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Titre : Optimisation multi-échelon du stock avec incertitude sur 
l'approvisionnement et la demande 

Résumé : 

La gestion de la chaîne logistique (Supply Chain Management, SCM) est un élément important 
de la plupart des entreprises et l'application de la stratégie appropriée est essentielle pour les 
gestionnaires de secteurs et de marchés concurrentiels. Dans ce contexte, la gestion des stocks 
joue un rôle crucial. Il est fondamentalement difficile d’optimiser les décisions concernant la 
gestion des stocks, en particulier dans les réseaux multi-échelons. Un défi clé dans la gestion des 
stocks est de faire face aux incertitudes de l’approvisionnement et de la demande. La diminution 
simultanée du taux de service et de l'augmentation des coûts liés aux stocks sont les effets les 
plus significatifs de ces incertitudes. Pour faire face à cette situation, les responsables de la chaîne 
d’approvisionnement doivent établir des stratégies d’approvisionnement et de distribution plus 
efficaces et plus souples. Dans cette thèse, un modelé pour optimiser les décisions dans les 
réseaux de distribution multi-échelons avec incertitude sur l’approvisionnement et la demande est 
proposé. 

Dans la première partie des travaux de recherche, les systèmes de distribution multi-échelons, 
avec incertitude sur la demande, sont étudiés. Ces systèmes de distribution font partie des 
topologies de réseau d'inventaire les plus difficiles à analyser. Les politiques de stock optimales 
pour ces systèmes ne sont pas encore connues. Nous considérons un type de réseau de 
distribution de base avec un seul type de produit dans le cadre d’une révision périodique. Sur la 
base de cette propriété, une approche de programmation en nombres entiers mixtes en deux 
étapes est proposée pour trouver les décisions optimales liées aux stocks en tenant compte du 
modèle de demande non stationnaire. Le modèle, qui repose sur une approche de planification 
des besoins de distribution (DRP), minimise le coût total prévu composé des coûts d’allocation 
fixe, de stockage, d’approvisionnement, de transport et de retard. Des modèles alternatifs 
d'optimisation des stocks, comprenant la stratégie de lateral transshipment et multi-sourcing, sont 
ainsi construits et les programmes stochastiques correspondants sont résolus à l'aide de la 
méthode d'approximation de la moyenne de l'échantillon (SAA). Plusieurs exemples de 
problèmes sont générés pour valider l'applicabilité du modèle et pour évaluer l'avantage des 
lateral transshipment et de multi-sourcing en termes de réduction des coûts totaux attendus du 
réseau de distribution. Une enquête empirique est également menée pour valider les résultats 
numériques en utilisant le cas du réseau de distribution d’un grand distributeur français. 

La deuxième partie du travail de recherche porte sur la structure de la politique de stock optimale 
qui fait l’objet d’une enquête en cas de rupture d’approvisionnement. Un modèle stochastique en 
deux étapes est proposé pour résoudre un problème d'optimisation des stocks multi-échelons 
prenant en compte une demande stochastique ainsi qu'une capacité de débit incertaine et des 
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pertes d'inventaire possibles, dues à des perturbations. Le modèle minimise le coût total, composé 
des coûts d’allocation fixes, des coûts de conservation des stocks, de transport et de 
réapprovisionnement, en optimisant les décisions en matière de politique et de flux des stocks. Le 
niveau du stock est contrôlé selon une stratégie d'ordre des points de réapprovisionnement (s, S). 
Afin de faire face aux incertitudes, plusieurs échantillons de scénarios sont générés par la 
méthode de Monte Carlo. Les programmes d'approximations moyennes des échantillons 
correspondants sont résolus pour obtenir la politique de réponse adéquate au système d'inventaire 
en cas de perturbation. De plus, de nombreuses expériences numériques sont menées. Les 
résultats permettent de mieux comprendre l'impact des perturbations sur le coût total et le taux de 
service du réseau.  

Mots clés : Chaîne d'Approvisionnement Multi-échelons; L'incertitude; Demande Non-
Stationnaire; Perturbation; Programmation Stochastique 

 

 

Title : Multi-echelon Inventory Optimization under Uncertainty 

Abstract : 
Supply Chain Management (SCM) is an important part of most companies and applying the 
appropriate strategy is essential for managers in competitive industries and markets. In this 
context, Inventory Management plays a crucial role. Different inventory systems are widely used 
in practice. However, it is fundamentally difficult to optimize, especially in multi-echelon 
networks. A key challenge in managing inventory is dealing with uncertainties in supply and 
demand. The simultaneous decrease of customer service and increase of inventory-related costs 
are the most significant effects of such uncertainties. To deal with this pattern, supply chain 
managers need to establish more effective and more flexible sourcing and distribution strategies. 
In this thesis, a “framework to optimize inventory decisions in multi-echelon distribution 
networks under supply and demand uncertainty” is proposed. 

In the first part of the research work, multi-echelon distribution systems, subject to demand 
uncertainty, are studied. Such distribution systems are one of the most challenging inventory 
network topologies to analyze. The optimal inventory and sourcing policies for these systems are 
not yet unknown. We consider a basic type of distribution network with a single family product 
through a periodic review setting. Based on this property, a two-stage mixed integer 
programming approach is proposed to find the optimal inventory-related decisions considering 
the non-stationary demand pattern. The model, which is based on a Distribution Requirements 
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Planning (DRP) approach, minimizes the expected total cost composed of the fixed allocation, 
inventory holding, procurement, transportation, and back-ordering costs. Alternative inventory 
optimization models, including the lateral transshipment strategy and multiple sourcing, are thus 
built, and the corresponding stochastic programs are solved using the sample average 
approximation method. Several problem instances are generated to validate the applicability of 
the model and to evaluate the benefit of lateral transshipments and multiple sourcing in reducing 
the expected total costs of the distribution network. An empirical investigation is also conducted 
to validate the numerical findings by using the case of a major French retailer’s distribution 
network. 

The second part of the research work is focused on the structure of the optimal inventory policy 
which is investigated under supply disruptions. A two-stage stochastic model is proposed to solve 
a capacitated multi-echelon inventory optimization problem considering a stochastic demand as 
well as uncertain throughput capacity and possible inventory losses, due to disruptions. The 
model minimizes the total cost, composed of fixed allocation cost, inventory holding, 
transportation and backordering costs by optimizing inventory policy and flow decisions. The 
inventory is controlled according to a reorder point order-up-to-level (s, S) policy. In order to deal 
with the uncertainties, several scenario samples are generated by Monte Carlo method. 
Corresponding sample average approximations programs are solved to obtain the adequate 
response policy to the inventory system under disruptions. In addition, extensive numerical 
experiments are conducted. The results enable insights to be gained into the impact of disruptions 
on the network total cost and service level. 

Keywords : Multi-echelon Supply Chain; Uncertainty ; Non-Stationary Demand ; 
Disruption; Stochastic Programming 
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Introduction 

Nowadays there is a growing pressure for managers to improve the supply chain performance of 

their companies. The most challenging issue which impacts the performance of the supply chain 

is matching supply and demand. Supply and demand uncertainties are two key sources of this 

issue, which may lead to simultaneous decrease of service level and increase of inventory costs. 

An effective inventory management can contribute to tackle these issues. It is important to note 

that the main concern when managing the supply chain inventories is to find the optimal 

replenishment policy which determines when, where, from which supplier, and how much to 

order. Under this context, the main challenge is the anticipation of the future demand and supply 

in order to improve the quality of the inventory decisions. In order to efficiently mitigate supply 

and demand uncertainty, sourcing and inventory decisions should proactively take the risk 

exposure into account. Multi-sourcing and lateral transshipment could be considered as the 

potential sourcing options to increase the network flexibility. 

Hence, the main objective of this thesis is to examine different impacts of supply and demand 

uncertainty on the inventory related decisions. In order to do so, an optimization approach for 

multi-echelon distribution network is proposed to minimize the total cost including the fixed 

allocation cost, the transportation cost, the backorder cost, the holding cost and the fixed 

procurement cost. The effect of different sourcing options is also evaluated in a multi-echelon 

distribution network under supply and demand uncertainty.  

This thesis is made up of five chapters. Chapter one presents an overview of the research path 

conducted in the thesis. The problem context, the research question, the thesis scope, the research 

methodology and the contributions are detailed.  

Chapter 2 aims to provide an overview of the literature on multi-echelon inventory optimization. 

An analysis of the literature is provided in the last section of this chapter.  This enables to identify 

the gaps in the literature that the research work in this thesis attempts to bridge. 
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Chapter 3 develops a scenario-based modeling approach that is used to solve a two-stage multi-

echelon inventory optimization problem considering a non-stationary demand. The model is 

based on a distribution requirements planning (DRP) approach and minimizes the expected total 

operational and tactical cost. Multi-sourcing and lateral transshipment in a periodic review 

inventory setting, are considered in this modeling approach. A European retailer case study and 

managerial insights is provided in the last section of this chapter. 

Chapter 4 proposes a two-stage stochastic model to solve a capacitated multi-echelon inventory 

optimization problem considering a stochastic demand as well as uncertain throughput capacity 

and possible inventory loss, due to disruptions. The model minimizes the expected total 

operational and tactical cost. The inventory is controlled according to a reorder point order-up-to-

level (s, S) policy and lateral transshipments in the network are considered. In order to deal with 

the uncertainties, several scenario samples are generated by Monte Carlo and corresponding 

sample average approximations programs are solved to obtain the adequate response policy to the 

inventory system under disruptions. Extensive numerical experiments are conducted and the 

results enable insights to be gained on the impact of disruptions on the network total cost and 

service level. 

Finally, we get our conclusion and discuss the future work in Chapter 5. 
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Chapter 1. Context, Motivations and Problem description 
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1.1 Introduction 

This chapter provides the general academic perspective, the objectives of this work, and the steps 

required to conduct the research to meet the objectives. First, a general introduction is presented 

to define the problem context. Then, the problem statement including the objectives and 

contributions of this thesis are briefly presented. Afterward, the methodological approach 

employed for the purposes of this work is discussed. The structure of this PhD thesis is presented 

at the end of the chapter. 

1.2 Context 

1.2.1 Supply Chain and Supply Chain Network 

Nowadays, there is an increase of interest on the part of managers to select a decent strategy to 

improve the flows of products and information between the suppliers and customers due to the 

competitive market.  

The alignment of partnerships that bring products or services to market is defined as a supply 

chain (Lambert et al., 1998). More specifically, a Supply Chain is a system of suppliers, 

manufacturers, warehouses, transportation modes, distributors, and retailers. The key purpose of 

this structure is to transform raw materials to final products and supply those products to 

customers in order to make profit for its entities. 

In reality, a manufacturer may receive material from several suppliers and then supply several 

distributors. Thus, most supply chains are actually networks. It may be more accurate to use the 

term supply chain network (SCN) to describe the structure of most of the supply chains (Chopra 

et al., 2007). A supply chain network is a set of facilities and related links that join the facilities 

together to bring a product from one echelon of the supply chain to the other. These echelons 

may be from a production center to a distribution center, from a production center to a retailer, or 

from a distribution center to a retailer.  Figure 1 illustrates a general supply chain network.  
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Figure 1. A Simple Supply Chain Network 

Each stage in a supply chain is connected through the flow of products and information. 

Information & product flows should be mapped to get a comprehensive picture of supply chain 

network.  Product flow is defined as the movement of goods from the raw material to a finished 

product. Information flow is the demand from the end-customer to preceding platforms in the 

network. 

1.2.2 Multi-Echelon Supply Chain Network (ME-SCN) 

As companies are progressively localizing their suppliers and markets all over the world, supply 

chain networks have become more widely spread around the world. A Multi-Echelon Supply 

Chain Network (ME-SCN) is a common network structure for large-scale companies that are 

deployed globally and have to manage a high number of products and large market zones with 

many suppliers and subcontractors. More specifically, such a network is composed of suppliers, 

production, distribution centers and the channels between them to acquire raw materials, convert 

the raw materials to finished products, and distribute final products in an efficient way to 

customer zones.  

In Figure 2, a ME-SCN that includes three various levels of enterprises is demonstrated. The 

information and product flows are distinguished with different types of arrows. These flows 

could occur in both directions. In this figure each node characterizes either a production 

(supplier, manufacturer) or a distribution center. Inventory can be implemented in each node.  

Supplier/
Production Center Distribution Center

Demand InformationOrders

Product Flow Product Flow
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Figure 2. Supply Chain Network and Decisions 

1.2.3 Supply Chain Management 

Supply chain management (SCM) is an effective method to integrate both information and 

material flows seamlessly across the supply chain. Simchi-Levi et al. (2000) define supply chain 

management as “the integration of key business processes among a network of interdependent 

suppliers, manufacturers, distribution centers, and retailers in order to improve the flow of goods, 

services, and information from original suppliers to final customers, with the objectives of 

reducing system-wide costs while maintaining required service levels”. In other words, supply 

chain management is a global approach to integrate the strategy of suppliers, manufacturers, 

warehouses, distributors, and stores in order to distribute the products in the right quantities, to 

the right locations, at the right time while minimizing related costs. This global approach is 

involved with different types of decisions. Supply chain management plays a significant role in 

the success or failure of a business. Supply chain management is even more important and more 

challenging in ME-SCN ((Tompkins and Harmelink, 1994). 
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 The results of a decent supply chain management strategy are impressive. Amazon is a great 

example of an efficient supply chain management on its ME-SCN. The revenue of Amazon has 

reached to almost $136 billion in 2016. In fact, Amazon is the fastest company to reach $100 

billion in sales revenue, taking only 20 years. The combination of sophisticated information 

technology, an extensive network of warehouses and excellent transportation makes Amazon’s 

supply chain one of the most efficient among in the world (Leblanc, 2017) 

1.2.4 Decision Levels in SCM 

One way to organize SCM decisions is by sorting them into strategic, tactical, and operational 

decisions (see a simplified supply chain decisional structure in Figure 2). The strategic level deals 

with the goals to reach, long-term decisions and objectives. It decides what the chain's 

configuration will be, how resources will be allocated, and what processes each stage will 

perform. Since supply chain strategic decisions are typically made for the long term (a matter of 

years), they are very expensive to alter on short notice. Thus, when companies make these 

decisions, they must take into account uncertainty in anticipated market conditions over the next 

few years. Examples of this category include facilities location, supplier selection, etc. Tactical 

decisions are concerned with mid-term decisions. They usually emphasis on planning of supply 

chain functions such as markets which will be supplied from which locations, and inventory 

policies to be followed, among others. Operational SC decisions have a time horizon of a week or 

day and focus on making decisions regarding individual customer orders, such as daily flow 

management between the different distribution centers, generating pick lists at a warehouse or 

setting delivery schedules for trucks. 

At tactical level, once the network is set, it gives rise to the resource planning problem. One of 

the most important parts of resource planning is the inventory management, which deals with the 

positioning of inventories in time and space.  

1.2.5 Inventory Management at Tactical level 

Inventory related problems have a significant effect on the total performance of supply chain. 

Changing inventory policies can intensely alter the efficiency and responsiveness of the supply 

chain. An important role of inventory in the supply chain is to increase the service level. 
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Inventory is kept all over the supply chain in different forms: raw materials, work in process, and 

finished goods (Silver et al., 1998).  

The most challenging matter in inventory management is finding the fundamental trade-off 

between responsiveness and efficiency when making inventory decisions. Increasing inventory 

generally makes the supply chain more responsive to the customer. A higher level of inventory 

also facilitates a reduction in production and transportation costs because of improved economies 

of scale in both functions. This choice, however, increases inventory holding cost (Chopra et al., 

2007).  

1.2.6 Issues of Inventory Management in ME-SCN  

Nowadays there is a growing pressure to improve supply chain cost performance for many 

companies. An efficient inventory management can contribute to this. Customer’s dissatisfaction, 

excess inventory in the network, the lead-times could be mentioned as costly issues in inventory 

management. These issues are even more visible in a company with operations in numerous 

locations, and particularly in ME-SCN where the locations are located in different tiers or 

echelons of the company’s supply chain network.  

Demand uncertainty and supply disruption are two important sources of the above issues. For 

years, Operations managers have recognized that the matching of supply and demand is one of 

their most challenging problems in Inventory Management. 

1.1.6.1 Demand Uncertainty 

In inventory management, demand uncertainty is one of the important issues which add 

complexity to the system. It fits cases in which the demand is affected by a trend, seasonal 

factors, or cyclical behaviors. An inappropriate demand planning approach could result into a 

devastating situation. 

It is therefore substantial to have solid information on the demand pattern when negotiating 

contracts with suppliers and while deciding the branding strategy for each product. This reflects 

the real-world setting in which demand for fast moving consumer food goods is highly variable 

and often with non-stationary patterns. Non-stationary is a pattern in which demand is not 

constant for each time period but varies due to seasonality, trend or other factors.  
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For instance, H&M, the famous Swedish fashion retailer with over than 4,700 stores around the 

world, has recently reported that there are 4.3 Billion dollars of unsold clothes in its warehouses 

(Paton, 2018). Although, the company’s chief executive just blamed poor inventory management 

over this issue, the main problem is a poor level of preparedness against the demand uncertainty. 

Since H&M was opening 220 new stores and expanding its e-commerce operations, they had 

decided to increase the inventory level in their warehouses to satisfy the potential demand. 

Meanwhile, a social media backlash after an advertisement1 in January 2018 completely 

destroyed the company’s image. Consequently, the demand pattern has decreased in Africa and 

some parts of Europe. A flexible production-distribution planning approach could handle these 

types of problems by redistributing the stock among the network. 

1.1.6.2 Supply Uncertainty  

Although the globalization improves the performance of companies in various ways, it also 

augments the risk of possible supply disruptions (as a type of uncertainty). This could be caused 

for example by discontinuities in supply, political instability, natural disasters and labor strikes. 

They could have a severe effect on the supply chain performance.  

Natural hazards (e.g. earthquakes, hurricanes and flooding) and man-made mistakes (e.g. fire, 

explosion, terrorist attacks) are just some examples of disasters that could result in failure of 

supply chain networks. Disruptions are infrequent and are temporary events. However, they can 

cause noticeable losses. Potential consequences of disruptions involve great economic losses and 

dissatisfaction of the clients (Snyder et al., 2015). The severity and frequency of disasters have 

been increased over past decades, relatively as a result of climate change, urbanization, 

population growth, and political conflicts.  

The Centre for Research on the Epidemiology of Disasters (CRED—www.emdat. be) recorded 

983 disasters affecting European countries between the years 2000 and 2018. These disasters 

have caused more than 200 billion dollars2 damages. 

                                                   
1 H&M ran an ad showing a black child model wearing a hooded sweatshirt that said, “Coolest monkey in the jungle.” 
2 Appendix A details the disaster types and damages 
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Figure 3 highlights the number of hazards observed over the past two decades per country in five 

different levels. These events can paralyze production distribution systems, and even can lead to 

very serious crashes.  

 

Figure 3. Disasters in European countries between 2000 and 20183 

According to a survey in 2012, 63 % of European, Middle East, and African companies were 

disrupted because of unforeseen events beyond their control linked to the economic context (24 

%), natural disasters (19 %), subcontractor difficulties (16 %), and even terrorism (5 %). It is 

important to know that after an occurrence of a disruptive event, it has taken companies an 

average of 63 days to get back to business as usual (Martel and Klibi, 2016). 

The cascade effects that serious disruptions may have on interconnected companies are also 

important. The 2011 Japanese tsunami has caused a 1.1 % reduction of world industrial 

production in the month that followed. In particular, PSA Peugeot Citroën in Europe was 

severely affected. The temporary shutdown of a Hitachi plant in Japan leads to the interruption of 

the supply of an electronic component to PSA, which in turn resulted in a 25–60 % reduction of 
                                                   

3 EM-DAT: The Emergency Events Database - Université catholique de Louvain (UCL) - CRED, D. Guha-Sapir - 
www.emdat.be, Brussels, Belgium 
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production in eight PSA assembly plants in France, Spain, and Slovakia (Bourgin and Lenoir, 

2012). This fact provides a considerable motivation to analyze these events and their impacts in 

multi-echelon networks.  

1.2.7 Thesis Scope 

We consider a three-echelon distribution network that includes implicit suppliers, a set of 

production-distribution centers (PDCs), a set of distribution centers (DCs), and a customer zone 

(CZ) stage (i.e., consumption points). As illustrated in Figure 4, each stage is fed from the upper 

echelon and feeds the ones below. The multiple arrows between PDCs and DCs represent the 

multi-sourcing opportunities with respect to the throughput capacity per period of each platform. 

A lateral transshipment (LT) option, which allows replenishment flows in the same echelon, is 

available between DCs. Lateral transshipments are stock movements between distribution centers 

in the same echelon of a supply chain network (Neale and Willems, 2009).  

 A tactical planning horizon (e.g., yearly, seasonally) is considered and is partitioned into a set of 

control periods (e.g., months, weeks, days). At the tactical level of the supply chain, when a 

make-to-stock policy is considered, a key decision is related to the positioning of inventories in 

time and space. In other words, the main issue in inventory management problems is to apply the 

optimal replenishment policy, which specifies when and how much to order. 

 

Figure 4. A Multi-Echelon Network with Lateral Transshipment between DCs and Multi-

Sourcing 
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In our problems, the purpose is to minimize the expected total cost considering supply and 

demand uncertainty. When making the tactical decisions (first-stage decisions in the proposed 

two-stage model), there are two sources of uncertainty to be considered. The first regards the 

demand for final products that is unknown with certainty especially in non-stationary patterns. 

The second one is the occurrence of different disruptions. When a disruption occurs, some PDCs 

and DCs may lose part of their capacity (space to stock) and their inventory. 

1.3 Inventory Optimization Problem 

As stated in the context, companies must anticipate demand and supply uncertainties and be 

prepared against them. Therefore, the risk mitigation policies must be considered. Flexible and 

robust demand allocation and sourcing strategies are considered as influential risk mitigation 

policies.  

Inventory Optimization is one of the most straightforward approaches for risk mitigation by 

adding redundancy to the network against supply and demand uncertainty (Snyder and Shen, 

2011). The main concern in inventory optimization problems is to find the optimal replenishment 

policy which determines when, where, from which supplier, and how much to order.  

One successful example of how a company can recover quickly from disruptions by robust 

demand allocation and sourcing strategy techniques is Wal-Mart's performance after the 

Hurricane Katrina disaster in the Gulf coast. Wal-Mart has employees dedicated to tracking 

potential disruptions and planning for them. With Katrina upcoming, Wal-Mart overstocked its 

nearby distribution centers with items that would be needed (such as bottled water, Pop-Tarts, 

and generators), and after Katrina struck, its solid transportation network allowed it to respond 

quickly to deliver supplies and reduce the disruption negative impacts to its supply chain. 

Without this preparation, Wal-Mart's recovery time would have been much longer and much 

more costly for the company (Leonard, 2005). 

