K. S. Makarova, Y. I. Wolf, and O. S. Alkhnbashi, An updated evolutionary classification of CRISPR-Cas systems, Nat Rev Microbiol, vol.13, pp.722-736, 2015.

Y. Ishino, H. Shinagawa, and K. Makino, Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product, J Bacteriol, vol.169, pp.5429-5462, 1987.

A. Bolotin, B. Quinquis, A. Sorokin, D. Ehrlich, and S. , Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin, Microbiology, vol.151, pp.2551-2561, 2005.

F. Mojica, D. "ez-villaseñor, C. Garc"a-mart"nez, J. Soria, and E. , Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements, J Mol Evol, vol.60, pp.174-182, 2005.

C. Pourcel, G. Salvignol, and G. Vergnaud, CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies, Microbiology, vol.151, pp.653-663, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01158317

R. Barrangou, C. Fremaux, and H. Deveau, CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes, Science, vol.80, pp.1709-1712, 2007.

L. A. Marraffini and E. J. Sontheimer, CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA, Science (80-), vol.322, pp.1843-1845, 2008.

J. E. Garneau, M. E. Dupuis, and M. Villion, The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA, Nature, vol.468, pp.67-71, 2010.

D. Bikard, A. Hatoum-aslan, D. Mucida, and L. A. Marraffini, CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection, Cell Host Microbe, vol.12, pp.177-186, 2012.

I. Grissa, G. Vergnaud, and C. Pourcel, CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats, Nucleic Acids Res, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00194414

A. Biswas, R. Staals, and S. E. Morales, CRISPRDetect: A flexible algorithm to define CRISPR arrays, BMC Genomics, vol.17, p.356, 2016.

S. Shmakov, A. Smargon, and D. Scott, Diversity and evolution of class 2 CRISPR-Cas systems, Nat Rev Microbiol, vol.15, pp.169-182, 2017.

T. Sinkunas, G. Gasiunas, and C. Fremaux, Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system, Proc Natl Acad Sci U S A, vol.30, pp.16359-16364, 2011.

Y. Huo, K. H. Nam, and F. Ding, Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation, Nat Struct Mol Biol, vol.21, pp.771-777, 2014.

M. Jinek, K. Chylinski, and I. Fonfara, A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity, Science (80-), vol.337, pp.816-822, 2012.

B. Zetsche, J. S. Gootenberg, and O. O. Abudayyeh, Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System, Cell, vol.163, pp.759-771, 2015.

S. Shmakov, O. O. Abudayyeh, and K. S. Makarova, Discovery and Functional Characterization Mol Cell, vol.61, pp.797-808, 2015.

L. A. Marraffini and E. J. Sontheimer, CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea, Nat Rev Genet, vol.11, pp.181-190, 2010.

A. V. Wright, ?. Nu, J. K. ?ez, and J. A. Doudna, Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering, Cell, vol.164, pp.29-44, 2016.

B. Wiedenheft and S. H. Sternberg, RNA-guided genetic silencing systems in bacteria and archaea, Doudna J a, vol.482, pp.331-338, 2012.

M. M. Jore, M. Lundgren, and E. Van-duijn, Structural basis for CRISPR RNA-guided DNA recognition by Cascade, Nat Struct Mol Biol, vol.18, pp.529-536, 2011.

L. A. Marraffini, E. Sontheimer, J. Van-der-oost, M. M. Jore, and E. R. Westra, CRISPR-based adaptive and heritable immunity in prokaryotes, Trends Biochem Sci, vol.17, pp.401-407, 2009.

K. C. Cady, J. Bondy-denomy, and G. E. Heussler, The CRISPR/Cas Adaptive Immune System of Pseudomonas aeruginosa Mediates Resistance to Naturally Occurring and Engineered Phages, J Bacteriol, vol.194, pp.5728-5738, 2012.

C. D"ez-villaseñor, N. M. Guzmán, and C. Almendros, CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli, RNA Biol, vol.10, pp.792-802, 2013.

S. Erdmann, R. Garrett, S. Erdmann, L. M. Bauer, S. Garrett et al., Selective and hyperactive uptake of foreign DNA by adaptive immune systems of an archaeon via two distinct mechanisms, Mol Microbiol, vol.91, pp.505-510, 2012.

M. Li, R. Wang, D. Zhao, and H. Xiang, Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process, Nucleic Acids Res, vol.42, pp.2483-2492, 2014.

M. Li, R. Wang, and H. Xiang, Haloarcula hispanica CRISPR authenticates PAM of a target sequence to prime discriminative adaptation, Nucleic Acids Res, vol.42, pp.7226-7235, 2014.

E. Savitskaya, E. Semenova, and V. Dedkov, High-throughput analysis of type I-E CRISPR/Cas spacer acquisition in E. coli, RNA Biol, vol.10, pp.716-741, 2013.

S. Shmakov, E. Savitskaya, and E. Semenova, Pervasive generation of oppositely oriented spacers during CRISPR adaptation, Nucleic Acids Res, vol.42, pp.5907-5916, 2014.

C. Richter, R. L. Dy, and R. E. Mckenzie, Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer, Nucleic Acids Res, vol.42, pp.8516-8526, 2014.

S. Dwarakanath, S. Brenzinger, and D. Gleditzsch, Interference activity of a minimal Type I CRISPR-Cas system from Shewanella putrefaciens, Nucleic Acids Res, vol.43, pp.8913-8923, 2015.

I. Yosef, M. G. Goren, and U. Qimron, Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli, Nucleic Acids Res, 2012.

I. Yosef, D. Shitrit, and M. G. Goren, DNA motifs determining the efficiency of adaptation into the Escherichia coli CRISPR array, Proc Natl Acad Sci U S A, vol.110, pp.14396-401, 2013.

A. Bolotin, B. Quinquis, A. Sorokin, and S. Dusko-ehrlich, Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin, Microbiology, vol.151, pp.2551-2561, 2005.

R. Barrangou, CRISPR provides acquired resistance against viruses in prokaryotes, Science, vol.315, pp.1709-1721, 2007.

K. S. Makarova, An updated evolutionary classification of CRISPR Cas systems, Nat. Rev. Microbiol, vol.13, pp.722-736, 2015.

S. S. Abby, B. Néron, H. Ménager, M. Touchon, E. P. Rocha et al., A Program to Mine Genomes for Molecular Systems with an Application to CRISPR-Cas Systems, PLoS One, vol.9, p.110726, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01080418

S. Shmakov, Diversity and evolution of class 2 CRISPR Cas systems, Nat. Rev. Microbiol, 2017.

K. Chylinski, K. S. Makarova, E. Charpentier, and E. V. Koonin, Classification and evolution of type II CRISPR-Cas systems, Nucleic Acids Res, vol.42, pp.6091-6105, 2014.
DOI : 10.1093/nar/gku241

URL : https://academic.oup.com/nar/article-pdf/42/10/6091/17423023/gku241.pdf

E. Deltcheva, CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III, Nature, vol.471, pp.602-607, 2011.
DOI : 10.1038/nature09886

URL : http://europepmc.org/articles/pmc3070239?pdf=render

Z. Arslan, Double-strand DNA end-binding and sliding of the toroidal CRISPRassociated protein Csn2, Nucleic Acids Res, vol.41, pp.6347-6359, 2013.

P. Ellinger, The crystal structure of the CRISPR-associated protein Csn2 from Streptococcus agalactiae, J. Struct. Biol, vol.178, pp.350-362, 2012.

K. H. Lee, Identification, structural, and biochemical characterization of a group of large Csn2 proteins involved in CRISPR-mediated bacterial immunity, Proteins Struct. Funct. Bioinforma, vol.80, pp.2573-2582, 2012.

R. Heler, Cas9 specifies functional viral targets during CRISPR Cas adaptation, Nature, vol.519, pp.199-202, 2015.
DOI : 10.1038/nature14245

URL : http://europepmc.org/articles/pmc4385744?pdf=render

Y. Wei, R. M. Terns, and M. P. Terns, Cas9 function and host genome sampling in Type II-A CRISPR -Cas adaptation, Genes Dev, vol.29, pp.356-361, 2015.
DOI : 10.1101/gad.257550.114

URL : http://genesdev.cshlp.org/content/29/4/356.full.pdf

M. Jinek, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, vol.337, pp.816-837, 2012.
DOI : 10.1126/science.1225829

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286148

R. Sapranauskas, The Streptococcus thermophilus CRISPR / Cas system provides immunity in Escherichia coli, Nucleic Acids Res, vol.39, pp.9275-9282, 2011.
DOI : 10.1093/nar/gkr606

URL : https://academic.oup.com/nar/article-pdf/39/21/9275/16778730/gkr606.pdf

G. Gasiunas, R. Barrangou, P. Horvath, and V. Siksnys, Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.2579-86, 2012.
DOI : 10.1073/pnas.1208507109

URL : http://www.pnas.org/content/109/39/E2579.full.pdf

H. Deveau, Phage response to CRISPR-encoded resistance in Streptococcus thermophilus, J. Bacteriol, vol.190, pp.1390-1400, 2008.

F. J. Mojica, C. Díez-villaseñor, J. García-martínez, and C. Almendros, Short motif sequences determine the targets of the prokaryotic CRISPR defence system, Microbiology, vol.155, pp.733-740, 2009.

L. Cui and D. Bikard, Consequences of Cas9 cleavage in the chromosome of Escherichia coli, Nucleic Acids Res, vol.44, pp.4243-4251, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01967442

S. Shuman and M. S. Glickman, Bacterial DNA repair by non-homologous end joining

S. Horinouchi and B. Weisblum, Nucleotide Sequence and Functional Map of pC194, a Plasmid That Specifies Inducible Chloramphenicol Resistance, J. Bacteriol, vol.150, pp.815-825, 1982.

W. H. Byeon and B. Weisblum, Post-transcriptional regulation of chloramphenicol acetyl transferase, J. Bacteriol, vol.158, pp.543-550, 1984.

S. Khan, G. K. Adler, and R. P. Novick, Functional origin of replication of pT181 plasmid DNA is contained within a 168-base-pair segment, Proc. Natl. Acad. Sci. U. S. A, vol.79, pp.4580-4584, 1982.

N. Ogasawara, Systematic function analysis of Bacillus subtilis genes, Res. Microbiol, vol.151, pp.129-134, 2000.

W. M. De-vos, Gene cloning in lactic streptococci, Netherlands Milk Dairy J, vol.40, pp.141-154, 1986.

L. K. Husmann, J. R. Scott, G. Lindahl, and L. Stenberg, Expression of the Arp protein, a member of the M protein family, is not sufficient to inhibit phagocytosis of Streptococcus pyogenes, Infect. Immun, vol.63, pp.345-348, 1995.

E. Charpentier, Novel Cassette-Based Shuttle Vector System for Gram-Positive Bacteria Novel Cassette-Based Shuttle Vector System for Gram-Positive Bacteria, Appl. Environ. Microbiol, vol.70, pp.6076-6085, 2004.

R. Heler, Cas9 specifies functional viral targets during CRISPR-Cas adaptation, Nature, vol.519, pp.199-202, 2015.
DOI : 10.1038/nature14245

URL : http://europepmc.org/articles/pmc4385744?pdf=render

G. W. Goldberg, W. Jiang, D. Bikard, and L. Marraffini, Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting, Nature, vol.4, pp.633-637, 2014.

S. Sophie, B. Abby, H. Néron, M. Ménager, E. Touchon et al., MacSyFinder: A Program to Mine Genomes for Molecular Systems with an Application to CRISPR-Cas Systems, PloS one, vol.9, issue.10, p.110726, 2014.

J. S. Omar-o-abudayyeh, S. Gootenberg, J. Konermann, . Joung, M. Ian et al., C2c2 is a singlecomponent programmable RNA-guided RNA-targeting CRISPR effector, Science, vol.353, issue.6299, p.5573, 2016.

Y. Agari, K. Sakamoto, M. Tamakoshi, T. Oshima, S. Kuramitsu et al., Transcription Profile of Thermus thermophilus CRISPR Systems after Phage Infection, Journal of Molecular Biology, vol.395, issue.2, pp.270-281, 2010.

C. Juan, P. P. Alonso, H. Cardenas, J. Sanchez, Y. Hejna et al., Early steps of double-strand break repair in Bacillus subtilis, DNA Repair, vol.12, issue.3, pp.162-176, 2013.

G. Amitai and R. Sorek, Intracellular signaling in CRISPR-Cas defense, Science, vol.357, issue.6351, pp.550-551, 2017.

S. K. Amundsen, J. Fero, L. M. Hansen, G. A. Cromie, J. V. Solnick et al., Helicobacter pylori AddAB helicase-nuclease and RecA promote recombination-related DNA repair and survival during stomach colonization, Molecular Microbiology, vol.69, issue.4, pp.994-1007, 2008.

C. Anders, O. Niewoehner, A. Duerst, and M. Jinek, Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease, Nature, vol.513, issue.7519, pp.569-573, 2014.

R. E. Anderson, W. J. Brazelton, and J. A. Baross, Using, FEMS Microbiology Ecology, vol.77, issue.1, pp.120-133, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02008681

A. F. Andersson and J. F. Banfield, Virus population dynamics and acquired virus resistance in natural microbial communities, Science, vol.320, issue.5879, pp.1047-1050, 2008.

J. Aniukwu, M. S. Glickman, and S. Shuman, The pathways and outcomes of mycobacterial NHEJ depend on the structure of the broken DNA ends, Genes and Development, vol.22, issue.4, pp.512-527, 2008.

S. Anupama, M. Aswathy-rajan-mp, P. Gurusaran, D. Radha, R. Kumar-ks et al., Evolutionary Analysis of CRISPRs in Archaea : An Evidence for Horizontal, Journal of Proteomics & Bioinformatics, vol.9, 2014.

L. Aravind and E. V. Koonin, Prokaryotic homologs of the eukaryotic DNAend-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system, Genome Research, vol.11, issue.8, pp.1365-1374, 2001.

Z. Arslan, V. Hermanns, R. Wurm, R. Wagner, and Ü. Pul, Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system, Nucleic Acids Research, vol.42, issue.12, pp.7884-93, 2014.

