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Dynamical circular inference in the general population and in the 

psychosis spectrum: insights from perceptual decision making 

 

Abstract 

 We live in an uncertain world, yet our survival depends on how quickly and accurately 

we can make decisions and act upon them. To address this problem, modern neuroscience 

reconceptualised perception as an inference process, in which the brain combines sensory 

inputs and prior expectations to reconstruct a plausible image of the world. In addition to that, 

influential theories in the emerging field of computational psychiatry suggest that various 

psychiatric disorders, including schizophrenia, could be the outcome of impaired predictive 

processing. Among those theories, the circular inference framework suggests that an 

unconstrained propagation of information in the cortex, underlain by an excitatory to inhibitory 

imbalance, can generate false percepts and beliefs, similar to those exhibited by schizophrenia 

patients. In the present thesis, we probed the role of circular inference from normal to 

pathological brain functioning, gaining insights from perceptual decision making in the 

presence of high ambiguity. 

 In the first part of the thesis, we focused on the role of circularity in bistable perception 

in the general population. Bistability occurs when two mutually exclusive interpretations 

compete and switch as dominant percepts every few seconds. In a 1st article, we manipulated 

sensory evidence and priors in a Necker cube task, asking how the brain combines low-level and 

high-level information to form perceptual interpretations. We found a significant effect of each 

manipulation but also an interaction between the two, a finding incompatible with Bayes-

optimal integration. Bayesian model comparison further supported this observation, showing 

that a circular inference model outperformed purely Bayesian models. Having established a link 

between circular inference and bistable perception, we then put forward a functional theory of 

bistability, based on circularity (2nd article). In particular, we derived the dynamics of a 

dynamical circular inference model, showing that descending loops (i.e. a form of circularity 

resulting in aberrant amplification of the priors) transform what is normally a leaky integration 

of noisy evidence into a bistable attractor with two highly trusted stable states. Importantly, this 

model can explain both the existence and the phenomenological properties of bistable 

perception, making a number of testable predictions. Finally, in a 3rd article, we tested one of 

the model’s predictions, namely the perceptual behaviour when the stimulus is presented 

discontinuously. We ran two Necker cube experiments using a novel intermittent-presentation 
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methodology, and we calculated the stabilisation curves (i.e. persistence as a function of blank 

durations). We found that participants’ behaviour was compatible with the model’s prediction 

for a system with descending loops, suggesting that circularity constitutes a general mechanism 

that shapes the way healthy individuals perceive the world. 

 In the second part, we studied circular inference in pathological conditions related to 

psychosis. We notably focused on two varieties of the psychotic experience, namely 

schizophrenia-related psychosis and drug-induced psychosis. After discussing the links between 

behaviour, aberrant message-passing and the corresponding neural networks (4th article), we 

used bistable perception to probe the computational mechanisms underlying schizophrenia in 

a 5th article. We compared patients with prominent positive symptoms with matched healthy 

controls in two bistable perception tasks. Our results suggest an enhanced amplification of 

sensory inputs in patients, combined with an overestimation of the environmental volatility. In 

the last article (6th), we delineated a multiscale account of psychedelics, ultimately linking the 

macroscale (i.e. phenomenological considerations such as the crossmodal character of the 

psychedelics experience), the mesoscale (i.e. loops) and the microscale (i.e. neuromodulators 

and canonical microcircuits). 

 

Keywords 

Bayesian inference, Circular inference, schizophrenia, psychosis, bistable perception, Necker 

cube, psychedelics, canonical microcircuit, hierarchical, functional, message-passing 

algorithms, dynamical 

 

 

 

 

 

 

 

 

 

 



10 
 

Inférence circulaire dynamique en population générale et dans le 

spectre psychotique : Apports de la prise de décision perceptive 

 

Resumé 

 Nous évoluons dans un monde incertain. De ce fait, notre survie dépend de notre 

capacité à prendre rapidement des décisions, et ce de manière fiable et adaptative. Il est possible 

de mieux comprendre cette capacité en considérant la perception comme un processus 

d’inférence probabiliste au cours duquel les informations sensorielles sont combinées à nos 

attentes pour produire une interprétation plausible de notre environnement. Les théories 

récentes de psychiatrie computationnelle suggèrent par ailleurs que la grande variabilité des 

troubles psychiatriques, au rang desquelles figure la schizophrénie, pourrait résulter d’une 

altération de ces mêmes processifs prédictifs. L’Inférence Circulaire est l’une de ces théories. Ce 

cadre de pensée stipule qu’une propagation incontrôlée d’information dans la hiérarchie 

corticale pourrait générer des percepts ou des croyances aberrantes. Afin d’explorer le rôle joué 

par l’Inférence Circulaire en condition normale ou pathologique, ce travail de thèse s’est appuyé 

sur des tâches de prise de décision en conditions perceptives ambigües. 

Dans une première partie, nous nous sommes intéressés au rôle joué par la circularité 

dans la perception bistable. Le phénomène de bistabilité survient lorsque deux interprétations 

se succèdent à intervalle régulier pour un même percept. Nous présentons les résultats d’une 

tâche conduite en population saine où nous avons manipulé les informations sensorielles et à 

priori utilisées par les participants lors de la visualisation d’un cube de Necker (article 1). Nous 

avons pu montrer un effet propre à chaque manipulation, mais également une interaction entre 

ces deux sources d’information, incompatible avec une intégration Bayésienne optimale. 