Traditional inventory optimization models tend to reduce the problem to a single-echelon setting, 

that is, a set of independent single-echelon inventory systems, in order to keep the model 

solvable and thus derive optimal properties (Diks and de Kok, 1998).  
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 The single echelon–based approach entirely neglects interdependencies between the echelons 

and, consequently, could dismiss some inventory positioning opportunities or inventory coverage 

strategies. Consequently, the network carries excess inventory in form of redundant safety stock, 

and end-customer service failure could occur, even when adequate inventory exists in the 

network (Silver et al., 1998, Snyder and Shen, 2011).  

Over the last decade, multi-echelon inventory optimization models have gained more importance 

mainly since on one hand, the current environment dynamics require looking beyond classical 

sourcing and distribution strategies (Christopher et al., 2011, Eruguz et al., 2014) and on the 

other hand,  recent Information Technology advances have made the management of such 

networks feasible in practice (Kalchschmidt et al., 2003).  

Hence whenever a disruption happens, it has a major impact on the whole supply chain network. 

From an academic perspective, to set a robust inventory optimization approach, first we need to 

model disruption occurrences and impacts. 

Among different inventory control policies, several studies have shown that (s, S) policy is 

optimal under some specific conditions (e.g., in the presence of fixed ordering cost) (Sethi et al., 

2003, Fox et al., 2006, Huggins and Olsen, 2010).  

However, many works (Firouz et al., 2017, Schmitt and Snyder, 2012) indicate that it is very 

difficult to find an optimal policy in scenarios where the suppliers could be disrupted. 

1.4 Problem Statement and Research Methodology 

In this section, the global research questions mentioned in the previous section are detailed into 

problem statement with devoted approaches. We also detail the methodology adopted for 

resolving the thesis problematics and achieving the objectives stated (see Figure 6). The main 

challenge that is addressed in the methodology is the “anticipation of the future demand 

variability and disruption occurrences”. In order to efficiently mitigate supply and demand risks, 

sourcing and inventory decisions should proactively take that risk into account. Traditional 

methods do not include the impact of supply and demand uncertainty on multi-echelon inventory 

optimization decisions. Unlike the traditional modeling approaches, we propose stochastic 
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approaches with different types of uncertainty. In this research, customer demands and network 

disruptions are modeled as compound stochastic processes. 

In our methodology, we consider the effect of uncertain parameters (demand and disruption) on 

all decisions. We form the non-stationary demand by the historical daily demand information in 

chapter 3. In parallel (as detailed in chapter 4), a compound stochastic process is defined to 

describe how disruptions occur in space and time. This process also specifies the event’s intensity 

and duration. The different impacts of disruptions on the network are modeled using 

mathematical functions. The risk modeling approach used in chapter 4, is an improved form of 

the framework developed in (Klibi and Martel, 2012).  

Considering the demand and disruption uncertainty, two two-stage stochastic mixed integer 

programming (MILP) formulations are proposed to optimize the tactical (first-stage) and 

operational (second-stage) decisions in Chapter 3 and Chapter 4. In this sort of mathematical 

models, the decision variables are divided into first-stage decisions that must be made earlier to 

the occurrence of the uncertainty (tactical decisions in this research) and second-stage decisions 

(operational decisions in this research) that are made after the uncertainty is unveiled.  In this 

framework, first-stage decisions is valid for all considered scenarios, such that the costs 

associated with the first-stage decisions and the expected cost of the second-stage decisions are 

optimized (Birge and Louveaux, 2011). 

For each part, a stochastic scenario-based inventory optimization model is developed to minimize 

the expected total cost that is composed of the fixed allocation, inventory holding, procurement, 

transportation, and back-ordering costs. As illustrated in Figure 5, in our proposed two-stage 

model the allocation and sourcing decisions are optimized at the beginning of the planning 

horizon (i.e., in the first stage), then in the second stage, the inventory levels, the transportation 

flow decisions, and the ordered quantities at all echelons are optimized for all periods of the 

planning horizon. 
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Figure 5. Business environment during a planning horizon 

In this thesis, based on the stated thesis problematic and adopted Inventory Optimization 

approach, six objectives have been formulated: 

1- To propose an optimization approach for multi-echelon distribution network to minimize 

the total cost including (fixed allocation cost, transportation cost, backorder cost, holding 

cost, fixed procurement cost) 

2- To evaluate effect of multi-sourcing and lateral transshipment in multi-echelon 

distribution network under supply and demand uncertainty 

3- To determine the optimal (s, S) inventory policy parameters in multi-echelon distribution 

networks 

4- To examine different impacts of supply disruptions on demand allocation decisions 

5- To analyze the effect of supply disruption on the (s, S) policy parameters. 

6- To test the empirical validity and utility of the proposed approach on a large set of real 

world data.  

Our work is built on a stochastic programming approach (Shapiro, 2003, Borodin et al., 2016) 

with the use of scenarios to shape the demand uncertainty and on the Sample Average 

Approximation (SAA) method (Shapiro, 2008) to solve a set of equivalent deterministic 

problems. This scenario-based modeling and solving approach is known for producing “good-

quality” solutions based on the best trade-offs between expected cost and service level and the 
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explicit inclusion and evaluation of recourse costs. The plausible future scenario samples required 

to formulate the stochastic models are generated using Monte-Carlo methods. 

The contributions of this thesis are fold 3 principal axes: Uncertainty, Distribution Strategy and 

Inventory Policy. In chapter 2, we prepared a comprehensive analysis on the literature to detail 

our proposed contribution. The Figure 7 indicates each chapter contributions separately. In 

chapter 3, by the motivation of extending the work of Martel (2003), we consider a more flexible 

sourcing strategy by allowing multi-sourcing and lateral transshipment flows. 

For the sake of generality, Distribution Requirements Planning (DRP) approach is applied as the 

replenishment policy. DRP is a rolling horizon, echelon-by-echelon approach that bases 

procurement decisions on time-phased expected future site requirements (Martin, 1994). A DRP-

based policy is built to evaluate the effect of different distribution strategies on inventory-related 

decisions.  Moreover, disruption and the associated impacts are modeled in chapter 4. Recall that 

(s, S) policy is one the most practical policies in this network setting, the policy parameters are 

optimized through the proposed two-stage stochastic model. 

 

Figure 6. Research methodology  
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Following the methodology presented above, the achieved contributions can be summarized as: 

(1) Proposition of a two-stage multi-echelon inventory optimization model with a DRP approach 

to handle non-stationary demand processes (Chapter3). 

(2) Modeling of lateral transshipments and multi-sourcing strategies in a multi-echelon network 

in order to improve its flexibility and capabilities to reduce shortages (Chapter 3). 

(3) Development of a two-stage multi-echelon inventory optimization model which optimize the 

(s, S) policy parameters (Chapter 4) 

(4) Modeling of lateral transshipments and multi-sourcing strategies in a multi-echelon network 

in order to improve its flexibility and capabilities to reduce shortages (Chapter 3). 

(5) Modeling of two different disruption impacts on multi-echelon networks by considering 

stochastic throughput capacity and possible inventory loss (Chapter 4). 

 

Figure 7. Contributions of this research 
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1.5 Conclusion 

This chapter summarized the research path conducted in this study. First, the problem context 

containing the basic definitions, business context and thesis perimeter is presented. Then the 

inventory optimization problem is introduced in the next section. The research methodology and 

the problem definition are developed in section 4 by presenting the main objectives and 

contributions.   

To attain a unified understanding of the concepts related to this research work, it is necessary to 

analyze the related research work that has been done in this field. In the next chapter, an overview 

of the literature on multi-echelon inventory optimization will be presented.  
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Chapter 2.  State of the art 

 

The first chapter summarized the research path conducted in this study. It outlined the research 

through a summary of the research background, problem context, and designated methodology. 

This chapter aims to provide an overview of the literature on multi-echelon inventory 

optimization. An analysis of the literature is provided in the last section of this chapter. 
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2.1 Introduction 

There is a considerable research on multi-echelon distribution planning and inventory 

optimization problems. Three streams of research are particularly related to our work and will be 

reviewed in this chapter: uncertainty, distribution strategies and inventory policies. The Figure 8 

indicates a summary of reviewed issues in multi-echelon inventory systems. The section numbers 

in this chapter is indicated on each issue in the presented structure.  

The first one relates to multi-echelon inventory optimization problems under different types of 

uncertainty. We review the methods proposed in the literature for the analysis and optimization of 

multi-echelon inventory systems, especially for the systems with fixed order costs. First, a 

general introduction of the studies in multi-echelon inventory management is given. Then, 

different types of uncertainty in multi-echelon systems are investigated: supply uncertainty and 

demand uncertainty.  

Afterwards, in the second part, different distributions strategies are reviewed. The works which 

considered multi-sourcing and lateral transshipment in inventory optimization problems are 

examined in detail. 

 

Figure 8.  Literature review structure 
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In the third part, we briefly introduce different inventory policies used in multi-echelon inventory 

systems. First, the works which prove the optimality of different policies, especially (s, S) policy 

are studied. Then, the design of optimal policy parameters in different setting is reviewed.  

A comprehensive discussion on literature review is presented at the end of this chapter. The 

research gaps are argued to show more clearly the contributions of each chapter separately. 

2.2 Multi-echelon Inventory Optimization 

Inventory levels can be reduced by as much as 25% due to effective multi-echelon inventory 

management. That is one of the reasons that multi-echelon distribution planning problems have 

attracted many researchers in the last decades (Yeong-joon et al., 1997, Martel, 2003, Wang, 

2009, Yang et al., 2017). 

Inventory optimization approaches are applied to minimize inventory-related cost all over the 

network. Our modeling approach is cost-oriented. Four cost components are taken into account 

for developing these models in the literature. 

The first one is the holding cost. Storage cost for the unsold items that may be kept through one 

period or multiple periods will incur and it can be so expensive. Depending on the business, the 

location, and so on, holding costs vary considerably. It is typically superior to 10%, some high 

technical items have holding costs greater than 50%.  

The second component is the replenishment cost. It consists of the purchasing cost and ordering 

costs considered for placing orders in most models. This ordering cost is independent from the 

size of replenishment.  

The third component is the shortage cost whenever the customer demand cannot be fulfilled. 

Shortage costs can be represented by backordering cost, lost sales cost, or just penalty cost in 

many models. In our approach we only consider backorder cost which is relevant to the retailing 

business context. The last cost component is the fixed allocation cost. The fixed allocation cost 

are those expenses associated with assigning a distribution center to a demand zone and are 

incurred once the product flow between a determined distribution center and a demand zone is 
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allowed. This cost is involved with tactical decisions which determine customer demand 

allocations. 

According to the literature, most of inventory models consider basic cost structures that are 

linearly proportional to the amount of dependent variables for minimizing the total expected cost 

when fixed costs are negligible compared to some variable costs, such as procurement cost, 

inventory holding cost, or backorder cost (e.g.,(Yan et al., 2003, Yang et al., 2013, Amiri-Aref et 

al., 2018). 

From a mathematical point of view, the inventory models used can be classified into 

deterministic and stochastic inventory models.  

A deterministic inventory model assumes that there is no uncertainty in supply and demand. 

Demand is considered as deterministic and suppliers are 100% reliable. Due to these 

assumptions, the analysis of the model is considerably simplified. Obviously shortage in a 

deterministic inventory model is not allowed. Deterministic inventory models can further be 

divided into static and dynamic models. The static models are generally follow classical 

economic order quantity (EOQ) which computes an optimal trade-off between fixed order costs 

and variable inventory carrying costs. Such models can be applied in the situations when the 

system conditions are stable, suppliers are reliable, and there are no variations in the demand. To 

deal with the conditions with deterministic time varying demand, several lot sizing models have 

been developed, which can be used in different situations.  

The most common methods for single stock lot sizing are Wagner-Whitin method (Wagner and 

Whitin, 1958), part period balancing (Callarman and Hamrin, 1984) and Silver meal heuristics 

(Silver and Pyke, 1998).  

Note that these deterministic models provide a basis for handling inventory systems with 

uncertainty. While deterministic models allow obtaining an optimal solution for a single scenario, 

stochastic models can consider the stochastic processes in a comprehensive manner which 

considers many scenarios at once. Therefore, when any parameter (e.g., demand, capacity, lead 

time) of a problem is subject to uncertainty, stochastic programming becomes more appropriate 

than traditional deterministic approaches. 
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Since stochastic inventory models take into account supply and demand uncertainties, they are 

more realistic compared with their deterministic equivalents.  

The analysis of stochastic inventory models is usually very difficult. The cost functions of most 

stochastic inventory models have been commonly perceived as rather complex and too difficult to 

be evaluated analytically (Zheng, 1992). In the literature, several stochastic inventory models 

have been developed.  

Surveying the literature, we observe that an important portion of articles on inventory problems 

suggest mathematical programming. In this section, we mainly focus on linear and Mixed Integer 

Programming (MIP) modeling approaches. Several approaches have been proposed to solve these 

mathematical problems. A very commonly used method is the analytical approach for solving 

small-scale problems, which guarantees exact solutions if the underlying mathematical model is 

solvable. Besides, general exact solvers, like CPLEX, Lingo, Lindo, Xpress, GAMS, AIMMS, 

AMPL, can also derive exact solutions, and tailored algorithms (e.g., branch-and-bound/cut, 

decomposition techniques), can also lead to exact solutions. However, models (Wang et al., 2008, 

Jain et al., 2011, Amiri-Aref et al., 2018) with exact solutions are often based on a number of 

assumptions (e.g., constant demand, a small finite period, or no crossover orders for inventory 

models).  

Stochastic multi-echelon inventory optimization is usually intractable due to the inherent 

combinatorial complexity and the very large number of plausible scenarios necessary to shape 

supply and demand processes. Therefore in this thesis, the sample average approximation (SAA) 

technique (Shapiro, 2008) is used in order to approximate the stochastic model by an equivalent 

deterministic mixed-integer linear program (MILP), namely the SAA model. 

To investigate different stochastic inventory models, the role of uncertainty in inventory models 

is examined. 

2.3 Uncertainty  

Uncertainties are widely considered in stochastic inventory models. In this section, we classify 

the inventory models according to two main categories of uncertainties: demand uncertainty, and 

supply uncertainty. Meanwhile, in order to integrate uncertainties into inventory models, it is 
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usually assumed that parameters (e.g., demand, lead-time) follow certain probability 

distributions. The majority of models apply this method to capture the impacts of uncertainties. 

From a generic point of view, based on the previous section, the current inventory optimization 

models do not provide an adequate level of robustness against supply and demand uncertainty, 

especially in multi-echelon setting.  

2.3.1 Demand Uncertainty 

This kind of uncertainty is most commonly taken into account, and can exhibit a very large 

degree of variability over the course of procurement periods. In multi-supplier inventory models, 

demand uncertainties are modelled by known parameters, such as certain probability distributions 

based on the historical demand data. The demand uncertainty could be considered as stationary 

and non-stationary patterns.  

Considering a stationary demand pattern, Yeong-joon et al. (1997) have considered a multi-

echelon distribution network. They have proposed an improved DRP approach with single 

sourcing using the concept of reorder point installation-stock. Based on simulation experiments, 

they have shown that the proposed system outperforms the classical DRP approach.  

Martel (2003) has proposed a stochastic model for multi-echelon inventory optimization systems 

under the single sourcing strategy which is solved with a DRP-decomposition approach. Using 

simulation, the results obtained by the proposed approach show a significant improvement in 

comparison to the classical DRP approach. In Wang (2009), a fuzzy modeling approach has been 

used for a multi-echelon inventory optimization problem. They have indicated that bythe 

minimum total cost (including the inventory holding and back-ordering costs) under the 

continuous review policy could be obtained by applying a DRP method.  

Furthermore, Yang et al. (2016) have analyzed two single-product multi-echelon distribution 

networks with a continuous reorder point replenishment approach in the storage facilities. No 

storage capacity is assumed and demand is assumed to be stationary and normally distributed. A 

non-linear simulation-based optimization model has been proposed and solved with a 

metaheuristic using simulated annealing.  
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Graves and Willems (2000) have developed a framework for positioning the strategic safety stock 

in a multi-echelon supply chain considering a base-stock policy with a common review period. 

They have proposed a guaranteed-service model to evaluate the inventory requirements at each 

stage as a function of the service times. An optimization algorithm has been applied to find the 

service times that minimize the holding cost for the safety stock in the supply chain. Another 

guaranteed-service model with bounded demand has been proposed recently by Graves and 

Schoenmeyr (2016). They have numerically shown that the modified constant base stock policy 

is near optimal in a low-capacity condition; however, its performance deteriorates when the 

constraint (capacity) is relaxed. 

Although in this stream of research, most of the work has been developed under the assumption 

of a stationary demand, few articles have considered the assumption of a non-stationary demand. 

This latter assumption is important because it fits cases in which the demand is affected by a 

trend, seasonal factors, or cyclical behaviors. 

Note that one of the techniques to model a non-stationary demand is to break the horizon into a 

set of stationary phases and implement a rolling-horizon approach in which the optimization 

should be done for each demand phase (Bollapragada and Morton, 1999).  

Based on the model presented by Graves and Willems (2000), a supply chain inventory model 

with a non-stationary demand process has been developed by (Ettl et al., 2000). They have used 

service-level constraints to calculate safety stocks. Each stage was controlled with a periodic 

base-stock policy in which the review period is one time unit. This work has been extended by 

Graves and Willems (2008) in the case of a non-stationary demand.  

2.3.2 Supply Uncertainty  

According to the literature, the supply uncertainty is categorized into three categories (Qi et al., 

2006). The first category is disruptions. When a company's supply is disrupted, its supply process 

comes to a complete break, or the supply process would be partially operational until the supply 

disruption process is completely recovered. The second type of supply uncertainty is yield 

uncertainty. It means that the actual amount of items delivered by the supplier could be a random 

number dependent on the ordered quantity (Schmitt and Snyder, 2012). For example, among each 
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batch of products delivered, some products might have defects, which make them useless. The 

number of defective products could be a random variable. The third form of supply uncertainty is 

lead time uncertainty. When the lead time is stochastic, the delivery of products takes a random 

amount of time, but at the end of the period, the exact amount of products ordered would arrive 

(Jokar and Sajadieh, 2008, Hnaien et al., 2010).  

In this research, we only consider the first category, supply disruptions. Supply disruption has 

been increasingly studied in recent years. Due to either internal causes (e.g., machine/equipment 

breakdowns, or labor strikes) or external causes (e.g., unpredictable natural disasters, political 

trade intervention or bad weather conditions).  

In many studies, supply disruption has been modeled with deterministic demand (Chopra et al., 

2007, Jokar and Sajadieh, 2008, Schmitt and Snyder, 2012). Other works (Keskin et al., 2010a, 

Silbermayr and Minner, 2014) have investigated models with stochastic demand. Measuring the 

disruption impact is a challenging task.  

The most common way that supply disruption has been modeled is that the supplier has two 

states: normal and disrupted. Supply capacity is infinite in normal and zero in disrupted state. 

Supply disruptions could have various impacts on the network such as lead time increase, 

capacity loss, inventory loss, etc. Klibi and Martel (2012) have developed an approach to model 

the supply disruptions impacting the throughput capacity. In their proposed approach, first, a 

compound stochastic process has been defined to describe how hazards occur in space and in 

time, to specify incident’s impact. Second, the impact of hits on the throughput capacity has been 

modeled.  

It has been extensively discussed how disruption and demand uncertainties affect the topology of 

different multi-echelon supply chain networks (Keskin et al., 2010a; Schmitt et al., 2015). One of 

the solutions to overcome the disruptions is to apply a decentralized network design. Schmitt et 

al. (2015) have used simulation to show the optimal strategy for coping with disruption which is 

often the exact opposite of the strategy for demand uncertainty. They have concluded that the two 

forms of uncertainty are mirror image of each other. For example a decentralized design is 
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preferable to reduce the impact of any disruption. In contrast, under demand uncertainty, central 

design is the optimal one.  

Sourcing strategies are considered as a common technique to enhance the robustness of the 

network against uncertainty. In this subsection we review sourcing strategies in two categories, 

multi-sourcing using splitting orders and lateral transshipment. 

2.4 Distribution strategies 

Sourcing strategies are considered as a common technique to enhance the robustness of the 

network against uncertainty. In this subsection we review sourcing strategies in two categories, 

multi-sourcing using splitting orders and lateral transshipment. 

2.4.1 Multi-Sourcing 

An important potential solution to overcome supply uncertainty is multi-sourcing. According to 

the literature, order splitting can reduce the inventory holding and backordering costs when a 

network involves random demands and lead-times (Minner, 2003). Despite some clear 

advantages (e.g., cost and service level) of multi-sourcing, only a limited number of studies 

present an analytical approach to investigate inventory decision problem in this area.  

Splitting order quantity or order allocation between distribution centers depends on supply 

characteristics, such as capacity, transportation cost, and reliability of the network. Under this 

order-splitting sourcing mechanism, both inventory level in distribution centers and cycle stock 

with successive deliveries of smaller split orders can be reduced (Bohner and Minner, 2016).  

This multi-sourcing concept can be identified under both dual and multiple sourcing as well as 

under deterministic or stochastic supply parameters. In scenarios of multi-sourcing with 

deterministic supply parameters, Glock and Ries (2013) have considered a system in which 

customers order from multiple suppliers with stochastic demand. They have shown that the 

shortage can be reduced by splitting the total order quantity among different sources. 

 Wang et al. (2008) have investigated a fixed demand system where a manufacturer must choose 

the best suppliers when the on-hand inventory level drops to the reorder point. Based on 
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constraints on supplier capacity and quality, splitting the replenishment order quantity would be 

considered to improve the performance. Zhou et al. (2011) have proposed a model to examine a 

finite horizon periodic review system with stochastic customer demands and capacity constraint. 

The model determines the decisions on the replenishment quantity and order allocation to 

minimize the total expected cost.  

A problem setting with multiple candidate suppliers and multiple warehouses has been presented 

by (Keskin et al., 2010a, Keskin et al., 2010b). Keskin et al. (2010b) have considered the 

integrated supplier selection inventory optimization problem under a deterministic demand and 

proposed an efficient generalized bender’s decomposition algorithm as solution approach.  

Extending this deterministic problem by taking into account the stochastic demand and 

disruptions condition, Keskin et al. (2010a) have proposed a simulation-optimization based 

solution approach. They have shown that the unit inventory-related costs and fixed allocation cost 

impact the topology of the network. According to their study, in many cases, the disruptions does 

not change the topology, however, the inventory decisions and flow decisions may differ. 

Moreover, there are recent works considering disruption in order splitting models. (Silbermayr 

and Minner, 2014) have presented a semi-Markov decision process model with stochastic 

demands, where lead times and ON and OFF periods of suppliers are identically distributed to 

minimize a buyer's long run average cost. They find that the percentage of demand allocated to 

the expensive but reliable supplier is higher with a higher penalty cost, and the long run average 

cost is less in the backorder model than in the lost sales model. 

