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Chapter 0

Introduction

0.1 Quasisymmetric rigidity of Fn,p

The quasisymmetric geometry of Sierpiński carpets is related to the study of Julia sets
in complex dynamics and boundaries of Gromov hyperbolic groups.

Let S2 be the unit sphere in R3. Let S = S2 \Si≥1Di, where Di, i = 1, 2, · · · , are open
Jordan domains with Di

T
Dj = ∅ for distinct i, j. S is called a (Sierpiński) carpet if S

has empty interior and the spherical diameter diam(Di) → 0 as i →∞. For each i, ∂Di

is called a peripheral circle of S. S is called a round carpet if each Di is a round disk.
Topologically all carpets are the same [W58]. Much richer structure arises if we con-

sider quasisymmetric geometry of metric carpets. The famous counjecture of Kapovich-
Kleiner predicts that if G is a hyperbolic group with boundary ∂∞G homeomorphic to
a carpet, then G acts geometrically on a convex subset of H3 with non-empty totally
geodesic boundary. The Kapovich-Kleiner conjecture is equivalent to the conjecture that
the carpet ∂∞G, endowed with a visual metric, is quasisymetriclly equivalent to a round
carpet on S2. The conjecture is true for carpets that can be quasisymmetrically embedding
into S2.

Let us recall the concept of quasisymetric map between metric spaces defined by Tukia
and Väisälä [TV80]. Let f : X → Y be a homeomorphism between two metric spaces
(X, dX) and (Y, dY ). f is quasisymmetric if there exists a homeomorphism η : [0,∞) →
[0,∞) such that

dY (f(x), f(y))

dY (f(x), f(z))
≤ η

�
dX(x, y)

dX(x, z)

�
, ∀ x, y, z ∈ X, x 6= z.

Let QS(X) be the group of quasisymmetric self-homeomorphisms of X.
Let Sp, p ≥ 3 odd, be the standard 1/p-Sierpiński carpets on the Euclidean plane.

In [BM13], Bonk and Merenkov proved that for each Sp, p ≥ 3 odd, QS(Sp) is finite
dihedral group. They further conjectured that, for any p ≥ 3 odd, QS(Sp) is a Euclidean
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isometry group. When p = 3, they has showed that the conjecture is true. They also
established that a rigidity theorem that Sp and Sq are quasisymmetrically equivalent if
and only if p = q.

The aim of Chapter 1 is to extend Bonk-Merenkov’s results to a new class of Sierpiński
carpets Fn,p (see the definition below). In particular, we are able to prove that the group
of quasisymmetric self-homeomorphisms of Fn,p is a Euclidean isometry group.

Let 5 ≤ n, 1 ≤ p < n
2
−1 be integers. Let Q(0)

n,p = [0, 1]× [0, 1] be the closed unit square
in R2. We first subdivide Q(0)

n,p into n2 subsquares with equal side-length 1/n and remove
the interior of four subsquares, each has side-length 1/n and is of distance

√
2p/n to one

of the four corner points of Q(0)
n,p.

The resulting set Q(1)
n,p consists of (n2 − 4) squares of side-length 1/n. Inductively,

Q(k+1)
n,p , k ≥ 1, is obtained from Q(k)

n,p by subdividing each of the remaining squares in
the subdivision of Q(k)

n,p into n2 subsquares of equal side-length 1/nk+1 and removing the
interior of four subsquares as we have done above.

The Spierpiński carpet Fn,p is the intersection of all sets Q(k)
n,p, i.e.,

Fn,p =
+∞\
k=0

Q(k)
n,p.

See Figure 1.

Figure 1: The carpet F5,1.

In Chapter 1, we improve the method in Bonk and Merenkov and prove the following
theorem,

Theorem 0.1. Let n ≥ 5, 1 ≤ p < n
2
− 1 be integers. Then

2



• the carpet Fn,p is not quasisymetrically equivalent to any standard Sierpiński carpet
Sm, m ≥ 3 odd;
• QS(Fn,p) = Isom(Fn,p), that is, every quasisymmetric self-homeomorphism of Fn,p is

a Euclidean isometry;
• Fn,p and Fn′,p′ are quasisymmetrically equivalent if and only if (n, p) = (n′, p′).

0.2 Sierpiński carpets arising as Julia sets of rational

maps

The first example of Sierpiński carpet as Julia set of a rational map, called carpet Julia
set, was discovered by Tan Lei [Mi93]. Later, carpet Julia sets appeared in many liter-
atures including examples of McMullen maps, generated McMullen maps and quadratic
rational maps, etc. [DFGJ14] [DLU05] [QXY12].

There are two natural questions:
(Q1) whether any two carpet Julia sets are quasisymmetrically equivalent?
(Q2) whether any carpet Julia set Jf is quasisymmetrically equivalent to a round

carpet?
Let X be a metric space. The conformal dimension of X is the infimum of the

Hausdorff dimensions of all metric spaces which are quasisymmetrically equivalent to X.
For the question (Q1), Haïssinsky and Pilgrim [HP12] constructed a sequence of hyperbolic
rational maps with carpet Julia sets such that their conformal dimensions tend to two.
This means there are infinitely many quasisymmetrically inequivalent carpet Julia sets.

For the question (Q2), Bonk gave a sufficient condition on which the carpet in C =

C ∪ {∞} is quasisymmetrically equivalent to a round carpet.
The relative distance ∆(A,B) of two subsets A and B in C is defined as

∆(A,B) :=
dist(A,B)

min{diam(A), diam(B)}

in the spherical metric. A set of Jordan curves C = {γi}i∈N in C is called uniformly
relatively separated if their pairwise relative distances are uniformly bounded away from
zero, that is, there exists δ > 0 such that ∆(γi, γj) ≥ δ for every distinct i, j. The set C
are uniform quasicircles if there exists K ≥ 1 such that each γi in C is a K-quasicircle.

Bonk proved that, if the peripheral circles of a carpet S are uniformly relatively sep-
arated and are uniform quasicircles, then S is quasisymmetrically equivalent to a round
carpet. Recently, Bonk, Lyubich and Merenkov studied the carpet Julia set Jf generated
by a postcritically-finite rational map f [BLM14]. They showed that Jf is quasisymmet-
rically equivalent to a round carpet. They also proved that the group QS(Jf ) is a finite
group, whose elements are restrictions of Möbius transformations on Jf .

3



In Chapter 2, we study carpet Julia sets in the case of postcritically-infinite rational
maps.

The ω-limit set ω(x) of a point x ∈ C under a rational map f is defined as the set of
accumulation points of the orbit of x. Obviously f(ω(x)) ⊆ ω(x). A critical point c of f
is called recurrent if c ∈ ω(c). A rational map f is called semi-hyperbolic if Jf contains
neither parabolic periodic points nor recurrent critical points.

We prove the following theorem in Chapter 2.

Theorem 0.2. Let f be a rational map whose Julia set Jf is a Sierpiński carpet. Let Cf
be the set of all peripheral circles of this carpet. Then

(1) If elements in Cf avoid the ω-limit sets of all critical points, then
• Jf is quasisymmetrically equivalent to a round carpet;
• QS(Jf ) is discrete.
(2) If f is semi-hyperbolic, then
• elements in Cf are uniform quasicircles;
• Cf are uniformly relatively separated if and only if elements in Cf are disjoint with

the w-limit sets of all critical points.

0.3 Criterion for rays landing together

Let f be a polynomials with degree d ≥ 2. If Jf is connected, then the basin of infinity
Ωf , which consists of points with the orbit attracted by∞, is simply connected. Moreover,
there exists a unique holomorphic parameterization Ψf : Ωf → C \D such that Ψf (∞) =

∞, Ψ′f (∞) = 1 and
Ψf ◦ f(z) = (Ψf (z))d.

Define R(θ) := Ψ−1
f {re2πiθ : r > 1} to be external ray with the angle θ. We say that

R(θ) lands at z ∈ Jf if limr→1Ψ−1
f (re2πiθ) = z. By a theorem of Carathéodory, Ψ−1

f extends
continuously to ∂D with f(∂D) = Jf if and only if Jf is locally connected. Throughout
this thesis we only consider the case that Jf is connected and locally connected.

Define α : R/Z→ Jf , θ 7→ α(θ) where α(θ) is the landing point of ray R(θ). We have
the following semi-conjugation,

f(α(θ)) = α(σd(θ)),

where σd : R/Z → R/Z is given by θ 7→ dθ mod Z. Thus, in order to understand the
topology of the Julia set and the dynamics of f on Jf , it is necessary to figure out the
semi-conjugation α.

Chapter 3 is devoted to give an answer to the following questions.
(Q1) For any z in Jf , is the fiber α−1(z) finite?
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(Q2) Give a condition under which θ, θ′ are in the same fiber?
For the first question, if the orbit of z is finite, the fiber α−1(z) is finite [DH84]. If z

is wandering, Kiwi gave an upper bound #α−1(z) ≤ 2d [Ki02]. We estimate the cardinal
number in a more general case: a finite collection of wandering points with disjoint forward
orbits. We give a sharp upper bound in Theorem 3.1, which is the same as that in Blokh
and Levin’s work [BL02], by using a totally different argument.

For the second question, following [BFH92] [Po93] [Ki05], we need the concept of
critical portrait of f .
• For a critical point c in Jf , let Θ(c) be the set of angles of external rays landing

at c such that σd maps Θ(c) onto exactly one angle and the external ray with this angle
landing at f(c).
• For a strictly pre-periodic critical Fatou component U , let Θ(U) be the collection of

deg(f |U) angles of external rays supporting U such that all of them are pre-image of some
external ray supporting f(U).
• For a cycle of critical Fatou component U0, · · · , Up−1 with f i(U0) = Ui, i = 1, · · · , p

and Up := U0, let Uk0 , · · · , Ukl , 0 ≤ k0 < · · · < kl ≤ p − 1 be critical with degree
n0, · · · , nl. For 0 ≤ i ≤ p, choose (zi, θi), zi ∈ ∂Ui and R(θi) supporting Ui at zi such
that f i(z0) = zi, f

i(R(θ0)) = R(θi) and fp(zp) = zp. Let Θ(Ukj) be the set of angles of
external rays landing on ∂Ukj which are inverse images of R(θkj+1), for 1 ≤ j ≤ l.

LetA := {Θ(c1), · · · ,Θ(cm),Θ(U1), · · · ,Θ(Un)}, where {c1, · · · , cm} and {U1, · · · , Un}
are the set of critical points in Jf and critical Fatou components, respectively. For any
Θ ∈ A, let

ÒΘ :=
[
{Θ′ : ∃ a chain Θ0, · · · ,Θk = Θ′ in A such that Θi

\
Θi+1 6= ∅}.

The collection ÒA := {ÒΘ1, · · · , ÒΘN} is called critical portrait of f .
A simple case is that f is a polynomial with Jf locally connected and all cycles

repelling. In this case the external rays with angles in Θi are landing at a same critical
point, and f maps these external rays to exact one external ray.

Let P := {I1, · · · , Id} be a partition of the unit circle, where each Ii is a finite union of
open intervals in R/Z\S1≤i≤N

ÒΘi with total length 1/d (See Section 3.5 for details). We say
that θ, θ′ ∈ R/Z have the same sequence (itinerary) with respect to P if σkd(θ), σkd(θ′) ∈ Iik
for all k ≥ 0.

Biefield, Fisher and Hubbard showed that, for polynomials with all critical points
strictly preperiodic, if θ, θ′ have the same sequence with respect to P , then α(θ) = α(θ′)

[BFH92]. Poirier extended the above result to critical finite polynomials that admit
periodic Fatou components [Po93]. In [Ki05], Kiwi considered polynomials with all cycles
repelling and Julia set connected. He proved that if θ, θ′ have the same sequence with
respect to P , then the impressions of R(θ) and R(θ′) intersect.
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The following result is our main result in Chapter 3.

Theorem 0.3. Let f be a polynomial with Jf connected and locally connected. Let P be
the partition induced by a critical portrait ÒA of f . If θ, θ′ have the same sequence with
respect to P, then either R(θ), R(θ′) land at the same point or R(θ), R(θ′) land at the
boundary of a Fatou component U , which is eventually iterated to a Siegel disk.

One of our motivation of the above study is to understand the core-entropy of poly-
nomials, which was first introduced and explored by Thurston. The core-entropy of poly-
nomial f is the topological entropy of f on its f -invariant set, the Hubbard tree. Let
Acc(f) be the set of all biaccessible angles θ, i.e., there exist at least two rays landing at
α(θ). Then the core-entropy h(f) is related to the Hausdorff dimension of Acc(f) by the
following formula:

h(f) = log d · H.dimAcc(f).

For more results on the core-entropy, we refer to [Do95] [Ti13] [Ti14] [Ga13] [Li07] [Ju13].
As an application of Theorem 0.3, we prove the monotonicity of core-entropy for a

family of quadratic polynomials {fc : z 7→ z2 + c, fc has no Siegel disks and Jfc is locally
connected } (see Theorem 3.3). This generalizes Tao Li’s result on critical finite quadratic
polynomials [Li07].

0.4 A landing theorem on non-recurrent polynomials

Let f be a polynomial with degree d ≥ 2. Let Ωf be basin of infinity consisting of
points in C escaping to ∞. Denote the filled Julia set by Kf := C \ Ωf . There exists a
Green function Gf that measures the escape rate of points to ∞, defined by

Gf : C→ [0,∞), z 7→ lim
n→∞

log |fn(z)|
dn

.

Note that Gf is positive and harmonic in Ωf . The derivative of Gf vanishes at z if and
only if z is a (pre-)critical point. Each locus G−1

f (r) = {z ∈ C, Gf (z) = r} with r > 0 is
called an equipotential curve around the filled Julia set Kf .

There exists an unique normalized Böttcher map Ψf which conjugates f with z 7→ zd

in a neighborhood of∞. Ψ−1
f has an unique maximal radial extension to a subset of C\D.

This radial extension terminates at a point w with |w| > 1 if and only if Ψ−1
f extends

continuously to w and Ψ−1
f (w) is a (pre-)critical point of f . Then external radius R(t)

with angle t is given by
R(t) := Ψ−1

f ((rt,∞)e2πit),

where Ψ−1
f (rte

2πit) is a (pre-)critical point of f if tt > 1. If rt = 1, then R(t) is exactly
the external ray defined in Section 0.3.
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Let Pd be the set of monic centered polynomials of degree d. The shift locus Sd is
the subset of Pd formed by polynomials with all critical points escaping to infinity. Let
Sd(r), r > 0, consist of polynomials f ∈ Sd such that all critical points of f are in the
same equipotential curve G−1

f (r) and let S ′d :=
S
r>0 Sd(r).

A collection Θ = {Θ1, · · · ,Θn} of finite subsets of R/Z is called an (abstract) critical
portrait of degree d if the following conditions hold.

(1) For every j, |Θj| ≥ 2 and |σd(Θj)| = 1, where σd : θ 7→ dθmodZ and |A| denotes
the cardinal number of the set A.

(2) Θ1, · · · ,Θn are pairwise unlinked.
(3)

P
(|Θj| − 1) = d− 1.

For another critical portrait Θ′ = {Θ′1, · · · ,Θ′n}, we say Θ = Θ′ if there exists a
permutation τ such that Θi = Θ′τ(i) for 1 ≤ i ≤ d. Let Ad be the collection of all critical
portraits of degree d. In [Ki05], Kiwi gave Ad a compact-unlinked topology and proved
that Ad is compact and connected. Critical portraits of polynomials with connected Julia
sets defined in Section 0.3 are obviously critical portraits defined here.

Now we consider the map
Π : S ′d → Ad

defined as following. Given any f ∈ S ′d, let {cj}i=1,··· ,n be set of critical points of f . For
each cj, j = 1, · · · , n, there are exact degf (cj) external radius terminating at cj. Let Θj

be the set of angles of these external radius. Then Θ = {Θ1, · · · ,Θn} is a critical portrait
in Ad. We set Π(f) := Θ.

In [Go94], Goldberg proved that Π is surjective. Kiwi showed that Π is continuous and,
for any Θ ∈ Ad, the preimage SΘ = Π−1(Θ) is a one-dimensional real analytic manifold.
Precisely, the map G : SΘ → (0,∞) which sends f to Gf (ci) is bijective and analytic.
Moreover, given r > 0, the restriction Π|Sd(r) : Sd(r)→ Ad is a homeomorphism [Ki05].

The connected locus Cd is the set of monic centered polynomials with degree d such
that all the critical orbits are bounded. We know that Cd is a compact and connected
subset of Pd [BH88]. For instance, C2 is the Mandelbrot set. To describe Cd we look at it
from outside Sd.

The impression ICd(Θ) of a critical portrait Θ is a subset of Cd, characterized by the
property that f ∈ ICd(Θ) if and only if there exists a sequence {fn} in S ′d such that
Π(fn) = Θ and fn converges to f .

Note that the impression here is slightly different from the definition in [Ki05], which
is bigger and containing ICd(Θ) there. Kiwi proved that if all angles in Θ is strictly pre-
periodic, then the impression ICd(Θ) is a singleton [Ki05]. He conjectured that there exist
critical portraits with aperiodic kneadings and non-trivial impressions.

In Chapter 4, we give an elementary proof of the following theorem based on the tools
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developed in [CT15].

Theorem 0.4. (1) The map

P : Ad × (0,∞)→ S ′d, (Θ, r) 7→ fΘ,r,

such that fΘ,r ∈ Sd(r) induces the critical portrait Θ, is well-defined, one-to-one and
continuous.

(2) Let RΘ : (0,∞) → S ′d, RΘ(t) = P (Θ, t). Then RΘ(t) forms a simple curve in S ′d.
(RΘ is called a parameter ray with the angle Θ). Let f be a polynomial in Cd with no
recurrent critical points and all cycles repelling. Then RΘ(t) lands at f if and only if Θ

is a critical portrait of f .

0.5 On the dynamics of a family of generated renor-

malization transformations

The statistical mechanical models on hierarchical lattices have attracted many interests
recently since they exhibit a deep connection between their limiting sets of the zeros of the
partition functions and the Julia sets of rational maps in complex dynamics [BL91,DSI83,
Qi11,QL01,QYG10]. The well-known Yang-Lee theorem in statistical mechanics shows
that the zeros of the partition function is dense in a line for many magnetic materials in a
complex magnetic field plane. This means that the complex singularities of the free energy
lie on this line, where the free energy is the logarithm of the partition function [YL52].
By the works of Fisher and others [Fi65], it was generally believed that the zeros of the
partition function condense to some simple curve.

Until 1983, Derrida et al. showed that the zeros of the partition function condense
to the Julia set of the renormalization transformation of so-called standard hierarchical
lattices [DSI83]. They proved that the singularities of the free energy lie on the Julia set
of the rational map

z 7→
�
z2 + λ− 1

2z + λ− 2

�2

.

This means that the distribution of the singularities of the free energy is not as simple
as one desired. For the ideas formulated in renormalization transformation in statistical
mechanics, see [Wi71].

Recently, Qiao considered the generalized diamond hierarchical Potts model and
proved that the family of rational maps

Umnλ(z) =

�
(z + λ− 1)m + (λ− 1)(z − 1)m

(z + λ− 1)m − (z − 1)m

�n
are actually the renormalization transformation of the generalized diamond hierarchical
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Figure 2: The non-escaping lociM2 andM3

Potts model [Qi11, Theorem 1.1], where m,n ≥ 2 are both integers and λ ∈ C∗ := C\{0}
is a complex parameter. The standard diamond lattice (m = n = 2) and the diamond-like
lattice (m = 2 and n ∈ N) are the special cases.

In this thesis, we will consider the case for d := m = n ≥ 2, λ 6= 0. For simplicity, we
use Udλ to denote Uddλ in (5.2). The postcritical set of Uddλ is

[
k≥0

Uk
dλ(0)

[
{1,∞}.

Since both of 1,∞ are superattracting fixed points of Udλ with local degree d. The
non-escaping locu Md associated to this family is defined by

Md = {λ ∈ C∗ : U◦ndλ (0) 6→ 1 and U◦ndλ (0) 6→ ∞ as n→∞}
[
{0}.

We prove the following theorem in Chapter 5.

Theorem 0.5. Let d ≥ 2 be integer and λ ∈ C∗. Denote by Jdλ the Julia set of Udλ.
Then

(1) Jdλ is connected.
(2) If λ ∈ R, then Jdλ is not a Sierpiński carpet.
(3) For sufficiently large |λ|, Jdλ is a quasicircle and the Hausdorff dimension of Jdλ

is given by

dimH(Jdλ) = 1 +
1

4 log d
|λ|−

2
d+1 +O(λ−

3
d+1 ).

(4) The non-escaping locusMd is connected.
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Chapter 1

Quasisymmetric rigidity of Sierpiński
carpets Fn,p

1.1 Introduction

The quasisymmetric geometry of Sierpiński carpets is related to the study of Julia sets
in complex dynamics and boundaries of Gromov hyperbolic groups. For background and
research progress, we recommend the survey of M. Bonk [Bo06].

Let S2 be the unit sphere in R3. Let S = S2 \ Si∈NDi be the complement in S2 of
countably many pair-wise disjoint open Jordan regions Di ⊂ S2. S is called a (Sierpiński)
carpet if S has empty interior, diam (Di)→ 0 as i→∞, and ∂Di ∩ ∂Dj = ∅ for all i 6= j.
The boundary of Di, denoted by Ci, is called a peripheral circle of S. A round carpet is a
carpet on S2 such that all of its peripheral circles are geometric circles. Typical Examples
of round carpets are limit sets of convex co-compact Kleinian groups.

Topologically all carpets are the same [W58]. Much richer structure arises if we con-
sider quasisymmetric geometry of metric carpets. The famous conjecture of Kapovich-
Kleiner [KK00] predicts that ifG is a hyperbolic group with boundary ∂∞G homeomorphic
to a Sierpiński carpet, then G acts geometrically (the action is isometrical, properly dis-
continuous and co-compact) on a convex subset of H3 with non-empty totally geodesic
boundary. The Kapovich-Kleiner conjecture is equivalent to the conjecture that the carpet
∂∞G (endowed with the “visual” metric) is quasisymetriclly equivalent to a round carpet
on S2. The conjecture is true for carpets that can be quasisymmetrically embedding in
S2 [Bo11].

The concept of quasisymmetric map between metric spaces was defined by Tukia and
Väisälä [TV80]. Let f : X → Y be a homeomorphism between two metric spaces (X, dX)

and (Y, dY ). f is quasisymmetric if there exists a homeomorphism η : [0,∞) → [0,∞)

such that
dY (f(x), f(y))

dY (f(x), f(z))
≤ η(

dX(x, y)

dX(x, z)
), ∀ x, y, z ∈ X, x 6= z.
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It follows from the definition that the quasisymmetric self-maps ofX form a group QS(X).
A homeomorphism f : X → Y is called quasi-Möbius if there exists a homeomorphism

η : [0,∞) → [0,∞) such that for all 4-tuple (x1, x2, x3, x4) of distinct points in X, we
have

[f(x1), f(x2), f(x3), f(x4)] ≤ η([x1, x2, x3, x4]),

where
[x1, x2, x3, x4] =

dX(x1, x3)dX(x2, x4)

dX(x1, x4)dX(x2, x3)

is the metric cross-ratio.
It is not hard to check that a quasisymmetric map between metric spaces is quasi-

Möbius. Conversely, any quasi-Möbius map between bounded metric spaces is quasisym-
metric [TV80].

An important tool in the study of quasisymmetric maps is the conformal modulus of
a given family of paths. The notion of conformal modulus (or extremal length) was first
introduced by Ahlfors and Beurling [Ah73]. It has many applications in complex analysis
and metric geometry [LV,He09].

1.1.1 Motivation

In the work of Bonk and Merenkov [BM11], it was proved that every quasisymmetric
self-homeomorphism of the standard 1/3-Sierpiński carpet S3 is a Euclidean isometry. For
the standard 1/p-Sierpiński carpets Sp, p ≥ 3 odd, they showed that the groups QS(Sp)

of quasisymmetric self-maps are finite dihedral. They also established that Sp and Sq are
quasisymmetrically equivalent if only if p = q. The main tool in their proof is the carpet
modulus, which is a certain discrete modulus of a path family and is preserved under
quasisymmetric maps of carpets.

The following question is inspired by the above results of Bonk and Merenkov [BM11]:

Question 1.1. Determining sufficient condition on a carpet S on S2 such that QS(S) is
Isom(S), the isometry group of S.

Note that QS(S3) = Isom(S3) and QS(Sp) contains Isom(Sp) as a finite-index sub-
group. Bonk and Merenkov [BM11] conjectured that QS(Sp) = Isom(Sp) for any p odd.
The aim of this chapter is to extend Bonk-Merenkov’s results to a new class of Sierpiński
carpets Fn,p (5 ≤ n, 1 ≤ p ≤ n

2
− 1). We will show that QS(Fn,p) = Isom(Fn,p). This is a

further generalization of the work of Bonk and Merenkov [BM11].

1.1.2 Main results

Unless otherwise indicated, we will equip a carpet S = S2 \Si∈NDi with the spherical
metric. Note that when a carpet is contained in a compact set K of C ⊂ C ∪ {∞} ∼= S2,
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the Euclidean and the spherical metrics are bi-Lipschitz equivalent on K.
Let 5 ≤ n, 1 ≤ p < n

2
−1 be integers. Let Q(0)

n,p = [0, 1]× [0, 1] be the closed unit square
in R2. We first subdivide Q(0)

n,p into n2 subsquares with equal side-length 1/n and remove
the interior of four subsquares, each has side-length 1/n and is of distance

√
2p/n to one

of the four corner points of Q(0)
n,p.

The resulting set Q(1)
n,p consists of (n2 − 4) squares of side-length 1/n. Inductively,

Q(k+1)
n,p , k ≥ 1, is obtained from Q(k)

n,p by subdividing each of the remaining squares in
the subdivision of Q(k)

n,p into n2 subsquares of equal side-length 1/nk+1 and removing the
interior of four subsquares as we have done above.

The Spierpiński carpet Fn,p is the intersection of all the sets Q(k)
n,p, i.e.,

Fn,p =
+∞\
k=0

Q(k)
n,p.

See Figure 1.1.
The following theorem will be proved in Section 1.4. It shows that, from the point of

view of quasiconformal geometry, the carpets Fn,p are different with the standard Sier-
piński carpets Sm,m ≥ 3 odd (note that the standard Sierpiński carpets Sm is constructed
from a similar process, by removing the interior of the middle square in each steps).

Theorem 1.1. Let 5 ≤ n, 1 ≤ p < n
2
− 1 be integers. The carpet Fn,p is not quasisym-

metrically equivalent to the Standard Sierpiński carpet Sm,m ≥ 3 odd.

It was proved by Bonk and Merenkov [BM11] that for m ≥ 3 odd the quasisymmetric
group QS(Sm) is a finite dihedral group. Moreover, when m = 3, QS(S3) is the Euclidean
isometry group of S3. In Section 1.6, we will show that

Figure 1.1: The standard Sieipiński carpet S3.
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Theorem 1.2. Let f be a quasisymmetric self-map of Fn,p. Then f is a Euclidean isom-
etry.

Note that the Euclidean isometric group of Fn,p (and Sm), consists of eight elements,
is the group generated by the reflections in the diagonal {(x, y) ∈ R2 : x = y} and the
vertical line {(x, y) ∈ R2 : x = 1

2
}.

We will also prove that

Theorem 1.3. Two Sierpiński carpets Fn,p and Fn′,p′ are quasisymmetrically equivalent
if and only if (n, p) = (n′, p′).

1.1.3 Idea of the proofs

The main tools to prove the above theorems are the carpet modulus and the weak tan-
gent, both of which were investigated in [BM11]. Our arguments follow the same outline
as [BM11]. One of the most important observations in [BM11] is that a quasisymmetric
self-map f of S3 should preserve the pair {M,O}, whereM and O are the inner and outer
peripheral circle of S3, respectively. By counting the orbits of points under the action
of QS(S3), Bonk and Merenkov [BM11] then showed that f maps distinguished points
(points of S3 on the corner or on the middle of peripheral circles) to distinguished points.
One the other hand, f induces a “tangent map” Df between weak tangents of distin-
guished points, which is also quasisymmetry. The study of carpet modulus with respect
to the normalized quasisymmetry group of weak tangent shows that f should map M to
M and O to O.

We will first concentrate on carpet modulus of the families of curves connecting the
boundary of the annulus domains bounded by pairs of distinct peripheral circles of Fn,p.
The extremal mass distribution of such a carpet modulus exists and is unique (Propo-
sition 1.3). This, together with the auxiliary results in Section 1.3, allows us to show
that (see Section 4) any quasisymmetric self-map f of Fn,p should preserves the set
{O,M1,M2,M3,M4}, where O is the boundary of the unit square and M1,M2,M3,M4

are the boundary of the first four squares removed from the unit square.
It is more difficult to see that f should maps O to O. To show this, we first study

the weak tangents of the carpets (this is our main work on Section 1.5). In Section
1.6, we prove that f(O) = O by counting the orbit of a corner of O or Mi under the
group QS(Fn,p). The proofs of Theorem 1.2 and Theorem 1.3 are given at the end of this
chapter. Theorem 1.2 is much stronger than the result of Bonk and Merenkov [BM11] for
Sm,m ≥ 5 odd.

18



1.2 Carpet modulus

In this section, we shall recall the definitions of conformal modulus and carpet modu-
lus. The carpet modulus was introduced by Bonk-Merenkov [BM11] as a quasisymmetric
invariant. There are several important properties of the carpet modulus that will be used
in the rest of this chapter. In many cases, we will neglect the proof and refer to [BM11]
instead.

1.2.1 Conformal modulus

A path γ in a metric space X is a continuous map γ : I → X of a finite interval I.
Without cause of confusion, we shall identified the map with its image γ(I) and denote
a path by γ. We say that γ is open if I = (a, b). The limits limt→a γ(t) and limt→b γ(t),
if they exist, are called the end points of γ. If A,B ⊆ X, then we say that γ connects
A and B if γ has endpoints such that one of them lies in A and the other lies in B. If
I = [a, b] is a closed interval, then the length of γ : I → X is defined by

length(γ) := sup
nX
i=1

|γ(ti)− γ(ti−1)|

where the supremum is taken over all finite sequences a = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn = b. If
I is not closed, then we set

length(γ) := sup
J

length(γ|J),

where J is taken over all closed subintervals of I and γ|J denotes the restriction of γ on J .
We call γ rectifiable if its length is finite. Similarly, a path γ : I → X is locally rectifiable
if its restriction to each closed subinterval is rectifiable. Any rectifiable path γ : I → X

has a unique extension γ to the closure I of I.
Let Γ be a family of paths in S2. Let σ be the spherical measure and ds be the

spherical line element on S2 induced by the spherical metric (the Riemannian metric on
S2 of constant curvature 1). The conformal modulus of Γ is defined as

mod(Γ) := inf
Z
S2
ρ2dσ ,

where the infimum is taken over all nonnegative Borel functions ρ : S2 → [0,∞] satisfyingZ
γ
ρds ≥ 1

for all locally rectifiable path γ ∈ Γ. Functions ρ satisfying (1.2.1) for all locally rectifiable
path γ ∈ Γ are called admissible.
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It is easy to show that (see [Ah66])

mod(Γ1) ≤ mod(Γ2), (1.1)

if Γ1 ⊆ Γ2 and

mod(
∞[
i=1

Γi) ≤
∞X
i=1

mod(Γi). (1.2)

Moreover, if Γ1 and Γ2 are two families of paths such that each path γ in Γ1 contains a
subpath γ′ ∈ Γ2, then

mod(Γ1) ≤ mod(Γ2) (1.3)

If f : Ω→ Ω′ is a continuous map between domains Ω and Ω′ in S2 and Γ is a family
of paths contained in Ω, then we denote by f(Γ) = {f ◦ γ | γ ∈ Ω}.

If f : Ω→ Ω′ is a conformal map between regions Ω, Ω′ ⊆ S2 and Γ is a family of paths
in Ω, then mod(Γ)=mod(f(Γ)). This is the fundamental property of modulus: conformal
maps do not change the conformal modulus of a family of paths.

In this chapter, we shall adopt the metric definition of quasiconformal maps ( [HK98],
Definition 1.2) and allow them to be orientation-reversing. Suppose that f : X → Y is a
homeomorphism between two metric spaces X and Y . f is quasiconformal if there is a
constant H ≥ 1, s.t. ∀x ∈ X,

lim sup
r→0+

max{d(f(x), f(y)) : d(x, y) ≤ r}
min{d(f(x), f(y)) : d(x, y) ≥ r}

≤ H.

Quasiconformal maps distort the conformal modulus of path families in a controlled
way. Let Ω and Ω′ be regions in S2 and let Γ be a family of paths in Ω. Suppose that
f : Ω→ Ω′ is quasiconformal map. Then

1

K
mod(Γ) ≤ mod(f(Γ)) ≤ Kmod(Γ), (1.4)

where K ≥ 1 depends on the dilatation of f .
From (1.4), a quasiconformal map preserves the modulus of a path family up to a fixed

multiplicative constant. So if Γ0 ⊆ Γ and mod(Γ0) = 0, then mod(f(Γ0)) = 0.

1.2.2 Carpet modulus

If a certain property for paths in Γ holds for all paths outside an exceptional family
Γ0 ⊆ Γ with mod(Γ0) = 0, then we say that it holds for almost every path in Γ.

Let S = S2\S∞i=1 Di be a carpet with Ci = ∂Di, and let Γ be a family of paths in S2.
A mass distribution ρ is a function that assigns to each Ci a non-negative number ρ(Ci).
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The carpet modulus of Γ with respect to S is defined as

modS(Γ) = inf
ρ

X
i

ρ(Ci)
2,

where the infimum is taken over all admissible mass distribution ρ, that is, mass distri-
bution ρ satisfies X

γ
T
Ci 6=∅

ρ(Ci) ≥ 1

for all most every path in Γ.
It is straightforward to check that the carpet modulus is momotone and countably

subadditive, the same properties as conformal modulus in (1.1), (1.2) and (1.3). An
crucial property of carpet modulus is its invariance under quasiconformal maps.

Lemma 1.1 ( [BM11]). Let D,fD ⊂ S2 be regions and f : D → D be a quasiconformal
map. Let S ⊆ D be a carpet and Γ be a family of paths such that γ ⊂ D for each γ ∈ Γ.
Then

modf(S)(f(Γ)) = modS(Γ).

1.2.3 Carpet modulus with respect to a group

We also need the notion of carpet modulus with respect to a group.
Let S = S2 \Si∈NDi be a carpet and Ci = ∂Di. Let G be a group of homeomorphisms

of S. If g ∈ G and C ⊆ S is a peripheral circle of S, then g(C) is also a peripheral circle
of S. Let O = {g(C) : g ∈ G} be the orbit of C under the action of G.

Let Γ be a familly of paths in S2. A admissible G-invariant mass distribution ρ :

{Ci} → [0,+∞] is a mass distribution such that

1. ρ(g(C)) = ρ(C) for all g ∈ G and all peripheral circles C of S;

2. almost every path γ in Γ satisfies

X
γ
T
Ci 6=∅

ρ(Ci) ≥ 1.

The carpet modulus modS/G(Γ) with respect to the action of G on S is defined as

modS/G(Γ) := inf
ρ

X
O
ρ(O)2,

where the infimum is taken over all admissible G-invariant mass distributions. In the
above definition, ρ(O) is defined by ρ(C) for any C ∈ O. Since ρ is G-invariant, ρ(O)

is well-defined. Note that each orbit contributions with exactly one term to the sumP
O ρ(O)2.
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Lemma 1.2 ( [BM11]). Let D be a region in S2 and S be a carpet contained in D. Let
G be a group of homeomorphisms on S. Suppose that Γ is a family of paths with γ ⊆ D

for each γ ∈ Γ and f : D → fD a quasiconformal map onto another region fD ⊆ S2. We
denote ÜS = f(S), eΓ = f(Γ) and ÜG = (f |S) ◦G ◦ (f |S)−1, then

modeS/eG(eΓ) = modS/G(Γ).

Lemma 1.3. Let S be a carpet in S2 and Ψ : S2 → S2 be a quasiconformal map with
Ψ(S) = S, ψ := Ψ|S. Assume that Γ is a Ψ-invariant path family in S2 such that for every
peripheral circle C of S that meets some path in Γ we have ψn(C) 6= C for all n ∈ Z.
Then modS/〈ψk〉(Γ) = kmodS/〈ψ〉(Γ) for every k ∈ N.

This is ( [BM11], Lemma 3.3). In this Lemma, 〈ψ〉 denotes the cyclic group of home-
omorphisms on S generated by ψ, and Γ is called Ψ-invariant if Ψ(Γ) = Γ. This lemma
gives a precise relationship between the carpet modulus with respect to a cyclic group
and its subgroups.

1.2.4 Existence of extremal mass distribution

Let S = S2 \ {Di}, Ci = ∂Di be a carpet and Γ be a family of paths on S2. An
admissible mass distribution ρ for a carpet modulus modS(Γ) is called extremal if modS(Γ)

is obtained by ρ:
mass(ρ) =

X
i

ρ(Ci)
2 = modS(Γ).

Similarly, an G-invariant mass distribution that obtains modS/G(Γ) is also called extremal.
A criterion for the existence of an extremal mass distribution for carpet modulus

(with respect to the group) is given by [BM11]. Recall that the peripheral circles {Ci}
are uniform quasicircles if there exists a homeomorphism η : [0,∞) → [0,∞) such that
every Ci is the image of an η-quasisymmetric map of the unit circle.

Proposition 1.1. Let S be a carpet in S2 whose peripheral circles are uniform quasicircles,
and let Γ be an arbitrary path family in S2 with modS(Γ) < +∞. Then the extremal mass
distribution for modS(Γ) exists and is unique.

This is ( [BM11], Proposition 2.4). The uniqueness follows from elementary convexity
argument.

Proposition 1.1. Let S be a carpet in S2 whose peripheral circles are uniform quasicircles.
Let G be a group of homeomorphisms of S and Γ be a path family in S2 with modS/G(Γ) <

+∞. Suppose that for each k ∈ N there exists a family of peripheral circles Ck of S and
a constant Nk ∈ N with the following properties:
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1. If O is any orbit of peripheral circles of S under the action of G, then #(OT Ck) ≤
Nk for all k ∈ N.

2. If Γk is the family of all paths in Γ that only meet peripheral circles in Ck, then
Γ =

S
k Γk.

Then extremal mass distribution for modS/G(Γ) exists and is unique.

This is ( [BM11], Proposition 3.2).

1.3 Auxiliary results

In this section, we collect a series of results obtained by M. Bonk and his coauthors
[BKM,Bo11]. The theorems and propositions cited here are the cornerstone of our later
proof (as well as they were for the proof in [BM11]).

1.3.1 Quasiconformal extention of quasisymmetric map

Proposition 1.2. Let S be a carpet in S2 whose peripheral circles are uniform quasicircles
and let f a quasisymmetric map of S onto another carpet ÜS ⊆ S2. Then there exists a
self-quasiconformal map F on S2 whose restriction to S is f .

This is ( [Bo11], Proposition 5.1).

1.3.2 Quasisymmetric uniformization and rigidity

The peripheral circles {Ci} of S are called uniformly relatively separated if the pairwise
distances are uniformly bounded away from zero. i.e., there exists δ > 0 such that

∆(Ci, Cj) =
dist(Ci, Cj)

min{diam(Ci), diam(Cj)}
≥ δ

for any two distinct i and j. This property is preserved under quasisymmetric maps. See
( [Bo11], Corollary 4.6).

Theorem 1.1. Let S be a carpet in S2 whose peripheral circles are uniformly relatively
separated uniformly quasicircles, then there exists a quasisymmetric map of S onto a round
carpet.

This is ( [Bo11], Corollary 1.2). Recall that a carpet S = S2 \ SDi is called round if
each Di is an open spherical disk.

Theorem 1.2. Let S be a round carpet in S2 of measure zero. Then every quasisymmetric
map of S onto any other round carpet is the restriction of a Möbius transformation.
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This is ( [BKM], Theorem 1.2). Here by definition a Möbius transformation is a
fractional linear transformation on S2 ∼= Ĉ or the complex-conjugate of such a map. So
we allow a Möbius transformation to be orientation-reversing.

1.3.3 Three-Circle Theorem

Let S ⊆ S2 be a carpet. A homeomorphism embedding f : S → S2 is called
orientation-preserving if some homeomorphic extension F : S2 → S2 of f is orientation-
preserving on S2 (such an extension exists and the definition is independent of the choice
of extension, see the proof of Lemma 5.3 in [Bo11]).

Corollary 1.1. Let S be a carpet in S2 of measure zero whose peripheral circles are
uniformly relatively separated uniform quasicircles and Ci, i = 1, 2, 3 be three distinct
peripheral circles of S. Let f and g be two orientation-preserving quasisymmetric self-
maps of S. Then we have the following rigidity results:

1. Assume that f(Ci) = g(Ci) for i = 1, 2, 3. Then f = g.

2. Assume that f(Ci) = g(Ci) for i = 1, 2 and f(p) = g(p) for a given point p ∈ S.
Then f = g.

3. Assume that G is the group of all orientation-preserving quasisymmetric self-maps
of S that fix C1, C2. Then G is a finite cyclic group.

4. Assume that G is the group of all orientation-preserving quasisymmetric self-maps
of S that fix C1 and fix a given point q ∈ C1, then G is an infinite cyclic group.

Proof. The proof we given here is contained in [BM11]. Since its conclusion is important
for the rest of our chapter, we include it here for completeness.

By Theorem 1.1, there exists a quasisymmetric map h of S onto a round carpet ÜS.
Using Proposition 1.2, we can extend h to a quasiconformal map on S2. Since quasicon-
formal maps preserve the class of sets of measure zero, ÜS has measure zero as well. We
denote by G0 and ÝG0 the group of all orientation-preserving quasisymmetric self-maps of
S and ÜS, respectively. By the quasisymmetric rigidity of round carpets (Theorem 1.2),ÝG0 consists of the restriction of orientation-preserving Möbius transformations that fix ÜS.

Now we look at the homomorphism h∗ induced by h:

h∗ : G0 → ÝG0,

ψ 7→ h ◦ ψ ◦ h−1.

We can check that h∗ is well-defined and is an isomorphic. Since h∗(f) and h∗(g) are
orientation-preserving Möbius transformation and h∗(f)◦(h∗(g))−1 fixes distinct spherical
round circles h(Ci), i = 1, 2, 3, we know that h∗(f) ◦ (h∗(g))−1 = id and (1) follows.
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We can prove (2) from the fact that any orientation-preserving Möbius transformation
fixing distinct spherical round circles and a given non-common center point p ∈ S2 is the
identity.

To prove (3), it suffices to show that ÜG = h∗(G) is a finite cyclic. By post-composing
fractional linear transformation to h, we can assume that h(C1) and h(C2) are distinc-
t spherical round circles with the same center. Note that ÜG consists of orientation-
preserving Möbius transformation, fixing h(C1), h(C2) and ÜS. Moreover, ÜG must be a
discrete group as it maps peripheral round circles of S to peripheral round circles. HenceÜG is a finite cyclic group, then (3) follows.

For (4), similarly, by post-composing fractional linear transformation to h, we can
assume that h(C1) = R

S{∞}, h(q) = 0 and ÜS is contained in the upper half-plane. Then
the maps in ÜG are of the form: z 7→ λz with λ > 0, fixing ÜS. By the same reason as
(3), ÜG is a discrete group. So there exists a λ0 ≥ 1 such that ÜG = {z 7→ λn0z|n ∈ N}. It
follows that ÜG, and hence also G, is the trivial group consisting only of the identity or an
infinite cyclic group. Therefore, (4) follows.

1.3.4 Square carpets

A C∗-Cylinder A is a set of the form

A = {z ∈ C; r ≤ |z| ≤ R}

with 0 < r < R < +∞. The metric on A induced by the length element |dz|/|z|
which is the flat metric. Equipped with this metric, A is isometric to a finite cylinder of
circumference 2π and length log(R/r). The boundary components {z ∈ C; |z| = r} and
{z ∈ C; |z| = R} are called the inner and outer boundary components of A, respectively.

A C∗-square Q is a Jordan region of the form

Q = {ρeiθ : a < ρ < b, α < θ < β}

with 0 < log(b/a) = β − α < 2π. We call the quantity

lC∗(Q) = log(b/a) = β − α

its side length. Clearly, two opposite sides of Q parallel to the boundaries of A, while the
other two perpendicular to the boundaries of A.

A square carpet T in a C∗-cylinder A is a carpet that can be written as

T = A \
[
i

Qi,
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where the sets Qi, i ∈ I, are C∗-squares whose closures are pairwise disjoint and contained
in the interior of A.

Theorem 1.3. Let S be a carpet of measure zero in S2 whose peripheral circles are
uniformly relatively separated uniform quasicircles, and C1 and C2 two distinct peripheral
circles of S. Then there exists a quasisymmetric map f from S onto a square carpet T in
a C∗-cylinder A such that f(C1) is the inner boundary component of A and f(C2) is the
outer one.

This is ( [Bo11], Theorem 1.6).
Let S be a carpet in S2 and C1, C2 be two distinct peripheral circles of S. Soppose

that the Jordan regions D1 and D2 are the complementary components of S bounded by
C1 and C2 respectively. We let Γ(C1, C2) be the family of all open paths in S2 \D1 ∪D2

that connects D1 and D2.

Proposition 1.3. Let S be a carpet of measure zero in S2 whose peropheral circles are
uniformly relatively separated uniform quasicircles, and C1 and C2 two distinct peripheral
circles of S. Then

(1) modS(Γ(C1, C2)) has finite and positive total mass.
(2) Let f be a quasisymmetric map of S onto a square carpet T in a C∗-cylinder

A = {z ∈ C; r ≤ |z| ≤ R} such that C1 corresponds to the inner and C2 to the outer
boundary components of A. Then the extremal mass distribution is given as follows:

ρ(C1) = ρ(C2) = 0, ρ(C) =
lC∗(f(C))

log(R/r)

with the peripheral circles C 6= C1, C2 of S.

This is ( [Bo11], Corollary 12.2).
Let S be a carpet in a closed Jordan region D ⊂ Ĉ. S is called square carpet if ∂D is

a peripheral circle of S and all other peripheral circles are squares with sides parallel to
the coordinate axes.

Theorem 1.4. Let S and ÜS be square carpets of measure zero in rectangles K = [0, a]×
[0, 1] ⊆ R2 and fK = [0, ea]×[0, 1] ⊆ R2, respectively, where a, ea > 0. If f is an orientation-
preserving quasisymmetric homeomorphism form S onto ÜS that takes the corners of K to
the corners of fK with f(0) = 0. Then a = ea, S = ÜS, and f is the identity on S.

This is ( [BM11], Theorem 1.4). Here the expression square carpet S in a rectangle K
means that a carpet S ⊂ K so that ∂K is a peripheral circle of S and all other peripheral
circles are squares with four sides parallel to the sides of K, respectively.
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1.4 Distinguished peripheral circles

Let n ≥ 5, 1 ≤ p < n
2
−1 be integers. Let Fn,p be the Sierpiński carpet as we defined in

the introduction. We endow Fn,p with the Euclidean metric in R2. Since Fn,p is a subset
of [0, 1] × [0, 1], the Euclidean metric (measure) is comparable with the spherical metric
(measure).

If Q is a peripheral circle of Fn,p, we denote by `Q the Euclidean side length of Q.
Denote by Q0 the unit square [0, 1]× [0, 1].

Lemma 1.4. The carpet Fn,p is of measure zero. The peripheral circles of Fn,p are uniform
quasicircles and uniformly relatively separated.

Proof. It follows from the construction that Fn,p is a carpet of Hausdorff dimension

log(n2 − 4)/ log n < 2.