Résultat confirmé par la comparaison de divers modèles computationnels ajustés aux données, 

qui a pu mettre en évidence la supériorité de l’Inférence Circulaire sur les modèles Bayésiens 

classiques. 

Nous avons ensuite voulu tester un modèle fonctionnel de la bistabilité (article 2). Nous 

avons donc dérivé la dynamique du modèle et montré que la présence de boucles descendantes 

dans la hiérarchie corticale, transformait ce qui était jusque là un intégrateur imparfait du bruit 

sensoriel en modèle à attracteur bistable. Ce modèle ne reproduit pas seulement le phénomène 

de bistabilité, mais également l’ensemble de ces caractéristiques phénoménologiques. Dans un 

3ème article, nous avons testé une prédiction, notamment en cas de présentation discontinue 
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d’un stimulus bistable. Deux expériences complémentaires utilisant un paradigme de 

présentation intermittente du cube de Necker ont donc été conduites en population générale. 

Nos resultats etaient compatible avec les prédictions faites par le modèle de l’Inférence 

Circulaire Dynamique, suggérant que la circularité puisse être un mécanisme générique à 

l’origine de notre façon de voir le monde. 

Dans la seconde partie de ce travail, nous avons étudié l’Inférence Circulaire en condition 

pathologique, notamment lors d’expériences psychotiques (schizophrénie, psychédéliques). 

Nous avons utilisé la perception bistable pour explorer les mécanismes computationnels à 

l’œuvre dans la schizophrénie (article 4,5). Nous avons comparé les performances de patients 

présentant des symptômes psychotiques à des témoins sains appariés lors d’une tâche de 

perception bistable. Nous avons pu montrer chez les patients une amplification des 

informations sensorielles combinée à une surestimation de la volatilité environnementale. Enfin 

nous terminons ce travail en proposant une approche transversale de l’effet des psychédéliques 

(article 6), sur la base des résultats précédents et de la spécificité clinique de ces expériences 

sensorielles cross-modales, afin de relier l’échelle macroscopique (i.e., comportement et 

phénoménologie), mésoscopique (i.e., les boucles inférentielles) et microscopique (i.e., les 

différents neurotransmetteurs impliqués aboutissant à un microcircuit canonique). 

 

Mots-clefs 

Inférence Bayésienne, Inférence circulaire, schizophrénie, psychose, perception bistable, Cube 

de Necker, psychédéliques, microcircuit canonique, hierarchique, fonctionnel, dynamique 
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General Introduction 
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 The brain constantly processes a multitude of complex information. As all information 

processing systems, it receives some input (visual, auditory, proprioceptive etc.) and transforms 

it into some output (percepts, decisions, actions etc.). What is the goal of the brain’s 

computation? How is information represented by the brain and what are the well-defined steps 

of this transformation? What is the physical substrate in which it takes place? All these 

questions have fuelled a prolific scientific debate on brain functions for decades. 

 In his seminal book about vision, David Marr related those questions to his famous 3 

levels of analysis [1]: (i) Computational level; (ii) Algorithmic level and (iii) Implementational 

level. He argued that any comprehensive analysis of the brain (or any other information 

processing system) must offer an in-depth understanding of all three dimensions. Importantly, 

although each level is constrained by the other two, they remain largely independent: many 

algorithms can achieve the same goal (e.g., summation can be done with binary or decimal 

variables) while the same algorithm can be implemented by different hardware. 

 In this thesis, we studied perception (or aberrant perception, in the context of psychosis) 

using a top-down (functional) approach. Our argumentation starts from the computational 

level, by considering what is the task undertaken by perceptual systems (make decisions under 

uncertainty; probabilistic inference) and how it should be accomplished (normative approach). 

Based on that, we derived a detailed algorithm performing this task (message-passing 

algorithms; belief propagation; Hidden Markov Model), that is compatible with brain’s 

anatomical and physiological structure (hierarchical structure; long-range reciprocal excitatory 

connections; neural excitation to inhibition balance). Additionally, we compared participants’ 

behaviour in perceptual tasks with the optimal behaviour for this task (or patients’ behaviour 

with that of matched healthy controls), detecting potential deviations from the normative 

approach. Finally, we suggest links between the different information processing steps and 

specific neural substrates (neuromodulators, cortical microcircuits, long-range networks). 

 In this general introduction, we provide the necessary information and assumptions 

behind this work, and present an outline of the thesis. 

 

The Bayesian brain hypothesis 

 During the 20th century, a dominant scientific view illustrated the brain as a complex 

filter, extracting valuable information from the different sensations in a passive way [2]. This 

feature extraction took place at the level of neurons [3] and it was considered a gradual process, 
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with simple features preceding the more complex ones [4,5]. According to this view, the sensory 

signal already contains all the necessary information; one needs to look carefully and detect all 

the relevant cues, from simple orientations to complex 3D structures.  

 The 21st century witnessed an important paradigm shift [6]. The brain has to make 

decisions in an uncertain and constantly-evolving environment. In most cases, available 

information is degraded or simply limited (visual perception in dark places; 3D perception based 

on the 2D retinal image etc. [7]). Besides, any plausible interpretation of the sensory data is 

necessarily context-dependent (e.g. the colour of a surface depends on the background colour). 

From this point of view, perception (but also other brain functions such as decision making or 

motor-control) is an ill-posed problem, which can only be approached using statistical methods. 

