios that
users can perform in the system.

Along this refining process, the prototype can be designed in different levels of fidelity. The
prototype fidelity expresses the similarity between the final user interface (running in a particular
technological space) and the prototyped Ul The Ul prototype fidelity 1s said to be high if the
prototype representation 1s the closest possible to the final Ul, or almost in the same
representation type. The fidelity 1s said to be low 1f the prototype representation only partially
evokes the final UI without representing it in full details. Between high-fidelity and low-fidelity
exists the medium-fidelity level, that gives more importance to the contents than the style with
which these contents are presented (Coyette, Kieffer and Vanderdonckt, 2007).

Based on that, the design of user interfaces 1s expected to evolve along the whole software
development process. While the beginning of the project requires a low-level of formality with
UI prototypes being hand sketched in order to explore design solutions and clarify user
requirements, the development phase requires more refined versions frequently describing
presentation and dialog aspects of interaction. Full-fledged versions of user interfaces are
generally produced only later in the design process, and frequently corresponds to how the user
“see” the system. In the user’s point of view, the user interface actually 7s the system, so if some
feature is not available there, then it does not exist. Such mature Ul versions are also the source
for acceptance testing and will be used by users to assert whether a system can be considered as
done or not.

Prototyping 1s primarily a design activity in software engineering. It ensures that software
prototypes evolve into technically sound working systems and serves for studying the effectiveness
of particular designs. Several tools can help such an activity and many of them provide resources
to evolve prototypes since sketching representations until the final design. Other features such as
behavior specification, collaborative work, support for usability testing, etc. are also very useful
for designers along the design process. In (Silva, Hak and Winckler, 2015; Silva et al., 2017), we
have evaluated a set of 104 commercial tools and 17 academic tools to investigate the availability
of 13 essential features that emerged over time. Such features have been classified as milestones
and encompass non-programming skills, pen-based interaction, widgets, behavior specification,
collaborative work, reuse mechanism, scenario management, preview mode, support for usability
testing, support for code generation, version control, annotations, and support for the entire
design lifecycle.

From the 121 tools analyzed, we have noticed three milestones of releasing. The first period
(before 1995) 1s characterized by the emergence of UIMS tools. UIMS tools focus on high-fidelity
prototypes, using mostly design elements from the final interface, and being strongly dependent
on the platform. UIMS tools lack the flexibility needed in the early phases of the development

44

Chapter 2: Background

process when designers should focus on problems to be solved in terms of business and users’
requirements rather than terms of user interface design.

However, it 1s from this period the emergence of an important concept related to the design
of user interfaces. The separation of components is a concept introduced by Green (Green, 198)5)
to separate the static and the dynamic aspects of an user interface (Figure 3). According to the
author, the presentation component 1s responsible for the external presentation of the user
mterface, while the dialogue control component defines the structure of the dialogue between the
user and the application program. Still according to the author, the dialogue control component
can be viewed as the mediator between the user and the applications program. The user, through
the presentation component, makes requests and supplies data to the application program.
Unlike the presentation component, the dialogue control component must maintain a state and
have control over it. The actions performed by this component will usually depend upon the
context of the dialogue, therefore, any notations for it must be able to handle dialogue states and
state changes. There 1s also the application mnterface model which 1s a component to define the
semantics of the application. This representation includes the data objects that are maintained by
the application, and the routines the user interface can use to communicate with the application.
The concepts of presentation and dialog are part of our ontological definition of a user interface
and will be explored in chapter 4.

| | |]
| |

|
_Presentation | | Dialogue Application
USER <->| |<===-=>] Control |<----> Interface
| | | | | Model

| | | |

| —— J | |
| |
A | |
| | |
| - |

Figure 3. The logic model of a user interface (Green, 1985).

It 1s also from this period many reports of using tools such as PowerPoint and Visio to create
user interface prototypes. Although PowerPoint and Visio are not intended to build prototypes,
they provide functions for drawing presentations and creating transitions, which might have been
helpful to build low-fidelity prototypes when no other UIMS tool was available.

The second 1dentified period (1995-2005) encompassed tools with functionalities to support
the development team when managing prototyping activities (ex. annotations, code generation,
version control, etc.). There was an increasing interest in the period on alternative ways of
prototyping user interfaces as well as in behavior modeling. For example, we observed the
emergence of sketching tools such as SILK (Landay, 1996) and DENIM (Newman et al., 2003).

The third and last period 1s characterized by a substantial increase of commercial tools and
support for collaborative work. This period goes from 2007 to now. Along the three mentioned
periods, features like Non-Programming Skills, the use of Widgets and Behavior Specification
were the three most implemented by tools (over 70%). This fact can signalize the focus in
providing a friendly environment for non-technical people since the first years. McDonald et al.
(McDonald, Vandenberg and Smartt, 1988) in 1988 had already pointed the need to consider
different skills from the various stakeholders involved and to allow they use tools to design their
own interfaces without technical skills. The way tools started providing that - and still remain until
now - was through Widgets. Widgets have introduced a simple mechanism to encapsulate an idea

Chapter 2: Background

(and sometimes behaviors) for each component normally used to build GUIs. The concept of
Widgets will be explored in chapter 6 when designing prototypes using the Balsamiq tool.

Features like Scenario Management, Support for Usability Testing and Support for the Entire
Design Lifecycle are supported by a few tools (less than 10%). This number suggests a slow
progress towards the support of the whole lifecycle of prototyping. Concerning Pen-Based
Interaction, only 9.92% of tools implement this feature. Pen-Based Interaction feature was
presented in SILK in 1995, and after some years, well-known tools like Adobe Illustrator and
Photoshop implemented it. Nevertheless, it never seems to become a successful feature with
commercial prototyping tools. This might be explained by the fact that sketches are hard to
maintain (ex. ambiguity of sketches) and hard to make them evolve throughout the development
process.

The five more covered milestones (Non-Programming Skills, the use of Widgets, Behavior
Specification, Preview Mode and Reuse Mechanism) - all of them covered by more than half of
tools - are also the oldest features presented by prototyping tools (since 1988). However, the
availability of features like Behavior Specification, Preview Mode and Reuse Mechanism evolved
along the time. Behavior Specification has benefited from more human-centered approaches
such as Scenario-based specifications, while Preview Mode has incorporated co-execution
between models and prototypes like in PetShop (Navarre, Palanque and Bastide, 2002) and
ScreenArchitect. Since 2001, Reuse Mechanisms started to include technics like Plastic Interfaces
(Calvary, Coutaz and Thevenin, 2001) and Responsive Design (Marcotte, 2014).

2.1.4. User Interfaces and Task-Based Development

Concerning the description of user interfaces, the Camaleon Framework (Calvary et al., 2002)
treats the presentation and the dialog parts of an Ul in three levels of abstractions: Abstract,
Concrete and Final User Interfaces. The idea 1s that abstract user interface components (such as
a Container) could be refined to a more concrete representation (such as a Window) that will
ultimately feature a final implementation in a target platform (e.g. MacOS or Windows). User
Interface (UI) specifications include more or less details according to the level of abstraction as
shown 1n Figure 4.

[Contextof use A Y\ f Contextofuse B\

© Task & Concepts

© Task & Concepts

© Abstract Ul (AUI) ® Abstract Ul (AUI)

© Concrete Ul (CUI)

©Concrete Ul (CUI)

© Final Ul (FUI)
. _4

<> T

Figure 4. The Cameleon Reference Framework.

The UsiXML (USer Interface eXtensible Markup Language) (Limbourg et al, 2004)
mmplements the principles of the Cameleon framework in a XMI-comphant markup language
featuring many dialects for treating Character User Interfaces (CUIs), Graphical User Interfaces
(GUIs), Auditory User Interfaces, and Multimodal User Interfaces. UsiXML 1s a declarative
language that captures the essence of User Interface components. At a highest level of abstraction,
UsiXML describes concepts of widgets, controls, containers, modalities and interaction
techniques. UsiXML contain a few basic elements for describing the dialog part such as the
concept of events, conditions and actions. For that, some authors have proposed to use a notation

46

Chapter 2: Background

based on statecharts called SWC (StateWebCharts) (Winckler and Palanque, 2003) to specify
the UsiXML dialog. The same authors (Winckler et al., 2008) have demonstrated that, using
SWC, it 1s possible to describe the system behavior at different levels of abstraction using
UsiXML.

As far as a common vocabulary 1s at a concern, the W3C published a glossary of recurrent
terms for presentation components called MBUI (Model-based User Interface) (Pullmann,
2017). For the dialog component, SWC (Winckler and Palanque, 2003) and SXCML (State
Chart XML: State Machine Notation for Control Abstraction) (Barnett, 2017) offer a language
based on the state machine concepts.

There 1s also an intrinsically relationship between task modeling and user mterface design.
Some authors have even tried to establish a linguistic task modeling for designing user interfaces.
Khaddam et al. (Khaddam, Mezhoudi and Vanderdonckt, 2015) presented a linguistic task
model and notation. The model aims to separate the task and the semantic levels by adopting a
well-defined set of task identification criteria. The provided notation enables identification of task
mput elements based on the task state diagram that 1s configured on each task. The notation also
addressed the dynamic aspect of modeling by introducing dynamic tasks and pumping tasks.

Wolff et al. (Wollt er al, 2005) proposes to link GUI specifications to abstract dialogue
models. Specifications are linked to task models describing behavioral characteristics. Prototypes
of interactive systems are refined and interactively generated using a GUI editor. The design cycle
goes from task model to abstract user interfaces and finally to a concrete user interface. It is an
mteresting approach to have a mechanism to control changes in interface elements according to
the task to which they are associated in the task models. However, the approach is not iterative
and does not provide the necessary testing component to check and verify user interfaces against
behavior-based user requirements.

Martinie et al. (Martinie et al., 2015), followed by Campos et al. (Campos et al., 2016), propose
a tool-supported framework and a model-based testing approach to support linking task models
to an existing, executable, and interactive application. The framework to define a systematic
correspondence between the user interface elements and user tasks. The problem with this
approach 1s that it only covers the interaction of task models with a concrete fully-functional user
mterfaces, not covering user interface prototypes or other types of requirements artifacts that can
emerge along the process. Another problem 1s that it requires much intervention of developers
to prepare the source code to support the integration, making it difficult to be adopted in
applications that cannot receive interventions at the code level.

2.2. Methods for Evaluating User Requirements

Assuring the quality of user requirements representation is a complex task. Requirements can
be expressed in so many forms and be represented through so many modeling and specification
techniques that ensuring its consistency along the software development 1s a quite onerous task.
Considering their representation as software artifacts, these last ones are usually only mnspected
manually in order to evaluate the adherence with other requirements representations. This
process 1s part of what 1s called software verification. Software verification 1s defined as:

“(A) The process of evaluating a system or component to determine
whether the products of a given development phase satisty the conditions
mmposed at the start of that phase. (B) The process of providing objective
evidence that the system, software, or hardware and its associated

Chapter 2: Background

products conform to requirements (e.g., for correctness, completeness,
consistency, and accuracy)” (IEELE, 2017).

Boehm (Boehm, 1979) comed a quite famous question to simplify the defimtion of
verification: “Am I building the product right?”. This question aims to identify whether the
software that 1s being built (or its intermediate outcomes, 1.e. the software artifacts) actually meets
the requirements, even if the software will not be exactly what the user 1s waiting for. By definition,
verification nvolves the comparison between the requirements baseline and the successive
refinements descending from it - the product design, detailed design, code, database, and
documentation - in order to keep these refinements consistent with the requirements baseline

(Boehm, 1979).

To certify that the software actually meets what the user 1s expecting, the software needs to be
validated. Software validation 1s defined as:

“(A) The process of evaluating a system or component during or at the
end of the development process to determine whether it satisties
specified requirements. (B) The process of providing evidence that the
systemn, software, or hardware and its associated products satisly
requirements allocated to it at the end of each life cyvcle actvity, solve the
right problem (e.g., correctly model physical laws, implement business
rules, and use the proper system assumptions), and satisly mtended use
and user needs.” (1IEEE, 2017).

Boehm (Boehm, 1979) also comned an equivalent question to simplify the definition of
validation: “Am I building the right product?”. It means that validation identifies problems which
must be resolved by a change of the requirements specification (Boehm, 1979). This 1s due to
the fact that if a validation problem has been found, then the system actually does not satisty the
mtended use and the user needs.

From the user point of view, evaluating his/her requirements usually means assessing a
graphical user interface where he/she can effectively use the application and validate its behavior.
This kind of validation made by final users 1s known as acceptance testing. Acceptance testing 1s
a level of software testing where a system 1s tested for acceptability. The purpose of this test 1s to
evaluate the system’s compliance with the business and user requirements and assess whether it
1s acceptable for delivery (Graham ez al., 2008). By its nature, acceptance testing 1s usually focused
on the functional aspect of the system.

2.2.1. Functional Testing

According to Myers (Myers, 2004), the purpose of software testing 1s to find errors so that they
can be fixed. The term “errors” refers to any sort of problem with the system that could lead to a
failure that could mmpact a user’s experience. It 1s important to notice that “testing shows the
presence, not the absence, of errors” (Dykstra, 1970). It means that if a suite of tests 1s written,
run, and discovers several errors, the tests have proven that those specific errors exist, and effort
should now be expended to figure out how to fix them. This does not prove that those were the
only errors in the system - in fact, it 1s impossible to write and/or run enough tests to prove that
even simple functionality 1s absolutely correct (Dykstra, 1970). Testing should be seen as an
attempt to gain confidence that a system meets the expectations of its developers and users.
Another important aspect of software testing 1s the reality that some errors do not matter if no
one cares about them. There are far too many errors in any software system to fix them all, so

48

Chapter 2: Background

developers must always focus on that ones that are most likely to impact the user n a significant
way (Hellmann, 2015).

In Software Engineering, the testing activity covers several levels of abstraction, from low-level
testing such as unit and integration testing to high-level ones such as system and acceptance testing
(Myers, 2004). The level of the artifact under testing determines the level of testing to be applied.
This correspondence 1s shown i Figure 5. The V-model (Forsberg and Mooz, 1991) represents
the multiple levels of testing according to the target artifact. The software source code, which 1s
the lowest level of abstraction in terms of artifacts, is tested by unit testing. The software design
and its architecture are tested by integration testing. At a higher level of abstraction, system
requirements are tested by system testing while user requirements (that are being target in this
thesis) are tested by acceptance testing. Low-level tests are aimed at assessing the quality of the
code produced. As such kind of test 1s performed directly in the source code of the application,
it 1s usually called “white box” testing. Contrarily, high-level tests are aimed at assessing the quality
of the final product as a whole. As such kind of test 1s performed in the presentation layer of the
application, it 1s usually called “black box” testing.

User
Requirements ssssssssssesss

Acceptance
Testing

Engineering

o System
Requirements R - yste
ineeri Testing
Engineering
Architecture SYSterTl
Engineering - Integration
Testing
Subsystem
Design ~ feeeeseeseeneeneeed »{ Integration
Testing
Coding (SW) i .
Fabrication (HW) Unit Testing

Figure 5. The V-model for testing.

Tests can also be focused on specific aspects of the system such as functionality, usability,
scalability or performance. Among these several types of testing, we are focused on functional
testing in this thesis. Functional testing aims to assess the functional aspect of user requirements.
Functional testing 1dentifies situations that should be tested to ensure the correct behavior of the
system under development in accordance with the requirements previously specified. The
acceptance testing refers to tests made under the client/user point of view to validate the right
behavior of the system. For that, clients might be able to run their business workflows and to
check if the system behaves in an appropriate manner.

Several techniques are employed to conduct functional testing such as Boundary Value
Analysis, Equivalence Class Testing, Decision Table Base Testing, etc. (Myers, 2004). These
techniques support the development of test cases that might be specified to validate the right

49

Chapter 2: Background

mmplementation of requirements. They explore the expected behavior of the system when
performing the software features as well as the potential error situations that could lead to
mconsistencies in the software behavior.

A big challenge related to testing software 1s that requirements are dispersed m multiple
artifacts which describe such requirements in different levels of abstraction and in different
perspectives according to the target audience. Thus, tests should run not only in the final product,
but also in the whole set of artifacts to ensure that they represent the same information in a non-
ambiguous way, and in accordance with the whole requirements chain. Moreover, testing should
be performed along the development process as clients and users introduce new demands or
modify the existing ones all along the iterations. Regression testing is then crucial to ensure that
the system remains behaving properly and in accordance with the new requirements introduced.
Manual regression testing however is extremely time consuming and highly error-prone.
Therefore, automated testing 1s a key factor to support testing in an ever-changing environment,
allowing a reliable checking of requirements and promoting a high availability of testing.

2.2.2. GUI Testing

Being the main bridge between the system and the end user, graphical user interfaces (GUISs)
are a crucial target artifact for testing. As Hellmann (Hellmann, 2015) pointed out, the simplest
way to perform GUI testing 1s with manual testing, wheremn a human tester interacts with an
application to verify that its responses are correct. A human tester can easily interact with an
application and recognize when an error occurs, but manual testing 1s very slow and error-prone.
If testing should be done frequently, then manually testing a GUI quickly becomes unfeasible.
Automated tools exist to simplify and automated this process. Most GUI testing tools work on
the capture/replay paradigm. In capture/replay, testing tools monitor the set of interactions
between a human tester and the system and record these steps so that they can be replayed later
as automated tests. However, capture/replay tools (CRTs) do not tend to record tests in a human-
readable manner, meaning that it is much more difficult to modify an existing test than to record
a new one.

Other tools are designed to make direct calls to the system using the native support for
automation of each user interface environment. When testing user interfaces presented by means
of a web browser, for example, such tools make calls directly to the browser. How these direct
calls are made, and the features they support depends on the target browser. Such approaches
tend to be much more flexible to implement automated testing for GUIs. Tests specified by these
approaches tend to be easier to maintain, but they carry the same problem of low human-
readability. Some tools have then emerged to raise the level of automated test specification. With
tools like JBehave', users can specify and run their own text-based User Stories to automate
acceptance testing, which allows “out-in” development, 1.e. end-users being empowered to guide
the software development by writing their own automated user requirements and tests.

2.2.3. Artifacts Inspection and Requirements Traceability

Artifacts other than user interfaces are not commonly tested. A common argument is that they
cannot be “executed” in order to be tested. The set of user requirements they represent is usually
only mnspected manually in a try to verify its consistency. Inspections can be of different types
mcluding formal technical reviews, walkthroughs, peer desk check, informal ad-hoc feedback,
and so on (Tan, 2005). On another front, requirements traceability techniques have been studied

! http://jbehave.org

50

Chapter 2: Background

for a long time as a way to trace such requirements along their multiple versions (horizontal
traceability) or along their representation in another artifacts (vertical traceabihity) (Ebert, 2011).

Some authors concentrated efforts in providing automated tools to keep compatibility between
different artifacts models. Those approaches, regardless providing some mechanism to trace or
assess requirements for particular environments, do not consider how to integrate and test the set
of multiple other artifacts that are commonly used throughout development processes. Luna et
al. (Luna er al., 2010), for example, propose WebSpec, a requirement artifact used to capture
navigation, interaction and Ul features in web applications, where diagrams can be validated due
to the automatic derivation of interaction tests. WebSpec can be used in conjunction with
mockups to provide realistic UI simulations, allowing quick requirements validation. It can also
be used to capture requirement changes and use them to semi-automatically upgrade the
application and maintain quality standards.

Buchmann and Karagiannis (Buchmann and Karagiannis, 2017) presented a modeling
method for the elicitation of requirements for mobile apps that enables semantic traceability for
the requirements representation. Instead of having requirements represented as natural language
items that are documented by diagrammatic models, the communication channels are switched:
semantically interlinked conceptual models become the requirements representation, while free
text can be used for requirements annotations/metadata. The authors claim that the method can
support semantic traceability in scenarios of human-based requirements validation but using an
extremely heavy modeling approach which 1s not suitable for checking requirements in a high
level of abstraction. Besides that, the method 1s not focused on providing a testing mechanism
through common artifacts, but only in validating the requirements modeled within the approach.

2.3. Software Development Processes

Since the software crisis in 1968, software development processes have emerged as a silver
bullet for delivering high-quality, scalable and reliable software systems. The waterfall model
(Royce, 1970) guided many software development processes over time proposing a seven-step
cascading model to produce software covering activiies from system requirements until
operation. This model implements the concept of Big Design Up Front (BDUF) where the
software design phase 1s fully completed before the implementation 1s started.

The waterfall model gave rise to several development problems such as the difficulty of
designers to foresee problem areas without extensive prototyping and at least some nvestment
mto implementation, the difficulty of evolving requirements once clients may not know exactly
what their requirements are before they see working software, the taking of bad design decisions
due to the lack of knowledge about the system at the beginning of the project, etc. Contrary to
this model, iterative processes have emerged as a solution to break the software process in small
iterations mto continuous cycles of development. Whilst the waterfall model delivers a big
software outcome only at the end of the process, iterative processes give more flexibility focusing
on delivering smaller, but incremental software deliverables along multiple iterations. An
illustration of both waterfall and iterative models 1s presented in Figure 6.

Both waterfall and iterative models served as basis for many software development processes
since then. Such processes are said to be macro-processes. Macro-processes emphasize the
overall external behaviors of processes, whilst micro-processes emphasize the internal workings
of processes (Osterweil, 2005).

Chapter 2: Background

Tterative

Figure 6. Simplified versions of waterfall and iterative models.

Macro-processes are concerned by the overall software development lifecycle, 1.e. the choice
of models (waterfall, iterative, etc.) to conduct the project’s lifecycle affects the macro-process.
Over time, based on their characteristics and emphasis, macro-processes were being classified as
traditional and agile methodologies. The Unified Process (UP) (Jacobson, Booch and
Rumbaugh, 1999) became the most know example of traditional method. UP 1s a heavyweight
multi-phase software development process that emphasizes proven design, extensive
documentation, and detailed planning. UP 1s considered as an architecture-centric, use-case
driven and nisk-focused process framework which benefits from a well-structured object-oriented
modeling language, the Unified Modeling Language (UML) (Booch, Rumbaugh and Jacobson,
2005). Opposite to traditional methods, agile methods consist in a lightweight set of methods
focused on communication between users and developers, short-time software delivery, adaptive
planning, and self-organization. Agile methods are adaptive rather than predictive, and people-
oriented rather than process-oriented. Such methods are detailed hereafter in the next subsection.

Differently from macro-processes, micro-processes are concerned by the analysis and design
techniques, 1.e. the set of techniques chosen to be used within the different phases of the project’s
lifecycle affects the micro-process mstead. The approach we propose in this thesis therefore
defines a micro-process once it affects the strategies for specifying and assessing user requirements
on multiple software artifacts within the different phases of the project. The micro-process
designed for our approach is presented in chapter 3.

2.3.1. Agile Methods

During the 1990’s, a number of lightweight software development methods evolved in reaction
to the prevailing heavyweight methods. They became known n early 2001 as agile methods. Such
methods advocate for an mcremental and iterative paradigm with a Rough Design Up Front
(RDUF) (Ambler, 2002). Agile methods follow four main values expressed in the Manifesto for
Agile Software Development (Beck et al., 2001). Such values emphasize:

individuals and interactions over processes and tools,
working software over comprehensive documentation,
customer collaboration over contract negotiation, and
responding to change over following a plan.

Chapter 2: Background

Agile methods are based on sustainable development, collaboration between business people
and developers, self-organizing teams, working software adding business value, continuous
delivery of software, changing requirements, short development timescales, motivated individuals,
face-to-face conversation, technical excellence and emergent design, simplicity, working software
as measure of progress, and continuous evaluation. These principles are declared in the manifesto
as follows:

e Our highest priority 1s to satisfy the customer through early and continuous delivery of
valuable software.

e Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.

e Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter imescale.

¢ Business people and developers must work together daily throughout the project.

e Build projects around motivated individuals. Give them the environment and support
they need and trust them to get the job done.

e The most efficient and effective method of conveying information to and within a
development team 1s face-to-face conversation.

o Working software 1s the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.
Simplicity - the art of maximizing the amount of work not done - 1s essential.

The best architectures, requirements, and designs emerge from self-organizing teams.

Atregular intervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly.

This list of twelve principles are implemented through a series of practices that vary from
method to method. The “subway map” to the agile practices implemented by leading approaches
1s llustrated i Figure 8. Popular agile software development methods include (but are not limited
to): Adaptive Software Development (ASD) (Highsmith, 1999), Agile Unified Process (AUP)
(Ambler, 2005), Disciplined Agile Delivery (DAD) (Ambler and Lines, 2012), Dynamic Systems
Development Method (DSDM) (Stapleton and Constable, 1997), Extreme Programming (XP)
(Beck and Andres, 2004), Feature-Driven Development (FDD) (Palmer and Felsing, 2002), Lean
Software Development (Poppendieck, Poppendieck and Poppendieck, 2003), Kanban
(Anderson, 2010), Rapid Application Development (RAD) (Martin, 1991), Scrum (Schwaber,
2004), and Scrumban (Ladas, 2009; Reddy, 2015).

The need of modeling 1s quite controversial in agile methods. They consider in general that,
to be effective, agile modelers should know a wide variety of modeling techniques so that they
have the skills and knowledge to apply the right artifact(s) for the situation at hand (Ambler, 2002).
Modeling practices always include a strong commitment with executable specifications, modeling
only the essential at a given time (keeping the RDUF paradigm), and an automated test-first
approach. Figure 7 illustrates such commitments according to Ambler (Ambler, 2002).

UI prototypes are also an important modeling artifact explored by agile methods. Kipyaho
and Kauppinen (Kéipyaho and Kauppinen, 2015) have investigated how prototyping can solve the
challenges of requirements in an agile context. The authors suggest that prototyping can solve
some problems of agile development, such as the lack of documentation, poor communication
tools, but it also needs complementary practices such as the use of ATDD. The authors conclude

Chapter 2: Background

that one of the biggest benefits from prototyping is that prototypes act as tangible plans that can
be relied on when discussing changes.

Definition of Done Point estimates

Planning poker

Backlog

Role-Feature

Definition of Ready Relative estimation

Lead time

Task board Backlog grooming ATDD

personas © Acceptance tests

Story mapping o

Burndown chart

iquitous language

Scrum of Scrums

Continuous
deployment

Three Questions Story splitting o Mock objects

Niko-niko

Continuous
Integration

Sustainable

User
Pgce i

Sign up Iterations Refactoring

TDD
Pair Programming Daily Velocity ~ Frequent Collective Simple design
meeting releases Ownership
Rules of simplicity
o Oream room 3cs O Unit tests
Project Facilitation
charters o Automated build
Heartbeat
retrospective Quick design Exploratory testing
session
(o]
Team

Iterative Incremental development Version control

development Usability testing

CRC cards

Lines represent practices from the various Agile "tribes" or areas of concern:

[xireme Programming e Scrim

feams Product mana

Em———— | can

amentals

Devops

Figure 8. “Subway Map” to agile practices (Agrle Alliance, 2018).

« Identify the high-level scope IniliaEI Reiq_uir_ements Initi;l Arqhitgctural
« Identify initial “requirements stack” nvdswmng ""("5'°'“"9
« Identify an architectural vision (days) (days)
Iteration 0: Envisioning
* Modeling is part of iteration planning effort N "
« Need to model enough to give good estimates Iteration Modeling i
+ Need to plan the work for the iteration (hours) -
« Work through specific issues on a JIT manner ‘ - Reviews
 Stakeholders actively participate Model Storming (optional)
* Requirements evolve throughout project (minutes) ;
« Model just enough for now, you can always come All lterations
back later I (hours)
« Develop working software via a test-first approach Test Driven
Details captured in the form of executable specifications Development (TDD)
(hours)
I ion 1: Develop t
I Iteration 2: Development
I | ight 2003-2007
I n: Development cogcnt?w Ambiar

Figure 7. Agile Model Driven Development (AMDD) (Ambler, 2002).

Chapter 2: Background

2.3.2. Behavior-Driven Development

Behavior-Driven Development (BDD) (Chelimsky ef al,, 2010) 1s an evolution of Test-Driven
Development (I'DD) (Beck, 2002; Astels, 2003), and 1s intended to make the practice of writing
automated testing more accessible and intuitive to newcomers and experts alike. It shifts the
vocabulary from being test-based to behavior-based. It positions itself as a development paradigm,
emphasizing communication and automation as equal goals. In BDD, the behaviors represent
both the requirements specification and the test cases. According to North (North, 2009):

“BDD 1s a second-generation, outside-in, pull-based, multiple-
stakeholder, multiple-scale, high-automation, agile methodology. It
describes a cycle of interactions with well-defined outputs, resulting mn the
delivery of working, tested software that matters.”

BDD has aroused interest from both academic and industrial communities in the last years.
Supported by a wide development philosophy that includes Acceptance Test-Driven
Development (ATDD) (Pugh, 2010) and Specification by Example (Adzc, 2011), BDD drnives
development teams to a requirements specification based on User Stories (Cohn, 2004) in a
understandable natural language format. This format allows specifying executable requirements
by means of a Domain-Specific Language (DSL) provided by Gherkin’. Gherkin is a business
readable DSL that lets users and developers describe software’s behavior without detailing how
that behavior i1s implemented. Gherkin serves two purposes: documentation and automated tests.
By using this language, requirements specifications can directly be used to implement automated
tests, conducting to a “live” documentation and making easier for clients and other stakeholders
to set their final acceptance tests. It guides the system development and brings the opportunity to
test scenarios directly on the user interface with the aid of testing frameworks for different
platforms.

In BDD, the user’s point of view about the system 1s captured by the User Stories, described
according to a template. The BDD approach assumes that clients and teams can communicate
using this semi-structured natural language description, in a non-ambiguous way (because 1t 1s
supported by test cases). These test cases are developed for each unit of software feature following
a 'T'DD approach which encompasses:

define a test set for the unit first,
make the tests fail,
then implement the unit,

finally verify that the implementation of the unit makes the tests succeed.

BDD specifies that tests of any unit of software should be specified in terms of the desired
behavior of the unit (North, 2006), 1.e. the behavior that adds business value to the product. Such
behaviors are specified in the User Stories. Additionally, BDD extends the TDD philosophy by
(Agrle Alliance, 2018):

e Applying the “Five Why’s” principle to each proposed User Story, so that its purpose
1s clearly related to business outcomes,

e Thinking “from the outside 1n”, in other words implement only those behaviors which
contribute most directly to these business outcomes, so as to minimize waste,

2 https://github.com/cucumber/cucumber/wiki/Gherkin

Chapter 2: Background

e Describing behaviors in a single notation which 1s directly accessible to domain experts,
testers and developers, so as to improve communication,

e Applying these techniques all the way down to the lowest levels of abstraction of the
software, paying particular attention to the distribution of behavior, so that evolution
remains cheap.

BDD i1s the primary software development method for specifying automated natural language
user requirements. Efforts to specify requirements in a natural language are not recent though.
Language Extended Lexicon (LEL) (Leite and Oliveira, 1995) have been studied since the 90’s.
The authors propose a lexical analysis of requirements descriptions in order to integrate scenarios
mto a requirements baseline, making possible tracing their evolution. They were followed by
other attempts to identify test cases from requirements specified in natural language (Sneed, 2007;
Dwarakanath and Sengupta, 2012).

BDD has been evaluated (Lopes, 2012) and its characteristics analyzed and studied (Solis and
Wang, 2011; Egbreghts, 2017) by several authors. Studies have been conducted to explore the
use of BDD as part of empirical analysis of acceptance test-driven development (Melnik, 2007),
to support enterprise modeling within an agile approach (Valente er al., 2017) and within an user-
centered approach (Valente ef al., 2016), to support requirements engineering with gamification
(Lombriser et al., 2016), to support a testing architecture for micro services (Rahman and Gao,
2015), to support the analysis of requirements communication (Oran et al., 2017), to support
safety analysis and verification n agile development (Wang and Wagner, 2018), and to enhance
the critical quality of security functional requirements (Lai, Leu and Chu, 2014). Other studies
have concentrated in the use of automated acceptance testing to support BDD traceability
(Lucassen et al, 2017), or in analyzing its compatibility with business modeling (Carvalho,
Carvalho e Silva and Manhaes, 2010; Carvalho, Manhiaes and Carvalho e Silva, 2010) and with
BPMN (Libke and Van Lessen, 2016).

BDD has also been used to support implementation of source code. Soeken et al. (Soeken,
Wille and Drechsler, 2012) propose a design flow where the designer enters in a dialog with the
computer where a program processes, sentence by sentence, all the requirements creating code
blocks such as classes, attributes, and operations in a BDD template. The template proposed by
the computer can be revised; which leads to a training of the computer program and a better
understanding of following sentences.

2.4. Conclusion

The background presented i this chapter points towards a gap when integrating different
requirements artifacts throughout a design process. Some methods addressed concerns in
scenarios descriptions, other ones i Ul prototyping or task modeling, but none of them
addressed the problem of integrating the assessment of multiple artifacts in order to ensure
correctness and consistency of user requirements modeling along the software development. In
the next chapter, we start to present our approach to address such mentioned gaps, first identifying
a scenario-based approach aiming at addressing the concerns of specification, followed by a
micro-process for implementing such an approach.

2.5. Resultant Publications

Chapter 2: Background

Silva, T. R., Hak, J.-L., Winckler, M. & Nicolas, O. (2017). A Comparative Study of Milestones
for Featuring GUI Prototyping Tools. Journal of Software Engineering and Applications, 10 (06),
pp- 564-589. DOI: http://do1.org/10.4236/1sea.2017.106031. (Silva et al., 2017)

Silva, T. R., Hak, J. L. & Winckler, M. (2015). A Review of Milestones in the History of GUI
Prototyping Tools. In: INTERACT 2015 Adjunct Proceedings: 15th IFIP TC. 13 International
Conference on Human-Computer Interaction, pp. 267-279, vol. 22. University of Bamberg
Press. (Silva, Hak and Winckler, 2015)

57

Part II - Contribution

Chapter 3

A Scenario-Based Approach for
Mult-Artifact Testing

Summary

This chapter presents an approach based on scenarios to support the specification and the multi-
artifact assessment of functional user requirements along the development process of interactive
systems. The approach 1s aimed at describing how the different artifacts, inputs and outcomes
should be used to support activities of specification and assessment of requirements. The
approach relies on the premise that user requirements, commonly expressed by the means of
User Stories and scenarios, must be specified in a certain way to be employed i automated testing
of the various artifacts used along the development process. For that purpose, the approach
employs a user iterface ontology that ensures that elements described in the scenarios refer to
elements described in the artifacts. The focus of this chapter 1s to present a big picture of the
approach and its inner rationale. The ontology itself 1s presented in chapter 4, while the
mstantiation of the approach to specific artifacts 1s presented latter on in chapters 5 (for task
models) and 6 (for user interfaces).

In the present chapter, the approach in presented in 3 different views. The first one 1s a high-level
view with its activities packed and divided in Production and Quality Assurance activities. We
show n this view how different roles contribute to the approach by writing testable User Stories.
Afterwards, an architectural view of the approach is presented to point how the diverse software
components and artifacts are related for modeling requirements in a testable way. This view 1s
complemented by a workflow view of the approach that presents how low-level activities are
distributed for modeling and assessing user interface design artifacts. The workflow view
addresses responsibilities for the multiple roles mvolved mn the process as well as the resources
that should be produced or delivered throughout the activities flow. Activities in the workflow are
presented through a set of steps that could be followed by stakeholders for modeling
requirements in a behavior-oriented way, allowing them to be properly tested afterwards. We also
discuss alternatives for performing the approach depending on the stage of the project in which
the approach i1s employed.

Lastly, an illustrative case study for assessing a generic web system for booking flight tickets is
presented to guide and exemplify the use of the approach. The study 1s organized following the
set of step-by-step activities proposed by our workflow. The same case study 1s retaken to provide
consistent examples of use throughout the following chapters.

3.1. Rationale for a Scenario-Based Approach

Requirements are the main source of mformation for specifying a software system, but they
are not necessarily explicit or formally specified. They can emerge from multiple sources. In
addition to requirements expressed by the stakeholders, requirements might have origin mn
documents such as business models, laws and regulations. As such, several aspects of information,
from the macro business goals until the most detailed information about user tasks are modeled

61

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

i several requirements artifacts, designing different aspects of the system (e.g. business models,
use cases, task models, etc.). As many stakeholders have different views of the system and
different phases of development require distinct information, artifacts used for modeling tend to
be very diverse throughout the development, ranging from business models in the very beginning
of the project, until complete test specifications at the end. In iterative processes, the cycle of
producing and evaluating requirements and artifacts permeates all phases of system development,
from requirements and business analysis until the software testing (Jacobson, Booch and
Rumbaugh, 1999).

When designing new software systems, clients and users are keen to imtroduce new
requirements along successive iterations and such requirements tend to vary widely, once
different stakeholders bring different requirements to the product. Chients are typically involved
m bringing requirements that hmit the budget, the scope and the timeframe available for
development. Requirements are cut and/or mtroduced based on such requirements. Business
people bring typically high-level and macro requirements that drive the project to a business goal
to be achieved, while users are aimed to set more functional requirements that specify practical
features the software should provide.

Such characteristic has an impact in the forthcoming development as well as in previously
developed artifacts. Given requirements should be verified and tested against not only the
software already produced, but also against the other permanent artifacts produced throughout
the process (Boehm, 1979), it leads us to a cycle of permanent production of multiple artifacts,
m multiple versions, evolving all along of multiple phases of development until they reach the
status of final product. Traces along those multiple evolutions should be maintained for quality
assurance purposes (Ebert, 2011). This cycle 1s illustrated in Figure 9.

1(“
Client, Product Owner / Business Analyst, User,
'

A

User Stories

Vertical Traceabllity

Multiple Iterations

Prototypes - I
u» Horizontal Traceability

Figure 9. The cycle of permanent evolution of artifacts in iterative processes

62

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

Among the several types of requirements that can emerge during a specification, we are
especially interested in the ones which model business and functional aspects. Business
requirements relate to a business’ objectives, vision and goals. They also provide the scope of a
business need or problem that needs to be addressed through a specific activity or project.
Functional requirements break down the steps needed to meet the business requirements. When
developing functional requirements, a comprehensive list of steps that will be taken during the
project 1s developed. Functional requirements are very detailed and provide information on how
business needs and goals will be delivered through a specific project.

Previous works have suggested that Use Cases (Bertolino et al., 2006) can be used to specify
functional requirements and extract scenarios to be tested against the system. Nonetheless,
scenarios can be extracted and/or formalized from information available in many artifacts such
as business models (Carvalho, Carvalho e Silva and Manhaes, 2010; Carvalho, Manhies and
Carvalho e Silva, 2010), task models (Paterno and Mancini, 1999), and prototypes (Elkoutbi,
Khriss and Keller, 2006). Based on that, we suggest that scenarios can be a suitable alternative to
start analyzing the relationship between functional requirements expressed using diverse artifacts.

" Ontology

g ——
Business -

Modeling

——

—

Task Modeling > M
U

—

Prototyping >»
R
. J

Scenario-based approach

Figure 10. Modeling business and functional requirements in a scenario-based approach.

Therefore, for modeling business and functional requirements, we propose a scenario-based
approach, taking multiple views of the system mnto account. Figure 10 illustrates this approach, so
far designed to support three modeling processes: business modeling, task modeling and
prototyping. The processes of business and task modeling as well as the process of prototyping
are iterative and contribute mutually for the development of each one. The relationship between
task modeling and prototyping are quite natural once both composes the typical process of
modeling user requirements for interactive systems. Both of them are also innately scenario-based
as they use scenarios to perform and simulate user activities in the system.

The relationship between business and task models has already been studied by some authors
(Pontico, Farenc and Winckler, 2007; Sousa, Mendonc¢a and Vanderdonckt, 2008; Winckler and
Palanque, 2012). Winckler and Palanque (Winckler and Palanque, 2012) have demonstrated
how - starting from a business process - task models can be designed to specify the flow of
detailed tasks that a user should accomplish to perform a given activity for each business process.

63

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

With this perspective, the process of business modeling can also fit in a scenario-based approach,
once the overall business view about the system can be easily described using a scenario narrative.

Artifacts produced by the activities of task modeling and prototyping have been chosen as
target artifacts because they compose what we call user interface (UI) design artifacts, 1.e. artifacts
typically used to design and support the development of Uls for interactive systems. As these
artifacts are essentially different i their conception, usefulness on different stages of
development, and nature of information modeled, the strategy for testing them 1s supposed to
vary for each one, or at least for groups of them. We classified such artifacts in two groups. The
first one encompasses artifacts typically used in the early stages of development for modeling
aspects of interaction and/or navigation. We have classified task models and Ul prototypes with
a low level of refinement in this group. The second group encompasses artifacts typically used
later in the development process for designing more detailed (or even definitive) aspects of
mteraction and navigation. We have classified iterative Ul prototypes as well as final Uls in this

group.

The problem raised when using the aforementioned artifacts is that there 1s not a standard
method to specify scenarios for them. They can be freely described following few or no templates,
from mformal descriptions such as textual narratives until more formal ones such as pre-
formatted lists of tasks extracted from task models. It makes very hard the work of identifying
similar requirements that eventually describe the same features but in different perspectives. To
tackle this problem, we explored the use of an ontological support aiming at describing common
behaviors with a standard vocabulary for writing User Stories as scenario artifacts. The main
benefit of this strategy 1s that User Stories described following a common vocabulary can be
directly automated for running test scenarios on other artifacts. As the common vocabulary has
been set using well-established concepts such as UsiXML (Limbourg et al., 2004), W3C MBUI
(Paterno er al., 2017) and others, the resultant ontology establishes indeed the searched common
ground for a scenario-based approach considering multiple artifacts.

1
has
1

Requirement -1-—is expressed as ~1..* User Story -1- has
-1

-1

has

1
3.*

*

1.7

can mention

0."

Figure 11. Conceptual Model for testable requirements.

64

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

The scenario-based approach supported by the mentioned ontology 1s focused on functional
requirements. As we have stated before, a functional requirement defines statements of services
that the system should provide, how the system should react to particular inputs and how the
system should behave i particular situations. To assure that the system behaves properly,
requirements should be expressed in a testable way. Figure 11 presents the conceptual model that
explains how testable requirements are formalized in our proposed approach. A requirement 1s
expressed as a set of User Stories (US) as in the template proposed by North (North, 2017) and
Cohn (Cohn, 2004) and presented in chapter 2. User Stories are composed by a Narrative and a
set of Acceptance Criteria. Acceptance Criteria are presented as Scenarios and are composed by
at least three main Steps (“Given”, “When” and “Then”) that represent Behaviors which the
system can answer. Behaviors handle actions on Interaction Elements on the User Interface (UI)
and can also mention examples of data that are suitable for testing them. These concepts and
rules are defined as classes and axioms in the ontology that will be detailed in the next chapter.

3.1.1. Target Stakeholders

Many stakeholders are typically involved in the development of interactive systems. Table 3
summarizes their typical activiies when modeling interactive system and the benefits they can get
from using our proposed approach.

Stakeholders Activity Benefit
Requirements and automated acceptance
Client / User Define business and user requirements. testing implemented 1n a natural and high-
level language.
Product Owner and | Write User Stories and define the business A rehiable and consistent compatibility
Business Analyst model. between User Stories and business models.
Requirements and | Write and format User Stories and help to A common and standard vocabulary for
Testing Analyst design task models. writing and formatting User Stories.

A reliable and consistent compatibility

UI Designer Design task models and Ul prototypes. between task models and UT prototypes.

Table 3. Target stakeholders of the approach.

3.2. Multiple Views of the Approach

Our approach describes user requirements modeled in a behavior perspective for interactive
systems. To illustrate its operationalization, we have defined a micro-process where are
represented activities to reach Production and Quality Assurance goals. Figure 12 illustrates User

1 1

: :—\—> < Quality Assurance U
Ul Designer FXOGUONR Ativities Activities i

i y x Testing Analyst

Requirements Analyst

Y

A4

Client/User

Figure 12. Overall view of the approach.

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

Stories supporting both Production Activities (which lead to the production of artifacts) and
Quality Assurance Activities (aimed at assessing the artifacts produced during the development
process). Clients and Users provide the main source of information for the User Stories which
will be employed as mputs for Requirements Analysts and User Interface (UI) designers during
the Production Activities, as well as for Testing Analysts during the Quality Assurance Activities.
Testing Analysts are in charge of building test cases and assessing the artifacts. As testing scenarios
are not always explicit in the User Stories told by Clients and Users, Testing Analysts must
complement such stories with representative test cases. That 1s the reason by which we signalize
User Stories supporting Quality Assurance Activities with a dotted line. The roles were
highlighted separately in the figure in order to emphasize that the activities along the process will
require different skills.

The overall view of the approach presented in Figure 12 can be split in two more detailed
views: architectural and workflow views. Both of them encompass the same elements, but in
different views. Whilst Figure 14 provides a workflow view of activities that have been grouped in
Figure 12, Figure 13 highlights the major components and their mnteractions to accomplish
requirements and testing specification.

3.2.1. Architectural View

External Ontology y pe: Task

Non-Functional
Regquirements
[ty B i e e User Needs

Ontology

- Reusable
B | faeriem |

Functional
Requirements
Specification

@

Prototypes

Building Task Modeling
External Testing . R S]
Frameworks
<

User Stories

‘," Testing A\I
»,_ Scenarios

User Interface

Inte le % = = Testi
Building Reusable Tests Spec;ié:"a?ion

Figure 13. Architectural view of the approach.

In Figure 13, the architectural model 1s divided in 5 mamn groups of components:

Requirements Modeling, Task Modeling, Prototyping Modeling, Ontology Modeling, and other
technical components related to the use of external frameworks to support testing activities. The
model 1s a high-level representation of elementary components of processes, input and output
artifacts, and data repositories. Transitions between these elements are represented through
direct, optional and/or navigational links.

From the Requirements Modeling perspective, User Needs are grouped with a specific icon
to signalize that these needs can emerge from multiple sources such as business models, laws and

66

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

regulations, etc. User Needs can describe functional and non-functional requirements. When
describing non-functional requirements, User Needs are used as optional inputs (dotted lines) for
prototyping activities. When describing functional requirements, User Needs and the set of
Reusable Requirements - that are fed by common interactive behaviors mapped in the ontology
- are the mputs for the Functional Requirements Specification. This package of activities produces
User Stories that are the resultant artifacts of the requirements specification. However, as
mentioned in the previous chapter, User Stories are artifacts that encompass at once the set of
users’ requirements as well as the acceptance criteria for considering such requirements as
“done”. The acceptance criteria are presented as Testing Scenarios that actually provides the
multiple successful and failure paths for assessing the features. These Testing Scenarios are
produced during the Functional Testing Specification that can benefit of Reusable Tests as well.
Such base of Reusable Tests can be obtained through previous implemented interactive test cases
for a given environment.

As a central artifact in the micro-process proposed, User Stories are then produced as a result
of requirements and testing activities and serve as a basis for task, prototype and Ul modeling.
Concerning Task Modeling activities, User Stories are useful when providing the description of
functional requirements and the interactive behaviors in the user point of view. Concerning the
modeling of prototypes, task models (and by consequence User Stories) support the design of
prototypes that are supposed to evolve to fully-fledged User Interfaces. The set of activities that
supports such a design 1s packed in Prototypes Building and User Interface Building packages.
As the components of prototyping, task modeling, and the writing of User Stories constitute
processes that are dynamic and iterative, they have a bidirectional flow in the architecture
representation once they mutually contribute to the development of each other.

The Ontology Support represents the component by which we provide the aforementioned
ontology. This ontology describes, among other concepts, behaviors that users perform when
mteracting with a user interface, besides the correspondent Ul elements that support each
behavior. As such, the ontology provides support for both Prototypes Building and the reuse of
requirements when specifying Functional Requirements. The Ontology Support 1s also useful to
allow checking the consistency of artifacts that will be produced along the development process,
as well as to ensure the automated assessment of such artifacts.

Finally, by using the Testing Scenarios, External Testing Frameworks are employed to support
automated testing activities in the three target artifacts: task models, prototypes and final Uls.
Given development teams can choose the artifacts that will be under testing in each iteration, the
optional paths to test them are indicated by dotted lines.

3.2.2. ‘Workflow View

In Figure 14, we have a detailed workflow of the micro-process we have designed for running
our approach. In this micro-process, User Stories told by Clients/Users support Production
Activities being the main mput to produce Scenarios, Ul Prototypes and Task Models. User
Stories also support Quality Assurance Activities guiding the test of artifacts. For that, Client/Users
provide User Stories to the Production Activities which are leaded by Requirements Analysts and
UI Designers. These last two roles conduct the process of producing artifacts to be tested by
Testing Analysts using Testing Scenarios. Such artifacts can be targets to Clients and Users
perform their Acceptance Tests as well.

67

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

@

ClienyUser

Reuse
Approach

C Tell User Stories)

Production Activities ; Sty hasirence 3
{ Narative —
A s 4 (" Write Testing N
@ . N 2 _ Scenarios
—)kFormal User Stories User Stories S kS M
v |

4 Prooe 2 | Testing
Requirements R : Analyst
Analyst

+\
Task Model ‘c I Task Mode! [€
| g — =

P
—)kDesign Task Models)(—)(Define i)

— o
Ul Prototype V(Evaluate Ul Prototype | A
a ~N N 7 Approach
L Prototype Ul :
. i

Ul Designer

N
Final Ul [Evaluate Final Ul je—
‘ 3 J

R ;
!]
) =

Ontology
Support

D

h
Final Ul
by

N

Figure 14. Workflow view of the approach.

Following this, User Stories are then formatted by Requirements Analysts looking for two
goals: assuring testability and non-ambiguous descriptions, as well as providing reuse of scenarios
in the User Stories. For that, Scenarios are defined in order to identify tasks that users should
accomplish using the system. Task Models designed from such Scenarios support a design cycle
of successive Ul Prototypes and User Interfaces that are produced along system implementation.
Prototypes are refined until the Final User Interface can be set. These last activities are conduct
by both Requirements Analysts and UI Designers. Notice how Scenarios play a central role in
the approach.

Quality Assurance Activities are conducted by Testing Analysts in order to check and verify
all the artifacts produced during Production Activities. We are in this case especially interested
i testing Scenarios, Ul Prototypes and Task Models, as well as the Final User Interface, in an
mtegrated way, in order to ensure consistency between them throughout the development
process. Therefore, automated testing frameworks like Webdriver, JBehave and JUnit are used
to accomplish these activities, running directly on the artifacts that compose the requirements
specification and providing a genuine “live” documentation.

68

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

All this mechanism 1s supported by the use of our ontology that describes concepts used by
platforms, models and artifacts that compose the design of interactive systems. The aim i1s to
provide a wide description of elements (and its behaviors) that can be used to build Uls for
specific environments. We have nitially defined ontologies for the web and mobile platforms
and associated the most common behaviors that each element can answer. These behaviors were
described using a natural language vocabulary, useful later to specify steps of Scenarios to set
actions in these elements.

One of the advantages of the approach 1s the possibility to reuse scenarios in several systems
sharing the same business model. An effective way to provide that 1s to map steps that compose
specific scenarios. Steps are easily reused to build different behaviors in different scenarios. Our
approach proposes a set of pre-implemented common steps which perform actions in specific
elements on the Ul These actions are described in our ontological model in the next chapter.

Notice lastly that the prototyping of Uls and the modeling of both task models and User Stories
are independent activities, 1.e. they can be performed individually and, even though they mutually
contribute to development of each other, the process does not mtend to automate their
generation. It means that especially concerning the user interface design, this approach 1s not
supposed to generate prototypes or even final Uls, but rather allow they can be design separately
then be tested in order to check their consistency and adherence to the requirements. The
designer however can base the design on the ontology description of supported behaviors in order
to design prototypes that are promptly consistent with the behavior expected for each interaction
element.

3.2.3. Alternatives for Performing the Approach

Artifacts already designed Artifacts not designed yet
1 - Requirements Identified 2 - Scenarized Artifacts Designed { 1 - Identify Requirements 1 - Identify Requirements
4 - Write Formatted User Stories 3 - Extract Scenarios 2 - Design Scenarized Artifacts 4 - Write Formatted User Stories
¢ 3 - Extract Scenarios 2 - Design Scenarized Artifacts
[5 - Run Tests on Artifacts } l ¢
4 - Write Formatted User Stories 3 - Extract Scenarios
[5 - Run Tests on Artifacts] [5 - Run Tests on Artifacts]

Figure 15. Alternatives for performing the approach.

By looking at the possible project stages in which our approach could be applied to, we have
identified two common situations. Figure 15 illustrates these alternatives. The first situation we
identified (represented on the left side of Figure 15) concerns the case where our approach will
be implemented when the project 1s running, and artifacts have already been designed (2). If the
target artifacts for testing have already been designed, our approach can be used to assess such
artifacts, indicating where they are not in accordance with the specified requirements. In this case,
requirements are supposed to be already identified (1), so we can directly write our User Stories
from these requirements (4), and likewise extract scenarios from the scenarized artifacts (3).
‘When doing that, tests will be ready for running (5).

69

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

The second situation (represented on the right side of Figure 15) refers to a project in the
beginning, where no artifacts have been designed vyet. If the target artifacts have not been designed
yet, by using our ontology, they can be modeled in a consistent way since the beginning, taking
mto account the possible iteractions supported by each interaction element on the Ul To this
project situation, we could follow sequential steps that include: (1) identify the requirements, (2)
design the scenarized artifacts from these requirements, (3) extract scenarios from these artifacts,
(4) write our formatted User Stories based on the extracted scenarios, and finally (5) run tests on
the artifacts. Alternatively, we can perform the activity 4 (write formatted User Stories) before the
activity 2 (design scenarized artifacts). It means that depending on the characteristics of the
project, either the User Stories can support the design of the artifacts, or the artifacts (by means
of their extracted scenarios) can support the writing of User Stories.

{ 1-Identify
_Requirements /

2 - Design 3 - Extract
Scenarized Artifacts Scenarios

4 - Write
______ P Formatted User
Stories

5 - Run Tests on
Artifacts

Figure 16. The graph of options for performing our approach.

Figure 16 illustrates the resultant graph of options considered. Notice that solid lines indicate
mandatory activities, 1.e. we must either design scenarized artifacts (2) or write formatted User
Stories (4) only after having 1dentified requirements (1); extract scenarios (3) only after having
designed scenarized artifacts (2); and run tests on scenarized artifacts (5) only after having
extracted scenarios (3) and written formatted User Stories (4). The optional paths represented by
the dotted lines indicate the alternatives shown on the right side of Figure 15, 1.e. we can either
use the extracted scenarios (3) to support the writing of formatted User Stories (4) or use the
formatted User Stories (4) to support the design of scenarized artifacts (2).

The high-level operationalization of the approach 1s made up in four main groups of activities
that are pimpointed in Figure 13 and Figure 14 by numbers as follows:

(1
(2
6]
“

definition of the ontology,
writing testable User Stories,
adding test scenarios, and
multi-artifact testing.

~_—~ =~ ~—

In the next section (3.3), we detail how we start writing User Stories (group 2) and how we add
test scenarios to those stories (group 3) by means of an illustrative case study. These two groups
of activities in our approach are supported by the definition of the ontology (group 1) that will be
explored i chapter 4. Finally, our actual strategy to conduct automated testing on multiple
artifacts (group 4) will be presented in the section 3.4 and explored along the thesis.

70

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

3.3. A Case Study in a Nutshell

To illustrate the operationalization of our approach, we have proposed a generic case study in
the flight tickets e-commerce domain. This study acts a proof of concept for our approach and
will be used along the next chapters to show how the approach can support the assessment of our
target artifacts, 1.e. task models, prototypes and final Uls. This case study was chosen because it
1s easily comprehensible, and it represents a common activity for most of the readers nowadays.
For the study, we have considered only two actors involved, a user and an airline company. We
have based on a generic flow of activities including users searching their flights, picking them up
from a list of results, and then confirming his/her choices by providing passengers and payment
data. In theory, this generic flow of activities could be applied to any airline company selling
tickets on the web.

D

x

D ! Listor Fights ﬁ i ﬁ
H ters ' H

----- | Passengers Data i Payment Data

O—-[Search Flights. Hve!ify List of Fligms]—P[Choose a FlightH Submit gers Data } —[Fill Data for Payment }—F{ Submit Data for Payment Hobhin a Booking Conﬁrﬂlaﬁun}—o
H x H H x

v H ¥
[chess EookingHConﬁrm Availability of SealH Request Payment Data] [Pmcess Fayment]

¥
%}?& —Hmouss RequestHCreane List of Matching Flights]]
o

Figure 17. Business Process Model for the flight ticket e-ticket domain.

Figure 17 presents the business model for this case study, using the Business Process Model
and Notation (BPMN) (Business Process Model And Notation™ (BPMN™), 2011). At the top,
i the first lane, we have the set of activities performed by users. In the second lane, we have the
set of activities performed by the airline company. In a first moment, the set of activities
performed by the airline company could be made either manually or in an automated way (using
a software system). For this study, we are assuming that the choice is to conduct these activities in
an automated way, using a web software system. The set of functional requirements assumed by
the system 1s described below through a narrative scenario:

The user starts the process by conducting a search of flight based on his desired parameters
like origin and destination, dates, number of passengers, etc. This set of parameters 1s then
submitted to the airline system that will process the re-quest and creates a list of matching flights.
The list of flights is then returned to the user that verify this list and chooses a flight that better
suit his needs. After choosing the desired flight, the user provides all passengers data to the airline
system that will process the booking. Thereby, the system confirms the availability of seats and
request user to provide payment data. After the user filled in the forms with bank account details
and confirmed the payment, the system will process the transaction. If the payment 1s accepted,
then the booking 1s completed, the user obtains a booking confirmation and the process finishes.
If the payment is declined, then the booking is refused, and the process finishes as well.

The online booking process described above 1s basically divided into 3 main sub processes:
searches of flights based on a provided set of data, the selection of the desired flight(s) in a list of
fhights resultant from the search, and finally providing passenger and payment data to conclude

71

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

the booking. We have selected the two first processes for this case study as they are the most
mteractive ones and represent the main source of cognitive efforts from users and designers. The
third sub process is basically a data providing form, so it 1s not so relevant to demonstrate the
concepts we want, even though the whole process can be supported by this approach.

In the following subsections, we use the present case study to illustrate the groups of activities
2 (writing testable User Stories) and 3 (add test scenarios) pinpointed in Figure 13 and Figure 14.

3.3.1. ‘Writing Testable User Stories

Hereafter, we present two User Stories with their respective scenarios to
describe and test the features of our case study. Such User Stories simulate
the 1dentification of requirements in stories told by users according to the

Cllen¥Ueer activity in our workflow (Figure 18). This 1s a first attempt of getting testable
User Stories (1 - Identify Requirements) once they will be still formatted
p N afterwards to fit the interactive behaviors described in the ontology. These
I\ Tell User Stories/I stories focus on the process of searching flights of our illustrative case study,
with a narrative describing the role involved with the history (“As a”), the
v feature that this history describes in the user’s point of view (“I want”), and
Il finally the benefit (business value) that this feature brings to the user in terms
of business goals (“So that”).

Narrative

; i The first story presents the procedure for searching flights in which the
{ Scenarios user should provide at least: the type of ticket he wants (one-way or round
trip), the airport he wants to depart from and arrive at, the number of
passengers 1n the trip, and finally the date of departure and return. In the first
scenario (“One-Way Tickets Search”), a typical search of tickets 1s presented
Figure 18. Activity concerning a one-way trip from Paris to Dallas for 2 passengers on
of telling User 19/15/2016. According to the business rule, the expected result for this search
Stories 1s a new screen presenting the title “Choose Flights”, in which the user might
select the desired flight from a list of flights matching his/her search. The
second scenario (“Return Tickets Search”) simulates a round trip from New York to Los Angeles
for only 1 passenger, departing on 12/15/2016 and returning on 12/20/2016. For this case, the
same behavior 1s expected from the system, 1.e., a new screen presenting the title “Choose
Flights”, in which the user might select the desired flight from a list of flights matching his/her
new search.

‘ 1 - Identify Requirements

l

User Story: Flight Tickets Search

Narrative:

As a frequent traveler

I want to be able to search tickets, providing locations and dates

So that I can obtain information about rates and times of the flights.

Scenario: One-Way Tickets Search

Given 1 go to "Find flights"

When 1 choose "One way"'

And 1 type "Paris" and choose "CDG - Paris Ch De Gaulle, France" in the field
"From"

And 1 type "Dallas" and choose "DFW - Dallas Fort Worth International, TX" in the
field "To"

And 1 choose the option of value "2" in the field "Number of passengers"

72

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

And 1 set "12/15/2016" in the field "Depart”
And I click on "Search"
Then will be displayed ""Choose Flights"

Scenario: Return Tickets Search

Given 1 go to "Find flights"

When 1 choose "Round trip"

And 1 type "New York'"™ and choose "NYC - New York, NY" in the field "From"
And 1 type 'Los Angeles™ and choose "LAX - Los Angeles International, CA"™ in the
field "To"

And 1 choose the option of value "1" in the field "Number of passengers"
And 1 set "12/15/2016" in the field "Depart”

And 1 set "12/20/2016" in the field "Return”

And 1 click on "Search"

Then will be displayed ""Choose Flights"

The second history focuses on the process of choosing a flight in a list of available flights. The
scenario “Select a diurnal flight”, using the scenario “One-Way Tickets Search”, simulates the
selection 1n the list of available flights, a couple of diurnal flights, the AA6557 and the AA51. For
this case, the behavior expected from the system 1s the presentation of a new screen with the
“Optional log in” message, indicating the user 1s able to login in order to proceed to the booking,
filling the passengers and payment data, which 1s in line with both business and task models.

User Story: Select the desired flight

Narrative:

As a frequent traveler

I want to get the list of flights and their rates and times

So that I can select the desired flight after a search of available flights.

Scenario: Select a diurnal flight

One-Way Tickets Search

Given "Flights Page" is displayed

When I click on "Flights" referring to "AA flight 6557, AA flight 51"
Then "Optional log in" is displayed

3.3.2. Adding Testing Scenarios

Test cases are represented as Testing
\ Scenarios in our approach (Figure 19). They
specify potential error situations related to

"Narrative — .

S g — Wit Testing \k% the scenarios already defined to set
i _ : J . . .

User Stories — requirements. Testing scenarios are the

{ Scenarios 4 aavg component responsible for describing the
situations in which the system should be

verified, covering, as deeply as possible, the
largest set of features. Thereby, requirements
Figure 19. Activity of creating testing scenarios scenarios and testing scenarios compose the
User Stories, providing in the same artifact,

descriptions of functionalities as well as the potential set of tests to verify the correct
mmplementation of the requirements. Functional testing 1s the leading element of the acceptance
level and 1s used to check expected outcomes when pre-defined inputs are provided to the system.

Below we present two testing scenarios: “Search for flights more than one year in advance”
and “Search for a return flight before a departure flight”, that will be added to the User Story
“Flight Ticket Search”. They present specific business rules (and their tests) in the flight-booking
domain. The expected outcome n both cases 1s the impossibility of searching flights.

73

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

It 1s important to notice that testing scenarios describe a test procedure that may be generic
regarding the data demanded to run a test case. When test data are added to a test procedure
then it becomes a test case. This fact gives us the opportunity to write a single test procedure once
and reuse 1t, in order to generate multiple test case, based on multiple test data. The two examples
below are already specified with test data, so they can also be seen as test cases.

Scenario: Search for flights with more than one year in advance

Given 1 go to "Find flights"

When 1 choose "One way"'

And 1 type "Paris"™ and choose "CDG-Paris Ch De Gaulle, France'" in the field "From"
And 1 type "Dallas'™ and choose "DFW-Dallas Fort Worth International, TX" in the
field "To"

And 1 choose the option of value "1" in the field "Number of passengers"

And 1 try to choose "12/15/2017" referring to '‘Depart"

Then the system should not allow performing this task

Scenario: Search for a return flight before a departure flight

Given 1 go to "Find flights"

When 1 choose "Round trip"

And 1 type "New York'"™ and choose "NYC-New York, NY" in the Ffield "From"

And 1 type "Los Angeles™ and choose "LAX-Los Angeles International, CA"™ in the
field "To"

And 1 choose the option of value "1" in the field "Number of passengers"

And 1 try to choose "12/15/2016" referring to '‘Depart"

And 1 try to choose "12/10/2016" referring to "Return"

Then the system should not allow performing this task

3.4. Strategy for Testing

Our strategy for running tests on multiple artifacts 1s shown mn Figure 20. The figure illustrates
User Story scenarios being used to ensure consistency in our target artifacts (task models, Ul
prototypes and final Uls). Therein are exemplified five steps of scenarios being tested against
equivalent tasks in task model scenarios, and interactive elements in UI prototypes and final Uls.
In the first example, the step “When I select ‘<field>” has found an equivalent correspondence
with the task “Select <field>” in the task model scenario. Such an equivalence 1s due to the fact
that the step and the task represent the same behavior, 1.e. selecting something, and both of them
are placed in the first position in their respective scenario artifacts. The interaction element “field”
that will be affected by such a behavior will be assessed on the UI prototype and on the final UL
In both artifacts, such a field has been designed with a CheckBox as interaction element. The
semantics of the interaction in CheckBoxes 1s compatible with selections, 1.e. we are able to select
CheckBoxes, so the consistency is assured.

The same 1s true in the example with the second step (“When I click on ‘<field>”). There 1s
an equivalent task “Click on <field>” in the same second position in the task model scenario, and
the interaction element “Button”, that has been chosen to address this behavior in both the Ul
prototype and the final UI, 1s semantically compatible with the action of clicking, thus the
consistency 1s assured as well. In the third example, the step “When I choose ‘value’ referring to
‘field’” 1s also compatible with the task “Choose <field>” in the task model, and with the
mteraction elements “DataChooser” and “Calendar”, respectively in the Ul prototype and in the
final Ul. Notice that, despite being two different interaction elements, “DataChooser” and
“Calendar” are equivalent in their semantics of behaviors supported, 1.e. both of them support
the behavior of choosing values referring to a field.

The example provided with the fourth step (“When I click on ‘<field>””) illustrates an
mconsistency being identified. Therein, despite existing an equivalent task in the task model
scenario, the interactive elements that have been chosen to address this behavior (“TextInput” in

74

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

the UI prototype and “TextField” in the final UI) are not compatible with the action of clicking,
1.e. such kind of interaction element does not semantically support such an action. The semantics
of TextInputs (or TextFields) 1s receiving values, not being clicked. Such an example 1s provided
with the fifth step (“When I set ‘value’ in the field ‘<field>’”). For this step, the consistency 1s
assured because TextInputs and TextFields support the behavior of having values being set on
them. All this semantic analysis 1s supported by the use of the ontology.

Task Model
Scenarios

Ul Prototypes Final Uls

Select <field> __Consistent___ <field> : CheckBox __Consistent___ <field> : CheckBox
Click on <field> with <field> : Button with <field> : Button
Choose <field> <field> : DataChooser <field> : Calendar
Click on <field> <field> : Textinput <field> : TextField

Set <field> <field> : Textinput <field> : TextField

Ensure consistency in

: : User Story Scenarios ; i
Ensure consistency in Ensure consistency in
u ! Y (Requirements and Tests) el

When | select "<field>"
When | click on "<field>"
When | choose "<value>" referring to "<field">
When | click on "<field>"
When | set "<value>" in the field "<field>"

Ontology

Figure 20. Our strategy for testing.

The present strategy we defined for testing allows us tracking some key elements in the artifacts
and check whether they are consistent with the user requirements. By simulating user’s actions,
our approach also allows that interactive prototypes and final Uls are directly tested by the users’
acceptance criteria in order to ensure that the artifacts are consistent with the user requirements.
Resuming the classification in groups of artifacts we set up in the beginning of this chapter (section
3.1), when assessing early artifacts from the first group, we are actually complying with the
verification aspect of software testing, once by definition, we are comparing the requirements
baseline with the successive refinements descending from it (i.e. the artifacts) in order to keep
these refinements consistent with the requirements baseline. When assessing late interactive
artifacts from the second group (such as final Uls), we are also complying with the validation
aspect of software testing, once these artifacts are tested simulating the user’s actions, thus
checking if the software product satisfies or fits the intended use according to the user’s acceptance
criteria.

In the current literature, especially when verifying software artifacts, the term “test” 1s usually
not employed under the argument that such artifacts cannot be “run”, 1.e. executed for testing
purposes, so in practice they are just manually reviewed or inspected. As within our approach we
succeed automatically running our target artifacts for assessing their consistency with user
requirements, we actually provide the “test” component for the verification of artifacts in the
software development. We consider this 1s a big step towards the automated testing (and not only
the manual verification) of software artifacts by means of a consistent approach allowing fully
verification, validation, and testing (VV&T) (Engel, 2010). The complete testing strategy will be
explored mn chapters 5, 6 and 8 to show how we perform tests for checking the consistency, thus
verifying and validating, the set of our target artifacts.

3.5. Conclusion

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

The present chapter presented the motivation and the inner background for proposing a
scenario-based approach for testing multiple artifacts. This chapter 1s aimed at providing a view
at glance of the approach. The instantiation of the approach should be tuned according to the
very specific artifacts target for testing and 1t 1s detailed latter on in chapter 5 (for task models)
and 1 chapter 6 (for user interface prototypes). Nonetheless, it 1s interesting to notice that the
mmplementation of this scenario-based approach relies on some basic premises as follows:

() 1o adhere to a model-based approach for describing artifacts produced along the
development process. This 1s due to the fact of our approach 1s intended to assess
artifacts resultant from modeling activities.

(1) 1Teams must be willing to adopt the template for User Stories as well as the vocabulary
proposed in the ontology. This 1s due to the need of formalization of user requirements
for testing. As a certain level of adherence to a template 1s required, this could
eventually be an 1ssue for development teams which already use other approaches for
requirements specification.

(1) Artifacts and the user mterface under testing must comply with the Ul-supported set
of interactive behaviors described in the ontology. This is due to the fact that the
ontology encompasses an extensive, but fixed number of interaction elements and
behaviors supported by web and mobile user interfaces.

(v) Tests must be carried out by our set of tools. This is due to the fact that our strategy
for testing 1s only implemented n our set of tools, so they must be used to perform the
tests on the target artifacts and on the final UI.

By tackling these challenges, the use of the proposed approach could promote a set of
advantages as follows:

requirements and tests in a natural and high-level language,
independence for testing artifacts,

independence of software development processes,

no need to prepare artifacts for testing,

interactive behaviors kept the same regardless the application domain,
plurality of interaction elements modeled by the ontology,
fine-grained testing coverage, and

the use of data-independent scenarios.

From the stakeholders’ point of view, this approach can address multiple concerns related to
requirements specification. For clients and users, requirements and the acceptance testing have
the benefit of being specified and implemented 1n a natural and high-level language. The benefits
of non-technical stakeholders’ involvement in requirements specification are largely known in the
literature (Bano and Zowghi, 2013). They include reducing requirements misunderstandings,
besides providing faster feedback and more accurate acceptance conditions.

For Product Owners and Business Analysts, which write User Stories and define the business
model, the benefit would be a reliable and consistent approach for checking the compatibility
between User Stories and business models. For Requirements and Test Analysts, a common and
standard vocabulary for writing and formatting User Stories would help to improve
communication between the business people and the development team. Being a single artifact
encompassing both requirement specification and acceptance testing, User Stories also tackle the
typical problem of alignment between requirements and tests (Hotomski, Charrada and Glinz,

76

Chapter 3: A Scenario-Based Approach for Multi-Artifact Testing

2017). Finally, UI designers would benefit from a reliable and consistent approach for checking
the compatibility between task models and Ul prototypes in different levels of refinement.

The next chapter will describe and present our supporting ontology, followed by two chapters
describing in detail the strategy presented here for modeling and testing our target artifacts: task
models (in chapter 5) and Ul prototypes (in chapter 6).

3.6. Resultant Publications

Silva, T. R. (2016). Definition of a Behavior-Driven Model for Requirements Specification and
Testing of Interactive Systems. In: 2016 IEEE 24th International Requirements Engineering
Conference (RE 2016), pp. 444-449. IEEE. DOI: http://doi.org/10.1109/RE.2016.12. (Silva,
2016)

Silva, T. R., Hak, J. L. & Winckler, M. (2016). Testing Prototypes and Final User Interfaces
Through an Ontological Perspective for Behavior-Driven Development. In: 6th International
Working Conference on Human-Centred Software Engineering, and 8th International Working
Conference on Human Error, Safety, and System Development (HCSE 2016 and HESSD 2016),

pp- 86-107, vol. 9856. Lecture Notes in Computer Science, Springer International Publishing.
DOT: http://doi.org/10.1007/978-3-319-44902-9 7. (Silva, Hak and Winckler, 2016b)

Silva, T. R., Hak, J. L. & Winckler, M. (2016). An Approach for Multi-Artifact Testing Through
an Ontological Perspective for Behavior-Driven Development. Complex Systems Informatics
and Modeling Quarterly, 1 (7), pp. 81-107. DOI: http://do1.org/10.7250/csimq.2016-7.05. (Silva,
Hak and Winckler, 2016a)

Silva, T. R. & Winckler, M. (2016). Towards Automated Requirements Checking Throughout
Development Processes of Interactive Systems. In: 2nd Workshop on Continuous Requirements
Engineering, 22nd International Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ). CEUR-WS.org. (Silva and Winckler, 2016)

77

Chapter 4

Towards an Ontology for Supporting
GUI Automated Testing

Summary

This chapter presents the ontological approach we have developed for specifying interaction and
supporting Ul automated testing. The aim of the ontology described in this chapter 1s to support
the assessment of interactive systems, providing a common and consistent description of elements
that compose the semantic of mteraction between users and systems i a web and/or mobile
environment.

The ontology aims to support testing automation of interactive systems specified using a scenario-
based approach, covering Ul concepts in both presentation and dialog aspects. For the
presentation layer, we have modeled the semantics of several web and mobile UI elements. For
the dialog layer, we have modeled the semantics of User Stories as a State Machine. Such models
have allowed us to provide a semantically consistent catalog of interactive behaviors that can be
used for automating the test of Uls in different levels of abstraction.

The first subsection of this chapter discusses the related approaches that mspired this ontology,
icluding a comparative analysis of how each approach has contributed to the development of
the ontology and the contribution it provides in different aspects of modeling. The second
subsection presents the detailled description of the ontology, covering its technical OWL
specification for classes, individuals, datatypes, as well as object and data properties. Results of
our ontology validation are also presented by demonstration of its correctness through an
automated consistency checking. Finally, the third and last subsection presents limitations and
perspectives concerning the use of the ontology for testing purposes.

In chapter 3, we have presented the big picture of the approach being proposed in this thesis
where we pointed out the use of an ontological support for both Production and Quality
Assurance activities. The ontology we proposed for such support 1s motivated by our previous
experience as requirements/test engineers I industry, developing e-Government web
applications 1n the biggest public software development company in Brazil. During more than
five years implementing GUI testing, we have observed certain patterns of low-level behaviors
that are recurrent when writing BDD Scenarios for testing functional requirements with the User
Interface (UI). Besides that, we could also observe that User Stories specified in natural language
often contain semantic inconsistencies. For example, it 1s not rare to find Scenarios that specify
an action such as a selection to be made in semantically inconsistent widget such as a Text Field.
These observations motivated us to mvestigate the use of a formal ontology for describing pre-
defined behaviors that could be used to specify Scenarios that address interactions with Uls. On
one hand, the ontology should act as a taxonomy for terms removing ambiguities in the
description. On the other hand, the ontology would operate as a common language that could be
used to write tests that can be run on many artifacts used along the development process of
mteractive systems. However, it 1s important to notice that the ontology does not propose a new

79

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

language for describing Uls, but rather a direct mapping between languages for describing the
mterface and common behaviors for testing.

4.1. Related Approaches

Computational ontologies (Guarino, Oberle and Staab, 2009) come to play as a means to
formalize the vocabulary and the concepts used i User Stories, Scenarios and Uls. Without a
common agreement on the concepts and terms used 1t would be difficult to support the
assessment of user requirements. Especially in the context of User Interface design, some
approaches have tried to define languages or at least a common vocabulary for specifying Uls for
mteractive systems. Useful attempts include abstractions for describing interactive systems with
components that compose the presentation of a User Interface (Calvary et al., 2002, 2003; Puerta
and Eisenstein, 2002; Fierstone, Dery-Pinna and Riveill, 2003; Limbourg et al., 2004; Farooq Al,
Pérez-Quinones and Abrams, 2005; Pullmann, 2017), or even the dialog for implementing the
system behavior (Calvary et al., 2002, 2003; Winckler and Palanque, 2003; Winckler et al., 2008;
Barnett, 2017). However, the problem raised in such approaches is that they do not provide a
formal model for both presentation and dialog aspects, thus not allowing the specification of
behaviors for UI testing, 1.e. there 1s not a common pattern for such a specification. Such
approaches work much more as a meta-model, letting the formalization of their concepts to be
specified or implemented by third frameworks.

4.1.1 Compared Overview

The contribution of the ontology proposed in this chapter can be analyzed comparing it with
other methods and languages from which it borrows concepts. This analysis 1s presented in Table
4 for Cameleon Framework (Calvary et al., 2002) and UsiXML (Limbourg et al., 2004), as well
as for W3C MBUI Glossary (Pullmann, 2017) and SWC (Winckler and Palanque, 2003). The
Cameleon Reference Framework decomposes user interface design into a number of different
components that seek to reduce the effort in targeting multiple contexts of use (Calvary et al.,
2002). These components are Task-Oriented Specification, Abstract UI, Concrete UI and Final
UL The ontology has been built based on this decomposition, with high-level description of tasks
being modeled as a task-oriented specification (based on notation such as CTT and
HAMSTERS). UsiXML implements the Cameleon Framework in an XML specification, which
allows us operating these concepts in the ontology. SWC adds the dialog component for the
Cameleon/UsiXML specification allowing us specifying transitions and adding navigation to the
User Interface. Finally, W3C MBUI Glossary contributes establishing the common vocabulary
used by the other methods and languages. This common vocabulary is used to describe elements
n the ontology.

Concept Mapping in the ontology

Task-Oriented Specification: This concept
describes the tasks that the user and the system
carry out to achieve the application's objectives.
The tasks are described at a high level that 1s
imndependent of how these are realized on a
particular platform.

Description of Scenario-based concepts,
including the modeling of Users Stories and
Tasks.

Abstract UL This level describes models of the
user interface that are independent of the choice Description of Interaction FElements in the
of platform and of the modes of interaction (visual, | Presentation perspective.

tactile, etc.).

Cameleon and
UsiXML

80

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

Concrete UL This level models the user interface | Platform concepts are described in the ontology,
for a given platform, e.g. desktop PC, tablet, smart | as well as the list of interaction elements that are
phone, connected TV and so forth. supported by each platform (web and mobile).

The ontology provides means of reading the set
of interaction elements supported by each user
mterface platform. It allows designing
automated testing implementations for specific
platforms based on such elements to create
concrete graphical widgets.

Final UL This level implements the user interface
for a specific class of device, e.g. an iPhone, or an
Android tablet.

Description of State Machine concepts. The
Task Model (TM): Tasks and dependencies | dynamic behavior of tasks being performed by
between tasks. users and systems are described as Scenario-
based concepts.

Abstract User Interface (AUI): Relationship
between logical presentation units (e.g. transition
between windows), logical events, abstract actions.

Concrete User Interface (CUI): States, (concrete)
events, parameters, actions, controls, (‘,hangcs on
UI dialog according to events, generic method
calls, etc.

Description of Interaction FElements in the
Dialog perspective.

Description of the Transition triggers in the
State Machine that each behavior may perform
on the user interface.

SWC

The ontology provides means of reading the set
of behaviors supported by each interaction
element. It allows designing automated testing
implementations for specific platforms based on
such behaviors to create concrete class methods
for automating the “physical” interaction on the
user interface.

Final User Interface (FUI): “Physical” signature of

events, platform specific method calls, etc.

It 1s a glossary of terms recurrent in the Model-
based User Interface domain (MBUI). It contains Description and definition of Platform and UI
informal, commonly agreed definitions of relevant | concepts.

terms and explanatory resources.

‘W3C MBUI Glossary

Table 4. A compared overview between the ontology and other methods and languages.