So the measure of Fn,p is equal to zero.
Since each peripheral circle of Fn,p can be mapped to the boundary ofQ0 by a Euclidean

similarity, the peripheral circles of Fn,p are uniform quasicircles.
At last, the peripheral circles of Fn,p are uniformly relatively separated in the Euclidean

metric. Indeed, consider any two distinct peripheral circles C1, C2 of Fn,p. The Euclidean
distance between C1 and C2 satisfies

dist(C1, C2) ≥ min{`(C1), `(C2)}

=
1√
2

min{diam(C1), diam(C2)}.

1.4.1 Distinguished pairs of non-adjacent peripheral circles

We denote by O the boundary of the unit square Q0. In the first step of the inductive
construction of Fn,p, there are four squares Q1, Q2, Q3, Q4 of side-length 1

n
, i.e., the lower

left, lower right, upper right and upper left squares respectively, removed from Q0. We
denote by Mi, i = 1, · · · , 4 the boundary of Qi, i = 1, · · · , 4, respectively.

In the following discussions, we call O the outer circle of Fn,p and Mi, i = 1, · · · , 4
the inner circles of Fn,p. We say that two disjoint peripheral circles C,C ′ are adjacent if
there exists a copy F of Fn,p (here F ⊂ Fn,p can be considered as a carpet scaled from
Fn,p by some factor 1/nk) such that C,C ′ are inner circles of F . For example, two distinct
inner circles Mi and Mj are adjacent. Two disjoint peripheral circles C,C ′ which are not
adjacent are called non-adjacent.
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Lemma 1.5. Let {C,C ′} be any pair of non-adjacent distinct peripheral circles of Fn,p.
Then

mod Fn,p(Γ(C,C ′)) ≤ mod Fn,p(Γ(O,M)).

Moreover, the equality holds if and only if {C,C ′} = {O,M} for some inner circle M =

Mi.

Proof. Assume that {C,C ′} 6= {O,M} for any inner circleM . By Lemma 1.4 and Propo-
sition (1.3), modFp,q(Γ(C,C ′)) is a finite and positive number. Without loss of generality
we may assume that `(C) = 1/nm ≤ `(C ′). Note that there exists a copy F ⊂ Fn,p,
rescaled from Fn,p by a factor 1/nm−1, so that C corresponds to some inner circle, say,
M1 of Fn,p.

Figure 1.2: Every path in Γ(C,C ′) must intersect with C0.

Denote the outer circle of F by C0. Since C and C ′ are disjoint and `(C) ≤ `(C ′),
C ′ is disjoint with the interior region of C0. Hence every path in Γ(C,C ′) must intersect
with C0 and then contains a sub-path in Γ(C,C0). See Figure 1.3. Therefore,

modFn,p(Γ(C,C ′)) ≤ modFn,p(Γ(C,C0)). (1.5)

On the other hand, since every path in Γ(C,C0) meets exactly the same peripheral circles
of F and Fn,p, we have

modFn,p(Γ(C,C0)) = modF (Γ(C,C0)).

Moreover, by the similarity of Fn,p and F ,

modF (Γ(C,C0)) = modFn,p(Γ(M,O)).

It follows that
mod Fn,p(Γ(C,C ′)) ≤ mod Fn,p(Γ(M1, O)).
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We next show that the equality case in (1.7) cannot happen. We argue by contradic-
tion. Assume that

modFn,p(Γ(C,C ′)) = modFn,p(Γ(C,C0)).

Note that all carpet modulus considered above are finite by Proposition 1.3 and so
there exist unique extremal mass distributions, say ρ and ρ′, for modFn,p(Γ(C,C ′)) and
modFn,p(Γ(O,M1)), respectively, by Proposition 4.9.

Let C be the set of all peripheral circles of Fn,p. According to the description in
Proposition 1.3, ρ and ρ′ are supported on C \ {C,C ′} and C \ {O,M1}, respectively.

By transplanting ρ′ to the carpet F using a suitable Euclidean similarity between F
and Fn,p, we get an admissible mass distribution eρ for F supported only on the set of
peripheral circles of F except C and C0. Note that the total mass of eρ is the same as
mass(ρ′).

We extend C → eρ(C) by zero if C belonging to C does not intersect the interior
region of C0. Then eρ is an admissible mass distribution for modFn,p(Γ(C,C0)), thus for
modFn,p(Γ(C,C ′)) as well. However, eρ 6= ρ and mass(eρ) = modFn,p(Γ(C,C ′)), we arrive at
a contradiction by Proposition 4.9.

In summary, we get the following crucial inequality:

modFn,p(Γ(C,C ′)) < modFn,p(Γ(O,M1)) (1.6)

where {C,C ′} 6= {O,Mi} i = 1, 2, 3, 4 and non-adjacent. So the lemma follows.

Proof. Assume that {C,C ′} 6= {O,M} for any inner circleM . By Lemma 1.4 and Propo-
sition (1.3), modFp,q(Γ(C,C ′)) is a finite and positive number. Without loss of generality
we may assume that `(C) = 1/nm ≤ `(C ′). Note that there exists a copy F ⊂ Fn,p,
rescaled from Fn,p by a factor 1/nm−1, so that C corresponds to some inner circle, say,
M1 of Fn,p.

Figure 1.3: Every path in Γ(C,C ′) must intersect with C0.
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Denote the outer circle of F by C0. Since C and C ′ are disjoint and `(C) ≤ `(C ′),
C ′ is disjoint with the interior region of C0. Hence every path in Γ(C,C ′) must intersect
with C0 and then contains a sub-path in Γ(C,C0). See Figure 1.3. Therefore,

modFn,p(Γ(C,C ′)) ≤ modFn,p(Γ(C,C0)). (1.7)

On the other hand, since every path in Γ(C,C0) meets exactly the same peripheral circles
of F and Fn,p, we have

modFn,p(Γ(C,C0)) = modF (Γ(C,C0)).

Moreover, by the similarity of Fn,p and F ,

modF (Γ(C,C0)) = modFn,p(Γ(M,O)).

It follows that
mod Fn,p(Γ(C,C ′)) ≤ mod Fn,p(Γ(M1, O)).

We next show that the equality case in (1.7) cannot happen. We argue by contradic-
tion. Assume that

modFn,p(Γ(C,C ′)) = modFn,p(Γ(C,C0)).

Note that all carpet modulus considered above are finite by Proposition 1.3 and so
there exist unique extremal mass distributions, say ρ and ρ′, for modFn,p(Γ(C,C ′)) and
modFn,p(Γ(O,M1)), respectively, by Proposition 4.9.

Let C be the set of all peripheral circles of Fn,p. According to the description in
Proposition 1.3, ρ and ρ′ are supported on C \ {C,C ′} and C \ {O,M1}, respectively.

By transplanting ρ′ to the carpet F using a suitable Euclidean similarity between F
and Fn,p, we get an admissible mass distribution eρ for F supported only on the set of
peripheral circles of F except C and C0. Note that the total mass of eρ is the same as
mass(ρ′).

We extend C → eρ(C) by zero if C belonging to C does not intersect the interior
region of C0. Then eρ is an admissible mass distribution for modFn,p(Γ(C,C0)), thus for
modFn,p(Γ(C,C ′)) as well. However, eρ 6= ρ and mass(eρ) = modFn,p(Γ(C,C ′)), we arrive at
a contradiction by Proposition 4.9.

In summary, we get the following crucial inequality:

modFn,p(Γ(C,C ′)) < modFn,p(Γ(O,M1)) (1.8)

where {C,C ′} 6= {O,Mi} i = 1, 2, 3, 4 and non-adjacent. So the lemma follows.
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Corollary 1.2. Let f be a quasisymmetric self-map of Fn,p. Then

f({O,M1,M2,M3,M4}) = {O,M1,M2,M3,M4}.

Proof. We argue by contradiction. Assume that f maps {O,M1} to some pair of periph-
eral circles {C,C ′} * {O,M1,M2,M3,M4} and f(O) = C. By Proposition 1.2, f extends
to a quasiconformal homeomorphism on S2. In particular, Γ(C,C ′)=f(Γ(O,M1)). Then
Lemma 1.1 implies

modFn,p(Γ(O,M1)) = modFn,p(Γ(C,C ′)).

We distinguish the argument into two cases depending on the type of the squares C and
C ′, i.e., whether they are adjacent or not.

Case (1): C,C ′ are non-adjacent. This is only possible if {C,C ′} ⊆ {O,M1,M2,M3,M4}
by Lemma 1.5. Then we get a contradiction.

Case (2): C,C ′ are adjacent. Suppose C,C ′ are inner circles of some copy F ⊂ Fn,p.
Consider f(Mi), i = 2, 3, 4. They must be inner circles of F as well. Otherwise, for
example, suppose that f(M2) is not an inner circle of F . Since C and f(M2) are non-
adjacent, we can apply Lemma 1.5 to show that

modFn,p(Γ(C, f(M2))) < modFn,p(Γ(O,M1)),

which is contradicted with the fact that

modFn,p(Γ(C, f(M2))) = modFn,p(Γ(O,M2)) = modFn,p(Γ(O,M1)).

As a result, {f(O), f(M1), f(M2), f(M3), f(M4))} are pairwise adjacent and all of them
are inner circles of F . However, F contains exactly four inner circles. So Case (2) can
not happen.

By the same argument to pairs O and Mi, i = 2, 3, 4, the corollary follows.

1.4.2 Quasisymmetric group QS(Fn,p) is finite

Let H denote the Euclidean isometry group which consists of eight elements: four
of them rotate around the center by π/2, π, 3π/2, and 2π, respectively; the others are
orientation-reserving and reflecting by lines x = 0, x = y, y = 0 and x+y = 0, respectively.
It is obvious that H is contained in QS(Fn,p).

Corollary 1.3. Let 5 ≤ n, 1 ≤ p < n
2
− 1 be integers. Then the group QS(Fn,p) of

quasisymmetric self-maps of Fn,p is finite.

Proof. According to Corollary 1.2, {O,M1,M2,M3,M4} are preserved under every qua-
sisymmetric self-map of Fn,p. The group G of all orientation-preserving quasisymmetric
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self-maps of Fn,p is finite by the proof of Case (1) in Corollary (1.1). Since G is a subgroup
of QS(Fp,q) with index two, QS(Fp,q) is finite.

1.4.3 Proof of Theorem 1.1

Recall that the standard carpet Sm,m ≥ 3 odd, is obtained by subdivide [0, 1]× [0, 1]

intom2 subsquares of equal size, removing the interior of the middle square, and repeating
these operations to every subsquares, inductively.

Proof of Theorem 1.1. Let M,O be the inner circle and outer circle of Sm respectively.
Lemma 5.1 of [BM11] states that modSm(Γ(O,M)) is strictly larger than the carpet
modulus of any other path family Γ(C,C ′) with respect to Sm, where C and C ′ are
peripheral circles of Sm. While for carpet Fn,p, according to the symmetry, at least two
pairs of peripheral circles the maximum of {modFn,pΓ(C1, C2) : C1, C2 ∈ C}. Since any
quasisymmetric maps from Fn,p to Sm must preserve such a maximum property, there is
no such quasisymmetric map.

1.5 Weak tangent spaces

The results in this section generalize the discussion in ( [BM11], Section 7).
At first, we explain the definition of weak tangent of a carpet. Then we show that

a quasisymmetric map between two carpets Fn,p induces a quasisymmetric map between
weak tangents.

1.5.1 Weak tangents

In general, the weak tangents of a metric space M at a point p ∈M can be defined as
the Gromov-Hausdorff limits of the pointed metric spaces

lim
λ→∞

(λM, p)

where λM is the same set of points with M equipped with the original metric multiplied
by λ. If the limit is unique up to multiplied by positive constants, then the weak tangents
is usually called the tangent cone of M at p.

In the following, as in [BM11], we will use a suitable definition of weak tangents for
subsets of S2 equipped with the spherical metric.

Suppose that a, b ∈ C, a 6= 0 and M ⊆ ÒC. We denote by

aM + b := {az + b : z ∈M}.
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Let A be a subset of ÒC with a distinguished point z0 ∈ A, z0 6=∞. We say that a closed
set WA(z0) ⊆ ÒC is a weak tangent of A if there exists a sequence (λn) with λn →∞ such
that the sets An := λn(A − z0) converge to WA(z0) as n → ∞ in the sense of Hausdorff
convergence on ÒC equipped with the spherical metric. In this case, we use the notation

WA(z0) = lim
n→∞

(A, z0, λn).

Since for every sequence (λn) with λn → ∞, there is a subsequence (λnk) such that the
sequence of the sets Ank = λnk(A− z0) converges as k →∞, A has weak tangents at each
point z0 ∈ A \ {∞}. In general, weak tangents at a point are not unique. In particular,
λWA(z0) is also a weak tangent.

Now we apply the notion to our carpets Fn,p. In fact, the following arguments work
for a general class of carpets, such as the standard Sierpiński carpet Sm and carpets which
satisfy some self-similarity property.

A weak tangent of a point z0 ∈ Fn,p is a closed set WFn,p(z0) ⊆ ÒC such that

WFn,p(z0) = lim
j→∞

(Fn,p, z0, n
kj),

where kj ≥ 1 and kj →∞ as j →∞.
At the point 0 the carpet Fn,p has the unique weak tangent

WFn,p(0) = lim
j→∞

(Fn,p, 0, n
j) = {∞} ∪

[
j∈N0

njFn,p. (1.9)

This follows from the inclusions njFn,p ⊆ nj+1Fn,p.
Similarly, at each corner of O there exists a unique weak tangent of Fn,p obtained by

a suitable rotation of the set WFn,p(0) around 0.
Let c = p/n + ip/n be the lower-left corner of M1. Then at c the carpet Fn,p has

unique weak tangent

WFn,p(c) = lim
j→∞

(Fn,p, c, n
j) = {∞} ∪

[
j∈N0

nj(iFn,p ∪ (−i)Fn,p ∪ (−1)Fn,p).

Note that WFn,p(c) can be obtained by pasting together three copies of WFn,p . If z0 is a
corner of a peripheral circle C 6= O of Fn,p, then Fn,p has a unique weak tangent at z0

obtained by a suitable rotation of the set WFn,p(c) around 0.

Lemma 1.6. Let z0 be a corner of a peripheral circle of Fn,p. Then the weak tangent
WFn,p(z0) is a carpet of measure zero. If WFn,p(z0) is equipped with the spherical metric,
then the family of peripheral circles of WFn,p(z0) are uniform quasicircles and uniformly
relatively separated.

Proof. We can assume that z0 equals 0. The proof works for other cases.
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First note that (1.9) implies that WFn,p(0) is a carpet of measure zero, since WFn,p(0)

is the union of countably many sets of measure zero.
Let Ω = {z ∈ C : Re(z) > 0, Im(z) > 0}. Then ∂Ω ia a peripheral circle ofWFn,p(0). It

is easy to construct a bi-Lipschitz map between ∂Ω and the unit circle (both equipped with
the spherical metric). Hence ∂Ω is a quasicircle. Note that all other peripheral circles
of WFn,p(0) are squares. As a result, the peripheral circles of WFn,p(0) are uniformly
quasicircles.

To show that the peripheral circles are uniformly relatively separated, we only need
to check the following inequality:

dist(C1, C2) ≥ min{`(C1), `(C2)} (1.10)

for any peripheral circles C1, C2 6= ∂Ω. Here dist(·, ·) and `(·) denote the Euclidean
distance and Euclidean side length.

The inequality implies that the peripheral circles are uniformly relatively separated
with respect to the Euclidean metric. To see that they are uniformly relatively separated
property with respect to the spherical metric, we can apply an argument of ( [BM11],
Lemma 7.1).

1.5.2 Quasisymmetric maps between weak tangents

We are interested in quasisymmetric maps g : W → W ′ between weak tangents W of
Fn,p and weak tangents W ′ of Fn,p. Note that 0,∞ ∈ W,W ′. We call g normalized if

Figure 1.4: The weak tangent WFn,p(0).
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g(0) = 0 and g(∞) =∞.

Lemma 1.7. Let z0 be a corner of a peripheral circle of Fn1,p1 and let w0 be a corner of
a peripheral circle of Fn2,p2. Suppose that f : Fn1,p1 → Fn2,p2 be a quasisymmetric map
with f(z0) = w0. Then f induces a normalized quasisymmetric map g between the weak
tangent WFn1,p1

(z0) and WFn2,p2
(w0).

Proof. By Proposition 1.2 we can extend f to a quasiconformal self-homeomorphism F

of ÒC. There exists a relative neighborhood N1 of z0 in Fn1,p1 and a relative neighborhood
N2 of w0 in Fn2,p2 with F (N1) = N2 such that

WFn1,p1
(0) \ {∞} =

[
j∈N0

nj1(N1 − z0)

and
WFn2,p2

(0) \ {∞} =
[
j∈N0

nj2(N2 − w0)

Pick a point u0 ∈ N − z0, u0 6= 0. Then for each j ∈ N0 we have F (z0 + n−j1 u0)(6= w0,∞)

in Fn2,p2 .
We consider the following quasiconformal self-map Fj of ÒC with Fj(n

j
1(N1 − z0)) =

n
k(j)
2 (N2 − w0):

Fj : u 7→ n
k(j)
2 (F (z0 + n−j1 u)− w0)

for u ∈ ÒC, where k(j) is the unique integer such that 1 ≤ |Fj(u0)| < n2.
Note that k(j) → ∞ as j → ∞ and F (∞) 6= w0. This implies that Fj(∞) → ∞

as j → ∞. We also have Fj(0) = 0. So the images of 0,∞ and u0 under Fj have
mutual spherical distance uniformly bounded from below independent of j. Moreover,
Fj is obtained from F by post-composing and pre-composing Möbius transformations.
Hence the sequence (Fj) is uniformly quasiconformal, and it follows that we can find a
subsequence of (Fj) that converges uniformly on ÒC to a quasiconformal map F∞. Without
loss of generality, we assume that (Fj) converges uniformly to F∞.

Note that F∞(0) = 0 and F∞(∞) = ∞. To prove the statement of the lemma, it
suffices to show that F∞(WFn1,p1 (z0)) = WFn2,p2

(w0), because then g := F∞|WFn1,p1
(z0)

is an induced normalized quasisymmetric map between WFn1,p1
(z0) and WFn2,p2

(w0), as
desired.

Let u be an arbitrary point in WFn1,p1
(z0). There exists a sequence (uj) with uj ∈

nj1(N1−z0) converging to u. We have Fj(uj) ∈ nj2(N2−w0) and a subsequence of (Fj(uj))

converging to some point v in WFn2,p2
(w0). By the definition of F∞, we have F∞(u) = v.

Hence F∞(WFn1,p1
(z0)) ⊆ WFn2,p2

(w0).
For every point v in WFn2,p2

(w0), there exists a sequence (uj) with uj ∈ nj1(N1 − z0)

such that (Fj(uj)) converges to v. Then we can choose a subsequence of (uj) converging
to some point u in WFn1,p1

(z0) and so F∞(u) = v.
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It follows that F∞(WFn1,p1
(z0)) = WFn2,p2

(w0) and we are done.

By Corollary 1.2, a quasisymmetric self-map f of Fn,p maps {O,M1,M2,M3,M4} to
{O,M1,M2,M3,M4}. In the remaining part of this section, we will show that there is no
quasisymmetric self-map f of Fn,p with f(0) = c, where c is a corner of an inner circle.
By Lemma 1.7, if such an f exists, then it would induce a normalized quasisymmetric
map from WFn,p(0) to WFn,p(c). However, the following proposition shows that:

Proposition 1.4. There is no normalized quasisymmetric map fromWFn,p(0) toWFn,p(c).

To prove the proposition, we need two lemmas.
Let G and ÜG be the group of normalized orientation-preserving quasisymmetric self-

maps of WFn,p(0) and WFn,p(c), respectively. By Corollary 1.1, G and ÜG are infinite cyclic
groups. Note that the map µ(z) := nz is contained in G∩ ÜG. We assume that G =< φ >

and µ = φs for some s ∈ Z+. Since the peripheral circles of WFn,p(0) are uniformly
quasicircles and uniformly relatively separated, there exists a quasiconformal extension
Φ : ÒC → ÒC of φ. Let H be the group generated by the reflection in the real and in the
imaginary axes. We may assume that Φ is equivalent under the action of H (see Page
42, [BM11] for the discussion).

Let Ω = {z ∈ C : Re(z) > 0, Im(z) > 0}. Then C0 := ∂Ω is a peripheral circle of
WFn,p(0). Since Φ(C0) = C0 and Φ is orientation-preserving, Φ(Ω) = Ω.

Let Γ be the family of all open paths in Ω that connects the positive real and positive
imaginary axes. Since the paths in Ω are open, they don’t intersect with C0. For any
peripheral circle C of WFn,p(0) that meets some path in Γ, note that φk(C) 6= C for all
k ∈ Z \ {0} (otherwise, φ would be of finite order, contradicted with the fact that φ is the
generator of the infinite cyclic group G). So we can apply Lemma 1.3 to conclude that

modWFn,p (0)/<µ>(Γ) = modWFn,p (0)/<φs>(Γ) = smodWFn,p (0)/G(Γ).

Note that without the action of the group G, the carpet modulus modWFn,p (0)(Γ) is
equal to infinity.

Lemma 1.8. We have 0 < modWFn,p (0)/G(Γ) <∞.

Proof. Let us first show that modWFn,p (0)/<µ>(Γ) <∞ by constructing an admissible mass
distribution of finite mass.

Let pr : C \ {0} → S1 be the projection z 7→ z
|z| . If C 6= C0 is a peripheral circle of

WFn,p(0), we let θ(C) be the arc length of pr(C). We set

ρ(C) :=

8><>:0, if C = C0;

2
π
θ(C), if C 6= C0.

Note that ρ is < µ >-invariant.
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Let Γ0 be the family of paths γ ∈ Γ that are not locally rectifiable or for which
γ∩WFn,p(0) has positive length. SinceWFn,p(0) is a set of measure zero, we have mod(Γ0) =

0, i.e., Γ0 is an exceptional subfamily of Γ.
For any γ ∈ Γ \ Γ0, note that

X
γ∩C6=∅

ρ(C) =
2

π

X
γ∩C 6=∅

θ(C) ≥ 1.

As a result, ρ is admissible.
Let Q0 = [0, 1]× [0, 1]. Note that every < µ >-orbit of a peripheral circle C 6= C0 has

a unique element contained in the set F = µ(Q0) \Q0. There is a constant K > 0 such
that

θ(C) ≤ K`(C)

for all peripheral circles C ⊂ F . It follows that

4

π2

X
C⊂F

θ(C)2 .
X
C⊂F

`(C)2 = Area(F ) = n2 − 1.

Hence ρ is a finite admissible mass distribution for modWFn,p (0)/<µ>(Γ).
To show that modWFn,p (0)/<µ>(Γ) > 0, we only need to show that the carpet sat-

isfies the assumptions in Proposition 1.1. Then the extremal mass distribution for
modWFn,p (0)/<µ>(Γ) exists and this is only possible if Γ itself is an exceptional family,
that is, mod(Γ) = 0.

In fact, for k ∈ N we let Ck be the set of all peripheral circles C of WFn,p(0) with
C ⊂ Fk = µk(Q0) \ µ−k(Q0). Then

1. Every < µ >-orbit of a peripheral circle C 6= C0 has exactly 2k elements in Ck.

2. Let Γk be the family of paths in Γ that only meet peripheral circles in Ck. Then
Γ =

S
k Γk.

As a result, the assumptions in Proposition 1.1 are satisfied.

Let ÜΩ = C \Ω. The closure of ÜΩ contains WFn,p(c) and C0 = ∂Ω = ∂ÜΩ is a peripheral
circle of WFn,p(c). Denote ψ = Φ|WFn,p (c). Then we have ψ ∈ ÜG. Let eΓ be the family of
all open paths in ÜΩ that join the positive real and the positive imaginary axes.

Lemma 1.9. We have modWFn,p (c)/<ψ>(eΓ) ≤ 1
3
modWFn,p (0)/G(Γ).

Proof. Let ρ be an arbitrary admissible invariant mass distribution for modWFn,p (0)/G(Γ),
with exceptional family Γ0 ⊂ Γ. We set

eρ(ÜC) :=

8><>:0, if ÜC = C0;

1
3
ρ(α(ÜC))
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if there is an α ∈ H such that α(ÜC) is a peripheral circle of WFn,p(0) (such an α exits and
is unique).

Since Φ is H-equivalent and ρ is G-invariant, eρ is < ψ >-invariant.
Let eΓ0 be the family of paths in eΓ that have a subpath that can be mapped to a path

in Γ0 by an element of α ∈ H. Then mod(eΓ0) = 0.
Let γ ∈ eΓ. Note that γ has three disjoint open subpaths: one for each quarter-plane

of ÜΩ and by suitable elements in H, the three subpaths are mapped to paths in Γ. Denote
the images by γ1, γ2, γ3. If γ ∈ eΓ \ eΓ0, then γi ∈ Γ \ Γ0, i = 1, 2, 3 and

X
γ∩eC 6=∅ eρ(ÜC) ≥ 1

3

3X
i=1

X
γi∩C 6=∅

ρ(C) ≥ 1.

Hence eρ is admissible for modWFn,p (c)/<ψ>(eΓ) and

modWFn,p (c)/<ψ>(eΓ) ≤ massWFn,p (c)/<ψ>(eρ) ≤ 1

3
massWFn,p (0)/G(ρ).

Since ρ is an arbitrary mass distribution for 1
3
modWFn,p (0)/G(Γ), the statement follows.

Proof of Proposition 1.4. Suppose not, there exists a normalized quasisymmetric map
f : WFn,p(0) → WFn,p(c). Precomposing f by the reflection in the diagonal line {x = y}
if necessary, we may assume that f is orientation-preserving. Then ÜG = f ◦G ◦ f−1 andeφ = f ◦ φ ◦ f−1 is a generator for ÜG.

Let F : ÒC → ÒC be a quasiconfomral extension of f . Then eΓ = F (Γ). By quasisym-
metric invariance of carpets modulus,

mod
WFn,p (c)/eG(eΓ) = modWFn,p (0)/G(Γ).

Assume that ψ = eφm. Then similar to our discussion before Lemma 1.8, we have

modWFn,p (c)/<ψ>(eΓ) = |m|mod
WFn,p (c)/eG(eΓ).

Hence by Lemma 1.9 we have

modWFn,p (0)/G(Γ) = mod
WFn,p (c)/eG(eΓ)

=
1

|m|
modWFn,p (c)/<ψ>(eΓ)

≤ 1

3|m|
modWFn,p (0)/G(Γ).

This is possible only if modWFn,p (0)/G(Γ) is equal to 0 or ∞. But this is contradicted with
Lemma 1.8.
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1.6 Quasisymmetric rigidity

Let D be the diagonal {(x, y) ∈ R2 : x = y} and V be the vertical line {(x, y) ∈
R2 : x = 1

2
}. We denote the reflections in D and V by RD and RV , respectively. The

Euclidean isometry group of Fn,p is generated by RD and RV .
Let QS(Fn,p) be the group of quasisymmetric self-maps of Fn,p. By Corollary 1.3,

QS(Fn,p) is a finite group.

Proposition 1.5. Let f be a quasisymmetric self-map of Fn,p. Then f({O}) = {O} and
f({M1,M2,M3,M4}) = {M1,M2,M3,M4}.

Proof. From Corollary 1.2, we argue by contradiction and assume that there exists a
quasisymmetric self-map f of Fn,p and some i ∈ {1, 2, 3, 4} such that f({O}) = {Mi}. By
pre-composing and post-composing suitable elements in the Euclidean isometry group,
we can suppose that f is orientation-preserving and f({O}) = {M1}.

Let G be the subgroup of QS(Fn,p),

G = {g ∈ QS(Fn,p) | g(O) = O, g(M1) = M1}.

G has a subgroup G′ with index two consisting of orientation-preserving elements. Then

G = G′
G
G′ ◦RD.

We denote by
OG(z) = {g(z) : g ∈ G}

the orbit of z under the action of G for arbitrary z ∈ Fn,p . Let c = (p/n, p/n) and
c′ = ((p+ 1)/n, (p+ 1)/n) be the lower-left and upper-right corners of M1, respectively.

Now we consider the map

Φ0 : G′ −→ OG(0)

g 7−→ g(0).

Note that Φ0 is an isomorphism. In fact, for any g(0) ∈ OG(0), if g is orientation-
preserving, then Φ0(g) = g(0); otherwise, Φ0(g ◦ RD) = g(0). So Φ0 is a surjection. On
the other hand, if Φ0(g1) = Φ0(g2)for any g1, g2 ∈ G′, then Case (2) of Corollary 1.1 gives
g1 = g2. So Φ0 is a injection.
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Similarly, we can also define the isomorphism

Φc : G′ −→ OG(c)

g 7−→ g(c).

These isomorphisms Φ0 and Φc imply that

#OG(0) = #G′ = #OG(c) (1.11)

On the other hand, f induces the following isomorphism

f∗ : G −→ G

g 7−→ f ◦ g ◦ f−1.

We denote by m = f(0). Then

OG(m) = {g(m) : g ∈ G} = {f ◦ g ◦ f−1(m) : g ∈ G}

= {f ◦ g(0) : g ∈ G} = f(OG(0)).

Hence
#OG(m) = #G′ = #OG(0)

and so the orbits OG(m) and OG(c) have the same number of elements.
If G′ 6= {id}, we claim that G′ is a cyclic group of order 3. Indeed, for any g 6= id in

G′, g(M3) 6= M3, otherwise Case (1) of Corollary 1.1 implies g = id. By Corollary 1.2,
either g(M3) = M4, g(M4) = (M2) or g(M3) = M2, g(M2) = (M4). In both cases, g is of
order 3, a.e., g3 = id. Use Corollary 1.2 again we know that G′ is generated by g. So the
claim follows.

Hence, we have #OG(m) = #G′ = 1 or 3. There must be some h ∈ G with h(m) =

c or c′. Otherwise, OG(m) does not contain c, c′. For any point p ∈ OG(m), the point
RD(p) ∈ OG(m) and RD(p) 6= p. Then #OG(m) is even, which is impossible.

By Lemma 1.7, h ◦ f induces a normalizaed quasisymmetric map between the weak
tangent WFn,p(0) and WFn,p(c) or WFn,p(c

′). This contradicts Proposition 1.4. So we have
proved the proposition.

1.6.1 Proof of main theorems

Proof of Theorem 1.2. We adopt the notations as in previous. The proof of Proposition
1.5 implies that G′ is a cyclic group of order 3 or a trivial group. To prove the theorem,
it suffices to show that the former case cannot happen. We argue by contradiction and
assume that G′ is a cyclic group of order 3.
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By Theorem 1.1, there exists a quasisymmetric map f from Fn,p onto some round
carpet S. After post-composing suitable fraction linear transformation, we can assume
that the f(O) is the unit disc D and f(M1) lies in D with center (0, 0). Then f induces
the isomorphism

f∗ : QS(Fn,p) −→ QS(S)

g 7−→ f ◦ g ◦ f−1.

Combined with Theorem 1.2, f∗(G′) is a cyclic group of order 3 consisting of Möbius
transformations. Moreover, elements in f∗(G′) preserves ∂D and the circle O1 = f(M1).
Hence we have

f∗(G
′) = {id, z 7→ e2πi/3z, z 7→ e4πi/3z}.

Claim: O2 = f(M2), O3 = f(M3), O4 = f(M4) are round circles with the same
diameter and equidistributed clockwise in the annuli bounded by ∂D and O1.

Proof of the claim: In fact, by the proof of Proposition 1.5, we may assume that
G′ =< g >, where g(M3) = M4, g(M4) = M2 and g(M2) = M3. Note that

O3 = f(M3) = f ◦ g(M2))

= f ◦ g ◦ f−1(O2)

where f ◦ g ◦ f−1 is equal to the rotation z 7→ e2πi/3z. Similarity, one can show that
O4 = f ◦ g ◦ f−1(O3). As a result, O3 is obtained from O2 by a rotation of angle 2π/3 and
O4 is obtained from O2 by a rotation of angle 4π/3. The claim follows.

Let R be the rotation in the isometry group of Fn,p with R(M1) = M2, R(M2) =

M3, R(M3) = M4, and R(M4) = M1. By Theorem 1.2, the composition

h = f ◦R ◦ f−1 : S → S

is also a Möbius transformation which maps ∂D → ∂D, O2 → O3, O3 7→ O4. Such
a Möbius transformation must be ϕ = z → e2πi/3z. If not, let ϕ′ be other Möbius
transformation satisfy the conditions. Then ϕ′ ◦ ϕ−1 fixes three non-concentric circles
∂D, O2 and O3 and so ϕ′ ◦ϕ−1 = id. Hence ϕ′ = ϕ. But h(O1) = O2, which is impossible.
So the theorem follows.

Proof of Theorem 1.3. Suppose there exists a quasisymmetric map f : Fn,p → Fn′,p′ .
Firstly, we claim that f(O) = O′, f({M1,M2,M3,M4}) = {M ′

1,M
′
2,M

′
3,M

′
4}. Indeed,

from Theorem 2, we know that every quasisymmetric self-map of Fn,p and Fn′,p′ is isometry
and so preserves the peripheral circle O and O′. For any g in QS(Fn,p), f ◦ g ◦ f−1 is a
quasisymmetric self-map of Fn′,p′ and f ◦ g ◦ f−1(f(O)) = f(O). So f(O) is fixed by any
element in QS(Fn′,p′ . Hence we have f(O) = O′. If for some inner circles Mi, say M1,
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of Fn,p, f(M1) is not an inner circle of Fn′,p′ , then by Proposition 1.2, f extension to a
quasiconformal self-map of S2. We have

modFn,p(Γ(M1, O)) = modFn′,p′ (Γ(f(M1), O′))

and
modFn′,p′ (Γ(M ′

1, O
′)) = modFn,pΓ(f−1(M ′

1), O).

While Lemma 1.5 implies

modFn′,p′ (Γ(f(M1), O)) < modFn′,p′ (Γ(M ′
1, O))

and
modFn,pΓ(f−1(M ′

1), O) ≤ modFn,p(Γ(M1, O)).

Hence modFn,p(Γ(M1, O)) < modFn,p(Γ(M1, O)) and we get a contradiction.
Secondly, by pre-composing and post-composing with Euclidean isometries, we can

assume that f is orientation-preserving and f(M1) = M ′
1. We claim that f((0, 0)) = (0, 0)

and f((1, 1)) = (1, 1) or interchanges them and f(M3) = M ′
3. In fact, the orientation-

preserving quasisymmetric map

f−1 ◦RD ◦ f ◦RD : Fn,p → Fn,p

fixes peripheral circles O andM1. Then, by Theorem 1.2, f−1 ◦RD ◦f ◦RD is a Euclidean
isometry and so it is the identity on Fn,p. This implies f ◦RD = RD ◦ f . Hence the claim
follows.

We now distinguish two cases to analyze.
Case (1) f((0, 0)) = (0, 0) and f((1, 1)) = (1, 1).
We denote the reflection in the line {(x, y) ∈ R2 : x + y = 1} by R′D. Then the map

f−1 ◦ R′D ◦ f ◦ R′D is an orientation-preserving quasisymmetric map in QS(Fn,p), fixes
peripheral circles O,M1, and the point (0, 0). Hence this map is the identity on Fn,p and
so f ◦R′D = R′D ◦ f . It follows that f fixes (1, 0) and (0, 1) or interchanges them. Since f
is orientation-preserving, the latter cannot happen. By Theorem 1.4 the map f must be
the identity. Hence (n, p) = (n′, p′).

Case (2) f((0, 0)) = (1, 1) and f((1, 1)) = (0, 0).
The map g = RD ◦ f ◦ R′D : Fn,p → Fn′,p′ is an orientation-preserving quasisymmetry

which fixes points (0, 0) and (1, 1) and peripheral circle O and maps M1 to M ′
3. Similar

to Case (1), g−1 ◦R′D ◦g ◦R′D is an orientation-preserving isometry map fixing (0, 0), (1, 1)

and O and so is the identity. Then g fixes (1, 0) and (0, 1) or interchanges them. The
orientation-preserving of g implies the latter case is impossible. By Theorem 1.4 the map
g is the identity, which contradicts with g(M1) = M ′

3. So case (2) can not happen.
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1.6.2 Remark

Figure 1.5: The carpet F7,1,2.

Our arguments in this chapter apply to a more general class of Sierpiński Carpets
Fn,p,r, r ≥ 1, p ≥ 1, n ≥ 5, 1 ≤ p+ r < n

2
. Let Q(0)

n,p,r = [0, 1]× [0, 1]. Subdivide Q(0)
n,p,r into

n2 subsquares and remove the interior of four bigger subsquares with side-length r/n and
is of distance

√
2p/n to one of the four corner points of Q(0)

n,p,r. So the resulting set Q(1)
n,p,r

has (n2−4r2) subsquares with side-length 1/n. Repeating the operation to the subsquares,
we obtain Q(2)

n,p,r. Inductively, we have Q(k)
n,p,r. Then the carpet Fn,p,r =

T
k≥0Q

(k)
n,p,r. See

Figure 1.5. Note that Fn,p = Fn,p,1.
Similarly, Fn,p,r is not quasisymmetrically equivalent to Sm,m ≥ 3 odd and QS(Fn,p,r)

is the isometric group. Moreover, Fn,p,r and Fn′,r′,p′ are quasisymmetrically equivalent
if and only if (n, p, r) = (n′, p′, r′). Since the proof of the above conclusions are of no
essential difference from that of Fn,p, we shall omit it.
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Chapter 2

Quasisymmetric geometry of the carpet
Julia sets

2.1 Introduction

Let (X, dX) and (Y, dY ) be two metric spaces. If there exist a homeomorphism f : X →
Y and a distortion control function η : [0,∞) → [0,∞) which is also a homeomorphism
such that

dY (f(x), f(y))

dY (f(x), f(z))
≤ η

�
dX(x, y)

dX(x, z)

�
for every distinct points x, y, z ∈ X, then f is called a quasisymmetric map and (X, dX),
(Y, dY ) are called quasisymetrically equivalent to each other. A basic question in qua-
siconformal geometry is to determine whether two given homeomorphic spaces are qua-
sisymmetrically equivalent to each other.

It is known that the question arises also in the classification of hyperbolic spaces and
word hyperbolic groups in the sense of Gromov [BP,Kl]. See also [Bou] for examples of
inequivalent spaces modelled on the universal Menger curve. In this chapter, we focus
our attention on the Sierpiński carpets that arise as the Julia sets of rational maps.

According to [Wh], a set S ∈ C is called a Sierpiński carpet (carpet in short) if S has
empty interior and can be expressed as S = C \Si∈NDi, where {Di} are pairwise disjoint
Jordan disks with diam(Di) → 0 as i → ∞. The collection of the boundaries of the
Jordan disk {∂Di}i∈N are called the peripheral circles of S. If each peripheral circle ∂Di

is a round circle, then S is called a round carpet. All Sierpiński carpets are homeomorphic
to each other, so the question about the quasisymmetric classification of the Sierpiński
carpets arises naturally.

Actually, the study of the quasisymmetric equivalences between the Sierpiński carpets
and round carpets was partially motivated by the Kapovich-Kleiner conjecture in the
geometry group theory. This conjecture is equivalent to the following statement: if the
boundary of infinity ∂∞G of a Gromov hyperbolic group G is a Sierpiński carpet, then
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∂∞G is quasisymmetrically equivalent to a round carpet in C.
As the Julia set of a rational map, the first example of Sierpiński carpet was found

by Tan [Mi1, Appendix F]. Later, the rational maps whose Julia sets are Sierpiński
carpets appeared in many literatures. Such as the McMullen maps [DLU], the generated
McMullen maps [XQY] and the quadratic rational maps [DFGJ] etc.

Let f be a rational map whose Julia set Jf is a Sierpiński carpet. Two questions arise
naturally: (Q1) Can one give another rational map g whose Julia set Jg is a Sierpiński
carpet, but Jg is not quasisymmetrically equivalent to Jf? This question is equivalent to
ask whether there exist quasisymmetrically inequivalent carpet Julia sets. (Q2) Can Jf
be quasisymmetrically equivalent to a round carpet?

Let X be a metric space. The conformal dimension of X is the infimum of the Haus-
dorff dimensions of all metric spaces which are quasisymmetrically equivalent to X. By
definition, it is easy to see the conformal dimension is invariant under the quasisym-
metric maps. For the first question stated above, Haïssinsky and Pilgrim constructed a
sequence of hyperbolic rational maps with carpet Julia sets and showed that their confor-
mal dimensions tend to two [HP, Theorem 3]. This means that there are infinitely many
quasisymmetrically inequivalent Sierpiński carpets as the Julia sets of rational maps.

The relative distance ∆(A,B) of two sets A and B in C is defined as

∆(A,B) :=
dist(A,B)

min{diam(A), diam(B)}
, (2.1)

where dist(A,B) := supa∈A, b∈B |a− b| is the distance between A and B, and diam(A) :=

supa1,a2∈A |a1 − a2| is the diameter of A. A set of Jordan curves C = {Ci}i∈N is called
uniformly relatively separated if their pairwise relative distances are uniformly bounded
away from zero. Specifically, there exists δ > 0 such that ∆(Ci, Cj) ≥ δ for every two
different i and j. The set C are uniform quasicircles if there exists K ≥ 1 such that each
Ci in C is a K-quasicircle.

For the question (Q2), Bonk gave a sufficient condition on the carpets in C such that
they can quasisymmetrically equivalent to some round carpets. He proved that a carpet
S in C is quasisymmetrically equivalent to a round carpet if its peripheral circles are
uniform quasicircles and is uniformly relatively separated [Bon, Corollary 1.2]. It is worth
to mention that quasisymmetric maps preserve the uniform quasicircles and uniformly
relatively separated properties. It is not hard to see that the peripheral circles of such S
must be uniform quasicircles but are not necessarily uniformly relatively separated.

Recently, Bonk, Lyubich and Merenkov studied the postcritically-finite rational maps
whose Julia sets are Sierpiński carpets. They proved that if the Julia set of a sub-
hyperbolic rational map is a Sierpiński carpet, then it is quasisymmetrically equivalent
to a round carpet [BLM, Theorem 1.10]. They also consider the quasisymmetric group
between the carpet Julia sets of postcritically-finite rational maps and proved that any
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quasisymmetric map ξ defined from a carpet Jf onto a carpet Jg must be the restric-
tion of a Möbius transformation, where f and g are postcritically-finite rational map-
s [BLM, Theorem 1.1]. As a corollary, they proved that the group QS(Jf ), consisting of
quasisymmetric self-map of Jf , is finite [BLM, Corollary 1.2].

In this chapter, we study carpet Julia sets in postcritically-infinite case.

2.1.1 Statement of the main results.

The ω-limit set w(x) of a point x ∈ C under a rational map f is defined as the
set of accumulation points in the orbit of x. More precisely, ω(x) := {y ∈ C : there
exists a sequence {kn}n∈N such that limn→∞ f

◦kn(x) = y}. Obviously, ω(x) is f -forward
invariant. We establish a sufficient condition on the carpet Julia sets such that they are
quasisymmetrically equivalent to some round carpets.

Theorem 2.1. Let f be a rational map whose Julia set Jf is a Sierpiński carpet. If
the boundaries of the periodic Fatou components are disjoint with the ω-limit sets of the
critical points, then the peripheral circles of Jf are uniform quasicircles and uniformly
relatively separated. In particular, Jf is quasisymmetrically equivalent to a round carpet.

Recall that a rational map is sub-hyperbolic if every critical orbit is either finite or
converges to an attracting periodic orbit. Note that the boundary of each Fatou compo-
nent cannot contain any critical point if the Julia set is a Sierpiński carpet. By Theorem
2.1, we have following immediate corollary.

Corollary 2.1. Let f be a sub-hyperbolic rational map whose Julia set Jf is a Sierpiński
carpet. Then the peripheral circles of Jf are uniform quasicircles and uniformly relatively
separated. In particular, Jf is quasisymmetrically equivalent to a round carpet.

A critical point c of f is called recurrent if c ∈ ω(c). A rational map f is called
semi-hyperbolic if and only if the Julia set Jf contains neither parabolic periodic points
nor recurrent critical points (see [Ma] and [Yin]). It was known that the Julia set of a
semi-hyperbolic rational map is locally connected and has measure zero or equal to C.

Theorem 2.2. Let f be a semi-hyperbolic rational map whose Julia set Jf is a Sierpiński
carpet. Then the peripheral circles of Jf are uniform quasicircles. Moreover, they are
uniformly relatively separated if and only if the ω-limit sets of the critical points are
disjoint with the boundaries of periodic Fatou components.

If a rational map is not semi-hyperbolic, then the boundary of some Fatou component
may not be a quasicircle although it is a Jordan curve. For example, one can construct
a rational map f whose Julia set is a Sierpiński carpet but the Julia set Jf contains a
parabolic periodic point. The corresponding parabolic Fatou component contains exactly
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one petal and has infinitely many cusps on its boundary. Thus the boundary of this Fatou
component cannot be a quasicircle. In this case, Jf cannot quasisymmetrically equivalent
to a round carpet. See Figure 2.1.

Figure 2.1: The Julia set of f(z) = z3 + λ/z3 and an enlargement of a parabolic Fatou compo-
nent, where λ ≈ 0.02772313 such that Jf is a Sierpiński carpet containing a parabolic periodic
point. The peripheral circles of Jf are not uniform quasicircles but they are uniformly relatively
separated.

As a corollary, we have the following theorem.

Theorem 2.3. Let f be a semi-hyperbolic rational map whose Julia set Jf is a Sierpiński
carpet. Then the quasisymmetric group QS(Jf ) is discrete.

2.1.2 Outline of the proof and the organization of this chapter.

We are mainly interested on the condition when a carpet Julia set is quasisymmet-
rically equivalent to a round carpet. By Bonk’s criterion, this motivates us to find the
condition when the peripheral circles of a carpet Julia set are uniform quasicircles and
when they are uniformly relatively separated.

In order to prove the peripheral circles of some carpet Julia sets are uniform quasicir-
cles, we first discuss the periodic Fatou components and prove that they are quasicircles if
their boundaries avoid the parabolic periodic points and the points in the ω-limit sets of
the recurrent critical points (Lemma 2.9). Therefore, all peripheral circles are quasicircles
by using Sullivan’s eventually periodic theorem. In order to prove the uniformity, we dis-
cuss two cases. The first case, suppose that all the periodic Fatou components are disjoint
with the ω-limit sets of the critical points. Then for each periodic Fatou component U ,
one can find a large Jordan disk V such that V \ U is an annulus and all components
of the preimages of V \ U are annuli whose moduli have uniform lower bound. By using
a distortion argument, one can prove that all peripheral circles are uniform quasicircles
(Proposition 2.1). The second case, suppose that the rational map is semi-hyperbolic.
Then the corresponding Julia set (and hence all the periodic Fatou components) contains
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neither parabolic periodic points nor recurrent critical points. One can also prove that
all peripheral circles are uniform quasicircles by using Mañé’s theorem and its variation
(Theorem 2.5, Lemma 2.6 and Proposition 2.2).

In order to prove the peripheral circles of some carpet Julia sets are uniformly relative-
ly separated, we first establish a lemma which asserts that the modulus can control the
relative distance (Lemma 2.3). Then we prove the peripheral circles are uniformly rela-
tively separated by showing that all moduli of the annuli between two different peripheral
circles have a lower positive bound (Proposition 2.3).

