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M. Yoann Guilhem
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Titre : Stratégie de réduction de modèle pour prédire les effets mémoire de la plasticité
en fissuration par fatigue dans un milieu anisotrope: application à la plasticité cristalline.

Mots clés : Fissuration par fatigue, Plasticité condensée, Réduction de modèle, Anisotropie,
Plasticité cristalline

Résumé : Les aubes des turbines à haute pression des réacteurs d’avion subissent des charge-
ments complexes dans un environnement réactif. Prédire leur durée de vie peut nécessiter une
approche en tolérance aux dommages basée sur la prédiction de la propagation d’une fissure
supposée. Mais cette approche est confrontée au comportement non linéaire sous des charge-
ments à amplitudes variables et au coût énorme des calculs elasto-plastiques des structures 3D
complexes sur des millions des cycles. Dans ce cadre, un modèle incrémental de fissuration a
été proposé. Ce modèle est basé sur la plasticité comme mécanisme principal de propagation
de fissure par fatigue pure. Cette modélisation passe par une réduction de modèle de type POD.
La plasticité en pointe de la fissure est alors modélisée par un nombre réduit de variables non
locales (K̇

∞
, ρ̇) et des variables internes. Un ensemble d’hypothèses doit être respecté pour

garantir la validité de cette modélisation. Pour décliner ce modèle dans le cas d’un matériau
anisotrope représentatif du comportement des monocristaux, une première étude a été faite sur
le cas d’une élasticité cubique avec de la plasticité de Von-Mises. Une stratégie a été proposée
pour identifier un modèle matériau basé sur les facteurs d’intensité non locaux (K̇

∞
, ρ̇). Cette

stratégie comporte une détermination de la fonction critère basée sur les solutions élastiques
en anisotrope. L’étude des directions d’écoulement plastique avec les variables non locales
montre une forte dépendance à l’anisotropie élastique du modèle même avec une plasticité as-
sociée de Von-Mises. La stratégie comporte également une identification des variables internes.
Dans la deuxième partie, le problème d’une fissure avec un modèle de plasticité cristalline a été
traité. L’activation de différents systèmes de glissement a été alors prise en compte dans la
modélisation. Finalement, différentes méthodologies ont été explorées en vue de transposer le
modèle local de plasticité cristalline à l’échelle non locale de la région en pointe de la fissure.
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Title: A model reduction strategy to predict plasticity induced memory effects in fatigue
crack growth in an anisotropic medium: application to crystal plasticity.

Keywords: Fatigue crack growth, Condensed plasticity, Model reduction, Anisotropy, Crystal
plasticity

Abstract: The fatigue life prediction of high pressure turbine blades may require a damage
tolerance approach based on the study of possible crack propagation. The nonlinear behavior
of the material under complex nonproportional loadings and the high cost of running long and
expensive elastic-plastic FE computations on complex 3D structures over millions of cycles are
some major issues that may encounter this type of approach. Within this context, an incremental
model was proposed based on plasticity as a main mechanism for fatigue crack growth. A
model reduction strategy using the Proper Orthogonal Decomposition (POD) was used to reduce
the cost of FEA. Based on a set of hypotheses, the number of the degrees of freedom of the
problem is reduced drastically. The plasticity at the crack tip is finally described by a set of
empirical equations of few nonlocal variables (K̇

∞
, ρ̇) and some internal variables. In order to

apply this modeling strategy to the case of anisotropic materials that represent the behavior of
single crystals, a first study was done with cubic elasticity and a Von-Mises plasticity. Elastic
and plastic reference fields, required to reduce the model, were determined. Then, a material
model of the near crack tip region was proposed based on nonlocal intensity factors (K̇

∞
, ρ̇).

A yield criterion function was proposed based on Hoenig’s asymptotic solutions for anisotropic
materials. The study of plastic flow directions with the nonlocal variables of the model shows a
strong dependency on the cubic elasticity. A strategy to identify internal variables is proposed as
well. In the second part, a crystal plasticity model was implemented. The activation of different
slip systems was taken into account in the model reduction strategy. A kinematic basis was
constructed for each slip system. Finally, a strategy was proposed to transpose the local crystal
plasticity model to the nonlocal scale of the crack.
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Introduction

Life prediction of industrial components is a key point to prevent their service failures.
Nowadays, manufacturers tend to have more precise life predictions in order to lower the
safety margin which grants a good compromise between safety, economical and techno-
logical solutions. Fatigue is one of the major phenomena that concerns life predictions.
It affects components subjected to cyclic loadings. High pressure turbine blades of jet
engines are such components that work under very aggressive environments.

Within this context, the design of components subjected to fatigue requires a dam-
age tolerance approach. This approach considers the existence of potential flaws in the
structure under the most critical conditions (position, service loadings, environment, etc).
Then it aims to study the growth of these cracks and the possibility of failure. Neverthe-
less, this approach encounters two main issues.
The first one is linked to the nonlinear behavior of the material under random nonpro-
portional mixed modes loadings where the definition of fatigue cycle is no longer obvious.
Thus, the direct use of conventional cycle-based models may not precisely estimate failure.
Besides, anisothermal loadings and the coupling with other damage mechanisms such as
oxidation present a challenge for this study.
Existing numerical simulation tools to model three-dimensional complex cracks under
mixed fracture modes are mainly based on a linear elastic analysis. However, it is a mat-
ter of common knowledge that the plasticity developed at the near crack tip region affects
significantly the fatigue crack propagation rate and direction. These statements lead to
the second issue which is the lack of resources to run simulations on complex 3D structures
over millions of fatigue cycles while taking into account the elastic-plastic behavior of the
material.

In order to address these issues, Pommier and co-workers [Pommier and Risbet, 2005]
[Pommier and Hamam, 2007] proposed an incremental model based on a set time-
derivative equations. This model requires a set of hypotheses related to the geometry
and kinematics of the crack tip region. One major hypothesis is assuming that pure fa-
tigue crack growth is mainly plasticity-induced which introduces the crack tip blunting
as a leading mechanism of crack propagation. This concept was already presented in
many previous works that relate the crack growth to the Crack Tip Opening Displace-
ment (CTOD).
In order to model crack tip plasticity while reducing computational costs, a multiscale
approach based on a model reduction strategy was proposed. The kinematic field at the
crack tip is hence described with a reduced number of degrees of freedom. This allows the
modeling of the cyclic elastic-plastic behavior of the crack tip region based on a set of em-
pirical equations written with a reduced number of nonlocal quantities. These quantities
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will serve as input variables for the incremental study of crack propagation.

Many studies were previously done at the LMT (ENS Paris-Saclay, CNRS, Université
Paris-Saclay), with various industrial partners, toward the establishment of this approach.
These works tried to solve different multiphysical fatigue crack growth problems. For
ductile materials, some works were developed for three-dimensional cracks under mixed
fracture modes [Pommier and Hamam, 2007], [Pommier et al., 2009], [Fremy et al., 2012],
oxidation under nonisothermal loadings [Ruiz-Sabariego and Pommier, 2009], generalized
plasticity case [Zhang, 2016] and short cracks with T-stresses [Brugier, 2017]. An extension
of the model to the case of quasi-brittle materials (mortar) [Morice, 2014] was made as
well.

However, these studies were all developed for the case of isotropic materials. The work
presented in this PhD thesis follows in the footsteps of these aforementioned studies and
aims to further extend the approach to the case of an anisotropic material. In fact, a
wide range of industrial components that require a damage tolerance design present an
anisotropic behavior. For instance, many high pressure turbine blades are made out as a
single crystal of Nickel base superalloy. This structure, in regards to its direction dependent
behavior, creates a challenge in studying crack propagation in anisotropic materials. This
behavior emerges in the linear elastic constitutive law as well as in the nonlinear response
aided by the presence of easy slip planes and directions in the crystal.

Therefore, this work is presenting a strategy to describe crack tip plasticity of a three-
dimensional stationary crack under mixed fracture modes I + II + III in an anisotropic
medium. The local plasticity model at the vicinity of the crack tip is transposed to the
scale of the crack via a set of nonlocal intensity factors of elastic and plastic kinematic
fields.
The focus on mixed fracture modes I + II + III stems, on the one hand, from the variety
of boundary conditions to which the structure can be subjected and the complexity of the
geometry. On the other hand, the presence of the anisotropy may create a mixed fracture
modes condition at the crack scale even under simple loadings such as uniaxial loading.
Thus, it is more judicious to make a global study of crack under mixed fracture modes
without decoupling them.

The strategy presented in this work can lead to a condensed modeling of crack tip
plasticity. The final purpose of this nonlocal model is its implementation in an incremental
model to study the crack growth in anisotropic materials. This approach can be directly
applied to single crystals and composites, but also to polycrystalline materials.

The first chapter contains the scientific framework of this study. The history of linear
elastic fracture mechanics and some fatigue crack growth models are briefly introduced.
Then, the chapter presents the incremental model and it ends with a general discussion
about the anisotropic behavior.
The second chapter presents the main ingredients of the model and the numerical protocol
used in the model reduction. It gives an application case of mixed fracture modes I + II
for a cubic elasticity and Von-Mises isotropic plasticity. A 2D model with plane strain
assumption is used. The study is restrained to some special cases of crystallographic
orientations in order to ensure the mixture of only fracture modes I + II .
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The third chapter generalizes the study presented in the second chapter. It extends the
analysis to the 3D case with mixed fracture modes I + II + III and a random material
orientation but always characterized by a cubic elasticity and Von-Mises plasticity.
The fourth chapter deals with the three-dimensional problem of mixed fracture modes
I + II + III in the case of a crystal plasticity model. Different methodologies are presented
to take into account slip systems activity in the incremental model.





Chapter 1

State of the art
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1.1 Defect tolerant design and LEFM

1.1.1 Defect tolerant approach

Based on the understanding of Fracture Mechanics, the damage tolerant approach is
mainly adopted by the aircraft, aerospace, land transportation and nuclear industries.
This disciplinary field aims to predict the life of critical components and prevent their
failure during service. Especially that in these sensitive industries, the destructive influ-
ence of cracks is a matter of common knowledge and service failures are susceptible to
provoke disastrous consequences. Various cases of structural failures can be cited. Among
these examples, the Liberty Ships failures may be the first that attracted the attention
of mechanics and materials communities. Over 4000 of these cargo ships were mass pro-
duced during the World War II in different shipyards in the United States and Canada.
Some of these ships, similar to the one presented in figure 1.1, experienced brittle fracture
of the hull before even leaving the shipyard. In order to increase largely the production
of these ships in short periods of time, engineers changed the construction method from
the traditional time consuming riveting to electric-arc welding. These welding operations
caused the modification of the micro-structure of the steel and increased its ductile-to-
brittle transition temperature. They also created internal stresses in the material. These
unexpected consequences of welding, combined with the poor design, led to the brittle fail-
ure of these ships under cyclic loadings, occasional peak loads, highly corrosive conditions
and low temperature.

Figure 1.1: The Liberty ship S.S. Schenectady that failed in 1943 before leaving the
shipyard [Metallurgyandmaterials.wordpress.com, 2015].

Few years later, in the fifties, other structural failures occurred; those of the Comet I
jet-propelled airplanes produced by British company Havilland. Many of these passengers
aircraft crashed during service. After recurrent incidents, the certificate of airworthiness
was withdrawn and the Comets were grounded. Tests were performed on one of these
aircraft by applying cyclic loading under water in order to simulate pressurized flights.
Some overloads were performed also each 1000 cycle interval and soon after a couple of
thousands of cycles, the cabin failed. The crack initiated from the corner of the rectangular
passengers’ window and then propagated under fatigue loading. The rectangular shape of
the windows was later replaced by oval shape in order to prevent the stress concentration
in the corners. Soon after this, Paris [Paris, 1961] developed his fatigue crack growth law.

Some of these fatal failures where caused by inherent flaws and service-induced dam-
ages and others were caused by poor design. This was later improved by better choice of
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materials and enhanced production methods. These failures posed many questions about
the understanding of material behavior under actual service loads, temperatures and en-
vironment. These questions had led scientists and engineers to the development of the
damage tolerant design.

The main idea of the defect tolerant design is to assume the worst possible scenarios
by, for instance, considering the presence of flaws and potential cracks in the structure,
then to study the possibility of service failure caused by these defects once the structure
is subjected to extreme conditions. This study is mainly based on fracture mechanics
theories. The last step is to predict the consequences, if the failure occurs, by studying
the size, velocity and trajectory of the fragments [Pommier, 2017].

1.1.2 Fracture mechanics: a brief history

The industrial revolution in the nineteenth century resulted in an enormous increase in the
use of iron and steel for structural applications instead of wood and masonry. Nevertheless,
several catastrophic accidents of boilers, railways-bridges and railways equipments took
place resulting in loss of lives and properties. Various theories of rupture were proposed
in order to understand the failure of structures. By that time, the common knowledge
about rupture was still that of Coulomb’s from the previous century, considering that
fracture will occur when the greatest shear strain surpasses a critical limit of the material
strength [Timoshenko, 1983]. Lamé [Lamé, 1833] assumed that the greatest tension in the
body should remain below a certain limit. Later, Poncelet [Todhunter and Pearson, 1886]
and Saint Venant [Barré de Saint Venant and Navier, 1864] stated that the extension is
the measurement that should remain under a certain limit to consider the safety of the
structure. Tresca [Tresca, 1869] assumed that his famous equivalent stress computing the
maximum difference between highest and least principal stresses is the one to consider
as an indicator of “tendency to rupture”. However, all these theories to measure the
“tendency to rupture” didn’t take into account the eventual existence of flaws and cracks
in the structure. At the dawn of the twentieth century, Love [Love, 1906] raised the
question about the proper limit of safety and its dependency on the applied loading and
on other accidental circumstances and that “a satisfactory answer to it might suggest in
many cases causes of weakness previously unsuspected”. With this question, Love pointed
to the importance of incorporating fracture mechanics to understand structural failures.

Few years later, Inglis [Inglis, 1913] started the first steps toward the modern fracture
mechanics. He made a geometrical assumption that the crack can be modeled by an ellip-
tical hole in a plate. Under biaxial loading σ∞ for a semi major axis a and a very small
radius of curvature at the tip ρ, the maximum stress concentration he found was equal to
σmax = 2σ∞

√
a/ρ. Thus, degenerating the ellipse to a sharp crack by taking ρ equal to 0

was problematic. This theory evolved today to the stress approach of fracture. From his
side, Griffith [Griffith, 1920] [Griffith, 1924] developed an energy approach of fracture. He
measured experimentally the surface tension γ (specific surface energy) of an amorphous
cracked glass envelope (a sphere and a cylinder) under internal pressure in order to deter-
mine the resistance to crack growth and therefore the energy δWs necessary to create a
cracked area δS.
From the critical energy balance for crack growth and based on Inglis’s solutions
[Inglis, 1913] for an elliptical hole in a uniformly loaded plate, he obtained the stress
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corresponding to fracture as follows:

σ
√
a =

√
2γE∗

π
(1.1)

With a is the half length of the crack and E∗ is equal to E for plane stress and to E/(1−ν2)
for planes strain.

In the forties, scientists worked on two systematic events that attracted the attention
of solid mechanics communities during World War II concerning the T2 tankers and the
“Liberty” cargo ships (see figure 1.1). These large scale structures exhibited recurrent
failures. Irwin [Irwin, 1948] and Orowan [Orowan, 1948] reconsidered the energy balance
approach proposed by Griffith to understand these failures. This approach was considered
until that time available only for perfectly brittle materials like glass. They noticed that
even for brittle fracture, the crack faces exhibited “extensive plastic deformation”. They
concluded that a plastic energy rate term γp is contributing as a dissipative energy and
should be added to the surface tension γ in the expression of stress given by Griffith (equa-
tion 1.1). Despite Orowan estimated that γp is one thousand time higher than γ for typical
metals, large steel plates experienced failures while having globally an elastic behavior.
This observation explained the use of Griffith’s elastic energy balance with an additional
plastic energy rate. This assessment was later reinforced by Irwin [Irwin and Kies, 1954]
assuming that under small scale yielding, it means when the plastic zone is too small
compared to the size of the crack, the energy responsible for the creation of a new cracked
area will flow from the elastic bulk since the plastic zone is embedded in this region. Pure
elastic solution can then be used for the assessment of the energy release rate.

1.1.3 Elements for fracture mechanics

Stress intensity factors

Irwin [Irwin, 1957] used Westergaard’s method [Westergaard, 1939] for solving elastic
plane solutions for cracks to determine asymptotically the elastic stress state around a
penny shaped crack. The stress field series expansion gave the following expression:

σij =

√
EG√
2πr

fij(θ) + terms of r1/2 and higher (1.2)

With G is the Griffith’s elastic energy rate per unit of new area of crack extension. fij(θ) is
the predefined universal tensor giving the spatial distribution of the stress field no matter
the crack geometry and loading conditions. The term

√
EG is what is known today as

the “stress intensity factor”. It was later denoted by Irwin as “K” to honor his friend
and co-worker Joseph A. Kies. Then, Irwin further generalized these results for general
loading conditions and he defined the three intensity factors KI , KII and KIII associated
respectively to the symmetric, asymmetric and anti-plane opening modes of the crack as
shown in figure 1.2. Besides, he associated to each one of these modes a corresponding
energy release rate (GI , GII and GIII ) that give, once summed, the Griffith’s energy release
rate G. Soon after this, Irwin defined the fracture toughness GIC as a material constant
that designates the resistance energy to fracture.
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Figure 1.2: The three elementary modes of a three-dimensional crack; mode I for
opening, mode II for in-plane sliding and mode III for anti-plane sliding (figure
from [Philipp et al., 2013]).

All these fundamental concepts formed together the key and basic elements for the
expansion of the fracture mechanics to the studying of static failure of pre-cracked samples
and then fatigue crack growth. Further remarkable elements of this field are introduced
more in details in next sections.
Note: A more detailed history of the theories of rupture and fracture mechanics can be
found in [Love, 1906], [Irwin, 1958], [Erdogan, 2000] and [Paris, 2014].

Griffith’s energy

As mentioned before, the Griffith’s energy approach [Griffith, 1920] aims to determine δWs

the energy per unit area necessary to create a new area δS based on the specific surface
energy γ.
The relation between this quantities is then written:

δWs = 2γδS (1.3)

The energy balance gives:

δWtot = δWelast + δWkin + δWext + δWs = 0 (1.4)

where δWelast the elastic strain energy, δWkin the kinematic energy and δWext the work
of external forces.

At the equilibrium for a stationary crack where δWkin = 0, equations 1.3 and 1.4 give:

δWelast + δWext + 2γδS = 0 (1.5)

The energy release rate can be written as follows:

2γ = −δ(Welast +Wext)

δS
(1.6)

The Griffith criterion for unsteady crack propagation is written as follows:

-propagation if: G− 2γ ≥ 0
-no propagation if: 0 ≥ G− 2γ

(1.7)

When the energy release rate reaches a critical value Gc, the cohesion energy released by
the structure reaches the energy required to create a new cracked surfaces and an unsteady
crack growth occurs.
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J-integral: a path independent integral

In 1968, Rice [Rice, 1968] proposed a path independent integral surrounding the tip of a
notch when the crack faces are free surfaces. This integral permits the evaluation of the
state of mechanical fields near the notch.

J =

∫
Γ

(
Wdy − Ti ·

∂ui
∂x

)
ds (1.8)

The strain-energy density W is defined by:

W =
1

2
σijεij (1.9)

Ti = σijnj is the traction vector, ui is the displacement vector, ni is the outward normal
to the contour Γ describing the integration path and ds is the element of the arc length
along this contour as shown in figure 1.3.

For cracked material with linear elastic isotropic behavior under small scale yielding,
the J integral is evaluated, by applying equation 1.8 to the Westergaard stress displace-
ment fields, as function of stress intensity factors. It can be written under plane strain
assumption as follows:

J =
(1− ν2)

E
K2

I +
(1− ν2)

E
K2

II +
(1 + ν)

E
K2

III (1.10)

Figure 1.3: Crack tip coordinates and path of the J-integral

For the general case of an anisotropic material, Hoenig [Hoenig, 1982] proposed a three-
dimensional general solution of stress and displacement of a through crack. This solution
is given and discussed in chapter 3. Concerning the J integral, Hoenig used an alternative
definition for J based on the crack closure integral and based on his analytical solution of
stresses and displacement. The J integral is finally obtained through this relation:

J =
1

2

[
KI=(m2iN

−1
ij Kj ) + KII=(m1iN

−1
ij Kj ) + KIII=(m3iN

−1
ij Kj )

]
(1.11)

=(∗) is the imaginary part of the quantity ∗, Ki is the vector of stress intensity factors
Ki = [KI ,KII ,KIII ], Nij and mij are two matrices depending on the elasticity constants
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of the material. These quantities and Hoenig’s analytical solutions are presented in details
in chapter 3 and in Appendix A.

Compared to the expression of the J integral given in equation 1.10 for an isotropic
material, the expression given by Hoenig introduces a coupling between different fracture
modes I, II and III.

This coupling between stress intensity factors vanishes in a transient manner with
respect to the degree of the anisotropy seen by the crack. For instance, for a material
presenting a monoclinic behavior at the crack coordinates in which z = 0 is a plane
of symmetry, the coupling between the third fracture mode and other modes disappear
[Hoenig, 1982], [Banks-Sills et al., 2005]. A total decoupling between LEFM modes is
reached for orthotropic material where the material axes coincide with the crack coordi-
nates system and for the isotropic case which lead to the expression in equation 1.10.

The J-integral was used by Hutchinson [Hutchinson, 1968], Rice and Rosengren
[Rice and Rosengren, 1968] as the intensity factor of crack tip plastic stress field of the so
called HRR field for materials presenting a power law hardening. The HRR stress field is
written as follows:

σij = σ0

( J

σ0ε0r

) n
n+1

σ̃ij(r, θ) (1.12)

Where n is the power hardening coefficient of the Holomon stress-strain law:

ε

ε0
=
( σ
σ0

)n
(1.13)

When the material is linear elastic, n = 1 and the HRR field reduces to Irwin’s field

previously defined in equation 1.2 where J = G = (1−ν2)
E K2.

1.1.4 Crack tip region

The asymptotic solutions of the elastic mechanical fields at the crack tip region are avail-
able in a given elastic bulk known also as the K-dominance zone where the stress intensity
factors are stabilized. Regarding their radial factor r−1/2, linear elastic stress solutions,
presented in equation 1.2, exhibit a singularity near the crack tip region. A first process
zone appears at the vicinity of the crack tip. Because of the huge stress concentration
at crack tip, damage mechanisms arise within the process zone which is usually a few
micrometers in size.
A second plastic zone, appears but remains constrained by the elastic bulk. This zone
has shown its importance in the development and growth of cracks under fatigue loadings.
This zone is confined in the K-dominance elastic area where stress fields are described by
the first order of the asymptotic solutions of LEFM. An illustration of the repartition of
these regions at the crack tip is shown in figure 1.4.

Irwin [Irwin, 1960a] evaluated approximatively the size of the plastic zone. A distinc-
tion was made between the plane stress and the plane strain case. For an elastic perfectly
plastic material under fracture mode I loading, the radius of the extension of this zone
along the crack front is given as follows:

Zp = 1
π

(
KI
Re

)2
under plane stress condition

Zp = 1
3π

(
KI
Re

)2
under plane strain condition

(1.14)
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Figure 1.4: Illustration of the crack tip region.

with KI is the stress intensity factor and Re the yield stress of the material. The distinction
between plane stress and plane strain cases explains the dog-bone shaped plastic zone along
the crack front as shown in figure 1.5a. In fact, with the free surface condition, the plastic
zone is less constrained and therefore has a bigger extension compared to its extension
inside the material. This puts in consideration the thickness effects observed and discussed
by Paris [Paris, 1957] and Irwin [Irwin, 1960b].

(a) (b)

Figure 1.5: (a) The plastic zone in 3D along the crack front and (b) the evaluation
of the Irwin plastic zone.

As shown in figure 1.5b, the initial plastic zone radius rp is computed based on the Von-
Mises yield criterion. The dimension Zp of the zone in which stress fields are perturbed is
then determined based on a mechanical balance. The size and shape of this zone depend
on the applied stress intensity factor and the yield stress. They also depend on the T
stress and on the hardening of the material [Pommier, 2002].

1.2 Fatigue crack growth

Many service components are subjected to cyclic loadings. The existence of flaws in the
structure may cause the initiation and the propagation of a cracks under these fatigue
loadings. This fatigue crack growth is assessed by means of the stress intensity factors of
the three fracture modes KI , KII and KIII .
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1.2.1 Mechanisms of propagation

In order to give the fatigue crack growth a simplified description, many models were pro-
posed. However, none of these models exhibited a universal explanation of the cracking
mechanism of the wide range of ductile materials under multiaxial and variable loading
conditions. Nevertheless, some of these models presented a good description of the mech-
anism under specific conditions. Two models are highlighted below; the Neumann’s model
based on the coarse slip process and the plastic blunting model based on the development
of a new surface due to plasticity of the crack tip. Both models present a geometric de-
scription of the crack extension per cycle of fatigue. This type of description tends to
explain the appearance of the striations on the faces of a fatigue fracture (see figure 1.6).

Figure 1.6: Striation of the fractography of the 316L stainless steel under fatigue crack
growth [Frémy, 2012].

Neumann’s coarse slip model [Neumann, 1969]: As illustrated in figure 1.7, this model
describes the crack growth under fatigue loading as an alternating activation of slip systems
at the crack tip. A single slip system is initially activated, the crack propagates by sliding
along this system. This slip is limited by the work hardening of the activated slip system.
When the stress amplitude is high enough, a second glide system, not yet work hardened,
is activated. The compression causes back-sliding with a new surface created along slip
systems. The second loading phase causes the repetition of the same process on the new
slip systems at the new crack tip position and so on.

Figure 1.7: Illustration of Newman’s coarse slip model for fatigue crack growth
[Neumann, 1969].
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Plastic blunting model [Laird, 1967] and [Pelloux, 1969]: This model describes the
crack growth as a process of repetitive crack tip blunting and resharpening. The process
of this model is illustrated in figure 1.8. Once submitted to a tensile loading, the crack
opens. With the increasing loading, the crack tip starts to blunt and a new surface is
created. While unloading, the crack closes, the newly created surface is then folded in
the crack propagation direction. Therefore, the crack advances. The process is repeated
with subsequent cycles. Regarding this mechanism, each striation mark is associated to a
loading cycle which means that the spacing between striations reflects the crack growth
rate.

Figure 1.8: Illustration of the crack growth mechanism based on the plastic blunting of
the crack tip region (figure from [Brugier, 2017]).

1.2.2 Fatigue crack growth under constant amplitudes

Under the hypothesis of small scale yielding, the plastic zone remains confined in a K -
dominance zone governed by asymptotic elastic stress fields. The stress intensity factor, as
defined by Irwin, is considered as a scale factor of the effects of the geometry and applied
loadings on the state of the elastic field near the crack tip. As the loads varies during
a cycle of loading and as the crack changes its length, “the instantaneous values of K
reflect these changes” [Paris, 1961]. In light of this, Paris assumed that the phenomena
occurring in the region near the crack are governed by a parameter related to the SIF.
Thus, he stated that the amount of crack extension per cycle is related to the amplitude
of the stress intensity factor in the following functional form:

da

dN
= C∆Km (1.15)

with ∆K is the amplitude of the applied nominal stress intensity factor during a loading
cycle, C and m are constants related to material properties.

Further experimental analyses have shown that the crack growth rate as function of
the amplitude of stress intensity factor in a bi-logarithmic scale exhibits three stages as
illustrated in figure 1.9:

• Stage I : The crack growth rate is lower than the one predicted by Paris’ law. As the
loading decreases, the crack extension velocity drops and become intermittent until
being barely detectable when the amplitude of the stress intensity factor goes below
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Figure 1.9: Illustration of the Paris law and the three stages of crack growth

the non-propagation threshold ∆Kth . The crack propagation during this phase is
very dependent on the micro-structural barriers and the environment effects.

• Stage II : Also known as the Paris regime in which the relation proposed by Paris is
applicable. The crack growth rate da

dN is stable and is a power law of the amplitude
of the stress intensity factor ∆K as shown in equation 1.15. During this stage,
the crack propagates in a continuous manner and the crack faces present striations
caused by the cyclic blunting at the crack tip.

• Stage III : As the loading approaches a critical value Kc, the crack propagation enters
an unstable regime and the crack growth rate are greater than the ones presented
in Paris law. The crack faces caused by this regime present striations, cleavage and
inter-granular facets.

1.2.3 Crack closure effect

It was observed that the crack can remain closed during a significant proportion of the
fatigue cycle. When a crack is closed, it does not act as a stress concentrator. Thus,
the loading is only effective during a limited part of the fatigue cycle denominated as the
“effective stress intensity factor amplitude ∆Keff ”.
Different phenomena can stand behind the crack closure such as plasticity, roughness of
the crack faces, a phase transformation caused by the stress at the crack tip region and
oxidation. The crack closure caused by plasticity is mainly explained by two phenomena.
The first is the plastic wake created by the plastic zone along the crack path. The second
is the occurrence of compressive residual stresses opposed to the crack opening stresses
[Elber, 1971]. The plastic deformation developed at the crack tip during one cycle of
fatigue creates compressive residual stresses which reduces the effect of subsequent cycles.
Regarding this sensitivity to history effects, it is important to introduce an opening stress
intensity factor Kop that represents the stress intensity factor required to open the crack.
This parameter helps modeling the interaction between fatigue cycles and hence load
history effects. As crack growth rate takes into account the crack closure effects, the Paris
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law’s expression becomes:

da

dN
= C∆Km

eff = C(Kmax −Kop)m (1.16)

where Kop = f(R, T,Kmax, Symin), R is the loading ratio, the T-stress represents the
biaxiality of stresses around the crack and Symin the minimal applied stress perpendicular
to the crack.

The challenge in this approach is to identify evolution laws for the level of crack closure
(Kop). Once this law is identified, it can be integrated in the Paris law based on the stress
intensity factor amplitude. Under constant amplitude, the identification of the evolution
law of Kop is not possible experimentally because of the large number of tests required to
identify each parameter (R, T,Kmax , Symin). The procedure remains possible numerically
using Finite Element Analyses. However, under variable amplitudes, both experimental
and numerical methods of identification cannot be used regarding the high cost and the
time consuming procedure in order to identify all possible configurations over millions of
cycles.

Even though the plasticity has an effect on the crack closure, all the history effects
related to plasticity are not only caused by the crack closure. Crack closure is one con-
sequence among other of crack tip plasticity, other memory effects induced by plasticity
may be observed even though the crack remains opened.

1.2.4 Crack growth under variable amplitudes fatigue

As mentioned before, history effects are crucial in the assessment of the fatigue crack
growth rate. They were the subject of various crack growth models that aimed to take
into consideration the retardation phenomenon. Wheeler [Wheeler, 1972] introduced a
retardation factor φ to penalize the crack growth rate computed using the Paris law.
This factor is an indicator of the ratio between the size of the plastic zone of the current
amplitude and the one associated to the overload. This model provides a good description
of a single overload. However, it does not exhibit a good agreement with experiments when
multiple overloads are performed. Willenborg [Willenborg et al., 1971] developed another
model by operating directly on the crack growth driving force ∆K. He introduced an
effective amplitude of the stress intensity factor that takes into account the applied stress
intensity factors, the “reduction” stress intensity factor caused by internal stresses and
the “required” stress intensity factor to create a plastic zone equal to the one created by
the overload. This model managed to represent well the history effect of one or multiple
overloads. However, it overestimates the retardation effect caused by high amplitude
overloads which tend to close the crack.

Another typical example of history effects is the application of one or several over-
loads on the structure. Experimental observations have shown that this phenomenon
provokes a retardation effect on the fatigue crack growth [Suresh, 1983], [Suresh, 1985],
[Sander and Richard, 2006]. After unloading, the bulk material tends to come back to a
zero strain which creates a plasticity-induced residual stresses in the plastic zone, when it
is well confined inside the elastic bulk. These stresses depend on the cyclic response of the
material and they exhibit a long range effect. Even after the crack crosses the large plastic
zone created by the overload, residual stresses participate in the crack closure and reduce
the impact of the applied loading. This effect vanishes with continuous crack propagation
and the crack growth retakes transiently its rate before the overload.
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1.2.5 Cycle counting methods

All these cycle-based models need infor-
mations about ranges, mean values and
number of loading cycles. For this rea-
son, the number of cycles within a ran-
dom loading series needs to be deter-
mined. Various counting algorithms were
proposed such as level-crossing counting,
range-pair counting, reservoir counting
and rainflow counting. The Rainflow
[Matsuishi and Endo, 1968] algorithm is
the most widely used and recommended
method for cycle counting under ran-
dom signals. The identification of cy-
cles is analogous to the path drawn by
rain falling down a Japanese pagoda roof.
A Rainflow method known as the three-
point criteria is illustrated in the exam-
ple in figure 1.10. The time-stress load-
ing spectrum is plotted vertically and the
stress-strain curve corresponding to the
reconstructed cycles is plotted directly
below.

Figure 1.10: Illustration of the Rain-
flow counting method and the corre-
sponding stress-strain hysteresis loops
[efatigue, 2008].

In this example, four loading cycles are reconstructed. Each cycle corresponds to a
loop in the stress-strain plot: the first overall cycle A-D-I, one intermediate cycle B-C-B’,
a smaller one E-F-E’ and a pure elastic one G-H-G’. An other Rainflow reconstruction
method is based on four-point criteria [McInnes and Meehan, 2008]. The residue of this
method is concatenated, reconstructed as cycles and then joined to the already recon-
structed cycles.

1.3 Incremental plasticity model – Pommier

Classical models for fatigue crack growth based on the direct or the modified Paris law
are governed by cycle-derivative equations (da/dN). Nevertheless, service loadings are
often far from being cyclic and the definition of a cycle is not obvious. Furthermore,
cycle counting methods aim to reconstruct cycles from random loading spectrum, to rear-
range reconstructed cycles and finally to study crack propagation using cycle-based crack
growth models. However, regarding the history effects phenomena and the nonlinear be-
havior of the structure, the order of cycles is crucial and cannot be modified which makes
these methods highly dependent on the cycle extraction process and on the sequences
chosen to describe the loading spectrum. On the other hand, simulating the whole loading
spectrum by performing elastic-plastic simulations on complex structures over millions
of cycles is extremely time consuming and costly, it remains unattainable. To overcome
these issues, Pommier and co-workers [Pommier and Risbet, 2005], [Hamam et al., 2007],
[Pommier et al., 2009], [Decreuse, 2010], [Frémy, 2012] developed an incremental model
for random and noncyclic loadings. This model describes the instantaneous crack growth
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rate using a set of time-derivative equations (da/dt) instead of the usual cycle-based equa-
tion (da/dN). Furthermore, the plasticity at the crack region is considered as the main
mechanism of the fatigue crack growth [Neumann, 1969][Li, 1989]. This crack tip plasticity
is modeled by an incremental and nonlocal approach formulated for fracture mechanics in
the sense that it is based on intensity factors (LEFM stress intensity factors and additional
intensity factors relative to the development of the plastic zone). This plasticity model
is assessed through an off-line multiscale approach that condenses the material behav-
ior, history effects and interactions between modes under multiaxial loadings. This final
condensed model is based on a set of scalar empirical equations. It will provide a global
description of confined plasticity near the crack tip to the incremental model. Proceeding
with these informations, the final model is adapted to simulate the crack growth rate over
millions of cycles for different crack geometries with reasonable computation time.

1.3.1 Hypotheses

This approach is based on a set of hypotheses mainly related to the kinematic behavior
near the crack tip:

• The model is developed in the framework of infinitesimal strain.

• The order of magnitude of the crack extension during a loading step is lower than
one micrometer, while the plastic zone size is around hundreds of micrometers. This
difference of scales allows the modeling of plasticity at the crack region while ne-
glecting the motion of the crack tip during one loading step. Besides, the problem’s
coordinate system is attached to the crack front and to the crack plane and it moves
with the crack as it grows. The crack is assumed to remain planar with a straight
front in this local curvilinear coordinate system.

• The plastic zone remains confined into the K-dominance area, which is a common
hypothesis for the cycle based crack growth models. This confinement constrains
this zone which reduces drastically the number of degrees of freedom of the problem.

• The geometry of the crack is assumed to be locally scale invariant and to remain
scale invariant with the hypothesis of infinitesimal strain and the confinement of the
plastic zone. Moreover, the local geometry of the crack is assumed to dominate the
spatial distribution of the fields at that region. Therefore, the applied boundary
conditions and their history only affect the intensity of these fields and not their
shape. This implies that the local solution of the problem is scale invariant and
it can be represented by a superposition of terms, each one is decomposed into an
intensity factor, that serves as an input variable for the incremental model, and a
spatial distribution given once for all for a given material.

