L. L. Burrows, Pseudomonas aeruginosa twitching motility: type IV pili in action, Annu. Rev. Microbiol, vol.66, pp.493-520, 2012.

A. E. Labauve and M. J. Wargo, Growth and Laboratory Maintenance of Pseudomonas aeruginosa, Curr. Protoc. Microbiol, vol.6, 2012.

M. L. Vasil, Pseudomonas aeruginosa: biology, mechanisms of virulence, epidemiology, J. Pediatr, vol.108, pp.800-805, 1986.

M. Eschbach, Long-Term Anaerobic Survival of the Opportunistic Pathogen Pseudomonas aeruginosa via Pyruvate Fermentation, J. Bacteriol, vol.186, pp.4596-4604, 2004.

L. G. Rahme, Plants and animals share functionally common bacterial virulence factors, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.8815-8821, 2000.

S. Mahajan-miklos, L. G. Rahme, and F. M. Ausubel, Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts, Mol. Microbiol, vol.37, pp.981-988, 2000.

C. K. Stover, Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen, Nature, vol.406, pp.959-964, 2000.

G. L. Winsor, Pseudomonas aeruginosa Genome Database and PseudoCAP: facilitating community-based, continually updated, genome annotation, Nucleic Acids Res, vol.33, pp.338-343, 2005.

E. Galán-vásquez, B. Luna, and A. Martínez-antonio, The Regulatory Network of Pseudomonas aeruginosa, Microb. Inform. Exp, vol.1, p.3, 2011.

A. Rodrigue, Y. Quentin, A. Lazdunski, V. Méjean, and M. Foglino, Cell signalling by oligosaccharides. Two-component systems in Pseudomonas aeruginosa: why so many?, Trends Microbiol, vol.8, pp.498-504, 2000.

P. H. Roy, Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7, PloS One, vol.5, p.8842, 2010.

E. Frimmersdorf, S. Horatzek, A. Pelnikevich, L. Wiehlmann, and D. Schomburg, How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach, Environ. Microbiol, vol.12, pp.1734-1747, 2010.
DOI : 10.1111/j.1462-2920.2010.02253.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1462-2920.2010.02253.x

B. H. Iglewski and J. C. Sadoff, Toxin inhibitors of protein synthesis: production, purification, and assay of Pseudomonas aeruginosa toxin A, Methods Enzymol, vol.60, pp.780-793, 1979.

D. R. Galloway, Pseudomonas aeruginosa elastase and elastolysis revisited: recent developments, Mol. Microbiol, vol.5, pp.2315-2321, 1991.
DOI : 10.1111/j.1365-2958.1991.tb02076.x

Y. Q. Hong and B. Ghebrehiwet, Effect of Pseudomonas aeruginosa elastase and alkaline protease on serum complement and isolated components C1q and C3, Clin. Immunol

. Immunopathol, , vol.62, pp.133-138, 1992.

M. J. Stonehouse, A novel class of microbial phosphocholine-specific phospholipases C

, Mol. Microbiol, vol.46, pp.661-676, 2002.

G. Hauser and M. L. Karnovsky, Rhamnose and rhamnolipide biosynthesis by Pseudomonas aeruginosa, J. Biol. Chem, vol.224, pp.91-105, 1957.

G. W. Lau, D. J. Hassett, H. Ran, and F. Kong, The role of pyocyanin in Pseudomonas aeruginosa infection, Trends Mol. Med, vol.10, pp.599-606, 2004.

J. M. Meyer, A. Neely, A. Stintzi, C. Georges, and I. A. Holder, Pyoverdin is essential for virulence of Pseudomonas aeruginosa, Infect. Immun, vol.64, pp.518-523, 1996.

À. À. Malloo,

, Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.288, pp.409-418, 2005.

P. Berthelot, Genotypic and phenotypic analysis of type III secretion system in a cohort of Pseudomonas aeruginosa bacteremia isolates: evidence for a possible association between O serotypes and exo genes, J. Infect. Dis, vol.188, pp.512-518, 2003.

A. Imberty, M. Wimmerová, E. P. Mitchell, and N. Gilboa-garber, Structures of the lectins from Pseudomonas aeruginosa: insight into the molecular basis for host glycan recognition, Microbes Infect, vol.6, pp.221-228, 2004.

M. Hentzer, Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function, J. Bacteriol, vol.183, pp.5395-5401, 2001.

K. D. Jackson, M. Starkey, S. Kremer, M. R. Parsek, and D. J. Wozniak, Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation, J. Bacteriol, vol.186, pp.4466-4475, 2004.

A. Filloux, Protein Secretion Systems in Pseudomonas aeruginosa: An Essay on Diversity, Evolution, and Function, Front. Microbiol, vol.2, p.155, 2011.

S. Bleves, Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons, Int. J. Med. Microbiol. IJMM, vol.300, pp.534-543, 2010.

K. Mathee, Dynamics of Pseudomonas aeruginosa genome evolution, Proc. Natl. Acad

. Sci, , vol.105, pp.3100-3105, 2008.

E. A. Ozer, J. P. Allen, and A. R. Hauser, Characterization of the core and accessory genomes of Pseudomonas aeruginosa using bioinformatic tools Spine and AGEnt, BMC Genomics, vol.15, p.737, 2014.

B. Valot, What It Takes to Be a Pseudomonas aeruginosa? The Core Genome of the
URL : https://hal.archives-ouvertes.fr/hal-02131118

, Opportunistic Pathogen Updated. PLOS ONE, vol.10, p.126468, 2015.

B. Tümmler, L. Wiehlmann, J. Klockgether, and N. Cramer, Advances in understanding Pseudomonas, 2014.

R. Hilker, Interclonal gradient of virulence in the Pseudomonas aeruginosa pangenome from disease and environment, Environ. Microbiol, vol.17, pp.29-46, 2015.

J. Mosquera-rendón, Pangenome-wide and molecular evolution analyses of the Pseudomonas aeruginosa species, BMC Genomics, vol.17, 2016.

R. T. Sadikot, T. S. Blackwell, J. W. Christman, and A. S. Prince, Pathogen-host interactions in Pseudomonas aeruginosa pneumonia, Am. J. Respir. Crit. Care Med, vol.171, pp.1209-1223, 2005.

R. M. Donlan, Emerging Infectious Disease journal -CDC, vol.8, issue.9, 2002.

K. A. Coggan and M. C. Wolfgang, Global regulatory pathways and cross-talk control

, Pseudomonas aeruginosa environmental lifestyle and virulence phenotype, Curr. Issues Mol. Biol, vol.14, p.47, 2012.

P. D. Lister, D. J. Wolter, and N. D. Hanson, Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms, Clin. Microbiol. Rev, vol.22, pp.582-610, 2009.

A. I. Hidron, NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, Infect. Control Hosp. Epidemiol, vol.29, pp.996-1011, 2006.

V. D. Rosenthal, International Nosocomial Infection Control Consortium (INICC) report, data summary for, Am. J. Infect. Control, vol.38, pp.95-104, 2003.

J. Zimakoff, N. Høiby, K. Rosendal, and J. P. Guilbert, Epidemiology of Pseudomonas aeruginosa infection and the role of contamination of the environment in a cystic fibrosis clinic, J. Hosp. Infect, vol.4, pp.31-40, 1983.

J. H. Maselli, Risk factors for initial acquisition of Pseudomonas aeruginosa in children with cystic fibrosis identified by newborn screening, Pediatr. Pulmonol, vol.35, pp.257-262, 2003.

R. A. Denny, L. K. Gavrin, and E. Saiah, Recent developments in targeting protein misfolding diseases, Bioorg. Med. Chem. Lett, vol.23, pp.1935-1944, 2013.

E. L. Rudashevskaya, T. Stockner, M. Trauner, M. Freissmuth, and P. Chiba, Pharmacological correction of misfolding of ABC proteins, Drug Discov. Today Technol, vol.12, p.191, 2014.

S. Esposito, Manipulating proteostasis to repair the F508del-CFTR defect in cystic fibrosis, Mol. Cell. Pediatr, vol.3, p.13, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01289879

G. B. Pier, The challenges and promises of new therapies for cystic fibrosis, J. Exp. Med, vol.209, pp.1235-1239, 2012.

A. Y. Bhagirath, Cystic fibrosis lung environment and Pseudomonas aeruginosa infection, BMC Pulm. Med, vol.16, 2016.

A. L. Goodman, A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa, Dev. Cell, vol.7, pp.745-754, 2004.

G. M. Nixon, Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis, J. Pediatr, vol.138, pp.699-704, 2001.

A. Folkesson, Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective, Nat. Rev. Microbiol, vol.10, pp.841-851, 2012.

J. S. Gunn, Bacterial modification of LPS and resistance to antimicrobial peptides, J. Endotoxin Res, vol.7, pp.57-62, 2001.