Z. Arslan, R. Wurm, O. Brener, P. Ellinger, L. Nagel-steger et al., Double-strand DNA endbinding and sliding of the toroidal CRISPR-associated protein Csn2, Nucleic Acids Research, vol.41, issue.12, pp.6347-6359, 2013.

S. Ayora, B. Carrasco, P. P. Cárdenas, C. E. César, C. Cañas et al., Double-strand break repair in bacteria: A view from Bacillus subtilis, FEMS Microbiology Reviews, vol.35, issue.6, pp.1055-1081, 2011.

M. Babu, N. Beloglazova, R. Flick, C. Graham, T. Skarina et al., A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair, Molecular microbiology, vol.79, issue.2, pp.484-502, 2011.

R. Barrangou, The roles of CRISPR Cas systems in adaptive immunity and beyond, vol.32, pp.36-41, 2015.

R. Barrangou and J. A. Doudna, Applications of CRISPR technologies in research and beyond, Nature Biotechnology, vol.34, issue.9, pp.933-941, 2016.

R. Barrangou, C. Fremaux, H. Deveau, M. Richards, P. Boyaval et al., CRISPR provides acquired resistance against viruses in prokaryotes, Science, vol.315, issue.5819, pp.1709-1721, 2007.

R. Barrangou and P. Horvath, A decade of discovery: CRISPR functions and applications, Nature Microbiology, vol.2, 2017.

M. Paloma, S. Barros, C. T. França, R. Holanda-f-b-lins, M. Danda et al., Dynamics of CRISPR Loci in Microevolutionary Process of Yersinia pestis Strains, vol.9, p.108353, 2014.

P. Beguin, N. Charpin, E. V. Koonin, P. Forterre, and M. Krupovic, Casposon integration shows strong target site preference and recapitulates protospacer integration by CRISPR-Cas systems, Nucleic Acids Research, vol.44, issue.21, pp.10367-10376, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01384627

A. Van-belkum, L. B. Soriaga, C. Matthew, S. Lafave, J. Akella et al., Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa, pp.1-13, 2015.

C. Benda, J. Ebert, R. A. Scheltema, H. B. Schiller, M. Baumgärtner et al., Structural Model of a CRISPR RNA-Silencing Complex Reveals the RNATarget Cleavage Activity in Cmr4, Molecular Cell, vol.56, issue.1, pp.43-54, 2014.

S. Faina, Y. I. Berezovskaya, E. V. Wolf, G. P. Koonin, and . Karev, Pseudo-chaotic oscillations in CRISPR-virus coevolution predicted by bifurcation analysis, Biology direct, vol.9, issue.1, p.13, 2014.

M. E. Berg, C. J. Miller, N. Yeoman, S. G. Chia, F. E. Tringe et al., Phage-bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome, Environmental Microbiology, vol.14, issue.1, pp.207-227, 2012.

A. Bernheim, A. C. Villamanan, C. Basier, and D. Bikard, Microbial Evolutionary Genomics, and Synthetic Biology Group, Inhibition of NHEJ repair by type II-A CRISPR-Cas systems, bioRxiv, 2017.

S. P-r-bianco and . Kowalczykowski, The recombination hotspot Chi is recognized by the translocating RecBCD enzyme as the single strand of DNA containing the sequence 5, Proceedings of the National Academy of Sciences of the United States of America, vol.94, issue.13, pp.6706-6717, 1997.

D. Bikard and R. Barrangou, Using CRISPR-Cas systems as antimicrobials, Current Opinion in Microbiology, vol.37, pp.155-160, 2017.
DOI : 10.1016/j.mib.2017.08.005

URL : https://hal.archives-ouvertes.fr/pasteur-01911231

D. Bikard, C. W. Euler, W. Jiang, M. Philip, G. W. Nussenzweig et al., Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials, Nature biotechnology, vol.32, issue.11, pp.1146-1150, 2014.
DOI : 10.1038/nbt.3043

URL : https://hal.archives-ouvertes.fr/hal-01103559

D. Bikard, A. Hatoum-aslan, D. Mucida, and L. Marraffini, CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection, Cell host & microbe, vol.12, issue.2, pp.177-86, 2012.
DOI : 10.1016/j.chom.2012.06.003

URL : https://doi.org/10.1016/j.chom.2012.06.003

C. Bland, L. Teresa, F. Ramsey, M. Sabree, K. Lowe et al., CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats, BMC Bioinformatics, vol.8, issue.1, p.209, 2007.
DOI : 10.1186/1471-2105-8-209

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-8-209

T. R. Blosser, L. Loeff, E. R. Westra, M. Vlot, T. Künne et al., Two Distinct DNA Binding Modes Guide Dual Roles of a CRISPR-Cas Protein Complex, Molecular Cell, vol.58, issue.1, pp.60-70, 2015.

A. Bolotin, B. Quinquis, A. Sorokin, and S. Ehrlich, Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin, Microbiology, vol.151, issue.8, pp.2551-2561, 2005.

J. Bondy-denomy, A. Pawluk, K. L. Maxwell, and A. R. Davidson, Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system, Nature, vol.493, issue.7432, pp.429-461, 2013.
DOI : 10.1038/nature11723

URL : http://europepmc.org/articles/pmc4931913?pdf=render

J. Bondy-denomy, K. L. Maxwell, B. Garcia, and M. Rollins, Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins, Nature, vol.526, issue.7571, pp.136-139, 2015.
DOI : 10.1038/nature15254

URL : http://europepmc.org/articles/pmc4935067?pdf=render

L. Adair, A. R. Borges, J. Davidson, and . Bondy-denomy, The Discovery, Mechanisms, and Evolutionary Impact of Anti-CRISPRs, Annual Review of Virology, vol.4, 2017.

R. Bowater and A. J. Doherty, Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining, PLoS genetics, vol.2, issue.2, p.8, 2006.
DOI : 10.1371/journal.pgen.0020008

URL : https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.0020008&type=printable

A. E. Briner and R. Barrangou, Deciphering and shaping bacterial diversity through CRISPR, Current Opinion in Microbiology, vol.31, pp.101-108, 2016.

J. Stan, . Brouns, M. Matthijs, M. Jore, . Lundgren et al., Small CRISPR RNAs guide antiviral defense in prokaryotes, Science, vol.321, issue.5891, pp.960-964, 2008.

A. Bryson, Y. Hwang, S. Sherrill-mix, G. D. Wu, J. D. Lewis et al., Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9, mBio, vol.6, issue.32, pp.1-9, 2015.
DOI : 10.1128/mbio.00648-15

URL : https://mbio.asm.org/content/6/3/e00648-15.full.pdf

D. Burstein, . Sun, . Brown, . Sharon, . Anantharaman et al., Major bacterial lineages are essentially devoid of CRISPR-Cas viral defense systems, Nature Communications, vol.7, p.10613, 2016.

D. Burstein, B. Lucas, . Harrington, C. Steven, A. J. Strutt et al., New CRISPR-Cas systems from uncultivated microbes, Nature, vol.542, issue.7640, pp.237-241, 2016.

C. Kyle, G. A. Cady, and . Otoole, Non-identity-mediated CRISPRbacteriophage interaction mediated via the Csy and Cas3 proteins, Journal of Bacteriology, vol.193, issue.14, pp.3433-3445, 2011.

J. Carte, R. Wang, H. Li, R. M. Terns, and M. P. Terns, Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes, Genes & development, vol.22, issue.24, pp.3489-96, 2008.

G. Chai, M. Yu, L. Jiang, Y. Duan, and J. Huang, HMM-CAS: a web tool for the identification and domain annotations of Cas proteins, IEEE/ACM Transactions on Computational Biology and Bioinformatics, p.5963, 2017.

S. Chakraborty, A. P. Snijders, R. Chakravorty, M. Ahmed, A. Md-tarek et al., Comparative network clustering of direct repeats (DRs) and cas genes confirms the possibility of the BIBLIOGRAPHY horizontal transfer of CRISPR locus among bacteria, Molecular Phylogenetics and Evolution, vol.56, issue.3, pp.878-887, 2010.

R. Chayot, B. Montagne, D. Mazel, and M. Ricchetti, An end-joining repair mechanism in Escherichia coli, Proceedings of the National Academy of Sciences of the United States of America, vol.107, pp.2141-2147, 2010.

M. Lauren, W. E. Childs, . England, J. Mark, J. S. Young et al., CRISPR-Induced Distributed Immunity in Microbial Populations, vol.9, p.101710, 2014.

L. M. Childs, N. L. Held, M. J. Young, R. J. Whitaker, and J. S. Weitz, Multiscale model of crispr-induced coevolutionary dynamics: Diversification at the interface of Lamarck and Darwin, Evolution, vol.66, issue.7, pp.2015-2029, 2012.

S. Chowdhury, J. Carter, M. , C. F. Rollins, S. M. Golden et al., Structure Reveals Mechanisms of Viral Suppressors that Intercept a CRISPR RNA-Guided Surveillance Complex, Cell, vol.169, issue.1, pp.47-57, 2017.

J. Robert, M. Citorik, T. K. Mimee, and . Lu, Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases, Nature Biotechnology, vol.32, issue.11, pp.1141-1145, 2014.

L. Cong, A. Ran, D. Cox, S. Lin, R. Barretto et al., Multiplex genome engineering using CRISPR/Cas systems, Science, vol.339, issue.6121, pp.819-842, 2013.

M. Michael and . Cox, Motoring along with the bacterial RecA protein, Nature Reviews Molecular Cell Biology, vol.8, issue.2, pp.127-138, 2007.

, Regulation of Bacterial RecA Protein Function, Critical Reviews in Biochemistry and Molecular Biology, vol.42, pp.41-63, 2007.

A. Gareth and . Cromie, Phylogenetic ubiquity and shuffling of the bacterial RecBCD and AddAB recombination complexes, Journal of bacteriology, vol.191, issue.16, pp.5076-84, 2009.

L. Cui and D. Bikard, Consequences of Cas9 cleavage in the chromosome of Escherichia coli, Nucleic Acids Research, vol.44, issue.9, pp.4243-4251, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01967442

K. Kirill-a-datsenko, A. Pougach, . Tikhonov, L. Barry, K. Wanner et al., Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system, Nature communications, vol.3, 0945.

N. F. Delaney, S. Balenger, C. Bonneaud, C. J. Marx, G. E. Hill et al., Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma Gallisepticum, vol.8, 2012.

M. Della, L. Phillip, H. Palmbos, L. M. Tseng, J. M. Tonkin et al., Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine, Science, vol.306, issue.5696, pp.683-685, 2004.

E. Deltcheva, C. Chylinski, K. Sharma, Y. Gonzales, Z. Chao et al., CRISPR RNA maturation by transencoded small RNA and host factor RNase III, Nature, vol.471, issue.7340, pp.602-607, 2011.

H. Deveau, R. Barrangou, J. E. Garneau, J. Labonté, C. Fremaux et al., Philippe Horvath, and Sylvain Moineau, Phage response to CRISPR-encoded resistance in Streptococcus thermophilus, Journal of Bacteriology, vol.190, issue.4, pp.1390-1400, 2008.

C. Díez-villaseñor, M. Noemí, C. Guzmán, J. Almendros, F. García-martínez et al., CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli, RNA biology, vol.10, issue.5, pp.792-802, 2013.

S. Mark, . Dillingham, C. Stephen, and . Kowalczykowski, RecBCD enzyme and the repair of double-stranded DNA breaks, Microbiology and molecular biology reviews : MMBR 72, pp.642-71, 2008.

D. Dong, M. Guo, S. Wang, Y. Zhu, S. Wang et al., Structural basis of CRISPR SpyCas9 inhibition by an anti-CRISPR protein, Nature, vol.546, issue.7658, pp.436-439, 2017.

J. Doudna, H. Samuel, and . Sternberg, A Crack in Creation: Gene Editing and the Unthinkable Power to Control Evolution, 2017.

J. Drake, A constant rate of spontaneous mutation in DNA-based microbes, Proceedings of the National Academy of Sciences of the United States of America, vol.88, pp.7160-7164, 1991.

M. Dupuis, M. Villion, H. Alfonso, S. Magadán, and . Moineau, CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance, Nature communications, vol.4, 2013.
DOI : 10.1038/ncomms3087

URL : https://www.nature.com/articles/ncomms3087.pdf

A. East-seletsky, M. R. O'connell, S. C. Knight, D. Burstein, J. H. Cate et al., Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection, Nature, vol.538, issue.7624, pp.270-273, 2016.

S. R. Eddy, Profile hidden Markov models, Bioinformatics, vol.14, issue.9, pp.755-763, 1998.

C. Robert and . Edgar, PILER-CR: fast and accurate identification of CRISPR repeats, BMC bioinformatics, vol.8, p.18, 2007.

R. Edgar and U. Qimron, The Escherichia coli CRISPR system protects from ? lysogenization, lysogens, and prophage induction, Journal of Bacteriology, vol.192, issue.23, pp.6291-6294, 2010.
DOI : 10.1128/jb.00644-10

URL : https://jb.asm.org/content/192/23/6291.full.pdf

J. A. Eisen and P. C. Hanawalt, A phylogenomic study of DNA repair genes, proteins, and processes, vol.435, 1999.

P. Ellinger, Z. Arslan, R. Wurm, B. Tschapek, C. Mackenzie et al., The crystal structure of the CRISPR-associated protein Csn2 from Streptococcus agalactiae, Journal of Structural Biology, vol.178, issue.3, pp.350-362, 2012.

J. B. Emerson, K. Andrade, B. C. Thomas, A. Norman, E. E. Allen et al., Virus-host and CRISPR dynamics in archaea-dominated hypersaline Lake tyrrell, Archaea, vol.370871, 2013.

E. Whitney, R. J. England, and . Whitaker, Evolutionary causes and consequences of diversified CRISPR immune profiles in natural populations, Biochemical Society transactions, vol.41, issue.6, pp.1431-1437, 2013.