 Probabilistic inference offers the necessary tools to make decisions under uncertainty. 

Figure 1 illustrates an example of a problem with inherent uncertainty (named the beads task; 

[8]). In such problems, the optimal strategy corresponds to estimating the level of the 

uncertainty and then use this estimate to make decisions. In our example (Figure 1a), this 

coincides with using Bayes theorem to combine low-level information (i.e. percentages of red 

and black balls) with high-level prior information (i.e. preference) to estimate the posterior 

probability that a red ball was drawn from urn 1 (or urn 2 respectively). Then, we can use this 

information to choose the most probable cause (Urn 1 in our case). 

 The previous example illustrates the simplest possible causal link between two variables. 

In reality, we usually face problems where many variables interact with each other, forming 

complex hierarchical causal structures. A relatively simple hierarchy is illustrated in Figure 1b. 

As before, a ball is drawn from one of the two urns but unlike the previous example, the urns 

are also not fixed, but picked randomly (and according to a higher-level preference) between 

two different sets. In order to make optimal decisions, one still has to combine low-level and 

high-level information, but because of the hierarchical causal structure, this computation is 

performed at all levels. In particular, every level is constrained from the level below by a 

likelihood function and from the level above by a prior. This local computation of posterior 

probabilities gives rise to powerful, biologically plausible algorithms (i.e., message-passing 

algorithms) which can be used by the brain to perform perceptual and other cognitive tasks 

(Figure 1c) [9]. From this point of view, perception corresponds to the process of combining 

sensory and prior information in order to find optimal interpretations of the world [10]. 
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Figure 1: Probabilistic inference. (a.) The beads task. A ball is picked randomly from one of the two urns. 

In order to make an optimal decision, we should combine the likelihood (probability of picking a red ball 

from urn 1/2) with the prior (preference), according to Bayes theorem. (b.) A hierarchical causal model. 

When there is a chain of causal links, we can use message-passing algorithms to calculate posterior 

probabilities. (c.) The Bayesian brain hypothesis. The brain learns the causal structure of the world and 

combines sensations and prior knowledge in order to construct plausible interpretations of the world 

 

Message-passing algorithms  

 Predictive Coding 

 An important algorithm can be obtained by plugging Gaussian variables in the 

hierarchy. In its simplest form (2 variables), predictive coding can be written in the following 

way [11]: 

�̂�𝑛𝑒𝑤 = �̂�𝑝𝑟𝑖𝑜𝑟 + 𝑘(𝑠 − �̂�𝑝𝑟𝑖𝑜𝑟)                                                                                                           (1) 

with 𝑠 corresponding to the mean of the likelihood,  𝑥𝑝𝑟𝑖𝑜𝑟 to the mean of the prior (prior 

estimate) and 𝑥𝑛𝑒𝑤 being the mean of the posterior (updated estimate). The difference 

(𝑠 − 𝑥𝑝𝑟𝑖𝑜𝑟) is called prediction error and corresponds to how well the model can predict the 

state of the world (if prediction error is zero, then the model predicts perfectly the new 

sensation, consequently it is not updated). Importantly, the prediction error is weighted by 𝑘, 
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which is a parameter that depends on the precisions of the likelihood (inverse of variance 𝜎𝑠
2) 

and the prior (same for 𝜎𝑝𝑟𝑖𝑜𝑟
2 ): 

𝑘 =
𝜎𝑝𝑟𝑖𝑜𝑟
2

𝜎𝑝𝑟𝑖𝑜𝑟
2 +𝜎𝑠

2                                                                                                                                            (2)  

As a result, the updating of the model also depends on the reliability of the new information, 

compared to the old one. 

 When there is a hierarchy of causes, equation (1) can be written as follows for level i [11] 

(see also Figure 2): 

�̂�𝑖,𝑛𝑒𝑤 = �̂�𝑖,𝑜𝑙𝑑 + 𝑘𝑓휀𝑖 − 𝑘𝑏휀𝑖+1                                                                                                          (3) 

where 𝑥𝑖,𝑛𝑒𝑤 is the updated estimate, 𝑥𝑖,𝑜𝑙𝑑 is the old estimate before the update, 𝑘𝑓 and 𝑘𝑏 are 

the feedforward and feedback weights (defined by equations similar to (2)) and 휀𝑖, 휀𝑖+1 are the 

lower-level and upper-level prediction errors: 

휀𝑖 = �̂�𝑖 − �̂�𝑖−1                                                                                                                                         (4) 

 Several versions of this algorithm have been proposed [12–15]. They all suggest that 

different populations of neurons encode the predictions (feedback) and the prediction errors 

(feedforward signal), roughly corresponding to the distinction between superficial and deep 

layers [16]. They also postulate an inhibitory effect of the feedback, which attenuates the activity 

of prediction error-encoding neurons when the stimulus is predictable [17]. 
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Figure 2: Predictive coding. Prediction errors ascend the hierarchy, while top-down predictions descend 

the hierarchy. Predictions and prediction errors are represented by different populations of neurons, in 

different parts of the cortical column (deep and superficial layers respectively). 

 

 Belief Propagation 

 An alternative way to do hierarchical Bayesian inference is belief propagation. A detailed 

mathematical description of the algorithm can be found in the Supplementary Material of 

Chapter 3 of the present thesis (see also Figure S1 of the same chapter for an illustration).  