• At a given loading point while yielding, it is possible to continue the plastic flow. It
is as well possible to obtain always a linear elastic behavior during an infinitesimal
load reversal no matter the elastic-plastic strain previously produced. Therefore,
the elastic and plastic components of the of the incremental displacement field can
be considered as kinematically independent. Each one of them respects the afore-
mentioned hypotheses and its intensity factor represents a degree of freedom for the
problem.
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Once these kinematic considerations are assumed for a given crack problem. The
relative velocity is considered in a reference attached to the crack front and plane. Let RT
be this reference, R0 the global reference and T the crack tip. For a given point P near
the crack tip region, the velocity field is decomposed as follows:

v(P, t)|R0
= v(P, t)|RT︸ ︷︷ ︸

velocity at the crack tip

+ v(T, t)|R0
+ w(RT /R0) ∧ TP︸ ︷︷ ︸
crack growth

(1.17)

The kinematics field attached to the crack tip v(P, t)|RT
can be decomposed into a

linear elastic part and a nonlinear plastic part. Each one of them is independent from
the other and respects the decomposition into different fracture modes. Finally, each

component is described by an intensity factor ( ˙̃Ki(t) and ρ̇i(t)) and a spatial distribution
(φel
i

(x ) and φpl
i

(x )) that represents the shape of the solution near the crack tip region.

vFE(x , t) =

3∑
i=1

˙̃Ki(t)φ
el
i

(x ) +

3∑
i=1

ρ̇i(t)φ
pl
i

(x ) (1.18)

1.3.2 Methodology

The model is based on two main laws:

1. A crack propagation law based on a time derivative equation. This incremental
law helps getting rid of the definition of cycles and relates directly the instantaneous
crack growth rate to the blunting of the crack tip.

da

dt
= α

∣∣∣dρ
dt

∣∣∣ (1.19)

This law is analogous to the fatigue crack growth rate models that interpret fatigue
striations using the approach of the CTOD (Crack Tip Opening Displacement).

2. A blunting law Since plasticity is considered to be the origin of crack growth, a
blunting law is developed by condensing the cyclic plasticity behavior of the region
near the crack tip. This law relates the blunting of the crack tip to the applied
loading. The strong point of this law that it uses nonlocal quantities obtained from
the aforementioned decompositions. These quantities are the nominal stress intensity
factors considered as scale factors of the elastic fields and blunting intensity factors
that represent scale factors of the plastic fields. For both elasticity and plasticity, a
scale factor is defined for each fracture mode. The blunting law is written as follows:

ρ̇ = g(K̇
∞
, Vint) (1.20)

This vectorial description of cyclic plasticity is analogous to the common tensorial
description of the behavior law but with a nonlocal approach. Internal variables Vint

are important in the modeling of cyclic plasticity. They describe the existence of
material hardening, internal stresses and other effects of the nonlinear behavior of
the material that can be interpreted as history effects.
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A general illustration of the steps of the incremental model is represented in figure 1.11.
The main challenge is to obtain the blunting law that condenses cyclic plasticity effects.
The procedure consists in identifying the cyclic elastic-plastic behavior of the considered
material based on experimental results or on literature. The behavior is implemented
in a finite element software and a campaign of simulations under specific conditions is
performed on a representative structure with a stationary crack. Kinematic fields of these
computations are extracted from a region of interest near the crack tip and then post-
processed finely based on model reduction methods in order to construct a basis of reference
fields. A reference field is associated to each mechanism (elasticity/plasticity) and to each
fracture mode, it represents the spatial distribution of the corresponding degree of freedom.
This process is largely detailed in the next chapters.

Figure 1.11: Multi-scale approach for a condensed plasticity model.

Finite element simulations are performed on the same model under complex loadings.
Kinematic fields of the crack tip region are extracted from these computations then pro-
jected on the previously obtained reference fields in order to identify the evolution of
different intensity factors of the plastic part (blunting intensity factors) as function of the
intensity factors of the elastic part (nominal stress intensity factors). These evolutions
describe the elastic-plastic behavior of the whole crack tip region with nonlocal quantities.
As shown in equation 3.33, a global model of this behavior can then be assessed based
on these evolutions. As a result, the behavior of the crack tip region is reduced to a set
of scalar differential equations. Once the model is set up, the blunting of the crack tip
is determined by the simple knowledge of the nominal stress intensity factors seen by the
crack. Regarding this, these constitutive equations can serve as a complement for linear
elastic simulations of cracked structures in order to assess the cyclic plasticity at the crack
region.

As shown in equation 1.19, the instantaneous crack growth rate is deduced from the
evolution of the blunting intensity factors. Some simple experiments of mode I crack
propagation are performed in order to identify the proportionality coefficient α between
the two evolutions.
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1.3.3 Evolution of the model

The incremental approach was developed at the LMT. A set of time derivative equa-
tions for fatigue crack growth under mode I was initially proposed by Pommier and
Risbet [Pommier and Risbet, 2005]. Further development was then carried by Hamam
[Hamam et al., 2007] by studying fatigue crack growth under variable amplitudes of
mode I loading at room temperature for low carbon steel used in train wheels. The
model had shown good agreement with experiments and managed to take into account
history effects caused by overloads at different amplitudes. Figure 1.12 is one among
various validation cases of the model done by Hamam [Hamam et al., 2007].

Figure 1.12: Retardation effect after a single overloading at different amplitudes, compar-
ison between incremental model and experiments [Hamam et al., 2007].

The model introduced two elastic domains that represent the cyclic plastic zone (cpz )
and the monotonic plastic zone (mpz ). Each domain is characterized by its size (Kcpz

R

and Kmpz
R ) and the position of its center (Kcpz

X and Kmpz
X ). As summarized in figure 1.13,

these parameters were interpreted as internal variables to enrich the confined plasticity
model.

Later, the model was extended in order to take into account complex non-isothermal
conditions and corrosion effects on fatigue crack growth in the work of Ruiz-Sabariego
[Ruiz-Sabariego and Pommier, 2009]. The model was confronted to experimental results
carried on the N18 Nickel base superalloy at different elevated temperatures between
450 ◦C and 650 ◦C to imitate the service conditions of a turbine disc in aircraft engines.
Comparisons gave satisfactory results.

The development of the model continued with Decreuse [Decreuse et al., 2009] by in-
troducing nonproportional mixed mode I + II and then with Fremy [Fremy et al., 2012]
for nonproportional mixed mode I + II + III . A framework was provided in these works
to reduce the confined plasticity behavior near the crack tip for mixed fracture modes.
Based on this framework, the model succeeded to predict the load path effect of mixed
mode loadings. Zhang [Zhang, 2016] studied the extension of the model under large scale
yielding conditions. New degree of freedom was added to the decomposition of the kine-
matic field in order to account for the generalized plasticity effects. Recently, Brugier
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Figure 1.13: Evolution of nominal stress intensity factor K∞I as function of blunting
intensity factor ρI under mode I cyclic loading and illustration of the role of internal
variables of the model [Pommier, 2017]

[Brugier, 2017] examined the fatigue crack growth of short cracks by taking into account
the T-stresses. Further developments of this aspect, including the effect of residual stresses
and their integration in the model, are still ongoing.

These aforementioned works were developed for different ductile materials presenting
elastic-plastic behavior with different hardening laws (linear and nonlinear) but always
with an isotropic constitutive model. This behavior was adequate to describe the used
material and sufficient for the considered industrial demand. Nevertheless, among compo-
nents that require a tolerant design for industrial use, several are exhibiting an anisotropic
behavior. Thus, it seems important to extend the incremental model to the case of
anisotropic materials. The present work is developed towards this aim. As explained
previously, the first step of the incremental model is to condense the cyclic plasticity be-
havior of the region near the crack tip into an extended nonlocal model. For this reason,
the following work is exploring possible strategies to develop a framework for anisotropic
elasticity and plasticity that can serve to condense plasticity effects of the crack tip region.

1.4 Anisotropy

From a mechanics of solid point of view, the anisotropic behavior is the dependency of
the material response on the direction of the applied loading. It means that the material
behavior is not invariant under arbitrary orthogonal transformations. This direction-
dependent response concerns different behaviors of the material, e.g. elastic, plastic and
damage. In the presented work, the elastic and the plastic anisotropies of the material are
considered.

The elastic anisotropy is introduced in the Hooke’s law through the stiffness and com-
pliance tensors. Components of these tensors are expressed by different material con-
stants. As the degree of symmetry in the material behavior decreases the number of
independent material parameters required to model that behavior increases. Components
of stiffness/compliance tensors can be expressed using two independent material parame-
ters for the isotropic case, three independent parameters for cubic anisotropy and so on
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until reaching 21 independent parameters for fully anisotropic material.

Concerning the plastic anisotropy, for metals, irreversible deformations can be ex-
plained by the motion of dislocations on different slip systems. Thus, the presence of
some densely packed planes and closely packed directions favors the plastic deformations
on these some systems more than others. Accordingly, the plastic behavior is related
to the orientation of the crystal, to the number of these easy slip systems and to their
critical resolved shear stress (CRSS). The modeling of this behavior is based on different
approaches. Some approaches use explicitly the dislocations density or other mechanis-
tically based variables for the model. These approaches are known as crystallographic
micromechanical approaches. Others are phenomenological approaches that incorporate
implicitly the physics behind plastic deformations into the model. Different approaches
are discussed in more details in chapter 4.

The anisotropic behavior concerns a wide range of materials used for industrial appli-
cations. Some of these applications are critical to ensure the proper functioning of the
structure. An example of these materials is the insulation foam used by NASA to insulate
the external tank of space shuttle. This foam exhibits a transversely anisotropic behavior.
The fracture of some parts of this foam is believed to be the major cause of the failure of
the space shuttle Columbia in 2003 during re-entry. This accident motivated some studies
about the determination of stress intensity factors, fracture toughness and the crack path
in anisotropic materials [Arakere et al., 2008].

Composites and superalloys cast as a single crystal are other examples of materials
exhibiting anisotropic behavior and used in critical industrial applications.

1.4.1 Composites

Composite materials are fast becoming a key point in various applications due to their
very attractive specific mechanical properties. Structured composites are mainly com-
posed of a matrix and fibers as reinforcement. These fibers are oriented with respect to
directions that withstand main stresses. This helps homogenizing the stress distribution
in all the structure and improving its stiffness. The presence of these reinforcements re-
sults in a direction dependent response, i.e. anisotropic behavior. Thus, unlike “naturally
anisotropic” materials, composite materials acquire their anisotropic behavior from their
design.

The field of use of composites is expanding progressively and their use in aeronautic
industry is increasing. An example is the development of 3D woven carbon fiber com-
posites in the industrial scale. This material was used in the manufacturing of turbo fan
blades and fan case of the new generation of aircraft engines (LEAP) by Safran Aircraft
Engines and General Electrics. The implication of composites in this industry requires a
damage tolerant design for anisotropic materials once they become used in more critical
applications.

1.4.2 Single crystals

Materials used as single crystals are an example of naturally anisotropic materials. They
inherit their anisotropy from their lattice structure. This microscopic structure results in
an elastic anisotropic response at the macroscopic scale. Moreover, plastic deformation
takes place in a crystal when the dislocations slips along easy slip systems. These slip
systems are defined by the most closely packed directions lying in the most densely packed
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planes. According to Schmid criterion, the slip occurs on a slip system depending on the
orientation of the crystal with respect to the applied loading.

Application case: Nickel base superalloys for high pressure turbine blades

An important progress was made on materials used in the manufacturing of high pres-
sure turbine blades. Polycrystalline nickel base alloys with coarse grains were used at the
beginning. The presence of grain boundaries presented a weakness point in these compo-
nents from which cracks can initiate and grow. An other process was presented by using
directionally solidified alloys where all grains have a principal axis [001] along the direction
of the blade axis. Secondary directions were oriented arbitrary. The process continued to
progress by using a single crystal oriented along the principal axis of the blade. Thus, the
whole blade has the same crystallographic orientation in particular [001] along its principal
axis. This implies an anisotropic behavior.

As shown in figure 1.14a, at the microscale, the AM1 Nickel base superalloy is well
structured. It represents two phases, a γ matrix and a γ′ cubic precipitates. Both phases
have an FCC structure. The presence of two phases gives the superalloy a strengthen-
ing effect that results in a structural hardening. One of the sources of this property is
the difference between the lattice parameters of the two phases. This misfit creates local
coherency stresses. These stresses contribute in the increase of threshold stress of a dislo-
cation motion, which helps reducing the slip of dislocations. An other source of hardening
is the ordering effect of γ′. Besides, alloys usually display a high content of alloying ele-
ments in the matrix, such as Chromium or Cobalt. These mixture, among other effects,
modify the stacking fault energy and allows the dislocation to dissociate into pairs of par-
tial dislocations. This dissociation modifies the interactions between the slip system and
the history effects in the material behavior. It was cited as a reason for the over-hardening
effect for multiaxial strain path in some alloys [Doquet, 1993], [Doquet and Clavel, 1996].

Being made as a single crystal gave high pressure turbine blades higher resistance along
the principal direction that withstand centrifugal forces. Nevertheless, the failure of these
components during service is still occurring. In May 2011, an engine of Qantas B744 shut
down during a flight near Singapore. The investigation report released by the Australian
Transportation Safety Board (ATSB) reported that “a single intermediate-pressure turbine
blade failed as a result of high-cycle fatigue cracking, producing high levels of vibration and
the subsequent commanded shut-down of the No.4 engine”.
This accident, among many others, is just an example of what could occurs because of
single cracked turbine blade. In fact, these components are exposed to a very aggressive
environment due to high temperature (600 ◦C to 1100 ◦C) and to different kinds of loadings
(gas pressure, centrifugal forces, vibrations, etc). Their main cause of failure remains the
fatigue loading that enhances the propagation of flaws. The development of these cracks
is almost entirely plasticity induced, and for the case of single crystals, it is the result of
vast amounts of localized inelastic straining (see figure 1.14b).

Proceeding with these observations, a conclusion can be drawn that it is indispensable
to incorporate a direction dependency in the study of crack growth. In concordance
with the incremental model presented in this work, the condensed plasticity model has
to account for this anisotropic behavior. The following work grants a particular interest
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(a) (b)

Figure 1.14: AM1 nickel base superalloy single crystal, (a) micro-structure of the
γ′ cubic precipitates in a dendrite [Kaminski, 2007] and (b) SEM micrography of
slip traces around the crack tip [Flouriot, 2004].

to the AM1 nickel base superalloy single crystal. However, the study remains applicable
to other cases of anisotropic materials and it can be extended to the case of composites.
Furthermore, it can present a starting point to a future refined study of a cracked grain
in polycrystalline materials.





Chapter 2

Model reduction protocol and 2D
application case

This chapter presents some key elements required for the understanding of the rest of
the presented work. It introduces, a simple 2D application case of a crack under mixed
fracture modes I+II in a continuum isotropic medium and a cubic medium with z = 0 is a
plane of symmetry for the material. The chapter starts with a brief introduction to model
reduction concepts and the Karhunen-Loeve algorithm used in this work. Based on these
tools and on a set of hypotheses, the velocity field in the reference frame attached to the
local crack front and plane is decomposed into intensity factors and spatial distributions.
These nonlocal intensity factors constitute the degrees of freedom of the problem. They
are used as the main ingredients to define an extended material model that condenses
plasticity effects at the near crack tip region.
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2.1 State of the art

This section contains an introduction to some basic elements required to understand the
rest of the study presented in following sections. The Karhunen-Loeve decomposition is
presented as a model reduction tool. It will be used in this work to reduce the number of
degrees of freedom of the crack problem. The other part of this section presents asymptotic
elastic solutions of displacement field at the region near the crack tip for an isotropic case
and for a monoclinic case where material axes coincide with the crack coordinates system.

2.1.1 Model reduction

The main aim of model reduction strategies is to reduce drastically the size of a given nu-
merical problem while maintaining a reliable outcome. This simplification helps reducing
simulations time and storage capacities, i.e. simulations cost. Having a reduced model
with an acceptable computational speed makes it possible to perform on-line predictions
of the behavior. The process consists in capturing the fundamental features of a structure
during an early stage of the process. To do so, an off-line analysis is performed while stim-
ulating, then capturing the essential properties of the model and getting rid of redundancy
of information.

Figure 2.1: Graphical illustration of model reduction [Turk and Levoy, 1994].

Figure 2.1 is a graphical illustration of the model reduction concept. The “Stanford
Bunny” [Turk and Levoy, 1994] is still recognized even with only few facets of the mesh.
Following the same line, the outcome of a model reduction process describes a model with
few degrees of freedom and sufficient precision.

Karhunen Loève decomposition

The Karhunen Loève algorithm [Karhunen, 1947] also known as the Proper Orthogonal
Decomposition (POD) is used, among other similar algorithms, as a model reduction pro-
cedure. The method was basically developed to be used in Computational Fluid Dynamics
CFD. Its use was extended to different fields such as computational mechanics of mate-
rials and structures. This method can be used on functions defined explicitly as solution
of a given problem. It can also be applied on functions defined implicitly as solutions of
nonlinear Partial Derivative Equations.

In this study, the function used in the model reduction is the kinematic field defined
explicitly as the time response of a crack tip region. Let v(P, t) be this field known for
N given points during T time increments (Pi=1 ,N , tk=1 ,T ) as function of time t and space
P (x ). These variables can be separated. The kinematic field v(P, t) can be approximated
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to a field ṽ(P, t) expressed as a truncated sum of the products of functions of each variable,
e.g. space fields φ

m
(P ) and their intensity factors λ̇m(t):

v(P, t) ≈ ṽ(P, t) =

m0∑
m=1

λ̇m(t)φ
m

(P ) (2.1)

In order to obtain this approximation, the kinematic field is regrouped in a matrix V
also known as “snapshots” matrix. A snapshot consists of a column vector that describes
the state at a certain time increment:

Vij = v(Pi, tj) (2.2)

The spatial auto-correlation matrix C of size N ×N is defined as follows:

Cij =
T∑
k=1

v(Pi, tk)v(Pj , tk) (2.3)

The matrix Cij is self-adjoint. Thus, its eigenvalues are positive and can be ordered
in decreasing order. Their first, say m0, corresponding eigenvectors φ

m
(P ) form an opti-

mal basis of spatial fields for the POD. These vectors are orthogonal and normalized by
construction. They form a basis that represents kinematic fields as the sum of spatially
independent fields. On the other hand, temporal coefficients λ̇m(t) constitute kinematic
variables of the problem. They are computed as follows:

λ̇m(tk) =
N∑
i=1

Vikφm(Pi) (2.4)

The error of the approximation in equation 2.1 of the order m0 can be calculated as
follows:

C(m0) =

√∑
i,k (v(Pi, tk)− ṽ(Pi, tk))2∑

i,k (v(Pi, tk))2
(2.5)

2.1.2 Asymptotic elastic solutions

Coming back to the problem of a crack, distributions of linear elastic mechanical fields are
discontinuous across the crack faces. This discontinuity disappears at the crack front which
creates a singularity in the near crack tip region (r → 0). Westergaard [Westergaard, 1939]
gave an exact solution of displacement and stress fields for an isotropic material. This
solution presented later the first term of an asymptotic expansion function of r given
by [Irwin, 1957] (section 1.1.3) as a solution to the problem. Williams [Williams, 1957]
established later a similar asymptotic expansion function of r based on an eigenfunction
approach as a solution to a similar problem with some differences in boundary conditions.
The stress field series expansion is written as follows:

σ(r, θ) =

III∑
i=I

Kifi(θ)r
− 1

2 + regular terms of r
1
2 and higher (2.6)
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Isotropic: Westergaard’s asymptotic solution

Westergaard [Westergaard, 1939] gave an exact solution of isotropic linear elastic fields at
the near crack tip region for every fracture mode.

mode I


ux =

KI

2µ

√
r

2π
cos (

θ

2
)[κ− cos θ]

uy =
KI

2µ

√
r

2π
sin (

θ

2
)[κ− cos θ]

mode II


ux =

KII

2µ

√
r

2π
sin (

θ

2
)[κ+ 2 + cos θ]

uy = −KII

2µ

√
r

2π
cos (

θ

2
)[κ− 2 + cos θ]

mode III

{
uz = 2

KIII

µ

√
r

2π
sin (

θ

2
)

(2.7)

with µ = E
2(1+ν) the Lamé coefficient, κ = 3−ν

1+ν under plane stress and κ = 3−4ν under
plane strain.

Orthotropic: Sih, Paris and Irwin’s solution

Based on a complex variables approach, Sih and co-workers [Sih et al., 1965] gave the
first term of the asymptotic expansion of the stress and displacement for a crack in a
monoclinic material where the crack is aligned with the material axes, i.e. z = 0 is a plane
of symmetry for the material. The elastic stress singularity of the order r−

1
2 , presented in

Westergaard solutions for isotropic materials, is always present. For the displacement, it
can be written as follows:

mode I


ux = KI

√
2r

π
<[

1

µ1 − µ2
(µ1p2

√
cos θ + µ2 sin θ − µ2p1

√
cos θ + µ1 sin θ)]
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√
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π
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√
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√
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mode II


ux = KII

√
2r

π
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1

µ1 − µ2
(p2
√

cos θ + µ2 sin θ − p1
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cos θ + µ1 sin θ)]

uy = KII

√
2r

π
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1

µ1 − µ2
(q2
√

cos θ + µ2 sin θ − q1
√

cos θ + µ1 sin θ)]

mode III

{
uz = KIII

√
2r

π
<[

√
cos θ + µ3 sin θ

S′′45 + µ3S′′44
]

(2.8)

where µi, pi and qi have complex values issued from the resolution of the characteristic
equations of compatibility (more details are provided in Appendix A). They depend on
materials parameters. S′′ij are reals directly related to materials parameters and to the
plane strain or plane stress assumptions.

Note: A noteworthy property of these aforementioned solutions is that they can be written
as a scale factor that describes the loading (Ki) and a spatial distribution function of polar
coordinates (r, θ). The shape of this spatial distribution is independent from the applied
loading and the crack length. Besides, this spatial distribution can be decomposed into a
radial scale function in

√
r and an angular shape that depends on θ.
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2.2 Incremental model

The incremental model is used to predict the crack growth rate with a reasonable pre-
cision and a reduced cost when nonlinear material behavior and complex loading condi-
tions are met. It presents a set of time derivative equations that allow the direct use of
loading spectra instead of cycle reconstruction procedure. The model assumes that fa-
tigue crack growth is mainly plasticity-induced. Thus, the propagation law relates the
crack growth rate to the blunting of the crack tip region as shown in the equation below
[Pommier and Risbet, 2005], [Pommier and Hamam, 2007]:

da

dt
= α

∣∣∣dρ
dt

∣∣∣ (2.9)

This equations derives directly from the CTOD equation from [Laird, 1967] and
[Pelloux, 1969]:

da

dN
= α

∆CTOD

dN
(2.10)

The parameter α serves as a coefficient to adjust the model. It can be obtained by
minimizing the error between the crack growth rate simulated with incremental model and
the one resulting from a simple fatigue test performed in mode I with constant amplitude.
This tuning parameter does not change the proportion between ∆K and the crack growth
rate in the logarithmic scale of Paris diagram, it only adjusts the vertical position of the
curve [Pommier and Hamam, 2007], [Hamam et al., 2007].

The blunting ρ of the region near the crack tip is described through a reduced model of
the plasticity at that region. This model is obtained through a model reduction process.
It condenses the material behavior and memory effects in a set of vectorial equations.
This final blunting law is based on the minimum possible number of degrees of freedom.
It relates plasticity effects described by the blunting intensity factors ρi to the applied
loading described by the nominal stress intensity factors K∞i (i.e. due to external loads).
The model incorporates also internal variables to account for internal stresses, material
hardening and more generally of any other effects related to the nonlinear behavior of the
material and to the confinement of the crack tip plastic zone. These effects are crucial in
the modeling of history effects in fatigue crack growth.

dρI , dρII , dρIII = f(dK∞I , dK∞II , dK∞III , Vint) (2.11)

The generic aspect of the model allows its extension to describe various material behav-
iors under multiphysics conditions. In this chapter, a material presenting cubic elasticity
and Von-Mises plasticity is studied.

In order to fulfill this aforementioned model reduction strategy, a set of hypotheses
have to be assumed after discussion.

2.2.1 Hypotheses

The main hypothesis in the model is a simplified description of the kinematics. For this
purpose, the velocity field of the cracked component v(P, t)|R0

is partitioned into a term
that stems from crack growth and a second term that provides the velocity field relative
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to the reference frame attached to the crack front and plane. Figure 2.2 illustrates this
local coordinate system. The velocity of a given point P is obtained as follows:

v(P, t)|R0
= v(P, t)|RT︸ ︷︷ ︸

velocity at the crack tip

+ v(T, t)|R0
+ w(RT /R0) ∧ TP︸ ︷︷ ︸
crack growth

(2.12)

where v(P, t)|RT
is the velocity field expressed in a reference RT attached to the local

crack front and plane.

Figure 2.2: Local coordinate system attached to the local crack front and plane.

The crack is assumed to be locally planar, with a locally straight crack front, which
ensures that the velocity fields could be partitioned into modes I , II and III . A plane
strain condition is assumed along the crack front.
At the vicinity of the crack tip, the geometry is assumed to be locally self-similar. It
means that zooming in and out of this region will keep the geometry invariant. This
helps decomposing fields at the crack tip as a product of an intensity factor and a spatial
function that is itself searched as a product of separate variables for the scale (r) and the
angular position within a cross section normal to the crack front (θ).

The plastic zone at the crack tip remains confined and constrained by the elastic bulk.
Because of this constraint, the number of degrees of freedom required to described the
behavior of the confined plastic zone is expected to be limited. Besides, the small scale
yielding condition, ensures that the crack geometry remains coarsely unchanged by the
plastic deformation and hence the elastic response of the crack tip region remains also
unchanged.

Finally, at each point during a loading cycle, it is always possible to apply a load
reversal, and hence to get a transiently elastic behavior or to continue along the same
loading direction and hence to get an elastic-plastic behavior and a plastic flow within
the plastic zone. This means that we are dealing with two kinematically independent
mechanisms, a linear elastic one an a nonlinear plastic one, each one presents a degree of
freedom for the problem.

2.2.2 Kinematic field decomposition

As a consequence of all the aforementioned assumptions, the velocity field at the crack tip
is described as a superposition of three fracture modes. Each mode is decomposed into
two degrees of freedom, a first term that is responsible for representing the elastic part of
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the velocity field and a second one to represent the plastic flow. This second field should
be a no-volume change transformation, in order to be consistent with the description of a
plastic flow. Each part is a product of an intensity factor rate and a spatial distribution
field [Pommier et al., 2009], [Pommier, 2016], [Decreuse, 2010], [Frémy, 2012].

vFE(x , t) =

3∑
i=1

˙̃Ki(t)φ
el
i

(x ) +

3∑
i=1

ρ̇i(t)φ
pl
i

(x ) (2.13)

where φel
i

(x ) and φpl
i

(x ) are the elastic and plastic reference fields respectively. ρ̇i(t) is the
rate of the blunting intensity factor that presents crack tip plasticity created by a crack

in mode i. ˙̃Ki(t) is the stress intensity factor of a fracture mode i. In the case of a linear
elastic behavior, this factor is equal to the nominal stress intensity factor K̇∞i . In the
presence of a nonlinear behavior, this quantity contains the effects of elasticity through
the applied loading K̇∞i and the effects of internal stresses induced by the confinement of
the plastic zone also known as the shielding effect [Rice and Thomson, 1974].

Note: In their work, Decreuse [Decreuse, 2010] and Frémy [Frémy, 2012] had shown

that ( ˙̃Ki(t) − K̇∞i ) is proportional to ρ̇i . As a matter of fact, the difference between the
two stress intensity factors is directly related to the “shielding effect” due to the internal
stresses that stem from the confinement of the plastic zone inside the K-dominance area.

It can be concluded that the velocity field of a mixed mode loaded crack in an elastic-
plastic material can be represented using kinematically independent variables that are non-
local by construction since they are a set of intensity factors (K∞I ,K

∞
II ,K

∞
III , ρI , ρII , ρIII)

of the crack tip kinematic fields basis (φel
I

(x ), φel
II

(x ), φel
III

(x ), φpl
I

(x ), φpl
II

(x ), φpl
III

(x )). In
order to have a full description of the crack kinetics, history effects, internal stresses and
other phenomena, other additional internal variables have to be incorporated into the
model. This work provides some preliminary ideas about the evolution of some of these
internal variables.

In addition, the elastic-plastic kinematic field can be partitioned using the Karhunen-
Loeve (KL) decomposition (see 2.1.1) into a sum of temporal factors and space fields
products. It was shown that the two first modes of this decomposition are sufficient to
reconstruct the total kinematic field with a reasonable error [Pommier and Hamam, 2007].
It was shown as well that the first spatial mode of this decomposition is similar to the
displacement obtained from a pure linear elastic FE simulation (see figure 2.3). Therefore,
the complementary part (second KL mode) can be considered as a description of the
nonlinear behavior, i.e. the plasticity. Based on this description, elastic and plastic spatial
fields can form an orthogonal basis which is coherent with the hypothesis that elasticity
and plasticity are kinematically independent. Moreover, temporal coefficients of the two

first modes correspond respectively to ˙̃K and ρ̇ considered as degrees of freedom of the
problem.
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(a) (b)

Figure 2.3: Comparison between (a) the elastic reference field obtained by elastic
FE simulations and (b) the first Karhunen-Loeve mode [Hamam, 2006]

The starting point for the condensed modeling of plasticity near the crack tip is the
determination of the elastic and plastic kinematic bases φel

i
(x ) and φpl

i
(x ). These bases

depend on the material constitutive model. Thus, for the case of an anisotropic material,
kinematic bases depend on the orientation of the material with respect to the crack. The
identification is based on a set of finite element simulations. The numerical protocol and
the methodology, followed to obtain elastic and plastic reference fields in a first step and
then to identify an extended material model based on this kinematic bases, are presented
in next sections within an application case.

2.3 Protocol for the kinematic basis

2.3.1 Finite element model and mesh

The next part of this chapter is dedicated to the 2D application of the model reduction
strategy. To do so, a 2D finite element model was used. The model is a 2 m× 2 m
plate. A 2D through thickness crack of length 2a = 20 mm is modeled under plane strain
assumption. The crack tip is clamped while forces are applied on the summits of the plate
through rigid body ties (see figure 2.4).

Figure 2.4: Illustration of the crack and boundary conditions of the 2D FE model.
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Flouriot [Flouriot, 2004] investigated the influence of the mesh type and element size
on the evolution of plasticity at the crack tip region of an elastic ideally plastic FCC single
crystal. A comparison was made between a regular grid and a fan-like mesh as the one
used in [Cuitino and Ortiz, 1996]. No major effects were observed between the two mesh
types. Another comparison was made between the radii of the plastic zones for different
mesh sizes. It confirmed that the plastic zone size does not depend on the mesh size. A
conclusion was drawn that the evolution of plasticity at the crack tip can be considered as
independent from the mesh type and element size provided that the number of elements
is high enough.

Following these aforementioned observations, a fan-like mesh was used near the crack
tip region. As shown in figure 2.5, all fields are extracted from this region. This circular
domain is big enough to exclude singularity zone (rmin = 30 µm) and small enough to
remain into the Irwin plastic zone (rmax = 250 µm). The size of this zone is adjusted as
function of the loading type and range and of the material orientation.

Figure 2.5: Illustration of the 2D Finite element model, boundary conditions and fan-like
mesh of the near crack tip region.

2.3.2 Material

The anisotropic elasticity of the FCC single crystal of the AM1 Nickel base superalloy can
be modeled with cubic elasticity.

For elasticity, the constitutive law is written as follows

σ = C : εe (2.14)
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The 2D Voigt notation is used:

˜
σ =

σ11

σ22

σ12


˜
ε =

 ε11

ε22

2ε12


˜̃
C =

C11 C12 0
C12 C11 0
0 0 C44

 (2.15)

With
˜̃
C is the stiffness tensor. For cubic elasticity, it depends on three material con-

stants: C11 = 197 GPa, C12 = 144 GPa and C44 = 90 GPa. An isotropic case was studied
as a reference in order to compare and identify the effect of the cubic anisotropic. Material
parameters used for this reference case are E = 210 GPa and ν = 0.3.

The presence of the cubic anisotropy creates a mixed mode condition near the crack
tip region. For the sake of simplicity, the application case presented in this chapter is a
2D case of a stationary crack. Thus, the study is restrained to fracture modes I and II.
For this reason, the material is assumed to have the plane z = 0 as a symmetry plane as
illustrated on figure 2.6. The following range of material orientations with respect to the
crack is studied: β = 0◦, 15◦, 30◦ and 45◦.

Figure 2.6: Illustration of the region of interest and the material orientation.

Using the aforementioned material parameters, tensile and shear moduli are shown on
figure 2.7 as function of the material orientation with respect to the crack plane and front.

Figure 2.7: Tensile and shear moduli as function of the material orientation with respect
to the crack.
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An isotropic Von-Mises criterion with a nonlinear combined hardening are implemented
to describe the nonlinear behavior of the material. Hardening parameters are presented
in table 2.1.

• Von-Mises yield criterion:

f =

√
3

2
(σD −X) : (σD −X)−R (2.16)

based on the deviatoric stress:

σD = σ − 1

3
Tr(σ)I (2.17)

• Consistensy conditions for plasticity:{ f = ḟ = 0 ⇒ ε̇p 6= 0

f < 0 or (f = 0 & ḟ < 0) ⇒ ε̇p = 0
(2.18)

• The normality flow rule:

ε̇p = λ
∂f

∂σ
(2.19)

• The nonlinear isotropic hardening:

R = R0 +Qinf (1− e−bp) (2.20)

• The nonlinear kinematic hardening following Armstrong-Frederick law
[Armstrong and Frederick, 1966]:

X =
2

3
Cε̇p − γXṗ (2.21)

With ṗ the equivalent plastic strain rate:

ṗ =

√
2

3
ε̇p : ε̇p (2.22)

Table 2.1: Parameters of the isotropic and kinematic hardening of the model

Isotropic hardening Kinematic hardening

R0 (MPa) Qinf (MPa) b C (MPa) γ
250 5 25 75000 250

2.3.3 Kinematic fields extraction and correction

The aforementioned finite element model is created and simulations were performed using
the commercial finite element solver ABAQUS.

In a first step, different elastic and elastic-plastic monotonic loadings were performed.
Kinematic fields are extracted form the region of interest presented on figures 2.5 and 2.6.
Extracted fields are corrected in order to get rid of rigid body transformation and the
rotation of the crack plane that can be enhanced by the presence of the anisotropy. The
following section describes the procedure followed to extract elastic and plastic reference
fields.
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2.3.4 Elastic reference fields

To obtain elastic reference fields of different fracture modes (mode I and mode II ) and
for different material orientations, linear elastic simulations were performed as follows:

• For φel
I

(x ), a pure mode I loading was performed with K∞I = 1 MPa
√

m and
K∞II = 0 MPa

√
m.

• For φel
II

(x ), a pure mode II loading was performed with K∞II = 1 MPa
√

m and
K∞I = 0 MPa

√
m.

The kinematic field vFE
i (x , t) extracted from the elastic simulation of the fracture

mode i can be directly read as the corresponding elastic reference field:

vFE
i (x , t) = 1 MPa

√
ms−1 · φel

i
(x ) = φel

i
(x ) (2.23)

These reference fields can be determined analytically based on Westergaard solutions
(see section 2.1.2) for the isotropic case and on Sih, Paris and Irwin’s solutions (see sec-
tion 2.1.2) for the cubic material with z = 0 a plane of symmetry for the material.

As shown in these analytical solutions, reference fields can be decomposed into a radial
scale function f eli (r) and an angular distribution gel

i
(θ).

φel
i

(x ) = f eli (r) · gel
i

(θ) (2.24)

Besides, all fracture modes share the same radial function. Thus, elastic reference
fields obtained from simulations of different fracture modes can be gathered in the same
snapshot matrix and a Karhunen-Loeve decomposition is performed in order to separate
radial and angular dependencies. This decomposition gives one radial scale function f el(r)
and an angular distribution for each fracture mode gel

i
(θ).

Figures 2.8, 2.9 and 2.10 show elastic reference fields for an isotropic case and for two
anisotropic cases (β = 0◦ and β = 15◦). The plot in the middle shows the evolution of the
radial scale function f el(r). As predicted by the analytical solution, it fits a

√
r function.