S. Erdmann and R. A. Garrett, Selective and hyperactive uptake of foreign DNA by adaptive immune systems of an archaeon via two distinct mechanisms, Molecular Microbiology, vol.85, issue.6, pp.1044-1056, 2012.

M. A. Estrella, F. Ting-kuo, and S. Bailey, RNA-activated DNA cleavage by the Type III-B CRISPR Cas effector complex, Genes and Development, vol.30, issue.4, pp.460-470, 2016.
DOI : 10.1101/gad.273722.115

URL : http://genesdev.cshlp.org/content/30/4/460.full.pdf

J. Felsenstein, Phylogenies and the Comparative Method, The American Naturalist, vol.125, issue.1, pp.1-15, 1985.
DOI : 10.1086/284325

A. Filipski, O. Murillo, A. Freydenzon, K. Tamura, and S. Kumar, Prospects for building large timetrees using molecular data with incomplete gene coverage among species, Molecular Biology and Evolution, vol.31, issue.9, pp.2542-2550, 2014.
DOI : 10.1093/molbev/msu200

URL : https://academic.oup.com/mbe/article-pdf/31/9/2542/9596013/msu200.pdf

M. J. Peter-c-fineran, M. Gerritzen, T. Suárez-diez, J. Künne, . Boekhorst et al., Degenerate target sites mediate rapid primed CRISPR adaptation, Proceedings of the National Academy of Sciences of the United States of America, vol.111, pp.1629-1667, 2014.

I. Fonfara, H. Richter, M. Bratovi?, A. Le-rhun, and E. Charpentier, The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA, Nature, pp.1-19, 2016.

K. Fukui, N. Nakagawa, Y. Kitamura, Y. Nishida, R. Masui et al., Crystal structure of Muts2 endonuclease domain and the mechanism of homologous recombination suppression, Journal of Biological Chemistry, vol.283, issue.48, pp.33417-33427, 2008.

S. Fusco, R. Liguori, D. Limauro, S. Bartolucci, Q. She et al., Transcriptome analysis of Sulfolobus solfataricus infected with two related fuselloviruses reveals novel insights into the regulation of CRISPR-Cas system, Biochimie, vol.118, pp.322-332, 2015.

R. Galletto, C. Stephen, and R. Kowalczykowski, Current Biology, vol.17, issue.11, pp.395-397, 2007.

E. García-gutiérrez, C. Almendros, J. M. Francisco, N. M. Mojica, J. Guzmán et al., CRISPR Content Correlates with the Pathogenic Potential of Escherichia coli, Plos One, vol.10, issue.7, p.131935, 2015.

E. Josiane, M. Garneau, M. Dupuis, . Villion, R. Dennis-a-romero et al., The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA, Nature, vol.468, issue.7320, pp.67-71, 2010.

G. Gasiunas, R. Barrangou, P. Horvath, and V. Siksnys, Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.2579-86, 2012.

R. Ge, G. Mai, P. Wang, M. Zhou, Y. Luo et al., CRISPRdigger: detecting CRISPRs with better direct repeat annotations, vol.6, p.32942, 2016.

S. James, A. Godde, and . Bickerton, The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes, Journal of molecular evolution, vol.62, issue.6, pp.718-747, 2006.

A. Anna, . Gogleva, S. Mikhail, I. I. Gelfand, and . Artamonova, Comparative analysis of CRISPR cassettes from the human gut metagenomic contigs, BMC genomics, vol.15, issue.1, p.202, 2014.

W. Gregory, W. Goldberg, D. Jiang, L. Bikard, and . Marraffini, Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting, Nature, vol.514, issue.7524, pp.633-637, 2014.

C. Gong, P. Bongiorno, A. Martins, N. C. Stephanou, H. Zhu et al., Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C, Nature Structural & Molecular Biology, vol.12, issue.4, pp.304-312, 2005.

U. Gophna, Y. I. David-m-kristensen, O. Wolf, C. Popa, E. V. Drevet et al., No evidence of inhibition of horizontal gene transfer by CRISPR Cas on evolutionary timescales, The ISME Journal, vol.9, issue.9, pp.2021-2027, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01464867

G. Moran, S. Goren, R. Doron, G. Globus, R. Amitai et al., Repeat Size Determination by Two Molecular Rulers in the Type I-E CRISPR Array, Cell Reports, vol.16, issue.11, pp.2811-2818, 2016.

I. Grissa, G. Vergnaud, and C. Pourcel, CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats, Nucleic acids research, vol.35, pp.52-59, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00194414

F. Felizza, N. P. Gunderson, and . Cianciotto, The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae, mBio, vol.4, issue.2, pp.74-87, 2013.

F. Felizza, C. A. Gunderson, S. G. Mallama, N. P. Fairbairn, and . Cianciotto, Nuclease activity of Legionella pneumophila Cas2 promotes intracellular infection of amoebal host cells, Infection and Immunity, vol.83, issue.3, pp.1008-1018, 2015.

P. Guo, Q. Cheng, P. Xie, Y. Fan, W. Jiang et al., Characterization of the multiple CRISPR loci on Streptomyces linear plasmid pSHK1, Acta Biochimica et Biophysica Sinica, vol.43, issue.8, pp.630-639, 2011.

R. Gupta, D. Barkan, G. Redelman-sidi, S. Shuman, and M. S. Glickman, Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways, Molecular Microbiology, vol.79, issue.2, pp.316-330, 2011.

J. O. Haerter and K. Sneppen, Spatial structure and Lamarckian adaptation explain extreme genetic diversity at CRISPR locus, pp.1-6, 2012.

J. O. Haerter, A. Trusina, and K. Sneppen, Targeted Bacterial Immunity Buffers Phage Diversity, Journal of Virology, vol.85, issue.20, pp.10554-10560, 2011.

A. Hatoum-aslan and L. Marraffini, Impact of CRISPR immunity on the emergence and virulence of bacterial pathogens, Current opinion in microbiology, vol.17, pp.82-90, 2014.

R. P. Hayes, Y. Xiao, F. Ding, B. G. Paul, K. Van-erp et al., Structural basis for promiscuous PAM recognition in type IE Cascade from E. coli, Nature, vol.530, issue.7591, pp.499-503, 2016.

J. He and M. W. Deem, Heterogeneous diversity of spacers within CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), Physical Review Letters, vol.105, issue.12, p.128102, 2010.

J. F. Heidelberg, W. C. Nelson, T. Schoenfeld, and D. Bhaya, Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes, PLoS ONE, vol.4, issue.1, p.4169, 2009.

N. L. Held and R. J. Whitaker, Viral biogeography revealed by signatures in Sulfolobus islandicus genomes, Environmental Microbiology, vol.11, issue.2, pp.457-466, 2009.

R. Heler, P. Samai, J. W. Modell, C. Weiner, G. W. Goldberg et al., Cas9 specifies functional viral targets during CRISPR Cas adaptation, Nature, vol.519, issue.7542, pp.199-202, 2015.

R. Heler, V. Addison, M. Wright, D. Vucelja, J. A. Bikard et al., Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response, Molecular Cell, vol.65, issue.1, pp.168-175, 2016.

G. E. Heussler, J. L. Miller, C. E. Price, A. J. Collins, and G. A. O'toole, Requirements for Pseudomonas aeruginosa Type I-F CRISPR-Cas Adaptation Determined Using a Biofilm Enrichment Assay, Journal of Bacteriology, vol.198, issue.22, pp.458-474, 2016.

G. E. Heussler and G. A. O'toole, Friendly Fire: Biological Functions and Consequences of Chromosomal-Targeting by CRISPR-Cas Systems, Journal of Bacteriology, vol.198, issue.10, pp.1481-1486, 2016.

B. Alison, F. Hickman, and . Dyda, The casposon-encoded Cas1 protein from Aciduliprofundum boonei is a DNA integrase that generates target site duplications, Nucleic Acids Research, vol.43, issue.16, pp.1-12, 2015.

P. Steven, I. F. Hooton, and . Connerton, Campylobacter jejuni acquire new host-derived CRISPR spacers when in association with bacteriophages harboring a CRISPR-like Cas4 protein, Frontiers in microbiology, vol.5, 2014.

H. Horn, B. Slaby, M. Jahn, K. Bayer, L. Moitinhosilva et al., An enrichment of CRISPR and other defense-related features in marine spongeassociated microbial metagenomes, Frontiers in M, vol.7, 2016.

A. Stineke-van-houte, E. Buckling, and . Westra, Immigration of susceptible hosts triggers the evolution of alternative parasite defence strategies, Proceedings of the Royal Society B: Biological Sciences, vol.283, 2016.

J. Nina-m-høyland-kroghsbo, S. Paczkowski, J. Mukherjee, E. Broniewski, J. Westra et al., Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system, Proceedings of the National Academy of Sciences of the United States of America, vol.114, pp.131-135, 2016.

Q. Huang, H. Luo, M. Liu, J. Zeng, A. E. Abdalla et al., The effect of Mycobacterium tuberculosis CRISPR-associated Cas2 (Rv2816c) on stress response genes expression, morphology and macrophage survival of Mycobacterium smegmatis, Infection, Genetics and Evolution, vol.40, pp.295-301, 2015.

P. Alexander, . Hynes, M. Rousseau, P. Lemay, . Horvath et al., An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9, Nature Microbiology Epub, 2017.

A. P. Hynes, M. Villion, and S. Moineau, Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages, Nature Communications, vol.5, issue.4399, 2014.

J. Iranzo, A. E. Lobkovsky, Y. I. Wolf, and E. V. Koonin, Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR-Cas in an explicit ecological context, Journal of bacteriology, vol.195, issue.17, pp.3834-3878, 2013.

Y. Ishino, . Shinagawa, M. Makino, . Amemura, and . Nakata, Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product, Journal of bacteriology, vol.169, issue.12, pp.5429-5462, 1987.

I. Ivan?i?-ba?e, S. D. Cass, S. J. Wearne, and E. L. Bolt, Different genome stability proteins underpin primed and naïve adaptation in E. coli CRISPR-Cas immunity, Nucleic Acids Research, vol.43, issue.22, pp.10821-10851, 2015.

R. N. Jackson, S. M. Golden, B. G. Paul, J. Van-erp, E. R. Carter et al., Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli, Science, vol.345, issue.6203, pp.1479-84, 2014.

R. E. Simon-a-jackson, R. D. Mckenzie, . Fagerlund, N. Sebastian, . Kieper et al., CRISPR-Cas: Adapting to change, Science, vol.356, issue.6333, p.5056, 2017.

R. Jansen, D. A. Jam, W. Van-embden, L. M. Gaastra, and . Schouls, Identification of a Novel Family of Sequence Repeats among Prokaryotes, OMICS: A Journal of Integrative Biology, vol.6, issue.1, pp.23-33, 2002.

R. Jansen, D. Jan, W. Van-embden, L. M. Gaastra, and . Schouls, Identification of genes that are associated with DNA repeats in prokaryotes, Molecular Microbiology, vol.43, issue.6, pp.1565-1575, 2002.

W. Jiang, D. Bikard, D. Cox, F. Zhang, and L. Marraffini, RNA-guided editing of bacterial genomes using CRISPR-Cas systems, Nature biotechnology, issue.3, pp.233-242, 2013.

W. Jiang, F. Maniv, Y. Arain, . Wang, L. Bruce-r-levin et al., Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids, PLoS genetics, vol.9, issue.9, 2013.

W. Jiang, P. Samai, and L. A. Marraffini, Degradation of Phage Transcripts by CRISPR-Associated RNases Enables Type III CRISPR-Cas Immunity, Cell, vol.164, issue.4, pp.710-721, 2016.

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, vol.337, issue.6096, pp.816-837, 2012.

M. Jinek, F. Jiang, W. David, . Taylor, H. Samuel et al., Structures of Cas9 endonucleases reveal RNA-mediated conformational activation, Science, vol.343, issue.6176, p.1247997, 2014.

M. Matthijs-m-jore, E. Lundgren, . Van-duijn, B. Jelle, . Bultema et al., Structural basis for CRISPR RNA-guided DNA recognition by Cascade, Nature Structural & Molecular Biology, vol.18, issue.5, pp.529-536, 2011.

P. Jorth and M. Whiteley, An evolutionary link between natural transformation and crispr adaptive immunity, mBio, vol.3, issue.5, pp.1-7, 2012.
DOI : 10.1128/mbio.00309-12

URL : https://mbio.asm.org/content/3/5/e00309-12.full.pdf

D. Ka, H. Lee, Y. Jung, K. Kim, C. Seok et al., Crystal Structure of Streptococcus pyogenes Cas1 and Its Interaction with Csn2 in the Type II CRISPR-Cas System, Structure, vol.24, issue.1, pp.70-79, 2015.

V. V. Kapitonov, K. S. Makarova, and E. V. Koonin, ISC, a novel group of bacterial and archaeal DNA transposons that encode Cas9 homologs, Journal of Bacteriology, vol.198, issue.5, pp.797-807, 2015.

M. Kazlauskiene and G. Kostiuk, ?eslovas Venclovas, Gintautas Tamulaitis, and Virginijus Siksnys, A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems, Science, vol.357, issue.6351, pp.605-609, 2017.

T. Killelea, L. Edward, and . Bolt, CRISPR-Cas Adaptive Immunity and the Three Rs, vol.37, 2017.

Y. Koo, J. Du-kyo, and E. Bae, Crystal structure of streptococcus pyogenes Csn2 reveals calcium-dependent conformational changes in its tertiary and quaternary structure, PLoS ONE, vol.7, issue.3, p.33401, 2012.

V. Eugene, M. Koonin, and . Krupovic, Evolution of adaptive immunity from transposable elements combined with innate immune systems, Nature Reviews Genetics, vol.16, issue.3, pp.184-92, 2014.

K. S. Eugene-v-koonin, F. Makarova, and . Zhang, Diversity, classification and evolution of CRISPR-Cas systems, Current Opinion in Microbiology, vol.37, pp.67-78, 2017.

