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1. INTRODUCTION 

 

1.1. From the importance to deal with beams and plates in vibration 

As explains Sathyamoorthy [1] in the preface of his monography: “Various types of 

thin-walled structural components are commonly found in spacecrafts, missiles, aircrafts, 

land-based vehicles, underwater vessels and structures, chemical processing equipment and 

modern housing. These structures are usually built up of beams, plates, ad shell-type 

structural elements. Since these structural components are important in so many of these 

modern structures, engineers and designers must have a good knowledge of their structural 

behavior when they are subjected to static, dynamic, and environmental loads”. Numerous 

researches have been dedicated to describe the behavior in vibration of beams and plates 

(the reader may refer to the book of Timoshenko that describes with accuracy the history of 

strength of materials [2]. Hereinafter, different particular engineering applications will be 

studied and briefly described in the present section.  

First of all, many industrial systems can be viewed as a problem of free vibration of 

uniform cantilever beams with a concentrated tip mass [3]: flexible robot arms in 

microelectronic industry [4-6], mast antenna structures [7], wind tunnel stings carrying an 

airplane [8,9] or stock-bridge dampers used for damping out aeolian vibrations on high-

voltage transmission lines [10]. For those different applications, particularly sensitive to 

vibrations, it is extremely important to predict their behavior in order to control it. 

One of the most frequent problems in engineering industry is the presence of 

structural defects such as cracks that can be a serious threat for the safety of the system, 

reduce the lifetime and lead to failure of the component. Consequently, it is crucial to be able 

to locate the crack to prevent the structure from potential damages. Different techniques exist 

in this purpose.  One of them is to detect changes of natural frequencies due to crack 

presence. This methodology is effective, inexpensive, fast and non-destructive. The principle 

of this method has been widely detailed in the literature [11-13]. It requires to develop very 

realistic models that provide the natural frequencies, knowing different crack parameters 

such as, for instance, the location and the depth of the crack.  During this PhD, the different 
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models to describe the mechanical behavior of beams in free vibration have been extended 

to deal with the particular case of cracked structures and the main results will be briefly given 

in this thesis.    

Other issues frequently encountered in mechanical engineering will be investigated 

such as the one of dynamic instability of structures subjected to an  external axial load varying 

in time periodically, responsible of many failures of engineering structures [14] or random 

vibrations of beams, extensively studied in the past decades [15]. By definition, random 

vibration analysis describe the mechanical behavior of systems subjected to loads varying 

randomly with time [16]. Many structures used in the daily life are subjected to random 

vibration [17,18]: bridge and offshores structures in the wind, a building excited by 

earthquakes and wind, aerospace systems excited by atmospheric and boundary layer 

turbulence and jet noise or electronic components due to support motions. Random 

vibrations are also frequently encountered in military industry with rockets and jet engines 

due to turbulences [18,19].  

It is worth noticing that, although it can be a source of important damages within a 

mechanism, vibrations can also be used for useful tasks, “such as the use of a vibrator to 

massage the body, to compact loose soil, to increase the workability of wet concrete and to 

shake sugar, pepper and salt from their containers” [20]. 

 

1.2. The advent of nanomaterials: brief presentation of carbon 

nanotubes and graphene nanoplates 

1.2.1. Carbon nanotubes 

A wide part of the literature is devoted to carbon nanotubes (CNTs), also called 

buckytubes, and their applications (the reader may refer for instance to the papers of 

Thostenson et al. [21], Sinnott and Andrews [22], Baughman et al. [23], Popov [24], Dai [25] 

and Liew Zhang Zhang [26]) and although his discovery in 1991 by Ijima [27] after decades of 

experiments [28-30] is very recent, the check on Google Scholar of the term “Carbon 

nanotubes” yields, at the end of the year 2017, 1 400 000 hits showing a huge interest of the 

scientific community for this material. Thus, the number of publications with a title containing 

the words “carbon nanotubes” globally increased over the last decades (see Fig. 1). In 2008, 

Carbon nanotubes is in the top ten of the most significant advances in materials sciences 

established by the journal Mater Today [31]. 
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Fig. 1. Number of new publications containing the expression “carbon nanotubes” on Google 

Scholar 

 

CNT is an extremely versatile material. By its amazing properties, it has a huge number 

of potential commercial applications [32]. Hundred times stronger than any common carbon 

steel, with a Young modulus five times higher than steel [33,34] and a large breaking strain 

[35], his mechanical behavior is much better than any other material. Thus, it is considered to 

use them as the main component of a new generation of composites [21,22], more efficient 

than the traditional ones. 

CNT is also seen as a possible revolution in biomedical sciences: carrier for drug and 

vaccine delivery [36-38], cancer therapy [39-42], biosensors [37,43-45], scaffold material 

[46,47]. In addition to all these possible applications, carbon nanotubes are also characterized 

by amazing thermal and electric properties. Thermally stable up to 2800°C in vacuum, the 

thermal conductivity can reach up to 3500 W/mK at room temperature [48], almost 10 times 

more important than copper wires [21,49]. Thus, it is a perfect candidate for a new generation 

of electronic devices [23].   
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1.2.2. Graphene nanoplates 

As for carbon nanotubes, graphene present a huge interest for the scientific 

community, as testifies the number of publications with a title containing the word 

“graphene” on Google Scholar (see Fig. 2) 

 

 

Fig. 2. Number of new publications containing the word “graphene” on Google Scholar 

 

Graphene is a two-dimensional carbon allotrope, first isolated in 2004 by Novoselov 

et al. [50]. Geim and Novoselov received the Nobel Prize in Physics in 2010 [51-53] for their 

work about this new material that shows the remarkable properties of this new material [54]. 

Specifically, graphene is a single layer of carbon in which the atoms are arranged in hexagons 

which form a honeycomb lattice as shown in Fig. 3.  

 

 

Fig. 3. Nanoscopic (a) C60 fullerene, (b) carbon nanotube and (c) graphene sheet [55] 

 

It can be turn into fullerene, carbon nanotubes or graphite. Thus, graphite, material 

used for pencil leads, can be represented by a superposition of at least ten layers of graphene. 

Graphene is a new material with many superior properties: high electron mobility, big young 

modulus, huge thermal conductivity, excellent optical absorption, impermeability to any 

gases, … [56]. Thus, there is a wide range of possible applications. 
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The electronic behavior of graphene has been investigated by many researchers these 

past years [54-58]. It is a zero-gap semiconductor and consequently, as explained Reich [59], 

“electrons in graphene move so fast that they seem to have no mass, and are, in effect, moving 

at the speed of light”. Thus, by using graphene, electrons move 70 times faster than by using 

silicon [60] and the carrier mobility reaches up to 200 000 𝑐𝑚2𝑉−1𝑠−1 [26,61]. Because of 

this very high conductivity, scientists have the idea of ultrafast electronics, and specifically of 

a new generation of transistors.  

In neurosciences, graphene may be used to build electrodes, implemented in the 

brain of a patient in order to have an image of his brain, smaller and more efficient than the 

traditional twisted wire electrodes [62,63]. 

In photonics, graphene has remarkable properties [56,64] (for example, graphene 

photonics devices can, in theory, be used for a wide spectral range from ultraviolet to 

infrared), hence a wide range of applications: photodetectors, optical modulators, isolator, 

solar cells, biosensors … For all these applications, working prototypes are expected by the 

next decade, but the manufacturing cost needs to decrease before it will appear on the 

market. 

 

 

1.2.3. Example of issues specific to nanomaterials: the surface effects 

Carbon nanotubes can be seen as tubes of carbon atoms arranged in a hexagonal 

array or as a graphene sheet rolled into a cylindrical tube [65] and the coiling has a real 

influence on the properties of nanotubes [21]. This last is defined through a vector, called 

“chiral vector” 𝐶ℎ expressed following two integers 𝑚 and 𝑛 and two subsidiary vectors 𝑎⃗1 

and 𝑎⃗2 as shown in Fig. 4 with 𝐶ℎ = 𝑛𝑎⃗1 +𝑚𝑎⃗2. Carbon nanotubes are classified in three 

categories: zigzag when 𝑚 = 0, armchair when 𝑚 = 𝑛 and chiral for any other couple (𝑚, 𝑛). 

Figure 5 shows a carbon nanotubes arranged in ziz-zag and armchair. The couple (𝑚, 𝑛) 

determines some mechanical properties of the carbon nanotubes such as the Young and shear 

modulus, the Poisson’s ratio, the thickness of the tube [66]. Naturally, it also changes the 

natural frequencies of the tube. However, it does not explicitly affect the different equations 

in the analytical models [67,68]. Consequently, the chiral effect will not be taken into account 

in the present thesis.  
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Fig. 4. Unrolled graphene sheet with definitions of basis unit vectors and chiral vector [65] 

 

Fig. 5. Two different possible atomistic arrangements for a carbon nanotube: (a) in ziz-zag 

and (b) armchair [21] 

 

Other effects possibly influence the behavior of the nanotube. Among them, the 

surface effects are present in any material at a nanoscale. The surface effect phenomena is 

explained by Shah and Ahmad [69] as follows: “Nanomaterials possess a large fraction of 

surface atoms per unit volume. Due to the vast surface area, all nanomaterials possess a huge 

surface energy and thus are thermodynamically unstable or metastable…Atoms or molecules 

possess fewer nearest neighbors or coordination numbers and thus have dangling or 

unsatisfied bonds exposed to the surface. Because of the dangling bonds on the surface, 

surface atoms or molecules and the sub surface atoms or molecules are smaller than that 

between interior atoms or molecules. When solid particles are very small, such a decrease in 

bond length between the surface atoms and interior atoms becomes significant and the lattice 

constants of the entire solid particles show an appreciable reduction. The extra energy 

possessed by the surface atoms is described as surface energy, surface free energy or surface 
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tension”. Numerous publications have been devoted these last years to the introduction of 

surface effect [70-74]. In a sake of simplicity, these effects will not be taken into account 

hereinafter.  

 

 

1.3. Different approaches to describe the mechanical behavior of 

macro and nanostructures in vibration 

1.3.1. Experimental, analytical and numerical approaches 

Three different approaches are used to observe and predict the mechanical behavior 

of macrostructures and carbon nanostructures (carbon nanotubes and graphene nanoplates): 

experimental, analytical and numerical [26]. Moreover, within both approaches, numerical 

tools can be used.   

It is difficult to manipulate carbon nanotubes and graphene plates and so, to perform 

experiments on them. The main techniques to characterize carbon nanotubes are listed and 

detailed by Belin and Epron [75], Cooper et al. [76] and Shah and Ahmad [68]: 

photoluminescence spectroscopy, X-ray Photoelectron Spectroscopy (XPS), Scanning 

Tunneling Miscroscopy (STM), neutron or/and X-ray diffraction, Transmission Electronic 

Microscopic (TEM) (see for instance Fig. 6), infrared spectroscopy and Raman spectroscopy. 

Graphene is mainly studied by Atomic Force Miscroscopy. As explained by Liew et al. [26], 

“AFM is a type of scanning probe microscopy that can visualize, measure, and manipulate 

matter at the nanoscale level. AFM is an effective technique used to investigate sample 

surfaces down to the nanometer scale. AFM can not only characterize sample surfaces but can 

also alter the sample surface through manipulation.” 

 

 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



8 
 

 

Fig. 6. TEM micrograph of a multi-walled carbon nanotubes (left) [77] and a fullerene 

molecule on a graphene monolayer (right) [78] 

Theoretically, the approaches are separated in two categories [79,80]: atomistic 

modelling and continuum mechanics.  

Atomistic modelling must to be coupled with numerical tools and includes techniques 

such as Molecular Dynamics Simulations (MD), Tight-Bending Molecular Dynamics (TBMD) 

[81,82] and quantum mechanics calculations (QM). These methods have been and are still 

widely used in the literature to predict the behavior of carbon nanotubes and graphene plate 

[26,83,84]. For example, the chiral effect, previously described, is investigated through 

atomistic modelling. In the MD or Molecular Dynamic simulations (MD), an attempt is 

performed to minimize the variation of system energy associated with changes in atomic 

positions [83]. In principle, atoms are considered as particles interacting each other through 

several types of potential fields. Consequently, the mechanical behavior of a nanoscale 

material may be studied by numerically finding the minimum potential energy surface. 

Indeed, planar structures such as graphene sheets may deform to attain the lowest energy 

configuration. In this method, the differential equations of motions of particles are coupled. 

The TBMD and QM methods slightly differ in the definition of potentials. Therefore, even if 

this method provides accurate results [84], it is also highly time consuming and needs much 

computational efforts. Thus, a compromise must be done between the time to compute the 

results and the accuracy of those results. 

Continuum mechanics represents the structure as continuous. The objective is to 

describe analytically the mechanical behavior of the structure (for instance in vibration or 

buckling) through equations. The obtained solution is exact. Thus, this approach, compared 

to atomistic models, is much simpler and less computationally expensive [80,84] and 

consequently, It is the one chosen for this PhD.  
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This PhD thesis attempts to answer to the following question: how to analytically 

describe the mechanical behavior in vibration of macrostructures and carbon nanostructure? 

Specifically, the objective of the overall dissertation is, for different kinds of structures (beams 

and plates), at different scales (macro and nano) and for different particular loads (free 

vibration, under random vibrations, …), to develop the best model to describe the answer of 

the system. 

 

1.3.2.  Analytical study of macro beams and plates 

The oldest known model describing the transverse vibration of beams has been 

proposed by Bernoulli [85] and the first solution of the problem by Euler [86]. This theory, 

commonly referred as the Bernoulli-Euler (BE) model is valid for thin beams. For thick beams, 

it overestimates the natural frequencies because it does not take into account the rotary 

inertia and the shear effects. Following to the works of Bresse [87] and Rayleigh [88], 

Timoshenko [89] introduced his governing differential equations that take into account shear 

deformation and rotary inertia. This model is the Original Bresse-Timoshenko (OBT) model. 

An extensive review of this approach was provided recently by Elishakoff, Kaplunov and Nolde 

[90]. This thesis proposes two alternative Bresse-Timoshenko models: the truncated Bresse-

Timoshenko model (TBT) [91-95] and the Bresse-Timoshenko model based on slope inertia 

(SBT) [91-95]. Other approaches have been considered in the literature (one may refer to the 

reviews of Ghugal and Shimpi [96] and Hajianmaleki and Qatu [97]). 

Analogically, the vibration of plates has been widely investigated the last centuries. 

The first theory has been initiated by Sophie Germain [98] and Lagrange [99]. This Germain-

Lagrange theory established the governing partial differential equations describing the 

mechanical behavior of thin plates in vibrations. A few years later, Kirchhoff [100] brought 

many additional results about theory of thin plates. Although this theory, referred as the 

Kirchhoff-Love (KL) theory or Classical Plate Theory, analogically to the Bernoulli-Euler model 

for thin beam, is very accurate for thin plates, it neglects the effects of shear deformation and 

rotatory inertia resulting in the over-estimation of vibration frequencies. Thus, the classical 

plate theory produces accurate solutions until the thickness-to-length ratio reaches a value of 

about 1/20 [20,101], ratio above which a plate is considered as thick. In the last century, lot 

of efforts have been made to describe the behavior of thick plates. The First order Shear 

Deformation Theory, also called Uflyand-Mindlin plate theory following to the works of 

Uflyand [102] and Mindlin [103,104] includes the effects of shear deformation and rotary 
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inertia. This theory constitutes an extension of the Bresse-Timoshenko beam theory for plates 

and as for beams, it will be proposed hereinafter a truncated version of this theory, presented 

in the literature a few decades ago [105-109], and another one based on slope inertia 

[108,109]. Since the last decades, the Uflyand-Mindlin plate model has been widely studied in 

the literature [110-114].  

These different theories are sufficient to describe the mechanical behavior of macro 

beams and plates. However, they do not capture the small scale effects such as the inter-

atomic interactions that cannot be neglected at a nanoscale and consequently, they do not 

provide satisfying results: new sets of theories have to be developed.  

 

1.3.3. Nonlocal theories 

1.3.3.1. Introduction to the nonlocal approaches 

As explained before, there is a real interest to analytically describe, through the 

derivation of governing differential equations, the mechanical behavior of small scale 

structures. Most of nanomaterials cannot be considered as homogeneous at small scales. At 

an extremely fine scale, some effects such as the interactions between two successive atoms 

cannot be ignored. Thus, there is a need to adapt classical mechanics to take into account 

these specific interactions at the material scale. Thus, nonlocal continuum theories, initiated 

in the 60’s [115-122], in contrast to the traditional and previously described local ones, can be 

used to capture the discreteness of the material at the subscale. In the nonlocal theories, the 

stress at a certain point is “a functional of the strain field at every point in the body” 

[119,120,123]. 

The phenomenological nonlocal stress gradient elasticity model, proposed by Eringen 

[123], postulates a stress gradient nonlocal law, using a differential operator, as follows: 

[1 − 𝜂2∇2]𝝈 = 𝑫: 𝜺  (1.1) 

where 𝑫 is the elasticity tensor, 𝝈 and 𝜺 are the macroscopic stress and strain tensors and ∇2 

is the Laplacian operator. 𝜂 is a nonlocal parameter equal to 𝑒0𝑎, with 𝑎 the internal 

characteristic length and 𝑒0 the small length scale coefficient. This coefficient is supposed 

constant, independent of the load, or the geometry of the structure, depending only on the 
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considered material. Even if it is commonly admitted that it is smaller than unity, Wang and 

Varadan [124] suggested that it goes from 0 to 7. 

One of the aims of this thesis is to investigate the nonlocal extension of the different 

Bresse-Timoshenko, Uflyand-Mindlin and asymptotic models  

 

1.3.3.2. Calibration of the small length scale coefficient: from the 

necessity to develop continualized models 

One of the main issues of these last decades has been to calibrate this coefficient. 

Thus, in his original paper, Eringen [123] proposed 𝑒0 ≈ 0.39. A possible approach is to 

calibrate this coefficient by considering the analytical equivalence between lattice and 

nonlocal models [125], as it has been done recently in the literature (see for instance [126-

129]). Then, a calibration of the small length scale coefficient is made possible by equating the 

buckling load in statics or the natural frequencies in dynamics in the two models. Thus, the 

small length-scale coefficient 𝑒0  lies between 1 √24⁄  and 1 √6⁄  with the buckling and 

vibration mode, the geometry and the load. Thus, the constant coefficient is not constant, 

leading to a paradoxical result.  

Furthermore, in parallel to the nonlocal continuum theories, a basic approach to 

model nanostructures and the interatomic interactions within them is to represent by an 

assembly of finite number of beams connected by springs [130], representing the bonds 

between the atoms, cells of the lattice. The asymptotic equivalence between discrete and 

continuous systems is not new and has already been established a few centuries ago by 

Lagrange [99]. It appears that this representation is particularly accurate to describe the 

mechanical behavior of nanostructures in which the atoms are the cells and the bonds 

between the atoms may be represented by the springs. For instance, Hencky [131] 

investigated the mechanical behavior of Bernoulli-Euler beams by considering a chain of rigid 

segmented beams connected by elastic rotational springs.  This work has been, since the last 

decades, extended to thin plates [126,132-138] models.  Recently, Duan et al. [127], Zhang et 

al. [128] and Kocsis et al. [139] derived discrete equations to describe the behavior in vibration 

[127] and buckling [128] of thick microstructured beams including shear effects by introducing 

in the model additional shear springs. The derivation of lattice models for thick plates in free 

vibration has not been investigated and yet, it presents an interest for the scientific 

community. 
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As explained before, for the nonlocal phenomenological Eringen’s approach, a 

paradox appears because the constant small length scale coefficient is structural dependent. 

To solve this paradox, alternative nonlocal models have emerged in order to keep a constant 

small length scale coefficient based on micromechanics arguments. In recent years, this new 

subset of continualized theories raised the attention of the scientific community and the 

number of publications devoted to this topic has increased exponentially [134,135,140,141]. 

The continualization process is based on the derivation of continuous equations from the 

reference discrete lattice model [142].  Starting from the lattice model, the difference 

operators are approximated by equivalent continuous differential ones and expanded by 

using the Taylor series [141] or an expansion based on the use of Padé approximants [143-

146]. In the continualized approaches, the small length scale coefficient is constant by 

definition [142] and is associated with the internal characteristic length of the lattice spacing. 

The objective is to develop continuous equations that contain the characteristic properties of 

a discrete structure [142]. The continualized process is applied for thin beams 

[126,133,135,147] and plates [126,134,135]. Recently, Duan et al. [127] and Zhang et al. [148] 

proposed a continualized model for thick beams in buckling [148] and vibration [127]. This 

topic will be addressed hereinafter. 

 

 

1.3.4. Asymptotic models 

The Bresse-Timoshenko and Uflyand-Mindlin models are phenomenological models. 

They are based on postulated constitutive laws or energy functional, leading potentially to 

some approximation in the governing differential equations, whence the different Bresse-

Timoshenko and Uflyand-Mindlin models (original, truncated and based on slope inertia). In 

addition to the phenomenological models, another family of beam and plate models attracted 

much attention these last decades. Indeed, the asymptotic models have been used for beams 

[95,149,150] and plates [109,151-153]. 

For plates, this method starts from the 3-dimensional equations and, by expanding 

some variables (displacements, stresses, strains) in power series in term of small parameters 

(for instance the thickness ratio [95,154] or the nonlocal parameter [152]), it yields 

approximate equations [47], the accuracy and the complexity of the equations increasing with 

the order of the expansion [155]. Likewise, considering a two-dimensional problem, the 

governing differential equations in displacement for beams are obtained [156]. 
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Thus, as it will be shown hereinafter, the asymptotic methods validates, at the lowest 

order, the Bernoulli-Euler [149] and Kirchhoff-Love [157] models and at the second order, the 

truncated Bresse-Timoshenko [95,150] and Uflyand-Mindlin [109].  

The extension of the asymptotic derivation to include the nonlocal effect is very 

recent. Thus, Chebakov, Kaplunov and Rogerson [152] proposed an asymptotic derivation of 

the thin plate equations by using the integral formulation of the nonlocal stress-strain 

constitutive law [119].  To our best knowledge, in the literature, the asymptotic derivation 

based on the series expansions of the deflection of the nonlocal beam and plates equations 

starting from the gradient form of the stress-strain relation Eq. (1.1) has not been performed. 

One of the objectives of this thesis is to present such derivations. 

Thus, there are many different theories to describe the mechanical behavior of beams 

and plates at different scales. The choice of the model depends on the need. For all of them, 

once the equations are derived, the natural frequencies of the structures have to be 

determined. In this purpose, different methods exist. 

 

1.4. Different methods of resolution of governing differential 

equations 

In the different analytical models described hereinafter, the behavior of beams and 

plates is described by a governing differential equation in displacement from which the 

natural frequencies can be extracted.  

For a beam simply supported at both ends and an all edge simply supported plate, a 

closed-form solution is derived for all the models through the Navier approach.  Thus, it allows 

us to perform a simple and efficient comparison of the different models. For beams, 

considering any other set of boundary conditions, the problem is reduced to the 

determination of the roots of a characteristic equation, leading to an exact solution. For plates 

having two opposite edges simply supported, the Lévy approach is used in order to have a 

characteristic equation, and so, an exact solution. Thus, considering the Kirchhoff-Love plate 

model and by using this method, the characteristic equations have been derived in a first time 

derived for thin rectangular plates [158-161]. A few decades later, scientists proposed to 

extend these results to the case of thick plates (see for instance [108,162]).  
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For other boundary conditions, there is no method leading to an exact solution and 

numerical tools are needed. Among them, the Rayleigh-Ritz method, initiated by Rayleigh [88] 

and developed by Ritz [163] is widely used in the literature [20,164,165]. The displacements 

are set as series of functions (trigonometric, polynomial, …) that satisfy the geometric plate 

boundary conditions [166-169]. The coefficients associated to these functions must minimize 

the energy functional, yielding to the approximated natural frequencies. An increase of the 

number of admissible functions leads to a better accuracy of the model but also increases the 

computational time [20].  

Other numerical approaches such as the Gorman’s superposition method [170-173] or the 

well-known finite element analysis [174,175] could be used. This thesis being devoted to the 

study analytical models with exact and closed-form solutions, the different numerical 

methods will not be considered. 
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2. TOWARDS THE DEVELOPMENT OF THICK BEAM AND PLATE 

MODELS FOR MACROSTRUCTURES 

 

This chapter starts by presenting the different derivations of the local thin Bernoulli-Euler and 

thick Bresse-Timoshenko models (original, truncated and based on slope inertia), introduced in 

the previous chapter. Thus, different approaches are considered: based on the use of equilibrium 

equations, via the variational principle and through the asymptotical reduction method. For each 

of these models, the first natural frequencies are calculated for different boundary conditions 

(simply supported at both end, clamped at both end, clamped-simply supported and cantilever) 

and the models are compared. The governing differential equation and the solutions of a beam 

with a tip mass is further investigated. A brief survey of the results obtained during this PhD thesis 

about stability of beams, cracked beams and beams subjected to random vibrations will also be 

included. Then, these results are extended to derive three versions of the Uflyand-Mindlin plate 

model. The natural frequencies are obtained for plates with at least two simply supported 

opposite edges. 

 

 

2.1. Derivation of thick beam models and different applications 

2.1.1. Original Bresse-Timoshenko model 

Consider a beam of length 𝐿, shear modulus 𝐺, cross-section 𝐴, Young modulus 𝐸, 

Poisson’s ratio 𝜈, density 𝜌, moment of inertia 𝐼. 𝑣 is the transverse deflection of the beam, 𝜓 

“the slope of the deflection curve when the shearing force is neglected” (the one given in the 

Bernoulli-Euler thin beam model) [176] and 𝛽 the shear angle (see Fig. 7), 𝑣 is related to 𝜓 and 𝛽 

via [89]:  
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𝛽 =
𝜕𝑣

𝜕𝑥
− 𝜓                                               

(2.1) 

 

Fig. 7: Bending and shear deformation : Angle 𝜓 (continuous lines) and angle 𝛽 (dashed lines) 

 

The constitutive laws in bending moment and shearing force are: 

𝑀 = 𝐸𝐼
𝜕𝜓

𝜕𝑥
                                                                           (2.2) 

𝑉𝑦 = −𝜅𝐴𝐺 (
𝜕𝑣

𝜕𝑥
− 𝜓 )                                                                (2.3) 

where 𝜅 is the shear coefficient, 𝑉𝑦 is the shearing force, 𝑀 is the bending moment. 

The equilibrium equation is: 

−𝑉𝑦 +
𝜕𝑀

𝜕𝑥
− 𝜌𝐼

𝜕2𝜓

𝜕𝑡2
= 0                                                               (2.4) 

Substituting the expressions of Eqs. (2.2) and (2.3) into Eq. (2.4), one obtains the first equation 

of motion 

𝐸𝐼
𝜕²𝜓

𝜕𝑥²
+ 𝜅𝐴𝐺 (

𝜕𝑣

𝜕𝑥
− 𝜓 ) − 𝜌𝐼

𝜕2𝜓

𝜕𝑡2
= 0                                          (2.5) 

The shear force is related to the transverse displacement through the following equation: 

𝜕𝑉𝑦

𝜕𝑥
= − 𝜌𝐴

𝜕2𝑣

𝜕𝑡2
        (2.6) 

Combining Eqs. (2.3) and (2.6) yields to the second equation of motion 

𝜅𝐴𝐺 (
𝜕²𝑣

𝜕𝑥²
−
𝜕𝜓

𝜕𝑥
 ) − 𝜌𝐴

𝜕2𝑣

𝜕𝑡2
= 0                                                     (2.7) 

Manipulating the equations of motions Eqs. (2.5) and (2.7) leads to the governing differential 

equation, 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑣

𝜕𝑡2
− 𝜌𝐼 (1 +

𝐸

𝜅𝐺
)

𝜕4𝑣

𝜕𝑡2𝜕𝑥2
+
𝜌2𝐼

𝜅𝐺

𝜕4𝑣

𝜕𝑡4
= 0                    (2.8) 
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 This equation contains a fourth order time derivative term. There is an important debate 

about this term. Checking the different contributions of the terms in Eq (2.8) Weaver, Timoshenko 

and Young [176] showed that the fourth order time derivative term is extremely small and can be 

neglected compared to the other terms. A detailed study of this term and its influence on the 

natural frequencies of the beam is provided hereinafter. 

 Furthermore, a variational derivation of Bresse-Timoshenko beam equations has been 

proposed in the literature (see for instance [177-179]). Thus, the kinetic energy and the strain 

energies due to the bending moment 𝑉𝑏 and the shear effect 𝑉𝑠 are expressed as 

𝑇 =
1

2
∫ 𝜌𝐴 ( 

𝜕𝑣

𝜕𝑡
)
2

𝑑𝑥
𝐿

𝑂

+
1

2
∫ 𝜌𝐼 (

𝜕𝜓

𝜕𝑡
)
2

𝑑𝑥
𝐿

𝑂

                               (2.9) 

𝑉𝑏 =
1

2
∫ 𝐸𝐼 ( 

𝜕𝜓

𝜕𝑥
)
2

𝑑𝑥
𝐿

𝑂

                                                                     
(2.10) 

𝑉𝑠 =
1

2
∫ 𝜅𝐺𝐴(

𝜕𝑣

𝜕𝑥
− 𝜓)

2

𝑑𝑥
𝐿

𝑂

                                                          (2.11) 

It is worth noticing that the bending strain energy, through the use of 𝜓, and the energy 

𝑉𝑠 include in their expression the influence of the shear effect. The kinetic should only describe 

the effect of rotary inertia. However, by using 𝜓 in the second term of the energy, Timoshenko 

made a correction of the rotary inertia via the shear effect. Thus, this effect may be possibly 

overcorrected. This issue will be further investigated in the section devoted to the Bresse-

Timoshenko model based on slope inertia. 

The application of the Hamilton’s principle leads to the differential equations of motions 

Eqs. (2.5) and (2.7), leading to the governing differential equation Thus, Eq. (2.8) is obtained.  

Furthermore, the associated boundary conditions are: 

(𝐸𝐼
𝜕𝜓

𝜕𝑥
)𝛿𝜓|

0

𝐿

= 0               (2.12) 

[𝜅𝐺𝐴 (
𝜕𝑣

𝜕𝑥
− 𝜓)] 𝛿𝑣|

0

𝐿

= 0                             (2.13) 
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2.1.2. Truncated version of the Bresse-Timoshenko model through an 

asymptotic approach 

In the literature [90,180-184], it has been suggested to delete the fourth order time 

derivative in the governing differential equation, leading to a simpler equation. Thus, the 

truncated Bresse-Timoshenko model [184] is derived by correcting Eq. (2.5) by  

𝐸𝐼
𝜕²𝜓

𝜕𝑥²
+ 𝜅𝐴𝐺 (

𝜕𝑣

𝜕𝑥
− 𝜓 ) − 𝜌𝐼

𝜕3𝑣

𝜕𝑥𝜕𝑡2
= 0                                        (2.14) 

Elimination of 𝜓 from Eqs. (2.7) and (2.14) results in the truncated Bresse-Timoshenko equation 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑣

𝜕𝑡2
− 𝜌𝐼 (1 +

𝐸

𝜅𝐺
)

𝜕4𝑣

𝜕𝑡2𝜕𝑥2
= 0                                        (2.15) 

In the truncated Bresse-Timoshenko model, the fourth order time derivative is not present. As it 

will be shown hereinafter, a direct consequence is that, in contrast to the original Bresse-

Timoshenko model, it predicts only one branch of natural frequencies. Stephen [185] argued that 

the second branch in the original model was “unphysical” and so, it should be disregarded, 

although this statement has been, by the next, contradicted by some other authors.  

 

 

Fig. 8: Beam of length 𝐿, height ℎ, displacements 𝑢 and 𝑣 in the 𝑥 and 𝑦 direction, respectively 

 

An asymptotic derivation of this truncated Bresse-Timoshenko is now proposed 

hereinafter, 𝑢 denotes the displacement in the 𝑥 direction. First of all, the stress-displacement 

relationship (plane stress assumptions) are expressed as [179]: 

𝜎𝑥 =
𝐸

(1 − 𝜈2)
(
𝜕𝑢

𝜕𝑥
+ 𝜈

𝜕𝑣

𝜕𝑦
) ; 𝜎𝑦 =

𝐸

(1 − 𝜈2)
(
𝜕𝑣

𝜕𝑦
+ 𝜈

𝜕𝑢

𝜕𝑥
) ; 𝜏𝑥𝑦 =

𝐸

2(1 + 𝜈)
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) (2.16) 

where 𝜎𝑥 and 𝜎𝑦 are the normal stresses following the 𝑥 and 𝑦 direction and 𝜏𝑥𝑦 = 𝜏𝑦𝑥 is the 

shear stress, respectively (see Fig. 8).  
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The equilibrium equations are [186]  

𝜕𝜎𝑥
𝜕𝑥

+
𝜕𝜏𝑥𝑦

𝜕𝑦
− 𝜌

𝜕2𝑢

𝜕𝑡2
= 0;   

𝜕𝜏𝑦𝑥

𝜕𝑥
+
𝜕𝜎𝑦

𝜕𝑦
− 𝜌

𝜕2𝑣

𝜕𝑡2
= 0                    

(2.17) 

Substituting Eq. (2.16) into Eq. (2.17), one obtains a system of two equations with the 

displacements 𝑢 and 𝑣 as unknowns: 

𝐸

2(1 + 𝜈)

𝜕²𝑢

𝜕𝑦²
+

𝐸

2(1 − 𝜈)

𝜕²𝑣

𝜕𝑥𝜕𝑦
+

𝐸

(1 − 𝜈2)

𝜕²𝑢

𝜕𝑥²
− 𝜌

𝜕2𝑢

𝜕𝑡2
= 0 

(2.18) 

𝐸

(1 − 𝜈2)

𝜕²𝑣

𝜕𝑦²
+

𝐸

2(1 − 𝜈)

𝜕²𝑢

𝜕𝑥𝜕𝑦
+

𝐸

2(1 + 𝜈)

𝜕²𝑣

𝜕𝑥²
− 𝜌

𝜕2𝑣

𝜕𝑡2
= 0   

(2.19) 

The boundary conditions require that the shear stress vanish on the free surfaces of the beam 

[187]: 

𝜎𝑦(𝑥, ℎ/2) = 𝜎𝑦(𝑥, −ℎ/2) = 0; 𝜏𝑦𝑥(𝑥, ℎ/2) = 𝜏𝑦𝑥(𝑥, −ℎ/2) = 0             (2.20) 

The asymptotic method is based on the power series expansion of the displacements. Thus, 𝑢 and 

𝑣 are expressed as follows: 

𝑢 = ∑𝑢𝑘(𝑥, 𝑡)
𝑦𝑘

𝑘!

∞

𝑘=0

;  𝑣 = ∑𝑣𝑘(𝑥, 𝑡)
𝑦𝑘

𝑘!

∞

𝑘=0

                                         (2.21) 

Define, arbitrarily, an angle of rotation 𝜃0, different from 𝜓 or 𝛽, such as: 

𝜃0 =
𝜕𝑢

𝜕𝑦
(𝑥, 0, 𝑡) = 𝑢1(𝑥, 𝑡)                                                            

(2.22) 

Naturally, the transverse displacement 𝑣 is symmetric in the axial coordinate 𝑦 with respect to 

the neutral layer. From Eqs. (2.18) and (2.19), it is deduced that the displacement 𝑢 is 

antisymmetric. Thus, only the even terms for 𝑢 and the odd terms for 𝑣 are retained, leading to: 

𝑢 = ∑𝑢2𝑘−1(𝑥, 𝑡)
𝑦2𝑘−1

(2𝑘 − 1)!

∞

𝑘=1

;  𝑣 = ∑𝑣2𝑘(𝑥, 𝑡)
𝑦2𝑘

(2𝑘)!

∞

𝑘=0

                    (2.23) 

Setting 𝑐2 = 𝐺 𝜌⁄ , substituting Eqs. (2.23) into Eqs. (2.18) and (2.19), it yields to, for any integer 

𝑘 a differential  relationship between 𝑣2(𝑘+1), 𝑢2𝑘+1 and 𝑣2𝑘 and another between 𝑢2𝑘+1, 𝑢2𝑘−1 

and  𝑣2𝑘 

𝑣2(𝑘+1) = −
1 + 𝜈

2

𝜕𝑢2𝑘+1
𝜕𝑥

−
1 − 𝜈

2

𝜕2𝑣2𝑘
𝜕𝑥2

+
1 − 𝜈

2𝑐2
𝜕2𝑣2𝑘
𝜕𝑡2

                     
(2.24) 

𝑢2𝑘+1 = −
1 + 𝜈

1 − 𝜈

𝜕𝑣2𝑘
𝜕𝑥

−
2

1 − 𝜈

𝜕2𝑢2𝑘−1
𝜕𝑥2

+
1

𝑐2
𝜕2𝑢2𝑘−1
𝜕𝑡2

                         
(2.25) 

Substituting Eq. (2.16) into Eq. (2.20), the boundary conditions are given in term of displacement: 
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𝜕𝑣(𝑥, ℎ/2, 𝑡)

𝜕𝑦
+ 𝜈

𝜕𝑢(𝑥, ℎ/2, 𝑡)

𝜕𝑥
= 0; 

𝜕𝑢(𝑥, ℎ/2, 𝑡)

𝜕𝑦
+ 𝜈

𝜕𝑣(𝑥, ℎ/2, 𝑡)

𝜕𝑥
= 0 

(2.26) 

Substituting Eq. (2.23) into Eq. (2.26), it yields to: 

∑(𝑣2𝑘 + 𝜈
𝜕𝑢2𝑘−1
𝜕𝑥

)
(
ℎ
2)

2𝑘−1

(2𝑘 − 1)!

∞

𝑘=1

= 0                 
(2.27) 

∑(𝑢2𝑘+1 +
𝜕𝑣2𝑘
𝜕𝑥

)
(
ℎ
2
)
2𝑘

(2𝑘)!

∞

𝑘=0

= 0                

(2.28) 

Dimensionless variables are defined as follows: 

𝑢̅𝑖 = 𝐿
𝑖−1𝑢𝑖; 𝑣̅𝑖 = 𝐿

𝑖−1𝑣𝑖; 𝜉 =
𝑥

𝐿
; ℎ̅ =

ℎ

2𝐿
; 𝑡̅ =

ℎ𝑡𝑐

2𝐿2
                         

(2.29) 

Eq. (2.27) and Eq. (2.28) are re-expressed as, at the fourth order: 

(𝑣̅2 + 𝜈
𝜕𝑢̅1
𝜕𝜉
) +

ℎ̅2

6
(𝑣̅4 + 𝜈

𝜕𝑢̅3
𝜕𝜉
) +

ℎ̅4

120
(𝑣̅6 + 𝜈

𝜕𝑢̅5
𝜕𝜉
) + 𝑜(ℎ̅4) = 0      

(2.30) 

(𝑢̅1 +
𝜕𝑣̅0
𝜕𝜉
) +

ℎ̅2

2
(𝑢̅3 +

𝜕𝑣̅2
𝜕𝜉
) +

ℎ̅4

24
(𝑢̅5 +

𝜕𝑣̅4
𝜕𝜉
) + 𝑜(ℎ̅4) = 0 

(2.31) 

and Eqs. (2.24) and (2.25), under the non-dimensional form are 

𝑢̅2𝑘+1 = 𝒜𝐿
𝑏𝑢̅2𝑘−1 +ℬ𝐿

𝑏𝑣̅2𝑘 (2.32) 

𝑣̅2(𝑘+1) = 𝒞𝐿
𝑏𝑣̅2𝑘 + ℱ𝐿

𝑏𝑢̅2𝑘+1 (2.33) 

where the operators 𝒜𝐿
𝑏, ℬ𝐿

𝑏, 𝒞𝐿
𝑏 and ℱ𝐿

𝑏 are defined as follows:  

𝒜𝐿
𝑏 = ℎ̅2

𝜕2

𝜕𝑡̅2
−

2

(1 − 𝜈)

𝜕2

𝜕𝜉2
; ℬ𝐿

𝑏 = −
1 + 𝜈

1 − 𝜈

𝜕

𝜕𝜉
; 

𝒞𝐿
𝑏 =

1 − 𝜈

2
(ℎ̅2

𝜕2

𝜕𝑡̅2
−
𝜕2

𝜕𝜉2
) ; ℱ𝐿

𝑏 = −
1 + 𝜈

2

𝜕

𝜕𝜉
 

(2.34) 
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Substituting Eqs. (2.32) and (2.33) into Eqs. (2.30) and (2.31), it yields a system of equations in 𝜃 

and 𝑣̅0, expressed in a matrix form: 

(
𝑀11 𝑀12
𝑀21 𝑀22

) (
𝑣̅0
𝜃0
) = (

0

0
) 

with: 

𝑀11 = −
𝜕2

𝜕𝑥̅2
− [

𝜕2

𝜕𝑡̅2
+
1

6
(1 − 𝜈)

𝜕4

𝜕𝜉4
] 𝜈ℎ̅2

+
1

12
[(1 − 𝜈)(3𝜈 − 1)

𝜕4

𝜕𝜉2𝜕𝑡̅2
−
1 − 𝜈 + 2𝜈2

10

𝜕6

𝜕𝜉6
] ℎ̅4 +𝑂(ℎ̅4) 

𝑀12 = (𝜈 − 1) {−
𝜕

𝜕𝜉
−
(𝜈 + 2)

6
ℎ̅2

𝜕3

𝜕𝜉3

+
1

12
[
(2𝜈 + 3)

10

𝜕5

𝜕𝜉5
+ (𝜈 + 3)

𝜕5

𝜕𝜉𝜕𝑡̅2
] ℎ̅4} + 𝑂(ℎ̅4) 

𝑀21 =
𝜕

𝜕𝑥̅
+
𝜈

2
ℎ̅2

𝜕3

𝜕𝜉3
− (

1

2
𝜈

𝜕3

𝜕𝜉𝜕𝑡̅2
+
1 + 2𝜈

24

𝜕5

𝜕𝜉5
) ℎ̅4 + 𝑂(ℎ̅4)  

𝑀22 = 1 −
2 + 𝜈

2
ℎ̅2

𝜕5

𝜕𝜉5
+ (

1

2

𝜕2

𝜕𝑡̅2
+
3 + 2𝜈

24

𝜕4

𝜕𝜉4
) ℎ̅4 + 𝑂(ℎ̅4)  

(2.35) 

The determinant of the differential matrix system has to vanish. It leads to the governing 

differential equation in displacement 𝑣̅0 at different orders: 

- Zeroth order 

[
2

3
(𝜈 + 1)

𝜕4𝑣̅0
𝜕𝜉4

+
𝜕2𝑣̅0
𝜕𝑡̅2

] = 0                                        
(2.36) 

- Second order 

[
2

3
(𝜈 + 1)

𝜕4𝑣̅0
𝜕𝜉4

+
𝜕2𝑣̅0
𝜕𝑡̅2

] −
2

3
[
(𝜈 + 1)

5

𝜕6𝑣̅0
𝜕𝜉6

+ (𝜈 + 2)
𝜕4𝑣̅0
𝜕𝜉2𝜕𝑡̅2

] ℎ̅2 = 0 
(2.37) 

These two equations are written under the dimensional form as follows: 

- Zeroth order 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑣

𝜕𝑡2
= 0 

(2.38) 

- Second order 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑣

𝜕𝑡2
−
𝐸𝐼2

𝐴𝜅0

𝜕6𝑣

𝜕𝑥6
− 𝜌𝐼 (1 +

𝐸

𝜅̃𝐺
)

𝜕4𝑣

𝜕𝑥2𝜕𝑡2
= 0 

(2.39) 
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with: 

𝜅0 =
5

3
; 𝜅̃ =

2(1 + 𝜈)

3 + 2ν
 

At the zeroth order, the asymptotic model coincides with the Bernoulli-Euler model for thin 

beams. Thus, the Bernoulli-Euler model is asymptotically consistent. One recognizes in the 

asymptotic model at the second order an equation, close to the one of the truncated Bresse-

Timoshenko model with an additional sixth order spatial derivative. It is worth noticing that Eq. 

(2.37) can be rewritten as 

2

3
(𝜈 + 1) [1 −

ℎ̅2

5

𝜕2

𝜕𝜉2
]
𝜕4𝑣̅0
𝜕𝜉4

+
𝜕2𝑣̅0
𝜕𝑡̅2

−
2

3
(𝜈 + 2)

𝜕4𝑣̅0
𝜕𝜉2𝜕𝑡̅2

ℎ̅2 = 0 
(2.40) 

Multiplying by [1 + (ℎ̅2 5⁄ )(𝜕2 𝜕𝜉2⁄ )] Eq. (2.40) and neglecting the terms in ℎ̅4 results in an 

equation without a sixth order space derivative term: 

2

3
(𝜈 + 1)

𝜕4𝑣̅0
𝜕𝜉4

+
𝜕2𝑣̅0
𝜕𝑡̅2

+ [
1

5
−
2

3
(𝜈 + 2)]

𝜕4𝑣̅0
𝜕𝜉2𝜕𝑡̅2

ℎ̅2 −
2

15
(𝜈

+ 2)
𝜕6𝑣̅0
𝜕𝜉4𝜕𝑡̅2

ℎ̅4 = 0 

(2.41) 

Under the dimensional form, it yields to the governing differential equation of the truncated 

Bresse-Timoshenko as obtained by Elishakoff, Kaplunov and Nolde [90] with a shear correction 

factor 𝜅 = 5(𝜈 + 1) (6 + 5𝜈)⁄ . 

This value of 𝜅 has been used implicitly by Timoshenko himself [188] and explicitly in numerous 

papers [90,189,190].  

The relevant question now is to investigate the variational derivation of this truncated version. 

 

2.1.3. Bresse-Timoshenko based on slope inertia 

Based on the truncated Bresse-Timoshenko model, it is suggested to replace the kinetic energy in 

Eq. (2.9) by: 

𝑇 =
1

2
∫ 𝜌𝐴 ( 

𝜕𝑣

𝜕𝑡
)
2

𝑑𝑥
𝐿

𝑂

+
1

2
∫ 𝜌𝐼 (

𝜕2𝑣

𝜕𝑡𝜕𝑥
)

2

𝑑𝑥
𝐿

𝑂

                                        (2.42) 
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The difference between Eqs. (2.9) and (2.42) is the second term of the kinetic energy. The 

original Bresse-Timoshenko includes in the expression of the kinetic energy a correction of the 

shear effect, already present in the shear strain energy. Thus, it overcorrected the shear effect. 

So, it is suggested to replace 𝜕𝜓 𝜕𝑡⁄  by 𝜕2𝑣 𝜕𝑡𝜕𝑥⁄ , following the spirit of the truncated Bresse-

Timoshenko derivation. This model is a new version of the Bresse-Timoshenko model based on 

the modification of the angle including the shear effect by the slope in order to take into account 

only the rotary inertia. It will be referred hereinafter as a Bresse-Timoshenko model based on 

slope inertia. 

By applying the Hamilton principle, it results in the following partial differential equations of 

motion: 

𝜌𝐴
𝜕²𝑣

𝜕𝑡²
− 𝜅𝐺𝐴(

𝜕2𝑣

𝜕𝑥2
−
𝜕𝜓

𝜕𝑥
) −  𝜌𝐼

𝜕4𝑣

𝜕𝑥2𝜕𝑡2
= 0             (2.43) 

𝐸𝐼
𝜕2𝜓

𝜕𝑥2
+ 𝜅𝐺𝐴 (

𝜕𝑣

𝜕𝑥
− 𝜓) = 0                       (2.44) 

with the boundary condition Eq. (2.12) unchanged and Eq. (2.13) replaced by:  

[𝜅𝐺𝐴 (
𝜕𝑣

𝜕𝑥
− 𝜓) + 𝜌𝐼 (

𝜕3𝑣

𝜕𝑡2𝜕𝑥
)]𝛿𝑣|

0

𝐿

= 0                             (2.45) 

Compared to Eq. (2.8), this equation contains an additional term containing the time derivative. 

After some manipulations, Eqs. (2.43) and (2.44) lead to the following governing differential 

equation: 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑣

𝜕𝑡2
−  𝜌𝐼 (1 +

𝐸

𝜅𝐺
)

𝜕4𝑣

𝜕𝑥2𝜕𝑡2
+
𝜌𝐸𝐼2

𝜅𝐺𝐴

𝜕6𝑣

𝜕𝑥4𝜕𝑡2
= 0                   (2.46) 

Compared to the governing differential equation of the original Bresse-Timoshenko model, it is 

seen that Eq. (2.46) contains an additional term, underlined in the last equation. Thus, the three 

versions of the Bresse-Timoshenko model differ in the expression of a dynamic term. Let us now 

compare the different Bresse-Timoshenko models in free vibration considering different 

boundary conditions. 
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2.1.4. Different solutions 

2.1.4.1. Simply supported beam 

 

The governing differential equations in displacement of the different models can be 

written in a generic form as follows: 

𝐸𝐼
𝜕4𝑣(𝑥, 𝑡)

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑡2
− 𝜌𝐼 (1 +

𝐸

𝜅𝐺
)
𝜕4𝑣(𝑥, 𝑡)

𝜕𝑡2𝜕𝑥2
+ 𝛾1

𝜌2𝐼

𝜅𝐺

𝜕4𝑣(𝑥, 𝑡)

𝜕𝑡4

+ 𝛾2
𝜌𝐸𝐼2

𝜅𝐺𝐴

𝜕6𝑣

𝜕𝑥4𝜕𝑡2
= 0 

(2.47) 

where 𝛾1 and 𝛾2 are control parameters such as (𝛾1, 𝛾2) is equal to (1,0), (0,0) and (0,1) for the 

original Bresse-Timoshenko model, the truncated Bresse-Timoshenko theory and the Bresse-

Timoshenko model based on slope inertia, respectively. The variable 𝜓 is governed by the same 

equation. 

For a beam that is simply supported at both ends, the displacement is expressed following the 

Navier expression: 

𝑣 = (𝑠𝑖𝑛
𝑚𝜋𝑥

𝐿
)𝐴𝑚 exp(𝑗𝜔𝑡)                                                        (2.48) 

where 𝑗 = √−1, 𝑚 is the frequency mode number and 𝜔 is the natural frequency.  

The different dimensionless parameters are defined as follows 

𝑟 =
𝐼

𝐴𝐿²
; s =

𝐸𝐼

𝜅𝐴𝐺𝐿²
= 𝜗r; 𝜗 =

𝐸

𝜅𝐺
, Ω = √

𝜌𝐴

𝐸𝐼
𝐿2𝜔  (2.49) 

𝑟 is the slenderness ratio. For a rectangular cross section, 𝑟 is proportional to the ratio between 

the thickness and the length of the beam. 𝑠 is a parameter related to the slenderness ratio and 

consequently, it also characterizes the shear effect. 

Substituting Eqs. (2.48) and (2.49) into the governing differential equation, it leads to: 

(𝑚𝜋)4 − Ω2[1 + (𝑚𝜋)2(𝑟 + 𝑠) + (𝑚𝜋)4𝛾2𝑠𝑟] + 𝛾1Ω
4𝑠𝑟 = 0 (2.50) 
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The non-dimensional natural frequency is determined for each of the three versions of the 

Bresse-Timoshenko: 

 

• Original Bresse-Timoshenko : 

Ω2 =

{
 
 

 
 1 + (𝑚𝜋)

2(𝑟 + s) − √[1 + (𝑚𝜋)2(𝑟 + 𝑠)]2 − 4𝑠𝑟(𝑚𝜋)4

2𝑠𝑟

1 + (𝑚𝜋)2(𝑟 + s) + √[1 + (𝑚𝜋)2(𝑟 + 𝑠)]2 − 4𝑠𝑟(𝑚𝜋)4

2𝑠𝑟
 

 (2.51) 

Thus, there are two different solutions: the original Bresse-Timoshenko model has two branches 

of natural frequencies. 

 

• Truncated Bresse-Timoshenko and Bresse-Timoshenko based on slope inertia: 

Ω2 =
(𝑚𝜋)4

[1 + (𝑚𝜋)2(𝑟 + 𝑠) + 𝛾2𝑟𝑠(𝑚𝜋)
4]
                                (2.52) 

 

First of all, the natural frequencies Ω are calculated in Table 1 for the Bernoulli-Euler model and 

the three versions of the Bresse-Timoshenko model (original, truncated and based on slope 

inertia). The couple (𝑠, 𝑟) is taken equal to (√0.04;√0.02) as chosen by Iyengar [9] and Bruch 

and Mitchell [4]. In this case, the shear coefficient is 2/3. This value is the one taken by 

Timoshenko himself [88].  
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Mode BE OBT TBT SBT 

1       9.87       9.77       9.77     9.77 

2     39.48     38.02     38.01   37.99 

3     88.83     82.00     81.85   81.68 

4   157.91   138.31   137.66 136.84 

5   246.74   203.72   201.90 199.32 

6   355.31   275.60   271.66 265.46 

7   483.61   351.96   344.80 332.39 

8   631.65   431.37   419.86 398.01 

9   799.44   512.78   495.89 460.95 

10   986.96   595.49   572.31 520.37 

11 1194.22   678.99   648.76 575.83 

12 1421.22   762.96   725.03 627.17 

13 1667.96   847.15   801.02 674.43 

14 1934.44   931.39   876.68 717.75 

15 2220.66 1015.58   951.98 757.35 

16 2526.62 1099.64 1026.94 793.49 

17 2852.33 1183.53 1101.57 826.45 

 18* 3197.75 1262.24   

Table 1. Variation of the dimensionless frequency Ω with (𝑠 = √0.04; 𝑟 = √0.02) for a simply 

supported beam (* Note: 18th frequency belongs to the second branch) 

 

As explained before, the original Bresse-Timoshenko model admits two branches of natural 

frequencies. For this particular couple (s,r), the second branch is reached for the 18th natural 

frequency. This second branch of frequencies is not present in the two other Bresse-Timoshenko 

models (truncated and based on slope inertia). The difference between the Bresse-Timoshenko 

models is very small for low orders of frequencies and increases with the order.  
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Moreover, an additional comparison of the results with those in the literature is performed in 

Table 2 by listing the five first natural frequencies for a couple of parameter (√𝑟, 𝜅) equal to 

(0.1/√12, 5 6⁄ ) given by Moallemi-Oreh and Karkon [191], Ferreira [192] and Lee and Schultz 

[193] by using finite element analysis. As is seen, even for the reported highest frequency, the 

difference between the models is small.  

Mode BE OBT TBT SBT FEM Lee Schultz [193]  Ferreira [192] 

1 9.87 9.71 9.71 9.71 9.71 9.71 9.71 

2 39.48 37.09 37.05 36.99 37.09 37.09 37.09 

3 88.83 78.15 77.76 77.25 78.19 78.15 78.19 

4 157.91 128.67 127.16 124.99 128.80 128.67 129.92 

5 246.74 185.32 181.55 175.39 185.73 185.32 187.93 

Table 2. Dimensionless frequency Ω for a simply supported beam with √𝑟 = 0.1/√12 

This section has been dedicated to the case of a simply supported beam. Now the solution is 

proposed for other sets of boundary conditions. In this case, a close-form solution is not obtained 

and more computational efforts are necessary to determine the natural frequency through a 

characteristic equation. 

 

2.1.4.2. Other sets of boundary conditions 

Three other sets of boundary conditions are considered: clamped-simply supported, cantilever 

and clamped at both ends. In this case, the solution of the governing differential equation is found 

by separation of variables in the form [4] 

𝑣(𝜉, 𝑡) = 𝐿𝑈(𝜉) exp(𝑗𝜔𝑡)                                                          (2.53) 

𝜓(𝜉, 𝑡) = 𝛹(𝜉) exp(𝑗𝜔𝑡)                                                          (2.54) 

where 𝜉 = 𝑥 𝐿⁄  

The functions 𝑈(𝑥) and 𝛹(𝑥) constitute normal modes. Substitution of Eqs. (2.49) and (2.53) into 

Eq. (2.47) leads to the non-dimensional governing differential equation, also satisfied by 𝛹: 

𝑑4𝑈

𝑑𝜉4
+ 2𝑎

𝑑2𝑈

𝑑𝜉2
+ 𝑏𝑈(𝜉) = 0 (2.55) 
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where 𝑎 and 𝑏 are two non-dimensional parameters defined as follows : 

𝑎 =
Ω2(𝑟 + 𝑠)

2(1 − 𝛾2𝑠𝑟Ω
2)
, 𝑏 =

Ω2(𝛾1Ω
2𝑟𝑠 − 1)

(1 − 𝛾2𝑠𝑟Ω
2)

 (2.56) 

For both equations, the roots are given by: 

𝑟±
2 = ±√𝑎2 − 𝑏 − 𝑎                                            (2.57) 

For the truncated Bresse-Timoshenko theory and the Bresse-Timoshenko theory based on slope 

inertia, whatever value of the natural frequency, 𝑟+ is a real whereas 𝑟− is a complex number. For 

the original Bresse-Timoshenko theory, one can show that there is a transition frequency Ωt 

above which 𝑟+and 𝑟− are both complex numbers [194]. Consequently, in the original Bresse-

Timoshenko theory, there are two branches of natural frequencies, as already investigated in the 

particular case of a beam that is simply supported at both ends. For more details about this second 

branch of frequencies, one may refer to different papers in the literature [167,195-200]. 

Hereinafter, only the study the first branch of natural frequencies, for which the frequency is 

below the transition one, is conducted. 

The general solution of the differential equation is found 

𝑈(𝜉) = 𝐴 cosh𝛽1𝜉 +  𝐵 sinh𝛽1𝜉 + 𝐶 cos𝛽2𝜉 + 𝐷 sin𝛽2𝜉  (2.58) 

𝛹(𝜉) = 𝐸 cosh𝛽1𝜉 + 𝐹 sinh𝛽1𝜉 + 𝐺 cos𝛽2𝜉 + 𝐻 sin𝛽2𝜉  (2.59) 

where 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺 and 𝐻 are parameters and 𝛽1 and 𝛽2 are expressed as follows: 

𝛽1 = (√𝑎
2 − 𝑏 − 𝑎)

1
2
;   𝛽2 = (√𝑎

2 − 𝑏 + 𝑎)

1
2
                                    (2.60) 

For Ω ≥ Ωt, the solutions of these equations are expressed with purely trigonometric mode 

shapes. 