This evolution shows that elasticity starts increasing away from the crack tip, i.e. the
plastic zone, while approaching the K-dominance elastic zone. Angular distributions gel

i
(θ)

are shown on plots on left and right for mode I and mode II respectively. These plots show
the deformed shape of a trigonometric circle once the corresponding distribution is applied
on it. These distributions are rescaled in order to obtain a crack tip opening displacement
(CTOD) equal to 1 for mode I and a crack tip sliding displacement (CTSD) equal to 1 for
mode II . Comparisons between numerical solutions obtained from a Proper Orthogonal
Decomposition (POD) and analytical solutions for the isotropic and for anisotropic cases
show a good agreement between both solutions.
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Figure 2.8: Elastic reference fields for an isotropic case, comparison with Westergaard
analytical solution [Westergaard, 1939].

Figure 2.9: Elastic reference fields for an cubic material with β = 0◦, comparison with
Sih’s analytical solution [Sih et al., 1965].

Figure 2.10: Elastic reference fields for an cubic material with β = 15◦, comparison with
Sih’s analytical solution [Sih et al., 1965].
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2.3.5 Complementary reference fields based on the POD approach

A first attempt was made in [Pommier and Hamam, 2007] to analytically evaluate the
complementary reference field of fracture mode I based on a dislocation distribution ap-
proach. This field arises from the existence of dislocations at the crack tip that are
geometrically necessary in order to restore the traction-free boundary condition along the
crack faces.

Later, a different approach was proposed based on finite element computations and
the Proper Orthogonal Decomposition [Decreuse et al., 2009] and [Fremy et al., 2012]. In
this approach, the plastic reference field of a fracture mode i is obtained by performing
an elastic-plastic computation in pure mode i loading conditions, with K∞i = Kmax and
K∞j 6=i = 0. The kinematic fields of each computation vFE

i (x , t) are extracted from the region
of interest. Then, the elastic part is subtracted from the total elastic-plastic kinematic
field (see equation 2.25). Since plasticity is the only source of dissipation in the model
(no friction between crack faces, no damage, etc), this complementary non linear part is
considered as the result of the plastic dissipation.

ṽpl
i (x , t) = vFE

i (x , t)−
2∑
i=1

˙̃Ki(t)φ
el
i

(x ) (2.25)

with

˙̃Ki =

∑
P∈D vFE

i (P, t) · φel
i

(P )∑
P∈D φ

el
i

(P ) · φel
i

(P )
(2.26)

The plastic reference field φpl
i

(x ) is the obtained by performing a Proper Orthogonal
Decomposition on this plastic kinematic field in order to separate time and space depen-
dencies. The first mode of this decomposition was found to be sufficient to describe the
field with a reasonable error.

ṽpl
i (x , t) ≈ ρ̇i(t)φpli

(x ) (2.27)

The model is attached to the local coordinates system attached to the crack and the
geometry is scale-invariant. This implies that the spatial distribution φpl

i
(x ) of the solution

is scale invariant too. Hence, it can be decomposed into a radial scale function and an
angular distribution:

φpl
i

(x ) = f pli (r) · gpl
i

(θ) (2.28)

The plastic zone is assumed to remain confined into an elastic bulk. Thus, plastic-
ity vanishes away from the crack which implies that the scale function f pl(r) verifies
f pl(r) −→

r→∞
0. Besides, the crack tip displacement is maximum and finite at the vicinity of

the crack, which means that f pl(r) −→
r→0

max. The function is locally self-similar in a local

coordinates system attached to the crack front and within the K-dominance area. Thus,
it can be written as follows:

f pl(αr)− f pl(0) = β(f pl(r)− f pl(0)) (2.29)
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All these properties can be verified by an exponential decay function at the first order of
Taylor’s development.

f pl(r) ≈ Ae−
r
p (2.30)

A convention was made to rescale the radial function so that f pl(r) −→
r→0

1. In addition,

as it was done for the elastic part, angular functions gpl
i

(θ) were rescaled so that the
discontinuity between crack faces is equal to 1:

∥∥∥∆gj
i

∥∥∥ =
∥∥∥gj

i
(θ = π)− gj

i
(θ = −π)

∥∥∥ = 1 (2.31)

Finite element analyses were performed on different cases of material orientations. Fig-
ure 2.11 represents these complementary reference fields. The plot in the middle presents
radial scale functions f pl(r). As discussed before, these functions can be fitted to an
exponential decay function. Plots on the left and on the right present plastic angular
distributions for fracture modes I and II respectively. Despite the anisotropy is only
expressed by the cubic elasticity, a clear difference between different material orientations
can be observed on these plastic distributions. The difference can be understood based on
the distribution of tensile and shear moduli shown on figure 2.7.

For instance, under a pure fracture mode II , the shear modulus is the main parameter
in action. As shown on figure 2.7, this modulus is maximum for β = 0◦. It decreases until
reaching a minimum for β = 45◦. Thus, in order to obtain the same CTSD at θ = 0◦ for
all material orientations on the right plot on figure 2.11, higher applied stress is required
for β = 0◦ compared to β = 45◦. This stress creates a more deformed shape of gpl

II
(θ) for

other angular positions θ different from zero where the tensile modulus enters in action in
the material response.

Figure 2.11: Plastic reference fields for different material orientations with respect to the
crack.

Table 2.2 presents the ratio of the surface change between the initial trigonometric circle
and the deformed shape under gpl

II
(θ) transformation for the isotropic case and anisotropic

case with different material orientations. One can note that the deformed shape of the
plastic angular distribution has the same area as the initial trigonometric circle. This
observation is in coherence with the fact that plasticity occurs without any volume change
[Lemaitre and Chaboche, 1994]. Figure 2.12 illustrates this isochoric transformation.
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Table 2.2: Surface change between the initial and deformed shape under gpl
II

(θ) transfor-
mation

Isotropic β = 0◦ β = 15◦ β = 30◦ β = 45◦

Surf. change (%) 0.48 0.51 0.72 0.29 0.15

Figure 2.12: Illustration of the isochoric transformation by gpl
II

(θ) for β = 0◦.

2.3.6 Validity of the approach

With the presence of plasticity in the model, the applied loading range should respect the
hypothesis proposed at the beginning while extracting plastic reference fields. Concerned
hypotheses here are the local self-similarity of both the structure and the displacement
field around the crack tip, the small strain condition and the confinement of the plastic
zone into an elastic bulk. For these reasons, the Karhunen-Loeve decomposition should
be performed on a range where plasticity remains confined within the region of interest.
In this same loading range, plasticity should be pronounced enough so that both elastic
and plastic kinematics have close weights in the total motion of the structure.

In this chapter, the following procedure was used in order to define the convenient
loading range that from which plastic reference fields can be extracted. Next chapters
discuss further procedures.

Minimum loading range

The minimum of loading range is computed so that the plastic zone is large enough into the
region of interest. In fact when the behavior is linear elastic, K̃i is the same as the nominal
stress intensity factor K∞i . When there is plasticity in the model, K̃i accounts for the ap-
plied loading through K∞i and for the “shielding effect” Kshield

i [Rice and Thomson, 1974]
caused by internal stresses and the confinement of the plastic zone.

Based on this statement, the plasticity at the region of interest can be evaluated by the
indicator EShield

i , which is defined as the difference between the nominal stress intensity
factor K∞i and the stress intensity factor obtained from the projection of the velocity field
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on the elastic basis K̃i. For a given fracture mode i:

EShield
i (t) = |K̃i(t)−K∞i (t)| (2.32)

Maximum loading range

Defining a maximum of the loading range is mandatory to ensure the confinement of
the plastic zone and the local self-similarity of the crack tip geometry. To obtain this
maximum, two types of computations are performed. The first takes into account the non
linearity of the geometry caused by large deformation by re-adapting the shape of elements
at each time increment. This option is available in the commercial FE solver ABAQUS and
known as the NLGEOM simulation. The second type is known as LGEOM computation.
It assumes that FE simulations are performed under small strain conditions. The idea
here is to catch the difference between these two analyses. This difference is supposed to
be an indicator of the self-similarity and small strain hypotheses. The maximum nominal
stress intensity factor is obtained once the difference reaches a threshold value.

EL−NL
i (t) = |K̃LGEOM

i (t)− K̃NLGEOM
i (t)| (2.33)

Example

These computations were applied for both fracture modes simulations and for every studied
case of material orientation. Figure 2.13 shows an example of this study under fracture
mode I for material orientation β = 15◦. Figure 2.13a shows the evolution of different
stress intensity factors: K∞I , K̃LGEOM

I and K̃NLGEOM
I . Figure 2.13b shows the evolution

of differences EShield
I and EL−NL

I as function of the applied loading. A threshold value
was assigned to each difference in order to illustrate the choice of minimum and maximum
loadings.

(a) (b)

Figure 2.13: (a) Different stress intensity factors: the nominal one, the one obtained from
an LGEOM simulation and from NLGEOM simulation and (b) differences EShield and
EL−NL used to define the loading range for the case of material orientation β = 15◦.

2.3.7 Reconstruction error

Once the kinematic basis is determined for each fracture mode, the stress intensity fac-

tor ˙̃Ki(t) and the blunting intensity factor ρ̇i(t) corresponding to a fracture mode i of a
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given elastic-plastic kinematic field vFE(x , t) are obtained by the projection of this field
on the corresponding reference field:

˙̃Ki(t) =

∑
P∈D vFE(P, t) · φel

i
(P )∑

P∈D φ
el
i

(P ) · φel
i

(P )
(2.34)

ρ̇i(t) =

∑
P∈D vFE(P, t) · φpl

i
(P )∑

P∈D φ
pl
i

(P ) · φpl
i

(P )
(2.35)

In order to evaluate the quality of this approximation at each time increment, two fields
ṽel(x , t) and ṽ(x , t) are reconstructed as follows:
ṽel(x , t) is the kinematic field approximated only with the elastic basis:

ṽel(x , t) =

2∑
i=1

˙̃Ki(t) · φeli (x ) (2.36)

ṽ(x , t) is the kinematic field approximated with both elastic and plastic bases:

ṽ(x , t) =

2∑
i=1

˙̃Ki(t) · φeli (x ) + ρ̇i(t) · φpli
(x ) (2.37)

A reconstruction error is associated to each reconstructed field as follows:

Ce =

√∑
P∈D (vFE(P, t)− ṽel(P, t))2∑

P∈D (vFE(P, t))2
(2.38)

Cep =

√∑
P∈D (vFE(P, t)− ṽ(P, t))2∑

P∈D (vFE(P, t))2
(2.39)

Ce is the error of a reconstruction of the kinematic field using only a pure elastic field. Cep

is the error of the reconstruction based on both elastic and plastic reference fields. If Cep

is lower than Ce , the plastic field is improving the solution. This means also that there is
plasticity around the crack tip. It can be concluded that the difference Ce −Cep between
both errors can be used as an indicator of the yielding at the region near the crack tip.

2.4 Condensed material model for the near crack tip region

The incremental model describes pure fatigue crack growth as a plasticity induced phe-
nomenon. Therefore, the determination of the crack growth needs a precise study of the
plasticity and its evolution near the crack tip. On the other hand, the number of degrees of
freedom of the problem needs to be reduced in a way that allows the incremental study of
crack growth. For these reasons, the plasticity at the crack tip is described by a condensed
model based on nonlocal quantities. These quantities are the stress intensity factors and
the blunting intensity factors obtained from projection on the elastic and plastic frame-
works previously defined. In order to take into account internal stresses and the history
effect, the evolution of internal variables has to be studied as well.
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This section discusses some strategies followed to determine main ingredients of an
extended material model of the region near the crack tip based on nonlocal quantities.
These ingredients are a yield criterion for this region and a plastic flow rule. The study
is restrained in this chapter to the case of a mixed fracture mode I + II. chapter 3
discusses in more details these strategies for the more general case of a mixed fracture
mode I + II + III.

2.4.1 Yield criterion

Pommier and co-workers [Pommier et al., 2009] proposed a nonlocal yield surface criterion
similar to the Von Mises criterion at the region near the crack tip but applied to LEFM
fields for the case of mixed mode I and mode II crack. Later, this criterion was extended
the 3D case but always for isotropic materials using Westergaard asymptotic solutions
[Fremy et al., 2012].

The presented work deals with a cubic elasticity. Thus, the stress state at the crack
tip depends on the material parameters and the crystal orientation with respect to the
crack plane. The aforementioned yield criterion is determined in the following work based
on anisotropic analytical solutions.

Local Von-Mises criterion

For a given volume element undergoing small strains, the strain energy density can be
written as:

U =
1

2
σ : ε (2.40)

Knowing that the deviatoric parts of stress and strain are given by:

σD = σ − 1
3 Tr(σ)I

εD = ε− 1
3 Tr(ε)I = S : σD (2.41)

The elastic strain energy density becomes:

2U = σD : S : σD︸ ︷︷ ︸
distortional elastic energy

+
1

9
Tr(σ) Tr(ε)︸ ︷︷ ︸

volume change energy

(2.42)

The strain energy density can be partitioned into a volume change energy and a distortional
elastic energy. Regarding that plasticity occurs without volume change, the Von-Mises
yield criterion is computed only from the distortional elastic energy:

UD =
1

2
σD : S : σD (2.43)

The main idea is that plastic yield occurs when elastic shear energy reaches a critical
distortional value. This helps computing an equivalent stress value for a multiaxial loading
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case and to compare it with the yield stress σY obtained from a simple uniaxial loading
case. The criterion is written as follows:

UD(σ) = UD(σY ) (2.44)

Which implies, for the case a multi-axial loading, the following criterion based on the
equivalent Von Mises stress:√

3

2
σD : σD = σY (2.45)

Extended Von-Mises criterion under LEFM

The Von-Mises criterion was extended to the case a cracked structure based on LEFM
fields [Pommier et al., 2009]. The elastic shear energy is computed on a circular region
around the crack tip.

ED =

∫ π

θ=−π

∫ δ

r=0

1

2
σD : S : σDrdrdθ (2.46)

When the loading state is inside the yield domain, the material response is elastic. With
fracture mechanics quantities, the applied loading is expressed with the stress intensity
factors K∞ = (K∞I ,K

∞
II ). Lets also assume that KX = (KX

I ,K
X
II ) is the position of the

yield surface under mixed fracture modes I and II. An assumption is made that LEFM
fields are valid as long as the position of the center of the yield domain is extracted from
the loading state. Therefore, the stress intensity factor used in the expression of LEFM
fields is then K∗ = (K∞I −KX

I ,K
∞
II −KX

II ).

Once the elastic distortional energy is expressed with linear elastic fracture mechanics
quantities, a criterion similar to the Von-Mises criterion is considered. It assumes that
yielding starts when this energy reaches a pure mode I yield threshold KY

I . The criterion
is written as follows:

ED(K∞I −KX
I ,K

∞
II −KX

II ) = ED(KY
I , 0) (2.47)

Isotropic case:
Based on Westergaard solutions of stress at the region near the crack tip
[Westergaard, 1939] (see Appendix A), the case of an isotropic material under fracture
modes I and II was presented in the work of [Decreuse et al., 2009]. The criterion pre-
sented in 2.4.1 gives the following yield function criterion:

f =
(K∞I −KX

I )2

(KY
I )2

+
(K∞II −KX

II )2

(KY
II )2

− 1 (2.48)

with:

KY
II

KY
I

=

√
7− 16ν(1− ν)

19− 16ν(1− ν)
= 0.48 for ν = 0.3 (2.49)
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The corresponding yield surface is an ellipse in the K∞I −K∞II plane (see figure 2.14a).

Cubic case with z = 0 a plane of symmetry:
For the studied case in this chapter, Sih Paris and Irwin’s solutions [Sih et al., 1965] were
implemented in the expression of the elastic shear energy presented in equation 2.46. As
it was for for the isotropic case, the position KX of the yield domain is subtracted from
the nominal stress intensity factor K∞. Solutions are finally given as follows:

mode I



σxx = (K∞I −KX
I )

1√
2πr

<[
µ1µ2

µ1 − µ2
(

µ2√
cos θ + µ2 sin θ

− µ1√
cos θ + µ1 sin θ

)]

σyy = (K∞I −KX
I )

1√
2πr

<[
1

µ1 − µ2
(

µ1√
cos θ + µ2 sin θ

− µ2√
cos θ + µ1 sin θ

)]

σxy = (K∞I −KX
I )

1√
2πr

<[
µ1µ2

µ1 − µ2
(

1√
cos θ + µ1 sin θ

− 1√
cos θ + µ2 sin θ

)]

mode II



σxx(K∞II −KX
II )

1√
2πr

<[
1

µ1 − µ2
(

µ2
2√

cos θ + µ2 sin θ
− µ2

1√
cos θ + µ1 sin θ

)]

σyy = (K∞II −KX
II )

1√
2πr

<[
1

µ1 − µ2
(

1√
cos θ + µ2 sin θ

− 1√
cos θ + µ1 sin θ

)]

σxy = (K∞II −KX
II )

1√
2πr

<[
1

µ1 − µ2
(

µ1√
cos θ + µ1 sin θ

− µ2√
cos θ + µ2 sin θ

)]

mode III


σxz = −(K∞III −KX

III )
1√
2πr

<[
µ3√

cos θ + µ3 sin θ
]

σyz = (K∞III −KX
III )

1√
2πr

<[
1√

cos θ + µ3 sin θ
]

(2.50)

Details about these solutions are presented in the Appendix A.
These fields are implemented in the criterion 2.47. The final criterion is given as follows:

f =
(K∞I −KX

I )2

(KY
I )2

+
(K∞II −KX

II )2

(KY
II )2

+
(K∞I −KX

I )(K∞II −KX
II )

(Kt
I+II )2

− 1 (2.51)

This criterion draws a tilted ellipse in the K∞I − K∞II plane as shown on figure 2.14b.
The size of the ellipse is calibrated based on the parameter KY

I . The angle of tilting with
respect to the K∞I axis and the ratio between the ellipse minor and major axes KY

II /KY
I

depend on material parameters and the crystallographic orientation. These quantities are
shown on figure 2.15 as function of the crystallographic orientation β.
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(a)
(b)

Figure 2.14: Illustration of the yield locus of the region near the crack tip in the K∞I −K∞II

plane (a) for an isotropic case and (b) for a cubic material.

Figure 2.15: The tilt angle of the major yield surface axis with respect to the K∞I axis and
the ratio between the minor and the major axes for different crystallographic orientations.

2.4.2 Yield surface

In his work, Decreuse [Decreuse et al., 2009] explored the shape and position of the yield
domain of the near crack tip region based on a set of finite element simulations for the
case of an isotropic material. This section presents the same idea of investigating the yield
surface in the space of nominal stress intensity factors K∞I −K∞II based on the framework
of elastic and plastic reference fields previously identified.
The idea is to performe an initial elastic-plastic loading with a given mixture ratio between
fracture modes I and II. This loading is assumed to cause the yielding of the region near
the crack tip and to move the center of the yield domain. A small elastic back-loading
is performed to move back the loading state inside the yield surface. Then, different
computations are performed in different directions taking each time the results of the
initial computation as a restart point. This loading path is illustrated on figure 4.24.
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On each loading branch of the star, kinematic reference fields are extracted from the
region of interest. These fields are corrected then projected on the kinematic basis in

order to obtain intensity factors ˙̃Ki(t) and ρ̇i(t) (see equations 2.34 and 2.35). At each
time increment on this loading branch, reconstruction errors Ce and Cep are computed
(see equations 2.38 and 4.35). The difference Ce − Cep between the two errors is used
as an indicator of plasticity at the region of interest. Thus, when this difference reaches
a critical value, the region near the crack tip is assumed to start yielding and a point is
plotted on the loading branch. A yield surface that describes the elasticity domain of the
region near the crack tip can finally be constructed in the K∞I −K∞II plane.

Figure 2.16: Exploration path in the K∞I −K∞II plane and the map of the difference between
reconstruction errors Ce − Cep .

Flow directions can be represented by the vector of the blunting intensity factors
ρ̇ = (ρ̇II , ρ̇I ) computed at the moment the loading reaches the limit of the yield locus.
This procedure was followed in order to identify the yield domain. Figure 2.17 shows the
obtained yield surface for the isotropic case for two different initial loadings.
Both yield surfaces have an elliptical lookalike shape. These shapes are in coherence with
the yield criterion previously presented (see equation 2.48). However, a sharp distortion
of these yield surfaces can be noted especially at the area where the initial loading was
applied. Plastic flow directions are different from the loading directions and oriented
outward the yield surface but they are perturbed by the distorted shape of the yield locus.

Aubin [Aubin, 2001] investigated experimentally the yield surface of a duplex stainless
steel without and with initial monotonic loadings. As shown on figure 2.18, the shape of
yield surface is distorted because of the initial loading. After the yielding of the material
during the initial loading, the yield surface experiences a distortion in this loading direc-
tion and loses its elliptical shape. A surface in the shape of a “Half-moon” is identified
instead. The conventional criteria based only on the kinematic and the isotropic hardening
are no more representative of this distorted yield locus. This shape was observed in lit-
erature by many authors ( [Bui, 1969], [Philipps and Lee, 1979], [Khan and Wang, 1993],
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(a) (b)

Figure 2.17: Yield surfaces and flow directions obtained for an isotropic case for (a) an
initial loading K∞II = 8 cos (π4 )MPa

√
m, K∞I = 8 sin (π4 )MPa

√
m and (b) an initial loading

K∞II = 10 cos (5π
12 )MPa

√
m, K∞I = 10 sin (5π

12 )MPa
√

m.

[Wu and Yeh, 1991], [Aubin, 2008]).

Figure 2.18: Yield surfaces obtained from experiences on the duplex stainless steel (a)
without initial loading and after an initial monotonic loading at (b) ε = 0.5% and (c)
ε = 4% [Aubin, 2008].
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2.4.3 Plastic flow directions

As it was shown in the previous section, the loading history affects drastically the shape
of the yield locus.

Moreover, the distortion of the elastic-
ity domain influences plastic flow direc-
tions. The aim of this section is to ex-
plore plastic flow directions without being
affected by the loading history presented
by the initial loading. On the other
hand, the Von-Mises criterion transposed
to the scale of the crack shows that the
yield surface has an elliptical shape in the
K∞I −K∞II plane. The ratio between minor
and major axes can be obtained analyt-
ically. Therefore, the idea is to load the
crack in an elliptical loading path in the
K∞I −K∞II plane that has the same major
and minor axes ratio as the one obtained
theoretically. The size of the elliptical
loading path is increased incrementally as
shown on figure 2.19. Four cycles are per-
formed on each elliptical loading path be-
fore increasing the shape. The aim of this
loading path is to approach the limits of
the yield surface and to yield the region
near the crack tip without causing its dis-
tortion. With the yielding of the crack
tip region, plastic flow directions can be
studied.

Figure 2.19: Loading path following five el-
liptical shapes with an increasing size while
cycling four times per ellipse.

At each time increment during loading, kinematic fields vFE(x , t) are extracted from
the region of interest. Blunting intensity factors ρ̇i(t) are obtained from projection on the
elastic reference fields φpl

i
(x ) (see equation 2.52).

ρ̇i(t) =

∑
P∈D vFE(P, t) · φpl

i
(P )∑

P∈D φ
pl
i

(P ) · φpl
i

(P )
(2.52)

These rates of blunting intensity factors are integrated in order to obtain the evolution
of the blunting at the crack tip region as function of time:

ρi(t) =

∫ t

0
ρ̇i(x)dx (2.53)

Figures 2.20 and 2.21 show the evolution of blunting intensity factors in the ρI − ρII

plane for an isotropic case and for a cubic case with the crystallographic orientation
β = 30◦. Figures 2.20a and 2.21a present the evolution of these quantities during the full
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loading path. Figures 2.20b and 2.21b show this same evolution during the four cycles of
the last elliptical loading path.

(a) (b)

Figure 2.20: Evolution of blunting intensity factors ρI = f(ρII ) for an isotropic case (a)
during the whole exploration path and (b) during the cyclic loading along the last elliptical
loading path.

(a) (b)

Figure 2.21: Evolution of blunting intensity factors ρI = f(ρII ) for a cubic case with
β = 30◦ (a) during the whole exploration path and (b) during the cyclic loading along the
last elliptical loading path.

As a first observation from figures 2.20 and 2.21, the evolutions of the blunting intensity
factors ρi for both isotropic and anisotropic cases present elliptical shapes rotated at an
angle of 90◦ when compared to the elliptical loading path. It can be noted also that these
shapes are quite symmetric and smooth and do not exhibit perturbations caused by the
loading history effect. Considering that plastic flow directions can be represented by the
intensity factor of the plastic kinematic fields, these directions are totally different from
the applied loading path. This observation is in coherence with the positive dissipation
principle where the plastic flow directions are outward normals to the yield locus shape.
Despite both analyses have the same Von-Mises yield criterion with the same hardening
parameters, different elasticity parameters create different plastic flow directions.

2.5 Conclusion

This chapter presents some basic steps followed in this work in order to transpose the
local plasticity model at the region near the crack tip to a nonlocal scale. It deals with
the problem OF a crack under mixed fracture modes I + II in an a material presenting a
cubic elasticity and a Von-Mises associated plasticity. To keep this study under fracture
modes I + II, the elastic anisotropy was restrained to the case where z = 0 is a plane of
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symmetry for the material, i.e. monoclinic case where material axes are along the crack
coordinates system.

In order to describe crack tip plasticity with the minimum possible number of degrees of
freedom, a model reduction is proposed based on the decomposition of kinematic fields into
a sum of products of intensity factors and spatial distributions. These spatial distributions
present the kinematic basis of the problem. It can be determined for a given material once
for all then used for more complicated analyses to extract the degrees of freedom of the
problem.

Elastic reference fields obtained from the Karhunen-Loeve decomposition coincide with
the Sih, Paris and Irwin’s asymptotic elastic solutions of displacement near the crack tip
of a monoclinic case in which z = 0 is a plane of symmetry for the material.

A yield criterion at the scale of the crack for mixed fracture modes I+II was proposed.
This criterion is based on the elastic shear energy and LEFM fields. Plastic flow directions
are studied based on the elastic and the plastic frameworks previously defined for a given
material. These directions are shown to be different from loading direction and the are
influenced by the loading history.

Many elements presented in this chapter are discussed in more details in the rest of
this work for a more generalized case of cubic anisotropy under the three fracture modes
I + II + III.





Chapter 3

Mixed I+II+III modes with cubic
elasticity and Von-Mises plasticity

This chapter studies crack tip plasticity under mixed fracture modes I + II + III of a nickel
base superalloy single crystal. The material behavior is modeled using cubic elasticity and
an isotropic criterion for plasticity (Von-Mises criterion). The main aim is to explore a
strategy of modeling the crack tip plasticity based on a set of nonlocal variables. The
study starts by finding a convenient framework for the state of kinematic fields. This
framework is meant to be the best possible description of both elasticity and near crack
tip plasticity. Once this framework is obtained, it will be used in a second step to identify
principle ingredients of an incremental and nonlocal plasticity model for the region near
the crack tip. These ingredients are a plastic flow rule, a yield criterion and a set of
internal variables, such as the size and the center of the yield surface. This study will help
writing the model in a thermodynamic context as it is usually done for an elastic-plastic
constitutive law. The work is developed for a range of crystallographic orientations with
respect to the crack coordinates. An isotropic case is studied as well to be used as a basis
for comparison.
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3.1 State of the art

The first part of this section highlights the effect of the crystallographic orientation of a
nickel base single crystal on the cyclic behavior, on the evolution of plasticity around a
notch and on the crack growth rate. The second part gives a brief discussion about the
asymptotic elastic solutions near the crack tip region and the formalisms used for these
solutions.

3.1.1 Influence of the crystallographic orientation

Hanriot [Hanriot, 1993] had studied the cyclic behavior of the single crystals of the AM1
superalloy for various crystal orientations at low and high temperatures. Figure 3.1a
shows the effect of the material orientation on the shape of the stabilized stress-total
strain curves while applying the same inelastic strain amplitude. Figure 3.1b compares
the stress amplitudes of cyclic hardening at the first cycle, the stabilized cycle of the
[001] orientation and the stabilized cycle of the [111] orientation. This latter orientation
exhibits higher hardening. These figures highlight the importance of the crystallographic
orientation in the material response to cyclic loadings.

(a) (b)

Figure 3.1: Effect of the crystallographic orientation on the cyclic behavior of the AM1
at 20 ◦C [Hanriot, 1993] (a) Stress-total strain loops under equivalent plastic strain ampli-
tudes and (b) Cyclic hardening curves of the stress amplitudes as function of the inelastic
strain: 1st cycle & 10th cycle for a crystal orientation close to [001] (squares), 10th cycle
for another close to [111] (empty triangles).

Arakere [Arakere et al., 2009] compared 3D elastic finite element analyses of both an
isotropic and a cubic anisotropic cases. He had shown that incorporating elastic anisotropy
exhibits a noticeable effect on the predicted evolution of plasticity at the region near a
notch. Figure 3.2 shows, for both cases, the distribution of slip sectors i.e. sectors of
constant stresses, near the notch of nickel base superalloy single crystal.



3.1 State of the art 69

Figure 3.2: Comparison between the effect of cubic elasticity and isotropic elasticity
on the predicted distribution of slip fields around a notch based on 3D elastic FEA
[Arakere et al., 2009].

In addition to its effect on the cyclic behavior and on the evolution of plasticity near a
stress concentration region, the crystallographic orientation impacts the crack growth rate
and direction as well. Fleury [Fleury, 1991] had observed an obvious effect of the material
orientation in the crack propagation in the AM1 at 650 ◦C. This effect mainly appears
at low crack growth rates (da/dN < 10−7) with a ratio R = 0.1. The crack growth rate
is multiplied by a coefficient of 4 when switching the material orientation with respect to
the crack front and plane from (001 )[110 ] to (001 )[100 ].

Marchal [Marchal, 2006] studied the crack propagation under fatigue and creep load-
ings in these single crystals at high temperatures. He observed that at low frequency and
at ∆K < 25 MPa

√
m, the crack growth rate is higher when the material is oriented at

�(001)
[100] compared to the orientation �(001)

[110] .

3.1.2 Asymptotic elastic solutions and resolution formalisms

Since 1939, Westergaard [Westergaard, 1939] developed an asymptotic solution of elastic
fields surrounding the crack tip of an isotropic material based on the Airy’s stress functions.
Sih, Paris and Irwin [Sih et al., 1965] extended in 1965 these solutions to the case of a
monoclinic anisotropy by presenting elastic fields near the crack tip region in a rectilinearly
anisotropic bodies. This work was developed for materials presenting certain symmetries
with the crack plane (z = 0 plane of symmetry). Hoenig [Hoenig, 1982] proposed in 1982
a three-dimensional general solution of stress and displacement of a through crack for a
fully anisotropic material based on the Lekhnitskii formalism [Lekhnitskii, 1963].

The Lekhnetskii formalism [Lekhnitskii, 1963] serves to solve a two-dimensional linear
anisotropic elasticity problem. It is known that basic equations of anisotropic elasticity are
the equilibrium equations under static loading conditions, compatibility equations under
small strain assumption and the constitutive law equations relating stress to strain.

σij,j + fi = 0, εij =
1

2
(ui,j + uj,i), σij = Cijklεkl, i, j, k, l = 1, 2, 3 (3.1)

When two-dimensional deformations are considered, i.e. field quantities depend solely
upon two coordinates (x, y), a complex variables formulation can be used. The Lekhnitskii
formalism [Lekhnitskii, 1963] introduces two Airy’s stress functions. It starts with solving
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the equilibrated stress equation in a way that satisfies the stress-strain relation and the
strain-displacement relation.

The Stroh formalism [Stroh, 1958], [Stroh, 1962] and [Ting, 1996] aims to solve the
same problem of linear anisotropic elasticity by using the same complex variables formu-
lation. It starts with the compatible displacements and assumes that they depend only
on two coordinates x and y. Then it verifies the equilibrium equation.

3.2 Material model and finite element implementation

This section gives some details about the constitutive law used to simulate the single
crystal superalloy behavior. It explains also the linear elastic solution near the crack
tip for a general anisotropic material. The finite element model used in simulations is
presented as well with some technical details about the mesh, boundary conditions, the
extraction of stress intensity factors and their employment to monitor the applied loading.

3.2.1 Cubic elasticity and studied material orientations

Constitutive model

As mentioned previously, the anisotropic behavior of the single crystal of the AM1 Nickel
base superalloy presents a convenient application case for this case. The elastic behavior
of the FCC lattice structure of this material can be described by the cubic anisotropy.
The stiffness tensor Cijkl is then characterized by three elastic parameters at a given
temperature. The linear elastic behavior of the single crystal is written as follows:

σ = C : εe (3.2)

The Voigt notation is used:

˜
σ =



σ11

σ22

σ33

σ23

σ13

σ12

 ˜
ε =



ε11

ε22

ε33

2ε23

2ε13

2ε12

 ˜̃
C =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

 (3.3)

with the following values of these parameters: C11 = 197 GPa, C12 = 144 GPa and C44 =
90 GPa. An isotropic case was studied as a reference in order to compare and identify
the effect of the cubic anisotropic. Material parameters used for this reference case are
E = 200 GPa and ν = 0.3.

For plasticity, simulations are restrained in this chapter on the isotropic Von Mises
criterion with a combined nonlinear hardening. The model and material parameters are
the same used in chapter 2 (see 2.3.2). Table 3.1 recalls the used hardening parameters.

Table 3.1: Parameters of the isotropic and kinematic hardening of the model

Isotropic hardening Kinematic hardening

R0 (MPa) Qinf (MPa) b C (MPa) γ
250 5 25 75000 250
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Material orientation

The material orientation is given using the Miller-Bravais notation (hkl) [uvw] (see fig-
ure 3.3). The vector (hkl) can be read as the normal to the crack plane expressed in the
crystal coordinates and [uvw] as the crack propagation direction expressed in the crystal

coordinates. The orientation is written as �(hkl)
[uvw] in order to refer to the existence of both

a crack and a crystal coordinates systems.

Figure 3.3: Example of the orientation �(110)
[001] of the crystal with respect to the crack

coordinates.

The rotation matrix Ωij relating the crack coordinates system and Miller-Bravais in-
dices can be written as follows ([Randle and Engler, 2014]):

Ωij =

u/N1 h/N2 −q/N3

v/N1 k/N2 −r/N3

w/N1 l/N2 −s/N3

 (3.4)

The first and second columns of the matrix correspond to the ~x and ~y axes of the model
representing the crack direction (normal to the crack front) and the normal to the crack
plane respectively, both expressed in the crystal coordinates system. The third column is
~z axis with [qrs] = (hkl) ∧ (uvw). Ni are the norms of the three columns of the matrix
that serve to normalize these vectors to unity.

A range of crystallographic orientations was studied in this chapter in order to identify
the effect of the orientation on the spatial distributions and evolutions of reference fields.
Figure 3.4 summarizes the various studied cases.

Five different material orientations were explored. Four of them exhibit a symmetry

with respect to the crack plane, while the fifth one �(121)
[31̄1̄] doesn’t display any symmetry

with respect to the crack plane. The isotropic case was used as a base for comparison to
compare the effect of the elastic anisotropy on the state of mechanical fields near at the
crack tip region.
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(a) Isotropic case (b) Orientation �(010)
[100]

(c) Orientation �(110)
[11̄0] (d) Orientation �(110)

[001]

(e) Orientation �(110)
[11̄1]

(f) Orientation �(121)
[31̄1̄]

Figure 3.4: Illustrations of the crystallographic orientations with respect to the crack
orientation.

Stiffness and compliance tensors rotation

In the material definition of the numerical part, the crystal orientation is assigned through
the rotation matrix and the stiffness tensor is given in this crystal coordinates system. The
material behavior seen by the crack is then systematically computed by the finite element
software. However, the analytical analysis requires the computation of the rotated stiffness
tensor in order to express it in the crack coordinates system since all analytical solutions
are given in this reference. To do so, the following method and notations were used:

Let Ωij be the already defined transformation matrix between the material and the
crack coordinates systems (equation 3.4). The fourth order stiffness and compliance ten-
sors are expressed in the crack reference as follows:

C
(crack)
ijkl = ΩipΩjqC

(crystal)
pqrs ΩkrΩls

S
(crack)
ijkl = ΩipΩjqS

(crystal)
pqrs ΩkrΩls

(3.5)

which, once written in matrix Voigt notation, give the following expressions:

˜̃
C(crack) = K

˜̃
C(crystal)KT

˜̃
S(crack) = K−T

˜̃
S(crystal)K−1

(3.6)

Matrices K and K−T are 9 by 9 matrices constructed as a patchwork of different 3 by 3

matrices k(1), k(2), k(3) and k(4):

K =

[
k(1) 2k(2)

k(3) k(4)

]
and K−T =

[
k(1) k(2)

2k(3) k(4)

]
(3.7)
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where:


k

(1)
ij = Ω2

ij

k
(2)
ij = ΩilΩin

k
(3)
ij = ΩkjΩmj

k
(4)
ij = ΩklΩmn + ΩknΩml

with



i, j ∈ {1, 2, 3}
k = (i+ 1) mod 3

l = (j + 1) mod 3

m = (i+ 2) mod 3

n = (j + 2) mod 3

(3.8)

with

i mod 3 =

{
i i ≤ 3

i− 3 i > 3
(3.9)

This method merely derives from a pure algebra analysis. T.C. Ting detailed in his book
[Ting, 1996] the origin of these expressions.