This chapter is organized as follows: In §2.2, we prepare some distortion lemmas for
the proofs of Theorems 2.1 and 2.2. Moreover, we prove that the modulus can control
the relative distance. In §2.3, we first prove some propositions about the properties of
uniform quasicircles and uniformly relatively separated. Then we prove Theorem 2.1
by using Bonk’s criterion and prove Theorem 2.2 by combining Bonk’s criterion and
Mañé-Yin’s characterization on semi-hyperbolic rational maps. In the last section, using
the combinatorial method and renormalization theory, we construct a critically-infinite
semi-hyperbolic rational map whose Julia set is quasisymmetrically equivalent to a round
carpet.

2.2 Some distortion estimations

In this section, we give some distortion estimations and useful lemmas, which will be
used in the next section. We use D := {z : |z| < 1} to denote the unit disk on the complex
plane C.

Theorem 2.4 (Koebe’s distortion theorem, [Pom, p. 9]). Let f : D → C be a univalent
function. Then for every z ∈ D, one has

|f ′(0)| |z|
(1 + |z|)2

≤ |f(z)− f(0)| ≤ |f ′(0)| |z|
(1− |z|)2

; and (2.2)

|f ′(0)| 1− |z|
(1 + |z|)3

≤ |f ′(z)| ≤ |f ′(0)| 1 + |z|
(1− |z|)3

. (2.3)

Let A be an annulus with non-degenerated boundary components. Then there exists
a conformal map sending A to a standard annulus {z ∈ C : 0 < r < |z| < 1}, where r > 0

is uniquely determined by A. As an invariant under conformal maps, the modulus of A is
defined as mod(A) = 1

2π
log(1/r). A set in C is called a Jordan disk if it is homeomorphic

to the unit disk D and its boundary is a Jordan curve. Let A and B be two open sets in
C. We use the notation ‘A b B’ if the closure A is contained in B.

Lemma 2.1. Let Ui b Vi 6= C be a pair of Jordan disks, where i = 1, 2. Suppose that
mod(V2 \ U2) ≥ m > 0 and f : V1 → V2 a conformal map with f(U1) = U2. Then there
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exists a constant C(m) ≥ 1 depending only on m such that for any x, y, z, w ∈ U1, one
has

1

C(m)

|x− y|
|z − w|

≤ |f(x)− f(y)|
|f(z)− f(w)|

≤ C(m)
|x− y|
|z − w|

.

Proof. The proof is based on applying Koebe’s distortion theorem. Without loss of gen-
erality, suppose that x 6= y and z 6= w are contained in the interior of U1. If not, we
can enlarge U1 appropriately. By Riemann’s mapping theorem, there exists a conformal
mapping g : (Ω,D)→ (U1, V1) which maps the unit disk D onto V1 and a simply connected
domain Ω onto U1. In particular, we require that g(0) = x.

We claim that there exists a positive constant r := r(m) < 1 depending only onm such
that Ω ⊂ Dr := {z : |z| < r}. Let ζ ∈ ∂Ω be the farthest point such that dist(0, ∂Ω) = |ζ|.
Then D \ Ω is an annulus separating 0 and ζ from the unit circle. By Grötzsch’s module
theorem [LV, p. 54], we have

m ≤ mod(V1 \ U1) = mod(D \ Ω) ≤ µ(|ζ|),

where r 7→ µ(r) is a continuous and strictly decreasing function defined on the interval
(0, 1). This means that |ζ| ≤ µ−1(m) and the claim follows if we set r = µ−1(m).

Now we consider f ◦ g : D → V2 and g : D → V1. For every η ∈ Ω, by using (2.3) in
Theorem 2.4, we have

|f ′(x)| |g′(0)| 1− r
(1 + r)3

≤ |(f ◦ g)′(η)| = |f ′(g(η))| |g′(η)| ≤ |f ′(x)| |g′(0)| 1 + r

(1− r)3
. (2.4)

Also, we have

|g′(0)| 1− r
(1 + r)3

≤ |g′(η)| ≤ |g′(0)| 1 + r

(1− r)3
. (2.5)

Combine (2.4) and (2.5), it follows that for every ξ ∈ U1, we have

|f ′(x)|(1− r)
4

(1 + r)4
≤ |f ′(ξ)| ≤ |f ′(x)|(1 + r)4

(1− r)4
. (2.6)

Therefore, for x, y, z, w ∈ U1, by (2.6), we have

|f(x)− f(y)| ≤ (1 + r)4

(1− r)4
|f ′(x)| · |x− y| and |f(z)− f(w)| ≥ (1− r)4

(1 + r)4
|f ′(x)| · |z − w|.

Set C(m) = (1 + r(m))8/(1− r(m))8. The proof is complete.

Let U be a hyperbolic disk in C and E a connected and compact subset of U containing
at least two points. For any z1, z2 ∈ E, the turning of E about z1 and z2 is defined by

Λ(E; z1, z2) =
diam(E)

|z1 − z2|
.
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It is easy to see that 1 ≤ Λ(E; z1, z2) ≤ ∞ and Λ(E; z1, z2) =∞ if and only if z1 = z2.
By definition (see for example, [LV, p. 100]), a Jordan curve C is called a quasicircle

if there exists a positive constant K ≥ 1 such that for any different points x, y ∈ C, the
turning of γ about x and y satisfies

Λ(γ;x, y) ≤ K,

where γ is one of the two components of C \ {x, y} with smaller diameter.

Lemma 2.2. Let Ui b Vi 6= C be a pair of Jordan disks, where i = 1, 2. Suppose that
mod(V2 \U2) ≥ m > 0 and f : V1 → V2 a conformal map with f(U1) = U2. If ∂U2 is a K-
quasicircle, then there is a constant C(K,m) ≥ 1 such that ∂U1 is a C(K,m)-quasicircle.

Proof. By definition, if ∂U2 is a K-quasicircle, then there exists a constant C(K) > 0

such that for any different points z1, z2 ∈ ∂U2, the turning of γ about z1 and z2 satisfies

Λ(γ; z1, z2) =
diam(γ)

|z1 − z2|
≤ C(K), (2.7)

where γ is one of the component of ∂U2 \ {z1, z2} with smaller diameter.
Let x, y ∈ ∂U1 be two different points which divide the quasicircle ∂U1 into two closed

subcurves α and β. Without loss of generality, let α ⊂ ∂U1 be the subcurve with smaller
diameter. Moreover, let z, w ∈ α such that diam(α) = |z − w|. By Lemma 2.1, we have

Λ(α;x, y) =
|z − w|
|x− y|

≤ C(m)
|f(z)− f(w)|
|f(x)− f(y)|

, (2.8)

where C(m) is the constant appeared in Lemma 2.1. Note that f(x), f(y) divide the
quasicircle ∂U2 into two parts f(α) and f(β).

If diam(f(α)) ≤ diam(f(β)), then by (2.7) and (2.8), we have

Λ(α;x, y) ≤ C(m)
diam(f(α))

|f(x)− f(y)|
≤ C(m)C(K). (2.9)

If diam(f(α)) > diam(f(β)), let z′, w′ ∈ β such that diam(β) = |z′ − w′|. By (2.7) and
Lemma 2.1, we have

Λ(α;x, y) ≤ Λ(β;x, y) ≤ |z
′ − w′|
|x− y|

≤ C(m)
|f(z′)− f(w′)|
|f(x)− f(y)|

≤ C(m)
diam(f(β))

|f(x)− f(y)|
≤ C(m)C(K).

(2.10)

Combine (2.9) and (2.10), the Lemma follows.

Recall that the relative distance ∆(A,B) of two subsets A and B in C is defined in
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(2.1). Now we prove that relative distance of two disjoint Jordan curves can be controlled
by the modulus of the annulus between them.

Lemma 2.3 (Modulus controls the relative distance). Let A ⊂ C be an annulus with two
boundary components C1 and C2. If the modulus of A satisfies mod(A) ≥ m > 0, then
there exists a constant C(m) > 0 depending only on m such that the relative distance of
C1 and C2 satisfies ∆(C1, C2) ≥ C(m) > 0.

Proof. Without loss of generality, we assume that A ⊂ C, C1, C2 are not singletons and
0 < diam(C1) ≤ diam(C2) and

dist(C1, C2) = |x− y| (2.11)

for x ∈ C1 and y ∈ C2. There exists a point z 6= x in C1 such that |x−z| = supa∈C1
|a−x|.

Therefore, we have
diam(C1) ≤ 2|x− z|. (2.12)

Consider the linear function h(t) = (t−x)/(x−z), which maps x, y, z to 0, (y−x)/(x−z)

and −1. Then h(A) is an annulus separating the points 0 and −1 from h(y) and ∞,
respectively. Let

R = |h(y)| = |(y − x)/(x− z)|.

By Teichmüller’s Module Theorem (see for example, [LV, p. 56]), we have

m ≤ mod(A) = mod(h(A)) ≤ 2µ

�s
1

1 +R

�
,

where r 7→ µ(r) is a continuous and strictly decreasing map defined on the interval (0, 1).
By (2.11) and (2.12), this means that the relative distance of C1 and C2 is

∆(C1, C2) =
dist(C1, C2)

diam(C1)
≥ |x− y|

2|x− z|
=
R

2
≥ 1

2

�
1

(µ−1(m/2))2
− 1

�
:= C(m).

The proof is complete.

Lemma 2.4 ( [KL, Lemma 4.5]). Let Ui b Vi 6= C be a pair of Jordan disks, where
i = 1, 2. Suppose that g : V1 → V2 is a proper holomorphic map of degree d ≥ 1 and U1 is
a component of g−1(U2). Then

mod(V1 \ U1) ≤ mod(V2 \ U2) ≤ d mod(V1 \ U1).

Let U be a hyperbolic disk in C and z ∈ U . The shape of U about z, denoted by
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Shape(U, z), is defined as

Shape(U, z) =
maxw∈∂U |w − z|
minw∈∂U |w − z|

=
maxw∈∂U |w − z|

dist(z, ∂U)
.

It is obvious that Shape(U, z) =∞ if and only if U is unbounded and Shape(U, z) = 1 if
and only if U is a round disk centered at z. In other cases, 1 < Shape(U, z) <∞.

Lemma 2.5 ( [QWY, Lemma 6.1]). Let Ui b Vi 6= C be a pair of Jordan disks with
mod(V2 \ U2) ≥ m > 0, where i = 1, 2. Suppose that g : V1 → V2 is a proper holomorphic
map of degree d ≥ 1 and U1 is a component of g−1(U2). Then there are two positive
constants C1(d,m) and C2(d,m) depending only on d and m, such that

(1) For all z ∈ U1, the shape satisfies

Shape(U1, z) ≤ C1(d,m) Shape(U2, g(z)).

(2) For any connected and compact subset E of U1 with the cardinal number ]E ≥ 2

and any z1, z2 ∈ E, the turning satisfies

Λ(E; z1, z2) ≤ C2(d,m) Λ(g(E); g(z1), g(z2)).

Lemma 2.5 means that the shape and the turning of the interior boundary of an
annulus can be controlled under a proper holomorphic map if the modulus of this annulus
has a lower bound.

2.3 Proofs of the Main Theorems

If a rational map f whose Julia set Jf is a Sierpiński carpet, then f cannot be a
polynomial. In fact, the intersection of the closure of the bounded Fatou components (if
any) and the basin of infinity of f is non-empty provided f is a polynomial since the Julia
set Jf is the boundary of the basin of infinity. If we want to prove Theorem 2.1, we need
to prove that the peripheral circles of the carpets are uniform quasicircles and uniformly
relatively separated by Bonk’s criterion.

2.3.1 Mañé’s Theorem and a lemma.

We first give a theorem due to Mañé, which will be used frequently later.

Theorem 2.5 ( [Ma, Theorem II]). Let f : C→ C be a rational map with degree at least
two. If a point x ∈ Jf is not a parabolic periodic point and is not contained in the ω-limit
set of a recurrent critical point, then for any ε > 0 there exists an open neighborhood Ux
of x such that:
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(C1) For all n ≥ 0, every component of f−n(Ux) has diameter ≤ ε;
(C2) There exists d > 0 such that for all n ≥ 0 and every connected component V of

f−n(Ux), the degree of f ◦n : V → Ux is ≤ d.

When we pull back a Jordan disk U by a rational map f , there maybe exist a compo-
nent W of f−1(U) which is not simply connected. If the boundary ∂U avoids the critical
values, then ∂W is the union of finitely many disjoint Jordan curves {Ci}. Moreover,
we have f(Ci) = ∂U for each i. Note that W is a connected set whose boundary con-
sists of finitely many Jordan curves. We have C \W =

S
i Vi, where each Vi is a Jordan

disk bounded by the Jordan curve Ci. Since the restriction of f on Vi is a holomorphic
branched covering and f(∂Vi) = ∂U , we have f(Vi) = C or f(Vi) = C\U . In other words,
the image of each component of the complement of W under f is either C or C \ U . See
Figure 2.2 for an example. 

U
f

V2
V3

V1

W

W ′

C3

C2

C1

Figure 2.2: The pull back of a simply connected domain U under the rational map f with degree
4, where f(W ) = U and ∂W = C1 ∪ C2 ∪ C3. The complement of W consists of 3 simply
connected components V1, V2 and V3. In particular, f(V1) = f(V2) = C \ U and f(V3) = C.
Moreover, W contains 4 critical points of f and V3 \W ′ (the white annulus) contains two.

In the rest of this chapter, we only consider the rational maps whose Julia sets are
not the whole complex sphere. Therefore, after conjugating f by a suitable Möbius
transformation, we always assume that ∞ lies in the Fatou set. This means that Jf is
a compact set in C. In the following, we equip Jf the Euclidean metric if not special
specified. We use D(a, r) := {z ∈ C : |z − a| < r} to denote the round disk in C with the
center a ∈ C and radius r > 0.

Lemma 2.6. Let f be a rational map with degree at least two and Jf ⊂ C. Suppose
that x ∈ Jf is not a parabolic periodic point and is not contained in the ω-limit set of a
recurrent critical point. Then there exists an open neighborhood Ux of x such that

(C3) For all n ≥ 0, every connected component of f−n(Ux) is simply connected.

Proof. By the assumption that ∞ 6∈ Jf , the grand orbit of ∞ lies in the Fatou set of f .
Let δ0 > 0 be a small positive number such that

0 < δ0 ≤ dist(f−1(∞), Jf )/2. (2.13)
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By Theorem 2.5, there exists an open neighborhood U ′x of x such that every component
of f−n(U ′x) has diameter ≤ δ0 for all n ≥ 0.

Let Ux := D(x, δx) be the largest round disk which is contained in U ′x. We claim
that every component Wn of f−n(Ux) is simply connected. If not, let Vn be a bounded
component of C \ W n, where n ≥ 1. Then ∂Vn ⊂ ∂Wn and so diam(Vn) ≤ δ0. This
means that Vn cannot intersect f−1(∞). Inductively, one can easily check that f ◦k(Vn) ∩
f−1(∞) = ∅ for 0 ≤ k ≤ n − 1. It follows that ∞ 6∈ f ◦n(Vn), which is a contradiction
since f ◦n(Vn) = C or f ◦n(Vn) = C \ Ux. Therefore, such Vn does not exist. This means
that Wn is simply connected. The proof is complete.

Lemma 2.6 is useful in the following since we need to obtain the simply connected
preimages of a simply connected domain.

2.3.2 Sufficiency for the property of uniform quasicircles.

In this subsection, we prepare some lemmas and give two sufficient conditions such
that the boundaries of the Fatou components are uniform quasicircles. We first discuss
the regularity of the boundaries of the periodic Fatou components and then spread the
results to their all preimages.

Lemma 2.7. Let Γ be a Jordan curve in the plane C. Then there exists a constant δΓ > 0

depending only on Γ such that, for any Jordan subarc γ ⊂ Γ with diam(γ) ≤ δΓ, one has
diam(γ) < diam(Γ \ γ).

Proof. Consider the function h : Γ× Γ→ R which is defined by h(x, y) = diam(L′(x, y)),
where L′(x, y) is one of the two components of Γ\{x, y} with larger diameter. Obviously,
the map h is continuous. Since Γ× Γ is compact, the function h has a minimum δ′ > 0.
Then the lemma holds if we set δΓ = δ′/2.

Lemma 2.8. Let f be a rational map with degree at least two and U a Fatou component
which is a Jordan disk. Then f |∂U is a local homeomorphism.

Proof. The image V = f(U) is a Fatou component and hence a domain. Since f maps the
boundary of U to that of V , it follows that V is a Jordan disk as well and f(∂U) = ∂V .
For an annulus A with the outer boundary ∂V and the inner boundary surrounding all
the critical values in V , then A′ = (f |U)−1(A) is also an annulus in U with the outer
boundary coinciding with ∂U by Riemann-Hurwitz’s formula. Then f : A′ → A is an
unbranched covering. Thus the restriction of f on ∂U is a local homeomorphism.

Lemma 2.9 (The boundaries of periodic Fatou components are quasicircles). Let f be a
rational map with degree at least two. Suppose that U is a periodic Fatou component of f
whose boundary ∂U is a Jordan curve and ∂U contains neither parabolic periodic points
nor the points in ω(c) for any recurrent critical point c. Then ∂U is a quasicircle.
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Proof. After iterating f by several times, we can assume that the periodic Fatou compo-
nent U is fixed by f . Without loss of generality, we suppose that ∞ 6∈ Jf . Let ε = δ0 > 0

be the number defined as in (2.13). For any x ∈ ∂U , by Theorem 2.5 and Lemma 2.6,
there exists an open neighborhood Ux := D(x, δx) of x satisfying (C1), (C2) and (C3).
Since ∂U is compact and ∂U ⊆ S

x∈∂U D(x, δx/2), one can select a collection of finite
number of elements U = {D(x1, δx1/2),· · · ,D(xN , δxN/2)} such that ∂U is covered by U .
Let δ1 > 0 be the Lebesgue number of U . Then every subset of ∂U with diameter ≤ δ1

must be contained in at least one open disk D(xi, δxi/2) for some 1 ≤ i ≤ N .
By Lemma 2.8, the restriction of f on ∂U is a local homeomorphism. This means that

there exists a number δ2 > 0 such that for any subset E ⊂ ∂U with diam(E) ≤ δ2, the
restriction of f on E is a homeomorphism. Recall that δ∂U > 0 is the number depending
only on ∂U which is defined in Lemma 2.7. We define

δ := min

¨
δ1

M
, δ2,

δ∂U
M

«
, (2.14)

where M := 1 + sup{|f ′(z)| : dist(z, Jf ) ≤ δ0} < +∞.
Let x, y be two different points in ∂U . We use γ := L(x, y) to denote one of the two

components of ∂U \ {x, y} with the smaller diameter. Now we divide the argument into
two cases.

Case 1: Suppose that diam(γ) ≥ δ. Define E := {(ξ, η) ∈ ∂U×∂U : diam(L(ξ, η)) ≥
δ}. Then E is compact and (ξ, ξ) 6∈ E. The function

h : ∂U × ∂U → R+ defined by (ξ, η) 7→ diam(L(ξ, η))

|ξ − η|

is continuous on E. Then h has a maximum K1 on E since E is compact. In particular,
the turning of γ about x and y satisfies

Λ(γ;x, y) =
diam(γ)

|x− y|
≤ K1. (2.15)

Case 2: Suppose that diam(γ) < δ. Denote γn := f ◦n(γ) for n ≥ 0. Note that the
forward orbit of γ will eventually cover ∂U . There is a smallest integer n ≥ 0 such that

diam(γn) < δ and diam(γn+1) = diam(f(γn)) ≥ δ. (2.16)

By the choice of δ in (2.14), we know that f ◦(n+1)|γ is a homeomorphism and so γn+1

is a Jordan arc connecting f ◦(n+1)(x) and f ◦(n+1)(y). Note that there exist two points
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z1, z2 ∈ γn, such that

diam(γn+1) = |f(z1)− f(z2)| ≤
Z

[z1,z2]
|f ′(z)| |dz|

≤M |z1 − z2| ≤M diam(γn) ≤Mδ ≤ min{δ1, δ∂U},
(2.17)

where [z1, z2] is the straight segment connecting z1 and z2.
By the definition of δ∂U and Lemma 2.7, the Jordan arc γn+1 is one of the two com-

ponents of ∂U \ {f ◦(n+1)(x), f ◦(n+1)(y)} with smaller diameter. Since diam(γn+1) ≥ δ by
(2.16), as discussed in Case 1 above, we have

Λ(γn+1; f ◦(n+1)(x), f ◦(n+1)(y)) ≤ K1. (2.18)

By the definition of δ1, there exists a disk D(xi, δxi/2) such that γn+1 ⊂ D(xi, δxi/2) for
some 1 ≤ i ≤ N since diam(γn+1) ≤ δ1 by (2.17). Let Bn+1(xi, δxi/2) and Bn+1(xi, δxi), re-
spectively, be the components of f−n−1(D(xi, δxi/2)) and f−n−1(D(xi, δxi)) both containing
γ. Note that both of them are simply connected by the choice of δxi . Applying Lemma 2.5
to the case (U1, V1) = (Bn+1(xi, δxi/2), Bn+1(xi, δxi)), (U2, V2) = (D(xi, δxi/2), D(xi, δxi))

and m = 1
2π
log 2, together with (2.18), we have

Λ(γ;x, y) ≤ C2(di)Λ(γn+1; f ◦(n+1)(x), f ◦(n+1)(y)) ≤ C2(di)K1, (2.19)

where C2(di) is a constant depending only on di and di > 0 is the number appeared in
Theorem 2.5 which depends on xi. Let

K = K1(1 + max
1≤i≤N

C2(di)).

Then Λ(γ;x, y) ≤ K holds for any different x, y ∈ ∂U by (2.15) and (2.19). By the
arbitrariness of x and y, this means that ∂U is a quasicircle. The proof is completed.

Now we need to consider when the boundaries of all the Fatou components are uni-
form quasicircles. According to Sullivan [Sul], each Fatou component of a rational map is
eventually periodic. It is natural to consider the pull back of the periodic Fatou compo-
nents and then using some distortion lemmas to control the shape of pre-periodic Fatou
components. To do this, it is necessary to construct a larger simply connected domain
surrounding the periodic Fatou component such that all components of its preimages
under the n-th iteration are still simply connected.

Proposition 2.1 (Uniform quasicircles I). Let f be a rational map such that the boundary
of each Fatou component is a Jordan curve. Suppose that all the boundaries of period-
ic Fatou components are disjoint with the ω-limit sets of the critical points. Then the
boundaries of all the Fatou components of f are uniform quasicircles.
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Proof. If all periodic Fatou components of f are disjoint with the ω-limit sets of the critical
points, then f has no parabolic periodic points. By Lemma 2.9 and Sullivan’s eventually
periodic theorem, all the boundaries of the Fatou components of f are quasicircles. We
only need to prove that they are uniform quasicircles.

Let U ′ be the collection of all the Fatou components such that each of them is ei-
ther a critical Fatou component (contains at least one critical point) or a periodic Fatou
component. We use U := O+(U ′) = {U1, · · · , Un} to denote the union of the forward
orbits of all the Fatou components in U ′. Note that the number of Fatou components in
U is finite since U ′ is. Therefore, there exists a constant K1 > 1 such that each ∂Ui is a
K1-quasicircle. For each 1 ≤ i ≤ n, let Vi be a Jordan disk such that Vi \U i is an annulus
which is disjoint with the ω-limit sets of the critical points.

Let mod(Vi \ U i) = mi > 0 for 1 ≤ i ≤ n. For each Fatou component U 6∈ U , there
exists a minimal number k ≥ 1 such that f ◦k(U) = Ui ∈ U for some i. Let V be the
component of f−k(Vi) containing U . Then f ◦k : V → Vi is conformal and V is a Jordan
disk since Vi contains no points in the critical orbits. By Lemma 2.2, the boundary ∂U is
a C(K1,mi)-quasicircle, where C(K1,mi) is a constant depending only on K1 and mi.

Let K = max1≤i≤nC(K1,mi). Then the boundary of each Fatou component of f is a
K-quasicircle. By the arbitrariness of U , this means that the Fatou components of f are
uniform quasicircles. The proof is completed.

Recall that a rational map f is called semi-hyperbolic if and only if the Julia set Jf
contains neither parabolic periodic points nor recurrent critical points.

Proposition 2.2 (Uniform quasicircles II). Let f be a semi-hyperbolic rational map such
that the boundary of each Fatou component is a Jordan curve. Then the boundaries of all
the Fatou components of f are uniform quasicircles.

Proof. By Lemma 2.9 and Sullivan’s eventually periodic theorem, it follows that all the
boundaries of the Fatou components of f are quasicircles since f is semi-hyperbolic. We
only need to prove that they are uniform quasicircles. According to [Yin, Theorem 1.2],
the Julia set Jf is locally connected. Then for any ε > 0, there are only finitely many
Fatou components with diameter ≥ ε [Mi3, Lemma 19.5].

Without loss of generality, we suppose that ∞ 6∈ Jf . Let ε = δ0 > 0 be the number
defined as in (2.13). For any x ∈ Jf , by Theorem 2.5 and Lemma 2.6, there exists an open
neighborhood Ux := D(x, δx) of x satisfying (C1), (C2) and (C3). Since Jf is compact,
there exists a collection of finite number of elements U = {D(x1, δx1/2),· · · ,D(xN , δxN/2)}
such that Jf is covered by U . We use δ > 0 to denote the Lebesgue number of U .
Then every subset of Jf with diameter ≤ δ must be contained in at least one open disk
D(xi, δxi/2) for some 1 ≤ i ≤ N .

We divide the collection of all the Fatou components F of f into two classes as fol-
lowing. Let F0 be the collection of all the Fatou components such that each U ∈ F0 is
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one of the following cases: (1) U contains at least one critical point; (2) U is periodic; (3)
diam(U) ≥ δ. Let F ′1 := O+(F0) be the set of the union of the forward orbits of all the
Fatou components in F0. Define F1 := F ′1 ∪ f−1(F ′1). By Sullivan’s eventually periodic
theorem, the number of Fatou components in F1 is finite since F0 is also. Therefore, there
exists a constant K1 > 1 such that each Fatou component in F1 is a K1-quasicircle.

For any Fatou component U ∈ F \ F1, we have diam(U) < δ. There exists a minimal
nU ≥ 1 such that f ◦nU (U) ∈ f−1(F ′1) \ F ′1 ⊂ F1 and diam(f ◦nU (U)) < δ. Moreover, the
map f ◦nU : U → f ◦nU (U) is conformal. By the definition of δ, there exists some disk
D(xi, δxi/2) in U such that f ◦nU (U) ⊂ D(xi, δxi/2). We use BU and B′U , respectively, to
denote the components of f−nU (D(xi, δxi/2)) and f−nU (D(xi, δxi)) both containing U .

Let x, y ∈ ∂U be two different points such that ∂U \ {x, y} = γ1 ∪ γ2. Then f ◦nU (γ1)

and f ◦nU (γ2) are both Jordan arcs connecting f ◦nU (x) with f ◦nU (y). Applying Lemma
2.5 (2) to the case (U1, V1) = (BU , B

′
U), (U2, V2) = (D(xi, δxi/2),D(xi, δxi)), m = 1

2π
log 2,

g = f ◦nU and E = γj, where j = 1, 2, we have

Λ(γj;x, y) ≤ C2(di) Λ(f ◦nU (γj); f
◦nU (x), f ◦nU (y)),

where C2(di) is a constant depending only on di and di > 0 is the number appeared in
Theorem 2.5 which depends on xi. Then

min
j∈{1,2}

{Λ(γj;x, y)} ≤ C2(di) min
j∈{1,2}

{Λ(f ◦nU (γj); f
◦nU (x), f ◦nU (y))} ≤ C2(di)K1.

Let K = max1≤i≤N C2(di)K1. Then ∂U is a K-quasicircle by the arbitrariness of x and
y. By the arbitrariness of U , we know that each Fatou component of f is a K-quasicircle
and K is a constant depending only on f . The proof is completed.

Figure 2.1 shows a rational map having a parabolic periodic point whose Julia set is a
Sierpiński carpet but the peripheral circles of Jf are not uniform quasicircles. Note that
in Propositions 2.1 and 2.2, we do not require the closure of Fatou components are disjoint
to each other. They can touch each other at the points on their boundaries. It seems that
the conditions in Proposition 2.1 is much stronger than in Proposition 2.2. However, it is
not true. One can construct a rational map with recurrent critical points, whose w-limit
sets are disjoint with boundaries of Fatou components, using similar method as stated in
Section 2.4.

2.3.3 Sufficiency for the property of uniformly relatively separat-

ed.

By Lemma 2.3, if the lower bound of the annuli between the boundaries of the Fatou
components can be controlled, then one can prove that the peripheral circles of the carpet
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Julia set are uniformly relatively separated.

Proposition 2.3 (Uniformly relatively separated). Let f be a rational map whose Julia
set Jf is a Sierpiński carpet. If the boundaries of all periodic Fatou components contain
no points in ω(c) for any critical point c ∈ Jf , then the boundaries of Fatou components
are uniformly relatively separated.

Proof. After iterating f by some times, we can assume that all the periodic Fatou com-
ponents X1, · · · , Xn have period precise one. For 1 ≤ i ≤ n, let Yi be a simply connect-
ed domain containing Xi such that Y1, · · · , Yn are mutually disjoint and each annulus
Hi := Yi \X i contains no points in the critical orbits. Define m = min1≤i≤nmod(Hi) > 0.

For any two different Fatou components U1 and U2, there exist two minimal numbers
n1, n2 ≥ 0 such that f ◦n1(U1) = Xk1 and f ◦n2(U2) = Xk2 for 1 ≤ k1, k2 ≤ n, where
Xk1 , Xk2 are Fatou components with period one. Since Hki contains no critical values
of f ◦ni for i ∈ {1, 2} and so the restriction of f ◦ni on each components of f−ni(Hki) is
an unbranched covering. By Riemann-Hurwitz’s formula, it follows that each component
of their preimages is an annulus. Therefore, there exist two simply connected domains
V1, V2 surrounding U1, U2 such that Vi \ U i is a component of f−ni(Hni) and deg(f ◦ni :

Vi → Yni) = deg(f ◦ni : Ui → Xni). Note that f ◦j1(Ui)
T
f ◦j2(Ui) = ∅ for 0 ≤ j1 < j2 ≤ ni

and f has only finitely many critical points. So the degree of f ◦ni |Ui is bounded by some
number N ≥ 1 depending only on f . Denote by A the annulus bounded by ∂U1 and ∂U2

in C. We now divide the arguments into two cases.
Case 1: Suppose that n1 = n2. Then V1 and V2 are two disjoint components of

f−n1(Yn1 ∪ Yn2). By Lemma 2.4, we have

mod(A) ≥ mod(V1 \ U1) + mod(V2 \ U2) ≥ mod(Hk1)/N + mod(Hk2)/N ≥ 2m/N.

Case 2: Suppose that n1 > n2. We claim that V1 and U2 are disjoint. Otherwise, the
annulus V1 \ U1 intersects U2 and so f ◦n2(V1 \ U1) intersects the fixed Fatou component
Xk2 . Then Hk1 = f ◦(n1−n2)(f ◦n2(V1 \ U1)) joints with Xk2 , which contradicts with the
choice of Hk1 . Then we have

mod(A) ≥ mod(V1 \ U1) ≥ m/N.

Above all, the annulus A has modulus not less than m/N . By Lemma 2.3, U1 and U2

are relatively separated with the relative distance ∆(∂U1, ∂U2) depending only on m and
N . By the arbitrariness of U1 and U2, the peripheral circles of the carpet Julia set are
uniformly relatively separated. The proof is completed.

Note that the condition in Proposition 2.3 does not exclude the existence of parabolic
points on the Julia set. Actually, the peripheral circles of the parabolic rational map
appeared in Figure 2.1 are uniformly relatively separated.
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2.3.4 The property of non-uniformly relatively separated.

If the peripheral circles of a carpet Julia set are uniformly relatively separated, a natu-
ral question is whether it implies that all the boundaries of pre-periodic Fatou components
avoid the accumulation points of the critical orbits in the Julia set. We give the answer
in the following proposition.

Proposition 2.4 (Non-uniformly relatively separated). Let f be a semi-hyperbolic ratio-
nal map whose Julia set is a Sierpiński carpet. Suppose that there exists a Fatou component
U of f such that ∂U ∩ ω(c) 6= ∅ for some critical point c ∈ Jf . Then the boundaries of
Fatou components of f are not uniformly relatively separated.

Proof. Without loss of generality, we suppose that∞ 6∈ Jf . Let ε = δ0 > 0 be the number
defined as in (2.13). Let x ∈ ∂U ∩ ω(c). By Theorem 2.5 and Lemma 2.6, there exists a
number δx > 0 such that the open neighborhood Ux := D(x, δx) satisfies (C1), (C2) and
(C3). Since ∂U ∩ ω(c) 6= ∅ and Jf is a Sierpiński carpet, it follows that the forward orbit
of c is infinite. Let ckn := f ◦kn(c) be the point in the forward orbit of c converging to
x. Set εkn := |x − ckn|. We have εkn → 0 as n → ∞. Given 0 < δ < δx, there exists
sufficiently large N such that D(ckn , δ/2) ⊆ D(ckn , δ) ⊆ D(x, δx) for any n ≥ N .

Evidently, the round disks D(ckn , εkn), D(ckn , δ/2) and D(ckn , δ) satisfy (C1), (C2) and
(C3) in Theorem 2.5 and Lemma 2.6. Pulling these three disks back by f ◦(kn−1) and
f ◦kn respectively, we denote by Xkn−1, Ykn−1, Zkn−1, respectively, Xkn , Ykn , Zkn the simply
connected components of their preimages containing the critical value c1 and the critical
point c respectively. Let Ukn−1 be a component of f−(kn−1)(U) such that ∂Xkn−1∩∂Ukn−1 6=
∅. Then we can choose a point xkn−1 ∈ ∂Xkn−1 ∩ ∂Ukn−1. Note that such xkn−1 may be
not unique. See Figure 2.3.
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∂U

f◦(kn−1)

c1xkn−1
Xkn−1

Ykn−1

Zkn−1
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Figure 2.3: Sketch illustration of the mapping relation.

Since c1 is a critical value, there exist at least two different Fatou components Ukn and
U ′kn , which are both the preimages of Ukn−1 such that Xkn ∩Ukn 6= ∅ and Xkn ∩U ′kn 6= ∅.
Let xkn ∈ ∂Xkn ∩ ∂Ukn and x′kn ∈ ∂Xkn ∩ ∂U ′kn be the preimages of xkn−1. We will show
the relative distance between Ukn and U ′kn converges to zero as εkn converges to zero.
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Applying the Lemma 2.5 (1) to the case (U1, V1) = (Ykn , Zkn), (U2, V2) = (D(ckn , δ/2),
D(ckn , δ)) and g = f ◦kn , we know that there exists a constant C1(d) > 0 such that

Shape(Ykn , c) =
maxw∈∂Ykn |w − c|

dist(c, ∂Ykn)
≤ C1(d), (2.20)

where d is the constant appeared in Theorem 2.5.
Similarly, there exists a constant C2(d) > 0 such that

Shape(Xkn , c) =
maxw∈∂Xkn |w − c|

dist(c, ∂Xkn)
≤ C2(d). (2.21)

Now we estimate the relative distance of ∂Ukn and ∂U ′kn by (2.20) and (2.21).

∆(∂Ukn , ∂U
′
kn) =

dist(∂Ukn , ∂U ′kn)

min{diam(∂Ukn), diam(∂U ′kn)}

≤
|xkn − x′kn|

dist(c, ∂Ykn)−maxw∈∂Xkn |w − c|
≤

2 maxw∈∂Xkn |w − c|
dist(c, ∂Ykn)−maxw∈∂Xkn |w − c|

≤ 2C2(d)dist(c, ∂Xkn)

C−1
1 (d) maxw∈∂Ykn |w − c| − C2(d)dist(c, ∂Xkn)

=
2C2(d)

maxw∈∂Ykn
|w−c|

C1(d) dist(c,∂Xkn )
− C2(d)

.

(2.22)

On the other hand, by Lemma 2.4, the modulus of Ykn \Xkn satisfies

1

2π
log

maxw∈∂Ykn |w − c|
dist(c, ∂Xkn)

≥ mod(Ykn \Xkn)

≥ 1

d
mod(D(ckn , δ/2) \ D(ckn , εkn)) =

1

2πd
log

δ

2εkn
.

(2.23)

Note that εkn → 0 as n → 0, it follows that the relative distance ∆(∂Ukn , ∂U
′
kn) of

∂Ukn and ∂U ′kn tends to zero as n tends to ∞ by (2.22) and (2.23). This means that the
peripheral circles of Jf are not uniformly relatively separated. The proof is completed.

2.3.5 Proofs of the main results.

We now give the proofs of the main results in the introduction by combining some
propositions.

Proof of Theorem 2.1. By Propositions 2.1 and 2.3, the peripheral circles of carpet Jf
are uniform quasicircles and uniformly relatively separated. According to Bonk [Bon,
Corollary 1.2], Jf is quasisymmetrically equivalent to a round carpet. �

Proof of Theorem 2.2. The theorem follows immediately by Propositions 2.2, 2.3 and 2.4.
�

Proof of Theorem 2.3. By Theorem 2.1, let g : Jf → S be a quasisymmetric map sending
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Jf to a round carpet S. According to [Bon, Theorem 1.1], one can extend g : Jf → S

to a quasiconformal map from C to itself. Since f is semi-hyperbolic, the corresponding
Julia set Jf has measure zero by [Yin, Theorem 1.3]. It is well known that quasiconformal
maps on the plane preserve the measure zero. So the round carpet S has measure zero
as well. By the rigidity of Schottky sets (see [BKM, Theorem 1.1]), the quasisymmetric
group QS(S) consists of the restriction of Möbius transformations.

Note that g induces a group isomorphism

g∗ : QS(Jf )→ QS(S) with g∗(h) = g ◦ h ◦ g−1.

We are left to show that QS(Jf ) is discrete, i.e., there exists δ > 0 such that

infh∈QS(Jf )\{idJf }
�
maxz∈Jf |h(x)− x|

�
≥ δ.

If not, there exists a pairwise distinct sequence {hk}k≥1 ⊆ QS(Jf ) converging to idJf .
Let C1, C2 and C3 be three different peripheral circles of Jf . Then the Hausdorff distance
between Ci and hk(Ci) tends to zero as k tends to ∞. Since all hk(Ci) are either disjoint
or coincides for k ≥ 1 and i ∈ {1, 2, 3}, it follows that hk(Ci) = Ci for sufficiently large k.
This means, for sufficiently large k, the Möbius transformation g∗(hk) fixes three disjoint
round disks bounded by g(Ci), 1 ≤ i ≤ 3.

By the rigidity of Möbius transformation, these g∗(hk) must be the identity idS. It
follows that hk = idJf , for sufficiently large k. This contradicts the choice of {hk}k≥1.
The discreteness of QS(Jf ) is proved. �

2.4 An example of postcritically-infinite carpet Julia

set

In this section, we will construct a carpet Julia set of a rational map such that it is
quasisymmetrically equivalent to a round carpet. However, the rational map f is semi-
hyperbolic and has an infinite critical orbit in Jf .

Let q : R/Z→ R/Z be the doubling map defined by q(t) = 2tmodZ and

l(t) :=

8<: 2t if 0 ≤ t < 1/2,

2− 2t if 1/2 ≤ t < 1.
(2.24)

be the length of the component (R/Z)\{t, 1− t} containing 0. Let T (t) = min{2t, 2−2t}
be the tent map on the interval [0, 1]. One can easily check that

T ◦ l(t) = l ◦ q(t) (2.25)
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for all t ∈ [0, 1]. Actually, the map l(t) is equal to T (t). We use these notations here by
following Tiozzo’s paper [Ti, p. 24].

Lemma 2.10. Let 0 ≤ α ≤ 1 be a real number. Then α is rational if and only if α is
(pre-)periodic under the iteration of the doubling map q.

Proof. Obviously, this lemma holds for α = 0 or 1. Hence we assume that 0 < α < 1. If
α is (pre-)periodic, then there exist two different integers k1, k2 ≥ 0 such that q◦k1(α) ≡
q◦k2(α)modZ. This means that there exists an integer k3 such that 2k1α = 2k2α + k3.
Then α = k3/(2

k1 − 2k2) is a rational number.
Conversely, we only need to prove that, if α = m/n is a rational number with the

simplest expression, where n is odd, then α is periodic under q. Consider the restriction
of q on the set S := {0, 1/n, · · · , (n− 1)/n}:

h := q|S :
t

n
7→ 2 tmod n

n
.

We claim that h is injective. Indeed, if h(t1/n) = h(t2/n), then 2(t1 − t2) = k n holds for
some integer k. Since n is odd, it follows that k is even and |t1− t2| = |k2 | ·n ≤ n−1. This
means that k = 0 and t1 = t2. The finiteness of the cardinal number of S implies every
element in S is pre-periodic under h. Then each element in S is periodic. Otherwise,
there will be at least two elements which are mapped to a same element. This contradicts
with that h is a injection. The proof is complete.

In the following, based on the combinatorial theory of quadratic polynomials and
renormalization theory, we shall construct a semi-hyperbolic McMullen map whose Julia
set is quasisymmetrically equivalent to a round carpet.

Theorem 2.6. There exists a suitable parameter λ > 0 such that the McMullen map

fλ(z) = zd + λ/zd (2.26)

is semi-hyperbolic and the corresponding Julia set is quasisymmetrically equivalent to a
round Sierpiński carpet, where d ≥ 3.

Proof. We divide the construction into three main steps as following.

Step 1. For a given irrational number α ∈ (0, 1), one can write it as an infinite binary
sequence α = 0.a1a2a3 · · · by Lemma 2.10, where ai ∈ {0, 1}. Define a binary number

θ := 0.0 1 · · · 1| {z }
100

0 · · · 0| {z }
b1

1 · · · 1| {z }
b2

0 · · · 0| {z }
b3

· · ·

with bi = ai + 1 for i ≥ 1. Then 1 ≤ bi ≤ 2 and we have:
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• The number θ ∈ (0, 1/2) is irrational. If not, by Lemma 2.10, the number θ will be
eventually periodic under the iteration of the doubling map q. Then there exist m ≥ 2

and p ≥ 2 such that
q◦n(θ) = 0. 1 · · · 1| {z }

bm

0 · · · 0| {z }
bm+1

· · · 0 · · · 0| {z }
bm+p−1

,

where n = 101+b1+· · ·+bm−1. This means that the sequence bm, bm+1, · · · , bm+p−1, bm+p, · · ·
is periodic with period p. Therefore, the sequence am, am+1, · · · , am+p−1, am+p, · · · is also
periodic with period p since ai = bi−1 for each i. Then α = 0.a1 · · · am−1amam+1 · · · am+p−1

is a rational number by Lemma 2.10. This is a contradiction since α is irrational.
• Define a rational number with the binary form

θ′ = 0.0 1 · · · 1| {z }
99

.

Then 0 < θ′ < θ < 1/2 and θ′, θ are very close to 1/2. We have

l(θ′) = 0. 1 · · · 1| {z }
99

0 1 · · · 1| {z }
99

and l(θ) = 0. 1 · · · 1| {z }
100

0 · · · 0| {z }
b1

1 · · · 1| {z }
b2

0 · · · 0| {z }
b3

· · · .

For any n ≥ 2, one can easily check that

0 < l(q(θ′)) < l(q◦n(θ)), l(q◦n(θ′)) < l(θ′) < l(θ). (2.27)

• Define a set

R := {t ∈ R/Z : T ◦n(l(t)) ≤ l(t) for all n ≥ 0}. (2.28)

By (2.25) and (2.27), we have θ′, θ ∈ R.

Step 2. Construct a quadratic polynomial Pc(z) = z2+c with the following properties:
(1) The critical orbit O+

Pc(0) = {P ◦nc (0) : n ≥ 0} is contained in the Julia set of Pc and
the cardinal number of O+

Pc(0) is infinite.
(2) The critical point 0 is non-recurrent and the ω-limit set of 0 does not contain the β

fixed point. Recall that a β fixed point of a polynomial is the landing point of dynamical
external ray with angle zero.

The set R defined in (2.28) is exactly the set of all angles of parameter rays whose
prime-end impression intersects the subset R ∩M = [−2, 1/4] of the Mandelbrot set M
(see [Ti, Proposition 8.4]). By [Za, Theorem 3.3], there exists a real number c := c(θ) ∈
[−2, 1/4] in the boundary of the Mandelbrot set such that c is contained in the prime-end
impression of the parameter rays RM(±θ) since θ ∈ R. Moreover, on the dynamical plane,
the dynamical rays Rc(±θ) land at the critical value c of Pc(z) = z2 + c.

In fact, such c is unique. Otherwise, suppose that there exists another c′ 6= c, such
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that c′ is contained in the prime-end impression of the parameter rays RM(±θ). By the
density of hyperbolic parameters in R ∩M (see [GS] and [Ly]), there is a real hyperbolic
parameter ec between c and c′ with a pair of rational parameter rays landing at it. This
means that c′ and c cannot lie in the same prime-end impression of RM(±θ) at the same
time, which is a contradiction.

Now we prove that the quadratic polynomial Pc is the map what we want to find.
Again by [Ti, Proposition 8.4], the parameter rays RM(±θ′) land at a parabolic parameter
c0 ∈ R since θ′ ∈ R is a rational number. These two rays together with their landing point
RM(θ′) ∪ RM(−θ′) ∪ {c0} bounds a wake W 3 {−2} with the following property: The
quadratic map Pξ(z) = z2 + ξ has a repelling periodic point with exactly two dynamical
rays Rξ(±θ′) landing at if and only if ξ ∈ W (see [Mi2, Theorem 1.2]). By the construction
in Step 1, we have 0 < θ′ < θ < 1/2. Then RM(±θ) ∪ {c} ⊂ W and hence Rc(±θ′) land
at a repelling periodic point of Pc on the real line. Also, the image Rc(±q(θ′)) of Rc(±θ′)
land at some point on the real line.

Denote by H the simply connected domain bounding by the four dynamical rays
Rc(±θ′) and Rc(±q(θ′)). The two dynamical rays Rc(θ) and Rc(0) are contained in dif-
ferent components of C \H. Moreover, all the dynamical rays Rc(±qn(θ)), where n ≥ 2,
are contained in H by the definition of R and θ′. This means that the collection of their
landing points

S
n≥2 P

◦n
c (c) are contained in H. Therefore, the critical value c (which is

the landing point of Rc(±θ)) and the β fixed point of Pc are not contained in the ω-limit
set of the origin.

Step 3. Construct the semi-hyperbolic rational map fλ whose Julia set is quasisym-
metrically equivalent to a round carpet. Consider the McMullen map fλ(z) = zd + λ/zd,
where λ ∈ C\{0} and d ≥ 3. The free critical points of fλ are 2d-th unit roots of λ. They
are either escaping to ∞ or have bounded orbits at the same time. The non-escaping
locus of fλ is defined as

Λd := {λ ∈ C \ {0} : The free critical orbits of fλ are not attracted by ∞}.

See left picture in Figure 2.4 for the case when d = 3.
According to [Ste, Theorem 9], there exists exactly one copy M of the Mandelbrot

set of order one in Λd ∩ {λ ∈ C∗ : | arg(λ)| < π/(d − 1)} (Note that there exists a
semiconjugacy between fλ and the rational map discussed in [Ste, Theorem 9]). The
copy M is symmetric with respect to the positive real axis. Moreover, there exists a
homeomorphism Φ : M → M such that, for every λ ∈ R+ ∩M = R+ ∩ Λd, there is a
corresponding parameter Φ(λ) ∈ [−2, 1/4] and the Julia set Jfλ contains an embedded
set J̃PΦ(λ)

, which is homeomorphic to the Julia set of the quadratic polynomial PΦ(λ)(z) =

z2 + Φ(λ). Moreover, the restriction of fλ in a neighborhood of J̃PΦ(λ)
is quasiconformally

conjugated to the restriction of PΦ(λ) in a neighborhood of JPΦ(λ)
.
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M M

Figure 2.4: The non-escaping locus Λ3 of fλ (the left picture) contains infinitely many homeo-
morphic copies of the Mandelbrot set (the right picture).