 Contrary to predictive coding, belief propagation can be used with any type of variable 

(including discrete / binary variables, ideal for modelling decisions in ‘’2-alternative forced-

choice tasks’’) [18]. As in Bayes theorem, posteriors are calculated by combining priors and 

likelihoods (summing them in the log-scale). Consequently, the bottom-up channel transmits 

the sensation per-se, and not the difference between sensation and prediction [11]. This has an 

important physiological consequence: feedback is not necessarily suppressive, in agreement 

with various neurophysiological [19,20] and behavioural studies [21]. Note also that unlike 

predictive coding, belief propagation calculates and represents distributions [10,22,23], and not 

just estimates. 
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Computational psychiatry and psychosis 

 During the last decade, a second intellectual revolution occurred in the field of 

psychiatry. At the end of the 20th and beginning of 21st century (but even today), psychiatry faced 

important challenges, related to classification, diagnosis, treatment and pathogenesis of mental 

disorders [24,25]. In particular, the symptom-based nosology fails to capture the underlying 

mechanisms that trigger the disorders, and has no means to predict the effectiveness of 

treatments. 

 Computational psychiatry hopes to fix those shortcomings of classical psychiatric 

practice, by characterizing psychopathologies in terms of mechanistic and computational 

dysfunctions over multiple scales [26–28] (note that this is also the aim of the Research Domain 

Criteria initiative [29]). This characterization can trigger a new type of classification of 

disorders, based on the objective causes instead of the subjective reports. As a result, it can fill 

the epistemological, explanatory gap that exists between neurobiology and the clinical level 

(e.g., “excessive dopamine release results in psychotic symptoms”), also guiding the choice of 

treatments for different clusters of patients. 

   Interestingly, computational psychiatry is a very active field of research and plenty of 

theories have already emerged. For example in schizophrenia, at least two computational 

theories have been suggested, based on the message-passing algorithms presented in the 

previous section (please refer to [30] for a comprehensive review). Predictive coding accounts 

on one hand suggest that an impairment in the precision weighting of the prediction error (that 

may be due to dopaminergic abnormalities or NMDA hypofunction), causes the system to rely 

more on priors or sensory evidence (Figure 3a,b), resulting in false percepts and delusional 

thoughts [31–34]. 

 In belief propagation on the other hand, because of the presence of recurrent excitation, 

it is crucial to set apart old and new information, to avoid aberrant overcounting. Inadequate 

elimination of redundant information results in circular inference, a pathological form of 

inference in which information is amplified, affecting the calculation of the posteriors and thus, 

the decision making process (Figure 3c,d) [35]. Recent behavioural evidence suggest that 

information loops exist in patients with schizophrenia but also, in a more moderate form, in 

healthy individuals [36]. Furthermore, different types of circularity (related to amplification of 

priors or sensory inputs) might trigger the different dimensions of schizophrenia (positive, 

negative and cognitive disorganization clusters), offering a compelling explanation of the 

heterogeneity of the disease. 
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Figure 3: Impairments in predictive processing could generate psychotic symptoms. (a.,b.): 

Predictive coding. Underweighting (a.) and overweighting (b.) of the sensory evidence (same for 

overweighting / underweighting of priors) result in a shifted posterior (towards prior / sensory evidence). 

(c.,d.): Circular inference. The presence of loops results in the amplification of priors (descending loops) or 

sensory evidence (climbing loops), resulting in a system that “sees what it expects” or “expects what it sees”. 

 

Outline of this thesis 

 This thesis is structured on a series of articles. It consists of 6 largely independent 

chapters / articles (Chapters 2-7), divided into 2 sections. Chapter 8 is a general discussion in 

which we summarize the main findings of the work and suggest potential future directions. 

 In section 1 (Chapters 2-4), we focus on the problem of bistable perception. Bistable 

perception’s uniqueness resides in the fact that it constitutes one of the few known cases of clear 

dissociation between stimulation and perception, in which dynamics is also an important 

component (e.g. compare bistable perception with other known visual illusions [37]). This 

dissociation offers a unique opportunity to study the computational mechanisms generating 

conscious (or unconscious) perception. Here we build upon previous evidence suggesting that 

healthy subjects exhibit mild form of circular inference [36]. We argue that if this is the case, 
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then the footprints of circularity should be present in participants’ behaviour during perceptual 

tasks. Given that the effects of loops are more pronounced in ambiguous environments [35], 

bistable perception constitutes the ideal task. In Chapter 2, we present the results of an 

experiment, designed to study how healthy participants combine sensory evidence and priors. 

An interaction between the two offered evidence in favour of our claim. A Bayesian model 

comparison confirmed the superiority of circular inference models compared to classical 

Bayesian models. Having established a first link between bistability and circularity, we set to 

put forward a complete theoretical account of perception under ambiguity (Chapter 3). We 

derived the dynamics of a dynamical circular inference model, showing that loops change a leaky 

integrator into a bistable attractor. This functional model explains both the existence and the 

phenomenological properties of bistable perception, making a number of testable predictions. 

In Chapter 4, we tested one of the predictions, namely the perceptual behaviour when the 

stimulus is presented discontinuously. We found that participants’ behaviour was compatible 

with the model’s prediction for a system with descending loops. Overall, in this first part of the 

thesis we offer theoretical and experimental evidence that circularity constitutes a general 

mechanism that shapes the way healthy individuals perceive the world. 