4.2. A Behavior-Based Ontology for Interactive Systems

Our ontology for describing interactive systems 1s based on concepts borrowed from different
languages found in the literature. From Camaleon and UsiXMIL we borrow the concepts of
abstract and concrete Uls. Presentation and definition of graphical components come from W3C
MBUI. From W3C Web Ontology Language we get concepts for graphical components
(behavior and presentation aspects) commonly used to build web and mobile applications, and
also the textual representations used to describe how users interact with those graphical
components. SWC inspires concepts used to describe the dialog. Like many other approaches
(Calvary et al., 2002, 2003; Winckler and Palanque, 2003; Winckler er al., 2008; Barnett, 2017),
our description of dialog in the ontology 1s based on the specification of a classical state machine.
Such a reuse of concepts reduced considerably the modeling effort and allowed us to propose an

81

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

ontology consistent with well-known approaches for describing both the presentation and the
dialog of user iterfaces.

The ontology has been modeled in Protégé 5.0. Figure 21 presents the classes of the ontology
and their properties divided i 4 wide groups: Platform Concepts, UI Concepts, State Machine
Concepts and Scenario-based Concepts. These groups are represented as clouds i the figure.
Classes are represented as rectangular boxes, and the relationships between classes (i.e. their
Object Properties) are represented by solid lines which include the name of the Object Property
and the constraint associated to the relationship. Finally, dotted lines represent a
generalization/specialization relationship, 1.e. an “is_a” Object Property. For convenience, lines
representing relationships that share the same Object Property name and the same constraint
were merged to improve the legibility of the image.

Platform
Platform .
isBuilFor
Concepts s
yd Prototype 2 N ————
e uo
‘ Presentation Concepts /,1
\ /
N ket isComposedEy /L/

(some) >

4

Interaction Element

State] [Transition

/
——

i Condit
State Machine ~ ondition
Concepts |

(some)

—

shouldRepresent

isDescribedBy
some)

User Story

Scenario

(some)
i it
4 Y
Narrative Task
Scenario-based

Concepts i

Figure 21. Main classes and their properties in the ontology.

The first group of concepts defines the web and mobile platforms covered by the ontology.
The second one encompasses concepts allowing modeling the UL The classes Dialog,
Presentation and Platform model the concept of a Prototype. A Prototype 1s built for at least one
Platform and specified by no more than one Dialog and one Presentation. The third group
specifies the State Machine concepts. Therein, a Dialog 1s composed by States and Transitions,
whilst a Presentation, which 1s represented by at least one Interaction Element, 1s concerned by

82

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

only one State at once. In the fourth group of concepts, the classes Narrative, Scenario, Step and
Task model the concept of a User Story. A User Story 1s described by exactly one Narrative and
some Scenarios. A Scenario 1s a set of Steps and a Step 1s an occurrence of only one Task. A
Step shall represent some Event, Condition or Action which together trigger a Transition in the
State Machine. Finally, a Transition performs a given Scenario from the User Stories.

Concepts have been modeled as Classes. Relationships between concepts have been modeled
as Object Properties (subtype “relations”). Classes that handle data have such descriptions
modeled as Data Properties. As core elements in the ontology, UI Elements and the interactive
behaviors have been modeled respectively as Classes and Object Properties (subtype
“behaviors”).

In the following subsections, we detail the basic concepts of Object (subsection 4.2.1) and Data
Properties (subsection 4.2.3), as well as the four main group of concepts described above:
Platform (subsection 4.2.4), Ul (subsection 4.2.5), State Machine (subsection 4.2.6), and finally
Scenario-based concepts (subsection 4.2.7). The current version of the ontology bears an amount
of 677 axioms (being 482 logical axioms), 58 classes, 79 object properties, 16 data properties and
3 individuals. A visual representation of all the concepts can be found at https://goo.gl/1Z.qSJ0
and its complete specification in OWL can be found at https://goo.gl/IpUMqp.

4.2.1 Object Properties

Relationships of individuals in classes are represented as Object Properties (OP). We have
classified these properties in “Relations” and “Behaviors”. “Relations” groups conceptual
relationships between objects from internal classes, 1.e. objects that do not directly address
mteractive behaviors. “Behaviors”, on the other hand, groups conceptual relationships between
mteractive behaviors and UI Elements on the Ul Besides these two groups of OPs, we have also
modeled two single Object Properties (allowsUnique and allowsMultiple) to express the
relationship between some Ul elements and their Data Properties (DP). The “Relations” group
1s detailed hereafter, whilst the “Behaviors” group will be detailed in the subsection 4.2.6, and the
single OPs will be presented in the subsection 4.2.5.

4.2.2 Relations

Description: isComposedB Description: isTriggeredB:
m relations @ relations
i PRI Transition
Dialog /
e isTriggeredBy some Event
isComposedBy some State isTriggeredBy some Condition
isComposedBy some isTriggeredBy some Action

Figure 22. Object Properties isComposedBy (left) and 1s7riggeredBy (right).

The sub property “relations” defines the semantic correspondence between iternal classes.
Table 5 presents the whole set of relationships between objects of internal classes defined in the
ontology. The class that drives the property 1s called Domain Class and the class affected by the
property 1s called Range Class. The Restriction Type adds constraints to the modeled property.

83

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

Figure 22 illustrates the relations between elements in the State Machine. As a sub property of
Relations, objects from the Dialog class are composed by some States and Transitions. This
relationship 1s described by the property isComposedBy (left side of Figure 22). Accordingly,
objects from the Transition class are triggered by a sequence of some Conditions, Events and
Actions. This relationship 1s described by the property 1s7riggeredBy (right side of Figure 22).

Domain Class Object Property Restriction Type Range Class
State concerns only Presentation
Step 1sAnOccurrenceOf only Task
Scenario 1sASetOf only Step
Prototype 1sBuiltFor min 1 Platform
i 1sComposedBy some State
Dialog — —
1sComposedBy some Transition
. 1sDescribed By exactly 1 Narrative
User Story - - - -
1sDescribedBy some Scenario
Presentation 1sRepresentedBy min 1 Interaction Element
1sSpecifiedBy max | Dialog
Prototype - :
1sSpecifiedBy max 1 Presentation
1sTriggeredBy some Event
Transition 1sTriggeredBy some Condition
1sTriggeredBy some Action
Transition performs only Scenario
shoudRepresent some Event
Step shoudRepresent some Condition
shoudRepresent some Action
Mobile usesAsAMobilellement | some <UI Element>
Web usesAsA WebLElement some <UI Element>

Table 5. “Relations” as Object Properties in the ontology.
4.2.83 Data Properties

Data Properties are used to describe semantically data domains used by each class that handles
data. Our ontology has been designed following Ontology Design Principles (Dumontier, 2018),
so Datatypes were specified under the standard XSD specification and constraints were defined
to restrict the set of data domains applied to each Domain Class.

The root tree shown i Figure 23 (left side) gives an overview of the properties created, while
Figure 23 (right side) expands the Data Property “message”, showing that this kind of data 1s used
by the Ul Elements “Message Box”, “Notification”, “Tool Tip” and “Modal Window”.
“Message” has also been defined to range the primitive data String. Table 6 shows the whole set
of Data Properties created, their respective Domain Classes as well as their Datatypes. As some
UI Elements can handle another UI Elements or even different Datatypes, we have defined the
generic type “element” for modeling this property. For example, Menus present options for users,
but these options can be of any type, 1.e. images, text, or even another Ul Element such as a
Menu Item. Finally, notice that the only Data Property that does not use a Datatype 1s the property
“Level”, which refers to the level of a Prototype.

84

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

Data property hierarchy: owl:topDataPrope

u = (X
A@ owl:topDataPrope|
»--mactions
@ agreement
mdata_and_time_input
mimages
mlevel
»--mlocations
-)
-“un:'ber—inpln Show: [v/ thislv/ disjoints
¥ moptions Found 6 uses of message
wpages V- mmessage
-symb?l ®mmessage Domain Message_Box
.tf”d—mp“t m message Domain Notification
mtitle - message
mtrack_bar mmessage Domain Tool_Tip
®mvalue ®mmessage Range: xsd:string
=mwords ® message Domain Modal_Window

Figure 23. Left: Data Properties. Right: Data Property “message”.

Data Property Domain Classes Datatype
Actions Menu Item, Link, Message Box, Button, Modal Window element

State - xsd:boolean
Agreement Notification xsd:string

Data and Time Input | Calendar xsd:dataTime

Images Image Carousel xsd:hexBinary
Level Prototype -
Locations Breadcrumb xsd:string

State - xsd:boolean
Message Message Box, Notification, Text, Tool Tip, Modal Window xsd:string
Number Input Numeric Stepper xsd:double
Options Tabs B'fu*, Checkbox, Dropdown List, Toggle, List Box, Radio Button, clement

Accordion, Menu, Progress Bar, Dropdown Button

State - xsd:boolean
Pages Pagiation xsd:integer
Symbol Icon xsd:hexBinary
Text Input Search Field, Text Field, Autocomplete xsd:string
Title Button, Field Set, Link, Label, Menu Item xsd:string
Value Slider zzgi‘:l‘l‘lzle
Words Tag xsd:string

Table 6. Data Properties in the ontology.
4.2.4 Platform Concepts

Concepts of supported platforms are modeled in the ontology to determine which kind of Ul
1s supported by the model and how its interactive elements will behavior for each implementation.
Having different presentations and behaviors depending on the platform they are implemented;
the modeling of interactive elements must consider such particularities. The set of UI Elements
that suits each platform 1s presented as Object Properties in the subsection 4.2.2.

So far, the ontology supports only interactive behaviors for web and mobile Uls. As shown in
Figure 24, the classes Web and Mobile have been modeled as specializations of the class
Platform, which allows us to eventually cover other platforms n the future. As a consequence of
such choice, only UI Elements that are supported by web and mobile environments have been

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

described 1n the superclass Interaction Elements. The example below illustrates distinct
mmplementations of an mteractive element “Calendar” for both web and mobile environments.
Notice that even carrying the same semantics in both platforms, the way a user 1s supposed to
mteract with this component may differ in each platftorm. While in a web environment the user
can directly select a day of a month by clicking backward and forward on the month/year selection
buttons, in a mobile environment the user could be asked to interact with a calendar by scrolling
the month, the day and the year separately.

e

Platform Concepts

- D
15 ¥ &9

LI > S N T Y un

w W 2 n 20 M

n X 2 a

Aot | Efncee

Ape 5, 2012

Figure 24. Example of Web and Mobile implementations of a Calendar.
4.2.5 UI Elements Concepts

UI Elements n the ontology represent an abstraction of GUI components in web and mobile
platforms. Figure 25 illustrates a hierarchy of Ul Elements. As we shall see, the four main
superclasses are Container, Information Component, Input Control and Navigational
Component. The first one contains elements that group other elements in a User Interface, such
as Windows and Field Sets. The second one contains elements i charge of displaying
iformation to the users such as Labels and Message Boxes. The third one represents elements
i which users provide mputs to the system such as Buttons and Text Fields. Finally, the last one
contains elements useful to navigate through the system such as Links and Menus. Some elements
like Dialog Windows, for example, are mherited by more than one superclass, once they keep
semantic characteristics of Containers and Information Components as well.

The complete list of UI Elements modeled in the ontology 1s presented in Table 7, specifying
for each one: the correspondent superclass, a brief description and both Data and Object
Properties associated. In Data Properties (DP) 1s identified the type of data handled by the Ul
Element itself. In Object Properties (OP) 1s 1dentified whether the UI Elements are supported
by web (OP: usesAsA WebLlemend and/or mobile (OP: usesAsAMobile Elemend) platforms. It
1s also 1dentified whether some UI Element has an Object Property allowsUnique or
allowsMultiple associated to its Data Properties.

86

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

[.ongcsal]

. mmgo_aox]

.Tod _Tip

|/

@ Information_Com
ponent

-—{* @ Window_Daalog I-o—l ® Window |

\.\

© Navigational_Co _< " ® Interaction_Ele
mponent ment

e
Y)

. Input_Control

=

| ® Radio_utton A///”\\

I () Dtopdom Bution

I @ Numeric Shpper]

I (o] Dropdown_le]

] [.Towh ” .ICdomhr]

l O Aubcomplete I

Figure 25. Cloud of User Interface (UI) Elements.

Int. Element Description

Properties

An Accordion is a vertically stacked list of items that
utilizes show/hide functionality. When a label 1s clicked,
it expands the section showing the content within. There
can have one or more items showing at a ime and may
have default states that reveal one or more sections
without the user clicking.

Accordion

DP: options

OP (usesAsA):
WebElement,
MobileElement

A Field Set element represents a set of form controls
optionally grouped under a common name.

Field Set
Container

DP: utle

OP (usesAsA):
WebElement,
MobileElement

A Tab Bar is a container widget that has typically multiple
Tab Bar Buttons, which controls visibility of views. It can
be used as a tab container.

Tabs Bar

DP: options

OP (usesAsA):
WebElement,
MobileElement

A Window 1s an area on the screen that displays
information, with its contents being displayed
independently from the rest of the screen.

‘Window

87

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

Browser Window

The top of a typical Web browser window contains a title
bar that displays the title of the current page. Below the
title 1s a toolbar with back and forward buttons, an
address field, bookmarks, and other navigation buttons.
Below the toolbar is the content of the current Web page.

OP (usesAsA):
WebElement

Window The bottom of the window may contain a status bar that
displays the page loading status.
A Window or Dialog Box 1s a small window that OP (uscsAsA):
‘Window Dialog | communicates information to the user and prompts Wel F/’Lm nf'
them for a response. Hrieme
DP: actions,
. . A Modal Window ires users to interact with it in | 1Message
Window D 1alog Modal Window ‘ - 1:n(0\;] reyq}m es us‘crs ohm‘tc‘rd(t with 1t 1
some way belore they can return to the system. OP (usesAsA):
WebElement
DP: title
Label A Label displays content classification. OP (usesAsA):
WebElement,
MobileElement
DP: actions,
A Message Box 1s a small window that provides |TESS45€
Message Box inf(v)rmation to users zmﬂd requires them to take an action | QP (ysesAsA):
before they can move forward. WebElement,
MobileElement
S DP: agreement,
A Notl}‘lcatlon Is an update message thgt‘ announces | yegsage
Notification something new for the user to see. Notifications are
) typically used to indicate items such as, the successful OP (usesAsA):
. completion of a task, or an error or warning message. W/C[)E/C" nent,
Information MobileElement
Component .
e o) DP: options
A Progress Bar indicates where a user 1s as they advance
Progress Bar through a series of steps in a process. Typically, progress OP (uscsAsA):
bars are not clickable. ‘VCJ)E/C"”C’”C
MobileElement
DP: message
Text Informative content in a page. OP (usesAsA):
WebElement,
MobileElement
DP: message
Tool Tip A rl.“ooltl.p au()\ys auser to see hints when they hg\fer over | OP (usesAsA):
an item indicating the name or purpose of the item. WebElement,
MobileElement
‘Window Dialog - -
))) | DP: text_input
Autocomplete The Autocomplete widgets provides suggestions while
et you type mnto the field. OP (usesAsA):
WebElement
Input Control DP: actions, title
Button A Button i.ndicates zm_action upon touch and is typically | OP (usesAsA):
labeled using text, an icon, or both. WebElement,
MobileElement

88

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

Calendar

A Calendar (date picker) allows users to select a date
and/or time. By using the picker, the information is
consistently formatted and mput into the system.

DP:
data_and_time_
mput

OP (usesAsA):
WebLElement,
Mobilellement

Checkbox

Checkboxes allow the user to select one or more options
from a set. It 1s usually best to present checkboxes 1n a
vertical list. More than one column is acceptable as well
if the list 1s long enough that it might require scrolling or
if comparison of terms might be necessary.

DP: options

OP (usesAsA):
WebElement,
MobileElement
OP:
allowsMultiple

Dropdown Button

The Dropdown Button consists of a button that when
clicked displays a drop-down list of mutually exclusive
items.

DP: options

OP (usesAsA):
WebElement,
MobileElement
OP:

allowsUnique

Dropdown List

Dropdown Lists allow users to select one item at a time,
similarly to radio buttons, but are more compact
allowing you to save space. Consider adding text to the
field, such as ‘Select one’ to help the user recognize the
necessary action.

DP: options

OP (usesAsA):
WebElement,
MobileElement
OP:

allowsUnique

DP: options
List Boxes, like Checkboxes, allow users to select OP (usesAsA):
List Box multiple items at a time, but are more compact and can W/C[)E/C’ nent,
support a longer list of options if needed. MobileElement
OP:
allowsMultiple
A Numeric Stepper serves the same function as a |DP:

Numeric Input Object. It 1s a method of entering
numeric data in which the numbers can be typed directly

number_input

Numeric Stepper | into the mput object. However, numeric values can also | OP (usesAsA):
be adjusted by using up and down arrows next to the | WepElement,
numeric input. Clicking the up and down arrows | yfobileElement
normally causes the value to increment by one.

DP: options
OP (usesAsA):
. Radio Buttons are used to allow users to select one item

Radio Button o VVch/cmcnf,

at a time. MobileElement
OP:

allowsUnique

DP: text_input

Text Field Te.xt Fiel.ds allow users t(_) entcr text. It can allow either | op (usesAsA):
a single line or multiple lines of text. WebElement,
MobileElement
| DP: options
A Toggle button allows the user to change a setting
Toggle between two states. They are most effective when the OP (usesAsA):
on/off states are visually distinct. VVch/cmcnf,
MobileElement

89

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

OP:

allowsUnique

DP: text_input

Navigational
Component

Grid A Grid or a Datagri_d 1s a gra phical control element that | QP (ysesA45A4):
presents a tabular view of data. WebElement,
MobileElement
Breadcrumbs allow users to identify their current DP: locations
Breadcrumb 1()Fation m.thin the system .by providing a clickable trail | QP (ysesAsA):
of proceeding pages to navigate. WebElement
. o] | DP: symbol
An Icon 1s a simplified image serving as an mtuitive
Icon symbol that is used to help users to navigate the system. OP (usesAsA):
Typically, icons are hyperlinked. VVch/cmcnf,
MobileElement

Image Carousels allow users to browse through a set of

DP: images

Image Carousel |items and make a selection of one if they so choose. | OP (usesAsA):
Typically, the images are hyperlinked. WebElement
A Link is a reference to data that can be directly follow DP: actions, title
Link by clicking. It. points to a whole document or to a specific | QP (ysesAsA):
element within a document. WebFElement
DP: options
Menu Menu is a list of options or commands presented to an | QP (ysesAsA):
operator. WebkElement,
MobileElement
))) S DP: actions, title
A Menu Item 1s a resultant item 1n a list of options or
Menu Item commands presented to an operator by clicking in a OP (usesAsA):
menu WebElement,
MobileElement
Pagination divides content up between pages and allows DP: pages
Pagimation users to skip between pages or go in order through the | OP (usesAsA):
content. WebElement

A search box allows users to enter a keyword or phrase
(query) and submit it to search the index with the

DP: text_input

Search Field intention of getting back the most relevant results. | OP (usesAsA):
Typically, search fields are single-line text boxes and are | WebLlement,
often accompanied by a search button. MobileElement
A slider, also known as a track bar, allows users to set or DP: value

Slider adjust a value. \VhCIl theﬂuscr.chanﬂges the valuc,.it ﬂdocs OP (usesAsA):
not change the format of the interface or other mfo on | WepElement,
the screen. MobileElement
Tags allow users to find content in the same category. DP: words

Tag Some tagging systems ul.so allow users to apply their own | OP (ysesAsA):
tags to content by entering them into the system. WebFElement
‘With a Tree, we can display hierarchical data. Each row | DP: actions
displayed by the Tree contains exactly one item of data,
which is called a node. Every Tree has a root node from
which all nodes descend. By default, the Tree displays

Tree : : OP (usesAsA):
the root node. A node can either have children or not. S :

WebElement

We refer to nodes that can have children — whether or
not they currently have children — as branch nodes.
Nodes that cannot have children are leaf nodes.

90

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

Table 7. UI Elements in the ontology.

4.2.6 State Machine Concepts

Asserted ¥
F Narrative
»- @ Platform
F Presentation
: Prototype
F Scenario
v
H Action
H Condition

-

Event
State
Transition v

Individuals by type Annotation property hierarchy Datatypes

Object property hierarchy Data property hierarchy

Individuals by type: State_Machine_Element DEER
¥ X

v-- @ Action (1)
-4 Then
\ Condition (1)
- 4 Given
\ Event (1)
@ When

Figure 26. State Machine Elements and their Individuals.

The dialog part of a User Interface, as illustrated by Figure 26, 1s described in the ontology
using concepts borrowed from abstract State Machines. A Scenario meant to be run in a given
Ul s represented as a Transition, illustrated by Figure 27. States are used to represent the original
and resulting Uls after a transition occur (States A and B in Figure 27). Scenarios in the Transition
state always have at least one or more Conditions (represented n Scenarios by the “Given”
clause), one or more Events (represented in Scenarios by the “When” clause), and one or more
Actions (represented in Scenarios by the “Then” clause). These constraints have been guaranteed
m our tools which implement these ontological concepts. The clauses “Given”, “When” and
“Then” have been modeled as Individuals of each respective class.

QS XAC— SEmiin ADXQC—
X] I go to “#page”
[V] I choose “#value” in the field “#field” =
| Action —#
State A X] will be displayed “#message” State B

Figure 27. A Transition being represented in the State Machine.
4.2.7 Scenario-Based Concepts

Scenario-based concepts allow us modeling behaviors that describe how users are supposed
to interact with the systems whilst manipulating graphical elements of the User Interface. An
example of behavior specification 1s illustrated by Figure 28.

Behaviors are structured and described in natural language, so that they can also be read by
humans. The specification of behaviors encompasses when the interaction can be performed
(using “Given”, “When” and/or “Then” clauses - which are Individuals in the ontology), and
which graphical elements (1.e. Radio Button, CheckBox, Calendar, Link, etc. - which are classes

91

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

i the ontology) can be affected. Altogether, behaviors and graphical elements are used to
mmplement the test of expected system behavior. In the example in Figure 28, the behavior
receives two parameters: a “SelementName” and a “$locatorParameters”. The first parameter is
assocliated to data, the second parameter refers to the Interaction Element supported by this
behavior: “Radio Button”, “CheckBox”, “Calendar” and “Link”. To comply with semantic rules,
the behavior “I chose |"$elementName\” referring to |"$locatorParameters|” shown in Figure
28 can be modelled into a predefined behavior “chooseReferringTo” as shown i Figure 29.

In the ontology, behaviors are modeled as Object Properties (OP). The ontology includes a
large set of predefined behaviors grouped by context of use, as shown in Table 8. Notice that
each Behavior is associated to diverse transition components (Context, Event and/or Action) that
compose a Transition. The column Ul Elements enlists the set of Interaction Elements that can
fit to trigger a particular behavior.

> Event > r When] S

iV P s S Radio Button CheckBox
o= bl “I choose \"SelementName\" referring to [] []

% \"SlocatorParameters\" [

> Action > r . | | ~ e

o Obiject Property: behaviors
Class Individual

Calendar] [Link }

Classes: Ul Elements

Figure 28. Components on the ontology used to specify a behavior.

¥ mchooseReferringTo
= chooseReferringTo Range chooseReferringTo some Checkbox
= chooseReferringTo Domain Event
= chooseReferringTo SubPropertyOf behaviors
= chooseReferringTo Domain Action
= chooseReferringTo Range chooseReferringTo some Calendar
= chooseReferringTo Range chooseReferringTo some Link
- chooseReferringTo
= chooseReferringTo Range chooseReferringTo some Radio_Button

Figure 29. Behavior “chooseRefferingTo”.

Checkbox and Radio Button Behaviors

Transition

Behavior UI Elements
theFieldIsUnchecked Checkbox
Radio Button
) Checkbox
theFieldlsChecked Radio Button
assure TheFieldlsUnchecked Checkbox
assure TheFieldlsChecked Checkbox

C E A
Common Behaviors

Transition

Behavior UI Elements
C E A
Calendar
hoose = selec Checkbox
choose = select Radio Button
Link

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

chooseByIndexInTheField Dropdown List
Calendar
.. Checkbox
chooseRelerring’To Radio Button
Link
choose The OptionOfValueln ThelField Dropdown List
Menu
lickOn Menu Item
Button
Link
Menu
Menu Item
clickOnReferringTo Button
Link
Grid
doNot'TypeAnyValueToTheField = .
resetThe ValueOf TheField TextField
goTo Browser Window
goToWithTheParameters Browser Window
1sDisplayed Browser Window
Dropdown List
setlnTheField = trvToSetn TheField Text Tield
Autocomplete
Calendar
] . . Dropdown List
setinThelieldReferringTo Text Field
typeAndChooselnTheField = Autocomplete
iformAndChooselnThekield P
willBe Displayed Text
willNotBeDisplayed Text
willBe DisplayedInTheField The Value Element
willNotBeDisplayedInTheField The Value Element
willBe Displayed The ValueInTheFieldReferringTo Element
willNotBeDisplayed The ValueIn The FieldReferringTo Element
1sNotVisible Element
valueReferringTolsNot Visible Flement
wait TheFieldBe Visible ClickableAndEnable Element
wait TheFieldReferringToBe Visible ClickableAndEnable Element
theLlementls VisibleAndDisable Element
theElementReferringTols VisibleAndDisable Element
setinThelreldAndTriggerThelvent Text Field
clickOnTheRowOfThe Tree Tree
Data Generation Behaviors
Transition
Behavior Ul Elements
c|le]a

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

nformARandomNumber WithPrefixIn The Field Text Field

==

mtormARandomNumberInTheField Text Field
Data Provider Behaviors
Behavior Transition UI Elements
C E A
mform Grid
mtormTheField = informTheFields Gnd
selectFromDataSet -
mtormThe Value OfTheField Element
mtormKeyWithThe Value = i
define The Variable With The Value
obtainThe ValueFromTheField Element
Debug Behaviors
Behavior Transition UI Elements
printOnTheConsole The Value Of The Variable -
Behavior UI Elements
confirmTheDialogBox ‘Window Dialog
cancelTheDialogBox ‘Window Dialog
mformTheValuelnTheDialogBox ‘Window Dialog
willBeDisplayedInThe DialogBox ‘Window Dialog
Mouse Control Behaviors
Behavior Transition UI Elements
C E A
Menu
move TheMouseOver Menu Item
Button
Link
Table Behaviors
Behavior 3 Transition UI Elements
clickOnTheRowOfThe TableReferringTo Gnd
store TheCellOfThe Tableln Gnd
store TheColumnOfTheTableIn Gnd
compareThe TextOf TheTableCellWith Grid
compare The TextOf The Table ColumnWith Grid
clickOnTheCellOf TheTable Gnd
clickOnThe ColumnOfThe Table Gnd
choose The Optionln The CellOf The Table Grid
choose TheOptionln The ColumnOfTheTable Grid

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

typeThe TextInTheCellOfThe Table Gnd
typeThe TextInTheColumnOfThe Table Gnd

Table 8. Predefined Behaviors described in the ontology.

The vocabulary chosen to express each behavior emerged from Scenarios specified in our past
projects. It outlines only one of the several possible vocabularies to represent the same user’s
behaviors and could be extended in the future by more representative phrases or expressions.
Some synonyms concerning the user’s goal have been also 1dentified in order to increase the
expressivity of the ontology. For example, the behavior doNotTypeAnyValueToTheField 1s
considered equivalent to the behavior resetTheValueOfThekField as they perform or assert
exactly the same action on the affected Ul element, looking for the same output. Likewise, the
behavior setInTheField 1s equivalent to the behavior tryToSetInThekField as they refer to the
same action. However, tryToSetInTheField better expresses violation attempts in the business
rules.

4.2.8 Consistency Checking

INFO 13:00:09 Pre-computing inferences:

INFO 13:00:09 - class hierarchy

INFO 13:00:09 - object property hierarchy
INFO 13:00:09 - data property hierarchy
INFO 13:00:09 - class assertions

INFO 13:00:09 - object property assertions
INFO 13:00:09 - data property assertions
INFO 13:00:09 - same individuals

INFO 13:00:14 Ontologies processed in 4926 ms by null

INFO 13:01:01 Pre-computing inferences:

INFO 13:01:01 - class hierarchy

INFO 13:01:01 - object property hierarchy
INFO 13:01:01 - data property hierarchy
INFO 13:01:01 - class assertions

INFO 13:01:01 - object property assertions
INFO 13:01:01 - data property assertions
INFO 13:01:01 - same individuals

INFO 13:01:01 Ontologies processed in €4 ms by Pellet

INFO 13:01:01

Figure 30. Results of ontology processing: HermiT (top) and Pellet (bottom).

Consistency checking was done using the reasoners FaCT++, ELK, HermiT and Pellet.
FaCT++ started 1identifying no support for the datatypes xsd:base64Binary and xsd:hexBinary
used to range 1mages and symbols in the Data Properties. Those properties have been used to
define domains for objects in the classes Image Carousel and Icon, respectively. ELK has failed
by no support to Data Property Domains as well as Data and Object Property Ranges. Hermi'T
and Pellet have succeeded processing the ontology respectively in 4926 and 64 milliseconds, as
presented in Figure 30.

4.3. Contributions, Limitations and Perspectives

The ontology presented in this chapter describes behaviors that report Steps of Scenarios
performing actions directly on the Ul through Interaction Elements. Thus, the ontological model
1s domain-free, which means that it is not dependent of business characteristics that are described
in the User Stories. Specific business behaviors must be specified only for the systems to which
they refer, not affecting the whole ontology. Therefore, it 1s possible to reuse Steps i multiple
testing Scenarios of other systems requiring such kinds of user’s actions. It brings a hmitation

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

once Scenarios must be specified i the user interaction level, writing Steps for each chck,
selection, typing, etc. A possible solution to avoid this level of detail would be to work with higher-
level behaviors that are described by user’s tasks. Nonetheless, user’s tasks often contain
mformation from specific application domains. For example, high-level Steps like “When 1
search for thghts to ‘Destination’”encapsulate all low-level behaviors referring to individual clicks,
selections, etc.; however, it also contains information that refers to the airline domain (i.e.
behavior “search for flights”). Therefore, that Step would only makes sense on that particular
application domain. For further researches, it could be interesting to mvestigate domain
ontologies to be used in parallel with our ontology, defining a higher-level business vocabulary
database in which business behaviors could be mapped to a set of interactive behaviors, covering
recurrent Scenarios for a specific domain, and avoiding them to be written every time a new
Interaction may be tested.

When representing the diverse Interaction Elements that can attend a given behavior, the
ontology also allows extending multiple design solutions for the UI, representing exactly the same
requirement in different perspectives. Besides modeling several concepts of the target artifacts,
the ontology covers more than 60 interactive behaviors and almost 40 Interaction Elements for
both web and mobile user interfaces. Thus, even if a Dropdown List has been chosen to attend
for example a behavior setinTheField in a Prototype, an Auto Complete field could be chosen
to attend this behavior on the Final Ul, once both UI elements share the same ontological
property for this behavior under testing. This kind of flexibility makes tests pass, leaving the
designer free for choosing the best solutions mn a given time of the project, without modifying the
behavior specified for the system.

Another aspect to consider 1s that even having mapped synonyms for some specific behaviors,
our approach does not provide any kind of semantic interpretation, 1.e. the Steps might be
specified exactly as they were defined on the ontology. The JBehave plugin for Eclipse shows
(through different colors) if the Step being written exists or not on the ontology. This resource
reduces the workload to remember as exactly some behavior has been described on the ontology
and will be presented in chapter 6. On one hand, the restricted vocabulary seems to bring less
flexibility to designers, testers and requirements engineers. Nonetheless, on the other hand, it
establishes a common vocabulary, avoiding typical problems of ambiguity and incompleteness in
requirements and testing specifications. Further studies on Natural Language Processing (NLP)
techniques might help to improve the process of specification adding more flexibility to write
Scenarios that could be semantically interpreted to meet the behaviors described on the ontology.
This 1ssue 1s certainly a worthwhile topic for further research.

It 1s also worthy of mention that the concepts and definitions in the ontology presented herein
mclude one of the possible solutions for addressing and describing behaviors and their relations
with Uls. Despite the fact that our ontology covers concepts available i well-known languages
such as MBUI, UsiXML and SCXML, we do not assume that the coverage i1s exhaustive. In
principle, the adequacy of a given set of elements present in the ontology to the system or project
under development i1s our modeling stopping criterion. We envision that other behaviors,
concepts and relationships might be included in the future to express idiosyncrasies of specific
mteraction techniques (ex. muliimodal interaction techniques) and/or specific plattorms (ex.
ambient systems), or even to increase the coverage of Interaction Elements due to the emergence
of new elements for web and mobile platforms. To do so, new elements can be added by direct
mmports into the ontology or simply by adding new more expressive behaviors to the Object
Property “behaviors” and Iinking them to the appropriate set of Interaction Elements.

96

Chapter 4: Towards an Ontology for Supporting GUI Automated Testing

Finally, this ontology has been developed primarily to support the assessment of GUIs.
Nevertheless, along this thesis, we will explore the use of the ontology to also support the
assessment of different artifacts that compose the design of a User Interface. As the ontology has
been designed in a behavior-based way and supported by a state machine, only scenario-based
artifacts, 1.e. artifacts that use scenarios to perform and/or simulate user activities in the system,
are supported for testing purposes. This characteristic will be explored in the next chapters.

4.4. Resultant Publications

Silva, T. R., Hak, J.-L.. & Winckler, M. (2017). A Formal Ontology for Describing Interactive
Behaviors and Supporting Automated Testing on User Interfaces. International Journal of
Semantic Computing, 11 (04), pp. 513-539. DOI: http://doi.org/10.1142/S1793351X17400219.
(Silva, Hak and Winckler, 2017b)

Silva, T. R., Hak, J. L. & Winckler, M. (2017). A Behavior-Based Ontology for Supporting
Automated Assessment of Interactive Systems. In: 2017 IEEE 11th International Conference on
Semantic Computing (ICSC 2017), pp- 250-257. IEEE. DOL:
http://doi.org/10.1109/ICSC.2017.73. (Silva, Hak and Winckler, 2017a)

97

Chapter 5

Modeling and Assessing
Task Models

Summary

This chapter details our strategy for modeling and assessing task models following our approach
presented in chapter 3. The chapter begins by presenting the HAMSTERS notation which will
be used for modeling and assessing our task models. The chapter continues by resuming the case
study proposed previously, with task models being used to design user’s tasks. In the sequence,
we present firstly an orderly strategy for getting task models already consistent with the set of user
requirements specified by users. The example of tasks we explore 1s an excerpt of the searching
fhight activity already modeled m a high level of abstraction in the BPMN model presented in
chapter 3.

In the second section, we explore our strategy for assessing the resultant task models. This section
1s presented 1n 3 steps. The first one refers to the extraction of possible scenarios from a designed
task model, formatting them to meet the ontological pattern. The second one refers to the process
of mapping elements from the task model for checking whether they are consistent with the
respective elements i the User Stories, and hence with the ontology. The third and last step
presents how our strategy has been implemented to support testing in an automated way. Lastly,
we present a discussion concerning the challenges of assessing task models and the limits of the
approach.

As discussed i chapter 2, task models can serve many purposes, from modeling users’
activities n early phases of development, until supporting test case generation in later phases of
development (Campos et al., 2017). They can evolve along the different phases of development
or be throw away as soon as user requirements have been settled up, and a consistent design of
the user interface has been concluded. In this chapter, we adopt a use of task models serving as
an early and evolutive design artifact for modeling aspects of functional user requirements.

Our strategy concerning the assessment of task models consists
l in checking their consistency with respect to a previously-defined
requirements specification. As highlighted i chapter 3 (section

SRS e U 3.2.3), there are alternatives for performing our approach. As

l such, task models can be designed from the beginning for

3 - Extract Scenarios matching the requirements specification or, if they have already

l been designed, for supporting the development of the
requirements specification which will benefit from a preliminary

SR R i analysis of user’s tasks. One of these alternatives 1s reproduced in
i, Figure 31. It will be used n this chapter to present the approach.

Following this alternative, we had already identified the
requirements to be modeled (1) in chapter 3 (section 3.3.1). Thus,
n this chapter, we will in the sequence: design the task models (as
part of the scenarized artifacts) (2), extract scenarios from them

{ 5 - Run Tests on Artifacts }

Figure 31. One of the alternatives
to perform our approach.

99

Chapter 5: Modeling and Assessing Task Models

(3), write our formatted User Stories based on such extracted scenarios (4), and finally run tests
on the artifacts (5).

Task models can be designed through a diverse set of notations and tools. For being assessed
under our approach though, they need to comply with two premises:

e Allow extraction of scenarios by running the model.
e Lxport source files of both reference model and extracted scenarios in a markup
language.

Although in theory task models in any notation may be assessed since they comply with these
two premises, our implementation should be adapted to understand the formalism used by such
notations to describe the task model and the scenarios extracted from them. Our strategy for
testing performs a static assessment of the source files by means of a syntactic and semantic
analyzes of the target source files. An advantage of this approach is that, unlike co-execution
approaches where both artifacts under testing must be prepared for assessment by annotating or
modifying their source files, with our approach we have no need to intervene in the source code
of the target artifacts, 1.e. artifacts do not need to be prepared for testing by designers, so task
models and requirements specifications can be assessed in their original state.

For the demonstration we propose in this chapter, we make use of task models modeled by
HAMSTERS once the notation and tool fit our two premises stated above. HAMSTERS exports
its reference models and extracted scenarios using the XML standard, a well-adopted markup
language, so recognized by our approach. The task modeling and the extraction of scenarios that
will be presented hereafter has been made by using the HAMSTERS tool, whilst the
mmplementation of the assessment has been made by using the respective XML source files
produced by the HAMSTERS tool for each model. The next section presents a brief overview
of the HAMSTERS’ notation and tool support, and the following sections present our strategy
for modeling and testing based on the alternative for running described in Figure 31.

5.1. An Overview of HAMSTERS

Human-centered Assessment and Modeling to Support Task Engineering for Resilient
Systems (HAMSTERS) (Martinie, Palanque and Winckler, 2011) 1s a notation inspired by other
existing ones for task modeling, especially CTT (Paterno, 2003), and, according to the authors,
has been designed to remain compatible with it (from the point of view of people building the
models) as models are hierarchical and are graphically represented featuring operators between
the tasks. However, HAMSTERS includes extensions such as pre-conditions associated with task
executions, data flow across task models, and more detailed interactive tasks. HAMSTERS’
models can be edited and simulated i a dedicated environment which also provides a dedicated
API for observing, editing, and simulating events, making it possible to connect task models to
system models (Navarre et al., 2001; Barboni ef al., 2010). HAMSTERS has been introduced in
2011 and several versions have been released since them. In this thesis, we are adopting the
version 4.0 of HAMSTERS. Thus, the components we present hereafter, and which be used
along the case studies are based on existing elements until such a version.

5.1.1. Task Types

Table 9 illustrates some of the HAMSTERS’ constructs that are required for structuring
models, including:

100

I

Chapter 5

: Modeling and Assessing Task Models

Abstract task 1s a task that involves sub-tasks of different types.

System task 1s a task performed only by the system.

User task 1s a generic task describing a user activity. It can be specialized as a Motor
task (e.g. a physical activity), a Cognitive task (e.g. decision making, analysis), or
Perceptive task (e.g. perception of alert).

Interactive task represents an interaction between the user and the system; it can be
refined into Input task when the users provide mput to the system, Output task when
the system provides an output to the user and Input/Output task which 1s a mix of both
but performed in an atomic way.

Task type Icons in HAMSTERS task model

Y
Abstract Task b

Abstract task

System Task

‘7: N P &% Fven
l" >
User Tasks o S &
User task Cognitive task Perceptive task Motor task

Interactive 2 f‘qh R R

Tasks Interactive task Inputtask Output task InputOutput task

Table 9. Task types in HAMSTERS.

Tasks can also have properties. Tasks may be optional, iterative or both optional and iterative.
The representation of these properties is depicted in Figure 32 below. In addition, minimum and
maximum execution time can also be set for tasks, and particularly for iterative tasks, it can also
be set the number of iterations they support.

2T ¥ O:%%:T
IR Lve?s G 13

a) Optionaltask b) lIterative task c¢) Optional and iterative task

Figure 32. Example of Task Properties.

The notation also provides a composition mechanism to describe sub-routines. A sub-routine
1s a group of activities that a user performs several times, possibly in different contexts which
might exhibit different types of information flows. The sub-routine is then modeled mn a dedicated
model where the root task 1s the icon of that sub-routine. A sub-routine contains:

The name of the sub-routine.

The 1con of an “Abstract” task type (as the sub-routine consists of a group of tasks that
can belong to different types).

Specialized mput and output ports attached both to the left side and to the right side
of the 1con. The graphical symbol of these specialized ports can be filled (if they handle
parameters) or not (if they do not). These ports are mechanisms for representing
required parameters to and/or from sub-routines, thus providing explicit
representation of data flow during task execution.

101

Chapter 5: Modeling and Assessing Task Models

5.1.2. Operators

Additionally, temporal relationships between tasks are represented by means of operators.
The operator “Enable” (>>) describes that the tasks T1 and T2 occur sequentially, one after the
other. The operator “Concurrent” (| | |) describes that the tasks T'1 and T2 can be performed
simultaneously. The operator “Choice” ([]) describes the user performing the tasks T'1 or T2, but
the choice of one implies that the other will be disabled. The operator “Disable” ([>) describes
that the starting of the task T1 leads to a definitive interruption of the task T2. The operator
“Suspend-resume” (|>) describes that the starting of the task T1 leads to a temporary interruption
of the task 1T'2; Tl can be restarted at any time and then be interrupted again by the task T2, while
T1 is not complete. Finally, the operator “Order independent” (|=|) describes that the user can
choose whether he will perform the tasks T'1 or T2 first. This operator also indicates that the task
selected to be executed first will be completed before moving to the next. Table 10 summarizes
such operators.

It 1s the use of these operators to link tasks in the model that allows extracting of the possible
scenarios to be performed in the system. This 1s done by following the multiple achievable paths
in the model, with each combination of them generating an executable scenario.

Temporal Operator Description
operator in a task type
model
Enable In order to accomplish TO, T2 1s executed after T1.
A\
il & Ay
o Concurrent | In order to accomplish TO, T1 and T2 are executed
b at the same time.
o .
!
),7 Choice In order to accomplish TO, T1 1s executed OR T2
d 1s executed
”/ [\‘
. R~
) 2
o Disable In order to accomplish TO, execution of T2
I‘_ interrupts the execution of T1
N
s Suspend - In order to accomplish TO, execution of T2
I‘ resume mterrupts the execution of T1, T1 execution is
AN resumed after T2.
5 Order In order to accomplish TO, T1 1s executed then T2
X independent | OR T2 is executed then T1
a“ . ‘/ \‘ @
® Y

Table 10. Illustration of the operator types within HAMSTERS.

102

Chapter 5: Modeling and Assessing Task Models

5.1.8. Extracting Scenarios

HAMSTERS tool allows models to be executed through the simulation mode (llustrated in
Figure 33). By using the it, we can view the current tasks that are available for execution (list in
the upper part of the simulation panel in Figure 33), and the scenario, 1.e. the tasks that have been
executed (list in the lower part of the simulation panel in Figure 33). Additionally, the tasks which
are available for execution are highlighted in green in the task model (in the central part in Figure
33). By extracting all the possible scenarios that could be performed in the model, we have a big
picture about everything (in terms of tasks) that can be done with the system.

Executable -
a tasks - =
r
Al \J T
~ - 'l -
: 4 1 -
” - ‘ ’ Y - i
&8 = & - = -~ =

Tl

| Current
faxemtedscenario

Figure 33. Representation of executable and executed tasks during simulation.

5.1.4. Handling Data

2

Input Task

Inf : Information Obj : Dpata

Figure 34. Example of “Information” and “Data” handling.

HAMSTERS expressive power goes beyond most other task modeling notations particularly
by providing detailed means for describing data that is required and manipulated (Martinie et al.,
2013) m order to accomplish tasks. Information (“Inf:” followed by a text box) may be required
for execution of a system task, but it also may be required by the user to accomplish a task.
Objects (“Oby:” followed by a text box), on the other hand, are used for indicating that some data
will be provided when performing an mput task by the user. These elements are exemplified in
Figure 34, where the user considers a given information for performing and mput task (arrow
from the information to the input task) and then, when performing such task, he/she uses such
mformation as an actual data that will be provided for the system (arrow from the mput task to

103

Chapter 5: Modeling and Assessing Task Models

the object). By using the HAMSTERS’ simulation mode, we can set test data on runtime when
performing an mput task that points to an object in the model.

5.2. Modeling User’s Tasks

The task models presented hereafter have

% been modeled using the HAMSTERS
notation and are based on the BPMN model

i o designed mn chapter 3 (section 3.3). The

7 N O . , . .
—H\Design Task Models/}—) TaskModel | activity of modeling user’s tasks described in
this section corresponds to “Design Task

Models” m our micro-process presented in
chapter 3 (Figure 35). This actvity 1s
Ul Designer performed 1 collaboration between

Requirements Analysts and UI Designers.
Figure 35. Activity of creating task models.

By resuming the illustrative case study
started 1n chapter 3, we assume a generic workflow for flight reservations, not following any
specific business process of a given company. The tasks represented below are focused on the
processes of searching and choosing flights presented in the BPMN model.

Figure 36 presents respectively the extract of the business process selected for modeling and
the resultant task models. In the transition (a), the initial business activity “Search Flights” has
been mapped to the abstract/iterative task “Search Flights” once it 1s performed by the user. This
task 1s refined in an ordered sequence of mmput/output tasks (operator “enable”). First, the user
goes to the web page where he provides data for search (input task “Go to Find Flights”). Next,
the user effectively provides a set of data for searching his flights (abstract task “Provide Data”),
submits the search (input task “Submit Search”), and finally verifies the resultant list of flights
(abstract task “Venfy List of Flights”). These are sequential user tasks (operator “Enable”). For
the abstract task “Verify List of Flights”, the system actually provides the list of available flights
(output task “Present List of Available Flights”) and then the subtask “Choose Flights” becomes
available to be performed by the user. It matches with the business activity “Verify List of Flights”
i the BPMN model.

For providing the set of data for searching (“Inf:”), the user can inform in any other (operator
“Order mndependent”): departure (abstract task “Inform Departure”), destination (abstract task
“Inform Destination”), number of passengers (input task “Inform Number of Passengers”),
departure date (input task “Set Departure Date”), and trip type (abstract task “Choose Trip
Type”). Notice that the use of the operator “Order independent” allows the extraction of
scenarios from this model with those tasks presented in any order.

The abstract tasks “Inform Departure” and “Inform Destination” originate a sequence of three
tasks. The first one in which the user informs a departure (or arrival) city (respectively the input
tasks “Inform Departure City” and “Inform Arrival City”). The second one in which the system
provides a list of airports in the city (output task “Provide List of Airports”). Finally, the third one
i which the user chooses the departure (or arrival) airport (respectively the mput tasks “Choose
Departure Airport” and “Choose Arrival Airport”). The abstract task “Choose Trip Type” 1s
actually a decision task once the user can choose (operator “Choice”) between a one-way (input
task “Select One-way Trip”) and a round trip (input task “Select Round Trip”). If he chooses a
round trip, he needs to inform the arrival date (input task “Set Arrival Date”) as well.

104

Chapter 5: Modeling and Assessing Task Models

v

2 - Design Scenarized Artifacts

Search Flights

'

: : >>
Inf : Departure)// \‘\\
Inf : Destination = N
& . % & K

Inf; Number of Passangers

User

Inf : Departure Date GotoFindFlights Provide Data Submit Search Verify List of Flights

Inf : Arival Date 1=1 >>
.32 ;\L/‘/ > > .32 g .32
S s B s = - =
Inform Departure Inform Destination Choose Number of Passengers Set Departure Date Choose Trip Type Present List of Available Flights Choose Flights
|
v v v
/ 7 0§ \ []
Inform Depénure City Provide List of Airports Choose Depa‘rture Airport Inform Arr‘iva\ City Provide Lis(BfAlrpons Choose Am‘i/al Airport Select Oneiway Trip Select Ro[md Trip

>>

|

Set Arrival Date

(b)

‘ O—o{ Search Flights Hv«ny I.Is!‘ of Fligms}—-[chwsg a ;.i,...]- - (hmﬁgms ..
& &

A

Request for Cht;osmg a Flight Evaluate the Availability of Flights Choose the Desired Flight Select the Desired Flight Request for Login

Figure 36. Mapping BPMN business activities to HAMSTERS user tasks.

In the transition (b) of Figure 36, we present the sequence of the flow. The business activity
“Choose a Flight” has been mapped to the abstract/interactive task “Choose Flights” in the task
model (notice that this same task has already been represented as the last abstract task in the first
transition). Following the task “Choose Fhights”, the system requests user for choosing a flight
(output task “Request for Choosing a Flight”). Next, the user evaluates the availability of flights
(cognitive analysis task “Evaluate the Availability of Flights”) and then makes a decision, choosing
the desired flight (cogntive decision task “Choose the Desired Flight”). After the cognitive
decision about which flight choose, the user finally performs the input task of selecting the desired
fhight (input task “Select the Desired Flight”). As a result, the system asks the user to provide his
login mformation to proceed the booking with passengers and payment data (output task
“Request for Login”).

Notice that business and task models are complementary. The business process model
provides an overview of the activity flow of the system, emphasizing high-level processes involving
diverse business actors. In a different way, the task model 1s more focused in describing detailed
user tasks while interacting with the system, emphasizing lower level tasks. Thereby, task models
provide more refined resources and descriptors to model user interactions than those provided
by business process models.

Chapter 5: Modeling and Assessing Task Models

5.3. Assessing User’s Tasks

By following the alternative that we set up in the beginning of this chapter for performing the
approach, the next activity for getting task models ready for testing is extracting scenarios from
them. In the alternative we are following, such scenarios will serve as basis for formatting our
previously specified User Stories in an attempt to get steps in User Stories and tasks in scenarios
extracted from task models already consistent. After extracting scenarios from task models, and
formatting the User Stories, we can run our tests on the task models.

5.3.1. Extracting Scenarios and Formatting User Stories

As task models are designed to support the multiple paths that users may accomplish to
perform their tasks, assessing such models in a scenario-based approach involves mitially
extracting the possible scenarios that are supposed to be tested in a given interaction. It means
that after modeling, designers should define which scenarios (or even all of them) from the model
will be tested.

Based on the task model developed for the process of searching and choosing flights, we have
used HAMSTERS to extract some possible scenarios that a user could perform in the system.
HAMSTERS tool supports mnately the extraction of scenarios from task models, by running
them and extracting the possible achievable paths (3 - Extract Scenarios). Figure 38 illustrates an
extraction result. The presented path simulates a scenario for a one-way trip. The ordered
sequence of tasks for this scenario 1s listed at the top.

The extracted scenario 1s then

— formatted to meet the User Story
Approach | —Il template (4 - Write formatted User
Stories), with each ordered task

{naratve } | being mapped to a testable common

AN P
/ N e . .
%—){\Formm User tors | usersoies | Dehavior described on the ontology
A £ 5 scenarst | Presented m chapter 4. Thus, this
Requirements p e off . .
Analyst mapping of common behaviors
serves as a reuse approach for
v formatting the steps in the User
—> > De‘i"eSW"ams) Stories. The advantage of reusing

such common behaviors is that they

are already implemented for running
Figure 87. Activity of formatting User Stories. tests on the target artifacts. The

activity of formatting the User Stories
(llustrated m Figure 37 and exemplified below the Figure 38) is performed manually in
collaboration between Requirements Analysts and UI Designers, so there 1s not any automatic
transformation rule.

Ul Designer

As an example, the illustrated scenario “One-Way Tickets Search” follows a possible path in
the task model and describes the behavior for a one-way trip, using only data domains for testing.
According to the business rule, the expected result for this search 1s a new screen presenting a
“List of Available Flights”, in which the user might select the desired flight in a list of flights
matching his search.

106

Chapter 5: Modeling and Assessing Task Models

\/

3 - Extract Scenarios
|

Current scenario

Scenarion name: One-Way Tickets Search

-

- Go to Find Flights (TaskModel)

- Select One-way Trip (TaskModel)

- Inform Departure City (TaskModel)

-Provide List of Airports (TaskModel)

- Choose Departure Airport (TaskModel)

- Inform Arrival City (TaskModel)

- Provide List of Airports (TaskModel)

- Choose Arrival Airport (TaskModel)

- Set Departure Date (TaskModel)

- 10 - Choose Number of Passengers (TaskModel)
- 11 - Submit Search (TaskModel)

- 12 - Present List of Available Flights (TaskModel)

22222222777 °

<

>

Figure 38. Scenarios being extracted from task models and then being formatted by the ontology as User Stories.

\/

4 - Write Formatted User Stories
l

Scenario: One-Way Tickets Search
Given 1 go to "Find Flights"

When 1 choose "One way"'

referring to "Trip Type"

And I inform "Departure City" and choose '"‘Departure Airport"” in the field "Departure"

And 1|

inform "Arrival City" and choose "Arrival Airport” in the field "Destination"

And 1 set "Valid Departure Date" in the field "Departure Date"
And 1 choose the option of value "2" in the field "Number of passengers"

And I click on "Search"

Then will be displayed ""Choose Flights"

Exploring the set of possible scenarios that can be extracted from the task models we have
designed n the previous section, we can establish a correlation between requirements identified
i User Stories, their representation in terms of tasks and the extracted scenarios in both UCD
and SE approaches, as stated in chapter 2. A possible solution for this correlation, considering
two scenarios, and in accordance with the proposed ontology 1s presented i Table 11 and Table

12.

Requirement

Scenario
Extracted from Task Models (UCD ‘Written in the BDD template
approach) (SE approach)

Travelers should be able to
search for flights

Narrative:

As a frequent traveller, T
want to be able to search
tickets, providing locations
and dates,

Search Flights
(abstract task)

Scenario: One-Way Tickets Search

Go to Find Flights (input task)

Given I go to “Find flights”

Select One-way Trip (input task)

‘When I choose “One way” referring to
“Trip Type”

Inform Departure (abstract task)

And I type “Paris” and choose “CDG -
Paris Ch De Gaulle, France” in the
field “Departure”

Inform Destination (abstract task)

And I type “Dallas” and choose
“DFW - Dallas Fort Worth
International, TX” in the field
“Destination”

Set Departure Date (input task)

And I set “12/15/2016” in the field

“Departure Date”

107

Chapter 5: Modeling and Assessing Task Models

Choose Number of Passengers And I choose the option of value “2”
(input task) i the field “Number of passengers”
Submit Search (input task) And I click on “Search”

Present List of Available Flights Then will be displayed “Choose
(output task) Flights”

Choose Flights)

(sub-routine)

Table 11. The correlation between requirements, tasks and scenarios in UCD and SE approaches for the User
Story “Flight Tickets Search”.

Scenario
Requirement Extracted from Task Models (UCD Written in the BDD template (SE
approach) approach)
Travelers should be able to | Choose Flights Scenario: Select a diurnal flight
select available flights (sub-routine)
Choose Flights Tt G
Narrative: (abstract task) One-Way Tickets Search
Request for Choosing a Flight (output Given “Flights Page” is displaved
l task) i 8 Py
Evaluate the Availability of Flights

(cognitive analysis task)

As a frequent traveller, I : - —
want to get the list of flights Choose the Desired Flight (cognitive

and their rates and times, decision task)
Select the Desired Flight ‘When I click on “Flights” referring to
(input task) “AA flight 6557, AA flight 51”7
Request for Login (output task) Then “Optional log in” is displayed

Table 12. The correlation between requirements, tasks and scenarios in UCD and SE approaches for the User
Story “Select the desired flight”.

Analyzing these correlations, we can make a set of important remarks. The first one 1s that the
business value (such as defined i chapter 2 and represented i orange in the Narratives) and the
testing component (represented in purple i the BDD scenario) allow us to implement test cases
to validate the envisioned requirement, as well as checking when, after being implemented, this
feature can be considered as “done” and correct (that correspond to the business value being
achieved).

A second remark is that concerning the type of tasks mapped to scenarios in SE, as SE
considers only tasks being performed by users when using an interactive system, User Stories in
this context address only scenarios extracted from interactive tasks in task models. As highlighted
m red in Table 12, cognitive tasks, for example, are not mapped to SE scenarios because they
cannot be performed in the system.

Another remark 1s that the abstract tasks “Inform Departure” and “Inform Destination”
highlighted m blue in Table 3 were detailed in the task model as a sequence of Input/Output
mteractive tasks. This happens because first the user informs a departure/destination city (Input
task “Inform City”), then the system returns a list of airports in this city (Output task “Provide
List of Airports”), and finally the user selects the desired airport (Input task “Select the Airport”).
This behavior 1s typically represented by the interaction element AutoComplete in the UT design,
i which the user types some text and the element dynamically returns a set of values that matches
it. After that, the user 1s able to choose which value he wants. Because of that, this behavior was

108

Chapter 5: Modeling and Assessing Task Models

represented with the step “...type and choose...” in the SE scenario, thus describing a double
action i the UL

A fourth point 1s that the sub-routine “Choose Flights” was represented i the first model
(scenario: One-Way Tickets Search) as a result of the sequence of user tasks, and then detailed
in the second model (scenario: Select a diurnal flight) as an abstract task. As the second scenario
depends on the execution of the first one, the abstract task was represented in the SE scenario as
a reference for the scenario “One-Way Tickets Search” that has just been performed. Thereby,
the results of the scenario “One-Way Tickets Search” allow the choice of flights in the scenario
“Select a diurnal flight”.

Finally, a last remark is that data are not directly modeled on task models. They should be
mformed during the extraction of scenarios. However, SE scenarios need these data to perform
tests on the Ul Therefore, in the task modeling level, tasks are described in a generic way, as in
the mput task “Set Departure Date”, for example. When these tasks are extracted from the task
models, in order to be testable, they need to receive an example of some representative data in
that context (for example, the value “12/15/2016” as 1t has been done in the correspondent step
“And T set ‘12/15/2016° n the field ‘Depart’™”). For testing purposes, when describing SE
scenarios, it is crucial to design them with data that make the results succeed as well as with data
that make the results fail. It 1s this mechanism that makes possible to bring a large and
representative testing component for the requirements. These data can be provided for SE
scenarios by multiple sources. They will be described in detail in the section 6.4.3 i chapter 6.

5.3.2. Elements Mapped for Testing

The equivalence of steps in User Stories and tasks in scenarios extracted from task models 1s
assured by a formatting rule presented m Figure 37. Our testing algorithm (that will be presented
in detail in the next section) performs such a rule in order to verify whether a behavior described
n a step has an equivalent task to model it in the task model. The full mapping table considered
by our algorithm is presented in the Appendix A of this thesis.

Step of Scenario Task Name

‘II“

Figure 39. Formatting rule for assessing steps and tasks.

This rule aims to eliminate unnecessary components of the step that do not need to be present
in the task. The component “When” refers to the transition in the state machine which 1s not
addressed 1n a task model. The subject “I” signalizes that 1s the user who performs the task. Tasks
models encompass the definition of user role, so the statement “I” refers to any users that might
correspond to the role assigned to the task model. The verb “set” indicates the action that will be
performed by the user, so it begins naming the task in the task model. The value “Valid Departure
Date” indicates a data domain that will be used to perform and test the task (information that 1s
not present i the task name). The phrase complement “in the field” just signalizes that an
mteraction component (a “field”) will be called. Finally, the target field “Departure Date”
indicates the name of the interaction component that will be affected by this task, so it composes
the final name of the task in the task model. The Table 13 below summarizes the use of such
components for mapping steps of scenarios and tasks. A complete concept mapping table for the
tasks and behaviors supported by the ontology 1s presented in the Appendix A.

109

Chapter 5: Modeling and Assessing Task Models

by the user.

Component Description Use for naming tasks
‘When Refers to the transition in the state | Notused because it is not addressed
machine. n a task model.
1 Signalizes that is the user who performs | Not used because the task models
the task. encompass the definiion of user
role.
set Indicates the action that will be performed | Used for beginning the naming of

the task in the task model.

“Valid Departure Date”

Indicates a data domain that will be used
to perform and test the task.

Not used because such information
1s not present in the task name.

mn the field

Signalizes that an interaction component
(a “field”) will be called.

Not used because it is just a phrase
complement.

“Departure Date”

Indicates the name of the interaction
component that will be affected by this
task.

Used for composing the final name
of the task in the task model.

Table 13. Task name components construction.

The testing of Ul design artifacts like task models is conducted by automatically checking
whether user and business requirements have been consistently modeled. By way of example,
Table 14 gives the correspondence of concepts in the task model, in the ontology, and in the step
that would be performed by our algorithm when assessing the scenarios. Therein, the consistency
of the requirements representation for the scenario “One-Way Tickets Search” 1s being checked
in the respective task model.

Concepts

Step of Scenario

Task Model Ontology

Input Task: Go to Find Flights Behavior: go7To Given I go to “Find Flights”

When I choose “One way” referring

Abstract Task: Choose Trip Type to “Trip Type”

Behavior: chooseReferringTo

And I inform “Departure City” and
choose “Departure Airport” in the
field “Departure”

Behavior:

Abstract Task: Inform Departure informAndChooseln TheField

And I inform “Arrival City” and
choose “Arrival Airport” in the field
“Destination”

Behavior:

= e ooy Weesifzition mformAndChooselnTheField

And I set “Valid Departure Date” in

Input Task: Set Departure Date the field “Departure Date”

Behavior: setlnTheField

2 BehaVIOI : = “«QO»
Input Task: Choose Number of choose TheOptionOfValueln The Fie And 1 Ehoo:c the option of value %
Passengers Id mn the field “Number of passengers

Input Task: Submit Search Behavior: c/ickOn And I click on “Search”

List Then will be displayed “List of

Available Flights”

of

Output Task: Present

Available Flights Behavior: wi/lBeDisplayed

Table 14. Concept mapping for the scenario “One-Way Tickets Search”.

110

Chapter 5: Modeling and Assessing Task Models

5.3.3. Implementation

We have conducted automated consistency checking on task models by parsing their resultant
XML source files from the extracted scenarios produced by the HAMSTERS tool. To do so, we
have implemented an integrated algorithm in Java using JDOM and JUnit for parsing and testing
User Stories against these artifacts. This section describes how it has been implemented.

5.3.3.1. Preformatting Source Files

The first step for assessing the set of scenarios extracted from task models 1s to preformat their
XML files. As each task model notation and tool has its own way to implement and export
scenarios and models, and there is no such a standard for that, each notation would demand a
different preformatting to be tested by our approach. We have implemented a solution for
HAMSTERS in its current version (v4.0), but we have designed a flexible and open architecture
where other notations could benefit from our approach by just implementing a new preformatting
Java class i accordance with their own patterns to implement scenarios and models.

HAMSTERS tool exports scenarios with only a reference to the task ID and the object ID
that compose the flow. As such, we have to prepare the files for testing. So, before starting the
assessing, we edit each scenario XML file to add:

e The name of the task referenced by each task ID.

e The information about the optionality of each referenced task.

e The object value associated with each task, if it has been provided during the task
execution.

All the information is recovered from the reference task model XML file that actually
contains the whole set of information about each task that has been modeled. Figure 40 illustrates
an extract of the original (left side) XML scenario file, and the resultant (right side) XML scenario
file after the process of preformatting.

<step referencemodel="Inform a Flight Leg" <step referencemodel="Inform a Flight Leg"
role="subroutines"” taskdate="Thu Apr 19 15:01:29 CEST role="subroutines"” taskdate="Thu Apr 19 15:01:29 CEST
2018" taskdatelong="1524142889116"> 2018" taskdatelong="1524142889116"">
<task taskid="t13"/> <task taskid="tl1l3" taskname="Set Departure Time Frame"
</step> optional="true" />
<step referencemodel="Search Flights" role=""tasks" </step>
taskdate="Thu Apr 19 15:01:40 CEST 2018" <step referencemodel="Search Flights" role=""tasks"
taskdatelong='"1524142900016""> taskdate="Thu Apr 19 15:01:40 CEST 2018"
<task taskid="t23"> taskdatelong=""1524142900016"">
<stepObject objectID="6"/> <task taskid="t23" taskname="Set Arrival Date"
</task> optional="false">
</step> <stepObject objectlID="6" objectContent="Lun, Déc 10,
. 2018" />
</task>
</step>

Figure 40. Extract of an original (left side) and a resultant (right side) scenario XML files after the process of
preformatting.

Besides preformatting the XML files of the extracted scenarios, our algorithm also adds, for
each scenario, an equivalent scenario without the optional tasks. This 1s made due to a imitation
in the current version of the HAMSTERS tool that does not allow to extract scenarios without
the optional tasks. The tool necessarily includes both optional and non-optional tasks present in
the model during the process of extracting scenarios. Thus, in order to obtain scenarios without
the optional tasks, we algorithmically generate new scenarios eliminating all the tasks signalized

111

Chapter 5: Modeling and Assessing Task Models

as optional in the set of scenarios extracted from HAMSTERS. Such new scenarios are named
as “No Optional” followed by the original name of the scenario extracted from HAMSTERS. As
a result, for each scenario extracted from HAMSTERS (necessarily including all optional tasks),
we generate an additional similar scenario, but without all the optional tasks.

5.3.3.2. Automated Assessment

BN

Task Model

4>[Evaluate Task ModeDd—

Automated
Approach

Figure 42. Activity of evaluating task models.

To illustrate how the assessing process 1s
performed (Figure 42), we will follow the
example already presented in the previous
sections. As such, the left side of Figure 41

presents a scenario extracted from our
HAMSTERS task model for modeling the

User Story “Flight Tickets Search”. An

extract of its before-preformatting XML source file 1s presented in the right side. The extract
represents the sequence of the 4 first tasks to perform the scenario “One-Way Tickets Search”.

Current scenario <steps>
. <step referencemodel="TaskModel" role="tasks" taskdate="Tue
Scenarion name: One-Way Tickets Search Mar 21 18:27:38 CET 2017" taskdatelong="1490117258218">
& - 1-Go to Find Flights (TaskModel) ~ </s:;g§k taskid="t18"/>
& -2 - Select One-way Trip (TaskModel) <step referencemodel="TaskModel" role="tasks" taskdate="Tue
& -3 - Inform Departure City (TaskModel) Mar 21 18:27:53 (_ZET 2017" taskdatelong="1490117273043">
&= -4-Provide List of Airports (TaskModel) </s:;g§k taskid="t28"/>
& -5 - Choose Departure Airport (TaskModel) <step referencemodel="TaskModel" role="tasks" taskdate="Tue
& -6 - Inform Arrival City (TaskModel) Mar 21 18:28:05 CET 2017" taskdatelong="1490117285008">
&= -7 -Provide List of Airports (TaskModel) </S:;g§k taskid="t10"/>
& -8 - Choose Arrival Airport (TaskModel) <step referencemodel="TaskModel" role="tasks" taskdate="Tue
& -9 -SetDeparture Date (TaskModel) Mar 21 18:28:18 gET 2017" taskdatelong="1490117298780">
& - 10 - Choose Number of Passengers (TaskModel) </s:;g§k taskid="t12"/>
& - 11 -Submit Search (TaskModel) .
&= - 12 - Present List of Available Flights (TaskModel) </steps>
<steps>
. </s{eps>
< >
Figure 41. Example of scenario extracted from a task model and its XML source file.
{ 5 - Run Tests on Artifacts]
<steps>
<step referencemodel="TaskModel" role="tasks" taskdate=""Tue
Mar 21 18:27:38 CET 2017" taskdatelong="1490117258218">
| P <task taskid="t18" taskname="Go to Find Flights"
optional="false" />
</step>
<step referencemodel="TaskModel" role="tasks" taskdate="Tue
Mar 21 18:27:53 CET 2017'" taskdatelong="1490117273043">
And 1 inform "Departure City" and choose 7* <task taskid="t28" taskname="Select One-way Trip"
"Departure Airport" in the field "Departure" Optlgnilf'false" />
And 1 inform "Arrival City" and choose </step>
" = = wos = " = PPN <step referencemodel="TaskModel" role="tasks" taskdate="Tue
Arrival Airport” in the field "Destination Mar 21 18:28:05 CET 2017" taskdatelong="1490117285008">
And 1 set "Valid Departure Date" in the <task taskid="t10" taskname="Inform Departure City"
field "Departure Date" optional="false" />
And 1 choose the option of value "2" in the </step>
field "Number of passengers" <step referencemodel="TaskModel" role="tasks" taskdate="Tue
And 1 click on “Search" Mar-21 18:28:18 CET 2017" taskdatelong="1490117298780">

Then will be displayed ""Choose Flights"

<task taskid="t12"
optional="false" />
</step>

</steps>

<steps>

taskname="Provide List of Airports"

Figure 43. Checking consistency of tasks between US scenario and scenarios extracted from task models.

112

Chapter 5: Modeling and Assessing Task Models

The process of consistency checking between US scenarios and scenarios extracted from task
models consists of verifying, for each step in the US scenario, if there are one or more right
correspondences for such a step in the XML source files of the scenarios extracted from the task
models. To do so, as illustrated in Figure 43, our algorithm fixes a step in the US scenario (“Given
1 go to ‘Find Flights’”for example) and retrieves from the ontology the correspondent task to be
verified in the task model, following the mapping presented in the section 5.3.2 (“Go to ‘Find
Flights”” n the example). Then we parse each task of each scenario in the XML source file
looking for one or more correspondences to the task retrieved from the ontology. If matches are
found, then a list of matches 1s created, keeping the position in each scenario-task where the
match has been found. The algorithm presented below in Figure 44 implements such a strategy.

foreach step from US Scenarios do
taskToFind <- correspondent task from the ontology
foreach task from each XML source file do
if the attribute taskname is equal to taskToFind then
ListOfMatches <- position(scenario,task)
endif
endforeach
endforeach
show ListOfMatches

Figure 44. Testing algorithm for assessing scenarios extracted from task models.

The results of testing are shown 1n a log indicating, for each step of the US scenario, if and
where a given step has found an equivalent task in the XML file analyzed, and once it carries an
object value associated, which value it is. In the example below, the first step (“Given I go to ‘Find
Flights™) of the scenario “One-Way Tickets Search” has found an equivalent task (i.e. a task
named “Go to Find Flights”) in the first position of the first scenario (task 1). The second step,
however, did not find a correspondent task once it was expected a task named “Choose Trip
Type” and the task model brings a task named “Select One-way Trip” (task 2), so this represents
an inconsistency in the model.

The third and fourth steps have a structure encompassing two user tasks, a first one to
mform/select a departure city/airport, and a second one to inform/select an arrival city/airport
from a list provided by the system. Both steps have not found correspondent tasks in the task
model (respectively tasks 3/5 and 6/8), once it was expected respectively the tasks “Inform
Departure”/“Choose Departure” when the task model actually brings “Inform Departure
City”/“Choose Departure Airport”, and “Inform Destination”/“Choose Destination” when the
task model actually brings “Inform Arrival City”/“Choose Arrival Airport”. The itermediate
system tasks “Provide List of Airports” (tasks 4 and 7) in the scenario extracted from the task
model have not been identified once there 1s not a correspondent step in the US scenario to
represent them.

Tasks 9 and 10 are actually imnverted in the US scenario. For the task 9, it was expected the
task “Choose the option of value in the field Number of passengers” in the ninth position while
it 1s actually found n the tenth position with the name “Choose Number of Passengers” (which
would be an inconsistency anyway). For the task 10, “Set Departure Date” 1s expected in the tenth
position when it 1s actually found in the ninth position, signalizing another inconsistency in the
model. Finally, the task “Submit Search” has been correctly identified in the eleventh position,
while the task “Present List of Available Flights” despite being correctly placed in the twelfth
position, it was expected with the name “Display List of Available Flights” instead, which signalizes
an inconsistency in the model. Table 15 summarizes such results.

113

Chapter 5: Modeling and Assessing Task Models

Running story stories/search.storyConverted

Feature: Flight Tickets Search

(stories/search.storyConverted)

Narrative:

In order to obtain information about rates and times of the flights

As a user

1 want to be able to search tickets, providing locations and dates.

Scenario: One-Way Tickets Search

<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Go to Find Flights - Found in Position:
1 >>

<< Scenario: ReturnTicketsSearch.scen - Searched Task: Go to Find Flights - Found in Position: 1 >>
<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Go to Find Flights - Found in Position:
1 >>

<< Scenario: OneWayTicketsSearch.scen - Searched Task: Go to Find Flights - Found in Position:
Given I go to "Find Flights"

<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Choose Trip Type - Task not found! >>

<< Scenario: ReturnTicketsSearch.scen - Searched Task: Choose Trip Type - Task not found! >>

<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Choose Trip Type - Task not found! >>

<< Scenario: OneWayTicketsSearch.scen - Searched Task: Choose Trip Type - Task not found! >>

When 1 choose "One way" referring to "Trip Type"

<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: ReturnTicketsSearch.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: OneWayTicketsSearch.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: ReturnTicketsSearch.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: OneWayTicketsSearch.scen - Searched Task: Choose Departure - Task not found! >>

When 1 inform “Departure City" and choose "Departure Airport" in the field "Departure"

<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: ReturnTicketsSearch.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: OneWayTicketsSearch.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: ReturnTicketsSearch.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: OneWayTicketsSearch.scen - Searched Task: Choose Destination - Task not found! >>

And 1 inform "Arrival City" and choose "Arrival Airport” in the field "Destination”

<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Choose Number of passengers - Task not
found! >>

<< Scenario: ReturnTicketsSearch.scen - Searched Task: Choose Number of passengers - Task not found! >>

<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Choose Number of passengers - Task not
found! >>

<< Scenario: OneWayTicketsSearch.scen - Searched Task: Choose Number of passengers - Task not found! >>
When 1 choose the option of value 2" in the field "Number of passengers™

<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Set Departure Date - Found in Position:
9 - Associated Value: No Value >>

<< Scenario: ReturnTicketsSearch.scen - Searched Task: Set Departure Date - Found in Position: 10 -
Associated Value: No Value >>

<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Set Departure Date - Found in Position:
10 - Associated Value: No Value >>

<< Scenario: OneWayTicketsSearch.scen - Searched Task: Set Departure Date - Found in Position: 9 -
Associated Value: No Value >>

And 1 set "Valid Departure Date" in the field "Departure Date"

<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: ReturnTicketsSearch.scen - Searched Task: Submit Search - Found in Position: 11 >>

<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: OneWayTicketsSearch.scen - Searched Task: Submit Search - Found in Position: 11 >>

When 1 submit "Search"

<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Display List of Available Flights - Task
not found! >>

<< Scenario: ReturnTicketsSearch.scen - Searched Task: Display List of Available Flights - Task not found!
>>

<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Display List of Available Flights - Task
not found! >>

<< Scenario: OneWayTicketsSearch.scen - Searched Task: Display List of Available Flights - Task not found!
>>

Then will be displayed "List of Available Flights"

=

>>

As scenarios in User Stories and scenarios in task models may be ordered differently, the
algorithm checks the whole set of XML files to ensure we are looking for all the instances of the
searched task. So, notice that the log of results presented above shows, for each step of US
scenarlo, the results of searching in each XML scenario file (“.scen”). Each line of results brings
then:

e the name of the scenario in which the search has been carried out,

e the task name that has been searched for,

e the position in which the task has been found (f so), otherwise is shown the message
“Task not found!”, and

114

Chapter 5: Modeling and Assessing Task Models

e the object value associated with each task (f any), otherwise 1s shown the message “No

Value”.

Due to that, if there are several XML files of scenarios, the results in the log will show where
a correspondent task has been found in each one of them. A consequence of such a strategy 1s
that the process of analyzing if a given task 1s correctly positioned in the evaluated scenarios 1s
made manually after getting the whole log of results.

Step in US scenario

Expected

Test
Result

Task in the XML source file

Given I go to “Find Flights”

Go to Find Flights

1 - Go to Find Flights

‘When I choose “One way”
referring to “Trip Type”

Choose referring to Trip Type

2 - Select One-way Trip

And I inform “Departure City”
and choose “Departure Airport”
mn the field “Departure”

Inform Departure

3 - Inform Departure City

4 - Provide List of Airports

Choose Departure

5 - Choose Departure Airport

And I inform “Arrival City” and
choose “Arrival Airport” in the
field “Destination”

Inform Destination

6 - Inform Arrival City

7 - Provide List of Airports

Choose Destination

8 - Choose Arrival Airport

And I choose the option of
value “2” in the field “Number
of passengers”

Choose the option of value in
the field Number of passengers

9 - Set Departure Date

And I set “Valid Departure
Date” in the field “Departure
Date”

Set Departure Date

10 - Choose Number of
Passengers

And I submit “Search” Submit Search 11 - Submit Search
Then will be displayed “List of Y e . |12 - Present List of Available
Available Flights” Display List of Available Flights Flights

Table 15. Checking consistency of tasks between US scenario and scenarios extracted from task models.

5.3.3.3. Tool Support

The algorithm we have just described for testing task models (Figure 44) has been
mmplemented in the Eclipse IDE for Java EE. The project has been structured in two packages.
The first one encompasses the classes for implementing the solution. As shown in Figure 45, this
package contains four classes: MySteps, MyTest, MyXMIL and PrepareFiles. MySteps
immplements the mapping between the Common Steps described in the ontology and the assertion
that should be made when checking scenarios from task models. MyXML implements methods
for parsing scenario files extracted from task models in their XML files. My Test 1s the JUnit class
that triggers the set of User Stories that have been selected for testing. Finally, PrepareFiles 1s the
class in charge of preformatting the scenario source files extracted from task models, as described
i section 5.3.3.1.

The second package encompasses the resources demanded for running the tests. In the folder
“stories”, we have the whole set of User Stories text files that have been specified for the project.
Even being text files, each User Story file must be named with a “.story” extension. In the
example, the project has one single User Story, with different scenarios for testing a given feature.
The folder “scenarios” contains the current scenario’s XML files extracted from task models
under testing, before and after the process of preformatting described n section 5.3.3.1. Finally,
the folder “task models” keeps the reference XML source files for the task models under testing.
Such files are useful to allow the process of preformatting.

Chapter 5: Modeling and Assessing Task Models

| 2 taskmodels [default:]

¥ @@ src/test/java
v g fr.irit.ics.booking.taskmodels
> g MySteps.java
> [f MyTest.java
> [MyXML.java
> [PrepareFiles.java
¥ @ src/test/resources
¥ mscenarios
[& No Optional OnewayTicketsSearch.scen
[No Optional ReturnTicketsSearch.scen
[OnewayTicketsSearch.scen
[ReturnTicketsSearch.scen
¥ pstories
|5 search.story
¥ (@ taskmodels
[TaskModel.hmst

Figure 45. File tree for the implementation of task model assessment.

Figure 46 represents the flow of calls we have designed in our algorithm for running a battery
of tests on task model scenarios. The flow starts with the class “MyTest.java”. First of all, this class
mstantiates an object from “PrepareFilesjava” (flow 1) in order to trigger the process of
preformatting mentioned before. Such a process runs on the package of task model scenarios
(flow 2), naming the extracted tasks and adding useful complementary information for testing.
For that, the process asks the reference source file ((hmst) of the correspondent task model
mentioned by each task in the scenario. After getting the scenario files formatted, “MyTest.java”
mcludes the User Story (or the set of User Stories) that will be tested (flow 3).

T

1

1 MyTest.java —l
L

I

S

A

N User Stories (.story)

o

{ MySteps.java

L,

4)(PrepareFiles.java 1 (MyXML.java }
o

Task Model
jos (.scen)

1

Task Models (.hmst) [€ &

Figure 46. Flow of calls for running tests on task model scenarios.

Each one of the steps in the User Story under testing makes a call to the class “MySteps.java”
(flow 4) that knows which behaviors are supported by the ontology. Based on the behavior
referenced by the step, this class makes a call to the class “MyXMLjava” (flow 5) in charge of
parsing all the set of task model scenarios (flow 6). This parsing aims to check if the behavior
addressed by the step 1s also present in the same position in at least one of the scenarios extracted

116

Chapter 5: Modeling and Assessing Task Models

from the task models. The result of this parsing 1s then returned to the class “MySteps.java” (flow
7). At this point, based on the algorithm presented in the previous section, a list of all the matches
found during the parsing for each step 1s presented as a result. Finally, the class “MySteps.java”
returns the result to the class “MyTest,java” (flow 8) that made the original call.

Notice the independence of the components assigned at the core of the structure represented
m Figure 46 (highlighted in yellow). Those components are related to the particularities of test
mmplementation for HAMSTERS task models and scenarios. As mentioned before,
“PrepareFilesjava” 1s in charge of preformatting the extracted scenario files and reading the
reference source file of task models, while “MyXMILjava” is in charge of parsing the scenario
files, searching for the elements under testing. Therefore, we deliver a flexible architecture
allowing, in the future, that task models and scenarios modeled by other modeling tools (or even
by other versions of HAMSTERS) could also be tested by just implementing new interfaces for
this core.