Let λ0 = Φ−1(c) ∈ M∩ R+, where c = c(θ) ∈ (−2, 1/4) is the real parameter on the
boundary of the Mandelbrot set determined in Step 2. By the symmetry of McMullen
maps, all 2d free critical points of fλ0 are non-recurrent and they have infinite forward
orbits. This means that fλ0 is semi-hyperbolic (and not sub-hyperbolic). Let B∞ be the
immediate attracting basin of∞ of fλ0 . Then J̃PΦ(λ0)

∩B∞ = {zλ0}, where zλ0 is the image
of the β fixed point of JPc under the quasiconformal conjugacy stated above [QXY, Lemma
4.1]. Note that B∞ is the unique periodic Fatou component of fλ0 , it follows that the
ω-limit sets of the critical points of fλ0 are disjoint with the periodic Fatou component of
fλ0 by the construction of Pc.

By [QXY, Lemma 4.4], the Julia set of fλ0 is a Sierpiński carpet. By Theorem 2.2,
the peripheral circles of Jfλ0

are uniform quasicircles and uniformly relatively separated.
By Bonk’s criterion ( [Bon, Corollary 1.2]), the Julia set of fλ0 is quasisymmetrically
equivalent to a round carpet, as required.
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Chapter 3

Criterion for rays landing together

3.1 Introduction

Let f be a polynomial with degree d ≥ 2 in the complex plane C. The filled Julia
set is

Kf := {z ∈ C : The orbit {fn(z)}n≥0 is bounded }

and the Julia set is the topological boundary of the filled Julia set

Jf = ∂Kf .

Both of them are nonempty and compact, and the filled Julia set is full, i.e., the comple-
ment C \Kf is connected. We call Ωf := C \Kf the basin of infinity which consists of
points with the orbit attracted by ∞. If Jf is connected. Then Ωf is a simply connected
and there exists an unique holomorphic parameterization Ψf : Ωf → C \ D such that
Ψf (∞) =∞, Ψ′f (∞) = 1 and

Ψf ◦ f(z) = (Ψf (z))d. (3.1)

By the external ray R(θ) we mean the preimage of the radial line Ψ−1
f {re2πiθ : r > 1},

where θ ∈ R/Z is the argument of the ray. We say that R(θ) lands at z ∈ Jf if
limr→1Ψf (re

2πiθ) = z. By the theorem of Carathéodory Ψ−1
f extends continuous to ∂D

with Ψ−1
f (∂D) = Jf if and only if Jf is locally connected.

Throughout this chapter we consider the case, Jf is locally connected. Define α :

R/Z→ Jf , θ 7→ α(θ) where α(θ) is the landing point of ray R(θ). By (3.1), we have the
following semi-conjugation,

f(α(θ)) = α(σd(θ)), (3.2)

where σd : R/Z→ R/Z with θ 7→ d θ modZ. Thus, to study the topology of the Julia set
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and the dynamics of f on Jf is necessarily to figure out the semi-conjugation α.

There are two questions arising naturally,
(1) For any z in Jf , is the fiber α−1(z) finite ? In other words, are there only finite

rays landing at z ?
(2) Give a condition under which θ, θ′ are in the same fiber. That is, when two external

rays R(θ), R(θ′) land at a same point ?
For the first question, if the orbit of z is finite, then the fiber α−1(z) is finite [DH84]. If

z is wandering, i.e., the orbit is infinite, J.Kiwi gave an upper bound #α−1(z) ≤ 2d [Ki02].
A.Blokh and G.Levin consider the more general problem: counting the number of external
rays landing at distinct wandering points with disjoint forward orbits. Blokh and Levin
worked the abstract modeling invariant laminations and introduced a new tool called
growing tree [BL02]. In this chapter, inspired by [Ki02], we reprove the inequality in a
totally different way.

Theorem 3.1. Let z1, · · · , zm be wandering branched points such that their forward orbits
avoid the critical points and are pairwise disjoint. Then

X
1≤i≤m

(v(zi)− 2) ≤ d− 2.

In the above theorem, a point z is called to be a branched point if the fiber α−1(z)

contains at least three angles and the valence v(z) is cardinal number of α−1(z).
For the existence, W. Thurston proved that for quadratic polynomials there is no

wandering branched points. He asked a deep question concerning their existence for high-
er degree in the preprint [Th85]. A.Blokh and L.Oversteegen answered the question by
constructing an uncountable family of cubic polynomials, the Julia set of each one is a
dendrite and containing wandering branched points [BO08].

For the second question, following [BFH92], [Po93] and [Ki05] etc, we need a concept:
critical portrait associated to a polynomial f .
• For critical point c in Jf , Θ(c) is the set of arguments of external rays which land

at c and are inverse images of one ray landing at critical value f(c). Obviously, #Θ(c) is
degf (c), the local degree of f at c.
• For strictly pre-periodic critical Fatou component U , Θ(U) is a collection of deg(f |U)

arguments whose rays support U and are inverse images of one ray supporting f(U).
• For Fatou component cycle U0, · · · , Up−1 with f i(U0) = Ui, Up := U0, let Uk0 , · · · , Ukl

with 0 ≤ k0 < · · · < kl ≤ p − 1 be critical with degree n0, · · · , nl. For 0 ≤ i ≤ p, choose
(zi, θi), zi ∈ ∂Ui and R(θi) supporting Ui at zi, such that f i(z0) = zi, fp(zp) = zp and
f i(R(θ0)) = R(θi). Then Θ(Ukj) is the set of arguments whose external rays land on ∂Ukj
and are preimages of R(θkj+1), for 0 ≤ j ≤ l.
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Let A := {Θ(c1), · · · ,Θ(cm),Θ(U1), · · · ,Θ(Un)}. For any Θ ∈ A, set

ÒΘ :=
[
{Θ′ : ∃ a chain Θ0 = Θ, · · · ,Θk = Θ′ in A such that Θi

\
Θi+1 6= ∅}.

The collection ÒA := {ÒΘ1, · · · , ÒΘN} is called critical portrait associated to f . In the unit
circle, there is a partition P := {I1, · · · , Id} of R/Z \

S
1≤i≤N

ÒΘi. Each Ii is a finite union
of open intervals with total length 1/d.

Given a partition, we say x, x′ have the same itinerary respect to the partition under
a map g if and only if both gn(x) and gn(x′) lie in the same piece of the partition, for any
n ≥ 0.

For polynomials with all critical points strictly preperiodic, B.Biefield, Y.Fisher and
J.H.Hubbard showed that, if θ, θ′ have the same sequence respect to the partition P then
α(θ) = α(θ′) [BFH92]. A.Porier extends this result to crtitical finite polynomials, admit-
ting periodic Fatou component [Po93]. Both of their proofs rely on the orbifold metric in
Julia set, on which f is expanding. In [Ki05], Kiwi considered the polynomials with all
cycle repelling and Julia set connected. Based on the properties of maximal lamination,
he proved that if θ, θ′ have the same sequence respect to P , then the impressions of R(θ)

and R(θ′) intersect.
We prove the following theorem, which is the main result of this chapter.

Theorem 3.2 (Main Theorem). Let f be a polynomial with Jf locally connected. Let P
be the partition induced by critical portrait ÒA. If θ, θ′ have the same itinerary respect to
P, then either R(θ),R(θ′) land at the same point or R(θ), R(θ′) land at the boundary of
a Fatou component U , which is eventually iterated to a siegel disk.

Note that S.Zakeri in [Za00] proved that for Siegel quadratic polynomial f , i.e., f :

z → z2 + c has a fixed Siegel disk, no points has more that two rays landing at and if two
rays landing at z then z must eventually hit the critical point 0.

The following Corollary holds immediately.

Corollary 3.1 (No wandering continua in Jf ). Let f be a polynomial with Jf locally
connected. Then there is no wandering continua in Jf .

We have to point out that A.Blokh and G.Levin also proved the above corollary [BL02].
And J.Kiwi proved that, for polynomials without irrational neutral periodic orbits f , Jf
is locally connected if and only if f has no wandering continua in Jf . Kiwi’s proof relies
on constructing a puzzle piece around each pre-periodic or periodic point of a polynomial
f with all cycles repelling [Ki04].
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3.1.1 Motivation

One of our motivation is to study the core-entropy of polynomials. Suppose X is a
compact metric space and g : X → X is continuous. The topological entropy of g is mea-
suring the complexity of iteration from the growth rate of the number of distinguishable
orbits. The core-entropy of polynomial f is the topological entropy of f on its f -invaritant
set Hubbard tree, i.e., the convex hull of the critical orbits within the (filled) Julia set. Let
Acc(f) be the set of all biaccessible angles θ, i.e., there exist at least two rays landing at
α(θ). Then the core-entropy h(f) is related to the Hausdorff dimension of Acc(f) in the
following way,

h(f) = log d · H.dimAcc(f). (3.3)

These quantities are according to W.Thurston who firstly introduced and explored the
core-entropy of polynomials.

For quadratic polynomials, G.Tiozzo showed the continuity of core-entropy along prin-
cipal veins of the Mandelbrot setM in [Ti13]. This result is generalized by W. Jung to all
veins [Ju13]. Recently, G.Tiozzo proves that the function θ 7→ h(fθ) with fθ(z) = z2 + cθ

is continuous.
A.Douady proved the monotonicity of core-entropy along real vein MT

R [Do95].
The monotonicity for all postcritically finite quadratic polynomials is proved in Tao Li’s
thesis [Li07]. As an application of theorem 3.2, we extend Tao Li’s result to a quadratic
family F := {fc = z2 + c : fc has no Siegel disks and Jfc is locally connected }.

Theorem 3.3 (Monotonicity of core-entropy). For any fc, fc′ ∈ F , if fc ≺ fc′, then
Acc(fc) ⊆ Acc(fc′) and so h(fc) ≤ h(fc′).

For any fc, fc′ in F , we say fc ≺ fc′ if and only if Ic ⊇ Ic′ , where Ic is the characteristic
arc of fc. See section 3.7 for details.

3.1.2 Sketch of the proof and outline of the chapter

The proof of main theorem 3.2 is based on the analysis in the dynamical plane. There
is a partition {Πi}1≤i≤d of C, induced by critical portrait. It has nice properties: for any
points x, y ∈ Πi

T
Jf , the regulated arc [x, y] ⊆ Πi and F |[x,y] is one-to-one, where F is a

topological polynomial which takes the same value as f in Ωf . Thus if x 6= y have the
same itinerary respect to {Πi}, we obtain a sequence {F n[x, y]} of regulated arc. The
sequence will eventually meet

S
1≤i≤d ∂Πi

T
Jf . However it is difficult to prove that the

partition {Πi}1≤i≤d separates fn(x), fn(y) for some n. To overcome this difficult, we use
this sequence to construct a wandering arc in Jf , which is a contradiction.

In section 3.2, we prove theorem 3.1. This key result is useful to show the fact of no
wandering regulated arcs in Lemma 3.3.
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In section 3.3, we give the construction of regulated arcs and describe its properties.
In section 3.4, we explain how to get a desired topological polynomial F by modifying

f in Fatou set.
Section 3.5 analysis the properties of partition induced by critical portrait in the

dynamic plane.
The main Theorem 3.2 is proved in section 3.6.
In the last section, we discuss characteristic arcs in details and give an application of

the main theorem to the monotonicity of core entropy for a quadratic polynomial family.

3.2 Wandering Orbit Portrait

If not otherwise stated, we assume f to be a polynomial with degree d ≥ 2 and Jf

locally connected. Our objective is to prove the Proposition 3.1 in this section.

3.2.1 Portraits

Now we give some definitions by following [Mi00] [GM93] [BFH92] [Ki02] etc.
For a point z in Jf , the valence of z, written v(z), is the number of external rays

landing at z. Then 1 ≤ v(z) ≤ ∞. If v(z) ≥ 3, z is called to be a branched point. z is
called to be wandering if fm(z) 6= fn(z) for m 6= n ≥ 0.

Let T := {θ1, . . . , θn}, θi ∈ R/Z, 3 ≤ n < ∞. T is called to be a portrait of z if all
R(θi) land at z. Denote by α(T ) := z the base point and v(T ) := n the valence of T .
Obviously, we have 3 ≤ v(T ) ≤ v(z).

Let T be a portrait of z. Each connected components of C \ Sθ∈T R(θ) is called a
sector of T based at z. Evidently, any sector S of T is bounded by two rays R(θa), R(θb)

with θa, θb ∈ T . Let I(S) be the segment of R/Z \ {θa, θb} disjoint with T . Then there
is a one-to-one correspondence betweens sectors based at z and the segments of R/Z \ T ,
characterized by the property that R(t) is contained in S if and only if t is contained in
I(S). Denote the correspondence by I : S 7→ I(S).

We define the annular size of a sector S, written l(S), by the length of the correspond-
ing arc I(S) in R/Z. Number the n sectors of T by S1(T ), · · · , Sn(T ) according to their
length:

l(S1(T )) ≤ l(S2(T ) · · · ≤ l(Sn(T )).

By means of critical sector or critical value sector if a sector S contains critical points
or critical values.

Lemma 3.1 (For portraits with distinct base points). Let T, T ′ be two portraits with
α(T ) 6= α(T ′). Let S resp. S ′ be the sector of T resp. T ′ such that α(T ′) resp. α(T ) is
contained in S resp. S ′. Then all but S ′ resp. S of the sectors of T ′ resp. S ′ are contained
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α(T ′)

Si(T ) Si(T
′)

S

Figure 3.1: Portraits T, T ′ with distinct base points

in S resp. S ′ and so we have

l(Si(T
′)) < l(S) for Si(T ′) 6= S ′ and l(Si(T ))) < l(S ′) for Si(T ) 6= S.

Proof. Set G :=
S

1≤i≤v(T ) R(θi) ∪ {α(T )} and G′ :=
S

1≤i≤v(T ′) R(θ′i) ∪ {α(T ′)}. They
are disjoint close connected subset of C. So G′ is contained in exactly one connected
component of C \ G, that is, some sector of T . Since α(T ′) ∈ S and α(T ) ∈ S ′, we have
G′ ⊆ S and G ⊆ S ′. See figure 3.1. Thus all sectors of T ′ resp. T except S ′ resp. S are
contained in S resp. S ′. The lemma follows.

3.2.2 Sector maps

Lemma 3.2 (Properties of sector maps). Let T = {θ1, · · · , θv(T )} be a portrait such that
the base point α(T ) is not a critical point of f , here θi are enumerated in cyclic order
around the circle. Then

(1) The map σd : t 7→ dt mod Z carries T bijectively onto the portrait T ′ : = {σd(θ1),

· · · , σd (θv(T ))} of f(α(T )) preserving cyclic order. Define the portrait map to be

σd : T 7→ T ′.

(2) Let S be a sector of T bounded by R(θa) and R(θb). Then the sector map

σd : S 7→ S ′,

where S ′ is the sector of T ′ bounded by R(σd(θa)) and R(σd(θb)), is well defined and
one-to-one.

(3) l(σd(S)) = d l(S) mod Z. Moreover, the integer n0 := d l(S) − l(σd(S)) is the
number of critical points, counting multiplicity, of f contained in S.
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Figure 3.2: Sector maps

(4) If n0 ≥ 1, then σd(S) contains at least one critical values.
(5) If l(S) < 1/d, then l(σd(S)) = d l(S) and the restriction of f on S is homeomor-

phic.

Note that we distinguish the distinct definitions of σd by acting on different categories.

Proof. Let z := α(T ). Since z is not critical. f is a locally orientation-preserving homeo-
morphism at z. Note that the v(T ) angles θi in R/Z and rays R(θi) around z are identical
in order. Moreover, the order of R(θi) can be measured within an arbitrarily small neigh-
borhood of z. It follows that all rays with angels in T ′ land together at f(α(T ) and σd
sends angles in T onto T ′ bijectively and keeping the order. Thus (1) and (2) follows.

For (3), suppose S is bounded by R(θa), R(θb). Let γab(t) be a segment of equipotential
curve {z ∈ C : Gf (z) = 1} which lies in S with γ(0) = xa and γ(1) = xb, where
{xa} := γab

T
R(θa) and {xb} := γab

T
R(θb). Let Q be the close domain bounded by

R(θa), γab and R(θb). See figure 3.2.
Consider the image f(∂Q). It starts at f(z) and goes along the rays R(σ(θa)) until it

arrives at f(xa), then it rotates d l(S) angles, parameterized by angles of external rays,
along the equipotential curve {z ∈ C : Gf (z) = d} to f(xb), finally it turns to f(z) along
R(σ(θb)) and stops.

Let Gd := {z ∈ C : Gf (z) < d}. Let Q′ be the domain σd(S)
T
Gd. By the arguments

above, it is easy to see that f(γab) surround ∂Gd in n0 times and overlap ∂Gd
T
∂Q′ one

time more. Thus,
l(σd(S)) + n0 = d l(S).

Moreover, z ∈ ∂Gd \ ∂Q′ has n0 preimages in γab and z ∈ ∂Gd
T
∂Q′ has n0 + 1 preimages

in γab. The winding number of points in Gd \ f(∂Q′) are

w(z) =

8<: n0 + 1 z ∈ Q′

n0 z ∈ Gd \Q′.
(3.4)
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By the Arguments Principle, every point z ∈ Gd \ f(∂Q) has w(z) preimages, counting
multiplicity, in Q.

Now claim that every points z in ∂Q′ \ ∂Gd, consisting of two segments of external
rays, has n0 + 1 preimages, counting multiplicity, in Q. Since such z can not be a critical
value, choose sufficiently small enough neighborhood Uz such that the restriction of f on
every component f−1Uz is homeomorphic. Since Uz

T
Q′ has n0 + 1 components in Q and

Q is closed, z must have n0 + 1 preimages in Q as well.
Let v1, · · · , vn ∈ f(Q) be the critical value of f |Q. Let µi be the total multiplicity

of critical points in Q mapped to vi. Choose a cell subdivision ∆ of f(Q) such that
the set of its 0-cells contains {f(z), v1, · · · , vn} and the set of 1-cells contains ∂Q′. Let
∆1 := {complexes of ∆ contained in Q′} and ∆2 := ∆ \ ∆1. It follows that ∆1 is a
cell subdivision of Q′. Set xi, yi, zi to be the number of 0-cell, 1-cell and 2-cell of ∆i.
Computing the Euler characteristic, we have

X (Q′) = x1 − y1 + z1 = +1 (3.5)

and
X (f(Q)) = (x1 + x2)− (y1 + y2) + (z1 + z2) = +1. (3.6)

After lifting every complexes in ∆ by f |Q, we obtain a cell subdivision ∆0 of Q. Then

X (Q) = [(n0 + 1)x1 + n0x2 −
X

1≤i≤n
µi]− [(n0 + 1)y1 + n0y2]

+ [(n0 + 1)z1 + n0z2] = +1.

(3.7)

Combining (3.5), (3.6) and (3.7), we have

X
1≤i≤n

µi = n0.

Thus (3) is completed.
For (4), we use the notations as above. If not, assume Q′ contains no critical values.

Then every component of f |−1
Q (Q′) is simply connected and f on the closure of which is

homeomorphic. Consider the component C with ∂Q\γab ⊆ C. f |C cannot be one-to-one,
a contradiction.

For (5), it follows directly by (3).

3.2.3 Dynamics of wandering portraits

Portrait T is called to be wandering if and only if the point α(T ) is wandering and
not iterated to critical points of f . We denote by Tn := σ◦nd (T ).
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Recall that S1(T ), · · · , Sv(T )(T ) are the v(T ) sectors of T enumerated by the order of
their annular size. We have the following lemma. See also in [Ki02].

Lemma 3.3. Let T be a wandering portrait. Then

limn→∞l(Sv(T )−2(Tn)) = 0.

Proof. If not, there exist a number a > 0 and an infinite sequence Tnk such that

5a/6 < l(Sv(T )−2(Tnk) < 7a/6.

The sectors Sv(T )−2(Tnk) can not be pairwise disjoint. Because otherwise the total length
of the infinite many intervals I(Sv(T )−2(Tnk) would be greater than 1.

Then there exist ni 6= nj such that Sv(T )−2(Tni)
T
Sv(T )−2(Tnj) 6= ∅. By Lemma 3.1,

we can assume α(Tni) ∈ Sv(T )−2(Tnj) and both sectors Sv(T )−2(Tni) and Sv(T )−1(Tni) are
contained in Sv(T )−2(Tnj). Thus,

l(Sv(T )−2(Tnj)) > l(Sv(T )−2(Tni)) + l(Sv(T )−1(Tnj)) > 5a/3,

a contradiction.

By lemma 3.3, for any wandering portrait T , the annular size of sectors Tn, except
the two large ones, will converges to zero. Furthermore, a similar argument can show
that lim inf l(Sv(T )−1(Tn)) = 0. We will not use this fact. We are more interested in the
moment when a "wide" critical sector is mapped to a "narrow" critical value sector.

For any sufficiently small ε > 0 and 1 ≤ k ≤ v(T )− 2, Set

nε,k(T ) := min{n : l(Sk(Tn)) < ε}.

By lemma 3.3, l(Sk(Tn)) will eventually be smaller than ε as n→∞. Thus nε,k(T ) is well
defined. We have the following,

Lemma 3.4. Let T be a wandering portrait. Then There exists δ > 0 such that for any
ε < δ, denote by nε,k := nε,k(T ), 1 ≤ k ≤ v(T ) − 2, we have l(Sk+1(Tnε,k)) > ε and there
exists at least one critical value sector Sk0(Tnε,k) with 1 ≤ k0 ≤ k.

Proof. By lemma 3.3, there exists an integer N ≥ 1 such that, for any n ≥ N ,

(Sv(T )−2(Tn)) <
1

2v(T )d
.

Set
δ := min1≤i≤N{ l(S1(Ti)) }.
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For any ε < δ, since nε,k is the first time that the kth sector has length strictly less than
ε. We have

ε ≤ l(Sk(Tnε,k−1)) ≤ l(Sv(T )−2(Tnε,k−1)) <
1

2v(T )d
.

By Lemma 3.2 (5), f maps the v(T ) − 2 sectors S1(Tnε,k−1), · · · , Sv(T )−2(Tnε,k−1) onto
sectors of Tnε,k homeomorphic with their length multiplied by d. Then

l(σd(Sk(Tnε,k−1))) ≥ dε > ε and l(Sk(Tnε,k)) < ε.

This means σd must map at least one of the two sectors Sv(T )−1(Tnε,k−1) and Sv(T )(Tnε,k−1)

onto a "narrow" sector Sk0(Tnε,k) with l(Sk0(Tnε,k)) < ε. By lemma 3.2 (4), Sk0(Tnε,k) is
a critical value sector. Actually, there are only one of the above two sectors mapped to
such "narrow" sector. Because the total length of the v(T )− 1 images,

l(Sk0(Tnε,k)) +
X

1≤i≤v(T )−2

l(σd(Si(Tnε,k−1))) <
1

2
.

It follows that the other sector is mapped to the widest sector Sv(T )(Tε,k) with length > 1
2
.

Thus, we have

Sk+1(Tnε,k) = σd(Sk(Tnε,k−1)) ≥ dε > ε and 1 ≤ k0 ≤ k.

The proof is completed.

3.2.4 Proof of theorem 3.1

Proposition 3.1. Let T (1), · · · , T (m) be wandering portraits such that α(T (i)) have disjoint
forward orbits. Then X

1≤i≤m
(v(T (i))− 2) ≤ d− 2. (3.8)

Proof. Let ε0 > 0 be smaller than any δT (i) , for 1 ≤ i ≤ m, as stated in the Lemma 3.4.
Firstly, applying Lemma 3.4 to the case T = T (1), k = 1 and ε = ε0, we obtain a critical
value sector S1(T (1)

nε0,1
) and

ε := l(S1(T (1)
nε0,1

)) < ε0 < l(S2(T (1)
nε0,1

)). (3.9)

Let nk,i := nε,k(T
(i)), for 1 ≤ i ≤ m, 1 ≤ k ≤ v(T (i)). By the definition of nk,i and

orbits of α(T (i)) disjoint in the condition, it is easy to see that

nk1,i 6= nk2,j 6= nε0,1 and α(T (i)
ni,k1

) 6= α(T (j)
nj,k2

) 6= α(T (1)
nε0,1

), (3.10)

for 1 ≤ i, j ≤ m and (i, k1) 6= (j, k2), 1 ≤ k1 ≤ v(T (i)), 1 ≤ k2 ≤ v(T (j)). By Lemma 3.4
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again, we obtain N :=
P

1≤i≤m(v(T (i))− 2) critical value sectors, denoted by Sτ(k,i)(T
(i)
nk,i

),
and we have

l(Sτ(k,i)(T
(i)
nk,i

)) < ε < l(Sk+1(T (i)
nk,i

)), 1 ≤ τ(k, i) ≤ k. (3.11)

By (3.10) and Lemma 3.1, for any distinct two of the N + 1 critical value sectors
S1(T (1)

nε0,1
) and Sτ(k,i)(T

(i)
nk,i

), they are neither disjoint or one contains the other.
We claim that the latter case can not happen. If not, suppose Sτ(k1,i1)(T

(i1)
nk1,i1

) are
contained in Sτ(k2,i2)(T

(i2)
nk2,i2

). By Lemma 3.1, we have

Sk1+1(T (i1)
nk1,i1

) ⊂ Sτ(k2,i2)(T
(i2)
nk2,i2

) and l(Sk1+1(T (i1)
nk1,i1

)) < l(Sτ(k2,i2)(T
(i2)
nk2,i2

)).

This contradicts (3.11). If one of them is S1(T (1)
nε0,1

), similarly by (3.9), it is impossible.
Thus the N + 1 critical values sectors are pairwise disjoint and each of them contains

at least one critical value. Since it is known that, for degree d polynomials, there exist at
most d− 1 critical values. So N + 1 ≤ d− 1. The proof is completed.

Proof of Theorem 3.1. The theorem follows immediately by Propositions 3.1. �

Actually the result in this section can extended to polynomials with Julia set connected
or not connected. We omit the details. See Appendix A in [Ki02].

Corollary 3.2. Let f be a polynomial with the Julia set Jf locally connected. Then the
number of grand orbits of wandering branched points is finite.

3.3 Regulated arcs

According to Fatou and Sullivan, every bounded Fatou components of polynomials
must eventually be mapped to the immediate basin of attraction of an attracting periodic
point, or to an attracting petal of a parabolic periodic point, or to a periodic Siegel
disk [Mi06] [Su83]. We refer to these cases simply as hyperbolic, parabolic and Siegel

cases.
For any two points x, y ∈ Kf there usually exist more than one arc γ in Kf connecting

x and y. In the following, we will give the definition of internal ray and regulated arc
in Kf and show how to choose a canonical embedded arc between any two points in the
filled Julia set. Under certain condition, such arc is unique (See Lemma 3.7).

3.3.1 Extended rays

Now consider the polynomial f with Jf locally connected. We have,
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Lemma 3.5 (Bounded Fatou components are Jordan domains). For any bounded Fatou
component U , ∂U is a Jordan curve.

Proof. Since Jf is locally connected, then ∂U is locally connected. Consider the Riemann
map: ΦU : D → U , it extends continuously to D by Carathéodory Theorem. Therefore,
∂U is the curve ΦU(S1). If ΦU |S1 is not injective. Then there exists t < t′ in S1 with
ΦU(t) = ΦU(t′). The two rays ΦU([0, 1]e2πit) and ΦU([0, 1]e2πit′) will bound a domain U ′,
which contains subset of the Julia set ΦU({e2πiη : t < η < t′}. Since Jf is the boundary of
infinity attracting domain Ωf , some points in U ′ will escape to infinity. This contradicts
the Maximum Value Principle.

Given any bounded Fatou component U , pick a point c(U) in U as center point and
a Riemann map ϕU : U → D with ϕU(c(U)) = 0. Then extend it to a homeomorphism
ϕU : U → D by Carathédory Theorem.

An arc in U of the form ϕ−1
U {reiθ : 0 ≤ r ≤ 1} is called a internal ray of U with

angle θ. All these internal rays meet at the center point c(U). Each ray has a well defined
landing point in the boundary of U . Conversely, for any point z in the boundary of U ,
there exists an unique internal ray of U landing at z. We denote this internal ray by
RU(z). For any θ ∈ R/Z, if α(θ) = z ∈ ∂U , define the extended ray

ÒRU(θ) := R(θ)
[
RU(z).

3.3.2 Components of Jf \ {x} are arcwise connected

Recall that a topological space X is said to be arcwise connected provided that there is
a topological embedding of [0, 1] into X (called arc ) joining any two given distinct points.
If p ∈ X, then X is said to be locally arcwise connected resp. locally connected at p,
provided that every neighborhood of p contains an arcwise connected neighborhood resp.
connected neighborhood of p. The space X is said to be locally arcwise connected resp.
locally connected, provided that X is locally arcwise connected resp. locally connected at
every point. We have the following well-know result.

Lemma 3.6. If a compact metric space X is locally connected, then it is locally arcwise
connected.

It follows directly by the Lemma 17.17 and Lemma 17.18 in [Mi06].

Corollary 3.3. If a compact metric space X is connected and locally connected, then it is
arcwise connected. Moreover, every connected component of X \ {x} is arcwise connected
for any x in X.

Proof. Fix p ∈ X, define Y as follows

Y = {p}
[
{x ∈ X : there is an arc in X joining p and x}
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Figure 3.3: Constructing regulated arc

Obviously, Y 6= ∅. SinceX is locally arcwise connected by Lemma 3.6. A simple argument
show that both Y and X \ Y are open in X. Thus, since Y 6= ∅ and X is connected, we
must have Y = X. So X is arcwise connected.

Let C be a connected component of X \ {x}, then C is open in X. Indeed, since
X is locally connected, every z in C has a sufficiently small connected neighborhood Wz

avoiding x, thus Wz ⊆ C.
Since X is locally arcwise connected by Lemma 3.6, C is locally arcwise connected as

well. Then one can show that C is arcwise connected in exactly the same way as above.

Hence all Julia sets and filled Julia sets discussed in this chapter are locally arcwise
connected and arcwise connected.

3.3.3 Uniqueness of regulated arc

An arc γ in Kf is called to be regulated if it joins two distinct points in Jf and for
any bounded Fatou component U , the intersection γ

T
U is an empty set or a point or

exactly two internal rays.

Lemma 3.7 (Uniqueness of regulated arc). For any two distinct points x, y in Jf , there
exists only one regulated arc in Kf joining x and y.

Proof. Let η(t) : [0, 1]→ Kf be the arc joining x and y with η(0) = x and η(1) = y. For
any Fatou component U whose closure intersects the arc η, set xU = inf0≤t≤1{t : η(t) ∈ U},
i.e., the first time η meets U , and yU = sup0≤t≤1{t : η(t) ∈ U}, i.e., the last time η meets
U . If xU 6= yU . Then we replace the segment η((xU , yU)) starting at η(xU) ending at
η(yU) by the internal rays RU(η(xU) and RU(η(yU)), updating η = η[0, xU ]∪RU(η(xU))∪
RU(η(yU)) ∪ η[yU , 1]. After doing these processes for countable many Fatou components,
we obtain a regulated arc η connecting x and y as required.
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For the uniqueness, if η′ is the other one. Then C \ η ∪ η′ consists of several disjoint
connected components. Let W be one of the bounded component in Kf . Then W is a
Jordan domain and ∂W ⊆ η ∪ η′. Applying the Maximum value Principle, W belongs
to the Fatou set. Let U be the Fatou component containing W . Thus W ⊆ U . Since
(η ∪ η′)TU consists at most four internal rays and all of the internal rays hit only at the
center point c(U). It is impossible for them to bounded a domain W , a contradiction.

The regulated arc is denoted by [x, y]. The open arc (x, y) is defined by [x, y] \ {x, y},
and similarly the semi-open arc [x, y) and (x, y].

3.3.4 Quasi-buried regulated arc

A regulated arc γ is called quasi-buried if the intersection between γ and the closure of
any bounded Fatou component is either empty or exactly one point. Obviously ifKf = Jf ,
every regulated arc is quasi-buried. But if Kf 6= Jf , does there exist quasi-buried arc?
We conjecture that for some special locally connected Jf such regulated arc exists.

Similarly as the quadratic case, for high degree polynomials, we still define β fixed
point as the landing point of external ray R(0). It can be a branched point with at most
d− 1 external rays landing at.

Let E ′ :=
S
i≥0{f−i(β)}, i.e., the preimages of β fixed points. Set E be the union of

E ′ and branched points in Jf . If Jf is a segment, then E ′ = E. We know that E ′ is dense
in Jf [Mi06] and thus E is dense in Jf . Moreover, we have the following,

Lemma 3.8 (Denseness of E in quasi-buried arcs). Let I := [x, y] be a quasi-buried
regulated arc in Kf . Then E is dense in I.

Proof. Let p be any point in I \ {x, y}. Since Jf is locally arcwise connected by Lemma
3.6, we can choose sufficiently small arcwise connected neighborhood Wp in Jf such that

Wp

\
{x, y} = ∅ and p ∈ Wp

\
I b I. (3.12)

See figure 3.4. By the denseness of E in Jf , Wp
T
E is not empty. Choose a point z in

Wp
T
E. If z is in I, then we are done. If not, there exists an arc γzp in Wp joining z and

p, because Wp is arcwise connected.
Let ξ be the point at which γzp meets I at the first time. Then ξ belongs to I \ {x, y}

by (3.12). Let γzξ be the subarc of γzp joining z and ξ. It follows that the three arcs γzξ,
[x, ξ] and [y, ξ], meeting at ξ, form a "Y" shape.

We are left to show that ξ is a branched point. Due to the Theorem 6.6 in [Mc95], we
only have to proof that Kf \ {ξ} has at least three connected components. Actually we
have the following.

Claim that x, y and z lie in distinct connected components of Kf \ {ξ}.
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Figure 3.4: illustrating the proof of lemma 3.8

Proof. If not, suppose x, z in the same component C. By Corollary 3.3, C is arcwise
connected, thus there exists an arc γxz(t) in C joining x and z with γxz(0) = x and
γxz(1) = y. Set

tx := sup0≤t≤1{t : γxz(t) ∈ [x, ξ]} and tz := inf0≤t≤1{t : γxz(t) ∈ γzξ}.

Denote by x′ = γxz(tx) and z′ = γxz(tz). Note that x′, z′ are contained in [x, ξ) and
γzξ \ {ξ} respectively. Let γx′z′ be the subarc in γxz joining x′ and z′. It follows that
η := γx′z′ ∪ [z′, ξ] ∪ [x′, ξ] bounds a Jordan domain V . By the Maximum Value Principle,
V must be contained in some Fatou component U . Then [x′, ξ] ⊆ ∂U . This contradicts
the definition that I

T
U is either empty or only one point. A same argument show that

y, z and x, y cannot lie in the same component of Kf \ {ξ}. The claim is completed.

Thus ξ is a branched point. The proof is completed.

3.4 The topological polynomial F

The regulated arcs in Kf may not be preserved by the dynamic of f . In this section,
we will construct a nice topological polynomial F by modifying f in each bounded Fatou
set. F will coincide with f on the basin of infinity and the Julia set Jf . The above
difficulty can be most conveniently overcome by investigating F instead of f . Since we
only interest in the Julia set and the combination of external angles. These changes make
no essentially differences.
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3.4.1 Branched covering map

Let X and Y be domains in C, g : X → Y be a continuous map. Then g is called a
branched covering map if we can write it locally as the map z 7→ zn for some n ∈ N after
orientation-preserving homeomorphic changes of coordinates in domain and range. More
precisely, we require that for each point q ∈ Y and any preimage p in g−1(q) there exists
n ∈ N, open neighborhoods U of p and V of q, open neighborhoods U ′ and V ′ of 0 ∈ C
and orientation-preserving homeomorphisms φ : U → U ′ and ψ : V → V ′ with φ(p) = 0

and ψ(q) = 0 such that
(ψ ◦ g ◦ φ−1)(z) = zn (3.13)

for all z ∈ U ′.
The integer degg(p) := n ≥ 1 is uniquely determined by g and p and called the local

degree of g at p. A point c ∈ C with degg(c) ≥ 2 is called a critical point of g and its
image g(c) critical value. Moreover, g is an open and surjective mapping. If the set of
all critical points only consists of finite isolated points, then g is finite-to-one, i.e., every
point has finitely many preimages under g. More precisely, if deg(g) is the topological
degree of g, then X

p∈g−1(q)

degg(p) = deg(g)

for every q ∈ Y . A branched covering with no critical point is called unbranched covering.
A branched covering map g : C → C is called topological polynomial if g−1(∞) = ∞,
that is , ∞ is a fixed point with local degree deg(g).

3.4.2 From polynomial f to topological polynomial F

For polynomial f , a bounded Fatou component is called critical Fatou component if it
contains critical point of f . Its image is critical value Fatou component. Given a bounded
Fatou component U , f maps U to Fatou component U ′ holomorphic. f |∂U : ∂U → ∂U ′ is
an unbranched covering map with degree deg(f |U).

Recall that ϕU : U → D c(U) 7→ 0 is a conformal parameterization . Set

ϕUU ′ := ϕU ′ ◦ f ◦ ϕ−1
U |∂D : ∂D→ ∂D.

Now we extend ϕUU ′ to be

ϕUU ′ : D→ D re2πiθ 7→ rϕUU ′(e
2πiθ).

One can check that ϕUU ′ is a branched covering. Define FU := ϕ−1
U ′ ◦ ϕUU ′ ◦ ϕU : U → U ′
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by the following communicate diagram,

(U, c(U))
FU−−−→ (U ′, c(U ′))

ψU

???y ???yψU′
(D, 0)

ψUU′−−−→ (D, 0).

By the construction, FU satisfies
• FU |∂U = f |∂U .
• FU sends c(U) to c(U ′).
• FU is a branched covering with degree deg(f |U) and the critical point can only be

c(U).
• FU sends internal rays to internal rays, more precisely, FU(RU(z)) = RU ′(f(z)).
Now we define the topological polynomial F : C→ C,

F (z) :=

8<: FU(z) If z in some bounded Fatou component U,
f(z) Otherwise.

(3.14)

Evidently, F takes the same value as f in the Julia set and the basin of infinity. Further-
more, we have the following.

3.4.3 Properties of the topological polynomial F

Lemma 3.9. (1) F is continuous.
(2) F is a branched covering map.
(3) For any x 6= y ∈ Jf , [F (x), F (y)] ⊆ F ([x, y]).
(4) F (ÒRU(θ)) = ÒRU ′(σd(θ)), where U ′ = F (U), for any extended ray ÒRU(θ).

Proof. (1) We only have to show that, for any z ∈ Jf , F is continuous at z. Let {zk} be
an arbitrary sequence such that zk → z as k →∞. We continue the discussion into three
cases,
• If {zk} ⊆ Ωf . Since F |Ωf = f and f is continuous, then F (zk)→ F (z) as k →∞.
• If {zk} are contained in C\Ωf . Let {Uk} be a sequence of bounded Fatou components

such that zk ∈ Uk and U := {Uk : k ≥ 1}. If #U < ∞, since F is continuous in any
Fatou component, we f(zk)→ f(z) as k →∞. If #U =∞, since Jf is locally connected,
the diameter of Fatou component F (Uk) converges to zero as k → ∞ (See for example
Lemma 19.5 in [Mi06]). Thus,

|F (zk)− F (z)| ≤ |F (zk)− f(zk)|+ |f(zk)− F (z)|

≤ diam F (Uk) + |f(zk)− f(z)| → 0 as k →∞.
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• In other cases, decompose {zk} into two subsequence {zki}, contained in Ωf , and
{zk′i} in Fatou set. By the former arguments, both of the image of the two subsequence
converge to F (z) as k →∞. So F (zk)→ 0 as k →∞.

Thus F is continuous.

(2) Let Crit(F ) to be the union of critical points of f in Jf and the center of critical
Fatou components.

Firstly, claim that F : C \ F−1(F (Crit(F ))) → C \ F (Crit(F )) is an unbranched
covering. We only have to show that F is locally homeomorphic on C\Crit(F ). For any z
in some Fatou component U , It follows by the construction of FU . For any z ∈ Jf\Crit(F ),
choose a sufficiently small neighborhood Wz such that
• f on Wz is injective,
• F |Wz

T
U is injective for any critical Fatou components,

• f(U) 6= f(U ′) for any distinct Fatou component U and U ′ which intersect Wz.
By the definition of F , We know that F |Wz is injective. Therefore, F |Wz is a homeo-

morphism by the domain invariance theorem. The claim follows.
Secondly, consider point z in the finite set Crit(F ). Let W be sufficiently small topo-

logical disk around F (z) and

φ : W → D F (z) 7→ 0

the topological parameterization. Let W ′ be one of the component F−1W containing z.
Since F : W ′ \ {z} → W \ {F (z)} is an unbranched covering by the claim. The Riemann
Hurwitz formula implies W ′ is a topological disk around z. Denote by δ := deg(F |W ′\{z}).
Consider the following communicate diagram,

W ′ − {z} ψ−−−→ D− {0}

F

???y ???yz 7→zδ
W − {F (z)} φ−−−→ D− {0}

where ψ is a homeomorphism obtained by Lifting φ through F and z 7→ zδ. Set ψ(z) = 0.
Thus F satisfies (3.13) at z.

Therefore, F is a branched covering. The critical points set is Crit(F ).

(3) F ([x, y]), consisting of internal rays, is a curve connecting F (x) and F (y). There ex-
ists a regulated arc γ ⊆ F ([x, y]) joining F (x) and F (y). By Lemma 3.7, γ = [F (x), F (y)].

(4) Let z ∈ ∂U to be the landing point of R(θ). Then F (z) = α(σd(θ)) ∈ ∂U ′. Since
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FU maps internal ray RU(z) to internal ray RU ′(F (z)) and F (R(θ)) = R(σd(θ)). Thus
F (ÒRU(θ)) = ÒRU ′(σd(θ)). The proof is completed.

3.5 Partitions induced by critical portraits

In this section our objective is to divide the plane into several simple connected do-
mains by external rays and extended rays. These rays land at Crit(F ) and collide together
after F . The restriction of F on each pieces is homeomorphic.

3.5.1 Supporting arguments resp. rays

Following [Po93], we give the definition of supporting arguments resp. supporting rays.
Let U be a Fatou component and p ∈ ∂U with total k rays R(θ1), · · · , R(θk) landing at.
These rays, numbered in counterclockwise cyclic order, divide the plane into k sectors.
Suppose U belong to the sector bounded by R(θ1) and R(θ2). The argument θ1 resp.
the ray Rθ1 is called the left supporting argument resp. left supporting ray of the Fatou
component U . We can also define the right supporting arguments resp. right supporting
rays in analogous way. If only one ray lands at p, then the two supporting rays coincide.

Lemma 3.1. For any U and p ∈ ∂U , the left resp. right supporting ray of U at p exists
and is unique. Let R(θ) be a ray land at p, then R(θ) is the left resp. right supporting ray
of U at p if and only if F (R(θ)) is the left resp. right supporting ray of F (U) at F (p)

Proof. Firstly, there are at least one and at most finite many rays landing at p by [DH84]
and Theorem 3.1. Thus it exists and is unique by definition.

Let R(θ′) be the right (left) supporting ray of U at p. Lθθ′ := R(θ)
S{p}SR(θ′) bounds

a domain V containing U . The map F |V is locally homeomorphic at p. So F (R(θ)) and
F (R(θ′)) are rays supporting F (U). Since F preserves the orientation. F (R(θ)), F (U)

and F (R(θ′)) are in the same cyclic order around F (p) as R(θ), U and R(θ′) around p.
Thus the lemma follows.

3.5.2 Definition of critical portraits

Firstly we define Θ(c), Θ(U) resp. R(c), R(U), for critical point c in Jf and critical
Fatou component U by the following way.
• For any critical point c ∈ Jf , we set

Θ(c) := {θ1, · · · , θdegF (c)} and R(c) := {R(θ1), · · · , R(θdegF (c))}
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such that the total degF (c) external rays meet at c and F maps them onto exactly one
external ray.
• For any strictly pre-periodic Fatou component U , we denote by

Θ(U) := {θ1, · · · , θdegF |U
} and R(U) := {ÒRU(θ1), · · · , ÒRU(θdeg(F |U ))}

such that the deg(F |U) external rays R(θi) support U and collide onto one after F . Clearly,
by Lemma 3.1, they are supporting U in the same direction.
• For any critical Fatou component cycle U0, · · · , Up−1 with F i(U0) = Ui, Up := U0, it

can only be attracting or parabolic [Mi06]. Let Uk0 , · · · , Ukl , 0 ≤ k0 < · · · < kl ≤ p − 1,
be critical with degree n0, · · · , nl respectively.

Firstly, For 1 ≤ i ≤ p, choose (zi, θi), zi ∈ ∂Ui and R(θi) landing at zi, such that
F i(z0) = zi, F p(zp) = zp, F i(R(θ0)) = R(θi) and R(θp) supporting Up at zp. Since
F p : ∂U0 → ∂U0 is δ := n0 · · ·nl to 1 branched covering, there exist δ − 1 distinct choices
of zp. By Lemma 3.1, all the p external rays supports the Fatou cycle in the same direction.

Secondly, for critical Fatou component Uki , 0 ≤ i ≤ l, Θ(Uki) is the set of ni angles of
external rays, which are supporting Uki and lie in the preimages of R(θki+1), and R(Uki)

is the collection of ni extended rays of Uki with angles in Θ(Uki).
After finishing the choice of Θ(Uki) and R(Uki) in critical Fatou cycle, we now state

the following lemma by adopting the same notations as above,

Lemma 3.2. If z, z′ ∈ ∂U0 have the same itinerary respect to R(Uk0), · · · ,R(Ukl), then
z = z′.

Proof. Consider the covering F p : ∂U0 → ∂U0. There are δ preimages of zp in ∂U0. These
points cut ∂U0 into open segments γ0, · · · , γδ−1, numbered in positive cyclic order which
starts at z0. Denote by

[s0, · · · , sl] := s0n1 · · ·nl + s1n2 · · ·nl + · · ·+ sl−1nl + sl,

where 0 ≤ s0 ≤ n0 − 1, · · · , 0 ≤ sl ≤ nl − 1.
Let γki,0, · · · , γki,ni−1 be the segments of ∂Uki \

S
θ∈Θ(Uki )

α(θ), numbered in positive
cyclic order which starts at zki . Then F maps γki,j onto ∂Uki+1 \ {zki+1} one to one.

By the construction above, we can see that ξ ∈ γ[s0,··· ,sl] if and only if F ki(ξ) ∈ γkisi
for 0 ≤ i ≤ l. Hence by the condition, {F jp(z), F jp(z′)}, for arbitrary j ≥ 0, are always
contained in one segment of γ0, · · · , γδ−1. Now we show that it is impossible.

Let γzz′ be the component of ∂U0 \ {z, z′} contained in some segment γj. Since F p is
expanding on ∂U0. There must exist a minimal positive s such that F sp(γzz′) can not lie
in one of γ0, · · · , γδ−1. Let F (s−1)p(γzz′) ⊆ γi0 . Since F p|γi0 covers ∂U0 \ {zp} by sticking
the two endpoints into zp, which is the common boundary of γj and γ(j+1)mod δ for some
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0 ≤ j ≤ δ − 1. Thus F sp(z) and F sp(z′) must be in distinct segments. The proof is
completed.

It is easy to see that all the R(c) and R(U) defined above are in star shape with a
critical point in the center.