 In the second section of the work (Chapters 5-7), we explore the links between circular 

inference and the psychosis spectrum. In Chapter 5, we review the connections between 

behaviour, aberrant message-passing and their neural substrates, in schizophrenia and in the 

general population. Then, in Chapter 6, we focus on schizophrenia and used bistable 

perception to probe the computational mechanisms underlying the positive dimension. We 

compared patients with prominent positive symptoms with matched healthy controls in two 

bistable perception tasks, already introduced in section 1. Our results suggest an enhanced 

amplification of sensory inputs in patients (in agreement with previous results), combined with 

an overestimation of the environmental volatility. Finally, in Chapter 7, we study drug-induced 

psychosis and suggest a multiscale account of psychedelics based on circular inference. We used 

in-silico simulations to show that descending loops (i.e., amplification of priors) can result in 

crossmodal, mainly prior-driven aberrant perceptual experiences, which constitute the 

hallmark of the psychedelic experience. We further propose a link between loops and 

neuromodulation, namely that dopamine regulates climbing loops while serotonin prevents the 

reverberation and amplification of priors (descending loops). Finally, we put forward a 

canonical microcircuit implementing (circular) belief propagation, ultimately linking our 

understanding at the macroscale, the mesoscale and the microscale. 
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Circular inference in bistable perception 
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Abstract 

When facing ambiguous images, the brain switches between mutually exclusive 

interpretations, a phenomenon known as bistable perception. Despite years of research, there 

is no consensus on whether bistability is driven primarily by bottom-up or top-down 

mechanisms. Here, we adopted a Bayesian approach in an effort to reconcile these two theories. 

Fifty-five healthy participants were exposed to an adaptation of the Necker cube paradigm, in 

which we manipulated sensory evidence and prior knowledge. We found that manipulations of 

both sensory evidence and priors significantly affected the way participants perceived the 

Necker cube. However, we observed an interaction between the effect of the cue and the effect 

of the instructions, a finding incompatible with Bayes-optimal integration. In contrast, the data 

were well predicted by a circular inference model. In this model, ambiguous sensory evidence 

is systematically biased in the direction of current expectations, ultimately resulting in a bistable 

percept. 
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Introduction 

Perception can be defined as the process of combining available information to create 

valid and useful interpretations of the world. Although our phenomenological experience makes 

us think that perceptual decisions are trivial, the truth might be very different. An interesting 

example is visual perception of depth. When we see an object, our brain must reconstruct its 

3D shape from a 2D retinal image; in other words, the brain must solve an inference problem 

[1]. Unfortunately, such problems are ill-posed, as in most cases the 2D retinal projection is 

compatible with many different 3D objects [2]. To cope with perceptual uncertainty, the brain 

must combine ambiguous information received by peripheral sensors (e.g., disparity cues and 

movement cues) with pre-existing information (either hard-wired or learned) concerning 

properties of the environment or the potential cost of a wrong decision [3,4]. Such combinations 

can be expressed through Bayes’ theorem, in which prior probability distributions and sensory 

likelihoods are multiplied, resulting in a posterior probability distribution over possible 

solutions to the perceptual problem. Most of the time, only a single dominant (most probable) 

interpretation will emerge from these constraints. 

However, when the level of ambiguity is too high, finding a single interpretation is not 

possible. Strikingly, ambiguous figures compatible with more than one plausible interpretation 

[5,6] lead to bistable (or more generally multistable) perception [7]. When facing those figures, 

the perceptual system is unable to commit to a single stable interpretation and instead oscillates 

between mutually exclusive interpretations every few seconds. A famous figure known to induce 

bistability is the Necker cube (NC) ([5]; Figure 1a), in which a 2D collection of lines is 

automatically interpreted as a 3D cube, which is either “seen from above” (SFA interpretation) 

or “seen from below” (SFB interpretation). Interestingly, the NC is an asymmetrical stimulus, 

meaning that it generates an implicit preference for the SFA interpretation (i.e., the general 

preference of humans to interpret things as if they were below the level of their eyes) [3,8]. 

While the concept of perception as inference under uncertainty offers a principled way 

to explain the efficiency of perceptual systems and certain perceptual illusions, it can account 

for bistable perception less directly. Indeed, if the brain uses explicit representations of 

uncertainty, e.g., a probability distribution instead of a point estimate [9-12], ambiguous stimuli 

should be recognized as such and not generate a unique, persistent representation. We note 

that bistable perception is far from unique in that case. Although many studies have reported 

that the brain is able to reach Bayes-optimal decisions [13-16], there are numerous tasks in which 

human behavior deviates significantly from that of a Bayesian observer [17-20]. 
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Deviations from Bayesian optimality could be the consequence of highly non-linear and 

state-dependent interactions between feedback and feedforward streams of information in 

brain circuits [21]. Some of these effects can be quantified by the circular inference framework 

[22]. According to this framework, hierarchical processing in the brain is analogous to the 

propagation of probabilistic messages (beliefs) in a hierarchical model of the world [23]. The 

combination of feedforward and feedback inputs is equivalent to the product of prior and 

likelihood in Bayes’ theorem. However, because neural circuits are highly recurrent, sensory 

evidence and prior information can easily reverberate and be artificially amplified through 

feedforward/feedback loops in the brain, resulting in the corruption of sensory evidence by prior 

information and vice versa. Such reverberation can be avoided if excitation (E) and inhibition 

(I) are perfectly balanced in cortical circuits [22], a well-known property of the healthy brain 

[24,25]. 