Substituting Eqs. (2.58) and (2.59) into the non-dimensional equations of motion leads to: 

𝛹(𝜉) = 𝐴𝑚1 sinh𝛽1𝜉 +  𝐵𝑚1 cosh𝛽1𝜉 + 𝐶𝑚2 sin𝛽2𝜉 − 𝐷𝑚2 cos𝛽2𝜉 (2.61) 

where 

𝑚1 =
Ω2𝑠 + 𝛽1

2(1 − 𝛾2Ω
2𝑠𝑟)

𝛽1
;  𝑚2 =

Ω2𝑠 − 𝛽2
2(1 + 𝛾2Ω

2𝑠𝑟)

𝛽2
  (2.62) 

Table 3 lists the different boundary conditions investigated in the present thesis by using the non-

dimensional displacements. For a beam simply supported at both ends, the closed form solution 

has been determined before. 
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Simply supported - clamped Clamped - clamped Cantilever 

𝑈(0) = 0
𝛹′(0) = 0
𝑈(1) = 0
𝛹(1) = 0

 

𝑈(0) = 0
𝛹(0) = 0

𝑈(1) = 0
𝛹(1) = 0

 

𝑈(0) = 0
𝛹(0) = 0

𝛹′(1) = 0

(1 − 𝛾2𝑟
2𝛼𝜗)𝑈′(1) − 𝛹(1) = 0

 

Table 3: Boundary conditions  

 

Substituting the expressions of 𝑈 and 𝛹 into the equations related to the boundary conditions 

leads to a system of four equations. In order to have a non-trivial solution, the determinant of this 

system vanishes. Thus, it yields a characteristic equation for the different boundary conditions: 

Simply supported-clamped beam 

𝑚2(𝑚2𝛽2 −𝑚1𝛽1)𝑠𝑖𝑛ℎ(𝛽1)𝑐𝑜𝑠(𝛽2) − 𝑚1(𝛽1𝑚1 −𝑚2𝛽2)𝑐𝑜𝑠ℎ(𝛽1)𝑠𝑖𝑛(𝛽2)

= 0 
(2.63) 

Clamped-clamped beam 

−2𝑚1𝑚2[1 − cosh(𝛽1) cos(𝛽2)] + (𝑚1
2 −𝑚2

2)𝑠𝑖𝑛(𝛽2)𝑠𝑖𝑛ℎ(𝛽1) = 0 (2.64) 

Cantilever beam 

𝑚1𝑚2{𝛽2
2 + 𝛽2𝑚2 − 𝛼𝛾2𝑟

2𝜗𝛽2
2} + 𝑚1𝑚2{𝛼𝛾2𝑟

2𝜗𝛽1
2 − 𝛽1

2 + 𝛽1𝑚1}

− {𝛽1𝛽2(𝑚1
2 −𝑚2

2)(1 − 𝛼𝛾2𝑟
2𝜗) + 𝛽1𝑚1

2𝑚2 + 𝛽2𝑚1𝑚2
2}𝑐𝑜𝑠(𝛽2)𝑐𝑜𝑠ℎ(𝛽1)

+ {2𝛽1𝛽2𝑚1𝑚2(1 − 𝛼𝛾2𝑟
2𝜗) + 𝛽1𝑚1𝑚2

2 − 𝛽2𝑚1
2𝑚2}𝑠𝑖𝑛(𝛽2)𝑠𝑖𝑛ℎ(𝛽1) = 0 

(2.65) 

In order to compare the different models, a beam with a ratio 𝐿/ℎ, a Poisson’s ratio 𝜈 and a shear 

coefficient 𝜅 equal to 5, 0.3 and 0.833333, respectively, is taken. These values are the same as 

those adopted in the paper of Khaji et al [201]. The value of the shear coefficient is also the one 

used by Weaver, Timoshenko and Young [176]. The results for first four natural frequencies are 

given in Table 4. 

For the first frequencies (for instance the fundamental one), the three versions of the Bresse-

Timoshenko model provide very similar results. Indeed, the influence of the fourth order time 

derivative in the governing differential equation of the original Bresse-Timoshenko model is 

negligible compared to the other terms. The difference between the different models increases 

naturally with the order of frequency, as it has been established for a beam that is simply 
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supported at both ends. Moreover, table 4 trends to show that the frequencies gotten from the 

truncated model are smaller than with the original model. 

 

   Frequency 

 
 

 
1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ 

Simply supported 

BE 9.87 39.48 88.82 157.91 

OBT 9.24 32.05 61.14 92.64 

TBT 9.23 31.66 59.30 88.12 

 SBT 9.23 31.64 57.78 84.56 

Simple–clamped 

BE 15.40 49.96 104.24 178.26 

OBT 13.39 39.69 64.78 100.16 

TBT 13.36 36.23 62.96 90.87 

 SBT 13.34 36.02 62.77 86.04 

 
BE 22.36 61.66 120.90 199.86 

Clamped-clamped OBT 17.01 43.43 75.12 107.01 

 
TBT 17.81 42.64 72.00 104.00 

 SBT 18.03 41.88 70.65 104.46 

 BE 3.51 22.03 61.69 120.96 

Cantilever  OBT 3.33 20.27 49.23 81.80 

 TBT 3.24 20.19 47.96 77.78 

 SBT 3.23 19.88 47.01 70.80 

Table 4. Four first natural frequencies Ω  of a beam for different boundary conditions 𝐿/ℎ = 5 

Moreover, in order to compare the results with those of the literature obtained for different 

methods, Table 5 compares the first five natural frequencies evaluated via the suggested model 

with those evaluated by Labuschagne et al. [202] who utilized 2D elastodynamic simulation to 

establish the governing differential equation for the particular case of a cantilever beam and 

solved the problem by using the Galerkin approximation with Hermite piecewise bicubic 

functions. 
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Mode 2D elastodynamic model [202] BE OBT TBT SBT 

1 3.49 3.51 3.49 3.49 3.49 

2 20.94 22.01 20.91 20.90 20.88 

3 54.49 - - - - 

 55.19 61.71 54.99 54.85 54.61 

4 100.38 120.89 99.74 99.02 97.77 

5 152.92 200.00 151.84 149.69 145.65 

Table 5. Dimensionless frequency Ω for a cantilever beam with √𝑟 = 0.1/√12 

One may notice in this table that the 2D elastodynamic model admits two third natural 

frequencies, one being an intruding value. The table confirms the previous results, namely that 

the three versions of the Bresse-Timoshenko model lead to similar results and the Bernoulli-Euler 

model overestimates the natural frequencies.  

 

2.1.5. Particular application: cantilever beam with a tip mass 

2.1.5.1. Derivation of the governing differential equation 

Consider now the cantilever beam with a concentrated tip mass at 𝑥 = 𝐿. In 1974, Iyengar 

[9] established the equations to describe the mechanical behavior of Bresse-Timoshenko beams 

under transverse vibrations and showed that the effect of the mass was more important for higher 

modes. Bruch and Mitchell [4] confirmed these equations and studied the influence of different 

parameters, like the radius of gyration of the tip mass or the dimensionless tip mass. Specifically, 

they explained that the natural frequency decreases by increasing the slenderness ratio or the tip 

mass. 

The tip mass is not a mass point and consequently, an additional kinetic energy related to the 

mass has to be taken into account [203]: 

𝑇𝑡 =
1

2
𝑀 ( 

𝜕𝑣

𝜕𝑡
(𝐿))

2

+
1

2
𝐵 ( 

𝜕𝜓

𝜕𝑡
(𝐿))

2

 (2.66) 
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where 𝑀 is the tip mass, 𝐵 is the mass moment of inertia of the tip mass. This energy does not 

change the governing differential equation. It has been shown [95] that if the additional terms is 

changed in the model based on slope inertia, then the change of the kinetic energy of the tip mass 

would overcorrect the correction done in the model. Consequently, the kinetic energy induced by 

the tip mass is assumed to be the same in the original Bresse-Timoshenko model and in the model 

based on slope inertia. 

However, the tip mass affects the boundary conditions. Thus, the general boundary conditions for 

the three versions of the Bresse-Timoshenko model are replaced by: 

(𝐸𝐼
𝜕𝜓

𝜕𝑥
)𝛿𝜓|

0

𝐿

− [𝜔2𝐵𝜓(L)]𝛿𝜓 = 0     (2.67) 

[𝜅𝐺𝐴 (
𝜕𝑣

𝜕𝑥
− 𝜓) + 𝛾2𝜌𝐼

𝜕3𝑣

𝜕𝑡2𝜕𝑥
]𝛿𝑣|

0

𝐿

− [𝜔2𝑀𝑣(𝐿)]𝛿𝑣 = 0      (2.68) 

For a clamped-free beam with a concentrated tip mass, it results in the following dimensionless 

equations [9,204]: 

 

𝑈(0) = 0  

𝛹(0) = 0  

(1 − 𝛾2Ω
2𝑟𝑠)

𝑑𝑈

𝑑𝜉
(1) − 𝛹(1) =

Ω2𝑠𝑀

𝑚
𝑈(1)          

d𝛹

𝑑𝜉
(1) = 𝜃Ω2𝛹(1)                 

(2.69) 

 

with 𝜃 = 𝐵 𝜌𝐴𝐿3⁄  [4], 𝑚 = 𝜌𝐴𝐿 is the total mass of the beam and 𝛿 = 𝑀/𝑚 is the concentrated 

mass over beam mass ratio. 

 

Substituting the expressions of the displacements given by Eqs. (2.58) and (2.61) into Eq. (2.69) 

leads to a system of equations, written in the matrix form: 

(

1 0 1 0
0 𝑚1 0 −𝑚2

𝑅1
𝑅1
′

𝑅2
𝑅2
′

𝑅3 𝑅4
𝑅3
′ 𝑅4

′

)(

𝐴
𝐵
𝐶
𝐷

) = (

0
0
0
0

)                                                  (2.70) 
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where: 

𝑅1 = (𝑚1 − 𝛽1(1 − 𝛾2Ω
2𝑟𝑠)) 𝑠𝑖𝑛ℎ 𝛽1 + Ω

2𝑟𝑠𝛿 𝑐𝑜𝑠ℎ 𝛽1 

𝑅2 = (𝑚1 − 𝛽1(1 − 𝛾2Ω
2𝑟𝑠)) 𝑐𝑜𝑠ℎ 𝛽1 + Ω

2𝑟𝑠𝛿 𝑠𝑖𝑛ℎ 𝛽1 

𝑅3 = (𝛽2(1 − 𝛾2Ω
2𝑟𝑠) + 𝑚2) 𝑠𝑖𝑛 𝛽2 + Ω

2𝑟𝑠𝛿 𝑐𝑜𝑠 𝛽2 

𝑅4 = −(𝛽2(1 − 𝛾2Ω
2𝑟𝑠) + 𝑚2) 𝑐𝑜𝑠 𝛽2 + Ω

2𝑟𝑠𝛿 𝑠𝑖𝑛 𝛽2 

𝑅1
′ = (𝛽1 𝑐𝑜𝑠ℎ 𝛽1 −

𝜃

Ω2
𝑠𝑖𝑛ℎ 𝛽1)𝑚1; 𝑅2

′ = (𝛽1 𝑠𝑖𝑛ℎ 𝛽1 −
𝜃

Ω2
𝑐𝑜𝑠ℎ 𝛽1)𝑚1 

𝑅3
′ = (𝛽2 𝑐𝑜𝑠 𝛽2 −

𝜃

Ω2
𝑠𝑖𝑛 𝛽2)𝑚2; 𝑅4

′ = (𝛽2 𝑠𝑖𝑛 𝛽2 +
𝜃

Ω2
𝑐𝑜𝑠 𝛽2)𝑚2 

The determinant of the squared matrix is taken equal to zero in order to have an infinite number 

of solution (vibration). It leads to the following equation:  

𝑚1(𝑅3𝑅4
′ − 𝑅4𝑅3

′ + 𝑅4𝑅1
′ − 𝑅1𝑅4

′ ) − 𝑚2(𝑅2𝑅3
′ − 𝑅3𝑅2

′ + 𝑅1𝑅2
′ − 𝑅2𝑅1

′ )

= 0 
(2.71) 

The solution of this equation are the natural frequencies. 

 

For the Bernoulli-Euler model, the equation has been derived by Erturk and Inman [204]:  

1 + 𝑐𝑜𝑠 √Ω 𝑐𝑜𝑠ℎ√Ω + √Ω𝛿(𝑐𝑜𝑠 √Ω𝑠𝑖𝑛ℎ√Ω − 𝑠𝑖𝑛 √Ω𝑐𝑜𝑠ℎ√Ω)

− Ω
3
2𝜃(𝑐𝑜𝑠ℎ√Ω𝑠𝑖𝑛 √Ω + 𝑠𝑖𝑛ℎ√Ω𝑐𝑜𝑠 √Ω)

+ Ω2𝛿𝜃(1 − 𝑐𝑜𝑠 √Ω 𝑐𝑜𝑠ℎ√Ω) = 0 

(2.72) 

Eq. (2.72) is obtained from Eq. (2.71) when 𝑟 and 𝑠 are taken as converging towards zero. 

 

2.1.5.2. Numerical results 

In order to be able to compare the different Bresse-Timoshenko models, the values of the 

parameters are taken as equal to those used in the literature for a rectangular cross section, 

namely the ratio 𝐸/𝐺 and the shear parameter 𝜅  equal to 8/3 and 2/3, respectively [4,9]. In this 

case 𝑠 = 4𝑟. Table 6 lists the three first non-dimensional natural frequencies Ω evaluated by the 

Bernoulli-Euler model and the three versions of the Bresse-Timoshenko model. 

 

 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



34 
 

𝛿 
First frequency Second frequency Third frequency 

BE OBT TBT SBT BE OBT TBT SBT BE OBT TBT SBT 

 𝜃 = 0.004; √𝑟 = 0.02 

0.5 2.00 1.99 1.99 1.99 15.36 15.06 15.06 15.08 39.58 38.24 38.23 38.27 

1 1.55 1.55 1.55 1.55 14.95 14.66 14.66 14.67 39.58 38.24 38.23 38.27 

2 1.16 1.15 1.15 1.15 10.70 14.42 14.41 14.45 39.58 38.24 38.23 38.27 

3 0.96 0.96 0.96 0.95 14.61 14.33 14.33 14.33 39.58 38.24 38.23 38.27 

5 0.76 0.75 0.75 0.75 14.53 14.25 14.25 14.26 39.58 38.24 38.23 38.26 

 𝜃 = 0.04; √𝑟 = 0.02 

0.5 1.90 1.90 1.90 1.90 8.88 8.81 8.81 8.81 26.87 25.87 25.87 25.86 

1 1.50 1.50 1.50 1.50 8.87 8.79 8.79 8.79 26.02 25.06 25.05 25.05 

2 1.14 1.13 1.13 1.13 8.86 8.79 8.79 8.79 25.47 24.52 24.51 24.52 

3 0.95 0.95 0.95 0.95 8.86 8.79 8.79 8.79 25.26 24.31 24.31 24.31 

5 0.75 0.75 0.75 0.75 8.86 8.78 8.78 8.78 25.07 24.13 24.13 24.14 

Table 6. Variation of the dimensionless natural frequency Ω with non-dimensional mass ratio 

𝛿 (𝜃 = 0.004;√𝑟 = 0.02) and (𝜃 = 0.04;√𝑟 = 0.02) 

 

In Table 6, it is seen that the difference between the three versions of the Bresse-Timoshenko 

model, whatever the considered order of frequency, decreases when the dimensionless inertia 

property 𝜃 increases. Thus, for the third mode shape and a couple (√𝑟, 𝛿) equal to (0.02,5), the 

relative error between the truncated Bresse-Timoshenko model and the Bresse-Timoshenko 

model based on slope inertia is 0.07% when 𝜃 = 0.004 versus 0.07% when 𝜃 = 0.04. 

In order to study the effect of the slenderness ratio on the natural frequency with a tip mass, Fig. 

9 depicts, for 𝜃 = 0.04 and a mass ratio 𝛿 equal to unity, the non-dimensional fundamental 

natural frequency is plotted versus the slenderness ratio when the tip and the beam have the 

same mass. Although the three versions of the Bresse-Timoshenko model provide similar result, 

a difference between the model based on slope inertia and the two others occurs and increase 

with 𝑟. However, this difference is smaller than 1.2%, even for large values of the slenderness 

ratio. 
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Fig. 9. Variation of fundamental frequency with the slenderness ratio (𝜃 = 0.04) 

 

Table 7 lists the non-dimensional natural frequencies calculated for different values of the couple 

(𝑟, 𝛿) investigated in the literature (see for example [205]). The case of √𝑟 = 0.000316 coincides 

with the one of a very thin beam, described by the Bernoulli-Euler model and for 𝛿 = 0 there is 

no tip mass. In this case, the study is reduced to the one conducted before. It shows again that 

the different Bresse-Timoshenko models provide very similar for low orders of frequencies. 
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First frequency Second frequency Third frequency 

OBT TBT SBT OBT TBT SBT OBT TBT SBT 

𝛿 √𝑟 = 0.000316 

0 3.52 3.52 3.52 22.03 22.03 22.03 61.69 61.69 61.69 

0.2 2.61 2.61 2.61 18.21 18.21 18.21 53.56 53.56 53.56 

0.4 2.17 2.17 2.17 17.18 17.18 17.18 52.06 52.06 52.06 

0.6 1.89 1.89 1.89 16.69 16.69 16.69 51.44 51.44 51.44 

0.8 1.70 1.70 1.70 16.43 16.43 16.43 51.10 51.10 51.10 

1.0 1.56 1.56 1.56 16.25 16.25 16.23 50.89 50.89 50.89 

𝛿 √𝑟 = 0.02 

0.0 3.50 3.50 3.50 21.47 21.48 21.46 58.15 58.11 58.04 

0.2 2.61 2.60 2.61 17.83 17.83 17.82 50.87 50.84 50.80 

0.4 2.16 2.16 2.16 16.83 16.83 16.83 49.49 49.46 49.43 

0.6 1.89 1.89 1.89 16.37 16.37 16.37 48.91 48.89 48.86 

0.8 1.69 1.69 1.69 16.11 16.11 16.11 48.60 48.57 48.55 

1.0 1.55 1.55 1.55 15.94 15.94 15.94 48.40 48.38 48.35 

𝛿 √𝑟 = 0.04 

0.0 3.46 3.46 3.46 20.02 19.99 19.94 50.56 50.22 49.58 

0.2 2.58 2.58 2.58 16.82 16.81 16.78 44.89 44.64 44.25 

0.4 2.15 2.15 2.15 15.92 15.92 15.89 43.74 43.51 43.17ju 

0.6 1.88 1.88 1.88 15.50 15.50 15.47 43.26 43.03 42.71 

0.8 1.69 1.69 1.68 15.26 15.26 15.23 42.99 42.77 42.46 

1.0 1.54 1.54 1.54 15.10 15.10 15.08 42.82 42.60 42.30 

Table 7a. Variation of the dimensionless frequency Ω with 𝑟 and 𝛿 (𝜈 = 0.3; 𝜅 = 5/6). 
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First frequency Second frequency Third frequency 

OBT TBT SBT OBT TBT SBT OBT TBT SBT 

𝛿 √𝑟 = 0.06 

0 3.40 3.40 3.40 18.14 18.06 18.34 42.89 42.14 41.51 

0.2 2.55 2.55 2.55 15.48 15.43 15.50 38.60 38.01 37.28 

0.4 2.12 2.12 2.12 14.70 14.65 14.68 37.66 37.10 36.34 

0.6 1.85 1.85 1.85 14.33 14.29 14.29 37.25 36.71 35.94 

0.8 1.67 1.67 1.67 14.12 14.08 14.07 37.03 36.49 35.72 

1.0 1.53 1.53 1.53 13.98 13.94 13.92 36.88 36.36 35.58 

𝛿 √𝑟 = 0.08 

0.0 3.32 3.32 3.32 16.23 16.09 16.29 36.53 35.47 33.55 

0.2 2.50 2.49 2.52 14.06 13.96 13.98 33.22 32.33 30.76 

0.4 2.08 2.08 2.09 13.39 13.30 13.28 32.43 31.59 30.08 

0.6 1.82 1.82 1.83 13.07 12.99 12.94 32.08 31.27 29.78 

0.8 1.64 1.64 1.65 12.89 12.80 12.75 31.89 31.09 29.61 

1.0 1.50 1.50 1.54 12.76 12.68 12.62 31.76 30.98 29.50 

𝛿 √𝑟 = 0.1 

0.0 3.23 3.22 3.23 14.47 14.28 14.31 31.50 30.27 27.08 

0.2 2.45 2.44 2.47 12.70 12.55 12.48 28.89 27.81 25.35 

0.4 2.04 2.04 2.06 12.14 12.00 11.89 28.20 27.19 24.89 

0.6 1.79 1.79 1.80 11.86 11.74 11.61 27.90 26.92 24.67 

0.8 1.61 1.61 1.63 11.70 11.58 11.44 27.73 26.77 24.55 

1.0 1.48 1.48 1.49 11.59 11.47 11.33 27.62 26.67 24.48 

Table 7b. Variation of the dimensionless frequency Ω with 𝑟 and 𝛿 (𝜈 = 0.3; 𝜅 = 5/6). 
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2.1.6. Other applications 

Structural defects such as cracks may be present in mechanical structures. One of the 

most important aspects of the modern structural dynamics is to develop analytical models and 

tools to anticipate the mechanical behavior of a structure with a crack and to predict eventual 

damage due to this crack. Cracks reduce the natural frequencies of a structure because the latter 

becomes more flexible [11,207-209]. Therefore, one of the crack identification methods is to 

detect changes of natural frequencies due to crack presence. This methodology is effective, 

inexpensive, fast and non-destructive. Hereinafter, the beam is divided into two beam segments 

and the crack section is simulated by an equivalent rotational spring with a rigidity 𝑘𝑠. Thus, it 

induces a change in strain energy of the beam due to the presence of the crack is equal to the 

stiffness of the spring. Using the three versions of the Bresse-Timoshenko model, the natural 

frequencies will be determined following the geometric caracteristics of the crack and by the 

inverse method, knowing some parameters such as the critical depth of the crack, the crack will 

be located. It is shown that the crack reduces the natural frequency and this reduction is more 

important when the crack is deeper. The location of the crack is also an important parameter.  

Different investigations have been carried out about the instability parametric instability 

of beams considering the three versions of the Bresse-Timoshenko model [95]. Indeed, numerous 

investigators showed a real interest for this issue in past decades [14,210-214]. The reader may 

also refer to the paper by Hagedorn and Koval [215] who showed that the rotary inertia and shear 

effects create new instability regions, widen the pre-existent regions of instability, and cause a 

shift of the instability regions to the left in the stability chart. More specifically, Elishakoff et al. 

[92,93] demonstrated that the three versions of the Bresse-Timoshenko model lead, for small 

slenderness ratios, to regions of dynamic instabilities that are extremely close to each other. 

When the ratio increases, the models do not predict the same instability regions and the 

difference increases with the ratio.  

The study of the response of a beam under random excitations in presence of different 

damping (Voigt, transverse and rotary viscous) has been widely investigated in the literature 

[181,216-220] considering the Bernoulli-Euler model [221] and more recently [181], the truncated 

version of the Bresse-Timoshenko model. Although the Bernoulli-Euler model and the Bresse-

Timoshenko models provide both finite mean-square displacemenent, the Bresse-Timoshenko 

equation produces a finite mean-square stress, contrary to the classical Euler-Bernoulli theory. 
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One can determine the displacement for the three versions of the Bresse-Timoshenko model [91] 

and the previously mentioned kinds of damping. Thus, for a thin beam, the mean-square 

displacement is the same for the Bernoulli-Euler model and the Bresse-Timoshenko models. 

When the slenderness ratio increases, a difference between these approaches occurs.  

 

2.2. Thick plate models for macrostructures 

As explained in a previous chapter, the mechanical behavior of plate can be described by 

the Kirchhoff-Love theory for thin plates and different versions of the Uflyand-Mindlin plate 

theory for thick plates. In this section, we derive the different versions of the Uflyand-Mindlin 

plate theory: the Original Uflyand-Mindlin model (OUM), the Truncated Uflyand-Mindlin theory 

(TUM) and the Uflyand-Mindlin plate model based on slope inertia (SUM). Three kinds of 

derivations are considered: variationnal one for the OUM and SUM model, through the use of 

equilibrium equations for the TUM and OUM model and asymptotically for the TUM model.  

The closed form solution is provided for a plate with all edges simply supported and for a 

plate with two opposite edges that are simply supported, an exact solution is proposed, obtained 

by using the Lévy’s method.  A special notation will be adopted for the boundary conditions, 

commonly used in the literature [158,159,162,222]. Hereinafter, plates with two opposite edges 

simply supported at 𝑥 = 0 and 𝑥 = 𝑎 will be considered and six cases will be studied: SSSS (all 

edges simply supported), SFSF (the edges y=0 and y=b are free), SFSF (the edges y=0 and y=b are 

free), SSSF (y=0 is simply supported, y=b is free), SSSC (y=0 is simply supported, y=b is clamped), 

SCSF (y=0 is clamped, y=b is free). 
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2.2.1. The different models 

2.2.1.1. Original Uflyand-Mindlin 

Considering a 𝑥, 𝑦, 𝑧-system of Cartesian coordinates and a rectangular plate of length 𝑎, width 𝑏 

and uniform thickness ℎ, bending rigidity 𝐷 = 𝐸ℎ3 12(1 − 𝜈2)⁄ , as shown in Fig. 10.  

 

Fig. 10. Plate of dimensions 𝑎 × 𝑏 × ℎ and rotations of a transverse normal about the y axis 

[108] 

𝜓𝑥 and 𝜓𝑦 are the bending rotations of a transverse normal about the 𝑥 and 𝑦 axes, 

respectively, as shown in Fig. 10. 

First of all, the derivation of the original Uflyand-Mindlin through the use of equilibrium equations 

is proposed. 

The three-dimensional equilibrium equations are: 

𝜕𝜎𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥

𝜕𝑦
+
𝜕𝜏𝑧𝑥
𝜕𝑧

= 𝜌
𝜕2𝑢

𝜕𝑡2
                                                  

𝜕𝜏𝑦𝑥

𝜕𝑥
+
𝜕𝜎𝑦

𝜕𝑦
+
𝜕𝜏𝑧𝑦

𝜕𝑧
= 𝜌

𝜕2𝑣

𝜕𝑡2
                                                   

𝜕𝜏𝑧𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑧

𝜕𝑦
+
𝜕𝜎𝑧
𝜕𝑧

= 𝜌
𝜕2𝑤

𝜕𝑡2
                                                 

(2.73) 

The bending and twisting moments and the transverse shearing forces are related to the normal 

and shear stresses as follows: 

(

𝑀𝑥
𝑀𝑦
𝑀𝑦𝑥

) = ∫ (

𝜎𝑥
𝜎𝑦
𝜏𝑦𝑥

)𝑧𝑑𝑧
ℎ 2⁄

−ℎ 2⁄

;  (
𝑄𝑥
𝑄𝑦
) = ∫ (

𝜏𝑥𝑧
𝜏𝑦𝑧
)𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 

(2.74) 
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Multiplying Eq. (2.73) by 𝑧, integrating over the plate thickness and substituting Eq. (2.74) yields: 

𝜕𝑀𝑥
𝜕𝑥

+
𝜕𝑀𝑦𝑥

𝜕𝑦
− 𝑄𝑥 =

𝜌ℎ3

12

𝜕2𝜓𝑥
𝜕𝑡2

                                                

     
𝜕𝑀𝑦𝑥

𝜕𝑥
+
𝜕𝑀𝑦

𝜕𝑦
− 𝑄𝑦 =

𝜌ℎ3

12

𝜕2𝜓𝑦

𝜕𝑡2
                                                      

         
𝜕𝑄𝑥
𝜕𝑥

+
𝜕𝑄𝑦

𝜕𝑦
= 𝜌ℎ

𝜕²𝑤

𝜕𝑡²
                                                       

(2.75) 

In the Mindlin’s [103] plate theory, the bending and twisting moments and the shear forces 𝑄𝑥 

and 𝑄𝑦 are given by, for an isotropic material,  

𝑀𝑥 = 𝐷(
𝜕𝜓𝑥
𝜕𝑥

+ 𝜈
𝜕𝜓𝑦

𝜕𝑦
) ;𝑀𝑦 = 𝐷(

𝜕𝜓𝑦

𝜕𝑦
+ 𝜈

𝜕𝜓𝑥
𝜕𝑥

) 

𝑀𝑦𝑥 =
𝐷

2
(1 − 𝜈) (

𝜕𝜓𝑦

𝜕𝑥
+
𝜕𝜓𝑥
𝜕𝑦

) 

𝑄𝑥 = 𝜅𝐺ℎ (𝜓𝑥 +
𝜕𝑤

𝜕𝑥
) ; 𝑄𝑦 = 𝜅𝐺ℎ (𝜓𝑦 +

𝜕𝑤

𝜕𝑦
) 

(2.76) 

Substituting Eq. (2.76) into Eq. (2.75) yields to the equations of motion: 

𝐷

2
[(1 − 𝜈)𝛻2𝜓𝑥 + (1 + 𝜈)(

𝜕2𝜓𝑥
𝜕𝑥2

+
𝜕𝜓𝑦

𝜕𝑥𝜕𝑦
)] − 𝜅𝐺ℎ (𝜓𝑥 +

𝜕𝑤

𝜕𝑥
) =

𝜌ℎ3

12

𝜕2𝜓𝑥
𝜕𝑡2

 

𝐷

2
[(1 − 𝜈)𝛻2𝜓𝑦 + (1 + 𝜈) (

𝜕𝜓𝑥
𝜕𝑥𝜕𝑦

+
𝜕2𝜓𝑦

𝜕𝑦2
)] − 𝜅𝐺ℎ (𝜓𝑦 +

𝜕𝑤

𝜕𝑦
) =

𝜌ℎ3

12

𝜕2𝜓𝑦

𝜕𝑡2
 

𝜅𝐺ℎ (𝛻2𝑤 +
𝜕𝜓𝑥
𝜕𝑥

+
𝜕𝜓𝑦

𝜕𝑦
) = 𝜌ℎ

𝜕²𝑤

𝜕𝑡²
 

(2.77) 

where ∇2 is the Laplace operator. After different manipulations of the equations of motion, it 

leads to the governing differential equation of the original Uflyand-Mindlin plate model  

𝐷𝛻4𝑤 + 𝜌ℎ
𝜕²𝑤

𝜕𝑡²
− 𝜌

ℎ3

12
(1 +

12

ℎ3
𝐷

𝜅𝐺
)
𝜕2

𝜕𝑡2
𝛻2𝑤 +

𝜌2ℎ3

12

1

𝜅𝐺

𝜕4𝑤

𝜕𝑡4
= 0 

(2.78) 

Furthermore, as for beams and the original Bresse-Timoshenko model, the OUM model is also 

derived variationnally, as widely investigated in the literature [20,102,103,112-114,223,224].   

The potential and kinetic energies of the plate are given by, respectively 

𝑉 =∬
1

2
(𝐷 {(

𝜕𝜓𝑥
𝜕𝑥

+
𝜕𝜓𝑦

𝜕𝑦
)

2

− 2(1 − 𝜈) [
𝜕𝜓𝑥
𝜕𝑥

𝜕𝜓𝑦

𝜕𝑦
−
1

4
(
𝜕𝜓𝑥
𝜕𝑦

+
𝜕𝜓𝑦

𝜕𝑥
)

2

]}
𝔇

+ 𝜅𝐺ℎ [(
𝜕𝑤

𝜕𝑥
+ 𝜓𝑥)

2

+ (
𝜕𝑤

𝜕𝑦
+ 𝜓𝑦)

2

])𝑑𝑥𝑑𝑦 

(2.79) 
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𝑇 =
1

2
∬ 𝜌ℎ (

𝜕𝑤

𝜕𝑡
)
2

+
𝜌ℎ3

12
[(
𝜕𝜓𝑥
𝜕𝑡
)
2

+ (
𝜕𝜓𝑦

𝜕𝑡
)

2

] 𝑑𝑥𝑑𝑦
𝔇

 (2.80) 

where 𝔇 is the area of the mid-surface of the plate. 

According to the Hamilton’s principle, one obtains the governing differential equation and the 

boundary conditions. For example, at the boundaries of the plate, for edges parallel to the x axis, 

𝐷 (
𝜕𝜓𝑥
𝜕𝑥

+ 𝜈
𝜕𝜓𝑦

𝜕𝑦
) = 0 𝑜𝑟 𝜓𝑥 

𝜕𝜓𝑥
𝜕𝑦

+
𝜕𝜓𝑦

𝜕𝑥
= 0 𝑜𝑟 𝜓𝑦

𝜅𝐺ℎ (𝜓𝑦 +
𝜕𝑤

𝜕𝑦
) = 0 𝑜𝑟 𝑤

    𝑎𝑟𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑                                      (2.81) 

Analogically tor beams, a truncated version of the Uflyand-Mindlin plate model is proposed. 

 

 

2.2.1.2. Truncated Uflyand-Mindlin plate theory 

Extending the truncated Bresse-Timoshenko derivation to the case of thick plates, it is suggested 

to replace 𝜕2𝜓𝑥 𝜕𝑡2⁄  and 𝜕2𝜓𝑦 𝜕𝑡2⁄  in Eq. (2.77) by 𝜕3𝑤 𝜕𝑥𝜕𝑡2⁄  and 𝜕3𝑤 𝜕𝑦𝜕𝑡2⁄ , respectively. 

Thus, it leads to the governing differential equation in displacement of the truncated Uflyand-

Mindlin plate model: 

𝐷∇4𝑤 + 𝜌ℎ
𝜕²𝑤

𝜕𝑡²
− 𝜌

𝐷

𝜅𝐺

𝜕2

𝜕𝑡2
∇2𝑤 = 0                      

(2.82) 

As for beams, the asymptotic derivation of this truncated model is now proposed.  

Start by the three-dimensional equilibrium equations for a plate: 

(𝜆𝐿 + 𝐺)

(

 
 
 
 

𝜕

𝜕𝑥
𝜕

𝜕𝑦
𝜕

𝜕𝑧)

 
 
 
 

(𝜃 +
𝜕𝑤

𝜕𝑧
) + 𝐺 (∇2 +

𝜕2

𝜕𝑧2
)(

𝑢
𝑣
𝑤
) = 𝜌

𝜕2

𝜕𝑡2
(
𝑢
𝑣
𝑤
) (2.83) 

where 𝜆𝐿 is the Lamé coefficient and 𝜃 is defined as 

𝜃 =
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
 (2.84) 
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On the free surfaces, the normal and shear stresses vanish, resulting in 

𝜎𝑧 (𝑥,
ℎ

2
) = 𝜎𝑧 (𝑥, −

ℎ

2
) ; 𝜎𝑦𝑧 (𝑥,

ℎ

2
) + 𝜎𝑦𝑧 (𝑥,−

ℎ

2
) = 0 

(2.85) 

In the reduction method, the displacements are expanded in power series as follows: 

𝜃 = ∑𝜃𝑘(𝑥, 𝑦, 𝑡)𝑧
𝑘

∞

𝑘=0

; 𝑤 = ∑𝑤𝑘(𝑥, 𝑦, 𝑡)𝑧
𝑘

∞

𝑘=0

 (2.86) 

Substituting Eq. (2.86) into Eq. (2.85), it yields: 

∑2(𝜆𝐿 + 2𝐺)𝑛 (
ℎ

2
)
2𝑛−1

𝑤2𝑛 + 𝜆𝐿 (
ℎ

2
)
2𝑛−1

𝜃2𝑛−1

∞

𝑛=1

= 0 

∇2𝑤0 +∑{(
ℎ

2
)
2𝑛

∇2𝑤2𝑛 + (2𝑛 − 1) (
ℎ

2
)
2𝑛−2

𝜃2𝑛−1}

∞

𝑛=1

= 0 

(𝐺∇2 − 𝜌
𝜕2

𝜕𝑡2
)𝑤2𝑛 + (𝜆𝐿 + 2𝐺)(2𝑛 + 1)(2𝑛 + 2)𝑤2𝑛+2 + (𝜆𝐿 + 𝐺)(2𝑛

+ 1)𝜃2𝑛+1 = 0 

(𝜆𝐿 + 𝐺)2𝑛∇
2𝑤2𝑛 + ((𝜆𝐿 + 2𝐺)∇

2 − 𝜌
𝜕2

𝜕𝑡2
)𝜃2𝑛−1 + 𝐺2𝑛(2𝑛 + 1)𝜃2𝑛+1

= 0 

(2.87) 

where 𝑐2 = 𝐺 𝜌⁄ . 

The variables are rewritten under the dimensionless form as follows: 

𝜃̅𝑛 = 𝐿
𝑛𝜃𝑛; 𝑤̅𝑛 = 𝐿

𝑛−1𝑤𝑛; ∇̅
2= 𝐿2∇2; ℎ̅ =

ℎ

2𝐿
; 𝑡̅ =

ℎ𝑡𝑐

2𝐿2
=
ℎ̅𝑡𝑐

2𝐿
 

(2.88) 

The two summations re-written as: 

∑[2(𝜆𝐿 + 2𝐺)(𝑛 + 1)𝑤̅2𝑛+2 + 𝜆𝐿𝜃̅2𝑛+1]ℎ̅
2𝑛

∞

𝑛=0

= 0 

∇̅2𝑤̅0 +∑{ℎ̅2∇̅2𝑤̅2𝑛+2 + (2𝑛 + 1)𝜃̅2𝑛+1}ℎ̅
2𝑛

∞

𝑛=0

= 0 

(2.89) 

At the fourth order 

2(𝜆𝐿 + 2𝐺)(𝑤̅2 + 2𝑤̅4ℎ̅
2 + 3𝑤̅6ℎ̅

4) + 𝜆𝐿(𝜃̅1 + 𝜃̅3ℎ̅
2 + 𝜃̅5ℎ̅

4) = 0 

∇̅2(𝑤̅0 + ℎ̅
2𝑤̅2 + ℎ̅

4𝑤̅4) + 𝜃̅1 + ℎ̅
23𝜃̅3 + ℎ̅

45𝜃̅5 = 0 

(2.90) 
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Moreover, for any integer n, the relationships between 𝑤̅2𝑛+2, 𝑤̅2𝑛 and 𝜃̅2𝑛+1 and between 

𝜃̅2𝑛+3, 𝑤̅2𝑛+2 and 𝜃̅2𝑛+1 are, respectively : 

𝜃̅𝑁+3 =
1

(𝑁 + 3)(𝑁 + 2)
𝒜𝐿
𝑝
𝜃̅𝑁+1 +

1

𝑁 + 3
ℬ𝐿
𝑝
𝑤̅𝑁+2;     𝑁 = 0,2,4,… 

𝑤̅𝑁+2 =
1

(𝑁 + 1)(𝑁 + 2)
𝒞𝐿
𝑝
𝑤̅𝑁 +

1

(𝑁 + 2)
ℱ𝐿
𝑝
𝜃̅𝑁+1;     𝑁 = 0,2,4,… 

(2.91) 

Where the operators  𝒜𝐿
𝑝

, ℬ𝐿
𝑝

, 𝒞𝐿
𝑝

 and ℱ𝐿
𝑝

 are defined as follows :: 

𝒜𝐿
𝑝
= −[

(𝜆 + 2𝐺)

𝐺
∇̅2 − ℎ̅2

𝜕2

𝜕𝑡̅2
] ; ℬ𝐿

𝑝
= −

(𝜆𝐿 + 𝐺)

𝐺
∇̅2 

𝒞𝐿
𝑝
= −

𝐺

(𝜆 + 2𝐺)
[∇̅2 − ℎ̅2

𝜕2

𝜕𝑡̅2
] ; ℱ𝐿

𝑝
= −

(𝜆𝐿 + 𝐺)

(𝜆𝐿 + 2𝐺)
 

(2.92) 

Substituting Eq. (2.91) Into Eq. (2.90), it leads in two equations in 𝜃1 and 𝑤̅0, expressed in a matrix 

form: 

(
𝑀11 𝑀12
𝑀21 𝑀22

) (
𝑤̅0
𝜃1
) = (

0

0
) (2.93) 

where the coefficients 𝑀11, 𝑀12, 𝑀21 and 𝑀22 are: 

𝑀11 = −20(𝐺 − 𝜆𝐿)
𝜕2

𝜕𝑡̅2
∇̅2ℎ̅4 + (2𝐺 + 3𝜆𝐿)∇̅

6ℎ̅4  

+ 120(2𝐺 + 𝜆𝐿) (
𝜕2

𝜕𝑡̅2
ℎ̅2 − ∇̅2) − 20𝜆∇̅4ℎ̅2 

𝑀12 = 20(4𝐺 + 3𝜆𝐿)∇̅
2ℎ̅2 − 120(2𝐺 + 𝜆𝐿) − 20(3𝐺 + 2𝜆𝐿)

𝜕2

𝜕𝑡̅2
ℎ̅4

− (6𝐺 + 5)∇̅4ℎ̅4 

𝑀21 = (2𝐺 + 3𝜆𝐿)∇̅
6ℎ̅4 + 12𝜆𝐿 (

𝜕2

𝜕𝑡̅2
ℎ̅4 − ∇̅2ℎ̅2) ∇̅2 − 24(2𝐺 + 𝜆𝐿)∇̅

2 

𝑀22 = 12(4𝐺 + 3𝜆𝐿)∇̅
2ℎ̅2 − 12(2𝐺 + 𝜆𝐿)

𝜕2

𝜕𝑡̅2
ℎ̅4 − (6𝐺 + 5𝜆𝐿)∇̅

4ℎ̅4

− 24(2𝐺 + 𝜆𝐿) 

(2.94) 

In order to have a nontrivial solution, the determinant of the matrix has to vanish. It results in 

governing differential equations at different orders: 

0th order 

(𝜆𝐿 + 𝐺)∇̅
4𝑤̅0 +

3

4
(𝜆𝐿 + 2𝐺)

𝜕2𝑤̅0
𝜕𝑡̅2

= 0 (2.95) 
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2nd order 

−10(3𝜆𝐿 + 4𝐺)
𝜕2

𝜕𝑡̅2
∇̅2ℎ̅2𝑤̅0 − 4(𝜆𝐿 + 𝐺)∇̅

6𝑤̅0ℎ̅
2 + 20(𝜆𝐿 + 𝐺)∇̅

4𝑤̅0

+ 15(𝜆𝐿 + 2𝐺)
𝜕2𝑤̅0
𝜕𝑡̅2

= 0 

(2.96) 

Or, in the dimensional form: 

0th order 

𝐷∇4 + 𝜌ℎ
𝜕2

𝜕𝑡2
= 0 (2.97) 

2nd order 

𝐷∇4 + 𝜌ℎ
𝜕2

𝜕𝑡2
−
2(2 − 𝜈)

(1 − 𝜈)

𝜌ℎ3

12

𝜕2

𝜕𝑡2
∇2 − 𝐷

1

20
∇6ℎ2 = 0 (2.98) 

The equation at the zeroth order coincides with the traditional Kirchhoff-Love plate model valid 

for thin plates. Thus, this model is asymptotically consistent at the lowest order [225].  In an 

analogous reasoning to the one of the asymptotic beam derivation at the second order, as 

suggested in the literature [109], Eq. (2.96) is multiplied by [1 + (ℎ̅2 5⁄ )𝛻̅2] and neglecting the 

terms in ℎ4 leads to: 

20(𝜆𝐿 + 𝐺)∇̅
4𝑤̅0 + [3(𝜆𝐿 + 2𝐺) − 10(3𝜆𝐿 + 4𝐺)]ℎ̅

2
𝜕2

𝜕𝑡̅2
∇̅2𝑤̅0

+ 15(𝜆𝐿 + 2𝐺)
𝜕2𝑤̅0
𝜕𝑡̅2

= 0 

(2.99) 

Thus, using the dimensional variables, the equation is reduced to:  

𝐷∇4 + 𝜌ℎ
𝜕2

𝜕𝑡2
−
𝜌ℎ3

12
[1 +

12𝐷

ℎ3𝐺

6 − 𝜈

5
]
𝜕2

𝜕𝑡2
∇2= 0 (2.100) 

One recognize the governing differential equation of the truncated Uflyand-Mindlin plate model 

with a shear coefficient equal to 𝜅 = 5 (6 − 𝜈)⁄ . Thus, the truncated Uflyand-Mindlin plate theory 

is asymptotically consistent.  

As for beams and the Bresse-Timoshenko model, it is suggested to derive variationnally the 

Uflyand-Mindlin plate model through the same correction based on slope inertia done for the 

truncated approach. 
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2.2.1.3. Uflyand-Mindlin based on slope inertia 

In the literature, it has been suggested to replace the kinetic energy given in Eq. (2.80) that 

overcorrects the shear effect by:  

𝑇 =
1

2
∬

𝜌ℎ3

12
[(
𝜕2𝑤

𝜕𝑡𝜕𝑥
)

2

+ (
𝜕2𝑤

𝜕𝑡𝜕𝑦
)

2

] + 𝜌ℎ (
𝜕𝑤

𝜕𝑡
)
2

𝑑𝑥𝑑𝑦
𝔇

  (2.101) 

Using Hamilton’s principle and integrating by parts, it yields to the equations of motion, 

𝐷

2
[(1 − 𝜈)𝛻2𝜓𝑥 + (1 + 𝜈)

𝜕𝛷

𝜕𝑥
] − 𝜅𝐺ℎ (𝜓𝑥 +

𝜕𝑤

𝜕𝑥
) = 0                    

(2.102) 

𝐷

2
[(1 − 𝜈)𝛻2𝜓𝑦 + (1 + 𝜈)

𝜕𝛷

𝜕𝑦
] − 𝜅𝐺ℎ (𝜓𝑦 +

𝜕𝑤

𝜕𝑦
) = 0                   (2.103) 

𝜅𝐺ℎ(𝛻²𝑤 + 𝛷) = 𝜌ℎ (1 −
ℎ2

12
𝛻²)

𝜕2𝑤

𝜕𝑡²
                  

(2.104) 

From Eqs. (2.102)-(2.104), one obtains the governing differential equation  

𝐷𝛻4𝑤 + 𝜌ℎ
𝜕2𝑤

𝜕𝑡2
−
𝜌ℎ3

12
(1 +

12

ℎ3
𝐷

𝜅𝐺
)
𝜕2

𝜕𝑡2
𝛻2𝑤 +

𝜌ℎ2𝐷

12𝜅𝐺

𝜕2

𝜕𝑡2
𝛻4𝑤 = 0 (2.105) 

The fourth-order time derivative term in the original Uflyand-Mindlin equation is not present, 

replaced by a term, underlined in the equation. 

For boundary conditions, for edges parallel to the x axis: 

𝐷 (
𝜕𝜓𝑥
𝜕𝑥

+ 𝜈
𝜕𝜓𝑦

𝜕𝑦
) = 0 𝑜𝑟 𝜓𝑥

𝜕𝜓𝑥
𝜕𝑦

+
𝜕𝜓𝑦

𝜕𝑥
= 0 𝑜𝑟 𝜓𝑦

𝜅𝐺ℎ (𝜓𝑦 +
𝜕𝑤

𝜕𝑦
) −

𝜌ℎ3

12

𝜕2𝑤

𝜕𝑡2𝜕𝑦
= 0 𝑜𝑟 𝑤

      𝑎𝑟𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑         (2.106) 

It is worth noticing that the two first boundary conditions match with those of the original 

Uflyand-Mindlin plate model. For the last equation, used for instance for a free edge, the 

boundary conditions do not match. Thus the models differ in both the governing differential 

equation and the boundary conditions. 
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2.2.2. Natural frequencies for the different Uflyand-Mindlin plate models 

Three control parameters 𝛾1, 𝛾2 and 𝛾3 are introduced with (𝛾1, 𝛾2, 𝛾3) equals to (1,0,0), 

(0,0,1) and (0,1,0) for the original Uflyand-Mindlin plate theory, the truncated Uflyand-Mindlin 

theory and the Uflyand-Mindlin model based on slope inertia, also denoted OUM, TUM and SUM, 

respectively. Thus, the equations of motion are rewritten in a general way as, setting 𝐶 = 𝐷(1 −

𝜈)/2:  

𝐷𝜍,𝑥 + 𝐶𝜑,𝑦 − 𝜅
2𝐺ℎ(𝜓𝑥 +𝑤,𝑥) = 𝛾1

𝜌ℎ3

12
𝜓̈𝑥 + 𝛾3

𝜌ℎ3

12

𝜕3𝑤

𝜕𝑥𝜕𝑡2
   (2.107) 

𝐷𝜍,𝑦 − 𝐶𝜑,𝑥 − 𝜅
2𝐺ℎ(𝜓𝑦 +𝑤,𝑦) = 𝛾1

𝜌ℎ3

12
𝜓̈𝑦 + 𝛾3

𝜌ℎ3

12

𝜕3𝑤

𝜕𝑦𝜕𝑡2
 

(2.108) 

𝜅𝐺ℎ(𝜓𝑥,𝑥 + 𝜓𝑦,𝑦 +𝑤,𝑥𝑥 +𝑤,𝑦𝑦) = (𝜌ℎ − 𝛾2
𝜌ℎ3

12
∇²) 𝑤̈   

(2.109) 

where the function 𝜑 is introduced such as [226]: 

𝜑 = 𝜓𝑥,𝑦 − 𝜓𝑦,𝑥                                                                  (2.110) 

Differentiating Eqs. (2.107) and (2.108) with respect to 𝑦 and 𝑥, respectively and substracting Eq. 

(2.108) to Eq. (2.107), one obtains: 

𝐶∇2𝜑 − 𝜅𝐺ℎ𝜑 = 𝛾1
𝜌ℎ3

12

𝜕2

𝜕𝑡2
𝜑                                                         

(2.111) 

Moreover, the different governing differential equations of the three versions of the Uflyand-

Mindlin plate model are written in the general form as follows [108,109]: 

𝐷 (1 + 𝛾2
𝜌ℎ2

12𝜅𝐺

𝜕2

𝜕𝑡2
)𝛻4𝑤 + 𝜌ℎ

𝜕²𝑤

𝜕𝑡²
− 𝜌

ℎ3

12
(1 +

12

ℎ3
𝐷

𝜅𝐺
)
𝜕2

𝜕𝑡2
𝛻2𝑤

+ 𝛾1
𝜌2ℎ3

12𝜅𝐺

𝜕4𝑤

𝜕𝑡4
= 0 

(2.112) 

Thus, the system is described by two uncoupled equations Eqs. (2.111) and (2.112).  

It is assumed that 

(𝑤; 𝜓𝑥; 𝜓𝑦; 𝜑)(𝑥, 𝑦, 𝑡) = (𝑤̅; 𝜓̅𝑥; 𝜓̅𝑦; 𝜑̅)(𝑥, 𝑦)𝑒
𝑖𝜔𝑡           (2.113) 

Substituting Eq. (2.113) into Eqs. (2.111) and (2.112) leads to: 

𝐶𝛻2𝜑̅ − (𝜅2𝐺ℎ − 𝛾1
𝜌ℎ3

12
𝜔2) 𝜑̅ = 0 (2.114) 
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𝐷(1 −
𝜌ℎ2

12𝜅2𝐺
𝜔2𝛾2)∇

4𝑤̅ + 𝜌
ℎ3

12
(1 +

12

ℎ3
𝐷

𝜅2𝐺
)𝜔2∇2𝑤̅

+ (𝛾1
𝜌2ℎ3

12𝜅2𝐺
𝜔2 − 𝜌ℎ)𝜔2𝑤̅ = 0 

(2.115) 

The rotation angles 𝜓𝑥 and 𝜓𝑦 are found from the transverse deflection 𝑤 and the parameter 𝜑̅ 

by the following relationships: 

(𝜅𝐺ℎ − 𝛾1
𝜌ℎ3

12
𝜔2) 𝜓̅𝑥

=
𝜕

𝜕𝑥
[−𝜌𝜔2

𝐷 (1 − 𝛾2
ℎ2

12
∇²)

𝜅𝐺 
− 𝐷∇2 − 𝜅𝐺ℎ + 𝛾3

𝜌ℎ3

12
𝜔2] 𝑤̅

+ 𝐶
𝜕𝜑̅

𝜕𝑦
 

(2.116) 

(𝜅2𝐺ℎ − 𝛾1
𝜌ℎ3

12
𝜔2) 𝜓̅𝑦

=
𝜕

𝜕𝑦
[−𝜌𝜔2

𝐷 (1 − 𝛾2
ℎ2

12𝛻²)

𝜅2𝐺 
− 𝐷𝛻2 − 𝜅2𝐺ℎ + 𝛾3

𝜌ℎ3

12
𝜔2] 𝑤̅

− 𝐶
𝜕𝜑̅

𝜕𝑥
 

(2.117) 

 

2.2.2.1. Rectangular plates with four edges simply supported 

A derivation of the solution for an all-round simply supported plate is proposed. In this case, 

analogically to beams, the solution is given by Navier [227] 

𝑤̅(𝑥, 𝑦) = 𝑎 sin (
𝑛𝜋𝑦

𝑏
) sin (

𝑚𝜋𝑥

𝑎
)                                        (2.118) 

where 𝑚 and 𝑛 are the number of half-waves in the 𝑥 and 𝑦-direction, respectively. 

 Consider the following nondimensional quantities: 

Ω = 𝜔𝑏2√
𝜌ℎ

𝐷
; 𝛽 =

𝐸

𝐺(1 − 𝜈2)
; 𝑦 = 𝜂𝑏; ℎ̅ =

ℎ

𝑎
; 𝜉 =

𝑥

𝑎
; 𝜒 =

𝑎

𝑏
; ∇̅𝑚𝑛= 𝜋

2[(𝜒𝑛)2 +𝑚2] 

(2.119) 
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Substituting Eq. (2.118) and (2.119) into Eq. (2.115),  

∇̅𝑚𝑛
2 − 𝜒4Ω2 [1 + ∇̅𝑚𝑛

ℎ̅2

12
(1 +

𝛽

𝜅2
) + ∇̅𝑚𝑛

2
𝛽ℎ̅4

144𝜅2
𝛾2] +

𝛽𝜒8ℎ̅4

144𝜅2
𝛾1Ω

4 = 0 
(2.120) 

 

The solution of the original Uflyand-Mindlin plate problem is given by [110,228,229]: 

Ω =
12

𝜒2ℎ̅2
√
𝜅2

2𝛽
(1 + ∇̅𝑚𝑛

ℎ̅2

12
(1 +

𝛽

𝜅2
)

± √[1 + ∇̅𝑚𝑛
ℎ̅2

12
(1 +

𝛽

𝜅2
)]

2

−
𝛽ℎ̅4

36𝜅2
∇̅𝑚𝑛
2 )

1
2

 

(2.121) 

There are two different solutions, and so two different branches of frequencies.  

 

For the two other versions of the Uflyand-Mindlin (truncated and based on slope, the natural 

frequencies are given by: 

Ω =
∇̅𝑚𝑛

𝜒2√1 +
ℎ̅2

12 (1 +
𝛽
𝜅2
) ∇̅𝑚𝑛 + ∇̅𝑚𝑛

2 𝛽ℎ̅4

144𝜅2
𝛾2

          
(2.122) 

Because the expression of the natural frequency has a positive additional term in the 

denominator, the Uflyand-Mindlin model based on slope inertia provides smaller values for 

natural frequencies than does the truncated Uflyand-Mindlin model. In contrast to the original 

model, the truncated theories lead to a single branch of natural frequencies. This result is also 

valid, as it will be shown hereinafter, for plates with simply supported two opposite edges.  

For the Kirchhoff-Love plate model: 

ΩKL =
∇̅𝑚𝑛
𝜒2

          
(2.123) 
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The Uflyand-Mindlin plate theories lead to smaller natural frequencies compared to the Kirchhoff-

Love plate model. Indeed, when the rotary inertia and the shear effects are taken into account, 

the difference with the classical theory increases with the vibration mode number. For low orders 

of frequencies, the three versions of the Uflyand-Mindlin plate model provide the same natural 

frequencies. Although the original and truncated models lead to very similar results, the 

frequencies calculated from the model based on slope inertia are smaller than for the two other 

Uflyand-Mindlin plate models. The difference increases with the frequency.   

A plate simply supported at all edges has already been investigated in the literature. 

Consequently, the results can be compared to the existing ones.  Different models and method of 

resolution are considered: the Higher Order Shear Deformation Theory (HSDT) given by Shufrin 

[230], the two dimensional Rayleigh-Ritz method (2D Ritz) [231], the three dimensional Rayleigh-

Ritz method [231], the Differential Quadrature Method (DQM) [232] and the analytical solution 

from the three dimensional elasticity equations [233], the three dimensional DQM and Rayleigh-

Ritz methods providing the same results. The five first natural frequencies are listed in Table 8, as 

it has been done in the literature [109]. The aim of the numerical method is to confirm the results 

obtained via Eq. (2.121). 

It is seen from Table 8 that the original Uflyand-Mindlin plate model provide results, close to those 

obtained by using the three dimensional methods. The numerical models (Rayleigh-Ritz method) 

lead to slightly bigger natural frequencies. Indeed, these models give an upper bound of the 

results. For high order of frequencies, the original Uflyand-Mindlin plate model has natural 

frequencies that are close to those of the higher-shear deformation theory, supposed to be 

naturally more accurate than the Uflyand-Mindlin plate models. However, compared to the exact 

three dimensional solution, the model based on slope inertia is better than the two other versions 

of the Uflyand-Mindlin plate model. 