Lemma 3.3 (Properties of R(c) and R(U)). (1) R(c)
TR(c′) = ∅, for distinct critical

points c, c′ in Jf .
(2) If R(c)

TR(U) 6= ∅, then c ∈ ∂U and the intersection is exactly either a point
{c} or one ray together with the landing point c. The latter happens if and only if
Θ(c)

T
Θ(U) 6= ∅.

(3) If R(U)
TR(U ′) 6= ∅, for distinct critical Fatou component U,U ′, then the inter-

section is exactly either a point {p} := ∂U
T
∂U ′ or one ray together with the landing

point p. The latter happens if and only if Θ(U)
T

Θ(U ′) 6= ∅.

Proof. By definition, (1) and (2) follow immediately.
(3) Since for any two distinct Fatou component U,U ′, the intersection U

T
U ′ is at

most one point. R(U)
TR(U ′) 6= ∅ implies U

T
U ′ := {p}. If Θ(U)

T
Θ(U ′) 6= ∅, then the

latter case happens. Otherwise, we have R(U)
TR(U ′) = {p}.

In R/Z, let A := {Θ(c1), · · · ,Θ(cm),Θ(U1), · · · ,Θ(Un)}. For any Θ ∈ A, let

ÒΘ :=
[
{Θ′ : ∃ a chain Θ0 := Θ, · · · ,Θk := Θ′ in A such that Θi

\
Θi+1 6= ∅}.

The collections ÒA := {ÒΘ1, · · · , ÒΘN} are called critical portrait of F . One can check that
the following conditions are satisfied.

(1)
P

1≤i≤N(# ÒΘi − 1) = d− 1.
(2) ÒΘ1, · · · , ÒΘN are pairwise unlinked, that is, for each i 6= j the sets ÒΘi and ÒΘj are

contained in disjoint sub-intervals of R/Z.
(3) σd sends ÒΘi onto exactly one argument.

3.5.3 Critical diagram associated to cA
Given critical portrait ÒA, one can construct a critical diagram D ⊆ D as follows. See

figure 3.5.
Start with the unit circle R/Z, for each ÒΘi, mark all of the points e2πiθ with θ ∈ ÒΘi.

Let bzi be the center of gravity of the marked points, and join each of these points e2πiθ tobzi by a straight line segment lθ. Then we obtain a closed set Di :=
S
lθ in the unit disk.

It follows easily by Conditions (2) that distinct Di and Dj will not cross each other. Let
D :=

S
1≤i≤dDi be critical diagram associated to ÒA.
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The Condition (1) implies that D \ D are d simply connected domains W1, · · · ,Wd.
Denote by Ii the interior of W i

T
∂D. Then {Ii}1≤i≤d is a partition of R/Z, each elements

of which consists of finite open intervals with total length 1/d by Condition (3).

bz1

bz2
bz3

D1

D2

D3

W1

W2

W3

W4 W5

W6

W7

Figure 3.5: An example of critical diagram D

3.5.4 Partition in the dynamic plane

Let L := {R(c1), · · · ,R(cm), R(U1), · · · , R(Un)}. For any R ∈ L, set cR :=
S {R′ :

there exists a chain R0 := R, · · · ,Rk := R′ in L such that, for Ri and Ri+1, the latter
case in Lemma 3.3(3) happens}.

By Lemma 3.3, each cR corresponds to a ÒΘ, characterized by the property that R(θ)

is in cR if and only if θ ∈ ÒΘ.

Lemma 3.10 (Properties of ÒR ). (1) T := cRTKf is a tree. Namely, any z, z′ ∈ T T Jf
can be joined by a regulated arc in T . Moreover, the branching points in the tree must be
critical points in Jf or c(U) in critical Fatou component U .

(2) Suppose R(θ1), · · · , R(θl) be all the external rays in cR, numbered in counter-
clockwise order. Let Lθiθi+1

:= R(θi)
S
R(θi+1)

S
[α(θi), α(θi+1)], 1 ≤ i ≤ l, θl+1 := θ1.

Then Lθiθi+1
cuts the plane into two domains Y , Y ′. Let Y be the one disjoint with

R(θj), 1 ≤ j ≤ l. Then for any x, y ∈ Y T Jf , [x, y] ⊆ Y and F |[x,y]
T
∂Y is one-to-one.

(3) The image F (Lθiθi+1
) has only three types:

• Type I: one ray union the landing point,
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• Type II: one extended ray union the landing point,
• Type III: two internal rays and one external ray, which looks like "Y".
(4) For another cR′, if cR∩ cR′ 6= ∅, then the intersection is a point.

Proof. (1) By the construction of cR, it is clear that [z, z′] ⊆ T if z, z′ ∈ T T Jf . The lem-
ma 3.7 implies that regulated arcs cannot form a loop in Kf . Thus T is a tree. Branched
point z in Fatou component U is obviously a critical point c(U). If z is in Jf , there are at
least three critical Fatou component Ui such that z ∈ R(Ui) ⊆ cR, i ∈ {1, 2, 3}. If z is not
critical, R(Ui) share a common external ray which landing at z. Since one ray supports
at most two Fatou components. It is impossible.

(2) Consider [α(θi), α(θi+1)]. It has only three possibilities
(2.1) α(θi) = α(θi+1), then [α(θi), α(θi+1)] is degenerated.
(2.2) [α(θi), α(θi+1)] ⊆ U passes through one critical Fatou component, consisting of

two internal rays.
(2.3) [α(θi), α(θi+1)] passes through two critical Fatou component U and U ′, consisting

of four internal rays.
In fact, if [α(θ1), α(θ2)] passes through more than two critical Fatou component. Let

U be one of them with U
T{α(θi), α(θi+1)} = ∅. Then the supporting properties imply

that there exists a external ray in R(U) contained in Y , impossible.
Assume [x, y] \ Y 6= ∅, otherwise, (2) follows. Let γ(t) := [x, y] with γ(0) = x and

γ(1) = y. Set t1 := inf0≤t≤1{t : γ(t) ∈ C \ Y } and t2 := sup0≤t≤1{t : γ(t) ∈ C \ Y }. Then
γ(ti) ∈ ∂Y , i ∈ {0, 1} and so [γ(t0), γ(t1)] ⊆ Lθiθi+1

. We have [x, y]
T
∂Y = [γ(t0), γ(t1)]

and [x, y] = [x, γ(t0)]
S

[γ(t0), γ(t1)]
S

[γ(t1), y]. Thus [x, y] ⊆ Y .
Now we have to show that F |[γ(t0),γ(t1)] is one-to-one. Note that [γ(t0), γ(t1)] consists

exactly several internal rays.
In case (2.2), at least one of R(θi), R(θi+1) is supporting U , because R(U) ⊆ ÒR.

So [γ(t0), γ(t1)]
T
U is either a point or one internal ray. Thus F |[γ(t0),γ(t1)] is one-to-one

immediately.
In case (2.3), let {p} = U

T
U ′. We have R(θi), R(θi+1) supporting U,U ′ respectively.

Otherwise, there exists a ray in R(U) or R(U ′) landing at p contained in Y , impossible.
Thus the intersection between [γ(t0), γ(t1)] and U resp. U ′ is at most one internal ray.

We are only left to consider the case [γ(t0), γ(t1)] = [c(U), c(U ′)]. Suppose F |[c(U),c(U ′)]

is not one-to-one. Then F ([p, c(U)]) = F ([p, c(U ′)]), thus p is a critical point. There
exists at least a external ray in R(p) contained in Y . Otherwise, consider the section S
of C \ R(p) containing U,U ′, F |S is locally homeomorphic at p, thus it can not paster
[p, c(U)] and [p, c(U)] together. This contradicts the choice of R(θi) and R(θi+1). There-
fore F |[c(U),c(U ′)] is one-to-one.
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(3) By the discussion in (2), it follows easily that F (Lθiθi+1
) is in Type I, Type II or

Type III if and only if [α(θi), α(θi+1] is in case (2.1), (2.2) and (2.3), respectively.

(4) It holds directly by the definition and Lemma 3.3.

c0

c(U1)

c(U2)
c(U3) c(U4)

Π1

Π2

Π3

Π3

Π4 Π5 Π6

Π6

Π7

Figure 3.6: An example of partition corresponding to critical diagram in figure 3.5. Here the
critical Fatou components are U1, U2, U3 and U4. There exists a critical points c0 with degF (c0) =
2.

Let ÒL := {cR1, · · · , cRN}. For simplification, the elements are numbered in such fine
order that ÒRi consists of (extended) rays with their arguments in ÒΘi. Let P := C \S

1≤i≤N
cRi consists of finite unbounded pieces P1, · · · , Ps.

Consider the critical diagram D. Given Wi, suppose it is bounded by
S

1≤j≤ki(lθj ∪ lθ′j)
with θj, θ

′
j ∈ ÒΘj and lθj ∪ lθ′j ⊆ Dj. Then, in the dynamic plane, Lθjθ′j , 1 ≤ j ≤ ki, in

Lemma 3.10 (2) are well defined. As in Lemma 3.10 (2), let Yj
S
Y ′j := C \Lθjθ′j where Y

′
j

be the component disjoint with
S
θ∈Ii R(θ).

Now we define the partition {Πi }1≤i≤d of the dynamical plane by setting

Πi := C \
[

1≤j≤ki
Y ′j .

We have
• P =

S
1≤i≤d Πi and Πi

T
Πj = ∅ if i 6= j.

• each Πi, maybe not a domain, consists of finite pieces Pj and ∂Πi are the union of
several (extended) rays.
• there is an one-to-one correspondence between { Ii }1≤i≤d and {Πi }1≤i≤d by the

property that θ ∈ Ii if and only if R(θ) ⊆ Πi. See figure 3.5 and figure 3.6.
Based on the topological argument principle, we shall prove the following,
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Proposition 3.2. The restriction of F on each Πi is homeomorphic.

Proof. Recall Gf : C → [0,∞] is the Green’s function which vanishes precisely on Kf

and Gt := {z ∈ C : G(z) < t} a simply connected domain. Set Qt = Gt
T

Πi, which is
bounded by edges in two types,
• The segments of the equipotential cure Gf (z) = t which lies in Πi. Each one

corresponds to an arc in Ii. We denote by Γi the union of all these segments.
• The segments of Lθjθ′j , 1 ≤ j ≤ ki satisfying the potential inequality Gf (z) ≤ t.
Each segments in Γi is mapped to equipotential curve γdt := {z ∈ C : G(z) = dt}

locally homeomorphic. Since F pastes the segments of the latter two types together as
in Lemma 3.10 (3). It follows that γdt is covered by Γi at least once. We know that
F |γt : γt → γdt is d to 1 and γt is the union of Γi, 1 ≤ i ≤ d, with their interiors disjoint.
Thus F (Γi) covers γd exactly once.

Let z0 be any point of C which does not belong to the image F (∂Qt). By the Topo-
logical Argument Principle, the number of solutions to the equation F (z) = z0 with
z ∈ Qt, counted with multiplicity, is equal to the winding number of F (∂Qt) around
z0. By the arguments above, it is not hard to check that this winding number is +1 for
z0 in Gdt \

S
1≤j≤ki F (Lθjθ′j) and zeros for z0 in C \ Gdt. So F |Qt is one-to-one. By the

arbitrariness of t, F on Πi is homeomorphic.

3.5.5 Regulated arcs in the partition

Lemma 3.4. For any distinct x, y ∈ Πi
T
Jf , the regulated arc [x, y] is contained in Πi.

Moreover,
F : [x, y]→ [F (x), F (y)] is homeomorphic. (3.15)

Proof. We adopt the notations as before. For 1 ≤ j ≤ ki, x, y ∈ Yj. Then the Lemma
3.10 (2) gives [x, y] ⊆ Y j. Thus [x, y] ⊆ T1≤j≤ki Y j = Πi.

Consider the set

X := {z ∈ F ([x, y]) : there exist z1 6= z2 ∈ [x, y] such that F (z1) = F (z2) = z}.

Since F |Πi is one-to-one by Proposition 3.2, X ⊆ F ([x, y]
T
∂Πi).

We claim that X ⊆ F ([x, y]
T
∂Πi

T
Jf ). If not, let z ∈ X

T
U for some bounded

Fatou component U . Then there exists two distinct zj ∈ Uj such that F (zj) = z. Firstly,
If U1 = U2, then U1 must be critical. z1 and z2 are contained in two internal rays of
R(U1). It is impossible by Lemma 3.10 (2.2). If U1 6= U2, consider the branched covering
F : Uj → U . The image F (Uj

T
Πi) is either U or U \R for some internal ray. In both of

the cases we have
F (U1 ∩ Πi)

\
F (U2 ∩ Πi) 6= ∅.
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This contradicts the fact that F is one-to-one on Πi in Proposition 3.2. The claim follows.
Since [x, y]

T
∂Πi

T
Jf is finite, then X is finite as well. This means F ([x, y]) has only

finite many self-intersection points. If X 6= ∅, then we can easily obtain a loop in F ([x, y]),
consisting of regulated arcs by Lemma 3.9 (3). Lemma 3.7 gives a contradiction. Thus
we have X = ∅. Therefore, F : [x, y]→ [F (x), F (y)] is homeomorphic.

3.6 Proof of the main theorem

In this section we aim to prove the main theorem, applying the tools prepared in the
previous sections.

3.6.1 No wandering regulated arcs

Proposition 3.3. For any regulated arc [x, y] in Kf , there exist two integer m 6= n ≥ 0

such that Fm[x, y]
T
F n[x, y] 6= ∅.

Proof. For any critical point, if [x, y] is mapped onto it twice, then of course we are done.
So, by iterated [x, y] suitable times, we can assume fk|[x,y] is homeomorphic. We continue
the analysis by distinguishing the regulated arc into two case.
• [x, y] is quasi-buried, i.e., #[x, y]

T
U ≤ 1, for any bounded Fatou component U .

• there exists a bounded Fatou component U such that #[x, y]
T
U ≥ 2.

In the first case, [x, y] ⊆ Jf . Recall that E is the union of branched points and
preimages of β fixed points in Jf . By Lemma 3.8, E is dense in [x, y]. If some (pre-
)periodic point lies in [x, y], we are done. Then E

T
[x, y] contains infinitely many wan-

dering branched points. Since the number of grand orbits of wandering branched point is
finite by Corollary 3.2. So there is at least a branched point z such that its grand orbit
intersects [x, y] infinitely many times. Choose any two distinct z1, z2 ∈ [x, y] in the grand
orbit. Then we have fm(z1) = fn(z2) for somem,n ≥ 0. Therefore fm[x, y]

T
fn[x, y] 6= ∅.

Since fm|[x,y] and fn|[x,y] is injective. We must have m 6= n.
In the second case, let [x′, y′] := [x, y]

T
U , consisting of two internal rays, particu-

larly containing c(U). By Sullivan’s no wandering Fatou components, U will eventually
be periodic. Then c(U) ∈ [x′, y′] is pre-periodic. So there exists m 6= n such that
fm[x′, y′]

T
fn[x′, y′] 6= ∅. The proof is completed.
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3.6.2 Quasi-buried case

Proposition 3.4. Let {Πi}1≤i≤d be the partition of C induced by the critical portrait of f .
Let [x, y] be quasi-regulated arc in Kf . If x, y have the same itinerary respect to {Πi}1≤i≤d,
then x = y.

Proof. We argue by contradiction and suppose x 6= y. Denote by zn := F n(z) for any
z ∈ C. By Lemma 3.4, for any m ≥ 0, n ≥ 1,

F n : [xm, ym]→ [xm+n, ym+n] is homeomorphic. (3.16)

Firstly, we claim that there exist M 6= N ≥ 0 and ξ such that
• ξ ∈ [xM , yM ]

T
[xN , yN ],

• The orbit of ξ is disjoint with the finite set X :=
S

1≤i≤d(∂Πi ∩ Jf ).

Proof of Claim. Consider the set

Y := {z ∈ [x, y] : there exist m,n ≥ 0 and z′ 6= z ∈ [x, y] such that Fm(z) = F n(z′)}.

Since there is no wandering regulated arc by Proposition 3.3, Y is dense in [x, y].
For any z ∈ Y , there exist m 6= n ≥ 0 such that zm ∈ [xm, ym]

T
[xn, yn]. If the orbit

{zi}i≥0 never hit X, we are done. If zn0 ∈ X and the orbit {zn0+i}i≥0 is infinite, then
there exists a large number N0 such that the orbit {zN0+i}i≥0 avoids the finite points X.
Let M = N0 +m,N = N0 + n and ξ = zm+N0 , we are done.

Otherwise, we can suppose that all Y are eventually iterated to X0 ⊆ X and points
in X0 are (pre-)periodic. Then there exist a periodic point w with period p and infi-
nite many points in Y iterated to w. Thus we have (z′, n′) and (z′′, n′′), z′ 6= z′′ ∈ Y ,
such that F n′(z′) = F n′′(z′′) = w and n′ = n′′mod p. Let n′′ = n′ + kp, k > 0. Then
F n′′(z′) = F n′′(z′′) = w, which contradicts (3.16). The claim follows. �

For simplicity we write [x, y] = [xM , yM ]. Let ξ ∈ [x, y]
T

[xN , yN ], N ≥ 1, such that
its orbit never hits the boundary of the partition {Πi}1≤i≤d. Let

H := [x, y]
[

[xN , yN ]
[

[x2N , y2N ]
[
· · · . (3.17)

Then,
• For any ζ, η ∈ H, [ζ, η] ⊆ H. Indeed, suppose ζ ∈ [xn1N , yn1N ] and η ∈ [xn2N , yn2N ]

with integers n1 ≤ n2. Then the path

γζη := [ζ, ξn1N ]
[

[ξn1N , ξ(n1+1)N ]
[
· · ·

[
[ξn2N , η]

joins ζ and η. By the uniqueness of regulated arc in Lemma 3.7, It follows that [ζ, η] ⊆ γζη.
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ξ ξN ξ2N ξ(ξ2N) ξN

ξ ξ2N ξN ξ2N ξ ξN

ξ ξNη

ξ2N

(1) (2)

(3) (4)

(5)

Figure 3.7: Relations of [ξ, ξN ] and [ξN , ξ2N ]

Since [ζ, ξn1N ] ⊆ [xn1N , yn2N ], [ξkN , ξ(k+1)N ] ⊆ [xkN , y(k+1)N ] and [ζn2N , η] ⊆ [xn2N , yn2N ],
then γζη ⊆ H. Thus [ζ, η] ⊆ H.

• For any n ≥ 0, if F n(ξ) ∈ Πi(n), then F n(H) ⊆ Πi(n). Indeed, since ξ is never
mapped into

S
1≤i≤d ∂Πi, such Πi(n) exists. We claim that xkN , ξkN , ξ(k+1)N , ykN have the

same itinerary respect to {Πi}. Since ξ, ξN ∈ [x, y], then ξkN , ξ(k+1)N ∈ [xkN , ykN ]. By
Lemma 3.4 and (3.15), [xkN+j, ykN+j] must be contained in some Πj(n) for any j. In par-
ticularly, we have F j(xkN), F j(ξkN), F j(ξ(k+1)N), F j(ykN) ∈ Πj(n). By the arbitrariness of
j, the claim follows. Therefore we obtain a sequence ξ, ξN , ξ2N , · · · , ξkN , xkN , ykN , which
have the same itinerary. Thus if F n(ξ) ∈ Πi, F n[xkN , ykN ] ⊆ Πi. By the arbitrariness of
k, it follows that F n(H) ⊆ Πi.

• For any n ≥ 0, F n|H is homeomorphism and FN(H) ⊆ H. The latter follows imme-
diately by definition. For the former, if not, there exists a minimal number n0 ≥ 0 such
that we have ζ 6= η ∈ F n0(H) with F (ζ) = F (η). By the above conclusions, we see that
[ζ, η] ⊆ F n0(H) and is contained in some Πi(n0). Since [ζ, η] is quasi-buried, there exists
[ζ(i), η(i)] ⊆ [x, y] with ζ(i), η(i) ∈ Πi(n0) such that ζ(i) → ζ, η(i) → η as i → ∞. Then
F |[ζ(i),η(i)] is one-to-one by Lemma 3.4. Thus F [ζ, η] is a loop. It is impossible by Lemma
3.7.

Now we pay attention to the two regulated arc [ξ, ξN ] and [ξN , ξ2N ]. Both of them are
contained in H. Their relations are in one of the following five possibilities. See figure
3.7.

(1) [ξ, ξN ]
T

[ξN , ξ2N ] = {ξN}.
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(2) [ξ, ξN ]=[ξN , ξ2N ].

(3) [ξN , ξ2N ] ⊂ [ξ, ξN ].

(4) [ξ, ξN ] ⊂ [ξN , ξ2N ].

(5) [ξ, ξN ]
T

[ξN , ξ2N ] = [η, ξN ] for some η ∈ (ξ, ξN).
We will show that all of them are impossible and so the proof is completed.
For case (1), we have [ξ, ξ2N ] = [ξ, ξN ]

S
[ξN , ξ2N ] ⊆ H. Then F |[ξ,ξ2N ] is homeomorphic.

Note that FN [ξ, ξN ] = [ξN , ξ2N ]. It follows that [ξ2N , ξ3N ]
T

[ξN , ξ2N ] = {ξ2N}. We also
have [ξ2N , ξ3N ]

T
[ξ, ξN ] = ∅. Otherwise, the three arcs [ξ, ξN ]

S
[ξN , ξ2N ]

S
[ξ2N , ξ3N ] would

form a loop. By induction, it follows that [ξnN , ξ(n+1)N ]
T

[ξ, ξnN ] = {ξnN} for n ≥ 0. Then
(ξ, ξN) is a wandering regulated arc of FN . By Proposition 3.3, it is impossible.

Case (2) can not happen. Indeed, otherwise FN : [ξ, ξN ] → [ξ, ξN ] is homeomorphic.
Choose any subarc I in [ξ, ξN ] such that FN(I)

T
I = ∅. Then I is a wandering regulated

arc of FN .
For case (3), choose an arbitrary subarc I in (ξ, ξ2N). Then FN(I) ⊆ (ξN , ξ2N).

Since FN : [ξ, ξN ] → [ξN , ξ2N ] is homeomorphic and [ξN , ξ2N ] ⊂ [ξ, ξN ], I is a wandering
regulated arc of FN , a contradiction.

For case (4), by the intermediate value theorem, there is a fixed point ν ∈ (ξ, ξN) of
FN . Then [ν, ξ] ⊂ [ν, ξ2N ] and the map F 2N : [ν, ξ] → [ν, ξ2N ] is homeomorphic. Let
ξ−2N ∈ [ν, ξ] such that F 2N(ξ−2N) = ξ. Then [ξ−2N , ξ]

T
[ξ, ξ2N ] = {ξ}. Similar to case

(1), it is impossible.
For case (5), let η−N ∈ [ξ, ξN ] with FN(η−N) = η. We distinguish three possibilities

to analyze.
(5.1) η−N ∈ (ξ, η). Then ηN ∈ (η, ξ2N). Therefore [η−N , η]

T
[η, ηN ] = {η}. By case (1)

again, it is impossible.
(5.2) η−N = η. Then η is a fixed point of FN . We claim that there exist ν ∈ (η, ξ)

and n0 ≥ 3 such that F n0N [η, ν] ⊆ [η, ξ]. Indeed, since F 3N [η, ξ] = [η, ξ3N ] and FN |H
is injective, hence [η, ξ3N ]

T
([η, ξN ] ∪ [η, ξ2N ]) = {η}. If [η, ξ3N ]

T
[η, ξ] 6= {η}, the claim

follows. Otherwise, continue the process to [η, ξ3N ] · · · , until [η, ξkN
T

[η, ξ] 6= {η}. Oth-
erwise, we obtain an infinity sequence {(η, ξkN ]}k≥0 which are pairwise disjoint. This
contradict Proposition 3.3. Hence the claim follows.

Choose ν ′ ∈ (η, ν) such that ν ′n0N
6= ν ′. If ν ′n0N

∈ (η, ν ′), similarly in case (3), it is
impossible. If ν ′n0N

∈ (ν, ξ), let ν ′−n0N
∈ (η, ν ′) be the preimage of F n0N |[η,ν′], then similar

in case (1), (ν ′−n0N
, ν ′) is a wandering regulated arc of F n0N . It is impossible.

(5.3) η−N ∈ (ξN , η). Applying intermediate value theorem to F : [η−N , η]→ [η, ηN ], we
obtain a fixed point ν ∈ (η−N , η). Since [ν, ξN ]

T
[ν, ξ2N ] = {ν}. So this is the case (5.2),

impossible. The proof is completed.
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3.6.3 General cases

Proposition 3.5. Let {Πi}1≤i≤d be the partition of C induced by the critical portrait of
f . If x, y ∈ Jf have the same itinerary respect to {Πi}1≤i≤d, then either x = y or x, y are
in the boundary of a Fatou component, which is mapped to a siegel disk.

Proof. Suppose x 6= y. Consider the regulated arc [x, y]. Let

U := {U : U is a Fatou component such that U
\

[x, y] 6= ∅}.

Then [x, y]\SU∈U U consists of several disjoint quasi-buried regulated arcs. By Proposition
3.4, each such arcs is a single point.

Firstly, U is finite. If not, since there is no wandering Fatou components and the
number of periodic Fatou components is finite. Infinite many elements in U will eventually
be mapped onto a periodic one. This contradicts (3.16).

Secondly, any U ∈ U is mapped to a siegel disk. If not, let (x′, y′) = U
T

[x, y]. If there
exists N ≥ 0 such that orbits of x′N and y′N avoid the finite set X :=

S
1≤i≤d(Jf

T
∂Πi),

then x′N and y′N have the same itinerary. Lemma 3.2 gives x′N = y′N . This contradicts
(3.16). Thus there exist N and a periodic point ξ ∈ X such that x′N = ξ or y′N = ξ.
Suppose x′N = ξ. Let ξ ∈ Θ(U0) and p the period of ξ. Then F p fixes x′N and iterates y′N
to at least two distinct segments of ∂U0 \Θ(U0). By properties of supporting rays, xn, yn
must be separated by Θ(U0) for some n, a contradiction.

Finally, U consists of only one Fatou component. If not, let U 6= U ′ ∈ U . Let M,N

be integers such that FM(U) = FM+N(U), FM(U ′) = FM+N(U ′). Then

FM+N [c(U), c(U ′)] = FM [c(U), c(U ′)].

By Lemma 3.7, ξ := ∂FM(U)
T
FM [c(U), c(U ′)] is periodic. Since FN |∂FM (U) conjugates a

irrational rotation. Thus ξ can not be periodic, a contradiction. The proof is completed.

Proof of Theorem 3.2. The theorem follows immediately by Propositions 3.5. �

3.7 Application to core entropy

Consider a quadratic polynomial family F := {fc = z2 +c : fc has no Siegel disks and
Jfc is locally connected }. As an application of Theorem 3.2, we shall prove the mono-
tonicity of core entropy.
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3.7.1 Characteristic arc Ic

In order to introduce a partial order on F , we need the following definition of charac-
teristic arc Ic.

(C1) If fc has a parabolic or attracting Fatou cycle of period p ≥ 1. Then there exists
a unique point z in the boundary of critical value Fatou component U such that fpc (z) = z.
Let S be the sector containing U and bounded by supporting rays of U at z. Then set
Ic := {θ ∈ R/Z : R(θ) ⊆ S}. Obviously, Ic = R/Z if and only if exactly one ray lands at
z.

(C2) In other cases, we have c ∈ Jfc . Then there is a unique sector S based at c
containing critical point 0. Set Ic := R/Z \ {θ ∈ R/Z : R(θ) ⊆ S}. Evidently, Ic is a
single angle if and only if only one ray lands at critical value c.

For any fc, fc′ in F , we say fc ≺ fc′ if and only if Ic ⊇ Ic′ .
If Ic 6= R/Z, denote by [ηc, ξc] := Ic. Let I ′c

S
I ′′c := σ−1

2 (Ic) with I ′c := [η′c, ξ
′
c] and

I ′′c := [η′′c , ξ
′′
c ], where {η′c, η′′c } := σ−1

2 (ηc) and {ξ′c, ξ′′c } := σ−1
2 (ξc). The above [•, •] are

measured in positive cyclic order and we distinguish it from the notation of regulated arc
by acting on distinct categories. Evidently, I ′c and I ′′c are symmetric respect to origin with
length |I ′c| = |I ′′c | = 1

2
|Ic|.

Lemma 3.11 (Properties of characteristic arc). For any fc ∈ F , then
(1) If fc is in case (C2), then
(1.1) The rays R(η′c), R(η′′c ), R(ξ′c), R(ξ′′c ) land at critical point 0.
(1.2) If Ic is not a single point, let S ′c resp. S ′′c be the sectors bounded by R(η′c) and

R(ξ′c) resp. R(η′′c ) and R(ξ′′c ) and Sc the sectors bounded by R(ηc) and R(ξc) avoiding
the critical point. Then (S ′c

S
S ′′c )

T
Sc = ∅ and f maps S ′c resp. S ′′c conformally onto Sc.

Denote by Hc := S ′c
S
S ′′c .

(2) If fc is in case (C1) and Ic 6= R/Z, then
(2.1) Lηcξc separates critical point 0 and critical value c. Recall Lηcξc := R(ηc)

S
R(ξc)

S{z}.
Therefore, |Ic| < 1

2
.

(2.2) R(η′c) and R(ξ′′c ) resp. R(η′′c ) and R(ξ′c) land together at z′ resp. z′′ with
{z′, z′′} := f−1(z).

(2.3) Let Sc be the sectors bounded by R(ηc) and R(ξc) avoiding the critical point and
Hc the domain bounded by Lη′cξ′′c and Lη′′c ξ′c, then Hc

T
Sc = ∅ and f : Hc → Sc is a

branched covering of degree two.

(3) For any fc, fc′ ∈ F , if fc ≺ fc′, then I ′c′
S
I ′′c′ ⊆ I ′c

S
I ′′c .

Proof. (1) Since both R(ηc), R(ξc) land at critical value c. Then, at the critical point 0,
there exist preimages, rays R(η′c), R(η′′c ), R(ξ′c), R(ξ′′c ). If Ic is a single point, we have
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R(ξc)
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R(η′′c )

R(ξ′′c )Sc
Lηcξc

Lη′cξ′′c

Lη′′c ξ′c

Hc

Figure 3.8: illustrating the proof of Lemma 3.11, Left: case (C1). Right: case (C2)

η′c = ξ′c, η
′′
c = ξ′′c . If Ic is not a single point, consider the sectors S ′c and S ′′c based

at 0. By lemma 3.1 (S ′c
S
S ′′c )

T
Sc = ∅. Since f |S′c resp. f |S′′c is conformal. Thus

l(f(S ′c)) = 2l(S ′c) = 2l(S ′′c ). Note that l(C \ Sc) > l(S ′c) + l(S ′′c ). It follows that
f(S ′c) = f(S ′′c ) = Sc.

(2) Let p be the period of the critical value Fatou component U and z0 := z, z1 :=

f(z), · · · , zp := fp(z) with zp = z0. Since this orbit is disjoint with critical point, we can
set Lzi the preimage of f−(p−i)Lηcξc at each zi. Obviously, Lz0 = Lzp , because both of
them support Fatou component U . Let Szi be one of the components C \ Lzi containing
0 and S ′zi the other.

For (2.1), suppose Lz0 does not separate 0 and c, then Sz0 contains both of them. For
i = p − 1, By Lemma 3.2 (4), the sector map σ2 must send the critical sector Szp−1 to
critical value sector Szp , and thus σ2(S ′zp−1

) = S ′zp . We have l(S ′zp−1
) = 1

2
l(S ′z0). Claim

Lzp−1 cannot separate 0 and c. Otherwise, using Lemma 3.1 and properties of supporting
rays, we have S ′zp−1

⊃ S ′z0 , thus l(S
′
zp−1

) > l(S ′z0), impossible. For i = p − 2, · · · , 0, the
same argument as above implies l(S ′zi) = 1

2
l(S ′zi+1

) and Szi contains both 0 and c. Thus
l(S ′z0) = 1

2p
l(S ′z0), a contradiction.

For (2.2), since z is not a critical value. We have two z′ 6= z′′ preimages of z. We
discuss by contradiction and assume R(η′c), R(ξ′c) resp. R(η′′c ), R(ξ′′c ) land at z′ resp. z′′.
Then consider the sector S ′c :=

S
θ∈I′c R(θ) resp. S ′′c :=

S
θ∈I′′c R(θ). We have σ2(S ′c) =

σ2(S ′′c ) = S ′z0 . Since l(S ′c) = l(S ′′c ) = l(I ′c) = l(I ′′c ) < 1
2
, by Lemma 3.2, f |S′′c , f |S′′c are

conformal. Therefore, the image S ′z0 cannot contain critical value c. This contradicts
(2.1).

For (2.3), note that both of Lη′cξ′′c and Lη′′c ξ′c support the critical Fatou component and
are symmetry respect the original. Then the fact |Ic| > |I ′c| = |I ′′c | implies Hc

T
Sc = ∅.

For (3), one can easily check it by definition.
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3.7.2 Dynamic of biaccessible angles

Given fc ∈ F , an angle θ in R/Z is called to be biaccessible, if there exists θ′ 6= θ such
that R(θ) and R(θ′) landing together. Evidently, if θ is biaccessible, then the preimages
σ−1

2 (θ) are biaccessible. Inversely, if θ is biaccessible and α(θ) is not the critical point,
then σ2(θ) is also biaccessible. Denote by Acc(fc) the set of all biaccessible angles of fc.
Then if Ic = R/Z, Acc(fc) = ∅ by lemma 3.2.

Lemma 3.12. Let Ic 6= R/Z and not a single angle. Let θ be a biaccessible angle of fc and
the orbit of the landing point ζ0 := α(θ) avoid critical point 0. Then there exists a N ≥ 0

such that the orbit of ζN := fN(ζ0) is disjoint with Hc, where Hc is defined in Lemma
3.11 (1.2)(2.3). Therefore, there exists ϑ 6= θN := σN2 (θ) such that, for any ν ∈ (ηc, ξc), ϑ
and θN have the same itinerary respect to R/Z \ σ−1

2 (ν).

Proof. Let θ′ 6= θ with α(θ′) = α(θ) = ζ0. Since ζ0 will never meet the critical point. For
n ≥ 0, Lθnθ′n = fn(Lθθ′) bounds two sectors Sζn and S ′ζn , where we assume Sζn is the one
containing 0.

Firstly, there exists a N ≥ 0 such that LθNθ′N separates 0 and c. If not, for each n ≥ 0,
σ2 must send Sζn to Sζn+1 and S ′ζn to S ′ζn+1

, therefore, l(S ′ζn+1
) = 2l(S ′ζn) by Lemma 3.2

(2), (3) and (4). It follows that l(S ′ζn)→∞ as n→∞, impossible.
By Lemma 3.11 (1.2)(2.3), points in Hc will be mapped to Sc. Thus we only have to

show that ζn /∈ Sc, n ≥ N . Claim l(S ′ζn) ≥ l(Sc). If not, let n0 > N be first integer such
that l(S ′ζn0

) < l(Sc). Thus S ′ζn0
must be a critical value sector. This means S ′ζn0

⊇ Sc

or S ′ζn0
⊇ C \ Sc, both of which imply l(S ′ζn0

) ≥ l(Sc), a contradiction. Therefore,
ζn /∈ Sc, n ≥ N .

3.7.3 Monotonicity of core-entropy

Proof of Theorem 3.3. If Ic = R/Z, Acc(fc) = ∅.
If #Ic = 1, then Ic = Ic′ , hence I ′c = I ′c′ and I ′′c = I ′′c′ . By Theorem 3.2, Acc(fc) =

Acc(fc′).
In other cases, we have either Ic = Ic′ or Ic′ ( Ic.
If Ic′ ( Ic. We can assume ηc′ ∈ (ηc, ξc). For any θ ∈ Acc(fc), if the orbit of α(θ)

is disjoint with critical point 0, by Lemma 3.12, there exist N and θ′ 6= θN such that
θN and ϑ have the same itinerary respect to partition R/Z \ σ−1

2 (ηc′). By theorem 3.2,
in the dynamic plane of fc′ , external rays with arguments θN , ϑ land together. Thus
θ ∈ Acc(fc′). If α(θ) is iterated to 0, then critical point is not periodic. Evidently, the
above N and ϑ exist as well.

If Ic = Ic′ . For any θ ∈ Acc(fc), if α(ηc) is not periodic, by the same argument as
above, such ϑ and N exist. If α(ηc) is periodic. If the orbit of α(θ) avoids α(ηc), then such
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ϑ and N exist. If α(θ) is mapped to α(ηc). Then θ is iterated into {ηc, ξc} ⊆ Acc(fc′).
Thus θ ∈ Acc(fc′). The proof is completed. �
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Chapter 4

A landing theorem on non-recurrent
polynomials

4.1 Introduction

In this section we give some notations and recall some results of polynomial dynamics.
We refer to [Mi06], [Go94] and [Ki05] for details.

Let f be a monic polynomial with degree d ≥ 2. Let Ωf be basin of infinity consisting
the set of all points in C escaping to∞ and the filled Julia set Kf := C\Ωf . There exists
a green function Gf measures the escape rate of points to ∞, defined by

Gf : C→ [0,∞) z 7→ lim
n→∞

log |fn(z)|
dn

.

It is a continuous function which vanishes on the filled Julia set and satisfies

Gf (f(z)) = dGf (z).

Moreover, Gf is positive and harmonic in Ωf . In Ωf , the derivative of Gf vanishes at z if
and only if z is a pre-critical point. Each locus G−1

f (r) = {z ∈ C, Gf (z) = r} with r > 0

is called an equipotential curve around the filled Julia set Kf .

Near∞, there exists an unique normalized Böttcher map Ψf which conjugates f with
z → zd in a neighborhood of∞. Ψ−1

f has an unique maximal radial extension to a subset
of C \ D. This radial extension terminates at a point w with |w| > 1 if and only if Ψ−1

f

extends continuously to w and Ψ−1
f (w) is a (pre)critical point of f . Then external radius

Rf (t) with argument t is
Rf (t) := Ψ−1

f ((rt,∞)e2πit),

where Ψ−1
f (rte

2πit) is (pre)critical point of f . If all critical points has bounded orbits, then
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rt = 1 and so Ωf is simply connected.

We are working in the parameter space Pd ∼= Cd−1 of monic centered polynomials,
that is polynomials z 7→ zd + ad−2z

d−2 + · · · + a0. The shift locus Sd is the subset of Pd
formed by polynomials with all critical points escaping to infinity. Then Kf is cantor set
for each f in Sd. Let Sd(r), r > 0, consist of polynomials in Sd such that all the critical
points are in the same equipotential curve G−1(r) and let S ′d :=

S
r>0 Sd(r).

A collection Θ = {Θ1, · · · ,Θn} of finite subsets of R/Z is called a critical portrait of
degree d if the following conditions hold,

(1) for every j, |Θi| ≥ 2 and |σd(Θj)| = 1, where σd : θ 7→ d · θmod 1.

(2) Θ1, · · · ,Θn are pairwise unlinked.
(3)

P
(|Θj| − 1) = d− 1.

For another critical portrait Θ′ = {Θ′1, · · · ,Θ′n}, we say Θ = Θ′ iff there exist a per-
mutation τ such that Θi = Θ′τ(i) for 1 ≤ i ≤ d. Let Ad be the collection of all critical
portrait of degree d. In [Ki05], Kiwi gave Ad a compact-unlinked topology and proved
that Ad is compact and connected.

Now we consider the map

Π : S ′d → Ad f 7→ Θ.

Indeed, since there are degf (cj) external radius with argument θk terminating at cj. De-
note these arguments θk by Θj. Then Π(f) := {Θ1, · · · ,Θn} is the critical portrait
induced by f .

In [Go94], L.R.Goldberg proved that Π is surjective. Indeed, for each Θ ∈ A, she con-
structed a degree d topological polynomial g which maps Xg(r) onto Xg(dr) conformally.
All the critical points of g are in ∂Xg(r). Moreover, g induces the prescribed critical
portrait Θ. Then g pullbacks the standard complex structure on Xg(r) to the space

R =
[
n≥0

g−n(Xr).

Thus g : R→ R is a complex analytic map. Since R is a planar Riemann surface, it can
be conformally embedded in C by Koebe’s general uniformization Theorem 9.1 in [Sp81].
The complement C\R is a holomorphically removable Cantor set [SN70]. Thus g extends
to a holomorphic map f : C→ C which is a degree d polynomial with the required critical
portrait Θ.
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In [Ki05], Kiwi showed that Π is continuous and, for any Θ, the preimage SΘ = Π−1(Θ)

is a 1-real dimensional analytic manifold. Precisely, the map G : SΘ → (0,∞) which sends
f to Gf (ci) is bijective and analytic. Moreover, given r > 0, the restriction

Π|Sd(r) : Sd(r)→ Ad

is a homeomorphism.

The connected locus Cd is the set of monic centered polynomials with degree d such
that all the critical orbits are bounded. We know that Cd is a compact and connected
subset of Pd [BH88]. For instance, C2 is the Mandelbrot set. To describe Cd we look at it
from outside Sd.

The impression ICd(Θ) of critical portrait Θ is a subset of Cd, characterized by the
property that f ∈ ICd(Θ) if and only if there exists a sequence {fn} in S ′d such that
Π(fn) = Θ and fn converges to f .

Note that the impression here is slightly different from the definition in [Ki05], which
is bigger and containing ICd(Θ). J.Kiwi proved that if all arguments in Θ is strictly pre-
periodic, then the impression ICd(Θ) is a singleton [Ki05]. He conjectured that there exist
critical portraits with aperiodic kneading and non-trivial impressions.

Main results. In this chapter, we shall give an elementary proof of the following
two theorems based on the tools in [CT15].

Theorem 4.1. The map

P : Ad × (0,∞)→ S ′d (Θ, r)→ fΘ,r

where fΘ,r ∈ Sd(r) induces critical portrait Θ, is well-defined, one-to-one and continuous.

The well-defined and one-to-one properties are proved by quasiconformal surgery. In
parameter space we will call the simple curve

RΘ(t) := P (Θ, ·) : (0,∞)→ S ′d

parameter ray in Sd with argument Θ. For quadratic polynomials, RΘ is exactly parameter
ray outside of Mandelbrot set. We will say that RΘ lands if and only if the impression
ICd(Θ) is a singleton.

In dynamical plane, let f be a polynomial in Cd with Jf locally connected and all
cycles repelling. A critical portrait Θ = {Θ1, · · · ,Θn} is called a critical portrait of f if
each external rays with arguments in Θi lands at critical point ci, for 1 ≤ i ≤ n.

We have the following landing theorem.
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Theorem 4.2. Let f be a polynomial in Cd with non recurrent critical points and all
cycles repelling. Then the parameter ray RΘ(t) lands at f if and only if Θ is a critical
portrait of f .

The only if part comes from combinatorial continuity [Ki05] Theorem 1.

4.2 Preliminaries

In this section, we collect some known result on spherical metric, the distortions of
modulus, as well as shapes and turning, by holomorphic maps. The convergence of rational
maps on C is also discussed. These preliminaries will be used in the rest of this chapter.

4.2.1 Spherical metric

We will denote by Be(z, r), diste(x, y), diameW AreaeS the Euclidean balls, distances,
diameters and Euclidean area. While B(z, r), dist(x, y) and diam W are measured in
spherical metric.

Recall that the spherical line element and spherical area element on C are

ds =
2|dz|

1 + |z|2
and dσ =

4dxdy

(1 + |z|2)2
.

So we have
• 2

5
|dz| ≤ ds ≤ 2|dz| on Be(0, 2),

• the holomorphic map α : z 7→ 1/z preserves the spherical distance and spherical
area,
• let ε0 = dist (Be(0, 1), ∂Be(0, 2)), then any subset S of C with diam S < ε0 is either

contained in Be(0, 2) or C \Be(0, 1).
• infx∈C,0<r<ε0/2

¦
mod B(x, 2r) \B(x, r)

©
≥ m0 > 0.

4.2.2 Mañé Lemma

Lemma 4.1 ( [Ma93],Theorem II). Let f : C→ C be a rational map with degree at least
two. If a point x ∈ Jf is not a parabolic periodic point and is not contained in the ω-limit
set of a recurrent critical point, then for any ε > 0 there exist δ = δ(x, ε) < ε and integer
η = η(x, ε) such that for any r ≤ δ and any n ≥ 0,

(1) every component of f−nB(x, r) has spherical diameter less than ε,
(2) for every component W of f−nB(x, r), degree of fn : W → B(x, r) is less than η,
(3) every component of f−nB(x, r) is a topological disk.
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4.2.3 Distortions of modulus, shape and turning

Lemma 4.2 ( [KL09],Lemma 4.5). Let Ui ⊆ Vi in C be a pair of Jordan disks, where
i = 1, 2. Suppose that g : V1 → V2 is a proper holomorphic map of degree d and U1 is a
component of g−1(U2). Then

mod V1 \ U1 ≤ mod V2 \ U2 ≤ d mod V1 \ U1.

Let U be a domain in C and z ∈ U . The Shapee resp. Shape of U about z is defined
as

Shapee(U, z) =
maxw∈∂Udiste(w, z)
minw∈∂Udiste(w, z)

resp. Shape(U, z) =
maxw∈∂Udist(w, z)
minw∈∂Udist(w, z)

Obviously, B(z, r) ⊆ U ⊆ B(z, kr) for some r, where k := Shape(U, z). Thus U is a round
disk centered at z if and only if Shape(U, z) = 1.

Let E be a compact set in C and z1, z2 ∈ E, the turning is defined as

Λe(E, z1, z2) =
diameE

diste(z1, z2)
resp. Λ(E, z1, z2) =

diamE
dist(z1, z2)

.

We have the following lemma,

Lemma 4.3 ( [QWY12], Lemma 6.1 ). Let Ui ⊆ Vi in C be a pair of Jordan disks with
mod(V2 \ U2) ≥ m > 0, where i = 1, 2. Suppose that g : V1 → V2 is a proper holomorphic
map of degree ≤ d and U1 is a component of g−1(U2). Then there are two positive constants
C ′1(d,m) and C ′2(d,m) depending only on d and m, such that

(1) for all z ∈ U1, the shape satisfies

Shapee(U1, z) ≤ C ′1(d,m)Shapee(U2, g(z)), (4.1)

(2) for any connected and compact subset E of U1 with the cardinal number #E ≥ 2

and any z1, z2 ∈ E, the turning satisfies

Λe(E; z1, z2) ≤ C ′2(d,m)Λe(g(E); g(z1), g(z2)). (4.2)

Remark. If we give additional condition that diam Ui, diam Vi and diam E are less
than ε0. Then there exist positive constants C1(d,m) and C2(d,m) such that (4.1) and
(4.2) hold by replacing Shapee, Λe and C ′i(d,m) with Shape, Λ and Ci(d,m) respectively.
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From now on when we apply Lemma 4.3, we always assume Ui, Vi and E satisfying this
additional condition.

4.2.4 Convergence of rational map sequences

Throughout this chapter, if not otherwise stated, the convergence of maps on C is
measured in spherical metric.

If a sequence of rational maps {fn} uniformly converges on C, then it converges to a
rational map g and deg (fn) = deg (g) as n is large enough. Moreover, the coefficients of
fn converges to that of g as well. For more results, we have the following lemma. See also
in [CT15].

Lemma 4.4. Let {fn} be a sequence of rational maps with constant degree d ≥ 1. Let
U ⊆ C be a non-empty open set and {fn} converge uniformly to a map g on U as n→∞,
then g is a rational map and deg g ≤ d. Moreover, deg g = d implies that {fn} converges
uniformly to g on C as n→∞.