5.3.3.4. Setup and Running

Considering the presented architecture, to setup and run a battery of tests, we must:

e Place the set of task model scenario files (“.scen”) that will be tested i the package
“Task Model Scenarios”.

e Place the set of task model files (“.hmst”) that will support the test in the package “Task
Models”.

e Place the set of User Stories files (“.story”) that will be tested in the package “User
Stories”.

e Indicate in the “MyTest” class which User Story will be tested, or which folder
(“/stories”) contains all the User Stories that will be tested.

e Run the “MyTest” class as a JUnit Test.

est

public void testAllStories() throws Throwable {
eng.addSteps (new MySteps());
eng.addStories("/stories/search.story”);|
eng.run();

}

Figure 47. “MyTest” class indicating the file “search.story” for running.

Thus, for running the tests, the MyTest class 1s triggered. This JUnit class specifies exactly
which User Story (or which set of User Stories) will be run. Figure 47 illustrates the
mmplementation for running the User Story “Flight Tickets Search” (in the file “search.story”).
This story has the following scenarios:

User Story: Flight Tickets Search

Narrative:
In order to obtain information about rates and times of the flights
As a user
I want to be able to search tickets, providing locations and dates.

Scenario: One-Way Tickets Search

Given 1 go to "Find Flights"

When 1 choose "One way' referring to "Trip Type"

And 1 inform "Departure City" and choose '‘Departure Airport" in the field "Departure"
And 1 inform "Arrival City" and choose "Arrival Airport"” in the field "Destination”
And 1 choose the option of value "2" in the field "Number of passengers"

117

Chapter 5: Modeling and Assessing Task Models

And I set "Valid Departure Date' in the field "Departure Date"
And | submit "'Search"
Then will be displayed "List of Available Flights"

Scenario: Return Tickets Search

Given 1 go to "Find Flights"

When 1 choose "Round trip" referring to "Trip Type"

And inform "Departure City" and choose "Departure Airport" in the Ffield "Departure"
And inform "Arrival City" and choose "Arrival Airport” in the field "Destination”
And choose the option of value "1" in the field "Number of passengers"

And I set "Valid Departure Date' in the field "Departure Date"

And set "Valid Arrival Date" in the field "Arrival Date"

And submit "Search"

Then will be displayed "List of Available Flights"”

Finally, Figure 48 shows the console with the results of tests running the two scenarios specified
i this story above. Notice that, as described in the previous section, for each step of the US
scenarlo, 1t has been shown where some correspondent task has been found and which value was
associated to it (if any).

2 console . I3

<terminated> MyTest (8) [JUnit] /usr/localfjava/jdk1.8.0_162/binfjava (May 14, 2018, 5:54:25 PM)

Running story stories/search.storyConverted

Feature: Flight Tickets Search

(stories/search.storyConverted)

Narrative:

In order to obtain information about rates and times of the flights

As a user

I want to be sble to search tickets, providing locations and dates.

Scenario: One-wWay Tickets Search

<< Scenario: No Optional OnewayTicketsSearch.scen - Searched Task: Go to Find Flights - Found in Position: 1 ==
«<« Scenario: ReturnTicketsSearch.scen - Searched Tasck: Go to Find Flights - Found in Position: 1 =

<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Go to Find Flights - Found in Position: 1 >>
<< Scenario: OneWayTicketsSearch.scen - Searched Task: Go to Find Flights - Found in Position: 1 >>

Given I go to *Find Flights*

<< Scenario: No Optional OneWayTicketssearch.scen - Searched Task: Choose referring to Trip Type - Task not found! ==
<< Scenario: ReturniicketsSearch.scen - Searched Task: Choose referring to Trip Type - Task not foundl =

<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Choose referring to Trip Type - Task not found! >>
<< Scenario: OnewayTicketsSearch.scen - Searched Task: Choose referring to Trip Type - Task not foung! >>

when I choose *One way" referring to *Trip Type*

<« Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Inform Departure - Task not found! ==

<< Scenario: ReturnTicketsSearch.scen - Searched Task: Inform Departure Task not found! >»

<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: OnewayTicketsSearch.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional OnewayTicketsSearch.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: ReturniicketsSearch.scen - Searched Task: Choose Departure - Task not found! ==

<< Scenario: No Optional ReturnTicketsSearch.scen searched Task: Choose Departure Task not found! »»

<< Scenario: OneWayTicketsScarch.scen - Searched Task: Choose Departure - Task not found! >>

when I inform "Departure City" and choose "Departure Airport” in the field "Departure”

<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Inform Destination - Task not found! >>

=< Scenario: ReturnTicketssearch.scen - Searched Task: Inform Destination - Task not found! ==

<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Inform Destination - Task not found! »»

<< Scenario: OneWayTicketsSearch.scen - Scarched Task: Infors Destination - Task not found! >>

<< Scenario: No Optional OneWayTicketsSearch.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: ReturnTicketsSearch.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Choose Destination - Task not found! =

<< Scenario: OneWayTicketssearch.scen - Searched Task: Choose Destination - Task not found! >>

And T inform *Arrival City" and choose "Arrival Airport® in the field *Destination®

<< Scenario: No Optional OnewayTicketsSearch.scen - Searched Task: Choose the option of value in the field Number of passengers - Task not found! >>
<< Scenario: ReturnTicketsSearch.scen - Searched Task: Choose the option of value in the field Number of passengers - Task not found! >>

<« Scenario: No Optional ReturnTicketsSearch.scen - Searched Task: Choose the option of value in the field Number of passengers - Task not foundl =»
<< Scenario: OnewayTicketsSearch.scen - Searched Task: Choose the option of value in the field Nusber of passengers - Task not found! >>
When T choose the option of value "2* in the ficld “Number of passengers”

<< Scenario: No Optional OnewayTicketsSearch.scen - Searched Task: Set Departure Date - Found in Position: 9 - Associated Value: No Value >>
<« Scenario: ReturnTicketsSearch.scen - Searched Task: Set Departure Date - Found in Position: 10 - Associated Value: No Value >>
<< Scenario: ReturnlicketsSearch.scen - Searched Task: Set Departure Date - Found in Position: 11 - Associated Value: No Value =

Figure 48. Console after running the User Story “Flight Tickets Search”.

5.3.4. Towards an Alternative to the Extraction of Scenarios

Task models can be tricky to manipulate once the number of possible scenarios can scale
exponentially due to the complexity of the model. Different operators, the presence of optional
tasks, the number of times an iterative task can be executed, etc. make the extraction of scenarios
for testing a very complex activity. Campos et al. (Campos et al., 2017) illustrate this problem and
propose a catalog of strategies for modifying the models in order to manage the complexity of the
resultant set of extracted scenarios. An easy-to-see consequence of such kind of strategy 1s that
models are not fully manipulated, 1.e. the reference model for extracting test scenarios 1s a
simplified mstance (a subset) of the original model. Consequently, several nuances of modeling
(such as the use of multiple operators, non-interactive tasks, etc.), which allow task models being
a rich representation of human activities when interacting with the system, are lost and cannot be
verified or even taken into account when obtaining scenarios.

118

Chapter 5: Modeling and Assessing Task Models

In order to exemplify this problem, Figure 49 retakes an example of our current approach for
extracting scenarios from task models. The model presents a short extract of some tasks (1
Figure 49) mvolved in the process of booking tlight tickets through a generic flight booking system.
Therein, an abstract task named “Provide Data” generalizes a sequence of 5 tasks that can be
performed in any other. This attribute is signalized by the operator “Order Independent” (|=|)
placed between “Provide Date” and the other 5 tasks. Thus, one of the possible scenarios that
could be extracted from this model 1s presented further (3 in Figure 49). Therein, tasks are
performed in the order they are visually presented in the model, 1.e. first the user informs a
destination and a departure, then he/she chooses the number of passengers, sets the departure
date, and finally chooses his/her trip type.

Notice that the XML source file of the extracted scenario (4 in Figure 49) 1s just a sequential
description of tasks in the model that have been settled for execution. The file brings for each
task only a reference for its ID (it does not even bring the name of the task), the source task
model, and the date/time of execution. The XML source file of the task model itself (2 in Figure
49) 1s, on the other hand, a richer description of task modeling elements, including tasks of several
types, operators, constraints related to the number of iterations each task supports, tasks that are
optional, maximum and minimum time of execution, levels of criticality and so on.

K
0.~
Provide Data

Inform Destination Inform Departure Choose Number‘bf Passengers Set Depaﬁhre Date

ja"false” helpe®® Lde"1" iteratives"false" maxexectimes"0" minexectime="0" e="Provide Data” nb itezaticus="0" Lonal="false" Lypes="abstract”

Current scenario
Scenarion name: TestSimulator o
4% - 1-Inform Destination (Example) A |
4% - 2-Inform Departure (Example) Al
& -3 -Choose Number of Passengers (Example)
&

- 4 - Set Departure Date (Example)
4 -5 - Choose Trip Type (Example)

Figure 49. Task model (1), extracted scenario (3), and their respective source files (2 and 4).

Therefore, we can easily realize that the manipulation of XML source files of task models
brings us a full range of challenges. For example, as pointed by Campos et al. (Campos et al.,
2017), the presence of “order independent” operators between subtasks 1s a major contributor to
the state explosion in the state machine generated from a task model. Considering a simple
example in Figure 49, although the task model has only five subtasks following the abstract task
“Provide Data”, the resultant number of possible combinations of tasks (resulting in scenarios) 1s
equal to 120. This happens because we must consider all the permutations of the five tasks’
execution. By following all the leaves 1n a task model with multiple operators, we notice that the
number of possible scenarios for extraction gets exponential in function of the types of these
operators. That 1s the reason by which authors working with task model exploitation for
generating scenarios or test cases usually control such an extraction, in order to reduce the

119

Chapter 5: Modeling and Assessing Task Models

complexity and the resultant number of combinations. This becomes especially challenging 1f
task models specify collaborative activities with several instances of the same role.

We have also followed a strategy based on the extraction of scenarios from task models for
obtaining test scenarios to check the quality of models, but unlike other approaches, we have not
controlled such an extraction, which allowed us to keep important aspects of interaction.
However, as current tools do not allow us to automatically extract, from a given model, the full
set of possible scenarios for execution, this process 1s made manually by following all the
achievable paths and formatting them to get the resultant scenario prepared for testing. Figure 50
lustrates the flow of activities we have performed so far to obtain scenarios for testing based on
the current approaches in the literature. Notice that the source file of a task model 1s manipulated
only for extracting scenarios (continuous black line at the top). Such a feature 1s usually included
i tool-supported notations for designing task models. After such an extraction, the resultant
source files of scenarios are manipulated and formatted to obtain a given scenario for testing
(continuous black line at the right).

Scenario Extracted from
Task Model
(Source File)

Scenario for Testing

Figure 50. Flow of activities to get scenarios for testing.

Task Model
(Source File)

Y

This approach, regardless keeping important aspects of the interaction during the extraction
process, has limitations once it 1s still fully dependent on the extraction of scenarios, 1.e. it does
not allow us to manipulate the source file of task models directly. An approach that does not
necessarily pass through extracted scenarios (dotted red line at the left) would allow us to
manipulate the model with its full capabilities, opening a wide range of opportunities to assess the
quality of such models and to obtain not-simplified scenarios for testing. In short, being able to
manipulate and check the consistency of task models directly in their source files, mstead of
passing by the process of extracting scenarios, could represent a crucial step forward a solution
that includes a complete and not-simplified assessment strategy for artifacts modeling user
requirements.

5.4. Conclusion

This chapter presented our approach to assess task models by following a strategy in which
task models are designed, scenarios are extracted from them, and then User Stories are written
and formatted based on such extracted scenarios. This 1s one of the strategies we designed to
perform our approach. As presented in chapter 3, alternatively, we can write formatted User
Stories before designing our task models. It means that depending on the characteristics of the
project, either the User Stories can support the design of task models, or the task models (by
means of their extracted scenarios) can support the writing of User Stories.

Despite the limitations related to the process of extracting scenarios from task models, the
strategy for assessment we present in this chapter has many advantages over co-execution

120

Chapter 5: Modeling and Assessing Task Models

approaches. When opting for a static analysis of the source files, we gain in performance and
availability of tests. Specially in environments requiring a high-availability of tests to be executed
continuously along multiple iterations, static approaches benefit from an mstantaneous
consistency checking analyzing several hundreds of scenario files at the same time. Co-execution
approaches have the benefit of allowing running models simultaneously with a visual feedback at
real-ime about the correspondence of entities that are being assessed in each model. However,
such approaches demand a high investment to prepare the models before, annotating the source
code/files or even modifying its structure to support the co-execution. Besides that, as the great
benefit of co-execution 1s providing a visual feedback during the execution signalizing which entity
1s being assessed in each model at a given time, this process i1s usually slow and require an
evaluation being conducted manually to reveal its benefits.

Another benefit of our approach when compared with co-execution ones 1s that we defined
an open and flexible architecture where different notations and tools for designing task models
could fit in the future. For that, it 1s enough to implement a new core interface for describing the
way such notations and tools deal with tasks and scenarios, and how they can be identified in their
source files.

Finally, strategies for running automated tests over software artifacts indeed define a step
forward within the process of software verification. Such a process, that 1s usually conducted
manually by just inspecting or reviewing the artifacts in an attempt to 1dentify inconsistencies and
modeling errors, can benefit from an automated approach giving high-available mstantaneous
feedback about the consistency of artifacts with the user requirements all along the iterations.

The chapter 8 employs our automated approach in a large case study including the design of
task models to the booking system of business trips in our mnstitute. The chapter details a broad
set of Inconsistencies our approach is able to 1dentify and provides results about its potential. The
next chapter follows presenting our approach for multi-artifact testing detailing our strategy for
assessing user interface prototypes in different levels of refinement. As each artifact has its own
characteristics, the strategy shightly differs from the one for task models we have just presented in
this chapter. However, as an integrated approach, the same User Stories will be assigned to assess
the set of Ul prototypes mn different levels of abstraction i order to keep a consistent model-
checking approach for interactive systems.

5.5. Resultant Publications

Silva, T. R. & Winckler, M. (2017). A Scenario-Based Approach for Checking Consistency in
User Interface Design Artifacts. In: Proceedings of the XVI Brazilian Symposium on Human
Factors n Computing Systems (IHO), pPp- 21-30. ACM. DOI:
http://doi.org/10.1145/3160504.3160506. (Silva and Winckler, 2017)

Silva, T. R., Hak, J. L. & Winckler, M. (2016). An Approach for Multi-Artifact Testing Through
an Ontological Perspective for Behavior-Driven Development. Complex Systems Informatics
and Modeling Quarterly, 1 (7), pp. 81-107. DOI: http://doi.org/10.7250/csimq.2016-7.05. (Silva,
Hak and Winckler, 2016a)

121

Chapter 6

Modeling and Assessing User
Interfaces: From Prototypes to Final Uls

Summary

This chapter details our strategy for modeling and assessing user interface prototypes following
our approach presented in chapter 3. The chapter begins by resuming the case study proposed
previously, assuming that Balsamiq prototypes will be used to design the user interface m a first
stage of refinement. By following this, we present firstly how to produce Ul prototypes already
consistent with the set of user requirements specified previously. The example of UI prototype
we explore 1s based on the searching flight activity already modeled n the task model presented
in the previous chapter.

In the second section, we present how our previous developed ontology can support the
development of prototyping tools able to produce consistent Ul artifacts. PANDA 1s a tool
supporting such a mechanism. It provides a full pallet of widgets based on the presentation layer
of prototypes described 1n the ontology, and a full range of behavior properties, based on the
common interactive behaviors, also described in the ontology. PANDA prototypes also feature a
state machine for modeling the dialog, exactly as described in the ontology.

The third section describes how we perform tests on fully implemented user interfaces by using
an integrated multiplatform framework. This framework allows designing automated acceptance
testing with low implementation efforts. The fourth section discuss how our approach supports
the assessment of evolutionary Ul prototypes (using PANDA and/or other tools), and how it
could keep them consistent along the software development. Finally, the fifth and last section
concludes the chapter pointing out advantages and limitations of this approach.

In iterative processes, the design of user interfaces can evolve all
along the software development process as a result of requirements

l evolution and change, or the need of understanding and validating a

given interpretation of requirements (Wood and Kang, 1992). While

¢ the beginning of the project usually requires a low-level of formality

with UI prototypes being hand sketched to explore design solutions

2- Design Scenarized Artifacts and clarify user requirements, the development phase requires more
l refined versions frequently describing presentation and dialog

aspects of mteraction. Full-fledged versions of user interfaces are

i generally produced only later in the design process, and frequently

corresponds to how the user “see” the system. In the users’ point of
view, If some feature 1s not available on the user interface, this feature
does not exist for them. Besides that, acceptance testing 1s generally
Figure 51. Another alternative conducted by users on full-fledged versions of user interfaces, which
for performing our approach. should be fully functional at this stage.

[5 - Run Tests on Artifacts }

In this chapter, we adopt a use of user interface prototypes serving
as an early and evolutive design artifact for modeling aspects of functional user requirements. The

123

Chapter 6: Assessing User Interfaces: From Prototypes to Final Uls

evolution process of such artifacts brings the need of assessing them in their multiple stages of
development. Our strategy concerning the assessment of user interface prototypes consists, like
for task models, in checking their consistency with respect to a previously-defined requirements
specification. Unlike the chapter 5 however, in this chapter, we present the approach by following
a different alternative (Figure 51). As formatted User Stories have already been designed from
the scenarios extracted from task models, these same stories will be used to design Ul prototypes
In an attempt to get such prototypes already consistent with the user requirements. The process
of extracting scenarios from task models has defined which scenarios would be considered for
testing, therefore as such scenarios have already been defined and gave rise to the formatted User
Stories that will be used, this activity will be skipped for the UI prototypes. Thus, in this chapter,
we will in the sequence only: design the user interface prototypes (as part of the scenarized
artifacts) (2), and finally run tests on the artifacts (5).

Like task models, user interface prototypes can be designed through a diverse set of notations
and tools. For being assessed under our approach though, they only need to comply with the
premise of exporting the source files of prototypes in a markup language. As any other scenarized
artifacts, user interface prototypes could perfectly be a candidate to have scenarios extracted from
them. If it 1s such a case, such scenarios should also be provided with their source files in a
markup language. In this case, they may also serve as input to get formatted User Stories following
the strategy presented for task models in chapter 5.

Like task models again, although in theory user interface prototypes in any notation may be
assessed since they comply with the premise stated above, our implementation should be adapted
to understand the formalism used by such notations to describe the Ul prototype and eventually
the scenarios extracted from them. Our strategy for testing performs a static assessment of the
source files of prototypes by means of a syntactic and semantic analyzes of such files. As signalized
i chapter 5, an advantage of this approach 1s that, unlike co-execution approaches where both
artifacts under testing should be prepared for assessment by annotating or modifying their source
files, with our approach we have no need to intervene in the source files of the target artifacts, 1.e.
artifacts do not need to be prepared for testing by designers, so both user interface prototypes
and requirements specifications can be assessed in their original state.

For the demonstration we propose in this chapter, we make use of user interface prototypes
designed by Balsamiq once the notation and tool fit our premise stated above. Balsamiq exports
its prototypes using the XML standard, a well-adopted markup language, so recognized by our
approach. The task modeling and the extraction of scenarios that will be presented hereafter has
been made by using the Balsamiq tool, whilst the implementation of the assessment has been
made by using the respective XML source files produced by the Balsamiq tool for each model.

In a last stage of refinement, we also make of use of final user interfaces to assess user
requirements with respect to the definitive aspect of the interaction. We call final user interfaces
(final Uls), the fully functional versions of a Ul prototype implemented in a given programming
language for a given platform. Unlike task models and Balsamiq prototypes, the assessment of a
final UTI 1s made by dynamically running tests on its presentation layer with the aid of external
testing frameworks. Our premise for assessing such final Uls 1s then the availability of an external
testing framework able to run tests on a given environment. So far, our approach can implement
mtegration with Selenium WebDriver’ for assessing user interfaces of web applications, which will

3 https://www.seleniumhg.org/projects/webdriver/

124

Chapter 6: Assessing User Interfaces: From Prototypes to Final Uls

be used in this chapter). For assessing final Uls implemented for other environments such as
desktop or mobile applications, our approach should integrate with other testing frameworks.

We have also experienced the use of our ontology to develop a new prototyping tool in order
to allow the design of prototypes already consistent with the set of iteractive behaviors defined
in the ontology. PANDA tool allows the description of prototypes with a more refined description
of the mteraction when compared with Balsamiq. This tool 1s presented in the section 6.2. We
also describe 1 the next sections our strategy for performing tests since the low-refined Balsamiq
wireframes until full-fledged versions of the user interface running on the web.

6.1. Starting with Balsamiq Wireframes

For designing Ul prototypes in a low level of refinement, we have chosen the sketches
produced by Balsamiq Mockups'. Balsamiq 1s a rapid wireframing tool that reproduces the
experience of sketching on a whiteboard but using a computer. Balsamiq has a large set of
handmade-style UI elements for composing a user interface sketch. Figure 52 gives an overview
of such elements.

:‘;";w |Aces [Nicknome [Empioyee~
ltem One. Alert - Gacomo Guiizzon:
Home » Products » Xyz » Features JRado Buttor [Combosox [v) Founder & CEQ 37[Peldi ®
s g oy iy
o -
Tuttofore -
Mariah Maclachlon
U [= T i Slpwsa | &
T = Ve Loty
— (o 4 o a— Facd Ch i ’ B
AT
& Guido Jack Guiizzon 6| The Guids. [s] Second Tab)
oo
4 FEB 2008 » | [Checkbox Third Tob
s nvviz Fourth Tob
hee HEHU 0 ot selected
™ Two [0 — | ABuDAR S edkaond
B ndeterminate
— tlod

bled [Use { for closed folders.
Flor
A row without a checkbox @ Use F for open folders
Open . ITLAD [8] You may olso use thie
Open Recent) [and this
= or this.
® Option One &
Option Two 0 ond this
or aven this
o W Home | Products | Company | Bog 7| D>

Some text

) Use- for o e con
Exit CTRL+Q]

or _ to leave o space for your own icon

A paragraph of text with an unassigned knk T use spaces or dots for hierarchy
oline Buton @ A g ot o s e
Second ine of text B
2

CR < Batton © ot (slcted
O option 2
stmore StatiSEICS teacning technology ..
¢ © option 3 (datarminci)
tend B Yo YreeYrom) 00! ool __, von tutorl tULOTIQIS 1v e
A Subtitle ot typogreshy UDUNEU usability video Videos
- J e visualizotion wed Web 2.0 web GesigN weder Wiki windows
vome [A row without oo buton

Figure 52. Balsamiq handmade-style Ul elements.

Figure 54 presents the scenario “One-Way

Define Scenarios Tickets Search” (formatted m chapter 5 after
S . R
£ extracting scenarios from the task models),
Requirements v supporting the development of a Balsamiq sketch
Analyst 7 N

—>k Prototype Ul)—> uipooyee | prototyped for the User Story “Flight Tickets

— Search”. The activity of design the prototypes 1s
performed 1n collaboration by Requirements
Analysts and Ul Designers (Figure 53).

Ul Designer . .
By following the steps of the scenario “One-

Way Tickets Search” and consulting the ontology
to identify matching interactive elements, the
prototype can be designed already considering the set of interactive elements supported by each

Figure 53. Activity of prototyping Uls.

4 https://balsamiq.com/

125

Chapter 6: Assessing User Interfaces: From Prototypes to Final Uls

behavior. For example, when consulting the ontology, we find that the behavior “goTo” in the
first step (“I go to ‘Find Flights’”) 1s supported only by the mteraction element Browser Window.
Thus, the designer has no other option to address this behavior. Indeed, 1n the prototype, it has
been used a Browser Window for this behavior. On the other hand, the fifth step (“I set ‘Valid
Departure Date’ in the field ‘Departure Date’”) addresses the mteraction element “Departure
Date” that refers i the prototype to the Calendar used for picking up a date of departure. The
behavior “setInTheField” 1s also supported by Dropdown Lists, Text Fields and Autocompletes.
Thus, the designer could have picked any of them instead, but not a Button, for instance, once it
does not support the behavior “setInTheField”.

Scenario: One-Way Tickets Search

Given 1 go to'1‘

When 1 choose "One way™ referring to CTrip Type™ i:
And 1 inform "Departure City" and choose "Departure Airport"” in the field

""" 5

And 1 mform
Destination
And 1 set "Valld Departure Date"

City" and choose "Arrival Airport” in the field

And 1 click onC"Search™ i7:
Then will be displayed "List of Available Flights"

v

2 - Design Scenarized Artifacts
|
eFlights

QXD D &E D

Find Flights 11

/\ AAAAA
I Round trip | One way | 2

Number of passengers

K Iv]

Departure Destination

@Fr om

Departure Date

<4 FEB 2008 » 4 FEB 2008 »
SHATWTFS e SHATVWTFS
S 2
.onnnnés}‘ »nnu;éﬂc
MTERBARDS IR LE Tt 7
H5%080

(4

Figure 54. Sketch for the User Story “Flight Tickets Search” built from the scenario “One-Way Tickets Search”.

The second step addresses the mteraction element “Trip Type” that refers to the Link bar
used for choosing between a one-way and a round trip. The third and fourth steps addresses the
mteraction elements “Departure” and “Destination” that refers to the Text Fields, but with a
searching feature. It means that this element supports an operation auto-complete where, with a
single interaction, the user attains to inform some partial text and (based on the instant matching
results) choose the desired option. The sixth step addresses the interaction element “Number of
passengers” that refers to the Combo Box used for choosing the number of passengers in a finite
list. Finally, the seventh step addresses the interactive element “Search” that refers to the Button
used for submitting the search.

126

Chapter 6: Assessing User Interfaces: From Prototypes to Final Uls

6.1.1. Test Implementation

Just like task models, there are multiple

‘B . notations and tools with different

Ul Prototype |—>{ Evaluate Ul Prototype [«—— | Automated mmplementations for designing and
/ Approach . . .

modeling Ul prototypes (Silva et al., 2017).

Among these multiple tools, we have
chosen to mmplement a proof of concept
with Balsamiq in its current version (2.2.28)
once 1t fits our premise for getting user interface prototypes ready for testing. However, as we
have done for the mmplementation of task models, we have designed a flexible and open
architecture where other notations and tools could benefit from our approach by just
mmplementing a new java class in accordance with their own patterns to implement and model
prototypes.

Figure 55. Activity of evaluating Ul prototypes.

The assessing of UI prototypes 1s an automated process as illustrated in Figure 55. The source
code of Balsamiq prototypes 1s provided by the use of an XML specification. Thus, our strategy
for testing such prototypes 1s parsing their XILM source files, looking for UI elements that match
the ontology description for each mapped behavior. Then the first step for assessing such
prototypes 1s to get from the ontology the list of Ul elements that support the behavior under
testing. Taking the step “And I set “‘Valid Departure Date’ in the field ‘Departure Date” as an
example, by parsing the ontology OWL file, we find that the associated interactive behavior
“#setInThekield” 1s supported by the UI elements “Dropdown List”, “Text Field”,
“Autocomplete” and “Calendar”, when performing an “Action” (Then) or an “Event” (When) in
a state machine transition.

After getting such a list of supported Ul elements, we pursue to analyze the Balsamiq XML
file to 1dentify firstly if a field named “Departure Date” exists. This 1s made by reading the tag
“<text>” 1dentified in the parent tag “<controlProperties>” for a given “<control>” element. If
such a field exists, 1.e. there is a tag “<text>” carrying its name (case insensitive), so we retrieve
which interaction element 1s associated with it. At this point, we have implemented a reference
file contaiing the mapping between the abstracted interaction elements in the ontology and the
Balsamiq concrete implementation of such elements.

In our sketch, we can notice that the field “Departure Date” has been modeled with a
“Calendar” (extract in Figure 57), 1.e. the UI designer has chosen the Ul element “Calendar” to
attend the field “Departure Date”. Thus, by checking the list of supported Ul elements, we find
that the behavior “#setInTheField”, addressed by the field “Departure Date”, 1s supported by a
“Calendar” element, so the test would pass. If other elements than “Dropdown List”, “Text
Field”, or “Autocomplete” had been chosen, the test would fail.

.

[5 - Run Tests on Artifacts }

<control controllD="14" controlTypelD="com.balsamiq.mockups: :Button" x="1051" y="459"
w="-1" h="-1" measuredW="63" measuredH="27" zOrder="8" locked="false" isInGroup="-1">
<controlProperties>
<text>Search</text>
</controlProperties>
</control>

Figure 56. Button “Search” and its XLLM source file.

127

Chapter 6: Assessing User Interfaces: From Prototypes to Final Uls

Departure Date

4 FEB 2008 » <controlProperties>
SHTWTFS <text>Departure%20Date</text>
2 </controlProperties>
b4 a"‘z‘é; </control>
i nnnnn'z‘s <control controlID="1" controlTypelD="com.balsamiqg.mockups::Calendar” x="0" y="21"
HBHDBN w="96" h="96" measuredW="96" measuredH="96" zOrder="1" locked=""false" isInGroup="15"/>
</groupChildrenDescriptors>
</control>

Figure 57. Grouped field “Departure Date” and its XLLM source file.

Balsamiq has two methods for representing Ul elements on its XML source files. They can
be directly assigned with a unique controllD) (Figure 56) or be part of a group that encompasses
a label and the Ul element itself (Figure 57). In the first case, the label “Search” is directly
associated with the element “Button” itself (com.balsamiq.mockups::Button). In the second case,
we can notice the label for “Departure Date” 1s part of a group (isInGroup="15’). In the same
group, but with other controllD, we find the element “Calendar” itself
(com.balsamiq.mockups::Calendar). Our testing algorithm implements then a solution that
covers both situations. The algorithm presented in Figure 58 illustrates this implementation.

When looking for matching elements, the algorithm identifies which Balsamiq method has
been used to design the element. If the parent tag is a label, it means that the element 1s part of a
group that contains the element itself in a sibling tag. This sibling tag 1s then i1dentified by reading
the attribute “isInGroup”. If the parent tag 1s not a label, so it 1s already the element itself. After
identifying it, the algorithm checks if some of the UI elements received from the ontology matches
with the element from the prototype that is being investigated. If so, the variable “numTasks” 1s
mncreased by one. After investigating the whole set of tags, the value of this variable is returned
and must be equal to “1”7, which means only one Ul element for representing the “fieldname”
has been found. If this value 1s equal to “0”, it means that no UI element has been found in the
prototype with that “field-name”, while if 1t 1s greater than “1”, it means that more than one Ul
element has been found with the same “fieldname”. In both cases, the algorithm identifies the
failure and the test does not pass. This process 1s conducted for each step of the scenario.

foreach step from US Scenarios do
supportedUlElements <- correspondent Ul Elements from the ontology
FfieldName <- name of the Ul Element from the step
foreach Ul Element from the Balsamiq prototype do
if the attribute text is equal to fieldName && is not in group then
if the attribute controlTypelD is equal to one of the
supportedUlElements then
numElements++
endif
else If the attribute text is equal to fieldName && is in group then
if the attribute controlTypelD of some member of the group is
equal to one of the supportedUlElements then

numElements++
endif
endif
endforeach
endforeach
if numElements == 1 show Success

else show Fail

Figure 58. Testing algorithm for assessing UI prototypes.

128

Chapter 6: Assessing User Interfaces: From Prototypes to Final Uls

Notice that for prototypes at this level of refinement, we only assess the presentation
component. We are not considering for testing at this level the dialog modeling and the
consequent dynamic aspect of the iteraction. It means that to check the consistency of the Ul
elements modeled in the prototype, we only consider the presence (or the absence) of the right
mteraction elements on the screen where the interaction is supposed to occur. Behaviors that
perform a state transition (e.g. navigating from one screen to another or getting mock values from
the fields as a result of an interaction) are not being taken into account in the results. The next
section presents our strategy for considering the dialog aspect of prototypes that are one step
forward in the level of refinement.

6.1.1.1. Running Tests

Figure 60 represents the flow of calls we have designed in our algorithm for running a battery
of tests on Balsamiq prototypes. The flow starts with the class “MyTestjava” that 1s a JUnit class
in charge of triggering the battery of tests (its content 1s illustrated in Figure 59). This class indicates
which files will be used for testing (flow 1). There files are distributed in two packages. The first
one contains the User Story files (where are the scenarios for testing), and the second one contains
the Balsamiq UI Prototypes files (that are the BMML source files of Balsamiq prototypes). So,
in the example below, it has been indicated for testing the story “Flight Ticket Search.story” on
the Balsamiq Ul prototype “Book Flights.bmml”.

aTest

public void testAllStories() throws Throwable {
eng.addSteps(new MySteps("src/test/resources/1fprototypes/Book Flights.bmml"));
eng.addStories("/stories/Flight Tickets Search.story");

eng.run();|

}

Figure 59. “MyTestjava”: class for running tests on Balsamiq prototypes.

Each one of the steps in the User Story under testing makes calls to the class “MySteps.java”
(flow 2) that knows which behaviors are supported. Based on the behavior referenced by the step,
this class makes a call to the class “Balsamiq.java” to get the list of Balsamiq interaction elements
that supports such a behavior (flow 3). The class “Balsamiq.java” in its turn makes a call to the
class “MyOntology.java” (flow 4) in charge of reading the OWL file of the ontology and
recovering the list of abstract interaction elements supported by a given behavior. Such a list 1s
then returned to the class “Balsamiq.java” (flow 5) that checks, for each element returned by the
ontology, which are the correspondent concrete mteraction elements in Balsamiq in charge of
mmplementing the mentioned behavior (flow 6). This mapping 1s recovered from the file
“Balsamiq.mapping” (flow 7).

Afterward, the class “Balsamiq.java” returns such a list with the concrete Balsamiq elements
to the class “MySteps.,java” (flow 8) that originally made the call. With the list of supported
Balsamiq elements for the step under testing, the class “MySteps.java” makes a call to the class
“MyXMLjava” (flow 9) in charge of parsing the Balsamiq “.bmml” file (flow 10). This parsing
aims to check 1f the prototype carries the interaction element mentioned in the step under testing,
and 1f so, 1f such an element supports the behavior mentioned in the step. The result of this
parsing 1s then returned to the class “MySteps.java” (flow 11). At this point, based on the algorithm
presented in the previous section, we verify how many instances have been found for the searched
element. Finally, the class “MySteps.java” asserts the value and returns the result to the class
“MyTestjava” (flow 12) that indicates if the test has failed or not.

129

Chapter 6: Assessing User Interfaces: From Prototypes to Final Uls

MyOntology.java

MyTest.java

T

12

MySteps.java

8 3

-

1

Balsamiq
Ul Prototypes (.bmml)

1

User Stories (.story)

< 2 1

—

B

FS

Balsamiq.java

A

Y

Ontology.owl

w
¥

MyXML.java }—

i 0

Balsamiq.mapping

Figure 60. Flow of calls for running tests on Balsamiq prototypes.

Notice the independence of the components assigned at the core of the structure represented
i Figure 60 (highlighted i yellow). Those components are related to the particularities of test
mmplementation for Balsamiq prototypes. “Balsamiq.java” treats the demands for getting the
correspondent abstract interactive elements from the ontology and translates them to the concrete
mteractive elements implemented by Balsamiq. “Balsamiqg.mapping” provides such a translation.
Finally, “MyXMI.java” 1s in charge of parsing the BMML files of Balsamiq, searching for the
element under testing. Therefore, we deliver a flexible architecture allowing, in the future, that
UI prototypes modeled by other prototyping tools could also be tested by just implementing new
mterfaces for this core.

6.1.1.2. Setup

Considering the presented architecture, to setup and run a battery of tests, we must:

e Place the set of BMML files that will be tested m the package “Balsamiq UI
Prototypes”.

e Place the set of User Stories files (“.story”) that will be tested in the package “User
Stories”.

e Indicate in the “MyTest” class which prototype will be tested with which User Story
(only a prototype with a User Story at a time).

e Run the “MyTest” class as a JUnit Test.

6.2. Using the Ontology to Support the Development of Consistent
Prototypes

The ontology presented in chapter 4 could also be used to support presentation and behavior
descriptions for prototyping tools. A prototyping environment named PANDA (Prototyping
using Annotation and Decision Analysis) (Hak, Winckler and Navarre, 2016) has been
developed based on this principle. The development of a prototype using this tool 1s made thanks
to a toolbar containing widgets automatically generated from our ontology. Once the toolbar is
generated, the user can create his prototype by placing widgets, whose properties are described
in the ontology and presented in the edition area as illustrated in Figure 61. The use of this

130

Chapter 6: Assessing User Interfaces: From Prototypes to Final Uls

@ panda 201510222201 - o X

File Edit View Navigate Source Refactor Run Debug Team Tools Window Help Q- Search (Ci+])

PFEES HErie Sl Dbl

| Files | — | [Bll FincFiight demo HCSE prstn X | ¥ O [pakette x| -

|® @Panda’Prosectr || source [“visual | History & || = Annotation
(@) Papers Demo kN =l TR RERS
& Prototype Files et 2 + Container
y Find flig Initial State; = i
i [l FindFlight der @ ot) Information Component
i Jll FindFlight der
] Login Find flights My trips / Check-in Flight status Notification Progress Bar

>

Txt Label Message Box

Username - - Text Tool Tip
Round trip One way Round trip + hotel
Window Dialog

g From To Number of passengers =/ Input Control
I Autocomplete Button

Last name [1 T [
[Checkbox Date and Time Picker

Password Depart Dropdown Button Dropdown List

List Box Numeric Stepper
| . adorin eoTeared

: Toggle
Login + Interaction Element

+ Navigational Component
+ Platform

+ State classes

+ State Machine Element
+ Window

+ Window Dialog

One-Way Tickets Search
[V] Given | go to "Find flights"
[< > [V] When | choose "One way"
| Navigator X = [¥] And I type "Paris" choose "CDG - Paris Ch De Gaulle, France'in the field "From”
'.' FindFlight demo HCSE | [] And | type "Dallas" choose "DFW - Dallas Fort Worth International, TX"in the field "To" Button Search - Properties X =
| @-[S] State Find fight [<] And | choose the option of value "2"in the field "Number of passengers” = Properties ~
| @-[S] state Choose fight [] And | choose "12/15/2016"referring to "Depart Name Search
| @-[S] Unassigned widgets VI And | click on "Search” Type Button
| [VI Then will be displayed "Choose Flights” Value Search
& Visible true

@ Choose Flights Enable true
Find flight

Parent state name

= Dimensions and posttion
Flights Departure Arrival Choice PosttionX 498.0
PositionY 244.0
49 11:30 am 00:35 pm $1711 Width 120.0
BAB005 CDG DFW Refundable Height 30.0
= Ontological properties
#clickOnReferringTo
#usesAsAliobileElement
#clickOn

6557 07:45 am 09:10 am $1706

Operated hy CDG LHR Refundable
British Airways DisplayName Button

#usesAsAWebElement
51 09:55 am 12:25 pm Annotation A button indicates an...[..| v

LHR DFW Button Search []
Properties of Search

Figure 61. PANDA screenshot.

technique allows a mapping between the elements described in the ontology (and thus, their
properties and supported behaviors) and each of the prototype’s widgets.

A PANDA prototype features a state machine where states of the system are populated with
the elements in the display when the state 1s active. By linking states with transitions, it 1s possible
to specify the structure and the behavior of the prototype. After having developed the prototype,
1t 1s possible to replace a transition with a scenario. Indeed, in Figure 61 we have a testing scenario
used as a transition in the state machine. This scenario links together the state “Find Flight”
represented by the rectangle with a gray header in the upper part of the prototype with the state
“Choose Flight” located n the lower part. The state “Find Flight” represents the initial condition
(indicated by the “Given” clause) and the state “Choose Flight” represents the result of the
scenario execution (indicated by the “Then” clause).

PANDA supports scenarios described 1n a text format which are imported in the edition area.
When importing a scenario, PANDA parses the different steps and analyzes them by 1dentifying
the events, the tasks, the associated values and the targets of the task. This identification 1s done
by splitting each line of the scenario and 1dentifying keywords like “Given” or “Then” and the
quote character. Quoted segments are mterpreted as values except for the last quoted element of
each line, which 1s 1dentified as the target of the task. Segments before the quoted elements are
considered as actions related to the values read. Fach line read 1s then registered as a Step of the
Scenario. Figure 62 shows an example for the Step “And I type ‘Paris’ and choose ‘CDG - Paris
Ch De Gaulle, France’ in the field “From”. The value “Paris” 1s associated with the action “I

131

Chapter 6: Assessing User Interfaces: From Prototypes to Final Uls

type”, “CDG - Paris Ch De Gaulle, France” 1s associated to the action “choose” and “From” 1s
associated with the locator “in the field”. Keywords are ignored except for the word “Given” and
“Then” which introduce conditions and the final actions.

And | I'type | “Paris” | and | choose | “CDG - Paris Ch De Gaulle, | in the field | “From”
France”

Figure 62. Example of a step split during its parsing.

Once the scenario has been parsed and attached between an initial and a resultant state, 1t can
be executed mn order to find out if the scenario 1s supported by the prototype. This execution can
be made step-by-step or with the whole set of steps of the scenario being executed at the same
time. PANDA checks the state in which the prototype 1s, as well as the properties defined in the
ontology loaded. Thereby, it verifies if each step of the scenario is able to be run according to the
set of supported tasks. To do so, the system starts by mapping between the widgets of the
prototype and the target of the tasks during the execution, since scenarios and states of the
prototype are independent. So far, this mapping 1s based on the name of the widget, but other
mapping methods will also be considered. Then, for each step whose target has been mapped,
the system checks 1f each action or property matches with the properties of the widget which were
defined mn the ontology. As an example, in the step “And I click on “Search”, PANDA looks for
any widget named “Search” in the initial state and checks if the description of the corresponding
widget in the ontology supports the behavior “clickOn” (see Figure 63).

The results of the tests are displayed by a colored symbol next to each step as shown in Figure
64. A red “X” represents failure, a green “V” represents success, and a black “?” represents an
untested step. There 1s currently no distinction between the different reasons for test failure (e.g.
widget not found, property not supported, etc.). In our example, the button supports the event
“#clickOn” which matches with the action “I click on” of the scenario. However, none of the Ul
Elements (Calendar, CheckBox, Link or Radio Button) described in the ontology to support the
behavior “chooseReferringTo” was found.

Button Search - Properties X ‘ —

[+ 1d)
|+ Properties

[+ Dimensions and position

|-/ Ontological properties

#clickOnReferringTo

#usesAsAMobileElement

DisplayName Button

#usesAsAWebElement

Annotation A button indicates an...|...| V¥

#clickOn © [¥] And | choose "12/15/2016"referring to "Depart’
Displays the property #dickOn from the ontology V] And | click on "Search”

[?1 Then will he displayed "Choose Flights"

Figure 63. Properties of a button in the tool PANDA Figure 64. Example of results given during a Scenario
with properties defined by the ontology. testing.

In a prototyping context, the automated mnterface testing could be used as a way to validate a
version of a prototype that passes the tests or points out parts of the prototype that require
attention and further analysis, for example. PANDA 1s focused on the evolution of a prototype,
as signalized by the evolutionary cycle in the workflow shown in chapter 3. Thereby, the same

132

Chapter 6: Assessing User Interfaces: From Prototypes to Final Uls

scenario can be used on different versions of the prototype, until the prototype reaches the final
UL

6.3. Evolving Ul Prototypes

When evolving Ul prototypes (activity

e N represented i Figure 65), we get artifacts modelin
—){ Prototype Ul |—> Ul Prototype I . 5 ..)’ g . ~ 5
N J detailed or even definitive design solutions for Uls.
l Such evolved artifacts represent a design refinement
Requirements

Analyst regarding the previous solutions presented n less
refined versions of Ul prototypes. Thereby, it 1s
worthy keeping the track and check the consistency

% SR ' of such multiple design solutions along the design

—){\De!ermme Final UI/}—» Final Ul process.
Ul Designer

For the purpose of illustration concerning how
our approach can support such a traceability and
consistency checking, Figure 66 presents the
successive mapping of a less refined Balsamiq prototype, a PANDA prototype, and a final UI
when testing the User Story “Flight Tickets Search”. In the first transition, the Balsamiq prototype,
designed in Figure 54 previously, is evolving to a more refined level by using PANDA. Notice
that more detailed decisions about the design solution have already been taken. For example,
suppose that during the project a business decision has been taken to evolve the user
requirements in order to provide a new option for booking hotels along with the flights. Thereby,
mstead of using a simple “Round trip / One way” ButtonBar, the PANDA prototype has been
modeled using a three-button solution with a third option to book hotels in addition to the round
trip / one-way flight options. None of the solutions however 1s covered by the ontology for the
behavior “I choose ... referring to ...”, so the test fails. The ButtonBar used in the Balsamiq
prototype 1s not an interaction element modeled and recognized by the ontology, and the three-
button solution used in the PANDA prototype does not allow an action of choosing, once such
a kind of behavior are not supported by buttons. On the final UI, links have been chosen instead,
so the test passes.

Figure 65. Activity of evolving UT prototypes.

In the following example, fields like “Departure” and “Destination” became simple Text
Fields once PANDA has not a specific widget for modeling the auto-complete behavior. As the
step specified in the scenario 1s “ 1 mnform ... and choose ...”, and such a behavior 1s only supported
by AutoComplete fields, the test fails in the PANDA prototype. For the field “Number of
passengers”, the test fails as well, once the step in the User Story specifies the behavior “7 choose
the option of value ... i the field ...” for this interaction element, and such a behavior i1s not
supported by the “Text Field” which has been chosen in the PANDA prototype. Notice that the
PANDA prototype and, obviously, the final UI, both support the dialog description and changes
the UI according to the selection made in another field. In the example, as the a “One-way” trip
has been selected, then the field for specifying an arrival date 1s not shown. The other fields have
been correctly addressed in the 3 versions of the Ul Figure 67 and Figure 68 give another
example to compare the user interface refinement for performing the User Story “Choose
Flights”.

133

Chapter 6: Assessing User Interfaces: From Prototypes to Final Uls

eFlights

DD

Round trip | Oneway |

Departure Destination

Number of passengers

GFrom

K

_1+]

Arrival Date

4 FEB 2008 »
SATWTFS
2
razerdh
TBR®22S
HBR0BA
v
Login Find flights My trips / Check-in Flight status
Username - -
Round trip One way Round trip + hotel

umber of passengers

Last name

Password

LOg in Join AAdvantage » Find ﬂlghts i1}

AAdvantage #, Dividend Miles # or

username v .

My trips / Check-in

Flight status

[] Redeem Miles

Number of passengers

Last name (¢ Roqured); .,
From * ><Jo*
cDG £ |)orw
Depart *
. Remember me Log in 12/15/2016 &

Baggage & optional service fees »
Forgot your AAdvantage number or password?

a

| 2

Advanced search »

{ [\ Travel alert in effect » ‘

Feedback

Figure 66. The less refined prototype for “Flight Tickets Search” evolving to a more refined one, and then to a

final UL

134

Chapter 6: Assessing User Interfaces: From Prototypes to Final Uls

@Mm

Flights Departure Arrival

49 11:30 am 00:35 pm
BAS00S chG DFW
6557 07:45 am 09:10 am
Operated by CDG LHR
British Aiways

51 09:55 am 12:25 pm

LHR DFW

Choice

$1711
Refundable

$1706
Refundable

Figure 67. The “Choose Flights” Ul prototype in

PANDA.

6.3.1.

Elements Mapped for Testing

" ISP
AmericanAirlines g

TR, -

Choose Flights

Figure 68. The “Choose Flights” final UI.

The testing of Ul design artifacts like UI prototypes 1s conducted by automatically checking
whether user requirements in the User Stories have been consistently modeled in the various
levels of UI refinement. Table 16 exemplifies the correspondence of concepts (model and
ontology) used by our testing algorithm for the different Ul instances (Balsamiq and PANDA
prototypes, and final UI). In the example, the consistency of the requirements representation for
the Scenario “One-Way Tickets Search” 1s being checked in the respective Ul prototypes.

. Concepts .
Artifact Step of Scenario
Model (UI Elements) Ontology
Balsamiq prototype BrowserW{ndow Interaction Element: Given I go to “Find
PANDA prototype Browser Window Browser Window Flichts”
Final UI Screen) S
Balsamiq prototype ButtonBar Interaction Elements: When I choose “O »
PANDA prototype Button Calendar, Checkbox, P o (t O“(i[b‘e Tnc vx:ay
Final UL Link Radio Button, and Link, | "€ ¢8 10 1P 1¥PE
Balsamiq prototype SearchBox And I inform “Departure
PANDA prototype Text Field Interaction Element: City” and choose
Final U AutoComplete Autocomplete ‘Dep:lrtur'e Alr\p,(,)rt in the
field “Departure
Balsamiq prototype SearchBox And I inform “Arrival
PANDA prototype Text Field Interaction Element: City” and choose “Arrival
. Autocomplete Airport” in the field
Final UI AutoComplete “Destnation”
estination
Balsamiq prototype (Jalcn(.lar Interaction Ekmenls: When T set “Valid
PANDA prototype Text Field Dropdown List, Text Den: Date” in th
Field, Autocomplete, and | - cparture Daten the
Final UI TextField L ; ’ field “Departure Date”
Calendar
Balsamiq prototype ComboBox . . And I choose the option of
PANDA prototype Text Field IDnhe d n Ei value “2” in the field
Final UI Select ropeown LIS “Number of passengers”
Balsamiq prototype Button Interaction Flements:
PANDA prototype Button Menu, Menu Item, And I click on “Search”
Final UI Button Button, and Link
Balsamiq prototype Paragraph Th U be displaved
PANDA prototype Text Interaction Element: Text | en Wil be qsplaye ”
- List of Available Flights
Final UI Text

Table 16. Example of concept mapping for testing.

135

Chapter 6: Assessing User Interfaces: From Prototypes to Final Uls

Notice that as PANDA charges a pallet of UI elements gathered from the ontology, so in the
mapping, concepts related to the model and to the ontology are exactly the same. A complete
concept mapping table for all Balsamiq and final Ul elements supported by the ontology 1s
presented in the Appendix A.

6.4. Testing Final User Interfaces

Figure 69 reproduces the automated

[L —— activity of testing final Uls. The testing of
Final Ul » Evaluate Final Ul |€——— | Automated ; ; 1 1
L) Ay ﬁna! user mterfaces we present in this

section mvolves running tests directly on

the web browser of a web application. As

Figure 69. Activity of evaluating Final Uls. stated n the beginning of this chapter,

different testing frameworks would be

required for performing tests on different environments. Despite our ontology supports a

specification for both web and mobile environments, so far, we have only explored an architecture
to perform tests on a web environment, 1.e. running on a web browser.

Besides using a framework to control navigation on a web browser, other frameworks are
required to parse the text on User Stories, to build the test suit, or even to generate reports from
the execution. To test final Uls directly from User Stories, we use external frameworks to provide
automated execution on the final UL Such frameworks are able to mimic user interactions with
the final UI by running the set of scenarios described mn the User Stories. Therefore, we have
built an architecture of tools to bring together the multiple set of required frameworks for
performing our testing approach on final user interfaces. Such an architecture 1s presented
hereatfter.

6.4.1. Integrated Tools Architecture

The integrated tools architecture we propose for testing final user interfaces 1s essentially based
on Demoisele Behave, JBehave, Selentium WebDriver, JUnit and Maven. We use Selenium
WebDriver to run navigational behavior, and JBehave and Demoiselle Behave to parse the
scenario script. Test results provided by the JUnit API indicate visually which tests are passed and
which ones failed and why. Execution reports of User Stories, scenarios and steps can also be
obtained by using the JBehave API.

Core
7 N\
Parser Runner
\8 A
JBehave
Concordion Selenium WebDriver
Cucumber
1\ J

Figure 70. A 3-module integrated tools architecture.

136

Chapter 6: Assessing User Interfaces: From Prototypes to Final Uls

Story Parser Runner Target
TXT File JBehave Selenium Web Browser

Figure 71. Flow of components in the proposed architecture.

Such an architecture allows users to automate testing on web user interfaces by following our
behavior-based approach. The architecture has three main modules: Core, Parser, and Runner
(Figure 70). Core 1s responsible for the main interfaces of the framework by orchestrating the
mformation among the other 3 modules. The Parser 1s responsible for the abstraction of the
component that will transform the story mnto Java code, to send to the Runner through standard
or project-specific sentences. The Runner 1s responsible for the abstraction of the component
that will perform navigation on the user interface, such as Selentum WebDriver or even JUnit
directly. The framework identifies stories written in TXT to be sent to the Parser module and
later to Runner, which is responsible for interacting with a web browser using the Selenium
WebDriver. Figure X illustrates such modules.

To run tests in such an architecture, story files are charged as mputs for the parser, that
translates the natural language behaviors into java methods, and then selects a runner to perform
the navigational commands on a given target web browser. This flow of components 1s illustrated
m Figure 71.

6.4.2. Implementation

Presentation Layer
. External Testing
MyPages i Frameworks

MyTest

v
Requirements and Testing Layer

User Story
I
==y
. Testing
MySteps I
K
Prototyping Layer Task Modeling Layer

A
Y

Y

Ontology

. v,

Figure 72. Packages and classes being structured to implement our testing approach.

Figure 72 details how we have structured packages and classes in different layers to implement
our architectural approach. The ontology described in chapter 4 provides to the model a pre-
defined set of behaviors used in the Requirements and Testing Layer. Artifacts produced
Prototyping and Task Modeling Layers are suitable to not only benefit from the ontology
description mn order to model better requirements, but also to contribute with the development
of new User Stories. Pre-defined behaviors charged from the ontology are implemented by the

137

Chapter 6: Assessing User Interfaces: From Prototypes to Final Uls

CommonSteps class. New extended behaviors, that are not mitially covered by the ontology, can
be implemented in the MySteps class. Steps in User Stories are mapped to either CommonSteps
or MySteps behaviors in order to be run as Java methods. Figure 73 illustrates this mechanism.

. Example:
TXT File Given | go to the page [Main Page]
| - J
A

L Al
@Given ("l go to the page [$pageAlias]")
public PageObject goToThePage (String pageAlias) {

Figure 73. Parsing a step from a TXT file to a Java method.

The Presentation Layer includes the MyPages class which implements the link between
abstract Ul components defined in the ontology and the concrete Ul components instantiated on
the interface under testing. This link 1s crucial to allow the Selenium WebDriver and other
external testing frameworks to automatically run scenarios in the right components on the Ul To
link these components, the MyPages class identifies a screen map (“@ScreenMap”) which address
the web page location, and several element maps (“@ElementMap”) which link the various
abstract UI elements in the User Stories with their concrete Ul siblings on the user interface. This
link is made by manually associating the name of each abstract UI element with their concrete
locators (such as IDs, XPaths, or any other web element identifier). Figure 74 illustrates this
mechanism.

Finally, the MyTest class 1s a JUnit class in charge of triggering the tests, pointing which
scenarios should be executed at a time, besides making the bridge between UI components in
the Presentation Layer and executable behaviors in the Requirements and Testing Layer.
aScreenMap(name = "Flight Search", location = "https://www.aa.com/homePage.do?locale=en_US")
public class MyPages {|

@ElementMap(name = "Round trip", locatorType = ElementLocatorType.XPath, locator = "//*[@id='journeyTypeRT']")
private Radio RoundTrip;

daElementMap(name = "One-way", locatorType = ElementLocatorType.XPath, locator = "//*[@id='journeyTypeOW']")
private Radio OneWay;

@ElementMap(name = "Departure Date", locatorType = ElementLocatorType.XPath, locator = "id('depDate’)")
private TextField DepartureDate;

Figure 74. MyPage Java class.

These three basic classes (MySteps, MyPages and MyTest) can also be modeled with different

NS

names into packages “steps”, “pages” and “tests”, in order to separate concerns and implements
different classes for different pages or features.

\’

[5 - Run Tests on Artifacts]

138

Chapter 6: Assessing User Interfaces: From Prototypes to Final Uls

Firefox Web Browser

erican Alrlines - Alrline tickets and cheap flights at AA.com - Mozills Firefox

L lavaEE §'lava

= 0 [askuist 2 - o

v @ MyTes

eng
o MyTest()

o testAllstories() : void

DD D AN

When I click on “Search*
Then will be displayed “Choose Flights®

Scenario: Return Tickets Search

Given I go to "Find Flights®

When I choose “Round trip*

When I type *New York* and choose *NYC - New York, NY* in the field “From*

Writable Smartinsert 25:51

Figure 75. Automated execution of the scenario “Return Tickets Search”.

RERGET A December 2016
Find flights 5 M T W T F 8

T S » 2 w T F s
1 2 ’1 2 - 5 8 7

One way Rowt 4 5 6 7 8 o (48) 8 A: 10: N 12 18 4

January 2017 >

@

(* Required) H# 2 8B 15 16 17 15 16 17 18 9 2 al

Ficii® % 19 20 21 2 23 24 | 2 2 24 25 2% 21 2
NYC 25 26 27 28 29 30 AN 2% 0 N

Depart » Close
et L < R

Baggage & optional service fees » Advanced search »

Figure 76. An attempt to select a return date before the departure date.

The environment for implementing and running the tests 1s the Echipse IDE with a Maven
project istantiated. Figure 75 shows such an environment with the MyTest class automatically
running the Scenario “Return Tickets Search” presented i our illustrative case study. Thereafter
1s also presented mn Figure 76 an example of test running when assessing the business rules for
“Search for flights more than one year in advance” and “Search for a return flight before a
departure flight”. In the example, the designers have chosen to block the mappropriate dates in
the calendar according to the business rules. The figure actually shows our algorithm trying to set
those invalid dates to test the rules.

The structure of the Java project 1s presented in Figure 77. Notice that the three
aforementioned classes are packed in the package “java” and the User Stories in the package
“resources”. On the right side of the figure, the structure of the MyTest class 1s presented
highlighting the addition of the new extended behaviors in the MySteps class, and all the stories
in the “/stories” folder being triggered by a JUnit test method.

A resource that facilitates the written of User Stories (and that 1s also available when writing
and editing User Stories for assessing task models and Ul prototypes) 1s the immediate feedback
concerning the existence of behaviors in the ontology to address the step that 1s being written.
Figure 78 illustrates this resource. Notice that all the steps in the scenario have been recognized,

139

Chapter 6: Assessing User Interfaces: From Prototypes to Final Uls

[MyTest.java &

7 1 lpackage fr.irit.ics.test;

3@ import org.junit.Test;[]

v @ src/test/java =
v 8 Fr.irit.ics.test 7 public class MyTest {
> z 8
() MyPages.java 9 private BehaveContext eng = BehaveContext.getInstance();
> [J] MySteps.java 10
- 11€ public MyTest() {
> 1] MyTest java 12 eng.addSteps(new MySteps());
¥ @ src/test/resources 13
¥ A 14
¥ (= stories 152 @Test
[2) example.story 16 ﬁublic void testAllStories() throws Throwable {
17 eng.run("/stories");
19
20 }

Figure 77. Package tree (on the left) and MyTest class (on the right).

1.e. there are equivalent behaviors in the ontology to address them, except the step “When I set
the date ‘12/20/2017’ in the field ‘Return’” that has been underlined to alert that such a step 1s
not recognized by the ontology (actually the right step in this case 1s generic: “... I set ‘<value>’ in
the field ‘<element>’”, like has been used in the following line). When clicking in the alert icon,
a message to say that “no step 1s matching” will be shown. Additional feedback 1s also given
recognizing in the step the mention to values and interactive elements when they are surrounded
by quotation marks.

Ebcenario: Return Tickets Search

31Given I go to "Find Flights"

32When I choose "Round trip"

33And I type "New York" and choose "NYC - New York, NY" in the field "From"

34When I type "Los Angeles" and choose "LAX - Los Angeles International, CA" in the field "To"
35And I choose the option of value "I" in the field "Number of passengers"

36When I set the date "12/15/2017" in the field "Depart"

37And I set "12/20/2017" in the field "Return"

38When I click on "Search"

39 Then will be displayed "..."

Figure 78. Writing a User Story and getting instant feedback of unknown steps.

The testing results are presented through the classical JUnit green/red bar within the Eclipse
IDE. By the end of the tests, a JBehave detailed report 1s automatically generated in the project
folder. Additionally, for each error found, screenshots are taken and stored to allow a better
analyze of the results afterwards. Examples of these features are presented in Figure 79.

i Junit 2 ' a) Story Reports

o i 9 B © Stortes. Scenarios GivenStory Scenarios Steps

Name Excloded Total Successful Pending Fatied Excluded Total Successtul Pending Falled Excluded Total Successful Pesding Fasled Tgnorable

: Not
Finished after 2.392 seconds Performed
Runs: 1/1 @ Errors: O 0 Failures: 0

dv Junit & bl - |
PO W

Finished after 47.896 seconds

Runs: 1/1 B Errors: 0 8 Failures: 1

¥ o fririt.ics. booking.tests.MyTest € (Voo 1 0 °] o o ° L 0 18 18 0 0
o testAllStories (47.8835) 12 [7 16 3 ' 3) ° 0 0 224 205 6 TR+

Figure 79. JUnit green/red bar at the left, and JBehave detailed report at the right.
6.4.3. Handling Test Data

Test data are an important component of software testing. They are very useful providing
concrete examples for scenarios, but they must be carefully planned to explore the multiple black-

140

Chapter 6: Assessing User Interfaces: From Prototypes to Final Uls

box test design techniques such as equivalence partiioning, boundary value analysis, domain
analysis and so on. Test data also become out of date easily, especially those ones that reference
time variables such as dates, ages, etc. Providing strategies for organizing and maintaining such
test data 1s therefore crucial for getting well-succeed test scenarios.

In our approach test data can be specified directly in the step of User Stories or be specified
as data domains (variables) in the step, keeping the real test data out of the scenario. Our approach
offers two main strategies to set test data out of scenarios. The first one 1s to use Data Providers
to store values for variables which can be used to write the steps of scenarios. Data Providers
associate such variables (specified n the step) to the real test data (specified mn the test source
code) in a Java method directly in the source code. The real test data is then injected into the
scenario at runtime. This mechanism is useful to render flexible the reuse of data dynamically
and to hide data in scenarios without losing readability. The downside i1s that data are
encapsulated in the source code which harms their maintainability. Figure 80 illustrates this
mechanism.

The second mechanism 1s the use of data storages in XML files. With data stored in XML,
files, the test source code 1s kept clean and the mamtamability of test data 1s considerably
mmproved. Unlike Data Providers, data storages associate the variables (specified in the step) to
the real test data by using steps of scenarios referencing specific behaviors provided by the
ontology. Figure 81 illustrates this mechanism. In the example, data stored for the variables
“Number of passengers” and “Depart” are associated respectively to the values “2” and
“12/15/2016” for a “Furope USA” trip scenario, and to the values “3” and “12/31/2016” for a
“Inside USA” trip scenario. At runtime, these real test data are assigned to the respective steps
(transition “a” in Figure 81) and then used in the respective scenarios of searching flights “Europe
USA” and “Inside USA” (transition “b” in Figure 81). This mechanism is useful to work with a
large set of data that should be introduced 1n scenarios at runtime. The downside 1s that scenarios
can eventually lose readability due to the multiple references to other steps of other scenarios
which indeed get the data from the storages.

Specific interactive behaviors for manipulating data providers and data storages are classified
i the ontology as “Data Provider Behaviors” (Table 8) in chapter 4.

dataProvider.put(*'valid date", '12/30/2016');

And 1 choose "valid date" referring to "Depart" ..

Figure 80. Data in Data Provider: (a) data being associated to a variable to be used in the step.

<DataSet>
<dataRecords>
<DataRecord id="Europe USA">
<dataltems>
<Dataltem key="Number of passengers" value='"2" />
<Dataltem key="Depart" value='"12/15/2016" />
</dataltems>
</DataRecord>
<DataRecord id="Inside USA">
<dataltems>
<Dataltem key="Number of passengers'" value="3" />

141

Chapter 6: Assessing User Interfaces: From Prototypes to Final Uls

<Dataltem key="Depart" value="12/31/2016" />

. When 1 provide the value of the field "Number of passengers"
And 1 provide the value of the field "Depart™ ...

Scenario: Search of flights stored in the dataset
When 1 search for flights "Europe USA"

Then "Choose Flights" is displayed

When 1 search for flights "Inside USA"

Then "Choose Flights" is displayed

</DataSet>

Figure 81. Data stored in an XML file: (a) data associated to XML file, (b) reference to dataset.
6.5. Conclusion

The approach we describe in this chapter for assessing user interface prototypes has the main
advantage of ensuring a reliable correspondence between different interaction elements modeled
i prototypes with different levels of refinement. By using an ontology to support a wide
description of interaction elements and their related behaviors when subject to a user interaction,
this approach succeeds to provide automated testing for Balsamiq prototypes, as well as for final
Uls developed under whatever technology for designing the presentation layer on web pages.
Additionally, the ontology can be used as a base specification for developing new prototyping
tools like PANDA, which will be able to produce Ul prototypes already consistent with a large
set of user-system interactive behaviors.

For implementing this approach, we have also proposed an open and flexible architecture
where different approaches and tools for designing Ul prototypes could fit in the future. For
prototypes with a low level of refinement, it 1s enough to implement a new core interface for
describing the way such tools deal with their interaction elements and how they can be 1dentified
n their source files. For final Uls, it 1s enough to replace Selentum WebDriver by another testing
framework adapted to running tests on user interfaces in other environments such as mobile and
desktop.

In this chapter we make use of both static and co-execution strategies for assessing user
interface prototypes depending on their level of refinement. Like for task models, when opting
for a static analysis of Balsamiq source files, we gain in performance and availability of tests.
Specially in environments requiring a high-availability of tests to be executed continuously along
multiple iterations, static approaches benefit from an instantaneous consistency checking
analyzing several hundreds of source files at the same time.

For final Uls, we implemented the strategy of co-execution. Co-execution approaches have
the benefit of allowing running models simultaneously with a visual feedback at real-time about
the correspondence of entities that are being assessed in each model. As we stated before, such
approaches usually have the drawback of demanding a high investment to prepare and adapt the
artifacts for testing. In our approach however, such an investment 1s restricted to the mapping of
mteractive elements on the respective user interfaces under testing. As the great benefit of co-
execution on final Uls 1s providing a visual feedback during the execution simulating a real user

142

Chapter 6: Assessing User Interfaces: From Prototypes to Final Uls

mteracting with interaction elements at real-time, this process can end up being very slow with the
growing number of user interfaces and scenarios to be tested. As far as the simulation of real user
actions 1s not a concern, such a drawback can be reduced by using GUl-less browser
implementations such as HtmlUnit’, which benefits from high-level manipulation of web pages
without the need of bringing the browser to the front and co-executing the simulated user actions.
Like static approaches, this strategy 1s suitable for environments demanding high-availability and
continuous testing.

Finally, with both strategies for running automated tests on Ul prototypes together with our
static strategy for assessing task models, we set out a step forward within the process of fully
automating software verification, validation and testing (VV&T). As an integrated approach, the
same set of User Stories 1s assigned to automatically assess both task models and UI prototypes
i different levels of abstraction, ensuring a consistent VV&T approach for interactive systems
with high-availability of instantaneous feedback about the consistency of artifacts with the user
requirements.

Further i this thesis, the chapter 8 will demonstrate how this approach performed when
applied to a large case study, and how the UI prototypes we produced have been ensured as
consistent with other user interface design artifacts like task models. The chapter also details a
broad set of mconsistencies our approach 1s able to identify and provides results about its
potential.

6.6. Resultant Publications

Silva, T. R. & Winckler, M. (2017). A Scenario-Based Approach for Checking Consistency in
User Interface Design Artifacts. In: Proceedings of the XVI Brazilian Symposium on Human
Factors m Computing Systems (IHC 2017), pp. 21-30. ACM. DOL
http://doi.org/10.1145/3160504.3160506. (Silva and Winckler, 2017)

Silva, T. R., Hak, J. L. & Winckler, M. (2016). Testing Prototypes and Final User Interfaces
Through an Ontological Perspective for Behavior-Driven Development. In: 6th International
Working Conference on Human-Centred Software Engineering, and 8th International Working
Conference on Human Error, Safety, and System Development (HCSE 2016 and HESSD 2016),

pp- 86-107, vol. 9856. Lecture Notes in Computer Science, Springer International Publishing.
DOT: http://doi.org/10.1007/978-3-319-44902-9 7. (Silva, Hak and Winckler, 2016b)

Silva, T. R., Hak, J. L. & Winckler, M. (2016). An Approach for Multi-Artifact Testing Through
an Ontological Perspective for Behavior-Driven Development. Complex Systems Informatics
and Modeling Quarterly, 1 (7), pp. 81-107. DOI: http://doi.org/10.7250/csimq.2016-7.05. (Silva,
Hak and Winckler, 2016a)

5 http:/htmlunit.sourceforge.net

143

Part III - Evaluation

Chapter 7

Case Study 1 - Understandability

of User Stories

Summary

This chapter presents the experimental design and the results of our first case study to evaluate
the understandability, by potential Product Owners, of the User Stories template which we have
used to describe user requirements in our approach. For that, it has been chosen the department
in charge of business trips in our institute. The experiment has been conducted with 4 members
of the team in one-hour sections of interviews. During this time, it has been captured their user
immpressions about the current system support for booking business travels and how it could be
better. Based on that, the participants were mvited to write their own User Stories to describe a
feature they are used to perform. The results have been used to analyze their understandability
of User Stories structure and the adherence of such stories to the ontological pattern we defined
for our approach.

To present our finding, this chapter 1s divided in 7 sections. The first one (section 7.1) presents
our experimental design, detailing our research questions and measures we used to assess the
outcomes. Following this, we present the business narrative to give the context of how business
travels are booked in our institute (section 7.2). Next, we detail our methodology to conduct the
study (section 7.3), followed by the participant’s profile (section 7.4), and the exercise we
proposed to allow them writing their own User Stories (section 7.5). Section 7.6 brings the results
of the study, highlighting the set of User Stories written by the participants, our adherence analyses
considering stories and scenarios, our discussion of such results, our general findings and
mmplications, and the threats to validity of this study. Finally, section 7.7 concludes our remarks
and points out future investigation opportunities in this field.

The travel department from our research institute (Toulouse Institute of Computer Science
Research - IRIT) has been selected as a target group to conduct the present case study. This
choice has been made because the travel department team 1s in the target population of
stakeholders in our approach. They receive multiple and varied demands of business trips to
follow and validate, which come from the whole team of researchers at the institute. Demands
are likely to bring difficulties and problems experienced by researchers when trying to book their
business trips directly through intern systems, which has a huge potential to bring prospective
features to be developed or improved in such systems. By acting as such a hub, the participants
from the travel department considered n this study act actually as Product Owners (POs)
(Schwaber, 2004), once they master the current business process and have the potential to
mtegrate a specialized group for eventually specifying requirements to maintain or develop a new
software system in this business field.

7.1. Experimental Design

The present case study has been designed around two research questions:

147

Chapter 7: Case Study 1 - Understandability of User Stories

RQ 1. Are participants able to read/understand a basic User Story template and use it to write
their own stories?

To answer this research question, we measure the adherence of the User Stories produced by
the participants to the structure of the template initially presented to them. This adherence 1s
measured following the scale presented below.

RQ 2. Which 1s the vocabulary the participants make use when writing their own User Stories?

To answer this research question, we measure the adherence of the vocabulary used by the
participants when writing their User Stories to the predefined interactive behaviors modeled in
the ontology. This adherence 1s measured following the scale presented below.

The adherence analysis has been made separately for the first part of the User Story (narrative
section) and for the related scenario (scenario section), observing the existent gap between the
steps each participant specified and the equivalent and available steps in the ontology. For each
statement 1n the User Story, we have classified its adherence to the template or to the ontology
by using the following scale:

Null adherence - scale) cocooo

Very Low adherence - scale 1 ecoooo
Low adherence - scale 2 @®0000
Medium adherence - scale 3 e®@000
High adherence - scale 4 e®0000
Very High adherence - scale) ee0000
Full adherence - scale 6 eooo0e@

The experiment has been organized around interview and exercise sections with each one of
the participants. These sections were structured in steps as follows:

o A first step aimed at capturing the profile of the participants and their impressions
about the current software system.

e A second step to present and exemplify the structure of a User Story to the participants
(but not the ontology).

e And a third step asking them to write their own stories.

7.2. Methodology

The study has been conducted with the group of participants along 2 weeks in May 2017. The
participants were selected by their availability and heterogeneity of profiles. In total, 4 (four)
participants have participated to the study. Each one of them were interviewed by us for about 1
hour. The interview conducted with each participant had three distinguished components. The
first part was aimed to 1dentify the participants’ profile and their experience working with business
trips. The second part was aimed to collect information concerning their impressions about the
current m-use systems at the travel department. Finally, the third and last part was aimed to
conduct the exercise that allowed us to observe their ability in writing the intended User Stories.

Before each session of interviews, participants were required to sign a disclosure agreement
stating the exclusively use of the data for researching purposes and that their identities and
personal opmions would not be used individually under any circumstances. With the agreement

148

Chapter 7: Case Study 1 - Understandability of User Stories

of participants, all the interviews were fully audio recorded. Thus, after the beginning of each
session, 1n the first section of the interview, the participants were mnvited to answer a set of 6 (six)
questions about their profile. The questions covered information about their gender, age,
education, for how long they were involved with that job in the travel department at our institute,
whether they were previous experiences in that kind of job before joining the department, and
finally a general and open question about an overview of their job and daily activities in the
department. The details of this part are described in the next section “Participant’s Profile”
hereatfter.

In the second part of the interview, we were interested in collecting participants’ impressions
about the current intern system used for booking the business trips. A total of 16 questions have
been made at this second part of the interview concerning both factual and mterpretation points.
They were asked about how booking demands are processed and threated along a life cycle in
the travel department, and about their personal opinion about constraints and 1improvement
opportunities in the current workflow, as well as in the current in-use system they use daily for
processing the booking requests.

In the third and last part of the interview, the participants received an example of User Story
with a brief explanation about its general goals, structure and a single example n the context of
business trips. In the sequence they were asked to produce their own User Stories for describing
a feature they have faced recently when using the current software system for booking the business
trips. The details of this part are described in the section “The Proposed Exercise” hereafter.

7.3. The Business Narrative

& O—-[Search Flights] [Verify List of Flights }—D[Choose a Flight}—h[Conﬁrm the Choice] [Obtain a Booking Confim\ation]—io
H i

x
Researcher or Travel Department %

'
1 List of Flights

Travel System

1 Search Parameters E) Passenger and Flight Data

v ! v
[% —{Process q Hcfea'e List of Matching FlightS] Put the Booking on Hold Process Booking

)

Passenger and Flight Data

Researcher

Process Payment

Travel Department

Management System

Authorize Booking

Refuse Booking

4

Figure 82. BPMN model for the case study.

The process of booking business trips for researchers in our department is supported by two
mformation systems. The first one 1s named Travel Planet and 1s used by researchers for

149

Chapter 7: Case Study 1 - Understandability of User Stories

searching their flights and getting a quotation of rates for a given itinerary. The second one 1s
named GLPI and 1s used for managing demands of services for different departments by
approving or declining travel quotations based on the budget available for each project or
researcher. Both systems are currently in operation. In this case study, we are focused on the
services demanded by researchers to the travel department related to the process of booking
business trips, so our focus falls on the Travel Planet system. Figure 83 presents a screenshot of
this system which both researchers and the department team have access.

RESEWEIE Mes voyages | Chargé de voyage | Profil @ Aide @ Information

a =)
Avion Train Avion/Train Voiture Récapitulatif du
voyage
SR Recherche > Disponibilité > Reécapitulatif > Finalisatior Confirmation
Mini itinéraire =
© Aller-retour @ Aller simple / Multi-destinations Champs obligatores
> Avion ————
[] ;
- De * A *
Voyages =]
Aller Retour
Mes voyages (Mer Mai23,2018 ™ o800 v ’V Jeu, Mai 24,2018 ™ 1800 v
Aucun voyage en attente
e-Travel Mobile est F:nélre hoiaire (heures) Itineraires directs seulement €
désormais
disponible ! Motif du voyage *

Cliquer ici pour télécharger

¥| Tester la recherche intelligente

Plus d'options (classe de service, ie aérienne de préfé etc.)

Demander l'assistance de votre chargé de voyages Demander une proposition & un agent de voyages

Figure 83. Travel Planet system for booking business trips.

The overall process of booking was described and detailed during the cycle of interviews with
the participants and 1s illustrated in Figure 82 through a BPMN model. The researcher starts the
process by conducting a search of flights based on a given set of parameters (such as departure
and arrival cities or airports, date of departure and return, timeframe, etc.). Such search
parameters are processed by the system that creates a list of matching flights, returning it to the
user. The researcher then verifies the list of available flights and makes his/her choice. When
he/she confirms his/her choice, passenger and flight data are saved by the system and the booking
1s put on hold. At this point, the researcher needs to open a ticket in the management system in
order to formalize the demand of payment for the travel department. When the ticket 1s open,
the travel department team process the payment, checking whether the research has enough
budget for the trip. If the budget 1s enough, the payment 1s accepted, and the travel department
team authorizes the booking. If not, the booking is refused, and the process 1s ended. For
approved trips, the travel system finally processes the booking and the researcher receives his/her
electronic ticket as a result of the booking confirmation.

For this case study, we will work on the travel system’s sub process (circled in red in Figure
82). As such, the participants were mvited to produce some examples of User Stories related to
a feature they consider important to the system. The goal of this exercise 1s to get reasonably-
formatted requirements from critical stakeholders in the travel department. Such requirements
have been used to 1dentify examples of use they consider relevant and to build a consistent set of
requirements for assessing travel system’s development artifacts. This exercise had also as
objective to evaluate the level of adherence of our pre-defined behaviors specified in the ontology
and their understanding and acceptance by non-technical people for writing their own
requirements specification through User Stories.

150

Chapter 7: Case Study 1 - Understandability of User Stories

7.4. Participant’s Profile

The first participant (P1) was a woman, 50 year’s old, secondary school level plus a
complementary year of study, with 10 years of experience managing business trips, being 4 years
in the targeted travel department. P1 has informed his/her daily tasks are based on managing
travel demands from researches besides doing research of flights and rates for guests visiting the
Institute.

The second participant (P2) was a woman, 30 year’s old, secondary school level plus two
complementary years of study, with 6 years of experience managing business trips, being 3 years
in the targeted travel department. P2 has informed his/her daily tasks are based on managing the
budget of researchers, the different aspects of their business trips like housing, flight tickets, billing
cycles, etc. but his/her main activity 1s to manage their trips.

The third participant (P3) was a woman, 52 year’s old, secondary school level, with 4 years of
experience managing business trips, all of them in the targeted travel department. P3 has
mnformed his/her daily tasks are based on managing the demands, check their correctness, besides
open tickets and make quotations for the trips.

Finally, the fourth and last participant (P4) was a man, 25 year’s old, secondary school level,
with 4 years of experience managing business trips, being just 1 month in the targeted travel
department. P4 has informed his/her daily tasks are based on requests for processing the trips,
booking them through the system and manage the billings.

Table 17 summarizes the participant’s profile. We notice therein a homogeneity in their level
of education, with P3 and P4 having completed only the secondary level, while P1 has completed
one year more of undergraduate studies, and P2 two years more. We notice as well P1 1s the most
experienced participant with almost twice the experience of the other 3 participants. Although
P1, P2 and P3 have also the same level of seniority at this charge in the institute (about 4 years in
average), P4 had been hired only 1 month prior to this study, so his/her participation was
mteresting to compare his/her view with possible work habits acquired by the older employees.
Finally, we had a predominance of women (3 of 4 participants) with a good range of ages, from
25 to H2.

. Experience
Participant Gender Age Education (Y]?;;I;:Iilefcloct(;l) (Years in the
institute)
P1 Female 50 SSL+1 10 4
P2 Female 30 SSILA+2 6 3
P3 Female 52 SSL 4 4
P4 Man 25 SSL 4 1 month

Table 17. Participant’s Profile.
7.5. The Proposed Exercise

For the proposed exercise, aim of this study, participants were invited to write manually one
single User Story with one single scenario for describing a feature they have faced recently when
using the current software system for booking the business trips. This activity has taken about the
last twenty minutes of each interview. To do the exercise, participants were introduced to the
structure and to the main components of a typical User Story based on the extended format
proposed by North (North, 2017) which 1s the same used by our approach. Then, an example of

Chapter 7: Case Study 1 - Understandability of User Stories

User Story describing a searching feature of a one-way flight for a general business trip has been
presented. As the participants were French native speakers and had no English proficiency, the
story provided as example and the stories produced by the participants were all written in French,
and then translated to English by us.