In any case, for the first natural frequencies, the three different versions of the Uflyand-Mindlin 

lead to similar results. It is worth noticing that, as it will be detailed before, the original model, 

because it contains a fourth order time derivative in the governing differential equations, has two 

branches of frequencies. The two other models (truncated and based on slope inertia) lead to 

only one branch. 
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(𝜒ℎ̅) 3D anal KL 
OUM TUM SUM HSDT 2D [231] 3D DQM 

0.001 

19.74 19.74 19.74 19.74 19.74 - 19.74 - 

49.35 49.35 49.35 49.35 49.35 - 49.35 - 

78.95 78.96 78.96 78.96 78.96 - 78.96 - 

98.69 98.69 98.69 98.69 98.69 - 98.69 - 

128.30 128.30 128.30 128.30 128.30 - 128.30 - 

0.1 

18.89 19.74 19.08 19.23 19.07 19.07 - 19.09 

45.61 49.35 45.58 46.31 45.39 45.49 - 45.62 

70.10 78.96 70.02 71.57 69.33 69.81 - 70.10 

85.49 98.69 85.37 87.54 84.15 85.06 - 85.49 

107.37 128.30 107.18 110.33 104.86 106.74 - 107.37 

0.2 

17.51 19.74 17.50 17.89 17.33 17.45 - 17.53 

38.47 49.35 38.38 39.74 36.82 38.19 - 38.48 

49.14 78.96 55.59 57.77 51.41 55.30 - 55.79 

55.78 98.69 65.72 68.36 59.30 65.31 - 66.00 

66.00 128.30 79.48 85.65 69.17 78.99 - - 

Table 8. Comparison study of frequency parameters Ω for an all edges simply supported squared 

plate [109] 

 

2.2.2.2. Solutions for two opposite simply supported edges: Lévy’s 

approach 

Consider a plate with simple supports along edges 𝜉 = 0 and  𝜉 = 1. In the Lévy approach (see 

for instance Chen and Liu [234], Szilard [235] and Jomehzadeh and Saidi [226]): 

𝑤̅(𝜉, 𝜂) = ∑ 𝑎𝑊𝑚(𝜂) sin(𝑚𝜋𝜉)

∞

𝑚=1

 

𝜓̅𝑥(𝜉, 𝜂) = ∑ 𝜙𝑥(𝜂) cos(𝑚𝜋𝜉)

∞

𝑚=1

; 𝜓̅𝑦(𝜉, 𝜂) = ∑ 𝜙𝑦(𝜂) 𝑠𝑖𝑛(𝑚𝜋𝜉)

∞

𝑚=1

 

(2.124) 
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Substituting Eq. (2.124) into Eq. (2.110),  

𝜑̅(𝜉, 𝜂) =
1

𝑎
∑ 𝜑𝑚(𝜂) cos(𝑚𝜋𝜉)

∞

𝑚=1

                                       (2.125) 

Using the non-dimensional parameters, substituting Eqs. (2.124) and (2.125) into Eqs. (2.114) 

and (2.115), it yields: 

Λ1
𝑑4𝑊𝑚
𝑑𝜂4

+ Λ2
𝑑2𝑊𝑚
𝑑𝜂2

+ Λ3𝑊𝑚 = 0                                           (2.126) 

Λ4
𝑑2𝜑𝑚
𝑑𝜂2

+ Λ5𝜑𝑚 = 0                                            (2.127) 

where the different coefficients Λ𝑖 (𝑖 = 1, . . ,5) of the differential equation are given by 

Λ1 = 𝜒
4 (1 − 𝛾2

𝛽𝜒4ℎ̅4

144𝜅
Ω2) ; 

Λ2 = [𝜒
6Ω2

ℎ̅2

12
(1 +

𝛽

𝜅
) − 2(𝜒𝑚𝜋)2 (1 −

𝛽𝜒4ℎ̅4

144𝜅
Ω2𝛾2)] 

Λ3 = [(𝑚𝜋)
4 − 𝜒4Ω2 [(𝑚𝜋)4

𝛽ℎ̅4

144𝜅
𝛾2 +

(𝑚𝜋ℎ̅)
2

12
(1 +

𝛽

𝜅
) + 1] +

𝛽𝜒8ℎ̅4

144𝜅
𝛾1Ω

4] 

Λ4 = 𝛽𝜒
2
ℎ̅2

24
(1 − 𝜈); Λ5 = −[(𝑚𝜋)

2𝛽
ℎ̅2

24
(1 − 𝜈) + 𝜅 − 𝛾1

𝛽𝜒4ℎ̅4

144
Ω2] 

(2.128) 

The non-dimensional rotations 𝜓̅𝑥 and 𝜓̅𝑦 are expressed, following Eqs. (2.116) and (2.117), 

respectively: 

(𝜅2 − 𝛾1Ω
2𝛽
𝜒4ℎ̅4

144
) 𝜓̅𝑥

= −𝑚𝜋 [[
𝛽2𝜒4ℎ̅4

144
Ω2
1

𝜅
(1 + (𝑚𝜋)2𝛾2

ℎ̅2

12
) − (𝑚𝜋)2

𝛽ℎ̅2

12
+ 𝜅

− 𝛾3Ω
2𝛽
𝜒4ℎ̅4

144
]𝑊𝑚 + [𝜒

2
𝛽ℎ̅2

12
−
𝛽2𝜒6ℎ̅6

1728
Ω2
1

𝜅
𝛾2]

𝑑2𝑊𝑚
𝑑𝜂2

]

+ 𝜒𝛽
ℎ̅2

24
(1 − 𝜈)

𝜕𝜑𝑚
𝜕𝜂

 

(2.129) 
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(𝜅 − 𝛾1Ω
2𝛽
𝜒4ℎ̅4

144
) 𝜓̅𝑦

= −𝜒
𝜕

𝜕𝜂
[[
𝛽2𝜒4ℎ̅4

144
Ω2
1

𝜅
(1 + (𝑚𝜋)2𝛾2

ℎ̅2

12
) − (𝑚𝜋)2

𝛽ℎ̅2

12
+ 𝜅

− 𝛾3Ω
2𝛽
𝜒4ℎ̅4

144
]𝑊𝑚 + [𝜒

2
𝛽ℎ̅2

12
−
𝛽2𝜒6ℎ̅6

1728
Ω2
1

𝜅
𝛾2]

𝑑2𝑊𝑚
𝑑𝜂2

]

+ 𝑚𝜋𝛽
ℎ̅2

24
(1 − 𝜈)𝜑𝑚 

(2.130) 

 

First of all, the solutions of the governing differential equations are found by determining the 

roots of the characteristic polynomial of Eq. (2.126), given by: 

𝑟±
2 =

−Λ2 ±√Λ2
2 − 4Λ1Λ3

2Λ1
                                                         

(2.131) 

In the literature, two transition frequencies Ω−
𝑡  and Ω+

𝑡  have been introduced. 𝑟− and 𝑟+ being 

both positive, equal to (𝑚𝜋 𝛼⁄ ), for Ω equal to 0, the transition frequencies are defined such as, 

for Ω greater than Ω−
𝑡  and Ω+

𝑡 , 𝑟− and 𝑟+ are imaginary number, respectively. Ω−
𝑡  and Ω+

𝑡  depend 

on the model, the boundary conditions, the geometric parameters such as the thickness ratio and 

for each model, these transition can occur only once. It has been shown in the literature [108] 

that whatever the frequency, for the truncated Uflyand-Mindlin plate model, 𝑟+ is always real. 

The case of Ω greater than Ω−
𝑡  and Ω+

𝑡  is often ignored in the literature. Hashemi and Arsanjani 

[162] for instance calculated only the first frequencies, for which the transition frequencies are 

not reached.  

Thus, different cases have to be considered following the value of the frequency Ω. 

 

If Ω ≤ Ω−
∗ < Ω+

𝑡  then 𝑟− and 𝑟+ are both real. The solution of the differential equation is 

given by  

𝑊𝑚(𝜂) = 𝐶1 cosh 𝑟+𝜂 + 𝐶2 sinh 𝑟+𝜂 + 𝐶3 cosh 𝑟−𝜂 + 𝐶4 sinh 𝑟−𝜂         (2.132) 

If Ω−
∗ < Ω ≤ Ω+

∗  then 𝑟− is not real anymore and cosh 𝑟−𝜂 and sinh 𝑟−𝜂 are replaced 

by cos 𝑟̃−𝜂 and sin 𝑟̃−𝜂, respectively.  
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where 𝑟̃− and 𝑟̃+ are defined as follows 

𝑟̃−
2 =

Λ2 +√Λ2
2 − 4Λ1Λ3
2Λ1

; 𝑟̃+
2 =

Λ2 −√Λ2
2 − 4Λ1Λ3
2Λ1

                                    
(2.133) 

If Ω−
∗ < Ω;Ω+

∗ < Ω then, 𝑟− and 𝑟+ are both complex numbers. Thus, cosh 𝑟−𝜂, sinh 𝑟−𝜂, cosh 𝑟+𝜂 

and sinh 𝑟+𝜂 are replaced by cos 𝑟̃−𝜂, sin 𝑟̃−𝜂 , cos 𝑟̃−𝜂 and sin 𝑟̃−𝜂, respectively. 

Thus, before calculating the natural frequencies of a plate, it is important to consider all the 

possible expression of the displacements. These expressions depend on the natural frequencies, 

function of 𝜒, the thickness ratio ℎ̅, the mode shape number 𝑚, the shear coefficient 𝜅 and the 

Poisson’s ratio 𝜈.  

The roots of the characteristic equation Eq. (2.127) are: 

𝑢± = ±√
Λ5
Λ4
                                                                                

(2.134) 

 

Thus, 𝜑𝑚 is expressed as follows [108,226]: 

𝜑𝑚(𝜂) = 𝐶5 sinh𝑢+𝜂 + 𝐶6 cosh𝑢+𝜂                                              (2.135) 

Each edge of the plate can be clamped, simply supported or free. The boundary conditions are 

given, for each of these cases, by  

Clamped: 

𝑤 = 0;𝜓𝑥 = 0;𝜓𝑦 = 0                                                               (2.136) 

 

Simply supported: 

𝑤 = 0;
𝜕𝜓𝑦

𝜕𝑦
+ 𝜈

𝜕𝜓𝑥
𝜕𝑥

= 0;𝜓𝑥 = 0                                             (2.137) 

 

Free: 

𝜅𝐺ℎ (𝜓𝑦 +
𝜕𝑤

𝜕𝑦
) − 𝛾2

𝜌ℎ3

12
𝜔2

𝜕𝑤

𝜕𝑦
= 0;

𝜕𝜓𝑦

𝜕𝑦
+ 𝜈

𝜕𝜓𝑥
𝜕𝑥

= 0;
1

2
(1 − 𝜈)𝐷 (

𝜕𝜓𝑥
𝜕𝑦

+
𝜕𝜓𝑦

𝜕𝑥
) = 0 (2.138) 
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2.2.2.2.1. Two opposite edges simply supported and two other 

edges both clamped or free  

In these problems, the plate has two plans of symmetry with respect to the central axis. 

Thus, in this case, the 𝜉 axis is arbitrarily located at the center of the plate. This observation will 

help to considerably reduce the complexity and the calculation time in the determination of the 

natural frequencies.  

 

First of all, the natural frequencies are obtained for a thin plate as the solutions of the following 

characteristic equations [108,158,229], for 𝑚𝜋 < Ω: 

• SCSC plate  

2Ω1Ω̃2 [1 − cosh
Ω1
𝜒
cos

Ω̃2
𝜒
] + (Ω1

2 − Ω̃2
2) sinh

Ω1
𝜒
sin

Ω̃2
𝜒
= 0 

(2.139) 

• SFSF plate  

{Ω1
2[𝑘 − (1 − 𝜈)(𝑚𝜋)2]4 − Ω̃2

2[𝑘 + (1 − 𝜈)(𝑚𝜋)2]4} sinh
Ω1
𝜒
sin

Ω̃2
𝜒

+ 2Ω1Ω̃2 [(Ω1Ω̃2)
2
− 𝜈(1 − 𝜈)(𝑚𝜋)4] (1 − cosh

Ω1
𝜒
cos

Ω̃2
𝜒
)

= 0 

(2.140) 

where 

Ω1 =
1

𝑏
√(𝑚𝜋)2 + Ω2; Ω2 =

1

𝑏
√(𝑚𝜋)2 −Ω2; Ω̃2 =

1

𝑏
√Ω2 − (𝑚𝜋)2 

(2.141) 

 

If Ω ≤ 𝑚𝜋 then Ω̃2, cos(Ω̃2 𝜒⁄ ) and sin(Ω̃2 𝜒⁄ ) are replaced by Ω2, cosh(Ω2/𝜒) and sinh(Ω2/𝜒), 

respectively.    

For a thick plate, as explained before, there are two plans of symmetry. Thus, it is assumed that 

the displacement functions are either symmetric or antisymmetric with respect to the central axis. 

Thus, the two cases have to distinguished. 
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Symmetric modes 

Restricting to this family of modes, the antisymmetric terms (in sine and hyperbolic sine) are 

deleted in the expression of the displacements. In other words, 𝐶2, 𝐶4 and 𝐶5 are taken equal to 

zero. The edges 𝜉 = −1/2 and  𝜉 = 1/2 are simply supported. The two other edges, at 𝜂 = −1/2 

and  𝜂 = 1/2 are clamped or free. Because the deflection It is worth noticing that 𝑊𝑚 being 

symmetric, 𝑑2𝑊 𝑑𝜂2⁄  is antisymmetric and it is deduced that the rotation 𝜓𝑦 is also 

antisymmetric and so, from Eq. (2.130), 𝜑𝑚 is antisymmetric too. Thus, the displacement are 

expressed as follows: 

• For Ω ≤ Ω−
𝑡 < Ω+

𝑡   

𝑊𝑚(𝜂) = 𝐶1 cosh 𝑟+𝜂 + 𝐶3 cosh 𝑟−𝜂                                  

𝜑𝑚(𝑦) = 𝐶5 𝑠𝑖𝑛ℎ 𝑢+𝜂   
(2.142) 

If Ω−
𝑡 < Ω then cosh 𝑟−𝜂 is replaced by cos 𝑟̃−𝜂. If Ω is greater than both Ω−

𝑡  and Ω+
𝑡 , then cosh 𝑟−𝜂 

and cosh 𝑟+𝜂 are replaced by cos 𝑟̃−𝜂 and cos 𝑟̃−𝜂, respectively.  

Substituting the expressions of the displacements into the boundary equations, it leads to a 

system of three equations with three unknowns, written under the matrix form: 

𝑍𝑆(𝐶𝑖)𝑖=1,3,5 = 0                                                (2.143) 

Where 𝑍𝑆 is a matrix 3 × 3. In order to have a non trivial solution, the determinant of  𝑍𝑆 must 

vanish and it provides the natural frequencies of the plate. 

It is found that the antisymmetric modes are obtained for odd values of 𝑛. 

 

Antisymmetric modes 

Analogically to the symmetric modes, in this case, 𝐶1, 𝐶3 and 𝐶6 vanish. The displacement is 

expressed as: 

• Ω ≤ Ω−
∗ < Ω+

∗  then 𝑟−
2 ≥ 0; 𝑟+

2 > 0.  

𝑊𝑚(𝜂) = 𝐶2 sinh 𝑟+𝜂 + 𝐶4 sinh 𝑟−𝜂                                

𝜑𝑚(𝑦) = 𝐶6 𝑐𝑜𝑠ℎ 𝑢+𝜂                                                                   
(2.144) 

If Ω−
𝑡 < Ω then sinh 𝑟−𝜂 is replaced by sin 𝑟̃−𝜂. If Ω is greater than both Ω−

𝑡  and Ω+
𝑡 ,  then sinh 𝑟−𝜂 

and sinh 𝑟+𝜂 are replaced by sin 𝑟̃−𝜂 and sin 𝑟̃−𝜂, respectively. Applying the boundary conditions, 

one obtains a system of three equations with three unknown, put under the matrix form: 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



57 
 

𝑍𝐴𝑆(𝐶𝑖)𝑖=2,4,6 = 0                                                 (2.145) 

Where 𝑍𝐴𝑆 is a matrix 3 × 3. In order to have a non trivial solution, the determinant of  𝑍𝐴𝑆 must 

vanishes leading to the natural frequencies of the plate.  

It is found that the antisymmetric modes are obtained for even values of 𝑛. 

Thus, the natural frequencies of the plate problem are the value of Ω for which for which two 

matrices 3 × 3 (namely 18 coefficients) vanish. For other sets of boundary conditions, as it will be 

seen hereinafter, the natural frequencies are calculating by vanishing the determinant of a matrix 

6 × 6 (namely 36 coefficients). Thus, the distinction of the symmetric and antisymmetric modes, 

as [159] and Gorman [160,172] did reduces the calculation time and is a very efficient way to 

simplify the problem.  

For a SCSC plate: 

𝑍𝑆 =

(

 
 
 

𝐶𝑟+
2

𝐶𝑟−
2

0

𝐻1+𝐶𝑟+
2

𝐻1−𝐶𝑟−
2

−
𝜒𝛽̅

𝑚𝜋
𝑢+𝐶𝑢+

2

𝐻1+𝑟+𝑆𝑟+
2

𝐻1−𝑟−𝑆𝑟−
2

−
𝛽̅𝑚𝜋

𝜒
𝑆𝑢+
2 )

 
 
 

 

𝑍𝐴𝑆 =

(

 
 
 

𝑆𝑟+
2

𝑆𝑟−
2

0

𝐻1+𝑆𝑟+
2

𝐻1−𝑆𝑟−
2

−
𝛽̅𝜒

𝑚𝜋
𝑢+𝑆𝑢+

2

𝐻1+𝑟+𝐶𝑟+
2

𝐻1−𝑟−𝐶𝑟−
2

−
𝛽̅𝑚𝜋

𝜒
𝐶𝑢+
2 )

 
 
 

 

(2.146) 

where,  

𝐻1(𝑥) =
𝛽2𝜒4ℎ̅4

144

Ω2

𝜅
− [𝜒2𝑥 + (𝑚𝜋)2]

𝛽ℎ̅2

12
(1 − 𝛾2Ω

2ℎ̅4𝜒4
𝛽

144𝜅
) + 𝜅2

− 𝛾3Ω
2𝛽
𝜒4ℎ̅4

144
 

𝐻2(𝑥) = 𝜒(𝜅 − [𝛾1 + 𝛾2]
𝛽ℎ̅4𝜒4

144
Ω2 −𝐻1(𝑥)) 

𝐻3(𝑥) = [𝜒
2𝑥 + 𝜈(𝑚𝜋)2] 

𝐻𝑖+ = 𝐻𝑖(−𝑟+
2);𝐻𝑖+̃ = 𝐻𝑖(𝑟̃+

2);𝐻𝑖− = 𝐻𝑖(−𝑟−
2);𝐻𝑖+̃ = 𝐻𝑖(𝑟̃−

2)   (𝑖 = 1,2,3) 

𝐶𝑥 = cosh𝑥 ; 𝑆𝑥 = sinh𝑥 ; 𝐶̃𝑥 = cos 𝑥̃ ; 𝑆̃𝑥 = sin 𝑥̃ ; 𝛽̅ = (1 − 𝜈)
𝛽ℎ̅2

24
 

(2.147) 
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For a SFSF plate: 

𝑍𝑆 =

(

  
 

𝐻3+𝐻1+𝐶𝑟+
2

𝐻3−𝐻1−𝐶𝑟−
2

𝛽̅(1 − 𝜈)𝜒𝑚𝜋𝑢+𝐶𝑢+
2

𝐻2+𝑟+𝑆𝑟+
2

𝐻2−𝑟−𝑆𝑟−
2

𝑚𝜋𝛽̅𝑆𝑢+
2

𝑚𝜋𝜒𝐻1+𝑟+𝑆𝑟+
2

𝑚𝜋𝜒𝐻1−𝑟−𝑆𝑟−
2

−
𝛽̅

2
[𝜒2𝑢+

2 + (𝑚𝜋)2]𝑆𝑢+
2 )

  
 

 

𝑍𝐴𝑆 =

(

  
 

𝐻3+𝐻1+𝑆𝑟+
2

𝐻3−𝐻1−𝑆𝑟−
2

𝛽̅(1 − 𝜈)𝜒𝑚𝜋𝑢+𝑆𝑢+
2

𝐻2+𝑟+𝐶𝑟+
2

𝐻2−𝑟−𝐶𝑟−
2

𝑚𝜋𝛽̅𝐶𝑢+
2

𝑚𝜋𝜒𝐻1+𝑟+𝐶𝑟+
2

𝑚𝜋𝜒𝐻1−𝑟−𝐶𝑟−
2

−
𝛽̅

2
(1 − 𝜈)[𝜒2𝑢+

2 + (𝑚𝜋)2]𝐶𝑢+
2 )

  
 

 

(2.148) 

In both cases, if Ω−
𝑡 < Ω then −𝑟−

2,  𝐶𝑟−
2

; 𝑟−𝑆𝑟−
2

; 𝑆𝑟−
2

 and 𝑟−𝐶𝑟−
2

 are replaced by 𝑟̃−
2, 𝐶̃𝑟−

2
, −𝑟̃−𝑆̃𝑟−

2
, 𝑆̃𝑟−

2
 

and 𝑟̃−𝐶̃𝑟−
2

, respectively. If If Ω is greater than both Ω−
𝑡  and Ω+

𝑡  then 𝑟−
2 < 0; 𝑟+

2 < 0, −𝑟+
2,  𝐶𝑟+

2
; 

𝑟−𝑆𝑟+
2

;  𝑆𝑟+
2

 and 𝑟+𝐶𝑟+
2

 are replaced by 𝑟̃−
2, 𝐶̃𝑟+

2
, −𝑟̃+𝑆̃𝑟+

2
, 𝑆̃𝑟+

2
 and 𝑟̃+𝐶̃𝑟+

2
, respectively 

 

2.2.2.2.2. Two other opposite edges with differing boundary conditions  

For a plate having two opposite edges that are simply supported and the two other that are 

different (SSSF, SSSC and SCSF), the origin of the coordinate system is taken at a corner of the 

plate. Thus, the edges 𝜉 = 0 and  𝜉 = 1 are simply supported. The boundary conditions, three at 

each edge, are applied at 𝜂 = 0 and  𝜂 = 1. Thus, it results in a system of six equations, written 

under the matrix form as follows: 

𝑍(𝐶𝑖)𝑖=1,2,3,4,5,6 = 0 (2.149) 

with 𝑍 is a matrix 6 × 6. In order to have a non trivial solution, the determinant of  𝑍 must 

vanishes, leading to an exact equation. The roots of this equation are the natural frequencies. 

The coefficients of the matrix Z have been given in the literature for different sets of boundary 

conditions for thin plates [158] and thick plates [108]. 

For a thin plate [158], for 𝑚𝜋 < Ω, the characteristic equations for the three different sets of 

boundary conditions are 
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• SSSF 

Ω̃2[Ω + (1 − 𝜈)(𝑚𝜋)
2]2 sinh

Ω1
𝜒
cos

Ω̃2
𝜒

− Ω1[𝑘 − (1 − 𝜈)(𝑚𝜋)
2]2 cosh

Ω1
𝜒
sin

Ω̃2
𝜒
= 0 

(2.150) 

• SSSC 

Ω1 cosh
Ω1
𝜒
sin

Ω̃2
𝜒
− Ω̃2 sinh

Ω1
𝜒
cos

Ω̃2
𝜒
= 0 (2.151) 

• SCSF 

Ω1Ω̃2[Ω
2 − (1 − 𝜈)2(𝑚𝜋)4] + (𝑚𝜋)2[(1 − 2𝜈)Ω2  − (1 − 𝜈)2(𝑚𝜋)4] sinh

Ω1
𝜒
sin

Ω̃2
𝜒

+ Ω1Ω̃2[Ω
2 + (1 − 𝜈)2(𝑚𝜋)4] cosh

Ω1
𝜒
cos

Ω̃2
𝜒
= 0 

(2.152) 

For each of these models, for Ω ≤ 𝑚𝜋, 𝜆̃2, sin(Ω̃2 𝜒⁄ ) and cos(Ω̃2 𝜒⁄ ) are replaced by Ω2, 

sin(Ω2 𝜒⁄ ) and cos(Ω2 𝜒⁄ ), respectively Leissa [159]. 

For a SSSF plate,  

• For Ω smaller than both Ω−
𝑡  and Ω+

𝑡 .  

𝑍12 = 𝐻3+𝐻1+; 𝑍14 = 𝐻3−𝐻1−; 𝑍16 = 𝜒𝛽̅(1 − 𝜈)𝑚𝜋𝑢+; 𝑍21 = 𝐻2+𝑟+; 𝑍23

= 𝐻2−𝑟−; 𝑍25 = 𝛽̅𝑚𝜋; 

𝑍31 = −2𝜒𝑚𝜋𝑟+𝐻1+; 𝑍33 = −2𝜒𝑚𝜋𝑟−𝐻1−; 𝑍35 = 𝛽̅[𝜒
2𝑢+

2 + (𝑚𝜋)2]; 𝑍41 = 𝑆𝑟+ ; 𝑍42

= 𝐶𝑟+; 

𝑍43 = 𝑆𝑟− ; 𝑍44 = 𝐶𝑟−; 𝑍51 = 𝐻3+𝐻1+𝑆𝑟+; 𝑍52 = 𝐻3+𝐻1+𝐶𝑟+; 𝑍53 = 𝐻3−𝐻1−𝑆𝑟−; 𝑍54

= 𝐻3−𝐻1−𝐶𝑟− 

𝑍55 = 𝛽̅(1 − 𝜈)𝜒𝑚𝜋𝑢+𝑆𝑢+; 𝑍56 = 𝛽̅(1 − 𝜈)𝜒𝑚𝜋𝑢+𝐶𝑢+; 𝑍61 = 𝐻1+𝑆𝑟+; 𝑍62

= 𝐻1+𝐶𝑟+; 

𝑍63 = 𝐻1−𝑆𝑟−; 𝑍64 = 𝐻1−𝐶𝑟−; 𝑍65 = −
𝛽̅𝜒

𝑚𝜋
𝑆𝑢+; 𝑍66 =

𝛽̅𝜒

𝑚𝜋
𝐶𝑢+; 

𝑍11 = 𝑍13 = 𝑍15 = 𝑍22 = 𝑍24 = 𝑍26 = 𝑍32 = 𝑍34 = 𝑍36 = 𝑍45 = 𝑍46 = 0 

(2.153) 
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• Ω−
𝑡 < Ω then the coefficients 𝑍14, 𝑍23, 𝑍33, 𝑍43, 𝑍44, 𝑍53, 𝑍54, 𝑍63 and 𝑍64 are replaced by  

𝑍̃14 = 𝐻̃3−𝐻̃1−; 𝑍̃23 = 𝐻̃2−𝑟̃−; 𝑍̃33 = −2𝑚𝜋𝜒𝐻̃1−𝑟̃−; 𝑍̃43 = 𝑆̃𝑟−; 𝑍̃44 = 𝐶̃𝑟−  

𝑍̃53 = 𝐻̃3−𝐻̃1−𝑆̃𝑟− ; 𝑍̃54 = 𝐻̃3−𝐻̃1−𝐶̃𝑟−; 𝑍̃63 = 𝐻̃1−𝑆̃𝑟−; 𝑍̃64 = 𝐻̃1−𝐶̃𝑟− 

(2.154) 

 

• For Ω greater than both Ω−
𝑡  and Ω+

𝑡 , the matrix Z is given by the coefficients 𝑍̃𝑖𝑗 with  𝑍̃14, 𝑍̃23, 

𝑍̃33, 𝑍̃43, 𝑍̃44, 𝑍̃53, 𝑍̃54, 𝑍̃63 and 𝑍̃64 given in the previous equations and the other coefficient 

given by 

𝑍̃16 = 𝑍16; 𝑍̃25 = 𝑍25; 𝑍̃35 = 𝑍35; 𝑍̃55 = 𝑍55; 𝑍56 = 𝑍̃56; 𝑍̃65 = 𝑍65; 𝑍̃66 = 𝑍66 

𝑍12 = 𝐻̃3+𝐻̃1+; 𝑍21 = 𝐻̃2+𝑟̃+; 𝑍31 = −2𝑚𝜋𝜒𝐻̃1+𝑟̃+; 𝑍41 = 𝑆̃𝑟+  

𝑍42 = 𝐶̃𝑟+; 𝑍51 = 𝐻̃3+𝐻̃1+𝑆̃𝑟+; 𝑍52 = 𝐻̃3+𝐻̃1+𝐶̃𝑟+; 𝑍61 = 𝑟̃+𝐻̃1+𝑆̃𝑟+; 𝑍62

= 𝑟̃+𝐻̃1+𝐶̃𝑟+; 

𝑍11 = 𝑍13 = 𝑍15 = 𝑍22 = 𝑍24 = 𝑍26 = 𝑍32 = 𝑍34 = 𝑍36 = 𝑍45 = 𝑍46 = 0 

(2.155) 

 

For a SSSC plate  

• For Ω smaller than both Ω−
𝑡  and Ω+

𝑡  

𝑍12 = 𝑍14 = 1; 𝑍16 = 𝑍11 = 𝑍13 = 𝑍15 = 𝑍21 = 𝑍23 = 𝑍25 = 𝑍32 = 𝑍34 = 𝑍36

= 𝑍45 = 𝑍46 = 0 

𝑍22 = 𝐻3+𝐻1+; 𝑍24 = 𝐻3−𝐻1−; 𝑍26 = 𝛽̅(1 − 𝜈)𝜒𝑚𝜋𝑢+; 𝑍32 = 𝐻1+; 𝑍34 = 𝐻1−; 𝑍36

= −𝛽̅
𝑚𝜋

𝜒
 

𝑍41 = 𝑆𝑟+; 𝑍42 = 𝐶𝑟+ ; 𝑍43 = 𝑆𝑟− ; 𝑍44 = 𝐶𝑟−; 𝑍51 = 𝐻1+𝑆𝑟+; 𝑍52 = 𝐻1+𝐶𝑟+; 𝑍53

= 𝐻1−𝑆𝑟−  

𝑍54 = 𝐻1−𝐶𝑟− ; 𝑍55 = −
𝛽̅𝜒

𝑚𝜋
𝑢+𝑆𝑢+; 𝑍56 = −

𝛽̅𝜒

𝑚𝜋
𝑢+𝐶𝑢+; 𝑍61 = 𝐻1+𝑟+𝐶𝑟+ ; 𝑍62

= 𝐻1+𝑟+𝑆𝑟+ ; 

𝑍63 = 𝐻1−𝑟−𝐶𝑟−; 𝑍64 = 𝐻1−𝑟−𝑆𝑟−; 𝑍65 = −𝛽̅
𝑚𝜋

𝜒
𝐶𝑢+; 𝑍66 = −𝛽̅

𝑚𝜋

𝜒
𝑆𝑢+ 

(2.156) 
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• Ω−
𝑡 < Ω ≤ Ω+

∗  then the coefficients 𝑍̃24, 𝑍̃34, 𝑍̃43, 𝑍̃44, 𝑍̃53, 𝑍̃54, 𝑍̃63 and 𝑍̃64 are replaced by  

𝑍24 = 𝐻̃3−𝐻̃1−; 𝑍34 = 𝐻̃1−; 𝑍43 = 𝑆̃𝑟− ; 𝑍44 = 𝐶̃𝑟−; 

𝑍53 = 𝐻̃1−𝑆̃𝑟−; 𝑍54 = 𝐻̃1−𝐶̃𝑟−; 𝑍63 = 𝐻̃1−𝑟̃−𝐶̃𝑟−; 𝑍64 = −𝐻̃1−𝑟̃−𝑆̃𝑟− 
(2.157) 

 

• For Ω greater than both Ω−
𝑡  and Ω+

𝑡 , the matrix Z is given by the coefficients 𝑍̃𝑖𝑗 with  𝑍̃24, 𝑍̃34, 

𝑍̃43, 𝑍̃44, 𝑍̃53, 𝑍̃54, 𝑍̃63 and 𝑍̃64 given in the previous equations and the other coefficient given 

by 

𝑍̃26 = 𝑍26; 𝑍̃36 = 𝑍36; 𝑍̃55 = 𝑍55; 𝑍̃56 = 𝑍56; 𝑍̃65 = 𝑍65; 𝑍̃66 = 𝑍66 

𝑍22 = 𝐻̃3+𝐻̃1+; 𝑍32 = 𝐻̃1+; 

𝑍41 = 𝑆̃𝑟+ ; 𝑍42 = 𝐶̃𝑟+; 𝑍51 = 𝐻̃1+𝑆̃𝑟+; 𝑍52 = 𝐻̃1+𝐶̃𝑟+ ; 𝑍61 = 𝐻̃1+𝑟̃+𝐶̃𝑟+; 𝑍62

= −𝐻̃1+𝑟̃+𝑆̃𝑟+; 

𝑍12 = 𝑍14 = 1; 𝑍16 = 𝑍11 = 𝑍13 = 𝑍15 = 𝑍21 = 𝑍23 = 𝑍25 = 𝑍32 = 𝑍34 = 𝑍36

= 𝑍45 = 𝑍46 = 0 

(2.158) 

For a SCSF plate, the edges 𝜂 = 0 and 𝜂 = 1 are taken free and clamped, respectively. The 

coefficients of the matrix 𝑍 are 

• For Ω smaller than both Ω−
𝑡  and Ω+

𝑡  

𝑍12 = 𝐻3+𝐻1+; 𝑍14 = 𝐻3−𝐻1−; 𝑍16 = 𝜒𝛽̅(1 − 𝜈)𝑚𝜋𝑢+; 𝑍21 = 𝐻2+𝑟+; 𝑍23

= 𝐻2−𝑟−; 𝑍25 = 𝑚𝜋𝛽̅; 

𝑍31 = −2𝜒𝑚𝜋𝐻1+𝑟+; 𝑍33 = −2𝜒𝑚𝜋𝐻1−𝑟−; 𝑍35 = 𝛽̅[𝜒
2𝑢+

2 + (𝑚𝜋)2]; 𝑍41

= 𝑆𝑟+; 𝑍42 = 𝐶𝑟+ ; 

𝑍43 = 𝑆𝑟−; 𝑍44 = 𝐶𝑟−; 𝑍51 = 𝐻1+𝑆𝑟+; 𝑍52 = 𝐻1+𝐶𝑟+ ; 𝑍53 = 𝐻1−𝑆𝑟−; 𝑍54 = 𝐻1−𝐶𝑟−; 

𝑍55 = −
𝛽̅𝜒

𝑚𝜋
𝑢+𝑆𝑢+; 𝑍56 = −

𝛽̅𝜒

𝑚𝜋
𝑢+𝐶𝑢+; 𝑍61 = 𝐻1+𝑟+𝐶𝑟+ ; 𝑍62 = 𝐻1+𝑟+𝑆𝑟+; 

𝑍63 = 𝐻1−𝑟−𝐶𝑟− ; 𝑍64 = 𝐻1−𝑟−𝑆𝑟−; 𝑍65 = −𝛽̅
𝑚𝜋

𝜒
𝐶𝑢+; 𝑍66 = −𝛽̅

𝑚𝜋

𝜒
𝑆𝑢+ 

𝑍11 = 𝑍13 = 𝑍15 = 𝑍22 = 𝑍24 = 𝑍26 = 𝑍32 = 𝑍34 = 𝑍36 = 𝑍45 = 𝑍46 = 0 

(2.159) 
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• For Ω−
𝑡 < Ω the coefficients 𝑍14, 𝑍23, 𝑍33, 𝑍43, 𝑍44, 𝑍53, 𝑍54, 𝑍63 and 𝑍64 are replaced by  

𝑍14 = 𝐻̃3−𝐻̃1−; 𝑍23 = 𝐻̃2−𝑟̃−; 𝑍33 = −2𝑚𝜋𝜒𝐻̃1−𝑟̃−; 𝑍43 = 𝑆̃𝑟−; 𝑍44 = 𝐶̃𝑟−  

𝑍53 = 𝐻̃1−𝑆̃𝑟−; 𝑍54 = 𝐻̃1−𝐶̃𝑟− ; 𝑍63 = 𝐻̃1−𝑟̃−𝐶̃𝑟−; 𝑍64 = −𝐻̃1−𝑟̃−𝑆̃𝑟− 

(2.160) 

 

• For Ω greater than both Ω−
𝑡  and Ω+

𝑡 , the matrix Z is given by the coefficients 𝑍̃𝑖𝑗 with  𝑍̃24, 𝑍̃34, 

𝑍̃43, 𝑍̃44, 𝑍̃53, 𝑍̃54, 𝑍̃63 and 𝑍̃64 given in the previous equations and the other coefficient given 

by 

𝑍̃16 = 𝑍16; 𝑍̃25 = 𝑍25; 𝑍̃35 = 𝑍35; 𝑍̃55 = 𝑍55; 𝑍̃56 = 𝑍56; 𝑍̃65 = 𝑍65; 𝑍̃66 = 𝑍66 

𝑍12 = 𝐻̃3+𝐻̃1+; 𝑍21 = 𝐻̃2+𝑟̃+; 𝑍31 = −2𝑚𝜋𝜒𝐻̃1+𝑟̃+; 𝑍41 = 𝑆̃𝑟+; 𝑍42 = 𝐶̃𝑟+ ; 

𝑍51 = 𝐻̃1+𝑆̃𝑟+; 𝑍52 = 𝐻̃1+𝐶̃𝑟+; 𝑍61 = 𝐻̃1+𝑟̃+𝐶̃𝑟+ ; 𝑍62 = −𝐻̃1+𝑟̃+𝑆̃𝑟+  

𝑍11 = 𝑍13 = 𝑍15 = 𝑍22 = 𝑍24 = 𝑍26 = 𝑍32 = 𝑍34 = 𝑍36 = 𝑍45 = 𝑍46 = 0 

(2.161) 

 

2.2.2.2.3. Discussion 

The five first non-dimensional natural frequencies Ω for plates having two edges that are 

simply supported are calculated in Tables 9-11 for the six different sets of boundary conditions 

for a Poisson’s ratio taken equal to 0.3. Two aspect ratios are considered, equal to unity and two, 

respectively. In order to study the effect of rotary inertia and shear effects that increase with the 

thickness ratio of the plate, the frequencies are obtained for three different thickness ratios are 

considered: ℎ̅ = 0.01 (thin plate), ℎ̅ = 0.1 and ℎ̅ = 0.2. The results have been validated by 

comparing with those obtained found in the literature (Leissa [159] for the Kirchhoff-Love thin 

plate theory, Wang and Wang [229] and Hashemi and Arsanjani [162] for the original Uflyand-

Mindlin thick plate model).  

The shear correction factor has been taken equal to 0.8667 in order to perform the 

comparison. However, different values could be considered [108]: 𝜋2/12 [103,104], 0.822, 0.88 

[236,237]. In the present thesis, the shear coefficient has been determined as a function of the 

Poisson’s ratio through an asymptotic analysis. The comparison of the natural frequencies for 

different coefficients shows that the results are extremely similar when it is selected among one 

of the previously cited values.  
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In this thesis, all the results are calculated from the closed-form solution for a plate with 

all edges simply supported and from an exact solution for a plate having two opposite edges that 

are simply supported. Thus, their accuracy is maximal.  

First of all, it is seen in the different tables that whatever the boundary conditions, the 

thickness ratio or the aspect ratio, the non-dimensional fundamental frequency of a square plate 

is nearly the same between the different Uflyand-Mindlin plate models. Thus, Fig. 11 depicts the 

fundamental frequency for a square plate with a thickness ratio of 0.1 and Figs. 12 and 13 show 

the non-dimensional fundamental frequency for a SCSC plate and various couples (ℎ̅, 𝜒).  

 

 

 

Fig. 11. Nondimensional fundamental frequency determined through the three Uflyand-Mindlin 

plate models (original, truncated and based on slope inertia) for different boundary conditions, 

with ℎ̅ = 0.1, 𝜒 = 1 
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Fig. 12. Nondimensional fundamental frequency obtained through the KL model and the three 

Uflyand-Mindlin plate models (original, truncated and based on slope inertia) and considering 

different thickness ratios for a square SCSC plate 

 

Fig. 13. Nondimensional fundamental frequency obtained through the KL model and the three 

Uflyand-Mindlin plate models (original, truncated and based on slope inertia) and considering 

different aspect ratios for a SCSC plate with a thickness ratio equal to 0.1 

For higher order of natural frequencies, it is seen that the Uflyand-Mindlin plate model based on 

slope inertia leads to smaller natural frequencies compared to the ones determined through the 

truncated model. This has already been observed and explained a plate, simply supported at all 

edges, by comparing the closed form expression of the frequencies (see Eq. (2.122) ).  
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Moreover, it appears interesting to compare the influence of the thickness ratio, 

associated to the rotary inertia and the shear effects, on the natural frequencies calculated in the 

different Uflyand-Mindlin plate models. In this purpose, for each boundary condition, the aspect 

ratio is taken constant and the non-dimensional natural frequencies are determined for a 

thickness ratio ℎ̅ equal to 0.01, 01 and 0.2. For a thickness ratio equal to 0.01, the plate is thin, 

the rotary inertia and the shear effects are not important: the results of the Uflyand-Mindlin plate 

models are close to those of the Kirhhoff-Love plate model obtained by Leissa [158]. When the 

thickness ratio increases, the rotary inertia and the shear effect become important and cannot be 

ignored. A difference occurs between the Kirchhoff-Love plate model and the thick plate model. 

This difference increase with the order of the frequency and the thickness ratio. 

Now, to compare the influence of the boundary conditions on the natural frequencies of 

the plate, the thickness and aspect ratios are arbitrarily taken equal to 0.2 and 1 (thick square 

plate). It is seen in Tables 9-11 that the difference between the different models, whatever the 

considered boundary conditions increases with the mode number and the natural frequency 

strongly depends on the boundary conditions. Thus, Ω𝑆𝐹𝑆𝐹 < Ω𝑆𝑆𝑆𝐹 < Ω𝑆𝐶𝑆𝐹 < Ω𝑆𝑆𝑆𝑆 < Ω𝑆𝑆𝑆𝐶 <

Ω𝑆𝐶𝑆𝐶, as shown in Fig. 11. Indeed, an edge that is clamped has more constraints than a simply 

supported edge, itself being having more constraints than a free edge. A decrease of the 

constraints results in a decrease of the rigidity of the plate. The natural frequency depends on the 

flexibility of the plate. Consequently, the choice of the boundary conditions is extremely 

important and has a huge impact on the mechanical behavior in vibration of the plate.  

Furthermore, a comparison of the natural frequencies calculated for an aspect ratio equal 

to unity and two, for a constant thickness ratio, show that, whatever the boundary conditions, 

the frequencies decrease with the aspect ratio.  

Thus, three different versions of the Uflyand-Mindlin plate models (original, truncated 

and based on slope inertia) have been derived. The well-known original model is derivable from 

the equilibrium equations and variationally. Scientists suggested that it overcorrects the shear 

effect and the truncated model has been developed. This truncated theory is derived through the 

use of equilibrium equations. It is shown that it is asymptotically consistent at the second order. 

The variational derivation of this truncated results in a Uflyand-Mindlin plate model based on 

slope inertia, only derived variationnally and is not asymptotically consistent, whatever the 

considered order.  
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For each of these models, the first five natural frequencies have been calculated for a plate having 

two opposite edges that are simply supported. For the fundamental natural frequencies, the three 

models match. However, for higher order of frequencies, a difference occurs. This difference 

increases with the aspect ratio, the ratio of frequency and strongly depends on the boundary 

conditions. Thus, when the flexural rigidity of the plate increases, the natural frequencies 

decrease whereas the difference between the models increases.  

 

 

𝜒 

ℎ̅ = 0.01 ℎ̅ = 0.1 ℎ̅ = 0.2 

 
OUM TUM SUM OUM TUM SUM OUM TUM SUM 

S 

S 

S 

S 

1 

99.96 99.96 99.96 96.68 96.65 96.61 88.68 88.30 87.81 

99.91 99.91 99.91 92.37 92.19 91.97 77.78 76.54 74.62 

99.85 99.86 99.86 88.68 88.29 87.81 70.40 68.50 65.11 

99.82 99.82 99.82 84.47 85.96 85.26 66.59 64.37 60.08 

99.77 99.77 99.77 83.53 82.78 81.73 61.94 59.36 46.22 

2 

99.91 99.91 99.91 92.37 92.19 91.97 77.78 76.54 74.62 

99.85 99.86 99.86 88.68 88.30 87.81 70.40 68.50 65.10 

99.77 99.77 99.77 83.53 82.78 81.73 61.94 59.37 53.91 

99.70 99.70 99.70 80.08 79.04 77.49 57.10 54.21 47.49 

99.65 99.65 99.65 77.97 76.54 74.62 54.16 51.12 43.62 

S 

C 

S 

C 

1 99.93 99.93 99.93 92.36 92.28 92.17 77.73 77.14 76.59 

99.87 99.87 99.87 89.98 89.76 89.53 73.32 71.99 70.16 

99.83 99.83 99.83 85.79 85.52 85.20 65.00 63.42 61.77 
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99.77 99.77 99.77 83.72 83.25 82.72 62.51 60.39 57.52 

99.80 99.80 99.80 85.32 84.77 84.06 64.93 62.67 58.54 

2 99.68 99.63 99.60 78.90 78.48 78.06 54.71 52.70 51.47 

99.62 99.62 99.62 77.75 77.16 76.61 54.37 52.05 49.77 

99.57 99.57 99.57 76.21 75.32 74.29 53.06 50.16 45.97 

99.50 99.50 99.46 73.32 71.99 70.16 46.92 42.88 38.94 

99.30 99.30 99.30 65.62 64.17 62.82 42.72 39.82 34.35 

Table 9. First natural frequencies of a SSSS and a SCSC plate considering the KL, OUM, 

TUM and SUM theories for different aspect and thickness ratios (𝜅 = 0.86667; 𝜈 = 0.3) 

 

𝜒 

ℎ̅ = 0.01 ℎ̅ = 0.1 ℎ̅ = 0.2 

 
OUM TUM SUM OUM TUM SUM OUM TUM SUM 

S 

F 

S 

F 

1 

99.94 99.90 99.91 98.03 98.10 98.01 93.41 93.58 93.16 

99.76 99.69 99.68 95.39 95.89 95.35 87.56 88.98 87.00 

99.68 99.70 99.68 92.33 93.47 92.11 79.65 82.52 77.65 

99.89 99.89 99.89 93.53 93.57 93.26 80.72 80.21 78.40 

99.78 99.78 99.77 91.76 92.12 91.40 77.37 77.62 74.54 

2 

99.54 99.54 99.54 97.77 97.90 97.81 93.36 93.73 93.23 

99.33 99.35 99.33 90.66 92.40 90.60 77.45 82.60 76.43 

99.84 99.85 99.85 93.43 93.58 93.17 80.71 80.47 78.44 

99.47 99.49 99.47 87.59 89.01 87.02 70.25 73.21 66.53 

99.78 99.78 99.78 87.32 87.26 86.31 68.31 67.01 62.57 
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S 

S 

S 

F 

1 99.73 99.73 99.73 97.18 97.32 97.14 91.55 92.02 91.16 

99.79 99.80 99.79 94.35 94.79 94.22 83.70 84.73 82.31 

99.85 99.85 99.85 93.08 93.15 92.81 79.79 79.37 77.30 

99.78 99.79 99.78 90.38 90.56 89.84 74.25 73.85 72.98 

99.78 99.79 99.78 90.14 90.77 89.55 73.68 74.58 74.16 

2 99.70 98.98 98.98 95.41 95.51 95.02 87.56 88.82 86.99 

99.78 99.75 99.75 91.60 92.10 91.34 77.37 77.58 74.50 

99.68 99.68 99.65 88.13 89.71 87.35 70.12 73.70 65.31 

99.67 99.72 99.71 86.09 86.17 84.96 66.39 65.36 60.23 

99.50 99.54 99.51 83.74 84.76 82.35 63.02 64.90 55.34 

Table 10. First natural frequencies of a SFSF and a SSSF plate considering the KL, OUM, 

TUM and SUM theories for different aspect and thickness ratios (𝜅 = 0.86667; 𝜈 = 0.3) 

 

𝜒 

ℎ̅ = 0.01 ℎ̅ = 0.1 ℎ̅ = 0.2 

 
OUM TUM SUM OUM TUM SUM OUM TUM SUM 

S 

S 

S 

C 

1 

99.97 99.97 99.97 94.81 94.76 94.71 83.70 83.24 82.71 

99.89 99.89 99.89 91.39 91.19 90.96 75.87 74.58 72.69 

99.86 99.86 99.86 89.22 88.98 88.71 71.24 69.82 66.31 

99.82 99.82 99.82 86.38 85.95 85.44 66.57 64.56 61.41 

99.81 99.82 99.82 85.99 85.45 84.74 65.87 63.61 59.39 

2 

99.75 99.75 99.75 85.74 85.48 85.13 64.95 63.40 61.77 

99.78 99.78 99.78 83.70 83.24 82.71 62.52 60.40 57.57 
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99.69 99.70 99.69 80.37 79.54 78.49 57.90 55.13 50.26 

99.59 99.60 99.59 73.14 71.98 70.37 48.27 44.82 40.03 

99.51 99.51 99.51 75.28 73.98 72.10 51.70 48.49 41.59 

S 

C 

S 

F 

1 99.87 99.87 99.88 96.45 96.64 96.41 89.64 90.18 89.23 

99.78 99.79 99.79 92.14 92.69 91.95 78.29 79.30 76.77 

99.86 99.87 99.87 92.82 92.91 92.51 79.26 78.85 76.77 

99.75 99.75 99.75 88.82 89.04 88.25 71.48 71.08 67.73 

99.75 99.75 99.75 86.95 87.55 86.26 67.53 68.03 63.56 

2 99.68 99.68 99.72 92.79 93.43 92.72 81.03 82.56 80.10 

99.70 99.70 99.78 89.75 90.24 89.38 73.97 74.29 71.14 

99.66 99.67 99.68 82.02 83.50 81.01 58.59 61.10 58.96 

99.61 99.61 99.64 84.25 84.37 83.09 64.44 63.38 65.27 

99.40 99.41 99.41 78.32 79.30 76.80 55.26 56.47 59.51 

Table 11. First natural frequencies of a SSSC and SCSF plate considering the KL, OUM, TUM 

and SUM theories for different aspect and thickness ratios (𝜅 = 0.86667; 𝜈 = 0.3) 
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3. NONLOCAL PHENOMENOLOGICAL MODELS: ASYMPTOTIC 

AND ENGINEERING APPROACHES 

As explained in the first chapter constituting a review of the different results existing in the 

literature, for nanomaterials such as carbon nanotubes or graphene nanoplates, different small 

scale effects (for instance the interatomic interactions) have to be taken into account. Thus, the 

classical local theories are not sufficient to describe the mechanical behavior of beams and plates 

and there is a real need to develop nonlocal theories that do not ignore those effects. In this 

chapter, two kinds of theories are presented.  

The first approach is the asymptotic approach. The local asymptotic model for beams and 

plates has been derived at the lowest and second order in the previous chapter. It has been shown 

that the local Bernoulli-Euler beam model and the Kirchhoff-Love plate model and the truncated 

Bresse-Timoshenko and Uflyand-Mindlin models are asymptotically consistent at the zeroth and 

second order, respectively. Nevertheless, the asymptotic justification of these nonlocal beam 

models is still missing. Thus, one of the objective of the present chapter is to extend the 

asymptotic derivation of asymptotic beam and plate models by taking into account the nonlocal 

effect [238,239]. For both beams and plates models, three different nonlocal asymptotic 

approaches will be considered. 

Furthermore, in the literature, the original and the truncated Bresse-Timoshenko and 

Uflyand-Mindlin theories have been derived by taking into account the nonlocal effect. These 

models are called fourth order phenomenological models. Indeed, they are derived from a 

postulated nonlocal constitutive laws following the gradient formulation of the stress-strain 

relationship given by Eringen and they lead to a governing differential equation containing only 

fourth order derivative terms in time or following 𝑥 or 𝑦. Thus, in this chapter, the different 

Bresse-Timoshenko and Uflyand-Mindlin models (original, truncated and based on slope inertia) 

are derived. For thin beams and plates, it is also proposed an alternative sixth order 

phenomenological model. 
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The natural frequencies will be determined for simply supported carbon nanotubes and 

nanoplates, using the different values of parameters given in the literature and the different 

approaches will be compared. 

 

3.1. Different beam models 

3.1.1. Asymptotic derivation of nonlocal beam models 

Three different nonlocal asymptotic models, different in the postulated stress-displacement 

partial differential equations are considered. Indeed, for a beam, the nonlocality in the relation 

can be along the horizontal, the vertical or both directions. These three cases have to be studied 

and none of them should be ignored. 

3.1.1.1. Asymptotic model with a partial nonlocality along the horizontal 

direction 

Consider the same beam as in the previous chapter, with a width 𝑏, thickness ℎ and a length 𝐿. It 

is assumed that the nonlocal characteristic length 𝜂 is such as 𝜂 ≪ ℎ ≪ 𝐿. 

The nonlocal stress-displacement partial differential equations are: 

(1 − 𝜂2
𝜕2

𝜕𝑥2
)𝜎𝑥 =

𝐸

(1 − 𝜈2)
(
𝜕𝑢

𝜕𝑥
+ 𝜈

𝜕𝑣

𝜕𝑦
) ; 

(1 − 𝜂2
𝜕2

𝜕𝑥2
)𝜎𝑦 =

𝐸

(1 − 𝜈2)
(
𝜕𝑣

𝜕𝑦
+ 𝜈

𝜕𝑢

𝜕𝑥
) ; 

(1 − 𝜂2
𝜕2

𝜕𝑥2
)𝜏𝑥𝑦 =

𝐸

2(1 + 𝜈)
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) 

(3.1) 
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So, multiplying the local governing equations of motion in dynamics (see Eq. (2.17) by 

(1 − 𝜂2 𝜕2 𝜕𝑥2⁄ ) and combining them with Eq. (3.1): 

2

(1 − 𝜈)
𝑐2
𝜕2𝑢

𝜕𝑥2
+
1 + 𝜈

1 − 𝜈
𝑐2

𝜕²𝑣

𝜕𝑥𝜕𝑦
+ 𝑐2

𝜕2𝑢

𝜕𝑦2
 −
𝜕2𝑢

𝜕𝑡2
+ 𝜂2

𝜕4𝑢

𝜕𝑥2𝜕𝑡2
= 0 (3.2) 

1 + 𝜈

1 − 𝜈
𝑐2

𝜕²𝑢

𝜕𝑥𝜕𝑦
+ 𝑐2

𝜕2𝑣

𝜕𝑥2
+

2

(1 − 𝜈)
𝑐2
𝜕2𝑣

𝜕𝑦2
−
𝜕2𝑣

𝜕𝑡2
+ 𝜂2

𝜕4𝑣

𝜕𝑥2𝜕𝑡2
= 0 

(3.3) 

where 𝑐2 = 𝜌 𝐺⁄ . 

 

Compared to the local equations Eq. (2.18) and (2.19), additional nonlocal terms appear. 

Combining Eqs. (2.21), (3.2) and (3.3) for 𝑘, positive integer 

2

(1 − 𝜈)
𝑐2
𝜕2𝑢2𝑘−1
𝜕𝑥2

+
1 + 𝜈

1 − 𝜈
𝑐2
𝜕𝑣2𝑘
𝜕𝑥

+ 𝑐2𝑢2𝑘+1 −
𝜕2𝑢2𝑘−1
𝜕𝑡2

+ 𝜂2
𝜕4𝑢2𝑘−1
𝜕𝑥2𝜕𝑡2

= 0 

(3.4) 

1 + 𝜈

1 − 𝜈
𝑐2
𝜕𝑢2𝑘+1
𝜕𝑥

+ 𝑐2
𝜕2𝑣2𝑘
𝜕𝑥2

+
2

(1 − 𝜈)
𝑐2𝑣2𝑘+2 −

𝜕2𝑣2𝑘
𝜕𝑡2

+ 𝜂2
𝜕4𝑣2𝑘
𝜕𝑥2𝜕𝑡2

= 0 (3.5) 

 

In this case, it leads to, setting the dimensionless variable 𝜂̅ = 𝜂/𝐿,  

𝑢̅2𝑘+1 = 𝒜𝑁𝐿
𝑏 𝑢̅2𝑘−1 + ℬ𝐿

𝑏𝑣̅2𝑘 (3.6) 

𝑣̅2(𝑘+1) = 𝒞𝑁𝐿
𝑏 𝑣̅2𝑘 + ℱ𝐿

𝑏𝑢̅2𝑘+1 (3.7) 
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where the nonlocal operators  𝒜𝑁𝐿
𝑏  and 𝒞𝑁𝐿

𝑏  are defined as follows: 

𝒜𝑁𝐿
𝑏 = [ℎ̅2

𝜕2

𝜕𝑡̅2
− ℎ̅2𝜂̅2

𝜕4

𝜕𝑥̅2𝜕𝑡̅2
−

2

(1 − 𝜈)

𝜕2

𝜕𝑥̅2
] 

𝒞𝑁𝐿
𝑏 =

1 − 𝜈

2
(ℎ̅2

𝜕2

𝜕𝑡̅2
−
𝜕2

𝜕𝑥̅2
− ℎ̅2𝜂̅2

𝜕4

𝜕𝑥̅2𝜕𝑡̅2
) 

(3.8) 

The local operators ℬ𝐿
𝑏 and ℱ𝐿

𝑏 are given in the previous chapter. 

As for the local problem, the boundary condition are given by Eq. (2.26). Thus, at the fourth order, 

it yields Eqs. (2.30) and (2.31). Substituting the different equations, a system of two equations is 

obtained, written under the matrix form such as in Eq. (2.35). For a sake a simplicity, in this 

chapter, the coefficients 𝑀11, 𝑀12, 𝑀21 and 𝑀22 are not given. Vanishing the determinant of the 

matrix it gives in displacement at the two first orders: 

Zeroth order 

(1 − 𝜂̅2
𝜕2

𝜕𝑥̅2
)
𝜕2𝑣̅0
𝜕𝑡̅2

+
2

3
(1 + 𝜈)

𝜕4𝑣̅0
𝜕𝑥̅4

= 0                                    
(3.9) 

Second order 

−[
2

3
(𝜈 + 2)(1 − 𝜂̅2

𝜕2

𝜕𝑥̅2
)
𝜕4𝑣̅0
𝜕𝑥̅2𝜕𝑡̅2

+
2

15
(1 + 𝜈)

𝜕6𝑣̅0
𝜕𝑥̅6

] ℎ̅2

+ (1 − 𝜂̅2
𝜕2

𝜕𝑥̅2
)
𝜕2𝑣̅0
𝜕𝑡̅2

+
2

3
(1 + 𝜈)

𝜕4𝑣̅0
𝜕𝑥̅4

= 0 

(3.10) 

Using the dimensional operators, it leads to: 
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Zeroth order 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ 𝜌𝐴(1 − 𝜂2

𝜕2

𝜕𝑥2
)
𝜕2𝑣

𝜕𝑡2
= 0 

(3.11) 

Second order 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ 𝜌𝐴(1 − 𝜂2

𝜕2

𝜕𝑥2
)
𝜕2𝑣

𝜕𝑡2
−
𝐸𝐼2

𝐴𝜅0

𝜕6𝑣

𝜕𝑥6
− 𝜌𝐼 (1 +

𝐸

𝜅̃𝐺
)(1 − 𝜂2

𝜕2

𝜕𝑥2
)

𝜕4𝑣

𝜕𝑥2𝜕𝑡2
= 0 

(3.12) 

When the nonlocal effect is not taken into account, 𝜂 is equal to zero, Eqs. (3.11) and (3.12)  are 

reduced to Eqs. (2.38) and (2.39). As it has been said in the previous chapter, it is found in this 

case that the Bernoulli-Euler model is asymptotically consistent. 