Recently, our team hypothesized a link between E/I imbalance in schizophrenia and the 

occurrence of psychotic symptoms (hallucinations and delusions). This hypothesis was recently 

reinforced by experimental evidence in a probabilistic reasoning task [26]. Interestingly, we also 

detected a certain amount of circularity in healthy participants, particularly the corruption of 

sensory evidence by prior information. If circular inference is a more general mechanism than 

initially predicted, an interesting question arises: is it possible to find evidence of circularity [27] 

in the perceptual behavior of healthy subjects in the absence of any psychotic experience? Here, 

we propose that bistability could be an example of percepts induced by such circularity. 

To investigate this theory, we induced bistability in healthy participants using the NC. 

We asked how different pieces of information, including (a) pre-existing priors (i.e., the SFA 

preference), (b) newly acquired priors (i.e., instructions), and (c) visual cues, are combined to 

generate the percept. We compared different Bayesian and circular inference (CI) models for 

their ability to fit the data. We particularly sought to understand whether circularity and 

aberrant correlations between priors and sensory evidence significantly contribute to the way 

we perceive the world. 

 

Results 

To determine the effects of prior knowledge and sensory evidence in an ambiguous 

perceptual context, 55 participants were exposed to continuous presentation of a NC. The 

dominant percept was discontinuously sampled according to the procedure presented in Figure 
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2 and was analyzed in terms of relative predominance (RP). RP corresponds to the overall 

probability of perceiving the SFA or SFB interpretation. A value of 1 or 0 would correspond to 

the SFA or SFB interpretation, respectively, fully dominating perception. A value of 0.5 would 

characterize a purely chance level wherein the 2 percepts are equiprobable. 

                 

Figure 1: Stimuli and instructions. (a) Different Necker cubes were used to induce bistable 

perception, in which the 2D figure is perceived as a 3D cube with either the left or the right side closer to the 

observer. Even in the case of the completely ambiguous stimulus (1), people have an implicit preference to 

interpret the cube as seen from above (SFA interpretation), which was interpreted an implicit prior. This 

prior can be annihilated by tilting the stimulus (4). Sensory evidence was manipulated by adding visual cues 

in the form of contrasts (2-3,5-6). The contrast could be strong (3,6) or weak (2,5) and could support (2,3) 

or contradict (5,6) the implicit prior. (b) A further manipulation of the prior was achieved by giving correct 

or wrong information to the participants about which interpretation was generally stronger (explicit prior). 

Instructions could support or contradict the implicit prior. An additional control group received no 

particular instructions. Crucially, to avoid additional priming effects, all groups received the same visual 

instructions (including the stimulus and the 2 possible interpretations), and the differences were only verbal. 

Note that the color used in the present figure has only been added for illustration purposes; during the 

experiment, participants were presented with full cubes. 
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Figure 2: Experimental design. The task was inspired by [28]. Instructions were given at the beginning of 

the experiment (each participant received one set of instructions, creating a between-subjects design) and 

were followed by a short training phase to familiarize participants with the stimulus and the switches. 

During each run, one version of the cube was continuously presented to the participants, who were asked to 

discontinuously report their dominant percept by pressing a button every time a sound was heard. Each run 

consisted of 25 sound-trials (mean inter-sound-interval = 1.5 s). The main experiment consisted of 30 runs 

separated into 6 blocks of 5 runs each. In each block, a different variant of the stimulus was used. The first 

and fourth blocks always contained the ambiguous cube. The four cue conditions were randomly assigned 

to the four remaining blocks. 

 

Sensory evidence was manipulated by casting the cube into shadow in such a way that 

it either contradicted or supported the SFA implicit prior (see stimuli, Figure 1a (2-3,5-6)). 

Visual cues were either strong or weak so that the analysis could reconstitute a cue pseudo-

continuum from strongly contradicting to strongly supporting. In the completely ambiguous 

condition, no difference existed in the color of the two sides of the cube (see stimuli, Figure 1a 

(1)). 

Prior knowledge was manipulated by randomly allocating participants to 4 groups. The 

first group was exposed to a tilted cube, which was expected to neutralize the SFA implicit bias 

(Figure 1a (4)). The remaining 3 groups viewed a normal cube but received different explicit 
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instructions that either “supported”, “contradicted”, or were “neutral” with respect to the SFA 

bias (Figure 1b). 

 

Table 1: Demographic characteristics of the 4 groups (without outliers). The 4 groups did not differ 

in terms of age, education or sex. ⋄: F-test, °: Chi-squared test 

 

 

Variables 

Tilted 

(n = 12) 

Instr. Supp. 

(n = 14) 

Instr. Contr. 

(n = 14) 

No Instr. 