M. Krupovic, P. Béguin, and E. V. Koonin, Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery, Current Opinion in Microbiology, vol.38, pp.36-43, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01977358

M. Krupovic, S. Kira, P. Makarova, D. Forterre, E. V. Prangishvili et al., Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity, BMC biology, vol.12, issue.1, p.36, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01001796

M. Krupovic, S. Shmakov, K. S. Makarova, P. Forterre, and E. V. Koonin, Recent mobility of casposons, self-synthesizing transposons at the origin of the CRISPR-Cas immunity, Genome Biology and Evolution, vol.8, issue.2, pp.375-386, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01443928

T. Kü, N. Sebastian, J. W. Kieper, M. Bannenberg, M. Depken et al., Cas3-Derived Target DNA Degradation Fragments Fuel Primed CRISPR Adaptation, Molecular Cell, vol.63, issue.5, pp.852-864, 2016.

A. Kupczok, G. Landan, and T. Dagan, The contribution of genetic recombination to CRISPR array evolution, Genome Biology and Evolution, vol.7, issue.7, pp.1925-1939, 2015.

S. Eric and . Lander, The Heroes of CRISPR, Cell, vol.164, issue.1-2, pp.18-28, 2015.

. Kwang-hoon-lee, K. E. Seong-gyu-lee, H. Lee, H. Jeon, B. Robinson et al., Identification, structural, and biochemical characterization of a group of large Csn2 proteins involved in CRISPRmediated bacterial immunity, Proteins: Structure, Function and Bioinformatics, vol.80, issue.11, pp.2573-2582, 2012.

S. Lemak, N. Beloglazova, B. Nocek, T. Skarina, R. Flick et al., Toroidal structure and DNA cleavage by the CRISPR-associated, vol.135, pp.17476-17487, 2013.
DOI : 10.1021/ja408729b

URL : http://europepmc.org/articles/pmc3889865?pdf=render

A. Levy, I. Moran-g-goren, O. Yosef, M. Auster, G. Manor et al., Udi Qimron, and Rotem Sorek, CRISPR adaptation biases explain preference for acquisition of foreign DNA, Nature, vol.520, issue.7548, pp.505-510, 2015.

M. Li, R. Wang, D. Zhao, and H. Xiang, Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process, Nucleic Acids Research, vol.42, issue.4, pp.2483-2492, 2014.

T. Lin, Y. Pan, P. Hsieh, C. Hsu, M. Wu et al., Imipenem represses CRISPR-Cas interference of DNA acquisition through H-NS stimulation in Klebsiella pneumoniae, Scientific reports, vol.6, p.31644, 2016.

T. Liu, Z. Liu, Q. Ye, S. Pan, X. Wang et al., Wenfang Peng, Yunxiang Liang, Qunxin She, and Nan Peng, Coupling transcriptional activation of CRISPR Cas system and DNA repair genes by Csa3a in Sulfolobus islandicus, Nucleic Acids Research, vol.45, issue.15, pp.8978-8992, 2017.

R. Lloyd and G. Sharples, Dissociation of synthetic Holliday junctions by E. coli RecG protein, The EMBO journal, vol.12, issue.1, pp.17-22, 1993.

A. Lopatina, S. Medvedeva, S. Shmakov, M. D. Logacheva, V. Krylenkov et al., Metagenomic Analysis of Bacterial Communities of Antarctic Surface Snow, Frontiers in Microbiology, vol.7, pp.1-13, 2016.

M. Lopez-sanchez, E. Sauvage, V. D. Cunha, D. Clermont, . Elisoa-ratsima et al., The highly dynamic CRISPR1 system of Streptococcus agalactiae controls the diversity of its mobilome, Molecular Microbiology, vol.85, issue.6, pp.1057-1071, 2012.

R. Louwen, D. Horst-kreft, A. G. De-boer, L. Van-der-graaf, G. De-knegt et al., A novel link between Campylobacter jejuni bacteriophage defence, virulence and GuillainBarré syndrome, European Journal of Clinical Microbiology and Infectious Diseases, vol.32, issue.2, pp.207-226, 2013.

G. Mai, R. Ge, G. Sun, Q. Meng, and F. Zhou, A Comprehensive Curation Shows the Dynamic Evolutionary Patterns of Prokaryotic CRISPRs, BioMed Research International Epub, 2016.

S. Majumdar, P. Zhao, T. Neil, M. Pfister, S. Compton et al., Three CRISPR-Cas immune effector complexes coexist in Pyrococcus furiosus, RNA, vol.21, issue.6, pp.1147-58, 2015.

K. S. Makarova, A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis, Nucleic Acids Research, vol.30, issue.2, pp.482-496, 2002.

N. V. Kira-s-makarova, S. A. Grishin, Y. I. Shabalina, E. V. Wolf, and . Koonin, A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action, Biology direct, p.1, 2006.

K. S. Makarova, Y. I. Wolf, O. S. Alkhnbashi, F. Costa, A. Shiraz et al.,

A. F. White, R. A. Yakunin, J. Garrett, . Van-der, R. Oost et al., An updated evolutionary classification of CRISPR Cas systems, Nature Reviews Microbiology, vol.13, issue.11, pp.722-736, 2015.

Y. I. Kira-s-makarova, E. V. Wolf, and . Koonin, The basic building blocks and evolution of CRISPR-Cas systems, Biochemical Society transactions, vol.41, issue.6, pp.1392-400, 2013.

K. S. Makarova, F. Zhang, and E. V. Koonin, SnapShot: Class 1 CRISPR-Cas Systems, Cell, vol.168, issue.5, 2017.
DOI : 10.1016/j.cell.2017.02.018

, SnapShot: Class 2 CRISPR-Cas Systems, Cell, vol.168, issue.1-2, 2017.

P. Mali, M. Kevin, G. Esvelt, and . Church, Cas9 as a versatile tool for engineering biology, Nature methods, vol.10, issue.10, pp.957-63, 2013.

P. Mandin, T. Geissmann, P. Cossart, F. Repoila, and M. Vergassola, Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets, Nucleic Acids Research, vol.35, issue.3, pp.962-974, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00129258

T. C. Mangericao, Z. Peng, and X. Zhang, Computational prediction of CRISPR cassettes in gut metagenome samples from Chinese type-2 diabetic patients and healthy controls, BMC Systems Biology, vol.10, issue.S1, p.5, 2016.

L. A. Marraffini, CRISPR-Cas immunity in prokaryotes, Nature, vol.526, issue.7571, pp.55-61, 2015.
DOI : 10.1038/nature15386

A. Luciano, E. J. Marraffini, and . Sontheimer, CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA, Science, vol.322, issue.5909, pp.1843-1845, 2008.

E. J. Luciano-a-marraffini and . Sontheimer, Self versus non-self discrimination during CRISPR RNA-directed immunity, Nature, vol.463, issue.7280, pp.568-71, 2010.

J. Mascarenhas, H. Sanchez, S. Tadesse, D. Kidane, M. Krisnamurthy et al., Bacillus subtilis SbcC protein plays an important role in DNA inter-strand crosslink repair, BMC molecular biology, vol.7, p.20, 2006.

A. Mayer, T. Mora, O. Rivoire, and A. Walczak, Diversity of immune strategies explained by adaptation to pathogen statistics, Proceedings of the National Academy of Sciences, vol.113, issue.31, pp.8630-8635, 2015.

J. Mcginn and L. A. Marraffini, CRISPR-Cas Systems Optimize Their Immune Response by Specifying the Site of Spacer Integration, Molecular Cell, vol.64, issue.3, pp.616-623, 2016.

L. Medina-aparicio, J. E. Rebollar-flores, A. L. Gallego-hernández, A. Vázquez, L. Olvera et al., The CRISPR/Cas immune system is an operon regulated by LeuO, H-NS, and leucine-responsive regulatory protein in Salmonella enterica serovar Typhi, Journal of Bacteriology, vol.193, issue.10, pp.2396-2407, 2011.

B. Michel and D. Leach, Homologous Recombinatio Enzymes and Pathways, EcoSal Plus, vol.5, issue.1, 2012.

E. Mick, A. Stern, and R. Sorek, Holding a grudge, RNA Biology, vol.10, issue.5, pp.900-906, 2013.
DOI : 10.4161/rna.23929

URL : http://europepmc.org/articles/pmc3737347?pdf=render

A. M. Millen, P. Horvath, P. Boyaval, and D. A. Romero, Mobile CRISPR/Cas-Mediated Bacteriophage Resistance in Lactococcus lactis, PLoS ONE, vol.7, issue.12, p.51663, 2012.
DOI : 10.1371/journal.pone.0051663

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0051663&type=printable

S. Minot, R. Sinha, J. Chen, H. Li, S. A. Keilbaugh et al., The human gut virome : Inter-individual variation and dynamic response to diet, Genome research, vol.21, issue.10, pp.1616-1625, 2011.
DOI : 10.1101/gr.122705.111

URL : http://genome.cshlp.org/content/21/10/1616.full.pdf

J. W. Modell, W. Jiang, and L. A. Marraffini, CRISPR Cas systems exploit viral DNA injection to establish and maintain adaptive immunity, Nature, vol.544, issue.7648, pp.101-104, 2017.
DOI : 10.1038/nature21719

URL : http://europepmc.org/articles/pmc5540373?pdf=render

R. Moeller, E. Stackebrandt, G. Reitz, T. Berger, P. Rettberg et al., Role of DNA repair by nonhomologous-end joining in Bacillus subtilis spore resistance to extreme dryness, mono-and polychromatic UV, and ionizing radiation, Journal of Bacteriology, vol.189, issue.8, pp.3306-3311, 2007.

P. Mohanraju, K. S. Makarova, B. Zetsche, F. Zhang, E. V. Koonin et al., Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems, Science, vol.353, issue.6299, p.5147, 2016.

J. M. Francisco, C. Mojica, J. Díez-villaseñor, E. García-martínez, and . Soria, Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements, Journal of Molecular Evolution, vol.60, issue.2, pp.174-182, 2005.

J. M. Francisco, C. Mojica, G. Ferrer, F. Juez, and . Rodríguez-valera, Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning, Molecular Microbiology, vol.17, issue.1, pp.85-93, 1995.

D. Morley, J. M. Broniewski, E. R. Westra, A. Buckling, and S. Van-houte, Host diversity limits the evolution of parasite local adaptation, Molecular Ecology, vol.26, issue.7, pp.1756-1763, 2017.

I. Mougiakos, F. Elleke, W. M. Bosma, R. De-vos, J. Van-kranenburg et al., Next Generation Prokaryotic Engineering: The CRISPR-Cas Toolkit, Trends in Biotechnology, vol.34, issue.7, pp.575-587, 2016.

S. Mulepati, A. Héroux, and S. Bailey, Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target, Science, vol.345, issue.6203, pp.1479-84, 2014.

K. H. Nam, C. Haitjema, X. Liu, F. Ding, H. Wang et al., Cas5d protein processes Pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg crispr-cas system, Structure, vol.20, issue.9, pp.1574-1584, 2012.

B. Saskia, J. Neher, E. C. Villén, C. E. Oakes, R. T. Bakalarski et al., Proteomic Profiling of ClpXP Substrates after DNA Damage Reveals Extensive Instability within SOS Regulon, Molecular Cell, vol.22, issue.2, pp.193-204, 2006.

O. Niewoehner, C. Garcia-doval, J. T. Rostøl, C. Berk, F. Schwede et al., Type III CRISPR-Cas systems generate cyclic oligoadenylate 200 BIBLIOGRAPHY second messengers to activate Csm6 RNases, Nature, vol.548, issue.7669, pp.543-548, 2017.

O. Niewoehner, M. Jinek, and J. A. Doudna, Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases, Nucleic Acids Research, vol.42, issue.2, pp.1341-1353, 2014.

F. A. Hiroshi-nishimasu, P. D. Ran, S. Hsu, S. I. Konermann, N. Shehata et al., Crystal structure of Cas9 in complex with guide RNA and target DNA, Cell, vol.156, issue.5, pp.935-949, 2014.

J. K. Nuñez, L. Bai, L. B. Harrington, T. L. Hinder, and J. A. Doudna, CRISPR Immunological Memory Requires a Host Factor for Specificity, Molecular Cell, vol.62, issue.6, pp.824-833, 2016.

J. K. Nuñez, L. B. Harrington, P. J. Kranzusch, A. N. Engelman, and J. A. Doudna, Foreign DNA capture during CRISPRCas adaptive immunity, Nature, vol.527, issue.7579, pp.535-538, 2015.

J. K. Nuñez, A. S. Lee, A. Engelman, and J. A. Doudna, Integrase mediated spacer acquisition during CRISPR Cas adaptive immunity, Nature, vol.519, issue.7542, pp.193-198, 2015.

J. Jee-hwan-oh and . Peter-van-pijkeren, CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri, Nucleic Acids Research, vol.42, issue.17, pp.1-11, 2014.

H. Pedro, M. Oliveira, E. Touchon, and . Rocha, The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts, Nucleic acids research, vol.42, issue.16, pp.10618-10632, 2014.

H. Pedro, M. Oliveira, E. P. Touchon, and . Rocha, Regulation of genetic flux between bacteria by restriction modification systems, Proceedings of the National Academy of Sciences of the United States of America, vol.113, issue.20, pp.5658-5663, 2016.

D. Paez-espino, W. Morovic, C. L. Sun, C. Brian, K. Thomas et al., Strong bias in the bacterial CRISPR elements that confer immunity to phage, Nature communications, vol.4, p.1430, 2013.

D. Paez-espino, I. Sharon, W. Morovic, B. Stahl, C. Brian et al., CRISPR Immunity Drives Rapid Phage Genome Evolution in Streptococcus thermophilus, mBio, vol.6, issue.2, pp.1-9, 2015.

M. Pagel, Detecting correlated evolution on phylogenies: A general method for the comparative analysis of discrete characters, Proceedings of the Royal Society B: Biological Sciences, vol.255, issue.1342, pp.37-45, 1994.

M. Pagel and A. Meade, Bayesian Analysis of Correlated Evolution of Discrete Characters by Reversible Jump Markov Chain Monte Carlo, The American Naturalist, vol.167, issue.6, pp.808-825, 2013.