As for the local approach, in order to delete the sixth order space derivative term, it is suggested 

to multiply Eq. (3.10) by [1 + (ℎ̅2 5⁄ )(𝜕2 𝜕𝑥̅2⁄ )] leading to, using the variables under the 

dimensional form: 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ 𝜌𝐴(1 − 𝜂2

𝜕2

𝜕𝑥2
)
𝜕2𝑣

𝜕𝑡2
− (1 − 𝜂2

𝜕2

𝜕𝑥2
)𝜌𝐼 (1 +

𝐸

𝜅𝐺
)

𝜕4𝑣

𝜕𝑥2𝜕𝑡2
= 0 

(3.13) 

 

3.1.1.2. Asymptotic model with a partial nonlocality along the vertical 

direction 

In this model, the partial nonlocality is not along the 𝑥 direction but the vertical direction of the 

beam. Thus, the stress-displacement relationships are: 

(1 − 𝜂2
𝜕2

𝜕𝑦2
)𝜎𝑥 =

𝐸

(1 − 𝜈2)
(
𝜕𝑢

𝜕𝑥
+ 𝜈

𝜕𝑣

𝜕𝑦
) ; (3.14) 
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(1 − 𝜂2
𝜕2

𝜕𝑦2
)𝜎𝑦 =

𝐸

(1 − 𝜈2)
(
𝜕𝑣

𝜕𝑦
+ 𝜈

𝜕𝑢

𝜕𝑥
) ; 

(1 − 𝜂2
𝜕2

𝜕𝑦2
)𝜏𝑥𝑦 =

𝐸

2(1 + 𝜈)
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) 

So, multiplying the local equilibrium equation Eq. (2.17) by (1 − 𝜂2 𝜕2 𝜕𝑦2⁄ ) and combining them 

with Eq. (3.14): 

2

(1 − 𝜈)
𝑐2
𝜕2𝑢

𝜕𝑥2
+
1 + 𝜈

1 − 𝜈
𝑐2

𝜕²𝑣

𝜕𝑥𝜕𝑦
+ 𝑐2

𝜕2𝑢

𝜕𝑦2
 −
𝜕2𝑢

𝜕𝑡2
+ 𝜂2

𝜕4𝑢

𝜕𝑦2𝜕𝑡2
= 0 (3.15) 

1 + 𝜈

1 − 𝜈
𝑐2

𝜕²𝑢

𝜕𝑥𝜕𝑦
+ 𝑐2

𝜕2𝑣

𝜕𝑥2
+

2

(1 − 𝜈)
𝑐2
𝜕2𝑣

𝜕𝑦2
−
𝜕2𝑣

𝜕𝑡2
+ 𝜂2

𝜕2𝑣

𝜕𝑦2𝜕𝑡2
= 0 

(3.16) 

Substituting the expressions of the displacements given by Eq. (2.23) into Eqs. (3.15) and (3.16), 

using the dimensionless variables defined in Eq. (2.29), Eqs. (3.15) and (3.16) yield 

ℋ1𝑢̅2𝑘+1 = 𝒜2𝑢̅2𝑘−1 + ℬ2𝑣̅2𝑘 (3.17) 

ℋ2𝑣̅2(𝑘+1) = 𝒞2𝑣̅2𝑘 + ℱ2𝑢̅2𝑘+1 (3.18) 

where the operators ℋ1,ℋ2, are defined as follows:  

ℋ1 = (1 + ℎ̅
2𝜂̅2

𝜕2

𝜕𝑡̅2
) ;ℋ2 = (1 +

1 − 𝜈

2
ℎ̅2𝜂̅2

𝜕2

𝜕𝑡̅2
) 

(3.19) 
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Multiplying Eqs. (2.30) and (2.31) by ℋ1
2ℋ2

3 and ℋ1
2ℋ2

2, respectively 

ℋ1
2ℋ2

2(ℋ2𝑣̅2) + 𝜈ℋ1
2ℋ2

3
𝜕𝜃

𝜕𝑥̅
+
ℎ̅2

6
[ℋ1ℋ2(ℋ1ℋ2

2𝑣̅4) + 𝜈ℋ1ℋ2
2
𝜕ℋ1ℋ2𝑢̅3

𝜕𝑥̅
]

+
ℎ̅4

120
[ℋ1

2ℋ2
3𝑣̅6 + 𝜈ℋ2

𝜕ℋ1
2ℋ2

2𝑢̅5
𝜕𝑥̅

] = 0 

(3.20) 

ℋ1
2ℋ2

2𝜃 +ℋ1
2ℋ2

2
𝜕𝑣̅0
𝜕𝑥̅

+
ℎ̅2

2
[ℋ1ℋ2(ℋ1ℋ2𝑢̅3) +ℋ2ℋ1

2
𝜕ℋ2𝑣̅2
𝜕𝑥̅

]

+
ℎ̅4

24
(ℋ1

2ℋ2
2𝑢̅5 +ℋ1

𝜕ℋ1ℋ2
2𝑣̅4

𝜕𝑥̅
) = 0 

(3.21) 

Substituting Eqs. (3.17) and (3.18) into Eqs. (3.20) and (3.21), it yields the system put under the 

matrix form with new coefficients 𝑀11, 𝑀12, 𝑀21 and 𝑀22. The determinant of the matrix is 

vanishing: 

Zeroth order 

(1 − 𝜂̅2𝜈
𝜕2

𝜕𝑥̅2
)
𝜕2

𝜕𝑡̅2
+
2

3
(1 + 𝜈)

𝜕4

𝜕𝑥̅4
= 0 

(3.22) 

Second order 

−[
(2 + 𝜈)

3

𝜕4𝑣̅0
𝜕𝑥̅2𝜕𝑡̅2

− (3 − 𝜈)(1 − 𝜂̅2𝜈
𝜕2

𝜕𝑥̅2
) 𝜂̅2

𝜕4

𝜕𝑡̅4
+
1

15
(1 + 𝜈)

𝜕6

𝜕𝑥̅6

+
(2𝜈2 − 4𝜈 − 5)

3
𝜂̅2

𝜕6

𝜕𝑥̅4𝜕𝑡̅2
] ℎ̅2 +

1

2
(1 − 𝜂̅2𝜈

𝜕2

𝜕𝑥̅2
)
𝜕2

𝜕𝑡̅2
+
1

3
(1 + 𝜈)

𝜕4

𝜕𝑥̅4
= 0 

(3.23) 
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By using the dimensional differential operators,: 

Zeroth order 

𝜌𝐴(1 − 𝜂2𝜈
𝜕2

𝜕𝑥2
)
𝜕2

𝜕𝑡2
+ 𝐸𝐼

𝜕4

𝜕𝑥4
= 0 

(3.24) 

Second order 

𝐸𝐼
𝜕4

𝜕𝑥4
+ 𝜌𝐴(1 − 𝜈𝜂2

𝜕2

𝜕𝑥2
)
𝜕2

𝜕𝑡2
− 𝜌𝐼 (1 +

𝐸

𝜅̃𝐺
)
𝜕4𝑣̅0
𝜕𝑥2𝜕𝑡2

+ 𝜂2
𝜌2𝐴

𝜅2𝐺
(1 − 𝜂2𝜈

𝜕2

𝜕𝑥2
)
𝜕4

𝜕𝑡4

−
𝐸𝐼2

𝐴𝜅0

𝜕6

𝜕𝑥6
+ 𝜂2

𝜌𝐸𝐼

𝜅1𝐺

𝜕6

𝜕𝑥4𝜕𝑡2
= 0 

(3.25) 

with: 

𝜅1 =
1 + 𝜈

5 − 2𝜈2 + 4𝜈
; 𝜅2 =

1

2(3 − 𝜈)
; 

As before, it is suggested to multiply the non-dimensional governing differential equation by 

[1 + (ℎ̅2 5⁄ )(𝜕2 𝜕𝑥̅2⁄ )] and using the dimensional variables: 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ 𝜌𝐴(1 − 𝜈𝜂2

𝜕2

𝜕𝑥2
)
𝜕2𝑣

𝜕𝑡2
− 𝜌𝐼 (1 +

𝐸

𝜅𝐺
)

𝜕4𝑣

𝜕𝑥2𝜕𝑡2
+ 𝜂2

𝜌𝐸𝐼

𝜅̃1𝐺

𝜕6𝑣

𝜕𝑥4𝜕𝑡2

+ (1 − 𝜈𝜂2
𝜕2

𝜕𝑥2
)𝜂2

𝜌2𝐴

𝜅̃2𝐺

𝜕4𝑣̅0
𝜕𝑡4

= 0 

(3.26) 

with  

𝜅̃1 =
10(𝜈 + 1)

(50 − 20𝜈2 + 37𝜈)
; 𝜅̃2 =

1

2(3 − 𝜈)
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Thus, a new asymptotic model is developed. 

  

3.1.1.3. Asymptotic model with a full nonlocality 

The third approach includes both the contribution of the nonlocality in the direction of the beam 

and the one of the nonlocality in the vertical direction: 

(1 − 𝜂2∇2)𝜎𝑥 =
𝐸

(1 − 𝜈2)
(
𝜕𝑢

𝜕𝑥
+ 𝜈

𝜕𝑣

𝜕𝑦
) ; 

(1 − 𝜂2∇2)𝜎𝑦 =
𝐸

(1 − 𝜈2)
(
𝜕𝑣

𝜕𝑦
+ 𝜈

𝜕𝑢

𝜕𝑥
) ; 

(1 − 𝜂2∇2)𝜏𝑥𝑦 =
𝐸

2(1 + 𝜈)
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) 

(3.27) 

So, multiplying Eqs. (2.17) by (1 − 𝜂2∇2) and combining them with Eq. (3.27): 

2

(1 − 𝜈)
𝑐2
𝜕2𝑢

𝜕𝑥2
+
1 + 𝜈

1 − 𝜈
𝑐2

𝜕²𝑣

𝜕𝑥𝜕𝑦
+ 𝑐2

𝜕2𝑢

𝜕𝑦2
 −
𝜕2𝑢

𝜕𝑡2
+ 𝜂2

𝜕4𝑢

𝜕𝑥2𝜕𝑡2

+ 𝜂2
𝜕4𝑢

𝜕𝑦2𝜕𝑡2
= 0 

(3.28) 

1 + 𝜈

1 − 𝜈
𝑐2

𝜕²𝑢

𝜕𝑥𝜕𝑦
+ 𝑐2

𝜕2𝑣

𝜕𝑥2
+

2

(1 − 𝜈)
𝑐2
𝜕2𝑣

𝜕𝑦2
−
𝜕2𝑣

𝜕𝑡2
+ 𝜂2

𝜕4𝑣

𝜕𝑥2𝜕𝑡2

+ 𝜂2
𝜕2𝑣

𝜕𝑦2𝜕𝑡2
= 0 

(3.29) 

Finally, it yields the non-dimensional equations at different orders 
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Zeroth order 

2

3
(𝜈 + 1)

𝜕4𝑣̅0
𝜕𝑥̅4

+
𝜕2𝑣̅0
𝜕𝑡̅2

− 𝜂̅2(𝜈 + 1)
𝜕4𝑣̅0
𝜕𝑥̅2𝜕𝑡̅2

= 0  
(3.30) 

Second order 

−[
2

3
(𝜈 + 2)

𝜕4

𝜕𝑥̅2𝜕𝑡̅2
+ 2(𝜈 + 2)𝜂̅2

𝜕4

𝜕𝑡̅4
+
2(2𝜈 − 7)(1 + 𝜈)

3
𝜂̅2

𝜕6

𝜕𝑥̅4𝜕𝑡̅2

+ 2(3 − 𝜈)(1 + 𝜈)𝜂̅4
𝜕6

𝜕𝑥̅2𝜕𝑡̅4
+
2

15
(1 + 𝜈)

𝜕6

𝜕𝑥̅6
] ℎ̅2 + (1 + 𝜈)𝜂̅2

𝜕4

𝜕𝑥̅2𝜕𝑡̅2

+
𝜕2

𝜕𝑡̅2
+
2

3
(1 + 𝜈)

𝜕4

𝜕𝑥̅4
= 0 

(3.31) 

Or, under the dimensional form 

Zeroth order 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ 𝜌𝐴(1 −

𝜂2

𝜅3

𝜕2

𝜕𝑥2
)
𝜕2𝑣

𝜕𝑡2
= 0 

(3.32) 

Second order 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ 𝜌𝐴(1 −

𝜂2

𝜅3

𝜕2

𝜕𝑥2
)
𝜕2𝑣

𝜕𝑡2
−
𝐸𝐼2

𝐴𝜅0

𝜕6𝑣

𝜕𝑥6
− 𝜌𝐼 (1 +

𝐸

𝜅̃𝐺
)

𝜕4𝑣

𝜕𝑥2𝜕𝑡2

+ 𝜂2
𝜌𝐸𝐼

𝜅1𝐺

𝜕6𝑣̅0
𝜕𝑥4𝜕𝑡2

+ 𝜂2
𝜌2𝐴

𝜅2𝐺

𝜕4𝑣̅0
𝜕𝑡4

= 0 

(3.33) 

 

with: 

𝜅1 =
1

7 − 2𝜈
; 𝜅2 =

1

2(3 − 𝜈)
; 𝜅3 =

1

(1 + 𝜈)
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By multiplying Eq. (3.31) by [1 + (ℎ̅2 5⁄ )(𝜕2 𝜕𝑥̅2⁄ )], it leads to, using the variables under the 

dimensional form: 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ 𝜌𝐴(1 −

𝜂2

𝜅3

𝜕2

𝜕𝑥2
)
𝜕2𝑣

𝜕𝑡2
− 𝜌𝐼 (1 +

𝐸

𝜅𝐺
)

𝜕4𝑣

𝜕𝑥2𝜕𝑡2
+ 𝜂2

𝜌𝐸𝐼

𝜅̃1𝐺

𝜕6𝑣

𝜕𝑥4𝜕𝑡2

+ 𝜂2
𝜌2𝐴

𝜅̃2𝐺

𝜕4𝑣̅0
𝜕𝑡4

= 0 

(3.34) 

with  

𝜅̃1 =
10

67 − 5𝜈
; 

Eq. (3.34) differs from Eq. (3.24) following the expression of the parameter 𝜅̃1.  

The asymptotic models have been derived starting from the gradient form of the stress-strain 

relationship given by Eringen [123]. It would be also possible to perform an analogous derivation 

by starting from the integral formulation of the asymptotic model.  

 

3.1.2. Nonlocal engineering beam approaches 

3.1.2.1. Bernoulli-Euler model: the fourth order phenomenological 

approach 

The first nonlocal Bernoulli-Euler model between the stress gradient theory of Eringen [123] has 

been proposed by Peddieson et al. [240] and Sudak [241]. This is a phenomenological model, 

based on a postulated moment curvature relation: 

[1 − 𝜂2
𝜕2

𝜕𝑥2
]𝑀 = 𝐸𝐼

𝜕2𝑤

𝜕𝑥2
 (3.35) 

Moreover, the local equilibrium equation for thin beams is 

𝜕2𝑀

𝜕𝑥2
+ 𝜌𝐴

𝜕2𝑣

𝜕𝑡2
= 0 (3.36) 
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Thus, it leads to the following governing differential equation, as given in the literature [242-248] 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ 𝜌𝐴(1 − 𝜂2

𝜕2

𝜕𝑥2
)
𝜕2𝑣

𝜕𝑡2
= 0 

(3.37) 

This governing differential equation may be obtained variationally and from the principle of 

virtual work. Variationnally, the strain energy U and the kinetic energy T are: 

𝑈 = ∫
1

2
𝐸𝐼 (

𝜕2𝑣

𝜕𝑥2
)

2

𝑑𝑥
𝐿

0

 (3.38) 

𝑇 = ∫
1

2
𝑚0 [(

𝜕𝑣

𝜕𝑡
)
2

+ 𝜂2 (
𝜕2𝑣

𝜕𝑥𝜕𝑡
)

2

] 𝑑𝑥
𝐿

𝑂

 (3.39) 

It leads to the following boundary conditions [135]  

[{𝐸𝐼
𝜕3𝑣

𝜕𝑥3
−𝑚0𝜂

2
𝜕3𝑣

𝜕𝑡2𝜕𝑥
}δ𝑣]

0

𝐿

= 0 (3.40) 

[𝐸𝐼
𝜕2𝑣

𝜕𝑥2
δ (
𝜕𝑣

𝜕𝑥
)]
0

𝐿

= 0 (3.41) 

whereas from the principle of virtual work, the boundary conditions are given by Eq. (3.40) and 

[{𝐸𝐼
𝜕2𝑣

𝜕𝑥2
−𝑚0𝜂

2
𝜕2𝑣

𝜕𝑡2
} δ (

𝜕𝑣

𝜕𝑥
)]
0

𝐿

= 0 (3.42) 

In dynamics, comparing Eqs. (3.41) and (3.42), the dynamic contribution of the second boundary 

condition differs between the two approaches (see also [249]). It means that the Eringen’s model 

differs from the variationally-based nonlocal model. 

Furthermore, when the nonlocal effect is not taken into account, i.e. 𝜂 = 0, it has been shown 

that the Bernoulli-Euler model is asymptotically consistent at the lowest order. When 𝜂 is 

different from zero, Eqs. (3.11) and (3.37) match. The fourth order nonlocal Bernoulli-Euler model 

developed in the literature is asymptotically obtained at the zeroth order following the gradient 

asymptotic model with a partial nonlocality along the horizontal direction. However, it is seen that 

the engineering model does not match with the two other asymptotic models, including a partial 

nonlocality along the vertical direction and a full nonlocality, respectively. Indeed, they differ in 
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the expression of the length scale. This length scale is 𝜂 for the Bernoulli-Euler model and the 

asymptotic model with a nonlocality along the horizontal direction, (1 + 𝜈)𝜂 and 𝜈𝜂 for the 

second and third asymptotic models, respectively.  

 

3.1.2.2. Sixth order phenomenological thin beam model 

In the literature [135], another phenomelogical model has been proposed with a postulated 

constitutive law as follows: 

[1 − 𝜂2
𝑑2

𝑑𝑥2
]𝑀 = 𝐸𝐼 [1 + 𝜂2

𝑑2

𝑑𝑥2
]
𝑑2

𝑑𝑥2
𝑤 (3.43) 

Multiplying Eq. (3.36) by [1 − 𝜂2(𝑑2 𝑑𝑥2⁄ )] and substituting Eq. (3.43). We obtain the governing 

differential equation 

𝐸𝐼 [1 + 𝜂2
𝑑2

𝑑𝑥2
]
𝑑4𝑤

𝑑𝑥4
−𝑚0𝜔

2 [1 − 𝜂2
𝑑2

𝑑𝑥2
]𝑤 = 0 (3.44) 

This equation containing a sixth order space derivative term, it is called “sixth order 

phenomenological model”, in contrast to the previously derived fourth order phenomenological 

Bernoulli-Euler model that contains only fourth order space derivative terms.  

Eq. (3.44) is also variationally obtained. It has been shown [135] that the only difference between 

the two phenomenological models in the variational derivation is the nonlocal term in the bending 

strain energy. 

In this approach, the strain energy U is: 

𝑈 = ∫
1

2
𝐸𝐼 [(

𝜕2𝑣

𝜕𝑥2
)

2

− 𝜂2 (
𝜕3𝑣

𝜕𝑥3
)

2

] 𝑑𝑥
𝐿

0

 (3.45) 

Thus, it leads to Eq. (3.44) with the natural and essential boundary conditions 

[− {𝐸𝐼𝜂2
𝑑5𝑤

𝑑𝑥5
+ 𝐸𝐼

𝑑3𝑤

𝑑𝑥3
+𝑚0𝜔

2𝜂2
𝑑𝑤

𝑑𝑥
}δ𝑤]

0

𝐿

= 0 (3.46) 
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[𝐸𝐼 {𝜂2
𝑑4𝑤

𝑑𝑥4
+
𝑑2𝑤

𝑑𝑥2
} δ (

𝑑𝑤

𝑑𝑥
)]
0

𝐿

= 0 (3.47) 

[𝐸𝐼𝜂2
𝑑3𝑤

𝑑𝑥3
δ(
𝑑2𝑤

𝑑𝑥2
)]
0

𝐿

= 0 (3.48) 

The sixth order space derivative phenomenological model introduces two additional boundary 

conditions, one at each end, necessary to solve the sixth order governing differential equation. 

This model will be ignored hereinafter. Indeed, in contrast to the fourth order phenomenological 

model, this higher-order gradient elasticity functional is no more definite positive.  

 

3.1.2.3. Nonlocal original Bresse-Timoshenko model  

First of all, the constitutive laws are postulated as follows: 

(1 − 𝑅𝑠𝜂
2
𝜕2

𝜕𝑥2
)𝑉 = 𝜅𝐺𝐴(

𝜕𝑣

𝜕𝑥
− 𝜓) ; (1 − 𝜂2

𝜕2

𝜕𝑥2
)𝑀 = 𝐸𝐼

𝜕𝜓

𝜕𝑥
 (3.49) 

where 𝑅𝑠 is a control parameter. In the literature, opinions differ about its value, equal to zero or 

unity [79]. Whereas authors [70,71,243,244,246,250] consider that the nonlocal effect is included 

in the shearing part of the constitutive law and 𝑅𝑠 equal to unity, some others [72,251-254] 

suggested that the scale effect does not affect the expression of the shear force and 𝑅𝑠 equal to 

zero. Hereinafter, both cases will be considered.  

Manipulating the local equilibrium equation Eq. (2.5) and the nonlocal constitutive laws Eqs. 

(3.49), it yields the following governing differential equation in displacement 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ (1 − 𝑅𝑠𝜂

2
𝜕2

𝜕𝑥2
)(𝜌𝐴

𝜕2𝑣

𝜕𝑡2
−
𝜌𝐸𝐼

𝜅𝐺

𝜕4𝑣

𝜕𝑥2𝜕𝑡2
) + 𝜂2(𝑅𝑠 − 1)𝜌𝐴

𝜕4𝑣

𝜕𝑥2𝜕𝑡2

− 𝜌𝐼 (1 − 𝜂2
𝜕2

𝜕𝑥2
)
𝜕2

𝜕𝑡2
[
𝜕2𝑣

𝜕𝑥2
−
𝜌

𝜅𝐺
(1 − 𝑅𝑠𝜂

2
𝜕2

𝜕𝑥2
)
𝜕2𝑣

𝜕𝑡2
] = 0 

(3.50) 
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The boundary conditions in the gradient model are [182]: 

𝑀𝛿𝜓|0
𝐿 = 0;   𝑉𝛿𝑣|0

𝐿 = 0               (3.51) 

or, substituting Eqs.  (3.49) into Eq. (3.51)  

[𝐸𝐼
𝜕𝜓

𝜕𝑥
+ 𝜌𝜂2 (𝐴

𝜕2𝑣

𝜕𝑡2
+ 𝐼

𝜕3𝜓

𝜕𝑥𝜕𝑡2
)] 𝛿𝜓|

0

𝐿

= 0 (3.52) 

[𝜅𝐺𝐴 (
𝜕𝑣

𝜕𝑥
− 𝜓) + 𝑅𝑠𝜂

2𝜌𝐴
𝜕3𝑣

𝜕𝑥𝜕𝑡2
] 𝛿𝑣|

0

𝐿

= 0 (3.53) 

This model is also derived variationnally by considering the strain and kinetic energy given by Eqs 

(2.9)-(2.11), respectively, and a nonlocal energy: 

𝑇𝑁𝐿 =
𝑅𝑠𝜂

2

2
∫ 𝜌𝐴(

𝜕2𝑣

𝜕𝑥𝜕𝑡
)

2

𝑑𝑥
𝐿

𝑂

+
𝜂2

2
∫ 𝜌𝐼 (

𝜕2𝜓𝑥
𝜕𝑥𝜕𝑡

)

2

𝑑𝑥
𝐿

𝑂

 (3.54) 

This functional, has no physical meaning. Hereinafter, it will be called the “Eringen energy”. 

Thus, the application of the Hamilton’s principle leads to the differential equations of motions: 

𝜌𝐴
𝜕²𝑣

𝜕𝑡²
− 𝜅𝐺𝐴(

𝜕2𝑣

𝜕𝑥2
−
𝜕𝜓

𝜕𝑥
) − 𝑅𝑠𝜂

2𝜌𝐴
𝜕4𝑣

𝜕𝑥2𝜕𝑡2
= 0                      (3.55) 

𝐸𝐼
𝜕2𝜓

𝜕𝑥2
+ 𝜅𝐺𝐴(

𝜕𝑣

𝜕𝑥
− 𝜓) − 𝜌𝐼 (1 − 𝜂2

𝜕2

𝜕𝑥2
)
𝜕2𝜓

𝜕𝑡2
= 0 (3.56) 
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Combining these equations, it yields:  

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ (1 − 𝑅𝑠𝜂

2
𝜕2

𝜕𝑥2
)(𝜌𝐴

𝜕2𝑣

𝜕𝑡2
−
𝜌𝐸𝐼

𝜅𝐺

𝜕4𝑣

𝜕𝑥2𝜕𝑡2
)

− 𝜌𝐼 (1 − 𝜂2
𝜕2

𝜕𝑥2
)
𝜕2

𝜕𝑡2
[
𝜕2𝑣

𝜕𝑥2
−
𝜌

𝜅𝐺
(1 − 𝑅𝑠𝜂

2
𝜕2

𝜕𝑥2
)
𝜕2𝑣

𝜕𝑡2
] = 0 

(3.57) 

It is seen that for 𝑅𝑠 = 0, Eq. (3.50) contains one more term compared to Eq. (3.57) and the two 

approaches do not match. For 𝑅𝑠 = 1, the variational approach and the approach based on 

equilibrium equations lead to the same governing differential equation.  

Furthermore, from the variational principle, one obtains the boundary conditions: 

[𝐸𝐼
𝜕𝜓

𝜕𝑥
+ 𝜂2𝜌𝐼

𝜕3𝜓

𝜕𝑥𝜕𝑡2
] 𝛿𝜓|

0

𝐿

= 0                     (3.58) 

[𝜅𝐺𝐴 (
𝜕𝑣

𝜕𝑥
− 𝜓) + 𝑅𝑠𝜂

2𝜌𝐴
𝜕3𝑣

𝜕𝑥𝜕𝑡2
] 𝛿𝑣|

0

𝐿

= 0                             (3.59) 

In dynamics, the boundary conditions between the two different approaches do not match, 

confirming the results of Challamel et al. [248] for nonlocal Euler-Bernoulli beam models. 

 

3.1.2.4. Truncated Bresse-Timoshenko model 

The truncated version of the nonlocal Bresse-Timoshenko model is derived by replacing Eq. (2.4) 

by Eq.  (2.14). Thus, it leads to: 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ (1 − 𝑅𝑠𝜂

2
𝜕2

𝜕𝑥2
) [𝜌𝐴

𝜕2𝑣

𝜕𝑡2
−
𝜌𝐸𝐼

𝜅𝐺

𝜕4𝑣

𝜕𝑥2𝜕𝑡2
] + 𝜂2(𝑅𝑠 − 1)𝜌𝐴

𝜕4𝑣

𝜕𝑥2𝜕𝑡2

− 𝜌𝐼 (1 − 𝜂2
𝜕2

𝜕𝑥2
)

𝜕4𝑣

𝜕𝑡2𝜕𝑥2
= 0 

(3.60) 

When the nonlocal effect is not taken into account, i.e. 𝜂 equal to zero, the truncated Bresse-

Timoshenko model is asymptotically consistent at the second order. When the local effect is not 
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ignored, for 𝑅𝑠 = 1, Eq. (3.13), governing differential equation derived through the first 

asymptotic model, matches with Eq. (3.60). Thus, the nonlocal truncated Bresse-Timoshenko 

model for 𝑅𝑠 = 1 is asymptotically consistent at the second order approximation following the 

nonlocal asymptotic model with a partial nonlocality along the horizontal direction. It is worth 

noticing that for 𝜂 different from zero, the second and third asymptotic models and the nonlocal 

truncated Bresse-Timoshenko models do not coincide. 

 

3.1.2.5. Bresse-Timoshenko based on slope inertia 

As explained before, the nonlocal formulation of the original Bresse-Timoshenko model 

introduces an Eringen energy 𝑇𝑁𝐿. For the model based on slope inertia, the local kinetic energy 

is corrected because the shear effect was already taken into account in the bending strain energy. 

Considering that there is no nonlocal equivalent to the bending strain energy, there is no need to 

correct 𝑇𝑁𝐿. Consequently, in this section, the Eringen energy is expressed by Eq. (3.54).   

By applying the Hamilton principle with the energies given by Eqs. (2.10), (2.11) and (2.42), 

respectively, it yields the differential equation of motion: 

𝜌𝐴
𝜕²𝑣

𝜕𝑡²
− 𝜅𝐺𝐴(

𝜕2𝑣

𝜕𝑥2
−
𝜕𝜓

𝜕𝑥
) − 𝑅𝑠𝜂

2𝜌𝐴
𝜕4𝑣

𝜕𝑥2𝜕𝑡2
−  𝜌𝐼

𝜕4𝑣

𝜕𝑥2𝜕𝑡2
= 0  (3.61) 

𝐸𝐼
𝜕2𝜓

𝜕𝑥2
+ 𝜅𝐺𝐴(

𝜕𝑣

𝜕𝑥
− 𝜓) + 𝜂2𝜌𝐼

𝜕4𝜓

𝜕𝑥2𝜕𝑡2
= 0 (3.62) 

It yields the following governing differential equation in displacement, also valid for  𝜓 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑣

𝜕𝑡2
−  𝜌𝐼 (1 +

𝐸

𝜅𝐺
+ 𝑅𝑠𝜂

2
𝐴

𝐼
)

𝜕4𝑣

𝜕𝑥2𝜕𝑡2

+ 𝜌𝐼 (
𝐸𝐼

𝜅𝐺𝐴
+ 𝑅𝑠𝜂

2
𝐸

𝜅𝐺
+ 𝜂2)

𝜕6𝑣

𝜕𝑥4𝜕𝑡2
− 𝜂2

𝜌2𝐼

𝜅𝐺

𝜕6𝑣

𝜕𝑥2𝜕𝑡4

+ 𝜂2
𝜌2𝐼

𝜅𝐺
(
𝐼

𝐴
+ Rs𝜂

2)
𝜕8𝑣

𝜕𝑥4𝜕𝑡4
= 0 

(3.63) 

and the boundary conditions are obtained as follows: 
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[𝐸𝐼
𝜕𝜓

𝜕𝑥
+ 𝜂2𝜌𝐼

𝜕3𝜓

𝜕𝑥𝜕t2
] 𝛿𝜓|

0

𝐿

= 0               (3.64) 

[𝜅𝐺𝐴 (
𝜕𝑣

𝜕𝑥
− 𝜓) + 𝜌𝐼

𝜕3𝑣

𝜕𝑡2𝜕𝑥
+ 𝑅𝑠𝜂

2𝜌𝐴
𝜕3𝑣

𝜕𝑥𝜕t2
] 𝛿𝑣|

0

𝐿

= 0       (3.65) 

 

3.1.3. Solution and parametric analysis 

In order to compare the different models, it is proposed to calculate the natural frequencies for 

simply supported carbon nanotubes.  

First of all, the three versions of the nonlocal Bresse-Timoshenko model are written in the general 

form as follows: 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ (1 − 𝑅𝑠𝜂

2
𝜕2

𝜕𝑥2
)(𝜌𝐴 −

𝜌𝐸𝐼

𝜅𝐺

𝜕2

𝜕𝑥2
)
𝜕2𝑣

𝜕𝑡2
+ 𝛿𝑔(𝑅𝑠 − 1)𝜂

2𝜌𝐴
𝜕4𝑣

𝜕𝑥2𝜕𝑡2

− 𝜌𝐼
𝜕2

𝜕𝑡2
[(1 − 𝜂2

𝜕2

𝜕𝑥2
)
𝜕2𝑣

𝜕𝑥2
−

𝐼

𝜅𝐺𝐴
(E + 𝜂2𝜌

𝜕2𝑣

𝜕𝑡2
)
𝜕4𝑣

𝜕𝑥4

− (𝛾1 − 𝜂
2
𝜕2

𝜕𝑥2
) (𝛾1 + 𝛾2)

𝜌

𝜅𝐺
(1 − Rs𝜂

2
𝜕2

𝜕𝑥2
)
𝜕2𝑣

𝜕𝑡2
] = 0 

(3.66) 

where 𝛿𝑔 is a control parameter equal to unity when the equation are derived through the 

equilibrium equation, and equal to zero otherwise. 

Consider the nondimensional variables 𝜗1 = 𝐸 𝜅̃1𝐺⁄  and 𝜗2 = 𝐸 𝜅̃2𝐺⁄ . The tube being simply 

supported at both ends, the solution is investigated by using the Navier expression given by Eq. 

(2.48) 

So, substituting Eqs. (2.48) and (2.49) into Eq. (3.66), it yields the characteristic equation 

Λ1Ω
4 − Λ2Ω

2 + Λ3 = 0 (3.67) 

where the coefficients Λ1, Λ2 and Λ3 are given by 
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Λ1 = 𝜗𝑟
4[𝛾1(1 + 𝜂̅

2(𝑚𝜋)2)(1 + 𝑅𝑠𝜂̅
2(𝑚𝜋)2)

+ 𝛾2𝜂̅
2(𝑚𝜋)2[1 + 𝑅𝑠𝜂̅

2(𝑚𝜋)2 + 𝑟2(𝑚𝜋)2]] 

Λ2 = 1 + [𝑟
2𝜗 + (𝑅𝑠 − 𝛿𝑔𝑅𝑠 + 𝛿𝑔)𝜂̅

2 + 𝑟2](𝑚𝜋)2

+ [𝑅𝑠𝜂̅
2𝜗 + 𝜂̅2 + 𝛾2𝜗𝑟

2]𝑟2(𝑚𝜋)4 

Λ3 = (𝑚𝜋)
4 

(3.68) 

Moreover, for each asymptotic model, it is possible to express the coefficients Λ1, Λ2 and Λ3. The 

first asymptotic model, with a partial nonlocality along the horizontal direction, has been derived 

in section 3.1.1.1. The second asymptotic model, with a partial nonlocality along the vertical 

direction, has been derived in section 3.1.1.2. The third and last asymptotic model, with a full 

nonlocality, has been derived in section 3.1.1.3. Thus, the first asymptotic model with a partial 

nonlocality along the horizontal direction, is obtained for the couple (𝑅𝑠, 𝛾1) = (1,0), resulting in 

the following triplet (Λ1, Λ2, Λ3). 

Λ1 = 0; Λ2 = 1 + 𝜂̅
2(𝑚𝜋)2 + [𝜗 + 1]𝑟2(𝑚𝜋)2[1 + 𝜂̅2(𝑚𝜋)2]; Λ3 = (𝑚𝜋)

4 (3.69) 

For the second asymptotic model  

Λ1 = 𝑟
2[1 + 𝜈𝜂̅2(𝑚𝜋)2]𝜂̅2𝜗2; Λ2

= 1 + (𝑟2 + 𝑟2𝜗 + 𝜈𝜂̅2)(𝑚𝜋)2 + 𝑟2𝜂̅2𝜗1(𝑚𝜋)
4 

Λ3 = (𝑚𝜋)
4 

(3.70) 

For the third asymptotic model,  

Λ1 = 𝑟
2𝜂̅2𝜗2; Λ2 = 1 + (𝑚𝜋)

2 (𝑟2 + 𝑟2𝜗 +
𝜂̅2

𝜅3
) + (𝑚𝜋)4𝑟2𝜂̅2𝜗1; Λ3 = (𝑚𝜋)

4 (3.71) 

The solutions of the equations are given by Eq. (2.131) (the reader may refer to Chapter 2).  
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The nonlocal Bernoulli-Euler model, leads to the following nondimensional natural frequency: 

Ω = (𝑚𝜋)2√
1

[1 + 𝜂̅2(𝑚𝜋)2]
 (3.72) 

 

This expression of the natural frequency is also valid for the first asymptotic model. 

For the zeroth order second and third asymptotic models, it leads to  

Ω = (𝑚𝜋)2
√

1

[1 +
𝜂̅2

𝜅3
(𝑚𝜋)2]

 (3.73) 

 

Consider a carbon nanotube of length 3.52 nm, with an inner and an outer radii 𝑅𝑖 and 𝑅𝑜, taken 

to equal 0.18 nm and 0.52 nm, respectively and a Poisson’s ratio equal to 0.3 [70]. In this case, 

the thickness ratio is defined as the difference between the outer and the inner radii with the 

length of the tube. The first five natural frequencies following the engineering and asymptotic 

models are given in Tables 12 and 13, respectively.  
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Bernoulli

- 

Euler 

Bresse-Timoshenko 

Original Truncated Slope 

𝜂 = 0 

9.869 8.681 8.635 8.577 

39.478 27.304 26.464 24.932 

88.826 48.689 45.826 39.011 

157.914 70.627 65.003 48.937 

246.740 92.537 83.852 55.630 

  

𝑅𝑠 = 0 

𝑅𝑠 = 1 𝑅𝑠 = 0 𝑅𝑠 = 1 𝑅𝑠 = 0 𝑅𝑠 = 1 
𝛿𝑔 = 1 𝛿𝑔 = 0 

𝜂 = 0.2 

8.357 7.532 8.597 7.350 7.501 7.312 8.498 7.288 

24.582 19.467 25.439 17.002 19.062 16.479 23.665 16.393 

41.629 29.533 40.211 22.818 28.426 21.476 35.469 21.565 

58.380 37.059 48.684 26.111 35.333 24.032 43.060 24.403 

74.839 42.353 52.362 28.068 40.311 25.433 47.708 26.064 

𝜂 = 0.5 

5.300 4.967 8.186 4.662 4.958 4.637 8.108 4.646 

11.974 10.221 18.432 8.282 10.151 8.027 18.065 8.209 

18.439 13.960 21.438 10.107 13.821 9.513 21.262 9.992 

24.820 16.475 22.159 11.101 16.299 10.217 22.084 10.959 

31.164 18.142 22.401 11.688 17.962 10.591 22.362 11.530 

Table 12. First five nondimensional natural frequencies Ω determined by the Bernoulli-Euler 

model and the Bresse-Timoshenko models for different nonlocal parameters 𝜂 of a carbon 

nanotube 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



91 
 

 
1st model 2nd model 3rd model 

0th order 2nd order 0th order 2nd order 0th order 2nd order 

𝜂 = 0 9.869 8.635 9.869 8.635 9.869 8.635 

39.478 26.464 39.478 26.464 39.478 26.464 

88.826 45.826 88.826 45.826 88.826 45.826 

157.914 65.003 157.914 65.003 157.914 65.003 

246.740 83.852 246.740 83.852 246.740 83.852 

𝜂 = 0.2 8.357 7.312 9.332 8.175 8.023 6.754 

24.582 16.479 32.519 14.917 22.595 11.424 

41.629 21.476 61.799 15.801 37.472 12.643 

58.380 24.032 92.811 16.095 52.030 13.110 

74.839 25.433 129.978 16.23 66.347 13.336 

𝜂 = 0.5 5.300 4.637 7.482 Imaginary 4.811 3.635 

11.974 8.027 19.836 6.543 10.616 4.864 

18.439 9.513 32.090 6.569 16.253 5.195 

24.820 10.217 44.063 6.580 21.831 5.324 

31.164 10.591 55.868 6.585 27.383 5.387 

Table 13. First five nondimensional natural frequencies Ω determined by the Bernoulli-Euler 

model and the original and truncated Bresse-Timoshenko models for different nonlocal 

parameters 𝜂 of a carbon nanotube 
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First of all, it is seen that whatever the considered model, when the nonlocal parameter 

𝜂̅ increases, the natural frequencies decrease. This is due to the fact that the nonlocal effect 

increases the flexibility of the beam. For instance, the natural frequency calculated through first 

asymptotic model at the second order (coinciding with the nonlocal truncated Bresse-Timoshenko 

model for 𝑅𝑠 = 1) is equal to 4.637 for 𝜂̅ equal to 0.5, 8.635 in the local approach (𝜂̅ = 0), namely 

a difference of 46%. This difference increases with the order of frequency. Considering the ratio 

between the non-dimensional frequency obtained in the local approach and the one when 𝜂̅ =

0.5, for the third asymptotic model, it is equal to 2.4 for the fundamental fundamental frequency, 

15.6 for the fifth one. Thus, the effects of nonlocality are important and they have to be taken 

into account in the study of nanomaterials. The nonlocal parameter 𝜂 is equal to the product of a 

characteristic length (for instance the interatomic interaction) with a small length scale 

coefficient. Hereinafter, it will be proposed a calibration of the coefficient through the use of 

lattice models.   

About the asymptotic model, it may be shown [238] that at the zeroth order, the first and 

third asymptotic model, differing only in the expression of the nonlocal length provide similar 

results. Three different asymptotic models have been derived: following the horizontal, vertical 

and both directions. The last model is a combination of the two first and naturally, it leads to 

lower natural frequencies compared to the two other models. In any case, for any order of 

frequency or value of the nonlocal parameter, the first asymptotic model with a nonlocality 

following the horizontal direction, coinciding with the truncated Bresse-Timsohenko model, has 

a larger effect on the frequency than the second asymptotic model with a nonlocality following 

the vertical direction. 

In the derivation of the engineering thick beam models, the parameter 𝑅𝑠, not present in 

the asymptotic models, has been introduced and there is a debate about its value, zero or unity. 

Different arguments trend to show that 𝑅𝑠 = 1. First of all, in this case, considering the original 

Bresse-Timoshenko model, both the derivations through the use of equilibrium equations and the 

variational principle lead to the same governing differential equation. Moreover, as it has been 

explained before, the truncated Bresse-Timoshenko model is asymptotically consistent in the 

local approach. When the nonlocal effect is taken into account, it is asymptotically consistent (for 

the asymptotical model with a nonlocality following the horizontal direction) only for 𝑅𝑠 equal to 

unity. Furthermore, the Bernoulli-Euler model ignore the rotary inertia and the shear effects. 

Consequently, it is supposed to provide an upper bound of the natural frequency. However, for 
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𝑅𝑠 equal to zero, it is seen in Table 12 that for large non-dimensional nonlocal parameter 𝜂̅ (for 

example 0.5), the models derived through the variational principle (original and based on slope 

inertia) lead to bigger natural frequencies compared to those obtained for the Bernoulli-Euler 

model, hence a contradiction. Thus, the three first frequencies are 8.108, 18.065 and 21.262 for 

the Bresse-Timoshenko model based on slope inertia versus 5.300, 11.974 and 18.439 for the 

Bernoulli-Euler model. For the next, 𝑅𝑠 will be taken, for beam, equal to 1. 

Furthermore, let us denote Ω∗, the ratio of the nondimensional fundamental natural 

frequencies, the local Bernoulli-Euler model being the reference model. Figure 14. depicts Ω∗ for 

different aspect ratios 𝑅𝑜/𝐿 and different values of the small length scale coefficient, considering 

the three versions of the Bresse-Timoshenko model (original, truncated, based on slope inertia). 

When the aspect ratio is small (for instance 0.1), the length of the beam is much bigger than the 

thickness. The rotary inertia and the shear effects are not important and the different models 

almost coincide with the local Bernoulli-Euler model, valid for thin beams. The frequency ratio Ω∗ 

increases with 𝑅𝑜/𝐿 because of these effects, specific to thick beams, that cannot be ignored. 

Thus, when the ratio 𝑅𝑜/𝐿 is close to 1, the carbon nanotube is very short, the Bernoulli-Euler 

model overestimates the natural frequencies and all the curves converges towards zero. 

 

Fig. 14. Non dimensional natural frequency obtained through the original Bresse-Timoshenko 

model (OBT) and the Truncated Bresse-Timoshenko model (TBT) with the aspect ratio 𝑅𝑜/𝐿 
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Analogically, Fig. 15. Depicts Ω∗ with respect to 𝑅𝑜/𝐿 considering the different asymptotic models. 

As for the engineering models, when the ratio 𝑅𝑜/𝐿 is close to unity, the models coincide with the 

Bernoulli-Euler model and when this ratio increase, a difference occurs. 

 

 

Fig. 15. Non dimensional natural frequency obtained through the three asymptotic models at 

the second order with (a) the aspect ratio 𝑅𝑜/𝐿 

It is now proposed to extend this study to the case of thick plates. It is expected to have analogical 

results. 
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3.2. Different plate models 

3.2.1. Asymptotic derivation of nonlocal plate models 

3.2.1.1. Asymptotic model with a partial nonlocality along the two 

directions of the plan 

 

Consider a plate of length 𝑎, width 𝑏 and thickness ℎ (see Chapter 2). In this model, for a 

nonlocality along both the directions of the plate, the stress-displacement relationships are 

[1 − 𝜂∗
2∇2]𝝈 = 𝜆 (𝜃 +

𝜕𝑤

𝜕𝑧
)(
1 0 0
0 1 0
0 0 1

) + 𝐺

(

 
 
 
 

2
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
2
𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
2
𝜕𝑤

𝜕𝑧 )

 
 
 
 

 (3.74) 

where 𝜂∗ is the microscopic nonlocal length and 𝝈 is the stress tensor. 

Multiplying Eq. (2.73) by [1 − 𝜂∗
2∇2] and substituting Eq. (3.74) both sides of the equations: 

(𝜆 + 𝐺)

(

 
 
 
 

𝜕

𝜕𝑥
𝜕

𝜕𝑦
𝜕

𝜕𝑧)

 
 
 
 

(𝜃 +
𝜕𝑤

𝜕𝑧
) + 𝐺 (∇2 +

𝜕2

𝜕𝑧2
)(

𝑢
𝑣
𝑤
) = 𝜌[1 − 𝜂∗

2∇2]
𝜕2

𝜕𝑡2
(
𝑢
𝑣
𝑤
) (3.75) 

As for the case of thick local plates, it leads to a system of two equations: 

(𝜆 + 𝐺)
𝜕

𝜕𝑧
𝜃 + (𝜆 + 2𝐺)

𝜕2𝑤

𝜕𝑧2
+ [𝐺∇2𝑤 − 𝜌(1 − 𝜂∗

2∇2)
𝜕2

𝜕𝑡2
]𝑤 = 0 

[(𝜆 + 2𝐺)∇2𝜃 − 𝜌(1 − 𝜂∗
2∇2)

𝜕2

𝜕𝑡2
] 𝜃 + 𝐺

𝜕2𝜃

𝜕𝑧2
+ (𝜆 + 𝐺)∇2

𝜕𝑤

𝜕𝑧
= 0 

(3.76) 
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Substituting Eq. (2.86) into Eq. (3.76) yields, considering the dimensionless variables 𝜂̅∗ = 𝜂∗ 𝑎⁄ : 

𝜃̅𝑁+3 =
1

(𝑁 + 3)(𝑁 + 2)
𝒜𝑁𝐿
𝑝
𝜃̅𝑁+1 +

1

𝑁 + 3
ℬ𝐿𝑤̅𝑁+2;     𝑁 = 0,2,4,… 

𝑤̅𝑁+2 =
1

(𝑁 + 1)(𝑁 + 2)
𝒞𝑁𝐿
𝑝
𝑤̅𝑁 +

1

(𝑁 + 2)
ℱ𝐿𝜃̅𝑁+1;     𝑁 = 0,2,4,… 

(3.77) 

where the nonlocal operators 𝒜𝑁𝐿 and 𝒞𝑁𝐿 are defined as follows: 

𝒜𝑁𝐿
𝑝
= −[

(𝜆 + 2𝐺)

𝐺
∇̅2 − ℎ̅2(1 − 𝜂̅∗

2∇̅2)
𝜕2

𝜕𝑡̅2
] 

𝒞𝑁𝐿
𝑝
= −

𝐺

(𝜆 + 2𝐺)
[∇̅2 − ℎ̅2(1 − 𝜂̅∗

2∇̅2)
𝜕2

𝜕𝑡̅2
] 

(3.78) 

ℬ𝐿
𝑝

 and ℱ𝐿
𝑝

 have been defined in the previous chapter devoted to the local derivation of thick 

plate models. 

At the fourth order, Eq. (2.87) derived in local is still valid. Substituting Eq. (3.77) it yields Eq. (2.93) 

with: 

𝑀11 = [(2𝐺 + 3𝜆)∇̅
6 − 20(𝐺 − 𝜆)(1 − 𝜂̅∗

2∇̅2)∇̅2
𝜕2

𝜕𝑡̅2
] ℎ̅4

+ [120(2𝐺 + 𝜆)(1 − 𝜂̅∗
2∇̅2)

𝜕2

𝜕𝑡̅2
− 20𝜆∇̅4] ℎ̅2 − 120(2𝐺 + 𝜆)∇̅2

+ 𝑂(ℎ̅4, 𝜂̅∗
4) 

𝑀12 = 20(4𝐺 + 3𝜆)ℎ̅
2∇̅2 − [(6𝐺 + 5𝜆)∇̅4 + 20(3𝐺 + 2𝜆)(1 − 𝜂̅∗

2∇̅2)
𝜕2

𝜕𝑡̅2
] ℎ̅4

− 120(2𝐺 + 𝜆) + 𝑂(ℎ̅4, 𝜂̅∗
4) 

𝑀21 = ∇̅
2 {[−12𝜆𝜂̅∗2∇̅2

𝜕2

𝜕𝑡̅2
+ (2𝐺 + 3𝜆)∇̅4 + 12𝜆

𝜕2

𝜕𝑡̅2
] ℎ̅4 − 12𝜆ℎ̅2∇̅2

− 24(2𝐺 + 𝜆)} + 𝑂(ℎ̅4, 𝜂̅∗
4) 

(3.79) 
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𝑀22 = [−12(2𝐺 + 𝜆)(1 − 𝜂̅∗
2∇̅2)

𝜕2

𝜕𝑡̅2
− (6𝐺 + 5𝜆)∇̅4] ℎ̅4 + 12(4𝐺 + 3𝜆)ℎ̅2∇̅2

− 24(2𝐺 + 𝜆) + 𝑂(ℎ̅4, 𝜂̅∗
4) 

When the nonlocal effect is not taken into account, the expressions of the different coefficients 

are reduced to the ones given by Eq (2.94). 

The determinant of the matrix vanishing. It results in governing differential equations at different 

orders: 

0th order 

(𝐺 + 𝜆)∇̅4𝑤 +
3

4
(2𝐺 + 𝜆)(1 − 𝜂̅∗

2∇̅2)
𝜕2𝑤

𝜕𝑡̅2
= 0 (3.80) 

2nd order 

−10(3𝜆 + 4𝐺)(1 − 𝜂̅∗
2∇̅2)ℎ̅2

𝜕2

𝜕𝑡̅2
∇̅2𝑤 − 4(𝜆 + 𝐺) ℎ̅2∇̅6𝑤 + 20(𝜆 + 𝐺)∇̅4𝑤

+ 15(𝜆 + 2𝐺)(1 − 𝜂̅∗
2∇̅2)

𝜕2𝑤

𝜕𝑡̅2
= 0 

(3.81) 

or, in the dimensional form: 

0th order 

𝐷∇4𝑤 + 𝜌ℎ(1 − 𝜂∗
2∇2)

𝜕2𝑤

𝜕𝑡2
= 0 (3.82) 

2nd order 

𝐷∇4𝑤 + 𝜌ℎ(1 − 𝜂∗
2∇2)

𝜕2𝑤

𝜕𝑡2
− (1 − 𝜂∗

2∇2)
2(2 − 𝜈)

(1 − 𝜈)

𝜌ℎ3

12

𝜕2

𝜕𝑡2
∇2𝑤 − 𝐷

ℎ2

20
∇6𝑤

= 0 

(3.83) 
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Multiply Eq. (3.81) by [1 + (ℎ̅2 5⁄ )𝛻̅2], using the dimensional variables: 

𝐷∇4𝑤 + (1 − 𝜂∗
2∇2)𝜌ℎ

𝜕2𝑤

𝜕𝑡2
− (1 − 𝜂∗

2∇2)
𝜌ℎ3

12
[1 +

12𝐷

ℎ3𝐺

6 − 𝜈

5
]
𝜕2

𝜕𝑡2
∇2𝑤 = 0 (3.84) 

The equation is reduced to the truncated version of Uflyand-Mindlin plate theory with a shear 

coefficient equal to 𝜅 = 5 (6 − 𝜈)⁄ . This value has been derived in the literature for local plate 

models [108,109,232,255] and more recently, for nonlocal plate models [239]. 

 

3.2.1.2. Asymptotic model with a partial nonlocality along the thickness 

of the plate 

In this model, Eq. (3.74) is replaced by 

[1 − 𝜂∗
2
𝜕2

𝜕2𝑧
]𝝈 = 𝜆 (𝜃 +

𝜕𝑤

𝜕𝑧
)(
1 0 0
0 1 0
0 0 1

) + 𝐺

(

 
 
 
 

2
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
2
𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
2
𝜕𝑤

𝜕𝑧 )

 
 
 
 

 (3.85) 

Thus, in this case, it leads to 

(𝜆 + 𝐺)

(

 
 
 
 

𝜕

𝜕𝑥
𝜕

𝜕𝑦
𝜕

𝜕𝑧)

 
 
 
 

(𝜃 +
𝜕𝑤

𝜕𝑧
) + 𝐺 (∇2 +

𝜕2

𝜕𝑧2
)(

𝑢
𝑣
𝑤
) = 𝜌 [1 − 𝜂∗

2
𝜕2

𝜕𝑧2
]
𝜕2

𝜕𝑡2
(
𝑢
𝑣
𝑤
) (3.86) 

Differentiating the first and second equations with respect to 𝑥 and 𝑦, respectively, and summing 

them, it leads to a system of two equations: 

(𝜆 + 𝐺)
𝜕

𝜕𝑧
𝜃 + (𝜆 + 2𝐺 + 𝜌𝜂∗

2
𝜕2

𝜕𝑡2
)
𝜕2𝑤

𝜕𝑧2
+ [𝐺∇2𝑤 − 𝜌

𝜕2

𝜕𝑡2
]𝑤 = 0 

[(𝜆 + 2𝐺)∇2𝜃 − 𝜌
𝜕2

𝜕𝑡2
] 𝜃 + (𝐺 + 𝜌𝜂∗

2
𝜕2

𝜕𝑡2
)
𝜕2𝜃

𝜕𝑧2
+ (𝜆 + 𝐺)∇2

𝜕𝑤

𝜕𝑧
= 0 

(3.87) 
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Substituting Eq. (2.86) into Eq. (3.87) yields 

(𝐺∇2 − 𝜌
𝜕2

𝜕𝑡2
)𝑤2𝑛 + (𝜆 + 2𝐺 + 𝜌𝜂∗

2
𝜕2

𝜕𝑡2
) (2𝑛 + 1)(2𝑛 + 2)𝑤2𝑛+2

+ (𝜆 + 𝐺)(2𝑛 + 1)𝜃2𝑛+1 = 0;     𝑛 ∈ ℕ 

(𝜆 + 𝐺)2𝑛∇2𝑤2𝑛 + ((𝜆 + 2𝐺)∇
2 − 𝜌

𝜕2

𝜕𝑡2
)𝜃2𝑛−1

+ (𝐺 + 𝜌𝜂∗
2
𝜕2

𝜕𝑡2
)2𝑛(2𝑛 + 1)𝜃2𝑛+1 = 0;     𝑛 ∈ ℕ

∗ 

(3.88) 

Using the dimensionless variables defined in Eq. (2.88), it becomes 

ℋ1𝜃̅𝑁+3 =
1

(𝑁 + 3)(𝑁 + 2)
𝒜𝐿
𝑝
𝜃̅𝑁+1 +

1

𝑁 + 3
ℬ𝐿
𝑝
𝑤̅𝑁+2;     𝑁 = 0,2,4,… 

ℋ2𝑤̅𝑁+2 =
1

(𝑁 + 1)(𝑁 + 2)
𝒞𝐿
𝑝
𝑤̅𝑁 +

1

(𝑁 + 2)
ℱ𝐿
𝑝
𝜃̅𝑁+1;     𝑁 = 0,2,4,… 

(3.89) 

The differential operators ℋ1 and  ℋ2, ℬ𝑁𝐿
𝑝

 and ℬ𝑁𝐿
𝑝

 are given by: 

ℋ1 = (1 + ℎ̅
2𝜂̅∗

2
𝜕2

𝜕𝑡̅2
) ;ℋ2 = (1 +

𝐺

(𝜆 + 2𝐺)
ℎ̅2𝜂̅∗

2
𝜕2

𝜕𝑡̅2
) (3.90) 

The local operators 𝒜𝐿
𝑝

, ℬ𝐿
𝑝

, 𝒞𝐿
𝑝

 and ℱ𝐿
𝑝

 are given by Eq. (2.92). 