Proof. By composing Möbius transformations, we may assume that∞ ∈ U and fn(∞)→
1. Thus as n is large enough, the function fn has the form

fn(z) = kn
(z − a1,n) · · · (z − ad,n)

(z − b1,n) · · · (z − bd,n)
,

and
kn → 1 as n→∞. (4.3)

Since f−1
n (0) = {a1,n, · · · , ad,n}, f−1

n (∞) = {b1,n, · · · , bd,n} and fn(∞) → 1, both {ai,n}
and {bj,n} are bounded in C. Passing to a subsequence {fnk}, we have

(a1,nk , · · · , ad,nk ; b1,nk , · · · , bd,nk)→ (a1, · · · , ad; b1, · · · , bd) as nk →∞. (4.4)

Without loss of generality, we assume that ai 6= aj, bi 6= bj for i 6= j and

ad0+1 = bd0+1, · · · , ad = bd, ai 6= bj for 0 ≤ i, j ≤ d0 (4.5)

for some 0 ≤ d0 ≤ d. Let

g1(z) =
(z − a1) · · · (z − ad0)

(z − b1) · · · (z − bd0)
or g1(z) = 1 if d0 = 0.

We claim that fnk converges locally uniformly to g1 on C \ {ad0+1, · · · , ad}.
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Proof. Consider the metric d(·, ·) on C

d(z, z′) :=
2|z − z′|È

1 + |z|2 ·
È

1 + |z′|2
and d(∞, z) := lim

ξ→∞
d(ξ, z)

for z, z′ ∈ C. We know that it is equivalent to the spherical metric on C.
For any z ∈ C, the distance d(fnk(z), g1(z)) equals

2
���knQ1≤i≤d(z − ai,nk)

Q
1≤i≤d0

(z − bi)−
Q

1≤i≤d0
(z − ai)

Q
1≤i≤d(z − bi,nk)

���É���knQ1≤i≤d(z − ai,nk)
���2 +

���Q1≤i≤d(z − bi,nk)
���2 ·É���Q1≤i≤d0

(z − ai)
���2 +

���Q1≤i≤d0
(z − bi)

���2
=:

∆′z,nk
∆′′z,nk

By assumption the claim follows at the point ∞.
Let

δ :=
1

3
· min
x 6=x′∈{a1,··· ,ad,b1,··· ,bd0 ,∞}

dist (x, x′).

For any x ∈ C \ {ad0+1, · · · , ad}, B(x, δ) ⊆ C. Moreover, by (4.3) (4.4) (4.5),

sup
z∈B(x,δ)

∆′z,nk → 0 as k →∞

and there exists δx > 0 such that

inf
z∈B(x,δ),k≥0

∆′′z,nk ≥ δx.

This is because, as k large enough, at most one sequences of {ai,nk} and {bi,nk} stays
in the disk B(x, 2δ). Therefore, {fnk} is uniformly convergent on B(x, δ). The claim is
proved.

Since {fn} converges uniformly to g on U , we have {fn} converges uniformly to g(= g1)

on any compact subset in C \ {ad0+1, · · · , ad} by the claim and hence g is rational map
with deg(g) = d0 ≤ d. Moreover, deg(g) = d implies d0 = d and {fn} converges uniformly
to g on C. The lemma is finished.

4.3 Modulus distortion dominates the spherical distor-

tion

In this section, for our purpose we introduce a new quantity, namely the maximal
distortion of modulus in [CT15], to control the distance between univalent map and
Möbius transformation. Although there are many existent measurements, such as the
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norm Schwarzian derivative, or the maximal distortion of cross-ratios or extremal lengths
etc.

4.3.1 Maximal distortion of modulus

Let V be an open set in C and φ : V → C a univalent map. For any two disjoint full
continua E1, E2 in V , we denote by A(E1, E2) := C \ (E1

S
E2) which is annulus induced

by E1, E2.
Define the maximal distortion of modulus D(φ, V ), as follows

D(φ, V ) := sup
E1,E2⊆V

|mod A(E1, E2)−mod A(φ(E1), φ(E2))|,

where E1, E2 are disjoint full continua in V with mod A(E1, E2) <∞.
This quantity may not be finite, the first example being z2 acting on the right half

plane (see the theorem below for a proof). Also, although it is clear that D(φ, V ) = 0 if
φ is the restriction of a Möbius transformation on V , but it is not at all obvious that the
converse is also true.

In order to understand the following theorem, let us look at a guiding example: con-
sider V a neighborhood of {0,∞} and define a univalent map φ on V as

φ(z) =

8><>:λ0z, near 0

z/λ∞, near ∞
with λ0, λ∞ 6= 0.

For ε sufficiently small, let E1 = {z ∈ C : |z| ≤ ε} and E2 = {z ∈ C : |z| ≥ 1
ε
}. We

have A(φ(E1), φ(E2)) = {|λ0|ε < |z| < 1
|λ∞|ε}. So

|mod A(E1, E2)−mod A(φ(E1), φ(E2))| = 1

2π
log |λ0λ∞|| ≤ D(φ, V ).

4.3.2 Properties of maximal distortion of modulus

Theorem 4.3. Let φ : V → C be an univalent map on open set V .
(1) For any Möbius transformations α, β, we have

D(α ◦ φ ◦ β, β−1(V )) = D(φ, V ).

(2) If V contains 0,∞ and φ fixes 0,∞, then, setting φ′(∞) := limz→∞
z

φ(z)
,

1

2π
|log |φ′(0)φ′(∞)|| ≤ D(φ, V ).
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(3) If V contains 0, 1,∞ and φ fixes 0, 1 and ∞, then, for any z ∈ V \ {∞},

1

5π
|log |φ′(z)|| ≤ D(φ, V ).

(4) D(φ, V ) = 0 if and only if φ is the restriction of a Möbius transformation on V .
(5) If an extension of φ has a critical point on the boundary of V , then D(φ, V ) = +∞.
(6) If V contains 0,D(1, r0) and ∞. Then there exists constant 0 < C(r0) < ∞ such

that, for any univalent map φ fixing 0, 1 and ∞, we have

sup
z∈V
{dist (φ(z), z)} ≤ C(r0) ·D(φ, V ).

Proof. (1) It follows evidently. Because Möbius transformations preserve the modulus of
annulus.

(2) Let M0(ε),m0(ε) be the supremum and infimum of |φ(z)| on the circle {|z| = ε},
and M∞(ε), m∞(ε) be the supremum and infimum of |ψ(z)| on the circle {|z| = 1/ε}.

Set E1 := {|z| ≤ ε}, E2 := {z ∈ C : |z| ≥ 1
ε
} and Aφ := A(φ(E1), φ(E2)). Then

{M0(ε) < |z| < m∞(ε)} ⊆ Aφ ⊆ {m0(ε) < |z| < M∞(ε)}

and
1

2π
log

ε2m∞(ε)

M0(ε)
≤ mod Aφ −mod A ≤ 1

2π
log

ε2M∞(ε)

m0(ε)
.

Since

|φ′(0)| = lim
ε→0

M0(ε)

ε
= lim

ε→0

m0(ε)

ε
and |φ′(∞)| = lim

ε→0

1

ε ·M∞(ε)
= lim

ε→0

1

ε ·m∞(ε)
,

we get
1

2π
|log |φ′(0)φ′(∞)|| = lim

ε→0
|mod Aφ −mod A| ≤ D(φ, V ).

(3) For arbitrary distinct z, w ∈ V \ {∞}, there exist Möbius transformations

βa(ξ) =
w · ξ + z · a

ξ + a
and αb(ξ) = b · ξ − φ(z)

ξ − φ(w)

with a, b ∈ C∗ such that ψa,b := αb ◦ φ ◦ βa fixes 0 and ∞. By (1) and (2), we have

D(φ, V ) = D(ψa,b, β
−1
a (V )) ≥ 1

2π

���log |ψ′a,b(0)ψ′a,b(∞)|
���

=
1

2π

�����log |φ′(z)φ′(w)||z − w|2

|φ(z)− φ(w)|2

����� =:
1

2π
D1(φ)(z, w). (4.6)

Set δ := D(φ, V ), λ0 = |φ′(0)|, λ1 = |φ′(1)| and λ∞ = |φ′(∞)|. Apply (4.6) for the pairs

121



(0, 1) and (1, ξ) as ξ →∞, we get |log λiλj| ≤ 2πδ for i 6= j. It follows that

|log λi| ≤ 3πδ for i ∈ {0, 1,∞}

For any z ∈ V \ {∞}, choose wn →∞ as n→∞. By (4.6), we have |log |φ′(z)λ∞|| ≤
2πδ. Thus |log |φ′(z)|| ≤ 5πδ.

(4) Without loss of generality, we can assume φ fix 0, 1,∞ on V by (1). Then (3)

implies φ′(z) = 1 on V . Therefore φ = id.
(5) It follows directly by (3).
(6) See Theorem 8.1 (b) in [CT15].

4.4 Controlling modulus distortions by areas

In this section, firstly we recall some classic results on modulus of annulus without
proof. Then we give a lemma, which provides a way to control the maximal distortion of
modulus.

4.4.1 Modulus of annulus

Notations C∗ := C \ {0,∞}, Dt := {z ∈ C : |z| < t}, A(z0; r1, r2) := {z ∈ C : r1 <

|z − z0| < r2} and A(r1, r2) := {z ∈ C : r1 < |z| < r2} for z0 ∈ C and 0 < r1 < r2.

Let A ⊆ C be annulus. Let ΓHeight be the family of all locally rectifiable curves in A
joining the two components of C \A and ΓWidth the family of all locally rectifiable closed
curves in A separating the two components of C \ A.

Let ρ : A → [0,∞] be a non-negative Borel measure function on A. The ρ-area of A
is

Area (ρ,A) :=
ZZ

A
ρ2(z)dxdy.

The ρ-length of a locally rectifiable curve γ in A is

Length (ρ, γ) :=
Z
γ
ρ(z)|dz|.

Height(ρ,A) is the infimum of Length (ρ, γ) over all γ ∈ ΓHeight. Width (ρ,A) is the
infimum of Length (ρ, γ) over all γ ∈ ΓWidth.

The modulus of annulus A is defined to be the modulus of the family of curves ΓWidth,
that is,

mod A := inf Area (ρ,A), (4.7)
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where the infimum is taken over all nonnegative Borel functions ρ with Width (ρ,A) ≥ 1.

There are some well-known facts about modulus of annulus.
• It is preserved by conformal maps.
• It equals the extremal length of the family of curves ΓHeight, that is,

mod A = sup
Height (ρ,A)2

Area (ρ,A)
(4.8)

where ρ is taken over all nonnegative Borel function ρ with 0 < Area(ρ,A) <∞.
• If mod A < ∞, there exists an unique conformal map χA : A → A(1, e2πmod A) up

to a post composition of a rotation.
• ρ0 reaches the infimum in (4.7) if and only if

ρ0(z) = |( 1

2π
· log ◦ χA)′(z)|,

which is the pullback of Euclidean metric in C. ρ0 is called extremal metric on A.
• Extremal metric ρ0 realizes the supremum in (4.8), thus

mod A = Height (ρ0, A) = Area (ρ0, A) and Width (ρ0, A) = 1. (4.9)

• If A in C is annulus with mod A > 5log2
2π

. Then there exists an annulus A(z0; r1, r2)

contained essentially in A such that

mod A(z0; r1, r2) ≥ mod A− 5log2

2π
.

A conformal metric ρ, i.e., nonnegative Borel measurable function, on A is called to
be length increasing if

Width (ρ,A) ≥ 1 and Height (ρ,A) ≥ Height (ρ0, A). (4.10)

4.4.2 Area difference controls modulus distortion

Lemma 4.5. Let Z be a compact set in C and φ univalent on C\Z. Let E1, E2 be disjoint
full continua in C \ Z. Then

|mod A(E1, E2)−mod A(φ(E1), φ(E2))| ≤ Area(ρ,A)− Area(ρ0, A)

for arbitrary length increasing conformal metric ρ on A(E1, E2) with ρ|Z = 0.

Proof. We write A := A(E1, E2) and Aφ := A(φ(E1), φ(E2)). Let ρ0 be an extremal
metric on A.
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For arbitrary length increasing conformal metric ρ on A with ρ|Z = 0, set

eρ(z) =

8><>:0, on Aφ \ φ(A \ Z)

ρ(φ−1(z))
|φ′(z)| , on φ(A \ Z).

Then it is not difficult to check that
• Area (ρ,A) = Area (eρ,Aφ),
• Width (eρ,Aφ) ≥Width (ρ,A),

• Height (eρ,Aφ) ≥ Height (ρ,A).

Combining with (4.7), (4.8), (4.9) and (4.10), we have

mod Aφ −mod A ≤ Area (eρ,Aφ)−mod A = Area (ρ,A)− Area (ρ0, A)

and

mod A−mod Aφ = Area (ρ0, A)−mod Aφ

≤ Area (ρ0, A)− Height (eρ,Aφ)2

Area (eρ,Aφ)

≤ Area (ρ0, A)− Height (ρ,A)2

Area (ρ,A)

≤ Area (ρ0, A)− Height (ρ0, A)2

Area (ρ,A)

≤ Area (ρ,A)− Area (ρ0, A).

The last inequality holds by the fact Height (ρ0, A) = Area (ρ0, A) and the Cauchy In-
equality. Thus the lemma is proved.

4.5 Univalent maps off a finite nested disc system

The result in this section generalizes the discussion in ( [CT15], Section 8.2). At first,
we give the definition of nested disk systems, the m-nested and λ-scattered properties.
Then we pay great effort to prove Theorem 4.4.

4.5.1 Nested disk system

Let Y be a finite set in C. A collection of open topological disks {Dx}x∈Y is called
nested disk system if
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• each Dx contains x,
• if Dx

T
Dy 6= ∅ then either Dx ( Dy or Dx ) Dy.

Let {Dx}x∈Y be a nested disk system. Let {D′′x}x∈Y and {D′′x}x∈Y be topological disks.
Then {D′′x, D′x, Dx}x∈Y is said to be m-nested if
• x ∈ D′′x ⊆ D′x ⊆ Dx,
• for any Dy 6= Dx with Dy

T
D′′x 6= ∅, we have Dy ⊆ D′x,

• infx∈Y {mod Dx \D′x} ≥ m > 0.

Let W be an open set in C such that
S
x∈Y Dx ⊆ W . Let Vx be the union of all

Dy( 6= Dx) contained in Dx and Wx the component of W containing x. Then the nested
disk system {Dx}x∈Y is said to be λ-scattered in W with λ ∈ (0, 1) if and only if for each
x ∈ Y and any univalent map h : Wx → C∗,

Area(ρ∗, h(Vx)) ≤ λ · Area(ρ∗, h(Dx)),

where ρ∗ := 1
2π|z| is a planar metric on C∗.

4.5.2 The boundedness of Areap(E,W )

The following lemma will become natural by the end of the proof of Theorem 4.4.

Lemma 4.6. Let W ( C be an open set with #C \W ≥ 2. Suppose E is a measurable
set with E ( W . Then

Areap(E,W ) := sup
φ

Area (ρ∗, φ(E)) <∞,

where the supermum is taken over all univalent maps φ : W → C∗.

Proof. Without loss of generality, assume W ⊆ C∗. Let d = diste(E, ∂W ) > 0. Let
φ : W → C∗ be any univalent map. For any z ∈ E, consider the univalent map φ :

Be(z, d)→ C∗. By the classic Koebe’s 1/4-Theorem, we have

Be(φ(z),
|φ′(z)|d

4
) ⊆ φ(Be(z, d)) ⊆ φ(W ) ⊆ C∗.

Then
|φ(z)| = diste(φ(z), 0) ≥ |φ

′(z)d

4
.
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We estimate,

Area (ρ∗, φ(E)) =
ZZ

φ(E)
(

1

2π|ξ|
)2dxdy =

ZZ
E

|φ′(z)|2

4π2|φ(z)|2
dxdy

≤ 4

π2d2
Areae(E) <∞ (4.11)

By the arbitrariness of φ, the proof is completed.

4.5.3 Univalent maps off m-nested and λ-scattered nested disc

system

Theorem 4.4. Let Y be a finite set in C. Let {(D′′x, D′x, Dx)}x∈Y be m-nested and λ-
scattered disk system in open set W ⊆ C. Let D :=

S
x∈Y Dx and D′′ :=

S
x∈Y D

′′
x. Then

For any sufficient large m, there exists C(m,λ) > 0 with C(m,λ) → 0 as m → ∞, such
that

D(φ,C \W ) ≤ C(m,λ) · Areap(D,W )

for any univalent map φ : C \D′′ → C.

Proof. Firstly, we define a partial order on the finite set Y . For any x, y ∈ Y ,

x ≺ y ⇐⇒ either x = y or Dx ( Dy.

Let I1 be the set of all maximal elements in Y . Inductively, Ik, k ≥ 2, is set of all
maximal elements in Y \ S1≤i≤k−1 Ii. Then

Y = I1

[
I2

[
· · ·

[
In.

We denote by Dk :=
S
x∈Ik Dx and D′′k :=

S
x∈Ik D

′′
x. Obviously, it follows that

D = D1 ) D2 ) · · · ) Dn. (4.12)

Secondly, for 2 ≤ k ≤ n, set

I ′k := {x ∈ Ik : Dx

\
D′′y = ∅ for any y ∈ I1

[
· · ·

[
Ik−1} ⊆ Ik

and
I ′′k := {x ∈ Ik : Dx

\
D′′y 6= ∅ for some y ∈ I1

[
· · ·

[
Ik−1} ⊆ Ik.

For k = 1, set I ′1 := I1 and I ′′1 := ∅. Obviously, Ik is the union of the two disjoint sets I ′k
and I ′′k .
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Thirdly, for any disjoint full continua E1, E2 in C \ W , we write A := A(E1, E2).
Suppose mod A <∞. Let χA : A→ A(1, e2πmod A) be conformal. Then

ρ0(z) = |( 1

2π
log ◦ χA)′(z)|

is an extremal metric on A and satisfies (4.9).
Define ρk(z) on A for 1 ≤ k ≤ n inductively by

ρk(z) =

8>>>>><>>>>>:

0, z ∈ Sx∈I′
k
D′x

ρ0(z)(1− e−πm)−k, z ∈ Sx∈I′
k
Dx \D′x

ρk−1(z), z ∈ Sx∈I′′
k
Dx

ρk−1(z), z ∈ A \Dk.

When reaching the deepest nest, the metric stabilizes to ρn. This is the metric we were
looking for.

Claim 1. For 1 ≤ k ≤ n, ρk(z) ≤ ρ0(z)(1− e−πm)−k on A.

Proof. It is obviously true for k = 1.
By induction, for k ≥ 2, we have

ρk(z) ≤ max {ρ0(z)(1− e−πm)−k, ρk−1(z)}

≤ max {ρ0(z)(1− e−πm)−k, ρ0(z)(1− e−πm)−k+1}

≤ ρ0(z)(1− eπm)−k

for any z in A. Thus the Claim follows.

Claim 2. For 2 ≤ k ≤ n, ρk(z) = ρk−1(z) = 0 on
S
x∈I′′

k
Dx.

Proof. For any z ∈ Sx∈I′′
k
Dx, by (4.12) there exists an unique sequence {xi}1≤i≤k in Y

with xi ∈ Ii such that
z ∈ Dxk ( · · · ( Dx2 ( Dx1 . (4.13)

Since xk ∈ I ′′k , then there exists xl1 with 1 ≤ l1 ≤ k − 1 such that Dxk

T
D′′xl1

6= ∅. By
(4.13), for l1 − 1 ≤ i ≤ k, we have Dxi

T
D′′xl1

6= ∅ and thus xi ∈ I ′′i . Therefore,

ρk(z) = ρk−1(z) = · · · = ρl1(z). (4.14)

The m-nested property gives

z ∈ Dxk ( D′xl1
( Dxl1

. (4.15)
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If xl1 is contained I ′l1 . We have ρl1(z) = 0 by (4.15) and the definition of ρl1 . Otherwise we
have xl1 ∈ I ′′l1 . Then we continue the discussion and obtain l1 > l2 > l3 > · · · satisfying
(4.14) and (4.15). After at most k − 1 steps, we must have some xlj in I ′lj such that
x ∈ D′xlj ( Dxlj

. This is because I ′′1 = ∅. So ρk(z) = ρlj(z) = 0. The Claim is proved.

Claim 3. ρn(z) = 0 on D′′.

Proof. Recall that D′′ =
S
x∈Y D

′′
x. For any x ∈ Y and any z ∈ D′′x. Suppose x ∈ Ik. By

(4.12), there exist a maximal k ≤ l ≤ n and sequence {xi}k≤i≤l with xi ∈ Ii and xk := x

such that
z ∈ Dxl ( Dxl−1

( · · · ( Dxk .

It follows that Dxi

T
D′′xk 6= ∅ and so xi ∈ I ′′i for k ≤ i ≤ l. By Claim 2, we have

0 = ρk(z) = · · · = ρl(z) = · · · = ρn(z).

The Claim is proved.

Claim 4. Let x ∈ Ik with 1 ≤ k ≤ n. Then for any curve γ ⊆ Dx with endpoints
γ(0), γ(1) ∈ ∂Dx, there exists a curve eγ in Dx with eγ(0) = γ(0) and eγ(1) = γ(1) such
that

Length (ρk, γ) ≥ Length (ρk−1, eγ). (4.16)

Proof. If x ∈ I ′′k , let eγ := γ, by definition of ρk, it follows. Thus we assume x ∈ I ′k. Since
ρk(z) = ρ0(z)(1− e−πm)−k > ρk−1(z) by Claim 1. We also assume γ

T
D′x 6= ∅.

Let hx : Dx → C be a univalent branch of the map 1
2π
log ◦ χA (See figure 4.1). Let

Hx = hx(Dx \D′x). Then ρ0(z) = |h′x(z)| and

mod Hx = mod Dx \D′x ≥ m >
5log2

2π
.

So there exists an annulus A(zx; rx, Rx) essentially contained in Hx such that

mod A(zx; rx, Rx) =
1

2π
log

Rx

rx
≥ m− 5log2

2π
≥ m

2
. (4.17)

Let Ax := h−1
x (A(zx; rx, Rx)). Let t0 := inf {t : γ(t) ∈ Ax} and t1 := sup {t : γ(t) ∈ Ax}.

Set ξ := γ(t0), η := γ(t1), γ1 := γ|[0,t0], γ2 := γ|[t0,t1] and γ3 := γ|[t1,1]. Then γ1, γ3 ⊆
Dx \D′x and γ2 crosses Ax at least two times. For i ∈ {1, 3},

Length (ρk, γi) ≥ Length (ρk−1, γi). (4.18)
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γ1

γ2 γ3

γ′2
γ′

Ax A(x0; rx, Rx)D′x

Dx

hx(γ)Hx

hx(ξ)

hx(η)
hx

Figure 4.1: Illustrating the proof of Claim 4

Together with (4.17), we estimate

Length (ρk, γ2) =
Z
γ2

ρ0(z)(1− e−πm)−k|dz| = (1− e−πm)−k
Z
hx(γ2)

|dz|

≥ (1− e−πm)−k(2Rx − 2rx)

≥ (1− e−πm)−k+12Rx

≥ (1− e−πm)−k+1
Z
γ′
|dz|

=
Z
γ′2

ρk−1(z)|dz| = Length (ρk−1, γ
′
2), (4.19)

where γ′ ⊆ hx(Dx) is a straight line segment connecting hx(ξ), hx(η) and γ′2 := h−1
x (γ′).

Set eγ := γ1
S
γ′2
S
γ3. By (4.18) and (4.19), the Claim follows.

Claim 5. ρn is a length increasing conformal metric on A with ρn|D′′ = 0.

Proof. By Claim 3 ρn|D′′ = 0. For arbitrary γ ∈ ΓHeight, applying Claim 4, we have

Length (ρn, γ) = Length (ρn, γ
\
A \Dn) +

X
x∈In

Length (ρn, γ
\
Dx)

≥ Length (ρn−1, γ
\
A \Dn) +

X
x∈In

Length (ρn−1, eγx)
= Length (ρn−1, eγ) ≥ · · · ≥ Length (ρ0, γ

′).

where γ′ ∈ ΓHeight. Hence it follows that Height (ρn, A) ≥ Height (ρ0, A) ≥ 1. By the
same arguments, we have Width (ρn, A) ≥Width (ρ0, A). The Claim is proved.

Since {Dx}x∈Y is λ-scattered. By (4.12), for any 1 ≤ k ≤ n− 1,

Area (ρ0, Dk+1) ≤ λArea (ρ0, Dk) ≤ · · · ≤ λkArea (ρ0, D1) (4.20)
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Now applying Claim 5, Lemma 4.5, Claim 1 and (4.20), we have

0 ≤ Area (ρn, A)− Area (ρ0, A)

=
ZZ

Dn
(ρ2
n − ρ2

0)dxdy +
X

1≤k≤n−1

ZZ
Dk\Dk+1

(ρ2
n − ρ2

0)dxdy

=
ZZ

Dn
(ρ2
n − ρ2

0)dxdy +
X

1≤k≤n−1

ZZ
Dk\Dk+1

(ρ2
k − ρ2

0)dxdy

≤
ZZ

Dn

ρ2
0

(1− e−πm)2n
− ρ2

0dxdy +
X

1≤k≤n−1

ZZ
Dk\Dk+1

ρ2
0

(1− e−πm)2k
− ρ2

0dxdy

≤
X

1≤k≤n

�
1

(1− e−πm)2k
− 1

�
Area (ρ0, Dk)

≤
X
k≥1

�
1

(1− e−πm)2k
− 1

�
λk−1Area (ρ0, D1).

If m is sufficient large such that (1 − e−πm)2 > λ. Then the last term of the above
inequalities is

e−πm(2− e−πm)

(1− λ) [(1− e−πm)2 − λ]
Area (ρ0, D1) := C(m.λ) · Area (ρ0, D1).

By the arbitrariness of E1, E2 in C \W , Lemma 4.6 and Lemma 4.5, we have proved
the theorem.

4.6 Application to rational maps

The aim of this section is to construct a sequence of mk-nested λ-scattered nested disk
systems from pullback disk systems with mk →∞ as k →∞. We require the nested disk
systems are uniformly λ-scattered. Moreover, each one contains a pullback disk system.
See Proposition 4.1 for details.

One of our challenge is to deal with the situation that one critical point c is contained
in the w-limit set of another critical point c′. Thus for arbitrary small disk B(c, r), after
pulling it back, the preimages will eventually meet c′. This makes it impossible to obtain a
desired nested disc system from pullback disk system directly. To overcome this problem,
we select nice disks B(ci, ri) and discard all of the "bad" components in preimages, namely
the component containing points of lower level. The remaining components still contains
all the preimages. See (4.32).

Throughout this section, we shall adopt the assumption in the following subsection.
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4.6.1 Assumption

Let f be a rational map with degree d ≥ 2 and no empty Fatou set. Denote by
Orb(S) :=

S
k≥0 f

k(S) for set S ⊆ C. Let X0 := X ′0
S
X ′′0 be a finite set in C such that

• X ′0 is contained in Jf and X ′′0 in Fatou set,
• for distinct x, x′ ∈ X0, x /∈ Orb(x′),
• X0 has no recurrent points, that is, x /∈ ω(x) for any x ∈ X0,
• Orb(X ′0) is disjoint with the ω-limit set of all recurrent critical points,
• Orb(X ′0) is disjoint with the parabolic cycles,
• for any critical point c /∈ X ′0, ω(c)

T
X ′0 = ∅,

• X ′′0 contains no periodic points.

Thus X ′′0 are disjoint with the immediate rotation domains, such as periodic Siegel
disks and Herman rings, and there exists δ0 > 0 such that

(1) B(x, δ0)
T
B(y, δ0) = ∅ for any x 6= y ∈ X0.

(2) For any x ∈ X ′0, B(x, δ0)
T
Orb(c) = ∅ for any critical point c /∈ X0.

(3) For any x ∈ X ′′0 , B(x, δ0) \ {x} is disjoint with critical orbits and Julia set , thus
every component of f−nB(x, δ0) is open disk and in Fatou set.

(4) For any x ∈ X ′′0 , B(x, δ0)
T
Orb(fB(x, δ0)) = ∅. Because each points in X ′′0 is

iterated into either periodic rotation domains or converging to periodic points. Hence
f−n1B(x, δ0)

T
f−n2B(x, δ0) = ∅ for any n1 6= n2 ≥ 0.

4.6.2 Shrinking Lemma

Lemma 4.7 (Shrinking lemma). Let K := Orb(X ′0)
S
X ′′0 . Then for any ε > 0, there

exist 0 < δ ≤ ε and integer η ≥ 1, such that, for all x ∈ K and n ≥ 1,
(1) any component of f−nB(x, δ), written B−n(x, δ), is an open disk,
(2) diam B−n(x, δ) ≤ ε,
(3) supx∈K{diam B−n(x, δ)} → 0 as n→∞,
(4) degree of the covering gn := fn : B−n(x, δ)→ B(x, δ) is less than η,
(5) for any ball B(z, r) in B(x, δ), Shape(B−n(z, r), ξ) ≤ C1 := C1(η,m0), where

B−n(z, r) is a component of g−1
n B(z, r) and gn(ξ) = z,

(6) for any two balls B(z′, r′) ⊆ B(z, r) in B(x, δ), let B−n(z′, r′) ⊆ B−n(z, r) be
components in B−n(x, δ), C2 := C2(η,m0), then

diam B−n(z, r)

diam B−n(z′, r′)
≤ C2 ·

r

r′
.

Recall that m0 is a constant in subsection 4.2.1 and C1(η,m0), C2(η,m0) in Lemma
4.3.
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Proof. Firstly, we claim that for any x ∈ X ′′0 , diam B−n(x, δ0/2)→ 0 as n→∞.

Proof. Since
S
k≥0 f

−kB(x, δ0) contains at most finite critical points. Thus the degree of
covering map fn : B−n(x, δ0)→ B(x, δ0) is uniformly upper bounded by a integer ηx. By
Lemma 4.3,

Shape(B−n(x, δ0/2)) ≤ C1(ηx,m0).

We know that all disks {B−n(x, δ0/2)}n≥0 are pairwise disjoint (see Subsection 4.6.1 (4)).
Then the claim follows.

For any x ∈ X ′′0 , choose ηx and δx ≤ δ0/2 satisfying (1)-(4) by the claim. For any
x ∈ Orb(X ′0), let δx, ηx be in Lemma 4.1. Then {B(x, δx)}x∈K covers the compact set K.
Thus there exists finite set Σ such that K ⊆ Sx∈Σ B(x, δx).

Let 3δ be the Lebesgue number of the finite open covering and

η := max {ηx, x ∈ Σ}.

Then any B(x, 2δ) with x ∈ K is contained in a ball B(ξ, δξ) with ξ ∈ Σ. Therefore,
(1)(2)(4)(5)(6) hold by Lemma 4.1 and Lemma 4.3.

For (3), if not, there exists a sequence of disks {B−nk(xk, δ)}k≥0, xk ∈ K,nk → ∞ as
k → ∞, such that their diameters are greater than some positive number. Since shapes
of these disks are bounded by C1(η,m0). There exist a ball B(x∞, r0) with x∞ ∈ Jf

contained in infinitely many disks of {B−nk(xk, δ)}. This contradicts the fact that Jf ⊆
fN(B(x∞, r0)) for sufficiently larger N .

4.6.3 A sequence of arbitrary small nice disks Nx around x

Lemma 4.8 (Key lemma). Let x be a point in X0 such that ω(x) is disjoint with the
subset Yx of X0. Then there exist Nx = {(En,x, On,x, Un,x)}n≥1, δx > 0, and Cx ≥ 1, such
that

(1) On,x, Un,x are open disks with x ∈ On,x ⊆ Un,x,
(2) x /∈ En,x ⊆ On,x and En,x is contained in the Fatou set,
(3) Shape (En,x, ξ) ≤ Cx, for some ξ ∈ En,x, and diam Un,x ≤ Cx · diam En,x,

(4) diam Un,x → 0 as n→∞,
(5) If B−k(y, δx)

T
∂Un,x 6= ∅, then B−k(y, δx)

T
On,x = ∅ for any y ∈ Yx, k ≥ 1 and

components B−k(y, δx) of f−kB(y, δx),
(6) En,x

T
f−kB(y, δx) = ∅ for any y ∈ Yx and k ≥ 1.

Proof. If x ∈ X ′′0 . Then {fn(x)} either locally uniformly converges to a periodic cycle or
eventually conjugates to a irrational rotation. Thus there exists a neighborhood B(x, δ)
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in Fatou set with δ ≤ δ0 such that Orb(fB(x, δ))
T
Yx = ∅. Let

δx :=
1

2
· dist (Orb(fB(x, δ)), Yx).

Then B(x, δ)
T
f−kB(y, δx) = ∅ for any y ∈ Yx and k ≥ 1. Indeed, if not, suppose

ζ ∈ B(x, δ)
T
f−kB(y, δx). We have fk(ζ) ∈ Orb(fB(x, δ))

T
B(y, δx), a contradiction.

Set

On,x := Un,x := B(x, δ/2n), En,x := B(ξn, δ/(3 · 2n)) ⊆ On,x with x /∈ En,x

and Cx := 3. Then Nx, δx, Cx satisfy the conditions (1)-(6).

If x ∈ X ′0. Denote by xn := fn(x) and

ε0 :=
1

2
· dist (Orb(f(x)), Yx).

Applying Lemma 4.7 by setting ε = ε0, we obtain δ and η1. Let B−n(xn, δ) be the
component of f−nB(xn, δ) containing x. Then we have

ε1 := inf
n≥1,1≤k≤n

{dist (fkB−n(xn, δ), Yx)} > 0. (4.21)

Every ball B(z, δ/5) with z ∈ Orb(x) intersects the Fatou set. Thus there exists a
sufficiently small ball Ez ⊆ B(z, δ/5) such that Ez is contained in the Fatou set and
Orb(Ez)

T
Yx = ∅. Let {B(z, δ/5)}z∈Σ be a finite open covering of Orb(x). Using Lemma

4.7 again by setting

ε = min {ε1,minx∈Σdist (Orb(Ez), Yx), δ/2}, (4.22)

we obtain δx and η2. Let η := max {η1, η2}.
Now we set Un,x := B−n(xn, δ) and On,x := B−n(xn, δ/2), both of which contain x.

Since there must exist ξ ∈ Σ such that

Eξ ⊆ B(ξ, δ/5) ⊆ B(xn, δ/2),

we can set En,x to be a component of f−nEξ in On,x.

We are left to check that Nx := {(En,x, On,x, Un,x)}n≥1 is as required. For (3), by
Lemma 4.7 (6),

diam Un,x
diam En,x

≤ C2(η,m0)
2δ

diam Eξ
≤ C2(η,m0)

2δ

minz∈Σ{diam Ez}
=: Cx
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We claim that for any y ∈ Yx and k ≥ 1, if Un,x
T
f−kB(y, δx) 6= ∅, then k ≥ n + 1.

Indeed, if not, we have dist (fkUn,x, {y}) < δx ≤ ε1, this contradicts (4.21).
Thus, for (5), we have fnB−k(y, δx) = B−k

′
(y, δx) with k′ := k − n ≥ 1 and

B−k
′
(y, δx)

T
∂B(xn, δ) = ∅. Since diam B−k

′
(y, δx) < δ/2 by (4.22). We have

B−k
′
(y, δx)

T
B(xn, δ/2) = ∅. It follows that B−k(y, δx)

T
On,x = ∅.

For (6), since Orb(En,x)
T
B(y, δx) = ∅ for any y ∈ Yx by (4.22) and the claim. It

follows evidently.

4.6.4 Pullback disk systems

For n ≥ 1, let Xn := f−n(X0) \ S0≤k≤n−1Xk and X :=
S
n≥0Xn. Let n(x) ≥ 0 be the

integer such that x ∈ Xn(x).
Let {Ux}x∈X0 be a collection of pairwise disjoint open disks with x ∈ Ux such that,

for any y ∈ X with fn(y)(y) = x, the component Uy of f−n(y)(Ux), which contains y, is an
open disk. Then we say that {Ux}x∈X is a pullback disk system of f induced by {Ux}x∈X0 .

Let {Ux}x∈X be a pullback disk systems. For each x ∈ X with y = fn(x)(x), define

χx := χy ◦ fn(x) : Ux → D x 7→ 0,

and Ux(r) the component of χ−1
x (Dr) containing x, where χy : Uy → D with y 7→ 0 is a

conformal map. It is easy to check that
(1) f(Ux(r)) = Uf(x)(r) for n(x) ≥ 1, r ∈ (0, 1),
(2) either Ux

T
Uy = ∅ or Ux = Uy for distinct x, y with n(x) = n(y) ≥ 0,

(3) if Ux(r)
T
S 6= ∅ resp. ∂Ux(r)

T
S 6= ∅, then Uy(r)

T
fn(S) 6= ∅ resp. ∂Uy(r)

T
fn(x)(S) 6= ∅, where y = fn(x)(x), for any x ∈ X and set S ⊆ C.

4.6.5 The construction of {(Ux, Ox, Ex, Ux(rx), Ux(r
′
x))}x∈X0

in W .

Let W be an open set on C such that X ⊆ W . Let m be a given positive number.
Firstly we define a partial order on X0. For arbitrary x, x′ ∈ X0

x ≺ x′ ⇐⇒ either x = x′ or x ∈ ω(x′).

One can check that this order satisfies transitivity property, because of the fact that if
x ∈ ω(x′) then ω(x) ⊆ ω(x′).

Let L1 be the set of all maximal elements in X0. Inductively, Lk, k ≥ 2, is the set of
all maximal elements in X0 \

S
1≤i≤k−1 Li. Then

X0 = L1

[
L2

[
· · ·

[
LN .
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It is not difficult to check that x /∈ ω(x′) for any x ∈ Lk, x′ ∈ Lk′ with 1 ≤ k ≤ k′ ≤ N .
Applying Lemma 4.7 by setting

ε =
1

2
·min {δ0, dist (∂W,X)},

we obtain δ′0 ≤ ε, η. For each x in X0, let Yx be the collection of points y in X0 such
that y /∈ ω(x). Let Nx = {(Ek,x, Ok,x, Uk,x)}k≥0, δx > 0 and Cx satisfying the conditions
(1)-(6) in Lemma 4.8. Set

δ′′0 := min
x∈X0

{δx} > 0, C0 := max
x∈X0

{Cx} ≥ 1. (4.23)

Let Ax be the forward orbits of points y ∈ X0 with x /∈ ω(y). Set

δ′′′0 := min
x∈X0

dist(x,Ax \ {x}). (4.24)

Inductively, for each x ∈ Lk, k = 1, 2, · · · , N , by Lemma 4.7 (2) and Lemma 4.8 (4), we

x
Ux(r

′
x)

Ux(rx)

Ox

Ux

Ex

Figure 4.2: A sketch of the open sets Ux, Ox, Ex, Ux(rx) and Ux(r′x). The shaded domains are
pullback disks.

can choose (Ex, Ox, Ux) ∈ Nx such that

diam U−nx ≤ min {δ′k−1, δ
′′
k−1, δ

′′′
k−1}. (4.25)
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where U−nx takes over all components of f−nUx, n ≥ 0.
Let χx : Ux → D be a conformal map with χx(x) = 0. We denote by Ux(r) := χ−1

x Dr.
Since x /∈ Ex, we can choose rx sufficiently small such that Ux(rx) ⊆ Ox and Ux(rx)

T
Ex =

∅, moreover,
mod Ox \ Ux(rx) ≥ η ·m (4.26)

For any components U−ny of f−nUy, y ∈ L1
S · · ·SLk, n ≥ 1, since it can not contain

x by (4.24), there exists r′x < rx independent of y, n such that if U−ny
T
∂Ux(r

′
x) 6= ∅ then

U−ny ⊆ Ux(rx) by the Shrinking Lemma 4.7 (3).
Set

δ′k := min
x∈L1∪···∪Lk

{dist (Ex, Jf ), dist (Ex, x)}, δ′′k := min
x∈L1∪···∪Lk

{dist (Ox, ∂Ux)}, (4.27)

and
δ′′′k := min

x∈L1∪···∪Lk
{dist (x, ∂Ux(r

′
x)), dist (Ux(r

′
x), ∂Ux(rx)}. (4.28)

4.6.6 Properties of the desired pullback disk system.

Let U := {Ux}x∈X be the pullback disk system in W induced by {Ux}x∈X0 as con-
structed above. Let X ′′ be the collection of elements x in X such that there exists some
y ∈ X with y ∈ Ux and n(y) ≤ n(x) and X ′ := X \X ′′.

Consider the sets U ′ := {Ux}x∈X′ and U ′′ := {Ux}x∈X′′ .
(1) For any Ux in U ′, it does not contain points x′ in X of lower level, that is, x′ /∈ Ux

if n(x′) ≤ n(x).
(2) U ′ is a forward invariant set, that is, f(Ux) = Uf(x) ∈ U ′ if Ux ∈ U ′ and n(x) ≥ 1.

While U ′′ is a backward invariant set, that is, Ux ∈ U ′′ if Uf(x) ∈ U ′′.
(3) For Ux ∈ U ′, critical points of the covering mapping

fx := fn(x) : Ux → Uy

can only be the point x, where y := fx(x). Thus we can define

Ox := f−1
x (Oy), rx := ry, r

′
x := r′y (4.29)

and Ex any one of the component f−1
x (Ey).

(4) For any x ∈ X ′, set

Zx(r) := {y ∈ X ′, Uy
\
∂Ux(r) 6= ∅ and n(y) ≥ n(x)}, r ∈ (0, 1].
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Then the followings hold by (4.25), (4.27), (4.28), subsection 4.6.4(1)(3), and the choice
of Ux(r′x), [

y∈Zx(r′x)
Uy ⊆ Ux(rx) ⊆ Ox ⊆ Ux \

[
y∈Zx(1)

Uy. (4.30)

and
Uy
\
Ex = ∅ if y ∈ X \ {x} and n(y) ≥ n(x). (4.31)

(5) For any x ∈ X ′′, there exists ξ ∈ X ′ with n(ξ) ≤ n(x) such that Ux ⊆ Uξ(r
′
ξ).

Indeed, there exists k such that fkUx ∈ U ′′ and fk+1Ux ∈ U ′. Then fkUx contains a
point y in X0. By (4.24) and (4.28), we have fn(x)(x) ∈ ω(y) and fkUx ⊆ Uy(r

′
y). So

Ux ⊆ Uy1(r′y1
) with fn(y1)(y1) = y and n(y1) < n(x). If y1 /∈ X ′, continue the same process

to Uy1 , Uy2 , · · · . Since n(x) > n(y1) > n(y2) > · · · ≥ 0. After finite steps, we have
ξ := yk ∈ X ′. Thus it follows that, for any n ≥ 0,

[
x∈X′′,n(x)≤n

Ux ⊆
[

x∈X′,n(x)≤n
Ux(r

′
x). (4.32)

4.6.7 From pullback disk system to nested disk systems.

Let U ′ be the pullback disk system of X ′ as mentioned above. Given n ≥ 0, for
n(x) = n with x ∈ X ′, set Dx := Ux. Obviously Ox ⊆ Dx ⊆ Ux.

Inductively, for k = n− 1, n− 2, · · · , 0 and n(x) = k with x ∈ X ′, let

bk(x) := {y ∈ X ′, k + 1 ≤ n(y) ≤ n and Dy

\
∂Ux 6= ∅}.

By (4.26) (4.30) and (4.31), there exists a Jordan domain Dx, which is the component of
Ux \

S
y∈bk(x) Uy containing x, such that the following holds

x ∈ Ux(r′x) ⊆ Ux(rx) ⊆ Ox ⊆ Dx ⊆ Ux. (4.33)

Moreover,
mod Dx \ Ux(rx) ≥ m and Ex ⊆ Dx \ Ux(rx). (4.34)

By the construction, it is not difficult to check that {Dx}n(x)≤n,x∈X′ is a nested disk system.
In summary, we have the following proposition.

Proposition 4.1. Let W be an open topological disk in C such that X ⊆ W . Then there
exists uniform λ ∈ (0, 1) such that, for any m > 0 and any integer n ≥ 0, we have
• m-nested system {(D′′x, D′x, Dx)}x∈Yn and λ-scattered {Dx}x∈Yn in W , where Yn is a

subset of {x ∈ X;n(x) ≤ n},
• pullback disk system {Bx}x∈X induced by disks {B(x, δ)}x∈X0, where δ := δ(m) is

independent on n,
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such that [
n(x)≤n,x∈X

Bx ⊆
[
x∈Yn

D′′x. (4.35)

Proof. Given m > 0, construct {(Dx, Ux, Ox, Ex, Ux(rx), Ux(r
′
x)}x∈X in W as above.

Let Yn := {x ∈ X ′;n(x) ≤ n}, D′x := Ux(rx) and D′′x := Ux(r
′
x). The equations (4.30),

(4.33) and (4.34) imply that {(D′′x, D′x, Dx)}x∈Yn is m-nested.
For the λ-scattered property, by pre-composing a Möbius transformation, we may

assume D is bounded in C and W ⊆ C. Recall that D :=
S
x∈X Dx. Let Vx be the union

of all Dy( 6= Dx) contained in Dx and h : W → C∗ arbitrary univalent map.
By (4.31), (4.33) and (4.34), we have

Ex ⊆ Dx and Ex
\
Vx = ∅.

Consider the map fn(x) : Ux → Uy, where y := fn(x)(x). The Lemma 4.7(5)(6), Lemma
4.8(3) and equations (4.23) (4.33) give

Shape (Ex, ξ) ≤ C1 · Shape (Ey, f
n(x)(ξ))

≤ C1C0

and
diam Dx ≤ diam Ux ≤ C2Cy · diam Ex ≤ C2C0 · diam Ex.

Thus we have
AreaeDx ≤ C · AreaeEx. (4.36)

for some constant C > 1 independent of x, m and n.
Let W ′ be another open topological disk in C such that D ⊆ W ′ ⊆ W . Applying the

Koebe distortion therorem to h, we get a constant C3 ≥ 1 such that

maxξ∈W ′|h
′(ξ)| ≤ C3 ·minξ∈W ′|h

′(ξ)|. (4.37)

Since h preserves modulus of annulus, we have mod h(W ) \h(W ′) = mod W \W ′. There
exists constant C4 independent of h such that

diameh(W ′) ≤ C4 · diste(∂h(W ), ∂h(W ′)).

Let ξh be in W ′ such that |h(ξh)| = maxξ∈W ′diste(h(ξ), 0). Then for any ξ ∈ W ′, we have

|h(ξh)|
|h(ξ)|

≤ |h(ξ)|+ diameh(W ′)

|h(ξ)|
≤ 1 +

diameh(W ′)

diste(∂h(W ), ∂h(W ′))
≤ 1 + C4 (4.38)
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Now we estimate, using equations (4.36), (4.37) and (4.38),

Area (ρ∗, h(Ex)) =
ZZ

h(Ex)

1

4π2|ξ|2
dxdy =

ZZ
Ex

|h′(ξ)|2

4π2|h(ξ)|2
dxdy

≥ 1

C2
3

ZZ
Ex

|h′(ξh)|2

4π2|h(ξh)|2
dxdy

≥ 1

CC2
3

ZZ
Dx

|h′(ξh)|2

4π2|h(ξh)|2
dxdy

≥ 1

CC4
3(1 + C4)

ZZ
Dx

|h′(ξ)|2

4π2|h(ξ)|2
dxdy

=: (1− λ) Area (ρ∗, h(Dx))

Therefore,

Area (ρ∗, h(Vx)) ≤ Area (ρ∗, h(Dx))− Area (ρ∗, h(Ex)) ≤ λ · Area (ρ∗, h(Dx)).

To prove (4.35), let {Bx}x∈X be the pullback disk system by choosing

δ := minx∈X0{r′x}.