Song et al. (2014) have considered an inventory system with multiple suppliers subject to 

stochastic demands and supply disruptions. They present a procedure for determining the total 

order quantity, reorder point and splitting proportion among multiple suppliers, and assume that 

the total order quantity is equal among the suppliers with identical lead time distributions. 

Clemons and Slotnick (2016) investigate the effects of supply chain disruption on a firm’s 

decisions to invest in quality and on ordering decisions when there is a variable rate of 

knowledge transfer and a choice between two suppliers with different quality levels. They show 
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that the increasing cost due to disruption can be mitigated by sensibly allocating demand between 

two suppliers.  

Hu and Kostamis (2015) have studied a system where some but not all suppliers face the risks of 

complete supply disruptions. They have shown that the total order quantity and its allocation 

between the two suppliers are independent decisions and that unreliable orders are ranked by the 

ratio between the suppliers’ cost advantages over the reliable supplier and their disruption 

probabilities. They have shown that multi-sourcing is effective since it can reduce the total cost 

and lead time risks, as well as improve the service level for a high reduction of lead time demand, 

especially when lead time uncertainty is high or ordering costs are low.  

All these works have shown that order splitting among multi-sourcing can reduce the total cost of 

ordering, procurement, inventory holding, and shortages. Moreover, the optimal strategy of single 

or multi-sourcing and related optimal sourcing strategies have also been studied (e.g., (Tomlin 

and Wang, 2005)).  

Although multi-sourcing enhances the complexities of the problem, it could reduce and mitigate 

risks and improve the global performance of the distribution networks. In this thesis we model 

multi-sourcing by splitting orders between the distribution centers. 

2.4.2 Lateral Transshipment 

Traditional multi-echelon network only consider product flow from upstream to downstream, 

while flows of products between different platforms at the same echelon are allowed thanks to a 

lateral transshipment system.  

Lateral transshipment is efficient in some conditions. In the situations when the cost of lateral 

transshipment is lower than the cost of keeping a higher inventory level, or than the backorder 

costs, it can be practical. Also, the replenishment time of lateral transshipment is almost always 

shorter than the one for sourcing from the upstream. Therefore, transshipments could reduce the 

total cost and increase the service level simultaneously, thereby improving the performance of the 

whole network.   
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That is why lateral transshipments have attracted the attention of many researchers as a flexible 

supply strategy. A comprehensive literature review on inventory models with lateral shipments 

has been provided by Paterson et al. (2011).  

Note that in this work, the models have been classified based on the type of transshipment 

employed. Based on the timing for replenishment, two streams of transshipment have been 

identified: 1- proactive (or preventive) lateral transshipment, which occurs before stockouts to 

minimize the risk of future stockouts, and 2- reactive (or emergency) transshipment, which may 

happen at any time in response to shortages. In a proactive modeling approach (Agrawal et al., 

2004, Lee et al., 2007) transshipments can be affected only at fixed points in time, whereas in a 

reactive modeling approach, transshipments can occur at any time (Paterson et al., 2012, Zhao et 

al., 2016, Nakandala et al., 2017).  

Grahovac and Chakravarty (2001) have developed an inventory replenishment model based on a 

base-stock policy that provides a threshold to activate the lateral transshipment flows with the 

single-sourcing strategy. They have shown that, although the inventory levels may increase in the 

network (leading to higher inventory holding costs), lateral transshipments reduce the total cost 

for a stationary demand.  

Lee et al. (2007) have proposed a new transshipment strategy for a two-echelon supply chain 

network, under the single-sourcing strategy, which leads to lower total cost (including the back-

ordering, the ordering, and the holding costs) and that deals effectively with stationary demand 

fluctuations. They have shown that the benefit magnitude of the lateral transshipment depends on 

the unit transportation cost between the retailers. 

Minner et al. (2003) and Zhao et al. (2008) have made an assumption that replenishment lead 

times are negligible. Based on this assumption they have developed an improved heuristic for 

deciding on emergency transshipments.  

Different inventory policies are used in emergency transshipment scenarios. Previous studies 

have shown that, in the absence of fixed costs per replenishment order, the base-stock policies are 

optimal if transshipments are used to compensate for an actual shortage and not for inventory 
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being built up at another stocking location (e.g., (Özdemir et al., 2006, Özdemir et al., 2013)). In 

other words, transshipment could be applied as an optimal option only to avoid shortage. Gong 

and Yücesan (2012),  and  Karsten et al. (2012) have considered multi-location systems with 

positive replenishment lead times controlled by continuous review base-stock policies to 

minimize the expected average total cost.  

Although the benefits of multi-sourcing and lateral transshipments have been shown in the 

literature separately to mitigate risks associated with demand uncertainty, applying both 

strategies in a multi-echelon network has been rarely considered. Considering a specific 

inventory control policy, (Tiacci and Saetta, 2011) have considered a supply chain system where 

two retailers who face their final customers’ demand have one central depot that supplies them 

both, and assume that the retailers use a periodic (s, S) policy to replenishment their inventory.  

Firouz et al. (2017) have developed also a mixed integer nonlinear programming for the same 

setting by considering multi-sourcing and lateral transshipment policies under a stationary 

stochastic demand following a Poisson distribution. They have studied a two-stage supply chain 

network in which the warehouses replenish their inventory from multiple suppliers with varying 

price, capacity, quality, and disruption characteristics. The warehouses are operating under (R, Q) 

policy. They show the benefits of each sourcing strategy under different cost setting. 

2.5 Inventory Policies 

In this section we review the models and methods proposed in the literature for analyzing 

inventory policies, especially (s, S) policy in multi-echelon inventory systems. 

In inventory management, an inventory policy must answer to two questions: when the inventory 

position must be reviewed and which quantity each order must be placed. Most frequently used 

inventory policies for multi-echelon inventory systems are base stock policy, (R, Q) policy and (s, 

S) policy. Applying the  

There are two control parameters in (s, S) policy: the reorder point s and the order-up-to level S. 

When the inventory position of a platform declines to or below s, the platform places an order to 

bring its inventory position to the maximum level S. Compared with (R, Q) policy, (s, S) policy 

no longer orders a multiple of a given order size. Noted that if the reorder point is always reached 
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exactly in case of continuous review and continuous demand, the two policies are equivalent with 

s=R and S=R+Q. In addition, an inventory model operating under (s, S) policy has a complex 

structure. This leads to the fact that few results exist for the optimization of such a policy in the 

context of multi-echelon inventory systems. The industry context and the type of product usually 

determine which policy between continuous (R, Q) and periodic (s, S) policies should be applied. 

Since (s, S) policy is more generic and poplar in multi-echelon distribution networks, the use of 

(s, S) policy is more beneficial from a theoretical point of view. For this reason, we only consider 

(s, S) policy in our research work.  

We characterize the literature on multi echelon inventory systems according to the optimal 

replenishment policy, as well as optimal parameters for given policies. First we show that, 

according to the literature, (s, S) policy could be optimal for our problem setting, then we review 

the works in which the (s, S) policy parameters are optimized. 

2.5.1 Optimal replenishment policy 

The optimality of two policies, base-stock and (s, S), has been proved for controlling inventory 

with a multi-sourcing setting. (s, S) policy has been proved to be optimal for periodic review 

systems with fast and slow delivery modes in some specific situations depending on procurement 

costs. There are several studies that describe the structure of the optimal inventory policy under 

specific conditions.  

One of the first has been done by (Parlar et al., 1995) which considers a finite-horizon problem 

with random demand, zero lead time, and an unreliable supplier which could be disrupted. They 

claim that the optimal inventory policy for this problem is order-up-to level (s, S). Another works 

that determines the structure of the optimal inventory policy under certain conditions is by (Song 

and Zipkin, 1996). They have indicated that a base-stock policy is optimal if there is no fixed cost 

and an (s, S) policy is optimal otherwise; both policies are state dependent, with the optimal 

parameters depending on the state of the supply process. Because of the generality of the 

proposed model by (Song and Zipkin, 1996) , this policy has been applied to a wide range of 

inventory problems with disruptions. 
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Following these original studies by (Parlar et al., 1995) and (Song and Zipkin, 1996) on periodic 

review inventory systems, multiple researchers have examined the optimality of (s, S) policy 

under different assumptions (Sethi et al., 2003; Fox et al., 2006; Huggins and Olsen, 2010; Zhang 

et al., 2012). 

Fox et al. (2006) have investigated two different inventory systems to prove that (s, S) policy is 

optimal, one with a negligible fixed cost but high variable costs, and the other with a positive 

fixed cost but a low variable cost. They have shown that a reduced form of the generalized (s, S) 

policy is optimal for dynamic programming problems with both finite and infinite horizon. 

Moreover, Huggins and Olsen (2010) have examined the structure of the optimal expediting 

policy and indicated that a (s, S) policy is optimal for regular production. For the special problem 

settings where the expediting cost function is concave or consists of a fixed and linear per-unit 

cost, they have shown that the optimal expediting policy is a generalized (s, S).  

Zhang et al. (2012) have considered an inventory control problem with multiple suppliers with 

different fixed and variable costs under a limited capacity. They have shown that the optimal 

policy could be considered like (snt, Snt) for each center and each period. According to their 

results, a customer has to order from more expensive suppliers if demand exceeds the order 

quantity from a cheaper supplier, regardless of reliability.  

2.5.2 Optimal parameters for given policies   

In spite of the fact that it has been known for a long time that there exists an optimal inventory 

policy under quite general conditions, optimal control parameters of the policy under the 

stochastic setting are hard to be computed (Feng et al., 2006, Song and Zipkin, 2009). Most of the 

previous studies on stochastic inventory models were focused on cost evaluation and on 

determining optimal control parameters for predetermined inventory policies. In contrast, results 

on optimal policy structures are rare. 

Considering (s, S) as the optimal policy, a lot of researches has been done to approximate (s, S) 

policy parameters ((Jain et al., 2011, Fattahi et al., 2015, Amiri-Aref et al., 2018, Cunha et al., 

2018). Jain et al. (2011) have presented a conceptual model to approximate the (s, S) policy 
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parameters to evaluate the cost performance of the network. They have developed a heuristic to 

provide bounds for the policy parameters under a periodic review system.  

In more recent studies, Fattahi et al. (2015) have proposed different mixed-integer linear 

programming (MILP) models for designing centralized and decentralized supply chains using 

two-stage stochastic programming. They have studied a multiple period replenishment problem 

based on (s, S) policy for these supply chain models. 

Considering the demand uncertainty, Cunha et al. (2018) have developed mixed integer model to 

optimize a replenishment policy for single-item single-echelon network with periodic review and 

variable order quantities.  

Zhao et al. (2012) have studied a manufacturer with two transportation modes: a slow mode with 

low cost and long and stochastic lead time, and a fast mode with high cost and short and 

deterministic lead time. They assumed a periodically adjusted base stock policy with demand 

forecast updating.  

Amiri-Aref et al. (2018) have extended stationary demand to non-stationary demand, and have 

investigated a (s, S) policy in a location-allocation problem. They have proposed a two-stage 

model in a periodic review setting with multi-sourcing suppliers to handle a non-stationary 

demand pattern. 

None of these studies has considered disruption in optimizing the selected inventory policy. 

Ahiska et al. (2013) have considered a periodic review inventory system for a retailer who has 

adopted a dual sourcing strategy for coping with potential supply process interruptions. They 

have derived the optimal parameters for (s, S)-type policies in the presence of fixed ordering 

costs. Under this policy, they assume that the reorder points for the reliable and the unreliable 

supplier, which are simply defined as the highest inventory levels below which the respective 

order quantities, are positive in the optimal policy. 
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2.6 Discussion on the literature review 

We reviewed and discussed a broad range of multi-echelon inventory models, categorizing them 

according to uncertainty considerations, sourcing strategies, and inventory policies. Various 

forms of supply and demand uncertainties are extensively investigated and summarized. The 

modeling and computational complexity may intensely increase with the numbers of uncertain 

parameters. As indicated in this chapter, many works only consider one kind of uncertainty in 

their inventory models. Studies addressing inventory models with more types of stochastic 

parameters are still few. 

Furthermore, an important drawback in this field concerns sourcing strategies. Although the 

benefits of multi-sourcing and lateral transshipments have been shown in the literature separately 

to mitigate risks associated with demand uncertainty, applying both strategies in a multi-echelon 

network structure under a capacitated distribution and a non-stationary process setting has not 

been studied.  

In the first part of this research work (chapter 3), the focus is on multi-echelon distribution 

systems under demand uncertainty. Considering the general drawbacks of single echelon 

approaches, an alternative approach is commonly considered in inventory optimization models, 

which is called the Distribution Requirements Planning (DRP) approach.  

DRP can handle any number of echelons; it manages lead time efficiently; and it can take 

economies of scale in transportation into account through the choice of a suitable lot-sizing 

algorithm (Hnaien and Afsar, 2017).  

Despite its advantages, the basic DRP has some weaknesses. Martel (2003) reported that the main 

drawbacks of this approach in its basic form are that it has been fundamentally designed to 

support deterministic time-varying demands. Hence, there is very limited research that deals with 

the DRP approach under demand uncertainty. 

Some research has been recently developed to optimize multi-echelons inventory systems under 

demand uncertainty. This research has considered other inventory control approaches such as the 
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reorder point or the base stock policy (Graves and Willems, 2000, Yang et al., 2017, Graves and 

Schoenmeyr, 2016).  

Most of the work on the multi-echelons inventory optimization has been developed under the 

assumption of a stationary demand and few articles have considered the assumption of a non-

stationary demand. This assumption is important because it fits cases in which the demand is 

affected by a trend, seasonal factors, or cyclical behaviors (Graves and Willems, 2008) and 

therefore, it will be considered in this first part of our research. 

Moreover, sourcing decisions and strategies are particularly important in tactical planning. Even 

though multi-echelon inventory optimization problems have been widely discussed in the 

literature, most of them are restricted to a single-sourcing strategy (Silbermayr and Minner, 

2016). This strategy has some advantages such as a stronger long-term relationship with the 

supplier and the reduction of overheads required for handling multiple suppliers. Single-sourcing 

strategy has its risks in the form of total dependency of the functioning of the entire supply chain 

on a single source. 

Under demand uncertainty and/or disruptions, several works underlined the necessity to consider 

more flexible sourcing and distribution strategies, such as dual or multiple sourcing (Silbermayr 

and Minner, 2014, Snyder et al., 2015). Many companies showed interest in taking the multi-

sourcing option in order to increase customer service level and reduce the safety stock level, 

especially in the presence of demand uncertainties. The benefit of considering such strategies will 

be evaluated in this thesis. Some other flexible systems also considered lateral transshipments 

within the network. Although the benefits of lateral transshipments have been shown in the 

literature to mitigate risks associated with demand uncertainty, applying multi-sourcing and 

lateral transshipments in a multi-echelon network structure under a capacitated distribution and a 

non-stationary process setting has not been studied. 
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Table 1. Literature review analysis for the first part of our research (chapter 3) 

 

Note that the works done by Yoo et al. (1997) and Martel (2003) are the closest to our research 

work. They have analyzed a multi-echelon distribution network under a DRP approach and 

facing a stochastic demand. However, both have considered networks without supply capacity, 

multi-sourcing and lateral transshipment. Table 1 gives a summary of the most relevant works 

related to chapter 3. Table 1 gives a summary of the most relevant works related to chapter 3. 

Following the literature, chapter 4 focuses on computing the optimal policy parameters in multi-

echelon distribution networks under supply and demand uncertainties.  

In chapter 4, supply uncertainty is taken into account in the form of supply disruption, during 

which a platform of the supply chain is completely or partially inoperative. Since disruptions are 

not local and they tend to affect every layer of the supply chain, it is significant to examine 

disruptions in multi-echelon network settings. 

This part of our study aims to contribute to the understanding of multi-echelon systems under the 

risk of disruptions by proposing a novel model which can optimize the selected inventory policy. 
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A two-stage stochastic model is proposed to solve a capacitated multi-echelon inventory 

optimization problem considering a stochastic demand as well as uncertain throughput capacity 

and a possible inventory loss, due to disruptions. The model minimizes the total cost that is 

composed of fixed allocation cost, inventory holding cost, transportation and backordering costs 

by optimizing inventory policy and flow decisions.  

The inventory is controlled according to a reorder point order-up-to-level (s, S) policy and lateral 

transshipments in the network are considered. The (s, S) policy features two control parameters: 

reorder point (s) and order up-to-level (S). According to this policy, the decision maker checks 

the opening inventory position at the end of each time period: if it drops below the reorder point 

s, then, replenishment should be placed to reach the order-up-to-level S.  

Based on this definition (s, S) inventory  policy is the most generic policy and it can be the 

optimal policy for the considered problem setting, However, many works (Firouz et al., 2017, 

Schmitt and Snyder, 2012) indicate that it is very difficult to find an optimal policy in scenarios 

where the suppliers could be disrupted. 

In order to deal with the uncertainties, several scenario samples are generated by Monte Carlo 

method and corresponding sample average approximations programs are solved to obtain the 

adequate response policy to the inventory system under disruptions. For this purpose, extensive 

numerical experiments are conducted. The results provide insights on the impact of disruptions 

on the network total cost and service level. Table 2 shows the literature review taken into account 

for chapter 4. 
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Table 2. Literature review analysis for the second part of our research (chapter 4)

 

2.7 Conclusion 

This chapter has investigated and discussed a wide range of multi-echelon inventory models, 
categorizing them according to uncertainty considerations, sourcing strategies, and inventory 
policies.  

Different studies considering supply and demand uncertainties are extensively reviewed and 
summarized. The modeling and computational complexity may intensely increase with the 
numbers of uncertain parameters.  As indicated in the last section, the presented research gap in 
inventory optimization models considering supply and demand uncertainty would be bridged in 
the next two chapters. In the next chapter a two-stage stochastic mathematical model would be 
developed considering multi-sourcing and lateral transshipment to come over the demand 
uncertainty.  

DIS. D CAP IL

1 Gurler and 
Parlar 
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2 Sethi et al. 2003 (s,S) * Dynamic 
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Chapter 3. Distribution Planning for Multi-Echelon 

Networks Considering Multiple Sourcing and Lateral 

Transshipments 

In this chapter a scenario-based modeling approach is proposed to solve a two-

stage multi-echelon inventory optimization problem considering a non-stationary 

demand. The model is based on a distribution requirements planning (DRP) 

approach and minimizes the expected total operational and tactical cost. Multi-

sourcing and lateral transshipment in a periodic review inventory setting, are 

considered in this modeling approach. A European retailer case study and 

managerial insights is provided in the last section of this chapter. 
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3.1 Introduction 

In the inventory management literature –as discussed in chapter 2- a lot of research papers have 

been dedicated to optimize inventory decisions considering demand uncertainty. From a supply 

chain perspective, by an uncertain demand that is accentuated when it has a non-stationary 

pattern. To deal with this issue, inventory optimization models must be adapted to cover a multi-

echelon network structure and to consider alternative distribution strategies such as lateral 

transshipments and multiple sourcing.  

This chapter aims to develop a two-stage multi-echelon inventory optimization modeling 

approach to deal with a non-stationary demand pattern. The proposed model operates under a 

periodic DRP-based inventory control policy which is a basic and common policy in multi-

echelon distribution systems. The main research objective in this chapter is to measure the 

benefits of different sourcing options (single sourcing, multi-sourcing and lateral transshipment) 

in different conditions.  

In section 2 of this chapter, the problem context is described and a generic scenario-based 

inventory optimization model with stochastic demand is first developed and then a SAA-based 

solution approach is presented. In section 3, numerical experiments are run to show the capability 

of the proposed model. The solution approach is developed in section 4. Based on a set of 

problem instances defined in section 5, the solutions produced by the model are compared to their 

counterpart when multi-sourcing and lateral transshipment features are neglected in section 6. In 

addition, a real case of a supply chain network of a major French retailer is investigated and 

managerial insights are provided in section 7. Section 8 concludes the chapter and presents some 

avenues for further research. 

3.2 Problem Definition and Notations 

This chapter considers a three-echelon supply chain that includes implicit suppliers, a set of 

production-distribution centers (PDCs), a set of distribution centers (DCs), and a customer zone 

(CZ) stage (i.e., consumption points). As illustrated in Figure 4 (chapter 1), each stage is fed from 

the upper echelon and feeds the ones below. The multiple arrows between PDCs and DCs 
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represent the multi-sourcing opportunities with respect to the throughput capacity per period of 

each platform. A lateral transshipment (LT) option, which allows replenishment flows in the 

same echelon, is available between DCs. A tactical planning horizon (e.g., yearly, seasonally) is 

considered and is partitioned into a set of control periods (e.g., months, weeks, days). For a given 

period, the demand from customer zones arrives to the DCs and is satisfied from the DCs on-

hand inventory. If one or a set of customer zone demands cannot be satisfied, it is back-ordered to 

the subsequent periods. In the same way, the DC orders are satisfied from the PDCs’ on-hand 

inventory. They are received by the DCs after a fixed lead time. The PDCs are sourced from 

uncapacitated and reliable suppliers. Consumption point demand is stochastic and follows a non-

stationary process over the horizon. At the tactical level of the supply chain, when a make-to-

stock policy is considered, a key decision is related to the positioning of inventories in time and 

space. 

To address the previously described problem, a two-stage multi-echelon inventory optimization 

modeling approach under a periodic DRP-based inventory control policy for a product family 

(referred hereafter as a single product) is considered. A stochastic scenario-based inventory 

optimization model is developed to minimize the expected total cost that is composed of the fixed 

allocation, inventory holding, procurement, transportation, and back-ordering costs. In our 

proposed two-stage model, the allocation and sourcing decisions are first optimized at the 

beginning of the planning horizon (i.e., in the first stage). Then, in the second stage, the inventory 

levels, the transportation flow decisions, and the ordered quantities at all echelons are optimized 

for all periods of the planning horizon. The proposed model considers a multi-sourcing strategy 

as well as lateral transshipment opportunities between DCs. According to the periodic review 

policy employed, the inventory level of each product is inspected at the end of each period and all 

replenishments are originated based on these inventory reviews. Demand is received from a 

customer zone and the model decides to assign it totally or partially to a DC or decides to back-

order it. It is assumed that inventory levels of the products are maintained in time: they are kept 

stored before being shipped with respect to the throughput capacity of DCs and PDCs. The flows 

between DCs and customer zones consist of the demand of the actual period plus back-ordered 

products in previous and current periods. 
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When it comes to the replenishment process at DCs, an extra option of lateral transshipment is 

available in the model. The purpose is to anticipate the day-to-day reaction of the network user to 

replenish a given DC when global visibility of the on-hand inventory at all DCs is available. In 

such cases, the DCs could receive their products via lateral transshipments, which could be more 

expensive; however, the orders would be delivered with a shorter lead time to reduce the back-

order costs. As illustrated in Figure 9, the demand allocation and sourcing decisions are fixed at 

the beginning of the horizon for the entire planning horizon. One should also mention that events 

occur only at the start or end of a period. The lead time is a pre-planned integer number of 

periods (i.e., multiple of the review period) covering the transportation time plus the order 

processing, picking, loading, reception, and inspection lead times.  