Hoenig’s analytical solution

Hoenig [Hoenig, 1982] used the Lekhnitskii formalism to solve the problem of a through
crack for a fully anisotropic material. In a local polar coordinates system (see figure 3.5),
the general solution of displacement field near the crack tip can be written as follows:

ui =

√
2r

π
<
[ 3∑
j=1

mijN
−1
jl K∞l Qj

]
(3.10)

with i ∈ {1, 2, 3} which is equivalent to i ∈ {x, y, z}, <[∗] is the real part of ∗ and mij is
a matrix defined as follows:

Figure 3.5: Cartesian and polar coordinates systems at the crack tip region.

m1i = S′11p
2
i − S′16pi + S′12 + λi(S

′
15pi − S′14)

m2i = S′21pi − S′26 +
S′22

pi
+ λi(S

′
25 −

S′24

pi
)

m3i = S′41pi − S′46 +
S′42

pi
+ λi(S

′
45 −

S′44

pi
)

(3.11)
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Qi =
√

cos θ + pi sin θ (3.12)

with θ the angular position with respect to the crack ligament (see figure 3.5).
N−1
ij and K∞i are respectively the inverse of the matrix Nij defined below and the vector

of stress intensity factors:

Nij =

 1 1 1
−p1 −p2 −p3

−λ1 −λ2 −λ3

 K∞i =

K∞I
K∞II

K∞III

 (3.13)

λi = − l3(pi)

l2(pi)
(3.14)

where pi are the roots of the characteristic sixth order polynomial equation 3.15 obtained
by coupling two compatibility equations that derive from the combination of the strain-
displacement equations and of the anisotropic Hooke’s law (see Appendix A). These roots
are always complex and are obtained as pairs of complex conjugates. Distinct roots with
the same sign of the imaginary part have to be chosen.

l4(p)l2(p)− l23(p) = 0 (3.15)

with

l2(p) = S′55p
2 − 2S′45p+ S′44

l3(p) = S′15p
3 − (S′14 + S′56)p2 + (S′25 + S′46)p− S′24

l4(p) = S′11p
4 − 2S′16p

3 + (2S′12 + S′66)p2 − 2S′26p+ S′22

(3.16)

S′ij is the reduced compliance matrix derived from the compliance matrix Sij written in
Voigt notation:

S′ij = Sij −
Si3S3j

S33
under plane strain condition (3.17)

There are some special cases of anisotropy that lead to a mathematically degenerate
development. These cases can be summarized in the cases where the plane z = 0 is a
symmetry plane for the material. This includes the monoclinic, the orthotropic and the
cubic anisotropies where the crystal axes are normal to symmetry planes and of course
the isotropic case.
The most general case among these special cases is the monoclinic anisotropy with z = 0
a plane of symmetry:

S′14 = S′24 = S′15 = S′25 = S′46 = S′56 = 0 (3.18)
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These symmetries imply that l3(p) = 0 which means that the coupling between the
two compatibilities equations that led to equation 3.15, is no more valid. This requires
another development. The matrix mij (equation A.18) is redefined as follows:

m1i = S′11p
2
i − S′16pi + S′12

m2i = S′21pi − S′26 +
S′
22
pi

m3i = 0

}
for i ∈ {1, 2} and


m13 = 0
m23 = 0

m33 = S′45 −
S′
44
p3

(3.19)

These special cases lead to a solution in displacement that agrees with the solution given
by Sih, Paris and Irwin [Sih et al., 1965] developed for materials with z = 0 present-
ing a plane of symmetry. Hoenig [Hoenig, 1982] and then Banks-Sills and co-workers
[Banks-Sills et al., 2005][Banks-Sills et al., 2007] presented these solutions as follows:

ui =

√
2r

π
<
[ 3∑
j=1

mijBjQj

]
(3.20)

where:

B1

B2

B3

 =
1

p2 − p1

 p2 1 0
−p1 −1 0

0 0 p1 − p2

K∞I
K∞II

K∞III

 (3.21)

We note also that these solutions lead to Westergaard asymptotic solutions when ap-
plied to an isotropic case [Westergaard, 1939].

3.2.2 FE Model: mesh and boundary conditions

In order to simulate the near crack tip elastic-plastic behavior in a small scale yielding,
a set of finite element simulations were automated with Python scripts and performed
on the computation center and the cluster of the LMT using ABAQUS/Standard finite
element solver. Results of these analyses were then post-processed using Python, IPython
Notebook and in some cases Matlab scripts.

The presence of an anisotropic behavior imposes the study of the three fracture modes
simultaneously. This implies the use a 3D model with volume elements for the mesh.
Thus, for finite element implementation, a 3D thin plate (2 m× 2 m) with a 20 mm through
thickness crack is used. Periodicity conditions were applied on the two opposite big faces
of the model to ensure the same displacement on both faces. The purpose of this modeling
is to imitate the behavior of a solid with infinite thickness and to inhibit the effect of the
free surfaces on the evolution of mechanical fields near the crack tip region. A mixture of
Neumann and Dirichlet boundary conditions were used as follows:

• The displacement of the crack front line in the plane z = 0 is blocked.

• Imposed forces applied on reference points of discrete rigid bodies tied to the corners
of the model. These in-plane and out-of-plane forces will ensure all ratios of mixed
mode loadings.

As shown in figure 3.6, all fields are extracted from the middle section of a circular
domain big enough to exclude singularity zone (rmin = 30 µm) and small enough to remain
into the Irwin plastic zone (rmax = 250 µm). The size of this zone is adjusted as function
of the loading type and range and of the material orientation. The procedure performed
to chose the region of interest is described in section 3.4.2.
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Figure 3.6: Full geometry of the finite element model and a zoom on the region of interest
surrounding the crack tip.



3.2 Material model and finite element implementation 77

Stress intensity factors extraction

In order to get rid of the geometry dependencies, the numerical model was monitored
through the stress intensity factors experienced by the crack tip region. For this reason,
two different methods were used to extract these quantities.

• Interaction integral: This energy based method is summarized in Appendix B.
Known also as the M-Integral method, it derives from the computation of the path
independent J-Integral. This method is general and can be applied to all cases
of anisotropies. Besides, it gives precise results of the stress intensity factors and
the accuracy of this method is mesh independent [Banks-Sills et al., 2005]. The M-
integral is complicated to implement but fortunately, it is already integrated in the
finite element software ABAQUS.

• Displacement extrapolation method: The displacement field presented in
Hoenig’s analytical solution [Hoenig, 1982] in equation 3.10 can be re-written as
follows:

ui(r, θ) =

√
2r

π

3∑
j=1

gji (θ)K
∞
j (3.22)

The displacement discontinuity vector between crack faces is then computed as fol-
lows:

∆ui(r) = ui(r, π)− ui(r,−π)

=
√

2r
π

∑3
j=1 ∆gjiK

∞
j

(3.23)

which gives the following vectorial equation:

∆u(r) =

√
2r

π
G ·K∞ (3.24)

with

G =

∆gIx ∆gIIx ∆gIIIx

∆gIy ∆gIIy ∆gIIIy

∆gIz ∆gIIz ∆gIIIz

 and K∞ =

K∞I
K∞II

K∞III

 (3.25)

For a given elastic computation, the components of the numerical displacement dis-

continuity vector are extracted along the crack faces and plotted as function of
√

2r
π .

A fit line is associated to each plot and the slopes ai of these lines compose a vector
A = (ax, ay, az). Thus, equation 3.24 gives:

K∞ = G−1 ·A (3.26)

Note: Computing the displacement discontinuity vector and not the displacement in
a radial path along a fixed θ is a convenient choice. In fact, computing the difference
between crack faces erases the rigid body displacement and the rotation of the crack
that can be caused by the elastic anisotropy.
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Tables on figure 3.7 show a comparison of nominal stress intensity factors prescribed
based on the interaction integral method and then extracted based on the displacement
extrapolation method. Results are shown for different cases: a pure mode I case with

K∞I = 1 MPa
√

m for orientation �(121)
[31̄1̄] , a pure mode II case with K∞II = 1 MPa

√
m for

orientation �(110)
[11̄1] and a pure mode III case with K∞III = 1 MPa

√
m for orientation �(010)

[100] .
The evolutions of the components of the displacement discontinuity ∆u are shown as

function of
√

2r
π .

The displacement extrapolation method is known to be simple to implement but
gives less accurate results compared to energy-based methods [Banks-Sills et al., 2005],
[Banks-Sills et al., 2007]. However, in the studied cases in this work, resulting intensity
factors from this method are in a good agreement with the ones found using the interaction
integral method.

This comparison served to compare explicitly the two extraction methods. Moreover,
it helped verifying the auxiliary solutions (see Appendix B for more details) used in the
interaction integral method implemented in the commercial software ABAQUS. In fact,
the interaction integral method is mainly based on the computation of the J-Integral. This
quantity is defined as follows:

J =
1

8π
K∞i ·B−1

ij ·K
∞
j (3.27)

where Bij is called the pre-logarithmic energy factor matrix. This matrix is implemented in
ABAQUS based on the works of [Shih and Asaro, 1988], [Suo, 1990] and [Gao et al., 1992].
In these works, different general problems of interface cracks between two dissimilar
anisotropic materials are solved. These works were developed on the footsteps of Bar-
nett and Asaro [Barnett and Asaro, 1972] who solved the problem of a slit like crack in
anisotropic materials using the method of continuously distributed dislocations . The final
solution is given in a formulation different from the one given by Hoenig [Hoenig, 1982].

The stress intensity factors are computed in two different ways. The first is based
on the interaction integral where the auxiliary fields are those presented on the work
of Barnett and Asaro [Barnett and Asaro, 1972]. The second is using the displacement
extrapolation method and based on Hoenig’s analytical solutions. Despite these works
use two different approaches to solve the problem of a crack in anisotropic materials, the
stress intensity factors exhibited good agreement as shown on the tables of figure 3.7.

Note: The separated J-integrals is an other method for calculating stress intensity fac-
tors. For mixed fracture modes I + II , it consists in separating the J-integral into JI

and JII integrals associated to the two fracture modes I and II . This method is lim-
ited to the case of orthotropic material in which the material and the crack axes coincide
[Banks-Sills et al., 2005]. Thus this method is not discussed in this work. Further details
about the separation are discussed in subsection 3.5.2.
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Interaction Displacement

integral (MPa
√
m) extrapolation (MPa

√
m)

K∞
I 1 1.02395

K∞
II 0 −0.00245

K∞
III 0 −0.00071

(a) mode I of the orientation �(121)
[31̄1̄] .

Interaction Displacement

integral (MPa
√
m) extrapolation (MPa

√
m)

K∞
I 0 0.0297

K∞
II 1 0.99436

K∞
III 0 0.00039

(b) mode II of the orientation �(110)
[11̄1] .

Interaction Displacement

integral (MPa
√
m) extrapolation (MPa

√
m)

K∞
I 0 0.00009

K∞
II 0 0.00009

K∞
III 1 0.99565

(c) mode III of the orientation �(010)
[100] .

Figure 3.7: The table on the left gives nominal stress intensity factors prescribed based
on the interaction integral method and extracted using the displacement extrapolation
method, the plot on the right gives the evolution of displacement discontinuity components
along the crack faces. Different loading cases and material orientations are presented.
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Stress intensity factors monitoring

Applied loadings are monitored using stress intensity factors. Therefore, a transformation
matrix was computed for each tested material orientation to obtain the relation between
the sought stress intensity factors and loadings to apply. Let Tij be this 3 by 3 transfor-
mation matrix. This matrix is obtained by applying 3 random linear elastic computations

and extracting from each analysis different stress intensity factors values. Let F
(i)
1 , F

(i)
2

and F
(i)
3 be the three forces applied to the model for a random computation (i) with

F
(i)
j =

∥∥∥~F (i)
j

∥∥∥ (see figure 3.6).

The linear behavior of the model indicates that for the computation i:

F
(i)
1

F
(i)
2

F
(i)
3

 =

T11 T12 T13

T21 T22 T23

T31 T32 T33


K

∞(i)
I

K
∞(i)
II

K
∞(i)
III

 (3.28)

After applying three different mixed modes tests, a linear system of nine equations is
solved to obtain the nine parameters of the transformation matrix Tij :

F
(1)
1 F

(2)
1 F

(3)
1

F
(1)
2 F

(2)
2 F

(3)
2

F
(1)
3 F

(2)
3 F

(3)
3

 =

T11 T12 T13

T21 T22 T23

T31 T32 T33


K

∞(1)
I K

∞(2)
I K

∞(3)
I

K
∞(1)
II K

∞(2)
II K

∞(3)
II

K
∞(1)
III K

∞(2)
III K

∞(3)
III

 (3.29)

The loading to apply can be obtained by the following relation:

Fi = Tij ·K∞j (3.30)

with

Fi =

F1

F2

F3

 K∞ =

K∞I
K∞II

K∞III

 (3.31)

The linear transformation matrix Tij depends on the geometry of the used model, the
length 2a of the crack and the material behavior seen by the crack.

3.3 Multiscale approach

As detailed previously in chapter 1 and chapter 2 , first steps of the incremental model
were developed at the LMT by Pommier and co-workers [Pommier and Risbet, 2005],
[Pommier and Hamam, 2007]. The model assumes that pure fatigue crack growth is plas-
ticity induced [Pelloux, 1969], [Laird, 1967], [Neumann, 1969]. Thus, it focuses on mod-
eling crack tip plasticity to study the crack growth. Besides, real service loadings are
complex and the definition of fatigue cycle is not trivial. Hence, models based on cycle
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derivative equations need an efficient cycle reconstruction procedure. To overcome this
issue, the incremental model is proposed based on a set of time derivative equations. The
propagation law is written as follows:

da

dt
= α

∣∣∣dρ
dt

∣∣∣ (3.32)

This law is coupled with a blunting law that relates the evolution of plasticity at the crack
tip defined by ρ as function of the applied loading described by the stress intensity factor
K. Taking account of each fracture modes, this can be written as a vector equation:

ρ̇ = g(K̇
∞
, V int) (3.33)

In order to obtain this condensed nonlocal plasticity model of the region near the crack
tip, a multiscale approach is proposed based on a model reduction procedure. This proce-
dure is based on a set of hypotheses, previously discussed, that permit the decomposition
of kinematic field near the crack tip region. Thus, velocity field is described as a superpo-
sition of three fracture modes. Each mode is decomposed into two degrees of freedom, a
first linear part presenting elastic kinematic fields and a second nonlinear part that con-
tains all plasticity effects. Each part is a product of an intensity factor rate and a spatial
distribution [Pommier et al., 2009], [Pommier, 2016], [Decreuse, 2010], [Frémy, 2012].

vFE(x , t) =
3∑
i=1

˙̃Ki(t)φ
el
i

(x ) +
3∑
i=1

ρ̇i(t)φ
pl
i

(x ) (3.34)

where φel
i

(x ) and φpl
i

(x ) are the elastic and plastic reference fields respectively.
ρ̇i(t) is the rate of the blunting intensity factor that presents crack tip plasticity created
by a crack in mode i.

3.4 Kinematic basis

An elastic and a plastic kinematic bases are discussed in this section. The idea is to find the
best framework that condenses the elastic and the plastic behavior of the region near the
crack tip. This framework should account for the anisotropic behavior of the material. To
do so, finite element simulations are performed. For the elastic basis, linear elastic compu-
tations are performed under specific boundary conditions for different fracture modes. For
the non linear basis, elastic-plastic computations are performed then post-treated based
on the elastic basis. The study is performed under different orientations of the material
with respect to the crack.

3.4.1 Elastic fields and analytical solution

Elastic reference fields of different modes φel
i

(x ) are obtained by applying a pure elastic
computation with a normalized value of the stress intensity factor of the sought mode.
For instance, for mode I, a loading is applied so that K∞I = 1 MPa

√
m and the other two

stress intensity factors are maintained equal to zero.
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Fields are then extracted from the region of interest and saved as an elastic basis.
Regarding the local self-similarity aspect around the crack tip, a Proper Orthogonal De-
composition (POD) can be applied on these reference fields in order to separate the scale
radial function and the angular distribution giving the shape of the field around the crack
tip. It was shown that the first mode of this decomposition is enough to describe reference
fields with an acceptable error. Hence, we obtain:

φel
i

(x ) = f eli (r) · gel
i

(θ) (3.35)

These functions are represented of figures from 3.9 to 3.13, for an isotropic case and for
different material orientations.

The three reference fields of the three fracture modes were grouped together in the same
snapshot matrix then the Proper Orthogonal Decomposition was performed on this matrix.
Thus, the obtained radial evolution f el(r) is the same for the three fracture modes. As
shown on figures from 3.9b to 3.13a and as found in the analytical solution, this radial
function fits with the

√
r function.

gj
i
(θ) are plotted on figures from 3.9a to 3.13a on two types of plots; a 3D plot and a

linear 2D plot. As illustrated in figure 3.8, 3D graphs show the deformed shape of a unit
circle once the corresponding distribution is applied on it. Thus, the deformed shape that
represents gj

i
(θ) has the following coordinates:

Xj
i (θ) = sin(θ) + gjix(θ)

Y j
i (θ) = cos(θ) + gjiy(θ)

Zji (θ) = gjiz(θ)

with i ∈ {I, II, III} and j ∈ {el, pl} (3.36)

These fields were rescaled to obtain a CTOD equal to 1 for mode I and an in-plane
CTSDII equal to 1 for mode II and an out of plane CTSDIII equal to 1 for mode III.∥∥∥∆gj

i

∥∥∥ =
∥∥∥gj

i
(θ = π)− gj

i
(θ − π)

∥∥∥ = 1 (3.37)

Linear plots, shown on the left of figures from 3.9a to 3.13a, present the variation of the
three components of gel(θ) of different fracture modes as function of the angle θ. These
evolutions are compared to the analytical solution proposed by Hoenig.

As shown in these plots, the angular distribution extracted using the Proper Orthogonal
Decomposition fits perfectly with the analytical solution of Hoenig for the isotropic case

and for different anisotropic cases. For material orientation �(121)
[31̄1̄] that represents no

symmetry with respect to the crack plane, a slight difference is observed between the two
solutions for the fracture mode III .

When the crack plane presents a symmetry plane for the crystal lattice, angular dis-
tributions gel

i
(θ) correspond to either an even or an odd function. The decomposition of

reference fields based on symmetry consideration is then possible. The mode I elastic ref-
erence field corresponds to the in-plane symmetric part of the elastic field, mode II to the
in-plane antisymmetric part and mode III to the anti-plane part. Nevertheless, in a more
general case as shown in figure 3.14, angular functions have no symmetrical distributions.
For this reason, elastic reference fields were extracted from pure mode I , mode II and
mode III elastic computations without decomposing them based on their symmetry with
the crack plane.



3.4 Kinematic basis 83

(a)

(b)

Figure 3.8: The gj
i
(θ) function plot (a) on a 3D plot and (b) its projections on different

planes for an isotropic case under mixed fracture modes.
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(a)

(b)

Figure 3.9: Elastic reference fields of an isotropic case decomposed into (a) gel
i

(θ) functions
of the three fracture modes in a deformed angular plot (on left) and in linear plots of
different components (on right) and (b) radial function f el(r).
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(a)

(b)

Figure 3.10: Elastic reference fields of the orientation �(010)
[100] decomposed into (a) gel

i
(θ)

functions of the three fracture modes in a deformed angular plot (on left) and in linear
plots of different components (on right) and (b) radial function f el(r).
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(a)

(b)

Figure 3.11: Elastic reference fields of the orientation �(110)
[11̄0] decomposed into (a) gel

i
(θ)

functions of the three fracture modes in a deformed angular plot (on left) and in linear
plots of different components (on right) and (b) radial function f el(r).
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(a)

(b)

Figure 3.12: Elastic reference fields of the orientation �(110)
[001] decomposed into (a) gel

i
(θ)

functions of the three fracture modes in a deformed angular plot (on left) and in linear
plots of different components (on right) and (b) radial function f el(r).
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(a)

(b)

Figure 3.13: Elastic reference fields of the orientation �(110)
[11̄1] decomposed into (a) gel

i
(θ)

functions of the three fracture modes in a deformed angular plot (on left) and in linear
plots of different components (on right) and (b) radial function f el(r).
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Figure 3.14: gel
i

(θ) functions of the three fracture modes in a deformed angular plot (on

left) and in linear plots of different components (on right) of the orientation �(121)
[31̄1̄] .
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The elastic part of an elastic-plastic finite element kinematic field vFE(x , t) is finally
approximated as follows:

ṽel(x , t) ≈
∑3

i=1
˙̃Ki(t) · φeli (x )

≈
∑3

i=1
˙̃Ki(t) · f el(r) · gel

i
(θ)

(3.38)

with

˙̃Ki =

∑
P∈D vFE(P, t) · φel

i
(P )∑

P∈D φ
el
i

(P ) · φel
i

(P )
(3.39)

3.4.2 Complementary plastic reference fields

Decomposition

Once the elastic basis is obtained, a kinematic field from an elastic plastic finite element

simulation can be projected on this field to obtain the stress intensity factors ˙̃Ki (see
equation 3.39). The elastic field is then reconstructed (see equation 3.38 ) and extracted
from the total field (see equation 3.40). It can be assumed that the residual presents the
nonlinear behavior derived from the plasticity near the crack tip.

A Karhunen-Loève decomposition is applied on this complementary field in order to
separate time dependency ρ̇i(t) from spatial one φpl

i
(x ). The first mode of this decomposi-

tion is enough to reconstruct the field with a reasonable error. This can be firstly explained
by the self-similarity of the geometry near the crack tip and secondly by the confinement of
the plastic zone into the massive K-dominance bulk, which reduces drastically the number
of degrees of freedom of the physics behind plasticity (see equation 3.40).

ṽpl(x , t) = vFE(x , t)−
∑3

i=1
˙̃Ki(t)φ

el
i

(x )

≈
∑3

i=1 ρ̇i(t)φ
pl
i

(x )
(3.40)

The residual is finally considered as the superposition of plastic behaviors generated
by each fracture mode independently. As mentioned before for elastic fields, because of
the cubic anisotropy, this decomposition cannot be made based on the symmetry with
respect to the crack as it was done in previous works in the case of an isotropic material
[Pommier and Hamam, 2007], [Decreuse, 2010], [Frémy, 2012]. The separation is simply
made by assuming that the residual of an elastic-plastic analysis of a pure fracture mode
i (vFE

i (x , t)) is the plastic field of the fracture mode i (ṽpl
i (x , t)) described by the degree

of freedom of the mode i (ρ̇i(t)) and the spatial reference field of mode i (φpl
i

(x )):

ṽpl
i (x , t) = vFE

i (x , t)−
∑3

i=1
˙̃Ki(t)φ

el
i

(x )

≈ ρ̇i(t)φpli
(x )

(3.41)

Plots on figure 3.15 show the contours of the cumulated plastic strain at the region

of interest in a logarithmic scale for an example of material orientation �(110)
[11̄0] . These

plots display a series of homothetic isocontours, with a regular spacing. This observations
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(a) mode I K∞
I = 12MPa

√
m (b) mode II K∞

II = 12MPa
√
m (c) mode III K∞

III = 12MPa
√
m

Figure 3.15: Contours of cumulated plastic strain at the region of interest near the crack
tip plotted in logarithmic scale under different fracture modes loadings for the orientation

�(110)
[11̄0] .

supports the hypothesis of the self-similarity of plastic flow in the crack tip region. It can
then be concluded that complementary reference fields can be locally represented by an
angular function that gives the shape and a radial dependent function that describes the
scale.

φpl
i

(x ) = f pli (r)gpl
i

(θ) (3.42)

Extraction method

An elastic-plastic analysis was performed to extract plastic reference fields. For each mode,
a loading then an unloading ramps were applied to enhance the appearance of the sought
mode. The principle aim is to treat separately the plastic behavior of the region near the
crack tip. Therefore, this loading-unloading process helps getting rid of the reversible elas-
tic mechanism and hence reduces the error when this field is approximated and extracted
from the total kinematic field. For instance for mode I , at a given orientation, K∞I rises
to Kmax

I then comes back to 0 MPa
√

m while K∞II and K∞III remains equal to 0 MPa
√

m.
The maximum value of loading varies with respect to the material orientation and to the
loading mode since we have to ensure that, for all cases, plasticity remains confined near
the crack tip.

Note: For mode II and mode III , a slight mode I opening is applied to avoid crack faces
friction, since we assume that plasticity is the only source of dissipation in the model.
Especially that cubic anisotropy may causes the crack closure under pure shear loadings.

The complementary reference field should be the best possible description of the plas-
tic behavior and the best possible spatial field to approximate the velocity field in equa-
tion 3.34. It is important then that the extracted representative field obey to the principle
hypotheses of the model. As discussed before in 2.3.5, the hypothesis of the confinement of
the plastic zone and the local self-similarity hypothesis can be satisfied by an exponential
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Figure 3.16: The applied loading ramps and the extraction range to obtain complementary
reference fields of a fracture mode i.

decay function:

f pl(r) ≈ Ae−
r
p (3.43)

In order to ensure this exponential decay behavior that summarizes the aforementioned
hypotheses, a campaign of tests were performed for each material orientation. This tests
consist in extracting finite element velocity fields from different loading ranges Kext

i (fig-
ure 3.16) and from different sizes of the region of interest. Then, a full post-processing
was performed on each extracted field to obtain the exponential decay coefficient p. The
size of this extraction region and the range of extraction loading are chosen so that ex-
ponential decay coefficient p presents a positive and quite constant curve for the three
fracture modes. The best representative loading range is then chosen for each fracture
mode separately so that functions of different modes f pli (r) present almost the same evo-
lution. Figures 3.17 show the evolution of the exponential decay function for material

orientation �(010)
[100] under different fracture modes and with various external radii of the

region of interest rmax .

As an example, for the material orientation �(010)
[100] , the external radius of the region of

interest was taken equal to rmax = 0.141 mm and the extraction loading ranges :

• For mode I with Kmax
I = 12 MPa

√
m: Kext

I = 8 MPa
√

m.

• For mode II with Kmax
II = 7 MPa

√
m: Kext

II = 5 MPa
√

m.

• For mode III with Kmax
III = 7 MPa

√
m: Kext

III = 2.5 MPa
√

m.

This process was performed for each material orientation separately since, even under a
Von-Mises isotropic plasticity, the elastic anisotropy and the crystal orientation affect the
evolution of the plasticity near the crack tip region.
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(a) mode I

(b) mode II

(c) mode III

Figure 3.17: Exponential decay coefficient as function of the extraction loading

range for different external radii of the region of interest for the orientation �(010)
[100] .
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Rescaling and results

Once the latter analyses are performed, the obtained complementary reference fields φpl
i

(x )
for a given material orientation are grouped together in one snapshot matrix and a POD is
performed on this matrix in order to obtain different gpl

i
(θ) functions for different fracture

modes and one common radial scale function f pl(r). The reconstructed complementary
field can finally be written as:

ṽpl(x , t) ≈ f pl(r)
3∑
i=1

ρ̇i(t)g
pl
i

(θ) (3.44)

Discontinuities of angular functions gpl
i

(θ) were rescaled to obtain a CTOD = 1 for mode I ,
a CTSDII = 1 for mode II and a CTSDIII = 1 for mode III .

∥∥∥gpl
i

(π)− gpl
i

(−π)
∥∥∥ = 1 (3.45)

The radial function was also rescaled to obtain f pl(r) = 1 when r → 0. These treatments
rescale the discontinuity of a complementary reference field φpl

i
(x ) when r → 0 to a unit

vector.∥∥∥φpl
i

(x )(r → 0, π)− φpl
i

(x )(r → 0,−π)
∥∥∥ = 1 (3.46)

After this rescaling, the blunting intensity factor ρ̇i(t) obtained from the projection of
an elastic plastic kinematic field on φpl

i
(x ) can be considered as the non linear CTOD for

mode I , CTSDII for mode II and CTSDIII for mode III [Pommier, 2016].

Figures from 3.18 to 3.23 show the plot of complementary reference fields. Figures (a),
(b) and (c) show the deformed shape of a trigonometric circle submitted to gpl

I
(θ), gpl

II
(θ)

and gpl
III

(θ) respectively. Figure (d) show the evolution of the logarithm of the common

radial function f pl(r).

Radial scale functions can be fitted with an exponential function, which is reasonable
since plasticity is maximum near the crack tip (r → 0) then it decreases when going
away from the crack tip (r →∞). For a better overview of the graphical representations,
angular distributions were rescaled to an opening equal to 1/2. The deformed shape has
the same area as the initial trigonometric circle which is normal since plasticity occurs
without volume change [Lemaitre and Chaboche, 1994].

Some crystallographic orientations have shown that even a pure mode I opening can
cause some out of plane displacements, which was shown for instance in figures 3.22 and

3.23 with the crystallographic orientations �(110)
[11̄1] and �(121)

[31̄1̄] respectively.
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Figure 3.18: Plastic reference field of the isotropic case.

Figure 3.19: Plastic reference field for material orientation �(010)
[100] .
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Figure 3.20: Plastic reference field for material orientation �(110)
[11̄0] .

Figure 3.21: Plastic reference field for material orientation �(110)
[001] .
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Figure 3.22: Plastic reference field for material orientation �(110)
[11̄1] .

Figure 3.23: Plastic reference field for material orientation �(121)
[31̄1̄] .



98 Chapter 3. Mixed I+II+III modes with cubic elasticity and Von-Mises plasticity

Orthogonality and reconstruction

Despite not being constructed based on geometrical symmetries, elastic and plastic refer-
ence fields were almost orthogonal for all the studied cases. It was verified, for different
orientations, that:

|
∑
P∈D

φel
i

(P ) · φel
j

(P )| ≤ ε, |
∑
P∈D

φpl
i

(P ) · φpl
j

(P )| ≤ ε, |
∑
P∈D

φel
i

(P ) · φpl
k

(P )| ≤ ε (3.47)

with (i, j, k) ∈ {I , II , III } and i 6= j. These observations are in coherence with the
assumption that elasticity and plasticity are kinematically independent. Thus, it is the
possible to consider these reference fields as an orthogonal basis to reduce the model.

The plastic kinematic field of an elastic plastic finite element simulation can be finally
approximated as follows:

ṽpl(x , t) ≈
3∑
i=1

ρ̇iφ
pl
i

(x ) (3.48)

with:

ρ̇i =

∑
P∈D vFE(P, t) · φpl

i
(P )∑

P∈D φ
pl
i

(P ) · φpl
i

(P )
(3.49)

The total velocity field is reconstructed using the following approximation:

vFE(x , t) ≈
∑3

i=1
˙̃Ki(t)φ

el
i

(x ) +
∑3

i=1 ρ̇i(t)φ
pl
i

(x )

≈ f el(r)
∑3

i=1
˙̃Ki(t)g

el
i

(θ) + f pl(r)
∑3

i=1 ρ̇i(t)g
pl
i

(θ)
(3.50)

3.4.3 Reconstruction errors

In order to evaluate the aforementioned decomposition, two reconstruction errors were
computed:

Ce =

√∑
P∈D (vFE(P, t)− ṽel(P, t))2∑

P∈D (vFE(P, t))2
(3.51)

Cep =

√∑
P∈D (vFE(P, t)− ṽ(P, t))2∑

P∈D (vFE(P, t))2
(3.52)

ṽel(x , t) is the kinematic field approximated only with the elastic basis:

ṽel(x , t) =

3∑
i=1

˙̃Ki(t) · φeli (x ) (3.53)
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ṽ(x , t) is the kinematic field approximated with both elastic and plastic bases:

ṽ(x , t) =

3∑
i=1

˙̃Ki(t) · φeli (x ) + ρ̇i(t) · φpli
(x ) (3.54)

Ce is the relative error of the reconstruction using only the elastic field, Cep is the error
using both elastic and plastic fields. The difference between both errors means that the
contribution of the plastic field is enhancing the solution. It can be then concluded that
plasticity mechanism interferes into the total kinematic field which means also that the
crack tip region started to yield. Therefore, the Ce −Cep can be considered as a plasticity
indicator.

Note: The difference of volumes of elements relating different nodes P is not considered.
This error estimator is more sensitive to the region near the crack tip since the mesh has
a higher density in this region, which gives it more weight in the approximation.

Results

For each studied material orientation, a set of elastic plastic simulations were performed
under different loading conditions as shown in plots (a) of figures from 3.24 to 3.28:

• Loading in pure mode I to K∞I = 12 MPa
√

m then unloading to 0.

• Loading in pure mode II to K∞II = 7 MPa
√

m then unloading to 0 with a slight
opening ensured by a K∞I = 0.5 MPa

√
m to avoid crack faces friction.

• Loading in pure mode III to K∞III = 6 MPa
√

m then unloading to 0 with a slight
opening ensured by a K∞I = 0.5 MPa

√
m to avoid crack faces friction.

• A mixed mode loading to reach K∞ = [4, 2, 1](MPa
√

m) in a first step then K∞ =
[9, 5, 4](MPa

√
m) in a second step.

Note: Under elastic-plastic conditions, nominal stress intensity factors K∞i are defined as
the stress intensity factors seen by the crack if the structure had a linear elastic response
once subjected to the same loading conditions.

Kinematic fields from these simulations were projected on the kinematic basis of the

considered material orientation in order to obtain the rates of intensity factors ˙̃Ki(t) and
ρ̇i(t) of different modes. The integration of these stress and blunting intensity factors over
the time laps gave K̃i and ρ̃i. Blunting intensity factor is shown for some cases in plots (b)
on figures from 3.24 to 3.28.

ρi(t) =

∫ t

0
ρ̇i(x)dx (3.55)

K̃i(t) =

∫ t

0

˙̃Ki(x)dx (3.56)
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Figure 3.24: Loading and unloading under a pure mode I (a) applied nominal SIFs, (b)
blunting intensity factors ρi and (c) reconstruction errors Ce and Cep for material orien-

tation �(010)
[100] .

Figure 3.25: Loading and unloading under a pure mode II (a) applied nominal SIFs,
(b) blunting intensity factors ρi and (c) reconstruction errors Ce and Cep for material

orientation �(010)
[100] .
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Figure 3.26: Loading and unloading under a pure mode III (a) applied nominal SIFs,
(b) blunting intensity factors ρi and (c) reconstruction errors Ce and Cep for material

orientation �(010)
[100] .

Figure 3.27: Mixed mode loading(a) applied nominal SIFs, (b) blunting intensity factors
ρi and (c) reconstruction errors Ce and Cep for an isotropic case.
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Figure 3.28: Loading and unloading under a pure mode I (a) applied nominal SIFs, (b)
blunting intensity factors ρi and (c) reconstruction errors Ce and Cep for material orien-

tation �(121)
[31̄1̄] .

Total kinematic fields were then approximated based on these quantities and recon-
struction errors Ce and Cep were computed. Curves (c) of figures from 3.24 to 3.28 show
the evolution of these errors for some material orientations and loading conditions.

Reconstruction errors on figure 3.24(c) show different phases during both loading and
unloading. At the beginning, both errors remain equal to zero. The behavior of the region
near the crack tip is purely elastic. Thus, an elastic reconstruction is sufficient to describe
it. Then, during the phase shown in green, the elastic reconstruction error Ce increases
and the total reconstruction error remains negligible. It means that the incorporation of
the complementary part is useful in the approximation of the total kinematic field. With
the increasing loading, the crack tip region continues yielding and the plasticity become
no more confined. At this spot, a basic hypothesis of the model is no more valid and the
decomposition of kinematic field into an elastic and plastic part is not sufficient. Zhang
[Zhang, 2016] had shown that, under large scale yielding, an other term must be added to
the decomposition to account for generalized plasticity.

According to reconstruction errors, the accuracy of the decomposition depends on
the type of the applied loading and on the material orientation. Nevertheless, these errors
remain reasonable even under mixed mode loading (see figure 3.27) and for non symmetric
material orientation (see figure 3.28).

As shown on figure 3.28b, under a pure fracture mode I loading, material orientation

�(121)
[31̄1̄] exhibits a plastic flow in both directions I and II .
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(a) Isotropic case (b) �(110)
[11̄0]

(c) �(110)
[11̄1] (d) �(121)

[31̄1̄]

Figure 3.29: Evolution of the blunting intensity factor ρi us function of (K̃i −K∞i ) under
pure fracture mode I .