A. O. Olaitan, S. Morand, and J. Rolain, Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria, Front. Microbiol, vol.5, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01771500

R. F. Maldonado, I. Sá-correia, and M. A. Valvano, Lipopolysaccharide modification in Gramnegative bacteria during chronic infection, FEMS Microbiol. Rev, vol.40, pp.480-493, 2016.

A. Beceiro, M. Tomás, and G. Bou, Antimicrobial Resistance and Virulence: a Successful or

, Deleterious Association in the Bacterial World?, Clin. Microbiol. Rev, vol.26, pp.185-230, 2013.

G. He, An H+-Coupled Multidrug Efflux Pump, PmpM, a Member of the MATE Family of Transporters, from Pseudomonas aeruginosa, J. Bacteriol, vol.186, pp.262-265, 2004.

L. Chen and K. Duan, A PhoPQ-Regulated ABC Transporter System Exports Tetracycline in Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.60, p.192, 2016.

A. J. Park, M. D. Surette, and C. M. Khursigara, Antimicrobial targets localize to the extracellular vesicle-associated proteome of Pseudomonas aeruginosa grown in a biofilm

. Microbiol, , 2014.

M. Yonezawa, M. Takahata, N. Matsubara, Y. Watanabe, and H. Narita, DNA gyrase gyrA mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.39, pp.1970-1972, 1995.

H. Mouneimné, J. Robert, V. Jarlier, E. Cambau, . Type et al.,

, Ciprofloxacin-Resistant Strains of Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.43, pp.62-66, 1999.

P. A. Lambert, Mechanisms of antibiotic resistance in Pseudomonas aeruginosa, J. R. Soc

. Med, , vol.95, pp.22-26, 2002.

K. Lewis, . Persister, and . Cells, Annu. Rev. Microbiol, vol.64, pp.357-372, 2010.

L. R. Mulcahy, J. L. Burns, S. Lory, and K. Lewis, Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis, J. Bacteriol, vol.192, pp.6191-6199, 2010.

K. Lewis, Persister cells, dormancy and infectious disease, Nat. Rev. Microbiol, vol.5, pp.48-56, 2007.

X. Wang and T. K. Wood, Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response, Appl. Environ. Microbiol, vol.77, pp.5577-5583, 2011.

R. A. Fasani and M. A. Savageau, Unrelated toxin-antitoxin systems cooperate to induce persistence, J. R. Soc. Interface, vol.12, p.20150130, 2015.

K. Potrykus and M. Cashel, p)ppGpp: still magical?, Annu. Rev. Microbiol, vol.62, pp.35-51, 2008.

Z. D. Dalebroux, M. S. Swanson, and . Ppgpp, magic beyond RNA polymerase, Nat. Rev. Microbiol, vol.10, pp.203-212, 2012.

S. M. Amato, The role of metabolism in bacterial persistence, Front. Microbiol, vol.5, 2014.

S. M. Amato, M. A. Orman, and M. P. Brynildsen, Metabolic Control of Persister Formation in Escherichia coli, Mol. Cell, vol.50, pp.475-487, 2013.

M. F. Moradali, S. Ghods, and B. H. Rehm, Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front, Cell. Infect. Microbiol, vol.7, 2017.

E. Maisonneuve, M. Castro-camargo, and K. Gerdes, Controls Bacterial Persistence by Stochastic Induction of Toxin-Antitoxin Activity, Cell, vol.154, pp.1140-1150, 2013.

M. Christensen-dalsgaard, M. G. Jørgensen, and K. Gerdes, Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses, Mol. Microbiol, vol.75, pp.333-348, 2010.

Y. Wen, E. Behiels, and B. Devreese, Toxin-Antitoxin systems: their role in persistence, biofilm formation, and pathogenicity, Pathog. Dis, vol.70, pp.240-249, 2014.

D. P. Pandey and K. Gerdes, Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes, Nucleic Acids Res, vol.33, pp.966-976, 2005.

L. Fernández-garcía, Toxin-Antitoxin Systems in Clinical Pathogens, Toxins, vol.8, 2016.

M. Li, HigB of Pseudomonas aeruginosa Enhances Killing of Phagocytes by UpRegulating the Type III Secretion System in Ciprofloxacin Induced Persister Cells, Front. Cell. Infect. Microbiol, vol.6, p.125, 2016.

H. Hilbi, S. S. Weber, C. Ragaz, Y. Nyfeler, and S. Urwyler, Environmental predators as models for bacterial pathogenesis, Environ. Microbiol, vol.9, pp.563-575, 2007.

A. R. Hauser-&-egon and A. Ozer, Pseudomonas aeruginosa

K. A. Morrow, D. W. Frank, R. Balczon, and T. Stevens, The Pseudomonas aeruginosa

, Exoenzyme Y: A Promiscuous Nucleotidyl Cyclase Edema Factor and Virulence Determinant

, Handb. Exp. Pharmacol, 2017.

D. Madar, Promoter activity dynamics in the lag phase of Escherichia coli, BMC Syst

, Biol, vol.7, p.136, 2013.

M. D. Rolfe, Lag Phase Is a Distinct Growth Phase That Prepares Bacteria for Exponential Growth and Involves Transient Metal Accumulation, J. Bacteriol, vol.194, pp.686-701, 2012.

A. Bren, Y. Hart, E. Dekel, D. Koster, and U. Alon, The last generation of bacterial growth in limiting nutrient, BMC Syst. Biol, vol.7, p.27, 2013.

S. Bauer and J. Shiloach, Maximal exponential growth rate and yield of E. coli obtainable in a bench-scale fermentor, Biotechnol. Bioeng, vol.16, pp.933-941, 1974.

C. J. Gode-potratz, D. M. Chodur, and L. L. Mccarter, Calcium and Iron Regulate Swarming and Type III Secretion in Vibrio parahaemolyticus, J. Bacteriol, vol.192, pp.6025-6038, 2010.

A. R. Hauser, The Type III Secretion System of Pseudomonas aeruginosa: Infection by Injection, Nat. Rev. Microbiol, vol.7, pp.654-665, 2009.

J. Lee and L. Zhang, The hierarchy quorum sensing network in Pseudomonas aeruginosa

, Protein Cell, vol.6, pp.26-41, 2015.

M. Schuster, A. C. Hawkins, C. S. Harwood, and E. P. Greenberg, The Pseudomonas aeruginosa

, RpoS regulon and its relationship to quorum sensing, Mol. Microbiol, vol.51, pp.973-985, 2004.

F. Jørgensen, RpoS-dependent stress tolerance in Pseudomonas aeruginosa, Microbiol. Read. Engl, vol.145, pp.835-844, 1999.

V. Venturi, Control of rpoS transcription in Escherichia coli and Pseudomonas: why so different?: Regulation of rpoS expression, Mol. Microbiol, vol.49, pp.1-9, 2003.

S. L. Vogt, The stringent response is essential for Pseudomonas aeruginosa virulence in the rat lung agar bead and Drosophila melanogaster feeding models of infection, Infect. Immun, vol.79, pp.4094-4104, 2011.

E. Kussell, R. Kishony, N. Q. Balaban, S. Leibler, and . Persistence, Genetics, vol.169, p.1807

S. E. Finkel, Long-term survival during stationary phase: evolution and the GASP phenotype

, Nat. Rev. Microbiol, vol.4, pp.113-120, 2006.

V. Bacun-druzina, Z. Cagalj, and K. Gjuracic, The growth advantage in stationary-phase (GASP) phenomenon in mixed cultures of enterobacteria, FEMS Microbiol. Lett, vol.266, pp.119-127, 2007.

N. Llorens, J. María, A. Tormo, and E. Martínez-garcía, Stationary phase in gram-negative bacteria, FEMS Microbiol. Rev, vol.34, pp.476-495, 2010.

P. Gilbert, J. Das, and I. Foley, Biofilm susceptibility to antimicrobials, Adv. Dent. Res, vol.11, pp.160-167, 1997.

M. A. Alkawash, J. S. Soothill, and N. L. Schiller, Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms, APMIS, vol.114, pp.131-138, 2006.

J. W. Costerton, P. S. Stewart, and E. P. Greenberg, Bacterial biofilms: a common cause of persistent infections, Science, vol.284, pp.1318-1322, 1999.

M. Kostakioti, M. Hadjifrangiskou, and S. J. Hultgren, Bacterial Biofilms: Development, Dispersal, and Therapeutic Strategies in the Dawn of the Postantibiotic Era, Cold Spring Harb. Perspect. Med, vol.3, 2013.

V. Deretic, M. J. Schurr, and H. Yu, Pseudomonas aeruginosa, mucoidy and the chronic infection phenotype in cystic fibrosis, Trends Microbiol, vol.3, pp.351-356, 1995.