 

Figure 9. Decision-Time Hierarchy in the Distribution Network 

From the network perspective, it is assumed that the platform locations are fixed and that the CZ 

locations are pre-set (strategic decisions). An order-splitting distribution policy is considered in 

our model because such a policy can reduce the inventory holding and back-ordering costs when 

a network involves random demands and lead times (Minner, 2003). Let ktD  denote the random 

variable of the demand of CZ ∈k K  in period ∈t T , which follows a given probability 

distribution, denoted by ( ).ktF . For a given period, the demand received by an operating DC is 

the summation of the total or partial demand of the subset of CZs that are assigned to it. We 

notice that in the multi-sourcing setting considered here, the model controls the number of DC 
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assignments for each CZ, which is fixed in the first stage for the entire horizon, based on cost 

trade-offs and inventory on-hand availability. Given this situation, the proposed model considers 

multi-period settings, in which the periods cannot be considered separately due to the state of the 

inventory constraints. Such optimization models are usually computationally intractable when the 

number of scenarios and periods is high. They handle a high number of stochastic variables 

related to flows, demand assignments, inventories, and back orders. In addition, the combinatorial 

issue of these models is accentuated under multi-sourcing and lateral transshipment features. 

Therefore a stochastic linear programming (SLP) approach with recourse (Shapiro, 2003, Birge 

and Louveaux, 2011) is used to cope with this optimization problem under uncertain demand. It 

builds on the assumption that the probability distribution functions of uncertain parameters are 

known or can be statistically estimated and that the objective function is estimated by an expected 

value. Because the demand of CZs along the horizon T is not known when the allocation 

decisions are made, this information takes the form of the set of demand scenarios, denoted by Ω

. A given demand scenario ω ∈Ω  corresponds to a possible realization of the stochastic demand 

process over the planning horizon T , with a probability of occurrence ( )p ω . This leads to the 

formulation of the model as a two-stage stochastic program (Shapiro, 2008), in which the first 

stage deals with DC allocation decisions and the second stage deals with the scenario-based daily 

flows and inventory decisions.  

3.3 Mathematical Model Formulation 

In this section, a mixed integer stochastic inventory optimization model is presented within four 

different sourcing strategies,  

1- Multi-Sourcing combined with Lateral Transshipment (MSLT)  

2- Single Sourcing without lateral transshipment (SS)  

3- Multi-Sourcing without lateral transshipment (MS) 

4- Single Sourcing combined with Lateral Transshipment (SSLT) 

3.3.1 Mathematical Model Formulation for MSLT 

Hereafter, are given all the sets, parameters, and decision variables used in the mathematical 
model.  
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Table 3. Notation 

Sets  
S Set of suppliers s S∈  
W Set of PDC platforms w W∈  
U Set of DC platforms u U∈  
K Set of CZs k K∈  
T Set of time periods t T∈ (Periodic Review) 
Ω Set of scenarios ω∈Ω 
Parameters  

ktD ω  Demand of CZ k in the beginning of period t under scenario ω  

nCap  Throughput capacity of platform n, { , }n w u=  available at each period (expressed in flows unit) 

nn
η

′
 Unitary transportation flow cost between site n and site n', { , , }, { , , }n s w u n w u k′= =  

nh  

kπ  
Unitary inventory holding cost at platform n, { , }n w u=  
Unitary backorder cost for  CZ k,  

s
I  Inventory level of supplier s at the end of period 0 (t=0)  

nn
τ ′

 Lead-time (expressed in number of periods) from site n to site n', { , , }, { , , }n s w u n w u k′= =  

uka  Fixed allocation cost of CZ u to DC k 

nnδ ′  Fixed procurement cost for an order from platform n to platform n', { , }, { , }n w u n u u′ ′= =   

nnDist ′  

M   
Distance between site n and site n', { , , }, { , , }n s w u n w u k′= =  
A large positive number 

Decision Variables 

nt
I

ω
 Inventory level in platform n at the end of period t under scenario ω , { , }n w u=  

ntI ω
+  Inventory on hand in platform n at the end of period t under scenario ω , { , }n w u=  

uktI ω
−  Backorders level in CZ k from DC u at the end of period t under scenario ω ,  

nn tR ω′  Received products in site n' from site n in the beginning of period t under scenario ω , 

{ , , }, { , , }n s w u n w u k′= =  

uktx ω  Demand level of CZ k that is assigned to DC u in period t under scenario ω  

ukZ  Binary variable that takes the value 1 if part of the demand of the CZ k is assigned to DC u , 0 
otherwise 

'nn tY ω  Binary variable that takes the value 1 if the replenishment arc (n, n') is activated by an order (i.e., 
0nn tR ω′ > ) for a given period t under scenario ω , 0 otherwise 

In this periodic review process, the products shipped from a platform w at the end of period t−1 

replenish the inventory of platform u at the beginning of period ( )w ut τ+ . The total costs incurred 

by the network include the fixed allocation cost, the transportation cost, the back-order cost, the 

fixed procurement cost, and the inventory cost. The back ordering and inventory holding costs for 

any given platform are linear functions of inventory on hand at the end of the period. The fixed 
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procurement cost is assumed to be independent from the flow levels and it is mostly based on the 

ordering process fees. It is assumed that the transportation cost per flow unit ( nn
η ′ ) is a linear 

function of the travelled distance on a given network arc. The related formula is 

( ) .nn nnnn nnn ng D ist D istη α β′ ′ ′′ ′= += , where nnα ′  and nnβ ′  are the fixed and variable unitary 

transportation costs from site n to site n ' ( { , , } , { , , }n s w u n w u k′= = ), respectively. Finally, we 

recall that the model employs multiple-sourcing and lateral transshipment options with the aim of 

reducing the amount of back-ordered products, which leads to a better service level. Service level 

is an implicit performance indicator in the model and will be explicitly evaluated for the solutions 

produced to evaluate the capabilities of the model. It is considered to be the percentage of 

satisfied demands from stock on hand without back ordering. According to the given notation, the 

objective function of the stochastic multi-echelon inventory optimization model is formulated as 

follow:  

.uk uk
u U k K

Min a Z
∈ ∈
∑ ∑  (1.a) 

\{ }
( ) . . . .wu wut uu uu t uk ukt

u U u U u u U k K
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ω
ω η η η η′ ′
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  
+ + + +  
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∈ ∈
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+  

 
∑ ∑ ∑  (1.e) 

The objective function (1) minimises total costs as follows: first, the fixed allocation cost is 

calculated in the first stage (equation 1.a) independently from the scenarios. Then, the 

transportation costs among suppliers, PDCs, DCs, and CZs are computed by equation (1.b) based 
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on the flows between these platforms in all periods t T∈  and all scenarios ω∈Ω . Equation (1.c) 

calculates the total back-order cost based on the level of back-ordered products for all the CZ 

k K∈  in all periods t T∈  and all scenarios ω ∈ Ω . Next, fixed procurement costs in DCs and PDCs 

are computed by equation (1.d) based on the number of orders in all periods t T∈  and all 

scenariosω ∈Ω , and finally equation (1.e) computes the total inventory holding costs in PDCs 

and DCs, which are considered based on the inventory on hand in all periods t T∈  and all 

scenarios ω ∈Ω . The objective function (1) is subject to the following constraints: 

∈

≥∑ uk
u U

Z ρ  k K∀ ∈  (2) 

Constraint (2) defines for each CZ the minimum requirement in terms of the number of assigned 

DCs. As mentioned, the allocation decisions are made in the first stage, independently from the 

scenarios, and thus set (2) is considered to be a first-stage constraint set. Herein, the value of ρ  is 

defined in a generic way to underline how the sourcing strategy could be controlled in such a 

decision model, for instance, when assignments are forced to at least two DCs per CZ ( )2ρ =  or 

more ( )2ρ > , or when multiple assignments are only allowed ( )1ρ =  (i.e., single sourcing is 

also feasible for some CZs). We note that in the case of ( )1ρ = , this constraint becomes implicit 

but is kept intentionally to trace the effective DC assignments in comparison to the single-

sourcing strategy (see Appendix B).  

u U
kt uktD xω ω

∈

= ∑  , ,k K t T ω∀ ∈ ∈ ∈ Ω  (3) 

.≤ukt ukx M Zω  , , ,u U k K t T ω∀ ∈ ∈ ∈ ∈ Ω  (4) 

Constraint (3) guarantees that the total demand for each CZ is totally allocated among the DCs 

for each period and each scenario. Constraint (4) checks that a given DC can serve any given CZ 

only when the DC-CZ assignment decision variable is set to 1.  
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( ), 1,

, 1,( )
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+= + − − +∑ ∑ ∑ ∑wt w t swt wu wutwu t
s S u U u U u U

t wu
I I R R I Iω ω ω ω ωωτ  , ,w W t T ω∀ ∈ ∈ ∈ Ω  (6) 

Equations (5) and (6) indicate the inventory on hand in DCs and PDCs, respectively, by 

balancing the flows in and out of the platform for each period and each scenario. More 

specifically, the inventory on hand ( ntI ω
+ { },n u w= ) in each period t T∈  and scenarioω ∈Ω  is the 

summation of inventory on hand in the last period (t-1) and the received products from other 

platforms minus the products that will be sent out to the subsequent stage (DCs for PDCs and 

CZs for DCs) and the back-ordered products in period (t-1). 

, 1,

( )

w W u U

u U k K

u t u t w u t u u t

u u t u ktu u

I I R R

R x

ω ω ω ω

τ ω ω

′ ′∈ ∈

′ ′∈ ∈

′−

′ + ′

= + +

− −

∑ ∑

∑ ∑
 , ,u U t T ω∀ ∈ ∈ ∈ Ω  (7) 

, 1, ( )
s S u U

w t w t sw t w u t w u
I I R Rω ω ω τ ω

∈ ∈
− += + −∑ ∑  , ,w W t T ω∀ ∈ ∈ ∈ Ω  (8) 

, 1, ( )
w W

st s t sw t sw
I I Rω ω τ ω

∈
− += − ∑  , ,s S t T ω∀ ∈ ∈ ∈ Ω  (9) 

)( , 1 ,
u U u U u U u U

u k t u k t u k t u k tu k
R x I Iτ ω ω ω ω

∈ ∈ ∈ ∈

− −
+ −= + −∑ ∑ ∑ ∑  , ,k K t T ω∀ ∈ ∈ ∈Ω  (10) 

Equations (7)–(9) ensure the adequacy of the inventory level of each platform per period and 

scenario, based on the inventory levels in the previous periods, outgoing flows, and inflows. 

Constraint (10) ensures that the outgoing flows of DCs are calculated taking into account the 

demand of the period and also back orders, and the demand of each CZ is satisfied. 
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wut u ut
w W u U

uR R Capω ω′
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s S

R Capω
∈
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.nut nutR M Yω ω≤  { }{ , } , / , ,un w u w W u U t T ω′ ′∀ = ∈ ∈ ∈ ∈ Ω  (13) 

,, , 0,uktnt nn tukt xI I R ωω ωω
− +

′ ≥  { }, ,{ , , },n w u kn s w u ′ == , 
, , , , ,s S w W u U k K t T ω∀ ∈ ∈ ∈ ∈ ∈ ∈Ω  

 

 

 

(14) 
{ }, 0,1′ ∈uk nn tYZ ω  { } { }, , , , ,n s w u n w u k′= = , 

, , , ,w W u U k K t T ω∀ ∈ ∈ ∈ ∈ ∈ Ω  

' 0nn tR ω =  { } { }'1,2,..., , , , , ,nnt n s w u n w u kτ ′∀ ∈ = =
, , , ,s S w W u U ω∀ ∈ ∈ ∈ ∈Ω  

Moreover, constraints (11) and (12) restrict the received flows per DC and PDC, respectively, to 

the throughput capacity limit, defined per period. Constraint (13) guarantees that the fixed 

procurement cost incurred between two platforms is set to 1 per period and scenario when 'nn tR ω > 

0. Non-negativity and binary constraints are given by constraints set (14). 

3.3.2 Mathematical Model Formulation for SS 

According to the above mentioned notations, the SS model is formulated as follow: 
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and constraints (3), (5)-(9), (12) and (14). 

The objective function in (15) minimizes the expected total cost in the network. The main 

difference between (15) and (1) is the removal of the lateral transshipment cost term. Constraints 

(16) and (17) indicate respectively the inventory on hand and the inventory level in the DCs by 

balancing the flows-in and flows-out of in each center, period and scenario. Constraint (18) sets 

the single sourcing requirements. It enforces the model to assign a unique source for each 

customer. Constraints (19) and (20) replace respectively constraints (11) and (13) to guarantees 

the respect of the capacity and the procurement decisions for each platform.   

3.3.3 Mathematical Model Formulation for MS 

This model allows only the multi-sourcing options (i.e. without LT) and thus considers the 

removal of the lateral transshipment term in the objective function as in (15). Accordingly, MS 

minimizes the objective function (15) subject to constraints (3), (5)-(10), (12), (14), (16), (17), 

(19) and (20). 

3.3.4 Mathematical Model Formulation for SSLT 

This model differs from the MSLT model (1-14) by the sourcing constraint (10), which must be 

replaced by (18). Accordingly SSLT minimizes the objective function (1) subject to the 

constraints (2)-(9), (11)-(14) and (18).   
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3.4 Solution Approach 

3.4.1 Scenario Generation 

As reported in Section 2.3, the sample average approximation (SAA) technique (Shapiro, 2008) 

is used in order to approximate the stochastic model by an equivalent deterministic mixed-integer 

linear program (MILP), namely the SAA model. This latter relies on a simulation-based 

optimization approach using a Monte-Carlo scenario sampling method. Recall that the non-

stationary demand process is characterized by the formula in (Zhao and Xie, 2002) proposed in 

page 16 of the chapter. In fact, for CZ k in period t the mean demand is generated using the 

formula: ( ).sin 2 . ()kt b sl t sc nosnormalµ π= + + ,  

which enables to generate the demands for scenario ω  (i.e. 
,kt k K t T

D ω ∈ ∈
  

). 

3.4.2 Solution Methodology SAA 

As mentioned, the stochastic Multi-echelon Inventory Optimization Model (1)–(14) is intractable 

due to the inherent combinatorial complexity and the very large number of plausible scenarios 

necessary to shape entirely the demand process. The sample average approximation (SAA) 

technique (Shapiro, 2008) is used in order to approximate the stochastic model by an equivalent 

deterministic mixed-integer linear program (MILP), namely the SAA model. This latter relies on 

a simulation-based optimization approach using a Monte-Carlo scenario sampling method. The 

SAA method has been widely used in the recent years to find near-optimal solutions for 

stochastic problems in the supply chain (Klibi et al., 2010, Benyoucef et al., 2013, Brandimarte, 

2006). The Monte-Carlo sampling method is a common technique that uses statistical information 

on uncertain parameters to generate possible future scenarios occurring during a given planning 

horizon. When a sample of scenarios is generated using this method, all the scenarios in the 

sample are equiprobable, which simplifies the estimation of the optimal solution using an average 

of the scenarios. Running the Monte-Carlo procedure N times gives a sample of independent 

demand scenarios { }1 2, , ..., N Nω ω ω = Ω ⊂ Ω . Since N equiprobable scenarios are produced, then

1( /)p Nω = , and the presented model (1)-(14) could be rewritten as the following SAA model:  
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 (21) 

Subject to constraints (2) – (14)    Nω∀ ∈Ω  

The solvability of the SAA model is very dependent on N, which makes the problem intractable 

for large-scale instances, even when powerful optimization software is used. The sample size 

calibration could be done by computing a statistical gap based on the framework of Shapiro, et al. 

(2009). The SAA approach and the computation of the related statistical gap are detailed below:  

Step1 . Generate M independent sample each of size ns, i.e. ( 1 2, , .. .,Ω Ω ΩN N N
M ) using Monte 

Carlo and Hierarchical sampling procedure. 

Step2 . For m =1 to M, Solve the SAA model (28). Let N
mT C be the objective function value for 

sample m, and let ( ),N N
m mς ξ be the solution vector of the SAA model obtained with a scenario 

sample m of size N, where N
mς and N

mξ  correspond to the first stage design decisions and to the 

second stage decisions, respectively. 

Step 3. Compute the average and the variance of M SAA models by equations (22) and (23). 

,
1

1
=

= ∑
M

N
N M m

m
TC TC

M
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TC TC
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Step 4.  Considering the average and the variance of M SAA programs, Calculate an approximate 

100(1- α )% confidence upper bound with equation (24), where θ is the α -critical value of the 

t-distribution with M-1 degrees of freedom. 

, ,, 1 ,ˆ−+= N M M NN M MU TC αθ σ  (24) 

Step 5. Obtain Nς , The average of first stage solution among the M samples. 

Step 6. Generate the sample N ′∈Ωω , N’ >> nc, using Monte Carlo procedure. 

Step 7.  Solve SAA model (26) for all scenario N ′∈Ωω considering Nς as the determined first-

stage solutions. 

Step 8. Get the optimal objective function ˆ N
mTC  and solution vector ( )ˆ, ′N N

mς ξ . 

Step 9. Considering the variance of samples by equation (25), calculate the 100(1-α )% 

confidence lower bound for the expectation of optimal *TC with equation (26). 

( ) ( )
' 2

2
' '

1

1 ˆ ˆ ˆ ˆˆ ( , ) ( , , )
' ' 1 ′

=

= −
− ∑ X

N

N N N N N NTC TC
N N ω

ω
ωσ ς ξ ς ξ  (25) 

' '
ˆ ˆ ˆ( , )′ ′= −N N nc N NL TC zας ξ σ  (26) 

Step 10.  Calculate the statistical optimality gap with equation (27) by , ',, ' = −nc NMnc M Ngap LU  

, , '
, , '

,

% 100%= ×nc

nc M

M N
N M N

g p
g

U
a

ap  (27) 

If this gap is acceptable, stop. Otherwise, increase nc and/or M and return to step 1.   
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In the experimental plan section, we discuss how to select an acceptable value of N to solve the 

SAA model and to produce good quality. 

3.5 Experimental Plan 

In order to cover several business contexts, several problem instances are generated considering 

four dimensions: network size (Small (SN), Medium (MN), Large (LN)), PDC and DC capacity 

levels (Caplow, Caphigh), back-order cost levels (πlow, πmedium, πhigh), and inventory holding cost 

levels (hlow, h high). The combination of these four dimensions yields 36 problem instances. Each 

instance is denoted by the quadruplet: 

( ) { } { } { } { }, , , , , , , Cap ,Cap , , , , ,low high low medium high low highw x y z w SN MN LN x y z h hπ π π∈ ∈ ∈ ∈
 

A planning horizon covering a season is used, which includes 90 working days composed of 

several demand cycles. 

Table 4 provides the network parameters used to generate the various instances. The DC and 
PDC capacity levels are expressed in throughput units per period. 

Table 4. Network Parameters 

Network Size SN MN LN 

Customer zones (|K|) 10 60 200 

Distribution centers (|U|) 2 8 12 

Production distribution centers (|W|) 1 2 4 

 Caplow  Caphigh  Caplow  Caphigh  Caplow  Caphigh  

Capacity in DCs (Capu)
 

2 800
 

4 000
 

4000
 

9 000
 

8 500
 

20 000
 

Capacity in PDCs (Capw) 4 000 9 000 7 500 17 000 12 000 30 000 

Next, the initial stock at each echelon is fixed to the average lead-time demand (demand of upper 

echelon). It’s worth mentioning that these experimental settings and parameters are consistent 
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with the ones in the literature (see (Martel, 2003, Fattahi et al., 2015, Hnaien and Afsar, 2017)). 

The unit back-order cost (per day) in the three tested levels ( , ,low medium highπ π π ) are set to (1€, 4€, 

8€), and the unit inventory holding cost (per day) in the two levels tested ( ,low highh h ) are set to 

(0.01€, 0.1€), respectively. For all the network sizes studied, the replenishment lead times 

between the locations (i.e., ,sw wuτ τ , and uuτ ′ ) were fixed to 3, 2, and 1 in days, respectively. The 

unit flow costs ( nnη ′ ) were computed with the distance-based transportation cost function with the 

values nnα ′ = 0.0432 and nnβ ′ = 0.0035 for the fixed and variable cost components, respectively. 

The maximum distance between the network nodes doesn’t exceed the 800 km in all the network 

sizes. The unit flow cost ranges [0.04€, 2.4€] for the sourcing flows, [0.07€, 2.1€] for the 

transshipment flows, and [0.04€, 2.4€] for the outbound flows. The fixed procurement cost 

ranges [20€, 50€]. The fixed allocation costs ranges [200€, 1000€] per DC-CZ pair. The values 

for all these parameters presented in Table 4 are based on realistic parameter value ranges 

obtained from a case in the retail industry. Recall that the unit flow costs ( nnη ′ ) is computed by 

taking into account the transportation cost function parameters and the distances between the 

network sites. We notice that the unit flow costs dedicated to lateral transshipment flows are 

augmented by factor γ=1.5 compared to the sourcing flows for the same distance (i.e., using the 

expression ( )nn nn g Distη γ′ ′= ). This is set initially superior to 1 in order to characterize the effect of 

such unplanned transportation decisions on the availability of transportation resources. Next we 

provide a sensitivity analysis on this factor.  

Furthermore, we consider a network including three market segments that are reflected by their 

demand level – large-size CZs (L), medium-size CZs (M), and small-size CZs (S) – with 

proportions of 20%, 60%, and 20%, respectively. Because a stochastic non-stationary demand 

process with seasonal trends is applied, the following demand function is used to generate 

demand realizations. This function, proposed by Zhao and Xie (2002), considers a demand 

distribution whose parameters follow an additive seasonal pattern over the planning horizon. For 

each CZ k and period t the mean demand is given by:  

( ) { }, ,.sin 2 . ()kt
n S M Lb sl t sc no snormal nµ π= + + ∈ .  
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In this function, the fixed parameter bn represents the base for the network size n and takes the 
values of 80Sb = , 150=Mb , and 240=Lb . The Slope (sl) and Noise (no) values are fixed to 40 
and 50, respectively. Note that sc is considered to be a monthly cycle (i.e., sc=30) and that

()snormal is a standard normal random number. 