 

Similarly to the previous section, the two equations are written in a matrix form (see section 

2.1.2), leading to the governing differential equation at different orders: 

0th order 

4

3
(𝜆 + 𝐺)∇̅4 + (𝜆 + 2𝐺)

𝜕2

𝜕𝑡̅2
− 𝜆𝜂̅∗

2∇̅2
𝜕2

𝜕𝑡̅2
= 0 (3.91) 
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2nd order 

4

3
(𝜆 + 𝐺)∇̅4 + (𝜆 + 2𝐺)

𝜕2

𝜕𝑡̅2
− 𝜆𝜂̅∗

2∇̅2
𝜕2

𝜕𝑡̅2

− {4𝜆
(3𝐺 + 𝜆)

(𝜆 + 2𝐺)
𝜂̅∗
4∇̅2

𝜕4

𝜕𝑡̅4
−
2

3

(20𝐺2 + 28𝐺𝜆 + 7𝜆2)

(𝜆 + 2𝐺)
𝜂̅∗
2∇̅4

𝜕2

𝜕𝑡̅2

+
4

15
(𝜆 + 𝐺)∇̅6 − 4(𝜆 + 3𝐺)𝜂̅∗

2
𝜕4

𝜕𝑡̅4
+
2

3
(3𝜆 + 4𝐺)∇̅2

𝜕2

𝜕𝑡̅2
} ℎ̅2

= 0 

(3.92) 

Or, in the dimensional form: 

0th order 

𝐷∇4 + 𝜌ℎ [1 −
𝜈𝜂∗

2∇2

1 − 𝜈
]
𝜕2

𝜕𝑡2
= 0 (3.93) 

2nd order 

𝐷∇4 + 𝜌ℎ (1 −
𝜈

1 − 𝜈
𝜂∗
2∇2)

𝜕2

𝜕𝑡2

− {
2𝜈(3 − 4𝜈)

(1 − 𝜈)2
𝜂∗
4∇2

𝜌2ℎ

𝐺

𝜕4

𝜕𝑡4

−
𝜌ℎ3

12

2(5 − 26𝜈 − 𝜈2)

(1 − 𝜈)2
𝜂∗
2∇4

𝜕2

𝜕𝑡2
+
1

20
𝐷ℎ2∇6

−
2(3 − 4𝜈)

(1 − 𝜈)
𝜂∗
2
𝜌2ℎ

𝐺

𝜕4

𝜕𝑡4
+
𝜌ℎ3

12

2(2 − 𝜈)

(1 − 𝜈)
∇2

𝜕2

𝜕𝑡2
} = 0 

(3.94) 

Multiplying Eq. (3.92) by [5 + ∇̅2ℎ̅2] leads to, using the dimensional numbers  

𝐷∇4 + (1 − 𝜅1𝜂∗
2∇2)𝜌ℎ (1 + 𝜅3

𝜌

𝐺
𝜂∗
2
𝜕2

𝜕𝑡2
)
𝜕2

𝜕𝑡2
−
𝜌ℎ3

12
[1 +

12𝐷

𝜅ℎ3𝐺
]
𝜕2∇2

𝜕𝑡2

+ 𝜅2
𝜌ℎ3

12
𝜂∗
2∇4

𝜕2

𝜕𝑡2
= 0 

(3.95) 

where 

𝜅1 =
𝜈

1 − 𝜈
; 𝜅2 =

(100 − 63𝜈 − 7𝜈2)

15(1 − 𝜈)2
; 𝜅3 =

2(3 − 4𝜈)

(1 − 𝜈)
 (3.96) 
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3.2.1.3. Asymptotic model with a full nonlocality 

In this model, Eq. (3.74) is replaced by 

[1 − 𝜂∗
2 (∇2 +

𝜕2

𝜕2𝑧
)]𝝈

= 𝜆 (𝜃 +
𝜕𝑤

𝜕𝑧
)(
1 0 0
0 1 0
0 0 1

) + 𝐺

(

 
 
 
 

2
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
2
𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
2
𝜕𝑤

𝜕𝑧 )

 
 
 
 

 

(3.97) 

Thus, in this case, it yields: 

(𝜆 + 𝐺)

(

 
 
 
 

𝜕

𝜕𝑥
𝜕

𝜕𝑦
𝜕

𝜕𝑧)

 
 
 
 

(𝜃 +
𝜕𝑤

𝜕𝑧
) + 𝐺 (∇2 +

𝜕2

𝜕𝑧2
)(

𝑢
𝑣
𝑤
) = 𝜌 [1 − 𝜂∗

2 (∇2 +
𝜕2

𝜕𝑧2
)]
𝜕2

𝜕𝑡2
(
𝑢
𝑣
𝑤
) (3.98) 

Differentiating the first and second equations with respect to 𝑥 and 𝑦, respectively, and summing 

them, it leads to a system of two equations: 

(𝜆 + 𝐺)
𝜕

𝜕𝑧
𝜃 + (𝜆 + 2𝐺 + 𝜌𝜂∗

2
𝜕2

𝜕𝑡2
)
𝜕2𝑤

𝜕𝑧2
+ [𝐺∇2𝑤 − 𝜌(1 − 𝜂∗

2∇2)
𝜕2

𝜕𝑡2
]𝑤 = 0 

[(𝜆 + 2𝐺)∇2𝜃 − 𝜌(1 − 𝜂∗
2∇2)

𝜕2

𝜕𝑡2
] 𝜃 + (𝐺 + 𝜌𝜂∗

2
𝜕2

𝜕𝑡2
)
𝜕2𝜃

𝜕𝑧2
+ (𝜆 + 𝐺)∇2

𝜕𝑤

𝜕𝑧
= 0 

(3.99) 

Substituting Eq. (2.86) into Eq. (3.99) yields 

(𝐺∇2 − 𝜌(1 − 𝜂∗
2∇2)

𝜕2

𝜕𝑡2
)𝑤2𝑛

+ (𝜆 + 2𝐺 + 𝜌𝜂∗
2
𝜕2

𝜕𝑡2
) (2𝑛 + 1)(2𝑛 + 2)𝑤2𝑛+2

+ (𝜆 + 𝐺)(2𝑛 + 1)𝜃2𝑛+1 = 0;     𝑛 ∈ ℕ 

(3.100) 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



102 
 

(𝜆 + 𝐺)2𝑛∇2𝑤2𝑛 + ((𝜆 + 2𝐺)∇
2 − 𝜌(1 − 𝜂∗

2∇2)
𝜕2

𝜕𝑡2
)𝜃2𝑛−1

+ (𝐺 + 𝜌𝜂∗
2
𝜕2

𝜕𝑡2
)2𝑛(2𝑛 + 1)𝜃2𝑛+1 = 0;     𝑛 ∈ ℕ

∗ 

Using the dimensionless variables defined in Eq. (2.88), it becomes: 

ℋ1𝜃̅𝑁+3 =
1

(𝑁 + 3)(𝑁 + 2)
𝒜𝑁𝐿
𝑝
𝜃̅𝑁+1 +

1

𝑁 + 3
ℬ𝐿
𝑝
𝑤̅𝑁+2;     𝑁 = 0,2,4,… 

ℋ2𝑤̅𝑁+2 =
1

(𝑁 + 1)(𝑁 + 2)
𝒞𝑁𝐿
𝑝
𝑤̅𝑁 +

1

(𝑁 + 2)
ℱ𝐿
𝑝
𝜃̅𝑁+1;     𝑁 = 0,2,4,… 

(3.101) 

In this case, the two equations are written in a matrix form, leading to the following equation at 

different orders: 

0th order 

4

3
(𝜆 + 𝐺)∇̅4 + [(𝜆 + 2𝐺) −

1

2
(𝜆 + 𝐺)𝜂̅∗

2∇̅2]
𝜕2

𝜕𝑡̅2
= 0 (3.102) 

2nd order 

{−
8(𝜆 + 3𝐺)(𝜆 + 𝐺)

(𝜆 + 2𝐺)
𝜂̅∗
4∇̅2

𝜕4

𝜕𝑡̅4
+
4

3

(5𝜆 + 14𝐺)(𝜆 + 𝐺)

(𝜆 + 2𝐺)
𝜂̅∗
2∇̅4

𝜕2

𝜕𝑡̅2

−
4

15
(𝜆 + 𝐺)∇̅6 + 4(𝜆 + 3𝐺)𝜂̅∗

2
𝜕4

𝜕𝑡̅4

−
2

3
(3𝜆 + 4𝐺)∇̅2

𝜕2

𝜕𝑡̅2
} ℎ̅2 −

1

2
(𝜆 + 𝐺)𝜂̅∗

2∇̅2
𝜕2

𝜕𝑡̅2

+
4

3
(𝜆 + 𝐺)∇̅4 + (𝜆 + 2𝐺)

𝜕2

𝜕𝑡̅2
= 0 

(3.103) 

Or, in the dimensional form: 

0th order 

𝐷∇4 + (1 −
1

4(1 − 𝜈)
𝜂∗
2∇2)𝜌ℎ

𝜕2

𝜕𝑡2
= 0 (3.104) 
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2nd order 

−
2(3 − 4𝜈)

(1 − 𝜈)2
𝜌2ℎ

𝐺
𝜂∗
4∇2

𝜕4

𝜕𝑡4
+
19 − 28𝜈

(1 − 𝜈)2
𝜌ℎ3

12
𝜂∗
2∇4

𝜕2

𝜕𝑡2
−
ℎ2

20
𝐷∇6

+
2(3 − 4𝜈)

(1 − 𝜈)

𝜌2ℎ

𝐺
𝜂∗
2
𝜕4

𝜕𝑡4
−
2(2 − 𝜈)

1 − 𝜈

𝜌ℎ3

12
∇2

𝜕2

𝜕𝑡2
+ 𝐷∇4

+ (1 −
1

4(1 − 𝜈)
𝜂∗
2∇2)𝜌ℎ

𝜕2

𝜕𝑡2
= 0 

(3.105) 

Multiplying Eq. (3.103) by [5 + ∇̅2ℎ̅2] leads to, under the dimensional form  

𝐷∇4𝑤 + 𝜌ℎ[1 − 𝜅1𝜂∗
2∇2]

𝜕2𝑤

𝜕𝑡2
− [1 +

12𝐷

𝜅ℎ3𝐺
]
𝜌ℎ3

12
∇2
𝜕2𝑤

𝜕𝑡2

+ 𝜂∗
2
𝜌2ℎ

𝐺
𝜅3[1 − 4𝜅1𝜂∗

2∇2]
𝜕4𝑤

𝜕𝑡4
+ 𝜅2

𝜌ℎ3

12
𝜂∗
2∇4

𝜕2𝑤

𝜕𝑡2
= 0 

(3.106) 

where 

𝜅1 =
1

4(1 − 𝜈)
; 𝜅2 =

(277 − 357𝜈)

20(1 − 𝜈)2
; 𝜅3 =

2(3 − 4𝜈)

(1 − 𝜈)
 (3.107) 

 

3.2.2. Nonlocal engineering plate approaches 

3.2.2.1. The nonlocal fourth order phenomenological Kirchhoff-Love 

model 

In the stress gradient Kirchhoff-Love plate model, the constitutive relations for a rectangular KL 

plate can be written as [134,135,256]: 

(1 − 𝜂2∇2)𝑀𝑥𝑥 = 𝐷(
𝜕2𝑤

𝜕𝑥2
+ 𝜈

𝜕2𝑤

𝜕𝑦2
) (3.108) 

(1 − 𝜂2∇2)𝑀𝑦𝑦 = 𝐷 (
𝜕2𝑤

𝜕𝑦2
+ 𝜈

𝜕2𝑤

𝜕𝑥2
) (3.109) 

(1 − 𝜂2∇2)𝑀𝑥𝑦 = 𝐷(1 − 𝜈)
𝜕2𝑤

𝜕𝑥𝜕𝑦
 (3.110) 

where 𝑀𝑥𝑥, 𝑀𝑦𝑦 are the bending moments is 𝑀𝑥𝑦 the twisting moment. 
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The nonlocal equilibrium equation of a rectangular plate is given by [80, 257,258], neglecting the 

rotary inertia 

𝜕2𝑀𝑥𝑥
𝜕𝑥2

+ 2
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦𝑦

𝜕𝑦2
= −𝜌ℎ

𝜕2𝑤

𝜕𝑡2
                              (3.111) 

Multiplication of Eq. (3.111) by (1 − 𝜂2∇2) and substitution of Eqs. (3.108)-(3.110) results in 

[134,135,239] 

𝐷∇4𝑤 + (1 − 𝜂2∇2)𝜌ℎ
𝜕2𝑤

𝜕𝑡2
= 0 (3.112) 

In the local approach 𝜂 = 0 and at the zeroth-order, the three asymptotic models derived from 

three-dimensional considerations and governed by Eqs. (3.82), (3.93) and (3.104) are reduced to 

the local Kirchhoff-Love thin plate model as already shown in the literature [109] and in a previous 

chapter.  

The nonlocal Kirchhoff-Love plate model, as derived before and in the literature, is asymptotically 

consistent following one specific asymptotic model, namely the one with a partial nonlocality 

following the directions of the neutral plane of the plate.  Furthermore, the three different models 

lead to different values of the small length scale differs between the models. Thus, the 

macroscopic length scale, used in the engineering models, such as the Kirchhoff-Love plate model, 

is related to the microscopic length scale introduced in the asymptotic models through the 

following relationship:  

𝜂 = √𝜅1𝜂∗ (3.113) 

where 𝜅1 is equal to 𝜈 (1 − 𝜈)⁄  and 1 4(1 − 𝜈)⁄  for the asymptotic model with a partial 

nonlocality following the thickness of the plate and a full nonlocality, respectively.  

Eq. (3.112) may be obtained variationally using the following bending strain energy, kinetic energy 

[259]: 

𝑈(𝑤) =
1

2
∬ 𝐷 [(

𝜕2𝑤

𝜕𝑥2
)

2

+ 2𝜈
𝜕2𝑤

𝜕𝑥2𝜕𝑦2
+ (

𝜕2𝑤

𝜕𝑦2
)

2

+ 2(1 − 𝜈) (
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

] 𝑑𝑥𝑑𝑦
𝔇

 (3.114) 

𝑇(𝑤) =
1

2
∬

𝜕2

𝜕𝑡2
[𝑤2 + 𝜂2 ((

𝜕𝑤

𝜕𝑥
)
2

+ (
𝜕𝑤

𝜕𝑦
)
2

)]𝑑𝑥𝑑𝑦
𝔇

 (3.115) 
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It is worth noting that the nonlocal effect does not affect the bending strain energy. 

Thus, by applying the Hamilton principle, Eq. (3.112) is obtained and, for boundary conditions, for 

edges parallel to the 𝑥 axis, 

𝐷(
𝜕2𝑤

𝜕𝑥2
+ 𝜈

𝜕2𝑤

𝜕𝑦2
)                  𝑜𝑟    

𝜕𝑤

𝜕𝑥

𝐷
𝜕

𝜕𝑥
∇2𝑤 − 𝜂2𝜌ℎ

𝜕3𝑤

𝜕𝑡2𝜕𝑥
     𝑜𝑟       𝑤

 𝑎𝑟𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 

 

3.2.2.2. 6th order phenomenological thin plate model 

We start from the constitutive law postulated as: 

[1 − 𝜂2∇²]𝑀𝑥𝑥 = 𝐷 [
𝜕2𝑤

𝜕𝑥2
+ 𝜈

𝜕2𝑤

𝜕𝑦2
− 𝜂2 (

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
−
𝜕4𝑤

𝜕𝑥4
)] (3.116) 

[1 − 𝜂2𝛻²]𝑀𝑦𝑦 = 𝐷 [
𝜕2𝑤

𝜕𝑦2
+ 𝜈

𝜕2𝑤

𝜕𝑥2
− 𝜂2 (

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
−
𝜕4𝑤

𝜕𝑦4
)]  (3.117) 

[1 − 𝜂2∇²]𝑀𝑥𝑦 = 𝐷(1 − 𝜈)
𝜕2𝑤

𝜕𝑥𝜕𝑦
    (3.118) 

This model is close to the previously studied nonlocal fourth order phenomenological Kirchhoff-

Love plate model. It changes in the expression of the right hand side. In this model, it includes an 

additional term. It is worth nothing that Eq. (3.118) coincides with Eq. (3.110). 

Multiplying Eq. (3.111) by [1 − (𝑒0𝑎)
2∇²] and substituting Eqs. (3.116)-(3.118)  

𝐷 [∇4𝑤 + 𝜂2 (
𝜕4

𝜕𝑥4
− 2

𝜕4

𝜕𝑥2𝜕𝑦2
+
𝜕4

𝜕𝑦4
)∇2𝑤] + [1 − 𝜂2∇2]𝜌ℎ

𝜕2𝑤

𝜕𝑡2
= 0 (3.119) 

This equation containing sixth derivative terms following a same contribution, namely 𝑥 and 𝑦, it 

is called sixth order phenomenological model.      
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This equation may be also obtained from 𝑈, 𝑇 and 𝑊 given by: 

𝑈(𝑤) =
1

2
∬ 𝐷 [(

𝜕2𝑤

𝜕𝑥2
)

2

+ 2𝜈
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ (

𝜕2𝑤

𝜕𝑦2
)

2

+ 2(1 − 𝜈) (
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

𝔇

− 𝜂2 ((
𝜕3𝑤

𝜕𝑥3
)

2

+ (
𝜕3𝑤

𝜕𝑦3
)

2

)

+ 𝜂2 ((
𝜕3𝑤

𝜕𝑥2𝜕𝑦
)

2

+ (
𝜕3𝑤

𝜕𝑥𝜕𝑦2
)

2

)]𝑑𝑥𝑑𝑦 

(3.120) 

𝑇(𝑤) =
1

2
∬

𝜕2

𝜕𝑡2
[𝑤2 + 𝜂2 ((

𝜕𝑤

𝜕𝑥
)
2

+ (
𝜕𝑤

𝜕𝑦
)
2

)]𝑑𝑥𝑑𝑦
𝔇

 (3.121) 

For boundary conditions, for edges parallel to the 𝑥 axis, it yields: 

𝐷 {
𝜕2𝑤

𝜕𝑥2
+ 𝜈

𝜕2𝑤

𝜕𝑦2
− 𝜂2 (

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
−
𝜕4𝑤

𝜕𝑥4
)}𝛿 (

𝜕𝑤

𝜕𝑥
) = 0 

𝜂2𝐷 [
𝜕3𝑤

𝜕𝑥2𝜕𝑦

𝜕2𝛿𝑤

𝜕𝑥2
−
𝜕3𝑤

𝜕𝑦3
𝜕2𝛿𝑤

𝜕𝑦2
] = 0 

{𝐷 [
𝜕

𝜕𝑥
∇2𝑤 + 𝜂2 (

𝜕5𝑤

𝜕𝑥5
−

𝜕5𝑤

𝜕𝑥3𝜕𝑦2
)] + 𝜂2𝑚0𝜔

2
𝜕𝑤

𝜕𝑥
}𝛿𝑤 = 0 

As for beam, this model will not be considered hereinafter. 

 

3.2.2.3. Nonlocal original Uflyand-Mindlin model  

In the nonlocal stress gradient Uflyand-Mindlin plate mode, the nonlocal equilibrium equations 

of a rectangular plate match those of the local equations given by Eq. (2.75) and the nonlocal 

constitutive laws are given by 

(1 − 𝜂2∇2)𝑀𝑥𝑥 = 𝐷(
𝜕𝜓𝑥
𝜕𝑥

+ 𝜈
𝜕𝜓𝑦

𝜕𝑦
) 

(1 − 𝜂2∇2)𝑀𝑦 = 𝐷 (
𝜕𝜓𝑦

𝜕𝑦
+ 𝜈

𝜕𝜓𝑥
𝜕𝑥

) 

(3.122) 
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(1 − 𝜂2∇2)𝑀𝑥𝑦 =
𝐷

2
(1 − 𝜈)(

𝜕𝜓𝑥
𝜕𝑦

+
𝜕𝜓𝑦

𝜕𝑥
) 

(1 − 𝑅𝑠𝜂
2∇2)𝑄𝑥 = 𝜅𝐺ℎ (𝜓𝑥 +

𝜕𝑤

𝜕𝑥
) ; (1 − 𝑅𝑠𝜂

2∇2)𝑄𝑦 = 𝜅𝐺ℎ (𝜓𝑦 +
𝜕𝑤

𝜕𝑦
) 

𝑅𝑠 is the control parameter defined before. In the literature, for plates and in contrast to beams, 

to our best knowledge, 𝑅𝑠 is taken equal to unity. In this thesis, the case of 𝑅𝑠 equal to zero will 

not be ignored. 

Successive manipulations of these equations of motion lead to the governing differential 

equation 

𝐷𝛻4𝑤 + (1 − 𝑅𝑠𝜂
2∇2) (ℎ −

𝐷𝛻2

𝜅𝐺
)𝜌

𝜕2𝑤

𝜕𝑡2
+ 𝜂2(𝑅𝑠 − 1)𝜌ℎ

𝜕2∇2𝑤

𝜕𝑡2

−
𝜌ℎ3

12
(1 − 𝜂2∇2)

𝜕2

𝜕𝑡2
[𝛻2𝑤 − (1 − 𝑅𝑠𝜂

2∇2)
𝜌

𝜅𝐺

𝜕2𝑤

𝜕𝑡2
] = 0 

(3.123) 

Furthermore, the nonlocal OUM plate model is also derived variationally by setting an additional 

Eringen energy 𝑇𝑁𝐿  : 

𝑇𝑁𝐿 =
𝜂2

2
∬ 𝑅𝑠𝜌ℎ [(

𝜕2𝑤

𝜕𝑥𝜕𝑡
)

2

+ (
𝜕2𝑤

𝜕𝑦𝜕𝑡
)

2

]
𝔇

+
𝜌ℎ3

12
[(
𝜕2𝜓𝑥
𝜕𝑥𝜕𝑡

)

2

+ (
𝜕2𝜓𝑥
𝜕𝑦𝜕𝑡

)

2

+ (
𝜕2𝜓𝑦

𝜕𝑥𝜕𝑡
)

2

+ (
𝜕2𝜓𝑦

𝜕𝑦𝜕𝑡
)

2

] 𝑑𝑥𝑑𝑦   

(3.124) 

Hamilton’s principle, considering the strain and kinetic energies given by Eqs. (2.9)-(2.11) and 

(3.124), leads to the equations of motion: 

𝐷(
𝜕2𝜓𝑥
𝜕𝑥2

+ 𝜈
𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
) +

𝐷(1 − 𝜈)

2
(
𝜕2𝜓𝑥
𝜕𝑦2

+
𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
) − 𝜅𝐺ℎ (𝜓𝑥 +

𝜕𝑤

𝜕𝑥
)

=
𝜌ℎ3

12
(1 − 𝜂2∇2)

𝜕2𝜓𝑥
𝜕𝑡2

 

𝐷 (
𝜕2𝜓𝑦

𝜕𝑦2
+ 𝜈

𝜕2𝜓𝑥
𝜕𝑥𝜕𝑦

) +
𝐷(1 − 𝜈)

2
(
𝜕2𝜓𝑦

𝜕𝑥2
+
𝜕2𝜓𝑥
𝜕𝑥𝜕𝑦

) − 𝜅𝐺ℎ (𝜓𝑦 +
𝜕𝑤

𝜕𝑦
)

=
𝜌ℎ3

12
(1 − 𝜂2∇2)

𝜕2𝜓𝑦

𝜕𝑡2
 

(3.125) 
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𝜅𝐺ℎ (
𝜕𝜓𝑥
𝜕𝑥

+
𝜕2𝑤

𝜕𝑥2
+
𝜕𝜓𝑦

𝜕𝑦
+
𝜕2𝑤

𝜕𝑦2
) = 𝜌ℎ(1 − 𝑅𝑠𝜂

2∇2)
𝜕2𝑤

𝜕𝑡2
 

At the boundary of the plate: 

𝐷 (
𝜕𝜓𝑛
𝜕𝑛

+ 𝜈
𝜕𝜓𝑠
𝜕𝑠
) + 𝜂2

𝜌ℎ3

12

𝜕3𝜓𝑛
𝜕𝑡2𝜕𝑛

= 0  𝑜𝑟 𝜓𝑛 

𝐷(1 − 𝜈)

2
(
𝜕𝜓𝑛
𝜕𝑠

+
𝜕𝜓𝑠
𝜕𝑛

) + 𝜂2
𝜌ℎ3

12

𝜕3𝜓𝑠
𝜕𝑡2𝜕𝑛

= 0  𝑜𝑟 𝜓𝑠 

𝜅𝐺ℎ (𝜓𝑛 +
𝜕𝑤

𝜕𝑛
) + 𝑅𝑠𝜂

2𝜌ℎ
𝜕3𝑤

𝜕𝑡2𝜕𝑛
= 0 𝑜𝑟 𝑤 

are specified. 

 

The equations of motion lead to the governing differential equation: 

𝐷𝛻4𝑤 + (1 − 𝑅𝑠𝜂
2∇2) (𝜌ℎ

𝜕2𝑤

𝜕𝑡2
−
𝜌

𝜅𝐺
𝐷𝛻2

𝜕2𝑤

𝜕𝑡2
)

−
𝜌ℎ3

12
(1 − 𝜂2∇2)

𝜕2

𝜕𝑡2
(𝛻2𝑤 − (1 − 𝑅𝑠𝜂

2∇2)
𝜌

𝜅𝐺

𝜕2𝑤

𝜕𝑡2
) = 0 

(3.126) 

 

It is worth noticing that, for 𝑅𝑠 = 1, the governing differential equations in displacement derived 

through the use of the equilibrium equations and the variational principles are identical. However, 

for 𝑅𝑠 = 0, Eq. (3.126), derived through the variational principle, compared to Eq. (3.123) does 

not contain the term 𝜂2𝜌ℎ 𝜕2∇2𝑤 𝜕𝑡2⁄ .  
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3.2.2.4. Truncated Uflyand-Mindlin model 

As for the local plate models, it is suggested to replace in the equations of motion of the original 

Uflyand-Mindlin plate model 𝜕2𝜓𝑥 𝜕𝑡2⁄  and 𝜕2𝜓𝑦 𝜕𝑡2⁄  by 𝜕3𝑤 𝜕𝑥𝜕𝑡2⁄  and 𝜕3𝑤 𝜕𝑦𝜕𝑡2⁄ , 

respectively. Thus, for the model derived through equilibrium equations, it yields [70] 

𝐷𝛻4𝑤 + (1 − 𝑅𝑠𝜂
2∇2) (ℎ −

𝐷𝛻2

𝜅𝐺
)𝜌

𝜕2𝑤

𝜕𝑡2
+ 𝜂2(𝑅𝑠 − 1)𝜌ℎ

𝜕2∇2𝑤

𝜕𝑡2

−
𝜌ℎ3

12
(1 − 𝜂2∇2)

𝜕2𝛻2𝑤

𝜕𝑡2
= 0 

(3.127) 

 

3.2.2.5. Uflyand-Mindlin based on slope inertia 

As for the nonlocal theory of beam, the expression of the kinetic energy given in Eq. (3.124) is 

retained.   

Using Hamilton’s principle in conjunction with Eq. (2.101) rather than Eq. (2.80) yields to the 

equations of motion, 

𝐷(
𝜕2𝜓𝑥
𝜕𝑥2

+ 𝜈
𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
) +

𝐷(1 − 𝜈)

2
(
𝜕2𝜓𝑥
𝜕𝑦2

+
𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
) − 𝜅𝐺ℎ (𝜓𝑥 +

𝜕𝑤

𝜕𝑥
) = −𝜂2∇2

𝜌ℎ3

12

𝜕2𝜓𝑥
𝜕𝑡2

 

𝐷 (
𝜕2𝜓𝑦

𝜕𝑦2
+ 𝜈

𝜕2𝜓𝑥
𝜕𝑥𝜕𝑦

) +
𝐷(1 − 𝜈)

2
(
𝜕2𝜓𝑦

𝜕𝑥2
+
𝜕2𝜓𝑥
𝜕𝑥𝜕𝑦

) − 𝜅𝐺ℎ (𝜓𝑦 +
𝜕𝑤

𝜕𝑦
) = −𝜂2∇2

𝜌ℎ3

12

𝜕2𝜓𝑦

𝜕𝑡2
 

𝜅𝐺ℎ (
𝜕𝜓𝑥
𝜕𝑥

+
𝜕2𝑤

𝜕𝑥2
+
𝜕𝜓𝑦

𝜕𝑦
+
𝜕2𝑤

𝜕𝑦2
) +

𝜌ℎ3

12

𝜕2

𝜕𝑡²
∇²𝑤 = 𝜌ℎ(1 − 𝑅𝑠𝜂

2∇2)
𝜕2𝑤

𝜕𝑡2
 

(3.128) 

It leads to the following governing differential equation, 

−
𝜌

𝜅𝐺
(1 − 𝑅𝑠𝜂

2∇2)𝐷∇2
𝜕2𝑤

𝜕𝑡2
+
𝜌ℎ2

12𝜅𝐺
𝐷
𝜕2

𝜕𝑡2
∇4𝑤 + 𝐷∇4𝑤

+ 𝜌ℎ(1 − 𝑅𝑠𝜂
2∇2)

𝜕2𝑤

𝜕𝑡2
−
𝜌ℎ3

12

𝜕2∇2𝑤

𝜕𝑡2

=
𝜂2𝜌ℎ3

12

𝜕2∇2

𝜕𝑡2
[
𝜌

𝜅𝐺
(1 − 𝑅𝑠𝜂

2∇2)
𝜕2𝑤

𝜕𝑡2
−
𝜌ℎ2

12𝜅𝐺

𝜕2

𝜕𝑡2
∇2𝑤 − ∇2𝑤] 

(3.129) 
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And, at the boundary of the plate: 

𝐷 (
𝜕𝜓𝑛
𝜕𝑛

+ 𝜈
𝜕𝜓𝑠
𝜕𝑠
) + 𝜂2

𝜌ℎ3

12

𝜕3𝜓𝑛
𝜕𝑡2𝜕𝑛

= 0  𝑜𝑟  𝜓𝑛 

𝐷(1 − 𝜈)

2
(
𝜕𝜓𝑛
𝜕𝑠

+
𝜕𝜓𝑠
𝜕𝑛

) + 𝜂2
𝜌ℎ3

12

𝜕3𝜓𝑠
𝜕𝑡2𝜕𝑛

= 0  𝑜𝑟  𝜓𝑠 

𝜅𝐺ℎ (𝜓𝑛 +
𝜕𝑤

𝜕𝑛
) +

𝜌ℎ3

12

𝜕3𝑤

𝜕𝑡2𝜕𝑛
+ 𝑅𝑠𝜂

2𝜌ℎ
𝜕3𝑤

𝜕𝑡2𝜕𝑛
= 0  𝑜𝑟  𝑤 

are specified 

 

3.2.3. Solution  

Now, it is proposed to conduct a numerical comparison of the natural frequencies obtained 

through the different nonlocal asymptotic and engineering (KL, OUM, TUM and SUM) models for 

a nanoplate simply supported at all edges. 

The governing differential equation, for the nonlocal engineering thick plate models is written 

under the general form as follows:  

𝐷∇4𝑤 + (1 − 𝑅𝑠𝜂
2∇2) (𝜌ℎ −

𝜌

𝜅𝐺
𝐷∇2)

𝜕2𝑤

𝜕𝑡2
+ 𝛿𝑔𝜂

2(𝑅𝑠 − 1)∇
2𝜌ℎ

𝜕2𝑤

𝜕𝑡2

−
𝜌ℎ3

12

𝜕2

𝜕𝑡2
{(1 − 𝜂2∇2)∇2𝑤

− (𝛾1 − 𝜂
2∇2)(𝛾1 + 𝛾2)

𝜌

𝜅𝐺
(1 − 𝑅𝑠𝜂

2∇2)
𝜕2𝑤

𝜕𝑡2

−
𝛾2
𝜅𝐺

(
𝐷

ℎ
+
𝜂2𝜌ℎ2

12

𝜕2

𝜕𝑡2
)∇4𝑤} = 0 

(3.130) 

The following nondimensional numbers are introduced: 

𝛽 =
𝐸

𝐺(1 − 𝜈2)
=

2

(1 − 𝜈)
; 𝑦 = 𝜇𝑏 =

𝜇

𝜒
𝑎; ℎ̅ =

ℎ

𝑎
; 𝜉 =

𝑥

𝑎
; 𝜒 =

𝑎

𝑏
; 𝜂̅ =

𝜂

𝑎
 (3.131) 
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As for local plate models, the solution is given by Navier (see Eq. (2.118) ). Substituting Eq. 

(2.118) and (3.131) into Eq. (3.130), It yields: 

Λ1Ω
4 − Λ2Ω

2 + Λ3 = 0 (3.132) 

where, for the engineering models for thick plates (original and truncated Uflyand-Mindlin and 

Uflyand-Mindlin based on slope inertia): 

Λ1 =
𝛽ℎ̅4

144𝜅
𝜒8 [𝛾1Ξ(1 + 𝑅𝑠𝜂̅

2∇̅𝑚𝑛) + 𝛾2 [1 + 𝑅𝑠𝜂̅
2∇̅𝑚𝑛 +

ℎ̅2

12
] 𝜂̅2∇̅𝑚𝑛] 

Λ2 = [(1 + 𝑅𝑠𝜂̅
2∇̅𝑚𝑛) (1 +

ℎ̅2

12

𝛽

𝜅
∇̅𝑚𝑛)− 𝛿𝑔𝜂̅

2(𝑅𝑠 − 1)∇̅𝑚𝑛 + Ξ
ℎ̅2

12
∇̅𝑚𝑛 + 𝛾2

ℎ̅4

144

𝛽

𝜅
∇̅𝑚𝑛
2 ] 𝜒4 

Λ3 = ∇̅𝑚𝑛
2  

(3.133) 

with Ξ = (1 + 𝜂̅2∇̅𝑚𝑛). 

The coefficients for the first asymptotic model, coinciding with the truncated Bresse-

Timoshenko model with 𝑅𝑠 = 1 are given for a couple (𝛾1, 𝛾2) equal to (0,0): 

Λ1 = 0; Λ2 = [(1 + 𝜂̅
2∇̅𝑚𝑛) (1 +

ℎ̅2

12

𝛽

𝜅
∇̅𝑚𝑛) + Ξ

ℎ̅2

12

𝛽

𝜅
∇̅𝑚𝑛
2 ] 𝜒4 (3.134) 

For the second asymptotic model with a partial nonlocality following the thickness of the plate, 

at the second order,  

Λ1 = (1 + 𝜅1𝜂̅∗
2∇̅𝑚𝑛)𝜅3𝜒

8
ℎ̅2

12
𝛽𝜂̅∗

2 

Λ2 = {1 + 𝜅1𝜂̅∗
2∇̅𝑚𝑛 + ∇̅𝑚𝑛

ℎ̅2

12
[1 +

𝛽

𝜅
] + 𝜅2

ℎ̅2

12
𝜂̅∗
2∇̅𝑚𝑛

2 }𝜒4 

(3.135) 

For the third asymptotic model with a full nonlocality, at the second order,  

Λ1 = 𝜂̅∗
2𝜒8

𝛽ℎ̅2

12
𝜅3[1 + 4𝜅1𝜂̅∗

2∇̅𝑚𝑛] 

Λ2 = {1 + 𝜅1𝜂̅∗
2∇̅𝑚𝑛 + [1 +

𝛽

𝜅
]
ℎ̅2

12
∇̅𝑚𝑛 + 𝜅2

ℎ̅2

12
𝜂̅∗
2∇̅𝑚𝑛

2 }𝜒4 

(3.136) 
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The expression of Λ3 is the same for all the models (asymptotic and engineering).  

For the original Uflyand-Mindlin plate model and the second nonlocal asymptotic model at the 

second order, the solution is given by Eq. (2.131)  

For the truncated Uflyand-Mindlin plate model, 𝛾1 = 0 and 

Ω =
∇̅𝑚𝑛
𝜒2 √

1

(1 + 𝑅𝑠𝜂̅
2∇̅𝑚𝑛) (1 +

ℎ̅2

12
𝛽
𝜅 ∇̅𝑚𝑛) − 𝛿𝑔𝜂̅

2(𝑅𝑠 − 1)∇̅𝑚𝑛 + Ξ
ℎ̅2

12 ∇̅𝑚𝑛

 
(3.137) 

The solution is much simpler than the one derived for the original Uflyand-Mindlin plate model. 

The solution derived for the KL plate model is derived in the literature [256,260-263] 

Ω = ∇̅𝑚𝑛√
1

𝜒4(1 + 𝜂̅2∇̅𝑚𝑛)
 (3.138) 

The solution of the zeroth order asymptotic models is given by: 

Ω = ∇̅𝑚𝑛√
1

𝜒4(1 + 𝜅1𝜂̅∗
2∇̅𝑚𝑛)

 (3.139) 

𝜅1 is equal to 1, 𝜈/(1 − 𝜈) and 1/4(1 − 𝜈) for the first, second and third asymptotic model with 

a nonlocality following the directions of the plate, with a partial nonlocality following the 

thickness of the plate and with a full nonlocality, respectively.  

The five first non-dimensional natural frequencies are calculated in Table 14 for a square plate, 

simply supported at all edges, with a thickness ratio ℎ̅ equal to 0.1 in order to not ignore the rotary 

inertia and the shear effects, evaluated by the fourth order phenomenological Kirchhoff-Love 

plate model and the three versions of the nonlocal Uflyand-Mindlin plate model (original, 

truncated and based on slope inertia), the truncated model coinciding with the first asymptotic 

model at the second order. The Poisson’s ratio, as for beams, is taken equal to 0.3. The shear 

parameters 𝜅 is calculated from its value determined in the local second order asymptotic model. 

Three values of the nonlocal parameter are chosen: 𝜂̅ = 0 (local approach), 𝜂̅ = 0.15 and 𝜂̅ =

0.3.  
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 KL OUM TUM SUM 

Local 

𝜂̅ = 0 

19.739 19.089 19.082 19.075 

49.348 45.615 45.524 45.417 

78.957 70.091 69.786 69.404 

98.696 85.464 84.939 84.255 

128.305 107.327 106.362 105.026 

 
𝑅𝑠 = 0 

𝑅𝑠 = 1 𝑅𝑠 = 0 𝑅𝑠 = 1 𝑅𝑠 = 0 𝑅𝑠 = 1 
𝛿𝑔 = 0 𝛿𝑔 = 1 

𝜂̅ = 0.15 

16.426 19.028 16.007 15.885 16.003 15.879 19.013 18.832 

33.369 44.840 32.356 31.400 32.322 31.337 44.655 42.551 

47.385 67.497 44.409 42.064 44.322 41.881 66.896 60.506 

54.996 80.991 51.073 47.622 50.943 47.330 79.983 69.701 

65.079 99.061 59.697 54.439 59.495 53.949 97.289 80.208 

𝜂̅ = 0.3 

11.846 18.846 11.642 11.456 11.639 11.452 15.877 11.453 

21.155 42.706 20.502 19.555 20.492 19.516 31.336 19.539 

27.732 60.923 26.555 24.618 26.535 24.511 41.913 24.587 

31.395 70.315 29.835 27.186 29.808 27.019 47.408 27.146 

36.221 81.095 34.043 30.299 34.004 30.027 54.127 30.245 

Table 14. Natural frequencies Ω obtained for different values of the nonlocal parameter for the 

KL plate model, the OUM, TUM and SUM models for 𝜂̅ = 0, 𝜂̅ = 0.15, 𝜂̅ = 0.3 and (ℎ̅, 𝜒) =

(0.1,1) 
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First of all, similar observations to the beam cases can be done. The nonlocal effect tends 

to increase the flexibility of the beam and then an increase of the nonlocal parameter results in a 

decrease of the natural frequency. The nonlocal effect is more important for high order of 

frequencies. For instance, for the truncated Uflyand-Mindlin plate, for 𝜂̅ and 𝑅𝑠 equal to 0.3 and 

0, respectively, the fourth frequency is 2.8 times smaller than for the equivalent local fourth 

frequency. For the fundamental frequency, the nonlocal frequency is only 1.6 times smaller than 

the equivalent local one.  

Moreover, as for beams, the different engineering thick plate model introduce a 

parameter 𝑅𝑠, equal to unity when the nonlocal effect affects both the shear and the bending 

parts of the constitutive laws. Although in the literature, only the case 𝑅𝑠 = 1 is considered, the 

case 𝑅𝑠 equal to zero cannot be ignored a priori. The extension of the Bernoulli-Euler beam model 

for plates is the Kirchhoff-Love plate model and as for beams, this model is supposed to provide 

an upper bound of the natural frequencies. Yet, when 𝑅𝑠 = 0, for 𝜂̅ equal to 0.3, the the three 

first frequencies are 18.846, 42.706 and 60.923 for the nonlocal Uflyand-Mindlin plate model 

based on slope inertia versus 11.846, 21.155 and 27.732 for the nonlocal Kirchhoff-Love plate 

model, leading to a contradiction. Moreover, for the original Uflyand-Mindlin plate model, the 

governing differential equation should not depend on the derivation. For 𝑅𝑠 = 0, when the 

nonlocal effect is taken into account, it is seen that the natural frequencies obtained for 𝛿𝑔 equal 

to unity (derivation through the use of the equilibrium equations) are different from the 

frequencies found for 𝛿𝑔 equal to zero (derivation by using the variational principle). The natural 

frequencies should not depend on the process of derivation of the equations. Thus, this short 

comparison justifies the use of 𝑅𝑠 equal to unity. Hereinafter, for plates, this parameter will be 

only taken equal to unity. 

Furthermore, Ω∗ is defined as the frequency ratio, the Kirchhoff-Love plate model being 

the reference model: Ω∗ = Ω/Ω(KL). Ω∗ is depicted in Figs. 16 and 18 for a square plate and the 

three versions of the Uflyand-Mindlin plate model (original, truncated and based on slope inertia) 

for various nonlocal parameters 𝜂̅ and a fixed thickness ratio ℎ̅ equal to 0.1 (Fig. 16) and for 

different thickness ratios ℎ̅ and a fixed nonlocal parameter 𝜂̅ equal to 0.15 (Fig. 17). It is seen that 

the three versions of the Uflyand-Mindlin plate model coincides for small values of 𝜂̅ and ℎ̅. A very 

small difference occurs for very high thickness ratios. The general trend of the curves show that 
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the fundamental frequency decreases when the thickness ratio or the nonlocal parameter 

increases.  

 

Fig. 16. Frequency ratio Ω∗ considering the nonlocal Kirchhoff-Love plate (KL) plate model, the 

original Uflyand-Mindlin plate model (OUM) and the nonlocal truncated Uflyand-Mindlin plate 

model (TUM) for various values of the non-dimensional nonlocal parameter 𝜂̅ 

 

Fig. 17. Frequency ratio Ω∗ considering the nonlocal Kirchhoff-Love plate (KL) plate model, the 

original Uflyand-Mindlin plate model (OUM) and the nonlocal truncated Uflyand-Mindlin plate 

model (TUM) for various values of thickness ratio ℎ̅ 
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Moreover, in order to clearly show the influence of the vibration mode number on the natural 

frequency, Fig. 18 depicts the values of the ratio Ω/ΩKL(𝜂̅ = 0 ) for the Kirchhoff-Love plate 

model and the original Uflyand-Mindlin plate model with 𝑅𝑠 arbitrarily equal to unity versus 𝑚2 +

𝑛2, representative of the order of the frequency. Two values of the nonlocal parameters of the 

nonlocal parameter 𝜂̅ are arbitrarily chosen: 0.15 and 0.25. For the original Uflyand-Mindlin plate 

model, the frequency depends on the thickness ratio. So, ℎ̅ is taken equal to 0.1 and 0.2. One can 

see that for a fixed 𝜂̅, whatever the thickness ratio, the Kirchhoff-love plate model provides an 

upper bound of the frequency. Interestingly, for a fixed value of ℎ̅, for instance equal to 0.1, the 

difference between the natural frequencies calculated for 𝜂̅ = 0.15 and 𝜂̅ = 0.25 does not 

significantly change with the order of the frequency. However, for a fixed value of the nonlocal 

parameter 𝜂̅, for instance 0.15, the difference between the case ℎ̅ = 0.1 and ℎ̅ = 0.2 decreases 

with the order of the frequency. 

 

Fig. 18. Frequency ratio Ω/ΩKL(𝜂̅ = 0 ) considering the nonlocal Kirchhoff-Love plate (KL) plate 

model and the original Uflyand-Mindlin plate model for 𝜂̅ equal to 0.15 or 0.25 and ℎ̅ equal to 

0.1 or 0.2 
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In order to compare our results with those of the literature, the frequency ratio Ω∗ is given in Fig. 

19 for various length of the squared plate and the different nonlocal length 𝜂 considering the 

nonlocal original Uflyand-Mindlin plate model with 𝑅𝑠 equal to unity for a thickness equal to 0.34. 

The trends of the curves within the figure coincide with those in the literature. Whatever the 

length of the curve, the frequency strongly depends on the nonlocal length. For a small length of 

the plate, the rotary inertia and the shear effects are important. Consequently, the difference 

between the curves is important. When the length of the plate 𝑎 increases, it decreases these 

effects and all the curves merge in one curve for very high values of the plate length. This curve is 

the one of the local model.  

 

Fig. 19. Frequency ratio considering the original Uflyand-Mindlin squared plate model for 

various values of the length of the plate and the nonlocal parameter 𝜂 

Now, consider the different asymptotic models. It has been established that the one with a partial 

nonlocality following the two directions of the plate coincides with the Kirchhoff-Love plate model 

and the truncated Uflyand-Mindlin plate model for 𝑅𝑠 equal to unity at the zeroth and second 

order, respectively. At the lowest order, the three models differ in the expression of the 

macroscopic nonlocal length, as shown before. It results in a difference in the values of the natural 

frequencies, higher for first asymptotic model than for the two other ones. It is worth noticing in 

Table 14 that, for a specific quadruplet of parameters (𝜂̅∗, ℎ̅, 𝑚, 𝑛) equal to (0.15,0.1,3,1), the 

second and third asymptotic models lead to complex values of the natural frequency. This issue 

does not occur for the first asymptotic model with a nonlocality following the directions of the 

plate, valid for any value of the chosen parameters. Thus, the second and third asymptotic models 

at the second order are less robust than the engineering nonlocal models.  
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Moreover, Figs. 20-22 depict the ratio Ω∗ for various values of the nonlocal parameters for the 

three different asymptotical models at the zeroth and second order, respectively. At the second 

order, the natural frequency depends on the value of the thickness ratios and two cases are 

considered: a ratio equal to 0.1 (Fig. 21) and a ratio equal to 0.2 (Fig. 22) Because the coefficient 

𝜅1 differs between the three asymptotic models, a difference occurs in the expression of the 

fundamental frequency and this difference increases with the nonlocal length. 

 

Fig. 20. Frequency ratio Ω∗ considering the three asymptotic models at the zeroth order for ℎ̅ =

0.1 and various values of the non-dimensional nonlocal parameter 𝜂̅∗ 

 

Fig. 21. Frequency ratio Ω∗ considering the three asymptotic models at the second order for ℎ̅ =

0.1 and various values of the non-dimensional nonlocal parameter 𝜂̅∗ 
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Fig. 22. Frequency ratio Ω∗ considering the three asymptotic models at the second order for ℎ̅ =

0.2 and various values of the non-dimensional nonlocal parameter 𝜂̅∗ 

As for the Kirchhoff-Love model and the three versions of the Uflyand-Mindlin plate model, an 

increase of the non-dimensional nonlocal parameter results in a decrease of the natural 

frequency. Comparing Figs. 21 and 22, it is shown that the difference between the different 

models is more important for large thickness ratios (for instance equal to 0.2). Also, for large non-

dimensional nonlocal parameters, Figs. 21 and 22 show that after a certain value of the nonlocal 

parameter, the natural frequencies calculated from the asymptotic model with a partial 

nonlocality following the thickness of the plate and the one with a full nonlocality increase and no 

value is plotted for big values of 𝜂̅∗. Indeed, these models, as previously explained, do not always 

lead to real values of the frequencies. Thus, for a thickness ratio equal to 0.2, the asymptotic 

model with a full nonlocality cannot predict natural frequencies for a non dimensional nonlocal 

parameter 𝜂̅∗ larger than 0.2 for the asymptotic model with a full nonlocality, larger than 0.25 for 

the asymptotic model with a partial nonlocality following the 𝑧 direction. Moreover, in order to 

study the effect of the thickness ratio on the natural frequency, Fig. 23 depicts the frequency ratio 

Ω∗ for a nonlocal parameter  𝜂̅∗ equal to 0.15 and various values of ℎ̅ calculated form the different 

asymptotic models at the second order. It is seen, similarly to Figs. 20-22 that an increase of the 

thickness ratio results in a decrease of the frequency ratio because of the rotary inertia and the 

shear effects that cannot be ignored. Hereinafter, it will be proposed a calibration of 𝜂̅∗ with 

respect to lattice mechanics. 
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Fig. 23. Frequency ratio Ω∗ considering the three asymptotic models at the second order for  

𝜂̅∗ = 0.15 and various values of the thickness ratio ℎ̅ 

Thus, in this chapter, different nonlocal models have been derived. First of all, nonlocal beam and 

plate models have been derived from an asymptotic approach starting from three-dimensional 

stress gradient elasticity. Based on power series expansions in displacement, different asymptotic 

models have been considered, leading to different governing differential equations at the zeroth 

and second order. In addition to these models, the three versions of the Bresse-Timoshenko 

models and the Uflyand-Mindlin plate models, presented in a previous chapter have been 

extended to take into account the nonlocal effect. As expected from the previous chapter, the 

truncated versions of these models are asymptotically consistent following a partial nonlocality 

following the directions of the structure (beam or plate). There is a debate in the literature in 

order to know whether the nonlocal effect should affect or not the shear part of the constitutive 

law. This study shows that it should affect both the bending and the shear parts of the law. 
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In each of the models that have been derived in this chapter, a small length scale coefficient has 

been introduced. This coefficient is supposed constant and its value has to be determined. It is 

suggested to calibrate it from a physical reference model based on lattice mechanics. 
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4. MICROSTRUCTURED AND CONTINUALIZED MODELS, 

CALIBRATION OF THE SMALL LENGTH SCALE 

COEFFICIENT: THE RESOLUTION OF THE SMALL 

LENGTH SCALE COEFFICIENT PARADOX 

In the previous chapter, different phenomenological models based on postulated 

constitutive laws have been proposed. These models introduce a small length scale coefficient. 

This coefficient is assumed constant. Its value may be calibrated by equating the buckling load in 

statics or the natural frequency in dynamics with those of the lattice model. 

This chapter starts by presenting the discrete model for thin beams and plates. Then, the small 

length scale coefficient is calibrated, yielding to, as explained before, a paradoxical result. Thus, 

to solve this paradox, a new family of nonlocal structural models are proposed. These models are 

based on the continualization of the discrete models. 

These results will be extended to the case of thick plates (for thick beams, the reader may refer 

to the paper of Duan et al. [127]).  

 

 

 

4.1. Different nonlocal thin beam models 

4.1.1. Microstructured model 

The idea of the lattice, or microstructured, model is to represent the pattern by periodic cells in 

order to take into account the discrete nature of the matter at a finer scale. The atoms of the 

plates are represented by the points of the lattice and the interactions between the atoms, by 

frictionless joints. In this approach, the bending moments are lumped at places that rotations are 

localized [132]. This structural model may be called Hencky’s model [131]. 
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Thus, consider that the thin beam of the previous chapters, analytically described in the literature 

by the Bernoulli-Euler model, is an assembly of 𝑛 beams of length 𝑎 (𝐿 = 𝑛𝑎) and concentrated 

inertia mass 𝑚 connected by elastic rotational springs of stiffness 𝐶 = 𝐸𝐼/𝑎, (see Fig. 24). The 

beam is subjected to a compressive load 𝑁. We define 𝑚0 such as 𝑚0 = 𝑚/𝑎. In the continuous 

representation, 𝑚0 = 𝜌𝐴. At the 𝑖th node, the deflection is 𝑤𝑖 and the bending moment is 𝑀𝑖.  

 

Fig. 24. Microstructured beam model 

The discrete constitutive law and equilibrium equation are:  

𝑀𝑖 = 𝐸𝐼 (
𝑣𝑖+1 − 2𝑣𝑖 + 𝑣𝑖−1

𝑎2
)       

(4.1) 

𝑀𝑖+1 − 2𝑀𝑖 +𝑀𝑖−1
𝑎2

= −𝑁
𝑣𝑖+1 − 2𝑣𝑖 + 𝑣𝑖−1

𝑎2
+𝑚0𝜔

2𝑣𝑖       
(4.2) 

that are the Finite Difference formulation of the continuous equations  

𝑀 = 𝐸𝐼
𝑑2𝑣

𝑑𝑥2
 

(4.3) 

𝑁
𝑑2𝑣

𝑑𝑥2
+
𝑑2𝑀

𝑑𝑥2
−𝑚0𝜔

2𝑣 = 0                                                     
(4.4) 

Combining Eqs. (4.3) and Eq. (4.4) leads to the discrete governing differential equation: 

𝑁 (
𝑣𝑖+1 − 2𝑣𝑖 + 𝑣𝑖−1

𝑎2
) + 𝐸𝐼 (

𝑣𝑖+2 − 4𝑣𝑖+1 + 6𝑣𝑖 − 4𝑣𝑖−1 + 𝑣𝑖−2
𝑎4

) − 𝑚0𝜔
2𝑣𝑖 = 0  

(4.5) 

The beam being simply supported at both ends, the solution of the governing fourth-order 

difference equation is assumed to be, analogically to the Navier’s expression for continuous plates 

given in previous chapters 

𝑣𝑖 = 𝑣0 sin (
𝑚𝜋𝑖

𝑛
) 

(4.6) 

We set the non-dimensional buckling: 

𝜆 = 𝐿2
𝑁

𝜋2𝐸𝐼
 

(4.7) 
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For the next, the subscript (𝑚𝑖𝑐𝑟𝑜) denotes the lattice model. 

The substitution of Eq. (4.6) into Eq. (4.5) furnishes the following exact buckling load 

[129,147,264-266]: 

𝜆(𝑚𝑖𝑐𝑟𝑜) = min
𝑚
[
2𝑛

𝜋
sin (

𝑚𝜋

2𝑛
)]
2

                                    (4.8) 

In free vibration, 𝑁 = 0 and the non-dimensional natural frequency is, substituting Eq. (4.6) into 

Eq. (4.5), [71,267]: 

Ω(𝑚𝑖𝑐𝑟𝑜)
2 = [

2𝑛

𝜋
sin (

𝑚𝜋

2𝑛
)]
4

                                (4.9) 

Thus, the discrete buckling load and natural frequency are determined. By the next, they will be 

used as references to calibrate the small length scale coefficient 𝑒0, introduced in the 

phenomenological models.  

 

4.1.2. Phenomenological models: the small length scale paradox 

4.1.2.1. Fourth order Eringen phenomenological model 

The governing differential equation for thin beams of the fourth order phenomenological 

model, also called nonlocal Bernoulli-Euler model, as given in the previous chapter by including a 

compressive force is [135] 

𝐸𝐼
𝑑4𝑣

𝑑𝑥4
+𝑁 [1 − (𝑒0𝑎)

2
𝑑2

𝑑𝑥2
]
𝑑2𝑣

𝑑𝑥2
−𝑚0𝜔

2 [1 − (𝑒0𝑎)
2
𝑑2

𝑑𝑥2
] 𝑣 = 0 (4.10) 

In free vibration, this equation has been derived through the use of constitutive laws and the 

equilibrium equation. The objective of this section is to calibrate the coefficient 𝑒0 by equating 

the solutions of the phenomenological model and the one of the microstructured mode, 

previously determined. 

For a beam simply supported at both end, the solution is given through the Navier expression of 

the displacement. Substituting Eq. (2.48) into Eq. (4.10), it yields:  

𝑚4 − (𝜆𝑚2 + Ω2) [1 + (
𝑒0𝑎𝑚𝜋

𝐿
)
2

] = 0 
(4.11) 

In statics (Ω = 0), the nondimensional critical buckling load parameter is: 
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𝜆 = min
𝑚
𝑚2

1

1 + (
𝑒0𝑎𝑚𝜋
𝐿

)
2 =

1

1 + (
𝑒0𝑎𝜋
𝐿
)
2                                         (4.12) 

The small length scale coefficient is obtained by equating Eq. (4.8) and Eq. (4.12): 

1

1 + (
𝑒0𝑎𝜋
𝐿 )

2 = [
2𝑛

𝜋
sin (

𝜋

2𝑛
)]
2

                                  (4.13) 

By expanding asymptotically the two sides of the equations, it leads to a calibration of the length 

scale coefficient as follows 

𝑒0,𝑏 = 1 2√3⁄ ≈ 0.288                                                                (4.14) 

where the subscript 𝑏 denotes a parameter, herein the small length scale calibrated, investigated 

in statics. Analogically, the subscript 𝑣 will be used in free vibration.  

In free vibration, the nondimensional frequency parameter is 

Ω2 = 𝑚2
1

1 + (
𝑒0𝑎𝑚𝜋
𝐿 )

2                                (4.15) 

As for the static case, in free vibration, the small length scale coefficient is calibrated by equating 

the continuous natural frequency given by Eq. (4.15) and the one of the discrete model (see Eq. 

(4.9)) 

𝑚2
1

1 + (
𝑒0𝑎𝑚𝜋
𝐿 )

2 = [
2𝑛

𝜋
sin (

𝜋

2𝑛
)]
4

  (4.16) 

By expanding asymptotically for both sides of Eq. (4.16) for 𝑚 = 1, it leads to the calibrated 

small length scale coefficient:  

𝑒0,𝑣 = 1 √6⁄ ≈ 0.408                           (4.17) 

It is worth noticing that 𝑒0,𝑣 is different from 𝑒0,𝑏. Thus, the small length scale coefficient is 

structural dependent. 
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4.1.2.2. Sixth order phenomenological model 

A sixth order phenomenological model has been presented in the previous chapter in free 

vibration. In the literature [135], the extension of this model to include a compressive force leads 

to the following governing differential equation: 

𝐸𝐼 [1 + (𝑒0𝑎)
2
𝑑2

𝑑𝑥2
]
𝑑4𝑣

𝑑𝑥4
+𝑁 [1 − (𝑒0𝑎)

2
𝑑2

𝑑𝑥2
]
𝑑2𝑣

𝑑𝑥2
−𝑚0𝜔

2 [1 − (𝑒0𝑎)
2
𝑑2

𝑑𝑥2
] 𝑣 = 0 (4.18) 

For a simply supported beam, using the non-dimensional parameters, the equations becomes: 

[1 − (
𝑒0𝑎𝑚𝜋

𝐿
)
2

]𝑚4 − 𝜆 [1 + (
𝑒0𝑎𝑚𝜋

𝐿
)
2

]𝑚2 − Ω̅2 [1 + (
𝑒0𝑎𝑚𝜋

𝐿
)
2

] = 0 
(4.19) 

In statics (𝜔 = 0), the nondimensional buckling load is given by: 

𝜆 = min
𝑚
𝑚2 [1 − (

𝑒0𝑎𝑚𝜋

𝐿
)
2

] [1 + (
𝑒0𝑎𝑚𝜋

𝐿
)
2

]⁄                                          
(4.20) 

Moreover, 𝑒0 is calibrated by equating Eq. (4.8) and Eq. (4.20): 

𝑚2 [1 − (
𝑒0𝑎𝑚𝜋

𝐿
)
2

] [1 + (
𝑒0𝑎𝑚𝜋

𝐿
)
2

]⁄ = [
2𝑛

𝜋
sin (

𝑚𝜋

2𝑛
)]
2

     
(4.21) 

It yields the calibrated small length scale coefficient of 

𝑒0,𝑏 = 1 2√6⁄ ≈ 0.204                                                                     (4.22) 

In the free vibration case (𝑃 = 0), the nondimensional frequency parameter is: 

Ω2 = 𝑚2 [1 − (
𝑒0,𝑣𝑚𝜋

𝑛
)
2

] [1 + (
𝑒0,𝑣𝑚𝜋

𝑛
)
2

]⁄                                 
(4.23) 

By equating Eqs. (4.9) and (4.23), the following calibrated small length scale coefficient is 

obtained: 

𝑒0,𝑣 = 1 2√3⁄ ≈ 0.288                                  (4.24) 

The small length scale coefficient differs in statics and in buckling. As for the fourth order 

phenomenological model, the nonlocal sixth order phenomenological model cannot be calibrated 

with a constant length scale parameter.  