D. G. Davies, The involvement of cell-to-cell signals in the development of a bacterial biofilm, Science, vol.280, pp.295-298, 1998.

L. Friedman and R. Kolter, Two Genetic Loci Produce Distinct Carbohydrate-Rich Structural Components of the Pseudomonas aeruginosa Biofilm Matrix, J. Bacteriol, vol.186, pp.4457-4465, 2004.

K. M. Colvin, The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix, Environ. Microbiol, vol.14, pp.1913-1928, 2012.
DOI : 10.1111/j.1462-2920.2011.02657.x

URL : http://europepmc.org/articles/pmc3840794?pdf=render

I. Sutherland, Biofilm exopolysaccharides: a strong and sticky framework, Microbiol. Read. Engl, vol.147, pp.3-9, 2001.
DOI : 10.1099/00221287-147-1-3

URL : http://mic.microbiologyresearch.org/deliver/fulltext/micro/147/1/1470003a.pdf?itemId=/content/journal/micro/10.1099/00221287-147-1-3&mimeType=pdf&isFastTrackArticle=

J. A. Simpson, S. E. Smith, and R. T. Dean, Scavenging by alginate of free radicals released by macrophages. Free Radic, Biol. Med, vol.6, pp.347-353, 1989.
DOI : 10.1016/0891-5849(89)90078-6

H. Flemming, Biofilms and Environmental Protection. Water Sci. Technol, vol.27, pp.1-10, 1993.

W. L. Cochran, S. J. Suh, G. A. Mcfeters, and P. S. Stewart, Role of RpoS and AlgT in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide and monochloramine, J. Appl. Microbiol, vol.88, pp.546-553, 2000.

D. H. Limoli, C. J. Jones, and D. J. Wozniak, Bacterial Extracellular Polysaccharides in Biofilm Formation and Function. Microbiol. Spectr, vol.3, 2015.

M. Allesen-holm, A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms, Mol. Microbiol, vol.59, pp.1114-1128, 2006.

H. Mulcahy, L. Charron-mazenod, and S. Lewenza, Extracellular DNA Chelates Cations and Induces Antibiotic Resistance in Pseudomonas aeruginosa Biofilms, PLOS Pathog, vol.4, p.1000213, 2008.

S. E. Finkel and R. Kolter, DNA as a nutrient: novel role for bacterial competence gene homologs, J. Bacteriol, vol.183, pp.6288-6293, 2001.

S. P. Diggle, The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa, Environ. Microbiol, vol.8, pp.1095-1104, 2006.

Q. Wei and L. Z. Ma, Biofilm Matrix and Its Regulation in Pseudomonas aeruginosa, Int. J. Mol. Sci, vol.14, pp.20983-21005, 2013.

T. R. De-kievit, Quorum sensing in Pseudomonas aeruginosa biofilms, Environ. Microbiol, vol.11, pp.279-288, 2009.

O. Ciofu, T. J. Beveridge, J. Kadurugamuwa, J. Walther-rasmussen, and N. Høiby, Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa, J. Antimicrob. Chemother, vol.45, pp.9-13, 2000.

L. M. Mashburn-warren and M. Whiteley, Special delivery: vesicle trafficking in prokaryotes, Mol. Microbiol, vol.61, pp.839-846, 2006.
DOI : 10.1111/j.1365-2958.2006.05272.x

S. R. Schooling and T. J. Beveridge, Membrane Vesicles: an Overlooked Component of the Matrices of Biofilms, J. Bacteriol, vol.188, pp.5945-5957, 2006.

L. L. Nesse, K. Berg, and L. K. Vestby, Effects of Norspermidine and Spermidine on Biofilm Formation by Potentially Pathogenic Escherichia coli and Salmonella enterica Wild-Type Strains

, Appl. Environ. Microbiol, vol.81, pp.2226-2232, 2015.

M. Goytia, V. L. Dhulipala, and W. M. Shafer, Spermine impairs biofilm formation by Neisseria gonorrhoeae, FEMS Microbiol. Lett, vol.343, pp.64-69, 2013.

B. W. Wortham, M. A. Oliveira, and C. N. Patel, The Genus Yersinia, pp.106-115, 2007.

P. Shah and E. Swiatlo, A multifaceted role for polyamines in bacterial pathogens, Mol. Microbiol, vol.68, pp.4-16, 2008.

B. W. Wortham, M. A. Oliveira, J. D. Fetherston, and R. D. Perry, Polyamines are Required for the Expression of Key Hms proteins Important for Yersinia pestis Biofilm Formation, Environ. Microbiol, vol.12, pp.2034-2047, 2010.

M. Burrell, C. C. Hanfrey, E. J. Murray, N. R. Stanley-wall, and A. J. Michael, Evolution and Multiplicity of Arginine Decarboxylases in Polyamine Biosynthesis and Essential Role in Bacillus subtilis Biofilm Formation, J. Biol. Chem, vol.285, pp.39224-39238, 2010.

A. Sakamoto, Enhanced biofilm formation and/or cell viability by polyamines through stimulation of response regulators UvrY and CpxR in the two-component signal transducing systems, and ribosome recycling factor, Int. J. Biochem. Cell Biol, vol.44, pp.1877-1886, 2012.

E. Kay, Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa, J. Bacteriol, vol.188, pp.6026-6033, 2006.

I. Ventre, Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.171-176, 2006.

S. Heeb and D. Haas, Regulatory roles of the GacS/GacA two-component system in plantassociated and other gram-negative bacteria, Mol. Plant. Microbe Interact, vol.14, pp.1351-1363, 2001.

A. Brencic and S. Lory, Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA, Mol. Microbiol, vol.72, pp.612-632, 2009.

M. Valentini and A. Filloux, Biofilms and Cyclic di-GMP (c-di-GMP) Signaling: Lessons from Pseudomonas aeruginosa and Other Bacteria, J. Biol. Chem, vol.291, pp.12547-12555, 2016.

A. L. Goodman, Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen, Genes Dev, vol.23, pp.249-259, 2009.

, LadS Is a Calcium-Responsive Kinase That Induces Acute-To-Chronic Virulence Switch in Pseudomonas Aeruginosa, PubMed Journals Available, p.10, 2017.

L. Houot, A. Fanni, S. De-bentzmann, and C. Bordi, A bacterial two-hybrid genome fragment library for deciphering regulatory networks of the opportunistic pathogen Pseudomonas aeruginosa, Microbiology, vol.158, 1964.
URL : https://hal.archives-ouvertes.fr/hal-01458241

F. Jean-pierre, J. Tremblay, and E. Déziel, Broth versus Surface-Grown Cells: Differential Regulation of RsmY/Z Small RNAs in Pseudomonas aeruginosa by the Gac/HptB System, Front. Microbiol, vol.7, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01534654

M. Christen, B. Christen, M. Folcher, A. Schauerte, and U. Jenal, Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP, J. Biol. Chem, vol.280, pp.30829-30837, 2005.

H. Kulasakara, Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis---cyclic-GMP in virulence, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.2839-2844, 2006.

B. R. Borlee, Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix, Mol. Microbiol, vol.75, pp.827-842, 2010.

B. Huang, C. B. Whitchurch, J. S. Mattick, and . Fimx, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa, J. Bacteriol, vol.185, pp.7068-7076, 2003.

S. L. Kuchma, BifA, a cyclic-Di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14, J. Bacteriol, vol.189, pp.8165-8178, 2007.

M. C. Wolfgang, V. T. Lee, M. E. Gilmore, and S. Lory, Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway, Dev. Cell, vol.4, pp.253-263, 2003.

S. Lory, M. Wolfgang, V. Lee, and R. Smith, The multi-talented bacterial adenylate cyclases, Int. J. Med. Microbiol. IJMM, vol.293, pp.479-482, 2004.

T. Endoh and J. N. Engel, CbpA: a Polarly Localized Novel Cyclic AMP-Binding Protein in Pseudomonas aeruginosa, J. Bacteriol, vol.191, pp.7193-7205, 2009.

N. B. Fulcher, P. M. Holliday, E. Klem, M. J. Cann, and M. C. Wolfgang, The Pseudomonas aeruginosa Chp chemosensory system regulates intracellular cAMP levels by modulating adenylate cyclase activity, Mol. Microbiol, vol.76, pp.889-904, 2010.

K. J. Kanack, L. J. Runyen-janecky, E. P. Ferrell, S. Suh, and S. E. West, Characterization of DNA-binding specificity and analysis of binding sites of the Pseudomonas aeruginosa global regulator, Vfr, a homologue of the Escherichia coli cAMP receptor protein, Microbiol. Read. Engl, vol.152, pp.3485-3496, 2006.

S. Suh, Effect of vfr mutation on global gene expression and catabolite repression control of Pseudomonas aeruginosa, Microbiol. Read. Engl, vol.148, pp.1561-1569, 2002.