For this exercise, apart from the short beginning explanation about the structure of a typical
User Story and the single example we provided, we decided to not give any prior training to the
participants. As such, we did not mention the existence of common and predefined interactive
behaviors in the ontology which were supposed to be used for writing the stories, although the
example of User Story we provided to them had been written following such behaviors presented
in the ontology. This decision was made because one of the goals of this study was to investigate
the ability of non-technical core POs to specify their own User Stories and in which extent the
mteractive behaviors described in the ontology would be perceived as useful enough to be
spontaneously reproduced by the participants.

Herein, Figure 84 and Figure 85 are respectively the translated/equivalent version (in English)
of the User Story structure and the example of a User Story we presented to the participants:

Title (one line describing the story)

Narrative:
As a [role]
I want [feature]
So that [benefit]

Scenario 1: Title
Given [context]
And [some more context]
When [event]
Then [outcome]
And [another outcome]

Scenario 2:

Figure 84. Structure of a User Story presented to the participants translated to English.

Title: Flight Tickets Search

Narrative:

As a frequent traveler

I want to be able to search tickets, providing locations and dates

So that I can obtain information about rates and times of the flights.

Scenario: One-Way Tickets Search

Given 1 go to the page "Find flights"

When 1 choose "One way"'

And 1 type "Paris"™ and choose "Paris, Charles de Gaulle (CDG)'" in the field "From"
And 1 type "Toulouse" and choose "Toulouse, Blagnac (TLS)"™ in the field "To"

And 1 choose '"2" in the field "Total number of passengers"

And 1 choose "12/15/2016" in the field "Depart"

And I click on "Search"

Then will be displayed the list of available flights

Figure 85. Example of a User Story presented to the participants translated to English.

7.6. Results

In the first and second parts of the interview, participants highlighted they manage about 400
travel demands per year, being a means of 12 per week in off-peak seasons, and 12 per day in

152

Chapter 7: Case Study 1 - Understandability of User Stories

peak seasons. They are in general pretty satisfied about the current system’s support, nonetheless
they frequently need to contact the researchers asking for complementary information about the
trip. As far as new features are a concern, a participant pointed out that having a list of departure
times for the less expensive flight rates could be very interesting. Another participant pointed out
the need of a feature to book several trips for a group in the same demand. They almost
unanimously pointed out that features for searching multi-destination trips have certainly a room

for improvement.

In the third and last part of the interview, focus of this study, we captured the User Stories
written by the participants. They are detailed hereafter.

7.6.1.

User Stories Writing

il

€D \\Q\N\\/

oo

QN . .1(\\;\1(0_“ .
S B8R

=

é(

o
I

Ar0m anecr Auﬁ@m{;ﬁ ,(){/L)D

ng i,

W&mm |

&m o_'\VD ;Q b\%ﬁa-\f&

-

K(,Qm QAo -

s, TR
s &

€\

e

Recdade W bW
é@f\meﬁl

e Lhoweln

Ox.a t

\\A\\‘Q L O uylsw..\,\

Sorcam

Foab i O e (SWQGB/TRBWD
QQ UTQ SOJW\G\N\ ég }

)

e 0\\.96//

0\

Thlesse / PR <
ke " o
- Ea?z"\ Moo - RaVeus NS A j)oﬂ\eb\s\
=T. R&cvercH= c, DR et Froqes < y
a?to;li = JE C‘\HD\’Sl . E L GQQJ\Q g

.

écﬁw\% (oncermam & 9\

éo\‘t Noaurdam &

Q\>>
le

(nNor™ o o

Vo
FC&QKE Q ‘(f‘ﬂ\ QL) o 5
UM Qm)\%

(?\ws\a&@ &

Bers - Bk om Smem & 903Nl

CC‘»\J&“’\ (és (&2 OKL«CX(\ SN
(cw\{.a o\Sbmm e m\“\

Chapter 7: Case Study 1 - Understandability of User Stories

Narrative:

As a guest
I want airline tickets with defined time and flights
So that I can book tickets

Scenario: Searching demanded tickets

Given 1 go to the site SIMBAB/TRAVEL

When 1 choose the demanded flight (destination and times, TOULOUSE/PARIS, departure
7 a.m., return 7 p.m. at the same day)

And 1 choose type of traveler "Guest"

And 1 search

Then several propositions e
And 1 choose the desired flights

When 1 inform the data concerning the traveler (name, given name, birthdate, phone,
mail), and eventually the loyalty card (Flying Blue and Season Ticket)
Then ticket waiting for validation e

Figure 86. User Story written by P1.

As a frequent traveler

I want to search for tickets, providing locations and dates for a multi-destination
trip

So that I can obtain information about rates and flight times

Scenario: Multi-destination searching
Given 1 go to the page "Searching Flights"
When 1 choose "Multi-destinations"

And type "Paris" and choose '"Paris, Charles de Gaulle" in the field "Departure"
And type "Rio de Janeiro" in the Ffield '"Destination”

And choose '"15/02/17" in the field "Departure Date"

And choose ''20/02/17" in the field "Return Date"

|
|
|
|
And 1 type "Rio de Janeiro" in the field "Departure"
|
|
|
|

And type ""Porto Alegre"™ in the field "Destination"
And choose '"17/02/17" in the field "Departure Date"
And choose '19/02/17" in the field "Return Date"
And click on "Search"

Then will be displayed the list of available flights

Figure 87. User Story written by P2.

As a travel manager
I want to check travel authorizations
So that I can ensure the confirmed bookings

Scenario: Listing travel authorizations

Given 1 go to the tab "Travel Authorization"

When I type the "Booking Reference"

And 1 check if the request is well registered

Then at this time, 1 can know for sure (or not) the request has been taken into
account

And it’s shown a tab: authorized / non-authorized

Figure 88. User Story written by P3.

As an intern
I want to book a flight to Paris departing on May 2" until May 10th
So that | can attend a seminar

Scenario:
Given 1’m going to book my flight
When I provide all the information

154

Chapter 7: Case Study 1 - Understandability of User Stories

And 1 choose search by fares
Then all the available flights for the date are classified by ascending order of
fares.

Figure 89. User Story written by P4.

Figure 86, Figure 87, Figure 88, and Figure 89 present the translated versions of the User
Stories written by the participants in their first attempts. Figure 86 brings additionally an example
of the User Story handwritten by the participant P1.

The participant P1 (Figure 86) presents a User Story to describe the process of booking trips
for a guest, 1.e. an external person, normally a researcher from outside of the mnstitute. We notice
clearly that the first participant has chosen to describe the US in a high level, free of format, not
necessarily paying attention to the ontology pattern step presented in the example. Thus, each
step of scenarios could be 1dentified as domain-dependent behaviors, 1.e. behaviors that make
direct reference to jargons used for booking flights. In the first identified point (1 i Figure 86),
we can see the user states a narrative concerning a guest searching for airline tickets with defined
time and flights in order to book tickets. Here we notice as well, the user has committed a mistake
when 1dentifying the role that benefits from the story. In fact, he/she 1dentified that the guest
would be the right role for this story when indeed the account managers of the travel department
would be the beneficiaries, once it 1s them that would perform the booking using the system on
behalf of the guest.

In the second identified point (2 in Figure 86), we notice the first scenario he/she identified.
The scenario specifies the use of two intern systems for booking business flights. It simulates i a
high-level a travel from Toulouse to Paris departing at 7 a.m. and returning at 7 p.m. at the same
day. So, he/she informs this trip concerns a guest and based on the submitted search, he/she
chooses the desired flights. At this point (3 in Figure 86), our user mixed a second scenario with
the first one. He/she continues specifying actions for informing traveler’s data and putting the
ticket on hold, waiting for validation.

The participant P2 (Figure 87) reported a story for booking a multi-destination trip. We notice
here that, unlike the first one, the second participant has chosen to describe the User Story closely
paying attention to the ontology pattern step presented in the example. Thus, each step of the
scenario could be 1dentified as domain-independent behaviors, 1.e. behaviors that refers to the
actions on the user mterface, without mentioning jargons used for booking flights. In the first
identified point (1 in Figure 87), we can see the user states a narrative concerning a frequent
traveler searching for a multi-destination ticket in order to obtain rates and flight times. In the
second 1dentified point (2 in Figure 87), a scenario for searching return flights from Paris to Rio
de Janeiro with a stopover in Porto Alegre 1s presented. We can see the user clearly understood
the structure of the scenario, once he/she adjusted the sequence of steps to cover a multi-trip data
entrance with different cities and dates.

The participant P3 (Figure 88) reported a story for checking travel authorizations. In such a
story, a travel manager checks travel authorizations in order to ensure that a given booking has
been effectively taken into account. For that, a scenario for listing travel authorizations 1s specified.
Therein, once the user goes to the tab “Travel Authorization”, types the booking reference and
checks 1f the request 1s well registered, then, according to him/her, at this time, he/she 1s able to
ensure whether the request has been taken into account or not. The resultant behavior of the
system 1s to show a tab with a message signalizing that the booking is authorized or non-
authorized. For this user, we noticed a medium-level of adherence and understandability of the
language patterns defined 1n the ontology.

Chapter 7: Case Study 1 - Understandability of User Stories

The fourth and last participant P4 (Figure 89) reported a story in the role of a travel
department’s intern. He/she describes a research of flights to Paris for attending a seminar from
2nd until 10th May. The participant however has mistakenly informed data details for a specific
scenario n the narrative section of the story. As a consequence, when specifying a scenario for
this story, he/she supposedly makes reference to the data already informed previously i the
wrong section (“When I provide all the information”). The scenario also features a search of
fhghts classified by their ascending order of fares. We can notice, in general, the participant had
difficulties to understand the structure of the stories. It makes his/her User Story hardly adherent
to the implicit proposed language patterns.

Considering the seven levels of Nielsen’s linguistic model of interaction (Nielsen, 1986), the
stories produced by the participants contain elements that could be classified from the level
1 (goal) until the level the level 5 (Iexical).

7.6.2. Adherence Analyses

We have categorized each deviation from the proposed template committed by the
participants when writing their User Stories. Such categories have been defined as adherence
problems and have been classified under the Meyer’s seven sins (Meyer, 1985). They are
described as follows.

e Lack of statement or keyword (Silence), refers to clause or keyword present in the
template, and not used by the participant.

e Understatement (Silence), refers to statements/behaviors specified following the structure
presented 1n the template, but with less information than necessary.

e Misspecification (Noise), refers to statements/behaviors that have been misspecified
according to the structure defined in the ontology.

* Wrong information (Contradiction), refers to statements which states a correct template
structure, but presents wrong (or partially wrong) information for that statement.

* Minor writing complement (Silence), refers to the need of minor complements (or
modifications) in the phrase in order to comply with the template structure or clarify the
behavior’s meaning.

e High-level of abstraction (Wishful Thinking), refers to behaviors specified in such a high-
level of abstraction which not allow to assume the actual expected interaction on the Ul

e Epic behavior (Overspecification), refers to behaviors that encompass a wide number of
mplicit interactions. This kind of behavior should typically be broken ito several low-level
mteractive behaviors. This concept is based on the concept of epics that has been introduced by
Cohn (Cohn, 2004) and which refers to a large User Story that cannot be delivered as defined
within a single iteration or 1s large enough that it can be split into smaller User Stories.

Below we present 4 tables (Table 18, Table 19, Table 20 and Table 21) detailing, for each
participant, each behavior specified by him/her, the adherence of each behavior in the scale
presented in the methodology, and a section of comments, where we classify the type of
adherence problem identified (f any) and strive the reasons for such a kind of problem.
Additionally, we propose possible corrections for problems identified in the template (we called
it understandability in User Story specification), and when interactive behaviors are concerned,
the correction demanded to meet the actual behavior in the ontology (we called it adherence to
the ontology in User Story specification).

156

Chapter 7: Case Study 1 - Understandability of User Stories

User Story Specification - Participant P1:

Behaviors Specified by the Participant Possible Correction Adherence Comments
. . . . Lack of statement or keyword. Participant did
- Title: Booking flights for guests 000000 . ywe I
; ; not title the story.

Narrative: - XYY Y X Participant correctly used the keyword.
‘Wrong information. Participant correctly
identified a role, but mistakenly specified the

As a guest As a travel manager 000000 guest as the role who would benefit from the
story, when actually it would be the travel
manager.

e . . . Understatement. Participant only forgot the
e I'want to search airline tickets with defined time and . . ’ .
I 'want airline tickets with defined time and flights lights ®00000 action he/she expects from the system (lack of
) a verb)

Minor writing complement. Participant did
So that I can book tickets So that I can book tickets for guests ®e0000 not complement the benefit specifying for
whom tickets will be booked.

Participant correctly used the keyword with a

Scenario: Searching demanded tickets - YYXXY) hame for the scenario,
Behaviors Specified by the Participant Behaviors Defined in the Ontology Adherence Comments
Minor writing complement. Participant added
Given I go to the site SIMBAB/TRAVEL Given I go to “SIMBAB/TRAVEL” ®e0000 the term “the site” in the behavior “I go to”

which is not present in the ontology.

‘When I choose “Toulouse” in the field “Departure”

And I choose “Paris” in the field “Destination”

Epic behavior. Participant did not break the

When I choose the demanded flight (destination and | And I choose “same day” in the field “Departure actions in multiple steps, having informed all
times, TOULOUSE/PARIS, departure 7 a.m., Date” 00000 the required data for searching in brackets.
return 7 p.m. at the same day) And I choose “same day” in the field “Return Date” The behavior “I choose” 1s nonetheless

And I choose “7 am.” in the field “Departure Time” adherent to the ontology.

And I choose “7 p.m.” in the field “Return Time”

. . N And I choose “Guest” in the field “Type of Misspecification. Participant did not inform
And I choose type of traveler “Guest) o 00000 p— T T o o)
Traveler Type of Traveler” as a field name.
. ‘o Understatement. Participant omitted the type
And I search And I click on “Search” eee0000 ! v

of behavior that will trigger the searching.

157

Chapter 7: Case Study 1 - Understandability of User Stories

High-level of abstraction. Participant omitted
the expected system behavior, only informing
that the result will be “several propositions” of

validation”

Then several propositions Then will be displayed “List of Flights” ©00000 .) .. . X
) (=) “« 2
{lights. “Several propositions” indeed will be
proposed in a “List of Flights”, so this is the
expected system output behavior.
Misspecification. Regardless being possible to
specily a sequential input behavior in a
“Then” clause, the participant is actually
describing a second scenario, where he/she
And I choose the desired flights And I choose “the desired flights” 00000 provides passenger’s data to effectively book
the flight (an input behavior). Considering this
step as part of a second scenario, the behavior
of choosing the desired flight is highly
adherent to the ontology.
‘When I inform “name” in the field “Passenger’s
Name”
‘When I inform “given name” in the field
“Passenger’s Given Name” Epic behavior. Once more, the participant
‘When I inform the data concerning the traveler e . . - :)) ’ e
inform the d‘flt‘l concerning the travele ‘When I inform “birthdate” in the field “Passenger’s did not break the actions in multiple steps,
(name, given name, birthdate, phone, mail), and . » L . .
: ! : Birthdate ©00000 having informed all the required data in
eventually the loyalty card (Flying Blue and Season — - — — - ° et
Ticket) ‘When I inform “phone” in the field “Passenger’s brackets. The behavior “I inform” is
’ Phone” nonetheless adherent to the ontology.
‘When I inform “mail” in the field “Passenger’s Mail”
‘When I inform “loyalty card” in the field
“Passenger’s Loyalty Card”
Misspecification. Once more, the participant
omitted the expected system behavior, only
informing that the expected result will be
“ticket waiting for validation”, without
. L S Then will be displayed “Ticket waiting for describing which system’s behavior woul
Then ticket waiting for validation Pl © 000000 Tibing ch system’s behavior would be

responsible for doing this action. Considering
this 1s meant to be a system behavior, we
should note that a behavior defining a status
verification for tickets is typically a domain-
specific behavior, 1.e. it only refers to (and

158

Chapter 7: Case Study 1 - Understandability of User Stories

would make sense for) booking systems, so it
1s not covered by the ontology.

User Story Specification - Participant P2:

Table 18. User Story Specification - Participant P1.

Behaviors Specified by the Participant Possible Correction Adherence Comments
. . . . Lack of statement or keyword. Participant did
- Title: Multi-destination flight search 000000 . yw I
; not title the story.
. Lack of statement or keyword. Participant did
- Narrative: 000000 N iy
not use the keyword for describing the story.
As a frequent traveler - XYY Y X Participant correctly identified the role.
I want to search for tickets, providing locations and .. - .
. . N . - XYY Y X Participant correctly defined a clear feature.
dates for a multi-destination trip
So that I can obtain information about rates and ceccee Participant correctly defined a clear business
flight times benefit.
. . L . Participant correctly used the keyword with a
Scenario: Multi-destination searching - ecoooe hame for the scenatio
Behaviors Specified by the Participant Behaviors Defined in the Ontology Adherence Comments
. e . . Participant correctly used the behavior “I go
Given I go to the page “Searching Flights” - XYY Y X 0 the i)’Lge” ’ 8
« . o Participant correctly used the behavior “I
‘When I choose “Multi-destinations” - YY) (‘h()()s‘el” ’
And I type “Paris” and choose “Paris, Charles de cecsee Participant correctly used the behavior “I type
Gaulle” in the field “Departure” and choose in the field”.
And I type “Rio de Janeiro” in the field cecsee Participant correctly used the behavior “I type
“Destination” in the field”.
And I choose “15/02/17” in the field “Departure Participant correctly used the behavior “I
Date” i R choose in the field”.
. - Participant correctly used the behavior “I
And I choose “20/02/17” 1n the field “Return Date” - (Y Y Y YY) Ch()()s‘el in the ﬁel(l’;
s . o Participant correctly used the behavior “I type
And I type “Rio de Janeiro” in the field “Departure” - YY) 1 g i

in the field”.

159

Chapter 7: Case Study 1 - Understandability of User Stories

Participant correctly used the behavior “I type

And I type “Porto Alegre” in the field “Destination” - Y YY YY) : o
) : in the field”.
And I choose “17/02/17” in the field “Departure ceccee Participant correctly used the behavior “I
Date” choose in the field”.
And I choose “19/02/17” 1n the field “Return Date” - XYYy Partl(tlpfmt corr e(‘t},y used the behavior I
choose in the field”.
. Participant correctly used the behavior “I
And I click on “Search” - Y YY YY) . . ’
cieror ¢ click on”.
Minor writing complement. Participant only
) . L .) . y N . forgot quotation marks to indicate (as a
Then will be displayed the list of available flights Then will be displayed “the list of available flights” 00000 Orsot quota Ol Tharks 1o ihdicate (A
’ ’ variable) that “the list of available flights” is
the output expected from the system.
Table 19. User Story Specification - Participant P2.
User Story Specification - Participant P3:
Behaviors Specified by the Participant Possible Correction Adherence Comments
. . . L Lack of statement or keyword. Participant did
- Title: Checking Travel Authorizations 000000 . yw !
not title the story.
Narrative: 566600 Lack of statement or keyword. Participant did
’ not use the keyword for describing the story.
As a travel manager - XYY Y X Participant correctly identified the role.
I'want to check travel authorizations - YYD Participant correctly defined a clear feature.
So that I can ensure the confirmed bookings - XYY Y X Pamc‘lpant correctly defined a clear business
_ benefit.
Scenario: Listing travel authorizations cecsee Participant correctly used the keyword with a
»Lashing fre - ' name for the scenario.
Behaviors Specified by the Participant Behaviors Defined in the Ontology Adherence Comments
Minor writing complement. Participant added
Given I go to the tab “Travel Authorization” Given I go to “Travel Authorization” (TY XY Jo the term “the tab” in the behavior “I go to”
> > S5
which is not present in the ontology.
‘When I type “XXX” in the field “Booking Understatement. Participant has omitted
‘When I type the “Booking Reference” Reference” (XYY Y Yo either the field name or the value that will be

alfected by (or affect) this behavior.

160

Chapter 7: Case Study 1 - Understandability of User Stories

OR

‘When I type “Booking Reference” in the field
“Booking Reference Field”

And I check if the request is well registered

Then will be displayed “Request well registered”

00000

Misspecification. The participant did not
identify that the information about the
booking registration will be provided by the
system as an output. For that, a “Then” clause
should be used instead of a “When”. Besides
that, he/she also specified a domain-
dependent behavior, without identify how the
checking is supposed to be made. He/she
could instead use a common interactive
behavior presented in the ontology such as
“will be displayed”.

Then at this time, I can know for sure (or not) the

request has been taken into account

000000

Misspecification. This is not an interactive
behavior, but rather a cognitive task. This
could also be considered as a business benefit
of this story, and as such, it has been correctly
specified in the clause “So that” in the
beginning of the story.

And it’s shown a tab: authorized / non-authorized

And will be displayed “Authorized”
OR

And will be displayed “Non-Authorized”

000000

Misspecification. This step brings the
expected output of the system. The
participant expects to see a tab with a message
signalizing whether the booking is authorized
or not. This behavior has been put in a
“Then” clause, indicating the participant
actually understood that showing some
information after his/her interaction is a
system’s output. However, the participant did
not realize that he/she is supposed to inform
avalid *or* an invalid state, 1.e. he/she should
have specified a scenario in which the system
would present an authorized booking, and
another (if he/she wants) specifying a scenario
in which the system would present an
unauthorized booking.

161

Chapter 7: Case Study 1 - Understandability of User Stories

User Story Specification - Participant P4:

Table 20. User Story Specification - Participant P3.

Behaviors Specified by the Participant

Possible Correction

Adherence

Comments

Title: Searching flights to Paris

000000

Lack of statement or keyword. Participant did
not title the story.

Narrative:

000000

Lack of statement or keyword. Participant did
not use the keyword for describing the story.

As an intern

Participant correctly identified the role.

I want to book a flight to Paris departing on May 2nd
until May 10th

000000

‘Wrong information. Participant mixed a
feature description with data for specifying a
testable scenario.

So that I can attend a seminar

Participant correctly defined a clear business
benefit.

Scenario:

Scenario: Searching demanded tickets

000000

Lack of statement or keyword. Participant did
not title the scenario but used the appropriate
keyword.

Behaviors Specified by the Participant

Behaviors Defined in the Ontology

Given I’'m going to book my flight

®00000

Understatement. Participant did not identify
how or where the activity of booking will be
performed in the system. This step 1s
described more as an intent than as an actual
behavior.

‘When I provide all the information

‘When I inform “...”

®00000

High-level of abstraction. Participant did not
describe which kind of information should be
provided for the scenario. The supposed data
to be used here was mistakenly put when
specifying the feature in the narrative.

And I choose search by fares

And I click on “Search by fares”

OR

And I choose “Search by fares”
And I click on “Search”

000000

Misspecification. Supposing the system
provides different buttons for different types
of search, the participant could simply have
used the behavior “click on” (supported by
buttons) mstead of the behavior “choose”.
Otherwise, “Choose by fares” is a domain-
dependent behavior, so for specifying a

162

Chapter 7: Case Study 1 - Understandability of User Stories

domain-independent behavior, the participant
should rather have informed which option
he/she would choose (or select) to “search by
fares” and then submitting the search by
clicking on the respective button, for instance.

Misspecification. Again, the participant did
lean on a domain-dependent behavior. To
Then will be displayed “List of available flights” specify an action for verifying the

©00000 arrangement of a list, it would be necessary an
ontological behavior allowing to classify
datasets in ascending (or even descending)
order.

Then all the available flights for the date are
classified by ascending order of fares

Table 21. User Story Specification - Participant P4.

163

Chapter 7: Case Study 1 - Understandability of User Stories

7.6.3. Discussion

We present below a set of tables and charts consolidating different views of data extracted
from the tables above. Table 22 and Figure 90 illustrate the understandability of each statement
in the User Story specification. Therein, we 1solated each one of the statements presented in the
template and analyzed, for each participant, the dispersion of results in each degree of adherence
stated 1 the methodology. Such a dispersion has been calculated as a median of the adherence
for each stratum proposed in the experimental design.

P1 P2 P3 P4

Title 0,00 0,00 0,00 0,00
Narrative 6,00 0,00 0,00 0,00
Asa 3,00 6,00 6,00 6,00

I want 5,00 6,00 6,00 3,00
So that 5,00 6,00 6,00 6,00
Scenario 6,00 6,00 6,00 3,00
Given 5,00 6,00 5,00 1,00
‘When 3,00 6,00 3,00 3,00
Then 3,00 5,00 1,50 1,00

Table 22. Understandability of Each Statement in the User Story Specification.

Understandability of Each Statement in the User Story Specification
[Title W Narrative W Asa Iwant [l So that Scenario Il Given I When W Then

6,00 > >* FHHEIHIOE HHIHE -
5,00 HI I >* >*

4,00

2,00
1,00 ¥

0,00 >* HH Eatay 2
P1 P2 P3 P4

Figure 90. Understandability of Each Statement in the User Story Specification.

Table 23 and Figure 92, and Table 24 and Figure 93 illustrate the general understandability
of each participant for User Story specification. The charts were built taken into account, for each
participant, the number of events in each stratum ranging from a null understanding of statements
to a full understanding of them. In this first chart (Figure 92) we consolidate only statements
presented n the template, but not covered by the ontology as an interactive behavior (narrative
section). Figure 93, on the other hand, illustrates the same mformation, but now considering only
the adherence to interactive behaviors addressed in the ontology (scenario section). Finally, Figure
91 gives us the general understandability of User Stories based on the data from all the four
participants. The chart summarizes the total amount of occurrences in each stratum of the
adherence scale.

164

Chapter 7: Case Study 1 - Understandability of User Stories

Participants Null Very Low Low Medium High Very High Full
P1 1 0 0 1 0 2 2
P2 2 0 0 0 0 0 4
P3 2 0 0 0 0 0 4
P4 2 0 0 2 0 0 2

Table 23. Understandability in User Story Specification - Narrative (Number of occurrences in each stratum).

Participants Null Very Low Low Medium High Very High Full
P1 0 0 3 1 1 3 0
P2 0 0 0 0 0 1 11
P3 1 0 1 1 0 2 0
P4 0 3 0 0 0 1 0
Table 24. Adherence to the Ontology in User Story Specification - Scenario (Number of occurrences in each
stratum).
Understandability in User Story Specification - Narrative General Understandability of User Stories (Number of
(Number of occurrences in each stratum) occurrences in each stratum)
9
u Null Very Low Medium ®High ®VeryHigh ®Full ® Full = VeryHigh w» High Medium Low Very Low = Null

Figure 92. Understandability in User Story
Specification - Narrative (Number of occurrences in
each stratum).

Figure 91. General Understandability of User Stories
(Number of occurrences in each stratum).

Adherence to the Ontology in User Story
Specification - Scenario (Number of occurrences in each stratum)

_L-l-Jnl-]4

m Nu Very Low Low ®Medium ®High ®mVeryHigh ®Full

Figure 93. Adherence to the Ontology in User Story Specification - Scenario (Number of occurrences in each
stratum).

RQ 1. Are participants able to read/understand a basic User Story template and use it to write
their own stories?

First of all, concerning the understandability of User Stories (narrative section), we notice the
majority of participants neglected n tithng and using the keyword “Narrative” in the beginning of
the stories. Only P1 used the keyword, but even him/her did not title the story. We are not sure

Chapter 7: Case Study 1 - Understandability of User Stories

about the main reasons for that. In a first approach, it seems more like a lack of attention from
the participants. All participants, except P1, identified a correct role (statement “As a”) for the
stories. P1 correctly 1dentified a role, but mistakenly specified the guest as the role who would
benefit from the story, when actually it would be the travel manager. Concerning the feature
description (statement “I want”), we noticed a very good understanding of this statement, with
participants ranging from 5 to 6 in our scale, except P4. P4 has mixed the feature description with
data for specifying a testable scenario. Concerning the business benefit expected from the feature
(statement “So that”), all participants shared a very good understanding as well, ranging likewise
from 5 to 6.

We have also observed in these charts that the stories produced by P2 and P3 had identical
results, both with a majority of full adherence and a medium-to-low number of null adherence
statements. These last ones due to the lack of “Title” and “Narrative” sections of the story. P1
had a low level of null (absence of title) and medium (wrong information when identifying the
role) adherent statements, and a clear majority of very-high and full adherent statements. P4 had
an equal mix of null, medium and full adherent statements, with problems varying from absence
of keywords or sections until the presence of wrong information.

RQ 2. Which is the vocabulary the participants make use when writing their own User Stories?

Concerning the adherence to the ontology in User Stories specification, 1.e. the adherence in
the section “Scenarios:”, we have noticed all the participants titled their scenarios, except P4, that
regardless use the right keyword, not titled his/her scenario. For the statement “Given”, we have
observed a tendency in users specifying more information to define where they are going to access
some feature. The ontology has specified a generic behavior named “I go to” and a variation to
“I go to the page”. However, while P1 used this convention, P2 and P3 have specified respectively,
“I go to the site” and “I go to the tab”, so at this point, somehow the ontology could be enriched
to recognize those variants as well. P4, on the other hand, specified a very generic behavior
(“Given I’'m going to book my flight”), not identifying how or where the activity of booking will
be performed n the system. This step 1s described more as an intent than as an actual behavior.
For this statement then, P1, P2 and P3 scored a very high adherence (between 5 and 6), while P4
scored a very low adherence (1).

Concerning the statement “When”, we notice a mid-range understanding (between 3 and 3,50)
for P1, P3 and P4, and a full understanding (6) for P2. P1 produced what we classify as epic
behaviors, providing in a same step, several independent actions to be performed on the Ul P3
shared a well formulated step with a misspecification. The participant either confused an output
mformation (that should be specified in a “Then” statement) or specified a domain-dependent
behavior, not supported by the ontology scope. P4 specified a behavior with a high-level of
abstraction without describing which kind of mformation should be provided, along with a
domain-dependent behavior.

Finally, concerning the statement “Then”, we notice a pretty low understanding (between 1
and 1,50) for P3 and P4, a mid-range understanding (3) for P1 and a very high understanding ()
for P2. P3 specified a kind of cognitive task in his/her first “Then” statement, defining much more
a business benefit than an interactive task. His/her second “Then” statement brings a
misspecification that despite specifying the expected output of the system, it does not comply with
a single valid or invalid state, expressing both states in the same expected output. P4 wrote a single
misspecified “Then” statement, indicating once more the use of a domain-dependent behavior.
P1 specified “Then” statements with a high-level of abstraction, along with small misspecifications,
being one of them related to the use of a new input interaction, and another related to the use of

166

Chapter 7: Case Study 1 - Understandability of User Stories

a domain-specific behavior. P2 committed a really minor writing mistake, only forgetting to use
quotation marks to indicate a variable in the interactive behavior.

We have also observed P2 wrote a very high-adherent story with only some minor deviations,
especially when describing the narrative. In contrast, P4 wrote a very low-adherent story with the
majority of statements classified as having a very low adherence. P1 had half of low and medium
adherent statements along with half of high and very high ones. P3 had a slight majority of
statements flirting with the low-level stratum (a mix of null, low and medium) and the remaining
ones classified as very high adherence.

Looking at the general understandability of User Stories, we notice however a large majority
of statements classified as full or very high adherence to the template. From a total of 53
statements, 33 (62,26%) were classified in the top stratum (full, very high, and high adherence), 3
(5,669%) 1n the medium stratum, and the remaining 17 (32,08%) in the bottom stratum (low, very
low, and null adherence).

Number of occurrences in each category of adherence problems

9
8
7
6
5
4
3
2
1 n im0
0
Lack of statement Understatement Misspecification Wrong Minor writing High-level of Epic behavior

or keyword information complement abstraction

Figure 94. Number of occurrences in each category of adherence problems.

We have also analyzed the type of adherence problems found in the stories specified by the
participants. As explained mn the adherence analysis section above, we have 1dentified 7 types of
problems as follows: lack of statement or keyword, understatement, misspecification, wrong
iformation, minor writing complement, high-level of abstraction, and epic behavior. Figure 94
brings the number of occurrences in each category.

In a total of 30 adherence problems identified, we can observe in the chart that the most
common types of adherence problems have been the “lack of statement or keyword” and the
“musspecification” with 8 occurrences each. It is more than 50% of the problems found (53,33%).
“Wrong information”, “high-level of abstraction”, and “epic behavior” were, on the other hand,
the types of adherence problems less observed in the participants’ User Stories. With a total of 2
occurrences each, they represent singly no more than 7% of occurrences (6,67%).
“Understatement” and “Minor writing complement” complete the set, with each type reporting 4
occurrences, 1.e. 13,33% of occurrences each.

167

Chapter 7: Case Study 1 - Understandability of User Stories

Distribution of each type of adherence problems identified in participants' User Stories

4 o

X
3 °
2)
1 — °
0

Understatement Wrong information High-level of abstraction
Lack of statement or... Misspecification Minor writing... Epic behavior

Figure 95. Boxplot of each type of adherence problems identified in participants’ User Stories.

Figure 95 brings the boxplot of each type of adherence problems. Y-axis brings the scale of
adherence defined for this study and presented in the methodology section. We observe therein
that the category “misspecification” had the largest dispersion, ranging from 0 (null, with the lower
quartile near 1) to 5 (very high, coinciding with the upper quartile), with a median (and a mean)
at the medium stratum of adherence problems. “Understatement” had the second largest
dispersion, ranging from 1 (low, with the lower quartile near 2) to 5 (very high, coinciding with
the upper quartile) with a median at the top stratum (4,5) and the mean near the level 4 of
adherence. “High-level of abstraction” comes next with a dispersion between 1 (very low,
coinciding with the lower quartile) to 2 (low, coinciding with the upper quartile), with median and
mean in 1,5. “Lack of statement or keyword”, “wrong information”, “minor writing complement”,
and “epic behavior” had no dispersion, and achieved respectively a median of 0, 3, 5 and 2. Equal
results have been observed for the mean of these types of adherence problems (“lack of statement
or keyword” had a mean shightly above the median). Outliers have been observed for “lack of
statement or keyword” with just an occurrence of an adherence problem classified in the medium
stratum with all the others classified i the null stratum.

7.7. Findings and Implications

Based on the results discussed above, we can highlight some mmportant findings about the
writing profile of User Stories specified by the participants. The wide dispersion of adherence
problems classified as “misspecification” means participants had a varied level of compliance for
the problems found in this class, since a slight mistaken identification of fieldnames until heavy
domain-dependent behaviors. By the way, we clearly noticed, by analyzing the type of adherence
problems committed by the participants, that the specification of domain-dependent behaviors
was one of the most frequent issues. ven with the high number of misspecifications, participants,
most of time, completely understood the purpose of a scenario, but as they did not know there
was a set of predefined interactive behaviors supposed to be followed, they freely specified the
desired behavior describing exactly what they expected from the system. This fact 1s confirmed
by the medium to low adherence in the “When” and “Then” statements of the story, where
typically reside the most interactive behaviors in a scenario, and consequently, where the ontology
1s more used to specify them.

168

Chapter 7: Case Study 1 - Understandability of User Stories

Concerning the general understandability of User Stories, we notice a clear concentration of
occurrences 1n the top stratum (62,26%), which signalizes an overall very good understanding of
User Stories in the proposed template and a limited but spontaneously use of our predefined
mteractive behaviors presented in the ontology. Analyzing each statement of the stories
mdividually, we also notice a clear concentration of occurrences in the top stratum, exception
made for the aforementioned “When” and “Then” statements which are dispersed mostly
between the medium and the low stratum, and for “Title” and “Narrative” statements that were
almost always omitted by the participants, which occasioned consequently a null adherence for
both of them with only one exception.

“Understatement” problems, despite their high dispersion, presented a median at the top
stratum (4,5), which means the level of noncomphance for this kind of problem is very low, so
we conclude participants made, in general, just slight deviations from the proposed template.
“Lack of statement or keyword”, despite the high number of occurrences, was primarily found in
the “Title” and “Narrative” statements that were frequently omitted by the participants, which
explains the prevalence of null adherence for this type of problem. “High-level of abstraction”
and “epic behaviors” presented problems with a low level of adherence to the proposed template
once these kinds of problems are associated to descriptions with a low level of interaction details,
which 1s opposed to what 1s defined in the ontology. As expected, “minor writing complement”
had a very high rate of adherence with behaviors presenting only minor deviations from the
proposed template.

By looking for individual causes of the problems found, we observed P1 and P3 signalized a
medium understanding of the structure and the purpose of acceptance scenarios in the stories.
P1 and P3 stories performed primarily at the top stratum (very high and full adherences for P1,
and full adherence for P3) for the narrative section. For the scenario section however, P1 mixed
a performance of half occurrences at the top stratum (high and very high adherences) and half at
the medium to low stratum (medium and low adherences), while P3’s story performed primarily
at the medium to low stratum (null, low and medium adherences for 2/3 of occurrences) with the
remaining occurrences being classified as very high. P1 and P3 had the largest number of
behaviors marked as “misspecification”, confirming a particular difficulty to assimilate some
structures of User Stories in the proposed template, mixing primarily the writing of some domain-
dependent behaviors with “understatement” and “minor writing complement”.

Epic behaviors have been only specified by P1. In the context it has been made, a sequence
of data mput in a form, this error could signalize the need of tables to enter a set of data in forms.
This kind of solution has been proposed by the FI'T Framework’, however it is not covered by
our ontology so far. “High-level of abstraction” however has been observed in stories written by
P1 and P4. P4’s low performance (2/3 of occurrences classified in the null and medium
adherences for the narrative section, and the clear majority of occurrences classified as very low
for the scenario section) could find an explanation in the participant’s lack of experience in the
business processes at our institute (just a month), despite having 4 years of experience working
for other companies.

Analyzing the greatest performance and the highest adherence of P2’s stories (primarily at the
top stratum - very high and full adherences for the narrative section - with an overwhelming
majority of full adherent statements - with a single very high adherence - for the scenario section),
and being the second younger participant besides the second more experienced one, we wonder
about the role played by the sum of age and experience factors in the willingness and commitment

8 http:/fit.c2.com/

169

Chapter 7: Case Study 1 - Understandability of User Stories

to adopt new ways of work. P2 had clearly the better performance with the lowest ratio
age/experience in the group.

These findings bring us some opportunities for improving our current set of interactive
behaviors in the ontology. As stated before, the adoption of tables with data examples together
with the ontology could reduce the workload of describing input of data in forms and stimulate a
complete specification by users. The ontology could also be enriched to recognize variants for
the same interactive behavior. Participants of this study specified some behaviors very close to
the ontology statements, but with minor variants. The ontology has indeed a restricted vocabulary.
Even mapping synonyms for some specific behaviors, it does not provide any kind of semantic
mterpretation, 1.e. behaviors must be specified on stories exactly as they were defined in the
ontology. Further studies on Natural Language Processing (NLP) techniques might help to
mmprove the process of specification adding more flexibility to write scenarios that could be
semantically interpreted to meet the behaviors described in the ontology. This issue 1s certainly a
worthwhile topic for further research.

Another aspect to be considered 1s the high number of domain-dependent behaviors specified
by the participants. This point us out the need of considering a still higher level of descriptions
for our behaviors. Domain-specific behaviors have the disadvantage of being dependent on the
jargon used for each type of business processes, which would mmplicate in developing different
ontologies for different business processes, with each one encompassing the proper jargon of
each domain. Domain-specific ontologies nonetheless could act as a top layer in a multi-layer
ontology architecture to allow the use of multiple domain ontologies associated to the current
domain-independent ontology, which would remain describing only the fundamental interactive
behaviors for a given environment.

Going back to our stated research questions, we can conclude that results point to a high level
of understandability of User Stories when their structure is considered (narrative section and
scenario/given/when/then intents), 1.e. the participants were able to read/understand a basic User
Story template and use it to write their own stories (RQ 1). We can also conclude the vocabulary
of the mteractive behaviors described in the ontology was spontaneously used, even without a
specific prior training in the adopted vocabulary (RQ 2). As we highlighted in chapter 4, the
vocabulary chosen to describe such interactive behaviors emerged from our previous experiences
m scenarios specified for real projects, so we can infer it reflects somehow a natural writing
vocabulary for stakeholders. Nevertheless, this vocabulary could eventually be extended in the
future to support more representative phrases or expressions. Finally, we 1dentified a total of 7
types of adherence problems in the participants’ User Stories, being “lack of statement or
keyword” and “misspecification” the most common ones.

7.7.1. Threats to Validity

Generalization of results. We have selected a representative group of participants as Product
Owners (POs) 1n a system for booking airline tickets for business trips. Such kind of system has
usually a strong search-based feature, once they are centered in providing and comparing rates,
times and availability of flights given a set of provided parameters. However, as the ontology in
which we based our analyses 1s designed for domain-independent interactive behaviors, we
assume our results would be reproduced in other interactive systems domains. The profile and
previous experiences of the participants could, nonetheless, bring different results. Experiments
mvolving Product Owners previously introduced to User Stories and/or test automation could
bring different and less frequent adherence problems.

170

Chapter 7: Case Study 1 - Understandability of User Stories

Length of the sample. We have conducted this experiment with 4 participants that could
eventually assume a role of Product Owners n a typical scenario of software development. Our
results are certainly limited to the profile and experience of these four participants. Experiments
conducted with a bigger sample could bring different adherence problems and/or reduce the
variability of occurrences when looking to the whole group. It could eventually bring more
homogeneous results.

Absence of training. This experiment has been conducted without training the participants in
the adoption of interactive behaviors presented in the ontology. As stated before, this decision
was made because one of the goals of this study was to investigate in which extent the interactive
behaviors described in the ontology would be perceived as useful enough to be spontaneously
reproduced by the participants. Experiments imvolving prior tramning in the vocabulary used in
the ontology would certainly bring different results due to the background knowledge. However,
such results would not capture the spontaneous factor of users choosing their own vocabulary to
express their interaction needs. This factor 1s useful to 1dentify the suitability of the predefined
mteractive behaviors to naturally express the user’s intents.

Possible interpretation bias. Both the conduction of the experiment and the interpretation and
analysis of the results have been made by us. So, it 1s possible there has been a bias in the
mterpretation of such results, especially when scaling the adherence of each statement mn the
stories produced by the participants. At this point, the results are being cross-checked by an
imdependent reviewer in an attempt to reduce such a bias and mitigate this threat.

7.8. Conclusion

This chapter presented a study we have conducted to evaluate the understandability of User
Stories by potential Product Owners, represented by team members of the travel department in
our research mstitute. When analyzing the adherence of the User Stories produced by the
participants, the study has shown they had an overall good understanding of User Stories
statements and structure, and a moderate-to-high spontaneous understanding of the implicit
ontological patterns presented in the template they received.

An important remark we can notice 1s that all the stories written by the participants are, in
general, well suited to communicate a business intent or even a concrete feature of the system, if
testing automation is not a concern. Other studies (Wautelet et al, 2014) have investigated the
suttability of different templates for User Stories and how they could be improved to set an
agreement In their semantics and methodological elements, which could help to improve
communication between stakeholders. However, our focus in this study i1s mainly to investigate
how far off such stories are from the specification of our common ontological behaviors which
allow us running automated testing.

We also consider this study 1s highly reproducible once the ontology has general use mtent
and specifies domain-independent interactive behaviors. As such, similar studies could be
conducted to evaluate the adherence of the ontology in different contexts. We also consider our
results can be generalized given the need of describing low level interactive behaviors for
automated User Stories would permeate software testing activities in any domains.

In short, we can summarize our findings as follows:
e Concerning the general understandability of User Stories, we notice a clear

concentration of occurrences n the top stratum (62,26%), which signalizes an overall

171

Chapter 7: Case Study 1 - Understandability of User Stories

very good understanding of User Stories by the participants, with a limited but
spontaneously use of our predefined mteractive behaviors presented in the ontology.
We clearly noticed, by analyzing the type of adherence problems committed by the
participants, that the specification of domain-dependent behaviors was one of the most
frequent issues.

“Understatement” problems, despite their high dispersion, presented a median at the
top stratum (80% of adherence), which means the level of noncompliance for this kind
of problem 1s very low.

“Lack of statement or keyword”, despite the high number of occurrences, was
primarily found in the “Title” and “Narrative” statements that were frequently omitted
by the participants.

“High-level of abstraction” and “epic behaviors” presented problems with a low level
of adherence to the proposed template.

As future works, we wonder about the impact of absence of training on the results. New studies

should be conducted to evaluate the potential impact of prior traming sections with the
participants concerning the predefined interactive behaviors presented in the ontology before
conducting the experiment. Regardless this current study has as objective to evaluate the
spontaneous use of such behaviors by the participants, our hypothesis 1s that prior traming could
probably enhance the level of adherence of the stories produced. We also wonder whether results
could have been influenced by the high-level of experience of the participants in the business
process. Studies with a larger sample and/or with participants with experience in User Stories
mstead could attenuate this factor and bring different results.

172

Chapter 8

Case Study II - Assessing User
Interface Design Artifacts

Summary

In this chapter, we reuse the User Stories created by our potential Product Owners in chapter 7.
This second study proposes to redesign (by the means of a reverse engineering of the current
software system) task models and user interface prototypes to assess their compatibility with the
user requirements expressed m such a system. To do that, we apply our proposed testing
approach to check the consistency of such artifacts along with the final user interface of the current
software system. The aim of this study 1s to identify which kind of inconsistency problems we can
found with our testing approach and to demonstrate its potential.

The first section of this chapter (section 8.1) presents the case study design, detailing how the
study was planned and executed. The second section (section 8.2) presents the set of
complementary User Stories we have developed to support the design and testing of the artifacts
developed for the case study. The third section (section 8.3) adds a group of selected test cases
with the aim of helping to validate such stories. The following sections present the modeling and
testing results for each one of the assessed artifacts: task models (in section 8.4), Balsamiq
prototypes (in section 8.5), and final Uls (in section 8.6).

In the section 8.7, we build a traceability mapping to follow the inconsistencies found in each one
of the target artifacts. Such mapping shows an edge-to-edge overall view of the testing scenarios,
signalizing where a given step has failed in each artifact and why. We finish by presenting our
findings and lessons learned in the section 8.8, as well as our conclusions on the effectiveness of
our testing approach and the impact of the inconsistencies identified in the assessment of artifacts
(section 8.9).

The present chapter considers the outputs of the study presented in the previous chapter by
exploiting new User Stories and modeling new reengineered user interface design artifacts for
testing. The following sections present how we have designed such a study, and in which extent
the results helped us to analyze the kind of inconsistency problems we can identify with the testing
approach we propose 1n this thesis.

8.1. Case Study Design

To conduct this study, we have refined the User Stories written by the participants to simulate
the assessment of user interface design artifacts obtained by reengineering the current system for
booking business trips presented in chapter 7. To do that, we have studied the current
implementation of user requirements n this current system, and by applying reverse engineering
(Chikofsky and Cross II, 1990), we redesigned the appropriate task models and user interface
prototypes for the system. The aim of this software reengineering is to have such artifacts to run
our tests and verify in which extent our approach is able to identify inconsistencies between them.

173

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

Our motivation for this study is to understand which kind of inconsistencies we can identify by
using this approach. Therefore, the main objectives of this case study are:

e To demonstrate the potential of the approach to assess user interface design artifacts;
e To identify which kind of mconsistencies we are able to point out by running our
testing approach in the set of reengineered artifacts for the business trip case study;

e T'o exemplify our approach as presented in chapters 5 and 6.

To achieve these goals, we planned our study divided in 6 steps as follows:

e Step 1: Format and add new User Stories based on the outputs from the previous study
and based on the current system implementation.

e Step 2: Add test cases to these User Stories.

e Step 3: Reengineer task models for the current system and run our approach to test
the developed scenarios.

o Step 4: Reengineer user iterface prototypes for the current system and run our
approach to test the developed scenarios.

e Step 5: Run our approach to test the final user interface of the current system with the
same developed scenarios.

e Step 6: Trace the results and verify the extent of inconsistencies we were able to identify
in these multiple artifacts.

All these steps were performed by ourselves after conducting the previous study with the POs
in the business travel department. With the aim of simulating a software development hifecycle,
we firstly developed an initial version of User Stories and their test cases to act as our user
requirements and acceptance criteria. We then reengineered initial versions of the respective task
models and user interface prototypes to model such requirements. After getting ready a first
version of task models, we extracted a representative set of scenarios from them. By following
our strategy for testing, we run this initial version of User Stories to the mitial set of scenarios
extracted from task models. Results were then evaluated, and we could observe the type of
mconsistency we succeeded identifying. As the strategy we follow for testing scenarios in both task
models and User Stories parses all the steps of each scenario at once, the first round of results 1s
obtained with a single battery of tests.

Following this step, we run the same nitial version of User Stories to initial versions of user
mterface prototypes designed using Balsamiq. Unlike the strategy for testing task models, the
strategy we follow for testing user interface prototypes and final Uls parses each step of the
scenarlo at a time, so 1f an error 1s found out, the test stops until the error 1s fixed. That requires
to run several batteries of tests until having the entire scenario tested. It leads us to fix all the
mconsistencies step-by-step, and consequently to get fully consistent scenarios at the end of
running. However, when analyzing the reason related of each inconsistency, we can eventually
conclude the origin of the mconsistency 1s actually in the specification of the step i the User
Story scenario, and not in the artifact itself. As a result of such, to fix such an inconsistency, steps
of User Story scenarios may also be modified along the battery of tests to comply with a consistent
specification of the user requirements. An immediate consequence of this fact 1s that the steps
used to test a given version of an artifact can be different than that ones used to test another artifact
previously. It means that regression tests are crucial to ensure that a given modification in the set
of User Stories scenarios did not break some previous test in other artifacts and made some
artifact (that so far was consistent with the requirements) inconsistent again.

174

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

We applied the same strategy to test the final user interfaces, once essentiality they are fully-
fledged versions of previous user interface prototypes. The difference here 1s that, by applying a
reverse engineering approach, we assume that the released version of the current booking system
(and evidently its final UI) represents the unequivocal statement of the user requirements, once
for the purpose of this study, we cannot modify them. As such, we have not the opportunity to
eventually redesign the final UI to comply with the User Stories we developed. As a consequence,
all the 1dentified inconsistencies necessarily resulted i modifications n the steps, not in the final

UL

Finally, we analyzed the results of testing in each artifact by mapping such results to identify
the trace of each inconsistency throughout the artifacts. That gave us a complete traceability
overview of each step of the User Stories in the target artifacts. During the execution of each step
of testing described above, we have collected and identified the reasons of failure in the
mentioned artifacts in order to answer our research question concerning the kind of
mconsistencies we are able to 1dentify with this proposed approach. Such results allowed us to
evaluate the effectiveness of the approach and to 1dentify future improvement opportunities.

8.2. Formatting and Adding New User Stories

Based on the stories identified during the mterview sections and presented in the previous
chapter, we formatted them by following the ontology vocabulary and the template proposed n
chapter 3. We also added some new stories that we have identified as user requirements in the
current software system for booking business trips in our institute. In the User Story “Flight
Tickets Search” (Figure 96), we have scenarios for searching flights for a roundtrip (with and
without selecting all the optional fields), a one-way trip, and a multidestination trip. In the second
User Story “Select a suitable flight” (Figure 97), we have scenarios for selecting suitable flights
according to the results of searching. Finally, in the third User Story “Confirm Flight Selection”
(Figure 98), we have scenarios for confirming or declining the respective trips.

First User Story: informing multiple criteria to search flights:

User Story: Flight Tickets Search

Narrative:

As a IRIT researcher

I want to be able to search air tickets for my business trips, providing
destinations and dates

So that I can obtain information about rates and times of the flights.

Scenario: Successful Roundtrip Tickets Search

Given 1 go to "Flight Search"

When 1 select "Round Trip"

And 1 inform "Toulouse"™ and choose "Toulouse, Blagnac (TLS)" in the field
"Departure”

When 1 inform "Paris" and choose '"Paris, Charles-de-Gaulle (CDG)"™ in the field
"Destination”

And 1 set "Sam, Déc 1, 2018" in the field "Departure Date"

When I set "Lun, Déc 10, 2018" in the field "Arrival Date"

And 1 submit "Search"

Then will be displayed 2. Sélectionner un voyage"

Scenario: Successful Roundtrip Tickets Search With Full Options

Given 1 go to "Book Flights'

When 1 inform "Toulouse'" and choose "Toulouse, Blagnac (TLS)"™ in the field
"Departure’

And 1 inform "Paris" and choose "Paris, Charles-de-Gaulle (CDG)" in the field
"Destination”

When I set '"Sam, Déc 1, 2018" in the Ffield "Departure Date"

175

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

And 1 set "08:00" in the Ffield "Departure Time Frame"

When 1 choose "Round Trip"

And 1 set "Lun, Déc 10, 2018" in the field "Arrival Date"

When 1 set '"10:00" in the field "Arrival Time Frame"

And 1 choose the option of value "2" in the field "Number of Passengers"
When 1 set "6" in the field "Timeframe"

And 1 select "Direct Flights Only"

When 1 choose the option of value "Economique'" in the field "Flight Class"
And 1 set "Air France" in the field "Companies"

When 1 submit "Search"

Then will be displayed ""2. Sélectionner un voyage"

Scenario: Successful One-way Tickets Search

Given 1 go to "Book Flights'

When 1 inform "Toulouse'" and choose "Toulouse, Blagnac (TLS)"™ in the field
"Departure’

And 1 inform "Paris" and choose "Paris, Charles-de-Gaulle (CDG)" in the field
"Destination”

When I set ""Sam, Déc 1, 2018" in the Ffield "Departure Date"

And I choose "One-way Trip"

When 1 submit "Search"

Then will be displayed ""2. Sélectionner un voyage"

Scenario: Successful Multidestination Tickets Search

Given 1 go to "Book Flights'

When 1 choose "Multidestination Trip"

And 1 inform "Toulouse"™ and choose "Toulouse, Blagnac (TLS)" in the field
"Departure”

When 1 inform "Paris" and choose '"Paris, Charles-de-Gaulle (CDG)"™ in the field
"Destination”

And 1 set "Sam, Déc 1, 2018" in the field "Departure Date"

When 1 inform "Paris" and choose '"Paris, Charles-de-Gaulle (CDG)"™ in the field
"Departure’

And 1 inform "Nice" and choose "Nice, Cote D"Azur (NCE)" in the field "Destination”
When I set ""Sam, Déc 10, 2018" in the field "Departure Date"

And 1 submit "Search"

Then will be displayed ""2. Sélectionner un voyage"

Figure 96. User Story “Flight Tickets Search”.

Second User Story: selecting flights from a given list of available flights:

User Story: Select a suitable flight

Narrative:

As a IRIT researcher

I want to get a list of compatible flights (including their rates and times) in
accordance with my search criteria

So that I can select a suitable flight based on my needs.

Scenario: Select a Return Flight Searched Without Full Options

Successful Roundtrip Tickets Search

Given "Availability Page" is displayed

When I click on "No Bag" referring to "Air France 7519"

And 1 click on "No Bag" referring to "Air France 7522"

When 1 click on "Book"

Then will be displayed "J"accepte les Conditions d"achat concernant le(s) tarif(s)
aérien(s)."

Scenario: Select a Return Flight Searched With Full Options

Successful Roundtrip Tickets Search With Full Options

Given "Availability Page" is displayed

When I click on "No Bag" referring to "Air France 7519"

And 1 click on "No Bag" referring to "Air France 7522"

When I click on ""Book™

Then will be displayed "J"accepte les Conditions d"achat concernant le(s) tarif(s)
aérien(s)."

176

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

Scenario: Select a One-way Flight

Successful One-way Tickets Search

Given "Availability Page" is displayed

When I click on "No Bag" referring to "Air France 7519"

And I click on "Book"

Then will be displayed "J"accepte les Conditions d"achat concernant le(s) tarif(s)
aérien(s)."

Scenario: Select a Multidestination Flight

Successful Multidestination Tickets Search

Given "Availability Page" is displayed

When I click on "No Bag" referring to "Air France 7519"

And 1 click on "No Bag" referring to "Air France 7700"

When 1 click on "Book™

Then will be displayed "J"accepte les Conditions d"achat concernant le(s) tarif(s)
aérien(s)."

Figure 97. User Story “Select a suitable flight”.

Third User Story: confirming (or declining) a selected trip:

User Story: Confirm Flight Selection

Narrative:

As a IRIT researcher

I want to get all the required data to confirm my flights

So that I can check the information, the fare rules and then Ffinalize my booking.

Scenario: Confirm a Flight Selection

Select a Return Flight Searched Without Full Options

Given "Confirmation Page" is displayed

When 1 choose "J"accepte les Conditions d"achat concernant le(s) tarif(s)
aérien(s)."”

And 1 click on "Finalize the trip"

Then will be displayed "Votre voyage a été confirmé!”

Scenario: Confirm a Flight Selection (Full Version)

Select a Return Flight Searched With Full Options

Given "Confirmation Page" is displayed

When 1 choose "l accept the General Terms and Conditions."
And 1 click on "Finalize the trip"

Then will be displayed "Votre voyage a été confirmé!”

Scenario: Confirm a Flight Selection for a One-Way Trip

Select a One-way Flight

Given "Confirmation Page" is displayed

When 1 choose "J"accepte les Conditions d"achat concernant le(s) tarif(s)
aérien(s)."”

And 1 click on "Finalize the trip"

Then will be displayed "Votre voyage a été confirmél!”

Scenario: Confirm a Flight Selection for a Multidestination Trip

Select a Multidestination Flight

Given "Confirmation Page" is displayed

When 1 choose "J"accepte les Conditions d"achat concernant le(s) tarif(s)
aérien(s)."

And 1 click on "Finalize the trip"

Then will be displayed "Votre voyage a été confirmél!”

Scenario: Decline a Flight Selection

Select a One-way Flight

Given "Confirmation Page" is displayed

When 1 choose "J"accepte les Conditions d"achat concernant le(s) tarif(s)
aérien(s)."

And 1 click on "Decline the trip"

Then will be displayed "Votre voyage a été annulé!”

177

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

Figure 98. User Story “Confirm Flight Selection”.
8.3. Adding Testing Scenarios

By analyzing the business rules for this kind of system, we added two common test cases
(already explored in chapter 3) to the first User Story (“Flight Tickets Search”). These two test
cases (Figure 99) scenarize two error situations when trying to book a trip: (1) try to book it more
than one year in advance, and (2) try to book a return flight before the departure flight.

Scenario: Search for Flights More Than One Year in Advance

Given 1 go to "Book Flights'

When 1 inform "Toulouse'" and choose "Toulouse, Blagnac (TLS)"™ in the field
"Departure”

And 1 inform "Paris" and choose "Paris, Charles-de-Gaulle (CDG)" in the field
"Destination”

When I set "Dim, Déc 1, 2019" in the Ffield "Departure Date"

And I choose "One-way Trip"

When 1 submit "Search"

Then will be displayed "Erreur : Vous devez choisir une date de départ ultérieure
comprise entre 4 heures et 11 mois. Veuillez sélectionner une autre date. (10032)"

Scenario: Search for a Return Flight Before a Departure Flight

Given 1 go to "Book Flights'"

When 1 inform "Toulouse'" and choose "Toulouse, Blagnac (TLS)"™ in the field
"Departure”

And 1 inform "Paris" and choose "Paris, Charles-de-Gaulle (CDG)" in the field
"Destination”

When I set "Lun, Déc 10, 2018" in the field "Departure Date"

And 1 choose "Round Trip"

When I set ""Sam, Déc 1, 2018" in the field "Arrival Date"

And 1 submit "Search"

Then will be displayed "Erreur : La date de retour ne peut pas étre antérieure a la
date de départ."

Figure 99. Test scenarios for the User Stories.

8.4. Modeling and Assessing T'ask Models

Task models have been developed for this study by using the HAMSTERS tool. As we have
focused in the process of searching and demanding a booking of flights (without focusing on the
administrative procedure to confirm the flight), the four models below have been divided to cover
the processes of searching the flights, informing a flight leg (or a new flight leg in case of a
multidestination trip), and choosing and confirming (or dechining) the selected trip.

Figure 100 presents the task model for searching flights using Travel Planet (the current system
of booking). All the tasks have been designed to be performed by end users of the system, 1.e.
researchers from our nstitute booking their own flights, or the travel department team booking
flights on behalf of the researchers. The Search Flight feature encompasses accessing the search
fhight page (task “Go to Book Flights”), informing at least one flight leg (abstract task “Inform a
Flight Leg”), providing flight data for searching (abstract task “Provide Data to Search”),
submitting the search (task “Submit Search”), and verifying the resultant list of flights (abstract
task “Venty List of Flights”). These four tasks are supposed to be performed exactly in this
sequence, so the operator “Enable” has been used.

To mform a flight leg (Figure 101), the user 1s supposed to inform departure and destination
data. Such data include informing a departure and arrival cities and based on a list of available
airports 1n those cities, selecting the ones he/she wants. Both tasks are mandatory and should be

178

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

Go 10 Book Faghts Inform 3 Fight Leg Provide Dt

& Inf : NumberofPassengers - Obj : Number of Passengers e M
e e e / \ - ~a TR
-— ST & 3
& & & & &= A%
Choose Tnp Type Choose NumbderofPassengers AGuStTimeame SelectDWectFights Only DeSneFlihtClass Define Companies PresentList of Availadie FIights Choose Flights
’ n \
Inf ; Al Date -~ N » : <
o 7 R & Inf ; Timerimne Obj : Tinskame g Inf : Fiontcass & Obj : Figntciass g Inf : Companies Obj : Companies
? N
i » . RN
ChooseRound Trip Choose Cne-way Trip Choose Multicestination Trip
|
\J
1= >>
b 19
Set Arrival Date Set Arrival Time Frame Inform a New Flight Leg
Obj ; Amval Daste & Inf ; Anhval Time Frame Obj ; Amval Time Frame

Figure 100. Task Model for Searching Flights using Travel Planet.

performed sequentially, so the operator “Enable” has been used. After selecting the airports of
departure and arrival, the user must set in any order the departure date and the departure time
frame, being these last one an optional task.

Going back to providing flight data to search, the user can perform i any order (operator
“Order mdependent”) the following tasks: “Choose Trip Type”, “Adjust Timeframe”, “Select
Direct Flights Only”, “Define Flight Class”, and “Define Companies”, being the four last tasks
optional. For choosing trip types, the user has three options. If a round-trip 1s chosen, then a
sequence of two order-independent tasks can be performed by the user: “Set Arrival Date” and
“Set Arrival Time Frame”, being this last one optional. If a multi-destination trip 1s chosen, then
the user must inform at least one more flight leg (abstract task “Inform a New Flight Leg”),
performing the same interactive tasks from “Inform a Flight Leg”. Finally, if a one-way trip 1s
chosen, there 1s no additional tasks to perform for the abstract task of choosing a trip type. For

35
IR
Inform a Flight Leg
‘ & Inf : Departure Date
>> _»
// /]:I \ ‘blnf * Departure Time Frame
.30 .32 2.7
Inform Departure Inform Destination Set Departure Date Set Departure Time Frame
& Inf : Departure Airport J J

Inform Depénure City Provide List of Airports Choose Depa}ture Airport Inform Arfival City Provide LlSt‘i)fAerOﬂs Choose Am;/al Airport

¥ Obj : Departure City Obj : DeparureAiport & Inf : Arnival City Obj : Amival City & Inf : Amval Airport Obj : Arival Airport

Figure 101. Task Model for Informing a Flight Leg in Travel Planet.

179

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

all the input tasks, notice that the data handling 1s shown with information being provided as iput
for the task and objects being the output of these tasks.

After providing the data, the user can submit the search and get, as a result, a list of available
flights matching his/her criteria. At this point, the system returns such a list and the user can then
pick one of the available flights and confirm or dechine his/her booking. For performing such
tasks, the abstract task “Choose Flights” has been modeled (Figure 102). To get it done, the user
must firstly evaluate the availability of flights (which 1s a cognitive analysis task), choose the desired
fhight (which 1s a cognitive decision task), and then select the desired flight (which 1s indeed an
mteractive input task). Optionally the user can change the fare profile for the flight he/she has
chosen, and then submit his/her choice. Lastly, the user checks the selected flights (a cognitive
task) and verify the fare conditions (a perceptive task). He/she then finally chooses between
decline the booking or conclude it.

s
R
Choose Flights

& &

Request for Choosing a Flight Evaluate the Availability of Flights Choose the Desired Flight Selectthe Desired Flight Change the Fare Profile Submit the Choice Check the Selected Flights Verify the Fare Conditions.

0]

/N

2

Decline the Booking Conclude the Booking

Figure 102. Task Model for Choosing a Flight in Travel Planet.

8.4.1 Extracting Scenarios from the Task Models

Based on the task models presented above, we have extracted 10 scenarios to be tested. The
set of 10 scenarios are shown below in Figure 103. The first scenario 1s intended to book a regular
roundtrip (return trip) without including any data, whilst the second one 1s intended to the same
purpose but providing data for the objects values during the execution (data are shown between
brackets). The third scenario is intended to book a one-way trip, the fourth one to decline a one-
way trip, and the fifth one to book a multidestination trip. Each one of these last five scenarios
are accompanied by a similar scenario (presented at the right side of the figure), which does not
include the optional tasks, so totalizing the 10 scenarios to be tested.

Scenario 1: Successful Return Trip — Regular Scenario 6: No Optional Successful Return Trip
Case - Regular Case

1 — Go to Book Flights 1 - Go to Book Flights

2 - Inform Departure City 2 - Inform Departure City

3 - Provide List of Airports 3 - Provide List of Airports

4 - Choose Departure Airport 4 - Choose Departure Airport

5 - Inform Arrival City 5 - Inform Arrival City

6 - Provide List of Airports 6 - Provide List of Airports

7 - Choose Arrival Airport 7 - Choose Arrival Airport

8 - Set Departure Date 8 - Set Departure Date

9 - Set Departure Time Frame 9 - Set Arrival Date

10 - Set Arrival Date 10 - Choose Number of Passengers

11 - Set Arrival Time Frame 11 - Submit Search

12 - Choose Number of Passengers 12 - Present List of Available Flights

13 - Adjust Timeframe 13 - Request for Choosing a Flight

14 - Select Direct Flights Only 14 - Evaluate the Availability of Flights
15 - Define Flight Class 15 - Choose the Desired Flight

16 - Define Companies 16 - Select the Desired Flight

180

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

17 - Submit Search

18 - Present List of Available Flights

19 - Request for Choosing a Flight

20 - Evaluate the Availability of Flights
21 - Choose the Desired Flight

22 - Select the Desired Flight

23 - Submit the Choice

24 - Check the Selected Flights

25 - Conclude the Booking

17 - Submit the Choice
18 - Check the Selected Flights
19 - Conclude the Booking

Scenario 2: Return Trip With Data

— Go to Book Flights
- Inform Departure City (“Paris')
- Provide List of Airports
- Choose Departure Airport (“"Paris, Charles-
de-Gaulle (CDG)')
5 - Inform Arrival City (“"Dallas'™)
6 - Provide List of Airports
7 - Choose Arrival Airport ('Dallas, Aéroport
international de Dallas-Fort Worth (DFW)'™)
8 - Set Departure Date (“'Sam, Déc 1, 2018™)
9 - Set Departure Time Frame
10 - Set Arrival Date ("Lun, Déc 10, 2018")
11 - Set Arrival Time Frame
12 - Choose Number of Passengers ('1')
13 - Adjust Timeframe
14 - Select Direct Flights Only
15 - Define Flight Class
16 - Define Companies
17 - Submit Search
18 - Present List of Available Flights
19 - Request for Choosing a Flight
20 - Evaluate the Availability of Flights
21 - Choose the Desired Flight
- Select the Desired Flight ("Air France
6111, Air France 6134')
23 - Submit the Choice
24 - Check the Selected Flights
25 - Conclude the Booking

A WN P

Scenario 7: No Optional Return Trip With Data

- Go to Book Flights

- Inform Departure City (“Paris')

- Provide List of Airports

- Choose Departure Airport (“Paris, Charles-
de-Gaulle (CDG)')

5 - Inform Arrival City ("Dallas™)

6 - Provide List of Airports

7 - Choose Arrival Airport ('Dallas, Aéroport
international de Dallas-Fort Worth (DFW)'™)
8 - Set Departure Date ('Sam, Déc 1, 2018™)
9 - Set Arrival Date (“Lun, Déc 10, 2018™)
10 - Choose Number of Passengers ("1")

11 - Submit Search

12 - Present List of Available Flights

13 - Request for Choosing a Flight

14 - Evaluate the Availability of Flights
15 - Choose the Desired Flight

16 - Select the Desired Flight ("Air France
6111, Air France 6134'™)

17 - Submit the Choice

18 - Check the Selected Flights

19 - Conclude the Booking

A WN P

Scenario 3: Successful One-Way Trip - Regular
Case

— Go to Book Flights

- Inform Departure City

- Provide List of Airports

- Choose Departure Airport
Inform Arrival City

- Provide List of Airports

- Choose Arrival Airport

- Set Departure Date

- Set Departure Time Frame

10 - Choose One-way Trip

11 - Choose Number of Passengers
12 - Adjust Timeframe

13 - Select Direct Flights Only

14 - Define Flight Class

15 - Define Companies

16 - Submit Search

17 - Present List of Available Flights
18 - Request for Choosing a Flight
19 - Evaluate the Availability of Flights
20 - Choose the Desired Flight

21 - Select the Desired Flight

22 - Submit the Choice

23 - Check the Selected Flights

24 - Conclude the Booking

©CoO~NOOAWNE
1

Scenario 8: No Optional Successful One-Way Trip
- Regular Case

- Go to Book Flights

- Inform Departure City

- Provide List of Airports

- Choose Departure Airport

Inform Arrival City

- Provide List of Airports

- Choose Arrival Airport

- Set Departure Date

- Choose One-way Trip

10 - Choose Number of Passengers

11 - Submit Search

12 - Present List of Available Flights
13 - Request for Choosing a Flight

14 - Evaluate the Availability of Flights
15 - Choose the Desired Flight

16 - Select the Desired Flight

17 - Submit the Choice

18 - Check the Selected Flights

19 - Conclude the Booking

©CoO~NOUAWNE
1

Scenario 4: One-Way Trip Declined

— Go to Book Flights

- Inform Departure City

- Provide List of Airports
- Choose Departure Airport
Inform Arrival City

- Provide List of Airports
- Choose Arrival Airport

- Set Departure Date

- Set Departure Time Frame
10 - Choose One-way Trip

11 - Choose Number of Passengers

O©CO~NOOMWNE
1

Scenario 9: No Optional One-Way Trip Declined

- Go to Book Flights

- Inform Departure City

- Provide List of Airports
- Choose Departure Airport
Inform Arrival City

- Provide List of Airports
- Choose Arrival Airport

- Set Departure Date

- Choose One-way Trip

10 - Choose Number of Passengers
11 - Submit Search

O©CO~NOOBMWNE
1

181

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

12 - Adjust Timeframe 12 - Present List of Available Flights

13 - Select Direct Flights Only 13 - Request for Choosing a Flight

14 - Define Flight Class 14 - Evaluate the Availability of Flights
15 - Define Companies 15 - Choose the Desired Flight

16 - Submit Search 16 - Select the Desired Flight

17 - Present List of Available Flights 17 - Submit the Choice

18 - Request for Choosing a Flight 18 - Check the Selected Flights

19 - Evaluate the Availability of Flights 19 - Decline the Booking

20 - Choose the Desired Flight
21 - Select the Desired Flight
22 - Submit the Choice

23 - Check the Selected Flights
24 - Decline the Booking

Scenario 5: Successful Multidestination Trip - Scenario 10: No Optional Successful
Regular Case Multidestination Trip - Regular Case
1 — Go to Book Flights 1 — Go to Book Flights

2 - Inform Departure City 2 - Inform Departure City

3 - Provide List of Airports 3 - Provide List of Airports

4 - Choose Departure Airport 4 - Choose Departure Airport

5 - Inform Arrival City 5 - Inform Arrival City

6 - Provide List of Airports 6 - Provide List of Airports

7 - Choose Arrival Airport 7 - Choose Arrival Airport

8 - Set Departure Date 8 - Set Departure Date

9 - Set Departure Time Frame 9 - Inform Departure City

10 - Inform Departure City 10 - Provide List of Airports

11 - Provide List of Airports 11 - Choose Departure Airport

12 - Choose Departure Airport 12 - Inform Arrival City

13 - Inform Arrival City 13 - Provide List of Airports

14 - Provide List of Airports 14 - Choose Arrival Airport

15 - Choose Arrival Airport 15 - Set Departure Date

16 - Set Departure Date 16 - Choose Number of Passengers

17 - Set Departure Time Frame 17 - Submit Search

18 - Choose Number of Passengers 18 - Present List of Available Flights
19 - Adjust Timeframe 19 - Request for Choosing a Flight
20 - Select Direct Flights Only 20 - Evaluate the Availability of Flights
21 - Define Flight Class 21 - Choose the Desired Flight

22 - Define Companies 22 - Select the Desired Flight

23 - Submit Search 23 - Submit the Choice

24 - Present List of Available Flights 24 - Check the Selected Flights

25 - Request for Choosing a Flight 25 - Conclude the Booking

26 - Evaluate the Availability of Flights
27 - Choose the Desired Flight

28 - Select the Desired Flight

29 - Submit the Choice

30 - Check the Selected Flights

31 - Conclude the Booking

Figure 103. Scenarios extracted to be tested.
8.4.2 Results

According to the testing strategy we presented in chapter 5, testing results are shown 1n a log
indicating, for each step of the User Story scenario, if and where a given step has found an
equivalent task in the XML file analyzed, and once it carries an object value associated, which
value 1t 1s. We have then assessed the task models, based on the set of extracted scenarios
presented above (Figure 103). Results of testing for a first complete scenario successfully booking
a roundtrip are show hereafter. Such a scenario was obtained by running the scenario “Confirm
a Flight Selection” from the User Story with the same name. This scenario calls the scenario
“Select a return flight searched without full options” which in turn calls the scenario “Successful
Roundtrip Tickets Search”. Corresponding tasks in the scenarios were searched according to the
Concept Mapping Table in the appendix of this thesis (appendix A).

Table 25 (and 1its correspondent chart in Figure 104) brings the results produced by our
algorithm when searching for the position of each one of the tasks that composes the scenario.
So, the lines of the table (and the legend of the chart) bring the steps in the User Story scenarios,
and the columns (and the series of the chart) bring the XML files of the scenarios extracted from
the task models. Zeros (0) in the table indicate that a correspondent task for a given step has not

182

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

been found in the target file. Values different than zero indicate the position where a
correspondent task has been found in the target file. We highlighted i gray at the table which
column(s) bring(s) the most suitable target file(s) where the correspondence with the User Story
scenario was supposed to be found. For a fully consistent model, it would be necessary that each
step 1n the User Story scenario has found its correspondent task in the same position in the target
file. So, 1n this case, a straight vertical line of points would be seen in the chart below, indicating
that a sequential correspondence for each step was found. In the first tested scenario presented
above, such a correspondence was supposed to be found in the target file “No Optional
Successtul Return Trip - Regular Case” once, theoretically, 1t represents the same user activities
in the task model.

8.4.2.1. First Scenario

N (Copy) N
optional (onzi‘gnaf successful | (°P¥) No No
P! P Successful esstull g ccessful | No Optional | Successful Optional
No Optional Multidesti | Multidesti Return nation Multidesti | Optional Return | Successful [One-Way | One-Way | Successful
Scenario: Confirm a Flight Selection Return Trip [* t' My : ' Trip - i H nation | One-Way | Trip With | Return | Trip- Trip | One-Way
nation | nation rip -
With Data i t Regular P Trip - Trip Data Trip- | Regular | Declined | Trip-
Trip - Trip - Regular !
reonior | moaniar | case s | Regular | Declined Regular | Case Regular
8 8 case case case
Case Case
Given | go to "Flight Search” o [} [} [} [} [} 0 [} [} 0
When | select "Round Trip" 0 0 0 0 0 0 0 0 0)
And I inform "Toulouse" o [) [} [) [} [) 0 [} [) 0
and choose "Toulouse, Blagnac (TLS)" in the field "Departure” 0 0 0 0 0 0 0 0 0 0
(When | inform "Paris" 0 0 0 0 0 0 0 0 0 0
and choose "Paris, Charles-de-Gaulle (CDG)" in the field o [} [} [} [} [} 0 [} o 0
And I set "Sam, Déc 1, 2018" in the field "Departure Date" 8 8 15 [} 16 8 [} 3 8 8 3 8
When I set "Lun, Déc 10, 2018" in the field "Arrival Date” 9 [} 10 [} [} 10 9 o [} 0
/And | submit "Search" 1 17 17 23 1 17 11 16 16 11
Then will be displayed "2. Sélectionner un voyage” o [} [} [} [} [} 0 [} [} 0
Given "Availability Page" is displayed 0 0 0 0 0 0 0 0 0 o
When | click on "No Bag" referring to "Air France 7519" o [} [} [) [} [) 0 o [) 0
[And I click on "No Bag" referring to "Air France 7522" o [} [} [} [} [} 0 o [} 0
When | click on "Book" 0 0 0 0 0 0 0 0 0 0
Then will be displayed "Jaccepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)." o [} o [} [} [} 0 [} [} 0
Given "Confirmation Page" is displayed 0 [} o [} [} [} 0 o [} 0
When | choose "J'accepte les Conditions d'achat concernant le(s) tarif(s) arien(s)." o [} [} [} [} [} 0 [} [} 0
/And | click on "Finalize the trip" 0 0 0 0 0 0 0 0 0 0
Then will be displayed "Votre voyage a été confirmé!" o [} [} [} [} [} 0 [} [} 0

Table 25. Scenario “Confirm a Flight Selection”.

a

Figure 104. Results of matching: scenario “Confirm a Flight Selection”.

Analyzing the results of this first round of tests, we can notice that most of steps has not found
a correspondent task n the target files, 1.e. steps in the US scenarios and tasks in the task models
are not consistent somehow. The step at the position 1 (“Given I go to ‘Flight Search’) has not
found a correspondent task mn any target file because, in the task model, the equivalent task has
been modeled as “Go to Book Flights”, so an inconsistency has been found in the name, despite

183

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

the position 1s correct. The step at the position 2 (“When I select ‘Round Trip’”) has not found
a correspondent task in any target file due to a different reason. As the interactive task “Choose
Round Trip” in the task model (see Figure 100) has been modeled as a parent task of two leave
tasks (“Set Arrival Date” and “Set Arrival Time Frame”), when extracting scenarios from such a
model, only the leave tasks are kept, so the extracted scenario does never show the interactive
task “Choose Round Trip”. Particularly in this case, two other inconsistencies would be found as
well: the name of step and task would be different “Select ‘Round Trip™” vs. “Choose ‘Round
Trp’”, and the position in which such a task would appear 1s not the second one, once it i1s not
among the first user tasks according to the model.

Steps at the positions 3-4 and 5-6 concern respectively the set informing/choosing departure
and informing/choosing destination. Such tasks have been modeled (and extracted to scenarios)
as the triad “Inform Departure City / Provide List of Airports / Choose Departure Airport” and
“Inform Arrival City / Provide List of Airports / Choose Arrival Airport”. The itermediate task
“Provide List of Airports” (that models the output of the system to the user) has not been modeled
i the User Stories, so the step 1s just composed by the informing and choosing activities. For this
reason, such sequence would never find a correspondence in the model, which inevitably would
break the forward sequence of tasks in the scenarios. Additionally, another mconsistency that
would be 1dentified 1s that the task model brings tasks named “Inform Departure (Arrival) City”
and “Choose Departure (Arrival) Airport”, while the algorithm would search for tasks named
“Inform Departure (Destination)” and “Choose Departure (Destination)”.