Figure 3.29 shows the evolution of different blunting intensity factors ρi as function
of (K̃i − K∞i ) for different material orientations under a pure mode I loading. It can be
noted that these evolutions are linear. In fact, the difference (K̃i −K∞i ) is related to the
“shielding effect” due to the confinement of the plastic zone. For this reason, this difference
is proportional to the evolution of the plasticity described by the blunting intensity factor.

It can be noted as well that material orientations �(110)
[11̄1] and �(121)

[31̄1̄] are exhibiting a plastic
flow in directions II and III even though the loading is pure fracture mode I .

3.4.4 Other yield criteria

As discussed in the previous subsection, the difference between relative errors Ce − Cep

can indicate whether the contribution of the complementary part is enhancing the quality
of the approximation or not. This indication serves as a criterion to predict the yielding of
the crack tip region. Moreover, further indicators based on the aforementioned kinematic
basis can be used.

• Reconstructed complementary field ratio

Assuming that the quality of the approximation is acceptable, the ratio of the con-
structed plastic field with respect to the full reconstructed field can give an idea
about the plasticity at the crack tip region without counting for the approximation
error.

Ccorr =

√ ∑
P∈D (ṽpl(P, t))2∑

P∈D (ṽel(P, t) + ṽpl(P, t))2
(3.57)
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• Blunting intensity factors

The Karhunen-Loeve decomposition was performed on the spatial reference fields of
all modes combined in one snapshot matrix, therefore, one scale function fpl(r) is
obtained for the three fracture modes of the complementary reference field. Besides,
the spatial basis was rescaled to obtain a discontinuity between crack faces equal to
a unit vector when r → 0 (equation 3.46). This rescaling process allows introducing
intensity factors ρ̇I , ρ̇II and ρ̇III as homogeneous physical quantities that describe
the plastic opening of the crack. As a consequence, these quantities are comparable
and can be gathered in one equivalent expression that can serve as a yield indicator.

ρeq(t) =
√
ρ2
I(t) + ρ2

II(t) + ρ2
III(t) with ρi(t) =

∫ t

0
ρ̇i(x)dx (3.58)

These yielding indicators will be used in section 3.5.3 to investigate the limits of the
yield locus.

3.5 Incremental material model

The next step is to find an extended elastic-plastic material model for the region near
the crack tip under mixed fracture modes I + II + III based on the previously identified
elastic and plastic frameworks. This modeling requires the identification of an extended
yield criterion for the crack region, a plastic flow rule and an evolution law of internal
variables such us the yield locus center and size.

3.5.1 Yield locus

A yield criterion for the region near the crack tip can be proposed based on the density
of the elastic shear energy and LEFM fields. This criterion was developed for the 3D
case for isotropic materials using Westergaard asymptotic solutions in the work of Frémy
[Fremy et al., 2012]. The criterion presented previously in 2.4.1 for mixed fracture modes
I + II will be extended in this section to the general case of anisotropy under mixed
fracture modes I + II + III based on Hoenig’s analytical solutions.

For the case of a cracked structure, the idea is to integrate elastic distortional energy
density on a domain with radius δ around the crack tip where LEFM fields are still valid.
The obtained distortional energy is written as follows:

ED =

∫ π

θ=−π

∫ δ

r=0

1

2
σD : S : σDrdrdθ (3.59)

The behavior of the material remains elastic as long as loading state remains inside
the yield surface, therefore, an assumption is made that Hoenig analytical solutions are
valid inside this domain as long as the possible motion of the center of the yield surface is
taken into account. Therefore, the position of the yield surface KX = (KX

I ,K
X
II ,K

X
III ) is

accounted for and subtracted from the applied loading K∞ = (K∞I ,K
∞
II ,K

∞
III ).
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The Hoenig solution in stress is written as follows:

σxx =
1√
2πr
<
[ 3∑
i=1

p2
iN
−1
ij K

∗
j

Qi

]
σyy =

1√
2πr
<
[ 3∑
i=1

N−1
ij K

∗
j

Qi

]
σxy = − 1√

2πr
<
[ 3∑
i=1

piN
−1
ij K

∗
j

Qi

]
σzx =

1√
2πr
<
[ 3∑
i=1

piλiN
−1
ij K

∗
j

Qi

]
σzy = − 1√

2πr
<
[ 3∑
i=1

λiN
−1
ij K

∗
j

Qi

]
σzz =

1√
2πr
<
[ 3∑
i=1

αiN
−1
ij K

∗
j

Qi

]
(3.60)

under plane strain assumption:

αi = − 1

S33

[
S31p

2
i + S32 − S34λi + S35piλi − S36pi

]
(3.61)

with:

K∗ =

 K∞I −KX
I

K∞II −KX
II

K∞III −KX
III

 (3.62)

Vectors pi, λi, Qi and matrix Nij were previously detailed in section 3.2.1.
The deviatoric part of the Hoenig stress is computed then injected into the expression 3.59.
It is important to mention that this analysis is made in the crack coordinates system,
therefore the compliance tensor S has to be expressed in this same coordinates system.

The technical computing software Mathematica was used to ensure these mathematical
developments.

The obtained distortional energy is function of the nominal stress intensity factors and
the position of the yield surface ED(K∞I − KX

I ,K
∞
II − KX

II ,K
∞
III − KX

III ). In analogy with
the local Von-Mises criterion, a criterion is set when this energy reaches a pure mode I
yield threshold KY

I so that:

ED(K∞I −KX
I ,K

∞
II −KX

II ,K
∞
III −KX

III ) = ED(KY
I , 0, 0) (3.63)

Thus, the distortional energy is a factor of the radius δ of the integration area. This
scale factor can be eliminated from both sides of the equation 3.63 to obtain an expres-
sion independent from the integration radius δ which finally gives a scale invariant yield
criterion. This yield criterion can be rewritten as a yield function f :

f =
(K∞I −KX

I )2

(KY
I )2

+
(K∞II −KX

II )2

(KY
II )2

+
(K∞III −KX

III )2

(KY
III )2

−1+ψ(K∞I −KX
I ,K

∞
II −KX

II ,K
∞
III−KX

III ) (3.64)

with

ψ =
(K∞I −KX

I )(K∞II −KX
II )

(Kt
I+II )2

+
(K∞I −KX

I )(K∞III −KX
III )

(Kt
I+III )2

+
(K∞II −KX

II )(K∞III −KX
III )

(Kt
II+III )2

(3.65)
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KY
II , KY

III , Kt
I +II , Kt

I +III and Kt
II +III are intrinsic parameters of the material. They

depend on elasticity coefficients, the crystallographic orientation with respect to the crack
plane and direction and on the adjustable parameter KY

I presented in equation 3.63.
In the K∞I −K∞II −K∞III diagram, this criterion function represents an ellipsoid slightly

tilted from the K∞I axis as shown in figure 3.31. The size of this ellipsoid is given by the
adjustable parameter KY

I . The shape depends on the elasticity constants through the two

fixed ratios
KY

II

KY
I

and
KY

III

KY
I

. The angles of tilting are functions of Kt
I +II , Kt

I +III and Kt
II +III

that depend on elasticity coefficients. In fact, the anisotropy creates the coupling between
different fracture modes in the expression of ψ, this coupling manifests in the angle of
tilting which makes it directly related to the orientation of the crystal with respect to the
crack plane.

When the material is orthotropic and its axes coincide with the crack axes, ψ in
equation 3.64 is equal to zero and the major axis of the ellipsoid is parallel to the K∞I axis
in the K∞I −K∞II −K∞III diagram as shown on figure 3.30. For an isotropic case, the ratio
between the major axis and the two minor axes is given as follows [Pommier et al., 2009],
[Decreuse, 2010], [Frémy, 2012]:

KY
II

KY
I

=
√

7−16ν(1−ν)
19−16ν(1−ν) = 0.48

KY
III

KY
I

=

√
7−16ν(1−ν)

24 = 0.39

}
for ν = 0.3 (3.66)

In order to write this criterion in a thermodynamic framework, new variables Gi ho-
mogeneous to the energy release rate G are introduced, the criterion is then rewritten as
follows:

f =
|GI |
|GY

I |
+
|GII |
|GY

II |
+
|GIII |
|GY

III |
− 1 + ϕ(GI ,GII ,GIII ) (3.67)

with

ϕ = sign(GI GII )

√
|GI GII |
|Gt

I+II |
+ sign(GI GIII )

√
|GI GIII |
|Gt

I+III |
+ sign(GII GIII )

√
|GII GIII |
|Gt

II+III |
(3.68)

Gi ∝ sign(K∞i −KX
i )(K∞i −KX

i )2

GY
i ∝ (KY

i )2

Gt
i+j ∝ (Kt

i+j )
2

(3.69)

For instance for the isotropic case, the exact expressions assigned to these quantities
are ([Decreuse, 2010], [Frémy, 2012]):

Gi = sign(K∞i −KX
i ) 1−ν2

E (K∞i −KX
i )2 , GY

i = 1−ν2

E (KY
i )2 for i ∈ {I , II }

GIII = sign(K∞III −KX
III ) 1+ν

E (K∞III −KX
III )2 , GY

III = 1+ν
E (KY

III )2
(3.70)

For an orthotropic case where the material axes are along the problem coordinates
system, an expression of these quantities can be given based on the work done by
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[Banks-Sills et al., 2005]:

GI = sign(K∞I −KX
I )

D0

√
S′
22

2 (K∞I −KX
I )2 , GY

I =
D0

√
S′
22

2 (KY
I )2

GII = sign(K∞II −KX
II )

D0

√
S′
11

2 (K∞II −KX
II )2 , GY

II =
D0

√
S′
11

2 (KY
II )2

GIII = sign(K∞III −KX
III )

√
S′
44S

′
55−S′2

45

2 (K∞III −KX
III )2 , GY

III =

√
S′
44S

′
55−S′2

45

2 (KY
III )2

(3.71)

with D0 =
√

2
√
S′11S

′
22 + 2S′12 + S′66.

Figure 3.30: Yield domains is an ellipsoid in the K∞I −K∞II −K∞III space and a twisted octa-
hedron in the GI −GII −GIII space when the anisotropy seen by the crack is orthotropic.

Figure 3.31: Yield domains is an ellipsoid in the K∞I − K∞II − K∞III space and a twisted
octahedron in the GI − GII − GIII space when the anisotropy seen by the crack is not
orthotropic.

This new criterion draws an octahedron in the GI − GII − GIII diagram with GI as
a principle axis. As shown on figure 3.30, the octahedron is straight when the material
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is orthotropic and when the material axes coincide the crack coordinate system. When
it is not the case, the octahedron is slightly twisted around axes GII and GIII as shown
on figure 3.31. The twisting is given by the function ϕ and it mainly depends on the
crystallographic orientation with respect to the crack plane.

3.5.2 FE simulation: ellipsoid exploration

A method based on finite element simulations and the kinematic bases already defined in
section 3.4 is used in this section to identify plastic flow directions.

Ellipsoid loading path

As shown previously in chapter 2, a first attempt was made to explore yield surface by
loading in one direction with a given mixed mode ratio, to make a slight elastic comeback
inside the yield locus, then to start exploring in different directions with different mixture
ratios. In each direction, a plasticity indicator was computed based on the kinematic
basis previously found. It was possible to identify the elliptic shape of the yield surface
in a K∞I − K∞II diagram, however, it was obvious that the initial loading has distorted
drastically the shape of the yield surface. This distortion has an effect also on the plastic
flow directions. In order to avoid this phenomena or at least to reduce its effects, a
new manner of exploration was proposed in order to get closer to the yield surface limits
without deforming it. The idea is to follow a loading path similar to the analytically
computed yield locus ellipsoid (same ratios), and to increase the size of the ellipsoid step
by step by increasing the adjustable parameter KY

I . At a certain point, the cracked region
starts yielding continually while staying tangent to the yield surface but without drastically
deforming it. Plastic flow directions can then be studied without being perturbed. For each

Figure 3.32: Loading path following an ellipsoid in the K∞I − K∞II − K∞III which gives an
octahedron in the GI −GII −GIII diagram.

material orientation, the two ratios of the ellipsoid were analytically computed. Tilting
angles were found to be very small, at least for the studied range of material orientations,
therefore, the tilting was neglected to simplify the loading path. Three ellipsoids with
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different sizes (KY
I = 2 MPa

√
m,KY

I = 4 MPa
√

m and KY
I = 6 MPa

√
m) but same ratios were

explored for each case.

Reconstruction errors

Reconstruction errors of the full loading path (equations 3.51 and 3.52) were computed
based on the kinematic bases previously determined for each material orientation. Fig-

ure 3.33 shows these errors for the material orientation �(010)
[100] . Three main phases that

correspond to the three explored ellipsoids can be distinguished. A snapshot of the cumu-
lated plastic strain plotted in logarithmic scale is shown in each one of these three phases.
According to the difference between Ce and Cep errors and as shown in the cumulated
plastic strain plots, the first ellipsoid kept the crack tip region into an elastic regime. The
second loading path started to create some yielding in this region and the third ellipsoid
is ensuring plasticity at a confined zone near the crack tip. It can be noted that, for

Figure 3.33: Reconstruction errors of the ellipsoid exploration path for material orientation

�(010)
[100] .

this presented material orientation �(010)
[100] , the applied mixed mode loading during the last

ellipsoid has the same order of magnitudes as the ones shown on figures 3.24, 3.25 and
3.26. However, the third phase on figure 3.33 exhibits a smaller difference between Ce and
Cep . It can be concluded that staying near the borders of the nominal yield locus needs
less correction using the plasticity field.

Plastic flow directions

• Extended flow rule

Since the model does not take into account damage, neither strain localization, the only
source of dissipation is the plastic blunting of the crack tip. Hence, the dissipated energy
density can be written for a volume element as a fraction of the elastic distortional energy
per unit volume. The integration over the circular region of radius δ centered at the
crack tip gives that the dissipated energy per unit length of crack front is function of the
elastic distortional energy of this circular region. As shown in equations 3.59 and 3.63,
the yield criterion of the cracked region derives from this elastic distortional energy, as
a consequence, the pseudo-potential of dissipation is an expression of the yield criterion
Ω = Ω(f(K∞i )) = Ω(f(Gi)). Thus, the normality flow rule can be associated to this
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extended material model of the cracked region. This statement means that plastic flow
directions are considered normal to the yield locus to ensure maximum dissipation as if it
was a problem of standard generalized model.

With the approximation of kinematic fields, intensity factors ρ̇i can be introduced as
extensive variables that describe the plastic flow at the crack tip region. These blunting
intensity factors, equivalent to the plastic strain in a standard generalized model, are
assumed to follow an extended normality flow rule. On the other hand, the incremental
model assumes that the crack growth is a geometric consequence of the plastic contribution
of different fracture modes. The extension area of the crack is then expressed in terms
of blunting intensity factors. Regarding the relation between the the cracked area and
the energy release rate, it’s possible to consider ρ̇i and Gi as dual variables. The flow
rule derives finally from the pseudopotential Ω as a normality rule: ρ̇i = ∂Ω/∂Gi . As
mentioned before, the pseudopotential of dissipation Ω can be written as function of the
yield criterion f(Gi) (equation 3.67). Thus, the normality rule is written as follows:

ρ̇i = λ̇
∂f(GI ,GII ,GIII )

∂Gi
(3.72)

• Results from FE simulations and kinematic bases

Kinematic fields were extracted from the ellipsoid path simulation. The plastic flow direc-
tions are obtained by the projection of these fields on the corresponding basis in order to
identify, at each time increment, the vector of blunting intensity factors ρ̇ = (ρ̇I , ρ̇II , ρ̇III ).
Figure 3.34 shows these vectors plotted, with the loading path, in the K∞I − K∞II − K∞III

diagram for an isotropic case. As a first observation, the plastic flow directions are totally
different from the loading direction.

According to reconstruction errors discussed in 3.5.2, the yielding is well ensured during
the last ellipsoid. Therefore, only this last loading sequence is plotted on figures from 3.35
to 3.39 for the clarity of representation and the simplicity of discussion. These figures
show the distribution of plastic flow directions plotted in the GI −GII −GIII diagram for
different material orientations.

The accuracy of the normality flow rule depends on the anisotropy seen by the crack.
For the isotropic case shown in K∞I −K∞II −K∞III diagram in figure 3.34 and in GI−GII−GIII

diagram in figure 3.35, the flow rule occurs in a direction normal to the yield surface
described by the loading path. With the anisotropy, the normality rule was verified for
some material orientations during some loading sequences and more or less for others. It’s
then obvious that plastic flow direction highly depends on the elastic anisotropy. Material

orientations �(010)
[100] in figure 3.36 and �(110)

[001] in figure 3.37 have shown that applying a

loading in a given K-nominal plane with only two mixed modes (GI−GII or GI−GIII ) will
restrain the plastic flow in that loading plane. Once the loading combines the second and
third fracture modes together, a plastic flow out of loading plane appears with a privileged

flow in the direction II for orientation �(110)
[11̄0] and in the direction III for orientation �(110)

[001] .

When loaded in the GI − GIII plane, orientation �(110)
[11̄1] (figure 3.38d) exhibits a plastic

flow in the direction II . This flow direction changes its sign when the loading switch from
increasing GIII to decreasing one and vice versa. Nevertheless, no out-of-plane plastic
flow is observed when loading is in the GI − GII plane. Figure 3.39d shows that for

orientation �(121)
[31̄1̄] , two in-plane plastic flows occur in a given loading plane (I − II or
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Figure 3.34: Plastic flow directions of the last explored ellipsoid for an isotropic case.

I − III ), besides, an out-of-plane plastic flow appears systemically. This out of the I − II
plane (respectively I − III plane) plastic flow experiences a transient change of direction
when the loading GIII (respectively GII ) changes its variation sign.

It is important to recall that, for the anisotropic case, the tilting of the yield domain
was neglected in the loading path since the aim of these loading sequences is to approach
the maximum the borders of the yield locus without distorting it and not identifying these
borders. Knowing that the values of these tilting angles in the K-nominals space (the
twisting angle in the GI −GII −GIII space) vary from an orientation to another, the im-
posed shape of the exploration path may cause the yielding of the crack tip region for some
material orientations during some loading phases more than others. As a consequence, the
yield domain may experience more distortion in these phases compared to others, which
can explain the perturbation in the normality flow rule for some symmetric faces of the
octahedron more than others (see plots (b) and (c) of figures 3.38 and 3.39). Moreover,
the twisting can be clearly observed on the edges and around the vertices of some crys-
tallographic orientations (figures 3.38 and 3.39) and the magnitude of this twisting varies
from one orientation to another.

• Discussion about the convexity of the yield domain and the choice of Gi

as dual variables for ρi

Ishikawa and co-workers [Ishikawa, 1980] had shown that, under mixed fracture modes I
and II, it is possible to separate the J-integral into two path independent integrals per
mode (JI and JII ) as long as the material is isotropic. This conclusion was established
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Figure 3.35: Plastic flow directions of the last explored ellipsoid for an isotropic case (a)
in the GI −GII −GIII diagram and their projections on the (b) GI −GII , (c) GI −GIII

and (d) GII −GIII planes.
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Figure 3.36: Plastic flow directions of the last explored ellipsoid for material orientation

�(010)
[100] (a) in the GI − GII − GIII diagram and their projections on the (b) GI − GII , (c)

GI −GIII and (d) GII −GIII planes.
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Figure 3.37: Plastic flow directions of the last explored ellipsoid for material orientation

�(110)
[001] (a) in the GI − GII − GIII diagram and their projections on the (b) GI − GII , (c)

GI −GIII and (d) GII −GIII planes.
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Figure 3.38: Plastic flow directions of the last explored ellipsoid for material orientation

�(110)
[11̄1] (a) in the GI − GII − GIII diagram and their projections on the (b) GI − GII , (c)

GI −GIII and (d) GII −GIII planes.
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Figure 3.39: Plastic flow directions of the last explored ellipsoid for material orientation

�(121)
[31̄1̄] (a) in the GI − GII − GIII diagram and their projections on the (b) GI − GII , (c)

GI −GIII and (d) GII −GIII planes.



3.5 Incremental material model 117

independently by [Sun and Jih, 1987], [Raju et al., 1988] for interfacial cracks. Banks-
Sills and co-workers [Banks-Sills et al., 2005] have shown that this separation is possible
for an orthotropic material with a coincidence between the material axes and the crack

coordinates system, which is the case of orientations �(010)
[100] and �(110)

[001] in this work. The
demonstration was done using two different methods. A first one is using the alternative
definition of the J-integral known as the crack closure integral. A second method is
computing analytically the known expression of the J-Integral while separating stress,
strain and displacement fields into symmetric and asymmetric parts. The following JI

and JII were obtained (no distinction was made in this work between Rice’s J-integral
and the energy release rate G):

GI = JI = C
(I )
1 K2

I + C
(I )
2 KIKII + C

(I )
3 K2

II

GII = JII = C
(II )
1 K2

I + C
(II )
2 KIKII + C

(II )
3 K2

II

(3.73)

Despite the coefficients of mixture C
(I )
2 , C

(I )
3 , C

(II )
1 and C

(II )
2 are present in the analytical

formulation of the J-integrals JI and JII , authors have shown numerically that these

coefficients are nine orders of magnitude smaller than the coefficients C
(I )
1 of the pure

mode I for JI and C
(II )
3 pure mode II for JII . Associating an energy release to each

fracture mode is then possible. The fact that GI ,GII and GIII can be defined without

mixing fracture modes for the isotropic case and for orientations �(010)
[100] and �(110)

[001] explains
why the plastic flow directions in the diagram GI −GII −GIII do not exhibit any mixture
when loaded in planes I − II and I − III in figures 3.35, 3.36 and 3.37. The choice of the
conventional Gi as a dual variable to ρ̇i is adequate and the normality rule is accurate for
these cases.

For other orientations �(110)
[11̄1] and �(121)

[31̄1̄] , the “wavy” behavior observed along the bor-
ders of the loading path on figures 3.38 and 3.39 is in concordance with the twisted
octahedron shape found analytically in the diagram of energy release rates (equation 3.67
and figure 3.31). However, we recall that, in this work, the building of the model is mon-
itored by the kinematics. Thus, the choice of variables of the thermodynamic framework
is monitored by the kinematics as well. Therefore, it is important to chose a dual variable
for ρ̇i that is responsible only for the plastic flow in direction i.

These observations indicate that variables Gi are not a convenient choice for crystallo-
graphic orientations that are not seen as orthotropic anisotropy by the crack. A good
choice of dual variables G̃i taking into account the mixture of fracture modes can exhibit
a good flow rule and a regular convex shape of the yield domain in the diagram of these
new variables. Since the final aim of this thesis is to work with a crystal plasticity model,
this approach was not pursued in this work, it can be discussed in a further work.

• Discussion about the distortion of the yield domain

The motion of the center of the macroscopic yield domain is already taken into account
in the model via the back-stress variable (kinematic hardening), the growing of this do-
main is less apparent since the used isotropic hardening is not important (see table 3.1).
However, the distortion of the yield surface under nonproportional loadings is not taken
into account. Therefore, the assumption that the yield domain will preserve its shape and
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fixed size is not always valid regarding the yielding effects and the over-hardening induced
by nonproportional loadings.
In fact, many works ([Abdul-Latif et al., 1994], [Aubin, 2001],[Aubin et al., 2002], etc.)
had shown that, the over-hardening is not directly and only correlated to isotropic hard-
ening as it was commonly known. Therefore, even thought the isotropic hardening is not
important in the used behavior law in this work, the over-hardening may occur in rela-
tion with the kinematic component of the hardening. The distortion of the yield locus
can be modeled by taking into account the over-hardening [Benallal and Marquis, 1987],
[Calloch, 1997], [Tanaka, 1994], [Abdul-Latif et al., 1994].

3.5.3 FE simulation: Ramified exploration

Previous analyses gave an idea about plastic flow directions. Another main ingredient
of the model is the evolution of the elastic domain of a representative section of the
crack front. In an analogy with the kinematic hardening in an elastic-plastic behavior, a
variable KX = (KX

I ,K
X
II ,K

X
III ) can be assigned to the position of the center of the elastic

domain. Moreover, in an analogy with an isotropic hardening, the size of this domain can
be described using KR = (KR

I ,K
R
II ,K

R
III ).

Note: In fact, as long as the loading point is inside the elastic domain, no blunting occurs
at the crack tip region. Besides, the crack growth rate is proportional to the blunting rate.
Therefore, the crack will not grow as long as the effective amplitude of the stress intensity
factor is below the size of the elastic domain. In other words, defining the size of an elastic
domain is equivalent to introducing into the model an intrinsic parameter that define the
nonpropagation threshold ∆Kint

th [Ruiz-Sabariego and Pommier, 2009]. As a consequence,
the size of the elastic domain is crucial and needs to be integrated in the incremental
plasticity model of the region near the crack tip.

The size of the yield domain and the position of its center can be obtained based on a
set of finite element simulations by exploring the K∞I − K∞II − K∞III space. A strategy to
assess these quantities is discussed in this section.

Loading path

As shown in the previous part, the ellipsoidal loading did ensure the yielding of the crack
tip region without drastically deforming it. The last time increment of the ellipsoidal load-
ing corresponds to zero nominal stress intensity factors: K∞ = 0. Starting from this last
increment, different simulations were performed by loading with different mixture ratios
in the K∞I − K∞II − K∞III space. Simulations are independent and as shown in figure 3.40,
each branch of the ramified loading corresponds to an elastic-plastic simulation.

Note: Each simulation of this exploration has, as an initial condition, the state of fields
at the last time increment of the previous ellipsoidal simulation. In fact, an assumption
is made that the previous simulation had already caused the motion of the yield domain
toward a positive value of K∞I . Thus, it became possible to explore the full yield domain
without being opposed to the crack closure when exploring in different directions.
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Figure 3.40: From an ellipsoid to a ramified exploration path in the K∞I − K∞II − K∞III

diagram.

3.5.4 Plastic flow directions

On each loading branch, these criteria were computed based on the kinematic basis of the
corresponding crystallographic orientation. A threshold value was assigned to each one
of these yielding indicators. An assumption is made that the crack tip region starts to
yield when the computed indicator reaches this threshold value. Different yield criteria
previously discussed in subsection 3.4.4 were used to assess the borders of the yield domain.
Figure 3.41 shows the results of the ramified loading in the plane K∞I −K∞II and the plastic
flow directions for the isotropic case. The results of the different criteria are quite close to
each others. They are all showing a good agreement with the elliptical shape of the yield
domain predicted by the extended Von-Mises criterion for the region near the crack tip.

For the following study, the equivalent blunting intensity factor ρeq presented in equa-
tion 3.58 was chosen as a criterion for yielding. Figures 3.42, 3.43 and 3.44 show the

obtained yield domains for the isotropic case and for material orientations �(010)
[100] and

�(110)
[001] respectively. Plots (a) and (b) present the yield surfaces computed in the K∞I −K∞II

and the K∞I −K∞III planes respectively.

It is obvious, from the obtained results, that the shape of the yield domain did not expe-
rience a drastic distortion caused by the initial ellipsoidal loading. Plastic flow directions
are determined at every time increment through the vector ρ̇. The normality flow rule
seems to be respected for these studied cases and plastic flow directions are not perturbed
by the loading history. Based on the fitted ellipse, the size and the center of the yield
domain can be determined. The center is shown on the graphs as the pentagon symbol.
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Figure 3.41: A section of ramified loading path in the K∞I − K∞II plane, the yield surface
is given by three different yielding estimators.

(a) (b)

Figure 3.42: Yield locus in (a) the K∞I −K∞II and (b) the K∞I −K∞III diagrams for a ramified
exploration and after an ellipsoidal exploration for the isotropic case.
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(a) (b)

Figure 3.43: Yield locus in (a) the K∞I −K∞II and (b) the K∞I −K∞III diagrams for a ramified

exploration and after an ellipsoidal exploration for orientation �(010)
[100] .

(a) (b)

Figure 3.44: Yield locus in (a) the K∞I −K∞II and (b) the K∞I −K∞III diagrams for a ramified

exploration and after an ellipsoidal exploration for orientation �(110)
[001] .
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A more refined quantitative analysis for each material orientation and under different
loading cases permits the study of the evolution of the center and the size of the yield
domain as function of the blunting of the crack tip. An empirical evolution equation can
be assigned to each variable.

These equations, obtained numerically for a stationary crack problem, can be incorpo-
rated in the reduced model as the evolution laws of the internal variables ∂Vint/∂ρ. In an
advanced study, the crack can be “grown” numerically without allowing the plastic strain.
Thus, it become possible to assess the evolution equations of internal variables with re-
spect to the crack length ∂Vint/∂a. Finally, an evolution equation can be determined
independently for each internal variable, due to plasticity and due to crack propagation
under different crystallographic orientations with respect to the crack plane and front.

3.6 Conclusion

The confinement of the plastic zone in a K-dominance elastic bulk creates a high de-
pendency between the evolution of plasticity near the crack tip region and the elastic
anisotropy, i.e. the crystal orientation with respect to the crack.

The elastic and plastic reference fields are determined for different crystallographic
orientations with respect to the crack plane and direction. The elastic basis obtained
using the Proper Orthogonal Decomposition shows good agreement with Hoenig’s elastic
solutions for all cases of material orientations presented in this work.

These frameworks helped reducing the number of degrees of freedom of the problem
as the crack tip plasticity is reduced to a set of nonlocal variables. The loading applied
on the crack is described using the stress intensity factors of the three fracture modes
K̇∞I , K̇

∞
II , K̇

∞
III whereas the blunting of the crack tip region is described using the blunting

intensity factors ρ̇I , ρ̇II , ρ̇III .

An extended Von-Mises criterion for the region near the crack tip is determined based
on Hoenig’s elastic solutions. A nonlocal yield criterion of this region can be written. A
qualitative study of the plastic flow directions is performed under different crystallographic
orientations based on the kinematic basis already presented. The study showed the sen-
sitivity of the reduced plasticity model to the crystallographic orientation with respect to
the crack.

A strategy to assess internal variables of the model based on the kinematic bases is
presented as well. The evolution laws of these variables are crucial in the modeling of
cyclic plasticity. They describe the existence of material hardening, internal stresses and
other effects of the nonlinear behavior of the material that can be seen as history effects.

However, this first analysis shows that the formulation of the model, and in particular
the suitable choice of the thermodynamics driving force associated with ρ̇i(t), remains
difficult, in particular when the crack plane and front do not coincide with one of the
symmetry planes of the elastic anisotropy law.



Chapter 4

Reduced basis of a crystal
plasticity model

In this chapter, the three-dimensional problem of a crack under mixed fracture modes
I + II + III is studied with a material behavior described by a cubic elasticity and a
crystal plasticity model. This model urged the study to explore some new strategies in
the partition of kinematic fields and in the model reduction procedure. Moreover, the
yield domain of the near crack tip region is explored numerically. Finally, a procedure
was proposed to transpose the local model of crystal plasticity to the scale of the crack
tip region.
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4.1 State of the art

Computations tools nowadays are well developed which allows the study of complex three-
dimensional cracks and the evaluation of LEFM quantities under a linear elastic behav-
ior. These tools vary from the XFEM [Belytschko and Black, 1999] [Moës et al., 1999]
[Moës et al., 2002] to the Hybrid analytical/XFEM method [Réthoré et al., 2010] or the
Thick Level Set method coupled with XFEM [Moës et al., 2011] [Bernard et al., 2012], etc.
However, finite element simulations of fatigue growth of three-dimensional cracks under
nonproportional mixed fracture modes with a nonlinear behavior are still not reachable
with the available resources. Within this context, this work deals with the modeling of
fatigue crack propagation with the assumption that crack tip plasticity is the main mech-
anism at the origin of crack growth. The plasticity is finally modeled with a reduced
number of degrees of freedom which allows its integration in an incremental crack propa-
gation approach.

High pressure turbine blades can be made out of polycrystalline materials, directionally
solidified or single crystal superalloys which will influence a lot the mechanical behavior
and consequently the model used to design and validate such component. In this work, we
are interested in the study of Nickel base single crystals as a first step to develop a model
reduction strategy for crack propagation in anisotropic materials. Further work is needed
to predict the growth plane and to integrate the approach in linear elastic FE codes. This
strategy could be extended in the future so that it can be applied to the case of composite
and polycrystalline materials.

4.1.1 Material and microstructure

Due to its mechanical properties, the element Nickel had shown its efficiency as a base ma-
terial for superalloys used at high temperatures especially for high pressure turbine blades.
The micro-structure of Nickel base superalloys consists of two phases, a γ austenitic ma-
trix and cubic γ′ precipitates Ni3Al. These two phases have both a FCC lattice structure.
A misfit in lattice parameter between these two phases creates a local coherence stress.
This small misfit is accommodated by the elastic straining between lattices of different
phases. The elastic coherence strains give the material a higher strength. For plasticity
mechanism, the γ′ precipitates are an obstacle for dislocations which concentrate their
motion in the γ matrix channel. Thus, these precipitates have a strengthening effect that
results in a structural hardening of nickel base superalloys.

Materials with FCC structure contain 4 densely packed octahedral planes {111} with
3 closely packed directions 〈110〉 on each plane and 3 less dense cube planes {001} with 2
dense directions by plane 〈011〉. The combination of these easy slip directions constitute
the 12 octahedral and 6 cubic slip systems of a Face Centered Cubic FCC lattice structure
(see Table 4.1 and Figure 4.1).

Bettge [Bettge and Österle, 1999] made tensile tests on single crystal nickel base super-
alloy with specimens orientations near the direction [111]. Despite this direction is the
most favorable to activate cube slip systems since their Schmid factors are higher than
the octahedral ones, results showed that cube slip systems are activated as a result of the
interaction of a vast amount of octahedral ones. Besides, due to their high planar density,
octahedral slip systems have a favorable energy to be activated compared to the activa-
tion energy of cubic slip systems. Considering the aforementioned observations, we only
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consider in the following work the activation of octahedral slip systems, the activation of
the cubic ones is not taken into account.

The crack initiation and propagation mechanisms are dominated by the localization of
plastic strain in slip bands. Besides, under fatigue loading, the emergence of slip bands
induces extrusions and/or intrusions on the material surface. This phenomenon is a conse-
quence of the localization of plastic deformation [Suresh, 1998] [Risbet and Feaugas, 2008]
and [Villechaise et al., 2002]. These surface roughness sites develop a notch-peak geometry
which favor the initiation of fatigue cracks [Risbet et al., 2018].
On the one hand, development of cracks in a stable crack growth regime is mainly
plasticity-induced. On the other hand, the presence of specific slip systems that con-
stitute privileged planes and directions for dislocation movement induces a sort of plastic
anisotropy. Thereby, it is important to take into account this anisotropy in the study of
crack propagation in FCC single crystals.

(a) One octahedral slip plane with the three
possible slip directions.

(b) One cubic slip plane with the two pos-
sible slip directions.

Figure 4.1: Slip systems in an FCC single crystal (figure from [Méric et al., 1991]).

4.1.2 The Schmid law

In 1924, Schmid introduced the concept of the resolved shear stress τ s as the projection of
the stress tensor on a given slip system. He suggested that dislocation motion and hence
the plastic strain occurs on a given slip system when the corresponding resolved shear
stress reaches a critical value known as the critical resolved shear stress (CRSS or τc).
This intrinsic parameter of the material takes into account the barriers that can oppose
to the dislocation motion along slip systems and the ability to overcome these barriers.
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Table 4.1: Slip systems in an FCC crystal.

Slip system Slip system [Schmid and Boas, 1935] Slip plane Slip direction
family number notation ns ls

1 B4 [1̄01]
2 B2 (111) [01̄1]
3 B5 [1̄10]
4 D4 [1̄01]
5 D1 (11̄1) [011]

Octahedral 6 D6 [110]
7 A2 [01̄1]
8 A6 (1̄11) [110]
9 A3 [101]
10 C5 [1̄10]
11 C3 (111̄) [101]
12 C1 [011]

13 E5 [1̄10]
14 E6 (001) [110]

Cubic 15 F1 [011]
16 F2 (100) [01̄1]
17 G4 [1̄01]
18 G3 (010) [101]

4.1.3 Models

Considering its importance in the manufacturing of high pressure turbine blades, single
crystals were the subject of many studies. Researchers have proposed many models in
an attempt to describe the physical phenomena and their interactions on different scales.
Models, present today to reproduce the cyclic behavior of nickel base single crystals, can
be categorized on three main approaches:

- Crystallographic micromechanical models developed at the scale of the slip system
and based on internal variables that describe explicitly the mechanism of deformation at
the level of dislocations. This type of models may introduce dislocation density as an
interest quantity characterizing explicitly the irreversible mechanical behavior of crystals.
Added to dislocation density, Fedelich used the length of matrix channels to model rafting
[Fedelich, 1999], [Fedelich, 2002]. These variables give the model a quasi-physical aspect
that can enhance its predictive character once the model is implemented in a simulation
code.