E. Lerat, V. Daubin, and N. A. Moran, From Gene Trees to Organismal Phylogeny in Pokaotes:TheàCaseàofàtheà?-Proteobacteria, PLoS Biol, vol.1, p.19, 2003.

B. L. Bassler, R. Losick, . Bacterially, and . Speaking, Cell, vol.125, pp.237-246, 2006.

D. J. Hassett, Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide, Mol. Microbiol, vol.34, pp.1082-1093, 1999.

J. D. Shrout, The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional, Mol. Microbiol, vol.62, pp.1264-1277, 2006.

A. Joelsson, B. Kan, and J. Zhu, Quorum Sensing Enhances the Stress Response in Vibrio cholerae, Appl. Environ. Microbiol, vol.73, pp.3742-3746, 2007.
DOI : 10.1128/aem.02804-06

URL : https://aem.asm.org/content/aem/73/11/3742.full.pdf

H. D. Williams, J. E. Zlosnik, and B. Ryall, Oxygen, cyanide and energy generation in the cystic fibrosis pathogen Pseudomonas aeruginosa, Adv. Microb. Physiol, vol.52, pp.1-71, 2007.

À. Oloughli, A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.17981-17986, 2013.

J. Lee, A cell-cell communication signal integrates quorum sensing and stress response, Nat. Chem. Biol, vol.9, pp.339-343, 2013.

Q. Yang and T. Defoirdt, Quorum sensing positively regulates flagellar motility in pathogenic Vibrio harveyi, Environ. Microbiol, vol.17, pp.960-968, 2015.

N. M. Høyland-kroghsbo, Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system, Proc. Natl. Acad. Sci. U. S. A, vol.114, pp.131-135, 2017.

M. Schuster and E. P. Greenberg, A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa, Int. J. Med. Microbiol. IJMM, vol.296, pp.73-81, 2006.

O. Zaborina, Dynorphin activates quorum sensing quinolone signaling in Pseudomonas aeruginosa, PLoS Pathog, vol.3, p.35, 2007.

A. G. Oglesby, The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing, J. Biol. Chem, vol.283, pp.15558-15567, 2008.

B. Ryall, J. C. Davies, R. Wilson, A. Shoemark, and H. D. Williams, Pseudomonas aeruginosa, cyanide accumulation and lung function in CF and non-CF bronchiectasis patients, Eur. Respir. J, vol.32, pp.740-747, 2008.

A. Blier, C-type natriuretic peptide modulates quorum sensing molecule and toxin production in Pseudomonas aeruginosa, Microbiology, vol.157, pp.1929-1944, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00846239

N. Strempel, Human host defense peptide LL-37 stimulates virulence factor production and adaptive resistance in Pseudomonas aeruginosa, PloS One, vol.8, p.82240, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00996942

D. M. Cornforth, Combinatorial quorum sensing allows bacteria to resolve their social and physical environment, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.4280-4284, 2014.

J. Schafhauser, The stringent response modulates 4-hydroxy-2-alkylquinoline biosynthesis and quorum-sensing hierarchy in Pseudomonas aeruginosa, J. Bacteriol, vol.196, pp.1641-1650, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01199065

J. P. Pearson, Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes, Proc. Natl. Acad. Sci. U. S. A, vol.91, pp.197-201, 1994.

U. A. Ochsner, M. L. Vasil, E. Alsabbagh, K. Parvatiyar, and D. J. Hassett, Role of the Pseudomonas aeruginosa oxyR-recG Operon in Oxidative Stress Defense and DNA Repair: OxyRDependent Regulation of katB-ankB, ahpB, andahpC-ahpF, J. Bacteriol, vol.182, pp.4533-4544, 2000.

P. Kiratisin, K. D. Tucker, L. Passador, and . Lasr, Transcriptional Activator of Pseudomonas aeruginosa Virulence Genes, Functions as a Multimer, J. Bacteriol, vol.184, pp.4912-4919, 2002.

J. R. Lamb, H. Patel, T. Montminy, V. E. Wagner, and B. H. Iglewski, Functional Domains of the RhlR Transcriptional Regulator of Pseudomonas aeruginosa, J. Bacteriol, vol.185, pp.7129-7139, 2003.

R. S. Smith and B. H. Iglewski, aeruginosa quorum-sensing systems and virulence, Curr. Opin. Microbiol, vol.6, pp.56-60, 2003.

K. Kim, HHQ and PQS, two Pseudomonas aeruginosa quorum-sensing molecules, downregulate the innate immune responses through the nuclear factor-?Bàpathha, àImmunology, vol.129, pp.578-588, 2010.

J. Dubern and S. P. Diggle, Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species, Mol. BioSyst, vol.4, pp.882-888, 2008.

M. W. Calfee, J. P. Coleman, and E. C. Pesci, Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa, Proc. Natl. Acad. Sci

U. S. , , vol.98, pp.11633-11637, 2001.

S. P. Diggle, The Pseudomonas aeruginosa 4-Quinolone Signal Molecules HHQ and PQS Play Multifunctional Roles in Quorum Sensing and Iron Entrapment, Chem. Biol, vol.14, pp.87-96, 2007.

L. M. Filkins, Coculture of Staphylococcus aureus with Pseudomonas aeruginosa Drives S. aureus towards Fermentative Metabolism and Reduced Viability in a Cystic Fibrosis Model, J. Bacteriol, vol.197, pp.2252-2264, 2015.

H. Cao, A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism, Proc. Natl

L. A. Gallagher, S. L. Mcknight, M. S. Kuznetsova, E. C. Pesci, and C. Manoil, Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa, J. Bacteriol, vol.184, pp.6472-6480, 2002.

A. A. Dandekar and E. P. Greenberg, Microbiology: Plan B for quorum sensing, Nat. Chem. Biol, vol.9, pp.292-293, 2013.

J. Ramos, Pseudomonas: Biosynthesis of macromolecules and molecular metabolism, 2004.

R. Y. Stanier, N. J. Palleroni, and M. Doudoroff, The aerobic pseudomonads a taxonomic study, Microbiology, vol.43, pp.159-271, 1966.

T. G. Lessie and F. C. Neidhardt, Formation and operation of the histidine-degrading pathway in Pseudomonas aeruginosa, J. Bacteriol, vol.93, pp.1800-1810, 1967.

L. Meile, L. Soldati, and T. Leisinger, Regulation of proline catabolism in Pseudomonas aeruginosa PAO, Arch. Microbiol, vol.132, pp.189-193, 1982.

V. Stalon, C. Vander-wauven, P. Momin, and C. Legrain, Catabolism of arginine, citrulline and ornithine by Pseudomonas and related bacteria, J. Gen. Microbiol, vol.133, pp.2487-2495, 1987.

V. T. Nguyen, Catabolic Ornithine Carbamoyltransferase of Pseudomonas aeruginosa, Eur. J. Biochem, vol.236, pp.283-293, 1996.

N. Entner and M. Doudoroff, Glucose and gluconic acid oxidation of Pseudomonas saccharophila, J. Biol. Chem, vol.196, pp.853-862, 1952.

A. Goldbourt, L. A. Day, and A. E. Mcdermott, Assignment of congested NMR spectra: carbonyl backbone enrichment via the Entner-Doudoroff pathway, J. Magn. Reson. San Diego Calif, vol.189, pp.157-165, 1997.

W. J. Hickey and D. D. Focht, Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2, Appl. Environ. Microbiol, vol.56, pp.3842-3850, 1990.

M. M. Marín, L. Yuste, and F. Rojo, Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa, J. Bacteriol, vol.185, pp.3232-3237, 2003.

H. Arai, Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa, Front. Microbiol, vol.2, 2011.

K. Matsushita, E. Shinagawa, O. Adachi, and M. Ameyama, -Type cytochrome oxidase in the membrane of aerobically grown Pseudomonas aeruginosa, FEBS Lett, vol.139, pp.255-258, 1982.

T. Fujiwara, Y. Fukumori, and T. Yamanaka, A novel terminal oxidase, cytochrome baa3 purified from aerobically grown Pseudomonas aeruginosa: it shows a clear difference between resting state and pulsed state, J. Biochem, vol.112, pp.290-298, 1992.

L. Cunningham and H. D. Williams, Isolation and characterization of mutants defective in the cyanide-insensitive respiratory pathway of Pseudomonas aeruginosa, J. Bacteriol, vol.177, pp.432-438, 1995.

L. Cunningham, M. Pitt, and H. D. Williams, The cioAB genes from Pseudomonas aeruginosa code for a novel cyanide-insensitive terminal oxidase related to the cytochrome bd quinol oxidases, Mol. Microbiol, vol.24, pp.579-591, 1997.

J. C. Comolli and T. J. Donohue, Pseudomonas aeruginosa RoxR, a response regulator related to Rhodobacter sphaeroides PrrA, activates expression of the cyanide-insensitive terminal oxidase, Mol. Microbiol, vol.45, pp.755-768, 2002.