Then it follows by (4.29) and (4.32).

4.6.8 Univalent maps off a pullback disk system

Theorem 4.5 (Controlling distortion of univalent map). Let V be a Jordan domain on
C such that X ⊆ C \ V . Let z1, z2, z3 be three distinct points in V . Then for any ε > 0,
there exists δ > 0 such that

sup
z∈V
{dist (φ(z), z)} ≤ ε,

for any univalent map φ : C \ Sn(x)≤nBx → C fixing z1, z2, z3, where {Bx}x∈X is the
pullback disk system in C \ V induced by {B(x, δ)}x∈X0.

Proof. Let W ′ be Jordan domain on C such that W ′ ⊆ W := C \ V and X ⊆ W ′. By
Proposition (4.1), there exist m-nested system {(D′′x, D′x, Dx)}x∈Yn , λ-scattered {Dx}x∈Yn
in W ′ and pullback disk system {Bx}x∈X induced by disks {B(x, δ)}x∈X0 .

Let α be the Möbius transformation sending 0, 1,∞ to z1, z2, z3 respectively. Suppose
D(1, r0) ⊆ α−1(V ). Denote by ψ := α−1 ◦ φ ◦ α.

Applying Theorem 4.3(1)(6), equation (4.35), Theorem 4.4 and the monotonicity of
Areap(D,W ) on D, we have, for any z ∈ α−1(V ),

dist (ψ(z), z) ≤ C(r0) ·D(ψ, α−1(V )) = C(r0) ·D(φ, V )

≤ C(r0)C(m,λ) · Areap(D,W )
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≤ C(r0)C(m,λ) · Areap(W ′,W ).

By Proposition 4.1 and Theorem 4.4, we may assume m→∞ and thus

sup
z∈α−1(V )

dist (ψ(z), z)→ 0.

Since α is uniformly continuous on C equipped with spherical metric. Therefore, the
theorem follows.

4.7 The existence and uniqueness for shift locus

In this section, we discuss the existence and uniqueness of shift locus in S ′d for a given
critical portrait and escaping rate. The main tool is quasiconformal surgery.

Theorem 4.6. Let Θ = {Θ1, · · · ,Θn} be arbitrary critical portrait and r > 0, then there
exists an unique f in Sd(r) such that Π(f) = Θ.

Proof. Based on quasiconformal surgery, we shall prove the theorem by the following four
steps.

Step I. Construct a topological polynomial F realizing Θ.
Start with the closed disk D, mark all of the points e2πiθ with θ ∈ Θi. Let zi be the

center of gravity of the marked points, and join each of these points to zi by a straight
line Lθ. LΘi :=

S
θ∈Θi Lθ is a closed subset in D. Set r0 := edr and ε > 0 sufficiently small.

Define the quotient map π : C→ C pinching LΘi into a point zi. See figure 4.3.

π(z) :=

8>><>>:
z if z ∈ C \ Dr0−ε,

zi if z ∈ LΘi for 1 ≤ i ≤ n,

homeomorphism otherwise.

Then the interior of π(D) is a disjoint union of d topological disk D1, · · · , Dd where
Di
T
Dj contains at most one point. For any θ ∈ Θj, R′(θ) := π({t = re2πiθ, t > 1}) is a

ray landing at zj. Then
S

1≤j≤n{R′(θ), θ ∈ Θj} cuts Dr0−ε into D′1, · · · , D′d pieces. Set D′′i
Jordan domains such that D′′i ⊆ Di ⊆ D′i. For convenience, we may assume the above
R′(θ), ∂Di, ∂D′i and ∂D′′i are C∞ smooth except at the finite points zi.

Since D′′j is topological disk, there exists a conformal map Fj : D′′j → Dr0−ε. Let vj =

r0e
2πiσd(Θj), Z = {z1, · · · , zn} and Zj = Dj

T
Z. We set F0 be a differentiable branched
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z1

z2

v2

v1

D
Dr0−ε

Dr0

D(r0−ε)d
Drd0

H

π

z1

z2

v2

v1

D′′j

Dj D′j

Figure 4.3: Graph of the map π, domains and rays explaining the construction of topological
polynomial F .

covering from n-connected domain H := Dr0−ε \
S

1≤j≤dD
′′
j to the annulus D(r0−ε)d \Dr0−ε

satisfying the following condition,
• F0|∂Dr0−ε : z 7→ zd.
• F0 = Fj on ∂D′′j , for 1 ≤ j ≤ d.
• F0(R′(θ)

T
Dr0−ε) = R′vj := {te2πiσd(θ), r0 < t < (r0 − ε)d} for θ ∈ Θj.

• F0|D′j\D′′j : is a diffeomorphism and its image is the set D(r0−ε)d \Dr0−ε minus several
R′vi with zi ∈ ∂Di.
• F0 sends the critical points zj to vj locally holomorphic.
Now we can define the topological polynomial F as following

F (z) :=

8>><>>:
zd if z ∈ C \ Dr0−ε,

Fi(z) if z ∈ D′′i for 1 ≤ i ≤ d,

F0(z) otherwise.

Step II. Pulling back complex structure to construct polynomial f .
We define a new complex structure µ on C which is preserved by F as follows. Let µ0

denote the standard complex structure on C. Set

µ(z) :=

8>><>>:
µ0(z) if z ∈ C \ Dr0−ε,

(F n+1)∗(µ0)(z) if z ∈ Sn≥0 F
−n(H),

µ0(z) otherwise.

Since F−n(H)
T
F−m(H) = ∅, n 6= m, µ is well-defined. µ is F -invariant. Actually, for any

z ∈ F−n(H), we have F (z) ∈ F−n+1(H) and µ(z) = (F n+1)∗(µ0)(z) = (F n ◦F )∗(µ0)(z) =

F ∗ ◦ (F n)∗(µ0)(z) = F ∗µ(z). Since F is analytic except on H, it follows that µ has
bounded distortion on C. By the Measurable Riemann Mapping Theorem, there exists
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an unique normalized quasiconformal map ψ : C → C such that µψ = µ, ψ(∞) = ∞
and ψ′(∞) = 1. Let f := ψ ◦ F ◦ ψ−1. Then f ∗(µ0) = µ0. So f is a rational map. As
f−1(∞) =∞, f is a polynomial.

Step III. f realizes the given critical portrait Θ and r.
Since µψ|C\Dr0 = µ0, ψ is holomorphic on C \Dr0 . By post-composing suitable Möbius

transformation, we can assume

ψ(z) = z +
a1

z
+
a2

z2
+ · · ·

at∞. By simple computation, f is a monic centered degree d polynomial. Moreover, ψ−1

is the unique Böttcher coordinate of f at the neighborhood ψ(C \ Dr0) of ∞ normalized
by tangent at infinity. Since f ◦ ψ = ψ ◦ F , the critical points of f are ψ(Z). Then the
critical value are contained in ψ(∂Dr0) with the same equipotential log r0 = dr. Thus
f ∈ Sd(r).

Now we show that Π(f) = Θ. Let φ be the Böttcher coordinate of f . Then φ = ψ−1

on ψ(C \Dr0), φ ◦ ψ(Dr0 \ π(D)) = Dr0 \Der . Moreover, F and z 7→ zd are conjugated by
φ ◦ψ on C \ π(D). By the definition of F and external ray, it follows that ψ(R′(θ)) is the
external ray R(θ) of f landing at the critical point ψ(zi), for any θ ∈ Θi. Thus Π(f) = Θ.

Step IV. The uniqueness of f . Assume that f1 and f2 are polynomials in Sd(r) with
the same critical portrait Θ. The idea is to construction quasiconformal conjugacy h

between f1 and f2 which is conformal in the basin of f . Since Jf has Lebesgue measure
0, we can argue that h : C→ C is conformal and so h is an affine map.

Denote by Xfi(t) := {z ∈ C, Gfi(z) > t}. Recall that Gfi are the Green functions
measuring the escape rate of points to ∞ and Ψfi are the Böttcher coordinates of fi.
Then the following diagram commutes,

C \ Der
Ψf1←−−− Xf1(r)

h0:=Ψ−1
f2
◦Ψf1−−−−−−−−→ Xf2(r)

Ψf2−−−→ C \ Der

zd

???y f1

???y ???yf2

???yzd
C \ Dedr

Ψf1←−−− Xf1(dr)
h0−−−→ Xf2(dr)

Ψf2−−−→ C \ Dedr .

Extend h0 to C \ Xf1(r) so that h0 is a K-quasiconformal map on C. Inductively, for
n = 0, 1, · · · , use the following diagram to lift h0,

Xf1(d−nr)
hn+1−−−→ Xf2(d−nr)

f1

???y ???yf2

Xf1(d−n+1r)
hn−−−→ Xf2(d−n+1r).
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Actually, we know that fi : C \ f−(n+1)
i Pfi → C \ f−ni Pfi is an unbranched covering. Since

hn conjugates between f1 and f2 on f−ni Pfi , we may choose hn+1 to be the unique lift such
that, after extended to f−(n+1)

1 Pf1 , it satisfies hn+1 = hn on f−nPf1 [Ha02, Proposition
1.30]. Since fi is conformal on C \ Xfi(d

−nr). We can extend hn+1 to C \ Xf1(d−nr),
such that hn ◦ f1 = f2 ◦ hn+1 on C. Then hn+1 is holomorphic on Xf1(d−(n+1)r) and is a
K-quasiconformal map.

Therefore there is a subsequence of {hn} which converges uniformly to a limit qua-
siconformal map h of C. Then f2 ◦ h = h ◦ f1 and h is holomorphic in

S
n≥0Xf1(d−nr)

which is the Fatou set. Since the measure of Julia set of f is zero, h is holomorphic on
C. Since h fixes ∞, we have h = az + b. Note that a = h′(∞) = Ψ′f1

(∞) · (Ψ−1
f2

)′(∞) = 1

and b = 0 because fi are centered. Thus h = id and so f1 = f2.

4.8 Proof of the results

In this section, we focus on a simple case, that is, all critical points escaping at the
same rate (See theorem 4.7). During the proof we apply theorem 4.5 at the situation
X ′0 = ∅ in Assumption 4.6.1. For general cases, the technique is almost the same.

Let us start with a simple lemma.

Lemma 4.9. Let T be a topology space and S be a subset of T . Let hi : T → T , i ∈ {1, 2},
be maps such that the restrictions of hi on S have the same image, i.e., h1(S) = h2(S),
and h1|T\S = h2|T\S, then for any n ≥ 0,

[
0≤k≤n

h−k1 (S) =
[

0≤k≤n
h−k2 (S).

Proof. If n = 0, it follows obviously. We suppose
S

0≤k≤n h
−k
1 (S) =

S
0≤k≤n h

−k
2 (S) by

induction.
Firstly,

S
0≤k≤n+1 h

−k
1 (S) ⊆ S

0≤k≤n+1 h
−k
2 (S). For any x ∈ S0≤k≤n+1 h

−k
1 (S), h1(x) ∈S

0≤k≤n h
−k
1 (S) =

S
0≤k≤n h

−k
2 (S). If x ∈ T \ S then x ∈ h−1

2 ◦ h1(x) and so x ∈S
0≤k≤n+1 h

−k
2 (S). If x ∈ S, then it is obviously true.

Secondly,
S

0≤k≤n+1 h
−k
2 (S) ⊆ S

0≤k≤n+1 h
−k
1 (S). It follows by the same arguments as

above. The lemma is proved.

Let S ′d :=
S

0<r<∞ Sd(r) and fΘ,r be the unique polynomial in theorem 4.6. We have
the following theorem.
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fr Fr+δ fr+δ

fδ,n bfδ

Surgery
Step I

c-equi.via {φδ,n}n≥0

Step II & Step III

Step IV

Th.Alg.{ηδ,n}n≥0

Step V
ψδ := αδz + βδ

Step V
converging

ψδ,n := ηδ,n ◦ φ−1
δ,n

Figure 4.4: Relation of maps in the proof of Theorem 4.7

Theorem 4.7. For any critical portrait Θ,

RΘ : (0,∞)→ S ′d r 7→ fΘ,r

is a simple arc in S ′d.

Proof. Given 0 < r < ∞ and critical portrait Θ, by Theorem 4.6, we only need to show
that RΘ is continuous at r. Given δ0 > 0 sufficiently small, for any |δ| ≤ δ0, let

fr(z) = zd + ad−2z
d−2 + · · ·+ a1z + a0

and
fr+δ(z) = zd + bδ,d−2z

d−2 + · · ·+ bδ,1z + bδ,0

such that fr ∈ S ′d(r) and fr+δ ∈ S ′d(r + δ) with critical portrait Θ.

Step I. Surgery to construct topological polynomial Fr+δ.
Let W ′

δ,vi
be a Jordan domain containing critical value vi := Φ−1(edre2πiθvi ) such that

• vδ,i := Φ−1(ed(r+δ)e2πiθvi ) ∈ W ′
δ,vi
.

• W ′
δ,vi

T
W ′
δ,vi′

= ∅, for distinct critical values vi, vi′ .
• diam(W ′

δ,vi
)→ 0 as δ → 0.

Then every components of f−1
r (W ′

δ,vi
) is Jordan domain. Let Wδ,ci be one of them

containing critical point ci. Let ζδ : C → C be a quasi-conformal map such that ζδ is
identity outside all

S
jW

′
δ,vj

and sends vi to vδ,i on each W ′
δ,vi

. See figure 4.5.
Set Wδ :=

S
c∈Crit(f)Wδ,c and define a quasi-regular map

Fr+δ(z) =

8><>:fr(z), if z ∈ C \Wδ

ζδ ◦ fr(z), if z ∈ Wδ.
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Then it satisfies the following,
(1) Fr+δ = fr on C \Wδ.
(2) Crit(Fr+δ) = Crit(fr) and all the them escape to infinity at the same speed.
(3)

S
i≥0 F

−i
r+δ(Wδ) =

S
i≥0 f

−i
r (Wδ) by Lemma 4.9.

v1

vδ,v1

W ′
δ,v1

v2

vδ,v2W ′
δ,v2

c2Wδ,c2 c1
Wδ,c1

Figure 4.5: Perturbation Fr+δ of fr : z → z3 − (1.081921− 0.087513i) z + 0.130061 + 1.446914i

Step II. Fr+δ is c-equivalent to fr+δ via (φδ,0, φδ,1).
Let Uδ := Xfr(d(r + δ)) resp. U ′δ := Xfr+δ(d(r + δ)). The critical values F (Crit(F ))

resp. fr+δ are in the boundary of Uδ resp. U ′δ. Set

φδ,0 :=

8><>:Ψ−1
fr+δ
◦Ψfr(z) if z ∈ Uδ,

gδ(z) if z ∈ C \ Uδ,

where gδ : C \ Uδ → C \ U ′δ is a quasi-conformal map which coincides with Ψ−1
fr+δ
◦Ψfr on
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the boundary of Uδ. We can define φδ,1 via the following lift

F−1
r+δ(Uδ) \ F−1

r+δPFr+δ
φδ,1−−−→ f−1

r+δ(U ′δ) \ f−1
r+δPfr+δ

Fr+δ

???y ???yfr+δ
Uδ \ PFr+δ

φδ,0−−−→ U ′δ \ Pfr+δ

We choose the lift that agree with φδ,0 on Uδ. Since φδ,0 ◦ Fr+δ = fr+δ ◦ φδ,0 on Uδ,
such φδ,1 exists. Extending φδ,1 to F−1

r+δPFr+δ and C \ F−1
r+δ(Uδ) homeomorphic such that

φδ,0 ◦ Fr+δ = fr+δ ◦ φδ,1 on C. we know that φδ,1 on C \ Uδ is homeomorphic and so is
isotopic to φδ,0 rel ∂Uδ by the Alexander’s trick. Therefore, globally we have

(1) φδ,0 ◦ Fr+δ = fr+δ ◦ φδ,1 on C.
(2) φδ,0 and φδ,1 are isotopic rel U δ which contains PFr+δ :=

S
i≥1 F

i
r+δ(Crit(Fr+δ)).

(3) φδ,0 = φδ,1 on U δ and maps it onto U ′δ holomorphic.

Step III. From c-equivalence to isotopies {Hn}n≥0 and {φδ,n}n≥0.
Let H0 : C× I → C to be an isotopy rel U δ such that H0(·, 0) = φδ,0, H0(·, 1) = φδ,1,

and H0(z, t) = φδ,0(z) if z ∈ U δ and 0 ≤ t ≤ 1.
It follows from Step II (1) that

φδ,1(F−1
r+δ (U δ)) = f−1

r+δ(U ′δ)

So the map φδ,1|C\F−1
r+δ

(Uδ) can be considered as a lift of H0(·, 0)|C\Uδ by the non-branched
covering maps

Fr+δ : C \ F−1
r+δ(U δ)→ C \ U δ and fr+δ : C \ f−1

r+δ(U ′δ)→ C \ U ′δ.

By the homotopy lifting theorem for covering maps, the isotopy H0(·, t)|C\Uδ lifts to a
unique isotopy H1(·, t) between C \ F−1

r+δ(U δ) and C \ f−1
r+δ(U ′δ) such that

H1(·, 0) = φ1|C\F−1
r+δ

(Uδ).

Since H0(·, t) is constant in t on U δ, each map H1(·, t) has a continuous extension to C,
also denoted by H1(·, t). Then H1(·, t)|Uδ does not depend on t. Moreover, each map
H1(·, t) is a homeomorphism, because an inverse of H1(·, t) can be obtained by lifting the
isotopy H0(·, t)−1. Thus we obtain an isotopy H1 : C× I → C rel F−1

r+δ(U δ) such that
• H1(·, 0) = φδ,1.
• H1(·, 1) =: φδ,2.
• H1(z, t) = φδ,1(z) if z ∈ F−1(U δ) and 0 ≤ t ≤ 1.
• φδ,1 ◦ Fr+δ = fr+δ ◦ φδ,2 on C and φδ,2(F−1

r+δ(U δ)) = f−1
r+δ(U ′δ).

Repeating this argument we get quasi-conformal map φδ,n and isotopies Hn between
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C and C rel. F−nr+δ(U δ) ⊇ U δ, for n ≥ 0, such that
(1) Hn(·, 0) = φδ,n.
(2) Hn(·, 1) = φδ,n+1.
(3) Hn(z, t) = φδ,n(z) if z ∈ F−n(U δ) and 0 ≤ t ≤ 1.
(4) φδ,n ◦ Fr+δ = fr+δ ◦ φδ,n+1 on C and φδ,n+1(F−nr+δ(U δ)) = f−nr+δ(U ′δ).

Step IV. Apply Thurston Algorithm to obtain {ηδ,n}n≥0 and polynomials {fδ,n}n≥0.
Let ηδ,0 = id. Then ηδ,0 ◦ Fr+δ defines a complex structure on C by pulling back the

standard complex structure on C. The uniformiaztion theorem guarantees the existence
of an unique homeomorphism ηδ,1 : C→ C, normalized to fix z1, z2,∞ with zi close to∞,
such that fδ,0 := ηδ,0 ◦Fr+δ ◦η−1

δ,1 : C→ C is holomorphic. Moreover ηδ,1 is quasi-conformal
and holomorphic except on Wδ, because Fr+δ is quasi-regular and holomorphic on C\Wδ.

Recursively, there exist quasi-conformal map ηδ,n and polynomial fδ,n, for n ≥ 0, such
that

(1) ηδ,n ◦ Fr+δ = fδ,n ◦ ηδ,n+1 on C,
(2) ηδ,n+1 is holomorphic on C \ S0≤i≤n F

−n
r+δ(Wδ) ⊇ C \ Si≥0 f

−i
r (Wδ),

(3) ηδ,n fixes z1, z2 and ∞.

Step V. The uniformly convergence of fδ,n and ψδ,n.
Let z′δ,i := φδ,n(zi) i ∈ {1, 2}. By Step V (3), z′δ,i are independent of n. Set

ψδ,n := ηδ,n ◦ φ−1
δ,n (4.39)

to be quasi-conformal map. Then, combining with Step V (3) and Step VI (1), we have

ψδ,n ◦ fr+δ = fδ,n ◦ ψδ,n+1. (4.40)

Suppose ψδ,0 be Kδ-quasiconformal. Choose V to be a neighborhood of ∞ such that ψδ,0
is holomorphic on V and fr+δ(V ) ⊆ V . By (4.40), ψδ,n is Kδ-quasiconformal and ψδ,n is
holomorphic on

S
0≤i≤n f

−i
r+δ(V ). It follows that {ψδ,n} is a normal family.

For any sequence {ψδ,ki} there is a subsequence locally uniform converging on C to a
Kδ-quasiconformal map ψδ : C→ C. Moreover, ψδ is holomorphic on

S
i≥0 f

−i
r+δ(V ), which

is the Fatou set. Thus ψδ is holomorphic on C since the measure of the Julia set of fr
is zero. Combining with the conditions that ψδ(z′δ,i) = zi i ∈ {1, 2} and ψδ(∞) = ∞, we
know that ψδ is the affine map

ψδ : z 7→ αδz + βδ (4.41)

which sending z′δ,i to zi. Since ψδ is independent of any locally uniform converging sub-
sequence in {ψδ,n}, we know that the entire sequence {ψδ,n} locally uniform converges on
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C to ψδ.
Applying the same method to sequences {1/ψδ,n(1/z)} and {ψ−1

δ,n}, we know that {ψδ,n}
and {ψ−1

δ,n} uniformly converge on C equipped with spherical metric.
It follows that the thurston sequence {fδ,n} uniformly converges to a polynomial bfδ on

C, that is, for any ε > 0, there exists N := N(δ, ε) such that

sup
n≥N,z∈C

dist (fδ,n(z), bfδ(z)) ≤ ε (4.42)

Moreover, bfδ and fr+δ conjugate by the affine map ψδ by (4.40), that is,

bfδ ◦ ψδ(z) = ψδ ◦ fr+δ. (4.43)

We denote by

bfδ(z) = aδ,dz
d + aδ,d−1z

d−1 + · · ·+ aδ,1z + aδ,0.

Step VI. Estimate the distance between fr and bfδ.
Let Vr := Xfr(C0), where C0 is sufficient large number such that Vr ⊆ Vδ, for any

|δ| ≤ δ0, and zi ∈ Vr. By Step I(1) and Step IV(1), we know that ηδ,n is holomorphic on
Vr. The theorem 4.5 guarantees the following crucial distortion,

sup
|δ|≤τ,n≥0,z∈Vr

dist(ηδ,n(z), z)→ 0 as τ → 0, (4.44)

Thus there exists a neighborhood V ′r of ∞ such that V ′r ⊆ ηδ,n(Vr), for any |δ| ≤ δ0 and
n ≥ 0, and

sup
|δ|≤τ,n≥0,z∈V ′r

dist (η−1
δ,n(z), z)→ 0 as τ → 0, (4.45)

Since

dist (fδ,n(z), fr(z)) = dist (ηδ,n ◦ fr ◦ η−1
δ,n+1(z), fr(z))

≤ dist (ηδ,n ◦ fr ◦ η−1
δ,n+1(z), fr ◦ η−1

δ,n+1(z)) + dist (fr ◦ η−1
δ,n+1(z), fr(z)).

Combining with (4.44) and (4.45), we have for any ε > 0, there exist τ := τ(ε) such that

sup
|δ|≤τ,n≥0,z∈V ′r

dist (fδ,n(z), fr(z)) ≤ ε. (4.46)

By (4.42) and (4.46), for any ε > 0, there exist τ := τ(ε) ≤ δ0 such that

sup
|δ|≤τ,z∈V ′r

dist ( bfδ(z), fr(z)) ≤ sup
|δ|≤τ,z∈V ′r

dist ( bfδ(z), fδ,N(δ)(z)) + dist (fδ,N(δ)(z), fr(z))

≤ 2ε, (4.47)
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where N(δ) = N(δ, ε) is defined in (4.42). By Lemma 4.4, { bfδ} uniformly converges to fr
on C. Therefore

aδ,d → 1, aδ,d−1 → 0 as δ → 0. (4.48)

Step VII. Estimate the distance between bfδ and fr+δ.
By Step VI and (4.44), the sequence {ηδ,n|Vr}n≥0 is holomorphic and locally uniformly

bounded on Vr \ {∞}. Thus it is a normal family and the entire sequence converges to a
holomorphic map ηδ|Vr , i.e., for any ε > 0, there exists N = N(δ, ε) such that for n ≥ N

sup
n≥N,z∈Vr

dist (ηδ(z), ηδ,n(z)) ≤ ε. (4.49)

The new sequence {ηδ|Vr} converges to id on Vr as well. Because, by (4.44) and (4.49),
for any ε > 0, there exists τ = τ(ε) such that

sup
|δ|≤τ,z∈Vr

dist (ηδ(z), z) ≤ sup
|δ|≤τ,z∈Vr

dist (ηδ(z), ηδ,N(δ)(z)) + dist (ηδ,N(δ)(z), z)

≤ 2ε (4.50)

where N(δ) = N(δ, ε) is defined in (4.49).
Note that φ′δ,n(∞) = 1 in Step II. Then (4.39), (4.41), (4.49), (4.50), Weierstrass

convergence theorem and the chain rule give

αδ = ψ′δ(∞) = lim
n→∞

ψ′δ,n(∞)

= lim
n→∞

η′δ,n(∞) · (φ−1
δ,n)′(∞)

= lim
n→∞

η′δ,n(∞) = η′δ(∞)→ 1 as δ → 0. (4.51)

Now consider βδ. By (4.43), (4.48) and (4.51), a simple computation implies

βδ =
aδ,d−1 · aδ
d · aδ,d

→ 0 as δ → 0

Thus both ψδ and ψ−1
δ uniformly converge to identity on C. Since fr+δ conjugates bfδ by

ψδ in (4.43), we have

sup
|δ|≤τ,z∈C

dist (fr+δ(z), bfδ(z))→ 0 as τ → 0.

Therefore, by Lemma 4.4 and (4.47), we have

sup
|δ|≤τ,z∈C

dist (fr(z), fr+δ(z))→ 0 as τ → 0.

This completes the proof.
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Proof of Theorem 4.1. By theorem 4.6, the map P is well-defined and one-to-one. The
continuity at (Θ, r) follows nearly the same as Theorem 4.7. We only need to change
slightly in Step I. The surgery ξδ sends vi to Ψ−1(ed(r+δ)e2πiθ′vi ) ∈ W ′

δ,vi
, as Θ′ is close

enough to Θ and |δ| is sufficiently small. We omit the proof. �

Proof of Theorem 4.2. We know that Jf is locally connected [Yin99]. If RΘ(t) lands at
f , Theorem 1 in [Ki05] implies that the external rays of f with arguments in Θi land at
a common point ci which must be critical. By the unlinked property of critical portrait,
we have ci 6= cj if i 6= j. Thus the local degree of f at critical point ci is #Θi. Therefore,
Θ is a critical portrait of f .

For the sufficiency, we adopt exactly the same method as Theorem 4.7. Indeed, in
dynamic plane R(θ′i) with θ′i := σd(Θi) lands at critical value vi. We can construct Fδ,
δ > 0, exactly the same in Step I of Theorem 4.7. Both of the distance dist (f, Fδ) and
dist (Fδ, fδ) converge to 0 as δ → 0. Thus the parameter ray RΘ(t) lands at f . We omit
the details. �
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Chapter 5

On the dynamics of a family of
generated renormalization
transformations

5.1 Introduction

The statistical mechanical models on hierarchical lattices have attracted many interests
recently since they exhibit a deep connection between their limiting sets of the zeros of
the partition functions and the Julia sets of rational maps in complex dynamics [BL,DSI,
Qi,QL,QYG]. The well-known Yang-Lee theorem in statistical mechanics shows that the
zeros of the partition function is dense in a line for many magnetic materials in a complex
magnetic field plane. This means that the complex singularities of the free energy lie on
this line, where the free energy is the logarithm of the partition function [YL]. By the
works of Fisher and others [Fi], it was generally believed that the zeros of the partition
function condense to some simple curve.

Until 1983, Derrida et al. showed that the zeros of the partition function condense
to the Julia set of the renormalization transformation of so-called standard hierarchical
lattices [DSI]. They proved that the singularities of the free energy lie on the Julia set of
the rational map

z 7→
�
z2 + λ− 1

2z + λ− 2

�2

. (5.1)

This means that the distribution of the singularities of the free energy is not as simple as
one desired. Henceforth, a lot of works related on the Julia sets of this renormalization
transformation appeared [AY, BL, Ga, HL, Os, Qi, QL, QYG, WQYQG]. For the ideas
formulated in renormalization transformation in statistical mechanics, see [Wi].

Recently, Qiao considered the generalized diamond hierarchical Potts model and
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proved that the family of rational maps

Umnλ(z) =

�
(z + λ− 1)m + (λ− 1)(z − 1)m

(z + λ− 1)m − (z − 1)m

�n
(5.2)

are actually the renormalization transformation of the generalized diamond hierarchical
Potts model [Qi, Theorem 1.1], where m,n ≥ 2 are both integers and λ ∈ C∗ := C\{0} is
a complex parameter. The standard diamond lattice (m = n = 2) and the diamond-like
lattice (m = 2 and n ∈ N) are the special cases of (5.2).

In this chapter, we will consider the case for d := m = n ≥ 2. For simplicity, we use
Udλ to denote Uddλ in (5.2). We not only study the properties of the Julia sets of Udλ, but
also consider the connectivity of the non-escaping locus of the parameter space of this
renormalization transformation.

If λ = 0, then Udλ degenerates to a parabolic polynomial Ud0(z) = ( z+d−1
d

)d whose
Julia set is a Jordan curve. For the connectivity of the Julia sets of Udλ, we have following
Theorem.

Theorem 5.1. The Julia set of Udλ is always connected for every d ≥ 2 and λ ∈ C∗.

Note that Qiao and Li proved that the Julia set of Udλ is connected for d = 2 and
λ ∈ R [QL]. We would like to remark that if m 6= n, then there exists parameter λ ∈ C∗

such the Julia set of Umnλ defined in (5.2) is disconnected (see [Qi, Figure 3.1] for example).
The Mandelbrot set of quadratic polynomials fc(z) = z2 + c is defined by

M = {c ∈ C : f ◦nc (0) 6→ ∞ as n→∞}.

Douady and Hubbard showed that M is connected [DH]. For higher degree polynomials
with only one critical point, there are associated Multibrot sets. For rational maps, one
way to study the parameter space is to consider the connectedness locus, which consists of
all parameters such the corresponding Julia set is connected. However, the connectedness
locus makes no sense in our case since every Julia set is connected.

For λ 6= 0, then 1 and∞ are two superattracting fixed points of Udλ. The non-escaping
locus Md associated to this family is defined by

Md = {λ ∈ C∗ : U◦ndλ (0) 6→ 1 and U◦ndλ (0) 6→ ∞ as n→∞} ∪ {0}. (5.3)

Obviously, “non-escaping" here means the collection of those parameters such that the
orbit of 0 cannot be attracted by 1 and ∞. Note that 0 is a critical value of Udλ.

The non-escaping locusMd can be identified as the complex plane cutting out infinitely
many simply connected domains, which will be called “capture domains" later (see Figure
2 and Proposition 5.1). There exist many small copies of the Mandelbrot set M in Md

which correspond to the renormalizable parameters.
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For the connectivity of Mandelbrot setMd, Wang et al. proved thatM2 is connected
in [WQYQG, Theorem 1.1]. We now generate this result to allMd, where d ≥ 2.

Theorem 5.2. The non-escaping locusMd is connected for d ≥ 2.

The proof of the connectivity ofM2 in [WQYQG] is based on constructing Riemann
mapping from the capture domain to the unit disk D, which is tediously long. Here, we
give a proof of Theorem 5.2 by using the methods of Teichmüller theory of the rational
maps which was developed in [McS]. The proof is largely simplified and there are lots of
additional results. For example, we show that the Julia set of Udλ is a quasicircle if and
only if λ lies in the unbounded capture domain H0 (Proposition 5.2) and each bounded
capture domain contains exactly one center (Theorem 5.10).

If λ is large enough, then the Julia set of Udλ is a quasicircle (see Proposition 5.2).
Hu and Lin observed that these circles becomes more and more “circular" as λ tends to
∞ in the case of d = 2 [HL]. In [Ga], Gao proved the Hausdorff dimension of the Julia
set of U2nλ tends to 1 for every n ≥ 2, which gave an affirmative answer of Hu and Lin
proposed in 1989. In this chapter, we consider the asymptotic formula of the Hausdorff
dimension of the Julia set Jdλ of Udλ as the parameter λ tends to ∞.

Theorem 5.3. Let d ≥ 2. For large λ such that Jdλ is a quasicircle, the Hausdorff
dimension of Jdλ is given by

dimH(Jdλ) = 1 +
1

4 log d
|λ|−

2
d+1 +O(λ−

3
d+1 ). (5.4)

Theorem 5.3 is a generation of [Os] in which the asymptotic formula of the Hausdorff
dimension of J2λ was calculated.

This chapter is organized as follows. In Section 5.2, we analyse the location of the
critical points of Udλ and show that the Julia set of Udλ is always connected and prove
Theorem 5.1. In section 5.4, we show that the parameter plane of Udλ can be decomposed
into the non-escaping locusMd union infinitely many capture domains. In section 5.5, we
give a complete classification of the quasiconformal conjugacy classes of Udλ. In section
5.6, we show that each bounded capture domain is simply connected and the unique
unbounded capture domain is homeomorphic to the punctured disk and prove Theorem
5.2. We will prove the asymptotic formula (5.4) of Theorem 5.3 in section 5.7 but leave
the complicated calculations to the last section as an appendix.

5.2 The location of critical points and the connected

Julia sets

Firstly, we give a splitting principle for Udλ. This principle is not exist if one considers
Umnλ with m 6= n. This is the reason why we set m = n in this paper. For every λ ∈ C∗,
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it is straightforward to verify that Udλ = Tdλ ◦ Tdλ, where

Udλ(z) =

 
(z + λ− 1)d + (λ− 1)(z − 1)d

(z + λ− 1)d − (z − 1)d

!d
and Tdλ(z) =

�
z + λ− 1

z − 1

�d
. (5.5)

A direct calculation shows that the set of all critical points of Tdλ is {1, 1 − λ}, and
both with multiplicity d− 1. Note that

U−1
dλ (∞) = T−1

dλ (1) =
d−1[
k=0

{ξk} and U−1
dλ (0) = T−1

dλ (1− λ) =
d−1[
k=0

{ωk}, (5.6)

where

ξk =
e

2kπi
d + λ− 1

e
2kπi
d − 1

and ωk =
(1− λ)

1
d e

2kπi
d + λ− 1

(1− λ)
1
d e

2kπi
d − 1

. (5.7)

It follows that ξk and ωk are critical points of Udλ with multiplicity d− 1, where 0 ≤ k ≤
d− 1. In particular, ξ0 =∞. Therefore, the set of all critical points of Udλ is

Crit(Udλ) = {1, 1− λ,∞} ∪
d−1[
k=1

{ξk} ∪
d−1[
k=0

{ωk}. (5.8)

Since Tdλ(1) =∞, Tdλ(∞) = 1 and 1,∞ are both critical points of Udλ, it means that
there exist two fixed immediate superattracting basins Adλ(1) and Adλ(∞) of Udλ with
centers 1 and ∞ respectively. Under the iteration of Tdλ, we have the following forward
orbits:

ξk 7→ 1 7→ ∞ 7→ 1 7→ ∞ 7→ · · · and ωk 7→ 1− λ 7→ 0 7→ (1− λ)d 7→ · · · (5.9)

for every 0 ≤ k ≤ d − 1. Since the dynamical behaviors are determined by the critical
forward orbits essentially, we only need to focus on the free critical orbit of 1 − λ (or
equivalently, the forward orbit of 0) under the iteration of Tdλ or Udλ. This is the reason
why we define the non-escaping locusMd as in (5.3).

Lemma 5.1. Let U and V be two domains on C and assume that V is simply connected.
If f : U → V is a branched covering with only one critical value in V (counted without
multiplicity), then U is also simply connected.

Proof. Let v be the unique critical value lying in V . Consider the unramified covering
f : U \ f−1(v) → V \ {v}. Since V \ {v} is an annulus with Euler characteristic 0, it
follows that U \ f−1(v) is also an annulus by the Riemann-Hurwitz formula. This means
that U is a topological disk, which is simply connected as desired.

In order to prove a rational map has connected Julia set, one often needs to exclude
the existence of Herman ring. The following lemma was proved in [Ya].
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Lemma 5.2 ( [Ya, Corollary 3.2]). The renormalization transformation Udλ has no Her-
man ring.

The proof of Lemma 5.2 relies on the quasiconformal surgery and the arguments are
divided into two cases: Herman ring with period 1 and period at least two. However, the
prove idea is different from [Mi2, Appendix A].

Theorem 5.4. The Julia set of Tdλ is always connected for every d ≥ 2 and λ ∈ C∗.

Proof. The proof idea is more or less similar to the case of quadratic rational maps in [Mi1,
Lemma 8.2]. Note that the Julia set is connected if and only if each Fatou component
is simply connected. By Sullivan’s classification of the periodic Fatou components, every
periodic Fatou component of Tdλ is either a Siegel disk, a Herman ring, or an immediate
basin for some attracting or parabolic point. By Lemma 5.2, it is known Tdλ has no
Herman ring.

By [Mi1, Lemma 8.1], we know that if all the critical values of a rational map are
contained in a single component of the Fatou set, then the Julia set is totally disconnected.
However, the Julia set Jdλ cannot be totally disconnected since Tdλ has a superattracting
periodic orbit of period 2. Therefore, the critical points 1 and 1− λ lie in different Fatou
components and each Fatou component of Tdλ contains at most one critical value (∞ or
0 by (5.9)).

Now we prove each Fatou component of Tdλ is simply connected. Firstly, we assume
that every periodic Fatou component of Tdλ is simply connected. Note that the periodic
orbit 1 ↔ ∞ is superattracting. There leaves only one critical point 1 − λ needing to
consider. According to Lemma 5.1, the preimage of a simply connected region under a
branched covering with only one critical value is again simply connected. This means
every Fatou component of Tdλ is simply connected by induction.

Then suppose that there exists a periodic Fatou component U of Tdλ which is not
simply connected and the period is p ≥ 1. This means that U is an attracting basin or a
parabolic basin since Tdλ has no Herman ring. Let z0 be the attracting periodic point in U
or parabolic periodic point on ∂U . We use V to denote a simply connected neighborhood
or a simply connected petal of z0 such that T ◦pdλ(V ) ⊂ V according to U is attracting or
parabolic. Let Vk be the component of T−kpdλ (V ) containing V . Then U =

S
k≥0 Vk and

Vk+1 7→ Tdλ(Vk+1) 7→ · · · 7→ T ◦p−1
dλ (Vk+1) 7→ Vk is a successive branched covering under

Tdλ with at most one critical value in each codomain since each Fatou component of Tdλ
contains at most one critical value. Suppose Vk0 is simply connected (at least k0 = 0 is
satisfied). By Lemma 5.1, we know that T ◦p−1

dλ (Vk0+1), · · · , Tdλ(Vk0+1), Vk0+1 are all simply
connected since Vk0 is also. Inductively, it follows that each Vk is simply connected and
hence U is also simply connected. This contradicts the assumption that U is not simply
connected.
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Therefore, in any case, the Julia set of Tdλ is always connected. This ends the proofs
of Theorems 5.4 and 5.1.

5.3 The Julia set cannot be a Sierpińsk carpet

In this section, we will prove that if the parameter λ lies on the real axis, then the
Julia set of Udλ can never be a Sierpińsk carpet by showing there always exist two Fatou
components of Udλ whose boundaries are intersecting to each other.

Lemma 5.3. For every d ≥ 2 and λ ∈ R, there exist two Fatou components V1, V2 of Udλ
such that V 1 ∩ V 2 6= ∅.

Proof. If λ = 0, then Udλ degenerates to a parabolic polynomial Ud0(z) = ( z+d−1
d

)d whose
Julia set Jd0 is a Jordan curve. Let V1 = Adλ(1) and V2 = Adλ(∞) be the immediate
superattracting basins of 1 and ∞ respectively. We have V 1 ∩ V 2 = Jd0 6= ∅.

In the following, we assume that λ ∈ R \ {0}. The dynamics of Udλ will be restricted
on the real axis and the arguments will be divided into several cases. Let x ∈ R, by a
direct calculation, we have

U ′dλ(x) =
d2λ2(x− 1)d−1(x+ λ− 1)d−1((x+ λ− 1)d + (λ− 1)(x− 1)d)d−1

((x+ λ− 1)d − (x− 1)d)d+1
. (5.10)

(1) Let λ > 0. If x ≥ 1, we have x−1 ≥ 0, x+λ−1 > 0, (x+λ−1)d+(λ−1)(x−1)d > 0

and (x + λ − 1)d − (x − 1)d > 0. This means that U ′dλ(x) ≥ 0 and Udλ is increasing on
[1,+∞). Moreover, U ′dλ(x) = 0 if and only if x = 1. We claim that there exists at least
one fixed point of Udλ lying in (1,+∞). Otherwise, we then have 1 < Udλ(x) < x for every
x > 1 since Udλ(1) = 1 and U ′dλ(1) = 0. This means that the interval (1,+∞) is contained
in the attracting basin of 1, which is a contradiction since ∞ is a superattracting fixed
point of Udλ.

Let 1 = x0 < x1 < · · · < xn < +∞ be the collection of all the fixed points of Udλ
lying in [1,+∞), where n ≥ 1. It is easy to see Udλ(x) > x if x > xn. In particular, we
have (xn,+∞) ⊂ Adλ(∞). Note that U ′dλ(xn) ≥ 1. If U ′dλ(xn) = 1, then xn is a parabolic
fixed point of Udλ and Adλ(xn) contains a small interval on the left of xn, where Adλ(xn)

is the immediate parabolic basin of xn. Let V1 = Adλ(xn) and V2 = Adλ(∞). We have
xn ∈ V 1 ∩ V 2. If U ′dλ(xn) > 1, then xn is a repelling fixed point of Udλ and xn−1 is an
(or parabolic) attracting fixed point of Udλ. Moreover, [xn−1, xn) ⊂ Adλ(xn−1), where
Adλ(xn−1) is the immediate attracting (or parabolic) basin of xn−1. Let V1 = Adλ(xn−1)

and V2 = Adλ(∞). We have xn ∈ V 1 ∩ V 2.
(2) Let λ < 0. If 0 ≤ x ≤ 1, then x − 1 ≤ 0 and x + λ − 1 < 0. If d ≥ 2 is even,

then (x + λ − 1)d + (λ − 1)(x − 1)d > 0, (x + λ − 1)d − (x − 1)d > 0 and U ′dλ(x) ≥ 0.
If d ≥ 2 is odd, then U ′dλ(x) ≥ 0. This means that Udλ is increasing on [0, 1] for every
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d ≥ 2. Moreover, U ′dλ(x) = 0 if and only if x = 1. By a straightforward calculation, we
have 0 < Udλ(0) < 1. Now we divide the arguments into two cases.

If there exists no fixed point of Udλ in (0, 1), then we have 0 < x < Udλ(x) < 1 for every
0 < x < 1. This means that 0 lies in the immediate attracting basin of 1. By Lemma
5.4(5), we know that Jdλ is a quasicircle. In particular, Adλ(1) ∩ Adλ(∞) = Jdλ 6= ∅. If
there exists at least one fixed point of Udλ in (0, 1), we denote all of them by 0 < x1 <

· · · < xn < 1, where n ≥ 1. By a completely similar argument as the case λ > 0, one
can show that the fixed point xn is contained in the boundaries of two different Fatou
components. Therefore, the proof is complete.

Theorem 5.5. For every d ≥ 2 and λ ∈ R, the Julia set Jdλ is not a Sierpińsk carpet.

Proof. Note that if Jdλ is a Sierpiński carpet, then the closure of any two Fatou compo-
nents of Udλ cannot be intersecting to each other. But this contradicts Lemma 5.3. The
proofs of Theorems 5.5 and ?? are finished.

By computer experiments, it is shown that Adλ(1)∩Adλ(∞) = {z0} for λ ∈ C, where
z0 is a repelling fixed point of Udλ. Therefore, the Julia set Jdλ can never be a Sierpińsk
carpet for any λ ∈ C (see Figures 5.1 and 5.2).

5.4 Decomposition of the parameter space

In this section, we divide the parameter space of Tdλ into the non-escaping locus
Md union countably many capture domains. Recall that Adλ(1) and Adλ(∞) are the
immediate superattracting basins of 1 and ∞ respectively.

Lemma 5.4. For each λ ∈ C∗, the following conditions are equivalent:
(1) The Julia set Jdλ of Tdλ is a quasicircle; (2) ξk ∈ Adλ(∞) for all 0 ≤ k ≤ d − 1;

(3) ωk ∈ Adλ(1) for all 0 ≤ k ≤ d− 1; (4) 1− λ ∈ Adλ(∞); (5) 0 ∈ Adλ(1).
In particular, ωk ∈ Adλ(1) if and only if ωl ∈ Adλ(1), where 0 ≤ k, l ≤ d− 1.

Proof. We first prove (1) ⇒ (2)(3)(4)(5). If Jdλ is a quasicircle, the Fatou set of Tdλ
consists of two simply connected Fatou components Adλ(1) and Adλ(∞) whose common
boundary is Jdλ. Since Tdλ permutes 1 and ∞, by (5.9), it follows that (2) holds and
{ω1, · · · , ωd} lies in a single Fatou component. Applying the Riemann-Hurwitz formula
to Udλ : Adλ(∞)→ Adλ(∞), it follows that {ω1, · · · , ωd, 0} ⊂ Adλ(1) and 1−λ ∈ Adλ(∞).
Therefore, (3)(4)(5) hold.

By (5.9), we have (3)⇒ (4)⇒ (5). Now we prove (5)⇒ (1). Suppose that 0 ∈ Adλ(1).
By (5.6), we have U−1

dλ (0) =
Sd−1
k=0{ωk}. Since Udλ(Adλ(1)) = Adλ(1), there exists some k0

such that ωk0 ∈ Adλ(1) and hence 1− λ ∈ Adλ(∞). Note that Tdλ : Adλ(1)→ Adλ(∞) is
d to 1. We claim that ωk ∈ Adλ(1) for every 0 ≤ k ≤ d− 1. In fact, if not, then 1− λ has
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at least d + 1 preimages under Tdλ (counted with multiplicity, d in Adλ(1) and at least
one elsewhere), which is impossible. The same argument also shows that ωk ∈ Adλ(1) if
and only if ωl ∈ Adλ(1), where 0 ≤ k, l ≤ d − 1. Then, Adλ(1) contains critical points
{ω1, · · · , ωd, 1} of Udλ. This means that Adλ(1) is completely invariant under Udλ.

Since 1 − λ ∈ Adλ(∞), it means that Tdλ : Adλ(∞) → Adλ(1) is d to 1. Therefore,
ξk ∈ Adλ(∞) for every 1 ≤ k ≤ d− 1 since ξ0 =∞ ∈ Adλ(∞) and Tdλ(ξk) = 1. Moreover,
Adλ(∞) contains critical points {ξ1, · · · , ξd, 1 − λ} of Udλ. This means that Adλ(∞) is
also completely invariant under Udλ. Therefore, Jdλ is a quasicircle since Tdλ is hyperbolic
and Tdλ has exactly two Fatou components. This ends the proof of (5)⇒ (1).

To finish, we prove (2) ⇒ (4). If ξk ∈ Adλ(∞) for all 0 ≤ k ≤ d − 1, then Tdλ :

Adλ(∞)→ Adλ(1) is d to 1. This means that 1− λ ∈ Adλ by Riemann-Hurwitz formula.
The proof is complete.

Lemma 5.5. For every λ ∈ C∗, we have 0 6∈ Adλ(∞) and 1− λ 6∈ Adλ(1).