- A phenomenological approach at the macroscopic scale based on the theory of in-
variants. The anisotropy is taken into account by a simple modification of the Von Mises
criterion, for instance, a quadratic Hill criterion can be considered in the case of cubic
symmetry [Nouailhas, 1990],[Nouailhas and Culié, 1991]. However, this approach is not
efficient enough to describe material behavior for single crystal with a cubic symmetry
under complex tensile-torsion loadings or internal pressure [Bonnand, 2006].

- A phenomenological crystallographic approach where constitutive equations, usually
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found in macroscopic models, are developed starting from the microscopic scale of slip
systems. This model uses internal variables that have no direct and explicit physical
signification. Nevertheless, the evolution of internal variables can be linked to dislocation
density.

For the case of a single crystal, this type of models is built over two levels of hetero-
geneity following three distinct steps. A first step relying the macroscopic scale to the
scale of slip systems through a projection process. It consists in determining the resolved
shear stress on each slip system s from the stress tensor. Then, applying the behavior law
to obtain the slip rate always on the scale of the slip system. The third step is the weighted
sum of slip rates of different slip systems to obtain finally the macroscopic visco-plastic
strain rate (see figure 4.2).

The difference between models that follow this approach lays in the choice of the hard-
ening in the behavior law step. In this chapter, the small strain formulation of the Méric &
Cailletaud model [Méric et al., 1991], [Méric and Cailletaud, 1991] was exclusively used.

Figure 4.2: Different steps and levels of the model [Méric et al., 1991].

4.2 Material model and finite element computational tools

4.2.1 Crystallographic phenomenological model

The model, proposed by Méric and Cailletaud and validated by many studies on different
alloys [Méric et al., 1991], is already implemented in material subroutines. Besides the
coefficients of this model for the AM1 single crystal superalloy are already identified and
discussed in literature. Therefore, this model seems to be a convenient choice to be used
as a starting point to model the anisotropic plastic behavior near the crack tip region.
Other models can be used while the strategy to reduce the crack tip region behavior to a
condensed plasticity model will remain the same.

This model is characterized by unified internal variables with multiple criteria defined
per slip system. Two internal variables are introduced to account for the hardening effect
stemming form the interactions between dislocations at the scale of slip systems. The
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model describes implicitly these interactions by using a backstress and a threshold stress
for each slip system.

Hypotheses

This model assumes that the deformation process is mainly caused by the crystallographic
dislocation slip. Other phenomena such as twinning and diffusion are not taken into
account. The model is developed in the framework of anisothermal and infinitesimal ther-
modynamic transformations. The used state variables are the elastic strain, the kinematic
and the isotropic hardening variables. In this work, we only take into account the 12
octahedral slip systems {111}〈110〉.

Formulation of the model

For the projection step, the resolved shear stress experienced by a slip system is obtained
by the projection of the macroscopic stress on the generalized Schmid factor of this slip
system:

τ s(r, θ) = ms : σ(r, θ) (4.1)

with:

ms =
1

2
(ls ⊗ ns + ns ⊗ ls) (4.2)

The total strain is decomposed into an elastic part and a plastic one:

ε = εe + εp (4.3)

Regarding the FCC lattice structure of the single crystal, cubic anisotropy is used to
model elasticity. The stiffness tensor Cijkl is then characterized by three elastic parameters
at a given temperature. The linear elastic behavior of the single crystal is modeled as
follows:

σ = C : εe (4.4)

The Voigt notation is used:

˜
σ =



σ11

σ22

σ33

σ23

σ13

σ12

 ˜
ε =



ε11

ε22

ε33

2ε23

2ε13

2ε12

 ˜̃
C =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

 (4.5)
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Viscoplastic constitutive equations are
written on each slip system. To formu-
late these equations, the following state
variables are used:

• A vector of backstresses {xs, s =
1..N} characterizing the displace-
ment of the elastic domain for
each slip system, and associated
with their counterparts, the vector
{αs, s = 1..N} used as kinematics
hardening internal variables in the
model (see Figure 4.3).

• A vector of plastic slip threshold
stresses {rs, s = 1..N} associated
with their counterparts {qs, s =
1..N} used as internal variables in
the model (see Figure 4.3).

Figure 4.3: Illustration of the local elas-
ticity domain of a given slip system
[Méric et al., 1991].

The plastic strain is the result of the activation of one or multiple slip systems. Since
we only consider in this work octahedral slip systems, we obtain:

ε̇p =

12∑
s=1

msγ̇soct (4.6)

where γ̇soct is the slip rate of the octahedral slip systems s.

The flow rule is written based on a classical macroscopic Norton law with a threshold.

γ̇s =
〈 |τ s − xs| − rs

k

〉n
sign(τ s − xs) (4.7)

〈x〉 takes only the positive part of x

Dislocation density is known to saturate upon continued plastic yielding for many
crystalline materials. This saturation modeling is achieved in the case of single crystals
by the use of a non linear threshold stress, Meric and Cailletaud presented it as follows:

rs = r0 +Q
∑
r

Hrs(1− ebνr) (4.8)

where νr the cumulative slip defined by ν̇r = |γ̇r|, Q and b characterize respectively the
asymptotic stabilized value and the rapidity of this stabilization. r0 is the initial plastic
slip threshold of the octahedral slip system family. The term (1 − ebνr) represents the
exponential saturation of dislocation density. Hrs is the “interaction matrix” between
different slip systems. In fact, the plastic slip on a given slip system induces hardening on
this slip system (self-hardening), but it can also promote hardening on other slip system
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(latent hardening). For the case of AM1 Nickel base superalloy, many authors have shown
that the phenomenon of self-hardening is so pronounced that the latent hardening caused
by this interaction can be neglected [Méric et al., 1991], [Méric and Cailletaud, 1991],
[Hanriot, 1993], [Nouailhas and Cailletaud, 1995]. The interaction matrix is then taken
equal to the identity.

The evolution law of the kinematic hardening term is non linear. Its aim is essentially
to represent the cyclic behavior of the single crystal by describing the displacement of the
center of the yield surface.

xs = cαs , α̇s = γ̇s − d ν̇s αs (4.9)

where c and d are material parameters that may depend on temperature, they are cali-
brated by experimental studies. The recall term d ν̇s αs provides a fading memory effect
of the deformation path. The integration of equation 4.9 for a symmetrical isothermal
fatigue loading gives:

xs = ± c
d

(1− e±dγs) (4.10)

The plasticity yield criterion is finally written for a given slip system r:

f r = |τ r − xr| − rr (4.11)

4.2.2 Numerical model

The geometry used for simulations in this chapter is the same used in the previous one; a
3D thin plate model (2 m× 2 m) with a 20 mm through thickness crack (see figure 4.4). A
periodic boundary condition was imposed on two parallel faces of the FE model to ensure
the plane strain condition.

The displacement of the crack front line was blocked in the plane z = 0. The four
corners of the model were tied to four discrete rigid bodies. In-plane and out-of-plane
forces were applied on the reference points of these rigid bodies in order to obtain different
stress states at the crack tip region.

The interest region near the crack tip is the middle section of a disc with a hole.
The inner radius is big enough to exclude all singularities at the vicinity of the crack tip
(rmin = 30 µm) and the outer radius is small enough to remain into the Irwin plastic zone
(rmax = 250 µm).
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Figure 4.4: Full geometry of the finite element model and a zoom on the region of interest
surrounding the crack tip.
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4.2.3 Cubic elasticity and crystal plasticity

For both elasticity and plasticity, we used material parameters of the AM1 at 20 ◦C pre-
sented in the work of [Hanriot, 1993]. These parameters were identified on AM1 single
crystals for different orientations. Hanriot performed tensile tests at different rates (from
10−5 s to 10−3 s) and cyclic hardening tests.

Cubic elasticity is described by the three stiffness constants presented in table 4.2.
Typically, these material parameters are measured for single crystals along the orientation
[001].

Table 4.2: Coefficients of the cubic elasticity of the AM1 at 20 ◦C [Hanriot, 1993].

C11 (GPa) C12 (GPa) C44 (GPa)

296 204 125

The ratio (C11−C12)/(2C44) is used to characterized the intensity of the anisotropy of
cubic crystals. A value of one is found for an isotropic bahavior. The anisotropy ratio of
the AM1 alloy at 20 ◦C is equal to 0.368, indicating a pronounced elastic anisotropy. For
copper, which has also a pronounced elastic anisotropy, this ratio is equal to 0.337 and for
aluminum, which is nearly isotropic, this ratio is equal to 0.81.

A set of crystallographic orientations of the crystal lattice with respect to the crack
coordinates was explored in this chapter. Figure 4.5 shows the orientations initially stud-
ied.

(a) Orientation �(010)
[100] . (b) Orientation �(110)

[11̄0] .

(c) Orientation �(110)
[001] . (d) Orientation �(110)

[11̄1] .

Figure 4.5: Illustrations of the crystallographic orientations with respect to the crack
coordinate system.

For the inelastic part of the model, parameters are presented in the table 4.3. For the
sake of simplicity, the coefficient Q was taken equal to 0 (see [Hanriot, 1993]).

Table 4.3: Parameters of the hardening model corresponding to octahedral slip systems
of the AM1 at 20 ◦C [Hanriot, 1993].

Isotropic hardening Kinematic hardening Viscosity

r0 (MPa) Q (MPa) b c (MPa) d k (MPa s
1
n ) n

245 0 0 73400 3270 90 15
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4.2.4 Z-mat (Integration method, material orientation and stress intensity factors
(SIF) determination)

ABAQUS/Standard (implicit) solver was used for finite element simulations. The afore-
mentioned crystal plasticity model is not supported by the ABAQUS predefined material
library, therefore, Z-mat subroutine was used to define the behavior law. This user defined
“extension set” was initially developed by “Centre des Matériaux de l’Ecole des Mines de
Paris”, the “ONERA” and “Northwest Numerics”. This material simulation program is
natively implemented in Z-set, but it can be interfaced with other finite element codes. In
our case, we used it as an extension set to the ABAQUS/Standard finite element software.

The high stress concentration near the crack tip is susceptible to create zero energy
modes that may lead to massive ”Hourglassing”. To avoid this kind of problems, eight-
node brick elements with linear interpolation and full integration were used in this region.

To integrate the material response law, an implicit generalized integration method
known as “θ-Integration” method was used. It’s an Euler method with a parameter θ
between 0 and 1:

x(t+ ∆t)− x(t) = ẋ(t+ θ∆t)∆t (4.12)

With this integration scheme, internal variable x is initially evaluated at a time tθ = t+θ∆t
in between the time increment size. The parameter θ was taken equal to 0.5 to get an
optimized convergence rate.

Stress intensity factors

As mentioned in the previous chapter, the stress intensity factors can be determined
directly using the interaction integral method (see Appendix B) already implemented in
ABAQUS. However, the use of Z-mat subroutine prevented ABAQUS from accessing to
material parameters and assessing the interaction integral.
To overcome this technical issue, a routine was added in order to determine stress
intensity factors based on the displacement extrapolation [Banks-Sills et al., 2005],
[Banks-Sills et al., 2007]. The displacement discontinuity vector that derives from the
Hoenig’s asymptotic solutions is written as follows:

∆ui =

√
2r

π

3∑
j=1

∆gjiK
∞
j (4.13)

which can be written as:

∆u =

√
2r

π
G ·K∞ (4.14)

with

G =

∆gI
x ∆gII

x ∆gIII
x

∆gI
y ∆gII

y ∆gIII
y

∆gI
z ∆gII

z ∆gIII
z

 K∞ =

K∞I
K∞II

K∞III

 (4.15)
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and

∆gji = gji (π)− gji (−π) (4.16)

The displacement discontinuity vector between both crack faces ∆u was extracted
from a linear elastic computation with a material behavior defined by a Z-mat subroutine.
These fields were then post-processed using equation 4.13. Figure 4.6 show the linear

evolutions of this displacement discontinuity vector components as function of
√

2r
π for

crystallographic orientation �(010)
[100] . Let A be the vector composed of the three slopes of

these evolutions (ax, ay, az). Nominal stress intensity factors are then computed as follows:

K∞ = G−1 ·A (4.17)

Interaction Displacement

integral (MPa
√
m) extrapolation (MPa

√
m)

K∞
I 1 1.00176

K∞
II 0 0.00179

K∞
III 0 −0.0001

(a) mode I of the orientation �(010)
[100] .

Interaction Displacement

integral (MPa
√
m) extrapolation (MPa

√
m)

K∞
I 0 0.0001

K∞
II 1 1.00313

K∞
III 0 0.001

(b) mode II of the orientation �(010)
[100] .

Figure 4.6: The table on the left gives nominal stress intensity factors computed using
both the interaction integral and the displacement extrapolation methods from a Z-mat
based computation, the plot on the right gives the evolution of displacement discontinuity
components along the crack faces.

The loading to apply is calibrated with the stress intensity factors computed using
the interaction integral contour. As shown on tables of figure 4.6, results show a good
agreement between the expected values of stress intensity factors and the computed val-
ues using the displacement extrapolation technique. The control of loading using stress
intensity factors is then ensured.
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4.3 Kinematic basis

The general aim of this work is to find a global description of plastic flow nearby the
crack front, when confined plasticity conditions are met. The final reduced model of the
confined plasticity is based on intensity factors, used as nonlocal quantities, and a basis
of reference kinematic fields. As mentioned in previous parts of this work, the main step
in this model reduction strategy is to find a suitable kinematic basis.

Following the standard methodology, and based on the self-similarity and small strain
hypotheses, kinematic fields extracted from the region near the crack tip are decomposed
into a linear elastic part, and a nonlinear complementary part [Pommier et al., 2009],
[Decreuse, 2010], [Frémy, 2012].

vFE(x , t) ≈
3∑
i=1

˙̃Ki(t)φ
el
i

(x ) +

3∑
i=1

ρ̇i(t)φ
pl
i

(x ) (4.18)

The scale transition process consists in describing confined plasticity near the crack tip
region using nonlocal time-dependent quantities K∞i (t) and ρi(t) and getting rid of spatial
distributions. As a matter of fact, in confined plasticity conditions, under infinitesimal
strain conditions and for a locally self-similar geometry, those spatial distributions are
constrained and can be defined once for all. The intensity factors hence represent the
only degrees of freedom for the problem. They are obtained by projecting elastic-plastic
kinematic field on the reference elastic and plastic bases. For a given point P in the region
near the crack tip, these quantities are defined as follows:

˙̃Ki(t) =

∑
P∈D vFE(P, t) · φel

i
(P )∑

P∈D φ
el
i

(P ) · φel
i

(P )
(4.19)

ρ̇i(t) =

∑
P∈D vFE(P, t) · φpl

i
(P )∑

P∈D φ
pl
i

(P ) · φpl
i

(P )
(4.20)

For a linear elastic behavior, the quantity ˙̃Ki(t) represents the rate of the nominal applied
stress intensity factor K∞i . When the behavior is nonlinear, a plastic region is developed
at the crack tip. The confinement of this plastic zone creates internal stresses that are
known as the “shielding effect” of the crack tip plastic zone [Rice and Thomson, 1974].
For this reason, the intensity factor of the elastic reference field K̃i(t), which includes
internal stresses, is different from the nominal stress intensity factor K∞i .

Next parts discuss some methodologies and procedures followed in order to obtain the
kinematic bases. Results of these elastic and plastic reference fields are shown for a range
of crystallographic orientations with respect to the crack plane and direction. One of the
main challenges is to find a good description of the slip mechanisms near the crack tip
region. For this reason, different methodologies of decomposition of the complementary
plastic fields are presented and discussed.
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4.3.1 Elastic reference fields

Elastic reference fields related to the three fracture modes are obtained from pure elastic
computations. For each mode, a monotonic loading is applied to obtain a unit stress
intensity factor of the corresponding mode. For instance, to obtain φel

I
(x ), a loading ramp

is applied so that K∞I = 1 MPa
√

m, K∞II = 0 MPa
√

m and K∞III = 0 MPa
√

m.
The resulting finite element field can be read directly as the elastic reference field:

vFE(x , t) = φel(x ) (4.21)

As shown in equation 4.22, the reference field can be decomposed by a Proper Or-
thogonal Decomposition into an angular distribution and a scale radial function. These

functions are shown in figures 4.7, 4.8, 4.9 for material orientations �(010)
[100] , �(110)

[11̄0] and

�(111)
[1̄10] respectively.

φel
i

(x ) = f eli (r) · gel
i

(θ) (4.22)

Figure 4.7: gel(θ) functions for (a) mode I , (b) mode II and (c) mode III and (d) radial

function f el(r) for material orientation �(010)
[100] .

gel(θ) functions identified by the POD show good agreement with Hoenig’s analytical
solutions. The radial function, as predicted by the analytical solution, is fitted to a square
root function. It was also an opportunity to verify the well definition of material orientation
with respect to the crack plane and direction in the Z-mat subroutine.
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Figure 4.8: gel(θ) functions for (a) mode I , (b) mode II and (c) mode III and (d) radial

function f el(r) for material orientation �(110)
[001] .

Figure 4.9: gel(θ) functions for (a) mode I , (b) mode II and (c) mode III and (d) radial

function f el(r) for material orientation �(111)
[1̄10] .
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4.3.2 Complementary reference fields: Geometric decomposition by fracture
modes

To obtain complementary reference fields, an elastic-plastic analysis is performed. The
Méric-Cailletaud model was implemented in Z-mat using the parameters presented on
table 4.3. Three monotonic loadings are applied in order to enhance in each time the
appearance of the fracture mode in consideration. For each computation, the elastic

part is computed as the product of the intensity factor ˙̃Ki(t) (see equation 4.19) and the
corresponding reference field φel

i
(x ). This quantity is then subtracted from the total finite

element field in order to obtain the complementary part.

ṽpl(x , t) = vFE(x , t)−
3∑
i=1

˙̃Ki(t) · φeli (x ) (4.23)

The residual field, considered as the plastic kinematic field, is is partitioned into time
and space using a Proper Orthogonal Decomposition POD as the product of an intensity
factor ρ̇i(t) and a spatial reference field. The intensity factor represents the intensity of
plastic flow in the crack tip region and the complementary reference field φpl

i
(x ) its spatial

distribution. This reference field is resized so that rho i can directly be read as the crack
tip plastic opening displacement, i.e. crack tip blunting.
A second POD (radial-angular decomposition) can be applied on the reference field φpl

i
(x )

to obtain:

φpl
i

(x ) = f pli (r) · gpl
i

(θ) (4.24)

Validity of the approach

The incremental model is based on a set of hypotheses and assumptions. One basic hypoth-
esis is the locally self-similar geometry near the crack tip region. This hypothesis, among
others, leads to a more basic assumption of the model which is the decomposition of kine-
matic fields into intensity factors, scale functions and spatial distributions. This hypothesis
remains available as long as the scale function, in a local reference attached to the crack
plane and front, can be fitted to an evolution that satisfies: f(αr)−f(0) = β(f(r)−f(0)).

Concerning the complementary part, this field presents a sharp decay since plasticity
vanishes when getting away from the Irwin plastic zone to the K-dominance elastic zone.
An assumption can be made describing this behavior with an exponential decay.

fpl(r) ≈ A e−r/p (4.25)

In order to maintain this assumption, a procedure of verification was set. Two main
tuning factors are considered in this process, the loading range and the size of the extrac-
tion zone. For each loading case (mode I , mode II or mode III ), complementary fields
where extracted from extraction zones with different external radii and then post-processed
over different loading ranges.

Figures 4.10 and 4.11 show the magnitude of the coefficient p on a map of loading
ranges obtained for the best extraction zone radius. For a fracture mode i, the x-axis and
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y-axis present the square of the loading amplitude ∆Ki = Kmax
i −Kmin

i and the square of
the maximum loading Kmax

i respectively. The square of the maximum loading is linearly
related to the size of the monotonic plastic zone while the square of the loading amplitude
refers to the size of the cyclic plastic zone.
Each spot on the graph is obtained by extracting finite element elastic-plastic kinematic
fields from the loading range [Kmin

i ,Kmax
i ]. These fields were then post-processed in order

to obtain the exponential decay coefficient p.
This procedure was performed for all studied material orientations. For instance,

figure 4.10 shows, for the three fracture modes and for material orientation �(110)
[11̄0] , the

evolution of the coefficient p over different loading ranges for an external radius of the
extraction zone rmax = 0.104 mm.

Note: By assuming that the plastic zone is circular, Irwin [Irwin, 1960a] evaluated the
radius of the monotonic plastic zone under plane strain conditions as:

Zpm =
1

3π

(K
Re

)2
(4.26)

The repetition of loading and unloading process causes the apparition, inside the mono-
tonic zone, of a cyclic plastic deformation region called the cyclic plastic zone. The radius
of this zone is evaluated as function of the loading amplitude. It is written for plane strain
as follows:

Zpc =
1

3π

(∆K

2Re

)2
(4.27)

Figure 4.10: Exponential decay coefficient p for an interest region external radius

rmax = 0.104 mm for the material orientation �(110)
[11̄0] .

It can be noted that the coefficient p do not vary drastically from one loading range
to another. This observation approves the assumption that the crack tip plasticity under
different loading cases can be represented by one exponential decay function.
A loading range is finally chosen for each fracture mode and for each material orientation.
Reference fields will be extracted, is chosen from a region of the map where the exponential
coefficient p remains constant.

The external radius of the chosen interest region rmax varies from one material ori-
entation to another. In fact, this zone should include the total plastic region. However,
the evolution of plasticity near the crack tip region and hence the size of the plastic zone,
depends on the elastic anisotropy and the crystallographic orientation with respect to the
crack plane [Arakere et al., 2009].
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Figure 4.11: Exponential decay coefficient p for an interest region external radius

rmax = 0.087 mm for the material orientation �(110)
[001] .

Radial and angular functions

Once the interest region size and the loading range are fixed for the best exponential
decay coefficient, reference fields of different fracture modes are extracted through a POD
that separate time and space dependencies. These fields were then grouped together and
another POD was performed to decompose radial and angular dependencies. Hence, three
angular shape functions gpl

i
(θ) and one common radial scale function f pl(r) are identified.

Figures 4.12, 4.13 and 4.14 show the maximum principal plastic strain distribution
within the crack tip region for different fracture modes. Angular distributions are shown
in (a), (b) and (c) respectively. The radial scale function is shown in (d). According to
the aforementioned hypotheses, these functions exhibited an exponential decay with the
distance from the crack front.

The deformed surface of the unit circle submitted to the transformation gpl(θ) remains
unchanged when compared to the undeformed one. In fact, plastic strain in metals is
isochoric because it stems from a combination of slip along slip planes and slip directions.

As it can be noted for some material orientations, for instance for mode II and
mode III in figures 4.13 and 4.14, the obtained reference fields show a strong localiza-
tion of plastic field near the crack tip region. This localization is mainly associated to the
activation of few octahedral slip systems. The activation of more slip systems is associated
to a more diffused and spread out shape of angular distribution.
These observations raised questions about the importance of taking into account these
mechanisms in the modeling of crack tip plasticity using kinematic fields. In fact, building
a complementary reference field for a each fracture mode with few activated slip systems
may not be generic and representative of what happens under more complex mixed mode
loadings.
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Figure 4.12: Maximum principal plastic strain in the crack tip region under three fracture
modes, angular distributions (a) gpl

I
(θ), (b) gpl

II
(θ) and (c) gpl

III
(θ) and (d) radial function

f pl(r) for material orientation �(010)
[100] .
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Figure 4.13: Maximum principal plastic strain in the crack tip region under three fracture
modes, angular distributions (a) gpl

I
(θ), (b) gpl

II
(θ) and (c) gpl

III
(θ) and (d) radial function

f pl(r) for material orientation �(110)
[11̄0] .
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Figure 4.14: Maximum principal plastic strain in the crack tip region under three fracture
modes, angular distributions (a) gpl

I
(θ), (b) gpl

II
(θ) and (c) gpl

III
(θ) and (d) radial function

f pl(r) for material orientation �(110)
[001] .
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Reconstruction errors

To control the quality of the approximation, two reconstruction relative errors are system-
atically computed:

• The relative quadratic error Ce when approximating the total elastic-plastic field
vFE(x , t) by the reconstruction of its projection on the three elastic reference fields.

Ce =

√∑
P∈D (vFE(P, t)− ṽel(P, t))2∑

P∈D (vFE(P, t))2
(4.28)

with

ṽel(x , t) =
3∑
i=1

˙̃Ki(t).φ
el
i

(x ) (4.29)

• The relative quadratic error Cep when approximating the total elastic-plastic field
vFE(x , t) by the reconstruction of its projection on the total kinematic basis (elastic
and plastic).

Cep =

√∑
P∈D (vFE(P, t)− ṽ(P, t))2∑

P∈D (vFE(P, t))2
(4.30)

with

ṽ(x , t) =
3∑
i=1

˙̃Ki(t).φ
el
i

(x ) + ρ̇i(t).φ
pl
i

(x ) (4.31)

These relative errors are shown in figures 4.15a and 4.15b for material orientation

�(010)
[100] for two different tests:

• Test I designates a monotonic loading case in pure fracture mode I with
K∞I = 12 MPa

√
m.

• Test II designates a monotonic loading case in pure fracture mode II with K∞II =
7 MPa

√
m.

The approximated kinematic field represents less error when the complementary part is
taken into consideration. The difference between the two reconstruction errors can be
interpreted as a yield indicator (see section 2.3.7).
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(a) Reconstruction of a pure mode I test.

(b) Reconstruction of a pure mode II test.

Figure 4.15: Errors Ce and Cep for material orientation �(010)
[100] .
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4.3.3 Complementary reference fields: Decomposition into fracture modes and
into slip systems

In the previous chapter (chapter 3) where material behavior was represented by a cubic
elasticity and Von Mises plasticity, the decomposition of reference fields was based on
geometrical considerations regarding the symmetry with respect to the crack plane. In
fact, the anisotropy induced by the presence of the crack is so large that it can be considered
to annihilate the effect of the cubic anisotropy on the complementary part decomposition.
In the current case, the presence of an additional source of anisotropy modeled by the
crystal plasticity requires a new methodology for partitioning the displacement field using
reference fields that take into account this new material model.

In the considered crystallographic phenomenological model, macroscopic visco-plastic
strain rate is a linear combination of slip rates of different slip systems weighted by the
corresponding orientation tensor ( Schmid factor ms).

ε̇v =
∑
s∈G

γ̇svm
s (4.32)

A degree of freedom γ̇sv is assigned to each slip system in its kinematic tensorial represen-
tation. In an analogy with this concept, while always considering the crack geometry, the
following decomposition of complementary reference fields was proposed:

vFE(x , t) =
3∑
i=1

˙̃Ki(t)φ
el
i

(x ) +
∑
s∈G

3∑
i=1

ρ̇si (t)φ
pl,s
i

(x ) (4.33)

where φpl,s
i

(x ) is the complementary reference field that corresponds to the fracture mode i
and the slip system s.

To obtain these reference fields, different finite element simulations of the three fracture
modes were performed while implementing for each one a crystal plasticity model with one
slip system. It means that for each set of computations of a slip system r, we assume that
plastic slip can occur only when the resolved shear stress τ r, of that slip system r, reaches
the critical resolved shear stress value τ c. If it is not the case, no plasticity takes place.
Thus, twelve sets of computations corresponding to the twelve octahedral slip systems
were performed. For each slip system, one computation was performed for each fracture
mode.

Results

Computations were conducted for material orientation �(010)
[100] .

• For mode I reference fields, an equi-biaxial loading was applied to obtain K∞I =
50 MPa

√
m.

• For mode II , a pure in plane shear loading is performed, the stress intensity experi-
enced by the crack is K∞II = 25 MPa

√
m.

• For mode III , reference fields are obtained from a pure out of plane shear test with
K∞III = 25 MPa

√
m.
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Note: For mode II and mode III , the elastic anisotropy may cause a crack closure, there-
fore a small crack opening was applied in both cases (K∞I = 0.5 MPa

√
m) to avoid contact

and friction between crack faces. An assumption was made that complementary nonlinear
fields describe plasticity. Therefore, no source of dissipation, other than plasticity, should
exist in the model.

Figures 4.16, 4.17 and 4.18 show a capture of the cumulated slip of the selected slip
systems (D4, B5 and C1 respectively). Only results in the region of interest are shown
and plotted in a logarithmic scale for the fracture modes.

Note: The notation used for slip systems is the Schmid and Boas nota-
tion [Schmid and Boas, 1935] presented in table 4.1. The letter designates the plane and
the number is for the direction.

Figure 4.16: Cumulated plastic strain maps at the region of interest plotted in a logarith-
mic scale for (from left to right) mode I , mode II and mode III , with a single slip system

D4 available in the crystal plasticity model for material orientation �(010)
[100] .

For a given slip system and a given fracture mode, the plot of the cumulated slip
systems in a logarithmic scale displays a series of homothetic isocontours, with a regular
spacing. This observations support the hypothesis of the self-similarity of plastic flow in
the crack tip regions and its representation with an exponential decay.

In order to compare the quantity of slip occurring on different slip systems, we proposed
to compute, for each implemented slip system, the average cumulated slip. The root mean
square of the cumulated slip rate is computed over all the region of interest.

γs
rms(t) =

√√√√ 1

N

∑
P∈D

( ∫ t

0
|γ̇s(P , x)|dx

)2
(4.34)

The evolution of γs
rms(t) was extracted from the first set of computations already performed

where a single (“Separate”) slip system is implemented each time.

A second set of computations was performed where all slip systems are implemented
together (“Combined”) in order to put them in competition. In fact, despite the latent



148 Chapter 4. Reduced basis of a crystal plasticity model

Figure 4.17: Cumulated plastic strain maps at the region of interest plotted in a logarith-
mic scale for (from left to right) mode I , mode II and mode III , with a single slip system

B5 available in the crystal plasticity model for material orientation �(010)
[100] .

Figure 4.18: Cumulated plastic strain maps at the region of interest plotted in a logarith-
mic scale for (from left to right) mode I , mode II and mode III , with a single slip system

C1 available in the crystal plasticity model for material orientation �(010)
[100] .



4.3 Kinematic basis 149

hardening is neglected and only self-hardening is considered in the interaction matrix Hrs,
a slip system activation do affect the activation of other slip systems. It may inhibit the
activation of new slip systems [Arakere et al., 2009]. This implies that when plasticity
occurs on a dominant slip system at a given position (r, θ), it persists and no other slip
systems are activated in that region. The persistence of slip can be explained by the
softening effect [Ebrahimi et al., 2006], [Westbrooke, 2005], the uniqueness of slip system
activity at a given position is attributed to plasticity that causes a significant drop in
resolved shear stress on other slip systems.

The evolution of the γrms is plotted in figures 4.19, 4.20 and 4.21 for crystallographic

orientation �(010)
[100] . Both “Separate” and “Combined” cases are shown.

The legend indicates the normalized maximum value of the γrms for each slip system.
Thus, slip systems that have the same evolution can be identified from the legend since
they have the same maximum normalized value of γrms . For instance, for mode I , B5
and C5 slip systems have the same evolution. Besides, these two systems are “dominant”
[Arakere et al., 2004], [Arakere et al., 2009]. It means that they experience the highest
resolved shear stress. For our case, the γrms is considered as an indicator of slip system
activation.

(a) Separate slip systems. (b) Combined slip systems.

Figure 4.19: Normalized quadratic mean value of the cumulated plastic strain at the

region near the crack tip for mode I for material orientation �(010)
[100] , (a) separate single

slip systems, (b) combined slip systems.

(a) Separate slip systems. (b) Combined slip systems.

Figure 4.20: Normalized quadratic mean value of the cumulated plastic strain at the

region near the crack tip for mode II for material orientation �(010)
[100] , (a) separate single

slip systems, (b) combined slip systems.
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(a) Separate slip systems. (b) Combined slip systems.

Figure 4.21: Normalized quadratic mean value of the cumulated plastic strain at the

region near the crack tip for mode III for material orientation �(010)
[100] , (a) separate single

slip systems, (b) combined slip systems.

Table 4.4 summarizes the degree of activation of each slip system for orientations

�(010)
[100] and �(110)

[001] . We note that slip systems behave identically two by two for all studied
cases except for slip systems B5 and C5 under the third fracture mode for orientation

�(110)
[001] . Couples of slip systems that have the same behavior are grouped together between

parentheses.
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Table 4.4: Slip systems activities in a “separate” case where only one slip system is
implemented in the behavior law and for a “combined” case where all octahedral slip

systems are implemented together. Results are shown for material orientations �(010)
[100] and

�(110)
[001] .

Orientation Mode Implementation Slip system activation
type Intense Medium Low Not active

(B5, C5) (C1, B2) (D6, A6) (A3, D4)
Separate (C3, B4)

mode I (A2, D1)
Combined (B5, C5) (C1, B2) (A2, D1) (A3, D4)

(D6, A6) (C3, B4)

�(010)
[100] (A3, D4) (C5, B5) (A2, D1)

Separate (C1, B2) (C3, B4)
mode II (A6, D6)

Combined (A3, D4) (A2, D1) (A6, D6)
(C1, B2) (C3, B4) (C5, B5)

Separate (B5, C5) (A3, D4) (A6, D6) (C1, B2)
(C3, B4) (A2, D1)

mode III (B5, C5) (C3, B4) (A6, D6)
Combined (A3, D4) (C1, B2)

(A2, D1)
(C3, C1) (B4, B2) (A2, D4)

Separate (A3, D1) (A6, D6)
B5, C5

mode I (C3, C1) (B4, B2) (A3, D1)
Combined (A2, D4)

(A6, D6)
B5, C5

�(110)
[001] (A6, D6) (C1, C3) (A2, D4) B5, C5

Separate (B4, B2)
mode II (A3, D1)

(A6, D6) (C1, C3) B5, C5
Combined (B4, B2)

(A3, D1)
(A2, D4)

C5 (C1, C3) (A2, D4) B5
Separate (A6, D6) (B4, B2)

mode III (A3, D1)
C5 (A6, D6) (C1, C3)

Combined B5 (B4, B2)
(A3, D1)
(A2, D4)
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These analyses serve to identify which slip systems are the more active in each frac-
ture mode. This helps to reduce the number of reference fields used to create the kine-
matic basis. Only reference fields from active slip systems are used in each fracture
mode. For instance, for mode I , six complementary reference fields are extracted from
the elastic-plastic analysis instead of twelve. These reference fields are φpl,s

I
(x ) with

s ∈ {B5, C5, C1, B2, A6, D6}. Since they are not active at all, the remaining slip systems
have no contribution in the kinematic field near the crack tip region for crack mode I ,
thus, they are not taken into consideration. The extraction method is the same method
usually used for complementary fields.

Reconstruction errors

The quality of the approximated kinematic field was evaluated using both Ce and Cep

errors. The elastic reconstruction error Ce remains the same presented before in equa-
tion 4.28. The total reconstruction error Cep is updated with new decomposition method:

Cep =

√∑
P∈D (vFE(P, t)− ṽ(P, t))2∑

P∈D (vFE(P, t))2
(4.35)

with

ṽ(x , t) =

3∑
i=1

˙̃Ki(t).φ
el
i

(x ) +
∑
s∈G

3∑
i=1

ρ̇si (t).φ
pl,s
i

(x ) (4.36)

ρ̇si (t) is the blunting intensity factor rate of the slip system s caused by the fracture mode i.
This quantity is obtained by projection as follows:

ρ̇si (t) =

∑
P∈D vFE(P, t) · φpl,s

i
(P )∑

P∈D φ
pl,s
i

(P ) · φpl,s
i

(P )
(4.37)

Errors are presented in figure 4.22 for different loading cases under pure crack mode I ,

mode II and mode III for material orientation �(010)
[100] :

• Test I designates a monotonic loading case in pure fracture mode I with
K∞I = 50 MPa

√
m.

• Test II designates a monotonic loading case in pure fracture mode II with
K∞II = 25 MPa

√
m.

• Test III designates a monotonic loading case in pure fracture mode III with
K∞III = 25 MPa

√
m.

As mentioned before, only reference fields corresponding to active slip systems were used
in the reconstruction procedure.
It is obvious from the reconstruction errors that complementary fields ameliorate the
quality of the approximation of kinematic fields. The difference between the two errors
serves as an indicator of plasticity.
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(a) Reconstruction of pure mode I test.

(b) Reconstruction of pure mode II test.

(c) Reconstruction of pure mode III test.