M. Galimand, M. Gamper, A. Zimmermann, and D. Haas, Positive FNR-like control of anaerobic arginine degradation and nitrate respiration in Pseudomonas aeruginosa, J. Bacteriol, vol.173, pp.1598-1606, 1991.

R. G. Sawers, Identification and molecular characterization of a transcriptional regulator from Pseudomonas aeruginosa PAO1 exhibiting structural and functional similarity to the FNR protein of Escherichia coli, Mol. Microbiol, vol.5, pp.1469-1481, 1991.

A. Zimmermann, C. Reimmann, M. Galimand, and D. Haas, Anaerobic growth and cyanide synthesis of Pseudomonas aeruginosa depend on anr, a regulatory gene homologous with fnr of Escherichia coli, Mol. Microbiol, vol.5, pp.1483-1490, 1991.

P. J. Kiley and H. Beinert, Oxygen sensing by the global regulator, FNR: the role of the ironsulfur cluster, FEMS Microbiol. Rev, vol.22, pp.341-352, 1998.

G. Unden, Control of FNR function of Escherichia coli by O2 and reducing conditions, J. Mol. Microbiol. Biotechnol, vol.4, pp.263-268, 2002.

J. M. Dubbs and F. R. Tabita, Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation, FEMS Microbiol. Rev, vol.28, pp.353-376, 2004.

S. Elsen, Cryptic O2--generating NADPH oxidase in dendritic cells, J. Cell Sci, vol.117, pp.2215-2226, 2004.

J. M. Eraso, Role of the global transcriptional regulator PrrA in Rhodobacter sphaeroides 2.4.1: combined transcriptome and proteome analysis, J. Bacteriol, vol.190, pp.4831-4848, 2008.

H. Grammel and R. Ghosh, Redox-State Dynamics of Ubiquinone-10 Imply Cooperative Regulation of Photosynthetic Membrane Expression in Rhodospirillum rubrum, J. Bacteriol, vol.190, pp.4912-4921, 2008.

J. Wu and C. E. Bauer, RegB kinase activity is controlled in part by monitoring the ratio of oxidized to reduced ubiquinones in the ubiquinone pool, 2010.

S. J. Suh, Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa, J. Bacteriol, vol.181, pp.3890-3897, 1999.

M. Cooper, G. R. Tavankar, and H. D. Williams, Regulation of expression of the cyanideinsensitive terminal oxidase in Pseudomonas aeruginosa, Microbiol. Read. Engl, vol.149, pp.1275-1284, 2003.

T. Kawakami, M. Kuroki, M. Ishii, Y. Igarashi, and H. Arai, Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa, Environ. Microbiol, vol.12, pp.1399-1412, 2010.

W. Sabra, E. Kim, and A. Zeng, Physiological responses of Pseudomonas aeruginosa PAO1 to oxidative stress in controlled microaerobic and aerobic cultures, Microbiol. Read. Engl, vol.148, pp.3195-3202, 2002.

L. C. Seaver and J. A. Imlay, Are Respiratory Enzymes the Primary Sources of Intracellular Hydrogen Peroxide?, J. Biol. Chem, vol.279, pp.48742-48750, 2004.

S. Korshunov and J. A. Imlay, Two sources of endogenous hydrogen peroxide in Escherichia coli, Mol. Microbiol, vol.75, pp.1389-1401, 2010.

D. J. Dwyer, Antibiotics induce redox-related physiological alterations as part of their lethality, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.2100-2109, 2014.

Y. Heo, The Major Catalase Gene (katA) of Pseudomonas aeruginosa PA14 Is under both Positive and Negative Control of the Global Transactivator OxyR in Response to Hydrogen Peroxide, J. Bacteriol, vol.192, pp.381-390, 2010.

T. Vinckx, Q. Wei, S. Matthijs, and P. Cornelis, The Pseudomonas aeruginosa oxidative stress regulator OxyR influences production of pyocyanin and rhamnolipids: protective role of pyocyanin, Microbiology, vol.156, pp.678-686, 2010.

Y. Choi, Identification of Pseudomonas aeruginosa genes crucial for hydrogen peroxide resistance, J. Microbiol. Biotechnol, vol.17, pp.1344-1352, 2007.

U. A. Ochsner, A. I. Vasil, and M. L. Vasil, Role of the ferric uptake regulator of Pseudomonas aeruginosa in the regulation of siderophores and exotoxin A expression: purification and activity on iron-regulated promoters, J. Bacteriol, vol.177, pp.7194-7201, 1995.

L. Lan, T. S. Murray, B. I. Kazmierczak, and C. He, Pseudomonas aeruginosa OspR is an oxidative stress sensing regulator that affects pigment production, antibiotic resistance and dissemination during infection, Mol. Microbiol, vol.75, pp.76-91, 2010.

J. Ma, P. W. Hager, M. L. Howell, P. V. Phibbs, and D. J. Hassett, Cloning and Characterization of the Pseudomonas aeruginosa zwf Gene Encoding Glucose-6-Phosphate

A. Dehydrogenase, Enzyme Important in Resistance to Methyl Viologen (Paraquat), J. Bacteriol, vol.180, pp.1741-1749, 1998.

M. Palma, Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response, Infect. Immun, vol.73, pp.2958-2966, 2005.

S. Suh, Effect of rpoS Mutation on the Stress Response and Expression of Virulence Factors in Pseudomonas aeruginosa, J. Bacteriol, vol.181, pp.3890-3897, 1999.

À. Keith and . Àm, àW.à&àBede,àC.àL.àálgTà?àCootolsàálgiateàPodutiooàadàToleaeàtoà Environmental Stress in Pseudomonas syringae, J. Bacteriol, vol.181, pp.7176-7184, 1999.

I. D. Hay, Y. Wang, M. F. Moradali, Z. U. Rehman, and B. H. Rehm, Genetics and regulation of bacterial alginate production, Environ. Microbiol, vol.16, pp.2997-3011, 2014.

L. Johnson, H. Mulcahy, U. Kanevets, Y. Shi, and S. Lewenza, Surface-Localized Spermidine Protects the Pseudomonas aeruginosa Outer Membrane from Antibiotic Treatment and Oxidative Stress, J. Bacteriol, vol.194, pp.813-826, 2012.

S. Y. Meng and G. Bennett, Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH, J. Bacteriol, vol.174, pp.2659-2669, 1992.

I. Kang, J. Kim, E. Kim, and J. K. Lee, Cadaverine protects Vibrio vulnificus from superoxide stress, J. Microbiol. Biotechnol, vol.17, pp.176-179, 2007.

K. J. Davies, D. Lloyd, and L. Boddy, The effect of oxygen on denitrification in Paracoccus denitrificans and Pseudomonas aeruginosa, J. Gen. Microbiol, vol.135, pp.2445-2451, 1989.

C. Vander-wauven, A. Pierard, M. Kley-raymann, and D. Haas, Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway, J. Bacteriol, vol.160, pp.928-934, 1984.

K. Schreiber, The Anaerobic Regulatory Network Required for Pseudomonas aeruginosa Nitrate Respiration, J. Bacteriol, vol.189, pp.4310-4314, 2007.

W. G. Zumft, Cell biology and molecular basis of denitrification. Microbiol, Mol. Biol. Rev. MMBR, vol.61, pp.533-616, 1997.

B. C. Berks, S. J. Ferguson, J. W. Moir, and D. J. Richardson, Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions

, Biochim. Biophys. Acta, vol.1232, pp.97-173, 1995.

V. Sharma, C. E. Noriega, and J. J. Rowe, Involvement of NarK1 and NarK2 proteins in transport of nitrate and nitrite in the denitrifying bacterium Pseudomonas aeruginosa PAO1, Appl. Environ. Microbiol, vol.72, pp.695-701, 2006.

L. Philippot and O. Højberg, Dissimilatory nitrate reductases in bacteria, Biochim. Biophys. Acta, vol.1446, pp.1-23, 1999.

N. E. Van-alst, M. Wellington, V. L. Clark, C. G. Haidaris, and B. H. Iglewski, Nitrite reductase NirS is required for type III secretion system expression and virulence in the human monocyte cell line THP-1 by Pseudomonas aeruginosa, Infect. Immun, vol.77, pp.4446-4454, 2009.

H. Arai, Y. Igarashi, and T. Kodama, The structural genes for nitric oxide reductase from Pseudomonas aeruginosa, Biochim. Biophys. Acta, vol.1261, pp.279-284, 1995.