The step at the position 7 (“And I set ‘Sam, Déc 1, 2018’ in the field ‘Departure Date’”) has
found a correspondent task in all the target files, almost always at the position 8. This one-position
gap 1s due to the absence of the task “Choose Round Trip” that was not exported to the scenario
as explained above. Besides that, such a step has found two (instead of one) correspondent tasks
in the same file. This happened in the target files “Successful Multidestination Trip - Regular
Case” and “No Optional Successful Multidestination Trip - Regular Case”, exactly the two ones
that describe scenarios for a multidestination trip. As in a multidestination trip, the user must
mform at least two flight legs, he/she necessarily needs to inform a “Departure Date” two times,
one for each flight leg. That 1s the reason the algorithm finds the correspondent task “Set
Departure Date” two times in these two target files. In the first one, such a task has been found
at the positions 8 and 16, and in the second one at the positions 8 and 15. The second occurrence
of the task in these files has been marked as “(Copy)” in the table of results presented above.
Notice that the associated value informed during the extraction of scenario can also be checked
with the value specified in the step. The extracted scenario “Return Trip With Data” in both
versions (with and without optional tasks) brings the associated value “Sam, Déc 1, 2018” in the
results, that 1s exactly the same value informed for the correspondent step i the User Story.

The step at the position 8 (“When I set ‘Lun, Déc 10, 2018’ in the field ‘Arrival Date’”) has
found a correspondent task at the position 9 in the target files “No Optional Return Trip With
Data” and “No Optional Successful Return Trip - Regular Case”, and at the position 10 in the
target files “Successful Return Trip - Regular Case” and “Return Trip With Data”. The task “Set
Arrival Date” has been found only in those four files because it 1s only performed in scenarios
mvolving roundtrips (return trips), where an arrival data should be immformed. Concerning the
position where this task has been found, in the “no-optional” files, it has been found at the
position 9 because despite the absence of the task “Choose Round Trip” (which would bring the
task “Set Arrival Date” to the position 7), the presence of the two tasks “Provide List of Airports”
to inform both departure and destination brings the task “Set Arrival Date” two positions forward,
putting it at the position 9. The position 10 in the target files with optional tasks 1s due to the

184

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

presence of the optional task “Set Departure Time Frame” right before the task “Set Arrival
Date”.

The step at the position 9 (“And I submit ‘Search’) has found a correspondent task at
different positions 1n all the target files. The task “Submit Search” has been found at the position
11 1n the “no-optional” files (except for the multidestination case that involves informing another
fhight leg). Looking at the roundtrip case, it highlights an important inconsistency between the
scenario presented in the User Story and those extracted from the task model. Apart from the
aforementioned absence of the task “Choose Round Trip” and the presence of the two tasks
“Provide List of Airports” (which would bring the task “Submit Search” to the position 10), the
fact of being found at the position 11 1s due to the presence of a previous task named “Choose
Number of Passengers” intended to choose the number of passengers that will be included in the
booking. This 1s a mandatory task in the task model but has not been specified as a step n the
User Story. It 1s up to requirements engineers and designers to analyze the models and identify 1f
such a task has been correctly modeled as a mandatory task (so the task model would be correct,
and the error would be in the User Stories), or if it 1s not the case and such a task should be
marked as optional in the task model (so the error would be in the task model and not in the
User Stories).

Steps from the position 10 until 19 have not found a correspondent task mn any target file. At
the position 10, it was expected the task “Display 2. Sélectionner un voyage” and the task model
brings the task “Present List of Available Flights”. Actually, the task model describes the system
task mtent which 1s to present the resulting list of available flights after the search. However, the
step in the User Story has opted to specify a given message that would be seen after submitting
the search. We can infer that the overall goal of both is the same, but they were specified
differently, so there 1s an inconsistency anyway. At the position 11, it was expected the task
“Display Availability Page” and the task model brings the task “Request for Choosing a Flight”.
The system action of requesting the user to choose a flight is performed in the availability page,
so both tasks could eventually aim at the same purpose, but they are not equivalent once they use
different specification strategies. The same occurs with the previous tasks discussed right before.

At the positions 12 and 13, the searched tasks “Click on No Bag” and “Click on No Bag”
would find a correspondence with the task “Select the Desired Flight”, but as they specify different
behaviors, they cannot be recognized as equivalent. At the position 14, it was expected the task
“Click on Book” and the task model brings the task “Submit the Choice”. Due to the use of
different semantic behaviors and the lack of context when analyzing only the tasks idividually, 1t
1s hard to conclude if both tasks intend actually to model the same behavior.

Steps at the positions 15, 16, 17 and 19 do not have tasks modeling the same behaviors in the
task model. The searched task “Click on Finalize the trip” at the position 18, just like the ones at
the positions from 12 until 14, would find a correspondence with the task “Conclude the
Booking” extracted from the task model, however they actually specify different behaviors, so
they cannot be recognized as equivalent. Notice finally that the tasks “Evaluate the Availability of
Flights”, “Choose the Desired Flight” and “Check the Selected Flights”, both of them included
in the scenarios extracted from the task models, are cognitive tasks, so they would not be
identifiable by the steps anyway.

Table 26 summarizes the main reasons of failure discussed above for each step of the User
Story. Tables (Table 27, Table 28, Table 29 and Table 30) and charts (Figure 105, Figure 106,

185

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

Figure 107 and Figure 108) which show the testing results for other scenarios are also presented
hereafter. The full log of execution for all scenarios can be found in the appendix B of this thesis.

Step

Main reason of failure

1 - Given I go to ‘Flight Search’

Task with different name

2 - When I select ‘Round Trip’

Task not extracted to the scenario

3 - And I inform "Toulouse"

Triple and not double sequence
of tasks in the task model

4 - ... and choose "Toulouse, Blagnac (TLS)" in the field "Departure”

Triple and not double sequence
of tasks 1n the task model

5 - When I inform ‘Paris’ ...

Triple and not double sequence
of tasks 1n the task model

6 - ... and choose ‘Paris, Charles-de-Gaulle (CDG)’ in the field ‘Destination’

Triple and not double sequence
of tasks in the task model

7 - And I set ‘Sam, Déc 1, 2018’ in the field ‘Departure Date’

‘Wrong position

8 - When I set ‘Lun, Déc 10, 2018’ in the field ‘Arrival Date’

‘Wrong position

9 - And I submit ‘Search’

Inconsistency between modeling
and specification

10 - Then will be displayed ‘2. Sélectionner un voyage’

Different specification strategy

11 - Given ‘Availability Page’ is displayed

Different specification strategy

12 - When I click on ‘No Bag’ referring to ‘Air France 7519’

Unpaired behaviors

13 - And I click on ‘No Bag’ referring to ‘Air France 7522’

Unpaired behaviors

14 - When I click on ‘Book’

Unpaired behaviors

15 - Then will be displayed ‘J'accepte les Conditions d'achat concernant le(s)
tarif(s) aérien(s).’

Equivalent behavior missing

16 - Given ‘Confirmation Page’ is displayed

Equivalent behavior missing

17 - When I choose ‘J'accepte les Conditions d'achat concernant le(s) tarif(s)
aérien(s).

Equivalent behavior missing

18 - And I click on ‘Finalize the trip’

Unpaired behaviors

19 - Then will be displayed ‘Votre voyage a été confirmé¢!’

Equivalent behavior missing

Table 26. Type of inconsistencies identified in scenarios extracted from task models.

8.4.2.2. Second Scenario

The second scenario “Confirm a Flight Selection (Full Version)” (Table 27, Figure 105)
describes the same roundtrip booking but using all the optional fields. Notice that this scenario
brings some fixtures for the mconsistency problems identified with the testing of the previous
scenario. For example, the first step has been modified to “Given I go to ‘Book Flights™ mnstead
of “Given I go to ‘Flight Search’”, and the step describing the roundtrip selection has been moved
forward. Other remarks can be made, notice that as this scenario describes a roundtrip by using

the full range of search options, optional steps are never found in the “no optional” target files.

Also notice that despite being found a correspondent task in all the target files, we can see
that the step “And I choose the option of value ‘2’ in the field ‘Number of Passengers’ sets the
value “2” for the field “Number of Passengers” while in the target file “Return Trip With Data”
i its both versions (with and without optional tasks), it has been informed the value “1” during
the execution. Considering that values specified for test cases are generally representative of a

186

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

data domain that may point out some failure i the system, it 1s important to look carefully at such
kind of inconsistency in the assessed artifacts.

N (Copy) N
optional (ont'fna‘l’ successfut | _ (PY) No No
i
pti P successful | 245! | g ccessful | No Optional | Successful Optional
No Optional | eiec® | e i | Return . Multidesti | Optional | Return |Successful| One-Way | One-Way | Successful
Scenario: Confirm a Flight Selection (Full Version) Return Trip |© t' esti|Mu : St Trip - "Ta_“’" nation | One-Way | Trip With | Return | Trip- Trip | One-Way
nation | nation rip -
With Data N t Regular P Trip - Trip Data Trip- | Regular | Declined | Trip-
Trip - Trip - Regular .
Case Regular | Declined Regular Case Regular
Regular | Regular Case
Case Case Case
Case Case
Given | go to "Book Flights" 1 1 1 1 1 1 1 1 1 1
When | inform "Toulouse" 0 0 0 0 0 0 0 0 0 0
and choose "Toulouse, Blagnac (TLS)" in the field "Departure" 4 0 0 4 0 J 0 0 0 0
|And | inform "Paris" 0 0 0 0 0 0 0 0 0 0
and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Destination" 0 0 0 0 0 0 0 0 0 0
When | set "Sam, Déc 1, 2018" in the field "Departure Date" 8 8 15 8 16 8 8 8 8 8 8 8
And | set "08:00" in the field "Departure Time Frame" 0 J 9 17 9 0 9 0 9 9 0
When | choose "Round Trip" 0 0 0 0 0 0 0 0 0 0
And I set "Lun, Déc 10, 2018" in the field "Arrival Date" 9 0 10 J 0 10 9 0 J 0
When I set "10:00" in the field "Arrival Time Frame" 0 0 1 [J 0 1 0 0 J 0
And I choose the option of value "2" in the field "Number of Passengers" 10 16 12 18 10 12 10 11 1 10
When I set "6" in the field "Timeframe" 4 0 0 0 0 4 0 0 J 0
And I select "Direct Flights Only" 0 0 14 20 0 14 0 13 13 0
\When | choose the option of value "Economique” in the field "Flight Class" 0 0 [0 [0 0 0 0 0
|And I set "Air France" in the field "Companies" 0 0 0 0 0 0 0 0 0 0
When | submit "Search” 11 17 17 23 11 17 11 16 16 1
Then will be displayed "2. Sélectionner un voyage" 4 0 0 0 0 0 0 0 J 0
Given "Availability Page" is displayed 0 0 0 0 0 0 0 0 0 0
When I click on "No Bag" referring to "Air France 7519" 4 0 0 0 0 0 0 0 J 0
And I click on "No Bag" referring to "Air France 7522" 0 0 0 0 0 0 0 0 0 0
When | click on "Book" 0 0 0 0 0 0 0 0 0 0
Then will be displayed "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)." 0 0 0 0 0 0 0 0 0 0
Given “Confirmation Page" is displayed 0 J 0 J 0 0 0 0 0 0
When | choose "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)." 0 0 0 0 0 0 0 0 0 0
And I click on "Finalize the trip" 0 0 0 0 0 0 0 0 0 0
Then will be displayed "Votre voyage a été confirmé!” 0 0 0 0) o 0) o 0

Table 27. Scenario “Confirm a Flight Selection (Full Version)”.

sEm

o0 o x o o 2o e = o0 wedoe -3

Figure 105. Results of matching: scenario “Confirm a Flight Selection (Full Version)”.
8.4.2.3. Other Scenarios

Below are presented the results for other assessed scenarios, including scenarios to confirm
and decline a one-way trip, and confirm a multidestination trip. As discussed in chapter 5, as task
models are not designed to model user’s errors, scenarios from the User Stories which test error
situations were not assessed with the extracted task model scenarios. As user errors are not part
of a user goal, they are usually omitted from tasks descriptions, making this kind of test fail. Means
of representing these potential errors on task models 1s being recently studied (Fahssi, Martinie
and Palanque, 2015). Once it 1s implemented in the model, tests could run using the same
approach to identify this kind of error.

187

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

N Copy) N
optional (o ':'y) ' successful | _ (€°PY) No No
ptiona! ptiona’ Successful u“_ess u_ Successful No Optional |Successful Optional
No Optional o | Return N Multidesti | Optional | Return |Successful | One-Way | One-Way |Successful
: : : : . - |Multidesti | Multidesti N nation Pt - N
Scenario: Confirm a Flight Selection for a One-Way Trip Return Trip N N Trip - N One-Way | Trip With | Return | Trip- Trip | One-Way
) nation nation Trip - N N N N
WithData | T i Regular | Trip - Trip Data Trip- | Regular | Declined | Trip-
e - e - Case CBUIar | pegular | Declined Regular | Case Regular
Regular | Regular Case
Case Case Case
Case Case
Given | go to "Book Flights" 1 1 1 1 1 1 1 1 1 1
When I inform "Toulouse” 0 0 0 0 0 0 0 0 0 0
and choose "Toulouse, Blagnac (TLS)" in the field "Departure" 0 0 0 0 0 0 0 0 0 0
And | inform "Paris" 0 0 0 0 0 0 0 0 0 0
and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Destination” 0 0 o 0 J J 0 0 0 0
When I set "Sam, Déc 1, 2018" in the field "Departure Date" 8 8 15 8 16 8 8 8 8 8 8 8
And | choose "One-way Trip" 0 0 o 0 9 0 0 10 10 9
When I submit "Search” 1 17 17 23 1 17 1 16 16 1
Then will be displayed "2. Sélectionner un voyage" 0 0 0 0 J J 0 0 0 0
Given "Availability Page" is displayed 0 0 0 0 0 0 0 0 0 0
When I click on "No Bag" referring to "Air France 7519" 0 0 o 0 J J 0 0 0 0
And | click on "Book" 0 0 0 0 0 0 0 0 0 0
Then will be displayed "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)." 0 0 o o J J 0 0 0 0
Given "Confirmation Page" is displayed 0 0 0 0 0 0 0 0 0 0
When | choose "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)." 0 0 o 0 J J 0 0 0 0
And | click on "Finalize the trip" 0 0 0 0 0 0 0 0 0 0
'Then will be displayed "Votre voyage a été confirmé!" 0 0 0 0 0 0 0 0 0 0
PN ariey ¢ 3 -] \ “H y - B >’
Table 28. Scenario “Confirm a Flight Selection for a One-Way Trip”.
L]
]
]
L] x
[]
[]
= x
L]
a
x = - o - - o o v x o
]
L]
5 < . " matehi . ceenaria “C - . 1 N “H y - av N
Figure 106. Results of matching: scenario “Confirm a Flight Selection for a One-Way Trip”.
N (Copy) N
oesisnal (ooty) ' successful | _ (©PY) No No
e GHELEL Successful ““?5 u‘ Successful No Optional | Successful Optional
No Optional o 7| Return) Multidesti | Optional | Return |Successful | One-Way | One-Way |Successful
. : : i i T - | Multidesti | Multidesti N nation N L) N
Scenario: Confirm a Flight Selection for a Multidestination Trip Return Trip N N Trip - 3 nation | One-Way | Trip With | Return | Trip- Trip | One-Way
" nation nation Trip - : N 1 " N
With Data N . Regular Trip - Trip Data Trip- | Regular | Declined | Trip-
Trip - Trip - Regular "
Case Regular | Declined Regular | Case Regular
Regular | Regular Case Case Case Case
Case Case
Given | go to "Book Flights" 1 1 1 1 1 1 1 1 1 1
When | choose idestination Trip" 0 0 0 0 0 0 0 0 0 0
And 1inform "Toulouse" 0 J 0 0 J J 0 0 J J
and choose "Toulouse, Blagnac (TLS)" i the field "Departure" 0 0 0 0 0 0 0 0 0 0
When I inform "Paris" o 0 0 0 J J 0 0 0 0
and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Destination"” 0 0 0 0 0 0 0 0 0 0
And I set "Sam, Déc 1, 2018" in the field "Departure Date" 8 8 15 8 16 8 8 8 8 8 8 8
When I inform "Paris" 0 0 0 0 0 0 0 0 0 0
and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Departure" 0 0 0 0 0 0 0 0 0 0
|And 1 inform "Nice" 0 0 0 0 0 0 0 0 0 0
and choose "Nice, Cote D'Azur (NCE)" in the field "Destination” 0 0 0 0 0 0 0 0 0 0
When I set "Sam, Déc 10, 2018" in the field "Departure Date" 8 8 15 8 16 8 8 8 8 8 8 8
[And | submit "Search" 11 17 17 23 11 17 1 16 16 11
Then will be displayed "2. Sélectionner un voyage” 0 0 0 0 0 0 0 0 0 J
Given "Availability Page” is displayed 0 0 0 0 0 0 0 0 0 0
When I click on "No Bag" referring to "Air France 7519" 0 3 0 0 J 0 0 0 0 J
And | click on "No Bag" referring to "Air France 7700" 0 0 0 0 0 0 0 0 0 0
When | click on "Book" 0 J 0 0 J J 0 0 0 3
Then will be displayed "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)." 0 0 0 0 0 0 0 0 0 0
Given "Confirm: n Page" is displayed 0 [0 [0 0 0 [[0
When | choose "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)." 0 0 0 0 0 0 0 0 0 0
/And | click on "Finalize the trip" 0 0 0 0 0 0 0 [0 0
Then will be displayed "Votre voyage a été confirmé!" 0 0 0 0 0 0 0 0 0 0

Table 29. Scenario “Confirm a Flight Selection for a Multidestination Trip”.

188

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

Figure 107. Results of matching: scenario “Confirm a Flight Selection for a Multidestination Trip”.

Ni C N
optional (o°f-y) ' successful | _(€°PY) No No
ional ional uccessfu
P P Successful N . | Successful No Optional [Successful Optional
No Optional essit eSS Return ¢ Multidesti | Optional | Return |Successful | One-Way | One-Way | Successful
. : : : - | Multidesti | Multidesti N nation N o i N
Scenario: Decline a Flight Selection Return Trip " i Trip - i nation | One-Way | Trip With | Return Trip - Trip | One-Way
With Data | "2tOn | nation | gocular e Trip - Trip Data Trip- | Regular | Declined | Trip-
Trip - Trip - Regular .
Case Regular | Declined Regular Case Regular
Regular | Regular Case Case Case Case
Case Case
Given | go to "Book Flights" 1 1 1 1 1 1 1 1 1 1
(When | inform "Toulouse" 0 0 0 0 0 0 0 0 0 0
and choose "Toulouse, Blagnac (TLS)" in the field "Departure" 0 0 0 0 0 0 0 0 0 0
And | inform "Paris" 0 0 0 0 0 0 0 0 0 0
and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Destination" 0 0 0 0 0 0 0 0 0 0
(When | set "Sam, Déc 1, 2018" in the field "Departure Date" 8 8 15 8 16 8 8 8 8 8 8 8
And | choose "One-way Trip" 0 0 0 0 9 0 0 10 10 9
When | submit "Search" 11 17 17 23 1 17 11 16 16 1
Then will be displayed "2. Sélectionner un voyage" 0 0 0 0 0 0 0 0 0 0
Given "Availability Page" is displayed 0 0 0 0 0 0 0 0 0 0
(When | click on "No Bag" referring to "Air France 7519" 0 0 0 0 0 0 0 0 0 0
And I click on "Book" 0 0 0 0 0 0 0 0 0 0
Then will be displayed "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)." 0 0 0 0 0 0 0 0 0 0
Given "Confirmation Page" is displayed 0 0 0 0 0 0 0 0 0 0
When | choose "J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s)." 0 0 0 0 0 0 0 0 0 0
[And | click on "Decline the trip" 0 0 0 0 0 0 0 0 0 0
Then will be displayed "Votre voyage a été annulé!" 0 0 0 0 0 0 0 0 0 0

Table 30. Scenario “Decline a Flight Selection”.

Figure 108. Results of matching: scenario “Decline a Flight Selection”.
8.4.3 Types of Inconsistencies Identified

By summarizing the results presented above, below we formalize the types of inconsistencies
found by our testing approach when assessing the task models:

189

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

e Task with different names, refers to tasks that are present both in the task model and in
the User Story scenario but written with a different name.

e Task not extracted to the scenario, refers to tasks that are effectively modeled in the task
model but, due to the type of operators used or the presence (or not) of other refined
tasks after them in the model, causes that, during the extraction process, such tasks do
not be taken to the extracted scenarios.

¢ Different number of sequences of tasks in the task model, occurs when there are more
tasks mn the task model scenario than steps in the User Story scenario to accomplish the
same behavior.

e Wrong position, which 1s related to tasks that are found mn different positions than their
equivalent steps in User Stories.

e Conlflict between specification and modeling, refers to tasks modeled in the task model
(and consequently exported to its scenarios) that are not present the requirements
specification in the User Stories.

o Different specification strategies, refers to the specification of behaviors that could
eventually aim at the same purpose, but were specified using different strategies, 1.e.
requiring to perform (or verify) different actions.

e Unpaired behaviors, refers to tasks that would find a correspondence with the steps in the
User Stories, but as they actually specify different behaviors, they cannot be recognized as
such.

e Equivalent behaviors missing, refers to behaviors that are really missing in the extracted
task model scenario, like steps that are present mn the User Story, but cannot find
correspondent tasks in the task model.

8.5. Modeling and Assessing UI Prototypes

UI prototypes for this case study have been developed using Balsamiq Mockups. The
sequence of figures m Table 31 shows the different states and designs of the developed
prototypes. Figure 109 illustrates our first approach for a Ul prototype to search flights. The
figure designs a Ul for searching flights based on a round trip (and Figure 118 based on a one-
way/multidestination trip). On the right side (Figure 110), we present a changed Ul redesigned to
fix the problems found during the batteries of tests. Figure 111 (and its redesign in Figure 112)
llustrates the next Ul in sequence, showing the list of flights matching the selection criteria. When
the user selects one of the available flights, then the system turns out to the state shown in Figure
119. The user, at this state, can confirm his/her selection or change the fare profile of his/her
fhight.

Figure 113 (redesigned in Figure 114) finally shows screens of confirmation of a flight
selection. On the prototype presented, the user can accept the general terms and conditions and
confirm his/her booking or withdraw his/her trip. In such a case, the system asks the user to
confirm his/her choice (Figure 116), and if confirmed, cancel the trip (Figure 117). If the user
does not confirm the withdrawing or opt to confirm the trip at the first stage, then the system
shows a message confirming the book has been taken mto account (Figure 115).

Unlike the assessing of task models where we parse all the steps at once, to assess the Ul
prototypes, we parse each step at a ime. It means that if an error 1s found n a given step, the test
stops until it has been fixed. To discuss the results that we got by testing different versions of
Balsamiq prototypes, we present hereafter results of several batteries of testing in each version of
the prototypes developed to perform a successful roundtrip booking. We present sequentially
each step of the target scenario, the correspondent extracts of interaction elements in the

190

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

Balsamiq XML file, errors that have been found n a given battery, the solution proposed to fix
them, and finally the subsequent battery of tests following the fixes. Once the goal is to assess the
most possible number of interaction elements 1n the prototype, we have chosen to run our tests
presented below on the full versions of the scenarios, 1.e. in those ones iteracting with all the
optional fields.

We notice that the first battery of tests found an error already in the first step (“Given I go to
‘Book Flights’”). It was expected a correspondent element “BrowserWindow” associated to the
name “Book Flights” m the prototype, but the element found was a “SubTitle”. The
“BrowserWindow” was named “Travel Planet”, the name of the system under testing. As the
behavior “goTo” 1s supposed to be performed only in a window (and its variants), such a step
could not be performed i a field describing a subtitle, which 1s a semantically inconsistent filed
for that behavior. Actually, at this point, the designer realized that “Book Flights” was not a good
name for a window, once it refers to the whole process of booking a trip, and not only to the
window for searching flights specifically. As a solution to fix it, the window was named “Flight
Search” and both the scenario and the prototype have been updated.

In the second battery of tests, the steps 1, 2 and 3 passed, and an error was found in the step
4 (“When I set ‘Sam, Déc 1, 2018’ in the field ‘Departure Date’”). This error refers to the label
“Departure Date” that has been found i a different group than the element “DataChooser”
which was used to model it. As detailed in chapter 6, Balsamiq models elements either as
imdependent instances (i.e. with the name and the mteraction element defined in the same tag),
or as part of a group (i.e. defining the name in the tag “label” and the interaction element itself in
another tag). In the second case, the group must be modeled as a single unit, with a unique
identifier. The label “Departure Date” was found in a given group and its interaction element
“DataChooser” in another one, so they could not be recognized as a single unit. To fix the error,
they were regrouped.

In the third battery of tests, the steps 4, 5 and 6 passed, and the same error was found in the
step 7 (And I set ‘Lun, Déc 10, 2018’ in the field ‘Arrival Date’”). The label “Arrival Date” and
its correspondent element “DataChooser” were found in different groups. The same solution to
fix 1t was applied. In the fourth battery of tests, the steps 7 and 8 passed, and an error was found
in the step 9 (And I choose the option of value ‘2" in the field ‘Number of Passengers’). The
field “Number of Passengers” was not found i the prototype. It was added to fix the error.

191

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

Figure 109. Ul prototype for searching flights (first version).

Travel Planet

QO X (

D)

Book Flights

@ Round trip O One-way / Multidestination

Departure

Destination

@ D

@n

D)

Departure Date

168

| Departure Time Fraﬂ v]

Arrival Date

]

Arrival Time Frame =

Time Frame [+]

[J Only direct flights

Flight Search

QD XQC

B D)

Book Flights

®Round trip O One-way / Multidestination

Departure Destination

Grom D @™ D)
Departure Date Arrival Date

I Pl I @ Departure Time Fromelv] l @ Arrival Time Frame lv

Number of Passengers [1]w]

Timeframe | w]

O Direct Flights Only

— Advanced Search

Class =

Companies

@EeOoaE>HaEe>

(4

d Search

[Fer Gese o)

Companies

(4

Figure 110. UI prototype for searching flights (revised version after testing).

Scenario: Successful Roundtrip Tickets Search With Full Options

Battery Step Balsamiq extract (XML source file) Kirror

<control controllD="2" controlTypelD=""com.balsamiqg.mockups::SubTitle"
x=""588" y=""244" w="-1" h="-1" measuredW="133" measuredH="27" zOrder="2"

1 Given I go to “Book Flights” (FAILED) 'Ogtsg;rﬁ;‘%gpe‘[i InGroup=r-17> Expected “BrowserWindow”, but

(java.lang.AssertionError: expected:<1> but was:<0>) <text>Book%20F lights</text> the element was “SubTite”.
</controlProperties>
</control>
<control controlID="0"
controlTypelD="com.balsamiq.mockups: :BrowserWindow" x="567" y="146"
w=""651" h=""566" measuredW=""450" measuredH='"400" zOrder="0" locked="false"
N : isInGroup=""-1">
2 Given I go to “Flight Search” " -

<controlProperties>
<text>Flight%20Search</text>
</controlProperties>
</control>

192

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

‘When I inform “Toulouse” and choose “Toulouse,
Blagnac (TLS)” in the field “Departure”

<control controlID="0" controlTypelD=""com.balsamiq.mockups: :SearchBox"
x="0" t'21" w="277" h="-1" measuredW="120" measuredH="'25" zOrder="0"
locked=""false" isInGroup=""17"">
<controlProperties>
<text>From</text>
</controlProperties>
</control>

<control controllID="1" controlTypelD=""com.balsamiqg.mockups::Label™ x="0"

y="0" "'88" h=""-1" measuredW=""60" measuredH=""21" zOrder=""1"
locked=""false" isInGroup=""17"">
<controlProperties>
<text>Departure</text>
</controlProperties>
</control>

And I inform “Paris” and choose “Paris, Charles-de-
Gaulle (CDG)” in the field “Destination”

<control controlID="0" controlTypelD=""com.balsamiq.mockups: :SearchBox"
x="0" y="21" w="277" h="-1" measuredW=""120" measuredH='25" zOrder="0"
locked=""false" isInGroup=""18">
<controlProperties>
<text>To</text>
</controlProperties>
</control>

<control controllID="1" controlTypelD=""com.balsamiqg.mockups::Label™ x="0"

y="0" w="98" h="-1" measuredW="67" measuredH="21" zOrder="1"
locked=""false" isInGroup=""18">
<controlProperties>
<text>Destination</text>
</controlProperties>
</control>

‘When I set “Sam, Déc 1, 2018” in the field
“Departure Date” (FAILED)
(ava.lang.AssertionError: expected:<I> but was:<0>)

<control controlID="0" controlTypelD=""com.balsamiqg.mockups::Label™ x="0"

y="0" w="-1" h="-1" measuredW="92" measuredH=""21" zOrder="0"
locked=""false" isInGroup=""0">
<controlProperties>
<text>Departure%20Date</text>
</controlProperties>
</control>

<control controllID="1" controlTypelD=""com.balsamiq.mockups: :DateChooser"

x="0 ="21" w="-1" h="-1" measuredW="90" measuredH=''25" zOrder="1"
locked=""false" isInGroup="22">
<controlProperties>
<text>%20%20/%20%20/%20%20%20%20</text>
</controlProperties>
</control>

The label “Departure Date” and
the element “DataChooser” are in
different groups.

‘When I set “Sam, Déc 1, 2018” in the field
“Departure Date”

<control controlID="0" controlTypelD=""com.balsamiqg.mockups::Label™ x="0"

y="0" -1" h=""-1" measuredW=""92" measuredH=""21" zOrder="0"
locked=""false" isInGroup="38">
<controlProperties>
<text>Departure%20Date</text>
</controlProperties>
</control>

<control controllID="1" controlTypelD=""com.balsamiq.mockups: :DateChooser"

x="0" y="21" w="-1" h="-1" measuredW='""90" measuredH="25" zOrder="1"
locked=""false" isInGroup=""38">
<controlProperties>
<text>%20%20/%20%20/%20%20%20%20</text>
</controlProperties>
</control>

And I set “08:00” in the field “Departure Time
Frame”

<control control1D="24" controlTypelD=""com.balsamiq.mockups::ComboBox""
x="702" y="396" w="-1" h="-1" measuredW="163" measuredH="24" zOrder="6"
locked=""false" isInGroup=""-1">
<controlProperties>
<text>Departure%20Time%20Frame</text>

193

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

</controlProperties>
</control>

‘When I choose “Round Trip”

<control controlID="0" controlTypelD=""com.balsamiq.mockups: :RadioButton™

x="0" y="0" w="-1" h="-1" measuredW="77" measuredH="22" zOrder="0"
locked=""false" isInGroup="32">
<controlProperties>
<state>selected</state>
<text>Round%20trip</text>
</controlProperties>
</control>

And I set “Lun, Déc 10, 2018” in the field “Arrival
Date” (FAILED)
(ava.lang.AssertionError: expected:<1> but was:<0>)

<control controlID="0" controlTypelD=""com.balsamiqg.mockups::Label™ x="0"

y="0" w="-1" h="-1" measuredW="69" measuredH="21" zOrder="0"
locked=""false" isInGroup=""0">
<controlProperties>
<text>Arrival%20Date</text>
</controlProperties>
</control>

<control controllID="1" controlTypelD=""com.balsamiq.mockups: :DateChooser"

x="0" y="21" w="-1" h="-1" measuredW='""90" measuredH="25" zOrder="1"
locked=""false" isInGroup="23">
<controlProperties>
<text>%20%20/%20%20/%20%20%20%20</text>
</controlProperties>
</control>

The label “Arrival Date” and the
element “DataChooser” are in
different groups.

And I set “Lun, Déc 10, 2018” in the field “Arrival
Date”

<control controlID="0" controlTypelD=""com.balsamiq.mockups: :DateChooser"

x="0" y="21" w="-1" h="-1" measuredW="90" measuredH="25" zOrder="0"
locked=""false" isInGroup="41">
<controlProperties>
<text>%20%20/%20%20/%20%20%20%20</text>
</controlProperties>
</control>

<control controllID="1" controlTypelD=""com.balsamiqg.mockups::Label™ x="0"

y="0" w="-1" h="-1" measuredW="69" measuredH=""21" zOrder="1"
locked=""false" isInGroup="41">
<controlProperties>
<text>Arrival%20Date</text>
</controlProperties>

4 </control>
<control control1D="25" controlTypelD=""com.balsamiq.mockups::ComboBox""
x=""1048" y="396" w="-1" h="-1" measuredW="141" measuredH=""24" zOrder="7"
locked=""false" isInGroup=""-1">
» - T b - ”» A
When I set “10:00” in the field “Arrival Time Frame <controlProperties> -
<text>Arrival%20Time%20Frame</text>
</controlProperties>
</control>
And I choose the option of value “2” in the field - -
« ! » The field “Number of Passengers”
Number of Passengers” (FAILED) -)
. . does not exist.
(java.lang.AssertionError: expected:<1> but was:<0>)
<control controllD="0" controlTypelD=""com.balsamiq.mockups: :ComboBox"
" -1" h="-1" measuredW="36" measuredH=""24" zOrder="0"
And I choose the option of value “2” in the field locked="false” isInGroup="44">
5 <controlProperties> -

“Number of Passengers”

<text>1</text>
</controlProperties>
</control>

194

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

<control controllID="1" controlTypelD=""com.balsamiqg.mockups::Label™ x="0"
y=""2" w="-1" h="-1" measuredW=""136" measuredH="'21" zOrder="1"
locked=""false" isInGroup="44">
<controlProperties>
<text>Number%20o0f%20Passengers</text>
</controlProperties>
</control>

‘When I set “6” in the field “Timeframe” (FAILED)
(java.lang.AssertionError: expected:<1> but was:<0>)

<control control1D="28" controlTypelD=""com.balsamiq.mockups::ComboBox""
x=""588" y="478" w="-1" h=""-1" measuredW=""100" measuredH="24" zOrder="9"
locked=""false" isInGroup=""-1">
<controlProperties>
<text>Time%20Frame</text>
</controlProperties>
</control>

Expected field “Timeframe” but
was “Time Frame”.

‘When I set “6” in the field “Timeframe”

<control control1D="28" controlTypelD=""com.balsamiq.mockups::ComboBox""
x=""588" y="'478" w="-1" h="-1" measuredW="100" measuredH="24" zOrder="9"
locked=""false" isInGroup=""-1">
<controlProperties>
<text>Timeframe</text>
</controlProperties>

</control>
6
<control control1D="33" controlTypelD=""com.balsamiq.mockups: :CheckBox"
Xx=""912" y="479" w="-1" h="-1" measuredW=""125" measuredH="22" zOrder="11"
And I select “Direct Flights Only” (FAILED) 'Oitgg;rﬁ;fipeﬁ:gg"“p: -1 Expected field “Direct Flights
(java.lang.AssertionError: expected:<1> but was:<0>) <text>0nly%20di rect%20flights</text> Only” but was “Only direct flights”.
</controlProperties>
</control>
<control control1D="33" controlTypelD=""com.balsamiq.mockups: :CheckBox"
Xx=""912" y="479" w="-1" h="-1" measuredW=""125" measuredH="22" zOrder="11"
locked=""false" isInGroup=""-1">
And I select “Direct Flights Only” <controlProperties> -
<text>Direct%20Flights%200nly</text>
</controlProperties>
7 </control>
<control controlID="35" controlTypelD="com.balsamiq.mockups: :ComboBox"
When I choose the option of value “Economique” in | 55_806" y=1552" we-1" h="-17 measuredii="64" measuredH="24" zOrder="12 e o
N . ! p Expected field “Flights Class” but
the field “Flight Class” (FAILED) <602tr2lz:0per;;esz “Class”
. . <text>Class</text> was ass .
(ava.lang.AssertionError: expected:<I> but was:<0>) </controlProperties>
</control>
<control control1D="35" controlTypelD=""com.balsamiq.mockups::ComboBox""
X=""606" y="552" w="-1" h="-1" measuredW=""64" measuredH=""24" zOrder="12"
‘When I choose the option of value “Economique” in | 1ocked="false™ isInGroup=""-1">
iy g ” <controlProperties> -
the field “Flight Class <text>Flight%20Class</text>
</controlProperties>
</control>
8 <control controlID="0" controlTypelD=""com.balsamiq.mockups: :SearchBox"

And I set “Air France” in the field “Companies”
(FAILED)
(ava.lang.AssertionError: expected:<I> but was:<3>)

X="0" y="21" w="67" h="-1" measuredW="120" measuredH='"24" zOrder="0"
locked=""false" isInGroup="27">

<controlProperties>

<text/>

</controlProperties>
</control>
<control controllID="1" controlTypelD=""com.balsamiqg.mockups::Label™ x="0"
y="0" w="88" h 1" measuredW="67" measuredH=""21" zOrder="1"
locked=""false" isInGroup=""27">

Three elements “SearchBox” to
address the same field
“Companies”.

195

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

<controlProperties>
<text>Companies</text>
</controlProperties>
</control>
<control controlID="2" controlTypelD=""com.balsamiq.mockups: :SearchBox"
x=""81" y=""21" w="67" h="-1" measuredW=""120" measuredH='"24" zOrder="2"
locked=""false" isInGroup="27">
<controlProperties>
<text/>
</controlProperties>
</control>
<control control1D="3" controlTypelD=""com.balsamiq.mockups: :SearchBox"
X=""164" y="21" w="67" h="-1" measuredW=""120" measuredH="24" zOrder="3"
locked=""false" isInGroup="27">
<controlProperties>
<text/>
</controlProperties>
</control>

And I set “Air France” in the field “Company 1”

<control controlID="0" controlTypelD=""com.balsamiq.mockups: :SearchBox"
x="0" y="21" w="67" h="-1" measuredW="120" measuredH='"24" zOrder="0"
locked=""false" isInGroup="27">
<controlProperties>
<text>Company%201</text>
</controlProperties>
</control>

<control controlID="1" controlTypelD=""com.balsamiqg.mockups::Label™ x="0"

y="0" w="88" h="-1" measuredW="67" measuredH=""21" zOrder="1"
locked=""false" isInGroup=""27">
<controlProperties>
<text>Companies</text>
</controlProperties>
</control>
<control controllD=" controlTypelD="com.balsamiq.mockups: : SearchBox™
x=""81" y=""21" w="67" h="-1" measuredW='""120" measuredH='"24" zOrder="2"
locked=""false" isInGroup="27">
<controlProperties>
<text>Company%202</text>
</controlProperties>
</control>
<control controlID: * controlTypelD=""com.balsamiq.mockups: :SearchBox"
X=""164" y="21" w="67" h="-1" measuredW=""120" measuredH="24" zOrder="3"
locked=""false" isInGroup="27">
<controlProperties>
<text>Company%203</text>
</controlProperties>
</control>

When I submit “Search”

<control control1D="14" controlTypelD=""com.balsamiq.mockups: :Button"
x="1126" y="678" w=""-1" ""~1" measuredW=""63" measuredH="'27"" zOrder="5"
locked=""false" isInGroup=""-1">
<controlProperties>
<text>Search</text>
</controlProperties>
</control>

Then will be displayed “2. Sélectionner un voyage”
(FAILED)
(ava.lang.AssertionError: expected:<I> but was:<0>)

Dynamic behavior between
screens. Untraceable interaction.

196

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

Travel Planet
QD XQ — O
Book Flights
- Choose your flight below:
Flight Discount Classic Flex
AA2512 Paris CDG (08:12) - London LHR (09:00) 9000 € 15000 € | 28000 €
AF2591 Paris ORY (08:35) - London LGW (09:15) 1500 € 21000 € | 35000 €
AF2348 Paris CDG (09:20) - London LHR (10:10) 17000 € | 30000 €
AF2216 Paris CDG (10:40) - London LGW (11:22) 9500 € 16000 € | 29000€
AF1544 Paris ORY (12:00) - London LGW (12:50) 41000 €
AF3551 Paris CDG (13:30) - London LHR (14:20) 7000 € 12000 € 21000 €
— Your selection: Price:
—
(=]
4

Figure 111. UI prototype for choosing flights (first version).

Availability Page
QX —
Book Flights
Back

- Choose your flight below:
Flight No Bag Classic Flex
AA2512 Paris CDG (08:12) - London LHR (09:00) 9000 € 15000 € | 28000¢€
AF2591 Paris ORY (08:35) - London LGW (09:15) 11500 € 21000 € | 35000 €
AF2348 Paris CDG (09:20) - London LHR (10:10) 17000 € | 30000 €
AF2216 Paris CDG (10:40) - London LGW (11:22) 95.00 € 16000 € | 29000 €
AF1544 Paris ORY (12:00) - London LGW (12:50) 41000 €
AF3551 Paris CDG (13:30) - London LHR (14:20) 7000 € 12000 € | 21000 €

e Your select Price:

=3

4

Figure 112. UI prototype for choosing flights (revised version after testing).

Scenario: Select a Return Flight Searched With Full Options

Battery Step Balsamiq extract (XML source file) Kirror
Given “Availability Page” is displayed (FAILED) €A N) .
1 . . - Availability Page” does not exist.
(ava.lang.AssertionError: expected:<I> but was:<0>)
<control controlID="0"
controlTypelD="com.balsamiq.mockups: :BrowserWindow" x="567" y="146"
w=""651" h=""622" measuredW=""450" measuredH='"400" zOrder="0" locked="false"
G. . “A] b - P 9 s 1 . 1 , 1 isInGroup=""-1"">
ven ll]-ty 4ge 15 displayed <controlProperties> -
<text>Availability%20Page</text>
</controlProperties>
</control>
2
<control control1D="27" controlTypelD=""com.balsamiq.mockups: :DataGrid"
1 “ » - CAT A x=""607" y=""346" w="570" h="219" measuredW="518" measuredH="219"
‘When I click on “No Bag” referring to “Air France Zorder="3" locked="False" iSINGroup" 1> Expected field “No Bag” but was
7519” (FAILED) <controlProperties> o ST
. A <align>center</align> “I)lSC(HlHt”.
(java.lang.AssertionError: expected:<1> but was:<0>) <borderStyle>none</borderStyle>
<hLines>false</hLines>

197

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

<map>%3Carea%20shape%3D%22rect%22%20coords%3D%22366 . . .</map>
<rowHeight>33</rowHeight>
<text>Flight%2C%20Discount%2C%20Classich2C%20Flex%. . .</text>
<value>15</value>
<verticalScrol lbar>true</verticalScrol lbar>
<vLines>true</vLines>

</controlProperties>

</control>

When I click on “No Bag” referring to “Air France
7519”

<control control1D="27" controlTypelD=""com.balsamiq.mockups: :DataGrid"
X=""607" y="346" w="570" h="219" measuredW="516" measuredH='"219"
zOrder=""3" locked="false" isInGroup=""-1">
<controlProperties>
<align>center</align>
<borderStyle>none</borderStyle>
<hLines>false</hLines>
<map>%3Carea%20shape%3D%22rect%22%20coords%3D%22366 . . .</map>
<rowHeight>33</rowHeight>
<text>Flight%2C%20N0%20Bag%2C%20Classich2C%20Flex%. . .</text>
<value>15</value>
<verticalScrol lbar>true</verticalScrol lbar>
<vLines>true</vLines>
</controlProperties>
</control>

3 And I click on “No Bag” referring to “Air France
75227

<control control1D="27" controlTypelD=""com.balsamiq.mockups: :DataGrid"
x="607" y="346" "'570" ''219" measuredW=""516" measuredH=""219"
zOrder="3" locked="false" isInGroup=""-1">
<controlProperties>
<align>center</align>
<borderStyle>none</borderStyle>
<hLines>false</hLines>
<map>%3Carea%20shape%3D%22rect%22%20coords%3D%22366 . . .</map>
<rowHeight>33</rowHeight>
<text>Flight%2C%20N0%20Bag%2C%20Classich2C%20Flex%. . .</text>
<value>15</value>
<verticalScrol lbar>true</verticalScrol lbar>
<vLines>true</vLines>
</controlProperties>
</control>

‘When I click on “Book”

<control control1D="34" controlTypelD=""com.balsamiq.mockups: :Button"
Xx=""1097" y="665" w="-1" h="-1" measuredW="51" measuredH="'27" zOrder="6"
locked=""false" isInGroup=""-1">
<controlProperties>
<state>disabled</state>
<text>Book</text>
</controlProperties>
</control>

Then will be displayed “J'accepte les Conditions
d'achat concernant le(s) tarif(s) aérien(s).” (FAILED)
(java.lang.AssertionError: expected:<1> but was:<0>)

Dynamic behavior between
screens. Untraceable interaction.

198

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

Travel Planet

QD XN

Book Flights

Please confirm your flight

Passenger: Jony Michel

Flight Airfrance AF2591

Monday, September 21st, 2017

Paris ORY (08:35) - London LGW (09:15)

Price: 115.00 € Discount Fare Conditions

[J 1 accept the General Terms and Conditions.

Withdraw Trip Confirm Booking

[4

Figure 113. Ul prototype for confirming a booking (first version).

Confirmation Page

QD XN

Book Flights

Please confirm your flight

Passenger: Jony Michel

Flight Airfrance AF2591

Monday, September 21st, 2017

Paris ORY (08:35) - London LGW (09:15)

Price: 115.00 € Discount Fare Conditions

[1 accept the General Terms and Conditions.

Withdraw Trip

Finalize the trip

4

Figure 114. Ul prototype for confirming a booking (revised version after testing).

Scenario: Confirm a Flight Selection (Full Version)

Battery Step Balsamiq extract (XML source file) KEirror
1 Given “Confirmation Page” is displayed (FAILED) “Confirmation Page” does not
(java.lang.AssertionError: expected:<1> but was:<0>) exist.
<control controlID="0"
controlTypelD="com.balsamiq.mockups: :BrowserWindow" x="567" y="146"
w=""651" h=""425" measuredW=""450" measuredH='"400" zOrder="0" locked="false"
Given “Confirmation Page” is displayed fsinGroup=’-1">
wven O] fion age 1s displayec <controlProperties> -
<text>Confirmation%20Page</text>
</controlProperties>
</control>
<control control1D="30" controlTypelD=""com.balsamiq.mockups: :CheckBox"
x=""588" y="455" w=""-1" h="-1" measuredW=""276" measuredH="'22" zOrder="5"
2 When I choose “J'accepte les Conditions d'achat locked="false" isInGroup="-1">
X L. ” <controlProperties> -
concernant le(s) taﬂf(s) aenen(s). <text>1%20accept%20the%20General%20Terms%20and%20Conditions.</text>
</controlProperties>
</control>
<control control1D="29" controlTypelD=""com.balsamiq.mockups: :Button"
x=""1074" y="493" w=""-1" h="-1" measuredW="119" measuredH="27" zOrder="4"
And I click on “Finalize the trip” (FAILED) et iProner choan P~ 1™ Expected field “Finalize the trip”
(ava.lang.AssertionError: expected:<I> but was:<0>) <text>Confi rm#20Booking</text> but was “Confirm Booking”.
</controlProperties>
</control>

199

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

And I click on “Finalize the trip”

<control control1D="29" controlTypelD=""com.balsamiq.mockups: :Button"
-1" h="-1" measuredW='"119" measuredH='"27" zOrder="4"

x="1074" y="493" w=
locked=""false" isInGroup=""-1">
<controlProperties>
<text>Final ize%20the%20trip</text>
</controlProperties>
</control>

Then will be displayed “Votre voyage a été confirmé!”
(FAILED)
(ava.lang.AssertionError: expected:<I> but was:<0>)

Dynamic behavior between
screens. Untraceable interaction.

Trip Confirmed Confirmation Page Trip Canceled
Q0 X 1@ | (LD X 1@ | (LD X e W
Book Flights Book Flights Book Flights
Alert
Are you sure withdrawing this
Your trip has been confirmed! Your trip has been canceled!
(4 (4 7

200

Figure 115. UI prototype: Trip Confirmed.

Figure 116. UI prototype: Withdrawing confirmation.

Table 31. Test results in Balsamiq prototypes.

Figure 117. Ul prototype: Trip Canceled.

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

Availability Page
QDX — — O
Flight Search
QA XD C) @ D A
Book Flights

Book Flights Back
ORound trip @ One-way / Multidestination = Ghosee your flight balow

Flight No Bag Classic Flex
Depart: Destinati

Shoiixe Ssonchon AA2512 Paris CDG (08:12) - London LHR (09:00) | a000e | 1s000e |28000€e

(& From D) @™ D)

AF2591 Paris ORY (08:35) - London LGW (09:15) 1500 € 21000 € | 35000 €
Departure Date
@ u AF2348 Paris CDG (09:20) - London LHR (10:10) - 170.00 € 300.00 €

AF2216 Paris CDG (10:40) - London LGW (11:22) 9500 € 16000 € | 29000 €
Departure Destination
@From D) @w D) AF1544 Paris ORY (12:00) - London LGW (12:50) - 2 41000 €

AF3551 Paris CDG (13:30) - London LHR (14:20) 7000 € 12000 € 21000 €
Departure Date

l I/ l ﬁ Departure Time Frame lv

- Your selection: Price:

peparire pestination Flight Airfrance AF2541 15.00 €
@ From D) @™ D) Mondoy, September 21st, 2017 :
Paris ORY (08:35) - London LGW (09:15)
Departure Date Fare Profile: Discount Fare Conditions
l 77 ' ﬁ (Depor(ure Time Frame]v PR
Add aleg Remove this le — Fare Options:
u [Direct Flights Only Discount - No Bag 1500 €
Search Discount - 1Bag 145.00 €
[Fiont Ciass [v] Discount - 2 Bags 190.00 €
Classic - 2 B 21000 €
Companies asee e
(q Company 1) (q Company 2°) Q Company 3 Flex - 2 Bags 35000 €
=
4 L4
Figure 118. UI prototype: Multidestination search. Figure 119. UI prototype: Flight selected.

In the fifth battery of tests, the step 9 passed, and an error was found in the step 10 (When 1
set ‘6’ 1n the field “Timeframe’”). The field “Timeframe” was named as “Time Frame”. The field
was renamed in the prototype to fix the inconsistency. The same occurred in the sixth and seventh
battery of tests, respectively with the fields “Direct Flights Only” (step 11) and “Flight Class” (step
12). They were named as “Only direct flights” and “Class” respectively. They were also renamed,
so the test passed.

In the eighth battery of tests, an error was found in the step 13 (And I set ‘Air France’ in the
field ‘Companies’). Three elements “SearchBox” were found to address the same field named
only as “Companies”. The solution was to 1dentify uniquely each one of the fields “SearchBox”,
once each one of them 1s able to receive different values during the mteraction. If we redesign
the step to call specifically one of the fields (e.g. Company 1) the test passes, as we are interacting
with just a unique and determined field. If otherwise we call the group Companies as a whole, we
do not know with which field we should mteract. The three fields were named respectively as
“Company 17, “Company 2” and “Company 3”, leaving the name “Companies” to reference only
the group as a whole. Once again, both the scenario and the prototype have been updated.

In the ninth battery of tests, the steps 13 and 14 passed. For the step 15, at the end of the first
scenario, the message referenced by the last step 1s supposed to be displayed in another screen
as a result of the interaction. As stated in chapter 6, tests on prototypes at this level of refinement
do not consider the dynamic aspect of the interaction, so tests like this, involving navigation
between screens, will always fail.

201

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

Following the booking process, the second scenario “Select a Return Flight Searched With
Full Options” ran only 3 batteries of tests until get a consistent prototype. The first battery found
an error in the element “Availability Page” that had not been found in the prototype. In the
second battery, the field “No Bag” was named as “Discount” in the grid. Finally, the third battery
fell in the case mentioned previously, which consists in checking a message that 1s supposed to
be displayed in the next screen as a result of the interaction.

The third and last scenario to conclude the booking (“Confirm a Flight Selection Full
Version”), also ran only 3 batteries of tests until get a consistent prototype. The first one found
the same error related to the name of the page. In the second one, the button “Finalize the trip”
was named as “Confirm Booking”, and the third and last battery felt in the case of dynamic
behavior between screens. Notice that the message “I accept the General Terms and Conditions”
m English was considered equivalent to the message “J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s).” in French.

In our further test releases with other scenarios, we got errors when testing the steps “And 1
choose ‘One-way Trip’” and “When I choose ‘Multidestination Trip’” because these options do
not exist in the Ul prototypes for searching flights. In fact, the correspondent option was named
“One-way / Multidestination”. Here we get an important inconsistency identified with the task
model. In the test of our extracted scenarios from the task models presented in the previous
section, we can notice that three tasks were modeled to select the trip type: one-way, roundtrip,
or multidestination. However, m this version of the prototype, it has been modeled only two
options: one for choosing a roundtrip, and another for choosing a one-way / multidestination trip.
This option has been made for the prototype because, in terms of interaction, the action required
for providing data for multidestination flights 1s actually the same of the one for providing data
for a set of one-way flights. In terms of user requirements, this 1s a conflicting specification, so
such an inconsistency must be shown up. Thus, either the prototype should follow what 1s
specified in the task model, or the task model should be fixed to support the interaction in the
way proposed by the prototype.

In the scenario “Successful Multidestination Tickets Search”, our algorithm has identified, as
expected, three fields named “Departure” and “Destination” when running respectively the steps
“And I inform “Toulouse” and choose “T'oulouse, Blagnac (T'LS)’ in the field ‘Departure’ and
“When I inform ‘Paris’ and choose ‘Paris, Charles-de-Gaulle (CDG)’ in the field ‘Destination’
[(FAILED) (ava.lang.Assertionkrror: expected:<1> but was:<3>)|. As the designer just probably
replicated (copied and pasted) the three fields with the same name, with the purpose of illustrating
the change on the Ul when the “One-way / Multidestination” option 1s selected, the group to
which such fields belonged has been maintained, so this set up the mconsistency. Otherwise, 1f
the fields had the same name, but belonged to different groups, an inconsistency would not be
signalized as it would indicate that the fields were intentionally modeled as different objects.

Finally, for the following step “And I set ‘Sam, Déc 1, 2018’ in the field ‘Departure Date’ in
the same scenario, the field “Departure Date” was also replicated, but the designer did not
assoclate the pair of elements (labels and actual fields) to a group, 1.e. each element (label and
field) has been found belonging to distinct groups in each mstance of the field “Departure Date”.
The inconsistency was also detected and signalized.

8.5.1. Types of Inconsistencies Identified
By summarizing the results presented above, below we formalize the types of inconsistencies

found by our testing approach when assessing the Balsamiq prototypes:

202

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

e Conlflict between expected and actual elements, refers to elements that are specified
with different names in the step and in the prototype.

¢ FKlement and label in different groups, refers to the absence of group links between labels
and the actual mteractive element in the prototype.

¢ Inexistent elements, refers to the real absence in the prototypes of elements that are
specified n the step.

e FKlement semantically inconsistent, refers to the use of interaction elements in the
prototype that are semantically inconsistent with the behavior they are supposed to model.

e More than one element to represent the same field, is caused when there are at least two
elements (or more) in the prototype which are of the same type and are placed in the
same group (or have the same name) of the searched field.

¢ Untraceable interaction between screens, refers to the cases where the interaction changes
the state of the interface, which 1s not identified in prototypes with the level of requirement
we are considering.

8.6. Assessing Final Uls

Unlike Balsamiq prototypes, testing on final Uls runs directly on the user interface, mimicking
all the actions that would be performed by a real user. However, despite the fact that we should
manually locate the 1dentifiers of each interaction element on the mterface and assign them in the
“MyPage” class (as detailed in chapter 6), the process of testing runs exactly like on the Ul
prototypes, 1.e. the algorithm parses each step of the User Stories at a ime. It means that if an
error 1s found 1n a given step, the test stops until it has been fixed. The testing of the final Uls in
our case study was conducted directly on the Uls of the current system for booking business travel
mn our institute. The system is hosted in our intranet, so an additional story to access the system
from our intranet login page was necessary. This story 1s presented below:

User Story: Access to Travel Planet

Narrative:

As a UPS registered user

I want to be able to reach the system feature of searching Fflights
So that I get access to the Travel Planet system

Scenario: Proceed to Login

Given 1 go to "UPS Login Page"

When I set "username' in the field "Username"

And 1 set "password" in the field "Password"

When I click on "Login"

Then will be displayed "Intranet (Personnel administratif et technique-
Enseignants)"”

Scenario: Reach the Travel Planet Search Page

Given 1 go to "Travel Planet Search Page"
When I click on "Réservations Online"
And 1 click on "Réserver"

When 1 click on "Avion"

Then will be displayed "Avion"

The first battery of tests has identified an error with the step “Then will be displayed ‘2.
Sélectionner un voyage’” in the first scenario “Successful Roundtrip Tickets Search”. The current
message displayed by the system 1s actually “Choisissez vos vols aller et retour, puis cliquez sur
Réserver.”, so the step was updated. Following this, when running the second scenario “Successful
Roundtrip Tickets Search With Full Options”, the second battery of tests identified a problem

203

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

with the 1dentification/location of the field “Departure Time Frame”. The same occurred with
the field “Arrival Time Frame” (third battery). In the fourth battery, the test identified the absence
of the field “Number of Passengers” on the Ul In fact, unlike the task model and the Balsamiq
prototype, the final Ul did not implement this field, so it 1s an important inconsistency to be
verified. In fifth and sixth batteries, the fields “Timeframe” and “Flight Class” were not located
as well, due to the same reason of the fields “Departure Time Frame” and “Arrival Time Frame”.
We noticed that these four fields are Selects (Combo Boxes), so for some unknown reason, the
mmplementation of such fields on the final UI does not allow to identify them either using IDs or
XPaths. As during this study, we had no access to the source code of the application to implement
some correction and run the test again, we decided to cut the respective steps off the scenario.

In the seventh battery, the test identified an error with the length of the field “Company 1”.
The Text Field implemented on the Ul supports only two characters, so the value “Air France”
does not fit. In fact, the user must inform a two-character internal code for the company he/she
wants to select. In this case, the appropriate code for “Air France” 1s “AF”, so the value in the
step was updated to this value. In the eight battery of tests, all the steps for the second scenario
succeeded running, and the third scenario “Successful One-way Tickets Search” started to run.
An error was 1dentified just in the last step where the message “Choisissez vos vols aller et retour,
puis cliquez sur Réserver.” was expected, but the message shown on the UI was “Choisissez vos
vols, puis cliquez sur Réserver.”. The step was adjusted appropriately to make the test passes.

In the ninth battery running the scenario “Successful Multidestination Tickets Search”, the
step “When I inform ‘Paris’ and choose ‘Paris, Charles-de-Gaulle (CDG)’ in the field
‘Departure’ has failed once the field “Departure” had already been field before with “Toulouse,
Blagnac (T'LS)” as the first departure of a multidestination trip. The field had to be renamed to
correctly identify the second departure field. It was named as “Departure 2”. The same solution
was applied to the second mstances of “Destination” (that was renamed to “Destination 2”), and
“Departure Date” (that was renamed to “Departure Date 27).

In the tenth battery of tests, an error was 1dentified just in the last step where the message
“Choisissez vos vols, puis cliquez sur Réserver.” was expected, but the system actually showed a
different message for multidestination trips. It shows “Choisissez vos vols ou trains, puis cliquez
sur Réserver.”. The step was adjusted appropriately to make the test passes. Finally, the eleventh
battery got all the scenarios passed and then the User Story “Flight Ticket Search” could be
entirely validated.

In the twelfth battery of tests, an error was found in the step “And I click on ‘No Bag’ referring
to ‘Air France 7522’ for the scenario “Select a Return Flight Searched Without Full Options”.
The field “No Bag” has already been filled by the previous step “When I click on ‘No Bag’
referring to ‘Air France 7519”7, so the test fails. Besides that, the flight Air France 7522 was not
available for booking anymore, so we changed for the flight Air France 7518. At the end, the
solution was to give different names for each field referencing each mentioned flight. So, both
steps were rewritten to “When I click on ‘Air France 7519’ referring to ‘No Bag™ and “And 1
click on ‘Air France 7518’ referring to ‘No Bag’ in order to create unique identifiers for the
thghts.

The thirteenth battery of tests run successfully the scenarios “Select a Return Flight Searched
With Full Options” and “Select a One-way Flight”, but stopped with an error in the step “And 1
click on ‘Air France 7700 referring to ‘No Bag™” for the scenario “Select a Multidestination
Flight”. For multidestination trips, the final version of the Ul actually added an additional step
before reaching the second flight leg. The user must now select the first flight leg, put the flight in

204

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

a basket, and only then select the flight for the second flight leg. In terms of mteraction, such a
decision 1s mconsistent with the user requirements previously described in task models and
prototypes, so the test failed, and the inconsistency 1s shown up. Once more, in a real case of
software development, designers and requirements engineers must decide which interaction
solution would be picked up, update the models accordingly, and then run new batteries of
regression tests to ensure everything is consistent. For the fourteenth battery of tests, we updated
the respective scenario to add this additional step. Additionally, we also changed for the flight
“easyJet 3985” once the “Air France 7700” was not available anymore. That got all the scenarios
passed and then the User Story “Select a Suitable Flight” could be entirely validated.

In the fifteenth and last battery of tests, we got all the remaining scenarios for the User Story
“Confirm Flight Selection” passed. Nonetheless, we intentionally did not conclude the four first
scenarios once they would effectively register a fake business trip for the user, so they were set as
pending. Notice that the last scenario “Decline a Flight Selection” was updated both in Balsamiq
prototypes and in the final Uls. A last step for confirming the withdrawal through a dialog box
was added, and the agreement with the general terms and conditions was removed.

Table 32 below shows all the results of the 15 batteries of tests, highlighting step by step all
the errors found, and the respective interaction elements affected by them. Screenshots of the

final Uls under testing are also presented along with the scenarios (Figure 120, Figure 121, Figure
122, Figure 123, Figure 124, Figure 125 and Figure 126).

8.6.1. Types of Inconsistencies Identified

By summarizing the results presented above, below we formalize the types of inconsistencies
found by our testing approach when assessing the final Uls:

e Message notidentified, refers to messages that are changing constantly, or to the presence
of conflicting messages.

¢ Flement or value not found, refers to fields or values that are expected to be shown on
the user interface (and are able to be identified by the locators there) but, due the dynamic
data behavior in the system, are not shown up.

¢ Inexistent elements, refers to elements that are mentioned 1n the step as part of the
requirements specification, but simply have not been implemented on the final Ul

e Values that do not fit the field, refers to values mentioned in the step that do not fit the
field they were designed to fill in.

o Fields already filled in, refers to fields that were already filled in when a given step tries to
reach them.

e FKlement not identified, refers to elements that do not carry a unique and single identifier
(or carry a dynamic generated one) and/or cannot be reached by using their XPaths.

205

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

Recherche > Disponibiie > Recapula 5 F
Mini itinéraire [E] ”

balcic Le code de sécurité & indiquer en page de finalisation de vos réservations low cost est le suivant : 4454
G =
Voyages =) e N ==
pem— Moriie Ia |« Décowney FLATAM
Al s s recherche . AIRLINES
A e
e-Travel Mobile est a ns a
Accueil [EESSCE Mes voyages | Chargé de voyage | Profil 8 A resen bsaclivv _ i

Avion Train AvionTTrain Voiure Rocapinuatt du
voyage

= A sam Decr 200 g "
© Ane
> Avion Retour
en cours. Lun, Déc 10, 2018 =
| = [
Q 5 Q " un tr imer 1 tination =
Voyages = © Ajouter un trajet @ Supprimer la destinatior
— T ||| O] O s o I —— o
o s e
o e —
PO e horaie (reures) Wmaion drec seciemes O Teu ‘
désormals 2 @ Tostor lare . Al Exarcs 817 Direet
B - ke e Pr— o T S5
2 2 3 Afficher les.
P p) Afficher les critoras do dome
s o i At e
B T e chorcher] [Recherchor] ;
10:40 12:10 u France 1621 dedely Direct
- o h o Affichor los
Chercher o-Travel Mobile est detalls
Sl e
o o Toulouse Blagnac ries Do Caile: 60 70

Figure 121. Final Ul for searching multidestination -
Figure 120. Final UI for searching flights. hights. Figure 122. Final UI for choosing {lights.

Scenario: Successful Roundtrip Tickets Search

Battery
Step Error Interaction Element Affected

Proceed to Login - -

Reach the Travel Planet Search Page - -

Given I go to “Flight Search” - -

‘When I select “Round Trip” - -

1 And I inform “Toulouse” and choose “Toulouse, Blagnac (TLS)” in the field “Departure” - -

‘When I inform “Paris” and choose “Paris, Charles-de-Gaulle (CDG)” in the field “Destination” - -

And I set “Sam, Déc 1, 2018” in the field “Departure Date” - -

When I set “Lun, Déc 10, 2018” in the field “Arrival Date” - -

And I submit “Search” - -

206

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

Then will be displayed “2. Sélectionner un voyage” (FAILED)

Message not identified

<p class="availHint">Choisissez vos vols aller et
retour, puis cliquez sur Réserver.</p>

Then will be displayed “Choisissez vos vols aller et retour, puis cliquez sur Réserver.”

Scenario: Successful Roundtrip Tickets Searc

h With Full Options

Reach the Travel Planet Search Page

Given I go to “Flight Search”

When I inform “Toulouse” and choose “Toulouse, Blagnac (TLS)” in the field “Departure”

And I inform “Paris” and choose “Paris, Charles-de-Gaulle (CDG)” 1n the field “Destination”

‘When I set “Sam, Déc 1, 2018” in the field “Departure Date”

And I set “08:00” in the field “Departure Time Frame” (FAILED)

Flement not identified

@ElementMap(name = "‘Departure Time Frame™,
locatorType = ElementLocatorType.XPath, locator =
“//*[@id="tripDate_1"]/fieldset/div/span/div/sele
ct™)

private Select DepartureTime;

“ . ” C “ . . 2

When I choose “Round Trip”

And I set “Lun, Déc 10, 2018” in the field “Arrival Date”

‘When I set “10:00” in the field “Arrival Time Frame” (FAILED)

Flement not identified

@ElementMap(name = "Arrival Time Frame",
locatorType = ElementLocatorType.XPath, locator =
“//*[@id="tripDate_2"]/fieldset/div/span/div/sele
ct™)

private Select ReturnTime;

3 . ” - “ . : kil

And I choose the option of value “2” in the field “Number of Passengers” (FAILED)

Flement not found in
“Flight Search”

‘When I set “6” in the field “Timeframe” (FAILED)

Flement not identified

@ElementMap(name = "Timeframe", locatorType =
ElementLocatorType.XPath, locator =

" //*[@id="atwsel297]"")

private Select TimeFrame;

. wpr ot - «; C ”

And I select “Direct Flights Only”

‘When I choose the option of value “Economique” in the field “Flight Class” (FAILED)

Flement not identified

@ElementMap(name = "Flight Class™, locatorType =
ElementLocatorType.XPath, locator =
“//*[@id="acssel247]"")

private Select FlightClass;

207

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

And I set “Air France” in the field “Company 1” (FAILED)

Value does not fit the
field

@ElementMap(name = "Company 1", locatorType =
ElementLocatorType.XPath, locator =
“//*[@id="FP1"]™")

private TextField CompanyOne;

And I set “AF” in the field “Company 1”

When I submit “Search”

Then will be displayed “Choisissez vos vols aller et retour, puis cliquez sur Réserver.”

Scenario: Successful One-way Tickets Search

Reach the Travel Planet Search Page

Given I go to “Flight Search”

When I inform “Toulouse” and choose “Toulouse, Blagnac (TLS)” in the field “Departure”

And I inform “Paris” and choose “Paris, Charles-de-Gaulle (CDG)” 1n the field “Destination”

‘When I set “Sam, Déc 1, 2018” in the field “Departure Date”

And I choose “One-way / Multidestination”

When I submit “Search”

Then will be displayed “Choisissez vos vols aller et retour, puis cliquez sur Réserver.”
(FAILED)

Message not identified

<p class="availHint">Choisissez vos vols, puis
cliquez sur Réserver.</p>

Then will be displayed “Choisissez vos vols, puis cliquez sur Réserver.”

Scenario: Successful Multidestination Tickets Search

Reach the Travel Planet Search Page

Given I go to “Flight Search”

When I choose “One-way / Multidestination”

When I inform “Toulouse” and choose “Toulouse, Blagnac (TLS)” in the field “Departure”

And I inform “Paris” and choose “Paris, Charles-de-Gaulle (CDG)” in the field “Destination”

‘When I set “Sam, Déc 1, 2018” in the field “Departure Date”

‘When I inform "Paris" and choose “Paris, Charles-de-Gaulle (CDG)” in the field “Departure”
(FAILED)

“Departure” already

filled

@ElementMap(name = "Departure”, locatorType =
ElementLocatorType.XPath, locator =
{".//*[@id="B_LOCATION_1"]","/html/body/div[1]/di
v[1]/table/tbody/tr/td[2]/div[5]/div[2]/div[2]/fo

208

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

rm/div/div[2]/div/div[3]/div[1]/div/div[1]/div[1]
/div/div/div[2]/div'})
private AutoComplete From;

10

‘When I inform "Paris" and choose “Paris, Charles-de-Gaulle (CDG)” in the field “Departure 2”

And I inform “Nice” and choose “Nice, Cote D'Azur (NCE)” 1n the field “Destination 2”

‘When I set “Lun, Déc 10, 2018” in the field “Departure Date 2”

And I submit “Search”

Then will be displayed “Choisissez vos vols, puis cliquez sur Réserver.” (FAILED)

Message not identified

<p class="availHint"">Choisissez vos vols ou
trains, puis cliquez sur Réserver.</p>

11

Then will be displayed “Choisissez vos vols ou trains, puis cliquez sur Réserver.”

Scenano: Search for Flights More Than One Year in Advance

Reach the Travel Planet Search Page

Given I go to “Flight Search”

When I inform “Toulouse” and choose “Toulouse, Blagnac (TLS)” in the field “Departure”

And I inform “Paris” and choose “Paris, Charles-de-Gaulle (CDG)” 1n the field “Destination”

When I set “Dim, Déc 1, 2019” in the field “Departure Date”

When I choose “One-way / Multidestination”

And I submit “Search”

Then will be displayed “Erreur : Vous devez choisir une date de départ ultérieure comprise
entre 4 heures et 11 mois. Veuillez sélectionner une autre date. (10032)”

Scenario: Search for a Return Flight Before

a Departure Flight

Reach the Travel Planet Search Page

Given I go to “Flight Search”

When I inform “Toulouse” and choose “Toulouse, Blagnac (TLS)” in the field “Departure”

And I inform “Paris” and choose “Paris, Charles-de-Gaulle (CDG)” 1n the field “Destination”

‘When I set “Lun, Déc 10, 2018” in the field “Departure Date”

And I choose “Round Trip”

‘When I set “Sam, Déc 1, 2018” in the field “Arrival Date”

209

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

And I submit “Search”

départ.”

Then will be displayed “Erreur : La date de retour ne peut pas étre antérieure a la date de

@

? 06:00 07:30 S I Obet
©130.01 e

ArEance 752208 Direct

etmepnte ModBcaon non ausrisée

133236
==
154.66 kum

o

154.66 eun

Ll resenver

Figure 128. Final UI with the selected flights.

13001 EUR cor-1as

Toulousse (TLS) Par =
06:00 07:30 bl
1 Gécembre 2010 1 Gécemiee 2050
€ Amficher les dotaits
o >
14:55 16:15 &
© Affiches les dotals.
e R

Tarif aérien e phus bas propose dang la classe 77.00 EUR

Nombiee de billets @'mion: 2
wstimé pour Fémission du billet: 75 mal 2018 . 73150

Supprimer le voyage

WA
Oirect
i
Direct
0te les Conons (f nchat concemant in(s) tXs) nese
Finaliser le voyage

Figure 124. Final Ul for confirming the selected flights.

Scenano: Select a Return Flight Searched Without Full Options

Successtul Roundtrip Tickets Search

Given “Availability Page” is displayed

12 -
‘When I click on “No Bag” referring to “Air France 7519” - -
@ElementMap(name = "No Bag", locatorType =
3 « . @A “ El L T .XPath, 1 =
And I click on “No Bag” referring to “Air France 7522” (FAILED) No Bag” already filled --,?E‘Eg?d‘i?i}fg_ﬁgfﬂ-ﬁf) ocator
private Button NoBag;
18 | When I click on “Air France 7519” referring to “No Bag”

210

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

And I click on “Air France 7518” referring to “No Bag”

When I click on “Book”

Then will be displayed “J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s).”

Scenario: Select a Return Flight Searched With Full Options

Successful Roundtrip Tickets Search With Full Options

Given “Availability Page” is displayed

When I click on “Air France 7519” referring to “No Bag”

And I click on “Air France 7522” referring to “No Bag”

When I click on “Book”

Then will be displayed “J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s).”

Scenario: Select a One-way Flight

Successful One-way Tickets Search

Given “Availability Page” is displayed

When I click on “Air France 7519” referring to “No Bag”

And I click on “Book”

Then will be displayed “J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s).”

Scenario: Select a Multidestination Flight

Successful Multidestination Tickets Search

Given “Availability Page” is displayed

When I click on “Air France 7519” referring to “No Bag”

And I click on “Air France 7700” referring to “No Bag” (FAILED)

Element “Air France
7700” not found

@ElementMap(name = "Air France 7700",

= ElementLocatorType.XPath,
"//*[@id="wl_0_cO_r22"1")

locator =

private Button AirFrance7700;

locatorType

14

And I click on “Book”

When I click on “easyJet 3985” referring to “No Bag”

And I click on “Book”

211

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

Then will be displayed “J'accepte les Conditions d'achat concernant le(s) tarif(s) aérien(s).” - -

An embedded page at e-
travelmanagement22.amadeus.com says
Voulezvous vraiment annuler ce voyage ?

Cancel oK

Ouect

06:00 07:30

@ Atficher les détalls

Accueil BRESEWETE Mes voyages | Chargeé de voyage | Profil Aide formation
a =)
Avion Train Avion/Train Voiture Récapitulatif du
14:55 et voyage
= o < — s Recherche > Disponibilité > Récapitulatif > Finalisation > Confirmatior
© Afficher tos oetails Modéle de age X P e ! ormad

Vo be e

Enregistrer le modéle sous

e phus bas proposé dans la Classe 7

@ Votre voyage a été annuié

Demander |'assistance de votre chargé de voyages Demander une a un agent de voyages
130.01 EUR -
e e e-Travel Mobile est
accepte les Condnom dachat coocemant ie(s) twit(s) aénen(désormais

Cmissions l’oukl&(o}‘ E dispo"ible !

et o o S 2

et #<imee 4 0 1140

Figure 125. Final Ul: dialog box before canceling. Figure 126. Final Ul: trip canceled.

Scenario: Confirm a Flight Selection

Select a Return Flight Searched Without Full Options - -

Given "Confirmation Page" is displayed - -

5 ‘When I choose “I accept the General Terms and Conditions.” - -
1

And I click on “Finalize the trip” (NOT PERFORMED) - -

Then will be displayed “Votre voyage a été confirmé!” (NOT PERFORMED) - -

Scenario: Confirm a Flight Selection (Full Version)

Select a Return Flight Searched With Full Options - -

212

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

Given “Confirmation Page” is displayed - -

When I choose “I accept the General Terms and Conditions.” - -

And I click on “Finalize the trip” (NOT PERFORMED) - -

Then will be displayed “Votre voyage a été confirmé!” (NOT PERFORMED) - -

Scenario: Confirm a Flight Selection for a One-Way Trip

Select a One-way Flight . _

Given “Confirmation Page” is displayed - -

When I choose “I accept the General Terms and Conditions.” - -

And I click on “Finalize the trip” (NOT PERFORMED) - -

Then will be displayed “Votre voyage a été confirmé!” (NOT PERFORMED) - -

Scenario: Confirm a Flight Selection for a Multidestination Trip

Select a Multidestination Flight - -

Given “Confirmation Page” is displayed - -

When I choose “I accept the General Terms and Conditions.” - -

And I click on “Finalize the trip” (NOT PERFORMED) - -

Then will be displayed “Votre voyage a été confirmé!” (NOT PERFORMED) - -

Scenario: Decline a Flight Selection

Select a One-way Flight - -

Given “Confirmation Page” is displayed - -

‘When I click on “Decline the trip” - -

)

Then will be displayed “Voulez-vous vraiment annuler ce voyage ?” in the dialog box - -

When I confirm the dialog box - -

Then will be displayed “Votre voyage a été annulé.” - -

Table 82. Test results on the final UL

213

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

8.7. Results Mapping

In the last three sections, we have presented the results of tests conducted individually in each
one of the three target artifacts we selected: task models, Ul prototypes and the final user
mterfaces. By mapping such results and putting them together, we can build a complete
traceability overview of the steps in User Stories and 1dentify how inconsistent they were modeled
i the different artifacts.

Table 33 brings, for each considered artifact, the mapping of results of the first battery of tests
i each step of the full scenario for booking a roundtrip. As some steps were being updated after
having previously failed in a given artifact, the results shown in yellow in the table below indicate
that, for the artifact in question, the test run with an updated version of the step and stll failed.
Results shown in blue indicate that, for the artifact in question, the test run with an updated
version of the step and the test passed with such a version. Results shown in green indicate steps
that passed the test in that artifact, and results in red indicate steps that failed in that artifact.
Finally, results shown in orange indicate that such a step has been pending in that artifact, it 1s the
case of the steps that effectively conclude the booking on the final UL. We avoided such steps to
do not create fake reservations in the booking system of your institute. In the column User
Stories/Scenarios, we considered the original steps, as conceived before starting the first battery
of tests mn any artifact. Notice that once some step of scenario for some artifact fails, the scenario
1s considered as failed as well.

Analyzing the results of mapping presented above for the first scenario “Successful Roundtrip
Tickets Search With Full Options”, we notice that the first step (that has succeeded in the task
model) failled when tested with the Balsamiq prototypes. The reason 1s that the prototype had not
addressed the web pages correctly, 1.e. the “Book Flights” page could not be 1dentified there. In
a following battery of tests, this page has ended up being named “Flight Search” instead, which
made the test passes when running on the Final UI.

The two following steps have failed for task models but passed for Balsamiq prototypes and
Final UI. As analyzed in section 8.4, the reason of failure in task models 1s due to the additional
tasks “Provide List of Airports” for the group of tasks which provides information of departure
and destination 1n the task model, from the second step until the eighth step, the gap between the
expected position and the actual one was exactly two positions. However, both steps passed when
tested for the Balsamiq prototype and the Final Uls, once the Ul element was correctly
represented, 1.e. as a “SearchBox” in the prototype, and as an “Autocomplete” field in the Final
UL The step testing the field “Departure Date” nonetheless failed for the Balsamiq prototype
but passed for the Final Ul (the same has occurred with the field “Arrival Date”). The reason of
failure 1n the prototype 1s that the label of the field and the UI element itself were not represented
in the same group of elements. Contrasting with that, the step testing the field “Departure Time
Frame” passed for the Balsamiq prototype but failed for the Final UI (the same has occurred with
the field “Arrival Time Frame”). The reason 1s that was not possible to locate unique identifiers
for the element on the Final UL

At the sixth step (“When I choose ‘Round Trip’”), as the task for choosing the “Round Trip”
has not been exported from the task model to the scenario, the gap from the eighth position in
task model scenarios until the end of the scenario (excluding the tasks not found) dropped down
from two to one position. Such step succeeded when 1dentifying the element “Round Trip” in
the Balsamiq prototype and in the Final UL The element “Number of Passengers” at the ninth
step was not found both in the Balsamiq prototype and in the Final Ul, despite being specified

214

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

in the task model scenario (although not in the right position). The element “Timeframe” at the
tenth step was written as “Time Frame” in the Balsamiq prototype and was misspecified with an
unknown behavior “Adjust Timeframe” in the task model, so it could not be 1dentified in these
artifacts. The same has occurred with the element “Flight Class” at the twelfth step which was
written as just “Class” in the Balsamiq prototype and specified as “Define Fight Class” in the task
model, an unknown behavior. In the Final Ul, they have not been identified as well, but due to
the problem of unique 1dentifiers.

The element “Direct Flights Only” at the following step was written as “Only direct flights” in
the Balsamiq prototype, so was not identified, but was correctly written in the Final UI and was
rightly identified there. The correspondent task for this step was in the wrong position in the task
model scenario. The element “Companies” was misspecified with an unknown behavior “Define
Companies” mn the task model. In the Balsamiq prototype, it was addressing three different
“SearchBoxes”, so 1t could not be identified as a unique and single element. After both the
correspondent step and the prototype are redesigned to identify each field separately, the step
should pass the test in the Final UI but was failed as well because the value informed on 1t (“Air
France”) did not fit the correspondent Text Field which only accepted 3 characters. In this case,
the step was fixed to inform only the value “AF”, the correspondent code defined to be used n
the Final UI.