Thus, the phenomenological models as presented in the literature and in this thesis are not 

consistent because they are based on the use of a theoretical constant coefficient which cannot 

be calibrated with a fixed value. Thus, there is a need to develop new nonlocal models to better 

describe the mechanical behavior of nanomaterials. The nonlocal continualized models are recent 

and lead to extremely promising results. 
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4.1.3. Resolution of the paradox: the continualized model 

4.1.3.1. Fourth order continualized model 

The nonlocal continualized models are built from the reference lattice model. The continualization 

process is explained below. The discrete displacement of the ith node 𝑣𝑖 for the discrete model is 

equal to the displacement of the equivalent continuous system 𝑣: 𝑣𝑖 = 𝑣(𝑥𝑖) = 𝑣(𝑥). Following 

a similar reasoning, the previous and next particles 𝑤𝑖−1 and 𝑣𝑖+1 are replaced by 𝑣(𝑥𝑖 − 𝑎) and 

𝑣(𝑥𝑖 + 𝑎), respectively. By applying Taylor series to the difference operators that describe 

discrete particle interactions, it yields to: 

𝑣𝑖±1 = 𝑣(𝑥𝑖 ± 𝑎) = ∑(±1)𝑘
𝑎𝑘

𝑘!

𝑑𝑘

𝑑𝑥𝑘

∞

𝑘=0

𝑣(𝑥) = [𝑒
±𝑎

𝑑
𝑑𝑥] [𝑣]    (4.25) 

Thus, at the second order of the Taylor expansion, the second derivative of the discrete model is 

equivalent to a continuous higher-order differential operator: 

𝑣𝑖+1 − 2𝑣𝑖 + 𝑣𝑖−1
𝑎2

=
𝑑2

𝑑𝑥2
[1 +

𝑎2

12

𝑑2

𝑑𝑥2
] 𝑣(𝑥) + 𝑜(𝑎2) (4.26) 

The second term represents the effect due to discreteness, with 𝑎 being the trace of the 

microscopic system. Using the Padé approximation, the discrete laplacian can be expanded as: 

𝑣𝑖+1 − 2𝑣𝑖 + 𝑣𝑖−1

𝑎²
=

𝑑2

𝑑𝑥2

1 −
𝑎2

12
𝑑2

𝑑𝑥2

𝑣 + 𝑜(𝑎2)  (4.27) 

Similarly, at the fourth order, 

𝑣𝑖+2 − 4𝑣𝑖+1 + 6𝑣𝑖 − 4𝑣𝑖−1 + 𝑣𝑖−2

𝑎²
=
𝑑4

𝑑𝑥4
(1 +

𝑎2

6

𝑑2

𝑑𝑥2
)𝑣 + 𝑜(𝑎2) (4.28) 

Or 

𝑣𝑖+2 − 4𝑣𝑖+1 + 6𝑣𝑖 − 4𝑣𝑖−1 + 𝑣𝑖−2

𝑎²
=

𝑑4

𝑑𝑥4

(1 −
𝑎2

12
𝑑2

𝑑𝑥2
)
2 𝑣 + 𝑜(𝑎

2) (4.29) 

Eqs. (4.28) and (4.29) show that at least two continualization processes are possible, through the 

use of the Padé approximants or just the Taylor expansion up to the second order term. Indeed, 

substituting Eq. (4.27) into the discrete moment curvature relation Eq. (4.1) may  
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𝑀 = 𝐸𝐼

𝑑2

𝑑𝑥2

1 −
𝑎2

12
𝑑2

𝑑𝑥2

𝑣 + 𝑜(𝑎2) 
(4.30) 

Analogically, substituting Eq. (4.27) into the discrete equilibrium equation Eq. (4.2): 

𝑑2

𝑑𝑥2

1 −
𝑎2

12
𝑑2

𝑑𝑥2

(𝑀 + 𝑁𝑣) −𝑚0𝜔
2𝑣 + 𝑜(𝑎2) = 0 (4.31) 

Multiplying Eqs. (4.30) and (4.31) by [1 − (𝑎2 12⁄ )(𝑑2 𝑑𝑥2⁄ )], it yields the continualized 

constitutive law and equilibrium equation: 

𝑀 −
𝑎2

12

𝑑2𝑀

𝑑𝑥2
= 𝐸𝐼

𝑑2𝑣

𝑑𝑥2
+ 𝑜(𝑎2) 

(4.32) 

𝑑2𝑀

𝑑𝑥2
= −𝑁

𝑑2𝑣

𝑑𝑥2
+𝑚0𝜔

2 (𝑣 −
𝑎2

12

𝑑2𝑣

𝑑𝑥2
) + 𝑜(𝑎2)  (4.33) 

The nonlocal effect occurs in these equations through the length 𝑎. Thus, in contrast to the 

phenomenological models, the continualized models do not preserve the locality of the 

equilibrium equation. 

Substituting Eq. (4.32) into Eq. (4.33), it provides a moment-displacement relationship: 

𝑀 = 𝐸𝐼
𝑑2𝑣

𝑑𝑥2
−
𝑁𝑎2

12

𝑑2𝑣

𝑑𝑥2
+𝑚0𝜔

2
𝑎2

12
(𝑣 −

𝑎2

12

𝑑2𝑣

𝑑𝑥2
) + 𝑜(𝑎4) (4.34) 

𝑒0 is, constant and arbitrarily taken equal to 1 √12⁄ . The substitution of Eq. (4.34) into Eq. (4.33), 

by neglecting the higher order term in 𝑎, it results in the following governing differential equation: 

 𝐸𝐼
𝑑4𝑣

𝑑𝑥4
+ 𝑃 [1 −

𝑎2

12

𝑑2

𝑑𝑥2
]
𝑑2𝑣

𝑑𝑥2
−𝑚0𝜔

2 [1 −
𝑎2

6

𝑑2

𝑑𝑥2
] 𝑣 = 0 (4.35) 

Furthermore, this equation can be equivalently obtained directly by continualization of the 

discrete governing differential equation Eq. (4.5). As shown in the literature [135] the two 

processes would lead to the same governing differential equation. 

Thus, substituting Eqs. (4.27) and (4.29) into Eq. (4.5) leads to  

𝐸𝐼

𝑑4

𝑑𝑥4

(1 −
𝑎2

12
𝑑2

𝑑𝑥2
)
2 𝑣 + 𝑁

𝑑2

𝑑𝑥2

1 −
𝑎2

12
𝑑2

𝑑𝑥2

𝑣 −𝑚0𝜔
2𝑣 + 𝑜(𝑎2) = 0 (4.36) 

Multiplying Eq. (4.36) by [1 − (𝑎2 12⁄ )(𝑑2 𝑑𝑥2⁄ )]2, the governing differential equation of the 

fourth order continualized model is obtained, retaining only the second order terms in 𝑎 [135]: 
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The boundary conditions of this continualized model are obtained from the variational approach 

[135]: 

[{[𝐸𝐼 − 𝑃
𝑎2

12
]
𝑑3𝑣

𝑑𝑥3
+ [𝑁 +𝑚0𝜔

2
𝑎2

6
]
𝑑𝑣

𝑑𝑥
} δ𝑣]

0

𝐿

= 0 
(4.37) 

[{[𝐸𝐼 − 𝑁
𝑎2

12
]
𝑑2𝑣

𝑑𝑥2
} δ (

𝑑𝑣

𝑑𝑥
)]
0

𝐿

= 0 
(4.38) 

The solution is provided for a simply supported beam. By substituting Eq. (2.48) into Eq. (4.35), 

we obtain 

𝑚4 − 𝜆 [1 + (
𝑒0𝑎𝑚𝜋

𝐿
)
2

]𝑚2 − Ω̅2 [1 + 2 (
𝑒0𝑎𝑚𝜋

𝐿
)
2

] = 0 
(4.39) 

In statics (𝜔 = 0), the nondimensional buckling load parameter is: 

𝜆 = min
𝑚
𝑚2

1

1 + (
𝑒0𝑎𝑚𝜋
𝐿

)
2 =

1

1 + (
𝑒0𝑎𝜋
𝐿
)
2                                         (4.40) 

In free vibration (𝑃 = 0), the nondimensional frequency parameter is: 

Ω2 = 𝑚2
1

1 + 2(
𝑒0𝑎𝑚𝜋
𝐿 )

2                                        (4.41) 

 

 

4.1.3.2. Sixth order continualized model 

It is suggested to use Eq. (4.26) instead of Eq. (4.27) in the continualization of the local constitutive 

law and the equilibrium equation, leading to 

𝑀 = 𝐸𝐼 [
𝑑2𝑣

𝑑𝑥2
+
𝑎2

12

𝑑4𝑣

𝑑𝑥4
+ 𝑜(𝑎2)] (4.42) 

The nonlocal constitutive law Eq. (4.42) is different from Eq. (4.30). Thus, it will lead to a new 

continualized model. The nonlocal equilibrium equation Eq. (4.31) is retained. The substitution of 

Eq. (4.42) into Eq. (4.31) and multiplying by [1 − (𝑎2 12⁄ )(𝑑2 𝑑𝑥2⁄ )] yields, choosing 𝑒0 = 1 √12⁄  

and by neglecting the term of higher order in 𝑎: 

𝐸𝐼 [1 + (𝑒0𝑎)
2
𝑑2

𝑑𝑥2
]
𝑑4𝑣

𝑑𝑥4
+𝑁

𝑑2𝑣

𝑑𝑥2
−𝑚0𝜔

2 [1 − (𝑒0𝑎)
2
𝑑2

𝑑𝑥2
] 𝑣 = 0 (4.43) 
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It is worth noticing that Eq. (4.48) may be asymptotically obtained from Eq. (4.35), by multiplying 

it by [1 + (𝑎2 12⁄ )(𝑑2 𝑑𝑥2⁄ )] and neglecting the terms in 𝑎4.  

Comparing the continualized nonlocal model with the sixth order phenomenological model, the 

term associated with the dynamic effect is different from the one associated with the static effect. 

Thus, in dynamics, in presence of a compressive load, the continualized and phenomenological 

models do not match.  

This governing equation contains a sixth-order space derivative term, in contrast to the fourth 

order one that contains only second and fourth order space derivative terms. The only difference 

between these two models is the scheme of continualization used in the bending constitutive law. 

Thus, the order of the governing differential equation can be increased by using a different 

continualization process. 

Because of the presence of a sixth order space derivative term in the governing differential 

equation, it requires two additional boundary conditions. These conditions are obtained from the 

derivation of the governing differential equation through the variational principle. Thus, the 

natural boundary conditions are [135]: 

[{𝐸𝐼 [
𝑎2

12

𝑑5𝑣

𝑑𝑥5
+
𝑑3𝑣

𝑑𝑥3
] + [𝑁 +𝑚0𝜔

2
𝑎2

12
]
𝑑𝑣

𝑑𝑥
}δv]

0

𝐿

= 0 

[𝐸𝐼 {
𝑎2

12

𝑑4𝑣

𝑑𝑥4
+
𝑑2𝑣

𝑑𝑥2
} δ (

𝑑𝑣

𝑑𝑥
)]
0

𝐿

= 0  

[𝐸𝐼
𝑎2

12

𝑑3𝑣

𝑑𝑥3
δ (
𝑑2𝑣

𝑑𝑥2
)]
0

𝐿

= 0 

(4.44) 

For a simply supported beam, by substituting Eq. (2.48) into Eq. (4.43),  

[1 − (
𝑒0𝑎𝑚𝜋

𝐿
)
2

]𝑚4 − 𝜆𝑚2 −Ω2 [1 + (
𝑒0𝑎𝑚𝜋

𝐿
)
2

] = 0 
(4.45) 

In statics (𝜔 = 0), the nondimensional buckling load parameter is: 

𝜆 = min
𝑚
[𝑚2 − (

𝑒0𝑎𝑚
2𝜋

𝐿
)

2

] = 1 − (
𝑒0𝑎𝜋

𝐿
)
2

                                     
(4.46) 

In free vibration (𝑃 = 0), the nondimensional frequency parameter is: 

Ω2 = 𝑚2 [1 − (
𝑒0𝑎𝑚𝜋

𝐿
)
2

] [1 + (
𝑒0𝑎𝑚𝜋

𝐿
)
2

]⁄                                         
(4.47) 
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The expressions of the natural frequencies and buckling loads are not the same between the two 

continualized approaches. This difference is due to the continualization process, based on the use 

of Padé approximants for the fourth order phenomenological model and the Taylor approximants 

for the sixth order one.  

 

4.2. Different nonlocal thin plate models 

The previous derivation is now extended to plates.  

4.2.1. Microstructured model 

Following the idea presented in the previous section, a rectangular plate under 

compressive load is represented an assembly of chain net systems of rigid straight elements 

connected at frictionless joints where rotations are localized as shown in Fig. 25. This model is an 

extension of the Hencky’s approach valid for beams and plates. The lattice plate model has been 

developed by Wifi vet al. [136] and El Naschie [132].  

 

Fig. 25. Microstructured beam-grid model (a), torsional deformation of a unit cell (b)  

𝑤𝑖−𝑗 and 𝑤𝑖+𝑗 denote the transverse displacements of the right end of the ith beam element and 

the left end of the (i+1)th beam element, respectively, and 𝑤𝑖𝑗 = 𝑤𝑖−𝑗. Thus, 𝑤𝑖,𝑗 is the transverse 

displacement of node (𝑖, 𝑗). In addition to the transverse displacement, two rotations 𝜓𝑥
𝑖+1/2,𝑗

 

and 𝜓𝑦
𝑖+1/2,𝑗

 are defined in the middle of the elements and denote the rotations of the element 

between node (𝑖, 𝑗) and node (𝑖 + 1, 𝑗). 
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Δ𝑥 and Δ𝑦 are the lengths of beam elements in the 𝑥- and 𝑦-directions. For thin plates, the 

rotations are related to the displacements by: 

𝜓
𝑖+
1
2
,𝑗
=
𝑤𝑖+𝑗 −𝑤(𝑖+1)−𝑗

𝛥𝑥
;𝜓

𝑖,𝑗+
1
2
=
𝑤𝑖𝑗+ −𝑤𝑖(𝑗+1)−

𝛥𝑦
  (4.48) 

 

𝑠 is a parameter such as when 𝑠 = 0, the load is uniaxial [148] and when 𝑠 = 1, the load is the 

same along the two directions [133]. As for the beam case, the bending of the plate is made 

possible by rotational springs at individual nodes. In vibration, the masses are at the nodes of the 

lattice structure. The torsion deformation is modeled by a rectangular repetitive unit cell 

composed of four rigid beam elements with springs in the central domain [132].  

In the discrete model, the centered difference forms of the moment-rotation relationships is 

formulated as: 

𝑀𝑥
𝑖,𝑗
= 𝐷 (𝛥𝑥[𝜓𝑥

𝑖,𝑗
] + 𝜈𝛥𝑦[𝜓𝑦

𝑖,𝑗
]) ;𝑀𝑦

𝑖,𝑗
= 𝐷 (𝛥𝑦[𝜓𝑦

𝑖,𝑗
] + 𝜈𝛥𝑥[𝜓𝑥

𝑖,𝑗
])  (4.49) 

𝑀𝑥𝑦
𝑖,𝑗
= 𝑀𝑦𝑥

𝑖,𝑗
=
𝐷(1 − 𝜈)

2
 (𝛥𝑥[𝜓𝑦

𝑖,𝑗
] + 𝛥𝑦[𝜓𝑥

𝑖,𝑗
])  

(4.50) 

The centered difference operators are defined as follows: 

𝛥𝑥[𝑤𝑖,𝑗] =
𝑤𝑖+1/2,𝑗 −𝑤𝑖−1/2,𝑗

𝛥𝑥
; 𝛥𝑦[𝑤𝑖,𝑗] =

𝑤𝑖,𝑗+1/2 −𝑤𝑖,𝑗−1/2

𝛥𝑦
; (4.51) 

and 𝛥𝛼𝛽[𝑤𝑖,𝑗] = 𝛥𝛼(𝛥𝛽[𝑤𝑖,𝑗]) 

The strain energy function caused by bending of the rotational springs is given by: 

𝑈𝑏 =
1

2
∑ ∑ [𝑀𝑥

𝑖,𝑗
(𝛥𝑥[𝜓𝑥

𝑖,𝑗
]Δ𝑥)Δ𝑦 +𝑀𝑦

𝑖,𝑗
(𝛥𝑦[𝜓𝑦

𝑖,𝑗
]Δy)Δ𝑥]Δ𝑥Δ𝑦

𝑛𝑦−1

𝑗=1

𝑛𝑥−1

𝑖=1

=
𝐷

2
∑ ∑ [(𝛥𝑥[𝜓𝑥

𝑖,𝑗
])
2
+ (𝛥𝑦[𝜓𝑦

𝑖,𝑗
])
2

𝑛𝑦−1

𝑗=1

𝑛𝑥−1

𝑖=1

+ 2𝜈𝛥𝑦[𝜓𝑥
𝑖,𝑗
]𝛥𝑥[𝜓𝑦

𝑖,𝑗
]] Δ𝑥Δ𝑦 

(4.52) 

where 𝑛𝑥 and 𝑛𝑦 are the numbers of discrete rigid elements in the x- and y-directions, 

respectively. They are also seen as the number of atoms in the length of the plate.  

Substituting Eq. (4.51), it leads to 
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𝑈𝑏 =
𝐷

2
∑ ∑ [(

𝑤𝑖+1,𝑗 − 2𝑤𝑖,𝑗 +𝑤𝑖−1,𝑗

𝛥𝑥
)
2 Δ𝑦

Δ𝑥

𝑛𝑦−1

𝑗=1

𝑛𝑥−1

𝑖=1

+ (
𝑤𝑖,𝑗+1 − 2𝑤𝑖,𝑗 +𝑤𝑖,𝑗−1

Δ𝑦
)
2 Δ𝑥

Δ𝑦

+ 2𝜈
(𝑤𝑖+1,𝑗 − 2𝑤𝑖,𝑗 +𝑤𝑖−1,𝑗)(𝑤𝑖,𝑗+1 − 2𝑤𝑖,𝑗 +𝑤𝑖,𝑗−1)

𝛥𝑥Δ𝑦
] 

(4.53) 

In addition to the bending strain energy, a torsional energy is present due to the torsion of four 

connected rigidity bars in an enclosed rectangular unit cell of the lattice model. Thus, the total 

torsional energy is given by [132] 

𝑈𝑡 =
1

2
∑ ∑ [(𝑀𝑥𝑦

𝑖,𝑗
Δ𝜓𝑥𝑦

𝑖,𝑗
)Δ𝑥 + (𝑀𝑦𝑥

𝑖,𝑗
Δ𝜓𝑦𝑥

𝑖,𝑗
)Δ𝑦]

𝑛𝑦−1

𝑗=1

𝑛𝑥−1

𝑖=1

=
𝐷

4
(1 − 𝜈) ∑ ∑ [(𝛥𝑥[𝜓𝑦

𝑖,𝑗
])
2
+ (𝛥𝑦[𝜓𝑥

𝑖,𝑗
])
2
] Δ𝑥Δ𝑦

𝑛𝑦−1

𝑗=1

𝑛𝑥−1

𝑖=1

 

(4.54) 

where the torsional angles are 

Δ𝜓𝑥𝑦
𝑖,𝑗
= (𝛥𝑥[𝜓𝑦

𝑖,𝑗
] + 𝛥𝑦[𝜓𝑥

𝑖,𝑗
])Δ𝑦; Δ𝜓𝑦𝑥

𝑖,𝑗
= (𝛥𝑥[𝜓𝑦

𝑖,𝑗
] + 𝛥𝑦[𝜓𝑥

𝑖,𝑗
])Δ𝑥   (4.55) 

Substituting Eq. (4.51) into Eq. (4.54), it yields to the torsional energy for thin plates: 

𝑈𝑡 =
𝐷

4
(1 − 𝜈) ∑ ∑ [(

𝑤𝑖,𝑗+1 −𝑤𝑖+1,𝑗+1

𝛥𝑥
−
𝑤𝑖,𝑗 −𝑤𝑖+1,𝑗

𝛥𝑦
)
2

𝑛𝑦−1

𝑗=1

𝑛𝑥−1

𝑖=1

+ (
𝑤𝑖,𝑗+1 −𝑤𝑖,𝑗

𝛥𝑥
−
𝑤𝑖+1,𝑗+1 −𝑤𝑖+1,𝑗

𝛥𝑦
)
2

] 

(4.56) 

For a discrete thin plate, the kinetic energy is express as 

𝑇 =
1

2
𝑚0Δ𝑥

2𝜔2∑∑𝑤𝑖,𝑗
2

𝑛𝑦

𝑗=0

𝑛𝑥

𝑖=0

                            
(4.57) 

where  𝑚0 is the mass per unit cell area. In the continuous model, 𝑚0 = 𝜌ℎ. 

Under the action of compressive load, the work is given by:  

𝑊 =
1

2
𝑁𝛥𝑥𝛥𝑦 [∑ ∑ (𝛥𝑥[𝑤𝑖,𝑗])

2

𝑗≤𝑛𝑦−1

𝑗∈𝕆

𝑖≤𝑛𝑥

𝑖∈𝕆

+ ∑ ∑ 𝑠(𝛥𝑦[𝑤𝑖,𝑗])
2

𝑗≤𝑛𝑦

𝑗∈𝕆

𝑖≤𝑛𝑥−1

𝑖∈𝕆

] 
(4.58) 

where 𝕆 denotes the group of halves of odd numbers 𝕆 = {(2𝑘 + 1) 2⁄ |𝑘 ∈ ℕ} 

For an isotropic material, Δ𝑥 = 𝛥𝑦 = 𝑎 = 𝜒𝐿 𝑛𝑦⁄ = 𝐿 𝑛𝑥⁄ . 
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The governing differential equation is obtained by minimizing the total energy:  

𝜕𝛿(𝑈𝑡 + 𝑈𝑏 −𝑊 − 𝑇)

𝜕𝑤𝑖,𝑗
= 0                             (4.59) 

whence the discrete governing difference equation in displacement of the microstructured 

model:  

𝑛𝑦
4𝐿[𝑤𝑖,𝑗] + 𝑛𝑦

2λ(𝑚𝑖𝑐𝑟𝑜)(𝐻𝑥 + 𝑠𝐻𝑦)[𝑤𝑖,𝑗] − Ω(𝑚𝑖𝑐𝑟𝑜)
2 𝑤𝑖,𝑗 = 0  (4.60) 

where the discrete operators 𝐿, 𝐻𝑥 and 𝐻𝑦 are 

 𝐿[𝑤𝑖,𝑗] = 20𝑤𝑖,𝑗 + (𝑤𝑖,𝑗−2 +𝑤𝑖,𝑗+2 +𝑤𝑖−2,𝑗 +𝑤𝑖+2,𝑗) − 8(𝑤𝑖,𝑗−1 +𝑤𝑖,𝑗+1 +

𝑤𝑖−1,𝑗 +𝑤𝑖+1,𝑗) + 2(𝑤𝑖+1,𝑗−1 +𝑤𝑖+1,𝑗+1 +𝑤𝑖−1,𝑗−1 +𝑤𝑖−1,𝑗+1) 

𝐻𝑦[𝑤𝑖,𝑗] = 𝑤𝑖,𝑗−1 − 2𝑤𝑖,𝑗 +𝑤𝑖,𝑗+1; 𝐻𝑥[𝑤𝑖,𝑗] = 𝑤𝑖−1,𝑗 − 2𝑤𝑖,𝑗 +𝑤𝑖+1,𝑗 

(4.61) 

Ω(𝑚𝑖𝑐𝑟𝑜)
2 =

𝑚0𝜔
2(𝜒𝐿)4

𝐷
; λ(𝑚𝑖𝑐𝑟𝑜) =

𝑁(𝜒𝐿)2

𝐷
 

(4.62) 

where Ω(𝑚𝑖𝑐𝑟𝑜) is the dimensionless vibration frequency of the microstructured beam-grid 

model and λ the nondimensional buckling stress. 

The discrete equation Eq. (4.60) can be seen as the finite difference formulation of the continuous 

Kirchhoff-Love plate equation [134]. 

Equation (4.60) is also obtainable by considering the finite difference formulation of both the 

constitutive law and the equilibrium equations. The finite difference scheme applied to the 

constitutive law is expressed as: 

𝑀𝑥
𝑖,𝑗
= 𝐷 (

𝑤𝑖+1,𝑗 − 2𝑤𝑖,𝑗 +𝑤𝑖−1,𝑗

Δ𝑥²
+ 𝜈

𝑤𝑖,𝑗+1 − 2𝑤𝑖,𝑗 +𝑤𝑖,𝑗−1

Δ𝑦²
) (4.63) 

𝑀𝑦
𝑖,𝑗
= 𝐷 (

𝑤𝑖,𝑗+1 − 2𝑤𝑖,𝑗 +𝑤𝑖,𝑗−1

Δ𝑦²
+ 𝜈

𝑤𝑖+1,𝑗 − 2𝑤𝑖,𝑗 +𝑤𝑖−1,𝑗

Δ𝑥²
) (4.64) 

𝑀𝑥𝑦
𝑖,𝑗
= 𝑀𝑦𝑥

𝑖,𝑗
= 𝐷(1 − 𝜈) 

−𝑤𝑖,𝑗+1 +𝑤𝑖+1,𝑗+1 +𝑤𝑖,𝑗 −𝑤𝑖+1,𝑗

Δ𝑥Δ𝑦
 (4.65) 

For the equilibrium equation, it is expressed as: 

𝑀𝑥𝑥
𝑖+1,𝑗

− 2𝑀𝑥𝑥
𝑖,𝑗
+𝑀𝑥𝑥

𝑖−1,𝑗

Δ𝑥²
+ 2

𝑀𝑥𝑦
𝑖,𝑗
−𝑀𝑥𝑦

𝑖−1,𝑗
−𝑀𝑥𝑦

𝑖,𝑗−1
+𝑀𝑥𝑦

𝑖−1,𝑗−1

Δ𝑥Δ𝑦
+
𝑀𝑦𝑦
𝑖,𝑗+1

− 2𝑀𝑦𝑦
𝑖,𝑗
+𝑀𝑦𝑦

𝑖,𝑗−1

Δ𝑦²

+ 𝑁 (
𝑤𝑖+1,𝑗 − 2𝑤𝑖,𝑗 +𝑤𝑖−1,𝑗

Δ𝑥²
+ 𝑠

𝑤𝑖,𝑗+1 − 2𝑤𝑖,𝑗 +𝑤𝑖,𝑗−1

Δ𝑦²
) − 𝑚0𝜔

2𝑤𝑖,𝑗 = 0 

(4.66) 

Substituting Eqs. (4.63)-(4.65) into Eq. (4.66), it leads to Eq. (4.60). 
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For a discrete plate that is simply supported at all edges, analogically to the continuous approach, 

the Navier expression of the displacement is expressed as: 

𝑤𝑖,𝑗 = 𝑤0 sin
𝑚𝜋𝑖

𝑛𝑥
sin

𝑛𝜋𝑗

𝑛𝑦
= 𝑤0 sin

𝛼𝑚𝜋𝑖

𝑛𝑦
sin

𝑛𝜋𝑗

𝑛𝑦
    (4.67) 

By substituting Eq. (4.67) into Eq. (4.60), one obtains the following equation: 

Ω(𝑚𝑖𝑐𝑟𝑜)
2 − 4𝑛𝑦

4 (2 − cos
𝑚𝜋

𝑛𝑥
+ cos

𝑛𝜋

𝑛𝑦
)

2

+ 2𝜆(𝑚𝑖𝑐𝑟𝑜)𝑛𝑦
2 (1 + 𝑠 − cos

𝑚𝜋

𝑛𝑥
− 𝑠 cos

𝑛𝜋

𝑛𝑦
) = 0 

(4.68) 

In statics, Ω(𝑚𝑖𝑐𝑟𝑜) = 0 and the critical buckling load equals 

𝜆(𝑚𝑖𝑐𝑟𝑜) = min
(𝑚,𝑛)

(

 
 
−

2𝑛𝑦
2 (cos

𝑚𝜋
𝑛𝑥

+ cos
𝑛𝜋
𝑛𝑦
− 2)

2

  

cos
𝑚𝜋
𝑛𝑥

+ 𝑠 cos
𝑛𝜋
𝑛𝑦
− 1 − 𝑠

)

 
 
                   (4.69) 

Zhang et al. [148] derived this equation for a uniaxial load (𝑠 = 0) 

In free vibration, 𝑁 = 0 and the non-dimensional natural frequency is 

Ω(𝑚𝑖𝑐𝑟𝑜)
2 = 4𝑛𝑦

4 (2 − cos
𝑚𝜋

𝑛𝑥
+ cos

𝑛𝜋

𝑛𝑦
)

2

 
(4.70) 

This lattice model is used to calibrate the small length scale coefficient of the continuous models 

and to build continualized models in order to have a constant coefficient.  

 

4.2.2. Phenomenological thin plate model 

4.2.2.1. Fourth order phenomenological model 

The governing differential equation of the fourth order phenomenological plate model, also called 

nonlocal Kirchhoff-Love plate model, has been given in a previous chapter in free vibration. It is 

now extended to take into account the compressive forces: 

𝐷∇4𝑤 − [1 − (𝑒0𝑎)
2∇2]𝑚0𝜔

2𝑤 + [1 − (𝑒0𝑎)
2∇2]𝑁 (

𝜕2𝑤

𝜕𝑥2
+ 𝑠

𝜕2𝑤

𝜕𝑦2
) = 0 (4.71) 

In a similar manner to the investigation of nonlocal beam models, the small length scale 

coefficient has to be calibrated. First of all, the solution is determined for a plate, simply supported 
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at all edges. It is assumed a half sine wave in the y direction (𝑛 = 1). In view of the simply 

supported boundary conditions, the substitution of the Navier expression of the displacement 

into Eq. leads to the following non-dimensional critical buckling load, in statics (𝜔 = 0): 

𝜆 = min
𝑚

(
𝜒𝐿
𝑎 )

2

[(𝜒𝑚)2 + 1]2𝜋2

𝑒0
2𝜋2[(𝜒𝑚)4 + (𝜒𝑚)2(1 + 𝑠) + 𝑠] + (

𝜒𝐿
𝑎 )

2

[(𝜒𝑚)2 + 𝑠]

 (4.72) 

and, in free vibration (𝑁 = 0), the non-dimensional natural frequency 

Ω2 =
(
𝜒𝐿
𝑎
)
2

[(𝜒𝑚)2 + 1]2𝜋4

(
𝜒𝐿
𝑎 )

2

+ 𝑒0
2𝜋2[(𝜒𝑚)2 + 𝑛2]

 (4.73) 

By equating these solutions with those of the discrete models, it leads to the calibrated small 

length scale coefficient in buckling and vibration, respectively, when the number of elements 𝑛𝑦 

goes to infinite: 

𝑒0,𝑏 =
1

√12
√
𝜒6𝑚6 + 2𝜒4𝑚4𝑠 − 𝜒4𝑚4 − 𝜒2𝑚2𝑠 + 2𝜒2𝑚2 + 𝑠

𝜒6𝑚6 + 𝜒4𝑚4𝑠 + 2𝜒4𝑚4 + 𝜒2𝑚2 + 2𝜒2𝑚2𝑠 + 𝑠
 

(4.74) 

𝑒0,𝑣 =
1

√6
√
(𝑚2𝜒2 + 1)2

1 +𝑚4𝜒4
 

(4.75) 

The calibrated small length scale coefficient lies between 1 √24⁄  and 1 √6⁄ . It depends on the 

initial load, the buckling or vibration mode and the geometry (aspect ratio 𝜒) [134,135]. For 

instance, Fig. 26 depicts the calibrated small length scale coefficient with the aspect ratio in statics 

for a uniaxial load (𝑠 = 0) and the first buckling and vibration mode. 
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Fig. 26. Small length coefficient with respect to different aspect ratio in all round simply 

supported rectangular plate in statics following the fourth order phenomenological Eringen’s 

model with 𝑠 = 0 

The expression of the coefficient is not the same in statics and in free vibration, as shown in Fig. 

27.  

 

 

Fig. 27. Calibrated small length scale coefficient calculated in static case (dashed line) and free 

vibration case (continuous line) with respect to aspect ratio for 𝑚 = 1, considering the fourth 

order phenomenological model 
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It is seen that the gap between the value in statics in dynamics and statics increases with respect 

to the aspect ratio 𝜒. As it will be explained, the reference value of the small length scale 

coefficient, given through the continualized approaches (see hereinafter), is 1 √12⁄ . Setting ∆𝑒0 

the relative error between the value calculated in the phenomenological model and the reference 

coefficient, ∆𝑒0 is given in the following figures for different values of the aspect ratio and 𝑚 = 1.  

 

Fig. 28. Relative error of the small length scale coefficient obtained in the fourth order 

phenomenological model compared to the reference coefficient in the static case (dashed line) 

and dynamic case in free vibration (continuous line) and the calibrated coefficient calibrated 

Consequently, because of the strong dependence of the small length scale coefficients on the 

different parameters, the fourth order phenomenological is not reliable (or at least, it gives 

apparent structural-dependent length scale calibration with respect to the plate lattice). 

  

4.2.2.2. Sixth order phenomenological model 

The governing partial differential equation of the sixth order phenomenological model is given 

in the previous chapter in free vibration and is now extended to take into account compressive 

loads: 

𝐷 [∇4𝑤 + (𝑒0𝑎)
2 (

𝜕4

𝜕𝑥4
− 2

𝜕4

𝜕𝑥2𝜕𝑦2
+
𝜕4

𝜕𝑦4
)∇2𝑤]

+ [1 − (𝑒0𝑎)
2∇2] [𝑁 (

𝜕2

𝜕𝑥2
+ 𝑠

𝜕2

𝜕𝑦2
)𝑤 −𝑚0𝜔

2𝑤] = 0 

(4.76) 
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As for the fourth order phenomenological model, the small length scale coefficient introduced in 

this model has to be calibrated. For a plate that is simply supported at all edges, taking 𝑛 = 1, 

using the Navier solution of the displacement, it results in the non-dimensional critical buckling 

load, expressed as follows, in statics (𝜔 = 0): 

𝜆 = min
𝑚

(
𝜒𝐿
𝑎
)
2

[(𝜒𝑚)2 + 1]2𝜋2 − 𝑒0
2𝜋4[(𝜒𝑚)2 − 1]2[(𝜒𝑚)2 + 1]

𝑒0
2𝜋2(𝜒𝑚)2(1 + 𝑠) + 𝑒0

2𝜋2[(𝜒𝑚)4 + 𝑠] + (
𝜒𝐿
𝑎
)
2

[(𝜒𝑚)2 + 𝑠]

 (4.77) 

The non-dimensional natural frequency is given, in free vibration, by: 

Ω2 =
(
𝜒𝐿
𝑎
)
2

[(𝜒𝑚)2 + 1]2𝜋4 − 𝑒0
2𝜋6[(𝜒𝑚)2 + 1][(𝜒𝑚)2 − 1]2

(
𝜒𝐿
𝑎
)
2

+ 𝑒0
2𝜋2[(𝜒𝑚)2 + 𝑛2]

 (4.78) 

Using the discrete model as the reference model and assuming that the discrete equation 

matches with the one of the continuous model, the calibrated small length scale coefficient in 

buckling and vibration, respectively, when the number of elements 𝑛𝑦 goes to infinite, is: 

𝑒0,𝑏 =
1

√24
√
𝜒6𝑚6 + 2𝜒4𝑚4𝑠 − 𝜒4𝑚4 − 𝜒2𝑚2𝑠 + 2𝜒2𝑚2 + 𝑠

𝜒6𝑚6 + 𝜒4𝑚4𝑠 + 𝜒2𝑚2 + 𝑠
 

(4.79) 

𝑒0,𝑣 =
1

√12
 (4.80) 

The expression differs in statics and in free vibration (see Fig. 29). Remarkably, it is seen that in 

free vibration, the small length scale coefficient is constant and is equal to 1 √12⁄ . This value 

coincides with the one that will be found for continualized models. In statics, the coefficient is 

between 1 √24⁄  and 1 √12⁄  and it depends on the load parameter 𝑠, the buckling mode 𝑚 and 

the aspect ratio 𝜒 [134,135]. Thus, the magnitude of the fluctuation is less important than for the 

fourth order phenomenological model. Fig. 30 depicts 𝑒0,𝑏 with the aspect ratio for a uniaxial load 

(𝑠 = 0) and the first buckling modes.  
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Fig. 29. Variation of calibrated small length scale coefficient calculated in static case 

(dashed line) and free vibration case (continuous line) with respect to aspect ratio, 

considering the sixth order phenomenological model. 

Again, the difference between the small length scale coefficient calibrated in statics and the one 

in dynamics increases the aspect ratio 𝜒. 

 

Fig. 30. Small length coefficient with respect to different aspect ratio in all round simply 

supported rectangular plate (buckled with half wave in 𝑦 direction) following the sixth order 

phenomenological model with a uniaxial load. 

Furthermore, the gap ∆𝑒0 is given for various values of the aspect ratio in Fig. 31. This is constant, 

equal to zero, in free vibration because in this case, the value of the calibrated small length scale 

coefficient is the same as the value of the coefficient given in the continualized models (see 

hereinafter). In statics, the gap increases with the aspect ratio. 
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Fig. 31. Gap between the small length scale coefficient obtained in the continualized model in 

the static (dashed lne) and dynamic case in free vibration (continuous line) and the calibrated 

coefficient calibrated in the sixth order phenomenological model) 

It is worth noticing that the sixth order phenomenological model requires two additional 

boundary conditions than the fourth order phenomenological model. One may wonder whether 

it is not overcomplicated. However, by increasing the order of the model, the calibrated 

coefficient is constant in free vibration and consequently, the model provides better results than 

for the fourth order phenomenological model.   

 

Thus, two phenomenological models with different orders have been derived. Both introduce a 

small length scale coefficient. This coefficient is supposed constant and yet, when it is calibrated 

from the discrete model, it is shown that it depends on different parameters such as the load or 

the aspect ratio. Assuming that the small length scale coefficient is 1 √12⁄ ≈ 0.288, defined in 

the derivation of the continualized models, presented hereinafter, the fourth and sixth order 

phenomenological models underestimate or overestimate this value. This gap cannot be ignored 

and it appears that the phenomenological models, traditionally used in the literature, are not 

consistent at least strtictly as compared to lattice plate models. Consequently, there is a need to 

develop models that are more consistent than the traditional phenomenological ones (stress 

gradient nonlocal models of Eringen’s type). The continualized models, as it has been established 

for beams, can be viewed as alternative nonlocal models to the phenomenological models. 
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4.2.3. Continualized models 

4.2.3.1. Fourth order continualized model 

The derivation of two continualized models, at different orders, is now proposed. These models 

are built based on the microstrured plate analysis and is anticipated to provide better results than 

phenomenological models 

As in the beam problem, a dense lattice is assumed. The principle of the continualized approach 

for plates is the same as for the one-dimensional continualized beam models. As for beams, the 

discrete displacement is asymptotically equivalent to the continuous one 𝑤𝑖,𝑗 = 𝑤(𝑥𝑖 , 𝑦𝑖) =

𝑤(𝑥). In the discrete model, the displacements 𝑤𝑖±1,𝑗 and 𝑤𝑖,𝑗±1 are replaced by 𝑤(𝑥𝑖 ± 𝑎, 𝑦𝑖) 

and 𝑤(𝑥𝑖 , 𝑦𝑖 ± 𝑎), respectively. By applying Taylor series to the difference equations, it yields, for 

plates [134,135,147] 

𝑤𝑖+1,𝑗 = 𝑤(𝑥𝑖 + 𝑎, 𝑦𝑖) = ∑
𝑎𝑘

𝑘!

𝜕𝑘

𝜕𝑥𝑘

∞

𝑘=0

𝑤(𝑥, 𝑦) 

𝑤𝑖−1,𝑗 = 𝑤(𝑥𝑖 − 𝑎, 𝑦𝑖) = ∑(−1)𝑘
𝑎𝑘

𝑘!

𝜕𝑘

𝜕𝑥𝑘

∞

𝑘=0

𝑤(𝑥, 𝑦) 

(4.81) 

Thus, at the second order: 

𝑤𝑖+1,𝑗 − 2𝑤𝑖,𝑗 +𝑤𝑖−1,𝑗

𝑎²
=
𝜕2

𝜕𝑥2
[1 +

𝑎2

12

𝜕2

𝜕𝑥2
]𝑤(𝑥, 𝑦) + 𝑜(𝑎2) (4.82) 

It is also possible to use the Padé approximants, it leads to 

𝑤𝑖+1,𝑗 − 2𝑤𝑖,𝑗 +𝑤𝑖−1,𝑗

𝑎2
= 𝐿𝑎,𝑥[𝑤];

𝑤𝑖,𝑗+1 − 2𝑤𝑖,𝑗 +𝑤𝑖,𝑗+1

𝑎²
= 𝐿𝑎,𝑦[𝑤] (4.83) 

Where the differentials operators 𝐿𝑎,𝑥 and 𝐿𝑎,𝑦 are defined as follows:  

𝐿𝑎,𝑥 =
𝜕2

𝜕𝑥2

1−
𝑎2

12

𝜕2

𝜕𝑥2

; 𝐿𝑎,𝑥 =
𝜕2

𝜕𝑥2

1−
𝑎2

12

𝜕2

𝜕𝑥2

                                                                                                           (4.84) 

Following the study of Rosenau [144] 

𝐿𝑎,𝑥

1
2 =

𝜕
𝜕𝑥

1 −
𝑎2

24
𝜕2

𝜕𝑥2

; 𝐿𝑎,𝑦

1
2 =

𝜕
𝜕𝑦

1 −
𝑎2

24
𝜕2

𝜕𝑦2

               (4.85) 
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Considering the discrete constitutive law and equilibrium equation:  

𝑀𝑥 = 𝐷(𝐿𝑎,𝑥 + 𝜈𝐿𝑎,𝑦)[𝑤] (4.86) 

𝑀𝑦 = 𝐷 (𝐿𝑎,𝑦 + 𝜈𝐿𝑎,𝑥)[𝑤] (4.87) 

𝑀𝑥𝑦 = 𝐷 (𝐿𝑎,𝑥𝐿𝑎,𝑦)
1/2
[𝑤] (4.88) 

𝐿𝑎,𝑥[𝑀𝑥𝑥] + 2(𝐿𝑎,𝑥𝐿𝑎,𝑦)
1/2
[𝑀𝑥𝑦] + 𝐿𝑎,𝑦[𝑀𝑦𝑦] + 𝑃𝐿𝑎,𝑥[𝑤] + 𝑠𝑃𝐿𝑎,𝑦𝑤 −𝑚0𝜔

2𝑤 = 0 (4.89) 

As for beams, for plates, the continualized models do not preserve the locality of the balance 

equation. 

Substituting Eq. (4.85) into Eqs.(4.86)-(4.89), one obtains: 

𝑀𝑥𝑥 = 𝐷(

𝜕2𝑤
𝜕𝑥2

1 −
𝑎2

12
𝜕2

𝜕𝑥2

+ 𝜈

𝜕2𝑤
𝜕𝑦2

1 −
𝑎2

12
𝜕2

𝜕𝑦2

) + 𝑜(𝑎2) 
(4.90) 

𝑀𝑦𝑦 = 𝐷(

𝜕2𝑤
𝜕𝑦2

1 −
𝑎2

12
𝜕2

𝜕𝑦2

+ 𝜈

𝜕2𝑤
𝜕𝑥2

1 −
𝑎2

12
𝜕2

𝜕𝑥2

) + 𝑜(𝑎2) 
(4.91) 

𝑀𝑥𝑦 =
𝐷(1 − 𝜈)

𝜕²𝑤
𝜕𝑥𝜕𝑦

(1 −
𝑎2

24
𝜕2

𝜕𝑥2
) (1 −

𝑎2

24
𝜕2

𝜕𝑦2
)
+ 𝑜(𝑎2) (4.92) 

𝜕2𝑀𝑥𝑥
𝜕𝑥2

1 −
𝑎2

12
𝜕2

𝜕𝑥2

+
2
𝜕²𝑀𝑥𝑦
𝜕𝑥𝜕𝑦

[1 −
𝑎2

24
𝜕2

𝜕𝑥2
] [1 −

𝑎2

24
𝜕2

𝜕𝑦2
]
+

𝜕2𝑀𝑦𝑦
𝜕𝑦2

1 −
𝑎2

12
𝜕2

𝜕𝑦2

+
𝑁
𝜕2𝑤
𝜕𝑥2

1 −
𝑎2

12
𝜕2

𝜕𝑥2

+
𝑠𝑁

𝜕2𝑤
𝜕𝑦2

1 −
𝑎2

12
𝜕2

𝜕𝑦2

−𝑚0𝜔
2𝑤 + 𝑜(𝑎2)   = 0 

(4.93) 

By using the Taylor expansion, Eqs. (4.90)-(4.92) leads to: 

𝑀𝑥𝑥 = 𝐷 (
𝜕2

𝜕𝑥2
(1 +

𝑎2

12

𝜕2

𝜕𝑥2
)𝑤 + 𝜈

𝜕2

𝜕𝑦2
(1 +

𝑎2

12

𝜕2

𝜕𝑦2
)𝑤) + 𝑜(𝑎2)  (4.94) 

𝑀𝑦𝑦 = 𝐷 (
𝜕2

𝜕𝑦2
(1 +

𝑎2

12

𝜕2

𝜕𝑦2
)𝑤 + 𝜈

𝜕2

𝜕𝑥2
(1 +

𝑎2

12

𝜕2

𝜕𝑥2
)𝑤) + 𝑜(𝑎2)  (4.95) 

𝑀𝑥𝑦 = 𝐷(1 − 𝜈) (1 +
𝑎2

24

𝜕2

𝜕𝑥2
)(1 +

𝑎2

24

𝜕2

𝜕𝑦2
)
𝜕²

𝜕𝑥𝜕𝑦
𝑤 + 𝑜(𝑎2)  (4.96) 
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Multiplying Eq. (4.93) by [1 − (𝑎2 12⁄ )∇2]2 and substituting Eqs. (4.94)-(4.96) results in the 

governing differential equation 

𝐷 [∇4𝑤 −
𝑎2

3

𝜕4∇2𝑤

𝜕𝑥2𝜕𝑦2
] − 𝑚0𝜔

2 [1 −
𝑎2

6
∇2𝑤]

+ 𝑁 [
𝜕2𝑤

𝜕𝑥2
+ 𝑠

𝜕2𝑤

𝜕𝑦2
−
𝑎2

12
(2(𝑠 + 1)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤

𝜕𝑥4
+ 𝑠

𝜕4𝑤

𝜕𝑦4
)] + 𝑜(𝑎2) = 0 

(4.97) 

In contrast to the phenomenological models, the small length scale coefficient does not appear 

explicitly in the equation and has to be introduced. 𝑒0 is chosen arbitrarily equal to 1 √12⁄ . By 

definition, it does not depend on the load, the geometry or any other parameter. Thus, the 

governing differential equation is rewritten as: 

𝐷 [∇4𝑤 − 4(𝑒0𝑎)
2
𝜕4∇2𝑤

𝜕𝑥2𝜕𝑦2
] − 𝑚0𝜔

2[1 − 2(𝑒0𝑎)
2∇2𝑤]

+ 𝑁 [
𝜕2𝑤

𝜕𝑥2
+ 𝑠

𝜕2𝑤

𝜕𝑦2
− (𝑒0𝑎)

2 (2(𝑠 + 1)
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤

𝜕𝑥4
+ 𝑠

𝜕4𝑤

𝜕𝑦4
)] = 0 

(4.98) 

 

This equation is also derivable from the continualization of the discrete governing differential 

equation Eq. (4.60): 

𝐷

[
 
 
 
 𝜕4𝑤

𝜕𝑥4

(1 −
𝑎2

12
𝜕2

𝜕𝑥2
)
2 + 2

𝜕4𝑤
𝜕𝑥2𝜕𝑦2

(1 −
𝑎2

12
𝜕2

𝜕𝑥2
)(1 −

𝑎2

12
𝜕2

𝜕𝑦2
)
+

𝜕4𝑤
𝜕𝑦4

(1 −
𝑎2

12
𝜕2

𝜕𝑦2
)
2

]
 
 
 
 

− 𝑚0𝜔
2𝑤

+
𝑁
𝜕2𝑤
𝜕𝑥2

1 −
𝑎2

12
𝜕2

𝜕𝑥2

+
𝑠𝑁

𝜕2𝑤
𝜕𝑦2

1 −
𝑎2

12
𝜕2

𝜕𝑦2

+ 𝑜(𝑎2) = 0 

(4.99) 

Multiplying by [1 − (𝑎/12)2∇2]2 and neglecting the higher order term in 𝑎 results in Eq. (4.98). 
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Eq. (4.98) requires six boundary conditions which may be obtained from the variational principle. 

For edges parallel to the 𝑥 axis, the boundary conditions are: 

𝐷 (
𝜕2𝑤

𝜕𝑥2
+ 𝜈

𝜕2𝑤

𝜕𝑦2
) − 𝐷

𝑎2

3

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
−
𝑎2

12
𝑁 [∇2𝑤 + 𝑠

𝜕2𝑤

𝜕𝑦2
] = 0 𝑜𝑟 

𝜕𝑤

𝜕𝑥

𝑎2

3
𝐷
𝜕3𝑤

𝜕𝑦2𝜕𝑥
= 0 𝑜𝑟 

𝜕2𝑤

𝜕𝑦2

𝐷 [
𝜕

𝜕𝑥
∇2𝑤 −

𝑎2

3

𝜕5𝑤

𝜕𝑥3𝜕𝑦2
] + 𝑁

𝜕𝑤

𝜕𝑥
−
𝑎2

12
𝑁 [

𝜕

𝜕𝑥
∇2𝑤 + 𝑠

𝜕3𝑤

𝜕𝑥𝜕𝑦2
] +

𝑎2

6
𝑚0𝜔

2
𝜕𝑤

𝜕𝑦
= 0 𝑜𝑟 𝑤

  

are specified. 

The calibration of the small length scale coefficient, in contrast to the phenomenological models, 

is unnecessary since, by definition, it is equal to 1/√12. Thus, the fourth order continualized 

model (as the sixth order continualized model that will be presented hereinafter) are much better 

than the phenomenological models based on postulated nonlocal constitutive laws, at least with 

respect to the calibration with lattice mechanics. 

 

4.2.3.2. Sixth order continualized model 

Another continualized model is derived by using another continualization scheme. Instead of 

using the Taylor expansion on Eqs. (4.90) and (4.91), these equations are multiplied by 

[1 − (𝑎2/12)∇2] and Eq. (4.92) by [1 − (𝑎2/24)∇2] 

(1 −
𝑎2

12
∇2)𝑀𝑥𝑥 = 𝐷 [

𝜕2𝑤

𝜕𝑥2
+ 𝜈

𝜕2𝑤

𝜕𝑦2
−
𝑎2

12
(1 + 𝜈)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
] + 𝑜(𝑎2)                         (4.100) 

(1 −
𝑎2

12
∇2)𝑀𝑦𝑦 = 𝐷 [

𝜕2𝑤

𝜕𝑦2
+ 𝜈

𝜕2𝑤

𝜕𝑥2
−
𝑎2

12
(1 + 𝜈)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
] + 𝑜(𝑎2)            (4.101) 

(1 −
𝑎2

24
∇2)𝑀𝑥𝑦 = 𝐷(1 − 𝜈)

𝜕²

𝜕𝑥𝜕𝑦
𝑤 + 𝑜(𝑎2)          (4.102) 

Substituting Eqs. (4.100)-(4.102) into Eq. (4.93), multiplying by [1 − (𝑒0𝑎)
2 𝜕2 𝜕𝑥2⁄ ][1 −

(𝑒0𝑎)
2 𝜕2 𝜕𝑦2⁄ ] one obtains  
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𝐷 [∇4𝑤 +
𝑎2

12
(
𝜕6𝑤

𝜕𝑥6
−
𝜕4∇2𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕6𝑤

𝜕𝑦6
)] − 𝑚0𝜔

2 [1 −
𝑎2

12
∇2]𝑤

−
𝑎2

12
𝑁(1 + 𝑠)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 𝑁(

𝜕2𝑤

𝜕𝑥2
+ 𝑠

𝜕2𝑤

𝜕𝑦2
) = 0 

(4.103) 

𝑒0 is chosen equal to 1 √12⁄ . It results in the following governing differential equation 

𝐷 [∇4𝑤 + (𝑒0𝑎)
2 (
𝜕6𝑤

𝜕𝑥6
−
𝜕4∇2𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕6𝑤

𝜕𝑦6
)] −𝑚0𝜔

2[1 − (𝑒0𝑎)
2∇2]𝑤

− (𝑒0𝑎)
2𝑁(1 + 𝑠)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 𝑁(

𝜕2𝑤

𝜕𝑥2
+ 𝑠

𝜕2𝑤

𝜕𝑦2
) = 0 

(4.104) 

 

It is also obtainable via variational formulation [134]. Thus, for boundary conditions, for edges 

parallel to the 𝑥 axis: 

{𝐷 (
𝜕2𝑤

𝜕𝑥2
+ 𝜈

𝜕2𝑤

𝜕𝑦2
) − 𝐷

𝑎2

12
(
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
−
𝜕4𝑤

𝜕𝑥4
) −

𝑎2

24
𝑁(1 + 𝑠)

𝜕2𝑤

𝜕𝑦2
}𝛿 (

𝜕𝑤

𝜕𝑥
) = 0 

𝑎2

12
𝐷 [

𝜕3𝑤

𝜕𝑥𝜕𝑦2
𝜕2𝛿𝑤

𝜕𝑦2
−
𝜕3𝑤

𝜕𝑥3
𝜕2𝛿𝑤

𝜕𝑥2
] = 0 

{𝐷 [
𝜕

𝜕𝑥
∇2𝑤 +

𝑎2

12
(
𝜕5𝑤

𝜕𝑥5
−

𝜕5𝑤

𝜕𝑥3𝜕𝑦2
)] − 𝑁(

𝜕𝑤

𝜕𝑥
−
𝑎2

24
(1 + 𝑠)

𝜕3𝑤

𝜕𝑥𝜕𝑦2
) +

𝑎2

12
𝑚0𝜔

2
𝜕𝑤

𝜕𝑥
} 𝛿𝑤 = 0 

It has been shown in the literature that other sixth order continualized models could be derived. 

All these models are equivalents at the second order in 𝑎 [134]. 

 

The different phenomenological and continualized models at the fourth and sixth order are now 

extended to describe the mechanical behavior of thick plates. The first investigations about the 

nonlocal thick plate models are recent [226,257,258,268,269]. However, the calibration of the 

small length scale coefficient of nonlocal Uflyand-Mindlin plate models, from lattice theory, has 

not been carried out.  
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4.3. Nonlocal thick plate models 

As for the thin beam and plate models, the lattice model has to be derived first in order to 

calibrate the small length scale coefficient introduced in the thick plate models.  

 

4.3.1. Microstructured beam-grid model 

Compared to the discrete lattice plate model, in the microstructured beam-grid model, in addition 

to rotational springs, two successive rigid beams are connected via a shear spring as shown in Fig. 

32.  

 

 

Fig. 32. Deformation of two successive elements following the 𝑥 direction considering the rotary 

inertia and the shear effects. 

 

Because of the discontinuity of the displacement when the rotary inertia and the shear effects are 

taken into account, 𝑤𝑖−𝑗 is different from 𝑤𝑖+𝑗 and the rotation-displacement relationship given 

by Eq. (4.48) for thin plates is no longer valid. Some alternative shear lattice plates could be 

considered in order to preserve continuity of the displacement, as presented for shear beams in 

[139]. This model is an extension to the thin plate model that has been presented before and the 

discrete thick beam model given by Duan et al. [127] and Zhang et al. [128].  

In the discrete thick plate models, Eq. (4.53) for the bending strain energy and Eq. (4.58) for the 

work are retained but because of the discontinuity of the displacement, Eqs. (4.56) and (4.57) are 

not valid. 
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In contrast to the discrete model for thin plates [129,134,135,270] for which a beam is connected 

by another via a rotational spring, there is another degree of freedom at each individual node 

modeled by a shear spring of constants 𝑆𝑥 and 𝑆𝑦 for two adjacent beams in the 𝑥 and 𝑦 direction, 

respectively.  These springs introduce shear effects between the nodes via a discontinuity of the 

displacement between two successive nodes. In the first microstructured models [132,136], 

presented before, the shear springs were not present and the shear contribution was ignored. 

Following the papers of Duan et al. [127] and Zhang et al. [128] that describe the behavior of 

discrete thick beams, the strain energy function due to deformed shear spring is given by: 

𝑈𝑠 =
1

2
∑ ∑ [𝑆𝑥(𝛥𝑥[𝑤𝑖,𝑗] + 𝜓𝑥

𝑖,𝑗
)
2
𝛥𝑥2 + 𝑆𝑦(𝛥𝑦[𝑤𝑖,𝑗] + 𝜓𝑦

𝑖,𝑗
)
2
𝛥𝑦2]

𝑗≤𝑛𝑦

𝑗∈𝕆

𝑖≤𝑛𝑥

𝑖∈𝕆

 (4.105) 

where the constants of the springs are given by 𝑆𝑥 = 𝜅𝐺ℎ𝛥𝑦 𝛥𝑥⁄  and 𝑆𝑦 = 𝜅𝐺ℎ𝛥𝑥 𝛥𝑦⁄ .  

In the discrete kinetic energy, there is an additional term compared to Eq. (4.57) for thin plates:  

𝑇 =
1

2
𝛥𝑥𝛥𝑦 {𝜔2∑∑𝑚0𝑤𝑖,𝑗

2

𝑛𝑦

𝑗=0

𝑛𝑥

𝑖=0

+ ∑ ∑ 𝑚2 {(𝜃𝑥
𝑖,𝑗
)
2
+ (𝜃𝑦

𝑖,𝑗
)
2
}

𝑗≤𝑛𝑦

𝑗∈𝕆

𝑖≤𝑛𝑥

𝑖∈𝕆

}       
(4.106) 

where  𝑚2 is the mass per unit cell area. In the continuous model, 𝑚2 = 𝜌ℎ
3 12⁄ . 