L. Kelli, M. S. Palmer, and . Gilmore, Multidrug-Resistant Enterococci Lack CRISPR cas, mBio, vol.1, issue.4, pp.1-10, 2010.

Ü. Paris, K. Mikkel, K. Tavita, S. Saumaa, R. Teras et al., NHEJ enzymes LigD and Ku participate in stationary-phase mutagenesis in Pseudomonas putida, DNA Repair, vol.31, pp.11-18, 2015.

A. G. Patterson, J. T. Chang, C. Taylor, and C. Peter, Fineran, Regulation of the type I-F CRISPR-Cas system by CRP-cAMP and GalM controls spacer acquisition and interference, Nucleic Acids Research, vol.43, issue.12, pp.6038-6048, 2015.

A. G. Patterson, S. A. Jackson, C. Taylor, G. B. Evans, P. C. George et al., Quorum Sensing Controls Adaptive Immunity through the Regulation of Multiple CRISPR-Cas Systems, vol.64, pp.1-7, 2016.

M. S. Adrian-g-patterson, C. Yevstigneyeva, and . Peter, Regulation of CRISPRCas adaptive immune systems, Current Opinion in Microbiology, vol.37, pp.1-7, 2017.

A. Pawluk, N. Amrani, Y. Zhang, B. Garcia, Y. Hidalgoreyes et al., Naturally Occurring Off-Switches for CRISPR-Cas9, vol.167, pp.1829-1838, 2016.

A. Pawluk, J. Bondy-denomy, H. Vivian, and K. L. Cheung,

A. R. Maxwell and . Davidson, A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of pseudomonas aeruginosa, mBio, vol.5, issue.2, pp.1-7, 2014.

A. Pawluk, H. J. Raymond, C. Staals, . Taylor, N. J. Bridget et al., Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species, Nature Microbiology, vol.1, issue.8, p.16085, 2016.

M. Bruce, R. Pearson, . Louwen, . Peter-van-baarlen, H. M. Arnoud et al., Differential distribution of Type II CRISPR-Cas systems in agricultural and non-agricultural Campylobacter coli and Campylobacter jejuni shared environments, Genome Biology and Evolution, vol.7, issue.9, pp.2663-2679, 2015.

R. Perez-rodriguez, C. Haitjema, Q. Huang, K. H. Nam, S. Bernardis et al., Envelope stress is a trigger of CRISPR RNA-mediated DNA silencing in Escherichia coli, Molecular Microbiology, vol.79, issue.3, pp.584-599, 2011.

J. E. Peters, K. S. Makarova, S. Shmakov, and E. V. Koonin, Recruitment of CRISPR-Cas systems by Tn7-like transposons, Proceedings of the National Academy of Sciences of the United States of, America, vol.114, issue.35, pp.7358-7366, 2017.

S. Robert, N. C. Pitcher, A. J. Brissett, and . Doherty, Non homologous end-joining in bacteria: a microbial perspective, Annual review of microbiology, pp.259-282, 2007.

R. S. Pitcher, N. C. Brissett, A. J. Picher, P. Andrade, R. Juarez et al., Structure and Function of a Mycobacterial NHEJ DNA Repair Polymerase, Journal of Molecular Biology, vol.366, issue.2, pp.391-405, 2007.

S. Robert, A. J. Pitcher, A. Green, M. Brzostek, J. Koryckamachala et al., NHEJ protects mycobacteria in stationary phase against the harmful effects of desiccation, DNA Repair, vol.6, pp.1271-1276, 2007.

A. Plagens, B. Tjaden, and A. Hagemann, Lennart Randau, and Reinhard Hensel, Characterization of the CRISPR/Cas subtype I-A system of the hyperthermophilic crenarchaeon Thermoproteus tenax, Journal of Bacteriology, vol.194, issue.10, pp.2491-2500, 2012.

C. Pourcel, G. Salvignol, and G. Vergnaud, CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies, Microbiology, vol.151, issue.3, pp.653-663, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01158317

M. N. Price, P. S. Dehal, and A. P. Arkin, Fasttree: Computing large minimum evolution trees with profiles instead of a distance matrix, Molecular Biology and Evolution, vol.26, issue.7, pp.1641-1650, 2009.

E. Tessa, M. Quax, O. Voet, M. Sismeiro, B. Dillies et al., Massive activation of archaeal defense genes during viral infection, Journal of virology, vol.87, issue.15, pp.8419-8447, 2013.

N. F. Ramia, M. Spilman, L. Tang, Y. Shao, J. Elmore et al., Essential Structural and Functional Roles of the Cmr4 Subunit in RNA Cleavage by the Cmr CRISPR-Cas Complex, Cell Reports, vol.9, issue.5, pp.1610-1618, 2014.

C. Rao, C. Guyard, C. Pelaz, J. Wasserscheid, J. Bondy-denomy et al., Active and adaptive Legionella CRISPR-Cas reveals a recurrent challenge to the pathogen, Cellular Microbiology, vol.18, issue.10, pp.1319-1338, 2016.

T. H-k-ratner, D. Sampson, and . Weiss, I can see CRISPR now, even when phage are gone: a view on alternative CRISPR-Cas functions from the prokaryotic envelope, Current Opinion in Infectious Diseases, vol.28, issue.3, pp.267-274, 2015.

J. Benjamin, M. R. Rauch, J. F. Silvis, C. Hultquist, . Waters et al., Inhibition of CRISPR-Cas9 with Bacteriophage Proteins, Cell, vol.168, issue.1-2, pp.150-158, 2016.

S. Redding, H. Samuel, B. Sternberg, . Wiedenheft, . Jennifer et al., Surveillance and Processing of Foreign DNA by the Escherichia coli CRISPR-Cas System Article Surveillance and Processing of Foreign DNA by the Escherichia coli CRISPR-Cas System, Cell, vol.163, issue.4, pp.1-12, 2015.

M. Rho, Y. W. Wu, H. Tang, T. G. Doak, and Y. Ye, Diverse CRISPRs evolving in human microbiomes, PLoS Genetics, vol.8, issue.6, 2012.

C. Richter, R. L. Dy, R. E. Mckenzie, N. Bridget, C. Watson et al., Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer, Nucleic Acids Research, vol.42, issue.13, pp.8516-8526, 2014.

P. Eduardo, E. Rocha, B. Cornet, and . Michel, Comparative and evolutionary analysis of the bacterial homologous recombination systems, PLoS genetics, vol.1, issue.2, p.15, 2005.

L. Rongpeng, F. Lizhu, S. Tan, M. Yu, X. Li et al., Type I CRISPR-Cas targets endogenous genes and regulates virulence to evade mammalian host immunity, Cell Research, vol.26, issue.12, pp.1273-1287, 2016.

C. Rouillon, M. Zhou, J. Zhang, A. Politis, V. Beilsten-edmands et al., Structure of the CRISPR interference complex CSM reveals key similarities with cascade, Molecular Cell, vol.52, issue.1, pp.124-134, 2013.

M. Rutkauskas, T. Sinkunas, I. Songailiene, and M. Tikhomirova, Virginijus Siksnys, and Ralf Seidel, Directional R-loop formation by the CRISPR-cas surveillance complex cascade provides efficient off-target site rejection, Cell Reports, vol.10, issue.9, pp.1534-1543, 2015.

A. Sakai and M. M. Cox, RecFOR and RecOR as distinct RecA loading pathways, Journal of Biological Chemistry, vol.284, issue.5, pp.3264-3272, 2009.

P. Samai, N. Pyenson, W. Jiang, G. W. Goldberg, A. Hatoum-aslan et al., Co-transcriptional DNA and RNA cleavage during type III CRISPR-cas immunity, Cell, vol.161, issue.5, pp.1164-1174, 2015.

T. R. Sampson, B. Napier, M. R. Schroeder, R. Louwen, J. Zhao et al., A CRISPR-Cas system enhances envelope integrity mediating antibiotic resistance and inflammasome evasion, Proceedings of the National Academy of Sciences of the United States of America, vol.111, issue.30, pp.11163-11168, 2014.

. Timothy-r-sampson, D. Sunil, A. C. Saroj, Y. Llewellyn, D. Tzeng et al., A CRISPR/Cas system mediates bacterial innate immune evasion and virulence, Nature, vol.497, issue.7448, pp.254-261, 2013.

I. Scholz, J. Sita, S. Lange, W. R. Hein, R. Hess et al., CRISPR-Cas Systems in the Cyanobacterium Synechocystis sp. PCC6803 Exhibit Distinct Processing Pathways Involving at Least Two Cas6 and a Cmr2 Protein, PLoS ONE, vol.8, issue.2, p.56470, 2013.

D. Kimberley, . Seed, W. David, . Lazinski, B. Stephen et al., A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity, Nature, vol.494, issue.7438, pp.489-91, 2013.

K. Selle, T. R. Klaenhammer, and R. Barrangou, CRISPR-based screening of genomic island excision events in bacteria, Proceedings of the National Academy of Sciences of the United States of America, vol.112, issue.26, 2015.

E. Semenova, M. Matthijs, . Jore, A. Kirill-a-datsenko, . Semenova et al., Stan J J Brouns

K. Severinov, Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.10098-103, 2011.

M. A. Serbanescu, M. Cordova, K. Krastel, R. Flick, N. Beloglazova et al., Role of the Streptococcus mutans CRISPR-Cas systems in immunity and cell physiology, Journal of Bacteriology, vol.197, issue.4, pp.749-761, 2015.

N. Shariat and E. G. Dudley, CRISPRs: Molecular Signatures Used for Pathogen Subtyping, Applied and Environmental Microbiology, vol.80, issue.2, pp.430-439, 2014.
DOI : 10.1128/aem.02790-13

URL : https://aem.asm.org/content/80/2/430.full.pdf

J. Shin, F. Jiang, J. Liu, N. L. Bray, J. Benjamin et al., Disabling Cas9 by an anti-CRISPR DNA mimic, Science Advances, vol.3, issue.7, p.1701620, 2017.
DOI : 10.1126/sciadv.1701620

URL : http://advances.sciencemag.org/content/advances/3/7/e1701620.full.pdf

S. Shmakov, O. Omar, K. S. Abudayyeh, K. Makarova, F. Severinov et al., Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems, Molecular Cell, vol.60, issue.3, pp.1-13, 2015.
DOI : 10.1016/j.molcel.2015.10.008

URL : https://doi.org/10.1016/j.molcel.2015.10.008

S. Shmakov, E. Savitskaya, E. Semenova, M. D. Logacheva, K. A. Datsenko et al., Pervasive generation of oppositely oriented spacers during CRISPR adaptation, Nucleic Acids Research, vol.42, issue.9, pp.5907-5916, 2014.

S. Shmakov, A. Smargon, D. Scott, D. Cox, N. Pyzocha et al.,

Y. I. Makarova, K. Wolf, F. Severinov, and E. V. Zhang,

. Koonin, Diversity and evolution of class 2 CRISPR Cas systems, Nature Reviews Microbiology, 2017.

A. Sergey, V. Shmakov, K. S. Sitnik, Y. I. Makarova, K. V. Wolf et al., The CRISPR spacer space is dominated by sequences from the species-specific mobilome, mBio, vol.8, issue.5, pp.1-18, 2017.

S. Shuman and . Michael-s-glickman, Bacterial DNA repair by nonhomologous end joining, Nature Reviews Microbiology, vol.5, issue.11, pp.852-61, 2007.
DOI : 10.1038/nrmicro1768

S. Silas, P. Lucas-elio, A. Simon, A. Jackson, L. L. Arocacrevillén et al., Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems, Andrew Z Fire, and Antonio 206 BIBLIOGRAPHY Sánchez-Amat, issue.6, p.27601, 2017.
DOI : 10.7554/elife.27601

URL : https://doi.org/10.7554/elife.27601

S. Silas, K. S. Makarova, S. Shmakov, D. Páez-espino, G. Mohr et al., On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires, 2017.

. Sukrit, G. Silas, D. J. Mohr, L. M. Sidote, A. Markham et al., Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptaseCas1 fusion protein, Science, vol.351, issue.6276, p.4234, 2016.

F. J. Silva, A. Latorre, and A. Moya, Why are the genomes of endosymbiotic bacteria so stable?, Trends in Genetics, vol.19, issue.4, pp.172-176, 2003.

K. M. Sinha, M. Unciuleac, H. Michael-s-glickman, S. Niu, P. Raynard et al., AdnAB : a new DSB-resecting motor nuclease from mycobacteria, Genes & development, vol.23, issue.12, pp.1423-1437, 2009.

E. J. Sontheimer and A. R. Davidson, Inhibition of CRISPR-Cas systems by mobile genetic elements, Current Opinion in Microbiology, vol.37, pp.120-127, 2017.
DOI : 10.1016/j.mib.2017.06.003

URL : http://europepmc.org/articles/pmc5737815?pdf=render

O. Soutourina, M. Monot, P. Boudry, L. Saujet, C. Pichon et al., Genome-Wide Identification of Regulatory RNAs in the Human Pathogen Clostridium difficile, vol.9, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01370770

M. Spies, C. Stephen, and . Kowalczykowski, Homologous Recombination by the RecBCD and RecF Pathways ., Homologous Recombination by the RecBCD and RecF Pathways, 2004.

M. Spilman, A. Cocozaki, C. Hale, Y. Shao, N. Ramia et al., Structure of an RNA Silencing Complex of the CRISPR-Cas Immune System, Molecular Cell, vol.52, issue.1, pp.146-152, 2013.

H. Raymond, Y. Staals, S. Agari, Y. Maki-yonekura, D. W. Zhu et al., , p.207

J. J. Koehorst, K. Sakamoto, A. Masuda, N. Dohmae, P. Schaap et al., Structure and Activity of the RNA-Targeting Type III-B CRISPR-Cas Complex of Thermus thermophilus, Molecular Cell, vol.52, issue.1, pp.135-145, 2013.

H. Raymond, Y. Staals, D. W. Zhu, J. E. Taylor, K. Kornfeld et al., RNA Targeting by the Type III-A CRISPR-Cas Csm Complex of Thermus thermophilus, Molecular Cell, vol.56, issue.4, pp.518-530, 2014.