M. C. Silvestrini, S. Falcinelli, I. Ciabatti, F. Cutruzzolà, and M. Brunori, Pseudomonas aeruginosa nitrite reductase (or cytochrome oxidase): an overview, Biochimie, vol.76, p.208, 1994.
DOI : 10.1016/0300-9084(94)90141-4

N. Hasegawa, H. Arai, and Y. Igarashi, Two c-type cytochromes, NirM and NirC, encoded in the nir gene cluster of Pseudomonas aeruginosa act as electron donors for nitrite reductase, Biochem. Biophys. Res. Commun, vol.288, pp.1223-1230, 2001.

R. H. Arvidsson, M. Nordling, and L. G. Lundberg, The azurin gene from Pseudomonas aeruginosa. Cloning and characterization, Eur. J. Biochem, vol.179, pp.195-200, 1989.

S. Kawasaki, H. Arai, Y. Igarashi, and T. Kodama, Sequencing and characterization of the downstream region of the genes encoding nitrite reductase and cytochrome c-551 (nirSM) from Pseudomonas aeruginosa: identification of the gene necessary for biosynthesis of heme d1, Gene, vol.167, pp.87-91, 1995.

H. Arai, M. Mizutani, and Y. Igarashi, Transcriptional regulation of the nos genes for nitrous oxide reductase in Pseudomonas aeruginosa, Microbiol. Read. Engl, vol.149, pp.29-36, 2003.

H. J. Verhoogt, arcD, the first gene of the arc operon for anaerobic arginine catabolism in Pseudomonas aeruginosa, encodes an arginine-ornithine exchanger, J. Bacteriol, vol.174, pp.1568-1573, 1992.

M. Gamper, A. Zimmermann, and D. Haas, Anaerobic regulation of transcription initiation in the arcDABC operon of Pseudomonas aeruginosa, J. Bacteriol, vol.173, pp.4742-4750, 1991.

H. T. Chou, L-lysine decarboxylase and cadaverine gamma-glutamylation pathways in Pseudomonas aeruginosa PAO1, 2011.

C. Lu, Z. Yang, and W. Li, Transcriptome Analysis of the ArgR Regulon in Pseudomonas aeruginosa, J. Bacteriol, vol.186, pp.3855-3861, 2004.

C. Lu, H. Winteler, A. Abdelal, and D. Haas, The ArgR Regulatory Protein, a Helper to the Anaerobic Regulator ANR during Transcriptional Activation of the arcD Promoter in Pseudomonas aeruginosa, J. Bacteriol, vol.181, pp.2459-2464, 1999.

X. X. Tang, Acidic pH increases airway surface liquid viscosity in cystic fibrosis, J. Clin. Invest, vol.126, pp.879-891, 2016.

J. Manuel, G. G. Zhanel, and T. De-kievit, Cadaverine Suppresses Persistence to Carboxypenicillins in Pseudomonas aeruginosa PAO1, Antimicrob. Agents Chemother, vol.54, pp.5173-5179, 2010.

U. Kanjee, Linkage between the bacterial acid stress and stringent responses: the structure of the inducible lysine decarboxylase, EMBO J, vol.30, pp.931-944, 2011.

J. Kim, S. H. Choi, and J. K. Lee, Lysine Decarboxylase Expression by Vibrio vulnificus Is Induced by SoxR in Response to Superoxide Stress, J. Bacteriol, vol.188, pp.8586-8592, 2006.

L. Aussel, Salmonella detoxifying enzymes are sufficient to cope with the host oxidative burst, Mol. Microbiol, vol.80, pp.628-640, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00611571

A. G. Torres, The cad locus of Enterobacteriaceae: More than just lysine decarboxylation, Anaerobe, vol.15, pp.1-6, 2009.

M. Levine, Identification of lysine decarboxylase as a mammalian cell growth inhibitor in Eikenella corrodens: possible role in periodontal disease, Microb. Pathog, vol.30, pp.179-192, 2001.

F. J. Flores, J. Rincón, and J. F. Martín, Characterization of the iron-regulated desA promoter of Streptomyces pilosus as a system for controlled gene expression in actinomycetes, Microb. Cell Factories, vol.2, p.5, 2003.

H. Sagong, Crystal Structure and Pyridoxal 5-Phosphate Binding Property of Lysine Decarboxylase from Selenomonas ruminantium, PLOS ONE, vol.11, p.166667, 2016.

S. Bunsupa, Lysine Decarboxylase Catalyzes the First Step of Quinolizidine Alkaloid Biosynthesis and Coevolved with Alkaloid Production in Leguminosae, Plant Cell, vol.24, pp.1202-1216, 2012.

B. Zhao and W. A. Houry, Acid stress response in enteropathogenic gammaproteobacteria: an aptitude for survival, Biochem. Cell Biol, vol.88, pp.301-314, 2010.

U. Kanjee and W. A. Houry, Mechanisms of Acid Resistance in Escherichia coli, Annu. Rev. Microbiol, vol.67, pp.65-81, 2013.

E. F. Gale and H. M. Epps, Studies on bacterial amino-acid decarboxylases: 1. l(+)-lysine decarboxylase, Biochem. J, vol.38, pp.232-242, 1944.

N. Watson, D. S. Dunyak, E. L. Rosey, J. L. Slonczewski, and E. R. Olson, Identification of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH

, J. Bacteriol, vol.174, pp.530-540, 1992.

M. N. Neely, C. L. Dell, and E. R. Olson, Roles of LysP and CadC in mediating the lysine requirement for acid induction of the Escherichia coli cad operon, J. Bacteriol, vol.176, pp.3278-3285, 1994.

R. Iyer, C. Williams, and C. Miller, Arginine-Agmatine Antiporter in Extreme Acid Resistance in Escherichia coli, J. Bacteriol, vol.185, pp.6556-6561, 2003.

J. Snider, Formation of a Distinctive Complex between the Inducible Bacterial Lysine Decarboxylase and a Novel AAA+ ATPase, J. Biol. Chem, vol.281, pp.1532-1546, 2006.

P. L. Moreau, The Lysine Decarboxylase CadA Protects Escherichia coli Starved of Phosphate against Fermentation Acids, J. Bacteriol, vol.189, pp.2249-2261, 2007.

M. Castanie-cornet, T. A. Penfound, D. Smith, J. F. Elliott, and J. W. Foster, Control of Acid Resistance in Escherichia coli, J. Bacteriol, vol.181, pp.3525-3535, 1999.

J. P. Viala, Sensing and Adaptation to Low pH Mediated by Inducible Amino Acid Decarboxylases in Salmonella, PLoS ONE, vol.6, p.22397, 2011.

D. S. Merrell and A. Camilli, Regulation of Vibrio cholerae Genes Required for Acid Tolerance àaàMeeàofàtheàToo'-LikeàFailàofàTasiptiooalà'egulatoos, àJ. Bacteriol, vol.182, pp.5342-5350, 2000.

H. Samartzidou, M. Mehrazin, Z. Xu, M. J. Benedik, and A. H. Delcour, Cadaverine Inhibition of Porin Plays a Role in Cell Survival at Acidic pH, J. Bacteriol, vol.185, pp.13-19, 2003.

A. G. Tkachenko, O. N. Pozhidaeva, and M. S. Shumkov, Role of polyamines in formation of multiple antibiotic resistance of Escherichia coli under stress conditions, Biochem. Mosc, vol.71, pp.1042-1049, 2006.

A. Bekhit, T. Fukamachi, H. Saito, and H. Kobayashi, The role of OmpC and OmpF in acidic resistance in Escherichia coli, Biol. Pharm. Bull, vol.34, pp.330-334, 2011.

A. V. Akhova and A. G. Tkachenko, Lysine decarboxylase activity as a factor of fluoroquinolone resistance in Escherichia coli, Microbiology, vol.78, pp.575-579, 2009.

W. Soksawatmaekhin, A. Kuraishi, K. Sakata, K. Kashiwagi, and K. Igarashi, Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli, Mol. Microbiol, vol.51, pp.1401-1412, 2004.

M. K. Chattopadhyay, C. W. Tabor, and H. Tabor, Polyamines protect Escherichia coli cells from the toxic effect of oxygen, Proc. Natl. Acad. Sci, vol.100, pp.2261-2265, 2003.

K. W. Minton, H. Tabor, and C. W. Tabor, Paraquat toxicity is increased in Escherichia coli defective in the synthesis of polyamines, Proc. Natl. Acad. Sci. U. S. A, vol.87, pp.2851-2855, 1990.

J. M. Bower and M. A. Mulvey, Polyamine-Mediated Resistance of Uropathogenic Escherichia coli to Nitrosative Stress, J. Bacteriol, vol.188, pp.928-933, 2006.

J. M. Bower, H. B. Gordon-raagas, and M. A. Mulvey, Conditioning of Uropathogenic Escherichia coli for Enhanced Colonization of Host, Infect. Immun, vol.77, pp.2104-2112, 2009.