We recall that it is very difficult to solve to optimality the presented model for the entire set of 

scenarios. Therefore, a number of sample sizes are tested and their related statistical optimality 

gap values are computed. For each problem size, three different sample sizes are tested (30, 50, 

and 100) and for each of them the obtained gap values for SN, MN, and LN are (1.5%, 1.76%, 

1.95%), (1.63%, 1.8%, 2.2%), and (1.8%, 2.15%, 2.24%), respectively. The largest SAA 

problems that could be solved optimally, without truncating the solution optimality gap, is N = 

100 for small and medium instances; however, for some large instances, the SAA is solvable only 

when it does not exceed N=70. The validation analysis shows that, with this latter sample size, 

the SAA method provides satisfactory statistical optimality gaps (always less than 2.25%), which 

argues in favor of good-quality solutions. It is worth mentioning that, because the planning 

horizon includes 90 periods, when N scenarios are used in the SAA model, 90N instances are 

sampled from the probability distribution (i.e., 9,000). Thus, the multiplicity of scenarios and 

periods explains the low statistical gaps obtained, which is congruent with the findings of other 

stochastic problems proposed in the literature (Klibi et al., 2016). The Monte Carlo procedure and 

the statistical gap computation details are given in Appendix C. Finally, we notice that the SAA 

models are generated with OPL Studio 12.1 and solved with CPLEX-12.6 using a MIP relative 

tolerance of 0.005. All the experiments are run on a 64-bit operating system server with a 2.7 

GHz CPU on Intel(R) processor and 72 GB of RAM.  

3.6 Numerical Experiments  

Given the four SAA models to inspect (MSLT, MS, SSLT, and SS) and the 36 problem instances 

previously proposed, 144 instances were run and their results are provided hereafter. Noticeably, 

the MSLT distribution strategy has shown its superiority in terms of expected total costs and 

service level compared to the alternative tested strategies. The service level considered in this 

work is the fill rate that is measured empirically by averaging the number of satisfied demands 

without back orders over the total number of product flows 
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To start with, Table 5 summarizes the comparative results in percentage of cost reduction of each 

distribution strategy compared to the baseline SS strategy. These results report the expected total 

costs ( )CE , which are aggregated per capacity levels and per back-order cost levels. The first 

row of Table 5 represents the distribution strategy employed in the model and the instance’s 

labels, in which the dot denotes a specific capacity level and unit back-order cost and the dash (-) 

represents the average of all instances for the related attribute.  

Table 5. Expected Total Costs Gap Compared to SS Strategy 

  SSLT (-, . , ., -) % MS (- , . , ., -) % MSLT (- , . , ., -) % 

Cap high 

π low 6.8 8.43 10 

π medium 9.6 10.6 11.3 

π high 9.7 13.4 13.5 

Cap low 

π low 9.4 13.1 14.4 

π medium 13.1 16.7 18.1 

π high 15.8 18.1 18.2 

When looking at the expected total cost gaps, it is clear that MSLT has the lowest total cost 

because it provides the largest gaps for all the considered cases. Also, when inspecting all the 

instances, these gaps are always positive, which means that SS is a dominated strategy. As 

illustrated in Table 5, MSLT leads to a cost reduction that can reach 18.2% when the DC capacity 

is low and the back-order cost is high. Another observation from Table 5 is that SSLT is always 

more expensive than both MS-based strategies, which are in general close in terms of the average 

relative gap (margin between 0.1% and 1.6%) with a small advantage for the strategies allowing 

LT. In general our results show a higher benefit for lateral transshipments in instances with fewer 

distribution capabilities and high back-order costs, which is congruent with the arguments 

towards promoting the flexibility of this strategy.  
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Table 6. Expected Total Costs Gap per Cost Component for MSLT Strategy 

  

  MSLT (., ., -, -) 

  ( )%CE  TC% BC% PC% HC% FC% 

Cap high 

SN 6.50 9.49 30.19 15.70 50.13 -15.00 

MN 7.01 2.22 8.96 49.96 75.59 -46.94 

LN 9.11 3.32 15.34 32.02 74.90 -32.78 

Cap low 

SN 8.00 9.72 41.00 12.40 44.32 -31.00 

MN 9.70 4.44 20.17 23.64 61.92 -54.72 

LN 12.73 6.73 28.20 31.67 59.81 -44.58 

Moreover, Table 6 supports these results by reporting the relative gaps of the expected total costs 

for the MSLT strategy from the view of the network and capacity sizes. Table 6 also reports, for 

these instance attributes, the detailed cost partitions among the components of the objective 

function, that is, the back-order cost (BC), the holding cost (HC), the procurement cost (PC), the 

fixed allocation cost (FC), and the transportation cost (TC). Table 6 mainly reveals that the 

MSLT strategy benefits increase when the network size increases. The lowest gap with MSLT 

remains higher than 6.8% compared to the SS strategy. These results confirm the importance of 

the network resource dispositions on the distribution strategy effectiveness. One can also 

underline that, in most of cases, the inventory holding cost (HC) component shows the highest 

improvement in average gap percentages. Even though this behavior clearly confirms the 

sensitivity of these costs to the distribution strategy, we should notice that a close look at the 

detailed numerical results (given in Appendix A) shows that the impact of this cost component on 

the total cost remains, however, relatively minor because the unit holding costs in the context of 

the retail industry, considered in this research work, are low. By looking at the allocation cost in 

the small instances (SN), we notice that the MSLT strategy–based model does not activate the 

multiple-sourcing option when it is possible to use lateral transshipments, which happens for a 

high-capacity and low-unit back-order cost.  

More generally, we notice that the results are not very sensitive to the variation of the unit-

holding cost as opposed to the back-ordering cost. Therefore, hereafter we focus more on the 
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variation of the unit back-ordering cost in order to gain more insights. We find that the lateral 

transshipment strategy reduces the expected total cost. These cost reductions are sometimes 

achieved through increasing overall inventory levels in the supply chain. This observation is also 

evidenced in the literature (Grahovac and Chakravarty, 2001). Due to the context of retailing 

industry, the lateral transshipment cost is dominant over the holding cost; thus, when lateral 

transshipment flows are used, the expected total cost and back-order cost are reduced, whereas 

the holding costs and transportation costs are augmented (Table 6). Because the MSLT strategy–

based model uses more lateral transshipment flows, fewer orders would be made and 

consequently the procurement cost is decreased. It appears that the SS strategy forces the DCs to 

order more in each period to deal with the demand uncertainty, which explains why the SS 

strategy always has the highest procurement cost among the multiple-sourcing strategies. 

Consequently, MS strategy–based model produces considerably lower inventory levels in DCs, 

which leads to lower inventory holding costs. 

 

Figure 10. Inventory Level in DCs and PDCs 

Moreover, the results show that in cases of low capacity, the performance enhancement is much 

higher than for high capacity (the difference in the expected total cost can go up to 20% for some 

instances). Because the MSLT strategy could be more practical due to the flow capacity 

constraint, the proposed model performance is more interesting. This shows the important role of 
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the throughput capacity in inventory optimization. Figure 10 provides the average inventory on 

hand at PDCs and DCs, which may explain how these performances are obtained. It shows that 

the SS-based strategies (SS and SSLT) tend to maintain higher inventory on hand than the MS-

based strategies (MS and MSLT), which provides a key insight when investments in capabilities 

are made at the strategic level.  

Because higher expected total costs are often associated with higher achieved service levels, 

efficiency curves are needed to allow a fair comparison of the cost-service performance of the 

four distribution strategies. Such curves are obtained by varying the unit back-order cost ( kπ  

from low to high) as shown in Figure 11.  

 

Figure 11. Cost-Service Efficiency Curves of the Four Strategies 

The efficiency curves confirm again that the MSLT is the most efficient strategy by providing the 

highest achieved service level (with a gap that exceeds 2% compared to that of SS) for the same 

expected total cost. When the unit back-order cost increases, the total back-order cost increases as 

expected but leads to improved service levels. This means that, although the back-order unit cost 

increases, the model uses all the available features to reduce the number of back-ordered 

products, which results in achieving higher service levels. 
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Table 7 reports the average percentage of the number of effective DC allocations per CZ. Each 

row presents the instance label and the selected sourcing strategy. The results show that the 

number of effective DC allocations is sensitive to the unit back-order cost and the capacity. More 

specifically, even when the minimum number of DCs to be allocated per CZ is set to 1, the 

stochastic model finds the best trade-offs between a high number of allocations and network cost 

minimization thanks to the recourse variables. In fact, the model tends to allocate more DCs to 

CZs when the unit back-order cost increases and when the throughput capacity is limited. This is 

confirmed by considering four instances with different unit back-order costs and different 

capacities in each network size. Note also that MSLT performs better than MS in these instances, 

which is due to the lateral transshipment flows. The expected number of lateral transshipment 

orders (average from the scenarios) and the expected total cost gap between the two strategies 

and the SS strategy (average from the scenarios and instances) are reported in the last two 

columns. The results show that the number of lateral transshipment orders increases when the 

network size increases, which means that it is more profitable to use lateral transshipments 

instead of allocating more DCs to CZs. 

Table 7. The Impact of Capacity and Unit Back-Order Cost on the Number of Allocations per CZ 

 

Strategy Instance 
Number of allocations per CZ (ρ) % Expected 

total cost 
gap with 
SS % 

Expected 
number of 
LT orders 
per DC  

1 2 3 4 5 

MS (SN, Cap high
, πlow, -) 100 0 0 0 0 6 0 

MS (SN, Caplow
, πhigh , -) 0 100 0 0 0 6 0 

MSLT (SN, Cap high
,π low, -) 100 0 0 0 0 7 2.25 

MSLT (SN , Caplow
, πhigh, -) 20 80 0 0 0 12 2.25 

MS (MN, Caphigh
, πlow, -) 46.7 41.7 8.3 3.3 0 1 0 

MS (MN, Caplow
, πhigh, -) 10 46.7 30 10 3.3 6 0 

MSLT (MN, Caphigh
, πlow, -) 78.33 21.77 0 0 0 3 2 

MSLT (MN, Caplow
, πhigh, -) 26.7 73.3 0 0 0 8 4.38 

MS (LN, Caphigh
,  πlow, -) 70.5 22.5 5.5 1 0.5 4 0 

MS (LN, Caplow
, πhigh, -) 50.5 39 8 2 0.5 13 0 

MSLT (LN, Cap high
, πlow, -) 92 8 0 0 0 6 2 

MSLT (LN, Caplow
, πhigh, -) 48 49 3 0 0 15 7.42 
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Given these results, we conducted a sensitivity analysis of problem instances with tight capacity 

and high holding cost attributes in order to investigate distribution strategy behaviors under 

different unit lateral transshipment costs. In linkage with the transportation costs estimation 

function, the cost of LT arcs (n, n’) is perturbed with the expression . nnγ η ′  where three new 

situations (in addition to 1.5γ = ) are tested as follows : (1) The unitary LT flow cost is cheaper 

than the unitary sourcing flow cost ( )0.8γ = , (2) the unitary LT flow cost is as costly as the 

unitary sourcing flow cost ( )1γ = , and (3) the unitary LT flow cost is slightly more expensive 

than the unitary sourcing flow cost ( )1 .2γ = . The plots in Figure 12 show the performance of 

the alternative strategies in terms of transportation cost (a) and capacity utilization level (b) for 

the different γ values. We calculate the capacity utilization in percentage per DC as the ratio of 

the average product flow during the period divided by the total throughput capacity available at 

the DC for the period.  

  

a) b) 
 

 

Figure 12. Backorder Cost, Transportation Cost, and Capacity Utilization Rates for Different γ 

Values 

We observe in Figure 12b that when γ decreases, capacity utilization increases especially in the 

SSLT model. This means that in SSLT, fewer numbers of orders are made by the DCs to the 

PDCs. After each flow between PDC and DC, the products would be redistributed in the same 

echelon; consequently, the procurement cost is decreased (by about 26%). Note that when the 

lateral transshipment unit cost in SSLT decreases, the transportation cost decreases, making it 
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even lower than that of SS. According to the results in Figure 12a, when the transportation cost 

between DCs is low, SSLT could be a very beneficial strategy, which confirms the findings of 

Lee, Jung, and Jeon (2007). Also the results in Figure 12b show that the dispersion of the 

inventory through the network using the MSLT strategy produces a lower utilization rate of 

capacity compared to the other strategies. Because here the capacities are assumed to be fixed a 

priori, this result appeals to a strategic insight, which is the reduction of unused capacities and 

thus the reduction of the fixed costs of the network structure. Finally, it is noticeable that the 

MSLT-based solution is not sensitive to the variation in operational costs, which clearly 

underlines the robustness of these solutions produced by the stochastic optimization.  

3.7 Case study 

In order to test the empirical validity of the obtained findings, we consider in this section the case 

of the distribution network of a major retailer in France that consists of 206 stores, eight 

distribution centers, and two production distribution centers located all over France. The 

production distribution centers are fed, for the product category considered in this section, by a 

European supplier. 

 

Figure 13. The Distribution Network of the French Retailer 
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The planning horizon considered in this case study covers three business months partitioned into 

90 working periods (days). A non-stationary demand is estimated based on the equation 

presented in Section 3.3, and a sample of 100 scenarios is generated with the Monte Carlo 

procedure (Appendix C). The lead time between PDCs and DCs is two days. The unit cost 

parameters are presented in Table 8.  

Table 8. Cost Parameters 

 

The inventory holding unit cost and the transportation unit cost could be easily estimated based 

on the number of products per pallet (28 products). In order to do so, an average for the category 

of the considered products is considered, which allows determining the holding cost per day. In 

addition, the unit flow cost ranges [0.04€, 0.47€] for the sourcing flows, [0.1€, 2.1€] for the 

transshipment flows, and [0.04€, 0.60€] for the outbound flows. Regarding the network 

capacities, the throughput capacity for each operated DC is set to 4,200 flow units per day and the 

throughput capacity for each operated PDC is set to 17,000 flow units per day. Fixed allocation 

cost for each CZ-DC pair is 500€. 

Table 9 presents the comparative results in percentage gap of each distribution strategy compared 

to the baseline SS strategy in terms of expected costs and service level. As expected, the 

proposed model with multiple sourcing and lateral transshipment (MSLT) has the best expected 

results (with 9.1% cost reduction and 4.1% service level improvement) compared to the current 

state of the distribution strategy in the network, which is the single sourcing without lateral 

transshipment (i.e., SS strategy). Recall that to show the impact of these features, we compare the 

SS model to MS, SSLT, and MSLT. It should be noted that if we consider only the lateral 

transshipment feature (SSLT), the transportation cost increases, whereas this leads to a back-

Unit holding cost Euro/palette/year €81 

Procurement cost Order €20 

Unit back-order cost Euro/item/day €1 

Unit price Euro/item €32 
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order cost reduction and a better service level. Because the SS model is not flexible and does not 

have any option to deal with the non-stationary demand process, it results in higher numbers of 

orders and larger inventories in the DCs; therefore, the procurement and holding costs are higher 

than MSLT.  

Table 9. Results of the Case Study 

 

In Figure 14, we plot the efficiency curves of the cost-service performance of each distribution 

strategy for different unit back-order costs (i.e., low, medium, and high). Figure 14 shows that, 

regardless of the unit back-order cost, the MS-based strategies (i.e., MS and MSLT) result in 

about 4% increase of the service level when compared to the baseline SS strategy, whereas SSLT 

leads to 2% service level increase. Figure 14 clearly confirms that MSLT is the most efficient 

strategy among the four considered ones. Note, though, that, in this case, there is a very small 

difference between the performances of the MS and the MSLT strategies, which means that the 

MSLT strategy uses very rarely the lateral transshipment option. This is expected because the 

holding cost and the back-order cost in this case are low, which implies less need to use lateral 

transshipment in the MSLT strategy.  
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Figure 14. Efficiency Curves 

Furthermore, the results show that there is a significant difference between the inventory levels 

resulting from the four strategies. Figure 15 indicates the average inventory level in the DCs and 

the PDCs under the four strategies. The multiple sourcing–based strategies lead to a significant 

reduction of the inventory levels in the DCs. In fact, the demand in each period could be satisfied 

from various DCs, so there is no need to keep large inventories to hedge the demand variability. 

 

Figure 15. Inventory Level in DCs and PDCs 
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By looking closely at the results by DC, an interesting insight is gained, for instance, with the DC 

located in the south of Ile de France (Greater Paris area), which is a very strategic region for the 

retailer. The inventory level in this DC under the SS strategy is 8,620, whereas in the MSLT 

strategy it is about 3,240, which is explained by the decentralization effect offered by the multi-

sourcing strategy in the latter. Hence, the current state of the network (i.e., the SS strategy) tends 

to carry more inventories in the periods when the demand fluctuates, but at the same time, the 

number of back-ordered products increased in the network.  

In the same way as in the previous section, the sensitivity of the distribution strategies to the 

lateral transshipment unit cost is investigated. It is useful to analyze the variation of the total cost 

by applying different lateral transshipment costs that depend on the regular transportation unit 

cost. Figure 16 shows the results of the sensitivity analysis with respect to γ (γ = 1, 1.2, 1.4, and 

2). This figure underlines that when the lateral transshipment unit cost is low (i.e., γ tending 

towards 1), SSLT leads to a considerable cost reduction, which renders its total cost close to the 

one of MS-based strategies. 

 

Figure 16. Expected Total Cost with Different Unit Lateral Transshipment Costs 

In fact, for low γ values, the model uses all the potential lateral transshipment flows to reduce the 

total cost, and for the same unit transportation and unit lateral transshipment costs (i.e., γ = 1) the 
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if γ is very high, the model does not tend to use the lateral transshipment flows, which 

consequently leads to the same results as in the SS model. 

3.8 Conclusions  

This chapter proposed a modeling and a solution approach for a multi-echelon inventory 

optimization problem under non-stationary demand. Lateral transshipment and multiple sourcing 

have been considered to improve the performance of the distribution network. A two-stage 

stochastic multi-echelon inventory optimization model is developed and run on different 

numerical instances and also on real data coming from a major French retailer. We have 

examined the tactical implications of the multiple sourcing and the lateral transshipment 

strategies on the distribution network. We have shown substantial savings obtained using the 

MSLT and the SSLT strategies, which can go up to 23.6% and 21%, respectively.  

The results also show that a combination of the lateral transshipment and the multiple-sourcing 

strategies leads to a considerable improvement of the service level, which can reach 6% when 

compared to that of the baseline SS strategy. However, the magnitude of the benefits of lateral 

transshipments and multiple-sourcing depends on the network flow capacity and the unit costs. 

Proactive lateral transshipments can help managers to reduce the expected total cost especially 

when the unit back-order cost is high. Another important finding in this contribution is that the 

expected total cost of the proposed MSLT strategy is not very sensitive to the lateral 

transshipment and inventory holding unit costs.  

In this chapter, supply uncertainty has not been considered in the modeling approach. Chapter 4 

presents a two-stage stochastic modeling approach considering disruption and the related impact 

on the network. A specific inventory control policy (s, S) would be applied and optimized in each 

platform. In the next chapter, the impacts of disruption in all inventory management decision 

would be examined. 
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Chapter 4. A Scenario-based Inventory Optimization 

Approach for a Multi-Echelon Network Operating under 

Disruptions 

 

In this chapter, a two-stage stochastic model is proposed to solve a capacitated multi-echelon inventory 
optimization problem considering a stochastic demand as well as uncertain throughput capacity and 
possible inventory loss, due to disruptions. The model minimizes the expected total operational and 
tactical cost. The inventory is controlled according to a reorder point order-up-to-level (s, S) policy and 
lateral transshipments in the network are considered. In order to deal with the uncertainties, several 
scenario samples are generated by Monte Carlo and corresponding sample average approximations 
programs are solved to obtain the adequate response policy to the inventory system under disruptions. 
Extensive numerical experiments are conducted and the results enable insights to be gained into the 
impact of disruptions on the network total cost and service level. 
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4.1 Introduction 

In chapter 3 we developed a modeling and a solution approach for a multi-echelon inventory 

optimization problem under demand uncertainty. As discussed in chapters 1 and 2, disruptions 

could be caused for example by discontinuities in supply, political instability, natural disasters 

and labor strikes, and could have a severe effect on the supply chain performance. 

 To deal with such disruptions, inventory optimization models must be adapted to cover a multi-

echelon network structure and consider alternative sourcing strategies such as lateral 

transshipment and multi-sourcing. In this chapter, a two-stage stochastic model is proposed to 

solve a capacitated multi-echelon inventory optimization problem considering a stochastic 

demand as well as uncertain throughput capacity and possible inventory loss, due to disruptions. 

The model minimizes the total cost that is composed of fixed allocation cost, inventory holding, 

transportation and backordering costs by optimizing inventory policy and flow decisions. 

 The inventory is controlled according to a reorder point order-up-to-level (s, S) policy and lateral 

transshipments in the network are considered. In order to deal with the uncertainties, several 

scenario samples are generated by Monte Carlo and corresponding sample average 

approximations programs are solved to obtain the adequate response policy to the inventory 

system under disruptions. Extensive numerical experiments are conducted and the results enable 

insights to be gained into the impact of disruptions on the network total cost and service level. 

Following the literature presented in chapter 2, this chapter focuses on computing the optimal (s, 

S) policy parameters in multi-echelon distribution networks under supply and demand 

uncertainty. We consider two types of strategies to overcome supply and demand uncertainties: 

inventory decisions and sourcing strategies.  

Inventory decisions include the ordering and stocking decisions and could be considered as 

mitigating, proactive techniques. Sourcing strategies could be reactive to an actual delay in the 

network or used proactively in planning for a potential shortage within lateral transshipment and 

multi-sourcing.  
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The main challenge in this chapter is the anticipation of the future demand variability and 

disruption occurrences in order to improve the quality of the inventory decisions. At the 

operational level, this issue could be handled by a set of scenarios. In order to efficiently mitigate 

supply and demand uncertainty, sourcing and inventory decisions should proactively take the risk 

exposure into account. In the third chapter we have investigated the effect of flexible sourcing 

strategies on the performance of the network under the demand uncertainty. 

 In this chapter, we take into account supply uncertainty. We propose a two-stage stochastic 

mixed integer linear programming formulation (MILP) for a multi-echelon distribution network 

under a stationary demand behavior and disruption risks.  

As discussed before in chapter 2, when making the first-stage decisions two sources of 

uncertainties are considered. The first regards the demand for final products that is not known 

with certainty when the planning of the inventory has to be made. This reflects the real-world 

setting in which demand is highly variable and the second one is the occurrence of different 

disruption. When a disruption occurs, some depots may lose part of their capacity and their 

inventory, which is difficult to predict when inventory has to be deployed. 

Section 2 presents the problem definition by explaining the preliminaries and the main 

assumptions. The uncertainty modeling approach is also described in this section. In section 3, 

the stochastic two-stage mathematical model is developed. Solution approach and scenario 

generation are presented in section 4. Computational experiments and the insights are presented 

in section 5 and section 6 concludes the chapter.   
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4.2 Problem Definition  

This chapter considers a three-echelon supply chain that includes a set of suppliers v = 1, 2, 3, ... , 

a set of Production-Distribution Centers (PDC) p = 1, 2, 3, ..., a set of Distribution Centers (DC) 

w= 1, 2, 3, …, and a set of Customer Zones (CZ) z = 1, 2, 3, ....Each stage is fed from the upper 

echelon and feeds the below ones itself. The platforms { , }, , =∈ p wl l L l  are defined as a set of 

network locations = ∪L P W .  