(n = 15) 

Comparison 

Test P 

Age 

mean (sd) 

23.33  

(2.77) 

28.64  

(7.19) 

28.93  

(9.60) 

29.27  

(11.73) 

1.31⋄ 0.28 

Education 

mean (sd) 

17.25  

(2.42) 

19.07  

(1.94) 

18.57  

(2.17) 

18.00  

(1.96) 

1.77⋄ 0.16 

Sex ratio (m:f) 3:9 7:7 8:6 9:6 3.87° 0.28 

 

 

Model-free analysis 

The effects of prior knowledge and sensory evidence manipulation are presented in 

Figure 3. RP was not significantly different between the 2 ambiguous blocks (runs 1-5 and 16-

20) in any of the groups (p > 0.1), indicating only minor effects of fatigue (at least until the 20th 

run) and a stable effect of the instructions. Manipulation of sensory evidence significantly 

impacted bistability, with RP increasing as the visual cue changed from strongly contradicting 

to strongly supporting (β = 0.415, p < 0.001). Manipulation of prior knowledge through 

instructions only affected RP in the case of contradicting instructions, with a significant overall 

reduction in RP (β = -0.096, p < 0.001). Tilting the cube in the absence of any instruction 

resulted in a significant decrease in RP (β = 0.103, p < 0.001), which substantiated the effect of 

an implicit prior that naturally biases perception toward SFA dominance. Importantly, we found 

a significant interaction between the continuous effect of cue and the effect of contradicting 

instructions (compared to the normal cube with supporting instructions and the tilted cube 

with no instructions; β = 0.265, p = 0.016 and β = 0.265, p = 0.021, respectively). Note that this 

interaction should not be present for a purely Bayesian observer, since the contribution of 

sensory evidence and priors (when expressed as the log odds ratio) should be additive. 
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Figure 3: Relative predominance between conditions. (a) The four subplots illustrate the four different 

prior conditions: tilted cube (top left, green; N=12) or normal cube with no instruction (top right, blue; N=15), 

supporting instructions (bottom left, yellow; N=14) or contradictory instructions (bottom right, red; N=14). 

The x-axis presents the 5 cue conditions, ranging from strong cue supporting the SFB interpretation (left) 

to strong cue supporting the SFA interpretation (right). Thin lines correspond to the behavior of single 

participants (outliers are not presented), and thick lines represent the average RP for each group, after 

removing the outliers (±SE). (b) Between-groups comparison of average RP. A linear mixed-effects model 

revealed significant effects of sensory evidence (p < 0.001) as well as the prior (contradictory instructions, 

p < 0.001) and tilt (p < 0.001)) manipulations. We also observed a cue x instruction interaction for the 

contradictory instructions (red curve) compared to supporting instructions (yellow curve, p = 0.016) and 

the tilted cube (green curve, p = 0.021). 

 

Model-based analysis 

To test our hypothesis that circularity shapes bistable perception, we fitted a CI model 

to the average data, similar to the one introduced by Jardri and colleagues [26]. This model 

assumes that participants perform approximate inference due to the reverberation of sensory 

evidence and priors in the hierarchy as a result of unbalanced inhibitory control (Figure 4a, 

right panel). Furthermore, we compared the performance of our CI model against that of 2 

Bayesian models performing exact inference: first, a naïve Bayes (NB) model, which is identical 

to the multiplicative rule of Bayes’ theorem (Figure 4a, left panel), and second, a weighted 

Bayes (WB) model in which different levels of trust (weights) could be assigned to sensory cues 

and priors. The WB model was equivalent to a NB model in which all the weights were set to 1 

and equivalent to a CI model without any reverberating messages (Figure 4a, middle panel). 

The NB, WB and CI models can thus be considered 3 versions of the same model with an 
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increasing number of parameters being fitted to the data. Predictions for the 3 models are 

presented in Figures 4b and 4c. 

 

             

Figure 4: Illustration of models and model predictions. (a) Three different models were used to fit the 

data. The simplest model (naïve Bayes (NB), left panel) consisted of a simple addition of the sensory 

evidence and prior on the log scale and is equivalent to a three-layer generative model in which all the 

connections are equal to 1. The weighted Bayes (WB) model (middle panel) further assumes that there is 

only partial trust between the nodes of the generative model. Importantly, both the NB and WB models 

perform exact inference. Finally, we used a circular inference (CI) model (right panel) that further allows 

reverberation and overcounting of sensory evidence and prior knowledge. (b) Log(RP) ratio predicted by the 

models as a function of the log-likelihood ratio. The NB model predicts a linear dependence, whereas both 

the WB and CI models predict sigmoid curves (due to the saturation imposed by the weights). Furthermore, 

the 3 models make different predictions about the slope of the curves around zero. The NB and WB models 

predict a slope of 1 and less than 1, respectively, and only the CI model predicts a slope greater than 1. (c) In 

the CI model, the slope of the log-likelihood/log-posterior curve also depends on the log-prior as a result of 

the reverberations, indicating an interaction between the two different types of information [27]. Weaker 

priors are associated with steeper sigmoid curves. 
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Figure 5 illustrates the best-fitting NB (5a), WB (5b) and CI models (5c). Figure 6 

presents the values of the free parameters in the 3 models. The 3 models predict very different 

values for likelihoods and priors. These differences can be easily explained by the NB model 

assuming perfect trust in sensory evidence and priors, whereas the other 2 models predict much 

lower weights (𝑤𝑆 = 0.77,𝑤𝑃 = 0.59 for the WB model and 𝑤𝑆 = 0.66,𝑤𝑃 = 0.59 for the CI 

model). 