Proof. If 0 ∈ Adλ(∞), then 1−λ ∈ Adλ(1) by (5.9). Note that 1 lies also in Adλ(1). This
means that Tdλ has 2d − 1 preimages in Adλ(1) for each point in Adλ(∞) by Riemann-
Hurwitz formula, which is a contradiction. Moreover, 0 6∈ Adλ(∞) means 1− λ 6∈ Adλ(1)

by (5.9).

Since 1 and ∞ are always periodic with period 2 under Tdλ, the non-escaping locus
Md associated to Tdλ can be defined as

Md = {λ ∈ C∗ : T ◦2ndλ (0) 6→ 1 and T ◦2n+1
dλ (0) 6→ 1 as n→∞} ∪ {0}. (5.11)

Definition 5.1. Define H0 := {λ ∈ C∗ : 0 ∈ Adλ(1)}. For every n ≥ 1, define

Hn := {λ ∈ C∗ : T ◦ndλ (0) ∈ Adλ(1) and T ◦n−1
dλ (0) 6∈ Adλ(∞)}. (5.12)

Each component of Hn is called a capture domain of depth n, where n ≥ 0.

Proposition 5.1. The parameter space of Tdλ has the following decomposition:

C =Md t (
G
n≥0

Hn). (5.13)

Proof. By definitions of the non-escaping locus and Hn, we have Md ∩ (
S
n≥0Hn) = ∅.

We need to show that two capture domains with different depths are disjoint and each
λ ∈ C \ M belongs to Hn for some n ≥ 0. First, suppose that λ ∈ Hm ∩ Hn for
m 6= n. Without loss of generality, assume that m > n ≥ 0. By Definition 5.1, we
have T ◦ndλ (0) ∈ Adλ(1) and T ◦m−1

dλ (0) 6∈ Adλ(∞). This means that T ◦m−1
dλ (0) ∈ Adλ(1) and

hence T ◦mdλ (0) ∈ Adλ(∞), which contradicts T ◦mdλ (0) ∈ Adλ(1). Therefore Hm ∩Hn = ∅ for
m 6= n.
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By (5.11), if λ 6∈ Md, there exists a minimal k ≥ 0 such that T ◦kdλ (0) ∈ Adλ(1). If
k = 0, then λ ∈ H0. If k = 1, then Tdλ(0) ∈ Adλ(1). Lemma 5.5 asserts that 0 6∈ Adλ(∞).
Therefore, λ ∈ H1 in this case. If k ≥ 2, we claim that T ◦k−1

dλ (0) 6∈ Adλ(∞). In fact, if
not, we have T ◦k−2

dλ (0) ∈ Adλ(1). This contradicts the choice of the integer k. So we have
λ ∈ Hk in this case. The proof is complete.

See Figure 2 for the non-escaping lociM2 andM3. There some capture domains are
also clearly visible (blank regions).

5.5 Quasiconformal conjugacy classes

Let Rd be the collection of all Tdλ, where λ ∈ C∗. In this section, we give a complete
characterization of the quasiconformal conjugacy classes in Rd.

Definition 5.2. Let Λ be a complex manifold. A holomorphic family of rational maps
parameterized by Λ is a holomorphic map fλ : Λ × C → C such that fλ(z) is a rational
map for fixed λ ∈ Λ and depends holomorphically on λ ∈ Λ for fixed z ∈ C.

The parameter λ ∈ Λ is called a J-stable parameter of a holomorphic family of rational
maps fλ if the total number of attracting cycles of fλ is constant in a neighborhood of λ.

Theorem 5.6. The boundary ∂Md is the set of parameters such that Tdλ are not J-stable
in Rd.

Proof. By [Mc, Theorem 4.2], Tdλ0 is J-stable if and only if both critical sequences {T ◦kdλ (1−
λ)}k≥0 and {T ◦kdλ (1)}k≥0 are normal for λ in a neighborhood of λ0. Since {T ◦kdλ (1)}n≥0 lies
in a finite orbit 1↔∞, we only need to consider the orbit of 1− λ. If λ0 ∈ Hn for some
n ≥ 0, the orbit of 1 − λ0 will be attracted by the cycle 1 ↔ ∞. For λ close to λ0, the
orbit of 1− λ still converges to the cycle 1↔∞. By Montel’s theorem, {T ◦kdλ (1− λ)}k≥0

is normal at λ0. Similarly, {T ◦kdλ (1− λ)}k≥0 is normal at each point in the interior ofMd

since {T ◦kdλ (1 − λ)}k≥0 is disjoint with the attracting basin of 1 ↔ ∞. This means that
Tdλ is J-stable in C \ ∂Md.

On the other hand, if λ0 ∈ ∂Md, then {T ◦kdλ0
(1− λ)}k≥0 omits the attracting basin of

1↔∞. However, there are arbitrary small perturbation of λ0 such that {T ◦kdλ (1− λ)}k≥0

converges to the cycle 1↔∞. This means that Tdλ is not J-stable on ∂Md.

Corollary 5.1. Let W be a component in the interior ofMd. If there exists λ0 ∈ W such
that 1− λ0 converges to an attracting cycle, then every λ ∈ W also has this property.

Proof. By Theorem 5.6, every Tdλ ∈ W is J-stable. This means that there exists a small
neighborhood of λ such the number of attracting cycles is constant. Since 1−λ0 converges
to an attracting cycle, this means that the constant is 2. The corollary follows.
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In the case of Corollary 5.1, W is called a hyperbolic component. Otherwise, W is
called a queer component. It was generally believed that queer components do not exist.
But if they do, then every Tdλ admits an invariant line field on its Julia set and the Julia
set has positive Lebesgue area. See Figures 5.1 and 5.2 for various Julia sets of Jdλ.

Figure 5.1: Julia sets of T2λ with λ1 ≈ 1.319448 + 1.633170i and λ2 ≈ 1.5 + 0.866025i. The
critical orbit 1 ↔ ∞ captures the critical orbit 1 − λ1 7→ 0 7→ a 7→ b 7→ 1 and disjoint with the
critical orbit 1− λ2 7→ 0 7→ c 7→ 1− λ2.

Figure 5.2: Julia sets of T2λ with λ3 ≈ 2.046736 + 1.589069i and λ4 = 4.0. T2λ3 has a Siegel disk
with periodic 4 and J2λ4 is a quasicircle.

Now we state a theorem of parameterization of quasiconformal conjugacy classes.

Theorem 5.7. Let Tdλ0 , Tdλ1 ∈ Rd be two different maps and let ϕ : C → C be a K

-quasiconformal homeomorphism which conjugates Tdλ0 to Tdλ1 such that ϕ(λ0) = λ1.
Then there exists a holomorphic map t 7→ λt from an open disk D(0, r) (r > 1) into C∗
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which maps 0 to λ0 and 1 to λ1, such that for every t ∈ D(0, r), Tdλ0 is conjugate to Tdλt
by a Kt -quasiconformal mapping ϕt : C→ C. Moreover, Kt → 1 as t→ 0.

The idea of the proof of Theorem 5.7 is standard in holomorphic dynamics. One can
refer [Za, Theorem 5.1] for a proof in the similar situation. As an immediate corollary,
we have

Corollary 5.2. Quasiconformal conjugacy classes in Rd are either single points or open
and connected. In particular, the conjugacy classes on ∂Md are single points.

A holomorphic family of rational maps fλ : Λ×C→ C is quasiconformally constant if
fλ1 and fλ2 are quasiconformally conjugate for any λ1 and λ2 in the same component of
Λ. We call the family fλ has constant critical orbit relations if any coincidence f ◦nλ (c1) =

f ◦mλ (c2) between the forward orbits of two critical points c1 and c2 of fλ persists under
perturbation of λ. The following theorem was proved in [McS, Theorem 2.7].

Theorem 5.8 ( [McS]). A holomorphic family fλ of rational maps with constant critical
orbit relations is quasiconformally constant.

Proposition 5.2. The Julia set Jdλ of Tdλ is a quasicircle if and only if λ ∈ H0. Moreover,
H0 is unbounded and connected.

A more precise characterization of the structure of H0 will be given in Theorem 5.10.

Proof. By the definition of H0 and Lemma 5.4, it follows that if λ ∈ H0, then Jdλ is a
quasicircle. Conversely, if Jdλ is a quasicircle, then 1 − λ ∈ Adλ(∞). This means that
Tdλ and Tdλ0 have the same critical orbit relations, where λ0 ∈ H0. By Theorem 5.8, Tdλ
and Tdλ0 are quasiconformally conjugate to each other. By Corollary 5.2, it follows that
λ ∈ H0 and H0 is connected.

To finish, we only need to show that H0 is unbounded. Let α = λ−
1
d+1 and ϕα(z) =

αd(z − 1) be a linear transformation. By a straightforward calculation, we have

fα(z) := ϕα ◦ Tdλ ◦ ϕ−1
α =

d−1X
i=0

Ci
d α

i

zd−i
=

1

zd
+
C1
dα

zd−1
+ · · ·+ C1

dα
d−1

z
.

If α 6= 0 is small enough, then the Julia set of fα is a quasicircle since the Julia set of
z 7→ 1/zd is the unit circle. This means that Jdλ is a quasicircle if λ is large enough.

By definition, the parameter λ ∈ Sn≥0Hn if and only if the critical orbit 1−λ 7→ 0 7→
(1 − λ)d 7→ · · · tends to the attracting periodic cycle 1 7→ ∞ 7→ 1. A point λ is called a
center of a hyperbolic component W ⊂Md if the critical point 1− λ is periodic. On the
other hand, λ is called a center of a capture domain of

S
n≥1Hn if the critical point 1− λ

is eventually mapped to 1.
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Lemma 5.6. Every hyperbolic component inMd and capture domain in Hn has a center,
where n ≥ 1. Meanwhile, H0 has no center.

It will be proved in next section that every hyperbolic component inMd and capture
domain in Hn has exactly one center, where n ≥ 1 (Theorem 5.10).

Proof. Let W be a hyperbolic component in Md. For every λ ∈ W , let m(λ) be the
multiplier of the attracting periodic orbit of Tdλ other than 1 ↔ ∞. It can be checked
as in [Do, Theorem 4, p. 46] and [?, Theorem 2.1, p. 134] that the multiplier mapping
λ 7→ m(λ) defined from W to D is proper and holomorphic. This means that W has at
least one center.

Let W be a component of Hn, where n ≥ 1. Then for every λ ∈ W , T ◦ndλ (0) ∈ Adλ(1)

and n is the smallest integer satisfying this property. Let ψλ : Adλ(1)→ D be the unique
Böttcher map define on the immediate basin of 1 such that ψλ ◦Udλ = (ψλ(z))d, ψλ(1) = 0

and ψ′λ(1) = 1. By the definition of ψλ, it follows that ψλ depends holomorphically
on λ ∈ W . Define a map m : W → D by m(λ) = ψλ(T

◦n
dλ (0)). It is clearly that m

is holomorphic. We then prove m is proper. Let λk ∈ W be a sequence converging to
λ ∈ ∂W as n→∞. Suppose that there exists a subsequence of λk, denote also by λk, such
that m(λk) converges to an interior point w ∈ D. Since the family of univalent mappings
{ψ−1

λk
: D → C} is normal, we can suppose that ψ−1

λk
→ ψ−1 locally uniformly on D. So

ψ−1(D) ⊂ Adλ(1). This means that ψ−1(w) = limk→∞ ψ
−1
λk

(m(λk)) = limk→∞ T
◦n
dλk

(0) =

T ◦ndλ (0) ∈ Adλ(1). Hence Tdλ is hyperbolic. This is a contradiction since λ ∈ ∂W .
Finally, by the definition of H0 and Lemma 5.4, Adλ(1) contains only one critical point

1 (counted without multiplicity). Note thatAdλ(1) lies in a superattracting periodic Fatou
component and Tdλ(1− λ) = 0 6= 1, it follows that the orbit of 1− λ is disjoint with the
orbit 1↔∞. The proof is complete.

Now we give a complete characterization of the quasiconformal conjugacy classes in
Rd.

Theorem 5.9. Quasiconformal conjugacy classes in Rd can be listed as follows:
(1) Hyperbolic components in the interior ofMd with the center removed.
(2) Capture components of Hn with the center (if any) removed, where n ≥ 0.
(3) Centers of hyperbolic or capture domains.
(4) Queer components in the interior ofMd.
(5) Single points on the boundary ofMd.

Proof. By Corollary 5.2, the five cases stated in the theorem are disjoint to each other and
(4)(5) are indeed quasiconformal conjugacy classes. (1)(2) are quasiconformal conjugacy
classes by Theorem 5.8. As every queer component is a conjugacy class, one can get a
proof in [Za, Theorem 3.4] by a word for word analysis.
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5.6 Simply connectivity of the capture domains

In this section, we prove that the non-escaping locusMd is connected. This amounts
to showing that H0 is homeomorphic to the punctured disk D∗ := D \ {0} and each of the
component of Hn is homeomorphic to the unit disk for n ≥ 1.

One way to do this is to follow the standard way of Douady-Hubbard’s parameteriza-
tion of the hyperbolic components of the quadratic Mandelbrot set [Do]. This method was
developed by Roesch to study the parameter space of the cubic Newton maps [Ro1,Ro2]
and Qiu, Roesch, Wang and Yin to study the parameter space of the McMullen map-
s [QRWY]. Moreover, this parameterized method was generated and then used in the
proof ofM2 is connected [WQYQG, Theorem 1.1].

However, to prove H0 is homeomorphic to the punctured disk D∗ and each of the
component of Hn is homeomorphic to the unit disk for n ≥ 1, it would be much easier to
use the methods of Teichmüller theory of the rational maps which was developed in [McS]
(in which, a different proof of the connectivity of the Mandelbrot set was given).

We first recall some definitions in [McS]. By definition, the Teichmüller space
Teich(Tdλ) of Tdλ consists of all pairs (Tdλ′ , [ϕ]), where ϕ : C → C is a quasiconformal
mapping which conjugates Tdλ′ to Tdλ. Here [ϕ] means the isotopy class of ϕ. The modular
group Mod(Tdλ) is the group of isotopy classes of quasiconformal homeomorphism com-
muting with Tdλ. The modular group Mod(Tdλ) acts on the Teichmüller space Teich(Tdλ)

properly discontinuously by [ψ](Tdλ′ , [ϕ]) = (Tdλ′ , [ψ ◦ ϕ]). The moduli space of Tdλ is
defined as the quotient Teich(Tdλ)/Mod(Tdλ), which is isomorphic to the quasiconformal
conjugacy class of Tdλ.

Moreover, one can define the Teichmüller space Teich(U, Tdλ) on an open set U which is
invariant under Tdλ. The set Teich(U, Tdλ) consists of all the triples (V, Tdλ′ , [ϕ]), where V
is open and invariant under Tdλ′ , and the quasiconformal mapping ϕ : V → U conjugates
Tdλ′ to Tdλ. Here [ϕ] denotes the isotopy class of ϕ relative ideal boundary of V .

Theorem 5.10. Each component of Hn is homeomorphic to D and contains exactly one
center, where n ≥ 1. Moreover, H0 is homeomorphic to the punctured disk D∗.

Proof. Let W be a component of Hn with all centers removed. Then the forward orbit of
1−λ under Tdλ is infinite for λ ∈ W . By Theorem 5.9, W denotes a single quasiconformal
conjugacy class.

For any basepoint λ ∈ W , it follows that the critical point 1 − λ belongs to the
attracting basin of the cycle 1 7→ ∞ 7→ 1. In particular, T ◦ndλ (0) ∈ Adλ(1) and T ◦ndλ (0) 6= 1.
Define the Green function on Adλ(1) by

Gdλ(z) = − lim
k→∞

d−k log |U◦kdλ(z)− 1|, where z ∈ Adλ(1).

Note that Gdλ can be extended to the Fatou set of Tdλ by pulling back.
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Let γ be the equipotential of Gdλ passing through the critical point 1−λ (In particular,
it is homeomorphic to the figure 8 if d = 2). Define

bJdλ := Jdλ ∪
[
n∈Z

T ◦ndλ (γ ∪ {0}).

Then bJdλ is the closure of the grand orbits of all periodic points and critical points of
Tdλ. The complement U := C\ bJdλ consists of countably many annuli with finite modulus
which lie in a same grand orbit. By [McS, Theorem 6.2], we have

Teich(Tdλ) ' Teich(U, Tdλ)×M1(Jdλ, Tdλ),

where M1(Jdλ, Tdλ) denotes the unit ball in the space of all Tdλ-invariant Beltrami differ-
entials supported on Jdλ. Note that every hyperbolic rational map carries no invariant
line fields on the Julia set, it follows that M1(Jdλ, Tdλ) is trivial since Tdλ is hyperbolic
when λ ∈ W ⊂ Hn.

Since W denotes a single quasiconformal conjugacy class, we have

W ' Teich(Tdλ)/Mod(Tdλ) ' Teich(U, Tdλ)/Mod(Tdλ) ' H/Mod(Tdλ)

by [McS, Theorem 6.1]. Note that every quasiconformal self-conjugacy ψ of Tdλ fixes the
grand orbits of the critical points 1 and 1 − λ and hence fixes the boundaries of each
annulus of U . Moreover, ψ is the identity on Jdλ. Therefore, [ψ] ∈ Mod(Tdλ) is identity
on bJdλ and it is possibly a power of a Dehn twist in the annuli of U . This means that
Mod(Tdλ) is a subgroup of Z.

By Lemma 5.6, each W cannot be simply connected is a component of Hn for n ≥ 1.
On the other hand, W is not simply connected if W = H0 by Proposition 5.2. So
Mod(Tdλ) = Z. This means that W is homeomorphic to a punctured disk. This means
that each W contains exactly only one center if W 6= H0. The proof is complete.

Proof of Theorem 5.2. This is a direct corollary of Proposition 5.1 and Theorem 5.10. �

5.7 Proof of the asymptotic formula

By Proposition 5.2, if the parameter λ lies in the unbounded capture domain H0, then
the Julia set Jdλ is a quasicircle. In this case, Jdλ moves holomorphically in H0 and its
Hausdorff dimension depends real analytically on λ by a classic result of Ruelle. The
following Theorem 5.11 is a weak version of [Ru, Corollary 6].

Theorem 5.11. Let fλ : Λ×C→ C be a holomorphic family of hyperbolic rational maps
parameterized by Λ, where Λ is a complex manifold. Then the Hausdorff dimension of the
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Julia set of fλ depends real analytically on λ ∈ Λ.

Let Ω be a closed subset of Rn. A map S : Ω → Ω is called a contraction on Ω if
there exists a real number c ∈ (0, 1) such that |S(x) − S(y)| ≤ c|x − y| for all x, y ∈ Ω.
A finite family of contractions {S1, S2, · · · , Sm} defined on Ω ⊂ Rn, with m ≥ 2, is called
an iterated function system or IFS in short.

To compute the Hausdorff dimension of Jdλ with λ ∈ H0, we need the following result
(see [Fa, Theorem 9.1, Propositions 9.6 and 9.7]).

Theorem 5.12 ( [Fa]). Let {S1, . . . , Sm} be an IFS on a closed set Ω ⊂ Rn such that
|Si(x)− Si(y)| ≤ ci|x− y| with 0 < ci < 1. Then:

(1) There exists a unique non-empty compact set J such that J =
Sm
i=1 Si(J).

(2) The Hausdorff dimension dimH(J) of J satisfies dimH(J) ≤ s, where
Pm
i=1 c

s
i = 1.

(3) If we require further |Si(x)− Si(y)| ≥ bi|x− y| for 0 < bi < 1, then dimH(J) ≥ s′,
where

Pm
i=1 b

s′
i = 1.

The non-empty compact set J appeared in Theorem 5.12(1) is called the attractor of
the IFS {S1, . . . , Sm}.

Let f be a rational map with degree at least two. We use Fix(f) to denote the set of
all the fixed points in the Julia set of f .

Lemma 5.7. Let f be a hyperbolic rational map whose Julia set J is a quasicircle. Then
the Hausdorff dimension D := dimH(J) of J is determined by1 limn→∞An(D) = 1, where

An(D) =
X

z∈Fix(f◦n)

|(f ◦n)′(z)|−D. (5.14)

The notation Fix(f ◦n) in (5.14) denotes the collection of all the repelling periodic
points of f with period n (the period is not necessary the smallest). The Julia set of a
hyperbolic rational map can be seen as the limit of a sequence of IFS which are defined
in terms of the inverse branches of the iterations of the rational map.

Proof. Let d ≥ 2 be the degree of f . Since f is hyperbolic and the Julia set J of f
is a quasicircle, there exist a pair of closed annular neighborhoods W1,W2 of J and a
quasiconformal mapping φ : W1 → Aε, such that φ conjugates f : W1 → W2 to z 7→ zd or
z 7→ z−d, where Aε := {z : 1 − ε ≤ |z| ≤ 1 + ε} is a closed annular neighborhood of the
unit circle and ε > 0 is small enough. Without loss of generality, we only consider the
first case since the completely similar argument can be applied to the second one.

In order to define IFS, it is more convenient to lift J and f under the exponential
map. Hence we assume further that J separates 0 and ∞. Define a curve γ := φ−1([(1−
ε)d, (1 + ε)d]) ⊂ W2. Fix a component of exp−1(W2 \ γ) and denote it by U . Then U is

1The statement and the proof of this lemma were not correct in the previous version. We would like
to thank Peter Haïssinsky for pointing out to us. See [WBKS, §4, (4.2)] for the same statement.
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topologically a strip and exp : U → W2 \γ is conformal in the interior of U , whose inverse
is denoted by log : W2 \ γ → U (see Figure 5.3).

Figure 5.3: Sketch illustration of the construction of the IFS.

Let Vn be the unique component of f−n(W2) containing J . For each n ≥ 1, the map
f ◦n : Vn → W2 has dn inverse branches, say T1, · · · , Tdn , each mapsW2\γ onto a half open
quadrilateral such that their images are arranged in anticlockwise order one by one. Let
Si := log ◦Ti ◦ exp be the map defined in U , where 1 ≤ i ≤ dn. It is easy to see each Si is
conformal in the interior of U and can be conformally extended to an open neighborhood
of U .

By the definition, {S1, · · · , Sdn} is an IFS defined on U for large n since f ◦n is strictly
expanding onW1 in the Euclidean metric if n is large2. For the convenient of the argument,
we assume that f ◦n is expanding in the Euclidean metric for all n ≥ 1. The attractor J ′

of {S1, · · · , Sdn} is a closed set satisfying J = exp(J ′). Moreover, J \{z1} is the conformal
image of J ′ with two ends removed, where z1 ∈ J ∩ γ is a fixed point of f . This means
that the Hausdorff dimensions of J ′ and J satisfy dimH(J ′) = dimH(J).

Let Fn|U :=
Fdn
i=1 S

−1
i |Si(U) be the lift of f ◦n under exp. Then each Si(U) contains

exactly one fixed point ζi ∈ J ′ of Fn in its interior for 1 < i < dn and on its boundary for
i = 1 and dn.

By Koebe distortion theorem there exist two sequences of numbers 0 < An ≤ 1 ≤ Bn,
such that

An
|F ′n(ζi)|

≤ |Si(x)− Si(y)|
|x− y|

≤ Bn

|F ′n(ζi)|
, ∀ 1 ≤ i ≤ dn, x, y ∈ U, (5.15)

and limn→∞An = limn→∞Bn = 1. See also [Mi1, Theorem 2.7].
By Theorem 5.12, the Hausdorff dimension D = dimH(J ′) = dimH(J) satisfies 0 ≤

2The map f is expanding in the hyperbolic metric in a neighborhood of J .
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sn,1 ≤ D ≤ sn,2 ≤ 2, where

dnX
i=1

�
An
|F ′n(ζi)|

�sn,1
= 1 and

dnX
i=1

�
Bn

|F ′n(ζi)|

�sn,2
= 1.

Then, we have

1

B
sn,2
n
≤

dnX
i=1

1

|F ′n(ζi)|sn,2
≤

dnX
i=1

1

|F ′n(ζi)|D
≤

dnX
i=1

1

|F ′n(ζi)|sn,1
=

1

A
sn,1
n

. (5.16)

The dn − 1 fixed points of f ◦n in the Julia set J are {zi = exp(ζi) : 1 ≤ i < dn}. In
particular, z1 = exp(ζ1) = exp(ζdn). Since Fn is conformally conjugate to f ◦n in the
interior of each Si(U), we have F ′n(ζi) = (f ◦n)′(zi) for 1 ≤ i < dn. Therefore, by (5.16),
we have

X
z∈Fix(f◦n)

1

|(f ◦n)′(z)|D
=

dn−1X
i=1

1

|(f ◦n)′(zi)|D
=

dnX
i=1

1

|F ′n(ζi)|D
− 1

|F ′n(ζdn)|D
→ 1 as n→∞

since limn→∞A
sn,1
n = limn→∞B

sn,2
n = 1 and limn→∞ |F ′n(ζdn)| = +∞. The proof is com-

pleted.

As the parameter λ tends to ∞, the diameter of the Julia set Jdλ of Tdλ becomes
larger and larger in the Euclidean metric and the shape of Jdλ becomes more and more
circular (see Figure 5.4). Therefore, one can make a scaling of Jdλ (or equivalently, make
a conjugate), such the new Julia set converges to the unit circle.

Figure 5.4: The Julia sets of T2λ, both are quasicircles, where λ = 30 and 1000, respectively. It
can be seen that the Julia set becomes more circular as the parameter λ becomes more larger
(compare the right picture in Figure 5.2). Figure ranges: [−10, 16]× [−13, 13] and [−125, 125]×
[−125, 125].
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Specifically, define
J∗dλ = {λ−

d
d+1 (z − 1) : z ∈ Jdλ}. (5.17)

The following Lemma 5.8 has been proved in [Qi, Theorem 4.3] as a special case.

Lemma 5.8. The scaled Julia set J∗dλ converges to the unit circle in the Hausdorff topology
as λ tends to ∞ and the Hausdorff dimension of Jdλ tends to 1 as λ tends to ∞.

Although Lemma 5.8 is significant, however, we want to know further about the asymp-
totic formula of of the Hausdorff dimension of Jdλ as λ tends to ∞. In order to calculate
the Hausdorff dimension of Jdλ, we do some setting first.

Recall that in Proposition 5.2, α = λ−
1
d+1 . Then λαd = α−1. Let ϕα(z) = αd(z − 1)

be the linear transformation as before. We define a new rational map with parameter α
as

fα(z) := ϕα ◦ Tdλ ◦ ϕ−1
α =

d−1X
i=0

Ci
d α

i

zd−i
=

1

zd
+
C1
dα

zd−1
+ · · ·+ C1

dα
d−1

z
. (5.18)

This means that there exists a small ε > 0 such that fα : Dε × C → C is a holomorphic
family of hyperbolic rational maps parameterized by Dε, where Dε := {z : |z| < ε}. Note
that the Hausdorff dimension is invariant under a conformal isomorphism. This means
that we only need to calculate the Hausdorff dimension of the Julia set Jα of fα with
α ∈ Dε since dimH(Jα) = dimH(Jdλ). We would like to remark that Jα = J∗dλ.

Let E be a subset of C and (Λ, λ0) a connected complex manifold with basepoint λ0.
A family of maps hλ : E → C is called a holomorphic motion of E parameterized by Λ

and with base point λ0 if: (1) For each λ ∈ Λ, hλ is injective on E; (2) For each z ∈ E,
hλ(z) is a holomorphic function of λ ∈ Λ; and (3) hλ0 is identity on E (see [Ly], [MSS]
or [Mc, Chap. 4]).

Proof of Theorem 5.3. By (5.18), it follows that the Julia set Jα is the unit circle if α = 0.
For z ∈ J0 = T, we have f0(z) = z−d. Note that fα is a holomorphic family of hyperbolic
rational maps with parameter α ∈ Dε. There exists a holomorphic motion φα : J0 → C
of J0 parameterized by Dε and with base point 0 such that φα(J0) = Jα and

fα ◦ φα(z) = φα ◦ f0(z) = φα(z−d) (5.19)

for all z ∈ J0, see [Mc, Chap. 4]. Since every point on J0 moves holomorphically, we can
write φα(z) in power series of α as

φα(z) = z (1 + u1(z)α + u2(z)α2 +O(α3)), (5.20)

where z ∈ J0.
In the following, we adopt the notation q := −d since the negative sign is boring in

the expressions during the calculation. Meantime, we assume that d ≥ 3 first. If α is

170



small enough, we can expand fα in (5.18) in power series of α as

fα(z) = zq − qzq+1α +
q(q + 1)

2
zq+2α2 +O(α3). (5.21)

Substituting (5.20) and (5.21) into (5.19), then comparing the terms to the second
order in α, we obtain the following equations:

u1(zq)− qu1(z) = −qz, (5.22)

u2(zq)− qu2(z) =
q(q − 1)

2
u2

1(z)− q(q + 1)zu1(z) +
q(q + 1)

2
z2. (5.23)

For each non-zero integer l ∈ Z, the functional equation

u(zq)− qu(z) = −qzl (5.24)

has the formal solution

u(z) =
+∞X
k=0

zlq
k

qk
. (5.25)

Note that the solution (5.25) is convergent if |z| = 1. This means that the solution of
(5.22) is

u1(z) =
+∞X
k=0

zq
k

qk
. (5.26)

Therefore, the equation (5.23) can be reduced to

u2(zq)− qu2(z) = −q

�
(q + 1)

+∞X
l=0

zq
l+1

ql
− q − 1

2

 
+∞X
l=0

zq
l

ql

!2

− q + 1

2
z2

�
. (5.27)

By (5.24) and (5.25), the solution of u2 is

u2(z) =
+∞X
k=0

�
(q + 1)

+∞X
l=0

zq
l+k+qk

ql+k
− (q − 1)

2qk

 
+∞X
l=0

zq
l+k

ql

!2

− (q + 1)

2qk
z2qk

�
. (5.28)

For each n ≥ 1, the collection of the fixed points of f ◦nα on the Julia set Jα forms the
finite set

Fix(f ◦nα ) =

¨
φα(e2πitj) : tj =

j

qn − 1
, 1 ≤ j ≤ |qn − 1|

«
. (5.29)

By (5.19) and the chain rule, we have (f ◦nα )′(φα(e2πitj)) =
Qn−1
m=0 f

′
α(φα(e2πiqmtj)). The

calculation in Appendix (§5.8) shows that for every D > 0 and all sufficiently large n, the
following holds:

1

|qn − 1|

|qn−1|X
j=1

n−1Y
m=0

���f ′α(φα(e2πiqmtj))
���−D = |q|−nD

�
1 +

D2n

4
|α|2 +O(α3)

�
. (5.30)
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Let Dα := dimH(Jα) be the Hausdorff dimension of Jα. One can write the corresponding
(5.14) of fα in Lemma 5.7 as

An(Dα) = |qn − 1| |q|−nDα
�

1 +
D2
αn

4
|α|2 +O(α3)

�
. (5.31)

Fix some large n, when α is small enough, (5.31) is equivalent to

lim
n→∞

exp

�
n

�
D2
α

4
|α|2 − (Dα − 1) log |q|

�
+O(α3)

�
= 1. (5.32)

By Theorem 5.11 and Lemma 5.8, Dα depends real analytically on α in a small neigh-
borhood of the origin and D0 = 1. This means that in a small neighborhood of 0, the
Hausdorff dimension of Jα can be written as

Dα = 1 + a10α + a01α + a20α
2 + a02α

2 + a11|α|2 +O(α3). (5.33)

Substituting (5.33) into (5.32) and comparing the corresponding coefficients, we have

a10 = a01 = a20 = a02 = 0 and a11 = 1/(4 log |q|). (5.34)

This means that
Dα = 1 +

|α|2

4 log |q|
+O(α3). (5.35)

Note that q = −d and α = λ−
1
d+1 . This ends the proof of Theorem 5.3 in the case of

d ≥ 3.
If d = 2, then (5.21) can be written as fα(z) = zq − qzq+1α. Following the calculation

process of d ≥ 3 and carefully omitting some corresponding terms, it can be checked that
Theorem 5.3 still holds for d = 2. The proof is complete. �

5.8 Appendix

This section will devote to proving (5.30). From (5.21), we have

f ′α(z) = qzq−1 − q(q + 1)zqα +
q(q + 1)(q + 2)

2
zq+1α2 +O(α3). (5.36)

Substituting (5.20) into (5.36), we have

f ′α(φα(z)) = qzq−1 + qzq−1[(q − 1)u1(z)− (q + 1)z]α + qzq−1

�
(q + 1)(q + 2)

2
z2

+
(q − 1)(q − 2)

2
u2

1(z)− q(q + 1)zu1(z) + (q − 1)u2(z)

�
α2 +O(α3).

(5.37)
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Define σ := σ(t) = e2πit ∈ T. Then σσ = 1. For 0 ≤ m ≤ n− 1, by (5.37), we have

|f ′α(φα(σq
m

))|2 = f ′α(φα(σq
m

)) f ′α(φα(σqm))

= q2 + Amα + Amα + AmAm|α|2/q2 +Bmα
2 +Bmα

2 +O(α3),
(5.38)

where
Am = q2(q − 1)u1(σq

m

)− q2(q + 1)σq
m

(5.39)

and

Bm =
q2(q + 1)(q + 2)

2
σ2qm +

q2(q − 1)(q − 2)

2
u2

1(σq
m

)

− q3(q + 1)σq
m

u1(σq
m

) + q2(q − 1)u2(σq
m

).

(5.40)

For every D > 0, by (5.38), we have

n−1Y
m=0

|f ′α(φα(σq
m

))|−D =
n−1Y
m=0

(|f ′α(φα(σq
m

))|2)−
D
2

= |q|−nD
n−1Y
m=0

 
1 +

Amα + Amα +Bmα
2 +Bmα

2

q2
+
AmAm|α|2

q4
+O(α3)

!−D
2

= |q|−nD − D

2
|q|−nD−2

n−1X
m=0

�
Amα + Amα +Bmα

2 +Bmα
2
�

− D

2
|q|−nD−4

� X
0≤m1<m2≤n−1

(Am1Am2α
2 + Am1Am2α

2) +
X

0≤m1,m2≤n−1

Am1Am2|α|2
�

+
D(D + 2)

8
|q|−nD−4

 
n−1X
m=0

(Amα + Amα)

!2

+O(α3).

(5.41)

Lemma 5.9. Let m,m1,m2 ∈ N. If n ≥ 1, then:
(1) qm 6≡ 0 mod qn − 1.
(2) qm1 + qm2 6≡ 0 mod qn − 1.
(3) qm1 − qm2 ≡ 0 mod qn − 1 if and only if m1 −m2 = kn for some k ∈ Z.

Proof. Since (q, qn − 1) = 1, it means that (qm, qn − 1) = 1 for m ≥ 0. Then (1) follows.
To prove (2), it suffices to show that qm + 1 6≡ 0 mod qn − 1 for m ≥ 0 since qn − 1 is

relative prime to qm′ for m′ ≥ 0 by (1). Set m = kn+ r, where k ≥ 0 and 0 ≤ r ≤ n− 1.
We have

qm + 1 = qkn+r − qr + qr + 1 ≡ qr + 1 6≡ 0 mod qn − 1

since 0 < |qr + 1| < |qn − 1|.
The proof of (3) is similar to that of (2). Since qn − 1 is relative prime to qm′ for

m′ ≥ 0, we need to find out the condition on m such that qm− 1 ≡ 0 mod qn− 1 for fixed
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n ≥ 1. Set m = kn+ r, where k ≥ 0 and 0 ≤ r ≤ n− 1. We have

qm − 1 = qkn+r − qr + qr − 1 ≡ qr − 1 mod qn − 1.

This means that qm − 1 ≡ 0 mod qn − 1 if and only if r = 0 since |qr − 1| < |qn − 1|.

Following [WBKS, § 2], it is convenient to introduce the average notation

〈G(t)〉n :=
1

|qn − 1|

|qn−1|X
j=1

G(tj), (5.42)

where G is a continuous function defined on the interval [0, 1) and tj = j/(qn − 1) is
defined in (5.29).

In order to prove (5.30), we only need to prove for every D > 0 and sufficiently large
n, the following holds*

n−1Y
m=0

���f ′α(φα(σq
m

))
���−D+

n

= |q|−nD
�

1 +
D2n

4
|α|2 +O(α3)

�
. (5.43)

For each n ≥ 1 and any k ∈ Z, it is straightforward to verify the average in (5.42) has
the following useful property:

〈σk〉n = 〈e2πikt〉n =

8<: 1 if k ≡ 0 mod qn − 1,

0 otherwise.
(5.44)

Lemma 5.10. For 0 ≤ m,m1,m2 ≤ n − 1, we have 〈σqm〉n = 0, 〈u1(σq
m

)〉n = 0,
〈σqm1+qm2 〉n = 0, 〈σqm1u1(σq

m2 )〉n = 0, 〈u1(σq
m1 )u1(σq

m2 )〉n = 0 and 〈u2(σq
m

)〉n = 0.

Proof. By (5.26) and (5.28), the average property (5.44) and Lemma 5.9(1)(2), the equa-
tions stated in the Lemma can be verified directly.

As an immediate corollary of Lemma 5.10, from (5.39) and (5.40), we have

Corollary 5.3. 〈Am〉n =
¬
Am

¶
n

= 0, 〈Bm〉n =
¬
Bm

¶
n

= 0, 〈Am1Am2〉n =
¬
Am1Am2

¶
n

= 0

for 0 ≤ m,m1,m2 ≤ n− 1.

By (5.41) and Corollary 5.3, we have

*
n−1Y
m=0

|f ′α(φα(σq
m

))|−D
+
n

= |q|−nD
�

1 +
D2

4
|q|−4

X
0≤m1,m2≤n−1

〈Am1Am2〉n|α|2
�

+O(α3).

(5.45)
By (5.39) and (5.40), we have¬

Am1Am2

¶
n

= q4(q − 1)2〈u1(σq
m1 )u1(σq

m2 )〉n + q4(q + 1)2〈σqm1−qm2 〉n
− q4(q2 − 1)〈u1(σq

m1 )σ−q
m2 + u1(σq

m2 )σq
m1 〉n.

(5.46)
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Since 0 ≤ m1,m2 ≤ n − 1, it follows that m1 − m2 = kn for k ∈ Z if and only if
m1 = m2. By Lemma 5.9(3), we have

¬
σq

m1−qm2
¶
n

=

8<: 1 if m1 = m2,

0 otherwise.
(5.47)

This means that X
0≤m1,m2≤n−1

〈σqm1−qm2 〉n = n. (5.48)

Similarly, by Lemma 5.9(3), we have

¬
u1(σq

m1 )σ−q
m2
¶
n

=
+∞X
k=0

〈σqk+m1−qm2 〉n
qk

=

8<:
P+∞
k=0

1
qn−(m1−m2)+kn = qm1−m2

qn−1
if m1 > m2,P+∞

k=0
1

qm2−m1+kn = qn−(m2−m1)

qn−1
if m1 ≤ m2.

(5.49)

This means that

X
0≤m1,m2≤n−1

〈u1(σq
m1 )σ−q

m2 〉n =
X

0≤m2<m1≤n−1

qm1−m2

qn − 1
+

X
0≤m1≤m2≤n−1

qn−(m2−m1)

qn − 1

=
n

qn − 1
(q + q2 + · · ·+ qn) =

nq

q − 1
.

(5.50)

Moreover, by Lemma 5.9(3), we have

¬
u1(σq

m1 )u1(σq
m2 )

¶
n

=
+∞X
k1=0

+∞X
k2=0

〈σqk1+m1−qk2+m2 〉n
qk1+k2

=

8<: ( 1
qm1−m2

+ 1
qn−(m1−m2) )

q2+n

(q2−1)(qn−1)
if m1 > m2,

( 1
qm2−m1

+ 1
qn−(m2−m1) )

q2+n

(q2−1)(qn−1)
if m1 ≤ m2.

(5.51)

This means that (similar to the reduction process of (5.50))

X
0≤m1,m2≤n−1

〈u1(σq
m1 )u1(σq

m2 )〉n =
nq2

(q − 1)2
. (5.52)

By substituting (5.48), (5.50) and (5.52) into (5.46), we have

X
0≤m1,m2≤n−1

〈Am1Am2〉n = nq4. (5.53)

By (5.45) and (5.53), it follows that (5.43) holds. The proof of (5.30) is completed.

175



176



Bibliography

[AY] M. Aspenberg and M. Yampolsky, Mating non-renormalizable quadratic polynomi-
als. Commun. Math. Phys., 287 (2009), 1-40.

[BL] P. Bleher and M. Lyubich, Julia sets and complex singularities in hierarchical Ising
models. Commun. Math. Phys., 141 (1991), 453-474.

[DSI] B. Derrida, L. De Seze and C. Itzykson, Fractal structure of zeros in hierarchinal
models. J. Stat. Phys., 33 (1983), 559-569.

[Do] A. Douady, Systèmes dynamiques holomorphes. Séminaire Bourbaki, Volume 1982-
83, exposé no. 599, Astérisque, 105-106 (1983), 39-63.

[DH] A. Douady and J. Hubbard, Itération des polynômes quadratiques complexes, C.
R. Acad. Sci. Paris, 294 (1982), 123-126.

[Fa] K. Falconer, Fractal geometry: Mathematical Foundations and Applications, Second
Edition. John Wiley & Sons, England, 2003.

[Fi] M. Fisher, The Nature of Critical Points (Lectures in Theoretical Physics, VIIC).
Ed. by Brittin, Gordon and Breach, New York, 1965.

[Ga] J. Gao, Julia sets, Hausdorff dimension and phase transition. Chaos, Solitons &
Fractals, 44 (2011), 871-877.

[HL] B. Hu and B. Lin, Yang-Lee zero, Julia sets and their singularity spectra. Phys.
Rev., 39 (1989), 4789-4796.

[MSS] R. Mañé, P. Sad and D. Sullivan, On the dynamics of rational maps. Ann. Sci.
École Norm. Sup. (4) 16 (1983), 193-217.

[Mc] C. McMullen, Complex Dynamics and Renormalization. Ann. of Math. Studies 135,
Princeton Univ. Press, Princeton, NJ, 1994.

[McS] C. McMullen and D. Sullivan, Quasiconformal homeomorphisms and dynamics. II-
I. The Teichmüller space of a holomorphic dynamical system. Adv. Math. 135 (1998),
no. 2, 351-395.

177



[Mi] J. Milnor, Geometry and dynamics of quadratic rational maps, Experimental Math.,
With an appendix by the author and Tan Lei, 2 (1993), 37-83.

[Os] A. Osbaldestin, 1/s–expansion for generalized dimensions in a hierarchical s–state
Potts model. J. Phys., A: Math. Gen. 28 (1995), 5951-5962.

[QRWY] W. Qiu, P. Roesch, X. Wang and Y. Yin, Hyperbolic components of McMullen
maps. ArXiv: math.DS/1207.0266v1, 2012.

[Qi] J. Qiao, Julia sets and complex singularities of free energies. Preprint, 2011.

[QL] J. Qiao and Y. Li, On connectivity of Julia sets of Yang-Lee zeros. Commun. Math.
Phys., 222 (2001), 319-326.

[QYG] J. Qiao, Y. Yin and J. Gao, Feigenbaum Julia sets of singularities of free energy.
Ergodic Th. and Dynam. Sys., 30 (2010), 1573-1591.

[Ro1] P. Roesch, Topologie locale des méthodes de Newton cubiques. PhD Thesis. Lyon:
Ecole Normale Supérieure de Lyon, 1997.

[Ro2] P. Roesch, On capture zones for the family f(z) = z2 + λ/z2, in “Dynamics on the
Riemann Sphere: A Bodil Branner Festschrift", Ed. by P. Hjorth and C. Petersen,
European Mathematical Society, Berlin, (2006), 121-129.

[Ru] D. Ruelle, Repellers for real analytic maps. Ergodic Theory Dynamical Systems, 2
(1982), 99-107.

[WQYQG] X. Wang, W. Qiu, Y. Yin, J. Qiao and J. Gao, Connectivity of the Mandelbrot
set for the family of renormalization transformations. Science in China, 53 (2010),
849-862.

[WBKS] M. Widom, D. Bensimon, L. Kadanoff and S. Shenker, Strange objects in the
complex plane. Journal of Statistical Physics, 32 (1983), 443-454.

[Wi] K. Wilson, Renormalization group and critical phenomena I and II. Phys. Rev. B,
4 (1971), 3174-3183, 3184-3205.

[YL] C. Yang and T. Lee, Statistical theory of equations of state and phase transitions.
I. Theory of condensation. Phys. Rev., 87 (1952), 404-419.

[Ya] F. Yang, Rational maps without Herman rings. Submitted.

[YW] F. Yang and X. Wang, The Hausdorff dimension of the boundary of the immediate
basin of infinity of McMullen maps. ArXiv: math.DS/1204.1282, 2012.

[Za] S. Zakeri, Dynamics of cubic Siegel polynomials. Commun. Math. Phys, 206 (1999),
185-233.

178



 

 
  

 
 

Résumé 
 
Cette thèse est constituée de cinq parties distinctes.  
 
La première partie est consacrée au problème de rigidité 
quasi-symétrique associé à un nouveau modèle de tapis 
de Sierpinski, qui ne sont pas quasi- 
symétriquement équivalent aux tapis de Sierpinski 
usuels.  
 
La seconde partie est une discussion portant sur la 
géométrie quasi-symétrique des ensembles de tapis de 
Julia, incluant en outre le quasi-cercle uniforme, ainsi 
que certaines propriétés de séparation uniforme.  
 
Lors de la troisième partie, nous déterminerons une 
condition permettant de savoir quand deux rayons 
externes d'un polynôme tendent vers un même point. 
Comme application, nous montrerons également la 
monotonie de l'entropie associée à une famille de 
polynômes quadratiques.  
 
La quatrième partie est inspirée du travail récent de Cui 
Guizhen et Tan Lei. En utilisant des outils classiques 
(module d'anneau et chirurgie quasi-conforme), nous 
étudierons la convergence de certains rayons en 
campagne locus espace des paramètres.  
 
Enfin, la dernière partie pore sur la famille des 
transformations de renormalisations générées. Plus 
précisément, cette partie abordera la connexité de ces 
ensembles de Julia, et le lieu de confinement dans 
l'espace des paramètres, ainsi que la formule 
asymptotique de la dimension d'Hausdorff des 
ensembles de Julia. 
 
Mots clés  
 
rigidité quasisymétrique, sierpinski usuels, tapis de Julia, 
rayons externes, rayons paramètres, transformations de 
renormalisations générées. 

 

Abstract 
 
The thesis consists of five parts. 
 
The first part is concerned with the quasisymmetric 
rigidity of a new Sierpinski carpet, which are not quasis-
ymmetrically equivalent to the standard Sierpinski 
carpets. 
 
The second part discusses the quasisymmetrically 
geometry of the carpet Julia sets, including the uniformly 
quasicircle and uniformly separated properties. 
 
The third part is to determine when two external rays of 
a polynomial land at the same point. As an application, 
we also show the monotonicity of core-entropy on a 
family of quadratic polynomials. 
 
In the fourth part, following Cui and Tan's work, we use 
the classic tools modulus of annulus and quasi-
conformal surgery to study the landing of some 
parameter rays in shift locus parameter space. 
 
The last part discusses a family of generated renormal-
ization transformations. Specifically, it is on the connec-
tivity of its Julia sets and the non-escaping locus in its 
parameter space, the asymptotic formula of the 
Hausdorff dimention of the Julia sets. 
 
 
 
 
 
 
 
 
Key Words  
 
Quasisymmetric rigidity, sierpinski carpets, carpet Julia 
sets, external rays, parameter rays, generated 
renormalization transformations. 
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