The button “Search” was correctly identified both in the Balsamiq prototype and the Final U,
but the referenced task in the scenario extracted from the task model was found in the wrong
position. Finally, for the first scenario, the message resultant from the user interaction when
searching flights was not 1dentified in the scenario tasks and was not reachable in the Balsamiq
prototype due to the untraceable mteraction between screens. In the Final Ul, the message to
check was modified, so the step was refactored to reference the new message. Thereby, after the
modification, the test passed for this artifact.

For the steps in the second and third scenarios, all of them failed for the task model and a
deep work for fixing the compatibility 1ssues would be required. Specification of tasks did not
follow the behaviors mapped in the ontology, so none of them could be identified during the test.
The prototyping of web pages that should be displayed when starting those scenarios failed once
they addressed wrong page names. They were correct in the final Uls nonetheless. The choice
of flights in the second and third steps of the second scenario failed in the Balsamiq prototype
(the name of the element was misidentified) and were refactored to requiring an action of clicking
on the number of the flights (instead of on the fare profile), so they passed the test in the Final
UL The behavior of clicking on the button “Book” was correctly addressed in both the Balsamiq
prototype and 1n the final UL The checking of message after the interaction was succeeded in the
final UI but failed as expected i the Balsamiq prototype due to the untraceable interaction
between screens.

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

User Stories

Scenario from
Task Model

Balsamiq
Prototype

Final UI

User Story: Flight Tickets Search

Narrative:

As a IRIT researcher

I want to be able to search air tickets for my business trips, providing
destinations and dates

So that I can obtain information about rates and times of the flights.

Scenario: Successful Roundtrip Tickets Search With Full Options

Given I go to “Book Flights”

‘When I inform “Toulouse” and choose “Toulouse, Blagnac (T'LS)”
in the field “Departure”

And I inform “Paris” and choose “Paris, Charles-de-Gaulle (CDG)”
in the field “Destination”

When [set “Sam, Déc 1, 2018” in the field “Departure Date”

And I set “08:00” in the field “Departure Time Frame”

‘When I choose “Round Trip”

And I set “Lun, Déc 10, 2018” in the field “Arrival Date”

When I set “10:00” in the field “Arrival Time Frame”

And I choose the option of value “2” in the field “Number of
Passengers”

When I set “6” in the field “Timeframe”

And I select “Direct Flights Only”

‘When I choose the option of value “Economique” in the field
“Flight Class”

216

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

Expected:

Company 1
And I set “Air France" in the field "Companies” Actual: Value

does not fit the

field

‘When I submit “Search”

Then will be displayed “2. Sélectionner un voyage”

User Story: Select a Suitable Flight

Narrative:

As a IRIT researcher

I want to get a list of compatible flights (including their rates and
times) in accordance with my search criteria

So that I can select a suitable flight based on my needs.

Scenario: Select a Return Flight Searched With Full Options

Given “Availability Page” is displayed

‘When I click on “No Bag” referring to “Air France 7519”

And I click on “No Bag” referring to “Air France 7522”

When I click on “Book”

Then will be displayed “J'accepte les Conditions d'achat concernant
le(s) tarif(s) aérien(s).”

User Story: Confirm Flight Selection

Narrative:
As a IRIT researcher - - -
I want to get all the required data to confirm my flights

So that I can check the information, the fare rules and then finalize
my booking.

Scenario: Confirm a Flight Selection (Full Version)

Given “Confirmation Page” is displayed

When I choose “I accept the General Terms and Conditions.”

And I click on “Finalize the trip” Finaliczt:%e trip

217

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

Actual: Finalize
the trip
Expected:

Proper Message
Actual: Proper
Message

Then will be displayed “Votre voyage a été confirmé!”

Table 38. Mapping of the results after testing.

In the third and last scenario, the behavior of accepting the general terms and conditions to
confirm the booking of flights was correctly addressed in both the Balsamiq prototype and the
final UL. The button “Finalize the trip” was not identified in the Balsamiq prototypes (it was
“Confirm Booking”). As already explained, the action of clicking the button and verifying the
confirmation message in the final UI was not performed in order to not effectively place a fake
booking in the system. Due to that, both steps were signalized as “pending” in the final UL Once
more, the checking of message after the iteraction failed as expected in the Balsamiq prototype
due to the untraceable interaction between screens. Lastly, regarding to the final testing results i
each artifact, we notice that only the second scenario was successfully executed in the final UL
The other two scenarios have failed in the other artifacts or got pending (the last scenario in the
final UI).

8.8. Summary of Main Findings in the Case Study

Looking back at the types of inconsistencies we managed to identify for each artifact, we
present below a summarized table (Table 34) with such types enlisted and discuss thereafter the
mmpact of such imconsistencies when assessing the artifacts.

Task Models Balsamiq Prototypes Final Uls
o Task with different names o Conflict between expected and o Message not identified
e Task not extracted to the actual elements e Element or value not found
scenario ¢ Flement and label in different o Inexistent elements
o Different number of sequences groups o Values that do not fit the field
of tasks 1n the task model e Inexistent elements o Fields already filled in
o Wrong position ¢ Element semantically e Element not identified
o Conltlict between specification nconsistent
and modeling e More than one element to
e Different specification strategies | represent the same field
e Unpaired behaviors o Untraceable interaction between
o Equivalent behaviors missing screens

Table 34. Main kinds of problems identified in each artifact after testing.

For task models, we succeeded 1dentifying 8 different types of imconsistencies in the tested
scenarios. The most common ones were the “different number of sequences of tasks in the task
model”, “unpaired behaviors”, and “equivalent behaviors missing”. The first type occurs when
there are more tasks in the task model scenario than steps in the User Story scenario to
accomplish the same behavior. In the example presented in section 8.4, to inform a departure
(or a destination) there was a sequence of 3 tasks mn the scenario extracted from the task model,
while in the step of the User Story scenario, a double action of informing and choosing was
enough. For the second type, “unpaired behaviors” refers to tasks that would find a
correspondence with the steps in the User Stories, but as they actually specify different behaviors
(e.g. “Define <something>” instead of “Select <something>”), they cannot be recognized as such.
“Equivalent behaviors missing” refers to behaviors that are really missing in the extracted task

218

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

model scenario, like steps that are present in the User Story, but cannot find correspondent tasks
in the task model.

“Different specification strategies” comes next as the type of inconsistency incurred from
specification of behaviors that could eventually aim at the same purpose, but were specified using
different strategies, 1.e. requiring to perform (or verify) different actions. An example from this
case study 1s the situation m which a step of User Story scenario had described a behavior in
which the system showed a message introducing a list of available flights, and the task model, a
behavior in which the system provided the aforementioned list. Even with the resultant state of
the system being the same in this case, the specified behaviors could not be considered
equivalents once they use different specification strategies.

Tasks i “wrong positions” comes next being the type of error related to tasks that are found
i different positions than their equivalent steps in User Stories. As scenarios in different
conceptions are being compared when testing User Stories and task models, we consider that
errors found in the sequence of tasks in the task models (compared with User Stories) are
generally the most sensitive type of error, once it impacts in all other tasks in the sequence. A
simple change of task positions in the beginning of a scenario mvalidates the whole scenario
because all the tasks in the sequence would be in wrong positions. A correction to a simple error
like this would include finding the root of the problem, redesign either the step (that would impact
the consistency in other artifacts) or the task model (that would imply in extracting new scenarios
for testing) and run a complete battery of regression tests again. Considering that there are no
other types of inconsistencies in the model, by fixing this i1ssue (either by updating the User Story
scenario to comply with the scenario extracted from the task model or updating the task model
to comply with the sequence of steps from the User Story), both scenarios would become fully
consistent.

“Contlicts between specification and modeling” refers to tasks modeled in the task model (and
consequently exported to its scenarios) that are not present the requirements specification in the
User Stories. The contrary can occur as well. This kind of inconsistency generally puts in evidence
mmportant conflicts between what 1s specified in the user requirements and what 1s effectively
modeled in the artifacts. “Tasks with different names” and “Tasks not extracted to the scenario”
complete the list of type of errors encountered during the tests. The first one refers to tasks that
are present both mn the task model and m the User Story scenario but written with a different
name. The second one refers to tasks that are effectively modeled in the task model but, due to
the type of operators used or the presence (or not) of other refined tasks after them in the model,
causes that, during the extraction process, such tasks do not be taken to the extracted scenarios.

Concerning the type of mconsistencies registered during the test of Balsamiq prototypes, we
succeeded 1dentifying 6 different types in the tested scenarios. “Contflict between expected and
actual elements” was the most frequent type and refers to elements that are specified with different
names 1n the step and in the prototype. “Inexistent elements” and “untraceable nteraction
between screens” comes next and refer respectively to the real absence in the prototypes of
elements that are specified in the step, and to the cases where the iteraction changes the state of
the mterface (e.g. transitioning between screens or making appear a given value mn a field). As
such cases are not identified in the prototype with the level of requirement we are considering,
an inconsistency 1s shown up.

“Flements and labels in different groups” 1s the next type in line and refers to one of the
mechanisms of modeling used by Balsamiq. When a given Ul element is composed by a label
name and the interaction element itself, this encompassed structure 1s modeled by an entity

219

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

named “group”. Thus, to be considered as a unique and single element, both the label and the
mteraction element itself must be placed at the same group. If it 1s not the case, we are not able
to reach the element and then an inconsistency is detected.

“More than one element to represent the same field” 1s a type of inconsistency caused when
there are at least two elements (or more) in the prototype that are of the same type and are placed
in the same group (or have the same name) of the searched field. Finally, the type of inconsistency
named “elements semantically inconsistent” refers to the core problem we address with the
ontology, 1.e. the use of interaction elements in the prototype that are semantically inconsistent
with the behavior they are supposed to model. This kind of inconsistency 1s detected when we
get the list of supported interactive elements from the ontology and check if the interactive
element used in the prototype 1s equivalent to one of them.

Concerning the type of mconsistencies registered during the test of Final Uls, we also
succeeded 1dentifying 6 different types in the tested scenarios. “Elements not identified” was the
most frequent type and refers to elements that do not carry a unique and single 1dentifier (or carry
a dynamic generated one) and/or cannot be reached by using their XPaths. When observing the
unsuccessful tries to find the fields “Departure Time Frame” and “Arrival Time Frame”, for
example, we remarked that 1s a recurrent problem when automating testing on user interfaces.
Some web frameworks for developing the presentation layer dynamically generates different
identifiers each time the Ul 1s charged, which makes very hard the work of previously identifying
them to implement the test. Besides that, some developers skip informing unique identifiers for
the fields. XPath identifiers help in most cases, but there still are some situations where the
identification of locators gets very compromised.

Constant changing, or conflicting messages 1s another frequent issue (type of inconsistency
“message not 1dentified”). Messages sometimes change in the Final Ul and the requirements
specification 1s not updated accordingly. As a consequence, the message specified in the step to
be verified in the user interface is not found on the screen. Not identifying elements or values
due to dynamic data behavior 1s also an i1ssue. The type of mconsistency “element or value not
found” refers to fields or values that are expected to be shown on the user interface (and are able
to be identified by the locators there) but, due the dynamic data behavior in the system, are not
shown up. An example from the case study 1s a flight, which was mentioned to be verified as an
example of data value in the step and was not identified in the list of resultant flights because 1t
was not available for booking anymore. There is also the case of elements that are really inexistent
on the user interface (type of inconsistency “inexistent elements”). These elements are mentioned
in the step as part of the requirements specification, but simply have not been implemented on
the final Ul

Fields that were already filled in when a given step tries to reach them are also a source of
mconsistencies (type of inconsistency “fields already filled in”). As happened 1n the case study
when testing the fields “Departure” and “Destination” for a multidestination trip, due to the
second flight leg, the elements were referenced with the same name more than once. When the
test tried to fill in the same field a second time for the second flight leg, the inconsistency has
shown up. In this case, both the step and the mapping of interaction elements on the user
mterface must be updated to reference unequivocally different elements for each desired
teraction.

The last type of inconsistency identified refers to values mentioned in the step that do not fit

the field they were designed to fill in (type of inconsistency “values that do not fit the field”).
During the case study, the field “Company 1” was expected to receive the value “Air France” as

220

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

described in the step, but the concrete field “Company 1” on the user interface had been modeled
to support only 3 characters. This type of inconsistency can also be extended to other
imcompatibilities between the type of data expected and what the field actually supports. Examples
mclude strings to be filled in number-only fields, unformatted numbers to be filled in date-time
fields, and so on.

8.9. Threats to Validity

Generalization of results. We have conducted this second study by modeling and assessing a
system for booking airline tickets for business trips. Such kind of system has usually a strong
search-based feature, once they are centered in providing and comparing rates, times and
availability of flights given a set of provided parameters. However, as the ontology in which we
based our analyses 1s designed for domain-independent interactive behaviors, we assume our
results concerning the usefulness of our interactive behaviors would be reproduced in other
mteractive systems domains. Concerning the types of inconsistencies identified, we understand
the list presented 1n this chapter 1is just an nitial set of inconsistencies that our approach is able
to 1dentify. Further studies, especially with systems implementing different features, might reveal
a broader set of inconsistencies able to be 1dentified.

Manual reverse engineering. This study performed a manual reverse engineering of the
current system in production to obtain its respective models for testing. The goal of the study was
to investigate which kind of inconsistencies our approach would be able to identify in the models
and 1n the system. Therefore, as a manual process, 1t was expected that inconsistencies would be
naturally introduced during the modeling. Indeed, these inconsistencies were 1dentified and that
allowed us to evaluate our approach. Nonetheless, if an automated approach of reverse
engineering had been used instead, such inconsistencies would probably not have taken place.
Future studies should confirm this hypothesis.

Possible modeling bias. Both the conduction of the study and the interpretation and analysis
of the results have been made by us. So, it 1s possible there has been a bias in the interpretation
of such results and/or in the modeling process. To mitigate such a threat, we plan future studies
considering third-part modeling and cross-checking of results by an independent reviewer in an
attempt to reduce such a bias.

8.10. Conclusion and Lessons Learned

By analyzing the variety of inconsistency problems that have been identified in this case study,
we can remark that some types of inconsistencies have shown to be more critical than others.
While simple inconsistencies like differences i names of tasks and fields are easy to be solved,
some other inconsistencies can reveal crucial problems of modeling or mportant
mcompatibilities between the requirements specification and its modeling i the artifacts.
Conlflicts between expected and actual elements i prototypes (usually due to different names),
or messages and elements not found (or even inexistent) i prototypes or final Uls are other
examples of inconsistencies that are easy to solve.

Conlflicts between specification and modeling along with different specification strategies for
task models compose a more critical group of problems and must be prioritized. Concerning
user Interface prototypes i different levels of refinement, the presence of semantically
inconsistent elements and the presence of more than one element to represent the same field are
also critical groups of problems. On final Uls, fields already filled-in denotates inconsistencies
that exposes important design errors.

221

Chapter 8: Case Study II - Assessing User Interface Design Artifacts

Unpaired behaviors and equivalent behaviors missing on task models are inconsistencies
directly related to the wideness of the referenced ontology. The ontology we present here (and
which has been used in the case study) 1s always evolving and can eventually in the future support
new behaviors, which would increase its capacity of recognizing other task descriptions. Tasks not
extracted to the scenario, different number of task sequences in the task model, and the presence
of tasks in wrong positions are problems that can have the same origin in scenarios extracted from
task models, 1.e. due to tasks not extracted to scenarios, those ones that have been extracted may
be placed in wrong positions which will affect how many sequences of tasks the scenario lists. So,
by fixing the root cause, the designer can avoid three kinds of different problems.

Element and label in different groups i1s an inconsistency related to the way Balsamiq
mmplements its prototypes. It leads to a misidentification of elements but could eventually not be
an 1ssue n other prototyping tools. Likewise, elements not identified in the final Ul 1s a specific
problem of web interfaces, where not even robust XPaths can be able to identify some elements
on the screen. Values that do not fit the field 1s another exclusive problem of final Uls, once it
emerges from real data handling along the interaction.

Untraceable interaction between screens 1s a particular type of inconsistency due to the level
of refinement we are considering for prototypes. Balsamiq 1s a prototype tool that actually
supports a basic dialog description, allowing building links between prototypes and simulating a
real navigation on user interfaces. However, we have chosen to not consider such a feature once
the ontology we propose can already support more robust interactions in other levels of prototype
refinements, such as the one that has been implemented by PANDA.

We notice finally that our approach makes task models, user interface prototypes and final
Uls intrinsically related in such a way that a modification in the User Stories scenarios requires a
full battery of regression tests in the other artifacts. For example, after having fixed the Balsamiq
prototype to name the three-company field independently, we had to modify the step “And I set
‘Air France’ in the field ‘Companies’ to reference only one of them. We modified the step to
“And I set ‘AF’ 1n the field ‘Company 1’”. When doing this, we should retest all our task model
scenarios in order to ensure we did not introduce any inconsistency there due to such a
modification. Maybe the task model has to be modified as well, in order to comply with the
modification in the prototype. The modification has also the potential to identify new
mconsistencies in the task model, that had not been identified before with the older scenario.
Thus, it 1s imperative to work with the perspective of regression tests in mind, which reinforce
the crucial importance of automated testing.

As noticed, this case study helped us to identify a wide group of inconsistency problems that
can be shown up by our approach. With little effort for specifying high-level scenarios in natural
language only once, we succeeded running several automated tests on the target artifacts in
seconds. These results open a great range of opportunities for assessing multiple artifacts and for
keeping them consistent throughout the whole software development process. Some features like
the use of data providers to assess final Uls could not be tested in this case study though. This
resource presented previously allows modeling steps only with data domains and injecting data
on them at runtime. As we have not specified steps using this feature, we could not get results
about its effectiveness in a broader case study than that one presented in chapter 6. This 1s indeed
a good opportunity for future works.

222

Part IV - Conclusion

Chapter 9

Conclusion

Summary

This chapter presents the final remarks about this thesis’ work. We recapitulate our achievements
and discuss the main contributions and limitations of the approach. We also provide some
directions for future research i this field as well as our future works already planned to be
conducted for mmproving the proposed approach. The chapter ends with the full list of
publications resultant from this thesis.

Model-based and iterative approaches are a suitable alternative to cope with the complexity of
the development process of interactive systems. For that, models fulfill three main roles in the
development process: decompose problems in specialized views, specify the intentions reducing
ambiguity, and promote communication among stakeholders. Multiple artifacts provide
specialized views for concepts handled by models, thus ensuring that aspects of the system 1n
consideration are properly described and understood by stakeholders. Multiple cycles of design
and evaluation allow to tune the design and fix problems iteratively until all requirements are met.
Whereas models and iterative processes are in use, a dangling question remains: how to ensure
that models and artifacts remain consistent along an iterative development process. In this
context, the present work contributes by providing an approach for specifying and testing user
requirements in order to keep the consistency of such requirements with core software artifacts
commonly used to build interactive systems.

As we highlighted along this thesis, when assessing software artifacts, the term “test” is usually
not employed under the argument that such artifacts cannot be “run”, 1.e. executed for testing
purposes, so In practice they are just manually reviewed or inspected in a process called
verification. Manual verification of the software outcomes (which include modeling artifacts,
documentation, source code, database, the product design, etc.) 1s though highly ime-consuming,
error-prone and even impracticable for large software systems. Fully interactive artifacts such as
final user interfaces can in addition be validated by users who can interact with the artifact and
assess whether its behavior 1s aligned with their actual needs. As within our approach we succeed
automatically running User Stories on software artifacts for assessing their consistency with user
requirements, we actually provide the “test” component for both verification and validation of
artifacts in the software development. We consider this 1s a big step towards the automated testing
(and not only the manual verification) of software artifacts by means of a consistent approach
allowing fully verification, validation, and testing (VV&'T).

For supporting our approach, an ontology was provided to act as a base of concepts shared by
different artifacts, defining a semantic description of user-system interactions. The proposed
ontology provides a common vocabulary that 1s articulated to map interactive behaviors to
mteraction elements, allowing testing automation of user requirements in multiple user interface
design artifacts. The ontology also supports the design of user interfaces by providing a consistent
set of interaction elements that are supposed to meet particular behaviors. When representing
the behaviors that each interaction element is able to answer, the ontology also allows extending
multiple design solutions for the user interface.

995

Chapter 9: Conclusion

Behaviors described in the ontology are already implemented for automating tests on Uls,
which means we can freely reuse them to write new scenarios in natural language, providing test
automation with little effort from development teams. It allows specifying tests in a generic way,
which benefits reuse along the development process. In practice, the vocabulary of iteractive
behaviors in the ontology also extends the vocabulary provided by the Gherkin DSL (which 1s
mmplemented by BDD), so indeed we increase the power of expressivity of such a language to
automate the assessment of software artifacts. The concepts and definitions in the ontology
presented here are nevertheless just one of the possible solutions for addressing and describing
behaviors and their relationships with user mterface elements. The ontology 1s provided ready to
use for a new development project, but it 1s not changeless and could be updated with other
behaviors, concepts and relationships which could eventually be more representative for some
contexts of development. This fact opens the door to consider having ontologies as knowledge
bases, keeping specific behaviors for specific groups of business models.

Being core modeling artifacts to design user interfaces, in this thesis we have focused on the
assessment of task models, user interface prototypes and final Uls. Compared with co-execution
approaches which require a high-level of effort for annotating and modifying the source code/files
of the artifacts to make them support automated assessment, we provide a lightweight fully
automated approach which provide assessment with no mtervention in the source files of the
artifacts. This solution allowed us to test prototypes at different stages of the design process,
especially from the early phases, following their cycle of evolution and successive refinements,
while ensuring that different artifacts are sharing the same goals in terms of requirements.
Additionally, tests on web final Uls can run independently of the frameworks used to build the
presentation layer. This 1s possible because tests provided by our tool assess the concrete Ul
elements found on the user interface, directly in the target web browser, simulating a real user
mteracting with the mterface.

To benefit the testing mtegration, our approach makes artifacts considered for testing
mtrinsically related in such a way that a modification in the User Stories scenarios requires a full
regression battery of tests in the other artifacts. It 1s this characteristic that makes our approach
ensures fully consistent artifacts for modeling user requirements. As stated before, User Stories
i our approach are the main source of requirements and tests, so BDD scenarios are the core
of testing. To have a given artifact consistent with them, we should identify the source of
mconsistency and fix it either in the artifact or in the BDD step. In principle, if we fix
mconsistencies in the artifact which is failing, there 1s no additional impact in other artifacts.
Otherwise, if we keep the design of the artifact and fix the step, we can introduce fails in other
artifacts, that are also being tested by the same stories. Thus, it 1s imperative to work with the
perspective of regression tests in mind, which reinforce the crucial importance of automated
testing.

Our approach could also be extended to verify and validate other model-based artifacts,
allowing more integration and ensuring a wider traceability of requirements. The degree of
formality of such artifacts, however, can influence the process of traceability and testing, making
it either more or less tricky to conduct. These variations should be investigated n the future.

9.1. Tackled Challenges

Based on the strategy we defined for implementing this approach, we have set out in chapter
3 four main challenges to accomplish it. They are listed as follows:

226

Chapter 9: Conclusion

() 1o adhere to a model-based approach for describing artifacts produced along the
development process.
(1) 1eams must be willing to adopt the template for User Stories as well as the vocabulary

proposed i the ontology.

(1) Artifacts and the user interface under testing must comply with the Ul-supported set
of interactive behaviors described in the ontology.

(v) Tests must be carried out by our set of tools.

With the results we have obtained and addressing these four challenges we stated above, we
can highlight a set of advantages and some shortcomings we have identified so far. Concerning
the adherence to a model-based approach, this approach benefits from the independence for
testing artifacts. Once the approach performs a micro-process, theoretically suited to run with any
macro software development process, testing can be conducted in an independent manner, only
i the set of artifacts designed at a given time, which benefits early artifacts. However, so far, we
are only covering artifacts modeled with HAMSTERS and Balsamiq. We also did not evaluate
yet the impact of maintaining and evolving such artifacts throughout the development process.

Concerning the adoption of the template for User Stories and the vocabulary proposed in the
ontology, an advantage 1s that requirements and tests in User Stories are kept in a natural and
high-level language. Keeping them as such helps to establish a common vocabulary for the whole
team and allows non-technical stakeholders to effectively participate at the specification and
testing processes. Although the studies we have conducted so far did not cover evaluation with
potential users instantiating the approach, we plan to investigate its use in a broader case study to
evaluate aspects such as workload, maintaimability and scalability.

Concerning the expressiveness of the ontology and the compliance of artifacts and user
mterfaces with the Ul-supported set of interactive behaviors, an advantage 1s that the approach 1s
domain-independent, once the low-level interactive actions on Ul elements (such as clicks,
selections, settings, etc.) are the same regardless the application business domain. So far, we are
applying our ontology to cover the assessment of GUI-based/web-based applications. As the
ontology already describes the concepts related to mobile user interfaces, its implementation for
covering the assessment of mobile applications 1s expected to be straightforward. Nonetheless,
for covering other types of interaction techniques (such as multimodal interaction), the ontology
would need to be extended to model the new concepts related to user interfaces and user-system
mteractive behaviors on such new environments.

Another advantage of the ontology 1s the plurality of interaction elements modeled by the
ontology used. As many of them can answer the same behavior, even if a Combo Box has been
chosen to attend some behavior in a previous prototype, an Auto Complete field could be chosen
to attend this behavior on a further and more refined version, once both elements share the same
ontological property for the behavior under testing. A shortcoming we have identified 1s related
to the restricted vocabulary of the ontology. Even with the ontology mapping synonyms for some
specific behaviors, it does not provide any kind of semantic interpretation, 1.e. the behaviors must
be specified on stories exactly as they were defined. At a first glance, nonetheless, the restricted
vocabulary seems to bring less flexibility to designers, testers and requirements engineers, but at
the same time, it establishes a common vocabulary, avoiding typical problems of ambiguity and
mcompleteness in requirements and testing specifications.

Finally, concerning our tools, one of the advantages they provide is the fine-grained testing
coverage. Fach small modification in the User Stories or in the artifacts 1s able to be captured
during the testing process. The use of data-independent scenarios 1s another advantage. Data can

227

Chapter 9: Conclusion

be specified through data domains to be mjected on runtime, or directly in the scenario
description. The first strategy 1s very useful in the beginning of the project, when typically, there
are few definitions about representative data for testing. A limitation in our set of tools, however,
1s the absence of classification for errors. There 1s currently no automatic distinction between the
different reasons of test failure (e.g. UI element not found, behavior not supported, etc.). Such
analysis should be made manually by the designer. As shown in the case study, our approach
signalizes in which step of the scenario some mconsistency has been found, but do not classify it
according to the solution that should be employed to solve the problem. Classifying errors would
help to better 1dentify if a given mconsistency detected 1s due to an actual error in the
requirements representation or if it 1s due just to a hmitation of the artifact.

9.2.

Summary of Contributions

A summary of the thesis contributions 1s presented as follows:

9.3.

A scenario-based approach that benefits from the independence for testing model-
based artifacts (chapter 3).

A full and consistent VV&'T approach which actually allows running automated tests
on artifacts, expanding the possibilities for software verification and validation
(chapters 3, 5, 6 and 8).

A flexible and adaptable micro-process to mstantiate the approach, which could fit
different macro software development processes (chapter 3).

A natural and high-level specification language for requirements and test through a
User Story template (chapters 3, 4 and 7).

A common vocabulary to be used by different stakeholders, avoiding typical problems
of ambiguity and mncompleteness in requirements and testing specifications (chapters
4 and 7).

A consistent and domain-independent ontology for specifying interaction (chapter 4).
An extended vocabulary for the Gherkin DSL increasing the power of expressivity of
such a language to automate the assessment of user interfaces (chapters 4, 6 and 8).
Testing provided with no intervention in the source code of the application or in the
source file of the artifacts (chapters 5, 6 and 8).

Automated tools with a fine-grained testing coverage and implementing data-
imdependent scenarios through the use of data providers (chapters 5, 6 and 8).

A flexible implementation architecture that can support in the future tests using other
notations and tools than HAMSTERS (for task models) and Balsamiq (for UI
prototypes) by just implementing new classes for mapping the concepts of the ontology
to such notations (chapters 5 and 6).

A fully compatible approach for testing final Uls which 1s independent from the
technology chosen to implement the presentation layer of web sites (chapters 6 and 8).

Summary of Limitations

A summary of the thesis imitations 1s presented as follows:

228

A lmited vocabulary for the ontology with no semantic interpretation (chapter 4).
Restricted coverage of artifacts, including so far HAMSTERS task models, Balsamiq
prototypes and web final Uls (chapters 5 and 6).

Chapter 9: Conclusion

e The need of extracting scenarios from task models to perform testing in such artifacts
(chapter 5).

e Tools that do not support yet the classification of errors (chapters 5 and 6).

e Unknown mmpact of maintaining and successively evolving the mentioned artifacts
throughout a real software development process (chapter 8).

9.4. Future Research Perspectives
9.4.1. Short Term Perspective

Although the results presented in this thesis are still preliminary, they are quite promising. The
current version of the approach opened the door to many interesting research questions which
motivate our future works. First of all, in a short term, we are planning to nvestigate the
acceptability of the approach with development teams, including technical and non-technical
people. The idea 1s to evaluate 1if people mvolved i the development process of interactive
systems are able to employ our approach to specify user requirements with the proposed template
and the concepts present in the ontology. We are planning to conduct such empirical studies with
developers, requirement engineers, clients and end-users, in order to determine the potential of
improvement in the context of multidisciplinary and complex development teams. These studies
should also evaluate the effectiveness of the approach and aspects such as workload,
maintainability and scalability when running the approach in real cases of software development.

We are also refining our set of tools to better support the creation, visualization and execution
of the tests. An important improvement to address as future works concerns the presentation of
task model assessment results. Despite being useful to locate exactly where the correspondent
tasks have been found, a presentation based on a detailed list of matching tasks, positions and
values tends to be hard to read with the growing of the number of scenarios. Additional features
to automatically generate charts, such as the one we used to present the results in chapter 8, might
probably help designers to evaluate and better analyzing the results.

Another mmprovement in the task model assessment that i1s in the pipeline consists in
mmplementing a better strategy to assess “displaying” tasks, 1.e. tasks that mvolve the system
displaying a message to the user, or the user checking that such a message has been displayed. In
the current implementation, we search for a task named “Display <message>”, but indeed it 1s
not a common practice to describe system messages literally in a task name, so this kind of tasks
are never matched with the equivalent steps in the User Stories. Our first strategy in mind 1s to
look for a generic task named “Display message”, for example, and then check the actual message
in the object value associated to this task. While this strategy solves the matching of equivalent
tasks, 1f the designer skips informing the actual message when extracting a scenario from the task
model, such a task would still be unidentifiable. Anyway, so far it seems to be the best strategy to
address such a problem.

9.4.2. Long Term Perspective

Previous works have proposed the use of Model-Driven Architecture (MDA) to support the
development of user iterfaces (Vanderdonckt, 2005). In a longer run, we also prospect
mteresting research opportunities in the field of Model-Driven Development (MDD) for
obtaining User Stories and consistent Ul prototypes directly from task models. Once 1t 1s
desirable that scenarios in User Stories and scenarios extracted from task models are compatible,
an approach aiming at the automated generation of User Stories scenarios from the scenarios
extracted from task models could bring promising results. The first reason 1s that such scenarios

229

Chapter 9: Conclusion

would be generated already compatible with the task models and would dismiss the need of
assessing their XML files, whether the reference XML file or the one extracted with scenarios.
The second reason 1s that, supported by the ontology, this approach could generate scenarios
already ready to GUI test automation, allowing automated acceptance testing on user interfaces
with low level of implementation effort. It would raise a set of research questions related to the
adequacy of user requirements specified only as models in MDD approaches. As such, both
modeling and modification on user requirements would be made only in the task model, from
where scenarios would be automatically generated to run tests on other artifacts, including
acceptance tests on the final UL

Concerning the automated assessment of user interface prototypes, another potential future
work consists in investigating the assessment of prototypes designed by UsiXML prototyping
tools. As a well-known standard to describe user interfaces, UsiXML provides the User Interface
Description Language (UIDL), a unified notation in which our approach could rely on for
providing automated assessment of prototypes designed by different tools. Such an adoption
could reduce the need of specializing our implementation for supporting different notations each
time a new prototyping tool should be covered. UsiXML could also support the future extension
of our ontology to implement automated assessment on other interaction environments by
providing description of the concepts related to new interaction techniques.

Further studies on Natural Language Processing (NLP) techniques might help to improve the
process of requirements and testing specification adding more flexibility to write scenarios that
could be semantically interpreted to meet the behaviors described n the ontology. The ontology
could also be enriched to recognize variants for the same interactive behavior. This issue is
certainly a worthwhile topic for future research. Evaluate the suitability of our approach to reuse
tests for assessing multiple user interface design options i1s another promising future work. We
plan to conduct new case studies to collect data about reusability, workload, and degree of
adaptability required to use a same group of business scenarios to test different design solutions.
Our hypothesis is that scenarios written based on our common ontology can be easily reused to
assess different design solutions for systems sharing the same business model.

Finally, other studies including interactions in different contexts beyond the web, especially in
mobile platforms, are also planned. In a longer run, we also want to explore idiosyncrasies of
mteraction techniques and/or platforms to check hypothesis related to the coverage of concepts
i the current ontology. Additional work 1s also necessary to identify potential problems and
mconsistencies when manipulating more complex task models and more complex interactive
behaviors. Such studies would contribute to increase the ontology expressiveness. Future works
should also consider ontologies as knowledge bases, keeping specific behaviors for specific groups
of business models in domain ontologies. Domain-specific ontologies could act as a top layer in
a multi-layer ontology architecture to allow the use of multiple domain ontologies associated to
the current domain-independent ontology, which would remain describing only the fundamental
mteractive behaviors for a given environment.

9.5. Full List of Resultant Publications
Journals

Silva, T. R., Hak, J.-L. & Winckler, M. (2017). A Formal Ontology for Describing Interactive
Behaviors and Supporting Automated Testing on User Interfaces. International Journal of
Semantic Computing, 11 (04), pp. 513-539. DOI: http://do1.org/10.1142/S1793351X17400219.
(Silva, Hak and Winckler, 2017b)

230

Chapter 9: Conclusion

Silva, T. R., Hak, J.-L., Winckler, M. & Nicolas, O. (2017). A Comparative Study of Milestones
for Featuring GUI Prototyping Tools. Journal of Software Engineering and Applications, 10 (06),
pp- 564-589. DOI: http://doi.org/10.4236/1s€a.2017.106031. (Silva et al., 2017)

Silva, T. R., Hak, J. L. & Winckler, M. (2016). An Approach for Multi-Artifact Testing Through
an Ontological Perspective for Behavior-Driven Development. Complex Systems Informatics
and Modeling Quarterly, 1 (7), pp. 81-107. DOI: http://doi.org/10.7250/csimq.2016-7.05. (Silva,
Hak and Winckler, 2016a)

Conferences

Silva, T. R. & Winckler, M. (2017). A Scenario-Based Approach for Checking Consistency in
User Interface Design Artifacts. In: Proceedings of the XVI Brazihan Symposium on Human
Factors m Computing Systems (IHC 2017), pp. 21-30. ACM. DOIL:
http://doi.org/10.1145/3160504.3160506. (Silva and Winckler, 2017)

Silva, T. R., Hak, J. L. & Winckler, M. (2017). A Behavior-Based Ontology for Supporting
Automated Assessment of Interactive Systems. In: 2017 IEEE 11th International Conference on
Semantic Computing (ICSC 2017), pp- 250-257. IEEE. DOI:
http://doi.org/10.1109/ICSC.2017.73. (Silva, Hak and Winckler, 2017a)

Silva, T. R. (2016). Definition of a Behavior-Driven Model for Requirements Specification and
Testing of Interactive Systems. In: 2016 IEEE 24th International Requirements Engineering
Conference (RE 2016), pp. 444-449. IEEE. DOI: http://doi.org/10.1109/RE.2016.12. (Silva,
2016)

Silva, T. R., Hak, J. L. & Winckler, M. (2016). Testing Prototypes and Final User Interfaces
Through an Ontological Perspective for Behavior-Driven Development. In: 6th International
Working Conference on Human-Centred Software Engineering, and 8th International Working
Conference on Human Error, Safety, and System Development (HCSE 2016 and HESSD 2016),

pp- 86-107, vol. 9856. Lecture Notes in Computer Science, Springer International Publishing.
DOT: http://doi.org/10.1007/978-3-319-44902-9 7. (Silva, Hak and Winckler, 2016b)

Silva, T. R. & Winckler, M. (2016). Towards Automated Requirements Checking Throughout
Development Processes of Interactive Systems. In: 2nd Workshop on Continuous Requirements

Engineering, 22nd International Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ). CEUR-WS.org. (Silva and Winckler, 2016)

Silva, T. R., Hak, J. L. & Winckler, M. (2015). A Review of Milestones in the History of GUI
Prototyping Tools. In: INTERACT 2015 Adjunct Proceedings: 15th IFIP TC. 13 International
Conference on Human-Computer Interaction, pp. 267-279, vol. 22. University of Bamberg
Press. (Silva, Hak and Winckler, 2015)

231

References

Adzic, G. (2011) Specification by Example: How Successful Teams Deliver the Right Sofiware. Manning
Publications.

Agile Alliance (2018). Available at: https://www.agilealliance.org (Accessed: 1 June 2018).

Ambler, S. (2002) Agile Modeling: Effective Practices for eXtreme Programming and the Unified Process.
Ist edn. Wiley.

Ambler, S. W. (2005) The Agile Unified Process (AUDP). Available at:
http://www.ambysoft.com/unifiedprocess/agile UP.html (Accessed: 1 June 2018).

Ambler, S. W. and Lines, M. (2012) Disciplined Agile Delivery (DAD): A Practitioner’s Guide to Agile
Software Delivery i the Enterprise. IBM Press.

Anderson, D. J. (2010) Kanban: Successfil Evolutionary Change for Your Technology Business. Blue
Hole Press.

Annett, J. (2003) ‘Hierarchical Task Analysis’, in Hollnagel, E. (ed.) Handbook of Cognitive Task Design.
Lawrence Erlbaum Associates, pp. 17-35.

Astels, D. (2008) Test-Driven Development: A Practical Guide. 1st edn. Prentice Hall.

Bano, M. and Zowghi, D. (2013) ‘User Involvement in Software Development and System Success: A
Systematic Literature Review’, in EASE '15: Proceedings of the 17th International Conference on
Evaluation and Assessment i Sofiware Engineering, pp. 125-130. doi: 10.1145/2460999.2461017.

Barboni, E. er al. (2010) ‘Beyond Modelling: An Integrated Environment Supporting Co-Execution of
Tasks and Systems Models’, in Proceedings of the 2nd ACM SIGCHI Symposium on Engineering
Interactive Computing Systems - EICS 10, pp. 165-174. doi: 10.1145/1822018.1822043.

Barnett, J. (2017) State Chart XML (SCXML): State Machine Notation for Control Abstraction, W3C.
Available at: http://www.w3.org/TR/scxml/.

Beaudouin-Lafon, M. and Mackay, W. E. (2000) ‘Prototyping Tools and Techniques’, in Prototype
Development and Tools, pp. 1-41.

Beck, K. er al. (2001) Manifesto lor Agile Software Development. Available at: http://agilemanifesto.org
(Accessed: 1 June 2018).

Beck, K. (2002) Test Driven Development: By Example. 1st edn. Addison-Wesley Professional.

Beck, K. and Andres, C. (2004) Extreme Programming Explained: Embrace Change. 2nd edn. Addison-
Wesley.

Bertolino, A. et al. (2006) ‘Product Line Use Cases: Scenario-Based Specification and Testing of
Requirements’, in Software Product Lines. Springer, Berlin, Heidelberg, pp. 425-445. dor:
https://doi.org/10.1007/978-3-540-33253-4_11.

Boehm, B. W. (1979) ‘Guidelines for Verifying and Validating Software Requirements and Design
Specifications’, in Luro IFIP 79, pp. 711-719. doi: 10.1109/MS.1984.233702.

References

Booch, G., Rumbaugh, J. and Jacobson, 1. (2005) The Unified Modeling Language User Guide. 2nd edn.
Addison-Wesley Professional. Available at: http://portal.acm.org/citation.cfm?id=1088874.

Bowen, J. and Reeves, S. (2011) ‘Ul-Driven Test-First Development of Interactive Systems’, in
Proceedings of the Srd ACM SIGCHI symposium on Engineering interactive computing systems - EICS
11, pp. 165-174. doi: 10.1145/1996461.1996515.

Buchmann, R. A. and Karagiannms, D. (2017) ‘Modelling mobile app requirements for semantic
traceability’, Requirements Engineering. Springer London, 22(1), pp. 41-75. doi: 10.1007/s00766-015-
0235-1.

Business Process Model And Notation™ (BPMN"™) (2011) Olbyect Management Group. Available at:
http://www.omg.org/spec/BPMN/2.0/ (Accessed: 1 December 2017).

Calvary, G. et al. (2002) The CAMELEON Relerence Framework, R&D Project IST-2000-30104.
Available at: http://glove.isti.cnr.it/projects/cameleon.html.

Calvary, G. et al. (2003) ‘A Unifying Reference Framework for mult-target user interfaces’, Inferacting

with Computers, 15(3 SPEC.), pp. 289-308. doi: 10.1016/50953-5438(03)00010-9.

Calvary, G., Coutaz, J. and Thevenin, D. (2001) ‘Supporting Context Changes for Plastic User Interfaces:
A Process and a Mechanism’, in People and Computers XV — Interaction without Frontiers. Springer,

pp- 349-363.

Campos, J. C. et al. (2016) ‘Systematic Automation of Scenario-Based Testing of User Interfaces’, in
Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive Computing Systems - EICS
16, pp. 138-148. doi: 10.1145/2933242.2948735.

Campos, J. C. et al. (2017) ‘A More Intelligent Test Case Generation Approach through Task Models

Manipulation’, Proceedings of the ACM on Human-Computer Interaction, 1(1), pp. 1-20. dou:
10.1145/3095811.

Card, S. K., Newell, A. and Moran, T. P. (1983) The Psychology of Human-Computer Interaction. L.
Erlbaum Associates Inc.

Carvalho, R. A. de, Carvalho e Silva, F. L. de and Manhaes, R. S. (2010) Mapping Busmess Process
Modeling constructs to Behavior Driven Development Ubiquitous Language, arXiv:1000.4892. Available
at: http://arxiv.org/abs/1006.4892.

Carvalho, R. A. de, Manhies, R. S. and Carvalho e Silva, F. L. de (2010) Filling the Gap between Business
Process Modeling and Behavior Driven Development, arXiv preprint arXiv:1005.4975. Avalable at:
http://arxiv.org/abs/1005.4975.

Chelimsky, D. et al. (2010) The RSpec Book: Behaviour Driven Development with RSpec, Cucumber,
and Friends. Pragmatic Bookshelf.

Chikofsky, E. J. and Cross II, J. H. (1990) ‘Reverse Engineering and Design Recovery: A Taxonomy’,
IEEE Sofiware, pp. 13-17. doi: 10.1109/52.43044.

Cohn, M. (2004) User Stories Applied for Agile Software Development. Addison-Wesley.
Coyette, A., Kieffer, S. and Vanderdonckt, J. (2007) ‘Mult-fidelity Prototyping of User Interfaces’, in Proc.

of the IFIP TC.13 International Conference on Human-Computer Interaction, pp. 150-164. dor:
10.1007/978-3-540-74796-3_16.

References

Crandall, B., Klein, G. and Hoffman, R. R. (2006) Working Minds: A Practitioner’s Guide to Cognitive
Task Analysis. MI'T Press.

Dalkir, K. (2011) Knowledge Management i Theory and Practice. MIT Press. doi: 10.1002/as1.21613.
Dijkstra, E. W. (1970) On The Relability of Mechanisms.

Dumontier, M. (2018) Ontology Design Principles, GitHub. Available at:
https://github.com/micheldumontier/semanticscience/wiki/Ontology-Design-Principles (Accessed: 6
August 2018).

Dwarakanath, A. and Sengupta, S. (2012) ‘Litmus: Generation of Test Cases from Functional
Requirements in Natural Language’, i Int. Conference on Application of Natural Language to
Information Systems, pp. 58-69. doi: 10.1007/978-3-642-31178-9_6.

Ebert, C. (2011) Global Sofiware and IT: A Guide to Distributed Development, Projects, and
Outsourcing. John Wiley & Sons.

Egbreghts, A. (2017) ‘A Literature Review of Behavior Driven Development using Grounded Theory’, in
27th Twente Student Conference on IT. Available at:
https://pdfs.semanticscholar.org/4f03/ec0675d08cfd 1 ecdbaac3361a29d756¢ce656.pdl.

Elkoutbi, M., Khriss, I. and Keller, R. K. (2006) ‘Automated Prototyping of User Interfaces Based on
UML Scenarios’, in Automated Software Engineering. Volume 13,. Kluwer Academic Publishers, pp. 5-
40. dot: https://do1.org/10.1007/s10515-006-5465-5.

Engel, A. (2010) Verification, Validation, and Testing of Engineecred Systems. John Wiley & Sons, Inc.

Fahssi, R., Martinie, C. and Palanque, P. (2015) ‘Enhanced Task Modelling for Systematic Identification
and Explicit Representation of Human Errors’, in Proc. of the IFIP TC. 13 International Conference on
Human-Computer Interaction, pp. 192-212. doi: 10.1007/978-3-319-22723-8.

Farooq Ali, M., Pérez-Quinones, M. A. and Abrams, M. (2005) ‘Building Multi-Platftorm User Interfaces
with UIML, in Seffah, A. and Javahery, H. (eds) Multple User Interfaces: Cross-Platform Applications
and Context-Aware Interfaces. John Wiley & Sons, pp. 93-118. doi: 10.1002/0470091703.ch6.

Fierstone, J., Dery-Pinna, A.-M. and Riveill, M. (2003) Architecture Logicielle pour Padaptation et la
composition d’ THM - Mise en ceuvre avec le langage SUNML.

Forsberg, K. and Mooz, H. (1991) “The Relationship of System Engineering to the Project Cycle’, in
Proceedings of the First Annual Symposium of National Council on System Engineering, pp. 57-65. dot:

10.1002/}.2334-5837.1991.tb01484.x.
Graham, D. et al. (2008) Foundations of Software Testing: ISTQB Certification. Cengage Learning Emea.

Green, M. (1985) ‘Report on Dialogue Specification Tools’, in User Interface Management Systems.
Springer, Berlin, Heidelberg, pp. 9-20. dot: https://doi.org/10.1007/978-3-642-70041-5_2.

Guarino, N., Oberle, D. and Staab, S. (2009) ‘What Is an Ontology?’, in Handbook on Ontologies.
Springer, pp. 1-17.

Hackos, J. T. and Redish, J. C. (1998) User and Task Analysis for Interface Design. 1st edn. John Wiley
& Sons, Inc.

Hak, J., Winckler, M. and Navarre, D. (2016) ‘PANDA : Prototyping using ANnotation and Decision

References

Analysis’, in Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, pp. 171-176.

Hellmann, T. D. (2015) Automated GUI Testing for Agile Development Environments. University of
Calgary.

Highsmith, J. R. (1999) Adaptive Software Development: A Collaborative Approach to Managing
Complex Systemns. Dorset House.

Hotomski, S., Charrada, E. Ben and Glinz, M. (2017) ‘Aligning Requirements and Acceptance Tests via
Automatically Generated Guidance’, m 2017 IEEE 25th International Requirements Engineering
Conference Workshops, pp. 339-342. doi: 10.1109/REW.2017.37.

IEEE (2017) IEEE Standard for System and Software Verification and Validation IEEE. IEEE Computer
Society. doi: 10.1109/IEEESTD.2012.6204026.

ISO (1999) ISO 13407: Human-centred design processes for interactive systems.

Jacobson, 1., Booch, G. and Rumbaugh, J. (1999) The Unified Sofiware Development Process. 1st edn.
Addison-Wesley Professional.

Kipyaho, M. and Kauppinen, M. (2015) ‘Agile Requirements Engineering With Prototyping: A Case
Study’, in 2015 IEEE 23rd International Requirements Engineering Conference, RE 2015 - Proceedings,
pp. 334-343. doi: 10.1109/RE.2015.7320450.

Khaddam, 1., Mezhoudi, N. and Vanderdonckt, J. (2015) “Towards Task-Based Linguistic Modeling for
Designing GUIs’, in 27th Conference on Ilnteraction Homme-Machine.

Ladas, C. (2009) Scrumban - Essays on Kanban Systems for Lean Software Development. Modus
Cooperandi Press.

Lai, S.-T., Leu, F.-Y. and Chu, W. C.-C. (2014) ‘Combining IID with BDD to Enhance the Critical
Quality of Security Functional Requirements’, in 2014 Ninth International Conference on Broadband
and Wireless Computing, Communication and Applications (BWCCA). IEEE.

Landay, J. A. (1996) ‘SILK: Sketching Interfaces Like Krazy’, in CHI 96, pp. 398-399. dou:
10.1145/257089.257396.

Leite, J. C. S. do P. and Oliveira, A. D. P. A. (1995) ‘A Client Oriented Requirements Baseline’, in
International Conference on Requirements Engieering, pp. 108-115. doi: 10.1109/ISRE.1995.512551.

Lewis, C. and Rieman, J. (1993) Task-Centered User Interface Design: A Practical Introduction. doi:
10.1017/CBO9781107415324.004.

Limbourg, Q. er al (2004) ‘USIXMIL.: A Language Supporting Multi-path Development of User
Interfaces’, in EHCI/DS-VIS, pp. 200-220. doi: 10.1007/11431879_12.

Limbourg, Q. and Vanderdonckt, J. (2003) ‘Comparing Task Models for User Interface Design’, in
Diaper, D. and Stanton, N. (eds) The Handbook of Task Analysis for Human-Computer Interaction.
Taylor & Francis, pp. 135-154. doi: 10.1.1.58.1444.

Lindstrom, D. R. (1993) ‘Five Ways to Destroy a Development Project’, IEEE Software, 10(5), pp. 55-
58. doi: 10.1109/52.232400.

Lombriser, P. et al. (2016) ‘Gamified Requirements Engineering: Model and Experimentation’, in

References

Proceedings of the 22nd International Working Conference on Requirements Engineering: Foundation
for Sofiware Quality (REFSQ 2010). Springer-Verlag Berlin, pp. 171-187.

Lopes, J. H. (2012) Evaluation of Behavior-Driven Development. Delft University of Technology.

Liabke, D. and Van Lessen, T. (2016) ‘Modeling Test Cases in BPMN for Behavior- Driven
Development’, IEEE Sofiware, (October), pp. 15-21. doi: 10.1109/MS.2016.117.

Lucassen, G. et al. (2017) ‘Behavior-Driven Requirements Traceability via Automated Acceptance Tests’,
Proceedings - 2017 IEEE 25th International Requirements Engineering Conference Workshops, REW
2017, pp. 431-434. doi: 10.1109/REW.2017.84.

Luna, E. R. er al. (2010) ‘Capture and Evolution of Web Requirements Using WebSpec’, in Proc. of the
Int. Conference on Web Engineering, pp. 173-188. doi: 10.1007/978-3-642-13911-6_12.

Maguire, M. and Bevan, N. (2002) ‘User Requirements Analysis: A Review of Supporting Methods’, in
TFIP World Computer Congress. Kluwer Academic Publishers, pp. 133-148.

Marcotte, E. (2014) Responsive Web Design. 2nd Editio. A Book Apart, LLC.
Martin, J. (1991) Rapid Application Development. Macmillan Publishing Co.

Martinie, C. et al (2013) ‘Extending Procedural Task Models by Systematic Explicit Integration of
Objects, Knowledge and Information’, in Proceedings of the 31st European Conference on Cognitive
Ergonomics, p. European Association for Cognitive Ergonomics (KAC. doi: 10.1145/2501907.2501954.

Martinie, C. et al. (2015) ‘A Generic Tool-Supported Framework for Coupling Task Models and
Interactive Applications’, in Proceedings of the 7th ACM SIGCHI Symposium on Engineering Interactive
Computing Systems - EICS 15, pp. 244-253. doi: 10.1145/2774225.2774845.

Martinie, C., Palanque, P. and Winckler, M. (2011) ‘Structuring and Composition Mechanisms to
Address Scalability Issues in Task Models’, in Proc. of the IFIP TC.13 International Conference on
Human-Computer Interaction, pp. 589-609. doi: 10.1007/978-3-642-23765-2_40.

McDonald, J. E., Vandenberg, P. D. J. and Smartt, M. J. (1988) “The mirage rapid interface prototyping
system’, in UIST 88 Proceedings of the Ist annual ACM SIGGRAPH symposium on User Interface
Software, pp. 77-84.

van Megen, R. and Meyerhofl, D. B. (1995) ‘Costs and benefits of early defect detection: experiences
from developing client server and host applications’, Software Quality Journal, 4(4), pp. 247-256. doi:
10.1007/BF00402646.

Melnik, G. 1. (2007) Empirical Analyses of Executable Acceptance Test Driven Development. University
of Calgary.

Meyer, B. (1985) ‘On Formalism in Specifications’, IEEE Sofiware, 2(1), pp. 6-26. doi:
10.1109/MS.1985.229776.

Myers, G. J. (2004) The Art of Sofiware Testing. 2nd edn. John Wiley & Sons, Inc.
Nair, S., De La Vara, J. L. and Sen, S. (2013) ‘A Review of Traceability Research at the Requirements
Engineering Conference RE@21°, i 2018 21st IEEE International Requirements Engineering
Conlerence, RE 2013 - Proceedings, pp. 222-229. doi: 10.1109/RE.2013.6636722.

Navarre, D. ef al. (2001) ‘A Tool Suite for Integrating Task and System Models Through Scenarios’, in

References

DSV-IS, pp. 88-113. dot: 10.1007/3-540-45522-1_6.

Navarre, D., Palanque, P. and Bastide, R. (2002) ‘Model-Based Interactive Prototyping of Highly
Interactive Applications’, in Computer-Aided Design of User Interfaces III. Springer, pp. 205-216.

Newman, M. et al. (2003) ‘DENIM: An Informal Web Site Design Tool Inspired by Observations of
Practice’, Human-Computer Interaction, 18(3), pp. 259-324. doi: 10.1207/515327051HCI1803_3.

Nicolle, C. A. (1999) ‘USERIit - Design for all methods and tools’, in COST' 219bis Seminar ‘Human
Aspects of Telecommunications for Disabled and Older People””. Donostia-San Sebastian, Spain, Spain.
Available at: http://hdl.handle.net/2134/1026.

Nielsen, J. (1986) ‘A Virtual Protocol Model for Computer-Human Interaction’, International Journal of

Man-Machine Studies, 24(3), pp. 301-312. doi: 10.1016/S0020-7373(86)80028-1.
North, D. (2006) ‘Introducing BD1Y’, Better Sofiware.

North, D. (2009) ‘Agile Specifications, BDD and Testing eXchange: How to sell BDD to the business’.
London: Skills Matter. Available at: https://skillsmatter.com/skillscasts/923-how-to-sell-bdd-to-the-
business#video.

North, D. (2017) What’s in a Story? Available at: https://dannorth.net/whats-in-a-story/ (Accessed: 1
December 2017).

Oran, A. C. et al. (2017) ‘Analysing Requirements Communication Using Use Case Specification and
User Stories’, in Proceedings of the 31st Brazilian Symposium on Software Engineering (SBES 2017).
ACM, pp. 214-223. doi: https://doi.org/10.1145/3131151.3131166.

Osterwell, L. J. (2005) ‘Unifying Microprocess and Macroprocess Research’, in Unifying the Sofiware
Process Spectrum. Springer, Berlin, Heidelberg, pp. 68-74. doi: https://do1.org/10.1007/11608035_7.

Palmer, S. R. and Felsing, J. M. (2002) A Practical Guide to Feature-Driven Development. 1st edn.
Prentice Hall.

Paterno, F. (1999) ‘ConcurTaskTrees : An Engineered Approach to Model-based Design of Interactive
Systems’, in The Handbook of Analysis for Human Computer Interaction, pp. 1-18. doi: 10.1111/5.1467-
923X.1954.tb00152.x.

Paterno, F. (2000) Model-Based Design and Evaluation of Interactive Applications. Springer-Verlag
London.

Paterno, F. (2003) ‘ConcurTaskTrees: An Engineered Notation for Task Model’, in The Handbook of
Task Analysis for Human-Computer Interaction. Lawrence Erlbaum Associates, pp. 483-503.

Paterno, F. et al. (2017) WSC, MBUI - Task Models. Available at: http://www.w3.org/TR/task-models/.

Paterno, F. and Mancini, C. (1999) ‘Developing task models from informal scenarios’, in CHI EA 99
CHI 99 Extended Abstracts on Human Factors in Computing Systems. ACM, pp. 228-229. doi:
https://dot.org/10.1145/632716.632858.

Pontico, F., Farenc, C. and Winckler, M. (2007) ‘Model-Based Support for Specifying eService
eGovernment Applications’, in Task Models and Diagrams for Users Interface Design: 5th International
Workshop, TAMODIA 2000, Hasselt, Belgium, October 23-24, 2000. Revised Papers, pp. 54-67. dot:
10.1007/978-3-540-70816-2_5.

References

Poppendieck, M., Poppendieck, T. D. and Poppendieck, T. (2003) Lean Sofiware Development: An
Agile Toolkit. Addison-Wesley Professional.

Puerta, A. and Eisenstein, J. (2002) ‘XIML: A Universal Language for User Interfaces’, in Proceedings of’
the 7th International — Conference on Intelligent User Interfaces. Avalable at:
http://www.ximl.org/documents/XimlWhitePaper.pdl.

Pugh, K. (2010) Lean-Agile Acceptance Test-Driven-Development. Pearson Education.

Pullmann, J. (2017) MBUI - Glossary - W3C. Available at: https://www.w3.org/TR/mbui-glossary/
(Accessed: 1 December 2017).

Rahman, M. and Gao, J. (2015) ‘A Reusable Automated Acceptance Testing Architecture for
Microservices in Behavior-Driven Development’, in Proceedings - 9th IEEE International Symposium on
Service-Oriented System Engineering, IEEE SOSE 2015, pp. 321-325. doi: 10.1109/SOSE.2015.55.

Ramesh, B. et al. (1995) ‘Implementing Requirements Traceability: A Case Study’, in Proceedings of the
Second IEEE International Symposium on Requirements Engineering. York, United Kingdom, pp. 89-
95.

Reddy, A. (2015) Scrumban [R]Evolution, The: Getting the Most Out of Agile, Scrum, and Lean Kanban.
Ist edn. Addison-Wesley Professional.

Rosson, M. B. and Carroll, J. M. (2001) Usability Engineering: Scenario-Based Development of Human-
Computer Interaction. Morgan Kaufmann.

Rosson, M. B. and Carroll, J. M. (2002) ‘Scenario-Based Design’, in The Human-Computer Interaction
Handbook: Fundamentals, Evolving Technologies and Emerging Applications, pp. 1032-1050. dot:
10.1016/),jb1.2011.07.004.

Royce, D. W. W. (1970) ‘Managing the Development of Large Software Systems’, IEEE Wescon,
(August), pp. 328-338.

Saffer, D. (2006) Designing for Interaction: Creating Smart Applications and Clever Devices. 1st edn.
New Riders.

Santoro, C. (2005) A Task Model-Based Approach for the Design and Evaluation of Innovative User
Interfaces. Consiglio Nazionale Delle Ricerche.

Schwaber, K. (2004) Agile Project Management with Scrum. Microsolft Press.

Silva, T. R. (2016) ‘Definition of a Behavior-Driven Model for Requirements Specification and Testing
of Interactive Systems’, in Proceedings - 2016 IEEE 24th International Requirements Engineering
Conlerence, RE 20106, pp. 444-449. doi: 10.1109/RE.2016.12.

Silva, T. R. et al. (2017) ‘A Comparative Study of Milestones for Featuring GUI Prototyping Tools’,
Journal of Sofiware Engineering and Applications, 10(06), pp. 564-589. doi: 10.4236/jsea.2017.106031.

Silva, T. R., Hak, J.-L.. and Winckler, M. (2016a) ‘An Approach for Multi-Artifact Testing Through an
Ontological Perspective for Behavior-Driven Development’, Complex Systems Informatics and Modeling
Quarterly, (7), pp. 81-107. doi: 10.7250/csimq.2016-7.05.

Silva, T. R., Hak, J.-L.. and Winckler, M. (2016b) “Testing Prototypes and Final User Interfaces Through
an Ontological Perspective for Behavior-Driven Development’, in 6th International Working Conference
on Human-Centred Software Engineering, and 8th International Working Conference on Human Error,

References

Salety, and System Development (HCSE 2016 and HESSD 2016), pp. 86-107. doi: 10.1007/978-3-319-
44902-9.

Silva, T. R., Hak, J.-L.. and Winckler, M. (2017a) ‘A Behavior-Based Ontology for Supporting Automated
Assessment of Interactive Systems’, in Proceedings - IEEE 11th International Conference on Semantic

Computing, ICSC 2017, pp. 250-257. doi: 10.1109/1CSC.2017.73.

Silva, T. R., Hak, J.-I.. and Winckler, M. (2017b) ‘A Formal Ontology for Describing Interactive
Behaviors and Supporting Automated Testing on User Interfaces’, International Journal of Semantic
Computing, 11(04), pp. 513-539. doi: 10.1142/51793351X17400219.

Silva, T. R., Hak, J.-L.. and Winckler, M. A. (2015) ‘A Review of Milestones in the History of GUI
Prototyping Tools’, in IFIP TC.13 International Conference on Human-Computer Interaction -
INTERACT 2015 Adjunct Proceedings, pp. 1-13.

Silva, T. R. and Winckler, M. (2017) ‘A Scenario-Based Approach for Checking Consistency in User
Interface Design Artifacts’, in ITHC’17, Proceedings of the 16th Brazilian Symposium on Human Factors
in Computing Systems, pp. 21-30. doi: 10.1145/3160504.3160506.

Silva, T. R. and Winckler, M. A. A. (2016) ‘“Towards Automated Requirements Checking Throughout
Development Processes of Interactive Systems’, in 22nd International Working Conference on
Requirements Engineering - Foundation for Software Quality, REFSQ 2010, pp. 1-2.

Sneed, H. M. (2007) ‘Testing against Natural Language Requirements’, in Proc. of the Seventh
International Conference on Quality Sofiware, pp. 380-387. doi: 10.1109/QSIC.2007.4385524.

Soeken, M., Wille, R. and Drechsler, R. (2012) ‘Assisted Behavior Driven Development Using Natural
Language Processing’, i TOOLS FEurope 2012, pp. 2069-287. Available at:
http://www.scopus.com/inward/record.url?eid=2-s2.0-

8486218811 1&partnerID=40&md5H=3f9¢6990f007 1f032a96¢05dea733985.

Solis, C. and Wang, X. (2011) ‘A Study of the Characteristics of Behaviour Driven Development’, in
Proceedings - 37th EUROMICRO Conference on Software Engineering and Advanced Applications,
SEAA 2011, pp. 383-387. doi: 10.1109/SEAA.2011.76.

Sousa, K. S. K., Mendonca, H. and Vanderdonckt, J. (2008) ‘A Model-Driven Approach to Align
Business Processes with User Interfaces’, Journal of Universal Computer Science, 14(19), pp. 3236-3249.

De Souza, C. S. (2005) ‘Semiotic engineering: Bringing designers and users together at interaction time’,
Interacting with Computers, 17(3), pp. 317-341. doi: 10.1016/).intcom.2005.01.007.

Stapleton, J. and Constable, P. (1997) DSDM: Dynamic Systems Development Method: The Method in
Practice. 1st edn. Addison-Wesley Professional.

Tian, J. (2005) ‘Software Inspection’, in Software Quality Engineering: 1esting, Quality Assurance, and
Quantifiable Improvement. John Wiley & Sons, Inc., pp- 237-250). dot:
https://doi.org/10.1002/0471722324.ch14.

Usability Body of Knowledge (2018) User Experience Professionals’ Association. Available at:
http://www.usabilitybok.org (Accessed: 1 June 2018).

Uusitalo, E. J. er al. (2008) ‘Linking Requirements and Testing in Practice’, in Proceedings of the 16th
IEEE International Requirements — Engineering Conference, RE0S, pp. 2656-270. dou:
10.1109/RE.2008.30.

References

Valente, P. et al. (2016) ‘Bridging Enterprise and Software Engineering Through an User-Centered Design
Perspective’, in Web Information Systems Engineering - WISE 2016, pp. 349-357. doi: 10.1007/978-3-
319-48743-4.

Valente, P. et al (2017) “The Goals Approach: Agile Enterprise Driven Software Development’, in
Complexity i Information Systems Development, pp. 201-219. doi: 10.1007/978-3-319-52593-8.

Vanderdonckt, J. (2005) ‘A MDA-Compliant Environment for Developing User Interfaces of Information
Systems’, in CALSE 2005, pp. 16-31. doi: 10.1007/11431855_2.

Wang, Y. and Wagner, S. (2018) ‘Combining STPA and BDD for Safety Analysis and Verification in
Agile Development: A Controlled Experiment, i [International Conference on Agile Sofiware
Development (XP 2018). Springer, pp. 37-53. doi: https://do1.org/10.1007/978-3-319-91602-6_3.

Wautelet, Y. ef al. (2014) ‘Unifying and Extending User Story Models’, in International Conference on
Advanced Information Systems Engineering (CAISE 2014). Springer, pp. 211-225. doi: 10.1007/978-3-
319-07881-6_15.

Winckler, M. et al. (2008) ‘Cascading dialog modeling with UsiXML, in International Workshop on
Design, Specification, and Verification of Interactive Systems, pp. 121-135.

Winckler, M. and Palanque, P. (2003) ‘State WebCharts: A Formal Description Technique Dedicated to
Navigation Modelling of Web Applications’, in Interactive Systems. Design, Specification, and
Verification, pp. 61-76. doi: 10.1007/978-3-540-39929-2_5.

Winckler, M. and Palanque, P. (2012) ‘Models as Representations for Supporting the Development of e-
Procedures’, in Usability in Government Systems. Elsevier, pp. 301-315. doi: 10.1016/B978-0-12-391063-
9.00051-1.

Wollt, A. et al. (2005) ‘Linking GUI Elements to Tasks - Supporting an Evolutionary Design Process’, in
Proceedings of the 4th International Workshop on Task Models and Diagrams, pp. 27-34. dor:
10.1145/1122935.1122941.

Wood, D. P. and Kang, K. C. (1992) A Classification and Bibliography of Sofiware Prototvping,
Requirements Engieering Project. Pittsburgh, Pennsylvania. Available at:
http://citeseerx.ist.psu.edu/viewdoc/download ?doi=10.1.1.84.6660&rep=rep 1 &type=pdf.

Appendix A: Concept Mapping Table

Checkbox and Radio Button Behaviors

Interactive Elements Affected
Ontological Behavior Task Step of Scenario :
Ontology Balsamiq Prototype Final UL
(com.balsamiq.mockups::)
f ~ ~ . : ~ Checkbox CheckBox CheckBox
theFieldIsUnchecked Veuf; the field <fieldname> ?Wca/ﬂ]]zen the field
1s unchecked <{reldname>” 1s unchecked Radio Button RadioButton Radio
s ~ > . ; - Checkbox CheckBox CheckBox
theFieldIsChecled Ye{u‘; ‘fllc field <tieldname> ?Wca/ﬂ]]zen rlfe field
1s checked <lieldname>” is checked Radio Button RadioButton Radio
assure eldlsUnchec ssure the field <tieldname> assure the field “<tieldname>" is i i i
awssure TheFreldlsUnchecke z.‘lssuze the field <fieldname> | When I assure the field “<tieldname>” 1s Checkbox CheckBox CheckBox
d 1s unchecked unchecked
. SSUT > freld <{i ame> assure the 11 “Ltieldna > s - - -
assure TheFreldIsChecked z"lssuze the field <tieldname> | When I assure the field “<tieldname>” 1s Checkbox CheckBox CheckBox
15 checked checked
Common Behaviors
Interactive Elements Affected
Ontological Behavior Task Step of Scenario :
Ontology Balsamiq Prototype Final UL
(com.balsamiq.mockups::)
Calendar Calendar or DateChooser Calendar
]) .) Checkbox CheckBox CheckBox
choose Choose <option> GivenyWhen/Then I choose “<option>” -
Radio Button RadioButton Radio
Link Link Link
Calendar Calendar or DateChooser Calendar
) .] Checkbox CheckBox CheckBox
select Select <option> GiveryWhen/Then I select “<option>” -
Radio Button RadioButton Radio
Link Link Link

Appendix A: Concept Mapping Table

Choose n the freld

When/Then I choose “<index>” by index

chooseByIndexInTheField - . e Dropdown List ComboBox Select
Y <tieldname> n the field “<tieldname>" I
Choose <ticldname> Calendar Calendar or DateChooser Calendar
. referring (o <option> When/Then I choose “<tieldname>” Checkbox CheckBox CheckBox
chooseReferringTo v PO - - -
) relerring (o “<option Radio Button RadioButton Radio
Choose <fieldname> - - -
Link Link Link
choose TheOptionOfValuel | Choose in the field When/Then I choose the option of value . N :
.) . P e~ ” Dropdown List ComboBox Select
nThekield <tieldname> <value>” in the field “<fieldname>
Menu MenuBar Menu
)))) } Menu Item Accordion Menultem
clickOn Click on <fieldname> When/Then I click on “<fieldname>”
Button Button Button
Link Link Link
Menu MenuBar Menu
Click on <fieldname> -
referring to <option> Menu Item Accordion Menultem
. _ clerring lo soplc When/Then I click on “<tieldname>”
clickOnReferringTo o P o, Button Button Button
referring to “<option>
)) Link Link Link
Click on <fieldname> — - —
Grid DataGnd Grid
doNotTyvpeAnyValueToTh | Do not type any value to the | When I do not type any value to the field . .
. Jpedi - pe any - ” Ype any Text Field TextInput TextField
ekield field <tfieldname> <tieldname>
. Reset the value of the field | When I reset the value of the field . .
resetThe ValueOf TheFreld - . ” Text Field TextInput TextField
<tieldname> <tieldname>
goTo Go to <address> GiveryWhen/Then I go to “<address>” Browser Window | BrowserWindow Screen
. Go to <address> with the GivenyWhen/Then I go to “<address>” . . :
goToWithTheParameters . P " Browser Window | BrowserWindow Screen
parameters <parameters> with the parameters “<parameters>
isDisplayed Display <page> Given/When/Then “<page>” is displaved | Browser Window | BrowserWindow Screen
Dropdown List ComboBox Select
. , . When/Then I sct “<value>” in the field . -
setinTheField Set <fieldname> s ” Text Field TextInput TextField
<tieldname>
Autocomplete SearchBox AutoComplete

Appendix A: Concept Mapping Table

le

“Kelement>” 1s not visible

Calendar Calendar or DateChooser Calendar
Dropdown List ComboBox Select
i]) When/Then I trv (o set in the ficld Text Field TextInput TextField
ayvToSetInThelield Try to set <fieldname> ol " i
<leldname> Autocomplete SearchBox AutoComplete
Calendar Calendar or DateChooser Calendar
) o o When/Then I set “<value>” in the field Dropdown List ComboBox Select
setinTheFieldReferringTo | Set <fieldnamme> . - ’] ! 11” - -
referring to “fieldname> Text Field TextInput TextField
. '1ch3q /Slb o “ » >”;

, . Inform <value 1> " e If)(pc; N 1/116-] wd : .
typeAndChooselnThelield |, . choose “<value 2>” in the field Autocomplete SearchBox AutoComplete
- Choose <value 2> P »

<fieldname>
o § . . When/Then I inform “<value 1>” and
mformAndChooseInTheFie | Inform <value 1> " . O,, mosvan ! \ .
§ choose “<value 2>” in the field Autocomplete SearchBox AutoComplete
Id Choose <value 2> ‘o ”
<fieldname>
willBe Displayed Display <content> Then “<content>” will be displayed Text Paragraph Text
willNotBeDisplayed Not display <content> Then “<content>” will not be displayed Text Paragraph Text
willBe DisplayedInTheField . Then will be displayed in the field
- Display <value> . P " Flement UI Element Flement
TheValue splay Svae “<teldname>” the value “<value> ! !
willNotBeDisplayvedIn TheFi . Then will not be displayed in the field
- Not display <value> N ” iy . Element UI Element Element
eldTheValue P “teldname>” the value “<value>
. . Then will be displayed the value “<value>”
illBeDisplayed The Valuel, . . e P
WD el APy c‘(z" 1e vauetn Display <value> 1 the field “<fieldname>” referring to Element UI Element Element
TheFieldReferringTo - “ ” -
° <element>
. . Then will not be displayed the value
'//N B D [(’ /1 77 V;[. @ 9 - ~ ‘oyr 2
williNote2isplay .ed. el Not display <value> <value>” in the field “<fieldname> Element UI Element Element
uelnTheFieldReferringTo i o “ ”
- referring to “<element>
. Given/When/Then “<ficldname>” is not
1sNotVisible Hidden <fieldname> visible Element UI Element Element
value ReferringTolsNot Visil . ven/When/Then “<value>” referring
valueReferringTolsNot Visib Hidden <value> G1 en <value>"reierring lo Element UI Element Element

Appendix A: Concept Mapping Table

wart TheFieldBe VisibleClick

Wait the field <tieldname>

Given/When/Then I wait the field

be visible, clickable and “tieldname>” be visible, clickable and Flement UI Element Flement
ableAndEnable
enable enable
. . . Wait the field <fieldname> | GivenyWhen/Then I wait the field
wait TheFieldReferringToBe .. . P . b ”
.. - ; be visible, clickable and <tieldname>” referring to “<element>” be | Element UI Element Flement
Visible Clickable AndEnable L . ;
enable visible, clickable and enable
.. . | Check the eleme .
theElementls VisibleAndDis Check the ¢ e".lc.)m Given/When/Then the element
<element> is visible and . PO . Element UI Element Element
able . <element>” 1s visible and disable
disable
_ .| Check the element Given/When/Then the element
theElementReferringTols Vi S P . p Y-
. . ; <element> is visible and <fieldname>" referring to “<element>”is | Element UI Element Element
sibleAndDisable ;
disable visible and disable
. . . When/Then [set in the field
setlnThelieldAndTr T | Set <fieldname>) . . .
setdnThe FieldAnd Trigger [Hcidnat “Mieldname>” and trigger the event Text Field TextInput TextField
heEvent Trigger <event> “ ” o
§ <event>
. , . Given/When/Then I click on the row
clickOnTheRowOIThe Tree | Select value for <tree> . Yy - e (,), ron Tree - Tree
<row>” of the tree “<tree>
Data Generation Behaviors
Interactive Elements Affected
Ontological Behavior Task Step of Scenario Balsamiq Prototvpe
Ontology q Frototyp Final UL
(com.balsamiq.mockups::)
L Inform a random number| GivenyWhen/Then I inform a random
mformARandomNumberW | . S . . -
. y . with prefix i the field| number with prefix “<prefix>” in the field| Text Field TextInput TextField
ithPrefixinTheField . P .
<tieldname> <tieldname>
mformARandomNumberln | Inform a random number in| When [imform a random number in the Text Field TextInnut TextField
TheField the field <tieldname> field “<fieldname>” put
Data Provider Behaviors
Ul Elements
Ontological Behavior Task Step of Scenario Balsamiq Prototvpe
Ontology q trototyp Final UI
(com.balsamiq.mockups::)
mform Inform <value> Given/When [inform “<value>” Grid DataGnd Grid

Appendix A: Concept Mapping Table

ogBox

dialog box

“value>” in the dialog box

mformThelield Inform the field <ticldname>| When [inform the field “<fieldname>” Grid DataGnd Grid
mformTheFields IH{OHH the ficlds When I mform the fields “<tieldnames>” | Grid DataGnd Grid
<fieldnames>
selectFromDataSet Select from dataset <dataset> ?1 fﬂ I select from dataset - - -
<dataset>

mformTheValueOfTheFiel | Inform the value of the field | When/Then I inform the value of the field

. . ” Element UI Element Element
d <tieldname> <tieldname>

. /‘iz ﬂ L oy S »
mformKeyWithTheValue | Inform key <key> Gl “ en 1111’1"()1111 key “<key - - -
with the value “<value>
defineThe Variable WithThe | Define the variable Given/When/Then I define the variable i i i
Value <variable> “Svariable>” with the value “<value>”
obtamThe ValueFromTheF | Obtan the value from the Given/When/Then I obtain the value from Element UI Element Element
eld field <tieldname> the field “<fieldname>" '] '
Debug Behaviors
Ul Elements
Ontological Behavior Task Step of Scenario :
Ontology Balsamiq Prototype Final UL
(com.balsamiq.mockups::)
printOnTheConsole The Val 1?;1” 0?.:[[16 (()IIS[()]/C‘ the When/Then I print on the console the i i i
ueOFfThe Variable vatue of [hc vanable value of the variable <variable>
<variable>
Dialog Behaviors
Ul Elements
Ontological Behavior Task Step of Scenario :
Ontology Balsamiq Prototype Final UL
(com.balsamiq.mockups::)
confirmTheDialogBox Confirm the dialog box [)GIOZEH/MMEM ! confirm the dizlog Window Dialog | Alert Dialog
cancelTheDialogBox Cancel the dialog box GiveryWhen/Then I cancel the dialog box | Window Dialog | Alert Dialog
mformTheValuelnTheDial | Inform the value in the Given/When/Then I inform the value . .)
‘Window Dialog | Alert Dialog

Appendix A: Concept Mapping Table

willBe DisplayedInTheDialo

Display <message> in the

Then will be displaved “<message>” in the

Table

table <table>

“<column>” of the table “<table>”

gBox dialog box dialog box Window Dialog | Alert Dialog
Mouse Control Behaviors
Ul Elements
Ontological Behavior Task Step of Scenario Balsamiq Prot
Ontology amiq Lrototype Final UL
(com.balsamiq.mockups::)
Menu MenuBar Menu
Move the mouse over When I move the mouse over Menu Item Accordion Menultem
moveTheMouseOver “ ”
<element> <element> Button Button Button
Link Link Link
Table Behaviors
Ul Elements
Ontological Behavior Task Step of Scenario Balsamiq Prot
Ontology amiq Lrototype Final UL
(com.balsamiq.mockups::)
. N . ca/lb - oW “<T /',>» o
clickOnTheRowOITheTabl | Click on the row of the table Wh “eﬂ [(11(,{‘ on fh.e row "<row>"of
gy the table “<table>” referring to Grnid DataGrid Grnid
eReferringTo <table> " ”
<element>
, . . Store the cell of the table When/Then [store the cell “<cell>” of the | . . s ..
store TheCellOfTheTableln <able> in <place> table “<able>” in “<place>” Grid DataGrid Grid
store TheColumnOfTheTab | Store the column of the table ,I,}Wl ef If‘fm‘c‘ the (;i)llllllll -
. <column>” of the table “<table>” in Grid DataGnd Grid
leln <table> in <place> “ ”
<place>
compareTheTextOfTheTa | Compare the text of the When/Then I compare the text of the Grid DataGrid Grid
bleCellWith table cell with <text> table cell “<table text>” with “<text>” €
compareTheTextOfTheTa | Compare the text of the When/Then I compare the text of the Grid DataGrid Grid
bleColumnWith table column with <text> table column “<table text>” with “<text>” &
clickOnTheCellOfTheTabl | Click on the cell of the table | When/Then I click on the cell “<cell>” of |
P ” Grid DataGnd Grid
e <table> the table “<table>
clickOnTheColumnOfThe | Click on the column of the | When/Then I click on the column L.
Grid DataGnd Grid

Appendix A: Concept Mapping Table

choose TheOptionInTheCel

Choose the option in the cell

When/Then I choose the option

OfTheTable

of the table <table>

column of the table “<table>”

; “g on>? 1 e o 2 N (Ve ~

JOFThe Table of the table <table>) ()1)r1011” mn the cell of the table Grid DataGrid Grnid
<table>

choose TheOptionInTheCol | Choose the option in the ‘I;W)lm. . >€7}11f2110f):f [7111161‘ (Zf(),Z;m[i Grid DataGrid Grid

umnOfTheTable column of the table <table> | oprc Y ¢ colummn of the lable ¢ alabtic ne
<table>

ypeTheTextInTheCellOfT | Type the text in the cell of | When/Then I type the text “<text>” in the Grid DataGrid Grid

heTable the table <table> cell of the table “<table>” 4 ¢

typeTheTextinTheColumn | Type the text in the column | When/Then I type the text “<text>” in the Grid DataGrid Grid

Appendix B: Log of Results - Assessing Task
Models

Running story stories/Confirm Flight Selection.storyConverted

User Story: Confirm Flight Selection

(stories/Confirm Flight Selection.storyConverted)

Narrative:

As a IRIT researcher

1 want to get all the required data to confirm my flights

So that 1 can check the information, the fare rules and then finalize my booking.