A. Mühlig, J. Behr, S. Scherer, and S. Müller-herbst, Stress Response of Salmonella enterica Serovar Typhimurium to Acidified Nitrite. Appl. Environ. Microbiol, vol.80, pp.6373-6382, 2014.

W. A. Day, R. E. Fernández, and A. T. Maurelli, Pathoadaptive mutations that enhance virulence: genetic organization of the cadA regions of Shigella spp, Infect. Immun, vol.69, pp.7471-7480, 2001.

À. À. Mauuelli and &. À. , à'ode,àC.àK.à&àFasao,àá.àBlakàholesàadà bacterial pathogenicity: A large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.3943-3948, 1998.

B. A. Mccormick, M. I. Fernandez, A. M. Siber, and A. T. Maurelli, Inhibition of Shigella flexneri-induced transepithelial migration of polymorphonuclear leucocytes by cadaverine, Cell. Microbiol, vol.1, pp.143-155, 1999.

I. M. Fernandez, Cadaverine prevents the escape of Shigella flexneri from the phagolysosome: a connection between bacterial dissemination and neutrophil transepithelial signaling, J. Infect. Dis, vol.184, pp.743-753, 2001.

L. E. Ulrich, E. V. Koonin, and I. B. Zhulin, One-component systems dominate signal transduction in prokaryotes, Trends Microbiol, vol.13, pp.52-56, 2005.

I. Haneburger, Deactivation of the E. coli pH Stress Sensor CadC by Cadaverine, J. Mol. Biol, vol.424, pp.15-27, 2012.

R. Malpica, G. R. Sandoval, C. Rodríguez, B. Franco, and D. Georgellis, Signaling by the arc two-component system provides a link between the redox state of the quinone pool and gene expression, Antioxid. Redox Signal, vol.8, pp.781-795, 2006.

J. Ellis, Topological analysis of the lysine-specific permease of Escherichia coli, Microbiol. Read. Engl, vol.141, pp.1927-1935, 1995.

P. S. Popkin and W. K. Maas, Escherichia coli regulatory mutation affecting lysine transport and lysine decarboxylase, J. Bacteriol, vol.141, pp.485-492, 1980.

L. Tetsch, C. Koller, I. Haneburger, and K. Jung, The membrane-integrated transcriptional activator CadC of Escherichia coli senses lysine indirectly via the interaction with the lysine permease LysP, Mol. Microbiol, vol.67, pp.570-583, 2008.

S. G. Reams, N. Lee, F. Mat-jan, and D. P. Clark, Effect of chelating agents and respiratory inhibitors on regulation of the cadA gene in Escherichia coli, Arch. Microbiol, vol.167, pp.209-216, 1997.

D. L. Tucker, Genes of the GadX-GadW regulon in Escherichia coli, J. Bacteriol, vol.185, pp.3190-3201, 2003.

F. Hommais, GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli, Microbiol. Read. Engl, vol.150, pp.61-72, 2004.

C. Küper and K. Jung, CadC-Mediated Activation of the cadBA Promoter in Escherichia coli, J. Mol. Microbiol. Biotechnol, vol.10, pp.26-39, 2006.

X. Shi, B. C. Waasdorp, and G. N. Bennett, Modulation of acid-induced amino acid decarboxylase gene expression by hns in Escherichia coli, J. Bacteriol, vol.175, pp.1182-1186, 1993.

U. Kanjee, I. Gutsche, S. Ramachandran, and W. A. Houry, The Enzymatic Activities of the Escherichia coli Basic Aliphatic Amino Acid Decarboxylases Exhibit a pH Zone of Inhibition, Biochemistry (Mosc.), vol.50, pp.9388-9398, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01243660

Z. Lohinai, Biofilm Lysine Decarboxylase, a New Therapeutic Target for Periodontal Inflammation, J. Periodontol, vol.86, pp.1176-1184, 2015.

K. Igarashi and K. Kashiwagi, Polyamines: Mysterious Modulators of Cellular Functions, Biochem. Biophys. Res. Commun, vol.271, pp.559-564, 2000.

K. Igarashi, Polyamine Modulon in Escherichia coli: Genes Involved in the Stimulation of Cell Growth by Polyamines, J. Biochem. (Tokyo), vol.139, pp.11-16, 2006.

K. Igarashi and K. Kashiwagi, Modulation of cellular function by polyamines, Int. J. Biochem. Cell Biol, vol.42, pp.39-51, 2010.

S. Miyamoto, K. Kashiwagi, K. Ito, S. Watanabe, and K. Igarashi, Estimation of polyamine distribution and polyamine stimulation of protein synthesis in Escherichia coli, Arch. Biochem. Biophys, vol.300, pp.63-68, 1993.

M. Yoshida, A Unifying Model for the Role of Polyamines in Bacterial Cell Growth, the Polyamine Modulon, J. Biol. Chem, vol.279, pp.46008-46013, 2004.

Y. Terui, Enhancement of the Synthesis of RpoN, Cra, and H-NS by Polyamines at the Level of Translation in Escherichia coli Cultured with Glucose and Glutamate, J. Bacteriol, vol.189, pp.2359-2368, 2007.

K. Igarashi, Formation of a compensatory polyamine by Escherichia coli polyaminerequiring mutants during growth in the absence of polyamines, J. Bacteriol, vol.166, pp.128-134, 1986.

K. Igarashi and K. Kashiwagi, Modulation of protein synthesis by polyamines, IUBMB Life, vol.67, pp.160-169, 2015.

D. Vega, A. L. Delcour, and A. H. , Polyamines decrease Escherichia coli outer membrane permeability, J. Bacteriol, vol.178, pp.3715-3721, 1996.

M. Burrell, C. C. Hanfrey, L. N. Kinch, K. A. Elliott, and A. J. Michael, Evolution of a novel lysine decarboxylase in siderophore biosynthesis, Mol. Microbiol, vol.86, pp.485-499, 2012.

H. Malet, Assembly principles of a unique cage formed by hexameric and decameric E. coli proteins, Elife, vol.3, p.3653, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01100506

E. Kandiah, Structural insights into the Escherichia coli lysine decarboxylases and molecular determinants of interaction with the AAA+ ATPase RavA, Sci. Rep, vol.6, p.24601, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01443301

A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, SCOP: a structural classification of proteins database for the investigation of sequences and structures, J. Mol. Biol, vol.247, pp.536-540, 1995.

A. C. Eliot and J. F. Kirsch, Pyridoxal Phosphate Enzymes: Mechanistic, Structural, and Evolutionary Considerations, Annu. Rev. Biochem, vol.73, pp.383-415, 2004.
DOI : 10.1146/annurev.biochem.73.011303.074021

D. L. Sabo, E. A. Boeker, B. Byers, H. Waron, and E. H. Fischer, Purification and physical properties of inducible Escherichia coli lysine decarboxylase, Biochemistry (Mosc.), vol.13, pp.662-670, 1974.

A. Sugawara, Characterization of a pyridoxal-?-phosphate-dependent l-lysine decarboxylase/oxidase from Burkholderia sp. AIU 395, J. Biosci. Bioeng, vol.118, pp.496-501, 2014.

J. W. Roberts, Promoter-specific control of E. coli RNA polymerase by ppGpp and a general transcription factor, Genes Dev, vol.23, pp.143-146, 2009.

A. F. Neuwald, L. Aravind, J. L. Spouge, and E. V. Koonin, AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes, Genome Res, vol.9, pp.27-43, 1999.

L. M. Iyer, D. D. Leipe, E. V. Koonin, and L. Aravind, Evolutionary history and higher order classification of AAA+ ATPases, J. Struct. Biol, vol.146, pp.11-31, 2004.

M. El-bakkouri, Structure of RavA MoxR AAA+ protein reveals the design principles of a molecular cage modulating the inducible lysine decarboxylase activity, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.22499-22504, 2010.

K. S. Wong, V. Bhandari, S. C. Janga, and W. A. Houry, The RavA-ViaA Chaperone-Like System Interacts with and Modulates the Activity of the Fumarate Reductase Respiratory Complex, J. Mol. Biol, vol.429, pp.324-344, 2017.

M. Babu, Quantitative Genome-Wide Genetic Interaction Screens Reveal Global Epistatic Relationships of Protein Complexes in Escherichia coli, PLoS Genet, vol.10, p.1004120, 2014.

B. W. Holloway, Genetic recombination in Pseudomonas aeruginosa, J. Gen. Microbiol, vol.13, pp.572-581, 1955.

. Clsi/nccls, Methods for determining bactericidal activity of antimicrobial agents, vol.19, 1999.

S. F. Altschul, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.

K. Katoh and D. M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol, vol.30, pp.772-780, 2013.

M. A. Mcclure, C. Smith, and P. Elton, Parameterization studies for the SAM and HMMER methods of hidden Markov model generation, Proc. Int. Conf. Intell. Syst. Mol. Biol, vol.4, pp.155-164, 1996.