There are multi-sourcing opportunities between PDCs and DCs with respect to the throughput 

capacity per period of each platform. Each platform operates under (s, S) policy. The (s, S) policy 

features two control parameters: reorder point (s) and order up-to-level (S). According to this 

policy, the decision maker checks the inventory position at the end of each time period: if it drops 

below the reorder point s, then, replenishment should be placed to reach the order-up-to-level S. 

Unfortunately, computing the optimal (s, S) policy parameters remain a computationally intensive 

task. 

 A lateral transshipment (LT) option, which allows replenishment flows in the same echelon, is 

available between DCs. In our proposed two-stage stochastic model, the decisions concerning the 

inventory policy and the demand allocation are considered as the first-stage decisions, taken 

based on the available data. The inventory policy parameters are anticipated at the beginning of 

the planning horizon as decision rules, then in the second stage, inventory levels, and 

transportation flow decisions and order quantity at all echelons are optimized.  
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4.2.1 Preliminaries and Assumptions 

In our modeling approach, we assume that each CZ ∈z Z  in the supply network faces a 

stationary demand for a product family (referred hereafter as a single product). The demand at 

each period τ , ∈Tτ , is assumed to be independently distributed, consistent with the 

assumptions of most of the studies in the literature of multi-period inventory problems (Jain et al., 

2011; Kang and Kim, 2012; Cunha et al., 2018). Let 
zd τ

 denotes the random variable of the 

demand of zone z on the period τ ∈Tτ with mean and standard deviations 
zτµ and 

zτσ , 

respectively. Each DC ∈w W  faces an independent stationary, stochastic demand. In the multi-

echelon distribution inventory models, the demand of a DC ∈w W  is the summation of the 

customer demands , which are allocated to that DC. The subset of CZs ∈z Z  allocated to a DC is 

determined by the demand fraction decision variables 
w ztX and demand allocation variables

w zY

.These variable decisions are determined at the tactical level. The multi-sourcing is allowed to 

satisfy the demand of CZs, ∈z Z either partially or totally. Therefore, the assigned demand to a 

given DC, ∈w W becomes a random variable and it would be determined by the demand 

allocation decision variables. In other words, demand allocation decisions answer how much 

product should be transported from which DC to which CZ. 

As mentioned before, in order to optimize the inventory decisions in multi-echelon distribution 

networks, the inventory policy parameters should be integrated in the mathematical model, while 

these parameters are often considered in the literature as a constant estimated value or included in 

the cost objective function (Yao et al., 2010; Berman et al., 2012). The inventory policy 

parameters are integrated in the model and optimized in our study. To find the periodic review 

inventory policy parameters, the reorder point level s and the order-up-to level S, are considered 

as decision variables and optimal (s, S) policy parameters are computed. In order to do so, a two-

stage stochastic model is developed to optimize inventory decisions; in fact, the model optimizes 

two problems with different time granularities. As illustrated by Figure 17 , Inventory policy 

parameters and demand allocation decisions are determined in each planning period (season, 

month,..) (t) and the flow decisions are determined on operational periods (weeks) (τ). Note that 

the allocation decisions would be fixed in the first period (t=0) for the whole planning horizon. In 

the proposed model the first-stage variables are the demand allocation, demand fraction, reorder 
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point and order-up-to level for each platform (DC, ∈w W and PDC, ∈p P ) in a centralized 

multi-echelon distribution network setting. The second-stage variables are the quantity of flows 

to be carried between echelons, binary variables to set ordering, on-hand inventories, inventory 

position and stock out amounts.  

Moreover, the stochastic parameters in this problem are demand and disruption parameters which 

are considered in a scenario-based framework. When platform l, { , }=l p w is disrupted, the 

platform would be partially operational for a stochastic number of  { , }, =l p wlθ  periods and a 

stochastic percentage of inventory on-hand ( { , }, =l l p wζ ) would be considered as the inventory 

loss.  

 

 

Figure 17. Network decisions and planning horizon 

At operational period (τ), the demand which arrives from customer zones 
zd τ

 to the DCs should 

be satisfied from the DCs on-hand inventory +
wI τ

 but if the demand cannot be satisfied, it is 

backordered to the subsequent periods. According to the considering periodic review policy (s, S) 

∈ tTτ
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{ }( 1) ( 1), ,+ + ∀ =l t l ts S l p w

Hazard moment

Inventory Check

( 1) ( ).(1 ( ))+
− −l lI τ τω ζ ωInventory Loss at τ



 

75 

 

for all DCs and PDCs during each season (t) ( ,l t l ts S ) { , }=l p w , the inventory position ,p wI Iτ τ  of 

each product is inspected at the end of each period and all replenishments are originated based on 

these reviews. Noted that operational periods (τ) are defined as a subset of planning periods 

∈ tTτ  . After receiving demands from all market zones at the end of the period τ, the inventory 

is reviewed: if the inventory position is less or equal to the reorder point s, an order ,wp pvQ Qτ τ is 

placed to raise the inventory position up to the order-up-to-level S. The quantity that is ordered at 

the end of period τ will then be received ( ,pw vpR Rτ τ ) at the beginning of period τ+ LT + 1 where 

LT is the length of lead-time period. 

The DCs orders are satisfied from the PDCs on-hand inventory. Each platform’s flow is restricted 

to a throughput capacity ( ,p wb bτ τ ). When a platform is facing a disruption, the throughput 

capacity and the inventory on-hand will be affected. With regards to the matters enumerated, a 

multi-echelon inventory optimization modeling approach under a periodic ( ,l t l ts S ) control 

policy is considered. The proposed model considers multi-period settings, where the periods can’t 

be considered separately, due to the inventory state constraints. A two-stage stochastic 

programming approach (Shapiro et al., 2009) is used to cope with this optimization problem 

under uncertain demand and capacity. It builds on the assumption that the probability distribution 

functions of uncertain parameters are known or can be statistically estimated, and that the 

objective function is estimated by an expected value.  Thus, a possible realization of the 

stochastic demand process, throughput capacity and inventory loss for each platform over the 

planning horizon T  can be generated. Such a realization constitutes a scenario ω , the set of all 

demands, capacity and inventory losses are denoted by Ω . The probability of occurrence of a 

given scenario ω∈Ω  is denoted by ( )p ω .  

4.2.2 Uncertainty Modeling Approach 

A multi-echelon distribution network planning must consider the operational and natural risks. 

However, at the point of tactical planning the future events are not known with certainty. 

Generally two types of events influencing the business environment can be distinguished by, 

namely business-as-usual random events and low-probability high-impact disruptions. The 
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business-as-usual and low-probability high-impact events mentioned are the main sources of 

uncertainty, but the available information to characterize them may be lacking. In order to form 

these events, it is essential to characterize the occurrence, severity, intensity, and duration of each 

event depending on the availability of data. In this chapter, customer demands and network 

disruptions are modeled as compound stochastic processes. The proposed disruption modeling 

approach is based on the framework developed in Klibi and Martel (2012). First, a compound 

stochastic process is defined to describe how disruption events occur in space and in time, to 

specify incident’s impact. Second, the impact of hits on the throughput capacity and the inventory 

on-hand is modeled. The occurrence, severity, intensity, and duration of hazards are characterized 

depending on the location of each platform { , }, = p wl l . When the platform l  is hit at the 

beginning of period τ, this leaves perturbed capacity and the inventory loss. More specifically, 

when a hazard hits a network location at the beginning of a period, its intensity is felt as follow: 

1) In terms of capacity reduction, for a number of subsequent periods 
lθ . 

2) In terms of inventory loss, for a percentage of the inventory on-hand in platform l in (τ-1)  

Figure 17 also indicates the order of the events in one chosen platform , ∈w Ww . If the disruption 

occurs at the beginning of the period τ, the inventory loss would be calculated based on the 

inventory on-hand at the end of the period (τ-1). 

Recall that in the present framework, the platforms { , }, = p wl l define a set of network locations 

= ∪L P W . The platforms l  have different disruption profiles in terms of impact and time to 

recovery. It is assumed that the hazards occur independently in different zones ∈l L , and the 

time between their occurrences is a random variable lλ  characterized by a stochastic arrival 

process with cumulative disruption function (.).lF λ When platform ∈l L  is hit by a hazard, the 

severity of the disruption is formed by correlated random variables lβ  , depending to the location 

with cumulative distribution function (.).lF β  As mentioned before, each hazard could have two 

different impacts on the network. The intensity of the disruption which impacts the throughput 

capacity is shaped by a random variable lχ  and time to recovery lθ . 
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The time to recovery and the intensity are directly related to the severity of the hazard through the 

functions  ( )= +l lf θθ β ε  and ( )= +l lf χχ β ε  where ε  is a random error term with probability 

distribution function (.)Fε . We also need another random variable lζ  to model the inventory 

loss in each platform. The intensity which impacts the inventory loss lζ  is likewise related to the 

severity of the hazard through the function ( )= +l lfζ β ε . 

When the platform l  is hit at the beginning of period ′∈ tTτ , this leaves perturbed capacity ( )lb τ ω  

and inventory loss ( 1) ( ).(1 ( ))+
− −l lI τ τω ζ ω . The impact of the hit on the throughput capacity is not 

necessarily uniform during the recovery time. After arriving a hit on a platform, the throughput 

capacity drops and there may be a stagnation phase for η  number of periods while recovery 

measures are organized. The impact could be characterized by a discrete recovery function 

( ( , ), ,..., 1)′ ′= + −r χ τ τ τ τ θ  providing capacity amplification percentages for the θ periods 

affected by the hazards (Figure 18). Figure 18 shows the impacts of the hazard at a given DC w, a 

scenario ω  in two different views. In the throughput capacity view, the regular throughput 

capacity wb τ  would decrease based on the hazard severity , ∈w w Wβ . The intensity wχ and the 

duration wθ would be calculated and it would partially be operational for wθ  period. During these 

periods the DC’s throughput capacity would be gradually recovered which is shaped by a discrete 

recovery function. The difference between the usual capacity and the assigned demand is 

considered as the capacity buffer. Capacity buffer is the available capacity that could be used for 

lateral transshipment flows and the backorders of other DCs. 
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Figure 18. Capacity view of impact of hazard at a given DC w and scenario ω  

Klibi and Martel (2012) have considered this impact as the only effect of the disruption; however, 

a hazard could result in addition to an inventory loss. If a hazard occurs in period τ, the inventory 

loss ( 1) ( ).(1 ( ))+
− −l lI τ τω ζ ω  would be a percentage of the inventory on-hand in the period before the 

disruption happens. Figure 19 indicates the possible inventory loss caused by a disruption. The 

wζ  amount of inventory on-hand at the period (τ-1) can be unavailable due to the severity of the 

event at the period τ. 
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Figure 19. Inventory view of impact of hazard at a given DC w and scenario ω  

It’s worth mentioning the intensity on the throughput capacity and the inventory loss is modeled 

using a function ( ) {1, 2}=iF iβ in which i=1 corresponds to ( )F χ β and i=2 gives ( )F ζ β . 

Here is an example of the intensity function for a disruption with three different levels of severity 

in which iA , iB , and iC are parameters related to the type of the disruption. Note that ,Low Highψ ψ  

are defined as risk tolerance parameters for low risk level and high risk level respectively.   
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Furthermore, we assume that the demand of CZ, ∈z Z  follows a stochastic process with a 

random demand size. The cumulative distribution functions of the random variable is denoted by 

(.)zF  

The instantiation of demand and disruption processes over all the possible values of the involved 

random variables yields a set Ω of plausible future scenarios with associated probabilities ( )π ω . 

Monte Carlo procedure is used to generate a scenario instance ω  including vectors of daily 

demands, inventory loss, and throughput capacities. 

Shipping area

Storage area

Impacted area

Inventory loss

Inventory on-hand

Amplitude based on βw
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4.3 Mathematical Model Formulation  

As mentioned before, modeling ( ,l t l ts S ) policy is very complex especially in the presence of 

demand uncertainty and disruption. In this study, a two-stage stochastic model is proposed to 

optimize inventory decisions with different time granularities. Inventory policy parameters and 

demand allocation decisions are determined in te first-stage and the flow decisions are 

determined at the second-stage. We also introduce cuts to improve the efficiency of the proposed 

model for optimizing ( ,l t l ts S ) parameters.  

We have three challenges in modeling this problem: 

• Approximate the multi-echelon setting by a two-stage setting with all ( ,l t l ts S ) fixed at 

the first-stage. 

• Approximate the non-linearity implied by the modelling the ordering process by a linear 

set of equations. 

• Introduce cuts for ( ,l t l ts S ) in the first-stage. 

This section presents a mixed integer stochastic inventory optimization model.  Hereafter, are 

given all the sets, parameters, and decision variables used in the mathematical model.  

 

Table 10. Notation 

Sets  
V Set of suppliers ∈v V  
P Set of PDC platforms ∈p P  
W Set of DC platforms ∈w W 
Z Set of CZs ∈z Z  
T Set of time planning periods t T∈  
Tt Set of time operational periods in planning period t tTτ ∈ (Periodic Review) 

Ω  Set of scenarios ∈Ωω  
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Parameters  

zd τω  Demand of CZ z at the beginning of period τ under scenario ω  

zτµ  The average of CZ z demand at period τ; 

lbτω  
Available throughput capacity of platform l, { , }=l p w  at the beginning of period τ 
under the scenario ω , (expressed in flows unit) 

′lltc  Unitary transportation flow cost between site l and site l', { , , } , { , , }′= =l v p w l p w z  

lh  

lc  
Unitary inventory holding cost at platform l, { , }=l p w  
Unitary backorder cost for site l, { , }=l p w    

+
vI  Inventory on-hand of supplier v at the end of period 0 ( 0=τ )  

′ll
LT  Lead-time (expressed in the number of operational periods) from site l to site l', 

{ , , } , { , , }′= =l v p w l p w z  

'llδ  Fixed ordering cost from platform l to platform l', { , }, { , }′= =l p w l v p  

wza  Fixed allocation cost of CZ z to DC w, 

ωπ  The probability of occurrence of scenario ω  

′llDist  
M   

Distance between site l and site l', { , , } , { , , }′= =l v p w l p w z  
A large positive number 

Decision Variables 

′llQ τω
 Ordered quantity from site l to site l' at period τ under scenario ω ,  

{ , , }, { , , }′= =l v p w l p w z  (expressed in flows unit) 

'
ˆ

llQ τ  
Expected order quantity (anticipated at first-stage) at period τ from platform l to 
platform l', { , } , { , }′= =l p w l v p  (expressed in flows unit)  

lts  re-order point at platform l at period t, { , }=l p w   
l tS  order-up-to level at platform l at period t, { , }=l p w   

l
I

τω
 Inventory position (inventory on hand – backorder + orders in transit) at platform l 

at the end of period τ under scenario ω , { , }=l p w  
+
lI τω  Inventory on-hand at platform l at the end of period τ under scenario ω , { , , }=l v p w  

'
−
llI τω  Backorders of site l’ from site l at the end of period τ under scenario ω , 

{ , }, { , }′= =l z w l w p  
−
zI τω  Backorders level in CZ z  at the end of period τ under scenario ω ,  

wzF τω  Product flow from DC w to CZ z at the beginning of period τ under scenario ω  

'l lR τω
 Received products from site l to site l' at the beginning of period τ under scenario ω

,  { , } , { , , }′= =l p w l v p w  (expressed in flows unit) 

wzY  Binary variable that takes the value 1 if part of the demand of the CZ z is assigned 
to DC w, 0 otherwise 

wztX  The fraction of demand of CZ to DC w assigned a priori for period t 

'llO τω  
Binary variable that takes the value 1 if the sourcing arc (l, l’) is used (platform l 
placed an order to platform l’ i.e., 0′ >llQ τω ) for a given period τ under the scenario
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ω , 0 otherwise { , }, { , , }′= =l p w l v p w  

According to the above notations, the objective function (1) of the stochastic multi-echelon 

inventory optimization model is formulated as follow:  

.
∈ ∈
∑ ∑ wz wz
w W z Z

Min a Y  (1.a) 
 

' '
' \{ }

( ) . . . .
∈ ∈ ∈ ∈∈Ω ∈ ∈ ∈ ∈ ∈

  
+ + + +  

 
∑ ∑ ∑∑ ∑ ∑ ∑ ∑ ∑∑vp pw pw ww ww wz wz

w W w W w w W z Z
vp

T v V p P p P w W
tc R tc R tc R tc Rτω τω τωτω

ω τ

π ω  (1.b) 

. .− −

∈ ∈ ∈∈ ∈

 
+ + 


∑ ∑ ∑ ∑ ∑w z wz

w W w W z Z
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T p P
c I c I τωτω

τ

 (1.c) 
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∈ ∈ ∈ ∈ ∈

 
+ + 

 
∑ ∑ ∑ ∑ ∑vp vp pw pw

T v V p P p P w W
O Oτω τω

τ
δ δ  (1.d) 

. .+

∈

+

∈ ∈

 
+  

 
∑ ∑ ∑w w p

w W
p

T p P
h I h Iτω τω

τ
 (1.e) 

The objective function (1) minimizes the total cost as follows: First, the fixed allocation cost is 

calculated in the first stage (equation, 1.a) independently from the scenarios. Then, the 

transportation costs between suppliers, PDCs, DCs, and CZs are computed by equation (1.b) 

based on the flows between these platforms at all periods t T∈  and all scenarios ω∈Ω . Equation 

(1.c) calculates the total backorder cost based on the level of backordered products for all the CZ 

∈z Z  in all periods t T∈  and all scenariosω ∈Ω . Next, fixed procurement cost in DCs and 

PDCs, is computed by equation (1.d) based on the number of orders in all periods ∈Tτ  and all 

scenariosω∈Ω and finally the equation (1.e) computes the total inventory holding costs in PDCs 

and DCs which are considered based on the inventory on-hand in all periods ∈Tτ  and all 

scenarios ω∈Ω. The objective function (1) is subject to the following constraints: 

First-stage constraints: 

∈ ∈ ∈

=∑ ∑ ∑
t t

z wzt z
w W T T

Xτ τ
τ τ

µ µ  ,∀ ∈ ∈z Z t T  (2) 
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ˆ
∈ ∈ ∈

=∑ ∑ ∑ ∑
t t

wp z wzt
p P T z T

Q Xτ τ
τ τ

µ  ,w W t T∀ ∈ ∈  
(3) 

≤wzt wzX Y  , ,∀ ∈ ∈ ∈w W z Z t T  (4) 

Constraints (2-4) are related to the first-stage decisions. Since sourcing decisions are the first-

stage variables and could not vary on daily basis, they should be determined based on the 

approximations. Constraints (2) and (3) determine the fraction variable of the demand of CZs and 

the orders of DCs. Constraint (4) guarantees that each CZ z is served from the DC w which is 

allocated in the first stage. 

Based on the method proposed by Porteus (1985), in (s, S) policy the order point of each DC and 

PDC is a function of the expected assigned demand and the lead time. 

ˆ( , ) ( , ); z wzs S f LTτµ  

One of the techniques to strengthen the mathematical formulation is to add valid inequalities to 

the model. For that purpose, the mathematical formulation (5) and (6) are just presented below to 

reinforce the model with the following valid inequality. Recent studies in inventory management 

also show that in (s, S) policy, the order point of each DC and PDC is interrelated by the expected 

assigned demand and the lead time (Snyder and Shen, 2011). This inequality imposes a boundary 

on the reorder points (s) in each platform l, in any period t. Constraints (5) and (6) present a lower 

bound for reorder point in each DC and each PDC. However we optimize the reorder point (s) 

and order up to level (S) in this model, these constraints would make the feasible solutions area 

bounded according to the allocated demand and could be considered as the valid inequalities. 

These formulations are valuable in assisting CPLEX to generate some new cuts. We show the 

advantage of applying these constraints in section 4. 

The approximate lower bound for reorder point level in each platform l, is expressed as follows: 

( )1 .( )≥ + ∑wt wz z wzt
z

s LT Xτµ  , ,∀ ∈ ∈ ∈tw W T t Tτ  
(5) 

( ) ˆ1 .( )
∈

≥ + ∑pt pw wp
w W

s LT Q τ  , ,∀ ∈ ∈ ∈tp P T t Tτ  (6) 
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Demand satisfaction constraint:  

( 1)
− −

−
∈

+ − =∑ z z
w W

w z zF I I dτω τ ωτω τω
 , ,∀ ∈ ∈ ∈Ωz Z Tτ ω  (7) 

Constraint (7) ensures that the demand of each CZ z , in each period ∈ Tτ  and each scenario 

ω ∈ Ω  is satisfied through the outgoing flow of DCs w, taking into account the demand of the 

period as well as backorders. 

sourcing constraint: 

≤wz wzF MYτω  , , ,∀ ∈ ∈ ∈ ∈Ωw W z Z Tτ ω  (8) 

Equation (8) assures that the product flow to each CZ z could be sent from a given DC w only 

when the latter is assigned to the CZ z.  

Backorder splitting between the DCs: 

z w z
w W

I Iτω τω
− −

∈

= ∑  , ,∀ ∈ ∈ ∈Ωz Z Tτ ω  (9) 

Constraint (9) divides the backorder of CZs between DCs. At the end of each period ∈ Tτ , the 

unmet demand of each CZ would be distributed between the DCs which are able to send them 

products satisfy from next period ( 1+τ ) regarding their available stock and capacity.  

Throughput capacity constraint at DCs: 

{ }\
′

′∈ ∈

+ ≤∑ ∑ w w
z Z w W w

w z wF Q bτ ωτ ω τ ω
 , ,∀ ∈ ∈ ∈ Ωw W Tτ ω  (10.1) 

{ }
'

\′∈ ∈

+ ≤∑ ∑ w w
p P w W w

p w wR R bτ ωτ ω τ ω
 , ,∀ ∈ ∈ ∈ Ωw W Tτ ω  (10.2) 

∈

≤∑ wp p
w W

Q bτω τω
 , ,∀ ∈ ∈ ∈Ωp P Tτ ω  (11.1) 

∈

≤∑ vpt p
v V

R bω τω
 , ,∀ ∈ ∈ ∈Ωp P Tτ ω  (11.2) 

∈

≤∑ pvt v
p P

Q bω  , ,∀ ∈ ∈ ∈Ωv V Tτ ω  (12) 
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We have considered the same inflow and outflow capacity for each platform l, ( lbτω ). Constraints 

(10-12) restrict the outflows per platform l  { , , }=l v p w to the throughput capacity limit of the 

period. Let lb denotes the usual capacity of platform l  { , , }=l v p w . If a platform l  { , }=l p w  would 

be partially operational as shown in Figure 18, then it performs to ( { }( ) = <d
l lL l b bτ τωω ,

{ , }, { , }= =l p w L W P ), would be considered. Since we assume to have reliable suppliers ∈v V , the 

outflows of the supplier do not depend on the scenarios (bv). 