Figure 4.22: Errors Ce and Cep for material orientation �(010)
[100] .
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4.4 Yield surface

The aim of this section is to construct the yield domain of the crack tip region. As a
matter of fact, in this region, slip systems are activated in order to relax the crack tip stress
concentration and the material undergo plastic deformation. Rice [Rice, 1987] investigated
crack tip fields in an elastic-ideally plastic single crystal. His analytical solutions indicated
the presence of different constant stress sectors near the crack tip region. The stress state
jumps discontinuously at boundaries between these sectors.

A yield domain can be constructed in the stress space. Rice [Rice, 1987] showed that
for an elastic-ideally plastic single crystal under plane strain conditions, the yield surface
can be constructed in the (σ11−σ22)/2 versus σ12 stress space. The shape of this surface is
a polygon that depends on the crystallographic orientation. The vertexes of this polygon
correspond to constant stress sectors observed at the near crack tip region.

Figure 4.23(a) [Crone and Shield, 2001] illustrates three families of slip plane traces

near the crack tip region of a FCC crystal with an orientation �(010)
[101] with respect to

the crack. Every slip family is shown with a type of lines (solid, dashed and dot–dashed
lines). As shown on figure 4.23(b), each slip family corresponds to two parallel lines that
construct the yield domain in the stress space. For instance, for the family of dashed lines,
the effective slip direction is [101]. These slip traces are oriented at an angle equal to
180◦ with the x axis. On the yield surface, these slip traces correspond to the dashed line
segments BC and FE.

Figure 4.23: The diagram on (a) shows the orientation of slip plane traces on a specimen

surface for an FCC material of orientation �(010)
[101] . The slip systems correspond to lines

on the yield surface on (b). For example, the slip in the [101] direction (shown as dashed
lines) at 180◦ from the x axis corresponds to the dashed line segments BC and FE on
the yield surface shown on the right. Figure modified from [Crone and Shield, 2001] and
adapted from [Rice, 1987].
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For the present work, finite element simulations were conducted in order to construct a
yield domain for the region near the crack tip. The implemented crystallographic model is
a multiple slip systems model with a yield function defined on each one of them. Therefore,
we decided to explore a yield surface for each one of these slip systems separately. Thus,
a unique slip system model was implemented for every set of simulations. Then, an
exploration process is performed in order to identify the yield domain of the corresponding
slip system.

A preliminary exploration was performed on different planes of the K-nominals space.
For every plane, the crack is loaded in two fracture modes. We refer to this exploration
process as “In-plane exploration”. In a second step, more complicated and time consuming
computations were performed. They consist in exploring the 3D K-nominals space by
mixing the three fracture modes. We refer to it as the “3D exploration” or the “spiked
sphere” exploration path.

4.4.1 In-plane exploration

Exploration path

As mentioned before, only one slip system is implemented and allowed to activate in
each set of simulations. For each slip system, three computation campaigns were initially
conducted over the three planes of the K-nominals space. On each plane, the crack is
submitted to an initial loading important enough to create a plastic zone in the studied
region. Then a small back-loading, assumed to be purely elastic, is applied to move the
loading point away from the yield domain borders. From this point, an exploration is
applied with different mixture ratios inside the corresponding plane. Figure 4.24 shows
the in-plane loading path in the 3D K-nominals space and in the three planes of the
coordinates system. Previous analyses of reference fields (see table 4.4) have shown that
not all slip systems are always activated when loading in a pure mode I , II or III . For
this reason and to simplify the exploration, only slip systems present in the union of the
activation lists of both fracture modes in question are studied. For instance, if a slip
system is exclusively activated in mode II , no need to explore it in the K∞III −K∞I plane.
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Figure 4.24: Yield surface exploration path in K∞I − K∞II plane (b), in K∞I − K∞III plane
(c) and in K∞II −K∞I plane (d)
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Simulations and results

The quadratic mean value of the cumulated slip rate γs
rms(t) previously defined in equa-

tion 4.34 seems to be a convenient indicator of the material state at the crack tip region.
This quantity was computed on each branch of the exploration star. The evolution cards
of the γs

rms(t) are shown in figure 4.25 for some slip systems under material orientation

�(010)
[100] .

Results of this preliminary exploration can be interpreted as the intersection between
the yield surface of the slip system in consideration and the three loading planes K∞II −K∞I ,
K∞III −K∞I and K∞III −K∞II . These yield maps show that this intersection is a straight line.
Besides, the model assumes that slip is occurring on a giving plane. Thus, we postulate
that the yield surface of a given slip system is one or multiple planes in the K-nominals
domain. A second computation campaign is performed with a finer exploration in the 3D
space in order to identify these yield planes.
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Figure 4.25: Yield indicator cartography for different slip systems and in different planes

for orientation �(010)
[100]
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4.4.2 3D exploration

Exploration path and speedup analysis

Figure 4.26: (a) Yield surface exploration path in the K∞I − K∞II − K∞III space and it’s
projections on (b) K∞I −K∞II , (c) K∞I −K∞III and (d) K∞II −K∞I planes

One initial computation was performed with a given mixture ratio between the three
fracture modes. An elastic back-loading is performed in order to take a distance from the
yield limits. Then, 42 exploration computations were performed for each one of the 12 slip
systems restarting from the last time increment of initial analysis which create a loading
path similar to the shape of a spiked sphere. All this makes a total of 516 simulations
to perform and then to post-process. Regarding this big number of elastic-plastic simu-
lations over a 3D structure, an ABAQUS speedup analysis was initially performed on a
representative simulation case in order to identify the optimum number of parallelization
processors. As shown in figure 4.27, 8 CPUs seemed to present a good compromise be-
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tween the gain in simulation time and the available resources at the LMT computation
Cluster (CPUs and ABAQUS licenses).

Figure 4.27: ABAQUS speedup analysis

Simulations and results

The root mean square value of the cumulated slip rate computed over the region of interest
γs

rms(t), defined in equation 4.34, is again used as a yield criterion. This quantity was
computed on each branch of the exploration star. A threshold value γc

rms is set as an
elasticity limit. We assume that below this value, no plasticity takes place at the region
near the crack tip. When loading changes while exploring, the slip system is assumed to
be activated as soon as the γs

rms(t) reaches the critical value γc
rms . In that loading spot, a

point is plotted in the K-nominals space.

Figure 4.28 shows that, for each one of the twelve octahedral slip systems studied in this
work, these loading threshold points can be fitted to a plane, representing the yield surface
of the corresponding slip system. Table 4.5 sums up the list of unit normal vectors to yield
planes for different slip systems. The standard deviation of the residuals was computed
as an indicator of the least squares fit quality. In an analogy with a standard generalized
model and based on the assumption of normal dissipation, these normals represent the
plastic flow that occurs in a direction normal to this yield plane.

We recall that these results were conducted with a single slip system implemented per
set of computations. In order to verify the effect of the presence of other slip systems in
the model, we conducted another exploration campaign where all octahedral slip systems
were implemented together. On each loading branch of the spiked sphere, the twelve slip
rates were extracted and the same yield criterion γs

rms(t) was computed. Results show that
not all slip systems were activated because of the dominance effect of some slip systems.
However, for the activated ones, yield surfaces have almost the same normals found in the
case of a separate implementation. This means that putting slip systems in competition
does not affect the orientations of yield planes. Therefore, yield planes of each slip system
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Table 4.5: Normals of yield planes and the fit root mean square errors for different octa-

hedral slip systems for material orientation �(010)
[100]

Slip system normal [K∞III , K∞II , K∞I ] Fit RMS Error

1 B4 [ -0.84 , -0.52 , 0.16 ] 0.03
2 B2 [ 0.39 , -0.78 , 0.45 ] 0.015
3 B5 [ 0.83 , -0.48 , 0.27 ] 0.031
4 D4 [ -0.74 , -0.66 , 0.04 ] 0.018
5 D1 [ 0.25 , 0.95 , 0.17 ] 0.098
6 D6 [ -0.98 , -0.20 , 0.05 ] 0.08
7 A2 [ -0.09 , 0.98 , 0.16 ] 0.062
8 A6 [ 0.46 , -0.74 , 0.48 ] 0.12
9 A3 [ 0.81 , -0.55 , 0.21 ] 0.23
10 C5 [ -0.89 , -0.32 , 0.32 ] 0.21
11 C3 [ 0.89 , -0.41 , 0.17 ] 0.066
12 C1 [ -0.10 , -0.92 , 0.37 ] 0.188

can be investigated independently and then put together following a dominance criterion
in order to create a yield domain.

The reconstruction error criterion Ce − Cep was also implemented and computed on
each loading branch and for each slip system. Kinematic fields of a given slip system
vFE

s (x , t) were extracted from the region near the crack tip then projected on elastic

reference fields φel
i

(x ) to obtain the elastic intensity factors ˙̃Ki(t), the residual field was

projected on the corresponding complementary reference fields φpl,s
i

(x ) in order to obtain
the blunting intensity factors ρ̇si (t) of the fracture mode i and slip system s.

We note that for slip system B5, a good agreement was found between yield planes
obtained by the reconstruction error as a yield criterion and the γrms criterion. For other
slip systems, despite a convenient fit with planes using the Ce − Cep criterion is found,
those planes were different from those found using the γrms criterion.



162 Chapter 4. Reduced basis of a crystal plasticity model

(a) Yield plane for slip system A2 (b) Yield plane for slip system B5

(c) Yield plane for slip system B2 (d) Yield plane for slip system D1

(e) Yield plane for slip system B4 (f) Yield plane for slip system C5

Figure 4.28: Yield planes in K∞I −K∞II −K∞III space for crystallographic orientation �(010)
[100]



4.4 Yield surface 163

Figure 4.29: Yield plane in K∞I −K∞II −K∞III space for slip system B5, comparison between
γrms criterion and the reconstruction error (Ce − Cep) criterion
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Exploration of other yield planes

Figure 4.30: Yield surface exploration path in the K∞I − K∞II − K∞III space with different
initial loading directions.

Previous loading campaigns were conducted with an initial mixture ratio where the
position of the spiked sphere center is at K∞IIIc = 8 MPa

√
m, K∞IIc = 10 MPa

√
m and

K∞Ic = 20 MPa
√

m (Blue loading path in figure 4.30). These analyses gave one plane per
slip family as a yield surface. According to Rice’s work [Rice, 1987] and as shown on
figure 4.23, each slip system corresponds to two parallel segments of the yield surface in
the stress space. One can assume that each segment refers to a plane in the K-nominals
3D space. Thus, it is important to investigate the eventual presence of other yield planes
per slip system. The idea is to explore different initial directions.

Only slip systems of normal ~n = (111) were implemented. For B4, B2 and B5, an
initial mixture ratio was performed so that K∞IIIc = −8 MPa

√
m, K∞IIc = −10 MPa

√
m and

K∞Ic = 20 MPa
√

m (Green loading path in figure 4.30). For both B4 and B2, opposite
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planes were found. As shown in table 4.6, these yield surfaces have almost the same
normals as the first yield planes but are located in the opposite side with respect to the
center of loading sphere. For slip family B5, the same yield surface initially described by
the first loading campaign was found. Figure 4.31 shows these two planes in blue and
green in multiple views. Therefore, a third exploration was performed with an initial
loading K∞IIIc = −8 MPa

√
m, K∞IIc = 10 MPa

√
m and K∞Ic = 20 MPa

√
m (Red loading path

in figure 4.30). This third loading campaign led to an opposite yield plane parallel to the
ones initially found. This yield surface is represented in red in figure 4.31.

Figure 4.31: Yield planes of the slip system B5 obtained from different initial loading
ratios. Two yield planes can be identified, the first is represent by the red plane and the
second is represented by both the blue and the green planes

We made a generalization from these explored cases that each slip system has two
parallel yield planes. Regarding the kinematic hardening effect, the position of the yield
plane changes with the loading history. This position should be determined for each center
of the spiked sphere loading path. The position of the second yield plane for a given



166 Chapter 4. Reduced basis of a crystal plasticity model

Table 4.6: Normals of yield planes with different initial loading mixture ratios for slip

systems of normal (111) for orientation �(010)
[100] .

Slip system [K∞
IIIc ,K

∞
IIc ,K

∞
Ic ] (MPa

√
m) normal [K∞III ,K

∞
II ,K

∞
I ] Fit RMS Error

1 B4 [ 8, 10, 20 ] [ -0.84 , -0.52 , 0.16 ] 0.03
[-8, -10, 20 ] [ -0.86 , -0.47 , 0.16 ] 0.023

2 B2 [ 8, 10, 20 ] [ 0.39 , -0.78 , 0.45 ] 0.015
[-8, -10, 20 ] [ 0.28 , -0.88 , 0.37 ] 0.061

3 B5 [ 8, 10, 20 ] [ 0.83 , -0.48 , 0.27 ] 0.031
[-8, -10, 20 ] [ 0.88 , -0.40 , 0.25 ] 0.006
[-8, 10, 20 ] [ 0.84 , -0.37 , 0.39 ] 0.147

initial loading ratio is simply found by loading, from the center of the “spiked sphere”,
in a direction normal but from the opposite side of the initial yield plane. The γs

rms(t)
is determined on this loading branch. When this yield criterion reaches the critical value
γc

rms , a point is plotted in the K-nominals space as a position of the second yield plane.

4.4.3 Yield domain

As discussed before, a yield convex domain can be constructed by combining yield surfaces
of different slip systems [Rice, 1987]. This elasticity domain is represented by the minimum
convex volume found as the intersection between different yield surfaces. We decided to use
yield surfaces found in a separate implementation when each slip family is investigated
independently. These analyses give the same yield surfaces found when combining all
octahedral slip systems whereas they provide a finer exploration with more precision.

According to computations from the previous subsection, two yield planes are assigned
to each slip system. The minimum convex volume obtained from the combination of these
yield planes is a polyhedron as shown in figure 4.32. The shape and size of this polyhedron
depend on the value of the critical value γc

rms chosen as a yield limit. Each vertex of the
obtained yield domain corresponds to a constant stress state on a given sector near the
crack tip region.

Note: Strain hardening was neglected in Rice’s work with elastic-ideally plastic crystal but
in our case, with the presence of a kinematic hardening, it was not neglected. Therefore,
the yield locus depends on the plastic deformation.

Note: The crystal slip systems rotations with respect to the material axes can cause a
“geometric” hardening or softening [Rice, 1987]. This behavior was neglected since this
work is formulated within the small strain approximation.
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Figure 4.32: Yield domain of the region near the crack tip in the K-nominals space for

material orientation �(010)
[100] .
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4.5 Updated reference fields

4.5.1 Decomposition principle

Under the assumption of a standard generalized model and according to normal dissipation
principle, plastic flow and hence dissipation is maximum in a direction normal to the
yield locus. The idea here is to maximize the plastic strain flow on a given slip system
in order to obtain a significant plastic field that can be considered as a reference and
representative field of the slip system in consideration. For this reason, a unique slip
system is implemented each time and a loading in the direction normal to the yield plane
of that slip system is performed. Kinematic fields are then extracted from the region of
interest near the crack tip. After subtracting elastic fields of the three fracture modes
from these elastic-plastic fields, the remaining quantity represents the plastic kinematic
field caused by the plastic strain flow on the implemented slip system. A time-space
decomposition is then applied on this field through a POD in order to obtain the reference
plastic field corresponding to the slip system in consideration.

ṽpl
s (x , t) = ρ̇s(t)φpl,s(x ) = vFE

s (x , t)−
3∑
i=1

˙̃Ki(t)φ
el
i

(x ) (4.38)

where vFE
s (x , t) is the elastic-plastic kinematic field at the region near the crack tip of a

unique implemented slip system s. This field is obtained from a monotonic loading in a
direction normal to the yield planes of the slip system in consideration.

For a given crystallographic orientation, twelve plastic reference fields corresponding to
the twelve octahedral slip systems have to be defined. These fields, with elastic reference
fields, will represent the kinematic basis of the nonlocal approach. This procedure is
based on the knowledge of normals to yield planes of different slip systems previously
investigated. Finally, kinematic field at the region of interest of a cracked single crystal
with all of its octahedral slip systems can be approximated as follows:

vFE(x , t) ≈
3∑
i=1

˙̃Ki(t)φ
el
i

(x ) +
∑
s∈G

ρ̇s(t)φpl,s(x ) (4.39)

where vFE(x , t) is the total kinematic field of an elastic-plastic finite element simulation
and φpl,s(x ) is the plastic reference field of the slip family s. These fields are presented
and discussed in the next paragraph.

4.5.2 Reference fields

Yield planes for the crystallographic orientation �(010)
[100] had been already identified in a

section 4.4.2. Based on these analyses, a simulation campaign was conducted in order to
identify plastic reference fields for this orientation.

For a given implemented slip system s, a monotonic loading was performed in the
direction normal to the yield surface of the slip system s. These directions are summed
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up in table 4.5. The equivalent loading K∞eq was kept always the same for all simulations
K∞eq = ‖K∞‖ = 40 MPa

√
m. For each monotonic loading, the quadratic mean of the

cumulated slip rate γs
rms(t) was computed. Figure 4.33 shows the normalized evolution of

these quantities.

On the one hand, it was observed that, for material orientation �(010)
[100] , slip systems

behaved identically two by two when the same applied loading is symmetric with crack
coordinate system (pure mode I , pure mode II or pure mode III ). On the other hand,
the observed results of a loading in a random direction with no symmetry with the crack
plane would not give this two by two behavior.

For the present case, loadings were performed in different directions since every slip
family has a different normal to yield surface. Besides, these loading directions have no
symmetry with the crack. However, the two by two behavior of different slip systems is
still observed.
Moreover, figure 4.33 shows that, unlike what was observed when loading in a pure fracture
mode (see figures 4.19, 4.20 and 4.21), loading in normal directions had activated all slip
systems with different magnitudes.

Figure 4.33: γrms computed from different slip systems and different loading directions
(normal to the yield surface).

Fields from these simulations were extracted from the region of interest then post-
processed to obtain complementary reference fields. Then, these fields were assembled
together in the same snapshot matrix and a Proper Orthogonal Decomposition is applied
in order to obtain the same radial function. Radial function f pl(r) and angular functions
gpl

s
(θ) are shown in figure 4.34.

φpl,s(x ) = f pl(r) · gpl
s

(θ) (4.40)

f pl(r) represents the exponential decay in the scale of magnitude of complementary fields
while shifting away from the crack tip. Angular functions gpl

s
(θ) were applied to a trigono-

metric circle and sized to have the same norm of the opening vector
∥∥∥gpl

s
(π)− gpl

s
(−π)

∥∥∥.
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Figure 4.34: Radial function f pl(r) and angular distributions gpl
s

(θ) of different comple-

mentary reference fields φpl
s

(x ) for crystallographic orientation �(010)
[100] .
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Linear plots of the components of some angular functions gpl
s

(θ) are shown in fig-
ures 4.35 and 4.36. Due to symmetry considerations of the crystallographic orientation

�(010)
[100] with respect to the crack plane and direction, complementary reference fields are

found to be similar two by two in absolute value since components on ~x and ~y axes are
the same and components on~z axis are of opposite sign.

Figure 4.35: Linear plots of φpl,s(x ) components of slip systems B5 and C5 for crystallo-

graphic orientation �(010)
[100] .
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Figure 4.36: Linear plots of φpl,s(x ) components of slip systems A3 and D4 for crystallo-

graphic orientation �(010)
[100] .
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4.5.3 Schmid factor based on Hoenig analytical solutions and slip systems “non-
local” dominance criterion

Reference fields discussed before will serve as a projection basis for elastic-plastic kine-
matic fields in order to extract nonlocal quantities ρ̇s(t). However, unlike previous com-
plementary fields based on crack symmetries, reference fields φpl,s(x ) are not orthogonal
by construction. Therefore, it is important to investigate the effect of each slip system
on the evolution of plasticity near the crack tip region. This will help quantifying the
contribution of each slip system in the nonlinear part of the kinematic field. The activity
of a slip system is effective when it is dominant on a given sector due to its persistence
and uniqueness characters. For this reason, the concept of dominant slip system needs to
be studied and discussed.

Dominant slip system

The yielding of single crystals takes place on a given slip system when the resolved shear
stress τ s(r, θ) reaches a critical value τ c. When loading increases, the plastic slip at a
given location (r, θ) occurs on the plane and in the direction that have the highest re-
solved shear stress. The slip system that experienced this plastic slip straining is called
the “dominant” (or primary) slip system at that location [Arakere et al., 2009]. This dom-
inance persists with higher loadings and no other slip systems take place at that location
(r, θ) [Westbrooke, 2005], [Ebrahimi et al., 2006], [Arakere et al., 2009]. As mentioned in
subsection 4.3.3, the softening effect and slip localization can explain the persistence of
this slip. Besides, the occurrence of plasticity causes a significant drop in the resolved
shear stress on other slip systems which explains the uniqueness of the slip system in
consideration.

Based on this definition, the region near the crack tip can be divided into spatial
sectors of constant stress in which a slip system is dominant. Boundaries between sectors
represent the transition from a dominant slip system to another. Rice [Rice, 1987] had
shown that the stress state near the crack tip remains uniform within small ranges of theta
then it varies discontinuously when crossing sector boundaries. He mentioned that, for

crystallographic orientations �(010)
[101] and �(101)

[010] of an FCC cracked single crystal, the stress
state evaluated on a given sector corresponds to a vertex on the yield surface plotted on the
stress space with 1

2(σ11−σ22) and σ12 axes (see figure 4.23). Regarding the symmetries of
these two orientations with respect to the crack, Rice found that each sector corresponds
to the yielding of two families of slip systems. Which corresponds to the two by two

behavior previously mentioned in this work for material orientation �(010)
[100] .

Dominance criterion

Arakere and co-workers [Arakere et al., 2009] had shown that the “elastic anisotropy gov-
erns the development of the elastic stress field and controls which slip systems become
initially dominant/activated”. They showed experimentally that the initiation of plastic-
ity does not change significantly the state of stress calculated based on the linear elastic
approach. This means that a linear anisotropic elastic analysis is sufficient to predict the
stress field evolution and distribution near the crack tip of a single crystal even with the
presence of yielding. This prediction can stay valid even at higher applied loadings due to
the persistence in the dominance of slip systems. It is obvious that the elastic solution will
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miss some nonlinear effects because of plasticity. However, it serves in the development
of a dominance criterion since it can identify which slip system is initially activated at
a given location. The nonlinear effect is taken into account into the model developed in
this work since informations about plasticity are already included in the complementary
reference fields.

The idea is to obtain a dominance criterion based on the theoretical analysis of
the elastic anisotropic stress solution. Many experimental studies were conducted
based on the footsteps of Rice and co-workers ( [Rice, 1987], [Rice and Saeedvafa, 1987],
[Saeedvafa and Rice, 1989], [Rice et al., 1990]). In his original work, Rice developed an
asymptotic analysis of stress and strain at the crack tip region of an FCC and BCC
elastic-ideally plastic single crystals under 2D plane-strain assumption.

Arakere and co-workers ([Arakere et al., 2009], [Ebrahimi et al., 2006],
[Sabnis et al., 2012] ) have shown considerable disagreement between activated slip
systems and sectors predicted by Rice’s analytical solutions and slip traces observed
experimentally. However, they found a satisfactory matching between experiments
and three-dimensional finite element simulations that incorporate an elastic anisotropic
material behavior. Crone and Shield [Crone and Shield, 2001] , [Crone and Shield, 2003]
experimentally investigated strain fields near a notch tip in Copper and Copper-Beryllium
single crystals for the same crystallographic orientations explored by [Rice, 1987]. Al-
though results validated the existence of constant stress sectors with discontinuity along
sector boundaries, they disagreed with the sector boundary angles predicted theoretically
by Rice.

Hoenig’s stress solution and corresponding Shmid factor

As shown in chapter 3, Hoenig’s analytical solution is accurate when it comes to predict-
ing elastic displacement and stress fields at the vicinity of the crack tip. Based on the
Lekhnitskii formalism, [Hoenig, 1982] presented the general elastic analytical solution of
stress near the crack tip of an anisotropic body as follows:

σxx =
1√
2πr
<
[ 3∑
i=1

p2
iN
−1
ij K

∞
j

Qi

]
σyy =

1√
2πr
<
[ 3∑
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N−1
ij K

∞
j

Qi

]
σxy = − 1√

2πr
<
[ 3∑
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−1
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∞
j

Qi

]
σzx =
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2πr
<
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j

Qi

]
σzy = − 1√

2πr
<
[ 3∑
i=1

λiN
−1
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Qi

]
σzz =

1√
2πr
<
[ 3∑
i=1

αiN
−1
ij K

∞
j

Qi

]
(4.41)

under plane strain assumption:

αi = − 1

S33

[
S31p

2
i + S32 − S34λi + S35piλi − S36pi

]
(4.42)

Taking θ as the angular position around the crack, vector Qi is defined as follows:

Qi =
√

cos θ + pi sin θ (4.43)
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Ki is the vector of stress intensity factors:

K∞i =

K∞I
K∞II

K∞III

 (4.44)

The matrix Nij and vectors pi and λi are previously presented in chapter 3 section 3.2.1
and in Appendix A.
We recall that there are some special cases of anisotropy that lead to a mathematically
degenerate development. Further details about these cases are provided in Appendix A.

Based on this analytical development, the resolved shear stress can be obtained theo-
retically by projecting the stress tensor solution on the Schmid factor ms:

τ s(r, θ) = ms : σ(r, θ)

=
1√
2πr
<
[ 3∑
i=1

N−1
ij K

∞
j

Qi
(p2
im

s
11 +ms

22 + αim
s
33 − 2pim

s
12 + 2piλim

s
13 − 2λim

s
23)
]

(4.45)

Note: Since the stress solution is expressed in the crack reference, ms, usually expressed
in the crystal coordinates system, should be also expressed in this same coordinates system
of the crack.

These theoretical developments were implemented in the technical computing software
Mathematica. As a primary observation, analytical results confirmed that each sector
represents the activation of two slip systems and some times four for some orientations
that have a symmetry with the crack plane and direction.

Comparison between theoretical, numerical and experimental analyses

Ebrahimi and co-workers ([Ebrahimi et al., 2006]) studied the plasticity near the notch in
a Ni-base superalloy single crystal. Experimental results were compared to those from
finite element simulations of a double-notched specimens under tensile loading. A good
agreement between both results was concluded. Figure 4.37a shows numerical results of

the distribution of different resolved shear stresses for the material orientation �(001)
[010] at

a radius r = 5ρ, with ρ is the notch height. Figure 4.37b shows this same distribution
computed analytically based on the expression presented in equation 4.45 at the same
distance r from the crack tip and the same applied loading K∞I = 45 MPa

√
m. These

results show a reasonable agreement in the stress distribution and in the dominant slip
system corresponding to each angular sector.

The geometry responsible for the stress concentration in [Ebrahimi et al., 2006] is a
double notched specimen with a quite short length while the asymptotic solutions of Hoenig
[Hoenig, 1982] were developed for the case of a straight crack subjected to a uniform far
stress. This major differences may explain the difference between both results. Besides,
secondary orientations measured on the experimentally tested samples were some times off
by small angles (less than 8◦). It seems that authors took into account this small twist of
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(a)

(b)

Figure 4.37: Resolved shear stresses distribution at r = 5ρ for material orientation �(001)
[010]

τ s,(a) Finite element simulations ([Ebrahimi et al., 2006]), (b) analytical results based on
Hoenig’s solutions
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the secondary orientation of the crystal in the simulation part. This small twist explains
the small difference between some slip system couples that exhibit analytically the same
behavior, i.e. between slip systems B4(τ1) and A3(τ9).

Another comparison was made between experimental, numerical and theoretical re-
sults. In the work done by [Sabnis et al., 2012], the notch-tip plasticity was investigated in
superalloy single crystals. Considering the crystal growth direction [001] as a primary ori-
entation, authors represented the effect of secondary orientation on the evolution of plastic
fields near the notch. A tensile loading was applied with a magnitude of K∞I = 50 MPa

√
m

on a single crystal oriented �(001)
[1̄10] with respect to the notch. Figure 4.38a shows the slip

sectors at the region near the notch found with cubic elasticity computations and super-
posed to experimentally observed slip traces. Figure 4.38b shows experimentally obtained
slip bands. Figure 4.38c shows the distribution of analytical resolved shear stresses (see

equation 4.45) at the region near the crack tip for the same material orientation �(001)
[1̄10] .

Taking into account that these results correspond to two different geometrical defaults,
one can conclude that a reasonable agreement is observed between both results.

As observed experimentally and as predicted by the Crystal Plasticity Finite Element

Analysis (CPFEA) done by [Sabnis, 2012] for this material orientation �(001)
[1̄10] , slip systems

B4, B2, D1, A2, C3 and C1 are the most active ones. In a second row, B5, D4, A3 and C1
are less activated and finally, A6 and D6 are not activated at all. These observations can
be interpreted also from theoretical distributions of stresses. Theoretical results exhibit a
two by two behavior of slip systems due to symmetry of the crystal with respect to crack
plane. This behavior is hard to be observed in experiments since the secondary material
orientation is not perfectly controlled, therefore no perfect symmetry can be obtained.
The lack of perfect symmetry in the stress distribution near the crack tip region prevents
the simultaneous yielding of two slip systems in a given sector.
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(a) (b)

(c)

Figure 4.38: Resolved shear stresses for material orientation �(001)
[1̄10] under a tensile test

with K∞I = 50 MPa
√

m (a) Numerical slip sectors superposed to experimental slip traces,
(b) experimental slip bands [Sabnis et al., 2012] and (c) resolved shear stress distributions
at the region near the crack tip based on Hoenig’s analytical solutions
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Non linear basis

As shown in the previous part, the distribution of resolved shear stresses can be identified
theoretically with a quite good precision. This identification can be used as a criterion to
tell which complementary reference field φpl,s(x ) can be firstly used in the kinematic basis.
In the following work, some methods were explored in the processing of the complementary
fields:

• Method 1:

The geometrical symmetry of the crack can be taken into account by constructing a com-
plementary field for each fracture mode through a patchwork of complementary reference
fields of every slip system. The idea is to extract the sectors distribution for three loadings
corresponding to the three fracture modes I, II and III. Based on these distributions and
on complementary fields of each slip system, a reference field is constructed for each frac-
ture mode. The resulting complementary reference field can be finally written as follows:

ũpli (r, θ) = upl,s(r, θ) (4.46)

with s is dominant in the location (r, θ) under a mode i loading, i ∈ {I , II , III }.
Concerning fields that have the same evolution of the resolved shear stress, they have the
same angular distribution of the complementary reference field (see figures 4.35, 4.36).

Figures 4.39, 4.40, and 4.41 show the distribution of resolved shear stresses |τ s| for a

crystal with �(010)
[100] orientation under loadings in mode I , mode II and mode III respec-

tively. These distributions where computed at the same distance δ from the crack tip.
Tables 4.7, 4.8, and 4.9 summarize dominant slip systems and their dominance θ-ranges.

Figure 4.39: Resolved shear stresses distributions |τ s|(MPa) of different slip systems at the
region near the crack tip based on Hoenig’s analytical solutions for material orientation

�(010)
[100] under pure mode I K∞I = 25 MPa

√
m at a distance δ from the crack tip.
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Table 4.7: Sectors of dominant slip systems for material orientation �(010)
[100] under mode I

at a distance δ from the crack tip.

Angle θ [−180◦,−158◦] [−158◦,−122◦] [−122◦,−69◦] [−69◦,−50◦] [−50◦, 0◦]
Dominant B5, C5 B4, C3 B2, C1 B5, C5 A2, D1
systems A6, D6 A6, D6

Angle θ [0◦, 50◦] [50◦, 69◦] [69◦, 122◦] [122◦, 158◦] [158◦, 180◦]
Dominant B2, C1 B5, C5 A2, D1 D4, A3 B5, C5
systems A6, D6 A6, D6

Figure 4.40: Resolved shear stresses distributions |τ s|(MPa) of different slip systems at the
region near the crack tip based on Hoenig’s analytical solutions for material orientation

�(010)
[100] under pure mode II K∞II = 25 MPa

√
m at a distance δ from the crack tip.

Table 4.8: Sectors of dominant slip systems for material orientation �(010)
[100] under mode II

at a distance δ from the crack tip.

Angle θ [−180◦,−148◦] [−148◦,−22◦] [−22◦, 0◦] [0◦, 22◦] [22◦, 148◦] [148◦, 180◦]
Dominant B5, C5 B4, C3 D1, A2 C1, B2 D4, A3 B5, C5
systems A6, D6 A6, D6

Table 4.9: Sectors of dominant slip systems for material orientation �(010)
[100] under mode III

at a distance δ from the crack tip.

Angle θ [−180◦,−127◦] [−127◦, 0◦] [0◦, 127◦] [127◦, 180◦]
Dominant systems B2 D6 C5 A2
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Figure 4.41: Resolved shear stresses distributions |τ s|(MPa) of different slip systems at the
region near the crack tip based on Hoenig’s analytical solutions for material orientation

�(010)
[100] under pure mode III K∞III = 10 MPa

√
m at a distance δ from the crack tip.

For instance, for the fracture mode III , the complementary reference field φpl,s
III

(x ) is
constructed based on table 4.9 as follows:

φpl,s
III

(x ) =


φpl ,B2 (r, θ) for θ ∈ [−180◦,−127◦]

φpl ,D6 (r, θ) for θ ∈ [−127◦, 0◦]

φpl ,C5 (r, θ) for θ ∈ [0◦, 127◦]

φpl ,A2 (r, θ) for θ ∈ [127◦, 180◦]

(4.47)

The weak point of this method is that the obtained complementary reference fields
may not verify the compatibility equations.

• Method 2:

The idea here is to transpose the local crystal plasticity model to the nonlocal scale of the
crack. Therefore, a “nonlocal Schmid” factor has to be identified.
In fact, the resolved shear stress τ s of a given slip system (s) is the projection of a stress
state on the Schmid factor ms of the corresponding slip system. It can be seen also as
the virtual work of the stress vector on this slip system per a unit displacement field.
Along the same lines, an attempt was made to transpose this local Schmid factor to the
scale of the crack region. The idea is to compute the virtual work of the Hoenig’s elastic
stress vector in a given slip system with the corresponding complementary reference field
φpl,s(x ).

The Hoenig’s elastic stress solution given in equation 4.41 can be written as follows:

σHoenig = K∞I ϕHoenig
I

(r, θ) + K∞II ϕ
Hoenig

II
(r, θ) + K∞III ϕ

Hoenig

III
(r, θ) (4.48)
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Figure 4.42 shows the distribution of the components of ϕHoenig
I

(r, θ),ϕHoenig
II

(r, θ) and

ϕHoenig
III

(r, θ) as function of the angular position θ for material orientation �(010)
[100] .

Figure 4.42: Components of Hoenig’s stress tensors ϕHoenig
I

(r, θ), ϕHoenig
II

(r, θ) and

ϕHoenig
III

(r, θ) for material orientation �(010)
[100] .

A stress vector T i can be computed for each fracture mode i on a given contour around
the crack as shown on figure 4.43:

T i = ϕHoenig
i

(r, θ) · n (4.49)
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Figure 4.43: Contour around the crack tip.

Figure 4.44: Hoenig’s stress vectors T I , T II and T III for material orientation �(010)
[100] .

The “nonlocal Schmid” factor of the fracture mode i and the slip system s is com-
puted as the virtual work of the Hoenig’s stress vector of the fracture mode i (T i) in the
complementary reference field φpl,s(x ) of the slip system s:

fsi =

∫ θ=π

θ=−π
T i · φpl,s(x )rdθ (4.50)

Finally, an equivalent stress intensity factor experienced by a slip system s can be com-
puted as the sum of nominal stress intensity factors of different fracture modes weighted
by the corresponding “nonlocal Schmid” factor:

Ks = fsIK∞I + fsIIK
∞
II + fsIIIK

∞
III (4.51)

Once this equivalent stress intensity factor is obtained for each slip system for a given
loading case, a constitutive law with an evolution law of internal variables can be used to
describe the behavior of the plastic blunting ρsmod associated to each slip system. For the
sake of simplicity, and in concordance with the crystal plasticity model (see equation 4.7),
a Norton law was used.

ρ̇smod =
( |Ks −KX

s |
k

)n
sign(Ks −KX

s ) (4.52)
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For the sake of simplicity, a simple linear evolution law is associated to internal variable
KX
s .

K̇X
s = cρ̇s (4.53)

k, n and c are material parameters. The identification of these parameters is obtained by
minimizing the error between the blunting intensity factor ρsmod of a given slip system s
obtained from the model and the the blunting intensity factor ρsnum obtained from a
direct projection of the total numerical kinematic field on the reference field φpl,s(x ) (see
equation 4.54). Comparison is made for the same loading case.