H. J. Raymond, S. A. Staals, A. Jackson, . Biswas, J. J. Stan et al., Interference dominates and amplifies spacer acquisition in a native CRISPR-Cas system, Nature Communications, vol.23, pp.127-135, 2016.

A. Stern, Self-Targeting by CRISPR : Gene regulation or autoimmunity?, Trends in genetics : TIG 26, pp.335-340, 2010.

A. Stern, E. Mick, and I. Tirosh, Or Sagy, and Rotem Sorek, CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome, Genome Research, vol.22, issue.10, pp.1985-1994, 2012.

H. Samuel, B. Sternberg, M. Lafrance, J. A. Kaplan, and . Doudna, Conformational control of DNA target cleavage by CRISPRCas9, Nature, vol.527, issue.7576, pp.110-113, 2015.

H. Samuel, S. Sternberg, M. Redding, . Jinek, C. Eric et al., DNA interrogation by the CRISPR RNA-guided endonuclease Cas9, Nature, vol.507, issue.7490, pp.62-67, 2014.

C. L. Sun, R. Barrangou, B. C. Thomas, P. Horvath, C. Fremaux et al., Phage mutations in response to CRISPR diversification in a bacterial population, Environmental Microbiology, vol.15, issue.2, pp.463-470, 2013.

L. Christine, . Sun, C. Brian, R. Thomas, J. F. Barrangou et al., Metagenomic reconstructions of bacterial CRISPR loci constrain population histories, vol.10, pp.1-13, 2015.

C. Daan, C. Swarts, . Mosterd, W. Mark, S. Van-passel et al., CRISPR interference directs strand specific spacer acquisition, PloS one, vol.7, issue.4, p.35888, 2012.

N. Takeuchi, Y. I. Wolf, K. S. Makarova, and E. V. Koonin, Nature and intensity of selection pressure on CRISPR-associated genes, Journal of bacteriology 194, pp.1216-1241, 2012.

W. David, Y. Taylor, . Zhu, H. Raymond, E. Staals et al., Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning, Science, vol.348, issue.6234, pp.581-585, 2015.

M. Toro, G. Cao, W. Ju, M. Allard, R. Barrangou et al., Association of clustered regularly interspaced short palindromic repeat (CRISPR) elements with specific serotypes and virulence potential of Shiga toxin-producing Escherichia coli, Applied and Environmental Microbiology, vol.80, issue.4, pp.1411-1420, 2014.

M. Touchon, A. Bernheim, and E. Rocha, Genetic and lifehistory traits associated with the distribution of prophages in bacteria, The ISME Journal, vol.10, issue.11, pp.2744-2754, 2016.

M. Touchon, S. Charpentier, O. Clermont, P. Eduardo, E. Rocha et al., CRISPR distribution within the Escherichia coli species is not suggestive of immunity-associated diversifying selection, Journal of bacteriology, vol.193, issue.10, pp.2460-2467, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01374943

M. Touchon, S. Charpentier, D. Pognard, B. Picard, G. Arlet et al., Antibiotic resistance plasmids spread among natural isolates of Escherichia coli in spite of CRISPR elements, Microbiology, vol.158, pp.2997-3004, 2012.

M. Touchon and E. Rocha, The small, slow and specialized CRISPR and anti-CRISPR of Escherichia and Salmonella, PloS one, vol.5, issue.6, p.11126, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01374940

G. W. Tyson and J. F. Banfield, Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses, Environmental Microbiology, vol.10, issue.1, pp.200-207, 2008.

F. Pedro, G. Vale, F. Lafforgue, R. Gatchitch, S. Gardan et al., Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus, Proceedings. Biological sciences, vol.282, 2015.

B. G. Paul, R. N. Van-erp, J. Jackson, S. M. Carter, S. Golden et al., Mechanism of CRISPR-RNA guided recognition of DNA targets in Escherichia coli, Nucleic Acids Research, vol.43, issue.17, pp.8381-8391, 2015.

A. Stineke-van-houte, E. R. Buckling, and . Westra, Evolutionary Ecology of Prokaryotic Immune Mechanisms, Microbiology and Molecular Biology Reviews, vol.80, issue.3, pp.745-763, 2016.

A. K. Stineke-van-houte, J. M. Ekroth, H. Broniewski, B. Chabas, S. Ashby et al., The diversity-generating benefits of a prokaryotic adaptive immune system, Nature, vol.532, issue.7599, pp.385-388, 2016.

J. L. Veesenmeyer, A. W. Andersen, X. Lu, E. A. Hussa, K. E. Murfin et al., NilD CRISPR RNA contributes to Xenorhabdus nematophila colonization of symbiotic host nematodes, Molecular Microbiology, vol.93, issue.5, pp.1026-1042, 2014.

R. B. Vercoe, J. T. Chang, R. L. Dy, C. Taylor, T. Gristwood et al., Cytotoxic Chromosomal Targeting by CRISPR/Cas Systems Can Reshape Bacterial Genomes and Expel or Remodel Pathogenicity Islands, PLoS Genetics, vol.9, issue.4, p.1003454, 2013.

P. Viswanathan, K. Murphy, B. Julien, A. G. Garza, and L. Kroos, Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats, Journal of Bacteriology, vol.189, issue.10, pp.3738-3750, 2007.

D. Vorontsova, A. Kirill, S. Datsenko, J. Medvedeva, E. E. Bondydenomy et al., and Ekaterina Semenova, Foreign DNA acquisition by the I-F CRISPR-Cas system requires all components of the interference machinery, Nucleic acids research, vol.43, issue.22, pp.1-13, 2015.

J. Wang, J. Li, H. Zhao, G. Sheng, M. Wang et al., Structural and Mechanistic Basis of PAM-Dependent Spacer Acquisition in CRISPR-Cas Systems, Cell, vol.163, issue.4, pp.840-853, 2015.

J. Wang, J. Ma, Z. Cheng, X. Meng, L. You et al., A CRISPR evolutionary arms race: structural insights into viral anti-CRISPR/Cas responses, Cell Research, vol.26, issue.10, pp.1165-1168, 2016.

R. Wang, M. Li, L. Gong, S. Hu, and H. Xiang, DNA motifs determining the accuracy of repeat duplication during CRISPR adaptation in Haloarcula hispanica, Nucleic Acids Research, vol.44, issue.9, pp.4266-4277, 2016.

X. Wang, D. Yao, J. Xu, A. Li, J. Xu et al., Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3, Nature Structural & Molecular Biology, vol.23, issue.9, pp.868-871, 2016.

A. J. Richard and . Warren, Modified Bases in Bacteriophage DNAs, Annual Review of Microbiology, vol.34, issue.1, pp.137-158, 1980.

Y. Wei, M. T. Chesne, R. M. Terns, and M. P. Terns, Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus, Nucleic acids research, vol.43, issue.3, pp.1749-58, 2015.

A. D. Weinberger, C. L. Sun, M. Mateusz, V. J. Pluci?ski, B. C. Denef et al.,

W. M. Gilmore, J. F. Getz, and . Banfield, Persisting viral sequences shape microbial CRISPR-based immunity, PLoS Computational Biology, vol.8, issue.4, 2012.

A. D. Weinberger, Y. I. Wolf, A. E. Lobkovsky, M. S. Gilmore, and E. V. Koonin, Viral diversity threshold for adaptive immunity in prokaryotes, mBio, vol.3, issue.6, pp.1-10, 2012.

. Jake-l-weissman, F. William, P. Fagan, and . Johnson, Is having more than one CRISPR array adaptive ?, 2017.

G. R. Weller and A. J. Doherty, A family of DNA repair ligases in bacteria?, FEBS Letters, vol.505, issue.2, pp.340-342, 2001.

B. Geoffrey-r-weller, R. Kysela, L. M. Roy, E. Tonkin, M. Scanlan et al., Identification of a DNA nonhomologous end-joining complex in bacteria, Science, vol.297, issue.5587, pp.1686-1689, 2002.

A. Edze-r-westra, . Buckling, and . Peter-c-fineran, CRISPR-Cas systems: beyond adaptive immunity, vol.12, pp.317-343, 2014.

A. J. Edze-r-westra, J. M. Dowling, S. Broniewski, and . Van-houte, Annual Review of Ecology, Evolution, and Systematics, vol.47, issue.1, pp.307-331, 2016.

R. Edze, U. Westra, N. Pul, . Heidrich, M. Matthijs et al.,

J. Van-der, R. Oost, S. Wagner, and . Brouns, H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO, Molecular Microbiology, vol.77, issue.6, pp.1380-1393, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00560024

R. Edze, . Westra, S. Stineke-van-houte, B. Oyesiku-blakemore, J. M. Makin et al., Mike Boots, and Angus Buckling, Parasite Exposure Drives Selective Evolution of Constitutive versus Inducible Defense, Current Biology, vol.25, issue.8, pp.1043-1049, 2015.

C. Matthew, R. Whitby, and . Lloyd, Branch migration of three-strand recombination intermediates by RecG, a possible pathway for securing exchanges initiated by 3'-tailed duplex DNA, The EMBO journal, vol.14, issue.14, pp.3302-3310, 1995.

B. Wiedenheft, G. C. Lander, K. Zhou, M. M. Jore, J. J. Stan et al., Structures of the RNA-guided surveillance complex from a bacterial immune system, Nature, vol.477, issue.7365, pp.486-489, 2011.

B. Dale and . Wigley, Bacterial DNA repair: recent insights into the mechanism of RecBCD, Nature Reviews Microbiology, vol.11, issue.1, pp.9-13, 2013.

E. Williams, T. M. Lowe, J. Savas, and J. Diruggiero, Microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus exposed to gamma irradiation, Extremophiles, vol.11, issue.1, pp.19-29, 2007.

V. Addison, J. A. Wright, and . Doudna, Protecting genome integrity during CRISPR immune adaptation, Nature Structural & Molecular Biology, vol.23, issue.10, 2016.

Y. Xiao, M. Luo, P. Robert, J. Hayes, S. Kim et al., Structure Basis for Directional R-loop Formation and Substrate Handover Mechanisms in Type I CRISPR-Cas System, Cell, vol.170, issue.1, pp.48-60, 2017.
DOI : 10.1016/j.cell.2017.06.012

URL : http://europepmc.org/articles/pmc5841471?pdf=render

C. Xue, A. S. Seetharam, O. Musharova, . Severinov, J. J. Stan et al., CRISPR interference and priming varies with individual spacer sequences, Nucleic acids research, vol.43, issue.22, pp.10831-10847, 2015.
DOI : 10.1093/nar/gkv1259

URL : https://academic.oup.com/nar/article-pdf/43/22/10831/16662225/gkv1259.pdf

C. Xue, N. R. Whitis, and D. G. Sashital, Conformational Control of Cascade Interference and Priming Activities in CRISPR Immunity, Molecular Cell, vol.64, issue.4, pp.826-834, 2016.

T. Yamano, H. Nishimasu, B. Zetsche, H. Hirano, I. M. Slaymaker et al., Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA, vol.165, issue.4, pp.949-962, 2016.

C. Yang, P. Li, H. Li, H. Liu, G. Yang et al., Polymorphism of CRISPR shows separated natural groupings of Shigella subtypes and evidence of horizontal transfer of CRISPR, Shaofu Qiu, and Hongbin Song, vol.12, pp.1109-1129, 2015.

H. Yang and D. J. Patel, Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9, Molecular Cell, vol.67, issue.1, pp.117-127, 2017.

K. N-r-yoganand, R. Sivathanu, S. Nimkar, and B. Anand, Asymmetric positioning of Cas1-2 complex and Integration Host Factor induced DNA bending guide the unidirectional homing of protospacer in CRISPR-Cas type I-E system, Nucleic Acids Research, vol.45, issue.1, pp.367-381, 2017.

I. Yosef, G. Moran, R. Goren, R. Kiro, U. Edgar et al., High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system, Proceedings of the National Academy of Sciences of the United States of America, vol.108, issue.50, pp.20136-20141, 2011.

J. C. Young, B. D. Dill, C. Pan, R. L. Hettich, J. F. Banfield et al., Phage-induced expression of CRISPR-associated proteins is revealed by shotgun proteomics in streptococcus thermophilus, PLoS ONE, vol.7, issue.5, p.38077, 2012.

M. E. Zegans, J. C. Wagner, K. C. Cady, D. M. Murphy, J. H. Hammond et al., Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa, Journal of Bacteriology, vol.91, issue.1, pp.210-219, 2009.

B. Zetsche, S. E. Volz, and F. Zhang, A split-Cas9 architecture for inducible genome editing and transcription modulation, Nature Biotechnology, vol.33, issue.2, pp.139-142, 2015.
DOI : 10.1038/nbt.3149

URL : http://europepmc.org/articles/pmc4503468?pdf=render

J. Zhang, T. Kasciukovic, and M. F. White, The CRISPR Associated Protein Cas4 Is a 5' to 3' DNA Exonuclease with an Iron-Sulfur Cluster, PLoS ONE, vol.7, issue.10, p.47232, 2012.

J. Zhang, C. Rouillon, M. Kerou, J. Reeks, K. Brugger et al., Structure and Mechanism of the CMR Complex for CRISPRMediated Antiviral Immunity, vol.45, pp.303-313, 2012.

Q. Zhang, T. G. Doak, and Y. Ye, Expanding the catalog of cas genes with metagenomes, Nucleic Acids Research, vol.42, issue.4, pp.2448-2459, 2014.