Flow - Information equilibrium constraints (Supplier-PDCs – DCs): 

( 1) 1)

2)

(

(

−
− − − −

−
− −

= −

+
pw pw

pw

pw wp LT LT

LT

pw

pw

R Q I

I
τω τ ω τ

τ

ω

ω

 
, , { ,2,.., }∀ ∈ ∈ ∈ ∈ Ω+pwp P w W LT Tτ ω  

(13) 

( 1)′′ ′ − −=
www w ww LTR Qτω τ ω  { }\ , , { ,2,.., }′′∀ ∈ ∈ ∈ ∈ Ω+w ww W w W LTw Tτ ω

 
(14) 

( 1)− −=
vpvp pv LTR Qτω τ ω  , , { ,2,.., }∀ ∈ ∈ ∈ ∈ Ω+vpv V p P LT Tτ ω  (15) 

Constraints (13-15) show the flow equilibrium between supplier, PDCs, and DCs. Since the 

orders are made at the end of period τ, they will then be received ( , ,′pw w w vpR R Rτω τω τω ) at the 

beginning of period τ+ LT + 1 where LT is the length of the lead-time period. Recall that there is 

no backorder between supplier and PDCs. Constraint (13)shows the received orders at period τ, 

∈Tτ   which is equal to the orders that DC w has sent at the end of period ( 1)− −pwLTτ  

considering the related backorders. Recall that if DC w sends an order to PDC w ( wpQ τω ) or to a 

DC wʹ (via lateral transshipment, ′wwQ τω ) in period τ, the order will be sent at the end of the same 

period τ. 
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Figure 20.  Dynamics of a multi-echelon, multi-period distribution network flows 

Figure 20 indicates the order of events in the whole multi-echelon distribution network. Product 

and information flows are distinguished to have a better understanding of the flow-information 

equilibrium constraints. The presented model could be applied to multi-echelon distribution 

networks with several DCs and PDCs. In Figure 20, we take a very simple case of one supplier, 

one PDC, one DC and a set of CZs to show the flow management and order of events. The flows 

below and above each line represent the out-flows and in-flows respectively.  

Inventory on-hand constraints at DCs and PDCs 
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Equations (16-18) indicate the inventory on-hand in DCs, PDCs, and suppliers by balancing the 

flows-in and flows-out of the platform per period and scenario. More specifically, the inventory 

on-hand ( +
lI τω , { },=l w p ) at each period ∈Tτ  and scenarioω∈Ω is the summation of inventory 

on-hand at the last period (τ-1) and the received products from other platforms minus the 

products that will be sent out to the subsequent stage (PDCs for supplier, DCs for PDCs and CZs 

for DCs)  and the backordered products at period (τ -1). The inventory on-hand of the previous 

period ( 1)(1 ). +
−− w wIτω τ ωζ  could be decreased due to the disruption.  

Inventory Position at DCs and PDCs: 

In general distribution policy, inventory position is considered as a decent indicator for inventory 

management. The inventory position is the inventory on hand at the same period plus the orders 

which have been made but are not yet received minus the backordered products. In common, an 

ordering decision should not be based only on the inventory on-hand level. The ordering decision 

should also consider the replenishment orders which have been placed earlier and not yet been 

delivered. The overall state of the system can be then characterized by the inventory position, 

denoted lI τ .  

{ }1,...,

( )
∈

+ −

∈ ∈
−= + −∑ ∑ ∑

l LTpwp P z Z
w w wp l wzI I Q Iτω τω τ ω τω  , ,∀ ∈ ∈ ∈ Ωw W Tτ ω  (19) 

{ }1,...,

( )
∈

+ −

∈ ∈
−= + −∑ ∑ ∑

l LTvpv V w W
p p pv l pwI I Q Iτω τω τ ω τω  , ,∀ ∈ ∈ ∈Ωp P Tτ ω  (20) 

Depending on the information system availability, an inventory position may be controlled at 

periodic times through a periodic review policy. Then, the control policy determines when and 

how much to order. The ( ,l t l ts S ) policy has been shown to be optimal for the problems having 

fixed ordering cost and stationary stochastic demand in a single stage system and could be an 

appropriate policy for a multi-echelon distribution network 

Based on the ( ,l t l ts S ) policy, if the inventory position ( lI τω ) in each DC and PDC falls below the 

re-order point ( lts ) in period tTτ ∈ , an order up to level would be sent to the upper echelon at the 
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end of period tTτ ∈ . As it is mentioned before, the order quantity in the ( ,l t l ts S ) policy is the 

difference of maximum possible inventory level and current inventory position. In all the 

constraints below, we define { , }=L W P and { , }′ =L P V .In other words, 

if  ≤l ltI sτω  , , ,∀ ∈ ∈ ∈ ∈Ωl L T t Tτ ω  

Then, 

′ −=ll lt lQ S Iτω τω  ( ), , , ,′ ′∀ ∈ ∈ ∈ ∈ ∈ Ωtl L l L T t Tτ ω τ ω  

Else, 

0′ =llQ τω  ( ), , , ,′ ′∀ ∈ ∈ ∈ ∈ ∈ Ωtl L l L T t Tτ ω τ ω  

These two constraints clearly determine the order quantity base on the selected policy. However, 

they are non-linear ( ( ), , , , , { , }, { , }( ).′ ′ ′ ′∀ ∈ ∈ ∈ ∈ ∈ Ω ′= =−=ll lt l ll tl L l L T t T l w p l p vI OQ Sτω τω τω τ ω τ ω ). 

So, a binary variable ( ′llO τω ) is defined to end up with a MIP. Constraints (21-25) are the linear 

mode of above equations. 

(1 )′− ≤−l ll ltOI M sτω τω  , , , ,′ ′∀ ∈ ∈ ∈ ∈ ∈ Ωtl L l L T t Tτ ω  (21) 

'.+ >l ll ltO sI Mτω τω  , , , ,′ ′∀ ∈ ∈ ∈ ∈ ∈ Ωtl L l L T t Tτ ω  (22) 

'' .(1 )− ≤ −− llll lt lQ SM O Iτω τω τω  , , , ,′ ′∀ ∈ ∈ ∈ ∈ ∈ Ωtl L l L T t Tτ ω  (23) 

'' .(1 )+ ≥ −− llll lt lQ SM O Iτω τω τω  , , , ,′ ′∀ ∈ ∈ ∈ ∈ ∈ Ωtl L l L T t Tτ ω  (24) 

' '.≤ll llM OQ τω τω  , , , ,′ ′∀ ∈ ∈ ∈ ∈ ∈ Ωtl L l L T t Tτ ω  (25) 

This order will be delivered at the beginning of the period 1′+ ∈+ll tLT Tτ . Based on the different 

time granularities, there would be same reorder points and order-up-to levels for a set of daily 
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periods tTτ ∈ . Constraints (25) guarantees that fixed ordering cost incurred between two platforms 

is set to 1 per period and scenario when  0>′llQ τω  . 

Initialization constraints: 

' 0=llR τω  { } { }'1, 2,..., 1 , , , ,′∀ ∈ + = =llLT l v p w l p wτ

{ }, , , \ ,′∀ ∈ ∈ ∈ ∈ ∈ Ωv V p P w W w W w ω  

(26) 

'0 0=llQ ω  { } { }, , , ,′∀ = =l p w l v p w , 

{ }, , , \ ,′∀ ∈ ∈ ∈ ∈ ∈ Ωv V p P w W w W w ω  

'0 0− =llI ω  { } { }, , ,′= =l p w l w z
, , ,∀ ∈ ∈ ∈ ∈ Ωp P w W z Z ω  

0 ˆ(( / | |) 1). / | |
∈ ∈

+ = +∑ ∑pw z
p P z Z

w LT P WI τω µ  ,∀ ∈ ∈Ωw W ω  

0 ˆ(( / | | ) 1). / | |
∈ ∈

+ = +∑ ∑vp z
v V z Z

p LT V PI τω µ  ,∀ ∈ ∈ Ωp P ω  

0
+ = vv II ω  ,∀ ∈ ∈Ωv V ω  

Non-negativity constraints: 

[ ]
, , , , ,

0,1 , {0,1}

, , 0 ∀ ∈ ∈ ∈ ∈ ∈

⊂ ∈

≥
)

pt wt wp wzt t

wzt wz

s s Q p P w W z Z t T T

Y

X
X

τ τ
 

, , { , }∀ ∈ ∈ Ω∈ =¡l TI l p wτω τ ω  

' , ,, , 0,′
− +

′ ≥ll wzll l ll R FI I Q τω τωτω τω τω   { }, ,{ , , }, ′ == l p w zl v p w , , , , ,∀ ∈ ∈ ∈ ∈ ∈ ∈Ωv V p P w W z Z Tτ ω  

{ }0,1′ ∈llO τω ,  { } { }, , ,′= =l p w l v p  , , , ,∀ ∈ ∈ ∈ ∈ ∈Ωtv V p P w W Tτ ω  

(27) 

The initialization of the proposed model, the non-negativity, and binary constraints are given by 

constraints (26) and (27). In the initialization inventory on on-hand in each platform, we consider 

the average of demand ˆzτµ  for each CZ to estimate the initial stock. 

It is important to remark that the mathematical formulation (1) to (27) can only be solved to 

optimality by commercial integer linear programming solvers for very small instance sizes. For 

instances of realistic size, the problem cannot be solved to optimality. The solution approach will 

be developed and presented in the following subsection. 
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4.4 Solution approach 

4.4.1 Monte-Carlo 

The Monte-Carlo sampling method is a common technique that uses statistical information on 

uncertain parameters to generate possible future scenarios occurring during a given planning 

horizon. When a sample of scenarios is generated using this method, all the scenarios in the 

sample are equiprobable, which simplifies the estimation of the optimal solution using an average 

of the scenarios. Running the Mont-Carlo procedure M times gives a sample of independent 

scenarios { }1 2, ,..., ⊆= Ω ΩM Mω ω ω . Note that the functions used in the “demand and disruption 

modeling” section to generate the scenarios, are described in Figure 21 and pseudorandom 

number ν, uniformly distributed on the interval [ ]0,1  is used to generate random variable 

realizations based on the inverse of probability functions and F denotes the set of all the 

previously defined probability distributions. ( ), ( ), ( )d b χω ω ω and ( )ζ ω denote the vectors of 

demand ,( ) ∈ ∈  z z Z Td τ τω , capacity ,( ) ∈ ∈  l l L Tb τ τω ,impact of disruption on capacity ,( ) ∈ ∈  l l L Tτ τχ ω

and impact on inventory loss ,( ) ∈ ∈  l l L Tτ τζ ω . Number of hits on the network in each scenario is 

presented by ( )N ω . 

The Monte-Carlo procedure used to generate stochastic demands, capacities and inventory loss 

for the scenario ω  is given in a generic format in Figure 21.  
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( )( , ), , , , ( , ); ( ); ( ), ( ), ( ), ( )F d bχ ζ∈Monte Carlo lL l L T r Nλ χ θ ω ω ω ω ω  
For all platforms, set the normal capacity and initialize the intensities 
          set ( ) , ( ) 0, ( ) 0, ( ) 0, , , ,= = = = ∈ ∈ ∈ ∈l l l l l tb b l L p P w W Tτ τ τ τω β ω ζ ω χ ω τ  
Hazard Moments 

For all , :
Using (.), thedistributin of ,generatea list of hazard moments

∈
⊆l l l t

l L do
F T Tλ λ

 

Disruption Characteristics 
For all , do :′ ∈ lTτ  

1

Generate and compute hazard severity ( )
−

=l Fβ
ωυ β ν  

Compute the intensity on throughput capacity and duration 
( ) and =(0.8. ^2+4. )=l l l l lF χ

τω ω ω ω ωχ β θ β β  
Compute η , 0.25*=   lωη θ  

Compute recovery function 
For :′ ′= +τ τ τ η  
                ( , ) 1= −l l lrτ ω ω ωχ θ χ #Recovery function on stagnation phase 
End For 
For 1: 1′ ′= + + + −lτ τ η τ θ  

 ( , ) 1 (( 1 ) / ( 1 ))= − + − + −l l l l lrτ ω ω τω ω ωχ θ χ θ τ θ η  
End For 

Update Throughput Capacity 

1( ) ( , ). ( ), ,..., 1′− + ′ ′= = + −l l l l lb r bτ τ τ ω ω τ ωω χ θ ω τ τ τ θ  
Compute the intensity on inventory loss: 

( )=l lF ζ
τω ωζ β  

Update the number of hits on the network ( ( )N ω ) 

End For 

1

1

For all and ,do : #
0, ,

calculate (.)distributions parameters
compute ( )
calculate thedemand of CZ, ( )

End For

−

−

∈ ∈
= ∈ ∈

=

t

z t
z

z

z
z

z Z T CZ Demand
d z Z T

F
F i

d F i

τω
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Figure 21. Monte-Carlo procedure. 
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In order to consider the attitude of decision makers towards serious events, we need to distinguish 

between the scenarios that the decision maker would consider as acceptable, in terms of the 

involved perturbation, and those that would raise a serious concern. Typical measures to assess 

the perturbation level associated to a scenario ∈ Ωω  are the number of hits over the planning 

horizon or the cumulative capacity loss during the planning horizon (Klibi and Martel, 2012). 

Figure 22 shows the histograms obtained with these two measures by investigating a large sample 

of scenarios (1000 scenarios). In order to differentiate the acceptable and the serious concerned 

scenarios, a hazard tolerance level is defined. This level is defined as the number of maximum 

hits κ  or the maximum cumulative capacity loss ′κ  that the decision maker can tolerate without 

any serious concern. Using this tolerance level, the set of scenarios Ω  is partitioned into two 

subsets: ΩA  the set of acceptable-risk scenarios and ΩS the set of serious-risk scenarios. In Figure 

22, the tolerance level is a maximum of 3 hits on the network and a maximum tolerated capacity 

loss of 70000 flow units (about 10% of total capacity). In this study, a hazard tolerance level κ is 

defined based on the number of hits. 

 

 

Figure 22. Distribution of hits and capacity loss for a large scenario sample 
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4.4.2 Hierarchical Sampling 

The number of plausible future scenarios | |ΩM  to shape the uncertain parameters remains a big 

number in real cases and the probabilities ( ), ∈ Ω Mπ ω ω , cannot be estimated explicitly. In order to 

solve our stochastic program, one therefore needs to limit the number of scenarios considered and 

to find a way to calculate their probability. This can be done by replacing the scenario set in ΩM  

in SAA model considering M scenarios by representative Monte Carlo samples Ω Am  and Ω Sm of 

Am  equiprobable acceptable-risk scenario and 
Sm  equiprobable serious-risk scenario, respectively. 

Obviously the quality of the solutions depends on the number = +A Sm m m of considered 

scenarios. 

Monte-Carlo procedure can be used to generate all the scenarios, however, to generate the 

scenario probabilities we need another procedure called Hierarchical Sampling. As explained in 

Figure 23, a large sample of M scenarios ΩM is generated and partitioned into acceptable and 

serious-risk subsets Ω AM  and Ω SM , using the tolerance level κ . From these samples, the estimates 

of the probabilities ( )Aπ ω  and ( )Sπ ω are calculated with ˆ ˆand
ΩΩ

= =
SA MM

A SM Mπ π . Then, the 

small scenario samples Ω Am and Ω Sm are randomly selected among Ω AM  and Ω SM , respectively. 

Through this hierarchical sampling, we consider that all scenarios in Ω Am and Ω Sm are 

equiprobable, with the probability ˆ ( )
Amπ ω and ˆ ( )

Smπ ω .  
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ˆ ˆ( , , ; ( ), ( ), )∈ΩHierarchical Sampling m
A Sm M κ π ω π ω ω  

 
0, 0, ,= = Ω = ∅ Ω = ∅M m

A SM M  
 
1)    Forming the scenario clusters  

( ) { }

{ }

{ }

for all 1: , :

( , ), , , , ( , ); ( ), ( ), ( ), ( ), ( ) ,

If ( )
, 1

Else
, 1

End If
End for
Compute t

F d b χ ζ

=

∈ ⊂ Ω
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Figure 23. Hierarchical sampling procedure 
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The presented objective function of equation (1) is rewritten as the following model: 

.
∈ ∈
∑ ∑ wz wz
w W z Z

Min a Y  

(29) 

' '
, ' \{ }

ˆ ( ) . . . .
= ∈ ∈ ∈ ∈∈ ∈ ∈ ∈ ∈∈Ω

  + + + +  
 

∑ ∑ ∑ ∑∑ ∑ ∑ ∑ ∑ ∑ ∑g
mg

m vp pw pw ww ww wz wz
g A S w W w W w w W z Z

vp
T v V p P p P w W

tc R tc R tc R tc Rτω τω τωτω
τω

π ω  

. .− −

∈ ∈ ∈∈ ∈

 
+ + 


∑ ∑ ∑ ∑ ∑w z wz

w W w W z Z
pw

T p P
c I c I τωτω

τ

 

. .
∈ ∈ ∈ ∈ ∈

 
+ + 

 
∑ ∑ ∑ ∑ ∑vp vp pw pw

T v V p P p P w W
O Oτω τω

τ
δ δ  

. .+

∈

+

∈ ∈

 
+  

 
∑ ∑ ∑w w p

w W
p

T p P
h I h Iτω τω

τ
 

Subject to: 

Constraints (2) – (6) 

Constraints (7) – (27)    ∀ ∈Ωmω  

4.4.3 Statistical Gap 

Let *
Mg  be the optimal objective function value and let ( )* *,M MA B  be the optimal solution vector of 

the proposed  model with a scenarios sample of size M, where *
MA  and *

MB  correspond to the 

first stage design decisions and to the second stage decisions, respectively. The value of *
Mg  

converges to optimality as M tends towards infinity. Since finding the true optimal value *g  of 

the optimal solution ( )* *,A B  is impossible due the extremely large required number of scenarios, 

in this section, we estimate statistical lower and upper bounds and compute the statistical gap for 

each size of scenario samples m from M scenario. This is done in order to qualify solutions 

produced depending on the scenario sample sizes used in proposed hierarchical sampling method. 

First, a valid statistical upper bound for the expectation of the optimal solution *g  of the actual 

stochastic problem can be estimated by averaging. This is obtained with solving m individual 

scenario samples based on independently M generated scenarios. Let m
Mg  be the computed 
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optimal objective function values of m scenario samples from M scenarios and 

( ), , 1, ...,=m m
M MA B m m  be the corresponding. Therefore the objective average of these m scenario 

samples, denoted by ,M mg , is an unbiased solutions vectors estimator of the upper bound for the 

expectation of optimal *g which is given by: 

,
1

1
=

= ∑
m

m
M m M

m
g g

m
.          (30) 

Since the generated samples are independent and they have identical distributions, we can 

estimate the variance of ,M mg  by : 

( ) ( )22
, ,

1

1ˆ
1 =

= −
− ∑

m
m

M m M M m
m

g g
m m

σ         (31) 

Considering the average and variance of m scenario samples, we can apply an approximate 

100(1-α )% confidence upper bound for the expectation of optimal *g  using  

, ,, 1 ,ˆ−+= M m mM M mm gU αθ σ ,          (32) 

Where � is the α -critical value of the t-distribution with m-1 degrees of freedom. Then, for 

estimating a statistical lower bound for the expected optimal *g , the second-stage model will be 

solved based on a larger scenario sample of size m , denoted by ′m  ( ′∈Ω ⊂ Ωmω ) selected 

independently. In this case, the first-stage solution of the initial model with m scenario sample 

from M scenarios, denoted by MA  is an input. We denote by ˆˆ ( , )′ ′m M mg A B  the optimal objective 

function value of the second stage program. Obviously solving the second-stage model by a given 

first-stage solution would be easier. In addition, let 2ˆ ′mσ  be an estimate of the variance of 

solutions ˆˆ ( , )′ ′m M mg A B  where the samples are selected independently. Then the sample ′m

variance is defined as follows, 
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( ) ( )22

1

1 ˆ ˆˆ ˆ ˆ( , ) ( , )
1′

=
′

′

= −
′ ′ − ∑

m

m M M M mg A B g A B
m m ωω

ω

σ       (33) 

Having the mean and the variance of the second-stage model with a large scenario sample mm, 

we can compute an approximate 100(1-α )% confidence lower bound for the expectation of 

optimal *g  using  

ˆˆ ˆ( , )′ ′ ′ ′= −m m M m mL g A B zασ          (34) 

The statistical optimality gap is then computed by , , ,′ ′= −M m m mM mgap LU . The statistical 

optimality gap percentage is then calculated by:  

, , '
, , '

,

% 100%= ×M

m

m m
M m m

M

g
g

U
ap

ap ,        (35) 

4.5 Computational Experiments  

In this section, we show the results of the proposed two-stage model through an extensive 

experimental investigation. The model is tested with several problem instances corresponding to 

various business contexts and different disruption characteristics. The purpose of these 

experiments is to identify the parameters that have significant impact on the model performance 

and on the ( ,l t l ts S ) policy parameters. Another goal of this section is to inspect the implications 

of using the multiple-sourcing and lateral transshipment strategies in a multi-echelon distribution 

network within different disruption profiles. Moreover, we show the impact of different 

disruption types on the tactical and operational decisions by comparing the obtained solutions 

with the instances without disruptions. We also show the performance of our proposed solution 

methodology via the statistical gap.  

The two-stage stochastic programming model and the hierarchical sampling technique are 

implemented using OPL Studio 12.8 and solved with CPLEX-12.8 using a MIP relative tolerance 

of 0.005. All the experiments are run on a 64-bit operating system server with a 2.7 GHz CPU on 

Intel(R) processor and 72 GB of RAM.  
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Furthermore, in order to discuss the added value of the proposed sourcing strategies (multi-

sourcing and lateral transshipment) within the network (hereafter as MSLT), the solutions are 

compared to those obtained by a model with alternative distribution strategies where neither 

multi-sourcing nor lateral transshipment are used. This case is referred to a single sourcing (SS) 

case. Accordingly, each instance is also run for the inventory optimization model with a single-

sourcing (SS) strategy. The SS model is presented in appendix (B). 

4.5.1 Experimental Plan 

In order to verify and validate the presented model, several problem instances are generated 

considering four dimensions: Capacity level{ },low highb b , Backorder cost level { },low highc c , holding 

cost level { },low highh h and exposure level { }, ,ignorance low highE E E . We test different exposure levels 

including: low risk, high risk, risk ignorance level (referred hereafter as type 1, type 2 and base 

case, respectively). Actually by presenting the base case, we aim to show the potential benefits of 

disruption risk considering in planning. These four dimensions are solved with two different 

sourcing strategies, multi-sourcing with lateral transshipment (MSLT) and single sourcing (SS). 