Scenario: Confirm a Flight Selection

Proceed to Login

Reach the Travel Planet Search Page

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Go to Flight Search - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Go to Flight Search - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Go to Flight Search - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Go to Flight Search - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Go to Flight Search - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Go to Flight Search - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Go to Flight Search - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Go to Flight Search - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Go to Flight Search - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Go to Flight Search - Task not found! >>
Given 1 go to "Flight Search"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Select Round Trip - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Select Round Trip - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Select Round Trip - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Select Round Trip - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Select Round Trip - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Select Round Trip - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Select Round Trip - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Select Round Trip - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Select Round Trip - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Select Round Trip - Task not found! >>
When 1 select "Round Trip"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not
found! >>

<< Scenari
<<

: Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

<< : No Optional One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>

<< : Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
And I inform "Toulouse" and choose "Toulouse, Blagnac (TLS)" in the field "Departure"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
When 1 inform "Paris"™ and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Destination"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: Sam, Déc 1, 2018 >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in
Position: 8 - Associated Value: No Value >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in
Position: 15 - Associated Value: No Value >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 16
- Associated Value: No Value >>

Appendix B: Log of Results - Assessing Task Models

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 -
Associated Value: No Value >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>

<< Scenario: Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: Sam, Déc
1, 2018 >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8
- Associated Value: No Value >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: No Value
>>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position:
8 - Associated Value: No Value >>

And | set "Sam, Déc 1, 2018" in the field "Departure Date"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Arrival Date - Found in Position: 9 - Associated Value:
Lun, Déc 10, 2018 >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Arrival Date - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Arrival Date - Found in Position: 10 - Associated
Value: No Value >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Arrival Date - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Arrival Date - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Set Arrival Date - Found in Position: 10 - Associated Value: Lun, Déc
10, 2018 >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Arrival Date - Found in Position: 9 -
Associated Value: No Value >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Arrival Date - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Arrival Date - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Arrival Date - Task not found! >>
When 1 set "Lun, Déc 10, 2018" in the field "Arrival Date"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Submit Search - Found in Position: 11 >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position:
17 >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 17 >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 23 >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Submit Search - Found in Position: 11 >>

<< Scenario: Return Trip With Data.scen - Searched Task: Submit Search - Found in Position: 17 >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 16 >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Submit Search - Found in Position: 16 >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 11 >>
And I submit "Search"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage
- Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found!
>>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not
found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task
not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found!
>>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task
not found! >>

Then will be displayed "2. Sélectionner un voyage"

Using timeout for story Confirm Flight Selection.storyConverted of 21600 secs.

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Availability Page - Task
not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found!
>>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found!
>>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not
found! >>

Given "Availability Page" is displayed

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found!
>>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

on "No Bag" referring to "Air France 7519"

: No Optional Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found!

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
And I click on "No Bag" referring to "Air France 7522"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on Book - Task not found! >>

Appendix B: Log of Results - Assessing Task Models

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Book - Task not found!
>>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

When 1 click on "Book"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display J"accepte les Conditions d"achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions

d*achat concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display J"accepte les Conditions d"achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Display J"accepte les Conditions d"achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat

concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display J"accepte les Conditions d"achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>

Then will be displayed "J"accepte les Conditions d"achat concernant le(s) tarif(s) aérien(s)."

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task
not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found!
>>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found!
>>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not
found! >>

Given "Confirmation Page" is displayed

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant le(s)

tarif(s) aérien(s). - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions
d*achat concernant le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions d"achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant le(s) tarif(s)

aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions d"achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant le(s) tarif(s)

aérien(s). - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions d"achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>

When 1 choose "J"accepte les Conditions d"achat concernant le(s) tarif(s) aérien(s)."

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Finalize the trip -
Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found!

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not
found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not
found! >>

And I click on "Finalize the trip”

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Votre voyage a été
confirmé! - Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found!
>>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task
not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! -
Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found!
>>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! -
Task not found! >>

Then will be displayed "Votre voyage a été confirmé!™

Scenario: Confirm a Flight Selection (Full Version)

Appendix B: Log of Results - Assessing Task Models

Proceed to Login

Reach the Travel Planet Search Page

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in
Position: 1 >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1
>>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

<< Scenario: Return Trip With Data.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1
>>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position:
1 >>

Given 1 go to "Book Flights"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
When 1 inform "Toulouse'™ and choose "Toulouse, Blagnac (TLS)" in the field "Departure"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
And I inform "Paris" and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Destination"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: Sam, Déc 1, 2018 >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in
Position: 8 - Associated Value: No Value >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in
Position: 15 - Associated Value: No Value >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 16
- Associated Value: No Value >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 -
Associated Value: No Value >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>

<< Scenario: Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: Sam, Déc
1, 2018 >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8
- Associated Value: No Value >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: No Value
>>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position:
8 - Associated Value: No Value >>

When 1 set "Sam, Déc 1, 2018" in the field "Departure Date"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Departure Time Frame - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Time Frame - Task
not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Time Frame - Found in Position: 9 -
Associated Value: No Value >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Time Frame - Found in Position:
17 - Associated Value: No Value >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Time Frame - Found in Position:
9 - Associated Value: No Value >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Departure Time Frame - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Set Departure Time Frame - Found in Position: 9 - Associated Value:
No Vvalue >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Time Frame - Task not found!
>>

Appendix B: Log of Results - Assessing Task Models

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Time Frame - Found in Position: 9 -
Associated Value: No Value >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Departure Time Frame - Found in Position: 9 - Associated Value:
No Vvalue >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Time Frame - Task not found!
>>

And 1 set "08 00" in the field "Departure Time Frame"

No Optional Return Trip With Data.scen - Searched Task: Choose Round Trip - Task not found! >>

<< Scenarlo‘ No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Round Trip - Task not
found! >>

<< Scenarlo Successful Return Trip - Regular Case.scen - Searched Task: Choose Round Trip - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Round Trip - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Round Trip - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Choose Round Trip - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Round Trip - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Round Trip - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Round Trip - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Round Trip - Task not found! >>
When 1 choose "Round Trip"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Arrival Date - Found in Position: 9 - Associated Value:
Lun, Déc 10, 2018 >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Arrival Date - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Arrival Date - Found in Position: 10 - Associated
Value: No Value >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Arrival Date - Task not found! >>

: No Optional One-Way Trip Declined.scen - Searched Task: Set Arrival Date - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Set Arrival Date - Found in Position: 10 - Associated Value: Lun, Déc
10, 2018 >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Arrival Date - Found in Position: 9 -
Associated Value: No Value >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Arrival Date - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Arrival Date - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Arrival Date - Task not found! >>
And 1 set "Lun, Déc 10, 2018" in the field "Arrival Date"

o: No Optional Return Trip With Data.scen - Searched Task: Set Arrival Time Frame - Task not found! >>

No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Arrival Time Frame - Task

not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Arrival Time Frame - Found in Position: 11 -
Associated Value: No Value >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Arrival Time Frame - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Arrival Time Frame - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Set Arrival Time Frame - Found in Position: 11 - Associated Value: No
Value >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Arrival Time Frame - Task not found!

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Arrival Time Frame - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Arrival Time Frame - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Arrival Time Frame - Task not found!
>>

When 1 set "10:00" in the field "Arrival Time Frame"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Number of Passengers - Found in Position: 10 -
Associated Value: 1 >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Number of Passengers -
Found in Position: 16 - Associated Value: No Value >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Number of Passengers - Found in Position: 12 -
Associated Value: No Value >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Number of Passengers - Found in
Position: 18 - Associated Value: No Value >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Number of Passengers - Found in Position: 10 -
Associated Value: No Value >>

<< Scenario: Return Trip With Data.scen - Searched Task: Choose Number of Passengers - Found in Position: 12 - Associated Value:
1 >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Number of Passengers - Found in
Position: 10 - Associated Value: No Value >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Number of Passengers - Found in Position: 11
- Associated Value: No Value >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Number of Passengers - Found in Position: 11 - Associated Value:
No Value >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Number of Passengers - Found in
Position: 10 - Associated Value: No Value >>

And I choose the option of value "2" in the field "Number of Passengers"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Timeframe - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Timeframe - Task not found!
>>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Timeframe - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Timeframe - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Timeframe - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Set Timeframe - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Timeframe - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Timeframe - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Timeframe - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Timeframe - Task not found! >>

When 1 set 6" in the field "Timeframe"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Select Direct Flights Only - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Select Direct Flights Only -
Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Select Direct Flights Only - Found in Position: 14 >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Select Direct Flights Only - Found in
Position: 20 >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Select Direct Flights Only - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Select Direct Flights Only - Found in Position: 14 >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Select Direct Flights Only - Task not
found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Select Direct Flights Only - Found in Position: 13
>>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Select Direct Flights Only - Found in Position: 13 >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Select Direct Flights Only - Task not
found! >>

And I select "Direct Flights Only"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Flight Class - Task not found! >>

Appendix B: Log of Results - Assessing Task Models

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Flight Class - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Flight Class - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Flight Class - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Flight Class - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Choose Flight Class - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Flight Class - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Flight Class - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Flight Class - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Flight Class - Task not found! >>
When 1 choose the option of value "Economique™ in the field "Flight Class"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Companies - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Companies - Task not found!
>>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Companies - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Companies - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Companies - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Set Companies - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Companies - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Companies - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Companies - Task not found! >>

<< Scenari No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Companies - Task not found! >>

And I set ir France"” in the field "Companies"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Submit Search - Found in Position: 11 >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position:
17 >>

<< Scenari
<< Scenari

: Successful Return Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 17 >>

: Successful Multidestination Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 23 >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Submit Search - Found in Position: 11 >>

<< Scenario: Return Trip With Data.scen - Searched Task: Submit Search - Found in Position: 17 >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 16 >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Submit Search - Found in Position: 16 >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 11 >>
When 1 submit "Search"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage
- Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found!
>>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not
found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task
not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found!
>>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task
not found! >>

Then will be displayed "2. Sélectionner un voyage"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Availability Page - Task
not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found!
>>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found!
>>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not
found! >>

Given "Availability Page" is displayed

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found!
>>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>

: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>

: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
When 1 ¢ on "No Bag" referring to "Air France 7519"

: No Optional Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found!

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
And I click on "No Bag" referring to "Air France 7522"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Book - Task not found!
>>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

Appendix B: Log of Results - Assessing Task Models

When 1 click on "Book"
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display J"accepte les Conditions d"achat concernant le(s)

tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions
d*achat concernant le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat

concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display J"accepte les Conditions d"achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Display J"accepte les Conditions d"achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat

concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display J"accepte les Conditions d"achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>

Then will be displayed "J"accepte les Conditions d"achat concernant le(s) tarif(s) aérien(s)."

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task
not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found!
>>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found!
>>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not
found! >>

Given "Confirmation Page" is displayed

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose 1 accept the General Terms and Conditions. - Task
not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose | accept the General
Terms and Conditions. - Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose | accept the General Terms and Conditions. -
Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose | accept the General Terms and
Conditions. - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose 1 accept the General Terms and Conditions. - Task
not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Choose 1 accept the General Terms and Conditions. - Task not found!

>>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose | accept the General Terms and
Conditions. - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose I accept the General Terms and Conditions. -
Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose I accept the General Terms and Conditions. - Task not found!
>>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose | accept the General Terms and
Conditions. - Task not found! >>

When 1 choose "l accept the General Terms and Conditions."

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Finalize the trip -
Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found!
>>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not
found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not
found! >>

And I click on "Finalize the trip”

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Votre voyage a été
confirmé! - Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found!
>>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task
not found! >>

io: No Optional One-Way Trip Declined.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! -
Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found!
>>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! -
Task not found! >>

Then will be displayed "Votre voyage a été confirmé!™

Scenario: Confirm a Flight Selection for a One-Way Trip

Proceed to Login

Reach the Travel Planet Search Page

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in
Position: 1 >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1
>>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

<< Scenario: Return Trip With Data.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

Appendix B: Log of Results - Assessing Task Models

<<
>>
<<
<<
<<

Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1

Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
Scenario: One-Way Trip Declined.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>
Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position:

1 >>
Given 1 go to "Book Flights"

<<

Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

When 1 inform "Toulouse'™ and choose ""Toulouse, Blagnac (TLS)" in the field "Departure"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>

<<

Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>

<<

Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>

And I inform "Paris" and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Destination"

<<

Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated

Value: Sam, Déc 1, 2018 >>

<<

Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in

Position: 8 - Associated Value: No Value >>

<<

Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in

Position: 15 - Associated Value: No Value >>

<<

Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated

Value: No Value >>

<<

Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 16

- Associated Value: No Value >>

<<

Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 -

Associated Value: No Value >>

<<

Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated

Value: No Value >>

<<
1,
<<

Scenario: Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: Sam, Déc
2018 >>
Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8

- Associated Value: No Value >>

<<

Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated

Value: No Value >>

<<
>>
<<

Scenario: One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: No Value

Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position:

8 - Associated Value: No Value >>
When 1 set "Sam, Déc 1, 2018" in the field "Departure Date"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose One-way Trip - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose One-way Trip - Found in Position: 9 >>

<< Scenario: Return Trip With Data.scen - Searched Task: Choose One-way Trip - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Found in Position: 10 >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose One-way Trip - Found in Position: 10 >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Found in Position:

9 >>
And 1| choose "One-way Trip"

<<

Scenario: No Optional Return Trip With Data.scen - Searched Task: Submit Search - Found in Position: 11 >>
Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position:
>>

Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 17 >>
Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 23 >>
Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Submit Search - Found in Position: 11 >>

Scenario: Return Trip With Data.scen - Searched Task: Submit Search - Found in Position: 17 >>

Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 11 >>
Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 16 >>

Scenario: One-Way Trip Declined.scen - Searched Task: Submit Search - Found in Position: 16 >>

Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 11 >>

Appendix B: Log of Results - Assessing Task Models

When 1 submit "Search"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage
- Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found!
>>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not
found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task
not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found!
>>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task
not found! >>

Then will be displayed "2. Sélectionner un voyage"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Availability Page - Task
not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found!
>>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found!
>>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not
found! >>

Given "Availability Page" is displayed

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found!
>>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
When 1 click on "No Bag"™ referring to "Air France 7519"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Book - Task not found!
>>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

And I click on "Book™

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display J"accepte les Conditions d"achat concernant le(s)

tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions
d*achat concernant le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat

concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display J"accepte les Conditions d"achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Display J"accepte les Conditions d"achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display J"accepte les Conditions d"achat concernant le(s) tarif(s)

aérien(s). - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>

Then will be displayed "J"accepte les Conditions d"achat concernant le(s) tarif(s) aérien(s)."

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task
not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found!
>>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found!
>>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not
found! >>

Given "Confirmation Page'" is displayed

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant le(s)

tarif(s) aérien(s). - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions
d*achat concernant le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions d"achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>

Appendix B: Log of Results - Assessing Task Models

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>

<< Scenar No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions d"achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions d"achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>

When 1 choose "J"accepte les Conditions d"achat concernant le(s) tarif(s) aérien(s)."

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Finalize the trip -
Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found!
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on Finalize the trip - Task not found! >>

: Return Trip With Data.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not
found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not
found! >>

And I click on "Finalize the trip”

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Votre voyage a été
confirmé! - Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found!
>>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task
not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! -
Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found!
>>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! -
Task not found! >>

Then will be displayed "Votre voyage a été confirmé!™

Scenario: Confirm a Flight Selection for a Multidestination Trip

Proceed to Login

Reach the Travel Planet Search Page

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in
Position: 1 >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1
>>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

<< Scenario: Return Trip With Data.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1
>>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position:
1 >>

Given 1 go to "Book Flights"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Multidestination Trip - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Multidestination Trip -
Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Multidestination Trip - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Multidestination Trip - Task not
found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Multidestination Trip - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Choose Multidestination Trip - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Multidestination Trip - Task not
found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Multidestination Trip - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Multidestination Trip - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Multidestination Trip - Task not
found! >>

When 1 choose "Multidestination Trip"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
And I inform "Toulouse" and choose "Toulouse, Blagnac (TLS)" in the field "Departure"

Appendix B: Log of Results - Assessing Task Models

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenari No Optional One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>

<< Scena Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>

<< One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenari No Optional Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not
found! >>

<< Scenario:
<< Scenario:
<< Scenario:
<< Scenario:

Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>

Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>

No Optional One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>

Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>

No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>

<< Scena One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
When 1 inform "Paris"™ and choose ""Paris, Charles-de-Gaulle (CDG)" in the field "Destination"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: Sam, Déc 1, 2018 >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in
Position: 8 - Associated Value: No Value >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in
Position: 15 - Associated Value: No Value >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 16
- Associated Value: No Value >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 -
Associated Value: No Value >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>

<< Scenario: Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: Sam, Déc
1, 2018 >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8
- Associated Value: No Value >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: No Value
>>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position:
8 - Associated Value: No Value >>

And | set "Sam, Déc 1, 2018" in the field "Departure Date"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scena Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenari No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenari One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not
found! >>

<< Scena
<< Scenari

<<

<< Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

<< : Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< : No Optional One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>

<< : Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>

<< : No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
<< : Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>
When 1 inform "Pari and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Departure"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not
found! >>
<< Scenario

Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenari One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenari No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
And I inform "Nice" and choose "Nice, Cote D"Azur (NCE)" in the field "Destination”

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: Sam, Déc 1, 2018 >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in
Position: 8 - Associated Value: No Value >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in
Position: 15 - Associated Value: No Value >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>

<< : Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< : No Optional One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>

<< : Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>

<< : No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< : Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>

Appendix B: Log of Results - Assessing Task Models

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 16
- Associated Value: No Value >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 -
Associated Value: No Value >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>

<< Scenario: Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: Sam, Déc
1, 2018 >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8
- Associated Value: No Value >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated
Value: No Value >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: No Value
>>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position:
8 - Associated Value: No Value >>

When 1 set "'Sam, Déc 10, 2018" in the field "Departure Date"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Submit Search - Found in Position: 11 >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position:
17 >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 17 >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 23 >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Submit Search - Found in Position: 11 >>

<< Scenario: Return Trip With Data.scen - Searched Task: Submit Search - Found in Position: 17 >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 11 >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 16 >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Submit Search - Found in Position: 16 >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 11 >>
And I submit "Search"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage
- Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found!
>>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not
found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task
not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found!
>>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task
not found! >>

Then will be displayed "2. Sélectionner un voyage"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Availability Page - Task
not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found!
>>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found!
>>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not
found! >>

Given "Availability Page" is displayed

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found!
>>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
When 1 click on "No Bag"™ referring to "Air France 7519"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found!
>>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

And I click on "No Bag" referring to "Air France 7700"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario:
>>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

When 1 click on "Book"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display J"accepte les Conditions d"achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions
d*achat concernant le(s) tarif(s) aérien(s). - Task not found! >>

No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Book - Task not found!

Appendix B: Log of Results - Assessing Task Models

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display J"accepte les Conditions d"achat concernant le(s)

tarif(s) aérien(s). - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display J"accepte les Conditions d"achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat concernant

le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: One-Way Trip Declined.scen - Searched Task: Display J"accepte les Conditions d"achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat

concernant le(s) tarif(s) aérien(s). - Task not found! >>

Then will be displayed "J"accepte les Conditions d"achat concernant le(s) tarif(s) aérien(s)."

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task

not found! >>
io: Successful Return Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenari
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found!
>>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found!
>>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not
found! >>

Given "Confirmation Page" is displayed

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant le(s)

tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions
d*achat concernant le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions d"achat

concernant le(s) tarif(s) aérien(s). - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions d"achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant le(s) tarif(s)

aérien(s). - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions d"achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>

When 1 choose "J"accepte les Conditions d"achat concernant le(s) tarif(s) aérien(s)."

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Finalize the trip -
Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found!
>>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not
found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on Finalize the trip - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Finalize the trip - Task not
found! >>

And I click on "Finalize the trip”

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Votre voyage a été
confirmé! - Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found!
>>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task
not found!

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! -
Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found!
>>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Votre voyage a été confirmé! - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Votre voyage a été confirmé! -
Task not found! >>

Then will be displayed "Votre voyage a été confirmé!™

Scenario: Decline a Flight Selection

Proceed to Login

Reach the Travel Planet Search Page

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in
Position: 1 >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1
>>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

<< Scenario: Return Trip With Data.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1
>>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Go to Book Flights - Found in Position: 1 >>

Appendix B: Log of Results - Assessing Task Models

<<

Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Go to Book Flights - Found in Position:

1 >>
Given 1 go to "Book Flights"

<<

Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Departure - Task not found! >>

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

<<
<<

Scenario: One-Way Trip Declined.scen - Searched Task: Choose Departure - Task not found! >>
Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Departure - Task not found! >>

When 1 inform "Toulouse'™ and choose ""Toulouse, Blagnac (TLS)" in the field "Departure"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Inform Destination - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Inform Destination - Task not found! >>
<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose Destination - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose Destination - Task not found! >>

And I inform "Paris" and choose "Paris, Charles-de-Gaulle (CDG)" in the field "Destination"

<<

Scenario: No Optional Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated

Value: Sam, Déc 1, 2018 >>

<<

Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in

Position: 8 - Associated Value: No Value >>

<<

Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in

Position: 15 - Associated Value: No Value >>

<<

Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated

Value: No Value >>

<<

Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 16

- Associated Value: No Value >>

<<

Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 -

Associated Value: No Value >>

<<

Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated

Value: No Value >>

<<
1,
<<

Scenario: Return Trip With Data.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: Sam, Déc
2018 >>
Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8

- Associated Value: No Value >>

<<

Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated

Value: No Value >>

<<
>>
<<

Scenario: One-Way Trip Declined.scen - Searched Task: Set Departure Date - Found in Position: 8 - Associated Value: No Value

Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Set Departure Date - Found in Position:

8 - Associated Value: No Value >>
When 1 set "Sam, Déc 1, 2018" in the field "Departure Date"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose One-way Trip - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Task not
found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Task not found! >>
<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose One-way Trip - Found in Position: 9 >>

<< Scenario: Return Trip With Data.scen - Searched Task: Choose One-way Trip - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Task not found! >>
<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Found in Position: 10 >>

<<
<<

Scenario: One-Way Trip Declined.scen - Searched Task: Choose One-way Trip - Found in Position: 10 >>
Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose One-way Trip - Found in Position:

9 >>
And | choose "One-way Trip"

<<
<<
17
<<
<<
<<
<<
<<
<<
<<
<<

Scenario: No Optional Return Trip With Data.scen - Searched Task: Submit Search - Found in Position: 11 >>

Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position:
>>

Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 17 >>

Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 23 >>
Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Submit Search - Found in Position: 11 >>

Scenario: Return Trip With Data.scen - Searched Task: Submit Search - Found in Position: 17 >>

Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 11 >>
Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 16 >>

Scenario: One-Way Trip Declined.scen - Searched Task: Submit Search - Found in Position: 16 >>

Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Submit Search - Found in Position: 11 >>

When 1 submit "Search"

<<
<<

Scenario: No Optional Return Trip With Data.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage

- Task not found! >>

Appendix B: Log of Results - Assessing Task Models

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found!
>>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not
found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task
not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found!
>>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display 2. Sélectionner un voyage - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display 2. Sélectionner un voyage - Task
not found! >>

Then will be displayed "2. Sélectionner un voyage"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Availability Page - Task
not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found!
>>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found!
>>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Availability Page - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Availability Page - Task not
found! >>

Given "Availability Page" is displayed

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found!
>>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on No Bag - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on No Bag - Task not found! >>
When 1 click on "No Bag"™ referring to "Air France 7519"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Book - Task not found!
>>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on Book - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Book - Task not found! >>

And I click on "Book"

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display J"accepte les Conditions d"achat concernant le(s)

tarif(s) aérien(s). - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions
d*achat concernant le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display J"accepte les Conditions d"achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>
<< Scenario: Return Trip With Data.scen - Searched Task: Display J"accepte les Conditions d"achat concernant le(s) tarif(s)

aérien(s). - Task not found! >>
<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display J"accepte les Conditions d"achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display J"accepte les Conditions d"achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>

Then will be displayed "J"accepte les Conditions d"achat concernant le(s) tarif(s) aérien(s)."

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task
not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found!
>>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found!
>>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Confirmation Page - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Confirmation Page - Task not
found! >>

Given "Confirmation Page" is displayed

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions

d*achat concernant le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions d"achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant le(s)
tarif(s) aérien(s). - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant le(s) tarif(s)
aérien(s). - Task not found! >>

Appendix B: Log of Results - Assessing Task Models

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions d"achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant
le(s) tarif(s) aérien(s). - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Choose J"accepte les Conditions d"achat concernant le(s) tarif(s)

aérien(s). - Task not found! >>
<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Choose J"accepte les Conditions d"achat
concernant le(s) tarif(s) aérien(s). - Task not found! >>

When 1 choose "J"accepte les Conditions d"achat concernant le(s) tarif(s) aérien(s)."

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Click on Decline the trip - Task not found! >>

<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Decline the trip - Task
not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Click on Decline the trip - Task not found! >>

<< Scenario: Successful Multidestination Trip - Regular Case.scen - Searched Task: Click on Decline the trip - Task not found!
>>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Click on Decline the trip - Task not found! >>

<< Scenario: Return Trip With Data.scen - Searched Task: Click on Decline the trip - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Click on Decline the trip - Task not found!
>>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Decline the trip - Task not found! >>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Click on Decline the trip - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Click on Decline the trip - Task not
found! >>

And I click on "Decline the trip"”

<< Scenario: No Optional Return Trip With Data.scen - Searched Task: Display Votre voyage a été annulé! - Task not found! >>
<< Scenario: No Optional Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Votre voyage a été
annulé! - Task not found! >>

<< Scenario: Successful Return Trip - Regular Case.scen - Searched Task: Display Votre voyage a été annulé! - Task not found!
>>

<< Scenari
not found! >>

<< Scenario: No Optional One-Way Trip Declined.scen - Searched Task: Display Votre voyage a été annulé! - Task not found! >>

Successful Multidestination Trip - Regular Case.scen - Searched Task: Display Votre voyage a été annulé! - Task

<< Scenario: Return Trip With Data.scen - Searched Task: Display Votre voyage a été annulé! - Task not found! >>

<< Scenario: No Optional Successful Return Trip - Regular Case.scen - Searched Task: Display Votre voyage a été annulé! - Task
not found! >>

<< Scenario: Successful One-Way Trip - Regular Case.scen - Searched Task: Display Votre voyage a été annulé! - Task not found!
>>

<< Scenario: One-Way Trip Declined.scen - Searched Task: Display Votre voyage a été annulé! - Task not found! >>

<< Scenario: No Optional Successful One-Way Trip - Regular Case.scen - Searched Task: Display Votre voyage a été annulé! - Task
not found! >>
Then will be displayed "Votre voyage a été annulé!™

Annex A: Case Study Interview Protocol

Bonjour !
Tout d’abord, merci d’avoir accepté cet entretien.
Je m’appelle Thiago Silva et je suis doctorant dans l'équipe ICS de I'1RIT.

Dans le cadre de ma these de doctorat y’étudie des techniques pour spécifier les besoins des
utilisateurs et puis les tester sur le logiciel.

Aujourd’hui je souhaite récupérer des mformations pour réaliser une étude de cas sur le
traitement des voyages d'affaires. A ce titre, je vous propose un entretien d’environ une heure au
cours duquel vous serez mvité a répondre a des questions sur différents aspects du processus de
réservation de voyages d'affaires pour les membres de l'institut.

L’objectif principal de cet entretien est de récupérer des informations qu’on pourra spécifier en
tant que besoin de voyageurs sur un format qu’on appelle « récit utilisateur/user story ». Une fois
que je vous aurais expliqué ce qu’on entend par « récit utilisateur/user story » je vous demanderais
de me faire parvenir quelques exemples de récits utilisateurs que vous auriez entendu/recu cette
semaine.

Avec votre accord, cet entretien sera enregistré. Néanmoins je vous rassure (ue tout ce que vous
dites restera anonyme et confidentielle.

Si vous avez des questions ou des doutes sur l'entretien ou sur les questions qui seront posées,
n'hésitez pas a nous mterrompre et a demander plus d'informations.

Faire signer consentement éclairé.

Initier 'enregistrement.

Annex A: Case Study Interview Protocol

Partie 1 : Questionnaire démographique et de contexte
Question 1. Pourriez-vous répondre a lI'ensemble des informations de base ci-dessous ?

A. Votre sexe :

B. Votre age :

C. Votre niveau d’étude :

D. Depuis combien de temps vous étes au service de mission de 'IRIT ?

E. Avez-vous déja eu des expériences dans de services similaires auparavant ?

Question 2. Pourriez-vous nous donner un apercu de ce travail, en fournissant une breve
description de vos taches ?

Partie 11 : Processus de traitement de demandes

Nous sommes intéressés par les préférences et les difficultés que les voyageurs de 'IRIT ont
rencontrées et vous ont signalées lorsqu'ils essaient de réserver leurs voyages d'affaires. Nous
sommes également intéressés par votre opinion sur les demandes recues.

Label : * faits, @ interprétation
Section A : Réception de demandes de réservation

Question 1. Comment les demandes de réservation des voyageurs arrivent-elles a vous et avec
quelle fréquence ? Avez-vous des suggestions pour faire mieux ? *

Annex A: Case Study Interview Protocol

Question 2. Combien de demandes de réservation de voyage avez-vous recues la semaine
derniere ? Avez-vous des suggestions pour faire mieux ? *

Question 3. Pensez-vous qu’ll manque quelque chose dans la description des demandes de
réservation que vous recevez ? Comment cela pourrait-il étre mieux P o

Question 4. Est-ce que vous devez prendre des notes (ex. post-it, email, etc.) sur les demandes
de réservations ? Si oui, combien de notes en moyenne ? Comment cela pourrait-il étre mieux ?
Combien de notes avez-vous pris la semaine derniere ? *

Question 5. Si vous prenez des notes, comment vous les conservée et sur quel format ?
Comment améliorer l'enregistrement de ces notes P *

Annex A: Case Study Interview Protocol

Question 6. Pensez-vous que l'enregistrement de ces notes est important ? Comment cela
pourrait-il étre mieux P o

Question 7. Pouvez-vous fournir quelques exemples de demandes de réservation que vous
recevez ? Comment cela pourrait-il étre mieux ? *

Section B : Traitement des demandes de réservation

Question 8. Quelle est la procédure type pour traiter une demande de réservation ? Comment
cela pourrait-1l étre mieux ? *

Question 9. Est-ce que dans les demandes des voyageurs que vous traitez 11 y a des
mformations qu’on pourrait identifier comme des besoins et/ou des exigences pour améliorer un
systeme de réservation de voyage P Si oul, pouvez-vous les quantifier et les identifier ? o

Annex A: Case Study Interview Protocol

Question 10. Quelles sont vos besoins/exigences pour le systetme de réservation que vous
utilisez actuellement P o

Question 11. Avec quelle fréquence vous devez demander I'aide des autres membres de
I'équipe pour résoudre les demandes des voyageurs ? Comment cela pourrait-il étre mieux ? *

Question 12. Avec quelle fréquence vous devez demander aux voyageurs de clarifier les
mformations concernant leur demande ? Comment cela pourrait-il étre mieux ? *

Question 13. Selon votre propre expérience, quelles seraient les fonctionnalités qui vous
seralent utiles et qui devraient étre rajoutées au logiciel de réservation ? o

Annex A: Case Study Interview Protocol

Question 14. Selon votre propre expérience, quelles seraient les fonctionnalités qui seraient
utile pour les voyageurs ? ®

Question 15. Pourriez-vous lister 3 fonctionnalités que vous aimerait garder pour ce type de
systeme P ®

Question 16. Pourriez-vous lister 3 fonctionnalités que vous aimerait changer pour ce type de
systeme P ®

Annex A: Case Study Interview Protocol

Section C : Rédaction des Récits Utilisateurs

Velllez trouver ci-joint un exemple de spécification d’un « récit utilisateur/user story ».

‘ Présentez et expliquez le modele des Récits Utilisateur :

Titre (Une ligne décrivant I"histoire)

Préambule:
En tant que [rdéle ou personne]
Je veux [fonctionnalité]
Afin de [but, bénéfice ou valeur de la fonctionnalité]

Scénario 1: [description]
Etant donné [un contexte initial (les acquis)]
Et [un autre contexte]...
Quand [un événement survient]
Alors [on s’assure de I’obtention de certains résultats]
Et [un autre résultat]...

Scenario 2: ...

Un exemple :

Titre: Recherche de billets d"avion

Préambule:

En tant que voyageur fréquent,

Je veux rechercher des billets, en fournissant des emplacements et des dates,
Afin de pouvoir obtenir des informations sur les tarifs et les horaires des vols.

Scénario: Recherche de tickets "aller simple”

Etant donné que je vais a la page "Recherche de vols"

Quand je choisis "aller simple™

Et je tape "Paris’ et choisis "Paris, Charles de Gaulle (CDG)" dans le champ
""Départ de"

Et je tape "Toulouse"™ et choisis "Toulouse, Blagnac (TLS)" dans le champ "Arrivée
ar

Et je choisis "2" dans le champ "Nombre total de passagers"
Et je choisis "15/12/2017" dans le champ "'Date de départ"
Et je clique sur "Rechercher™

Alors il sera affiché la liste des vols disponibles

Question 1. Est-ce que vous pourriez spécifier un exemple des demandes de réservation en
utilisant ce format de description P o

e Pensez-vous pouvoir rédiger une liste de demandes/problemes que vous recevrez au
cours de cette semaine sur les problemes rencontrés par les utilisateurs lors de la
réservation de leurs voyages d’affaires ?

Annex A: Case Study Interview Protocol

e Si oul, pensez-vous que vous pouvez formater ces demandes/problemes en suivant le
modele « récits utilisateur/user stories » que j’a1 présenté tout a ’heure ?

L'entretien est maintenant fini, merci beaucoup de votre participation !

Annex B: User Stories Written by the Case
Study Participants

Q\‘QQJW\\B& .
En Yond QUJ = ln\fxlio_; .
R SR NG N0 (A PR

%m é_o k! @‘DWQ_P ;; ;\5\%«2&/”& 2
%szou\(o - QQ&HCL ék Ro\&&&\/ é@mméer ;

E\a émﬂeh: 590@-; Y })L{Q, <SWPJHE>/TRHW55

&Juem\é Xp %S N) oo’o Qmam L
. (élxxl‘./\'\q\\m\ <l \‘\@Cu«s\\

e % .) < g Ao |
St Tolesse / PRl . 2

Ar0Lm auec {\O\C&L% .p[/dalg/: i

- L = T
s Ee’?&/\ /_ 3 oo Qg\fokgx Mem_p A J)Ob }\ Quao
(A L&EcwencHe D WRews preqew : ;
A LoRr< JE GHO\ U\ goN = . (&m\e 2 R

Gl &;\E @V’&Q Yool QQ> : ém (vaCerrmam &

le Vo (Sty

QU (oM o o Noauvdam &
—CJ?SLQ g e ol B “G‘”" rs g i
Qe uLe Qm\/\ ’}\sg c CLKJ(.,\ é: Q_Q OKMQ.\)H onsy

Cf (‘?a\ms\a%-@ &L CCM{J O\}‘_)GYU\’\ Q’Y\'\—C"”Y\\AB
flery 07— T o éq g @al\rﬁ .

Annex B: User Stories Written by the Case Study Participants

En Fant o voyaguun fooquent

S e ke chen den byQety on feonpissant Oen
empuco menys of s daks POUR n voyay mdl) deshnahan .
ﬂ(m ds POUC Ik ou'enm O Nfmmahons SOl 2 }'CLC;FS

0t G Roeun e g Ko

Lo heeche d o b et ‘\Y'IJH derhnahann
‘huuf\nedxo & ocly #

Scenawo
Sant donn qe p vaw d Qo puge
roand ¥ Fosis Y amulh - deaWnohony -

€F Ao tape ° Paus 7 et choisys N Pawx,_ Conley do Galls,
dans @ champ ' ddparide -

€F cheisis * Uio s i ” gan L hamps antivee & 77

ct 4A c;\o\J\S \-‘}s/dz/”? (L(_DY\/‘ /@(haﬁ‘np 'Ck}‘-k de dépan AL
S o hoisis T 0/d T/AY daw @& champ Vdak & terovr -

€ p rapr Lo g Danalae dany & champs T ereree dopary

“r

e
€V p tope Poeto Megu danv @ hamps Vaggivs o 7

MlorL/r? dans & (F‘armp5 “doh &2 dspoey

(o 4} doi§is
Ramps dab o arwsc”

545 49 Roitis
Sy dige s " pe cherchon
Norr 0 JeEC C(m(}\(~ La Q,UW(don vedp (}\Upomla%

AaloU/AY damn &

Annex B: User Stories Written by the Case Study Participants

¥ ’EJ LU’J%.J 2 K&/L//'(:“WM
& é{ b T C&W«/Q/C—\ 24 Cu—«ém,jmé"(m c/& WA—OZ .;LL,}/,
@’P(\M dé o 0{»«-4 /L,L(‘Yuuv/i“em a%/vuj"ut :

gm‘c: @‘/t Mw‘!avﬁ‘w As Cv\dcuj/

t’-AW# O'{W :)}‘ Letss pran P(M/W L"Wié’Li;C"/\ILL ;/L Lv—?a%
w‘/{) (&’ L¢7,a & ’Q/e/ua»& A e ved™ o
b gl e deeante 5 el o hio

IQ@?/D S H e e F QU\/J’ f_wf ejé_a PR /5/3
[%""‘ & U’»&—kv//z\,\ e ;é\ﬁ—‘f/\;s,z (254 C,er—\/)t(
il /Q/D/)W/IM‘ L///lm Wﬁ/Z/ GMJJ’A'JA/&(i

Annex B: User Stories Written by the Case Study Participants

Cn dant gee Stagy i
Je vex (EReavEr o VOP Ca A ceckon
o~ Sgact Pe M jugqyov lo Heo

GQ“\ di Parvlctoe((j oo 86;‘(\10(&?((7.

C\C ()a nS eou(

N N-INCE
Cland doond OR @ VrS @RAGNE (Mon vol
Cluane @ @)@Md(\(\ww (G ARNE
+ou les P& ‘. (\9@5,
cb gue e Ooss Ehelre Qo #069
QPO(L lo@ ()85 \{OPS d;@c\ib@c/; (’a ia)mee Soa

CQC(SW') 90«((\x\'\' @Q\S‘DO(\X X

L

Annex C: Transcription of the Interviews

1. TRANSCRIPTION : Participant 1 (P1)

Partie I : Questionnaire démographique et de contexte.

Interviewer : Bon, voila ! La premiére partie, c’est un bref questionnaire démographique. Votre sexe ?
Votre age ?

P1 : Féminin, Cinquante.

Interviewer : Niveau d’étude P

P1:Bac+1

Interviewer : Depuis combien de temps, vous étes au service de mission de 'IRIT ?

P1 : Quatre ans

Interviewer : Avez-vous déja eu des expériences dans de services similaires auparavant ?

P1:Ou

Interviewer : Combien du temps ?

P1 : Six ans.

Interviewer : Pourriez-vous nous donner un apercu de ce travail, de vos tiches spécifiquement ?

P1: De tout ?

Interviewer : Non, non ! La partie de la réservation de voyage.

P1 : De réservation de voyage ?

Interviewer : Oui.

P1 : En ce qui me concerne maintenant les agents de laboratoire, ils ont fait la réservation sur le site. Et
ensuite pour les invités, on fait que le bon de commande et le valide le billet et en ¢’est qui concerne les

mvités on va faire, nous-méme la réservation.

Interviewer : Donc, parfois c’est les chercheurs que fassent la programmation de voyage et parfois ¢’est
vous-méme ?

P1: Cest ca.

Annex C: Transcription of the Interviews

Interviewer : D’accord ! Et ¢ca dépend de quoi ?

P1 : Alors... c’est que nous... on fait pour les invités.

Interviewer : D’accord !

P1 : Les invités, les stagiaires qui n’ont pas I'acces a I'intranet.

Interviewer : D’accord ! Et si les chercheurs n’arrivent pas de faire tout seul ?

P1 : On les aide. D’abord, on fait ensemble. S’ils n’arrivent pas on peut faire la demande directement par

mail.
Interviewer : D’accord !

Partie II : Processus de traitement de demandes

Nous sommes intéressés par les préférences et les difficultés que les voyageurs de 'IRIT ont rencontrées
et vous ont signalés lorsqu'ils essaient de réserver leurs voyages d'affaires. Nous sommes également
mntéressés par votre opinion sur les demandes recues.

Label : * faits, ® interprétation

Section A : Réception de demandes de réservation

Interviewer : Concernant dans le traitement de demande. D’abord la réception de demande. Comment
les demandes de réservation des voyageurs arrivent-elles a vous et avec quelle fréquence P *

P1 : La fréquence c’est compliquée.

Interviewer : En moyenne ?

P1 : 400 missions par an.

Interviewer : Par an ?

P1:Paran!Ou!

Interviewer : 400 missions par an ? Pour chacun ?

P1 : Pour moi. Mo, je traite 400 demandes de mission par an. Comment elles arrivent ? Je ne sais pas si
vous connaissez le GLPI ou le « Travel planet» ?

Interviewer : Pas trop.

P1 : Voil, les demandes d’ordre de mission sont dans le GLPI et parallelement les chercheurs font leurs

demandes de réservation sur le site.

Annex C: Transcription of the Interviews

Interviewer : D’accord !

P1 : Donc, on recoit d’'un c6té la demande d’ordre de mission et ¢a sera la justificative de la mission. Et
parallelement on a le billet de la demande de réservation que nous arrive par mail.

Interviewer : D’accord ! Dong, vous utilisez deux systemes. Le GLPI et le systeme de réservation ?

P1: Le GLPI c’est pour le labo ; pour la réservation du billet on est obligé de toute facon d’aller
sur...souvent si la mission est sur 'université ou CNRS, on est obligé d’aller sur la plateforme, donc, le
marché. On doit aller sur la plateforme.

Interviewer : D’accord ! Et s’appelle comment cette plateforme ?

P1 : Pour 'université s’appelle « Travel Planet » pour le CNRS... je n’ai pas dans la téte.

Interviewer : D’accord !

P1 : Bon, s’appelle SIMBAD.

Interviewer : D’accord ! Et c’est quel ordre des choses ? D’abord on va au GLPI et aprés on vas au
« Travel Planet» par exemple ?

P1 : 1l fait comme ils veulent. I’importance c’est quand on... (audio inaudible), nous, on va tout voir sur
le GLPI, la demande d’ordre de mission, parce qu’on ne peut pas les aider si on ne voit pas les éléments
nécessaires.

Interviewer : D’accord !

P1 : Voila... (audio maudible).

Interviewer : D’accord ! Dans le ¢oté chercheur peu importe quel ordre 1l fait les choses.

P1 : Soit 1l fait parallelement... (audio inaudible).

Interviewer : D’accord ! Combien de demandes de réservation de voyage avez-vous recgues la semaine
derniére ? Quelques idées P Aprés prét P *

P1 : Une dizaine de demande.

Interviewer : Une dizaine dans la semaine dernicre ?

P1:Ou!

Interviewer : D’accord Concernant Parrivée de demande, avez-vous de suggestion ? *

P1 : Sincerement, ¢ca dépend.

Annex C: Transcription of the Interviews

Interviewer : Oui, oui. C’est en moyenne.

P1 : En fin d’année, par contre, voila ¢’est douze.

Interviewer : Douze par jour ?

P1: Ca arrive !

Interviewer : D’accord ! En moyenne c’est douze par semaine ?

P1 : A la semaine derniere oul. Mais, voila, 1l y a de semaine que c’est deux ou trois demandes. Mais, 1l y
a d’autres qu’on peut voit plus.

Interviewer : D’accord ! Concernant Parrivée de demande avez-vous de suggestion pour faire mieux ce
processus, ou il est déja bon ?

P1 : Bah ! Voila ! (Audio inaudible).

Interviewer : D’accord ! C’est bon comme ca.

P1 : Clest tres bien.

Interviewer : Mais vous pensez qu’il y a de probléme pour faire ¢a, dans deux systemes différents ?
P1:Non!

Interviewer : Ca ne pose pas de souci P

P1 : Non, parce que le portail de réservation de billets, ils sont... donc, on peut faire en parallele.

Interviewer : D’accord ! Pensez-vous qu’il manque quelque chose dans la description des demandes de
réservation que vous recevez ? *

P1 : Dans la description ?

Interviewer : Le description de réservation de voyage.

P1 : Dans la demande d’ordre de mission qu’on a de probleme dans le voyage...
Interviewer : Le voyage, la demande de réservation de billet d’avion.

P1 : Clest pareil. Tout dépend comme est la formule. Quand le chercheur a une disponibilité, on fait la
demande... (audio mnaudible).

Interviewer : D’accord ! Mais en moyenne, ¢a arrive assez complet la description ?

Annex C: Transcription of the Interviews

P1 : Pas trop.
Interviewer : D’accord.
P1 : Ca dépend du chercheur.

Interviewer : D’accord ! Comment cela pourrait-il ¢’est mieux ? La description de demande ? Vous avez
de suggestion ?

P1 : Voila. Ceest ¢a. Si le chercheur avait de disponibilité des horaires, donner les informations, ¢a nous
facilite le travail. Voila !

Interviewer : D’accord ! Est-ce que vous devez prendre des notes, par exemple : un post-it, mail, quelque
note, etc., sur les demandes de réservations ? Ou non, c’est assez complet P *

P1 : Non, sincérement, si on a besoin, on va relier, parce que le GLPI est, peut-étre, notre post-it.
Interviewer : D’accord

P1 : Parce qu’il y a un suivi dans le GLPI. Car nous manque quelque chose, on peut demander au-dessous
et ils répondent a la fin de compte. Voila, c’est tous les éléments sur les autres.

Interviewer : D’accord !
P1 : Apres, évidemment on note de choses pour clarifier les choses... (audio inaudible).

Interviewer : D’accord ! Donc, bon, ¢a arrive. Combien de notes en moyenne ? et avec quelle fréquence
? Vous avez d’idée ? *

P1 : Ca dépend. Pour le billet du train ¢’est plus que par le billet d’avion. (Audio inaudible).

Interviewer : D’accord ! Quelque suggestion pour faire mieux, pour améliorer c’est processus de prendre
de notes ? Dans le systéme ou dehors le systéme P

P1 : Améliorer c’est que la demande soit plus claire et précise au départ. Si la demande au départ elle est
bien faite, normalement, nous, on n’a pas de probleme. C’est super-facile.

Interviewer : D’accord ! Mais vous croyez que ¢a ¢’est n’est pas un probléme du systéme en fait.
P1 : Je ne pense pas.

Interviewer : Non ?

P1:Non!

Interviewer : Pour les utilisateurs, les chercheurs, par exemple. S’ils ne suivent pas forcément la procédure
pour la réservation, vous ne pensez pas que c’est a cause d'un probleme du systeme ?

Annex C: Transcription of the Interviews

P1 : Apres, je pense qu’au départ, je ne généralise pas. Les demandes sont, ou peut-étre, souvent ... (audio
maudible).

Interviewer : D’accord ! Si vous prenez des notes, comment vous les conservées, c’est le cas. Vous avez
me dit 3 tout ’heure c’est au GLPI P #

P1: GLPI

Interviewer : Il n’y a pas de note dehors le systeme ? Normalement ?
P1 : Si, on est tous pareil, un mettre un petit rappelle sur le dossier.
Interviewer : Mais vous enregistrer sur le systéme apres ?

P1:0Ou!

Interviewer : Ou non ?

P1 : IIs sont tous dans le systeme.

Interviewer : D’accord.

P1 : Tout est dedans.

Interviewer : Bon, comment améliorer ce processus-la ?
Je crois que vous avez dit a tout a I’heure, ¢’est avoir une demande claire et précise au départ, c’est ca ?

P1:0Ou!

Interviewer : Pensez-vous que l'enregistrement de ces notes est important ? *

P1:0Ou!

Interviewer : Oui ?

P1 : Ouy, parce que le dossier suivi sur le GLPL... (audio inaudible).

Interviewer : D’accord. Il y a quelque suggestion ? Sur enregistrement de ces notes supplémentaires ?
P1:Non!

Interviewer : Non ?

P1: Non ! Cest bon comme ca !

Interviewer : Donc, pour 'imstant pas de suggestion ?

Annex C: Transcription of the Interviews

P1 : Non.

Interviewer : Pouvez-vous fournir quelques exemples de demande de réservation que vous recevez ? Dans
quel format ? *

P1 : Vous voulez un exemple de demande ?

Interviewer : Oui !

P1: En fait ?

Interviewer : Oui !

P1 : (Audio mnaudible).

Interviewer : D’accord !

P1 : Dans la demande 1l y a tout qu’on a besoin. Il y a de compte, il y a les dates, 1l y a...
Interviewer : Donc, s’il y a tout rempli...

P1 : Dans 'ordre de mission on a tous les infos nécessaires pour faire la mission. Apres on ajoute les
justificatifs et voila.

Interviewer : D’accord !

P1 : (Audio mnaudible).

Interviewer : D’accord ! Dong, cette demande, elle arrive par mail, c’est ca ? Avec tous les éléments ?
P1: GLPI

Interviewer : Oui, mais le GLPI, Il envoie le mail, avec...

P1: Non.

Interviewer : Non ? Il faut que vous connectiez ?

P1:Etvoila!

Interviewer : D’accord !

P1 : (Audio maudible).

Interviewer : D’accord ! Mais arrive d’un chercheur faire la demande directement par mail ? Sans passer
par le GLPI ?

Annex C: Transcription of the Interviews

P1:Ou!

Interviewer : Oui P Ca arrive P
P1:Ou!

Interviewer : D’accord !

Section B : Traitement des demandes de réservation.

Interviewer : Concernant le traitement des demandes. Quelle est la procédure-type de traiter une
demande de réservation ? Comment ¢a arrive P Tout d’abord on fait ¢a, aprés on fait ¢ca. C’est quel le
processus P *

P1: Ca C’est la mission en général. Donc, pour la demande de validation payée, on fait de bon de

commande, ensuite, on va retourner sur le portail pour mettre le bon de commande. Voila !

Interviewer : D’accord. Donc, ¢’est la demande, le bon de commande et le portail pour mettre le bon de
commande pour valider. C’est dans le portail qu’on valide ?

P1:0Ou!

Interviewer : Le portail ce n’est pas le « travel »,

P1 : Le portail c’est le SIMBAD.

Interviewer : Portail et « travel planet» ¢’est la méme chose ?

P1 : Il y a deux systemes différents. (Audio inaudible).

Interviewer : D’accord ! Est-ce que dans les demandes des voyageurs, que vous traitez, il y a des
informations qu’on pourrait identifier comme des besoins et/ou des exigences pour améliorer un systéme
de réservation de voyage P *

P1 : Un probléeme c’est quand on a des voyages multiples-destinations. C’est un peu compliqué a gérer.
Interviewer : Pourquoi ?

P1 : Au niveau de la réservation le portail et le logiciel sont compliqués les multiples-destinations. Parce
qu’on n’arrive pas a ajouter une ville, méme s’il a in départ Toulouse, mais on part de Brive, d’autre ville...
(audio inaudible).

Interviewer : D’accord !

P1 : Ca c’est 'agence de voyages.

Annex C: Transcription of the Interviews

Interviewer : Mais vous croyez que ¢’est un probleme de logiciel ?
P1 : Certains pays avec le multiple-destination, ¢’est un peu compliqué.
Interviewer : De train et d’avion aussi ?

P1 : Sur tout de train, parce que de train on n’arrive pas de le faire. C’est un peu compliqué pour récupérer
de billet. On ne peut pas toujours faire de réservation de billet de tramn a I’Allemagne ou a I'ltalie.

Interviewer : D’accord !

P1 : (Audio mnaudible).

Interviewer : D’accord. Quelles sont vos besoins/exigences pour le systtme de réservation de voyage que
vous utilisez actuellement P *

Bon ! Donc, yimagine que c’est gérer les multiples- destinations. C’est ¢a ?

P1:0Oui! Voila!

Interviewer : Il y a quelque d’autre ?

P1 : Quelque chose d’autre ?

Interviewer : Oui !

P1 : Voyage en train a I'étranger, que c’est un peu compliqué, mais... C’est tout !

Interviewer : D’accord ! Avec quelle fréquence vous devez demander P'aide des autres membres de
P’équipe pour résoudre les demandes des voyageurs ? *

P1: Rarement!

Interviewer : Rarement ?

P1 : Rarement vraiment.

Interviewer : Est-ce que vous avez de suggestion pour améliorer cet échange d’information entre I’équipe ?
P1 : Entre nous ?

Interviewer : Oui !

P1: Non ! entre nous non. Parce qu’on est dans un « open space » donc, ¢ca marche bien les échanges.

Interviewer : D’accord ! Donc, ¢a marche bien ?! Avec quelle fréquence vous devez demander aux
voyageurs de clarifier les informations concernant leur demande ? *

Annex C: Transcription of the Interviews

P1 : Plutot souvent.
Interviewer : Plutot souvent ?

P1 : Non, non ! Ce n’est pas ! Parce qu’on n’a pas de soucis. Dans le dossier, c’est juste un petit « delay ».
Dong, c’est rare quand 1l y a tout complet. (Audio inaudible).

Interviewer : D’accord.
P1 : (Audio mnaudible).

Interviewer : D’accord ! Avez-vous des suggestions pour faire ca mieux ? La clarification des choses avec
les voyageurs. Vole systeme, je ne sais pas.

P1: Apres c’est qu'ils soient plus précis possible. Voila. Parce que, nous, on a besoin de précision au
niveau d’horaire et tout ¢a. C’est plus facile pour nous.

Interviewer : D’accord ! Selon votre propre expérience, quelles seraient les fonctionnalités qui vous
seraient utiles et qui devraient étre rajoutées au logiciel de réservation ?

P1: Ce n’est pas trop. Parce qu’au niveau des tarifs il nous propose le moins cher aussi !
Interviewer : Ca n’existe pas ?

P1 : Ah! La date de validation !

Interviewer : Comment ?

P1 : La date de validation est apres le devis. C’est la date qu’on doit valider. Notre probleme ¢’est qu’a ce
moment-la, le « delay » est court... (audio maudible).

Interviewer : Donc, le probléeme dans c’est cas-1a ’est que le « delay » est trop court.

P1: On perd le billet entre le devis et le moment de validation. Principalement pendant le week-end.
(Audio maudible).

Interviewer : D’accord ! Bon ! Quelles seraient les fonctionnalités qui seraient utile pour les voyageurs P
A votre avis P

P1: Je ne sais pas. Parce que pour moi, la réservation d'un vol c’est pareil.
Interviewer : Dong, il n’y a pas de choses que pourrait améliorer a ce niveau-la.
P1 : Non. (Audio inaudible).

Interviewer : D’accord ! Pourriez-vous lister 3 fonctionnalités que vous aimeriez garder pour ce type de
systtme P Le systtme de voyage, pas le GLPL. -

Annex C: Transcription of the Interviews

P1 : Garder ?
Interviewer : Oui ! Que vous aimez plus ou que vous considérez essentiel.
P1 : Les différents propositions au niveau des horaires, des tarifs. (Audio maudible).

Interviewer : D’accord ! Pourriez-vous lister trois fonctionnalités que vous aimeriez changer pour ce type
de systeme P -

P1 : Changer ou complétement changer ?

Interviewer : Oui !

Interviewer : Apres le systéme est bien présenté. Pour les multiples-destinations, il ne marche pas toujours.
Et le changement qu’on peut voir ¢’est quand 1l y a plusieurs voyageurs qui partent au méme temps, et au

méme endroit. On doit faire des réservations différentes.

Section C : Rédaction des Récits Utilisateurs.

Interviewer : Bon ! Dans cette derniére partie, c’est le modele qu’on va essayer de tester avec vous.

Comme jai dit a tout a ’heure, c’est un modele pour décrire une fonctionnalité, décrire une
demande, D’accord ? Donc, 1l est toujours comme ¢a. Il a un titre pour décrire le type d’histoire, on
appelle ce modele, de récit utilisateur. Donc on a un préambule.

En tant que [role ou personne]

Je veux [fonctionnalité]

Afin de [but, bénéfice ou valeur de la fonctionnalité]

Scenario 1 : [description]

Etant donne [un contexte initial (les acquis)]

Et [un autre contexte] ...

Quand [un événement survient]

Alors [on s’assure de 'obtention de certains résultats]
Et [un autre résultat] ...

Un exemple :

En tant donné que je vais a la page “Recherche des vols”

Quand je choisis : “aller simple”

Et je tape “Paris” et choisis “Paris, Charles de Gaulle (CDG)” dans le champ “Départ de”
Et je tape “Toulouse” et choisis “Toulouse, Blagnac (T'LS)” dans le champ “Arrivée a7

“o»”

Et je choisis dans le champ “Nombre total de passagers”
Kt je choisis “15/12/2017” dans le champ “Date de départ”
Et je clique sur “Recherche”

Alors le systéme va afficher la liste des vols disponibles.

Donc, c’est un récit en fait, un modele pour décrire la demande.

Annex C: Transcription of the Interviews

P1 : Mais c’est individuelle la demande.

Interviewer : Oul, mais ¢ca ce n’est pas fixe, c’est un exemple général. On n’est pas obligé de décrire les
choses comme ¢a. On est obligé d’utiliser ces éléments-la. Pour avoir une histoire on est obligé d’avorr :
Ktant que, Je veux, Afin de, et pour chaque scénario on est obligé d’avoir : Etant Donnée, Quand, Et,
Alors. Mais, quoi on met dedans n’import. Il faut décrire le processus d’'une demande avec ce modéle.
Donc, c’est ca qu’on va évaluer. Si ¢’est modele est bien adapté, s’1l est facile d utiliser ou pas. Vous pensez
que c’est possible d’écrire une demande en suivant ce modele-la ?

P1 : Ou, on va faire.

Interviewer : D’accord ! Quel type de demande ?

P1 : Invité.

Interviewer : D’accord ! Avec un voyage en train ou méme un voyage multiples-destinations. On n’est pas
obligé de faire la tiche recherche du vol.

P1 : (Elle écrit et parle en voix bas)

Interviewer : Vous avez besoin donner un contexte. Quand quelque chose arrive...
P1 : (Elle écrit et parle en voix bas)

Interviewer : Donc, si ¢’est un invité, vous n’étes pas obligé de choisir I'utilisateur ?
P1 : Non. C’est aprés qu’on a fait le billet. (Elle écrit et parle en voix bas).
Interviewer : D’accord !

P1 : (Elle écrit et parle en voix bas).

Interviewer : Vous devez rempli ¢a apres avolr soumis ?

Pl: Ou!

Interviewer : Donc, a ce modele-la, si vous faites...

P1 : Je choisis... (Elle écrit et parle en voix bas).

Interviewer : D’accord ! Il manque juste une conclusion !

P1 : (Elle écrit en Lisant quelque chose en voix bas).

Interviewer : Quand il fait la recherche c’est quoi qu’arrive ? C’est quelle conséquence ? Ca ¢’est important
de dire.

Annex C: Transcription of the Interviews

P1 : (Elle écrit)

Interviewer : D’accord ! Tres bien ! C’est bon comme ¢a ! Donc, pensez-vous pouvoir rédiger une liste de
demande/ probleme, surtout de probleme que vous recevrez au cours cette semaine et de la semaine
prochaine ? Par exemple, que les voyageurs vont vous demander ? Par exemple. Je n’arrive pas a chercher

de vol moins cher.

P1: Oul

Interviewer : Donc, vous pouvez faire une liste de problémes que vous recevez. Si oui, bon, c’est le cas,
pensez-vous pouvoir formater ces demandes/ problemes dans ce modele-la ? C’est juste que vous avez
fait.

P1:0Ou!

Interviewer : Donc, c’est ¢ca que je vous demande. Une liste de demande/ probleme. Dans le cadre d’une
semaine. Aujourd’hui ¢’est mardi, jusqu’a mardi prochain, par exemple. Et aprés vous écrivez. Vous
pensez que c’est beaucoup de problemes ?

P1: Non.

Interviewer : Non ?

P1 : On ne sait pas.

Interviewer : On est attache juste a la recherche du vol, de train, les autres problémes lien au systéme,

vous pouvez laisser a coté. Dong, je vous demande d’envoyer par courriel électronique les erreurs et les
demandes formatées. D’accord ?

Pl:Ou!

Interviewer : Et aprés, je vais vous envoyer un petit questionnaire pour que vous puisez évaluer ce type de

format-1a.
P1 : D’accord !

Interviewer : Donc, voild ! Merci beaucoup !

Annex C: Transcription of the Interviews

2. TRANSCRIPTION : Participant 2 (P2)

Partie I : Questionnaire démographique et de contexte.

Interviewer : Donc, la premiére partie, concerne un questionnaire démographique. D’accord ?
P2 : D’accord !

Interviewer : Donc, votre sexe ?

P2 : Féminin. On ne sait jamais.

Interviewer : Il faut demander. Votre 4ge ?

P2: 30 ans

Interviewer : Votre niveau d’étude ?

P2:Bac+2

Interviewer : Depuis combien de temps, vous étes au service de mission de 'IRIT ?

P2 : Trois ans

Interviewer : Avez-vous déja eu des expériences dans des services similaires P ID’autre part ?
P2: Ou

Interviewer : Combien du temps ?

P2 : Avant le IRIT, trois ans.

Interviewer : Donc. Vous avez six ans d’expérience dans ce type de service ?

P2: Oul

Interviewer : D’accord ! Pourriez-vous nous donner un apercu de ce travail, en fournissant une bréve
description de vos tiches P

P2 : Description de mes tiaches ?

Interviewer : Oui ! D’une maniére générale.

P2 : De maniere générale, déja notre mission, c’est de gérer le portefeuille de chaque équipe. J’ai eu septe
d’un projet, tous qui est mission, donc de réservation de vols, d’hébergement, ensuite je m’occupe des

missions de coté de remboursement et ensuite je m’occupe d’achat, des livrassions, des facturations et,

voila, en gros, voila, c’est ca.

Annex C: Transcription of the Interviews

Interviewer : Donc, le traitement de voyage ¢’est qu’une petite partie.

P2 : C’est une grande partie.

Interviewer : C’est une grande partie !

P2 : Parce qu’ll y a beaucoup de missions, 1l y a beaucoup d’achat. On doit faire attention au marché et
tout ca. Il y a beaucoup de missions effectivement, donc, c’est une grande partie de réservation de
transport.

Interviewer : D’accord ! Treés bien !

Partie II : Processus de traitement de demandes

Nous sommes intéressés par les préférences et les difficultés que les voyageurs de 'IRIT ont rencontrées
et vous ont signalés lorsqu'ils essaient de réserver leurs voyages d'affaires. Nous sommes également
intéressés par votre opinion sur les demandes recues.

Label : * faits, ® interprétation

Section A : Réception de demandes de réservation

Interviewer : Bon, concernant sur la réception de demandes. Comment les demandes de réservation des
voyageurs arrivent-elles 3 vous et avec quelle fréquence P *

P2 : Alors, la demande de réservation on recoit par mail.

Interviewer : Par mail ?

P2 : Voila ! Comme vous, je pense que vous recevez aussi par mail. C’est une demande d’accord d’abord.
Ensuite, donc, c’est 4 ce moment-la que nous, on établit un bon de commande, pour réserver I'argent et
ensuite, on retourne sur le site et on mentionne le numéro de commande. Comme ¢a, I’agence comptable
possede la facture.

Interviewer : D’accord ! Et avec quelle [réquence ces demandes arrivent ?

P2 : Ca dépend, bien sir, ¢ca dépend de mois, ¢a dépend du jour.

Interviewer : En moyenne ?

P2 : En moyenne, 1l y a, on va dire, trois quatre par jour.

Interviewer : Trois, quatre par jour ?

P2 : Apres prét ! Apres, ca dépend.

Annex C: Transcription of the Interviews

Interviewer : D’accord. Et avez-vous de suggestion pour améliorer ce processus de réception de
demande ?

P2: Non!
Interviewer : Non ? Vous pensez que ¢’est bon comme ¢a ?

P2 : Parce qu'avant de passer, on recoit le mail, on consulte le GLPI, on appelle la plateforme, donc, la
on n’a pas le risque d’erreur.

Interviewer : Donc, tout d’abord ils essaient de faire la réservation et s’ils ont des soucis c’est juste dans ce
cas-la qu’ils font de contact avec vous P Ou non ? IlIs font contact dans tous les cas, n'importe pas s’ils ont
de probléeme ou pas ?

P2 : Bon de toute facon ils mettre en place, ils rappellent nous avant de faire quoique ce soit parce qu’ils
ne savent pas, c’est-a-dire. Apres, sinon, a cause dun probleme ils rappellent nous. Parce qu’apres, en
parallele ils font la demande, parce qu’on n’a pas la demande de mission a ¢6té, donc, en parallele ils

nous contactent par le GLPIL. On n’a pas encore une relation... (audio inaudible).

Interviewer : D’accord ! Donc 1l faut que la demande arrive par mail. C’est idéal ? La demande qui vous

mtervenez.

P2 : Oui, mais d’abord c’est idéal de déposer la demande de mission sur le GLLPI et ensuite on recoit la
demande par mail.

Interviewer : Dong, si arrive par téléphone ¢a pose de problemes normalement
P2 : Par t¢léphone... (audio inaudible).

Interviewer : D’accord ! Trés bien ! Combien de demandes de réservation de voyage avez-vous regues la
semaine derniére ? Savez-vous P Aprés prét P *

P2 : Une dizaine.

Interviewer : Une dizaine ?

P2:0u!

Interviewer : D’accord ! Bon, avez-vous des suggestions pour faire mieux dans cette réception ? *
P2 : Non!

Interviewer : Avec le volume aussi, bien sir !

P2: Avec?

Interviewer : Le volume de demandes.

Annex C: Transcription of the Interviews

P2 : Non, non !

Interviewer : Pensez-vous qu’il manque quelque chose dans la description des demandes de réservation
que vous recevez ?

P2 : La description ?

Interviewer : Oui !

P2: Non!

Interviewer : Non ? Elles viennent toutes complétes normalement ?
P2:0Ouw!

Interviewer : Vous voyez une facon de faire mieux ?
P2: Non!

Interviewer : C’est bon comme ¢a ?

P2 : Cest bon comme ca.

Interviewer : Dans la description spécifiquement ?
P2:0uw!

Interviewer : Est-ce que vous devez prendre des notes, par exemple : un post-it, dehors le systéme, sur les
demandes de réservations que vous recevez P *

P2: Non!
Interviewer : Non ? Elles viennent toutes compleétes ?
P2:0Ou!

Interviewer : Donc, si oui, combien de notes en moyenne P Donc, ¢a ne fait pas de sens. Comment cela
pourrait-il étre mieux ? Pas de suggestion P *

P2 : Non, mais... franchement non.
Interviewer : Si vous prenez des notes, comment vous les conservées et sur quel format P Au cas ou ! *
P2 : Si on prend des notes on va pendre un post-it et on va mettre dans une poche avec le dossier.

Interviewer : D’accord ! Donc, vous imprimez ces notes ?

Annex C: Transcription of the Interviews

P2 : De toute facon on va imprimer, la demande de réservation, s’il y a de choses a rajouter ou des
b <

mformations on va noter sur le post-it et avec cette demande de réservation on va mettre dans le dossier.
Interviewer : D’accord.

P2 : On fait tout pour que le dossier soit complet. Quand on a besoin les informations du dossier, 1l est

bien ranger.
Interviewer : Oui ! Comment améliorer ces notes ? Vous-avez des suggestions ?

P2 : Apres, si yavais des altérations a faire aussi, autant que pour les chercheurs que pour nous dans le
GLPI et dans ce cas, on se vérifie sur le ticket et la... (audio inaudible).

Interviewer : D’accord.

P2 : Ca aussi ¢’est sympa. Car on récapitule tous les échanges.

Interviewer : Ca existe déja ?

P2: Etvoila!

Interviewer : Donc, pensez-vous que l'enregistrement de ces notes est important ? *
P2:Ah! Ou!

Interviewer : Oui ?

P2: Oul

Interviewer : Bon, et la facon de faire mieux, c’est méme le suivi des notes que vous avez déja dans le

systeme ?

P2 : On a un bon systéme de suivi.

Interviewer : D’accord.

P2 : (Audio mnaudible).

Interviewer : D’accord. Le GLPI ce n’est pas le systeme de réservation de voyage ?
P2 : Non.

Interviewer : Non ? C’est un systéme a part ?

P2 : C’est un systeme de laboratoire pour déposer la demande et suivi de demande.

Annex C: Transcription of the Interviews

Interviewer : D’accord. Donc, vous travaillez avec deux systemes. Un systeme de réservation de voyage et
apres le GLPL

P2: Clest ca.

Interviewer : D’accord. Et méme ensuite vous utilisez 'Excel et le GLPI aussi ?

P2:0Ou!

Interviewer : D’accord. Donc.

P2 : Le GLPI c’est justement si la demande est, par exemple, dans le méme jour. En cas d’urgence...
(audio maudible) ... mes collegues peuvent intervenir pour traiter les urgences. Un petit probleme avec
les réservations, on ne peut pas donner la main... (audio inaudible).

Interviewer : D’accord. Et ils voient la demande pour le systéme de réservation ?

P2 : IIs voient par le GLPI. Heureusement que dans le GLPI provoque une demande, mais sinon, s’ils
envolent a moi, non. Si on recoit par mail ils ne vont pas le voir. Donc, ce qui est intéressant ¢’est qu’on
puisse donner une habilitation a une personne pour traiter une demande de réservation en fait quand on
n’est pas la.

Interviewer : D’accord. Et Il n’y a aucune itégration dans ces deux systemes-la de réservation et le GLPI ?
P2 : Non.

Interviewer : Non ? Toutes les infos doivent étre... (audio inaudible).

P2: Oul

Interviewer : Bon. Pouvez-vous fournir quelques exemples de demande de réservation que vous recevez ?

*

P2 : Demande de réservation ?

Interviewer : Demande de réservation de voyage, comment cette demande arrive ? En quel format ? Et.
P2 : Dans un format, ¢’est un portail.

Interviewer : Quel type d’information que vous étes...

P2 : La ville, les horaires, ce qui est important de voir, la date de confirmation, parce qu’on a un « delay »
pour confirmer ce voyage. Sinon... (audio inaudible) ... évidemment ¢’est la compagnie qui met de date...
(audio inaudible) ... parce qu’on ne peut pas garder ce vol, parce que, du coup, plus réserver. Quoiqu’on

ne puisse pas le garder pendant deux mois, donc on a de date, c’est ¢a.

Interviewer : C’est un numéro automatique que le systeme envoie ?

Annex C: Transcription of the Interviews

P2: Oul

Interviewer : Le systéme de réservation ? Pas le GLPI ?

P2:0Ou!

Interviewer : Donc. La ville, les dates.

P2 : Les villes, les dates, les horaires, le « delay », les prix, les frais d’agence, c’est ca.

Interviewer : Apres pouvez-vous m’envoyer un exemple de ce type de demande ? Bien str, en élevant le

nom, les infos...
P2 : Bien sir.
Interviewer : Bon sur le traitement des demandes.

Section B : Traitement des demandes de réservation.

Interviewer : Quelle est la procédure-type de traiter une demande de réservation ? Quel est le processus...
tout d’abord on fait ¢a et apres ¢a... *

P2 : Donc. Alors, la premiere chose a faire c’est déposer sur le GLPI la demande d’ordre de mission...
(audio maudible) ... ensuite quand vous rentrer sur le site de réservation, un document est déja créé, parce
qu’ll prend des infos a la base de 'université, CNRS, voila. Donc, souvent i1l demande de mettre en jour,
parce qu’il manque des infos (date de naissance, etc.) ... audio inaudible... et ensuite la recherche... (audio
maudible) ... la destination que vous souhaitez, une proposition de tarif sans bagage, la classe : premiere
classe, deuxieme classe et etc. Et la vous choisissez un tarif que vous voulez, si ¢’est remboursable ou pas
et ensuite, a la fin de votre sélection ou de votre validateur, la vous avez leur destinataire... (audio inaudible)

... et la vous recevez par mail la demande d’autorisation.

Interviewer : D’accord. Donc, vous commencer ce processus-13, apres avoir recu le mail d’utilisateur, ¢’est
)

¢al
P2 : Non, la ce le cas ou le chercheur fait sa réservation de date sur la demande d’accord.

Interviewer : D’accord ! Dans ce cas-13, il n’y a pas de soucis. Si tout va bien 1l fait, le chercheur fait la
demande, vous recevez le mail avec la demande et donc, ¢’est apres ¢a que vous commence a saisir les
infos dans le GLPI ?

P2 : Non. Le GLPI c’est la base. C’est d’abord le GLPI, c’est avec 'ordre de mission.

Interviewer : Donc, le chercheur fait la demande sur le GLPI directement ?

P2 : Parce qu’il fait la demande d’ordre de mission.

Annex C: Transcription of the Interviews

Interviewer : D’accord.
P2 : Avec le justificatif de déplacement, parce qu’on ne peut pas réserver le billet si ce n’est pas justifié.
Donc, voila, en parallele 1l va faire sa demande de réservation. Donc, nous, on va la recevorr et si on a

toutes les choses sur le GLPI on va faire le bon de commande et... (audio inaudible).

Interviewer : D’accord. Dong, et 2 quel moment le systeme de réservation le « Travel», je ne sais pas quoi,

1l entre en scene en fait P Dans quel moment on utilise ce systeme-la ?

P2 : Dans la réservation du transport.

Interviewer : Mais avant ou apres le processus GLPI ?

P2 : Alors, nous disons au méme temps ou aprées, mais pas avant.

Interviewer : D’accord. Donc, on commence toujours par la demande dans le GLPI et en parallele ou
apres, on fait la demande sur le systtme de voyage, aprés que le voyage soit déja approuvé par le
responsable, etc.

P2: Voila. Cest ca!

Interviewer : D’accord.

P2 : C’est que nous justement...la demande d’ordre de mission et assigné, justifié avec un programme...
(audio naudible) ... 12 ¢’est bon pour réserver.

Interviewer : D’accord.

P2 : Audio mnaudible.

Interviewer : D’accord. Quelle suggestion pour améliorer ce processus de traitement de la demande ?
P2 : Voila ! Non, c’est tres bien... (audio mnaudible).

Interviewer : D’accord ! Est-ce que dans les demandes des voyageurs, que vous traitez, il y a des
informations qu’on pourrait identifier comme des besoins et/ou des exigences pour améliorer un systéme
de réservation de voyage P *

On suppose qu’on va commencer a construire un systeme de réservation de voyage. Est-ce que dans cette
demande vous identifiez des exigences utilisateur, des besoins utilisateur. Comment on peut utiliser
comme source pour ce type de systeme.

P2 : Pas encore.

Interviewer : Non ?

P2 : Non.

Annex C: Transcription of the Interviews

Interviewer : Vous pensez que dedans il n’y a pas d’informations utiles pour aider la construction d’un
systeme dans ce type-la ?

P2 : Malheureusement je ne vois pas.

Interviewer : Non ?

P2 : Non.

Interviewer : Méme sur le probléeme que vous recevez, par exemple, les chercheurs, ils n’arrivent pas a
chercher les vols qu’ils veulent. Donc, méme dans ce cas-13, vous ne pensez pas qu’il y a des choses qu’on
doit porter pour améliorer ce type de systeme ?

P2: Je pense qu'apres c’est voulu. Parce que voulus ne mettent pas tous les vols en ligne. Les vols
compliqués, 1l y a des frais d’agence, peut-étre, du coup... je ne sais pas... il y a beaucoup de destination...

Oui... peut-étre on peut améliorer ¢a en cas de vols compliqués.

Interviewer : Donc, vous pensez qui ¢a peut étre une chose qu’on peut identifier comme besoin utilisateur,
que le systtme doive prendre en compte ?

P2:0u!

Interviewer : C’est un probleme.

P2 : On fait la demande par mail... (audio inaudible).

Interviewer : A cause de ce « delay» il 0’y a pas de probleme ?

P2 : On dit que ce « delay» ... En ligne, on valide tout ensuite, 1l n’y a pas de « delay ».

Interviewer : D’accord. Quelles sont vos besoins/exigences pour le systtme de réservation de voyage que
vous utilisez actuellement P *

Quelque chose que vous voudrez avoir dans ce type de systéme, ou que vous considérez essentielle ?
P2 : Non, la c’est assez complet.

Interviewer : Quel type de fonctionnalité dans le systétme vous considérez plus important ?

P2: Fonctionnalité ?

Interviewer : Oui! La partie, par exemple, d’ordonner le vol par prix, ¢’est important ou non, par

exemple ?
P2 : Cest important !

Interviewer : Il n’y a pas de fonctionnalité que vous considérez...

Annex C: Transcription of the Interviews

P2 : Tirer par horaires... (audio inaudible) apres les informations des passeports.

Interviewer : D’accord ! Avec quelle fréquence vous devez demander Paide des autres membres de
P’équipe pour résoudre les demandes des voyageurs ? *

P2: Les autres membres de I'équipe ?
Interviewer : Oui, si vous avez besoin, bien sir.

P2: Oui! Mois, tous les jours. Nous sommes dans un « open space », donc on pose les questions
naturellement... (audio inaudible) ... la fréquence...

Interviewer : Tous les jours, peut-étre ?

P2 : Voila, tous les jours.

Interviewer : Donc, c’est assez [réquent. Quelque suggestion pour faire ¢a mieux ?
P2: Non!

Interviewer : Non P! Avec quelle fréquence vous devez demander aux voyageurs de clarifier les
informations concernant leur demande P *

P2 : On est toujours obligé de demander, sur tout par rapport au service au GLPI, parce que, apres la
réservation dans le méme service est claire, pas de probleme. Tandis que ce nous qui faisons... (audio
maudible). Quand ce le chercheur qui fait sa réservation, c’est sir, c’est clair. Apres ce juste par rapport
au document rempli, I’émission d’ordre de mission, etc.

Interviewer : D’accord ! Savez-vous me dire avec quelle fréquence ? Tous les jours, tout le temps ?
P2 : Deux a trois fois par jour.

Interviewer : D’accord. Quelque suggestion pour faire ¢a mieux ? Pour améliorer la clarification de
probleme avec les voyageurs ? Quelque fonctionnalité ?

P2 : Laissez de se communiquer avec la... (audio inaudible). En ligne, sur 'imternet a une procédure
d’utilisation. On fait passer des messages, voila, sauf, je pense que beaucoup de personnes ne réalisent
pas et voila.

Interviewer : D’accord !
P2: On a fait le service général, quand ils ont mis quelque... (audio maudible). En place, 1l avait une
dizaine de personne... (audio inaudible) ... donc, voild, on ne sait pas trop comme on fait pour savoir quel

vous Intéresse et voila.

Interviewer : Selon votre propre expérience, quelles seraient les fonctionnalités qui vous seraient utiles et
qui devraient étre rajoutées au logiciel de réservation ? *

Annex C: Transcription of the Interviews

P2 : Pour la réservation, je ne dirais rien.

Interviewer : Non ? D’accord ! Aucune. Selon votre propre expérience, quelles seraient les fonctionnalités
qui seraient utiles pour les voyageurs P

P2: Que seraient quoi ?

Interviewer : Utile pour les voyageurs. Dans le systtme de réservation de voyage, 1l y a quelque
fonctionnalité que vous pensez qui pourrait aider les voyageurs a faire le processus de réservation de
maniere plus facile ?

P2 : Clest tres simple. Je pense que ¢’est comme une réservation sur I'imternet. C’est pareil.

Interviewer : C’est pareil avec tous les autres qu’on a déja sur l'internet ?

P2: Cest tres bon. On registre notre destin, les horaires, vous sélectionner et juste a la fin, mettre le vol
et c’est tres simple. Souvent, on se retrouve sur les vols « Fasy/fet », justement parce que... (audio inaudible)
.... Ils ne savent pas, nous ne pouvons pas vous renseigner... (audio inaudible). Oui, ¢’est normal, parce
que on ne peut pas le faire.

Interviewer : D’accord.

P2 : (Audio mnaudible).