ρ̇snum(t) =

∑
P∈D vFE(P, t) · φpl,s(P )∑
P∈D φ

pl,s(P ) · φpl,s(P )
(4.54)

Results

The identification was performed on a test case under a pure fracture mode I with a
crystal plasticity model that contains all the twelve octahedral slip systems with material

orientation �(010)
[100] . Elastic-plastic kinematic fields vFE(x , t) were extracted from the region

of interest near the crack tip. ρ̇snum was evaluated for each slip system based on expres-
sion 4.54. A minimization algorithm was used to identify a set of parameters k, n and c
for all slip systems by minimizing the error between ρ̇snum and ρ̇smod (see equation 4.52).

Figure 4.45 shows, for different slip systems, the Ks−ρ̇snum curves obtained numerically
and Ks − ρ̇smod curves obtained from the model for a given set of parameters n, k and c.
The used parameters are the same for all slip systems. Generally speaking, results show
a quite good agreement for some slip systems more than others. In fact, using a Norton
law and a simple linear evolution law for the internal variable KX

s to transpose the local
crystal plasticity model to the scale of the crack may miss some details about the real
behavior of the crystal at the near crack tip region.
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Figure 4.45: Evolution of Ks as function of ρ̇snum computed numerically and as function of
ρ̇smod from the model. The studied case is a pure fracture mode I of material orientation

�(010)
[100] .
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4.6 Conclusion

In this chapter, the problem of a crack in a FCC single crystal was studied. A crystal
plasticity model was used to model the behavior of a cracked AM1 single crystal.

The kinematic basis used to reduce the number of the degrees of freedom of the problem
was initially studied based on the partition of kinematic fields with respect to fracture
modes. A plastic reference field φpl

i
(x ) is identified for each fracture mode (i) and the

problem is reduced to six degrees of freedom (K̇∞I , K̇∞II , K̇
∞
III , ρ̇I , ρ̇II , ρ̇III ). However, the

localization of the plastic strain caused by the activation of few slip systems under a given
fracture mode indicates that this partition with respect to fracture modes may not be
representative of the crack tip plasticity under mixed fracture modes.

A second partition methodology was studied based on the decomposition of plastic
velocity field with respect slip systems, to take into account the activation of this systems,
and based on fracture modes, in order to maintain the orthogonality the kinematic basis.
Thus, a plastic reference field φpl,s

i
(x ) is identified for each slip system (s) and for each

fracture mode (i) and the problem of crack tip plasticity is reduced to 39 degrees of freedom
(K̇∞I , K̇∞II , K̇

∞
III , ρ̇

s
i , i = I, II, III s = 1..12).

It was shown that the yield domain of the region near the crack tip of a given slip
system s is represented by two parallel planes in the K∞I −K∞II −K∞III space. Normals to
these planes were identified based on a set FE simulations.

The resolved shear stress was evaluated analytically based on the Schmid factor and
on Hoenig’s solutions for elastic stress distributions near the crack tip region. The concept
of dominant slip system, its persistence and uniqueness allowed the use of elastic solutions
to evaluate sectors of dominant stresses at the crack tip. Promising results were found
when comparing the analytical Schmid factor, experimental results and numerical ones.

Based on these analyses, a third methodology was proposed based on the partition
with respect to slip systems. Thus, a plastic reference field φpl,s(x ) is identified for each
slip system (s). A “nonlocal Schmid factor” was proposed as the virtual work of the
Hoenig’s stress vector in the plastic reference field. This factor was then used in a simple
material behavior law to transpose the local crystal plasticity model to the scale of the
crack. The identified condensed nonlocal model was able to predict the evolution of most
plastic intensity factors ρs, despite its rather simple formulation.



Conclusion and perspectives

This work aims to model the plasticity at the region near the tip of a stationary crack
subjected to mixed fracture modes I + II + III in an anisotropic medium. It focuses
on the case of the AM1 Nickel base superalloy single crystal. The study can be globally
decomposed into two major parts.

In the first part, the material was described with a cubic elasticity model and a Von-
Mises associated plasticity. Based on a set of hypotheses, the velocity field of the crack tip
region is partitioned into two kinematically independent mechanisms, i.e. an elastic mech-
anism and a plastic one. Each part is the superposition of three fracture modes written
as a product of an intensity factor rate and a spatial distribution field. A special interest
was given to the determination of these spatial distributions since they form the kinematic
basis required to reduce the model. A kinematic basis is comprised of the elastic refer-
ence fields (φel

I
(x ), φel

II
(x ), φel

III
(x )) and the plastic reference fields (φpl

I
(x ), φpl

II
(x ), φpl

III
(x ))

of different fracture modes.

Elastic reference fields were derived from a Proper Orthogonal Decomposition analysis.
In a first step, these fields were shown to verify Sih, Paris and Irwin’s [Sih et al., 1965]
asymptotic elastic solutions for the orthotropic case in which material axes are along
the crack coordinates system. Then, it was shown that, for a random crystallographic
orientation with respect to the crack plane and front, these fields can be represented by
Hoenig’s general elastic solution of displacement fields [Hoenig, 1982].
The determination of the plastic reference fields went through a verification procedure in
order to ensure the hypotheses of the model. These fields exhibited a strong dependency
on the crystallographic orientation even under Von-Mises “isotropic” plasticity.

Once a kinematic basis was identified for each studied material orientation, an extended
yield criterion at the crack scale was proposed. This criterion is based on the density of the
elastic shear energy and on LEFM fields given by Hoenig’s general solution. The shape of
this domain is highly affected by the loading history. Thus, a methodology was proposed
to numerically explore the yield domain without distorting it. A plasticity criterion based
on the reconstruction errors of kinematic fields was used to identify the yield domain. The
position and the size of the yield locus can be considered as internal variables to enrich the
condensed plasticity model. Their evolution laws take part in the blunting law in order to
take into account the loading history effects and internal stresses.

In an analogy with a standard generalized model, a normality rule of the plastic flow was
derived from the pseudopotential of dissipation. This rule is based on nonlocal blunting
intensity factors (ρ̇I , ρ̇II , ρ̇III ) and thermodynamic quantities similar to the energy release
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rates (GI ,GII ,GIII ). The choice of these dual quantities seems to be convenient for the
isotropic case and for orientations where the material presents an orthotropic behavior
with respect to the crack coordinate system. For other random orientations, the used
kinematic basis was able to capture the anisotropy-induced mixed mode behavior of the
plastic flow. However, the choice of the driving forces associated to ρ̇I , ρ̇II and ρ̇III has to
be reviewed because of thermodynamic considerations.

In the second part of this work, a full anisotropic behavior of the material was studied
via cubic elasticity and a crystal plasticity model. The twelve octahedral slip systems of
the FCC single crystal were considered in the model.

The same partition proposed before was initially used. A plastic reference field was de-
termined for each fracture mode. However, the localization of the plastic strain at the
region near the crack tip, caused by the activation of few slip systems, urged the study of
a new partition strategy. This strategy aimed to take into account the presence of easy
slip planes and directions. For this reason, different separated analyses were performed on
models. A unique slip system is implemented and independently studied per analysis.
Based on these finite element analyses, it was shown that the yield domain of the cracked
region is a superposition of different parallel pairs of planes in the space of nominal stress
intensity factors K∞I − K∞II − K∞III . Each pair of planes represents the opposite yield sur-
faces of one slip system. Based on information from these analyses, a plastic reference
field φpl,s(x ) was identified for each slip system (s).

The use of the new constructed kinematic basis in the modeling required the study of
activated slip systems through the Schmid law. Anisotropic Hoenig’s solutions were used
in the evaluation of the resolved shear stress at the region near the crack tip. The analyt-
ical expression exhibited a good agreement with numerical and experimental results from
literature.
In order to maintain the nonlocal aspect of the model, the formulation of a “nonlocal
Schmid factor” was proposed. It quantifies the contribution of each slip system (s) and
fracture mode (i) in the kinematics at the crack tip when a random loading is applied.
This factor is expressed as the virtual work of the Hoenig’s stress vector of the fracture
mode (i) in the plastic reference field of the slip system (s). Based on this quantity, a
behavior law was proposed to describe the evolution of the plasticity through the blunting
intensity factor ρ̇s(t). The proposed model is written as a simple Norton law with a linear
evolution law associated to the internal variable KX

s . This mode contains three param-
eters to identify. It can be replaced in the future with a more sophisticated model with
more parameters in order to provide a better description of the local crystal plasticity
model.

This work presented the first exploration steps toward the condensed modeling of crack
tip plasticity in an anisotropic medium. The final model enriches the usual linear elastic
fracture mechanics functions by additional terms to account for the cyclic elastic-plastic
behavior. Nevertheless, future works have to be done in order to fulfill the incorporation
of this model in the incremental approach.

The evolution of internal variables due to plasticity (∂Vint
∂ρ ) can be studied with the tools

presented in this work. These evolutions equations are implemented in the incremental
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model [Pommier and Hamam, 2007] to include history effects. Moreover, as the crack
propagates, these variables have to be updated with the evolving crack length a to ac-
count for damage. Thus, an evolution law of internal variables as function of the crack
propagation (∂Vint

∂a ) has to be determined. It can be identified by numerically “growing”
the crack without allowing plastic strains.

Based on the very first hypothesis of the incremental model, the propagation law relates
the crack growth rate to the blunting at the crack tip. In the previous developments of
the incremental model [Decreuse, 2010], [Fremy et al., 2012], a pure geometric relation was

proposed to relate the new created surface to the blunting intensity factor: ȧ ∝
√
ρ̇2

I + ρ̇2
II .

For the crystal plasticity case presented in this work, a blunting intensity factor ρ̇s(t) can
be obtained from the model for each given slip system (s). The corresponding relation
between the crack growth rate, i.e. the new created surface, and the crack tip plastic-
ity can be written based on the geometrical considerations of the crack orientation with
respect to the crystal frame and to different activated slip systems. A comparison with
experimental results has to be performed to calibrate this relation. Different experimental
analyses about crack initiation and propagation in Nickel base superalloy single crystals
are available in the literature [Marchal, 2006],[Geuffrard, 2010], etc.

Plastic reference fields φpl,s(x ) used to transpose the local crystal plasticity model to the
scale of the crack were obtained from monotonic loadings. This choice stems from the
hypotheses of the model and from the persistence character of an activated slip system in
a given sector near the crack tip. Besides, the crack can be considered as a “zero cohesion”
slip system that is also capable of opening and that interacts with different octahedral slip
systems while the interaction between different crystallographic slip systems was neglected.
These interactions may be important in the modeling of the cyclic elastic-plastic behavior
of the near crack tip region. In fact, according to experimental observations under cyclic
loadings, the crystallographic slip may be intensified on the already activated slip systems
whereas new slip systems can be activated as well. For instance, for the case of the AM1,
the total inelastic strain rarely remains on a single slip direction for a given plane under
cyclic loadings [Hanriot, 1993].

Once the incremental model is set for the case of a single crystal, it can be extended to
the case of a bicrystal in a first step in order to examine the effect of the grain boundary
and the presence of a single neighboring grain. In an advanced stage, the case of poly-
crystalline microstructure can be considered. In fact, the precise mapping of 3D grain
shapes and crystallographic orientations in polycrystalline materials has become possi-
ble with nondestructive techniques such as the X-ray Diffraction Contrast Tomography
(DCT) [Ludwig et al., 2009]. However, the numerical modeling of fatigue crack growth in
polycrystalline materials with a crystal plasticity model is not a common study in litera-
ture because of its time consuming pre-processings and computations. Nevertheless, some
three-dimensional FE simulations of short fatigue crack growth with a crystal plasticity
model where recently performed on a mesh of a Titanium alloy microstructure imaged
by DCT [Proudhon et al., 2017]. A local damage indicator was used to predict crack di-
rection. This computation can provide a database to which the nonlocal model can be
compared in the future. Yet, in order to fulfill such a comparison, the model has to be
enriched to take into account various behaviors. Actually, the presence of neighboring
grains and grain boundaries will create some perturbations in the mechanical fields near
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the crack tip. For instance, internal stresses can be localized at the grain boundaries and
can promote this perturbation. Moreover, under loading, the elastic anisotropy leads to
a stress concentration at these boundaries [Ludwig et al., 2009]. These microstructural
features and many others have to be considered in the extension of the model to the case
of polycrystalline material.
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Appendix A

Asymptotic linear elastic solutions

The first order of the asymptotic expansion at the vicinity of a crack is given in this part
for different cases of material elastic behavior. Solutions are developed for a through sharp
crack in the plane of normal ~y with the ~z axis is along the crack front.

Figure A.1: Cartesian and polar coordinates systems at the crack tip region.

Isotropic case: Westergaard’s solution

Westergaard [Westergaard, 1939] gave the first order of the asymptotic linear elastic solu-
tion of stress and displacement at the region near the crack tip for an isotropic material.
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The stress is given as follows:

mode I



σxx =
KI√
2πr

cos (
θ

2
)[1− sin (

θ

2
) sin (

3θ

2
)]

σyy =
KI√
2πr

cos (
θ

2
)[1 + sin (

θ

2
) sin (

3θ

2
)]

σxy =
KI√
2πr

cos (
θ

2
) sin (

θ

2
) cos (

3θ

2
)

mode II



σxx = − KII√
2πr

sin (
θ

2
)[2 + cos (

θ

2
) cos (

3θ

2
)]

σyy =
KII√
2πr

sin (
θ

2
) cos (

θ

2
) cos (

3θ

2
)

σxy =
KII√
2πr

cos (
θ

2
)[1− sin (

θ

2
) sin (

3θ

2
)]

mode III


σxz = − KIII√

2πr
sin (

θ

2
)

σyz =
KIII√
2πr

cos (
θ

2
)

(A.1)

The displacement is given as follows:

mode I


ux =

KI

2µ

√
r

2π
cos (

θ

2
)[κ− cos (θ)]

uy =
KI

2µ

√
r

2π
sin (

θ

2
)[κ− cos (θ)]

mode II


ux =

KII

2µ

√
r

2π
sin (

θ

2
)[κ+ 2 + cos (θ)]

uy = −KII

2µ

√
r

2π
cos (

θ

2
)[κ− 2 + cos (θ)]

mode III

{
uz = 2

KIII

µ

√
r

2π
sin (

θ

2
)

(A.2)

with µ = E
2(1+ν) the Lamé coefficient, κ = 3−ν

1+ν under plane stress and κ = 3−4ν under
plane strain.

Cubic with z = 0 a plane of symmetry: Sih, Paris and Irwin’s solution

Sih, Paris and Irwin [Sih et al., 1965] gave the first term of the asymptotic expansion of
the stress and displacement for a crack in a monoclinic material with z = 0 a plane of
symmetry for the material.

The generalized Hooke’s law is written in Voigt notation as follows:

˜
ε =

˜̃
S ·

˜
σ (A.3)



195

with:

˜
ε =



εxx
εyy
εzz
2εyz
2εxz
2εxy

 ˜
σ =



σxx
σyy
σzz
σyz
σxz
σxy

 ˜̃
S =



S1111 S1122 S1133 0 0 0
S2211 S2222 S2233 0 0 0
S3311 S3322 S3333 0 0 0

0 0 0 4S2323 0 0
0 0 0 0 4S3131 0
0 0 0 0 0 4S1212

 (A.4)

Based on a complex variables formulation, the problem of two-dimensional anisotropic
elasticity can be conducted to solving the fourth order and the second order characteristic
equations:

S′11µ
4 − 2S′16µ

3 + (2S′12 + S′66)µ2 − 2S′26µ+ S′22 = 0 (A.5)

S′′44µ
2 + 2S′′45µ+ S′′55 = 0 (A.6)

with, under plane strain conditions:

S′ij = Sij −
Si3S3j

S33
(A.7)

and

S′′ij =

−
S′
ij

S′
44S

′
55−S′

45
2 (i 6= j)

S′
44S

′
55

S′
ij(S′

44S
′
55−S′

45
2)

(i = j)
(A.8)

Solutions of equations A.5 and A.6 are pairs of complex roots. Let µ1, µ2 be the two
distinct complex solutions of equation A.5 and µ3 be the root of equation A.6 that all
share the same sign of the imaginary part.
The stress is given as follows:

mode I



σxx = KI

√
1

2πr
<[

µ1µ2

µ1 − µ2
(

µ2√
cos θ + µ2 sin θ

− µ1√
cos θ + µ1 sin θ

)]

σyy = KI

√
1

2πr
<[

1

µ1 − µ2
(

µ1√
cos θ + µ2 sin θ

− µ2√
cos θ + µ1 sin θ

)]

σxy = KI

√
1

2πr
<[

µ1µ2

µ1 − µ2
(

1√
cos θ + µ1 sin θ

− 1√
cos θ + µ2 sin θ

)]

mode II



σxx = KII

√
1

2πr
<[

1

µ1 − µ2
(

µ2
2√

cos θ + µ2 sin θ
− µ2

1√
cos θ + µ1 sin θ

)]

σyy = KII

√
1

2πr
<[

1

µ1 − µ2
(

1√
cos θ + µ2 sin θ

− 1√
cos θ + µ1 sin θ

)]

σxy = KII

√
1

2πr
<[

1

µ1 − µ2
(

µ1√
cos θ + µ1 sin θ

− µ2√
cos θ + µ2 sin θ

)]

mode III


σxz = −KIII

√
1

2πr
<[

µ3√
cos θ + µ3 sin θ

]

σyz = KIII

√
1

2πr
<[

1√
cos θ + µ3 sin θ

]

(A.9)
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The displacement is given as follows:

mode I


ux = KI

√
2r

π
<
[

1

µ1 − µ2
(µ1p2

√
cos θ + µ2 sin θ − µ2p1

√
cos θ + µ1 sin θ)

]
uy = KI

√
2r

π
<
[

1

µ1 − µ2
(µ1q2

√
cos θ + µ2 sin θ − µ2q1

√
cos θ + µ1 sin θ)

]

mode II


ux = KII

√
2r

π
<
[

1

µ1 − µ2
(p2
√

cos θ + µ2 sin θ − p1
√

cos θ + µ1 sin θ)

]
uy = KII

√
2r

π
<
[

1

µ1 − µ2
(q2
√

cos θ + µ2 sin θ − q1
√

cos θ + µ1 sin θ)

]
mode III

{
uz = KIII

√
2r

π
<
[√

cos θ + µ3 sin θ

S′′45 + µ3S′′44

]

(A.10)

with, for j = 1, 2, pj and qj are as follows:

pj = S′11µ
2
j + S′12 − S′16µj

qj = S′12µj +
S′22

µj
− S′26

(A.11)

Generally anisotropic medium: Hoenig’s solution

For a general anisotropic case, Hoenig [Hoenig, 1982] proposed an asymptotic solution of
displacement and stress at the vicinity of a crack tip based on the Lekhnitskii formalism
[Lekhnitskii, 1963].

Following the same procedure as in the Lekhnitskii formalism, the problem of the crack
is taken as a plane problem so that field quantities depend solely upon two coordinates
(x, y) and are expressed in the final solution in polar coordinates (r, θ) (see figure A.1).
The solution is based on the governing equations of an anisotropic elasticity problem.
The stress and strain are connected through the constitutive law:

εij = Sijklσkl (A.12)

Let Sij is the Voigt notation of the stiffness tensor. Notations are written as follows:

˜
ε =



εxx
εyy
εzz
2εyz
2εxz
2εxy

 ˜
σ =



σxx
σyy
σzz
σyz
σxz
σxy

 ˜̃
S =



S1111 S1122 S1133 0 0 0
S2211 S2222 S2233 0 0 0
S3311 S3322 S3333 0 0 0

0 0 0 4S2323 0 0
0 0 0 0 4S3131 0
0 0 0 0 0 4S1212


(A.13)

The reduced compliance matrix S′ij is used in the solution. It derives from the com-
pliance matrix Sij written in Voigt notation (see equation A.13). Under plane strain
assumption, S′ij is evaluated as follows:

S′ij = Sij −
Si3S3j

S33
(A.14)
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As given by Hoenig [Hoenig, 1982] and then rewritten by Banks-Sills and co-workers
[Banks-Sills et al., 2005], the displacement is written as follows:

ui =

√
2r

π
<
[ 3∑
j=1

mijN
−1
jl K∞l Qj

]
(A.15)

The components of the stress tensor are given as follows:

σxx =
1√
2πr
<
[ 3∑
i=1

p2
iN
−1
ij K

∞
j

Qi

]
σyy =

1√
2πr
<
[ 3∑
i=1

N−1
ij K

∞
j

Qi

]
σxy = − 1√

2πr
<
[ 3∑
i=1

piN
−1
ij K

∞
j

Qi

]
σzx =

1√
2πr
<
[ 3∑
i=1

piλiN
−1
ij K

∞
j

Qi

]
σzy = − 1√

2πr
<
[ 3∑
i=1

λiN
−1
ij K

∞
j

Qi

]
σzz =

1√
2πr
<
[ 3∑
i=1

αiN
−1
ij K

∞
j

Qi

]
(A.16)

under plane strain assumption:

αi = − 1

S33

[
S31p

2
i + S32 − S34λi + S35piλi − S36pi

]
(A.17)

with i ∈ {1, 2, 3} which is equivalent to i ∈ {x, y, z}, <[∗] is the real part of ∗ and mij is
a matrix defined as follows:

m1i = S′11p
2
i − S′16pi + S′12 + λi(S

′
15pi − S′14)

m2i = S′21pi − S′26 +
S′22

pi
+ λi(S

′
25 −

S′24

pi
)

m3i = S′41pi − S′46 +
S′42

pi
+ λi(S

′
45 −

S′44

pi
)

(A.18)

Qi =
√

cos θ + pi sin θ (A.19)

with θ the angular position with respect to the crack ligament (see figure A.1).
N−1
ij and K∞i are respectively the inverse of the matrix Nij defined below and the vector

of stress intensity factors:

Nij =

 1 1 1
−p1 −p2 −p3

−λ1 −λ2 −λ3

 K∞i =

K∞I
K∞II

K∞III

 (A.20)

λi = − l3(pi)

l2(pi)
(A.21)

where pi (i ∈ {1, 2, 3}) are the roots of the characteristic sixth order polynomial equa-
tion A.22 obtained by coupling compatibility equations. These roots are always complex
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and are obtained as pairs of complex conjugates. Distinct roots sharing the same sign of
the imaginary part have to be chosen.

l4(p)l2(p)− l23(p) = 0 (A.22)

with

l2(p) = S′55p
2 − 2S′45p+ S′44

l3(p) = S′15p
3 − (S′14 + S′56)p2 + (S′25 + S′46)p− S′24

l4(p) = S′11p
4 − 2S′16p

3 + (2S′12 + S′66)p2 − 2S′26p+ S′22

(A.23)

Special cases
There are some special cases of anisotropy that lead to a mathematically degenerate devel-
opment. These cases can be summarized in the ones where the plane z = 0 is a symmetry
plane. This includes the monoclinic, the orthotropic and the cubic anisotropies where the
crystal axes are normal to symmetry planes and of course the isotropic case.
The most general case among these special ones is the monoclinic anisotropy with z = 0
a plane of symmetry:

S′14 = S′24 = S′15 = S′25 = S′46 = S′56 = 0 (A.24)

These symmetries imply that l3(p) = 0 which means that the coupling between the two
compatibilities equations that led to equation A.22, is no more valid. This requires another
development. The other two characteristic polynomial equations are written as follows:

l4(p) = 0
l2(p) = 0

(A.25)

p1 and p2 are the distinct solutions of the equation l4(p) = 0 and p3 is the solution of
equation l2(p) = 0. Roots that have the same sign of the imaginary part have to be
chosen.

The matrix mij (equation A.18) is redefined as follows:

m1i = S′11p
2
i − S′16pi + S′12

m2i = S′21pi − S′26 +
S′
22
pi

m3i = 0

}
for i ∈ {1, 2} and

m13 = 0
m23 = 0

m33 = S′45 −
S′
44
p3

(A.26)

These special cases lead to a solution in displacement identical to the solution given
by Sih, Paris and Irwin [Sih et al., 1965] developed for materials with z = 0 present-
ing a plane of symmetry. Hoenig [Hoenig, 1982] and then Banks-Sills and co-workers
[Banks-Sills et al., 2005][Banks-Sills et al., 2007] presented these solutions as follows:

ui =

√
2r

π
<
[ 3∑
j=1

mijBjQj

]
(A.27)
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The stress is written as follows:

σxx =
1√
2πr
<
[ 2∑
i=1

p2
iBi
Qi

]
σyy =

1√
2πr
<
[ 2∑
i=1

Bi
Qi

]
σxy = − 1√

2πr
<
[ 2∑
i=1

piBi
Qi

]
σzx =

1√
2πr
<
[p3B3

Q3

]
σzy = − 1√

2πr
<
[B3

Q3

]

(A.28)

where:

B1

B2

B3

 =
1

p2 − p1

 p2 1 0
−p1 −1 0

0 0 p1 − p2

K∞I
K∞II

K∞III

 (A.29)





Appendix B

Interaction integral method for a
general anisotropic case

The interaction integral method is an energy based method used to evaluate the stress
intensity factors near the crack tip. This section presents this method as given in
[Banks-Sills et al., 2005], [Banks-Sills et al., 2007] for the case of a generally anisotropic
material based on Hoenig’s [Hoenig, 1982] analytical solutions.

The J-integral defined by Rice [Rice, 1968] can be written as:

J =

∫
Γ

(
Wdy − Ti ·

∂ui
∂x

)
ds (B.1)

Ti = σijnj is the traction vector, ui is the displacement vector, ni is the outward normal
to the contour Γ describing the integration path and ds is the element of the arc length
along this contour as shown in figure B.1.
The strain-energy density W is defined by:

W =
1

2
σijεij (B.2)
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Figure B.1: Crack tip coordinates and path of the J-integral

The material behavior is linear elastic. Thus, it is possible to superpose two equilibrium
solutions:

σij = σ
(1)
ij + σ

(2)
ij

εij = ε
(1)
ij + ε

(2)
ij

ui = u
(1)
i + u

(2)
i

(B.3)

The stress intensity factors associated to these solutions are:

KI = K
(1)
I + K

(2)
I

KII = K
(1)
II + K

(2)
II

KIII = K
(1)
III + K

(2)
III

(B.4)

The solution (1) is the one we are looking for. The fields of this solution are obtained
based on finite element simulations. The solution (2) contains three cases corresponding
to the three fracture modes with a unit intensity factor for each mode. These auxiliary
solutions are obtained analytically based on Hoenig’s asymptotic solutions of stress and
displacement presented in equations A.15 and A.16. The three cases are as follows:

K
(2a)
I = 1, K

(2a)
II = 0, K

(2a)
III = 0

K
(2b)
I = 0, K

(2b)
II = 1, K

(2b)
III = 0

K
(2c)
I = 0, K

(2c)
II = 0, K

(2c)
III = 1

(B.5)

Based on the superposition of the two solutions (1) and (2) for different case a, b and
c, the J-integral can be written for a given loading case α = {a, b, c} as follows:

J = J (1) + J (2α) +M (1,2α) (B.6)

with M (1,2α) is the interaction integral between both solutions (1) and (2α). This
integral is evaluated by two different ways.
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The crack closure integral

Based on the crack closure integral, Hoenig [Hoenig, 1982] expressed the J-integral for a
generally anisotropic material as follows:

J =
1

2

[
KI=(m2iN

−1
ij Kj ) + KII=(m1iN

−1
ij Kj ) + KIII=(m3iN

−1
ij Kj )

]
(B.7)

with =(∗) is the imaginary part of ∗. Matrices Nij and mij depend on material parameters.
They are detailed in Appendix A.

When expressions B.6, B.4 and B.5 are implemented in B.7, the interaction integral of
different loading cases can be written as follows:

M (1,2a) = −1

2

[
2K

(1)
I =(m2iN

−1
i2 ) + K

(1)
II =(m1iN

−1
i1 +m2iN

−1
i2 ) + K

(1)
III=(m2iN

−1
i3 +m3iN

−1
i1 )
]

M (1,2b) = −1

2

[
K

(1)
I =(m2iN

−1
i2 +m1iN

−1
i1 ) + 2K

(1)
II =(m1iN

−1
i2 ) + K

(1)
III=(m1iN

−1
i3 +m3iN

−1
i2 )
]

and

M (1,2b) = −1

2

[
K

(1)
I =(m2iN

−1
i3 +m3iN

−1
i1 ) + K

(1)
II =(m1iN

−1
i3 +m3iN

−1
i2 ) + 2K

(1)
III=(m3iN

−1
i3 )
]

(B.8)

The three-dimensional J-integral

The three-dimensional integral can be written as follows: [Shih et al., 1986],
[Bank-Sills et al., 1999]:∫ LN

0
G (z)l(N )

x nxdz =

∫
v

[
σij

∂ui
∂x1
−Wδ1j

]∂q1

∂xj
dV (B.9)

with G the energy release rate along the crack front in the z direction. For a given element
N , δl = lNx nx is the normalized virtual crack extension with nx is the unit vector normal to
the crack front in the direction ~x (see figure B.2a). The volume V is the volume containing
the crack front limited by the surface S as shown on figure B.2b. The function q1 is equal
to lx along the crack front and is equal to zero on S.

Figure B.2: (a) An illustration of the finite element mesh on the crack plane and front
with the virtual crack extension δl of an element N and (b) the volume V containing the
crack front (figure from [Banks-Sills et al., 2007])
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The stress and the displacement are implemented in the expression of the J-integral
presented in equation B.1.

J (1) =

∫
Γ

(
W (1)dy − T (1)

i ·
∂u

(1)
i

∂x

)
ds

J (2α) =

∫
Γ

(
W (2α)dy − T (2α)

i ·
∂u

(2α)
i

∂x

)
ds

M (1,2α) =

∫
Γ

(
W (1,2α)dy − T (1)

i ·
∂u

(2α)
i

∂x
− T (2α)

i ·
∂u

(1)
i

∂x

)
ds

(B.10)

with W (1,2α) the interaction energy density

W (1,2α) = σ
(1)
ij ε

(2α)
ij = σ

(2α)
ij ε

(1)
ij (B.11)

The contour interaction integral M (1,2α) is transformed to a volume integral based on
equation B.9. This gives the following expression:

M (1,2α) =
1

Ax

∫
V

[
σ

(1)
ij

∂u
(2α)
i

∂x1
+ σ

(2α)
ij

∂u
(1)
i

∂x1
−W (1,2α)δ1j

]∂q1

∂xj
dV (B.12)

with α = {a, b, c}. Ax is the virtual extension area:

Ax =

∫ LN

0
l(N)
x (z)dz (B.13)

Stress intensity factors extraction

We recall that the aim of this analysis is to determine the stress intensity factors K
(1)
I ,K

(1)
II

and K
(1)
III of a given finite element simulation (1). To do so, the interaction integral M is

evaluated by two different ways. On the first hand, the stress, strain and displacement
fields are extracted from a finite element simulation. They are used in the expression of
the volume interaction integral in B.12 as solution (1). Solutions (2α) in stress, strain
and displacement are computed analytically for each loading case (α = a, b, c) based on
Hoenig’s analytical solutions presented in equations A.15 and A.16. Thus, three interaction
volume integrals M1,2α are computed.

On the other hand, integrals M1,2α can be given as function of K
(1)
I ,K

(1)
II and K

(1)
III based

on expressions B.8.

Finally, a linear system of three simultaneous equations is obtained for K
(1)
I ,K

(1)
II and

K
(1)
III which leads to the evaluation of these stress intensity factors.
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[Belytschko and Black, 1999] Belytschko, T. and Black, T. (1999). Elastic crack growth
in finite elements with minimal remeshing. International journal for numerical methods
in engineering, 45(5):601–620.

[Benallal and Marquis, 1987] Benallal, A. and Marquis, D. (1987). Constitutive equations
for nonproportional cyclic elasto-viscoplasticity. Journal of engineering materials and
technology, 109(4):326–336.

[Bernard et al., 2012] Bernard, P.-E., Moës, N., and Chevaugeon, N. (2012). Damage
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[Hoenig, 1982] Hoenig, A. (1982). Near-tip behavior of a crack in a plane anisotropic
elastic body. Engineering Fracture Mechanics, 16(3):393–403.

[Hutchinson, 1968] Hutchinson, J. (1968). Plastic stress and strain fields at a crack tip.
Journal of the Mechanics and Physics of Solids, 16(5):337–342.

[Inglis, 1913] Inglis, C. E. (1913). Stresses in a plate due to the presence of cracks and
sharp corners. Trans Inst Naval Archit, 55:219–241.

[Irwin, 1960a] Irwin, G. (1960a). Plastic zone near a crack and fracture toughness. Seventh
Sagamore Ordnance Materials Research Conference Proceedings, 4:63–78.

[Irwin and Kies, 1954] Irwin, G. and Kies, J. (1954). Welding j. Res. Suppl, 33:1935.

[Irwin, 1948] Irwin, G. R. (1948). Fracture dynamics. Fracturing of metals, pages 147–166.

[Irwin, 1957] Irwin, G. R. (1957). Analysis of stresses and strains near the end of a crack
traversing a plate. J. appl. Mech.

[Irwin, 1958] Irwin, G. R. (1958). Fracture. In Flügge, S., editor, Elasticity and Plasticity
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condensées. PhD thesis, École normale supérieure de Cachan-ENS Cachan.

[Neumann, 1969] Neumann, P. (1969). Coarse slip model of fatigue. Acta metallurgica,
17(9):1219–1225.

[Nouailhas, 1990] Nouailhas, D. (1990). Lois de comportement en viscoplasticité cy-
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dans un milieu anisotrope: application à la plasticité cristalline.
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Résumé : Les aubes des turbines à haute pression des
réacteurs d’avion subissent des chargements complexes
dans un environnement réactif. Prédire leur durée de
vie peut nécessiter une approche en tolérance aux dom-
mages basée sur la prédiction de la propagation d’une
fissure supposée. Mais cette approche est confrontée au
comportement non linéaire sous des chargements à am-
plitudes variables et au coût énorme des calculs elasto-
plastiques des structures 3D complexes sur des millions
des cycles. Dans ce cadre, un modèle incrémental de
fissuration a été proposé. Ce modèle est basé sur la
plasticité comme mécanisme principal de propagation de
fissure par fatigue pure. Cette modélisation passe par
une réduction de modèle de type POD. La plasticité en
pointe de la fissure est alors modélisée par un nombre
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, ρ̇) et des variables

internes. Un ensemble d’hypothèses doit être respecté
pour garantir la validité de cette modélisation. Pour
décliner ce modèle dans le cas d’un matériau anisotrope

représentatif du comportement des monocristaux, une
première étude a été faite sur le cas d’une élasticité cu-
bique avec de la plasticité de Von-Mises. Une stratégie
a été proposée pour identifier un modèle matériau basé
sur les facteurs d’intensité non locaux (K̇

∞
, ρ̇). Cette

stratégie comporte une détermination de la fonction
critère basée sur les solutions élastiques en anisotrope.
L’étude des directions d’écoulement plastique avec les
variables non locales montre une forte dépendance à
l’anisotropie élastique du modèle même avec une plas-
ticité associée de Von-Mises. La stratégie comporte
également une identification des variables internes. Dans
la deuxième partie, le problème d’une fissure avec un
modèle de plasticité cristalline a été traité. L’activation
de différents systèmes de glissement a été alors prise
en compte dans la modélisation. Finalement, différentes
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Abstract: The fatigue life prediction of high pressure tur-
bine blades may require a damage tolerance approach
based on the study of possible crack propagation. The
nonlinear behavior of the material under complex nonpro-
portional loadings and the high cost of running long and
expensive elastic-plastic FE computations on complex 3D
structures over millions of cycles are some major issues
that may encounter this type of approach. Within this
context, an incremental model was proposed based on
plasticity as a main mechanism for fatigue crack growth.
A model reduction strategy using the Proper Orthogo-
nal Decomposition (POD) was used to reduce the cost
of FEA. Based on a set of hypotheses, the number of
the degrees of freedom of the problem is reduced dras-
tically. The plasticity at the crack tip is finally described
by a set of empirical equations of few nonlocal variables
(K̇

∞
, ρ̇) and some internal variables. In order to apply

this modeling strategy to the case of anisotropic materials

that represent the behavior of single crystals, a first study
was done with cubic elasticity and a Von-Mises plastic-
ity. Elastic and plastic reference fields, required to reduce
the model, were determined. Then, a material model of
the near crack tip region was proposed based on non-
local intensity factors (K̇

∞
, ρ̇). A yield criterion function

was proposed based on Hoenig’s asymptotic solutions for
anisotropic materials. The study of plastic flow directions
with the nonlocal variables of the model shows a strong
dependency on the cubic elasticity. A strategy to iden-
tify internal variables is proposed as well. In the second
part, a crystal plasticity model was implemented. The ac-
tivation of different slip systems was taken into account
in the model reduction strategy. A kinematic basis was
constructed for each slip system. Finally, a strategy was
proposed to transpose the local crystal plasticity model to
the nonlocal scale of the crack.
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