Note that these experimental settings and parameters are consistent with the ones in the literature 

(see (Firouz et al., 2017, Cunha et al., 2018, Amiri-Aref et al., 2018)). 

( ) { } { } { } { }, , , , , , , , , , E , E , E∈ ∈ ∈ ∈low high low high low high
ignorance low highi j f k w b b x h h y c c z  

Since we are proposing an optimization approach for inventory management, it is mandatory to 

define initial inventory levels. In chapter 3, it has been shown that the initial stock could impact 

the behavior of the network.  

The unit back-order cost (per day) in the three tested levels ( ,low highc c ) are set to (1€, 10€), and the 

unit inventory holding cost (per day) in the two levels tested ( ,low highh h ) are set to (0.01€, 0.1€), 

respectively. For all the instances, the replenishment lead times between the locations were fixed 

to one period. The unit flow costs ( ′lltc ) were computed with the distance-based transportation 

cost function with the values ′
tr
lla = 0.0432 and ′

tr
llβ = 0.0035 for the fixed and variable cost 

components, respectively. The parameter ′llDis defines the distance between the site l and lʹ. 
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.= ′ ′ ′′ +tr tr
ll ll lllltc a Dis β  

 The unit flow cost ranges [0.04€, 1.4€] for the sourcing flows, [0.07€, 1€] for the transshipment 

flows, and [0.04€, 2.4€] for the outbound flows. The fixed procurement cost ranges [20€, 50€]. 

The fixed allocation costs ranges [300€, 1000€] per DC-CZ pair. The values for all these 

parameters are based on realistic parameter value ranges obtained from a case in the retail 

industry. Recall that the unit flow costs ( ′lltc ) is computed by taking into account the 

transportation cost function parameters and the distances between the network sites. Demand of 

each CZ follows a normal distribution, with an average of 300 and variance of 50, in each period. 

By testing two exposure levels, we aim to investigate the effect of various disruption scenarios on 

each problem setting. Based on available historical data for natural disasters, relevant information 

for these two event type can be derived. Inter-arrival times in a platform l are considered 

exponential and the severity of the disruption lβ  is obtained from a function on a scale from 1 to 

10. The arrival process parameter lλ  for the disruption types 1 and 2 is considered 19 and 35 

(operational periods, two weeks), respectively. The severity of disruption types 1 and 2 would be 

uniformly generated in the intervals U (1, 7) and U (6, 10) respectively. Recall that each 

disruption type could have two different impacts on the network, capacity reduction and 

inventory loss. Inventory loss usually does not occur by disruption type 1.  

 Figure 24 shows an example of the impact of two different disruption types for one scenario and 

one DC. There is no inventory loss caused by disruption type 1; however there are two 

disruptions in 3rd and 15th operational periods. Since the severity is not serious, the capacity is 

recovered fast in both events.  
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 Figure 24. Capacity and inventory loss for one scenario and one DC  

The combination of these four dimensions by two sourcing strategies yields 48 problem 

instances. A network including 10 CZ, 3 DCs and 1 PDC and 1 supplier is considered. A 

planning horizon covering a year was used, which includes 4 planning periods and 24 operational 

periods. 

As we mentioned before, it is very difficult to solve to optimality the presented model for the 

entire set of scenarios. Therefore a number of sample sizes in hierarchical sampling are tested and 

their related statistical optimality gap values are computed. Two different sample sizes are chosen 

(10 and 20) through a 1000 generated scenarios and the related gaps are (2.76% and 1.95%), 

respectively computed by equation (35). The largest SAA problems that could be solved 

optimally, without truncating the solution optimality gap, is M = 1000 and m=20. The validation 

analysis shows that with this latter sample size, the SAA method provides satisfactory statistical 

optimality gaps (always less than 3%), which argues in favor of good-quality solutions. It is 

worth mentioning that because the planning horizon includes 24 periods, when m scenarios are 

used in the SAA model, 24*m instances are sampled from the probability distribution (i.e., 480). 

Thus, the multiplicity of scenarios and periods explains the low statistical gaps obtained, which is 

congruent with the findings of other stochastic problems proposed in the literature (Klibi, Martel, 

and Guitouni 2016). We have also tested larger scenario samples which provide models with 

more than 5 million decision variables and 500,000 constraints which cannot be solved using 
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CPLEX. The model with presented problem setting provides 272872 decision variables 

(including 6080 binary variables) and 114,160 constraints which could be solved in 12 hours on 

average with a MIP Relative Tolerance of 0.005. 

4.5.2 Numerical Experiments  

The given 48 problem instances are run and their results are provided hereafter. The expected 

total costs are computed with the objective function (29) for each instance using the same 

scenario samples.  

An important aspect of a distribution network planning is its robustness towards the changes in 

the parameters of the network. In our parameter sensitivity experiments in this section, we 

investigated the effect of possible parameter changes on the total cost savings across the different 

sourcing options : MSLT and SS. The robustness of each one of these sourcing options towards 

the changes in the network parameters is investigated.  

The numbers are calculated as: ( 100−
×

MSLT Basecase

Basecase
Expected Total Cost Expected Total Cost

Expected Total Cost
  

and 100−
×

SS Basecase

Basecase
Expected Total Cost Expected Total Cost

Expected Total Cost
 

 

As expected the performance of the proposed model in large capacity instances with MSLT 

strategy is better against different types of disruption. When looking at the expected total cost, it 

is clear that the capacity is the most important parameter in this model. We notice that the model 

is sensitive to the variation of any factor in the instances with limited capacity. We observe that 

the MSLT setting has the least increase in total cost in all instances. 
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Table 11. Expected total costs gap (%) compared to the base case instances 

 

Essentially, as observed in theory and practice, the cost benefits follow the increasing of 

flexibility in the network. Additionally, we note that in all the tests, a large capacity results in a 

better overall total cost of the system, regardless of the disruption type.  

However, the more interesting results are related to the relative difference between the sourcing 

strategies. In the base case instances, there is almost no difference between the MSLT and SS 

with large capacity (less than 1%). It can be seen that applying lateral transshipment and multi-

sourcing significantly decreases the total cost, especially in the high backorder cost instances 

(31% and 240% in tight capacity instances). When a DC faces a disruption, the assigned 

customers have no alternatives, therefore the backorder cost is increased and consequently the 

expected total cost increases.  

 

 

Figure 25. Expected total cost 

MSLT SS MSLT SS
low 10.1 10.1 10.8 14.5
high 8.5 9.4 8.8 10.5
low 15.0 30.4 24.8 109.8
high 19.3 22.7 19.2 85.3
low 21.1 58.9 59.6 71.3
high 17.3 45.5 65.5 87.1
low 22.0 60.2 66.4 114.8
high 20.0 51.9 67.7 307.4

low

high

low

high

Large

Tight

Disruption Type/ Sourcing Strategy
21Holding LevelBackorder LevelCapacity 

Level
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Figure 25 demonstrates the total costs of all instances. The results are aggregated per backorder 

cost level and per holding cost level. In tight capacity instances, sourcing strategies plays an 

important role. Applying MSLT sourcing strategy could reduce the total cost up to 72%. 

Table 12. Expected operational costs in detail 

 

Table 12 reports the expected operational costs in detail. The results are distinguished by the 

sourcing strategy, capacity level and disruption type. Note that the results are aggregated per 

backorder cost level and per holding cost level.  

Transportation cost does not change significantly in this problem setting so we focus on the other 

operational costs. One of the mitigation technics in inventory management to deal with the 

disruption is to increase the stock level in the network (Snyder et al., 2015). Our experiments 

confirm this for rare and long disruptions (type 2). It’s worth mentioning that in multi-echelon 

networks, the positioning of the stock depends on the vulnerability of the platforms. For example 

if a hazard hit a PDC, the inventory on-hand level in DCs would increase. Moreover, in the 

MSLT instances, the holding cost is less than in the related SS instances. This shows that an 

increasing of the network flexibility could decrease the stock all over the network, which 

confirms our results in chapter 3. 

Furthermore, by looking at the fixed allocation cost, we clearly see that the model tends to use 

more DCs when the disruptions happen. In other words, when a platform l faces a disruption 

with a high severity β, the whole network tries to activate the other potential DCs. This confirms 

the finding of Keskin et al. (2010). 
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 Moreover, Table 12 shows that the lateral transshipment flows are activated more in tight 

capacity instances to avoid the potential backorder cost. The ordering cost is also more sensitive 

to the disruption in tight capacity instances.  

 

  

 

  

  
 

Figure 26. The contribution percentage of each cost factor in different instances 
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Figure 26 shows the contribution percentage of each cost factor in the expected total cost within 

each disruption type, capacity level and sourcing strategy for all scenarios. 

As expected, when comparing disruption type 1 to 2, one observes a decrease in the contribution 

of the ordering cost in the expected total cost while giving a higher contribution to backorder 

costs. In both SS sourcing strategy and tight capacity instances, the contribution of backorder cost 

increases pointedly.   

Note that the model applies multi-sourcing and lateral transshipment options with the aim to 

reduce the amount of backordered products, which leads to a better service level. Service level is 

an implicit performance indicator in the model and will be explicitly evaluated for the solutions 

produced to evaluate the capabilities of the model. It is considered as the percentage of satisfied 

demands from stock on-hand without backordering.  

Table 13 represents the average percentage of the number of effective DC allocations per CZ. 

Each row presents the instance label, in which dash (-) denotes the average of all instances for 

the related attribute.  

The results show that the number of effective DC allocations is sensitive to the disruption type 

and the capacity. More specifically, the stochastic model finds the best trade-offs between a high 

number of allocations and network cost minimization. In fact, the model tends to allocate more 

DCs to CZs within the disruption and when the throughput capacity is limited. This is confirmed 

by considering four instances with different disruption types and different capacities. The 

expected number of lateral transshipment orders (average from the scenarios) is reported in the 

last column. The results show that the number of lateral transshipment orders increases when in 

the tight capacity instances, which means that it is more profitable to use lateral transshipments 

instead of allocating more DCs to CZs. 
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Table 13. The Impact of capacity and disruption type on the Number of Allocations per CZ 

 

As we discussed before, two independent impacts on the network are considered in this study. 

Figure 27 indicates the expected inventory loss all over the network at all platforms. The number 

of stocks (inventory on-hand) under disruption type 1 is less than disruption type 2. Even though, 

the risk of inventory loss is more important under disruption type 2, the model tends to stock 

more, especially with SS sourcing policy. Since there is no flexibility in SS sourcing strategy, the 

only way to avoid the shortage is to increase the inventory on-hand level in the network.  

 

Figure 27. Inventory loss  

1 2 3
(b  low

, -  , - , base case ) 90 10 0 7.46
(b  high

, -  , - , base case ) 100 0 0 5.46
(b  low

, -  , - , hazard 1 ) 40 50 10 10.01
(b  high

, -  , - , hazard 1 ) 50 50 0 2.7
(b  low

, -  , - , hazard 2 ) 20 60 20 7.55
(b  high

, -  , - , hazard 2 ) 60 40 0 2.64

Instance
Expected number 
of LT orders per 

DC

Number of allocations per CZ %
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In order to isolate the effect of disruption, we take one scenario from the experiments and analyze 

the effect of each disruption types on the ( ,l t l ts S ) policy parameters. Figure 28 illustrates ( 

,l t l ts S ) policy behavior under disruption. Inventory position, inventory on-hand, reorders point 

and order up-to-level are shown for the base case and disrupted network for all DCs. We can see 

four different figures. In this instance only DC 1 is hit by disruption. The hazard arrives at period 

7 and the duration of hit is 8 periods with an impact on the capacity (90%).  

The Figure 28 (a) indicate the behavior of ( ,l t l ts S ) policy for DC1 and DC2 respectively under a 

scenario without disruption. Since the number CZs allocated to DC2 is more than DC1, DC2 has 

the higher level of stock. The ordering process for both DCs is constant during the planning 

horizon. The reason for this constant behavior is the absence of uncertainty and disruption.  

(a) 
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(b) 

 

Figure 28. The impact of disruption on (s, S) parameters 

As we can see in the Figure 28 (b), when disruption occurs in DC1, the optimized ( ,l t l ts S ) would 

be different. Unlike the base case instance, the model will give different reorder point and order-

up-to-level for each planning period (t). To have a better understanding of the impact of varying (

,l t l ts S ) policy parameter, we investigate separately each variable in Figure 29.  

 In Figure 29 (a), the inventory position of both DCs is shown within the throughput capacity in 

the planning horizon. The solution of each instance (base case and disrupted) is indicated with 

different colours. The inventory position is decreased due to the disruptions. Decreasing the 

inventory position could increase the number of orders by DCs. The inventory position increases 

at operational period 14, when the DC 1 has recovered its lost capacity. 

In Figure 29 (b), the inventory on-hand of both DCs is illustrated. We can see that DC1 has lost 

400 products by arriving the hazard. The model tends to stock less in both DCs, however, we will 

show that in the PDC, the stock level would be increased.  
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(a) 

 

(b) 

 

(c) 

 

Figure 29.The impact of disruption on inventory decisions  

 



 

110 

 

It is obvious that stocking in DC1 is not a decent option due the major hit. This result approves 

the finding of (Schmitt and Snyder, 2012) which shows that the DCs with high exposure levels 

stock less than the other platforms. 

In of Figure 29 (c), reorder point and order-up-to level of each DC is indicated. We observe in 

DC1, by happening the disruption, the reorder point increases and the order-up-level decreases. It 

allows DC1 to limit its order size so that DC1 can use the maximum available capacity. This is a 

very important point as a managerial point view. In other words, one the effective inventory 

strategy to deal with disruption is to decrease the order size and to order more frequently. 

The PDC inventory decisions are shown in Figure 30. PDC also augments the order-up-to-level 

to be able to replenish the extra order by DC2. That means that in these instances the model 

increases its order size in the PDC level which leads to a higher stock level.  

 As the result, the inventory on-hand level would be decreased in DCs which do not necessarily 

decrease the holding cost because in the same time the PDC stocks more. 

 

Figure 30. The impact of disruption on (s, S) parameters (PDC) 
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4.6 Conclusion 

In this chapter we proposed a scenario-based stochastic two-stage model to solve a capacitated 

multi-echelon inventory optimization problem considering both demand uncertainty and 

disruption. When a platform is facing a disruption, the throughput capacity and the inventory on-

hand will be affected and through put capacity decrease and/or inventory loss would be possible. 

The inventory is controlled according to a reorder point order-up-to-level (s, S) policy and lateral 

transshipments in the network were considered. The main challenge in this chapter was 

considering disruption occurrences and the related impacts in order to improve the quality of the 

inventory decisions.  

A numerical experiment has been run for MSLT and SS model to show the effectiveness of the 

proposed approach. According to the results of the experiments, lateral transshipment and multi-

sourcing significantly decrease the total cost, especially in the high backorder cost instances (up 

to 72%). The interesting insight was about the stock positioning in multi-echelon networks 

considering disruption. In multi-echelon networks, the positioning of the stock depends on the 

vulnerability of the platforms. For example if a hazard hit a PDC, the inventory on-hand level in 

DCs would increase.  

Furthermore, the model tended to use more DCs when the disruptions happen. In other words, 

when a platform l faces a disruption with a high severity β, the whole network tries to activate the 

other potential DCs. Also the lateral transshipment flows were activated more in tight capacity 

instances to avoid the potential backorder cost.  

The results indicated that the stochastic model tried to find the best trade-offs between a high 

number of allocations and network cost minimization. In fact, the model allocated more DCs to 

CZs within the disruption and when the throughput capacity is limited. 

The most important limitation of the proposed model is the solvability. Considering the 

complexity of the defined problem the proposed modeling approach could not solve the big size 

problems with exact solutions. 
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Chapter 5. Conclusions and Perspectives 
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Conclusions and Research Perspectives 

Multi-echelon inventory systems are challenging systems to analyze when compared to single 

echelon systems. The optimal inventory policy, and the allocation policy if required, is still 

unknown for many different types of multi-echelon inventory systems. Our work contributes to 

the research on optimizing multi-echelon supply chain planning under supply and demand 

uncertainties.  

The thesis has two major research topics: 

(i) Optimizing multi-echelon distribution networks operating under DRP policy 

considering demand uncertainty 

(ii)  Optimizing multi-echelon distribution networks operating under (s, S) policy 

considering disruptions 

In chapter 3 we proposed a modeling and a solution approach for a multi-echelon inventory 

optimization problem under non-stationary demand. Lateral transshipment and multiple sourcing 

have been considered to improve the performance of the distribution network. A two-stage 

stochastic multi-echelon inventory optimization model is developed and run on different 

numerical instances and also on real data coming from a major French retailer. We have 

examined the tactical implications of the multiple sourcing and the lateral transshipment 

strategies on the distribution network. We have shown substantial savings obtained using the 

MSLT and the SSLT strategies, which can go up to 23.6% and 21%, respectively. The results 

also show that a combination of the lateral transshipment and the multiple-sourcing strategies 

leads to a considerable improvement of the service level, which can reach 6% when compared to 

that of the baseline SS strategy. However, the magnitude of the benefits of lateral transshipments 

and multiple-sourcing depends on the network flow capacity and the unit costs. Proactive lateral 

transshipments can help managers to reduce the expected total cost especially when the unit 

back-order cost is high. Another important finding in this contribution is that the expected total 

cost of the proposed MSLT strategy is not very sensitive to the lateral transshipment and 

inventory holding unit costs.  
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In chapter 4 we developed a modeling and a solution approach for a multi-echelon inventory 

optimization problem under demand uncertainty and disruption. Inventory and sourcing decisions 

have been considered as the mitigation strategies to deal with such uncertainty. In order to 

efficiently handle the disruption and demand uncertainty, a two-stage stochastic multi-echelon 

inventory optimization model is developed to optimize (s, S) policy parameters and run on 

different numerical instances. Two different impacts of the disruption (capacity and inventory 

loss) are modeled. The results of this chapter demonstrate that disruption could have significant 

negative impact if it has not been considered in the planning. Our results show that proactive 

sourcing planning and large capacity can reduce the expected total cost up to 72% in case of 

disruptions.  

Based on the above declarations, the opportunities and limitations described in the previous 

chapter, it has become clear that there is still some room left for further research.  

The proposed approach currently only focuses on measuring operational and tactical 

performances. Further research might be aimed at figuring out a method to consider the strategic 

level. This would be very interesting since considering different types of uncertainties could 

affect significantly the strategic decisions such as the locations, supplier selection, etc. Sourcing 

options also could influence the strategic decisions like the topology of the network. In fact, in 

this thesis we have developed our approach by considering only the tactical level of the multi-

echelon distribution network, so the DC locations are fixed. Obviously, if a proactive lateral 

transshipment strategy is considered in the multi-echelon distribution network design, higher 

benefits could be reached. 

Finally, the formulated models become more difficult to solve with larger samples and larger 

number of periods, which raises the need for the elaboration of decomposition methods or 

heuristic approaches. 
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Appendix A 

Table 14. Results of MSLT model 

Instance’s Label 

Total 

Expected 

Cost 

Transportation 

Cost 

Backorder 

Cost 

Procurement 

Cost 

Holding 

Cost 

(SN , Cap high
, π low , h low) 77710 54 858 15412 7440 498 

(SN , Cap high
, π medium , h low) 90727 58 071 25216 7440 1 400 

(SN , Cap high
, π high , h low) 196965 54925 61680 80360 898 

(SN , Cap high
, π low , h high) 76439 54 891 13888 7660 4343 

(SN , Cap high
, π medium , h high) 90327 54 891 27 776 7660 11976 

(SN , Cap high
, π high , h high) 205301 54 891 69 440 80970 82 

(SN , Cap low
, π low , h low) 87539 56257.3 23391.2 7890 84.421 

(SN , Cap low
, π medium , h low) 111370 56257.3 46782.4 8330 97 

(SN , Cap low
, π high , h low) 252094 56296 109018 86780 120 

(SN , Cap low
, π low , h high) 89482 57505 24008 7970 795 

(SN , Cap low
, π medium , h high) 111884 56551 46833 8500 664 

(SN , Cap low
, π high , h high) 260936 56590 114956 89390 685 

(MN , Cap high
, π low , h low) 474823 418802 38581 17440 1331 

(MN , Cap high
, π medium , h low) 612547 425802 169305 17440 1631 

(MN , Cap high
, π high , h low) 729795 418802 291793 19200 1672 

(MN , Cap high
, π low , h high) 458823 405879 34454 18490 6921 

(MN , Cap high
, π medium , h high) 602507 412881 171136 18490 6921 

(MN , Cap high
, π high , h high) 737625 418879 298396 20350 8921 

(MN , Cap low
, π low , h low) 526461 422806 85165 18490 9001.23 

(MN , Cap low
, π medium , h low) 869176 432902 417615 18660 9701 

(MN , Cap low
, π high , h low) 1163295 422806 719749 20740 9701 

(MN , Cap low
, π low , h high) 517803 410884 87319 19600 31206 

(MN , Cap low
, π medium , h high) 605494 415869 169845 19780 26066 

(MN , Cap low
, π high , h high) 1221877 425799 774098 21980 26066 

(LN , Cap high
, π low , h low) 1086398 898400 161328 26670 1659.61 

(LN , Cap high
, π medium , h low) 1277726 898400 352656 26670 1659.61 

(LN , Cap high
, π high , h low) 1807710 898400 881640 27670 1659.61 

(LN , Cap high
, π low , h high) 1102894 898566 176328 28000 15520 

(LN , Cap high
, π medium , h high) 1306162 908566 370656 26940 15520 

(LN , Cap high
, π high , h high) 1808156 898566 881640 27950 15520 



 

120 

 

Instance’s Label 

Total 

Expected 

Cost 

Transportation 

Cost 

Backorder 

Cost 

Procurement 

Cost 

Holding 

Cost 

(LN , Cap low
, π low , h low) 1362410 941670 392470 28270 13363.2 

(LN , Cap low
, π medium , h low) 2409160 941670 1438950 28540 13363.2 

(LN , Cap low
, π high , h low) 3818920 941670 2847370 29880 13363.2 

(LN , Cap low
, π low , h high) 1402644 959379 413295 29970 96359 

(LN , Cap low
, π medium , h high) 2491737 945905 1515302 30530 107945 

(LN , Cap low
, π high , h high) 3976523 945798 2998455 32270 111405 
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Appendix B 

SS model 

According to the mentioned notations in chapter 4, the SS model is formulated as follow: 
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And constraints:  

(2-7), (9), (11-12), (14-16), (18-25). 

The objective function in (36) minimizes the expected total in the network. The main difference 

between (36) and (1) is the removal of the lateral transshipment cost term. Constraint (37) sets the 

single sourcing requirements. It enforces the model to assign a unique source for each customer. 

Constraints (38.1) and (38.2) guarantee the respect of the capacity and the procurement decisions 

for each platform. Constraint (39) indicates the inventory on hand in the DCs by balancing the 

flows-in and flows-out of in each center, period and scenario.  

 

 

 

 

 

 

 

 