Interviewer : Donc, le probleme c’est plutot avec les « low-cost »

P2: Ou!

Interviewer : Pourriez-vous lister 3 fonctionnalités que vous aimeriez garder pour ce type de systeme ? Le
systtme de voyage, pas le GLPL. -

P2 : Oui ! Tirer par horaire et par le prix, c’est super ! L’effet que le profil est complet... (audio inaudible).
Le profile est déja et complet et voila. Quoi d’autre ? Quoi d’autre ? Je ne vois pas plus.

Interviewer : Non ?

P2 : Non.

Interviewer : D’accord ! Pourriez-vous lister trois fonctionnalités que vous aimeriez changer pour ce type
de systtme ? Faire de maniére différente. Rajouter la question de multiples-destinations ce ne pas une

bonne fonctionnalité, que vous avez dire *

P2 : Oui, our ! Pour les multiples-destinations, ¢a c’est siir que ce n’est pas évident. Apres ca, ¢’est tout
simple.

Interviewer : D’accord ! Tres bien.

Annex C: Transcription of the Interviews

Section C : Rédaction des Récits Utilisateurs.

Interviewer : Bon ! Dans cette partie concernant la rédaction, que nous, on s’appelle le récit utilisateur.
C’est un « template », c’est un modele pour écrire les histoires, les récits, quand, I'utilisateur fait une action
sur le systeme. D’accord ?

Donc, le modele c’est plutot comme ¢a. On a un titre, d’accord ? Que décrit 'histoire et on a un
préambule avec un réle qui fait cette fonction-la. Qu’est-ce qu’il veut comme fonctionnalité, afin de voir
quelque but, quelque bénéfice. Voila ! Et Donc, on a plusieurs scénarios pour décrire plusieurs situations
qu’on peut utiliser avec le systeme. Donc, on a toujours une clause « En tant donnée », qui va nous donner
un contexte d’application de ce scénario. On peut avoir plusieurs contextes, donc on rajoute la clause
« Quand » un événement arrive et une conséquence « Alors », cette chose ou plusieurs choses arrivent,

donc un exemple :

En tant donné que je vais a la page “Recherche des vols”

Quand je choisis : “aller simple”

Et je tape “Paris” et choisis “Paris, Charles de Gaulle (CDG)” dans le champ “Départ de”
Etje tape “Toulouse” et choisis “Toulouse, Blagnac (TLS)” dans le champ “Arrivée a”

“o”

Etje choisis dans le champ “Nombre total de passagers”
Et je choisis “15/12/2017” dans le champ “Date de départ”
Etje chique sur “Recherche”

Alors le systeme va afficher la liste des vols disponibles.

Donc, la question que je pose : est-ce que vous pourriez spécifier un exemple des demandes de réservation
en utilisant ce format-1a description ? Bien siir, différent de celui-la ?

P2 : Elle Iit.
Interviewer : Ca vous semblez comment ce format-la ?
P2 : Ouy, c’est ca! C’est un peu ce contexte en fait.

Interviewer : Donc, c’est quoi ? C’est un modele que vous considérez qu’on peut faire, qu’on peut écrire

I'activité utilisateur comme ca ?
P2 : (Audio maudible).

Interviewer : Par exemple, si on veut chercher un vol multiples-destinations quoi vous me donnez comme
exemple ? Qui est le probleme !

P2:0u!
Interviewer : Vous arrivez le décrire comme c¢a ?
P2:0u!

Interviewer : Oui ? Bon, si vous pouvez le faire un exemple comme ca.

Annex C: Transcription of the Interviews

P2:0Ou!

Interviewer : Oui ! En vers qu’en suivant ce modele-la. Vous devez maintenir juste les clauses que sont 13,
d’accord ? Ici, bien str, vous pouvez tout changer.

P2 : (Klle écrit).

Interviewer : On doit, par exemple, arriver hors Paris. Sortir de Frankfurt...
P2 : Parce que de toute facon, par exemple, les multiples-destinations...
Interviewer : Par exemple.

P2 : (Audio mnaudible).

Interviewer : Il n’y a pas une option multiples-destinations ?

P2 : (Audio mmaudible).
(Elle écrit en lisant quelque chose en voix bas).

Interviewer : C’est comme plusieurs allers-simples ?
P2 : On fait des allers-retours aussl... (audio mnaudible).
Interviewer : Mais dans cette méme interface-la ?

P2 : Oui... (Elle écrit encore).

Interviewer : D’accord ! Donc, ¢’est encore plus compliqué, si par exemple, il fait Toulouse, Rio et 1l ne
part pas de Rio, il part de Sio Paulo a Porto Alegre, par exemple ?

P2: Ou!

Interviewer : Il faut faire d’aller-simple. Il ne peut pas faire ¢ca comme multiples-destinations ?
P2: Non!

Interviewer : Dong, Il faut partir dans la méme ville que vous étes arrivée ?

P2 : Comme ca.

Interviewer : Oui ?

P2 : Apres c’est pareil.

Annex C: Transcription of the Interviews

Interviewer : D’accord ! Normalement les tarifs sont plus chers pour les allers-simples que pour les
multiples-destinations. Donc, ¢a pose beaucoup de problemes.

P2:0u!

Interviewer : Bon, c’est bon P 11 faut juste une conclusion, je pense.

P2 : (Elle écrit apres elle a lu en voix bas).

Interviewer : D’accord ! Bon, la dermiére partie, pensez-vous pouvoir rédiger une liste de demande/
probléme, surtout de probléeme que vous recevrez au cours de la semaine que va venir P Que les
utilisateurs rencontrent sur la recherche du vol etc. ?

P2: Oul

Interviewer : Une liste simple, avec bon, c¢a ¢’est un probléeme, ¢a ¢’est d’autres problemes qu’ils ont

racontés.

P2:0u!

Interviewer : C’est possible ?
P2 : Ouy, bien str.

Interviewer : Vous avez une idée de combien de probleme vous avez normalement pour la semaine ?
Que vous recevoir ?

P2 : Deux par semaine.
Interviewer : Deux ? Donc, ce n’est pas beaucoup.

P2 : Ce n’est pas beaucoup, mais ca dépend de période. Souvent les plus compliqués ¢’est quand on a
des invités que viennent des pays qui sont tres loin.

Interviewer : D’accord ! Dong, si Oui, c’est le cas. Pensez-vous que vous pouvez formater ces demandes/

problémes, en suivant ce modele-la ?
P2:0u!

Interviewer : Oui ? Par exemple, on n’arrive pas mettre le parcours de voyage donc, ¢’est un probléeme,
donc, vous-pouvez arriver a formater la demande a c’est format-la ? Vous-croyez que c’est possible ?

P2 : Oui! Vous voudrez que je rédige
Interviewer : Une liste de problemes que vous rencontrez et apres formater dans ¢’est format-l1a.

P2:0Ou!

Annex C: Transcription of the Interviews

Interviewer : Ou ? C’est possible ? Donc, dans ce cas-1a, je veux vous envoyer par courriel électronique,
la semaine prochaine peut-étre.

P2 : C’est un temps court.
Interviewer : Oui ! Désolé !
P2 : Pas de souci.

Interviewer : Et apres ca, je vais vous envoyer un brel questionnaire pour évaluer ce type de « template ».
D’accord ?

P2 : Ou
Interviewer : Donc, ton adresse mail ?
P2:0Ou!

Interviewer : Donc, on fait comme ca. Voila ! Merci beaucoup.

Annex C: Transcription of the Interviews

3. TRANSCRIPTION : Participant 3 (P3)

Partie 1 : Questionnaire démographique et de contexte.

Interviewer : Bon, voila ! Dongc, la premiére partie, c'est une partie démographique, on veut savoir votre

sexe, C’est évident.

P3 : Cest évident - Féminin.

Interviewer : Votre age ? S’il vous plait.

P3: 52 ans

Interviewer : Votre niveau d’étude ?

P3 : Bac

Interviewer : Depuis combien de temps, vous étes au service de mission de 'IRIT ?

P3 : Bientot quatre ans.

Interviewer : Avez-vous déja eu des expériences dans des services similaires auparavant ?
P3 : Non, pas pour de réservation. Non, non.

Interviewer : Bon, pourriez-vous nous donner un apercu de ce traval, en fournissant une bréve
description de vos tiches ?

P3: Ben! On recoit la demande par ticket en fonction de la demande, de la date, de 'heure de la
destination nous, on va faire une demande devis qu’on recoit un peu du temps apres et qu’on confirme

par bon de commande.

Interviewer : D’accord et vous étes en charge de tous les tiches pendant le processus. Il n’y a pas de tache
spécialisée pour chacun ?

P3 : Non, non. On fait tous la méme chose et on traite chacun un certain nombre d’équipes, voila.
Interviewer : Et comment on fait la distribution de demande ?

P3 : De demande ?

Interviewer : Oul. Qui prend quoi ?

P3: Ah! Ceest par équipe, par exemple vous, vous faites partis d'une équipe, la gestionnaire de cette

équipe va récupérer la demande et elle va traiter la demande de la mission, du billet d'avion, de train
Jusqu'au retour de mission. C’est tout !

Annex C: Transcription of the Interviews

Interviewer : D’accord ! Mais ma demande qui prend charge ? Vous, P1, Lorraine ? Il y a un sort de tache
spécialisée qui quelqu’un fait de I’équipe ?

P3 : Non ¢a dépend des comptes, sinon, chacune est responsable d’'un nombre de compte.
Interviewer : Ah ! D’accord ! Vous étes responsable par un sort de compte ?
P3: Oul

Partie II : Processus de traitement de demandes

Nous sommes intéressés par les préférences et les difficultés que les voyageurs de 'IRIT ont rencontrées
et vous ont signalés lorsqu'ils essaient de réserver leurs voyages d'affaires. Nous sommes également
intéressés par votre opinion sur les demandes recues.

Label : * faits, ® interprétation

Section A : Réception de demandes de réservation

Interviewer : D’accord ! Bon, sur le processus de traitement de demandes - A la réception de demandes
de réservation : Comment les demandes de réservation des voyageurs arrivent-elles a vous et avec quelle
fréquence P Avez-vous des suggestions pour faire mieux ? *

Interviewer : Bon, elle arrive par ticket !

P38 : Par ticket, voila !

Interviewer : C’est toujours par ticket ?

P3 : Ou par mail, mais le plus souvent c’est par ticket, parce qu'on essaie de le mettre en place le plus
possible, pour avoir une visibilité plus générale, justement entre les gestionnaires. Parce qu’on a ’absence
du gestionnaire justement, du ou la gestionnaire qui pourrait étre malade ou absente, pour quelque motif
que c’est soin, sa collegue ou son collegue peut reprendre le ticket pendant ces temps-1a, comme ca, s'il y
a une urgence, 1l ne passera pas l’attrape, on va le gérer, on ne va pas attendre que la gestionnaire, qui était
absente, va revenir pour traiter ces tickets.

Interviewer : D’accord ! 1ls arrivent dans quelle fréquence ? En Moyenne.

P8 : De ticket, on a tous les jours, de demande !

Interviewer : Un peu prét ? Combien ? Vous savez dire P En Moyenne ?

P3 : En moyenne ? Je dirai entre 5 et 10 par jour.

Interviewer : D’accord ! Avez-vous des suggestions dans ce processus ? De comment la demande arrive ?

P3 : Non, ca fonctionne tres bien.

Annex C: Transcription of the Interviews

Interviewer : D’accord ! Bon, combien de demandes de réservation de voyage avez-vous recues la semaine

derniére P *
P3 : On va dire, de réservation de voyage. Je dirai 10.
Interviewer : Donc, ¢a c’est une semaine typique. Parce que bon...

P3 : Ca fluctue, parce que, quand tu as de soutenance de these, ben ! On a plus a ce moment-la, apres on
a en moins, apres on peut avolr une semaine ou il y a deux soutenances, donc, ca fait beaucoup plus de

demande, donc c¢a fluctue vraiment.

Interviewer : D’accord !

P3 : Mais, on a toujours au minimuim, je pense, 5 par semaine au minimuim.
Interviewer : Avez-vous des suggestions dans cette partie, sur la demande ? *
P3 : Sur la demande des chercheurs ?

Interviewer : Oui ! Si elles viennent tous ensemble...si...bon, je ne sais pas !

P3 : Elle ne peut pas venir tous ensemble, parce qu’ils n’ont pas les démarches au méme moment. Parce
que chaque jour a sa propre organisation, donc, mais s’il peut anticiper le maximum, ¢a serait meilleur,
parce que chacun ne pas "c'est le monde", donc, 1l faut deviner et savoir que nous on n'attend pas cette
demande pour travailler. On fait les demandes, on fait la mesure qu'elles arrivent. Souvent pour une
demande on perdre beaucoup de temps, parce que dans la demande 1l n'y a pas que le billet d'avion il y a
aussi les gens qui ne sont pas créés, donc, par exemple, donc ca fait la demande de document mal rempli,
c'est que retarder la demande de temps et il ne faut pas faire. En général, quand 'agent fait la demande
vendredi, mais on ne peut pas forcément le temps de le valider le vendredi méme. Donc, si vous, ¢’est un
exemple. Vous faites une demande de devis le vendredi aprés-midi a 16 h, nous, on part 16h30, maximum
17h30. S1 on traite de demande d'urgence avant de recevoir votre ticket, le devis que vous allez demander,
st vous regardez bien, sur votre devis, ¢a étre validé avant le méme jour, minuit par exemple, on ne peut
pas valider. C'est qui fait que le lundi, vous allez étre obligé de faire une nouvelle demande de devis, donc
voila, 1l faut faire trés attention a la date de validité sur la demande de devis.

Interviewer : D’accord ! Pensez-vous qu’il manque quelque chose dans la description des demandes de
réservation que vous recevez P *

P3 : En ce qui me concerne, non.
Interviewer : C’est complet ? Ne manque aucun donné ?
P3 : Non pas, 1l ne manque rien ! En regle générale, non !

Interviewer : D’accord ! Avez-vous de suggestion a ce sujet-la P +

Annex C: Transcription of the Interviews

P3 : Oui, yai juste une suggestion a faire. Si 'agent nous envoie des horaires précis et alors, que dans sa
téte : « c'est bon, je mets ces horaires-la, mais ca peut changer ». Il faudrait qu'ils le président dans sa
demande, parce que nous, on va se précipiter pour faire la réservation et si apres 'agent va dire :
« finalement non, finalement, ¢a me range plus une heure aprés ou une heure plus tét ». Nous, on va
retravailler dessus, ca va faire perdre de temps, par une heure du temps. Alors que s'll y a un moins de
doute, qu'ils précisent au départ, ca, nous éviterons de nous précipiter et de perdre de I'argent aussi parce
que souvent pour une modification, il y a une pénalité, voila.

Interviewer : La plupart des demandes arrivent avec un horaire fixe. Cest ¢ca ?

P38 : Oui, oul.

Interviewer : Donc, si on peut avoir des horaires flexibles, ¢a sera mieux ?

P3 : Pour la personne qui a un doute, ils vont mieux avoir des horaires flexibles, oul.

Interviewer : D’accord ! Il y a des champs comme c¢a, pour faire cette option d’horaire flexible dans
I'ouverture de ticket ? Ou 1l faut I'écnit ?

P38 : Non, 1l faut I'écrit.

Interviewer : D’accord.

P3 : Quand c'est nous qui faisons la demande de devis. Apres quand c'est vous qui la faites, 13, s1 vous
engagement. Vous, propre, apres une fois qu'on a le devis que vous, vous avez demandé on a obligé de
suivre vous horaire, mais dans le ticket, si vous avez un doute, 1l faut le préciser, voila.

Interviewer : D’accord.

P3 : Ca sera meilleur, ¢a, nous faisons gagner du temps et a vous de ’argent.

Interviewer : D’accord ! Est-ce que vous devez prendre des notes (ex. post-it, email etc.) sur les demandes
de réservations P *

P3: Non.

Interviewer : Non ?

P3: Non

Interviewer : Bon, si oul, combien de notes en moyenne ? Dong, ¢a ne fait pas de sens. *

P3 : On ne peut pas de note, parce qu’on a deux écrans, donc, si on a besoin d'information, on peut

travailler, on peut le réserver sur un écran puis on peut regarder les horaires sur la demande sur l'autre

écran. Donc comme ¢a, on n’a pas besoin de noter. Sur un doute, on regarde la demande.

Annex C: Transcription of the Interviews

Interviewer : D’accord ! Mais, par exemple, méme si vous prenez une demande par téléphone ou
d’information, 1l n’y a pas de note que vous prenez ? En dehors du systeme ?

P3: Voila, quand on a tout le suivi de toutes les demandes, on peut remonter jusqu'au départ. On ne
prend pas des notes par téléphone, c’est trop fragile. S’il y a au moins d’erreur, apres, on n’a aucune trace.

Interviewer : Méme s'll y a une demande formalisée par ticket et il y a un doute, par exemple ?
P3 : Non, toujours par écrit.
Interviewer : Donc, toujours par écrit ?
P3 : Toujours par écrit, parce que dans le ticket, on peut faire un suivi.

] P s P q s p
Interviewer : D’accord !
Interviewer : Quelque suggestion dans ce processus-la ?
P3 : Non, ca fonctionne trés bien, je pense. Je n’al jamais rencontré, au niveau des demandes, des agents.
A part le fait quil faut qu'il soit str de leurs horaires, quand ils demandent un devis. Bon apres, on sait
qui peut avoir les contretemps de dernieére minute, ¢a arrive a tout le monde, mais voila. Le plus possible
évité de nous refaire travailler plusieurs fois sur une méme demande.
Interviewer : D’accord ! Vous prenez les annotations, tout ca, sur le suivi de ticket, c’est ¢a ?
P3: Oul
Interviewer : D’accord ! Et vous avez une idée du combien de suivi en demande elle prend normalement ?
P3 : De suivi ? Ca varie aussi. On ne peut pas, je ne sais pas si on peut le chiffrer, parce qu’il peut avoir
un ou deux problémes et puis le suivant, 1l va y avoir un échange de mail demande, quatre textes pour
une seule demande, par exemple. Donc je ne sais pas st on peut vraiment le chiffrer. Voila, ca varie

vraiment en fonction de la personne, de la demande et voila, je pense que c’est ca.

Interviewer : D’accord ! Si vous prenez des notes, comment vous les conservée et sur quel format ? Donc,
vous le conservées sur le suivi de demande, c’est ¢ca P *

P3 : Oui, et on fait souvent une copie papier dans le dossier.

Interviewer : Physiquement ? Vous imprimez ?

P3: Ou

Interviewer : Comment améliorer l'enregistrement de ces notes ? Il y a quelque chose ?

P3 : Non, parce que... Il n'y a aucune, le suivi. Je ne sais pas si vous voyez. Vous avez déja regardé ?

Annex C: Transcription of the Interviews

Interviewer : Oui, Oui. GLPI, c’est ¢a ?

P3 : GLPI, voila! Non, et vous cliquez sur le traitement de texte, je crois, et vous avez tous les suivis que
s’affiche, amsi que les documents.

Interviewer : Je ne connais pas I'interface de votre c6t€, mais bon.
P3 : Mais c’est bien ! On a tous les suivis.
Interviewer : D’accord ! Trés bien ! Pensez-vous que l'enregistrement de ces notes est important ? «
P3 : Ou, c’est trés important !
Interviewer : Bon, ¢’est important, mais il n'y a pas de suggestion d'amélioration dans cet enregistrement ?
P3 : Non, pas ce qui me concerne.
Interviewer : D’accord.
Interviewer : Pouvez-vous fournir quelques exemples de demande de réservation que vous recevez P Par
exemple, c’est un voyage qui apporte plusieurs moyens des transports, il y a une partie en avion, une partie
en train et c’est tout dans le méme billet. *
P38 : Il y a plusieurs destinations, 1l v a de billet d’avion avec de changement d’aéroport.
yap)
Interviewer : C’est surtout de billet d’avion et de train ?
P3: Oul
Interviewer : D’accord. Par exemple, 1l y a de réservation de la voiture ?
P3 : Ouy, 1l y a de location de la voiture aussi.
Interviewer : D’accord. Au niveau du systéme, ca, ¢’est traiter de la méme facon ?
P3 : Ouy, sur I'interface, on peut réserver.
Interviewer : D’accord. Quelque suggestion a ce sujet-1a ? D’amélioration ?
P8 : Oui, d’amélioration, oul. J’al eu un probléme la semaine derniére, parce que j’ai eu un vol pour aller
> p .
sur une compagnie et le retour sur une autre, et le retour, ¢’est sur un vol « low-cost ». J'a1 di faire une
demande indirecte au marché, je ne suis pas passé par le site, parce que, je n’ai pas trouvé, il ne voulait
pas prendre les deux compagnies en méme temps j'étais obligé de prendre le vol séparément, or
séparément c’est tres cher, 1l ne voulait pas faire aller et retour. Donc, j’étais obligé de faire une demande

par mail au marché, qu’eux m'envoyer un devis, alors que, ¢’est plus rapide, voila.

Interviewer : D’accord, quand vous dites au marché, c’est 'agent de voyage ?

Annex C: Transcription of the Interviews

P3 : Oui, 'agent de voyage.

Interviewer : I)’accord. 1l fait ¢a et il vous retourne un billet aller-retour avec deux compagnies différentes,
c’estca?

P3 : Oui, c’est le devis qu'll nous envoyait avec la compagnie qu’on souhaitait. Par exemple, vous, vous
allez regarder sur I'internet, vous allez voir, le départ, je peux prendre Air France et le retour, je peux
revenir avec « Fasyfet ». Vous voyez que les horaires vous conviennent, donc, vous m'envoyez une
demande, moi, je vais sur le site, je regarde les horaires et les compagnies. Je ne vois pas la compagnie
« Easyfet » sur leur site. Bon, on dit ! Vous n’avez pas inventé quand méme.

Interviewer : Mais, ca arrive toujours ? Les « Jow-costs » ne sont pas concernés dans le systéme ?

P38 : Non, on a des « low-costs ».

Interviewer : Mais pourquol vous ne voyiez pas ?

P3 : Parce que, quand 1l y a de vol aller-retour, on ne prend pas forcément le « low-cost », donc ¢a va
perturber, je pense.

Interviewer : D‘accord, donc vous croyiez que ¢’est un probleme du systeme plutot ?

P3: Je pense que... Je ne sais pas. Non, en tout cas quand leur demande, quand moiu, je vais faire la
demande par mail a l'agence, voila, il m’envoie exactement les horaires et les compagnies que vous, vous
m'avez demandé, donc, c’est possible pourquoi on n’arrive pas a voir sur le site. Donc ca, vous faites
perdre du temps.

Interviewer : D’accord. Dong, la suggestion ¢’est de pouvoir faire ca sur le site ?

P3 : De pouvorr faire ¢a sur le site.

Interviewer : D‘accord.

Section B : Traitement des demandes de réservation.

Interviewer : Bon, concernent le traitement de demandes. Quelle est la procédure-type pour traiter une
demande de réservation ? *

P3 : Alors, la procédure type.
Interviewer : Comment ¢ca commence, aprés qu’est-ce qu’arrive ?
P3 : Uniquement de la réservation ou de la globalité ?

Interviewer : De voyage, de voyage, surtout.

Annex C: Transcription of the Interviews

P3 : Bon, I'agent nous met un ticket GLPI. C’est lui qui n’y a pas 'acces. Parce qu'il y a deux possibilités.
Il y a de gens doctorant qui il n’y a pas acces a I'intranet qui ne pouvez pas faire leur demande de devis,
donc 1l passe directement par nous.

Interviewer : Par mail ?

P3 : 1l faut un ticket.

Interviewer : Mais c’est un ticket différent des autres qui ont d’acces ?

P3 : Non, c’est toujours GLPI. Sauf que vous, s1 vous étes, s1 vous avez-vous 1dentifiant intranet UPS, vous
pourrez faire directement votre demande de devis et nous mettre en tant que valider.

Interviewer : D’accord.

P8 : Donc nous, on va recevoir la demande, d’accord ?

Interviewer : D’accord. Donc, ¢a ¢’est le premier part.

P3: Voila, apres 1l y a les gens qui n’ont pas leur identifiant, qui vont étre obligés de passer par nous.
Donc, ils vont faire un ticket également, ils vont nous transmettre la date, la destination et les horaires par
mail. Nous, on va les enregistrer en tant qu’inviter, parce que, ils ne sont pas créés. Et on va faire la

demande. On va réserver pour eux et on va demander un devis.

Interviewer : D’accord. Et la demande de devis, comment ont fait cette demande P Vous allez au site ?
Clestca ?

P3: Voila.

Interviewer : Ou vous appelez 'agence ?

P38 : Non, non. Je vais sur le site.

Interviewer : C’est toujours sur le site ?

P3 : Ou, toujours en priorité c’est sur le site.

Interviewer : D’accord. Cest le « Travel Planet ».

P8 : Oul, « Travel Planet ».

Interviewer : D’accord. Donc apres le devis ?

P3 : Apres le devis, dong, on fait une demande de devis qu’on va recevoir par mail et qu’on va confirmer

par un bon de commande. Bon, nous, on fait le bon de commande et sur le site on va repartir pour

finaliser le voyage, finaliser la demande, donc on va...

Annex C: Transcription of the Interviews

Interviewer : Finaliser ¢a veut dire quoi, exactement ?

P3 : Finaliser c’est donner notre accord par numéro de bon de commande. Voila. Au départ, on demande
I'accord par devis. Une fois, qu’on a le devis, on va finaliser la commande en précisant le numéro de bon
de commande qui a attaché a cette demande, comme ca, eux n’a pas besoin de recevoir le bon de
commande, ils ont juste le numéro pour attacher la facture, le billet a ce numéro.

Interviewer : D’accord ! Et apres c¢a c’est fin1 ?

P3: Apres on recoit I'itinéraire, qu'on soit en le recois uniquement nous et n’est pas I'agent ou alors,
I’agent recoit aussi une copie. Mais, nous, par défaut, l'envoie quand méme des qu'on recoit l'itinéraire on
le renvoie a l'agent pour étre str qu'il puisse enregistrer en ligne.

Interviewer : Que c’est d¢ja le billet ?

P3 : Ce n’est jamais le billet en général, c’est pour qu’il s’enregistre en ligne et qu’il imprime son billet.

Interviewer : D’accord.

P3 : On ne recoit pas immédiatement. Ca, peut-étre un déstabilisant, si on peut avoir dans les 48 h, suivant
la demande, ca sera bien.

Interviewer : Mais aujourd’hui ¢’est combien du temps ?

P3 : On le recoit trois, quatre jours apres. Donc, nous, on passe a I'autre chose et puis un jour on recoit
I'itinéraire puis on est obligé de perdre du temps. Ah ! Oui, c’est vrai, on est obligé de ressortir le dossier
pour savoir ot est le dossier, s’il n’y a pas d'erreur. Voila !

Interviewer : D’accord !

P3 : Si ca pouvait étre plus rapide, ¢a serait mieux.

Interviewer : Donc la suggestion dans ce cas-1a, c’est de pouvoir, par exemple, confirmer la demande
directement sur le site ? Ou non ? C’est méme de la recevoir dans un « delay » plus court ?

P3 : Non, c’est plutot de la recevoir dans un « delay » plus court. Donc, c'est encore frais dans notre esprit.
Interviewer : Est-ce que dans les demandes des voyageurs que vous traitez, il y a des informations qu’on
pourrait identifier comme des besoins et/ou des exigences pour améliorer un systéme de réservation de
voyage ? *

P3 : Des besoins, des exigences... mol, je n’ai pas eu. Ou peut-étre ?

Interviewer : Par exemple vous voyez quelque sort de probleme qu’arrive souvent pour le chercheur,

quand ils vont chercher du voyage sur le systeme. Ca pourrait devenir un besoin utilisateur pour améliorer
un systeme futur de réservation de voyage ? Ou méme le systeme qui existe déja ?

Annex C: Transcription of the Interviews

P3 : Je ne vois pas trop qu’est-ce que pourrait...Bon, moi, j’al une, que je n’ai pas utilisée. C’est le voyage
groupé, avec plusieurs personnes. Ca je n’ai encore fait depuis que...c’était bien en place, donc, je ne peux
pas vous en parler, je ne peux pas dire si c’est efficace ou pas.

Interviewer : C’est quoi un voyage groupe exactement.

P3 : Par exemple il y a une dizaine de personnes qui prennent le billet d'avion le méme jour. Donc, qui
vont a la méme conférence, voila. Et vous voudriez aller dans le méme vol et la méme heure.

Interviewer : Donc, c’est possible de faire une seule demande pour les dix P

P3 : Ah, non ! Il faut faire la méme, mais...Il faut avorr, si on peut avoir...Non, peut-étre pas...Peut-étre 1l
faut faire une demande... Je ne peux pas vous en parler, parce que je jamais essayais, je ne sais pas en fait
s1 on peut faire...c’est possible. Je pense que c’est possible de faire une seule demande pour un groupe de
personnes.

Interviewer : D’accord. Donc, c’est que concerne le besoin, les exigences, il y a quelque chose que vous
identifiez ?

P3 : Les grandes personnes. Sont des exigences dans déplacement, donc, ce n’est pas évident, parce que,
sont des grandes jambes et les vols ont des lieux trop précis.

Interviewer : Ca, on ne peut pas faire aujourd’hui ?
P3 : Ca dépend. On peut le faire s’il le prend tout, mais ce n'est pas évident.

Interviewer : Mais vous pouvez demander ca par téléphone, par exemple, a 'agent de voyage que va [aire...
D

P3 : Par téléphone, non, Il ne renseigne jamais par téléphone. On a toujours besoin de faire un mail. Il
ne donne jamais de réponse par téléphone. Mais en fonction... on a un plan d’emplacement dans I'avion
et on voit si c'est disponible ou pas disponible. Quand ne plus disponible, ce n’est pas possible.

Interviewer : Méme s’il intervient, ’agence ? Méme si I'agence fait une intervention pour... ?
P3: Oui! Non.
Interviewer : On ne peut pas. D’accord !

Interviewer : Quelles sont vos besoins/exigences pour le systtme de réservation de voyage que vous utilisez
actuellement ? Par exemple, il y a de fonctionnalité que vous voudriez voir, en ce que concerne votre
activité P -

P3 : Alors, laisse-moi réfléchir. Je voudrais que, peut-étre, entre le moment ot on a fait la demande de
devis et le moment o, on fait le bon de commande, souvent, ce a ce rapide. On retourne sur le site et 1l
ne trouve pas notre demande d'autorisation. Donc on est obligé de repartir a zéro ou d'étre obligé de taper
la référence pour retrouver le voyage, pour retomber dans la liste d’autorisations. Donc, c’est un peu...

Annex C: Transcription of the Interviews

Un vrai lien direct entre le moment ot on fait le bon de commande et ot on donne 'accord. Il que se
passe, un petit peu de temps et apres on est obligé de tout, de revenir en arriére et souvent il ne trouve
pas ¢a perturbe, donc on est obligé de retaper la référence du vol, du devis, pour revenir sur I'accord

Interviewer :)’accord ! Et ce que concerne la recherche du vol, I'interface pour trouver de vol disponible,

tout ¢a vous plait aujourd’hui ? Il n’y a pas de besoins que vous identifiez dans cette partie, par exemple
)

P3: Non, cava! Cesta c’est vaste, quand méme. On a de la marge. Oui, oul.

Interviewer : D’accord ! Avec quelle fréquence vous devez demander Paide des autres membres de
P’équipe pour résoudre les demandes des voyageurs ? *

P3: De l'aide de, de...

Interviewer : De I'aide interne. De votre équipe.
P3: De mes collegues ?

Interviewer : Oui, oul, oul.

P38 : Clest tres, tres rare.

Interviewer : Rare ?

P3: Ou, c’est rare. Tres rare.

Interviewer : Il y a de suggestion dans ce sujet-la P De demander I'aide quand il y a de besoin évidemment
0]

P3: Enregle générale quand on a un souct on en parle entre nous et on a la chance d’étre en quatre, ce
qui fait, que sur le quatre il y a toujours, au moins une personne que rencontrer, peut-étre, ce genre de
probleme et, donc, du coup, le regle...

Interviewer : Ca marche bien ?

P3 : Oui, ¢a marche bien. En regle générale quand on a un doute, on envoie un mail a 'agence, au marché

et puis... on n’a pas la réponse immédiatement, mais ils sont a ce réactifs, quand méme.

Interviewer : D’accord. Avec quelle fréquence vous devez demander aux voyageurs de clarifier les
informations concernant leur demande P *

P3: Ah...Ca c’est toujours par ticket ou préalable, donc.

Interviewer : Mais ca arrive souvent ? Des informations manquent ? Des choses qui ne sont pas tres claires
0]

Annex C: Transcription of the Interviews

P3 : Non, mais souvent que manque en fonction de la destination, ce sont le passeport, les numéros de
passeport. Ca c’est important. Parce qu’on sait qu’il faut le passeport pour voyager, au moment de prendre
son vol, mais pour certaines destinations s'il n’y a pas le numéro du passeport ils ne vont pas le valider.
Interviewer : D’accord.

P3 : Donc, ca 1l faut que ce sache.

Interviewer : D’accord ! Mais au niveau de {réquence vous arrivez d'identifier ? A quelle fréquence vous

avez de demander une clarification ?
P3: Non, on a tres peu.
Interviewer : Donc, c’est rare aussi ?
P3: Oui, Cest rare.

Interviewer : D’accord. Des suggestions de ce sujet-la P Comment vous pouvez faire cette clarification au

demandeur ? Comment on peut faire ca meilleur ?

P3 : Bah ! Peut-étre qu’il a un petit truc qu'il dit a 'agent, au moment de faire sa réservation, de vérifier
son profil, de mettre a jour le profil systématiquement avant chaque demande.

Interviewer : D’accord. Selon votre propre expérience, quelles seraient les fonctionnalités qui vous
seraient utiles et qui devraient étre rajoutées au logiciel de réservation ?

P3: Bah ! Comme c’est I'internet, un question un conseil, ¢a ne sera pas mal. Quelqu'un qui sont en
direct en ligne.

Interviewer : D’accord. Un chat?
P38 : Un chat, voila!
Interviewer : Avec le demandeur ?

P3 : Bien str. Ou nous, ou nous, s1 on est bloqué, au moment donné, plutét que de perdre du temps
d'envoyer un mail, ou d’attendre. Poser la question directe en ligne, avec I’écran.

Interviewer : Avec I'agence ?

P3: Etvoila, avec I'agence.

Interviewer : D’accord. D’autres choses ?
P3: Non, parce que c’est bien fait.

Interviewer : Vous considérez que c’est complet le systeme ?

Annex C: Transcription of the Interviews

P3 : Pour nous besoins, je pense que oul. Bon il y a des améliorations a apporter, mais...
Interviewer : Par exemple ?

P3: Je ne sais pas, han ! Il y a toujours des améliorations.

Interviewer : Vous n’avez pas identifié a ce moment ?

P3: Pas vraiment. Pas quelque chose que soulte les yeux.

Interviewer : Selon votre propre expérience, quelles seraient les fonctionnalités qui seraient utiles pour
les voyageurs ? -

P3: Ah! Pour les voyageurs ?

Interviewer : Oui.

P3: Ah!ils ne peuvent pas faire le bon de commande, c¢a ce n’est pas possible, mais...
Interviewer : Mais ca peut étre utile P S’ils pouvaient le faire ?

P3: Oui, mais ce n’est pas possible. Parce qu’ill y a le compte, ils ne peuvent pas le faire. Han...Oui ¢a
pourrait étre utile s’ils pouvaient le faire en direct.

Interviewer : Oui ?

P3: Ou, bien str ! Ca nous ferait gagner du temps.

Interviewer : D’accord !

P3 : Mais... Oui, ¢a sera bien si vous pouvez faire leur demande de devis, et une fois que vous avez, vous,
le devis, par exemple, vous avez le montant, vous connaissez le numéro de compte, sur lequel vous allez
prendre la mission, vous tapez le numéro de compte, si vous savez que ¢’est montant-la va se déduire de
ce compte

Interviewer : Et c’est moi-méme que gere le budget, donc...

P3 : Voila | Mais, par contre, 1l faut que nous, nous soyons informés, quand méme. Ca pourrait étre bien.
Mais je ne sais pas comment c¢a peut étre réalisable. Mais ¢ca pourrait étre...ca résoudre le probleme du
vendredi, de la demande de devis du vendredi, par exemple.

Interviewer : D’autres suggestions

P3: Non!

Interviewer : Pourriez-vous lister 8 fonctionnalités que vous aimeriez garder pour ce type de systéme ? *

Annex C: Transcription of the Interviews

P3: Alors! Trois ?

Interviewer : Oui !

P3 : Le suvi de vol qu'on a pris. Ca c’est bien, toute la liste des vols en cours et qu’on a été autorisé. Ca
c’est important pour moi. L’effet de taper la référence aussi, en direct, ce n’est pas mal. Puisqu’il recoit
tout le suivi du billet.

Interviewer : La référence ?

P3: La référence de réservation. Apres la troisieme...on est obligé d’élire trois ?

Interviewer : Non ! S’il n’y a pas trois, non ! Vous pensez que c’est juste les deux qui sont plus importants

pour vous ?

P3 : Non. Puis, avoir un panel large de vol, ca c'est important, parce que...

Interviewer : Panel large de vols, ca veut dire, couvrir plusieurs compagnies aériennes ?
P3 : Oui ! Plusieurs compagnies et plusieurs horaires différents.

Interviewer : Pourriez-vous lister trois fonctionnalités que vous aimeriez changer pour ce type de systéme
P .

P3: Il y a une que m’angoisse. Quand on va sur le site, on tombe systématiquement sur le train. Et on
prend plus de billet d'avion que de train. Et si on ne fait pas attention dans la précipitation on fait une
demande d’aller et retour et puis on tombe sur la SNCF et pas sur...donc, on est obligé de changer
d’onglet... je ne sais pas.

Interviewer : D’accord.

P3: Ca c’est pénible...apres... c’est quot la question ?

Interviewer : Les trois fonctionnalités que vous aimeriez changer pour ce type de systéme ?

P3 : Jaimerais qu’ils nous envoient les billets « Fasy/et », beaucoup plus vite, parce que...ca...
Interviewer : Juste pour « Easyfet » P

P3 : Ouy, les autres...les autres aussi, mais « Fasy/fet », ¢’est beaucoup plus long, donc...

Interviewer : D’accord. Une troisieme peut-étre ?

P3 : Troisieme ? Non, je ne vois pas.

Interviewer : Non ?

Annex C: Transcription of the Interviews

Section C : Rédaction des Récits Utilisateurs.

Interviewer : Bon ! Dans cette troisieme partie on va évaluer un modele pour décrire le processus besoin
d’utilisateur, quand il utilise le systéme en fait. Donc, on est intéressé d'évaluer si ce modele marche bien,
ou s’1l ne marche pas bien, si vous jugez que c’est un modele qu’on pourrait utiliser, peut-étre, et bon. Le
modele est plutdt comme ca.

On a l'histoire, un récit utilisateur, avec un titre, d’accord ? Avec un préambule, qu’on identifie
en tant que le réle, particulier...je veux faire quelque chose, je veux une fonctionnalité, afin de pouvoir
obtenir un bénéfice, un but etc, etc...

Donc, pour ce récit-la, on a plusieurs scénarios. D’accord ?

P3: D’accord !

Interviewer : Donc ; on a le scénario 1.
En tant que : donner un contexte, ou, plusieurs contextes, qu’on fait quelque chose, qu’on a un

événement, alors, 1l y a un résultat ou plusieurs résultats.
P3 : D’accord !
Interviewer : Par exemple.

En tant que voyageur fréquent, je veux rechercher des billets, en fournissant des emplacements
et des dates, afin de pouvoir obtenir des informations sur les tarifs et les horaires des vols. Donc, un
scénario possible, c¢’est une recherche de ticket ‘aller-simple”. D’accord ?

P3: D’accord !

Interviewer : Par exemple :
En tant donné que je vais a la page “Recherche de vols”
Quand je choisis : “aller simple”
Et je tape “Paris” et choisis “Paris, Charles de Gaulle (CDG)” dans le champ “Départ de”
Kt je tape “Toulouse” et choisis “Toulouse, Blagnac (T'LS)” dans le champ “Arrivée a”

“o»

Et je choisis dans le champ “Nombre total de passagers”
Kt je choisis “15/12/2017” dans le champ “Date de départ”
Et je clique sur “Recherche”

Alors le systéme va afficher la liste des vols disponibles.

Donc, comme ¢a on fait une description de I'activité qu’on doit faire pour obtenir ¢’est but-la.
D’accord ?

P3:Ou!
Interviewer : Dongc, c’est ¢a le modele, on peut, bien str, décrire toutes les fonctionnalités, toutes les

activités que I'utilisateur, 11 demande de faire sur le systeme, et quelle sera la réponse du systéme a cette
demande-la. D’accord ?

P3: D’accord !

Annex C: Transcription of the Interviews

Interviewer : Donc, ca c’est le modele. Est-ce que vous pouvez écrire pour nous un exemple d’une
situation, d’un probléme, d’une demande utilisateur que vous identifiez, que vous recevez, par exemple,
souvent ou que vous avez recu récemment. Dans ce modele-la ?

P38 : Oui! Je dois écris ?

Interviewer : Ouy, sl vous plait ! Vous pouvez prendre un exemple.

P3: Ca va étre la méme figure, mais au lieu d'aller simple, c'est aller/retour.

Interviewer : Oui, c'est une option. Vous pouvez aussi faire un scénario comme ¢a, pour enregistrer les
données de passeport, pour enregistrer le bon de commande, pour confirmer la réservation, bon vous
pouvez imaginer quelque scénario que vous voulez.

P38 : Alors, attendez !

Interviewer : Donc, on a toujours un contexte, d'accord ?

P3:Oui!

Interviewer : Quand le scénario, 1l arrive, on a toujours une réponse. D'accord ?

P3 : D'accord !

Interviewer : Donc, on fait une action sur le systeme et on recoit une réponse. D'accord ? En accord avec
cette action qu’on a faite.

Donc, on va avoir ce qui l'utilisateur, qu'est-ce qu'il va faire, avec quel but. Et aprés on va avoir plusieurs
scénarios, vous pouvez d'écrire un, par exemple, avec un contexte, une action et une réponse.

P3 : Mais, ca sera toujours dans le but d'une recherche dun billet d'avion.

Interviewer : Ou apres le rechercher. Faire la réservation, mettre les données ou mettre le bon de
commande, bon voila. Ca pourrait étre fait apres la recherche, apres qu'on a déja la liste, parce que, bon,
on a la liste de vol disponible, apres ca, qu'est-ce qu'on pouvait faire, par exemple, donc, mais, bien siir, si
vous voulez faire un scénario recherche, il n’y a pas de soucis. Clest juste pour clarifier que vous pouvez
utiliser ce type de modele pour décrire, nimporte quelle action sur le systeme.

P3 : D'accord !

Interviewer : Clest possible a vous de faire un exemple que vous plait ?

P3 : Mais, je suis obligé de l'écrire ?

Interviewer : Ouy, s'il vous plait. Ce n'est pas forcément une obligation, mais bon.

P3 : A c'est moment elle écrit. Apres elle lit rapidement.

Annex C: Transcription of the Interviews

Interviewer : Mais dans c'est cas-1a, comment le systéme, il donne la réponse ? Cest quoi qu'il montre ?
Par exemple.

P38 : Si c'est autorisé, 1l écrit : Autorisé.
Interviewer : C'est un champ ou c'est écrire autorisé ?
P3 : Cest un petit onglet, qui est écrit : Autorisé. D'accord ?

Interviewer : D'accord ! Vous pouvez juste [aire cette addition-la P C'est comme le systtme donne la

réponse.
P3: A c'est moment-13, elle écrit.

Interviewer : Clest parfait ! C'est trés bien, c'est exactement qu'on veut. Donc, pensez-vous pouvoir rédiger
une liste de demandes/problémes que vous recevrez au cours de cette semaine, c'est-a-dire, d'ici 2 mardi
prochain ? Sur les problemes que les utilisateurs vont rencontrer lors de la réservation de leurs voyages et
qui va vous appeler pour résoudre ? Une liste simple.

P3 : Mais, si je n'ai pas un probleme ?

Interviewer : Bon, s'il n'y a pas de demande que vous considérez comme important pour la réservation de

voyage, méme si ce n’est pas forcément un probleme...
P3 : Si c'est une demande spécifique ?

Interviewer : Oul, une demande que vous considérez que c'est important, que c'est ...
P3 : D'accord !

Interviewer : Ou méme la demande que vous ayez I'habitude de recevoir dans cette semaine. Donc, on a
besoin d'une semaine de « delay ». Donc, d'ici a mardi prochain. Si vous pouvez, bien str. Enregistrer
cette liste de demande, de probleme, de demande ou de probleme. D'accord ?

P38 : D'accord.

Interviewer : En qui concerne la réservation de voyage de maniére intéressante et bonne. En faisant ¢a
notre but est d'évaluer 1'écrit de ce type d'histoire, donc, si possible, on vous demande pour chaque
probleéme, que vous identifiez ou pour chaque demande que vous puissiez écrire cette demande aussi sur
ce format-la. Vous pensez que c'est possible ? Dong, si, par exemple, ca a été arrivée hier, vous notez que
ce une demande que vous ayez recue et a coté vous ferez un exemple, en utilisant ce type de format. Vous
pensez que c'est possible ?

P3 : Je ne sais pas. Je peux essayer de vous faire, mais je ne peux pas vous certifier.

Annex C: Transcription of the Interviews

Interviewer : C'est que nous intéresse, c'est plutdt d'avoir 'utilisateur comme vous, qu'écrivez ses histoires,
pour qu’on puisse évaluer l'effectivité de ce type d'histoire dans une spécification de vision utilisateur.
Donc, bon, si vous pouvez envoyer quelque exemple, que vous jugez simple, mais qui vont pouvez nous
aider, ca sera bien.

P3 : Je vais essayer.

Interviewer : Je veux vous envoyer par mail aussi. Bon, merci beaucoup par vous aide.

Annex C: Transcription of the Interviews

4. TRANSCRIPTION : Participant 4 (P4)

Partie I : Questionnaire démographique et de contexte.

Interviewer : Bon, donc, la premiére partie, concerne un questionnaire démographique. Bon votre sexe.
P4, : Masculin.

Interviewer : Votre age P

P4.: 25 ans.

Interviewer : 25 ? D’accord ! Votre niveau d’étude ?

P4 : Bac

Interviewer : Depuis combien de temps, vous étes au service de mission de 'IRIT ? Ca fait un mois, que
vous avez me dit P

P4 : Un moi, tout justement.

Interviewer : D’accord. Avez-vous déja eu des expériences dans de services similaires ?
P4 : Ou

Interviewer : Pendant combien du temps ?

P4.: 04 ans a INSA de Toulouse.

Interviewer : Bon, pourriez-vous nous donner un apercu de ce traval, en fournissant une bréve
description de vos tiches ?

P4 : D’accord ! Alors, on recoit une demande d’auto mission des chercheurs. Donc, avec une demande
de déplacement de voyage et avec cette demande-la, nous, on va sur le portail et puis on réserve, dong, le
déplacement ou le train.

Interviewer : D’accord et apres ? Ca finit avec la réservation ?

P4 : Voila, nous, on fait la réservation et puis, apres on recoit une facture qui est directement payée avec
nos services. On gagne la copie de la facture, mais c’est directement traiter par logiciel.

Interviewer : D’accord. Et la facture est envoyée par 'agence de voyages ?
P4.: Voila, c’est pour courriel, du coup par 'agence de voyages.

Interviewer : D’accord

Annex C: Transcription of the Interviews

Partie II : Processus de trattement de demandes
Nous sommes intéressés par les préférences et les difficultés que les voyageurs de 'IRI'T ont rencontrées

et vous ont signalés lorsqu'ils essaient de réserver leurs voyages d'affaires. Nous sommes également
mtéressés par votre opinion sur les demandes recues.

Label : * faits, ® interprétation

Section A : Réception de demandes de réservation

Interviewer : Bon, concernant le processus de traitement de demandes. Comment les demandes de
réservation des voyageurs arrivent-elles a vous et avec quelle fréquence P Avez-vous des suggestions pour
faire mieux P *

P4 : Donc, du coup, via logiciel. Ils peuvent le faire directement sur le logiciel, o, on, nous mettons en
valideur. Nous, on doit recevoir un mail pour valider le voyage ou sinon, on fait directement ou, ils nous
passent des informations directement par mail, les chercheurs, et ¢’est nous qui réservons directement
avec leur nom, prénom et le voyage.

Interviewer : Donc, d’accord. L’arrivée est directement via logiciel ou par mail ?

P4 : Voila ! Ou sinon par mail avec toutes les infos.

Interviewer : D’accord ! Et avec quelle fréquence ?

P4 : Quelle fréquence ca peut dépendre.

Interviewer : Oui, en moyenne ?

P4 : En moyenne, dans le mois, je pense, 10 déplacements.

Interviewer : 10 déplacements par semaine ?

P4 : Non, par mois.

Interviewer : Par mois ?

P4 : Par mois, apres, ca peut dépendre, comme des équipes que voyage beaucoup, alors, d’autres
équipes...

Interviewer : qui ne voyagent pas de tout !

P4 : Et...voila ! Dong, ¢a peut dépendre, on peut avoir 10, comme on peut avoir une vingtaine, ¢a dépend

s'1l y a des invités, s’1l y a... et tout ¢a peut vraiment...Je pense une dizaine par mois.
Interviewer : C’est la moyenne ?

P4.: Voila, c’est la moyenne. Je pense !

Annex C: Transcription of the Interviews

Interviewer : D’accord. Et avez-vous de suggestion concernant ce sujet-la P Larrivée de demande ?

P4 : ’armvée de demande ?

Interviewer : Oui, D’améliorer le processus. Avez-vous de suggestion ?

P4 : Moy, je trouve que ¢a marche vraiment bien. Quand le chercheur faisait directement la demande sur
le logiciel. Comme ca, on a toutes les infos et puis, on a juste a faire le bon de commande, pour avoir un
budget serré. Si c’est directement fait ou sinon, avec toutes les infos, ¢a nous fait perdre plus du temps,
mais apres, pour améliorer, je pense que les chercheurs peuvent aller sur le site pour réserver et en temps
qu’on met comme valideur, ¢a va vite.

Interviewer : Combien de demandes de réservation de voyage avez-vous recgues la semaine derniére P *

P4 : La semaine derniere, la demande de voyage, je n’ai eu quatre. Je n’al pas beaucoup a ce moment.

Comme je suis en train d’arriver...donc.

Interviewer : D’accord ! Bon, avez-vous des suggestions a ce sujet-la ? Bon, je pense que sur Iarrivée de
demande, ce que le voyager fasse directement sur le systéme. *

P4 : Voila ! Directement, c’est plus simple pour nous et je pense que pour eux, aussi. Je pense. Comme
¢a, 1l fait directement la demande.

Interviewer : D’accord ! Pensez-vous qu’il manque quelque chose dans la description des demandes de
réservation que vous recevez P *

P4 : Dans la description ? Non, je pense que c’est a ce clair.

Interviewer : Ce arrive assez complet ?

P4 : Normalement, c’est complet, apres, voila, si ce n’est pas fait directement par logiciel et que c’est le
g4 9 b 9

chercheur qui va nous envoyer, il peut avoir des modifications apres, car ils ne sont pas strs, ils ne sont

pas certains des horaires, mais, voila. Si c’est directement par logiciel, au moins, c’est trés bien, son vol,

normalement. Si ¢’est fait directement. Les horaires, la description de vol entier.

Interviewer : Pensez-vous que c’est assez complet ?

P4 : Ah, ou1! Cest assez complet.

Interviewer : Il y a, par contre, de suggestion, pour faire mieux ? Cest...

P4 : Pour faire mieux ?

Interviewer : Dans la description spécifique...

P4 : Dans la description ?

Annex C: Transcription of the Interviews

Interviewer : Oui, de demande.
P4 : En plus, je ne pas sir. Car je suis ici ne pas longtemps, donc...
Interviewer : Oul, c’est avec...Mais c’est juste ¢a qu’on va voir la différence.

P4 : Cest assez compliqué. Moi, pour 'instant. Moi, j’al pu eu de complication vraiment. Mais 13, je ne
vois pas. Non, directement.

Interviewer : D’accord ! Est-ce que vous devez prendre des notes, par exemple : un post-it, dehors le
systéme, sur les demandes de réservations que vous recevez P *

P4 : Prendre de note...

Interviewer : De notes informelles, de choses...

P4.: Voila! Les numéros de vol, voila, que demandent souvent les chercheurs. Le numéro de vol, puis
et...apres qui est que j’ai eu aussi ? Ah ! Et la gare aussi. Parce qu’a Lion, par exemple, j’al eu un probleme
aussi avec Lion. Ou on a plusieurs gares, a Lion...

Interviewer : Oui.

P4 : Et on ne sait pas forcément, le chercheur, dans quelle gare il va partir.

Interviewer : D’accord !

P4.: Dong, c’est sur tout ¢a, aussi. Et puis, apres les horaires. Voila.

Interviewer : D’accord.

P4 : Cest un complément d’information qu’on peut donner, du coup, pour le chercheur.

Interviewer : D’accord ! Et vous notez comment ?

P4 : Sur post-it.

Interviewer : Post-it ?

P4 : Sur post-it.

Interviewer : D’accord, et combien de notes par demande avez-vous dire normalement, vous prenez ? *
P4 : Généralement...combien de notes ? Je dirais deux.

Interviewer : Deux ?

P4 : Oul

Annex C: Transcription of the Interviews

Interviewer : D’accord.

P4 : Apres ca, c’est rapide, parce que ¢’est noté sur post-it, done, du coup...

Interviewer : Bien stir. Comment cela pourrait étre meilleur ? La prise de notes au-dehors de systeme ou
non ? Il faut noter tout sur le systtme. Vous imaginez quelle facon de faire ¢a, de maniere plus

productive ? Une partie du systeme pour faire ¢a, par exemple ?

P4 : Peut-étre une partie du systeme, peut-étre qui mettait en place une casse avec le numéro de vol, peut-
étre, ou méme la gare, pour la gare. Pour le cas de Lion, préciser exactement quelle gare...

Interviewer : Ca n’existe pas dans le systéme ?

P4 : Non, non, non. C’est n’existe pas.

Interviewer : D’accord. Vous parlez du systeme le 7Travel agent ou GLPI ?
P4 : Alors. Sur le GLPIL il n’y a pas.

Interviewer : Sur GLPI n’y a pas ?

P4 : Non, non.

Interviewer : Et sur le Travel ?

P4 : Apres, la...

Interviewer : Non ?

P4 : Je ne sais pas de tout.

Interviewer : D’accord ! Vous n’avez pas encore utilisé ?

P4.: Non, non, du coup, non. Donc, c’est pour ca. Je ne pas encore toutes les autorisations, donc...

Interviewer : D’accord. Savez-vous me dire le nombre de notes que vous avez prises la semaine derniére,
pour la demande ?

P4.: 13, a1 pris beaucoup. Parce que comme je suis en train de commencer, j’ai pris beaucoup de notes
sur le post-it.

Interviewer : D’accord. Savez-vous quantifier ? Peut-étre ?
P4 : 1.2, je suis en train d’apprendre, au moins une vingtaine.

Interviewer : Au moins une vingtaine ?

Annex C: Transcription of the Interviews

P4 : Une vingtaine, parce que jai eu un gros déplacement de plusieurs personnes et...huit personnes,
donc, pour tout gérer, j’al tout noté, parce que, comme je suis en train de commencer, je ne voulais pas,
non plus, manquer un truc. Donc, a ce moment j’ai pris beaucoup.

Interviewer : D’accord.

P4 : Mais généralement...généralement, je ne prends pas énormément.

Interviewer : D’accord ! Bon. Si vous prenez des notes, c’est le cas, comment vous les conservées et sur
quel format ? Donc, c’est sur le post-it, c’est ¢a ? *

P4 : Post-t, voila.

Interviewer : Kt la suggestion d’amélioration... ¢’est de pouvoir...

P4 : Cest de directement sur le logiciel, avoir une casse, ou un...

Interviewer : Un post-it virtuel ? Peut-étre ?

P4 : Voila, ou un complément, voila.

Interviewer : D’accord.

P4 : Un complément avec toutes les notes qu’on ne peut pas mettre ailleurs, ca serait pas mal.
Interviewer : D’accord | Pensez-vous que l'enregistrement de ces notes est important P *

P4 : Ah ! Ou, oul.

Interviewer : Oui ?

P4 : Oui, oul.

Interviewer : Pourquoi ? Et comment vous pouvez améliorer ¢a ?

P4 : Ah! Pourquoi et comment ? Dans la demande de 'ordre de mission, avoir un complément, une
casse complément avec vraiment toutes les informations. Comme ¢a, nous évitons de nous reprendre de
notes apres.

Interviewer : D’accord. Et vous croyez que ¢’est important pourquoi ?

P4 : Moy, je sais que ¢a me sert beaucoup, parce que, comme c¢a, je vraiment toutes les informations que

sont claires. Je n’a1 pas besoin de retourner a la réservation, pour avoir ces informations. Donc, pour moi

Jje noterai tout ¢a sur le papier et puis pouvoir faire des post-it.

Annex C: Transcription of the Interviews

Interviewer : D’accord. Pouvez-vous fournir quelques exemples de demande de réservation que vous
recevez P *

P4 : Comment ?

Interviewer : Pouvez-vous fournir quelques exemples de demande de réservation que vous recevez ?
P4 : Demande ?

Interviewer : Oui ! De réservation de voyage. C’est quel contenu normalement ? Il y a de...

P4.: Alors, 1l y a de date, des horaires. Quoi d’autre P! La destination, bien str, et je pense que ¢’est tout.
Interviewer : Le moyen de transport ?

P4 : Ft le moyen de transport.

Interviewer : D’accord ! 1l vient avec des données des passagers déja, oul ou non ?

P4: Avecle... ?

Interviewer : Avec les données des passagers. Le nom, la date de naissance.

P4 : Ah ! Ou, bien str ! Parce que nous, on a quand méme une fiche avec la demande d’ordre de mission.
Interviewer : D’accord.

P4.: Dong, 1l y a déja le nom, si ¢’est un chercheur, s’il est de notre... s’1l est chez nous ou s’il est d’ailleurs.
Interviewer : D’accord !

P4 : La, pour ¢a, c’est vraiment rempli, donc...

Interviewer : D’accord.

Section B : Traitement des demandes de réservation.

Interviewer : Bon, concernant le traitement de demandes de réservation. Quelle est la procédure-type de
traitement de réservation P On commence, pourquoi ? Aprés qu’est-ce que vient P *

P4 : Nous, on a déja la demande d’ordre de mission qui est déja rempli par le chercheur.
Interviewer : D’accord.
P4 : Avec ca, nous, on fait 'ordre de mission, ’'OM. Donc, voila. Apres nous, on fait, la réservation de

voyage, donc, le bon de commande et depuis le numéro d’ordre de mission qu’on renseigne sur le bon
de commande de voyage et voila. Et apres, le chercheur part en mission et juste aprés sa mission, c’est le

Annex C: Transcription of the Interviews

retour de la mission et il revient avec toutes les pieces justificatives que nous, apres, on traite et qu'on
remplit I’état de frais, qu’on envoie, du coup a 'agence comptable pour le remboursement.

Interviewer : D’accord ! Vous avez de suggestion dans ce processus-1a, pour améliorer ?
P4 : Cest peut-étre avec les pieces justificatives, apres je ne vois pas comment on peut améliorer, mais...
Interviewer : Pour quoi ? Qu’est-ce qu’arrive la piece ?

P4, : Parce que, parfois, il y a vraiment de gros paquets de pieces de métro. Bah ! S’1l peut avoir une fiche
que renseignant toutes les pieces, parce que, en plus, on peut le perdre aussi.

Interviewer : D’accord.

P4 : S1, on peut le faire une fiche avec le nombre de tickets de métro, le nombre de tickets de bus et avec,
directement le prix qui sont a co6té, parce que, parfois, on cherche les tickets métro, on cherche le prix et
voila...

Interviewer : D’accord, mais ¢a c’est apres le voyage.

P4: Voila!

Interviewer : Aprés le voyage ?

P4.: Cest le retour.

Interviewer : D’accord. C’est pour faire...

P4 : 1)état de frais.

Interviewer : D’accord.

P4.: Voila.

Interviewer : Trés bien! Est-ce que dans les demandes des voyageurs que vous traitez il y a des
informations qu’on pourrait identifier comme des besoins et/ou des exigences pour améliorer un systéme
de réservation de voyage P *

P4, : Pour I'instant je n’al eu un, mais ¢a pourrait arriver, oul.

Interviewer : Oui ?

P4 : Apres... Qu’est-ce qu’on peut avoir ? Apres, je ne vols pas, parce que je suis en train de commencer.
Jessaye de repenser i un cas que j’ai eu.

Interviewer : Dans le cas que vous recevez récemment, 1l y a...

Annex C: Transcription of the Interviews

P4: Il n’y a pas d’exigence particuliere, mais...c’est depuis que j’ai commencé ici, non ? Ca ne me pas

arrivée encore. Ma j’essaie de me rappeler avant.

Interviewer : Mais tout que vous avez recu, vous avez bien réussi pour le faire a le chercher sur le systéme,

par exemple ?
P4 : Ou, oul, Bien str. Oui, oul.
Interviewer : D’accord.

P4 : Apres le chercheur, nous, on dit aussi. Donc, s’1l y a vraiment de choses particulieres. Dong, 1l va

nous dire, mais c¢’est vrai qui la, par instante, moi, ¢a n’est pas encore arrivée.

Interviewer : Quelles sont vos besoins/exigences pour le systtme de réservation de voyage que vous utilisez
actuellement P *

P4 : Des exigences ?

Interviewer : Qu’est-ce que vous considérez comme Important et que vous pensez de c’est utile ?
P4.: Pour moi, ca me plait. Je ne sais pas. Je pense que nous, on peut améliorer en fait.
Interviewer : D’accord.

P4 : Juste la demande qui doit faire directement par le chercheur. Ca nous avance beaucoup.
Interviewer : D’accord.

P4 : Et apres...non. Parce que ¢’est vraiment vit, si on a toutes les infos. Il n’y a pas a améliorer. Bon, je

ne vois pas.

Interviewer : D’accord ! Avec quelle fréquence vous devez demander P'aide des autres membres de
Péquipe pour résoudre les demandes ? *

P4: Bon, du coup, beaucoup. Mais quand j’ai travaillé 2 INSA Toulouse, pendant quatre ans. C’est que
Jai fait aussi. Et, non, ca ne m’arrivait pas. Alors, quand on prend vraiment de cas particulier, ol on
vraiment demande de 'aide, parce que, mais...pendant le mois, deux fois.

Interviewer : Deux fois ?

P4: Deux fois dans le mois.

Interviewer : D’accord.

P4.: Apres, c’est vral que j’ai beaucoup demandé, mais...

Interviewer : D’accord. Comment on peut améliorer ca. Il y a une facon de ...

Annex C: Transcription of the Interviews

P4.: Alors, d’améliorer...Apres c’est vrai que pour nous on est dans un « open space » donc, on dialogue
directement tous ensemble. Mais, c’est vrai que, quand, je travaillais aussi a Marseille et j’étais tout seul
dans mon bureau et c’est vrai, que, quand il avait de cas comme ca, que m’arrivais, ¢’était un peu
compliqué, parce que je travaillais un peu plus par mail, ou je n’avais pas forcément la réponse
directement. Et c’est vrai que la, du coup, quand on est tous a coté, ca facilite beaucoup.

Interviewer : D’accord.

P4 : Pour mot, le probleme est directement résolu. Voila.

Interviewer : 1D’accord. Mais, aujourd’hui, méme avec ce bureau ouvert, 1l y a de suggestion que vous
pensez que c’est utile ? Améliore encore plus ?

P4 : Encore plus ? Pour le cas comme ca P! Peut-étre avoir de fournisseur aussi. Si on a de cas particulier
sur le voyage qui sont a I’étranger, qui sont un peu compliqués, peut-étre avoir une aide de fournisseur,
du coup.

Interviewer : C’est 'agent de voyage ?

P4.: Voila ! du coup, voila. Peut-étre une petite note, une procédure pour de cas particulier, comme ca

que sort, comme a mettre au jour.

Interviewer : D’accord. Avec quelle fréquence vous devez demander aux voyageurs de clarifier les
informations concernant leur demande P *

P4.: Beaucoup de fois. Beaucoup de foi oul.

Interviewer : Et comment on pourrait améliorer ¢a ?

P4 : Bah ! Cest assez un peu compliqué. Parce que, ¢’est un peu le chercheur de tout nous dire, du coup,
parce que, c’est vral que nous, a chaque fois on revient vers eux, on alors le redemande et puis. Et c’est
pour ¢a que, quand si est fait directement sur le logiciel, nous, on avait juste a valider et puis, c’est
directement fait.

Interviewer : D’accord.

P4 : Donc, du coup, sinon, on est obligé de courir apres les informations et...

Interviewer : D’accord, trés bien. Selon votre propre expérience, quelles seraient les fonctionnalités qui
vous seraient utiles et qui devraient étre rajoutées au logiciel de réservation ? Qui n’est pas 1a aujourd’hui,
par exemple. *

P4: Ah! Clest peut-étre de garder les voyages qu’on a réservés.

Interviewer : Ca n’existe pas ?

Annex C: Transcription of the Interviews

P4.: Non, parce qu’ll s’éleve directement, apres la date de retour le voyage part et on ne sait pas, du
coup...Et c’est vrai que la dernmiere fois, y’ai cherché...j’ai cherché un voyage, en plus, quand j’étais ic1 et
c’est a élever du module de réservation. J’ai di retourner sur 'OM pour avoir exactement les dates, les
horaires de vols et tout ca.

Interviewer : D’accord. Vous parlez de quel systeme ic1 exactement ? De GLPI ?

P4 : SIMBAD

Interviewer : SIMBAD ! D’accord !

P4: De que le voyage est passé, 1l s’élevait directement de la base.

Interviewer : Quelque chose de plus ?

P4.: Non, apres je ne crois pas. Non !

Interviewer : Non ?

P4: Non!

Interviewer : Selon votre propre expérience, quelles seraient les fonctionnalités qui seraient utile pour les
voyageurs P *

P4.: Pour les voyageurs ?
Interviewer : Oul, pour les chercheurs.

P4.: Pour les chercheurs, moi je dirais plutét pour...pour nous, pour les gestionnaires avoir vraiment a
qui demander la validation.

Interviewer : A qui ? C’est ca ?

P4: Voila, c’est ca. Parce que nous on gere tous les budgets des équipes et c’est que les chercheurs
viennent dans le bureau juste pour demander a qui 1l doit mettre valideur.

Interviewer : D’accord. Dong, ils ne savaient pas ¢a normalement ?

P4 : Pas forcément, parce que, vu que moi, je suis nouveau, dong, j’ai la peine d’arriver, donc, c’est vrai
ils ne savaient pas trop, parce qu’on a changé, du coup, les équipes, et, dong, ils ne savaient pas trop, si
¢’était moi, si ¢’est une autre gestionnaire. Voila.

Interviewer : D’accord !

P4 : Un petit rappelle sur ca, ca les évite de rentrer dans le bureau juste pour demander, une information

comme ¢a.

Annex C: Transcription of the Interviews

Interviewer : D’accord ! Quelque chose en plus ?
P4 : Non, non. Apres je ne vois pas.

Interviewer : Pourriez-vous lister 3 fonctionnalités que vous aimeriez garder pour ce type de systéme de
réservation de voyage P

P4 : Que je voudrais garder ?
Interviewer : Ouil. Quels sont les plus utiles ? Que vous pensez étre indispensable a votre avis.
P4 : Je ne sais pas de tout.

Interviewer : La partie de chercher de vol. La partie d’ordonner par data, la partie de renseigne des infos.
Voila. Quelque chose que vous considérez, le trois, que vous considérez plus importants.

P4 : Apres, c’est vrai que le site c’est fluide, donc, 1l va vachement vite. Apres 1l est assez complet aussi,
parce qu’on a tous les vols, avec tout. Je ne sais pas comme en dire. En fait, il y a beaucoup d’informations
qui est sur le site. Quoi je peux dire de plus ?

Interviewer : Mais, par exemple, en termes de fonctionnalité vous considérez que la partie plus importante
c’est pouvoir chercher dans plusieurs compagnies. Pouvoir ordonner par prix, par exemple. Pouvoir
renseigne les infos directement par un autre systéme, parce que les données sont déja dans la base. Bon,
voila ! Quelque chose que vous considérez...

P4.: Voila! Cest... moi. Je préfere, parce que nous, on renseigne toutes les infos a la fin. Quand on a
réservé le vol et ¢’est vrai que ¢’est complet, comme c¢a on a tout directement et ¢’est nous qui renseignons.
Apres, 1l s’est assez compliqué, parce que, oul, on a pleine de compagnie. Je pense que s’est classé par
horaires, mais aussi, on peut chercher aussi par tarif, c’est qui est pas mal aussi. Puis, on a toutes les infos
a la fin que c’est bien aussi et la validation est aussi simple. Une fois qu’on a réservé le vol pour pouvoir

valider, on a juste copié le numéro de bon de commande et puis comme c¢a, c’est validé.

Interviewer : D’accord ! Pourriez-vous lister trois fonctionnalités que vous aimeriez changer pour ce type
de systeme ? -

P4 : Changer ? Apres c’est totalement... je ne sais pas, Non ! Changer je ne vois pas, je ne vois pas en fait.
Parce que ce n’est pas totalement sur le logiciel. Le logiciel est vraiment bien.

Interviewer : Vous ne changiez rien ?
P4.: Non ! Je ne pense pas. Je ne pense pas !

Section C : Rédaction des Récits Utilisateurs.

Interviewer : Bon ! Dans cette partie on va évaluer le modele, qu’on a prescrit pour décrire les actions
d’utilisateur et les réponses que le systtme donne sur ses actions. Donc, on appelle ¢a : le récit utilisateur.
Et, on suit un modele d’écrire ca. Donc, dans le modele on a un préambule, d’accord ?

Annex C: Transcription of the Interviews

P4 : D’accord !

Interviewer : Donc ;
En tant que [role ou personne]
Je veux [fonctionnalité]
Afin de [but, bénéfice ou valeur de la fonctionnalité]

D’accord ?
P4 : D’accord !

Interviewer : Bon, et pout ¢’est préambule-la on a plus de scénarios possibles. Donc, chaque scénario, on
a une description de scénario, un contexte qu’on donne par la clause « En tant donné » ; ou plusieurs
contextes. On peut ajouter plusieurs contextes, ou une action, un événement, et le résultat que le systeme
va nous donner. Apres cet événement, on registre ¢a dans la clause « Alors ».

P4 : D’accord !
Interviewer : Donc, comme exemple :

En tant que voyageur fréquent,
Je veux rechercher des billets, en fournissant des emplacements et des dates,
Afin de pouvoir obtenir des informations sur les tarifs et les horaires des vols.

D’accord ?
P4 : D’accord !

Interviewer : Donc, dans cette histoire, scénario possible ; une recherche de ticket aller simple, par

exemple. Dong,

En tant donné que je vais a la page “Recherche de vols”

Quand je choisis : “aller simple”

Et je tape “Paris” et choisis “Paris, Charles de Gaulle (CDG)” dans le champ “Départ de”
Et je tape “Toulouse” et choisis “Toulouse, Blagnac (TLS)” dans le champ “Arrivée a7

“o»

Et je choisis dans le champ “Nombre total de passagers”
Kt je choisis “15/12/2017” dans le champ “Date de départ”
Et je clique sur “Recherche”

Alors le systéme va afficher la liste des vols disponibles.

C’est la réponse que le systeme va me donner suite a cette action-la. D’accord ?
P4 : D’accord !

Interviewer : Donc, ¢’est un modele qu’on utilise pour décrire I'interaction entre I'utilisateur et le systéme,
D’accord ?

Annex C: Transcription of the Interviews

Dong, en tant donné un scénario on va, quand certes événement va arriver, le systéme va nous
donner quelque réponse. D’accord ? Donc, le but c’est de prendre quelques exemples que vous avez eus
a la semaine derniére ou bon, dés que vous étes ici, et bon, je voudrais que vous fassiez un exemple pour
moil, en utilisant ce modele. D’accord ?

P4 : D’accord !

Interviewer : Vous pouvez choisir le contexte, bon, vous le décrivez, par exemple, la partie de renseigne
le donné passager, vous voulez décrire une recherche du billet de train pour...Je ne sais pas quoi, pour
plusieurs destinations. Vous pouvez décrire, par exemple la partie validation. Je veux valider un billet et
apres, vous pouvez décrire un probleéme, une situation d’erreur, par exemple. Quand vous n’informez pas
I'aéroport d’arrivée, qu’est-ce qu’arrive, quel type de sortie le systtme donne ? Bon, vous pouvez décrire
qu’est-ce que vous voulez, d’accord ? Donc, vous prenez un exemple et s’1l vous plait, vous décrivez cet
exemple, en utilisant ce modele. Vous pensez que c’est possible ?

P4 : D’accord !

Interviewer : Je vous donne une feuille. Bon, je peux vous aider, s1 vous voulez faire ensemble, je peux

vous aider, bien sar.

P4 : Donc, du coup, je dois décrire une tiche.

Interviewer : Oui ! Sur le systéme de réservation de voyage.

P4 : D’accord ! Ou je dois cliquer sur le module de la réservation.

Interviewer : Oul, oui. La premiere partie c’est définir qu’est-ce que vous voulez faire. Vous avez pensé a
quelle tache, par exemple P Vous pouvez choisir.

P4 : D'accord ! La destination.

Interviewer : Non, non ! Une tiche complete, vous voulez faire, vous voulez donner, les données des
passagers, par exemple. Dés qu’on a pris déja la liste de vol disponible, par exemple, d’accord ? Vous
voulez renseigner les données passageres. Ca c’est un exemple. Ca c’est une tiche.

P4 : D’accord !

Interviewer : Donc, un contexte ca sera la liste déja disponible, par exemple, d’accord ? Je veux faire une
action, c’est renseigner les données des passagers, les infos personnelles etc. et etc...et je peux décrire par
exemple quel type de sorti, par exemple, le systtme pourra me donner, 1l va me montrer une page avec
la confirmation des données, pour que je puisse confirmer que les données sont bon, par exemple.

P4 : D'accord !

Interviewer : Ca c’est une tache, d’autre tiche, vous pouvez décrire commet vous faites un voyage par
train pour plusieurs destinations. Alors je vais sur la page SNCF, je vais trouver la gare, etc., etc. Et le

systeme va me donner le voyage en train disponible. ID’autre situation, vous pouvez faire un enregistrement

Annex C: Transcription of the Interviews

‘ . ¢ / Sé ouvé. , - déja joyé I'itinéraire, tout ca, 1l
de demande. Apres que la voyage a été approuvé. Donc, le voyageur déja envoyé 1

déja utilisé le systeme de voyage et vous allez juste mettre le numéro de bon de commande. C’est une
option. Dong, la premiere partie c’est de choisir une tiche n'importe pas quelle tiche, d’accord ?

P4.: D’accord !

Interviewer : Que vous voulez décrire ?

P4 : D’accord !

Interviewer : Quel tiche vous pensez que ¢’est intéressant de décrire, comme exemple ?

P4 : La réservation ! Afin de la réservation, de prendre le billet de train ou de vol, avec tout le résultat, les

horaires et puis sur une journée.

Interviewer : D’accord, mais dans un cas spécifique, par exemple. Sur c’est tiche-la. Donnez a moi un

scénario. Mo, je suls un voyageur, je vais faire. Non, vous. Vous étes un voyageur, vous voulez allez ou ?
P4.: A Panis !

Interviewer : Oui ! Pour combien de temps ? Dans quelle date ?

P4 : Une semaine. Donc, du coup, je décrire comment je fais sur le...

Interviewer : Sur le systéme !

P4: D’accord !

Interviewer : Oui !

P4 : Alors, je vais insérer mon nom et mon prénom, je vais sur la réservation, j’avance au lieu de départ
et le lieu d’arrivée, les dates, les horaires, apres je clique sur la recherche, je toute une liste, je choisis,
donc, du coup, je choisis mon vol, avec le prix que m’intéresse, avec tout que m’intéresse. Une fois que
je fais ca, je valide, j’ai une autre fenétre que c¢a fiche avec mon aller et mon retour, qui sont bien pris a
charge avec le prix, je réserve et puis je renseigne, du coup, mon nom et mon prénom, I'objet de mon

départ et je choisis et je vais valider.

Interviewer : D’accord ! Tres Bien ! Bon, vous pouvez décrire tout ¢a, vous pouvez décrire une partie.
D’accord ?

P4 : D'accord !

Interviewer : Donc, 'importance que vous faites cette description de ce scénario, que vous avez me donner
a toute ’heure, dans ce modele-la. Donc, vous avez décrit un préambule, d’accord ?

P4 : D'accord.

Annex C: Transcription of the Interviews

Interviewer : En tant que...
Je veux...
Afin de...
Et vous pouvez décrire un ou plusieurs scénarios, dans ce contexte-la et pour chaque scénario,

vous allez donner un contexte, une action et un résultat que le systeme va donner.
P4 : D’accord !
Interviewer : D’accord ?
P4 : Moy, je le fais maintenant ?
Interviewer : Oui, s’il vous plait. Si vous pouvez.
P4 : 11 écnt.
Interviewer : Vous étes obligé juste a utiliser :
En tant que...
Je veux ...

Alors, etc.

P4 : 11 écnt.
Donc, 14 le scénario. Et la y’ai choist quelque chose que je vois.

Interviewer : Oui ! Vous avez donné un contexte...En tant que quelque chose arrive, quand je fais quelque

action, alors le systtme va me montrer quelque chose.
P4.: D’accord ! Il écrit.

Interviewer : Si vous avez de doute, n’excite pas.

P4, : 11 écnit et lit en voix bas - Je pense que c’est bon.
Interviewer : Donc, en tant que je... Il lit en voix bas.

D’accord ! Tres bien ! Dong, c’est que je vous demande c’est...d’ic1 a mardi prochain, donc, dans
un « delay» d'une semaine. Est-ce que vous pouvez rédiger une liste de demande, de probleme que vous
allez recevoir ?

P4 : Ou, Bien Str!
Interviewer : Oui ? C’est une liste simple, donc, bon...J’ai eu une demande pour faire ¢a, pour faire ca,

I'utilisateur 1l y a rencontré de probleme pour chercher ca, ¢a, dans ce contexte-la, et par ce probleme-la

vous pouvez aussi le décrire sur cette forme-la.

P4 : D’accord !

Annex C: Transcription of the Interviews

Interviewer : Oui ? Vous pensez que c’est possible ?

P4 : Ou, bien str. Je peux garder la fiche ?

Interviewer : Oul, oui ! Bien str ! Je vais vous envoyer par mail aussi, avec un modele, juste pour faciliter
la tache, et donc, d’ici a mardi prochain, donc, ¢a va faire une semaine. Si vous pouvez m’envoyer jusqu’a
vendredi prochain. D’accord ?

P4 : Vendredi prochain ?

Interviewer : La fin de la semaine prochaine.

P4 : D’accord !

Interviewer : Ca sera bien. Par mail aussi.

P4 : Ok.

Interviewer : Donc, c’est une liste simple de problemes de demandes que vous avez recue et une autre
liste de ces problemes décrire de cette facon-1a, en utilisant ce modele.

P4: Ok!

Interviewer : Vous pensez que c’est possible ?

P4 : Bien str!

Interviewer : Tres bien ! Dong, je vous demande de me donner votre mail et apreés a la fin, je vais vous
envoyer un petit questionnaire, aussi sur I'utilisation de ce modele-la. Treés bien P4 ! Merci beaucoup. Je
vais vous envoyer le mail et je vais attendre votre retour la semaine prochaine.

P4 : La semaine prochaine.

Interviewer : D’accord !

P4 : Et du coup, ¢a sera pour vendredi.

Interviewer : Oui, le prochain.

P4, : Vendredi prochain.

Interviewer : Oui ! Parce qu’on va prendre une semaine de demande, donc, d’ici & mardi prochain et de

mardi prochain a vendredi, vous pouvez m’envoyer le résultat.
P4.: D’accord ! Ok !

Interviewer : D’accord ! C’est bon ?

Annex C: Transcription of the Interviews

P4 : Oui! Bien str!
Interviewer : Merci beaucoup, bon apres-midi et avoir !

P4 : Merci, avorr !