For an isotropic plate 𝑆𝑥 = 𝑆𝑦 and the Euler-Lagrange equation can be obtained from Eq. (4.59) 

and : 

𝜕𝑈𝑡 + 𝑈𝑏 +𝑈𝑠 − 𝑇

𝜕𝜓𝑥
𝑖,𝑗

=
𝜕𝑈𝑡 + 𝑈𝑏 + 𝑈𝑠 − 𝑇

𝜕𝜓𝑦
𝑖,𝑗

= 0        (𝑖, 𝑗) ∈ 𝕆  (4.107) 

It results in the equations of motion, with (𝑖, 𝑗) a couple of half-integers 

𝐷(1 + 𝜈)

2
{𝛥𝑥𝑥[𝜓𝑥

𝑖,𝑗
] + 𝛥𝑥𝑦[𝜓𝑦

𝑖,𝑗
]} +

𝐷(1 − 𝜈)

2
{𝛥𝑥𝑥 + 𝛥𝑦𝑦}[𝜓𝑥

𝑖,𝑗
]

− 𝜅𝐺ℎ(𝛥𝑥[𝑤𝑖,𝑗] + 𝜓𝑥
𝑖,𝑗
) = −𝑚2𝜔

2𝜓𝑥
𝑖,𝑗

 

𝐷(1 + 𝜈)

2
{𝛥𝑥𝑦[𝜓𝑥

𝑖,𝑗
] + 𝛥𝑦𝑦[𝜓𝑦

𝑖,𝑗
]} +

𝐷(1 − 𝜈)

2
{𝛥𝑥𝑥 + 𝛥𝑦𝑦}[𝜓𝑦

𝑖,𝑗
]

− 𝜅𝐺ℎ(𝛥𝑦[𝑤𝑖,𝑗] + 𝜓𝑦
𝑖,𝑗
) = −𝑚2𝜔

2𝜃𝑦
𝑖,𝑗

 

𝜅𝐺ℎ(𝛥𝑥𝑥[𝑤𝑖,𝑗] + 𝛥𝑦𝑦[𝑤𝑖,𝑗] + 𝛥𝑦[𝜓𝑦
𝑖,𝑗
] + 𝛥𝑥[𝜓𝑥

𝑖,𝑗
]) − 𝑁(𝛥𝑥𝑥[𝑤𝑖,𝑗] + 𝑠𝛥𝑦𝑦[𝑤𝑖,𝑗])

= −𝑚0𝜔
2𝑤𝑖,𝑗 

(4.108) 

When 𝜓𝑦
𝑖,𝑗
= 𝛥𝑦[𝜓𝑦

𝑖,𝑗
] = 𝛥𝑦[𝜓𝑥

𝑖,𝑗
] = 𝛥𝑦[𝑤𝑖,𝑗] = 0, the equations are reduced to those for thin 

plates (see before).  
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Eqs. (4.108) are the discrete equivalent of the equations of motions given by Eq. (2.77) from the 

local Uflyand-Mindlin plate model [103]. 

Applying 𝛥𝑥 and 𝛥𝑦 to the first and second equation of motion, respectively, after some 

manipulations, it leads to the following governing differential equation 

𝐷(𝛥𝑥𝑥𝑥𝑥 + 2𝛥𝑥𝑥𝑦𝑦 + 𝛥𝑦𝑦𝑦𝑦)[𝑤𝑖,𝑗] − 𝑚0𝜔
2𝑤𝑖,𝑗

+ {
𝑚0

𝜅𝐺ℎ
𝐷 +𝑚2}𝜔

2(𝛥𝑥𝑥 + 𝛥𝑦𝑦)[𝑤𝑖,𝑗] + 𝑚2𝜔
4
𝑚0

𝜅𝐺ℎ
𝑤𝑖,𝑗

+ [𝑁 −
𝑁𝐷

𝜅𝐺ℎ
(𝛥𝑥𝑥 + 𝛥𝑦𝑦)] (𝛥𝑥𝑥[𝑤𝑖,𝑗] + 𝑠𝛥𝑦𝑦[𝑤𝑖,𝑗]) = 0 

(4.109) 

Eq. (4.109) is the central finite difference scheme of the local and continuous Mindlin plate 

equation studied in chapter 2 and extended to take into account the compressive loads.  

Thus, the discrete governing differential equations is rewritten as: 

𝑛𝑦
4𝛼2𝐿[𝑤𝑖,𝑗] − 𝜒

2Ω(𝑚𝑖𝑐𝑟𝑜)
2 𝑤𝑖,𝑗 + Ω(𝑚𝑖𝑐𝑟𝑜)

2 𝑛𝑦
2{𝐷̃ℎ + 𝑚̃}(𝐻𝑥 +𝐻𝑦)𝑤𝑖,𝑗

+
𝑚̃𝐷̃ℎ
𝜒2

Ω(𝑚𝑖𝑐𝑟𝑜)
4 𝑤𝑖,𝑗 + 𝑛𝑦

2𝜒2𝜆(𝑚𝑖𝑐𝑟𝑜)(𝐻𝑥 + 𝑠𝐻𝑦)[𝑤𝑖,𝑗]

− 𝐷̃ℎ𝑛𝑦
4𝜆(𝑚𝑖𝑐𝑟𝑜)(𝑀1 + 𝑠𝑀2)[𝑤𝑖,𝑗] = 0 

(4.110) 

where the following non-dimensional parameters are defined 

𝑚̃ =
𝑚2

𝑚0𝐿
2
; 𝐷̃ℎ =

𝐷

𝜅𝐺ℎ𝐿2
=

ℎ̅2

6𝜅(1 − 𝜈)
= 𝜇𝑠𝑚̃; 𝜇𝑠 =

2

𝜅(1 − 𝜈)
   

(4.111) 

Moreover, in addition to the operators 𝐿, 𝐻𝑥 and 𝐻𝑦, given by Eqs. (4.61), the following discrete 

operators are defined 

𝑀1[𝑤𝑖,𝑗] = 𝑤𝑖+2,𝑗 +𝑤𝑖−2,𝑗 +𝑤𝑖+1,𝑗+1 +𝑤𝑖−1,𝑗+1 +𝑤𝑖+1,𝑗−1 +𝑤𝑖−1,𝑗−1

− 6𝑤𝑖+1,𝑗 − 6𝑤𝑖−1,𝑗 − 2𝑤𝑖,𝑗+1 − 2𝑤𝑖,𝑗−1 + 10𝑤𝑖,𝑗 

𝑀2[𝑤𝑖,𝑗] = 𝑤𝑖,𝑗+2 +𝑤𝑖,𝑗−2 +𝑤𝑖+1,𝑗+1 +𝑤𝑖−1,𝑗+1 +𝑤𝑖+1,𝑗−1 +𝑤𝑖−1,𝑗−1

− 6𝑤𝑖,𝑗+1 − 6𝑤𝑖,𝑗−1 − 2𝑤𝑖+1,𝑗 − 2𝑤𝑖−1,𝑗 + 10𝑤𝑖,𝑗 

(4.112) 

For a plate that is simply supported at all edges, the solution is obtained by substituting Eq. (4.67) 

into Eq. (4.110).  
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𝛿2 +
𝜇𝑠

𝑛𝑦
4

1

𝜁4
Ω(𝑚𝑖𝑐𝑟𝑜)
4 − [

1

𝑛𝑦
4 +

(𝜇𝑠 + 1)

𝜁2𝑛𝑦
2 𝛿]Ω(𝑚𝑖𝑐𝑟𝑜)

2

+
2𝜆(𝑚𝑖𝑐𝑟𝑜)

𝑛𝑦
2 (cos√𝛼1 + 𝑠 cos√𝛼2 − 1 − 𝑠)

−
4𝜇𝑠𝜆(𝑚𝑖𝑐𝑟𝑜)

𝜁2
[2(1 + 𝑠) + cos2√𝛼1 + 𝑠 cos

2√𝛼2 − (3 + 𝑠) cos√𝛼1

− (3𝑠 + 1) cos
𝑛𝜋

𝑛𝑦
+ (1 + 𝑠) cos√𝛼1 cos√𝛼2] = 0 

(4.113) 

where different non-dimensional parameters are defined as follows: 

𝜁 =
𝜒

√𝑚̃
; 𝛼1 = (

𝜒𝑚𝜋

𝑛𝑦
)

2

; 𝛼2 = (
𝑛𝜋

𝑛𝑦
)

2

 

𝛼̃ = 𝛼1 + 𝛼2; 𝛿 = 2(2 − cos√𝛼1 − cos√𝛼2) 

(4.114) 

In statics, 𝜔 = 0 and the critical buckling load is 

𝜆(𝑚𝑖𝑐𝑟𝑜) =
1

2
𝛿2 {

2𝜇𝑠
𝜁2

[2(1 + 𝑠) + cos2√𝛼1 + 𝑠 cos
2√𝛼2 − (3 + 𝑠) cos√𝛼1

− (3𝑠 + 1) cos√𝛼2 + (1 + 𝑠) cos√𝛼1 cos√𝛼2]

−
1

𝑛𝑦
2 (cos√𝛼1 + 𝑠 cos√𝛼2 − 1 − 𝑠)}

−1

 

(4.115) 

For a thin plate, 𝜁 goes to infinite and the results are reduced to those obtained before [134,135]. 

In free vibration, 𝜆(𝑚𝑖𝑐𝑟𝑜) = 0 and the equation is rewritten as: 

𝜇𝑠𝛽
2Ω̃(𝑚𝑖𝑐𝑟𝑜)

4 − [1 + (1 + 𝜇𝑠)𝛽𝛿]Ω̃(𝑚𝑖𝑐𝑟𝑜)
2 + 𝛿2 = 0 (4.116) 

where 𝛽 and Ω are defined as follows: 

𝛽 =
[(𝜒𝑚𝜋)2 + (𝑛𝜋)2]

𝜁2
; Ω̃ =

Ω

(𝜒𝑚𝜋)2 + (𝑛𝜋)2
 (1) 

For thin plates, 𝑚̃ = 0, it is worth noticing that the result matches the one given a previous section 

and in the literature (see for instance [126,133-135]). Taking 𝑛 = 0, the plate problem is reduced 

to the beam one and the equation coincides with the one given by Duan et al. [127]. 

Thus, the closed-form expression of the discrete squared nondimensional natural frequency is 

[127] 

Ω̃(𝑚𝑖𝑐𝑟𝑜)
2 =

𝛿

2𝛽
(
1

𝜇𝑠
+ 1) +

1

2𝜇𝑠𝛽
2
[1 ± √(𝜇𝑠 − 1)

2𝛽2𝛿2 + 2(1 + 𝜇𝑠)𝛽𝛿 + 1] (4.117) 
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For thin plates, 𝛽 = 0 and Ω̃(𝑚𝑖𝑐𝑟𝑜)
2 = 𝛿2 , coinciding with Eq. (4.70), determined in a previous 

section. 

To study the non-dimensional natural frequencies of the thick plates model and to calibrate the 

small length scale coefficient, in a sake of simplicity, it is suggested to expand Eq. (4.117) through 

the use of the Maclaurin series expansion such as the degree of each term is smaller than unity. 

Thus, the higher root is expanded as 

Ω̃2 = −1+
1

6

(𝛼1
2 + 𝛼2

2)

(𝛼1 + 𝛼2)
+ (1 + 𝜇𝑠)𝛽 +

(1 + 𝜇𝑠)𝛽 + 1

𝜇𝑠𝛽
2

+ 𝑂(𝛼1
2, 𝛼2

2, 𝛽2) 
(4.118) 

when 𝛽 goes to zero, although the case is reduced to the one of a thin plate, a singularity appears 

in the expression of the natural frequency. Thus, for the next, the higher roots will be ignored.  

The other root, the lowest one, is given by: 

Ω̃2 =
(13 − 27𝛽 − 270𝜇𝑠𝛽)

720

𝛼1𝛼2(𝛼1
3 + 𝛼2

3)

(𝛼1 + 𝛼2)
3

+
(3𝛽 + 3𝜇𝑠𝛽 − 1)

1080

𝛼1
3𝛼2

3

(𝛼1 + 𝛼2)
3

+
−18(𝜇𝑠 − 1)𝛽 + 7

360

𝛼1
2𝛼2

2

(𝛼1 + 𝛼2)
2

+ (1 + 𝜇𝑠
2

+ 3𝜇𝑠)𝛽
2 [
19(𝛼1

4 + 𝛼2
4) + 4(𝛼1

3𝛼2 + 𝛼2
3𝛼1) + 30𝛼1

2𝛼2
2

360(𝛼1 + 𝛼2)
2

−
(𝛼1

2 + 𝛼2
2)

3(𝛼1 + 𝛼2)
+ 1] +

1

10
[
1

8
−
7

24
(1 + 𝜇𝑠)𝛽 ]

(𝛼1
5 + 𝛼2

5)

(𝛼1 + 𝛼2)
3

+ [
1

4
(1 + 𝜇𝑠)𝛽 −

1

6
]
(𝛼1

2 + 𝛼2
2)2 + 2𝛼1𝛼2(𝛼1

2 + 𝛼2
2)

(𝛼1 + 𝛼2)
3

+ 1

− (1 + 𝜇𝑠)𝛽 

(4.119) 

 

4.3.2. Nonlocal Uflyand-Mindlin plate model 

The derivation of the nonlocal original Uflyand-Mindlin plate model or fourth order 

phenomenological thick plate model or fourth order Eringen model, has been derived in a 

previous chapter in free vibration. It can be shown that the general form of the governing 

differential equation of the nonlocal original Uflyand-Mindlin plate model extended to take into 

account compressive forces [271,272] is: 
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[1 − 𝑅𝑠(𝑒0𝑎)
2𝛻2]

𝜅𝐺ℎ
{𝐷𝛻2 +𝑚2𝜔

2[1 − (𝑒0𝑎)
2𝛻2]} {𝑁 (

𝜕2

𝜕𝑥2
+ 𝑠

𝜕2

𝜕𝑦2
) −𝑚0𝜔

2}𝑤

+ [1 − (𝑒0𝑎)
2𝛻2] [(𝑚0 −𝑚2𝛻

2)𝜔2 −𝑁(
𝜕2

𝜕𝑥2
+ 𝑠

𝜕2

𝜕𝑦2
)]𝑤

= 𝐷𝛻4𝑤 

(4.120) 

The value of the parameter 𝑅𝑠 has been widely debated in the previous chapter. It was concluded 

that 𝑅𝑠 is equal to unity. This value will be kept for the next, although it would be possible to also 

consider the case of 𝑅𝑠 equal to zero [271]. 

The value of the small length scale coefficient 𝑒0, supposed constant, is unknown. As for the 

phenomenological thin plate models, it has to be calibrated from the reference discrete model. 

Two cases have to be considered and distinguished: in statics (𝜔 = 0,𝑁 ≠ 0) and in free vibration 

(𝜔 ≠ 0,𝑁 = 0). Indeed, the small length scale coefficient is calibrated by equating the buckling 

load in statics and the free vibration in free vibration of the phenomenological model with the 

one of the discrete model.  

 

4.3.2.1. Solution in statics 

First of all, the buckling load has to be determined in statics for the phenomenological model. 

Considering a plate with all edges simply supported, for 𝑛 = 1, substituting Eq. (2.118) into Eq. 

(4.120) and using the nondimensional numbers, the critical buckling load is: 

𝜆 = min
𝑚

𝜋2
[(𝜒𝑚)2 + 1]2

[(𝜒𝑚)2 + 𝑠]

1 + [
𝜇𝑠
𝜁2
+ (

𝑒0𝑎
𝜒𝐿 )

2
] 𝜋2[(𝜒𝑚)2 + 1] +

𝜇𝑠
𝜁2
(
𝑒0𝑎
𝜒𝐿 )

2
𝜋4[(𝜒𝑚)2 + 1]2

 (4.121) 

When 𝜁 goes to infinite, the shear effect is neglected and the nondimensional buckling load of the 

thick plate is reduced to the one found in a previous section for thin plate given by Eq. (4.72).  

In order to observe the dependence of the buckling load on the small length scale coefficient, it 

is given in Figs. 33 and 34 for a square plate (𝜒 = 1), a thickness ratio ℎ̅ equal to 0.1 and various 

values of the number of elements 𝑛𝑦 for the first buckling mode 𝑚. Two cases are considered: a 

load in all directions 𝑠 = 1 (Fig. 33) and a uniaxial load 𝑠 = 0 (Fig. 34). Different values of 𝑒0 are 

considered: 0, 1 √24⁄ , 1 √12⁄  and 1 √6⁄ . As expected, it is see the value of the small length scale 

coefficient has a big influence on the value of the buckling load. Thus a correct calibration of the 

small length scale coefficient is crucial in order to predict the behavior of the plate in buckling. 
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Fig. 33. Buckling load of all round simply supported nonlocal plate with respect to the length 

scale coefficient and 𝑛𝑦 for a set of parameters (𝜒,𝑚, 𝑛, 𝑠) = (1,1,1,1) and different values of 

𝑒0 (0, 1 √6⁄ , 1 √12⁄ , 1 √24⁄ ) considering the fourth order phenomenological model 

 

Fig. 34 Buckling load of all round simply supported nonlocal plate with respect to the length 

scale coefficient and 𝑛𝑦 for a set of parameters (𝜒,𝑚, 𝑛, 𝑠) = (1,1,1,0) and different values of 

𝑒0 (0, 1 √6⁄ , 1 √12⁄ , 1 √24⁄ ) considering the fourth order phenomenological model 

For a load uniform in all directions (𝑠 = 1), by equating the buckling load from Eqs. (4.115) and 

(4.121), when the number of elements 𝑛𝑦 goes to infinite, 
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𝑒0,𝑏 =
1

√12
√

𝜒4𝑚4 + 1
𝜇𝑠
𝜁2
𝜋2[(𝜒𝑚)6 + 3(𝜒𝑚)4 + 3(𝜒𝑚)2 + 1] + [(𝜒𝑚)2 + 1]2

 (4.122) 

When 𝜁 goes to infinite, it is reduced to Eq. (4.74).  

For a uniaxial load (𝑠 = 0), by equating the buckling stress from Eqs. (4.115) and (4.121), the 

calibrated 𝑒0 is expressed as, when the number of elements goes to infinite: 

𝑒0,𝑏 =
1

√12
√

𝜇𝑠
𝜁2
𝜋2[1 − (𝜒𝑚)4] + (𝜒𝑚)4 − (𝜒𝑚)2 + 2

𝜇𝑠
𝜁2
𝜋2[(𝜒𝑚)6 + 3(𝜒𝑚)4 + 3(𝜒𝑚)2 + 1] + (𝜒𝑚)4 + 2(𝜒𝑚)2 + 1

 
(4.123) 

It is seen that 𝑒0 is not constant and depends on the aspect ratio 𝜒, the buckling mode 𝑚, the 

nondimensional shear parameter 𝜁 and the load through the parameter 𝑠. 

The calibrated small length scale coefficient for a thick plate is different from the one for thin 

plate. Thus, the shear effect, through the parameter 𝜁 significantly changes the behavior of the 

plate in buckling. When the buckling mode 𝑚 goes to infinite, the small length scale coefficient 

goes to zero for thick plates whereas for thin plate, it has been shown in a previous section that 

it goes to a constant value, the same as the one defined in the continualized model, namely 

1 √12⁄ . Thus, the nonlocal effect decreases with the buckling mode and it leads to a paradoxical 

result. 

In order to study the influence of the different parameters such as the aspect ratio or the shear 

parameter 𝜁 on the value of the calibrated small length scale coefficient, it is proposed to calculate 

it by using the values of the shear parameter and the Poisson’s ratio found in the literature, 

namely 5/6 and 0.3, respectively [226]. It is assumed a one-half wave in the y-direction (𝑛 = 1).  

Figures 35 and 36 depict the calibrated small length scale coefficient for different values of the 

aspect ratio 𝜒 and buckling mode 𝑚 for a couple (ℎ̅; 𝐷̃ℎ) equal to (0.1; 0.0028571) for an uniform 

load along all the directions (𝑠 = 1, Fig. 35) and a uniaxial load (𝑠 = 0, Fig. 36). 
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Fig. 35. Calibrated small length coefficient 𝑒0 with respect to the aspect ratio 𝜒 following the 

Eringen’s nonlocal Uflyand-Mindlin plate model for various values of the buckling load and a 

couple (ℎ̅; 𝐷̃ℎ) equal to (0.1; 0.0028571) with a load uniform in all directions (𝑠 = 1) 

 

 

Fig. 36. Calibrated small length coefficient 𝑒0 with respect to the aspect ratio 𝜒 following the 

Eringen’s nonlocal Uflyand-Mindlin plate model for various values of the buckling load and a 

couple (ℎ̅; 𝐷̃ℎ) equal to (0.1; 0.0028571) with a uniaxial load (𝑠 = 0) 
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It is seen that the small length scale coefficient, calibrated from the discrete model, is strongly 

dependent on the aspect ratio and the buckling mode. Likewise, Figs. 37 and 38 show 𝑒0  versus 

the aspect ratio for different values of the aspect ratio 𝜒 and the parameter 𝑠 for the first buckling 

mode (𝑚 = 1) and confirm that it is also dependent on the shear parameter 𝐷̃ℎ. 

 

Fig. 37. Calibrated Small length coefficient 𝑒0 versus the aspect ratio 𝜒 following the fourth 

order phenomenological Uflyand-Mindlin thick plate model, for different values of 𝐷̃ℎ and a 

couple (𝑚, 𝑠) equal to (1,1) 

 

Fig. 38. Calibrated Small length coefficient 𝑒0 versus the aspect ratio 𝜒 following the fourth 

order phenomenological Uflyand-Mindlin thick plate model, for different values of 𝐷̃ℎ and a 

couple (𝑚, 𝑠) equal to (1,0) 
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Thus, considering a set of parameters (𝜒,𝑚, 𝑛, 𝑠) equal to (1,1,1,1), the buckling load 𝜆 is 

depicted in Fig. 39 for various values of the number of elements 𝑛𝑦. For these parameters, the 

calibrated small length scale coefficient is taken equal to 1 √24⁄ . 

 

Fig. 39. Buckling loads of a simply supported nonlocal plate and lattice model for different 𝑛𝑦, 

following the fourth order phenomenological thick plate model (𝑒0 = 1 √24⁄ ) for a set of 

parameters (𝜒,𝑚, 𝑛, 𝑠) equal to (1,1,1,1) 

It is seen that the buckling load perfectly fits the one of the lattice model. Thus, 𝑒0 = 1 √24⁄  is an 

excellent value of the small length scale coefficient for this particular set of parameters 

(𝜒,𝑚, 𝑛, 𝑠). However, as explained before, for different parameters, the calibrated small length 

scale coefficient will change.  For instance, Fig. 40 shows the buckling load of the discrete model 

and the one of the fourth order phenomenological thick plate model considering a set of 

parameters (𝜒,𝑚, 𝑛, 𝑠) equal to (2,2,1,1) for a small length scale coefficient equal to 1 √24⁄ ≈

0.204 and 0.257, value calibrated from this new set of parameters.   
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Fig. 40. Buckling loads of a simply supported nonlocal plate and lattice model for different 𝑛𝑦, 

following the fourth order Eringen model for a set of parameters (𝜒,𝑚, 𝑛, 𝑠) equal to (2,2,1,1) 

and 𝑒0 equal to 1 √24⁄  and 0.257 

Thus, it is seen that 𝑒0 = 1 √24⁄  leaded to an excellent approximation of the non dimensionnal 

buckling load for the triplet (𝜒 = 1,𝑚 = 1, 𝑛 = 1) but it cannot be used for another set of 

parameters. 

 

4.3.2.2. Solution for free vibration 

Likewise, in the case of free vibration, 𝜆 = 0 and the natural frequency has to be determined in 

order to calibrate the small length scale coefficient. 

The non-dimensional natural frequency of the fourth order phenomenological thick plate model 

or fourth order Eringen’s model is expressed as follows: 

Ω̃2 =
1

2[1 + 𝑒0
2𝛼̃]2𝜇𝑠𝛽

2
{1 + (𝜇𝑠 + 1)𝛽 + (1 + 𝛽𝜇𝑠 + 𝛽)𝑒0

2𝛼̃

± {[1 + (𝜇𝑠 + 1)𝛽 + (1 + 𝛽𝜇𝑠 + 𝛽)𝑒0
2𝛼̃]2

− 4[1 + 𝑒0
2𝛼̃]2𝜇𝑠𝛽

2}
1
2} 

(4.124) 

As explained in a previous chapter and before, in the phenomenological nonlocal Uflyand-Mindlin 

plate model, there are two branches of natural frequencies. The transition frequency depends on 

the parameters of the problems such as the vibration mode or the aspect ratio. In a sake of 
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simplicity, as for the discrete model, only the lowest value of the small length scale coefficient will 

be retained. 

As in statics, it is proposed to determine the non-dimensional natural frequency considering the 

reference lattice model and the fourth order phenomenological thick plate model versus the 

number of elements 𝑛𝑦 for a set of parameters  (𝜒,𝑚, 𝑛, 𝛽) equal to (1,1,1,0.5) and various values 

of the small length scale coefficient: 0, 1 √24⁄ , 1 √12⁄  and 1 √6⁄  (see Fig. 41). 

 

 

Fig. 41. Nondimensional frequency of all round simply supported nonlocal plate with respect to 

the length scale coefficient and 𝑛𝑦 for a set of parameters (𝜒,𝑚, 𝑛) = (1,1,1) and different 

values of 𝑒0 (0, 1 √6⁄ , 1 √12⁄ , 1 √24⁄ ) considering the fourth order phenomenological model 

 

As expected and seen in statics, the value of the small length scale coefficient has a strong 

influence on the value of the buckling mode. Thus a correct calibration of the small length scale 

coefficient is crucial in order to predict the behavior of the plate in buckling. 

The calibrated small length scale coefficient is obtained by equating Eqs. (4.117) and (4.124). It 

yields: 

𝑒0
2 =

1 + 𝛽(𝜇𝑠 + 1) − 2𝜇𝑠𝛽
2Ω̃𝑚𝑖𝑐𝑟𝑜

2 ± {[1 − 𝛽(𝜇𝑠 − 1)]
2 + 4𝛽𝜇𝑠}

1
2

2𝜇𝑠𝛽
2Ω̃𝑚𝑖𝑐𝑟𝑜

2 𝛼̃
 (4.125) 
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It is worth noticing that for 𝛼2 = 0,  the case is reduced to the one of a thick beam, already 

investigated in the literature [126] for beams. For 𝛽 equal to zero, the shear effect is neglected, 

the thickness of the plate goes to zero and the small length scale coefficient coincides with the 

one found in a previous section. 

Furthermore, substituting Eq. (4.119) into Eq. (4.125), the Maclaurin series expansion with respect 

to 𝛼1, 𝛼2 and 𝛽, keeping only the term for which the degree of the rational function in 𝛼1 and 𝛼2 

is smaller than 2, yields 

𝑒0
2 =

1

720𝛼̃8
([11𝐶1 + 3𝐶2 + 30𝜇𝑠𝛽

2 + 8𝐶3](𝛼1
9 + 𝛼2

9)

+ [51𝐶1 + 13𝐶2 + 38𝐶3 + 140𝜇𝑠𝛽
2](𝛼1

8𝛼2 + 𝛼1𝛼2
8))

+
1

24𝛼̃8
[4𝐶1 + 𝐶2 + 11𝜇𝑠𝛽

2 + 3𝐶3] (𝛼1
7𝛼2

2 + 𝛼1
2𝛼2

7)

+
1

360𝛼̃8
[108𝐶1 + 29𝐶2  + 295𝜇𝑠𝛽

2 + 79𝐶3](𝛼1
6𝛼2

3 + 𝛼1
3𝛼2

6)

+
1

360𝛼̃8
[153𝐶1 + 44𝐶2 + 415𝜇𝑠𝛽

2 + 109𝐶3]𝛼1
4𝛼2

4𝛼̃

+
1

12𝛼̃8
[2𝐶1 + 𝐶2 + 𝐶3 + 5𝜇𝑠𝛽

2][6(𝛼1
7𝛼2 + 𝛼1𝛼2

7) + 30𝛼1
4𝛼2

4

+ 16 (𝛼1
6𝛼2

2 + 𝛼1
2𝛼2

6) + (𝛼1
8 + 𝛼2

8) + 26(𝛼1
5𝛼2

3 + 𝛼1
3𝛼2

5)] 

(4.126) 

where  

𝐶1 = 𝜇𝑠
2𝛽2 − 𝜇𝑠𝛽 + 1; 𝐶2 = 𝜇𝑠𝛽(1 − 𝜇𝑠𝛽 − 𝛽); 𝐶3 = 𝛽

2 − 𝛽 

Thus, the calibrated small length scale coefficient, in dynamics, depends on 𝛼1, 𝛼2 and 𝛽. It is 

proposed to study the influence of each of these parameters.  Figs. 42 and 43 depict the calibrated 

small length scale coefficient versus 𝛼1 for various values of 𝛼2, with 𝛽 constant, equal to 0.1 (Fig. 

42) and 0.5 (Fig. 43). 
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Fig. 42. Calibrated small length scale coefficient in free vibration versus 𝛼1 for 𝛽 = 0.1 and 

different values of 𝛼2 

 

Fig. 43. Calibrated small length scale coefficient in free vibration versus 𝛼1 for 𝛽 = 0.1 and 

different values of 𝛼2 

𝛼2 is the thick beam case. It is worth noticing that in this case, the calibrated small length scale 

coefficient is nearly constant with respect to 𝛼1, as it has been shown in the literature [127].  For 

𝛼1 and 𝛼2 both not equal to zero, it is seen that the calibrated small length scale coefficient is not 

constant and storngly depends on the value of 𝛼1.    

Likewise, the small length scale coefficient is calibrated in Fig. 44 versus 𝛽 for different values of 

𝛼2 with 𝛼1 constant, equal to 0.05.  
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Fig. 44.  Calibrated small length scale coefficient in free vibration versus 𝛽 for 𝛼1 = 0.05 and 

different values of 𝛽 

Again, the small length scale coefficient is not constant. It depends on 𝛼2 and 𝛽. Thus,  𝑒0 

decreases when 𝛽 increases.  

For a particular set of parameter (𝜒,𝑚, 𝑛, 𝛽) equal to (1,1,1,0.5), it is seen that the calibrated 

small length scale coefficient is equal to 0.243. Taking this value, as shown in Fig. 45, the curve of 

the non-dimensional natural frequency perfectly fits the one of the reference lattice model: 

 

Fig. 45.  Nondimensional frequency of all round simply supported nonlocal plate with respect to 

the length scale coefficient and 𝑛𝑦 for a set of parameters (𝜒,𝑚, 𝑛, 𝛽) = (1,1,1,0.5) and 𝑒0 =

0.243 considering the fourth order phenomenological model 
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This value of the small length scale coefficient is valid for this particular set of parameters. Thus,  

Fig. 46 depicts the non-dimensional natural frequency for a set of parameters (𝜒,𝑚, 𝑛, 𝛽) equal 

to (2,2,1,0.5) versus the number of elements 𝑛𝑦 for 𝑒0 = 0.243 and 𝑒0 = 0.329, calibrated 

coefficient for this new set of parameters.   

 

 

Fig. 46. Nondimensional frequency of all round simply supported nonlocal plate with respect to 

the length scale coefficient and 𝑛𝑦 for a set of parameters (𝜒,𝑚, 𝑛, 𝛽) = (2,2,1,0.5) and 𝑒0 

equal to 0.243 and 0.329 considering the fourth order phenomenological model 

Thus, the first calibrated small length scale coefficient is no longer valid for another set of 

parameters. 

 

4.3.3. Fourth order continualized model 

Applying the Padé approximants defined before on the discrete governing difference equation: 

[𝐿𝑎,𝑥
2 + 2𝐿𝑎,𝑥𝐿𝑎,𝑦 + 𝐿𝑎,𝑦

2 ][𝑤] −
𝑁

𝜅𝐺ℎ
[𝐿𝑎,𝑥
2 + (𝑠 + 1)𝐿𝑎,𝑥𝐿𝑎,𝑦 + 𝑠𝐿𝑎,𝑦

2 ][𝑤]

+
𝑁

𝐷
(𝐿𝑎,𝑥 + 𝑠𝐿𝑎,𝑦)[𝑤] −

𝑚0𝜔
2

𝐷
𝑤 +

1

𝐷
(
𝑚0

𝜅𝐺ℎ
𝐷 +𝑚2) (𝐿𝑎,𝑥 + 𝐿𝑎,𝑦)𝜔

2[𝑤]

+
𝑚0𝑚2𝜔

4

𝜅𝐺ℎ𝐷
𝑤 = 0 

(4.127) 
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 𝜕4

𝜕𝑥4
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𝜕2

𝜕𝑥2
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2 +
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𝜕4

𝜕𝑥2𝜕𝑦2

(1 −
𝑎2

12
𝜕2

𝜕𝑥2
) (1 −

𝑎2

12
𝜕2

𝜕𝑦2
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+ 𝑠

𝜕4

𝜕𝑦4

(1 −
𝑎2

12
𝜕2

𝜕𝑦2
)
2

]
 
 
 
 

𝑤 +
𝑁

𝐷
(

𝜕2

𝜕𝑥2

1 −
𝑎2

12
𝜕2

𝜕𝑥2

+ 𝑠

𝜕2

𝜕𝑦2

1 −
𝑎2

12
𝜕2

𝜕𝑦2

)𝑤

−
𝑚0𝜔

2

𝐷
𝑤 +

1

𝐷
(
𝑚0

𝜅𝐺ℎ
𝐷 +𝑚2)(

𝜕2

𝜕𝑥2

1 −
𝑎2

12
𝜕2

𝜕𝑥2

+

𝜕2

𝜕𝑦2

1 −
𝑎2

12
𝜕2

𝜕𝑦2

)𝜔2𝑤

+
𝑚0𝑚2𝜔

4

𝜅𝐺ℎ𝐷
𝑤 = 0 

(4.128) 

As for the fourth and sixth order continualized thin plate problem, the small length scale 

coefficient is arbitrarily chosen equal to 1 √12⁄ . This value is retained in this model.  

Multiplying by [1 − (𝑒0𝑎)
2∇2]2  

[∇2 − 4(𝑒0𝑎)
2

𝜕4

𝜕𝑥2𝜕𝑦2
] ∇2𝑤

+
𝜆

(𝜒𝐿)2
{[1 − (𝑒0𝑎)

2∇2] (
𝜕2

𝜕𝑥2
+ 𝑠

𝜕2

𝜕𝑦2
)

− (𝑠 + 1)(𝑒0𝑎)
2

𝜕4

𝜕𝑥2𝜕𝑦2
}𝑤

−
𝜇𝑠
𝜁2
𝜆 {

𝜕4

𝜕𝑥4
+ 𝑠

𝜕4

𝜕𝑦4
− 2(𝑒0𝑎)

2
𝜕4

𝜕𝑥2𝜕𝑦2
(
𝜕2

𝜕𝑥2
+ 𝑠

𝜕2

𝜕𝑦2
)

+ (𝑠 + 1)[1 − (𝑒0𝑎)
2∇2]

𝜕4

𝜕𝑥2𝜕𝑦2
}𝑤

−
1

(𝜒𝐿)4
(1 − 2(𝑒0𝑎)

2𝛻2) [1 −
𝜇𝑠
𝜁4
Ω2]Ω2𝑤

+
Ω2(𝜇𝑠 + 1)

(𝜒𝐿𝜁)2
(𝛻2 − (𝑒0𝑎)

2𝛻4 − 2(𝑒0𝑎)
2

𝜕4

𝜕𝑥2𝜕𝑦2
)𝑤 = 0 

(4.129) 

For a plate that is simply supported at all edges, the solution is obtained by substituting Eq. 

(2.118) into Eq. (4.129): 
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[(𝜒𝑚)2 + 𝑛2 − 4(
𝑒0𝑎𝜋𝑚𝑛

𝐿
)
2

] 𝜋4[(𝜒𝑚)2 + 𝑛2]

− 𝜋2𝜆 {(𝜒𝑚)2 + 𝑠𝑛2 + (
𝑒0𝑎𝜋

𝜒𝐿
)
2

[(𝜒𝑚)4 + 2(𝑠 + 1)(𝜒𝑚𝑛)2 + 𝑠𝑛4]}

− 𝜋4
𝜇𝑠
𝜁2
𝜆 {(𝜒𝑚)4 + (𝑠 + 1)(𝜒𝑚𝑛)2 + 𝑠𝑛4

+ (𝑒0𝑎)
2 (

𝜋

𝜒𝐿
)
2

[(𝑠 + 3)(𝜒𝑚)4𝑛2 + (3𝑠 + 1)(𝜒𝑚)2𝑛4]}

− (1 + 2(𝑒0𝑎)
2 (
𝜋

𝜒𝐿
)
2

[(𝜒𝑚)2 + 𝑛2]) [1 −
𝜇𝑠
𝜁4
Ω2]Ω2

−
𝜋2

𝜁2
Ω2(𝜇𝑠 + 1)((𝜒𝑚)

2 + 𝑛2 + (
𝑒0𝑎𝜋

𝜒𝐿
)
2

[(𝜒𝑚)2 + 4(𝜒𝑚𝑛)2 + 𝑛2]) = 0 

(4.130) 

Assuming 𝑛 = 1, in statics, Ω = 0 and the buckling load is expressed as follows 

𝜆 = min
𝑚
{[(𝜒𝑚)2 + 𝑠] [(𝑚𝜋)2𝐷̃ℎ +

𝜋2𝜇𝑠
𝜁2

+ 1]

+ (
𝑒0𝑎𝜋

𝜒𝐿
)
2

{(𝜒𝑚)4 + 2(𝑠 + 1)(𝜒𝑚)2 + 𝑠

+ [(𝑠 + 3)(𝜒𝑚)2 + (3𝑠 + 1)](𝑚𝜋)2𝐷̃ℎ}}

−1

[(𝜒𝑚)2 + 1

+ 4(
𝑒0𝑎𝜋𝑚

𝐿
)
2

] 𝜋2[(𝜒𝑚)2 + 1] 

(4.131) 

It is seen that when 𝜁 decreases, the shear effect becomes more important and, as for natural 

frequencies in dynamics, the nondimensional buckling load decreases. When 𝜁 goes to infinite, 

the shear effect is negligible and the nondimensional buckling buckling load is reduced to the one 

obtained in the case of thin plates. 

In free vibration, 𝜆 = 0 and Eq. (4.130) becomes 

[𝛼̃ + 4𝑒0
2𝛼1𝛼2] − (1 + 2𝑒0

2𝛼̃)𝛼̃[1 − 𝜇𝑠𝛽
2Ω̃2]Ω̃2 − 𝛽Ω̃2(𝜇𝑠 + 1)(𝛼̃ + 𝑒0

2𝛼̃2 + 2𝑒0
2𝛼1𝛼2) = 0 (4.132) 

yielding to the following non dimensional natural frequency: 

Ω̃2 =
1

2𝜇𝑠𝛽
2(1 + 2𝑒0

2𝛼̃)𝛼̃
{(1 + 2𝑒0

2𝛼̃)𝛼̃ + 𝛽(𝜇𝑠 + 1)(𝛼̃ + 𝑒0
2𝛼̃2 + 2𝑒0

2𝛼1𝛼2)

± {[(1 + 2𝑒0
2𝛼̃)𝛼̃ + 𝛽(𝜇𝑠 + 1)(𝛼̃ + 𝑒0

2𝛼̃2 + 2𝑒0
2𝛼1𝛼2)]

2

− 4𝜇𝑠𝛽
2(1 + 2𝑒0

2𝛼̃)𝛼̃(𝛼̃ + 4𝑒0
2𝛼1𝛼2)}

1
2} 

(4.133) 
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4.3.4. Sixth order continualized model 

The sixth order continualized model is based on the continualization of the equations of motion 

Eq. (4.108): 

𝐷 [𝐿𝑎,𝑥[𝜓𝑥] +
(1 − 𝜈)

2
𝐿𝑎,𝑦[𝜓𝑥] +

(1 + 𝜈)

2
𝐿𝑎,𝑥

1
2 𝐿𝑎,𝑦

1
2 [𝜓𝑦]] − 𝜅

2𝐺ℎ (𝜓𝑥 + 𝐿𝑎,𝑥

1
2 [𝑤]) = −𝑚2𝜔

2𝜃𝑥 

𝐷 [
(1 − 𝜈)

2
𝐿𝑎,𝑥[𝜓𝑦] +

(1 + 𝜈)

2
𝐿𝑎,𝑥

1
2 𝐿𝑎,𝑦

1
2 [𝜓𝑥] + 𝐿𝑎,𝑦[𝜓𝑦]] − 𝜅

2𝐺ℎ (𝜓𝑦 + 𝐿𝑎,𝑦

1
2 [𝑤]) = −𝑚2𝜔

2𝜃𝑦 

𝐿𝑎,𝑥(𝜅
2𝐺ℎ − 𝑁)[𝑤] + 𝐿𝑎,𝑦(𝜅

2𝐺ℎ − 𝑠𝑁)[𝑤] + 𝜅2𝐺ℎ𝐿𝑎,𝑥

1
2 [𝜓𝑥] + 𝜅

2𝐺ℎ𝐿𝑎,𝑦

1
2 [𝜓𝑦] = −𝑚0𝜔

2𝑤 

(4.134) 

or, using the Taylor expansion at the second order in 𝑎, 

𝐷 [(1 +
𝑎2

12

𝜕2

𝜕𝑥2
)
𝜕2𝜓𝑥
𝜕𝑥2

+
(1 − 𝜈)

2
(1 +

𝑎2

12

𝜕2

𝜕𝑦2
)
𝜕2𝜓𝑥
𝜕𝑦2

+
(1 + 𝜈)

2
(1 +

𝑎2

24
∇2)

𝜕2𝜓𝑦

𝜕𝑥𝜕𝑦
]

− 𝜅2𝐺ℎ [𝜓𝑥 + (1 +
𝑎2

24

𝜕2

𝜕𝑥2
)
𝜕𝑤

𝜕𝑥
] = −𝑚2𝜔

2𝜃𝑥 

𝐷 [
(1 − 𝜈)

2
(1 +

𝑎2

12

𝜕2

𝜕𝑥2
)
𝜕2𝜓𝑦

𝜕𝑥2
+
(1 + 𝜈)

2
(1 +

𝑎2

24

𝜕2

𝜕𝑥2
+
𝑎2

24

𝜕2

𝜕𝑦2
)
𝜕2𝜓𝑥
𝜕𝑥𝜕𝑦

+ (1 +
𝑎2

12

𝜕2

𝜕𝑦2
)
𝜕2𝜓𝑦

𝜕𝑦2
]

− 𝜅2𝐺ℎ [𝜓𝑦 + (1 +
𝑎2

24

𝜕2

𝜕𝑦2
)
𝜕

𝜕𝑦
𝑤] = −𝑚2𝜔

2𝜃𝑥 

𝜅2𝐺ℎ [(1 +
𝑎2

12

𝜕2

𝜕𝑥2
)
𝜕2

𝜕𝑥2
𝑤 + (1 +

𝑎2

12

𝜕2

𝜕𝑦2
)
𝜕2

𝜕𝑦2
𝑤 + (1 +

𝑎2

24

𝜕2

𝜕𝑥2
)
𝜕𝜓𝑥
𝜕𝑥

+ (1 +
𝑎2

24

𝜕2

𝜕𝑦2
)
𝜕𝜓𝑦

𝜕𝑦
]

− 𝑁 {(1 +
𝑎2

12

𝜕2

𝜕𝑥2
)
𝜕2

𝜕𝑥2
𝑤 + 𝑠 (1 +

𝑎2

12

𝜕2

𝜕𝑦2
)
𝜕2

𝜕𝑦2
𝑤} = −𝑚0𝜔

2𝑤 

(4.135) 

Manipulating these three equations of motion leads to the governing differential equation in 

displacement, arbitrarily choosing 𝑒0 equal to 1 √12⁄  
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[∇4 + 2(𝑒0𝑎)
2 (

𝜕4

𝜕𝑥4
+
𝜕4

𝜕𝑦4
)∇2]𝑤

−
𝑁

𝜅2𝐺ℎ
[
𝜕4

𝜕𝑥4
+ 2(𝑒0𝑎)

2
𝜕6

𝜕𝑥6
+ (𝑠 + 1)(1 + (𝑒0𝑎)

2∇2)
𝜕4

𝜕𝑥2𝜕𝑦2

+ 𝑠
𝜕4

𝜕𝑦4
+ 2(𝑒0𝑎)

2𝑠
𝜕6

𝜕𝑦6
]𝑤

+
𝑁

𝐷
{(1 + (𝑒0𝑎)

2
𝜕2

𝜕𝑥2
)
𝜕2

𝜕𝑥2
𝑤 + 𝑠 (1 + (𝑒0𝑎)

2
𝜕2

𝜕𝑦2
)
𝜕2

𝜕𝑦2
𝑤}

−
𝑚0𝜔

2

𝐷
𝑤 + (

𝑚0

𝜅𝐺ℎ
+
𝑚2

𝐷
) [𝛻2 + (𝑒0𝑎)

2 (
𝜕4

𝜕𝑥4
+
𝜕4

𝜕𝑦4
)]𝜔2𝑤

+
𝑚0𝑚2𝜔

4

𝜅𝐺ℎ𝐷
𝑤 = 0 

(4.136) 

Considering an all edges simply supported plate, substituting Eq. (2.118) into Eq. (4.136), it leads 

𝜋4 [(𝜒𝑚)2 + 𝑛2 − 2[(𝜒𝑚)4 + 𝑛4] (
𝑒0𝑎𝜋

𝜒𝐿
)
2

] [(𝜒𝑚)2 + 𝑛2]

− 𝜋4
λ𝜇𝑠
𝜁2
[(𝜒𝑚)4 + (𝑠 + 1)(𝜒𝑚𝑛)2 + 𝑠𝑛4

− (
𝑒0𝑎𝜋

𝜒𝐿
)
2

[2(𝜒𝑚)6 + (𝑠 + 1)(𝜒𝑚)4𝑛2 + (𝑠 + 1)(𝜒𝑚)2𝑛4 + 2𝑠𝑛6]]

− 𝜋2𝜆 {(𝜒𝑚)2 + 𝑠𝑛2 − (
𝑒0𝑎𝜋

𝜒𝐿
)
2

[(𝜒𝑚)4 + 𝑠𝑛4]} − Ω2

− Ω2(𝜇𝑠 + 1) (
𝜋

𝜁
)
2

[(𝜒𝑚)2 + 𝑛2 − (
𝑒0𝑎𝜋

𝜒𝐿
)
2

[(𝜒𝑚)4 + 𝑛4]] +
𝜇𝑠
𝜁4
Ω4 = 0 

(4.137) 

In statics, the non-dimensional critical buckling load is expressed as 
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𝜆 = min
(𝑚,𝑛)

{𝜇𝑠
𝜋2

𝜁2
[(𝜒𝑚)2 + 𝑛2][(𝜒𝑚)2 + 𝑠𝑛2]

− 𝜇𝑠
𝜋2

𝜁2
(
𝑒0𝑎𝜋

𝜒𝐿
)
2

[2(𝜒𝑚)6 + 2𝑠𝑛6 + (𝑠 + 1)(𝜒𝑚)4𝑛2

+ (𝑠 + 1)(𝜒𝑚)2𝑛4] + (𝜒𝑚)2 + 𝑠𝑛2

− (
𝑒0𝑎𝜋

𝜒𝐿
)
2

[(𝜒𝑚)4 + 𝑠𝑛4]}

−1

{(𝜒𝑚)2 + 𝑛2

− 2(
𝑒0𝑎𝜋

𝜒𝐿
)
2

[(𝜒𝑚)4 + 𝑛4]} 𝜋2[(𝜒𝑚)2 + 𝑛2] 

(4.138) 

Thus, the buckling load has been determined for both continualized models. In this expression, 

the small length scale coefficient is assumed constant, equal to 1 √12⁄ . Figure 47 depicts the non-

dimensional buckling loaf calculated form the reference lattice model and the two continualized 

models (fourth and sixth order) versus the number of elements 𝑛𝑦 for a set of parameter 

(𝜒,𝑚, 𝑛, 𝑠) arbitrarily chosen equal to (1,1,1,0). It is seen that the curves coincide and both 

continualized models lead to an excellent approximation of the buckling load. This result is valid 

for any other set of parameters (𝜒,𝑚, 𝑛, 𝑠). 

 

Fig. 47. Buckling loads of a simply supported nonlocal plate and lattice model for different 𝑛𝑦, 

following the fourth and sixth order continualized models for a set of parameters (𝜒,𝑚, 𝑛, 𝑠) 

equal to (1,1,1,0) 

Likewise, as for the phenomenological model, the small length scale coefficient has to be 

determined in free vibration. 
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In this case, for the sixth order continualized model, Eq. (4.137) becomes 

𝛼̃ − 2[𝛼1
2 + 𝛼2

2]𝑒0
2 − 𝛼̃Ω̃2 − 𝛼̃𝛽(𝜇𝑠 + 1)Ω̃

2 + [𝛼1
2 + 𝛼2

2]𝑒0
2𝛽(𝜇𝑠 + 1)Ω̃

2

+ 𝛼̃𝜇𝑠𝛽
2Ω̃4 = 0 

(4.139) 

The non-dimensional natural frequency is obtained: 

Ω̃2 =
1

2𝛼̃𝜇𝑠𝛽
2 {[𝛼̃ + 𝛼̃𝛽(𝜇𝑠 + 1) − (𝛼1

2 + 𝛼2
2)𝑒0

2𝛽(𝜇𝑠 + 1)]

± {[𝛼̃ + 𝛼̃𝛽(𝜇𝑠 + 1) − (𝛼1
2 + 𝛼2

2)𝑒0
2𝛽(𝜇𝑠 + 1)]

2

− 4𝛼̃𝜇𝑠𝛽
2[𝛼̃ − 2(𝛼1

2 + 𝛼2
2)𝑒0

2]}
1
2} 

(4.140) 

Thus, the non-dimensional natural frequencies have been derived for both continualized models.  

Figure 48 depicts Ω̃ considering the reference lattice model and both continualized models (fourth 

and sixth order) versus the number of elements 𝑛𝑦 for a set of parameters (𝜒,𝑚, 𝑛, 𝛽) equal to 

(1,1,1,0.5). 

 

 

Fig. 48. Non-dimensional frequency Ω̃ versus the number of elements 𝑛𝑦 considering the 

microstructured model and the continualized models (fourth and sixth order), the 

phenomenological plate model (𝜒,𝑚, 𝑛, 𝛽) = (1,1,1,0.5) 

The curves of the continualized model perfectly fit well the one of the reference model. Any other 

set of parameter (𝜒,𝑚, 𝑛, 𝛽) would lead to the same result.   
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4.4. Discussion: superiority of the continualized models over the 

traditional phenomenological models 

The different phenomenological models at the fourth and sixth order are derived before 

by postulating nonlocal constitutive laws and a local equilibrium equation. These models 

introduce a small length scale coefficient, assumed constant. When this coefficient is calibrated 

from the reference discrete model, it turns out to be structural, varying with the aspect and 

thickness ratio (through the shear parameter), the buckling and vibration mode and the type of 

analysis (buckling or vibration). Because of this dependence and this paradoxical result, the 

engineering phenomenological models provide unsatisfactory results and are not consistent; it is 

necessary to develop new micromechanically-based nonlocal models. 

The continualized models are based on the derivation of continuous equations from the 

reference discrete model. Although they do not preserve the locality of the equilibrium equation, 

they consider, by construction of the model, a constant small length scale coefficient equal to 

1 √12⁄  and lead to an excellent approximation of the buckling load. This value is independent on 

the type of analysis or the different previously given parameters. 

When the non-dimensional buckling load or natural frequencies are calculated with 

respect to the number of elements 𝑛𝑦 within the beam or plates, the phenomenological models 

constitute only an excellent approximation for one particular small length scale coefficient given 

for the particular set of parameters whereas for 𝑒0 equal to 1 √12⁄ , the continualized models lead 

to excellent results, whatever the paremeters. 

Thus, it clearly establishes the superiority of the continualized that provide much better 

results compared to the traditional phenomenological (stress gradient) models, at least with 

respect to lattice mechanics. 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



171 
 

 

 

 

5. CONCLUSION AND RECOMMENDATIONS 

This thesis derives several different beam and plate models and it is proposed in this section 

to briefly summarize them. First of all, at a macroscale, in addition to the well-known Bernoulli-

Euler model valid for thin beam, three versions of the Bresse-Timoshenko thick beam model have 

been presented to take into account the rotary inertia and shear effects. The traditional original 

Bresse-Timoshenko model, widely used in the literature, derived through the use of equilibrium 

equations and the variational principle, may overcorrect the shear effect and it leads to two 

branches of natural frequencies. The second one does not appear in the asymptotic models at the 

second order. The second version is the truncated model. It is derived through the use of 

equilibrium equations and is asymptotically consistent at the second order. The last model is 

based on slope inertia and has been developed during this PhD. It is derived through the 

variational principle. The governing differential equation for these three models in free vibration 

is: 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑣

𝜕𝑡2
− 𝜌𝐼 (1 +

𝐸

𝜅𝐺
)

𝜕4𝑣

𝜕𝑡2𝜕𝑥2
+ 𝛾1

𝜌2𝐼

𝜅𝐺

𝜕4𝑣

𝜕𝑡4
+ 𝛾2

𝜌𝐸𝐼2

𝜅𝐺𝐴

𝜕6𝑣

𝜕𝑥4𝜕𝑡2
= 0 (5.1) 

where (𝛾1, 𝛾2) is equal to (1,0), (0,0) and (0,1) for the original Bresse-Timoshenko model, the 

truncated Bresse-Timoshenko theory and the Bresse-Timoshenko model based on slope inertia, 

respectively.  

These models have been used to study some particular cases such as a beam with a tip mass (basic 

representation in robotics), a cracked beam, a beam in presence of a compressive force or a beam 

subjected to random transverse distributed loads. 

The extension of the Bernoulli-Euler and Bresse-Timoshenko beam models to plates are the 

Kirchhoff-Love and Uflyand-Mindlin plate models. These models are governed by the following 

equation: 
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𝐷(1 + 𝛾2
𝜌ℎ2

12𝜅𝐺

𝜕2

𝜕𝑡2
)𝛻4𝑤 + 𝜌ℎ

𝜕²𝑤

𝜕𝑡²
− 𝜌

ℎ3

12
(1 +

12

ℎ3
𝐷

𝜅𝐺
)
𝜕2

𝜕𝑡2
𝛻2𝑤 + 𝛾1

𝜌2ℎ3

12𝜅𝐺

𝜕4𝑤

𝜕𝑡4
= 0 (5.2) 

with (𝛾1, 𝛾2) equal to (1,0), (0,0) and (0,1) for the original Uflyand-Mindlin model, the truncated 

Uflyand-Mindlin model and the Uflyand-Mindlin model, respectively. 

At a nanoscale, the interatomic interactions cannot be neglected and consequently, the nonlocal 

effect has to be introduced in the models. For thin beams and plates, different asymptotic models 

are possible following the direction of the nonlocality and differing at the zeroth order in the 

expression of the small length scale.  

 

The engineering models, Bernoulli-Euler and Bresse-Timoshenko for beams, Kirchhoff-Love and 

Uflyand-Mindlin for plates, have been derived to take into account this additional effect. An 

alternative to the fourth order phenomenological Bernoulli-Euler thin beam model and fourth 

order phenomenological Kirchhoff-Love plate model has been suggested, namely the sixth order 

phenomenological model. For the thick beam and plate models, there is a debate in the literature 

to know whether the nonlocal effect should be included or not in the shear part of the constitutive 

law. The investigations carried out during this PhD show that the nonlocal effect affects both the 

bending and the shear part of the law. In this case, the nonlocal engineering model are governed 

by the following equation for beams 

𝐸𝐼
𝜕4𝑣

𝜕𝑥4
+ (1 − 𝜂2

𝜕2

𝜕𝑥2
)(𝜌𝐴 −

𝜌𝐸𝐼

𝜅𝐺

𝜕2

𝜕𝑥2
)
𝜕2𝑣

𝜕𝑡2

− 𝜌𝐼
𝜕2

𝜕𝑡2
[(1 − 𝜂2

𝜕2

𝜕𝑥2
)
𝜕2𝑣

𝜕𝑥2
−

𝐼

𝜅𝐺𝐴
(E + 𝜂2𝜌

𝜕2𝑣

𝜕𝑡2
)
𝜕4𝑣

𝜕𝑥4

− (𝛾1 − 𝜂
2
𝜕2

𝜕𝑥2
) (𝛾1 + 𝛾2)

𝜌

𝜅𝐺
(1 − 𝜂2

𝜕2

𝜕𝑥2
)
𝜕2𝑣

𝜕𝑡2
] = 0 

(5.3) 

 

 

 

 

 

 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



173 
 

with (𝛾1, 𝛾2) equal to (1,0), (0,0) and (0,1) for the original Bresse-Timoshenko model, the 

truncated Bresse-Timoshenko model and the Bresse-Timoshenko model, respectively. 

For plates: 

𝐷∇4𝑤 + (1 − 𝜂2∇2) (𝜌ℎ −
𝜌

𝜅𝐺
𝐷∇2)

𝜕2𝑤

𝜕𝑡2

−
𝜌ℎ3

12

𝜕2

𝜕𝑡2
{(1 − 𝜂2∇2)∇2𝑤 − (𝛾1 − 𝜂

2∇2)(𝛾1 + 𝛾2)
𝜌

𝜅𝐺
(1 − 𝜂2∇2)

𝜕2𝑤

𝜕𝑡2

−
𝛾2
𝜅𝐺

(
𝐷

ℎ
+
𝜂2𝜌ℎ2

12

𝜕2

𝜕𝑡2
)∇4𝑤} = 0 

(5.4) 

with (𝛾1, 𝛾2) equal to (1,0), (0,0) and (0,1) for the original Uflyand-Mindlin model, the truncated 

Uflyand-Mindlin model and the Uflyand-Mindlin model, respectively. 