Y. Zhang, N. Heidrich, J. Biju, C. W. Ampattu, &. Gunderson et al., 5" min_mandatory_genes_required="2" min_genes_required="3"> #Present in other CRISPR-Cas systems <gene name="cas1_TypeI-II-III" presence="accessory" system_ref="CAS"/> <gene name="cas1_I_II_III_V_maka" presence="accessory" system_ref="CAS"/> <gene name="cas2_TypeI-II-III" presence="accessory" system_ref="CAS"/> <gene name="cas2_I_II_III_V_maka" presence="accessory" system_ref="CAS"/> <gene name="cas1_TypeIA" presence="accessory" system_ref="CAS-TypeIA"/> <gene name="cas1_TypeIC" presence="accessory" system_ref="CAS-TypeIC"/> <gene name=

. &lt;/homologs&gt;-&lt;/gene&gt;-&lt;gene and . Name=, csm2_IIID_maka_1" presence="mandatory"/> <gene name="csx10_IIID_maka_4" presence="mandatory"/> <gene name="csm3_IIID_maka_5" presence="mandatory"/> <gene name="csm3_IIID_maka_6" presence="mandatory"/> #Often associated with TypeIIID <gene name="csm3_IIIAD_maka_1" presence="mandatory" exchangeable="1"> <homologs> <gene name=

. &lt;/homologs&gt;-&lt;/gene&gt;-&lt;gene and . Name=, CAS-TypeIA"/> <gene name="cas4_TypeI-II" presence="accessory" system_ref="CAS"/> #Distinguishing from other Types <gene name="cas9_TypeII" presence="forbidden" system_ref="CAS-TypeIIC"/> <gene name="cas9_TypeIIB" presence="forbidden" system_ref="CAS-TypeIIB"/> #Other subtypes III sometimes associated with TypeIIIB <gene name="cas10_TypeIIIA" presence="accessory" system_ref="CAS-TypeIIIA"/> <gene name="cas10_III_maka_5" presence="accessory" system_ref="CAS-TypeIIIA"/> <gene name="csm3_TypeIIIA" presence="accessory" system_ref="CAS-TypeIIIA"/> <gene name="csm2_IIIA_maka_7" presence="accessory" system_ref="CAS-TypeIIIA"/>/> <gene name="csm4_TypeIIIA" presence="accessory" system_ref="CAS-TypeIIIA"/> <gene name="csm5_TypeIIIA" presence="accessory" system_ref="CAS-TypeIIIA"/> <gene name="csm6_TypeIIIA" presence="accessory" system_ref="CAS-TypeIIIA"/> <gene name=

. Type, 5" min_mandatory_genes_required="2" min_genes_required="3"> #Present in all CRISPR-Cas systems <gene name="cas2_TypeI-II-III" presence="accessory" system_ref="CAS"/> <gene name=

. &lt;/homologs&gt;-&lt;/gene&gt;-&lt;gene and . Name=, CAS-TypeIIC"/> <gene name="cas9_TypeIIB" presence="forbidden" system_ref="CAS-TypeIIB"/> <gene name="cas10_TypeIIIA" presence="forbidden" system_ref="CAS-TypeIIIA"/> <gene name="cas10_TypeIIIB" presence="forbidden" system_ref="CAS-TypeIIIB"/> </system> ############################### Type VI <system inter_gene_max_space="5" min_mandatory_genes_required="1" min_genes_required="1"> <gene name="cas13a" presence="mandatory" loner="1"/> <gene name="cas13b1" presence="mandatory" loner="1"/> <gene name="cas13b2" presence="mandatory" loner="1"/> <gene name="cas13c" presence="mandatory" loner="1"/> <gene name="cas2_TypeI-II-III" presence="accessory" system_ref="CAS"/> <gene name="cas2_I_II_III_V_maka" presence="accessory" system_ref="CAS"/> <gene name="cas1_I_II_III_V_maka" presence="accessory" system_ref="CAS"/> <gene name="cas1_TypeI-II-III" presence="accessory" system_ref="CAS"/> "5" min_mandatory_genes_required="2" min_genes_required="3"> <gene name="cas1_TypeI-II

S. S. Abby, B. Neron, H. Menager, M. Touchon, and E. P. Rocha, MacSyFinder: A program to Mine genomes for molecular systems with an application to CRISPR-Cas systems, PLoS One, vol.9, p.110726, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01080418

S. T. Abedon, Bacteriophage Ecology: Population Growth, Evolution, and Impact of Bacterial Viruses, 2008.

A. St and J. T. Lejeune, Why bacteriophage encode exotoxins and other virulence factors, Evol Bioinform Online, vol.1, pp.97-110, 2005.

T. Akerlund, K. Nordstrom, and R. Bernander, Analysis of cell size and DNA content in exponentially growing and stationary-phase batch cultures of Escherichia coli, J Bacteriol, vol.177, pp.6791-6797, 1995.

G. Bertani, Studies on lysogenesis. III. Superinfection of lysogenic Shigella dysenteriae with temperate mutants of the carried phage, J Bacteriol, vol.67, pp.696-707, 1954.

L. Bobay, E. Rocha, and M. Touchon, The adaptation of temperate bacteriophages to their host genomes, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01374945

, Mol Biol Evol, vol.30, pp.737-751

L. Bossi, J. A. Fuentes, G. Mora, and N. Figueroa-bossi, Prophage contribution to bacterial population dynamics, J Bacteriol, vol.185, pp.6467-6471, 2003.

M. S. Boyce, Restitution of r-and K-selection as a model of density-dependent natural selection, Annu Rev Ecol Syst, vol.15, pp.427-447, 1984.

H. Bremer and P. P. Dennis, Modulation of chemical composition and other parameters of the cell by growth rate, Escherichia Coli and Salmonella: Cellular and Molecular Biology, pp.1553-1569, 1996.

D. J. Brenner, N. R. Krieg, and J. T. Staley, The Proteobacteria, bergey's manual of systematic bacteriology, vol.XXVI, p.304, 2005.

H. Brussow, C. Canchaya, and W. D. Hardt, Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion, Microbiol Mol Biol Rev, vol.68, pp.560-602, 2004.

C. Canchaya, G. Fournous, S. Chibani-chennoufi, M. L. Dillmann, and H. Brussow, Phage as agents of lateral gene transfer, Curr Opin Microbiol, vol.6, pp.4-5, 2003.

C. Canchaya, C. Proux, G. Fournoux, A. Bruttin, and H. Brussow, Prophage genomics. Microbiol Mol Biol Rev, vol.67, pp.238-276, 2003.

S. Casjens, Prophages and bacterial genomics: what have we learned so far?, Mol Microbiol, vol.49, pp.277-300, 2003.

T. H. Chrzanowski, R. D. Crotty, and G. J. Hubbard, Seasonal variation in cell volume of epilimnetic bacteria, Microb Ecol, vol.16, pp.155-163, 1988.

P. K. Cochran and J. H. Paul, Seasonal abundance of lysogenic bacteria in a subtropical estuary, Appl Environ Microbiol, vol.64, pp.2308-2312, 1998.

O. X. Cordero and P. Hogeweg, The impact of long-distance horizontal gene transfer on prokaryotic genome size, Proc Natl Acad Sci, vol.106, pp.21748-21753, 2009.

N. R. Draper and H. Smith, Applied Regression Analysis, 1998.

S. R. Eddy, Accelerated profile HMM searches, PLoS Comput Biol, vol.7, p.1002195, 2011.

R. D. Finn, J. Tate, J. Mistry, P. C. Coggill, S. J. Sammut et al., The Pfam protein families database, Nucleic Acids Res, vol.36, pp.281-288, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01294685

D. E. Fouts, Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences, Nucleic Acids Res, vol.34, pp.5839-5851, 2006.

J. A. Fuhrman, Marine viruses and their biogeochemical and ecological effects, Nature, vol.399, pp.541-548, 1999.

N. Galtier, N. Tourasse, and M. Gouy, A non-hyperthermophylic common ancestor to extant life forms, Science, vol.283, pp.220-221, 1999.

J. A. Gama, A. M. Reis, I. Domingues, H. Mendes-soares, A. M. Matos et al., Temperate bacterial viruses as double-edged swords in bacterial warfare, PLoS One, vol.8, p.59043, 2013.

D. Ghosh, K. Roy, K. E. Williamson, D. C. White, K. E. Wommack et al., Prevalence of lysogeny among soil bacteria and presence of 16S rRNA and trzN genes in viral-community DNA, Appl Environ Microbiol, vol.74, pp.495-502, 2008.

G. W. Goldberg, W. Jiang, D. Bikard, and L. A. Marraffini, Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting, Nature, vol.514, pp.633-637, 2014.

D. H. Goldhill and P. E. Turner, The evolution of life history trade-offs in viruses, Curr Opin Virol, vol.8, pp.79-84, 2014.

U. Gophna, D. M. Kristensen, Y. I. Wolf, O. Popa, C. Drevet et al., No evidence of inhibition of horizontal gene transfer by CRISPR-Cas on evolutionary timescales, ISME J, vol.9, pp.2021-2027, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01464867

I. Grissa, G. Vergnaud, and C. Pourcel, CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats, Nucleic Acids Res, vol.35, pp.52-57, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00194414

G. F. Hatfull, Mycobacteriophages: genes and genomes, Annu Rev Microbiol, vol.64, pp.331-356, 2010.

I. Herskowitz and D. Hagen, The lysis-lysogeny decision of phage lambda: explicit programming and responsiveness, Annu Rev Genet, vol.14, pp.399-445, 1980.

P. Hyman and S. T. Abedon, Bacteriophage host range and bacterial resistance, Adv Appl Microbiol, vol.70, pp.217-248, 2010.

S. C. Jiang and J. H. Paul, Gene transfer by transduction in the marine environment, Appl Environ Microbiol, vol.64, pp.2780-2787, 1998.

A. L. Koch, Oligotrophs versus copiotrophs, Bioessays, vol.23, pp.657-661, 2001.
DOI : 10.1002/bies.1091

P. Kourilsky, Lysogenization by bacteriophage lambda. I. Multiple infection and the lysogenic response, Mol Gen Genet, vol.122, pp.183-195, 1973.
DOI : 10.1016/s0300-9084(75)80274-4

S. J. Labrie, J. E. Samson, and S. Moineau, Bacteriophage resistance mechanisms, Nat Rev Microbiol, vol.8, pp.317-327, 2010.
DOI : 10.1038/nrmicro2315

M. Lieb, Studies on lysogenization in Escherichia coli, Cold Spring Harb Symp Quant Biol, vol.18, pp.7-8, 1953.
DOI : 10.1101/sqb.1953.018.01.015

A. Lwoff, Lysogeny. Bacteriol Rev, vol.17, pp.269-337, 1953.

C. F. Maurice, C. Bouvier, R. De-wit, and T. Bouvier, Linking the lytic and lysogenic bacteriophage cycles to environmental conditions, host physiology and their variability in coastal lagoons, Environ Microbiol, vol.15, pp.2463-2475, 2013.

L. Mcdaniel and J. H. Paul, Effect of nutrient addition and environmental factors on prophage induction in natural populations of marine synechococcus species, 2005.

, Appl Environ Microbiol, vol.71, pp.842-850

S. Mcgrath, G. F. Fitzgerald, and D. Van-sinderen, Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages, Mol Microbiol, vol.43, pp.0-9, 2002.

K. Mcnair, B. A. Bailey, and R. A. Edwards, PHACTS, a computational approach to classifying the lifestyle of phages, Bioinformatics, vol.28, pp.614-618, 2012.

R. Menouni, S. Champ, L. Espinosa, M. Boudvillain, and M. Ansaldi, Transcription termination controls prophage maintenance in Escherichia coli genomes, Proc Natl Acad Sci, vol.110, pp.1-4, 2013.
DOI : 10.1073/pnas.1303400110

URL : https://hal.archives-ouvertes.fr/hal-00874882

M. Middelboe, Bacterial growth rate and marine virus-host dynamics, Microb Ecol, vol.40, pp.114-124, 2000.

S. R. Modi, H. H. Lee, C. S. Spina, and J. J. Collins, Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome, Nature, vol.499, pp.219-222, 2013.

P. H. Oliveira, M. Touchon, and E. Rocha, The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts, Nucleic Acids Res, vol.42, pp.10618-10631, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01374960

E. Paradis, C. J. Strimmer, and K. , APE: analyses of phylogenetics and evolution in R596 language, Bioinformatics, vol.20, pp.289-290, 2004.

L. A. Pirofski and A. Casadevall, Q and A: What is a pathogen? A question that begs the point, BMC Biol, vol.10, p.6, 2012.

P. Ram, A. S. Sime-ngando, and T. , Resources drive trade-off between viral lifestyles in the plankton: evidence from freshwater microbial microcosms, Environ Microbiol, vol.12, pp.467-479, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00527101

M. Ptashne, Genetic Switch: Phage Lambda and Higher Organisms, 1992.

S. Roux, S. J. Hallam, T. Woyke, and M. B. Sullivan, Viral dark matter and virus-host interactions resolved from publicly available microbial genomes, Elife, vol.4, pp.1-20, 2015.
DOI : 10.7554/elife.08490

URL : https://doi.org/10.7554/elife.08490

J. Shan, S. Korbsrisate, P. Withatanung, N. L. Adler, M. R. Clokie et al., Temperature dependent bacteriophages of a tropical bacterial pathogen, Front Microbiol, vol.5, pp.5-9, 2014.

C. Smillie, M. P. Garcillan-barcia, M. V. Francia, E. P. Rocha, and F. De-la-cruz, Mobility of plasmids, Microbiol Mol Biol Rev, vol.74, pp.434-452, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01374958

C. Spearman, The proof and measurement of association between two things, Am J Psychol, vol.15, pp.7-9, 1904.

F. St-pierre and D. Endy, Determination of cell fate selection during phage lambda infection, Proc Natl Acad Sci, vol.105, pp.20705-20710, 2008.

S. C. Stearns, The evolution of life history traits: a critique of the theory and a review of the data, Annu Rev Ecol Syst, vol.8, pp.145-171, 1977.

F. M. Stewart and B. R. Levin, The population biology of bacterial viruses: why be temperate?, Theor Popul Biol, vol.26, pp.93-117, 1984.

F. Torrella and R. Y. Morita, , 1981.

, Appl Environ Microbiol, vol.41, pp.518-527

M. Touchon, S. Charpentier, O. Clermont, E. Rocha, E. Denamur et al., CRISPR distribution within the Escherichia coli species is not suggestive of immunity-associated diversifying selection, J Bacteriol, vol.193, pp.2460-2467, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01374943

M. Touchon and E. P. Rocha, Causes of insertion sequences abundance in prokaryotic genomes, Mol Biol Evol, vol.24, pp.969-981, 2007.