A. Criscuolo, S. Gribaldo, and . Bmge, Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments, BMC Evol. Biol, vol.10, p.210, 2010.

S. Guindon, New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, Syst. Biol, vol.59, pp.307-321, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511784

L. Nguyen, H. A. Schmidt, A. Von-haeseler, and B. Q. Minh, IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies, Mol. Biol. Evol, vol.32, pp.268-274, 2015.

F. Ronquist and J. P. Huelsenbeck, MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics, vol.19, pp.1572-1574, 2003.
DOI : 10.1093/bioinformatics/btg180

URL : https://academic.oup.com/bioinformatics/article-pdf/19/12/1572/715881/btg180.pdf

Z. He, Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees, Nucleic Acids Res, vol.44, pp.236-241, 2016.

H. G. Ramulu, Ribosomal proteins: toward a next generation standard for prokaryotic systematics?, Mol. Phylogenet. Evol, vol.75, pp.103-117, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01913940

F. Jauffrit, RiboDB Database: A Comprehensive Resource for Prokaryotic Systematics, Mol. Biol. Evol, vol.33, pp.2170-2172, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01800061

H. Seo, Structural basis for cytokinin production by LOG from Corynebacterium glutamicum, Sci. Rep, vol.6, p.31390, 2016.

Y. Kikuchi, O. Kurahashi, T. Nagano, and Y. Kamio, RpoS-dependent expression of the second lysine decarboxylase gene in Escherichia coli, Biosci. Biotechnol. Biochem, vol.62, pp.1267-1270, 1998.

H. T. Chou, D. Kwon, M. Hegazy, and C. Lu, Transcriptome Analysis of Agmatine and Putrescine Catabolism in Pseudomonas aeruginosa PAO1, J. Bacteriol, vol.190, pp.1966-1975, 2008.

W. Niu, Y. Kim, G. Tau, T. Heyduk, and R. H. Ebright, Transcription Activation at Class II CAPDependent Promoters: Two Interactions between CAP and RNA Polymerase, Cell, vol.87, pp.1123-1134, 1996.

O. Wurtzel, The Single-Nucleotide Resolution Transcriptome of Pseudomonas aeruginosa Grown in Body Temperature, PLOS Pathog, vol.8, p.1002945, 2012.

R. Singh, R. J. Mailloux, S. Puiseux-dao, and V. D. Appanna, Oxidative Stress Evokes a Metabolic Adaptation That Favors Increased NADPH Synthesis and Decreased NADH Production in Pseudomonas fluorescens, J. Bacteriol, vol.189, pp.6665-6675, 2007.

M. Lemonnier and D. Lane, Expression of the second lysine decarboxylase gene of Escherichia coli, Microbiology, vol.144, pp.751-760, 1998.

H. Mikkelsen, Z. Duck, K. S. Lilley, and M. Welch, Interrelationships between Colonies, Biofilms, and Planktonic Cells of Pseudomonas aeruginosa, J. Bacteriol, vol.189, pp.2411-2416, 2007.

F. Bredenbruch, R. Geffers, M. Nimtz, J. Buer, and S. Häussler, The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity, Environ. Microbiol, vol.8, pp.1318-1329, 2006.

J. W. Schertzer, S. A. Brown, and M. Whiteley, Oxygen Levels Rapidly Modulate Pseudomonas aeruginosa Social Behaviors via Substrate Limitation of PqsH, Mol. Microbiol, vol.77, pp.1527-1538, 2010.

H. T. Chou, M. Hegazy, and C. Lu, Catabolism Is Controlled by L-Arginine and ArgR in Pseudomonas aeruginosa PAO1, J. Bacteriol, vol.192, pp.5874-5880, 2010.

M. K. Chattopadhyay, C. N. Keembiyehetty, W. Chen, and H. Tabor, Polyamines Stimulate the Leelàofàtheà?à"uuuuità'po"àofàEsheihiaàolià'NáàPolease,à'esultigàiàtheàIIdutiooàofà the Glutamate Decarboxylase-dependent Acid Response System via the gadE Regulon, J. Biol. Chem, vol.290, pp.17809-17821, 2015.

D. H. Kwon and C. Lu, Polyamines Increase Antibiotic Susceptibility in Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.50, pp.1623-1627, 2006.

D. H. Kwon and C. Lu, Polyamines Induce Resistance to Cationic Peptide, Aminoglycoside, and Quinolone Antibiotics in Pseudomonas aeruginosa PAO1, Antimicrob. Agents Chemother, vol.50, pp.1615-1622, 2006.

B. Aj, K. Se, and M. Pp, Regulation of growth and macromolecular synthesis by putrescine and spermidine in Pseudomonas aeruginosa, Life Sci, vol.34, pp.1513-1520, 1984.

Y. Nakada and Y. Itoh, Identification of the putrescine biosynthetic genes in Pseudomonas aeruginosa and characterization of agmatine deiminase and N-carbamoylputrescine amidohydrolase of the arginine decarboxylase pathway, Microbiology, vol.149, pp.707-714, 2003.

B. Nagoba, B. Wadher, P. Kulkarni, and S. Kolhe, Acetic acid treatment of pseudomonal wound infections, 2008.

B. S. Nagoba, S. P. Selkar, B. J. Wadher, and R. C. Gandhi, Acetic acid treatment of pseudomonal wound infections--a review, J. Infect. Public Health, vol.6, pp.410-415, 2013.

D. Applebaum, D. L. Sabo, E. H. Fischer, and D. R. Morris, Biodegradative ornithine deaoolaseàofàEsheihiaàoli.àPuuifiatioo,àppopeties,àadàppidooalà-phosphate binding site, Biochemistry (Mosc.), vol.14, pp.3675-3681, 1975.

A. Romano, H. Trip, J. S. Lolkema, and P. M. Lucas, Three-Component Lysine/Ornithine Decarboxylation System in Lactobacillus saerimneri 30a, J. Bacteriol, vol.195, pp.1249-1254, 2013.

J. Soini, Norvaline is accumulated after a down-shift of oxygen in Escherichia coli W3110. Microb, Cell Factories, vol.7, p.30, 2008.

L. C. Kuo, W. Herzberg, and W. N. Lipscomb, Substrate specificity and protonation state of ornithine transcarbamoylase as determined by pH studies, Biochemistry (Mosc.), vol.24, pp.4754-4761, 1985.

L. C. Kuo, A. W. Miller, S. Lee, and C. Kozuma, Site-directed mutagenesis of Escherichia coli ornithine transcarbamoylase: role of arginine-57 in substrate binding and catalysis, Biochemistry (Mosc.), vol.27, pp.8823-8832, 1988.

F. Rojo, Carbon catabolite repression in Pseudomonas : optimizing metabolic versatility and interactions with the environment, FEMS Microbiol. Rev, vol.34, pp.658-684, 2010.

C. Lu, Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains, Appl. Microbiol. Biotechnol, vol.70, pp.261-272, 2006.

H. T. Chou, J. Li, and C. Lu, Functional Characterization of the agtABCD and agtSR Operons for 4-Aminobutyrate and 5-Aminovalerate Uptake and Regulation in Pseudomonas aeruginosa PAO1, Curr. Microbiol, vol.68, pp.59-63, 2014.

A. G. Torres, R. C. Vazquez-juarez, C. B. Tutt, and J. G. Garcia-gallegos, Pathoadaptive Mutation That Mediates Adherence of Shiga Toxin-Producing Escherichia coli O111, Infect. Immun, vol.73, pp.4766-4776, 2005.

L. Zhou, J. Wang, and L. Zhang, Modulation of Bacterial Type III Secretion System by a Spermidine Transporter Dependent Signaling Pathway, PLOS ONE, vol.2, p.1291, 2007.

A. L. Delavega and A. H. Delcour, Cadaverine induces closing of E. coli porins, EMBO J, vol.14, pp.6058-6065, 1995.

A. Krämer, J. Herzer, J. Overhage, and F. Meyer-almes, Substrate specificity and function of acetylpolyamine amidohydrolases from Pseudomonas aeruginosa, BMC Biochem, vol.17, p.4, 2016.

M. G. Rossmann, D. Moras, and K. W. Olsen, Chemical and biological evolution of nucleotidebinding protein, Nature, vol.250, pp.194-199, 1974.

R. Kaur-sawhney, A. Altman, and A. W. Galston, Dual Mechanisms in Polyamine-Mediated Control of Ribonuclease Activity in Oat Leaf Protoplasts, Plant Physiol, vol.62, pp.158-160, 1978.

A. Kabir and G. S. Kumar, Binding of the Biogenic Polyamines to Deoxyribonucleic Acids of Varying Base Composition: Base Specificity and the Associated Energetics of the Interaction, PLOS ONE, vol.8, p.70510, 2013.