 

Furthermore, the small length scale coefficient introduced in the models had to be calibrated with 

respect to one microstructured physical model. In this purpose, the discrete thin beam and plate 

model and thick plate model have been derived. The latter is new and not given in the literature. 

By equating the buckling load in statics and the natural frequency in free vibration of the 

engineering models and the discrete models, the small length scale coefficient is found. This 

coefficient is paradoxically not constant, depending on different parameters such as the load or 

the geometry (aspect and thickness ratios) and the type of analysis, either buckling or vibration. 

Consequently, the stress gradient nonlocal models widely derived and used in the literature are 

not consistent because they are based on an assumption (a constant coefficient) that is not valid 

with respect to lattice mechanics. 

 

Thus, to overcome this paradox, a new family of models has been investigated: the continualized 

models. These models are based on the derivation of continuous equations from the ones of the 

reference discrete models.  
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For thin beams, the governing differential equations are: 

𝐸𝐼 [1 + γ1(𝑒0𝑎)
2
𝑑2

𝑑𝑥2
]
𝑑4𝑣

𝑑𝑥4
+𝑁 [1 − γ2(𝑒0𝑎)

2
𝑑2

𝑑𝑥2
]
𝑑2𝑣

𝑑𝑥2
−𝑚0𝜔

2 [1 − γ3(𝑒0𝑎)
2
𝑑2

𝑑𝑥2
] 𝑣 = 0 (5.5) 

where the triplet of parameters (𝛾1, 𝛾2, 𝛾3) is equal to (0,1,2), (1,0,1), (0,1,1) and (1,1,1) for the 

fourth and sixth order continualized model, the fourth and sixth order phenomenological models, 

respectively, the fourth order model coinciding with the Bernoulli-Euler model. In this case, the 

calibrated small length scale coefficients are: 

𝑒0,𝑏 =
1

√𝛾1 + 𝛾2

1

2√3
; 𝑒0,𝑣 =

1

√𝛾1 + 𝛾3

1

√6
   (5.6) 

For thin plates: 

𝐷 [∇4𝑤 + 𝛾1(𝑒0𝑎)
2 (
𝜕6𝑤

𝜕𝑥6
+
𝜕6𝑤

𝜕𝑦6
) − (𝛾1 + 4𝛾3)(𝑒0𝑎)

2
𝜕4∇2𝑤

𝜕𝑥2𝜕𝑦2
] − 𝑚0𝜔

2𝑤

+ (1 + 𝛾3)(𝑒0𝑎)
2 [𝑚0𝜔

2∇2𝑤 − 𝑃(1 + 𝑠)
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
]

+ 𝑃 (
𝜕2𝑤

𝜕𝑥2
+ 𝑠

𝜕2𝑤

𝜕𝑦2
) − (𝛾2 + 𝛾3)(𝑒0𝑎)

2𝑃(
𝜕4𝑤

𝜕𝑥4
+ 𝑠

𝜕4𝑤

𝜕𝑦4
) = 0 

(5.7) 

with the triplet (𝛾1, 𝛾2, 𝛾3) is equal to (0,0,1), (1,0,0), (0,1,0) and (1,1,0) for the fourth order 

continualized model, the sixth order order continualized model, the fourth order 

phenomenological model and the sixth order phenomenological model, respectively. The 

calibrated small length scale coefficient is: 

1

𝑒0,𝑏
= √12 {

𝛼2𝑚2(𝛼2𝑚2 + 1)(𝑠 + 1)

𝛼6𝑚6 + 2𝛼4𝑚4𝑠 − 𝛼4𝑚4 − 𝛼2𝑚2𝑠 + 2𝛼2𝑚2 + 𝑠

+ (𝛾1 + 𝛾3)
𝛼6𝑚6 + 𝛼4𝑚4𝑠 − 2𝛼4𝑚4 − 2𝛼2𝑚2𝑠 + 𝛼2𝑚2 + 𝑠

𝛼6𝑚6 + 2𝛼4𝑚4𝑠 − 𝛼4𝑚4 − 𝛼2𝑚2𝑠 + 2𝛼2𝑚2 + 𝑠

+ 𝛾2
𝛼6𝑚6 + 𝛼4𝑚4 + 𝛼2𝑚2𝑠 + 𝑠

𝛼6𝑚6 + 2𝛼4𝑚4𝑠 − 𝛼4𝑚4 − 𝛼2𝑚2𝑠 + 2𝛼2𝑚2 + 𝑠
}

1
2

 

1

𝑒0,𝑣
= √6√

(𝑚2𝛼2 + 1)2 + (𝛾1 + 𝛾3)(𝑚
2𝛼2 − 1)2

1 +𝑚4𝛼4
    

(5.8) 
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For thick plates: 

{∇4 + 2 [𝛾3 (
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(5.9) 

with (𝛾1, 𝛾2, 𝛾3) equal to (1,0,0), (0,1,0) and (0,0,1) for the fourth order phenomenological 

model, the fourth order continualized model and the sixth order continualized model, 

respectively.  

In the futures, different investigations could be carried out. 

First of all, all the results in this thesis are established for isotropic structures. All of them would 

deserve to be extended to the case of orthotropic and anisotropic beams and plates.  

This thesis started by presenting different versions of the Bresse-Timoshenko beam model and 

the Uflyand-Mindlin plate model. The models based on slope inertia, developed during this PhD, 

are extremely recent. There is no experimental or numerical result in the literature that would 

provide more argument to establish the superiority of a model over the others. Indeed, many 
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papers have been devoted to the study of the original Bresse-Timoshenko and Uflyand-Mindlin 

models. More investigations about the truncated models and the models based on slope inertia 

would show the differences and the similarities between those models and would help to better 

understand the influence of the rotary inertia and the shear effect on the mechanical behavior of 

the structure in vibration. 

Moreover, at a nanoscale, the nonlocal effect is taken into account by introducing one small 

length scale coefficient, assumed constant, in the models, following the approach of Eringen. It 

would be interesting to develop other models, for example by introducing not one but several 

nonlocal coefficients. Although it has been shown that the nonlocal effect affects both the 

bending and the shear parts of the constitutive law, other studies (analytical but also numerical 

and experimental) are necessary to confirm this result. 

Furthermore, the last chapter is based on the calibration of the small length scale coefficient and 

the development of continualized models from a lattice model with rectangular cells. This study 

was crucial to understand the principle of continualized approaches. However, most of 

nanomaterials cannot be represented by rectangular lattice. For instance, in graphene, as 

explained in introduction, the atoms are arranged through a honeycomb lattice. Although some 

works have been initiated in the literature to model this particular lattice [273-275], to our best 

knowledge, the explicit discrete governing differential equation in displacement has not been 

derived. Indeed, the difficulty is that each node of the lattice is connected to three direct 

neighbors and is also influenced by nine other nodes. One of the biggest challenges in a very near 

future will be to derive the equations in displacements and then, to propose continualized models 

and to compare the natural frequencies derived in the models with those available in the 

literature by using the molecular dynamic simulations.   

Also, the solutions for the nonlocal models have been determined for simply supported beams 

and plates. To study the influence of the boundary conditions on the small length scale coefficient 

would represent an ambitious project. 

Thus, this thesis is a first step of very and fascinating long stairs and huge progress have still to be 

made to have a full understanding of the mechanical behavior of nanomaterials in vibration and 

buckling. 

 

 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



177 
 

 

  

 

 

 

 

 

 

REFERENCES 

 

[1] M. Sathyamoorthy, Nonlinear Analysis of Structures, CRC Press, Boca Raton, 1998. 

[2] S.P. Timoshenko, History of strength of materials: with a brief account of the history of theory 

of elasticity and theory of structures, Courier Corporation, New-York, 1953. 

[3] H. Yang, Vibration Control for a Cantilever Beam with an Eccentric Tip Mass Using a 

Piezoelectric Actuator and Sensor, IJAV. 22 (2017) 84-92. 

[4] J.C. Bruch, T.P. Mitchell, Vibration of a mass-loaded clamped-free Timoshenko beam, J. Sound 

Vib. 114 (1987) 341-345. 

[5] M. Gürgöze, On the eigenfrequencies of a cantilever beam with attached tip mass and a spring-

mass system, J. Sound Vib. 190 (1996), 149-162. 

[6] M. Yaman, Adomian decomposition method for solving a cantilever beam of varying 

orientation with tip mass, J. Comput. Nonlinear Dynam. 2 (2007), 52-57. 

[7] C.W.S. To, Vibration of a cantilever beam with a base excitation and tip mass, J. Sound Vib. 83 

(1982) 445-460. 

[8] R. Bhat, M.A. Kulkarni, Natural frequencies of a cantilever with slender tip mass, AIAA 

Journal 14 (1976), 536-537. 

[9] N.G.R. Iyengar, Effects of transverse shear and rotary inertia on the natural frequency of a 

cantilever beam with a tip mass, in: Proceedings of the Shock and Vibration Conference, Monash 

University, Melbourne, 1974. 

[10] C.F.T. Matt, On the application of generalized integral transform technique to wind‐induced 

vibrations on overhead conductors, Int. J. Num. Meth. Eng. 78 (2009), 901-930. 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



178 
 

[11] S. Chinchalkar, Detection of the crack location in beams using natural frequencies, J. Sound 

Vib. 247 (2001) 417-429. 

[12] G.M. Owolabi, A.S.J. Swamidas, R. Seshadri, Crack detection in beams using changes in 

frequencies and amplitudes of frequency response functions, J. Sound Vib. 265 (2003) 1-22. 

[13] S. Teidj, A. Khamlichi, A. Driouach, Identification of beam cracks by solution of an inverse 

problem, Procedia Technology, 22 (2016) 86-93. 

[14] W. Xie, Dynamic Stability of Structures. Cambridge University Press, Cambridge, 2016. 

[15] I. Elishakoff, Probabilistic Theory of Structures, Wiley 1983; Dover 1999; World Scientific, 

2017. 

[16] L.D. Lutes, S. Sarkani, Random vibrations: analysis of structural and mechanical systems, 

Butterworth-Heinemann, New-York, 2004. 

[17] N.C. Nigam, S. Narayanan, Applications of random vibrations, Springer-Verlag, 1994. 

[18] P.H. Wirsching, T.L. Paez, K.. Random vibrations: theory and practice, Courier Corporation, 

New-York, 2006. 

[19] S.H. Crandall, W.D. Mark,  Random vibration in mechanical systems, Academic Press, New-

York, 1963. 

[20] K.M. Liew, C.M. Wang, Y. Xiang, S. Kitipornchai, Vibration of Mindlin Plates : Programming 

the p-Version Ritz Method, Elsevier, Oxford, 1998. 

[21] E.T. Thostenson, Z. Ren, T.W. Chou, Advances in the science and technology of carbon 

nanotubes and their composites: a review. Compos. Sci. Technol. 61 (2001), 1899-1912. 

[22] S.B. Sinnott, R. Andrews, Carbon nanotubes: synthesis, properties, and applications, Crit. Rev. 

Solid State Mater. Sci. 26 (2001), 145-249 

[23] R.H. Baughman, A.A. Zakhidov, W.A. De Heer, Carbon nanotubes--the route toward 

applications, Science, 297 (2002), 787-792. 

[24] V.N. Popov, Carbon nanotubes: properties and application, Mater. Sci. Eng., R 43 (2004), 61-

102. 

[25] H. Dai, Carbon nanotubes: opportunities and challenges, Surface Science, 500 (2002), 218-

241. 

[26] K.M. Liew, Y. Zhang, L.W. Zhang, Nonlocal elasticity theory for graphene modeling and 

simulation : prospects and challenges, Journal of Modeling in Mechanics and Materials 1 (2017). 

[27] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991), 56. 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



179 
 

[28] S. Iijima, High resolution electron microscopy of crystal lattice of titanium-niobium oxide, J. 

Appl. Phys., 42 (1971) 5891-5893. 

[29] S. Iijima, High resolution electron microscopy of phase objects: Observation of small holes 

and steps on graphite crystals, Optik, 47 (1977) 437-452.  

[30] S. Iijima, Direct observation of the tetrahedral bonding in graphitized carbon black by high 

resolution electron microscopy, J. Crystal Growth, 50 (1980) 675-683. 

[31] J. Wood, The top ten advances in material science, Mater Today, 11 (2008), 40-45. 

[32] M.F. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future 

commercial applications, Science, 339 (2013), 535-539. 

[33] M.M.J Treacy, T.W. Ebbesen, T.M. Gibson, Exceptionally High young’s modulus observed for 

individual carbon nanotubes, Nature 381 (1996) 680–687. 

[34] N. Yao, V. Lordi, Young’s modulus of single-walled carbon nanotubes. J. Appl. Phys. 84 (1998) 

1939-1943. 

[35] B.I. Yakobson, M.P. Campbell, C.J. Brabec, J. Bernholc, High strain rate fracture and C-chain 

unraveling in carbon nanotubes, Comput. Mater. Sci. 8 (1997) 341–8. 

[36] A. Bianco, K. Kostarelos, M. Prato, Applications of carbon nanotubes in drug delivery, Curr. 

Opin. Chem. Biol. 9 (2005) 674-679. 

[37] N. Sinha, J.W. Yeow, Carbon nanotubes for biomedical applications. IEEE Trans. 

Nanobioscience 4 (2005) 180-195. 

[38] M.S. Digge, R.S. Moon, S.G. Gattani, Applications of carbon nanotubes in drug delivery: a 

review. Int. J. Pharmtech Res. 4 (2012), 839-847. 

[39] S.R. Ji, C. Liu, B. Zhang, F. Yang, J. Xu, J. Long, X.J. Yu, Carbon nanotubes in cancer diagnosis 

and therapy, Biochim.  Biophys. Acta, 1806 (2010) 29-35. 

[40] Z. Liu, J.T. Robinson, S.M. Tabakman, K. Yang, H. Dai, Carbon materials for drug delivery & 

cancer therapy, Materials today, 14 (2011), 316-323. 

[41] S. Vardharajula, S.Z. Ali, P.M. Tiwari, E. Eroğlu, K. Vig, V.A. Dennis, S.R. Singh, Functionalized 

carbon nanotubes: biomedical applications. Int. J. Nanomed. 7 (2012) 5361. 

[42] A. Elhissi, W. Ahmed, I.U. Hassan, V.R. Dhanak, K. Subramani, Carbon nanotubes in cancer 

therapy and drug delivery, Emerging Nanotechnologies in Dentistry (2012) 347-363. 

[43] M. Trojanowicz, Analytical applications of carbon nanotubes: a review, TrAC, 25 (2006), 480-

489. 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



180 
 

[44] W. Yang, P. Thordarson, J.J. Gooding, S.P. Ringer, F. Braet, Carbon nanotubes for biological 

and biomedical applications. Nanotechnology, 18 (2007), 412001. 

[45] C.M. Tîlmaciu, M.C. Morris, Carbon nanotube biosensors, Front. Chem. 3 (2015) 59. 

[46] S. Saito, Y. Usui, K. Aoki, N. Narita, M. Shimizu, K. Hara, S. Taruta, Carbon nanotubes: 

biomaterial applications. Chem. Soc. Rev. 38 (2009) 1897-1903. 

[47] R. Hirlekar, M. Yamagar, H. Garse, M. Vij, V. Kadam, Carbon nanotubes and its applications: 

a review. Asian J. Pharm. Clin. Res. 2 (2009), 17-27. 

[48] E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single-

wall carbon nanotube above room temperature, Nano letters 6 (2006) 96-100. 

[49] P.G. Collins, P. Avouris, Nanotubes for electronics. Scientific American 283 (2000) 62–9. 

[50] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, A.A. Firsov, Electric 

field effect in atomically thin carbon films. Science 306 (2004) 666-669. 

[51] E. Gerstner, Nobel Prize 2010: Andre Geim & Konstantin Novoselov, Nature Physics 6 (2010) 

836. 

[52] A.K. Geim, Nobel Lecture: Random walk to graphene. Rev. Mod. Phys. 83 (2011) 851. 

[53] K.S. Novoselov, Nobel lecture: Graphene: Materials in the flatland. Rev. Mod. Phys. 83 (2011) 

837. 

[54] A.K. Geim, K.S. Novoselov, The rise of graphene. Nature materials, 6 (2007) 183-191. 

[55] H. Rafii-Tabar, E. Ghavanloo, S.A. Fazelzadeh, Nonlocal continuum-based modeling of 

mechanical characteristics of nanoscopic structures, Physics Reports 638 (2016) 1-97. 

[56] K.S. Novoselov, V.I. Fal, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim,  A roadmap for 

grapheme, Nature, 490 (2012) 192-200. 

[57] N. Savage, Materials science: Super carbon, Nature, 483 (2012) 30-31. 

[58] K.A. Jenkins, Graphene in High-Frequency Electronics, American Scientist, 100 (2012), 388. 

[59] E.S. Reich, Graphene knock-offs probe ultrafast electronics, Nature, 497 (2013) 422-423. 

[60] K. Bourzac, Electronics: back to analogue. Nature, 483 (2012) 34-36. 

[61] S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, 

Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett. 100 (2008) 016602. 

[62] A.S. Brown, Nanotechnology for the brain, Mechanical Engineering, 136 (2014) 30. 

[63] Y. Alapan, I. Sayin, U.A. Gurkan, Making the smallest medical devices, Mechanical Engineering 

136 (2014) 36. 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



181 
 

[64] J.M. Hamm, O. Hess, Two two-dimensional materials are better than one. Science 340 (2013) 

1298-1299. 

[65] E. Ghavanloo, S.A. Fazelzadeh, Vibration characteristics of single-walled carbon nanotubes 

based on an anisotropic elastic shell model including chirality effect, Appl. Math. Modelling 36 

(2012) 4988-5000. 

[66] L.F. Wang, Q.S. Zheng, J.Z. Liu, Q. Jiang, Size dependence of the thin-wall models for carbon 

nanotubes, Phys. Rev. Lett. 95 (2005) 105501. 

[67] J.C. Hsu, R.P. Chang, W.J. Chang, Resonance frequency of chiral single-walled carbon 

nanotubes using Timoshenko beam theory, Phys. Lett. A 372 (2008) 2757-2759. 

[68] A. Benzair, A. Tounsi, A. Besseghier, H. Heireche, N. Moulay, L. Boumia, The thermal effect 

on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. J. Phys. 

D 41 (2008) 225404. 

[69] M.A. Shah, T. Ahmad, Principles of nanoscience and nanotechnology. Alpha Science 

International, 2010. 

[70] I. Elishakoff, C. Soret, A consistent set of nonlocal Bresse–Timoshenko equations for 

nanobeams with surface effects, J. Appl. Mech. 80 (2013) 061001. 

[71] X.W. Lei, T. Natsuki, J.X. Shi, Q.Q. Ni, Surface effects on the vibrational frequency of double-

walled carbon nanotubes using the nonlocal Timoshenko beam model, Composites Part B 43 

(2012) 64–69. 

[72] H.L. Lee, W.J. Chang, Surface Effects on Frequency Analysis of Nanotubes Using Nonlocal 

Timoshenko Beam Theory. J. Appl. Phys.  108 (2010) 093503. 

[73] N. Challamel, I. Elishakoff, Surface stress effects may induce softening: Euler– Bernoulli and 

Timoshenko buckling solutions, Physica E 44 (2012) 1862–7. 

[74] Wang GF and Feng XQ. Timoshenko beam model for buckling and vibration of nanowires with 

surface effects. J Phys D Appl Phys  2009; 42:155411. 

[75] T. Belin, F. Epron, Characterization methods of carbon nanotubes: a review. Mat. Sci. Eng. 119 

(2005) 105-118. 

[76] D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. 

Massicotte, L. Vandsburger, E. Whiteway, V. Yu, Experimental review of graphene. ISRN 

Condensed Matter Physics (2012). 

[77] M. Paradise, T. Goswami, Carbon nanotubes–production and industrial applications, 

Materials & Design 28 (2007) 1477-1489. 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



182 
 

[78] A. Chuvilin, U. Kaiser, E. Bichoutskaia, N.A. Besley, A.N. Khlobystov Direct transformation of 

graphene to fullerene, Nature chemistry 2 (2010) 450-453. 

[79] B. Arash, Q. Wang, A review on the application of nonlocal elastic models in modeling of 

carbon nanotubes and graphenes. Comput. Mater. Sci. 51 (2012) 303-313. 

[80] B. Arash, Q. Wang, K.M. Liew, Wave propagation in graphene sheets with nonlocal elastic 

theory via finite element formulation. Comput. Methods Appl. Mech. Eng. 223 (2012) 1-9. 

[81] E. Cadelano, P.L. Palla, S. Giordano, L. Colombo, Nonlinear elasticity of monolayer grapheme, 

Phys. Rev. Lett. 102 (2009) 55021-55024. 

[82] H. Zhao, K. Min, N.R. Aluru, Size and chirality dependent elastic properties of graphene 

nanoribbons under uniaxial tension, Nano. Lett. 9 (2009) 3012–3015. 

[83] R. Chowdhury, S. Adhikari, F. Scarpa, M.I. Friswell, Transverse vibration of single-layer 

graphene sheets, J. Phys. D 44 (2011), 205401 

[84] B. Arash, Q. Wang, Vibration of single-and double-layered graphene sheets, J. Nanotechnol. 

Eng. Med. 2 (2011) 011012. 

[85] D. Bernoulli, De vibrationibus et sono laminarum  lasticarum. Commentarii Academiae 

Scientiarum Imperialis Petropolitanae, 13 (1751) 105-120. 

[86] L. Euler, Methodus inveniendi lineas curvas maximi minimive propietate gaudentes, 

Additamentum I, De curvis elasticis. Lausanne, Genf: Bousqet & Socios, 1744. 

[87] J. Bresse, Cours de Mécanique Appliquée. Mallet-Bachelier, Paris, 1859. 

[88] J.W.S. Rayleigh, The Theory of Sound, Macmillan, London, 1877. 

[89] S.P. Timoshenko, On the correction for shear of the differential equation for transverse 

vibrations of prismatic bars, Philos. Mag. 41 (1921) 744-746. 

[90] I. Elishakoff, J. Kaplunov, E. Nolde, Celebrating the centenary of Timoshenko’s study of effects 

of shear deformation and rotary inertia. App. Mech. Rev. 67 (2015) 060802. 

[91]  F. Hache, I. Elishakoff, N. Challamel, Some closed-form solutions in random vibration of 

beams using different models. Probabilistic Engineering Mechanics, in submission, 2017. 

[92] I. Elishakoff, F. Hache, N. Challamel, Critical comparison of three versions of Bresse-

Timoshenko beam theory for parametric instability, AIAA journal. 56 (2017) 438-442. 

[93] I. Elishakoff, F. Hache, N. Challamel, Parametric Instability of Bresse-Timoshenko Columns 

Revisited under a pulsating load, Submitted to Journal of Sound and Vibration, 2017. 

[94] I. Elishakoff, F. Hache, N. Challamel, Critical Contrasting of Three Versions of Vibrating Bresse-

Timoshenko Beam with a Crack. Int. J. Solids Struct. 109 (2017) 143-151. 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018

http://www.sciencedirect.com/science/journal/00207683
http://www.sciencedirect.com/science/journal/aip/00207683


183 
 

[95] I. Elishakoff, F. Hache, N. Challamel, Variational Derivation of Governing Differential 

Equations for Truncated Version of Bresse-Timoshenko Beams, In submission, 2018. 

[96] Y.M. Ghugal, R.P. Shimpi, A review of refined shear deformation theories for isotropic and 

anisotropic laminated beams, J. Reinf. Plast. Compos. 20 (2001) 255-272. 

[97] M. Hajianmaleki, M.S. Qatu, Vibrations of straight and curved composite beams: A 

review, Compos. Struct. 100 (2013) 218-232. 

[98] S. Germain, Remarques sur la nature, les bornes et l’étendue de la question des surfaces 

élastiques et équation générale de ces surfaces, Paris, 1826 (in French). 

[99] J.L. Lagrange, Recherches sur la nature et la propagation du son, Miscellanea Philosophico-

Mathematica Societatis Privatae Taurinensis I, 2rd Pagination, i- 112 (see also Œuvres, Tome 1, 

39-148), 1759 (in French). 

[100] G. Kirchhoff, Über das Gleichgewicht und die Bewegung einer elastichen Scheibe, J Angew 

Math 40 (1850) 51-88. (in German) 

[101] K.H. Lee, G.T. Lim, C.M. Wang, Thick Lévy plates re-visited. Int. J. Solids Struct. 39 (2002) 

127-144. 

[102] Y.S. Uflyand, The propagation of waves in the transverse vibrations of bars and plates, Akad. 

Nauk SSSR Prikl. Math. Mech. 12 (1948) 287-461. 

[103] Mindlin RD. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic 

plates. Trans. ASME Journal of Applied Mechanics 1951;18:31-38. 

[104] R.D. Mindlin, A. Schacknow, H. Deresiewicz, Flexural vibrations of rectangular plates. Trans. 

ASME J. Appl. Mech. 23 (1956) 430-436. 

[105] I. Elishakoff, Generalization of the Bolotin's dynamic edge-effect method for vibration 

analysis of Mindlin plates. In: Cuschieri JM, Glegg SAL, Yeager DM, editors. NOISE-CON 94. 

Proceedings of the 1994 National Conference on Noise Control Engineering ; 1994 May 01-04 ; 

Fort Lauderdale. 

[106] G. Falsone, D. Settineri, I. Elishakoff, A new locking-free finite element method based on 

more consistent version of Mindlin plate equation, Arch. Appl. Mech. 84 (2014) 967-983. 

[107] G. Falsone, D. Settineri, I. Elishakoff, A new class of interdependent shape polynomials for 

the FE dynamic analysis of Mindlin plate Timoshenko beam, Arch. Appl. Mech. 50 (2015) 767-780. 

[108] F. Hache, I. Elishakoff, N. Challamel, Free vibration analysis of plates taking into account 

rotary inertia and shear deformation via three alternative theories: a Lévy-type solution, Acta 

Mech. 228 (2017), 3633-3655. 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



184 
 

[109] I. Elishakoff, F. Hache, N. Challamel, Vibrations of asymptotically and variationally based 

Uflyand-Mindlin plate models, Int. J. Eng. Sc. 116 (2017) 58-73. 

[110] H. Irschik, Membrane-Type Eigenmotions of Mindlin Plates, Acta Mech. 55 (1985) 1-20. 

[111] H. Irschik, R. Heuer, F. Ziegler, Statics and dynamics of simply supported polygonal Reissner-

Mindlin plates by analogy, Arch. Appl. Mech. 70 (2000) 231-244. 

[112] E.J. Brunelle, S.R. Roberts, Initially stressed Mindlin plates, AIAA Journal 12 (1974) 1036-

1045. 

[113] E.J. Brunelle, Buckling of transversely isotropic Mindlin plates. AIAA Journal 9 (1971) 1018-

1022. 

[114] A. Sharma, H.B. Sharda, Y. Nath, Stability and Vibration of Mindlin sector plates: an analytical 

approach, AIAA Journal 4 (2005) 1109-1116. 

[115] J.A. Krumhansl, Generalized Continuum Field Representation for Lattice Vibrations. In: 

Wallis RK, editor. Lattice Dynamics. London: Pergamon; 1965. 627-634. 

[116] J.A. Krumhansl, Mechanics of Generalized Continua. Springer-Verlag, New-York, 1968. 

[117] D. Rogula, Influence of spatial acoustic dispersion on dynamical properties of dislocations, 

Bull Acad Pol Sc Ser Sc Tech, 13 (1965) 337-385. 

[118] A.C. Eringen, Linear theory of micropolar elasticity, J. Math. Mech. 15 (1966) 909-923. 

[119] A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity. Int. J. Eng. Sci. 10 (1972) 233-248. 

[120] A.C. Eringen, Nonlocal Continuum Field Theories, Springer-Verlag, New-York, 2002. 

[121] E. Kröner, B.K. Datta, Nichtlokale elastostatik: Ableitung aus der gittertheorie, Z Phys 196 

(1966) 203-211. (in German) 

[122] I.A. Kunin, Model of elastic medium with simple structure and space dispersion, Prykl. Mat. 

Mekh. 30 (1966) 542-550. 

[123] A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw 

dislocation and surface waves, J. Appl. Phys. 54 (1983) 4703-4710. 

[124] Q. Wang, V.K. Varadan, Vibration of carbon nanotubes studied using nonlocal continuum 

mechanics, Smart. Mater. Struct. 15 (2006) 659-666. 

[125] A.C. Eringen, B.S. Kim, Relation between nonlocal elasticity and lattice dynamics, Cryst Latt 

Def Amorp 7 (1977) 51-57. 

[126] Z. Zhang, C.M. Wang, N. Challamel, Eringen’s length scale coefficient for vibration and 

buckling of nonlocal rectangular plates with simply supported edges. J. Eng. Mech.141 (2015) 

04014117. 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



185 
 

[127] W.H. Duan, N. Challamel, C.M. Wang, Z. Ding, Development of analytical vibration solutions 

for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko 

beams, J. Appl. Phys. 114 (2013) 104312. 

[128] Z. Zhang, N. Challamel, C.M. Wang, Eringen’s small length scale coefficient for buckling of 

nonlocal Timoshenko beam based on microstructured beam model, J. Appl. Phys. 114 (2013) 

114902. 

[129] N. Challamel, C.M. Wang, I. Elishakoff, Discrete systems behave as nonlocal structural 

elements: Bending, buckling and vibration analysis. Eur. J. Mech. A Solids 44 (2014) 125-135 

[130] M. Ostoja-Starzewski, Lattice models in micromechanics, Appl. Mech. Rev. 55 (2002) 35-60. 

[131] H. Hencky, Über die angenäherte Lösung von Stabilitätsproblemen im Raummittels der 

elastischen Gelenkkette, Der Eisenbau 11 (1920) 437-452 (in German). 

[132] M.S. El Naschie, Stress, stability and chaos in structural engineering: An energy approach, 

McGraw Hill, London, 1991. 

[133] Z. Zhang, C.M. Wang, N. Challamel, Eringen’s length scale coefficient for buckling of nonlocal 

rectangular plates from microstructured beam-grid model, Int. J. Solids Struct. 51 (2014) 4307-

4315. 

[134] N. Challamel, F. Hache, I. Elishakoff, C.M. Wang, Buckling and vibrations of microstructured 

rectangular plates considering phenomenological and lattice-based nonlocal continuum model, 

Compos. Struct. 149 (2016) 145-156. 

[135] F. Hache, N. Challamel, I. Elishakoff, C.M. Wang, Comparison of nonlocal continualization 

schemes for lattice beams and plates, Arch. Appl. Mech. Doi: 10.1007/s00419-017-1235-z., 2017. 

[136] A.S. Wifi, C.W. Wu, K.A. Obeid, A simple discrete element mechanical model for the stability 

analysis of elastic structures. In: Kabil YH, Said ME, editors. Current Advances in Mechanical Design 

and Production. Pergamon Press (1989) 149-156. 

[137] H. Zhang, Y.P. Zhang, C.M. Wang, Hencky bar-net model for vibration of rectangular plates 

with mixed boundary conditions and point supports, Int. J. Str. Stab. Dyn. In Press (2017). 

[138] C.M. Wang, Y.P. Zhang, D.M. Pedroso, Hencky bar-net model for plate buckling, Eng. Struct. 

(2017) 947-954. 

[139] A. Kocsis, N. Challamel, G. Károlyi, Discrete and nonlocal models of Engesser and Haringx 

elastic. Int. J. Mech. Sc., In Press (2017). 

[140] P.G. Kevrekidis, I.G. Kevrekidis, A.R. Bishop, E.S. Titi, Continuum approach to discreteness, 

Phys. Rev. E (2002). 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



186 
 

[141] N.J. Zabusky, M.D. Kruskal, Interaction of Solitons in a Collisionless Plasma and the 

Recurrence of Initial States, Phys. Rev. Lett. 15 (1985) 240–243. 

[142] I.V. Andrianov, J. Awrejcewicz, D. Weichert D. Improved continuous models for discrete 

media. Math. Probl. Eng. (2010) 986242. 

[143] P. Rosenau, Dynamics of nonlinear mass-spring chains near the continuum limit. Phys. Lett. 

A 118 (1986) 222-227. 

[144] P. Rosenau, Dynamics of dense lattices, Phys. Rev. B 36 (1987) 5868. 

[145] T.B. Benjamin, J.L. Bona, J.J. Mahony, Model equations for long waves in nonlin-ear 

dispersive systems, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 272 (1972) 47–78. 

[146] M.A. Collins, A quasicontinuum approximation for solitons in an atomic chain, Chem. Phys. 

Lett. 77 (1981) 342–347. 

[147] N. Challamel, J. Lerbet, C.M. Wang, Z. Zhang, Analytical length scale calibration of nonlocal 

continuum from a microstructured buckling model, Z. Angew Math. Mech. 94 (2014) 402-413. 

[148] Y.Y. Zhang, C.M. Wang, N. Challamel, Bending, buckling and vibration of hybrid nonlocal 

beams, J Eng Mech 136 (2010) 562-574. 

[149] V.L. Berdichevskii, S.S. Kvashina, On equations describing the transverse vibrations of elastic 

bars, J. Appl. Math. Mech. 40 (1974) 104-119. 

[150] A.L. Goldenveizer, J.D. Kaplunov, E.V. Nolde,  Asymptotic analysis and refinement of 

Timoshenko-Reisner-type theories of plates and shells, Trans. Acad. Sci. USSR. Mekhanika Tverd. 

Tela (1990). 

[151] V.L. Berdichevskii, Dynamic theory of thin elastic plates, Izv. AN SSSR Mekhanika Tverdogo 

Tela, 8 (1973) 99-109. 

[152] R. Chebakov, J. Kaplunov, G.A. Rogerson, A non-local asymptotic theory for thin elastic 

plates, Proc R Soc A (2017) 20170249. 

[153] J.D. Kaplunov, L.Y. Kossovitch, E.V. Nolde, Dynamics of thin walled elastic bodies. Academic 

Press, 1998. 

[154] P. Ciarlet, L. Trabucho, J.M. Viano, Asymptotic methods for elastic structures. Walter de 

Gruyter, Berlin, 1995. 

[155] D.H. Hodges, Nonlinear composite beam theory. DC: AIAA, Washington, 2006. 

[156] T.S. Vashakmadze, The theory of Anisotropic Elastic Plates, Kluwer Academic Publishers, 

Dordrecht, 1999. 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



187 
 

[157] O.E. Widera, An asymptotic theory for the motion of elastic plates, Acta Mech. 9 (1970) 54-

66. 

[158] A.W. Leissa, Vibration of Plates. U.S Government Printing Office, NASA SP-160, reprinted by 

the Acoustical Society of America; 1969. 

[159] A.W. Leissa, The free vibration of rectangular plates. J Sound Vib 31 (1973) 257-293. 

[160] D.J. Gorman, Free Vibration Analysis of Rectangular Plates. New York, Elsevier-North 

Holland Publishing Co, 1982. 

[161] E. Ventsel, T. Krauthammer, Thin plates and shells: theory: analysis, and applications. CRC 

press, 2001. 

[162] S.H. Hashemi, M. Arsanjani, Exact characteristic equations for some of classical boundary 

conditions of vibrating moderately thick plates. Int. J. Solids Struct. 45 (2005) 819-853. 

[163] W. Ritz, Über eine neue Methode zur Lösung gewisser Variationptobleme der 

mathematischen, Physik. J. Angew. Math. 135 (1909) 1-61. (in German). 

[164] S.A. Eftekhari, A.A. Jafari, A simple and accurate Ritz formulation for free vibration of thick 

rectangular and skew plates with general boundary conditions, Acta Mech. 224 (2013) 193-209. 

[165] K. Naumenko, J. Altenbach, H. Altenbach, V.K. Naumenko, Closed and approximate 

analytical solutions for rectangular Mindlin plates. Acta Mech. 147 (2001) 153-172. 

[166] K.M. Liew, K.Y. Lam, Application of two-dimensional orthogonal plate function to flexural 

vibration of skew plates, J Sound Vib. 139 (1990) 241-252. 

[167] M. Levinson, D.W. Cooke, On the frequency spectra of Timoshenko beams. J. Sound Vib. 84 

(1982) 319-326. 

[168] R.B. Bhat, Flexural vibration of polygonal plates using characteristics orthogonal polynomials 

in two-variables, J. Sound Vib. 114 (1987) 65-71. 

[169] R.B. Bhat, Natural frequencies of rectangular plates using characteristic orthogonal 

polynomials in the Rayleigh-Ritz method, J. Sound Vib. 102 (1985) 493-499. 

[170] D.J. Gorman, Free vibration analysis of cantilever plates by the method of superposition, J. 

Sound and Vib. 49 (1976) 453-467. 

[171] D.J. Gorman, Free vibration analysis of the completely free rectangular plate by the method 

of superposition, J. Sound Vib. 57 (1978) 437-447. 

[172] D.J. Gorman, Vibration analysis of plates by the superposition method (Vol. 3), World 

Scientific, New-York, 2002. 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



188 
 

[173] D.J. Gorman, W. Ding, Accurate free vibration analysis of point supported Mindlin plates by 

the superposition method, J. Sound Vib. 219 (1999) 265–277. 

[174] A.A. Pisano, A. Sofi, P. Fuschi, Finite element solutions for nonhomogeneous nonlocal elastic 

problems, Mechanics Research Communications 36 (2009) 755-761. 

[175] M.K. Ravari, S. Talebi, A.R. Shahidi, Analysis of the buckling of rectangular nanoplates by use 

of finite-difference method, Meccanica 49 (2014) 1443-1455. 

[176] W. Weaver, S.P. Timoshenko, D.H. Young, Vibration Problems in Engineering, Fifth edition, 

John Wiley & Sons; New York, 1990. 

[177] R.R. Craig, A.J. Kurdila, Fundamentals of Structural Dynamics. John Wiley & Sons, New York, 

2011. 

[178] C. Dym, I. Shames, Solid Mechanics: a Variational Approach. McGraw-Hill, New York, 1973. 

[179] S.S. Rao, Vibration of Continuous Systems. Wiley, New York, 2007. 

[180] I. Elishakoff, E. Lubliner, 1985, “Random vibration of a structure via classical and nonclassical 

theories,” Probabilistic Methods in the Mechanics of Solids and Structures. S. Eggwertz and N.C. 

Lind, Springer, Berlin, pp. 455-468. 

[181] I. Elishakoff, D. Livshits, Some closed-form solutions in random vibration of Bresse-

Timoshenko beams, Probabilist. Eng. Mech. 4 (1989) 49-54. 

[182] I. Elishakoff, D. Pentaras, K. Dujat, C. Versaci, G. Muscolino, J. Storch, S. Bucas, N. Challamel, 

T. Natsuki, Y.Y. Zhang, C.M. Wang, G. Ghyselinck, Carbon Nanotubes and Nanosensors: Vibrations, 

Buckling and Ballistic Impact.  ISTE – Wiley, London, 2012. 

[183] I. Elishakoff, An equation both more consistent and simpler than the Bresse-Timoshenko 

equation, in: Gilat, R. and L. Sills-Banks, L. (Eds.), Advances in Mathematical Modeling and 

Experimental Methods for Materials and Structures. Springer Verlag, Berlin, 249-254, 2009. 

[184] I. Karnovsky, O.I. Lebed, Non-Classical Vibrations of Arches and Beams: Eingenvalues and 

Eingenfunctions, McGraw-Hill, New York, 2004. 

[185] N.G. Stephen, The second spectrum of Timoshenko beam theory – Further assessment, J. 

Sound Vib. 292 (2006) 372-389. 

[186] A. Love, A treatise of the mathematical theory of elasticity. IY edit. Cambridge University 

Press, 1959. 

[187] N.G. Stephen, M. Levinson, A second order beam theory. J. Sound Vib. 67 (1979) 293-305. 

[188] S.P. Timoshenko, On the transverse vibration of bars with uniform cross-section, Philos. 

Mag. 43 (1922) 125–131. 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



189 
 

[189] N.G. Stephen, Considerations on second order beam theories. Int. J. Solids Structures. 17 

(1981) 325-333. 

[190] T. Kaneko, On Timoshenko’s correction for shear in vibrating beams, J. Physics D : Applied 

Physics. 8 (1975) 1927-1939. 

[191] A. Moallemi-Oreh, M. Karkon, Finite element formulation for stability and free vibration 

analysis of Timoshenko beams, Adv. Acoust. Vib. (2013) 841215. 

[192] A.J.M. Ferreira, MATLAB Codes for Finite Element Analysis, Springer, Berlin, 2008. 

[193] J. Lee, W.W. Schultz, Eigenvalue analysis of Timoshenko beams and axisymmetric Mindlin 

plates by the pseudospectral method, J. Sound Vib. 269 

(2004) 609–621. 

[194] A. Diaz-de-Anda, J. Flores, L. Gutiérrez, R.A. Méndez-Sánchez, G. Monsivais, A. Morales, 

Experimental study of the Timoshenko beam theory predictions, J. Sound Vib. 331 (2012) 5732–

5744 

[195] A. Cazzani, F. Stochino, E. Turco, An analytical assessment of finite element and isogeometric 

analyses of the whole spectrum of Timoshenko beams, Z. Angew. Math. Mech. 96 (2016) 1220–

1244. 

[196] A. Cazzani, F. Stochino, E. Turco, On the whole spectrum of Timoshenko beams. Part I: a 

theoretical revisitation, Z. Angew. Math. Phys. (ZAMP) 67 (2016). (article24). 

[197] A. Cazzani, F. Stochino, E. E. Turco, On the whole spectrum of Timoshenko beams. Part II: 

further applications, Z. Angew. Math. Phys. (ZAMP) 67 (2016). (article25). 

[198] G.R. Bhashyam, G. Prathap, The second frequency spectrum of Timoshenko beams, J. Sound 

Vib. 76 (1981) 407–420.  

[199] R.W. Traill-Nash, A.R. Collar, The effect of shear flexibility and rotary inertia on the bending 

vibrations of beams, Q. J. Mech. Appl. Math. QJMAM 6 

(1953) 186–222  

[200] N.G. Stephen, The second frequency spectrum of Timoshenko beams, J. Sound Vib. 80 

(1982) 578–582. 

[201] N. Khaji, M. Shafiei, M. Jalalpour, Closed-form solutions for crack detection problem of 

Timoshenko beams with various boundary conditions, IJMS. 51 (2009) 667–681. 

[202] A. Labuschagne, N.F.J. van Rensburg, A.J. van der Merwe, Comparison of linear beam 

theories, Math. Comput. Model. 49 (2009) 20–30  

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



190 
 

[203] I. Elishakoff, N. Challamel, C. Soret, Y. Bekel, T. Gomez, Virus sensor based on single-walled 

carbon nanotube: improved theory incorporating surface effects, Philos. Trans. R. Soc. A 371 

(2013) 20120424. 

[204] A. Erturk, D.J. Inman, Modal analysis of a uniform cantilever with a tip mass, in: Piezoelectric 

Energy Harvesting, John Wiley & Sons, 2001 

[205] R.E. Rossi, P.A.A. Laura, R.H. Gutierrez, A note of transverse vibrations of a Timoshenko 

beam of a non-uniform thickness clamped at one end and carrying a concentrated mass at the 

other, J. Sound Vib. 143 (1990) 491–502. 

[206] P. Gudmundson, Eigenfrequency changes of structures due to cracks. notches or other 

geometrical changes, J. Mech. Phys. Solids. 30 (1982) 339–353. 

[207] R.Y. Liang, F.K. Choy, J. Hu, Detection of cracks in beam structures using measurements of 

natural frequencies, J. Franklin Inst. 328 (1995) 131-149. 

[208] S.P. Lele, S.K. Maiti, Modeling of transverse vibration of short beams for crack detection and 

measurement of crack extension, J. Sound Vib. 257 (2002) 559–583. 

[209] J.A. Loya, L. Rubio, J. Fernandez-Saez, Natural frequencies for bending vibrations of 

Timoshenko cracked beams. J. Sound Vib. 290 (2006) 640-653. 

[210] V.V. Bolotin, The Dynamic Stability of Elastic Systems. Holden-Day, San Francisco, 1964. 

[211] M.C. Cartmell, Introduction to Linear, Parametric and Non-linear Vibration. Springer, 1990. 

[212] R.M. Evan-Iwanowski, On the Parametric Response of Structures, Appl. Mech. Rev. 18 (1965) 

699-702. 

[213] A.V. Perelmuter, V. Slivker, Handbook of Mechanical Stability in Engineering (Volume 3), 

World Scientific, Singapore, 2013. 

[214] G. Schimdt, Parametererregerte Scwhingungen, Veb Deutscher Verlag der Wissenschaften. 

Berlin, 1975 (in German). 

[215] P. Hagedorn, L.R. Koval, On the parametric stability of a Timoshenko beam subjected to a 

periodic axial load, Ingenieur-Archiv, 40 (1971) 211-220. 

[216] S.H. Crandall, A. Yildiz, Random vibration of beams, J. Appl. Mech. 29 (1962) 267-275. 

[217] A.C. Eringen, Response of beams and plates to random loads, J. Appl. Mech. 24 (1957) 46-

52. 

[218] A. Houdijk, Le Mouvement Brownien d’un Fil, Archives Nerlandaises des Sciences exactes et 

Naturelles, Series III A 11 (1928) 212-277 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



191 
 

[219] J.C. Samuels, A.C Eringen, On stochastic linear systems, Studies in Applied Mechanics 38 

(1959) 83-103. 

[220] M.P. Singh, Random response of symmetric cross-ply composite beams with arbitrary 

boundary conditions, AIAA Journal 30 (1992) 1081-1088. 

[221] I. Elishakoff, D. Livshits, Some closed-form solutions in random vibration of Euler-Bernoulli 

beams, Probabilist. Eng. Mech. 4 (1984) 49-54. 

[222] S.H. Hashemi, K. Khorshidi, M. Amabili, Exact solution for linear buckling of rectangular 

Mindlin plates, J Sound Vib. 315 (2008) 318-342. 

[223] K.M. Liew, Y. Xiang, S. Kitipornchai, Research on thick plate vibration: a literature survey, J. 

Sound Vib., 180 (1995) 163–176. 

[224] C.M. Wang, J.N. Reddy, K.H. Lee, Shear deformable beams and plates: relationships with 

classical solutions, Oxford, Elsevier, 2000. 

[225] Selezov, Doslidzenia, Prykladna Mekhanika (1960) 319-327. 

[226] E. Jomehzadeh, A.R. Saidi, A Lévy type solution for free vibration analysis of a nano-plate 

considering the small scale effect, Recent Advances in  Vibration  Analysis (2011) 47-58. 

[227] C.L.M.H. Navier, Extrait des recherches sur la flexion des plans élastiques, Bull. Sci. Soc. 

Philomarhiques de Paris 5 (1823) 95-102. 

[228] C.M. Wang, Natural frequencies formula for simply supported Mindlin plates, Journal of 

Vibration and Acoustics 116 (1994) 536-540. 

[229] C.Y. Wang, C.M. Wang, Structural Vibration: Exact Solutions for Strings, Membranes, Beams, 

and Plates, CRC Press, Boca Raton, 2014. 

[230] I. Shufrin, M. Eisenberger, Stability and vibration of shear deformable plates – first order 

and higher order analysis, Int. J. Solids Struct., 42 (2005) 1225–1251. 

[231] K.M. Liew, Y. Xiang, S. Kitipornchai, Transverse vibration of thick rectangular plates – I. 

Comprehensive sets of boundary conditions, Comput. Struct. 49 (1993) 1–29. 

[232] N.G. Stephen, Mindlin plate theory: best shear coefficient and higher spectra validity, J. 

Sound Vib. 202 (1997) 539-553. 

[233] W.H. Wittrick, 1987, Analytial, three-dimensional elasticity solutions to some plate 

problems, and some observations on Mindlin’s plate theory, Int. J. Solids Structures, 23 (1987) 

441-464. 

[234] W.C. Chen, W.H. Liu, Deflections and free vibration of laminated plates – Lévy-type 

solutions, Int. J. Mech. Sci. 32 (1990) 779-793. 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



192 
 

[235] R. Szilard, Theory and Analysis of Plates, Prentice-Hall, Englewood Cliffs, New Jersey, 1974. 

[236] D.J. Dawe, Finite strip models for vibration of Mindlin plates, J. Sound Vib. 59 (1978) 441-

452. 

[237] S.R. Srinivas, C.V. Joga Rao, A.K. Rao, An exact analysis for vibration of simply supported 

homogeneous and laminated thick rectangular plates, J Sound Vib. 12 (1970) 187-199. 

[238] F. Hache, N. Challamel, I. Elishakoff, Asymptotic derivation of nonlocal beam models from 

two-dimensional nonlocal elasticity, Mathematics and Mechanics of Solids, in submission. 

[239] F. Hache, N. Challamel, I. Elishakoff, Asymptotic derivation of nonlocal plate models from 

three-dimensional nonlocal elasticity, in submission. 

[240] J. Peddieson, G.R. Buchanan, R.P. McNitt, Application of nonlocal continuum models to 

nanotechnology, Int. J. Eng. Sci. 41 (2003) 305-312. 

[241] L.J. Sudak, Column buckling of multiwalled carbon nanotubes using nonlocal continuum 

mechanics, J. Appl. Phys. 94 (2003) 7281-7285. 

[242] Ö. Civalek, Ç. Demir, Bending analysis of microtubules using nonlocal Euler–Bernoulli beam 

theory, Appl. Math. Model. 35 (2011) 2053-2067. 

[243] P. Lu, H.P. Lee, C. Lu, P.Q. Zhang, Application of nonlocal beam models for carbon 

nanotubes, Int. J. Solids Struct. 44 (2007) 5289–5300. 

[244] P. Lu, H.P. Lee, C. Lu, P.Q. Zhang, Dynamic properties of flexural beams using a nonlocal 

elasticity model, J. Appl. Phys. 99 (2006) 073510. 

[245] S. Narendar, S.S. Gupta, S. Gopalakrishnan, Wave propagation in single-walled carbon 

nanotube under longitudinal magnetic field using nonlocal Euler–Bernoulli beam theory, Appl. 

Math. Model. 36 (2012) 4529-4538. 

[246] J.N. Reddy, Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci. 

45 (2007) 288-307. 

[247] M. Xu, Free transverse vibrations of nano-to-micron scale beams. Proc Math Phys Eng Sci. 

462 (2006) 2977-2995. 

[248] Y.Q. Zhang, G.R. Liu, X.Y. Xie, Free transverse vibrations of double-walled carbon nanotubes 

using a theory of nonlocal elasticity, Phys Rev B 71 (2005) 195404. 

[249] N. Challamel, Z. Zhang, C.M. Wang, J.N. Reddy, Q. Wang, T. Michelitsch, B. Collet, On non-

conservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-

based approach, Arch. Appl. Mech. 84 (2014) 1275-1292. 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



193 
 

[250] H.T. Thai, A nonlocal beam theory for bending, buckling and vibration of nanobeams, Int J 

Eng Sci 52 (2012) 56-64. 

[251] F. Ebrahimi, P. Nasirzadeh, A nonlocal Timoshenko beam theory for vibration analysis of 

thick nanobeams using differential transform method, J Theor Appl Mech 53 (2015) 1041-1052. 

[252] Y.G. Hu, K.M. Liew, Q. Wang, Modeling of vibrations of carbon nanotubes, Procedia Eng 31 

(2012) 343-347. 

[253] C.M. Wang, Y.Y. Zhang, X.Q. He, Vibration of nonlocal Timoshenko beams, Nanotechnology 

18 (2007) 105401. 

[254] C.M. Wang, Y.Y. Zhang, S.S. Ramesh, Buckling analysis of micro- and nano-rods/tubes based 

on nonlocal Timoshenko beam theory, J Phys D Appl Phys 39 (2006) 3904–3909. 

[255] J.R. Hutchinson, Vibrations of thick free circular plates, exact versus approximate solutions, 

J. Appl. Mech. 51 (1984) 581–585. 

[256] P. Lu, P.Q. Zhang, H.P. Lee, C.M. Wang, J.N. Reddy, Non-local elastic plate theories, Proc R 

Soc A 463 (2007) 3225-3240. 

[257] T. Murmu, S.C. Pradhan, Vibration analysis of nanoplates under uniaxial prestressed 

conditions via nonlocal elasticity, J Appl Phys 106 (2009) 104301. 

[258] T. Murmu, S.C. Pradhan, Small scale effect on the buckling of single-layered graphene sheets 

under biaxial compression via nonlocal continuum mechanics. Comput. Mat. Sci. 47 (2009) 268-

274. 

[259] S. Chakraverty, L. Behera, Free vibration of rectangular nanoplates using Rayleigh-Ritz 

method, Physica E Low Dimens. Syst. Nanostruct. 56 (2014) 357-363. 

[260] S.C. Pradhan, J.K. Phadikar, Nonlocal elasticity theory for vibration of nanoplates, J. Sound 

Vib. 325 (2009) 206-223. 

[261] T. Aksencer, M. Aydogdu, Levy type solution method for vibration and buckling of 

nanoplates using nonlocal elasticity theory, Physica E Low Dimens. Syst. Nanostruct. 43 (2011) 

954-959. 

[262] R. Ansari, B. Arash, H. Rouhi, Vibration characteristics of embedded multi-layered graphene 

sheets with different boundary conditions via nonlocal elasticity, Compos. Struct. 93 (2011) 2419-

2429. 

[263] R. Ansari, B. Arash, H. Rouhi, Nanoscale vibration analysis of embedded multi-layered 

graphene sheets under various boundary conditions, Comput. Mater. Sci. 50 (2011) 3091-3100. 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018

http://www.sciencedirect.com/science/journal/00207225
http://www.sciencedirect.com/science/journal/00207225


194 
 

[264] P. Seide,  Accuracy of some numerical methods for column buckling, J. Eng. Mech. 101 

(1975) 549-560. 

[265] C.T. Wang, Discussion on the paper of “Salvadori M.G., Numerical computation of buckling 

loads by finite differences”. Trans. ASCE 116 (1951) 629-631. 

[266] C.T. Wang, Applied Elasticity. McGraw-Hill, New-York, 1953. 

[267] R. Santoro, I. Elishakoff, Accuracy of the finite difference method in stochastic settings, J. 

Sound. Vib. 291 (2006) 275-284. 

[268] S. Hosseini-Hashemi, A.T. Samaei, Buckling analysis of micro/nanoscale plates via nonlocal 

elasticity theory, Physica E. 43 (2011) 1400-1404. 

[269] A.T. Samaei, S. Abbasion, M.M. Mirsayar, Buckling analysis of a single-layer graphene sheet 

embedded in an elastic medium based on nonlocal Mindlin plate theory, Mechanics Research 

Communication 38 (2011) 481-485. 

[270] N. Challamel, V. Picandet, B. Collet, T. Michelitsch, I. Elishakoff, C.M. Wang, Revisiting finite 

difference and finite element methods applied to structural mechanics within enriched continua, 

Eur. J. Mech. A/Solids. 53 (2015) 107-120.  

[271] F. Hache, N. Challamel, I. Elishakoff, Lattice and continualized models for the buckling study 

of nonlocal rectangular thick plates, IJMS, in submission. 

[272] F. Hache, N. Challamel, I. Elishakoff, Lattice and continualized models for the vibration study 

of nonlocal rectangular thick plates, IJSSD, in submission. 

[273] I.A. Butt, J.A.D. Wattis, Discrete breathers in a hexagonal two-dimensional Fermi-Pasta-

Ulam lattice, J Phys A: Math Theor, 40 (2007) 1239. 

[274] J.A. Wattis, L.M. James, Discrete breathers in honeycomb Fermi–Pasta–Ulam lattices, 

Journal of Physics A: Mathematical and Theoretical, 47 (2014), 345101. 

[275] D. Caillerie, A. Mourad, A. Raoult, Discrete homogenization in graphene sheet modeling, 

Journal of Elasticity, 84 (2006) 33-68. 

 

 

 

 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N° ordre 487 

Vibration of nonlocal carbon nanotubes and graphene nanoplates Florian Hache 2018


	Table des matières
	1. INTRODUCTION
	1.1. From the importance to deal with beams and plates in vibration
	1.2. The advent of nanomaterials: brief presentation of carbon nanotubes and graphene nanoplates
	1.2.1. Carbon nanotubes
	1.2.2. Graphene nanoplates
	1.2.3. Example of issues specific to nanomaterials: the surface effects

	1.3. Different approaches to describe the mechanical behavior of macro and nanostructures in vibration
	1.3.1. Experimental, analytical and numerical approaches
	1.3.2. Analytical study of macro beams and plates
	1.3.3. Nonlocal theories
	1.3.4. Asymptotic models

	1.4. Different methods of resolution of governing differential equations

	2. TOWARDS THE DEVELOPMENT OF THICK BEAM AND PLATE MODELS FOR MACROSTRUCTURES
	2.1. Derivation of thick beam models and different applications
	2.1.1. Original Bresse-Timoshenko model
	2.1.2. Truncated version of the Bresse-Timoshenko model through an asymptotic approach
	2.1.3. Bresse-Timoshenko based on slope inertia
	2.1.4. Different solutions
	2.1.5. Particular application: cantilever beam with a tip mass
	2.1.6. Other applications

	2.2. Thick plate models for macrostructures
	2.2.1. The different models
	2.2.2. Natural frequencies for the different Uflyand-Mindlin plate models


	3. NONLOCAL PHENOMENOLOGICAL MODELS: ASYMPTOTIC AND ENGINEERING APPROACHES
	3.1. Different beam models
	3.1.1. Asymptotic derivation of nonlocal beam models
	3.1.2. Nonlocal engineering beam approaches

	3.2. Different plate models
	3.2.1. Asymptotic derivation of nonlocal plate models
	3.2.2. Nonlocal engineering plate approaches
	3.2.3. Solution


	4. MICROSTRUCTURED AND CONTINUALIZED MODELS, CALIBRATION OF THE SMALL LENGTH SCALE COEFFICIENT: THE RESOLUTION OF THE SMALL LENGTH SCALE COEFFICIENT PARADOX
	4.1. Different nonlocal thin beam models
	4.1.1. Microstructured model

	4.2. Different nonlocal thin plate models
	4.2.1. Microstructured model
	4.2.2. Phenomenological thin plate model
	4.2.3. Continualized models

	4.3. Nonlocal thick plate models
	4.3.1. Microstructured beam-grid model
	4.3.2. Nonlocal Uflyand-Mindlin plate model
	4.3.3. Fourth order continualized model
	4.3.4. Sixth order continualized model

	4.4. Discussion: superiority of the continualized models over the traditional phenomenological models

	5. CONCLUSION AND RECOMMENDATIONS
	REFERENCES