M. Touchon and E. P. Rocha, The small, slow and specialized CRISPR and anti-CRISPR of Escherichia and Salmonella, PLoS ONE, vol.5, p.11126, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01374940

S. Vieira-silva and E. Rocha, The systemic imprint of growth and its uses in ecological (meta)genomics, PLoS Genet, vol.6, p.1000808, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00488678

S. Vieira-silva, M. Touchon, A. Ss, and E. P. Rocha, Investment in rapid growth shapes the evolutionary rates of essential proteins, Proc Natl Acad Sci, vol.108, pp.20030-20035, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00655553

B. Volkmer and M. Heinemann, Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling, PLoS One, vol.6, p.23126, 2011.

P. L. Wagner and M. K. Waldor, Bacteriophage control of bacterial virulence, Infect Immun, vol.70, pp.3985-3993, 2002.

M. K. Waldor and D. I. Friedman, Phage regulatory circuits and virulence gene expression, Curr Opin Microbiol, vol.8, pp.459-465, 2005.

X. Wang, Y. Kim, Q. Ma, S. H. Hong, K. Pokusaeva et al., Cryptic prophages help bacteria cope with adverse environments, Nat Commun, vol.1, p.147, 2010.

M. G. Weinbauer, Ecology of prokaryotic viruses, FEMS Microbiol Rev, vol.28, pp.127-181, 2004.

E. R. Westra, A. Buckling, and P. C. Fineran, CRISPR-Cas systems: beyond adaptive immunity, Nat Rev Microbiol, vol.12, pp.317-326, 2014.

F. Wilcoxon, Individual comparisons by ranking methods, Biometrics Bull, vol.1, pp.80-83, 1945.

S. W. Wilhelm and C. A. Suttle, Viruses and nutrient cycles in the sea viruses play critical roles in the structure and function of aquatic food webs, Bioscience, vol.49, pp.7-8, 1999.

S. J. Williamson, L. A. Houchin, L. Mcdaniel, and J. H. Paul, Seasonal variation in lysogeny as depicted by prophage induction in Tampa Bay, Florida. Appl Environ Microbiol, vol.68, pp.4307-4314, 2002.

C. Winter, T. Bouvier, M. G. Weinbauer, and T. F. Thingstad, Trade-offs between competition and defense specialists among unicellular planktonic organisms: the "killing the winner" hypothesis revisited, Microbiol Mol Biol Rev, vol.74, pp.42-57, 2010.

K. B. Zeldovich, I. N. Berezovsky, E. I. Shakhnovich, and . Chopin, The existence of a second STK, known as Stk2, present in only some isolates of S. aureus, was noted in a few studies, but its function remained mysterious, PLoS Comput Biol, vol.3, 2005.

, EOP of phage phiNM1 on RN4220 S. aureus cells in the presence of the wild-type Stk2 protein (pDB31) or various mutants: K152Q (pDB81), D243A (pDB82), and T275A (pDB83)

, Growth curve of S. aureus RN4220 carrying control plasmid pC194 or pDB31 (pC194Ustk2)

, PFUs and colony-forming units (CFUs) recovered after infection of RN4220 cells carrying stk2 or not. Cells were grown to OD = 0.2 and incubated with phiNM1 for 2 hr. Cells were then plated on TSA to measure CFUs, and the filtered supernatant was spotted on a top agar lawn of RN4220 cells to measure PFUs. Upon infection with phiNM1 and in the presence of stk2

, PFUs and CFUs recovered after induction with mitomycin C (MMC) of growing RN4220 carrying a phiNM1 lysogenic phage or not, in the presence or absence of stk2. Upon induction, cells carrying a lysogenic phage are killed regardless of the presence of stk2, but the production of phage is inhibited in the presence of stk2. Note that PFUs are recovered even in the absence of MMC due to the spontaneous induction of the phage. See also Figure S1. Error bars represent the SD of three replicates, Cell Host & Microbe, vol.20, p.475, 2016.

, Induction of Candidate Activators of Stk2 S. aureus strains were grown in triplicate overnight at 37 C, diluted 1:100 in TSB, and incubated at 37 C with shaking. When cultures reached OD 600 z 0.2, aTc was added at a final concentration of 0.5 mg/mL. All the strains were grown in parallel without aTc as a control. After 1.5 hr of incubation in the presence or absence of aTc, the samples were serially diluted and 5 mL was spotted in TSA with appropriate antibiotics to count viable bacteria, Prophage Induction S. aureus strains (RN4220, RN4220::phiNM1, RN4220::phiNM1/pC194, and RN4220::phiNM1/pDB31were also centrifuged to recover the supernatant and measure the phage titer, vol.2, pp.50-54

T. Bae, T. Baba, K. Hiramatsu, and O. Schneewind, Prophages of Staphylococcus aureus Newman and their contribution to virulence, Mol. Microbiol, vol.62, pp.1035-1047, 2006.

A. M. Beltramini, C. D. Mukhopadhyay, and V. Pancholi, Modulation of cell wall structure and antimicrobial susceptibility by a Staphylococcus aureus eukaryote-like serine/threonine kinase and phosphatase, Infect. Immun, vol.77, pp.1406-1416, 2009.

P. J. Boersema, R. Raijmakers, S. Lemeer, S. Mohammed, and A. J. Heck, Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics, Nat. Protoc, vol.4, pp.484-494, 2009.

M. C. Chopin, A. Chopin, and E. Bidnenko, Phage abortive infection in lactococci: variations on a theme, Curr. Opin. Microbiol, vol.8, pp.473-479, 2005.

R. Dai, D. Yan, J. Li, S. Chen, Y. Liu et al., Activation of PKR/eIF2a signaling cascade is associated with dihydrotestosterone-induced cell cycle arrest and apoptosis in human liver cells, J. Cell. Biochem, vol.113, pp.1800-1808, 2012.

, Cell Host & Microbe, vol.20, pp.471-481, 2016.

A. Daniel, P. E. Bonnen, and V. A. Fischetti, First complete genome sequence of two Staphylococcus epidermidis bacteriophages, J. Bacteriol, vol.189, pp.2086-2100, 2007.

M. Dé-barbouillé, S. Dramsi, O. Dussurget, M. A. Nahori, E. Vaganay et al., , 2009.

J. P. Didier, A. J. Cozzone, and B. Duclos, Phosphorylation of the virulence regulator SarA modulates its ability to bind DNA in Staphylococcus aureus, FEMS Microbiol. Lett, vol.306, pp.30-36, 2010.

S. Donat, K. Streker, T. Schirmeister, S. Rakette, T. Stehle et al., Transcriptome and functional analysis of the eukaryotic-type serine/threonine kinase PknB in Staphylococcus aureus, 2009.

, J. Bacteriol, vol.191, pp.4056-4069

B. Duclos, S. Marcandier, and A. J. Cozzone, Chemical properties and separation of phosphoamino acids by thin-layer chromatography and/or electrophoresis, Methods Enzymol, vol.201, pp.10-21, 1991.
URL : https://hal.archives-ouvertes.fr/hal-00313233

R. D. Finn, J. Clements, and S. R. Eddy, HMMER web server: interactive sequence similarity searching, Nucleic Acids Res, vol.39, pp.29-37, 2011.

D. I. Friedman, C. C. Mozola, K. Beeri, C. C. Ko, and J. L. Reynolds, , 2011.

M. E. Goldberg, N. Expert-bezanç-on, L. Vuillard, and T. Rabilloud, , 1996.

, Non-detergent sulphobetaines: a new class of molecules that facilitate in vitro protein renaturation, Fold. Des, vol.1, pp.21-27

G. W. Goldberg, W. Jiang, D. Bikard, and L. A. Marraffini, Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting, Nature, vol.514, pp.633-637, 2014.

T. Goldfarb, H. Sberro, E. Weinstock, O. Cohen, S. Doron et al., , 2015.

A. Hatoum-aslan, I. Maniv, P. Samai, and L. A. Marraffini, Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system, J. Bacteriol, vol.196, pp.310-317, 2014.

S. Horinouchi and B. Weisblum, Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance, 1982.

, J. Bacteriol, vol.150, pp.815-825

S. Horinouchi and B. Weisblum, Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibodies, J. Bacteriol, vol.150, pp.804-814, 1982.

P. A. Hoskisson, P. Sumby, and M. C. Smith, DNA methyltransferase, protein kinase and ATPase activity, Virology, vol.477, pp.100-109, 2015.

L. C. Hsu, J. M. Park, K. Zhang, J. L. Luo, S. Maeda et al., , 2004.

M. Huse and J. Kuriyan, The conformational plasticity of protein kinases, Cell, vol.109, pp.275-282, 2002.

W. Jiang, I. Maniv, F. Arain, Y. Wang, B. R. Levin et al., , 2013.

, Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids, PLoS Genet, vol.9, 1003844.

T. D. Kanneganti, Central roles of NLRs and inflammasomes in viral infection, Nat. Rev. Immunol, vol.10, pp.688-698, 2010.

P. J. Kennelly, Protein Ser/Thr/Tyr phosphorylation in the Archaea, 2014.

, J. Biol. Chem, vol.289, pp.9480-9487

S. J. Labrie, J. E. Samson, and S. Moineau, Bacteriophage resistance mechanisms, Nat. Rev. Microbiol, vol.8, pp.317-327, 2010.

M. R. Larsen, T. E. Thingholm, O. N. Jensen, P. Roepstorff, and T. J. Jørgensen, , 2005.

M. Qobocka, M. S. Hejnowicz, K. Da-?-browski, A. Gozdek, J. Kosakowski et al., Genomics of staphylococcal Twort-like phagespotential therapeutics of the post-antibiotic era, Adv. Virus Res, vol.83, pp.143-216, 2012.

R. Lomas-lopez, P. Paracuellos, M. Riberty, A. J. Cozzone, and B. Duclos, Several enzymes of the central metabolism are phosphorylated in Staphylococcus aureus, FEMS Microbiol. Lett, vol.272, pp.35-42, 2007.

J. London, C. Skrzynia, and M. E. Goldberg, Renaturation of Escherichia coli tryptophanase after exposure to 8 M urea. Evidence for the existence of nucleation centers, Eur. J. Biochem, vol.47, pp.409-415, 1974.

K. S. Makarova, Y. I. Wolf, S. Snir, and E. V. Koonin, Defense islands in bacterial and archaeal genomes and prediction of novel defense systems, 2011.

, J. Bacteriol, vol.193, pp.6039-6056

A. Marchler-bauer and S. H. Bryant, CD-Search: protein domain annotations on the fly, Nucleic Acids Res, vol.32, pp.327-331, 2004.

E. Meurs, K. Chong, J. Galabru, N. S. Thomas, I. M. Kerr et al., Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon, Cell, vol.62, pp.379-390, 1990.

V. Molle, I. Zanella-cleon, J. P. Robin, S. Mallejac, A. J. Cozzone et al., Characterization of the phosphorylation sites of Mycobacterium tuberculosis serine/threonine protein kinases, PknA, PknD, PknE, and PknH by mass spectrometry, Proteomics, vol.6, pp.3754-3766, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00314725

D. Nair, G. Memmi, D. Hernandez, J. Bard, M. Beaume et al., Whole-genome sequencing of Staphylococcus aureus strain RN4220, a key laboratory strain used in virulence research, identifies mutations that affect not only virulence factors but also the fitness of the strain, J. Bacteriol, vol.193, pp.2332-2335, 2011.

R. P. Novick, Staphylococcal plasmids and their replication, Annu. Rev. Microbiol, vol.43, pp.537-565, 1989.

N. W. Palm and R. Medzhitov, Pattern recognition receptors and control of adaptive immunity, Immunol. Rev, vol.227, pp.221-233, 2009.

S. F. Pereira, L. Goss, and J. Dworkin, Eukaryote-like serine/ threonine kinases and phosphatases in bacteria. Microbiol, Mol. Biol. Rev, vol.75, pp.192-212, 2011.

N. Pumplin and O. Voinnet, RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence, Nat. Rev. Microbiol, vol.11, pp.745-760, 2013.

E. S. Robertson and A. W. Nicholson, Phosphorylation of Escherichia coli translation initiation factors by the bacteriophage T7 protein kinase, Biochemistry, vol.31, pp.4822-4827, 1992.

A. J. Sadler and B. R. Williams, Interferon-inducible antiviral effectors, Nat. Rev. Immunol, vol.8, pp.559-568, 2008.

G. R. Stark, I. M. Kerr, B. R. Williams, R. H. Silverman, and R. D. Schreiber, How cells respond to interferons, Annu. Rev. Biochem, vol.67, pp.227-264, 1998.

P. Sumby and M. C. Smith, Genetics of the phage growth limitation (Pgl) system of Streptomyces coelicolor A3(2), Mol. Microbiol, vol.44, pp.489-500, 2002.

M. Tahara, A. Ohsawa, S. Saito, and M. Kimura, In vitro phosphorylation of initiation factor 2 alpha (aIF2 alpha) from hyperthermophilic archaeon Pyrococcus horikoshii OT3, J. Biochem, vol.135, pp.479-485, 2004.

Q. C. Truong-bolduc, Y. Ding, and D. C. Hooper, Posttranslational modification influences the effects of MgrA on norA expression in Staphylococcus aureus, J. Bacteriol, vol.190, pp.7375-7381, 2008.

N. Yan, C. , and Z. J. , Intrinsic antiviral immunity, Nat. Immunol, vol.13, pp.214-222, 2012.

T. A. Young, B. Delagoutte, J. A. Endrizzi, A. M. Falick, A. et al., Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases, Nat. Struct. Biol, vol.10, pp.168-174, 2003.

C. Zorzatto, J. P. Machado, K. V. Lopes, K. J. Nascimento, W. A. Pereira et al., NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism, Nature, vol.520, pp.679-682, 2015.

, Cell Host & Microbe, vol.20, p.481, 2016.