The NB model captures most trends in the data qualitatively, with the following 

exceptions. First, it underestimates RP in the case of the normal cube without instructions 

(Figure 5a, blue curve), and second, it is unable to predict the correct slopes. The latter 

limitation is especially striking in the case of a normal cube with contradicting instructions, 

where the slope is larger than predicted (i.e., larger than 1; Figure 5a, red curve). The WB model 

performs better than the NB model in most conditions, but it also underestimates the effect of 

the cue when the instruction contradicts the SFA preference (see Figure 5b, red curve). In 

contrast, the CI model captures this last trend (see Figure 5c), suggesting that the variability of 

the cue effect (the slope) in different conditions is due to circularity in the inference process. 

A quantitative comparison of the 3 models using BIC scores, which penalizes the use of 

extra free parameters in the WB and CI models, indicated that the CI model significantly 

outperformed the 2 Bayesian models (BIC scores for NB = -242.65, for WB = -240.77, and for CI 

= -249.49). A lower BIC score indicates that the model better fits the data, with a difference 

larger than 2 considered positive and a difference larger than 6 considered strong (𝛿𝐵𝐼𝐶  = 6.84 

for comparison of the CI and NB models and 𝛿𝐵𝐼𝐶  = 8.72 for comparison of the CI and WB 

models). 

 

 

Figure 5: Observed and predicted log(RP) ratios as a function of the log-likelihood ratio. Different 

colors correspond to different prior conditions. Thin lines represent single participants’ data, highlighted 
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points correspond to average RP (±SE), and thick lines illustrate model predictions. The three models are 

presented separately, since likelihood was itself considered a free parameter [(a): NB, (b): WB, (c): CI]. The 

models were fitted to aggregated data from all participants by minimizing the mean squared distance 

between the observed and predicted log(RP) ratios. 

 

Figure 6: Optimal values of free parameters for the three models [(a): NB, (b): WB, (c): CI]. The NB 

model had fewer free parameters than the other 2 models, since the two weights were by definition fixed to 

1. We observed important differences in the values of the likelihoods (𝐿𝑆,𝑆𝑡𝑟 , 𝐿𝑆,𝑊𝑒𝑎𝑘) as well as in the values 

of the priors (𝐿𝑖𝑚𝑝𝑙 , 𝐿𝑒𝑥𝑝𝑙) between the NB model, on one hand, and the WB and CI models, on the other 

hand. These differences were mainly due to different values for the weights (𝑤𝑆, 𝑤𝑃). 

 

Discussion 

The goal of the current study was to decipher how priors and sensory evidence are 

combined to shape bistable perception. We particularly wished to investigate whether such 

integration is probabilistically optimal or if other principles are at play, contributing to the 

debate on whether bistable perception is a by-product of perceptual inference (regardless of its 

neural implementation). Our results suggest an imperfect neural implementation of 

probabilistic inference, possibly due to an imbalance between excitation and inhibition in 

neural circuits. 

As previously reported, we found an asymmetry in the way participants interpreted the 

completely ambiguous NC [8]. This finding supports the notion of an implicit preference 

(implicit prior) to perceive objects in an SFA configuration [3]. More surprisingly, we showed 

that this preference could be explicitly manipulated by giving information that either confirmed 

or rejected it (explicit prior). In agreement with previous studies [28-30], adding visual cues also 

significantly biased perception toward the corresponding interpretation. The qualitative effects 

of implicit priors, explicit priors and sensory evidence appeared compatible with a probabilistic 

combination of information, suggesting that Bayesian inference was still at work. 

However, we also found a significant interaction between priors and sensory evidence 

that could not be explained by exact inference. In particular, the effect of sensory cues was 
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stronger when the prior was more ambiguous (e.g., when the implicit preference for SFA was 

contradicted by instructions) and weaker in the absence of a prior (e.g., a tilted cube). In 

contrast, Bayes’ theorem predicts that sensory cues are weighted according to their reliability, 

independently of the prior. Through parametric model comparison, we found that the present 

data could be better accounted for by a CI model, in which prior beliefs (i.e., the instructions 

and SFA preferences) corrupt new sensory evidence (i.e., ambiguous cues are misinterpreted as 

supporting the current belief) and vice versa. This corruption could be the result of feedback to 

sensory areas insufficiently controlled by inhibition [22]. Such feedback could also cause 

multistable perception (i.e. generate a bistable attractor; see Supplementary Figure S5) by 

temporarily stabilizing the current percept despite the absence of supporting evidence [27]. 

These findings add new elements to a long-lasting debate in neuroscience that questions 

whether perception is mostly driven by bottom-up processes, or whether top-down effects are 

equally important [21]. Multiple studies have investigated how low- or high-level manipulations 

affect bistability, without offering definitive answers. For the former, authors have used priming 

or suppressing effects (usually attributed to adaptation) [31-34], changes in retinal location [35], 

manipulation of the type of presentation (continuous–intermittent) [36,37], and direct 

manipulation of the properties of the stimulus, like intensity [38] and completeness [39]. In 

contrast, studies of high-level manipulations have focused on the effects of volition [40,41], 

expectation and prediction [42], attention [43-45], learning [46], mental imagery [47], 

knowledge of reversibility [48] and finally the preference for stimuli with a statistical structure 

similar to that of natural images [8,49,50]. Note however that the present study was not 

designed to test specific neural mechanisms such as adaptation and noise. 

Consistent with the present study, some authors have focused on how these various 

effects are combined [51-53]. Moreno-Bote et al showed that cue combination in a bistable 

display can be well explained by a multiplicative law (their predictions are similar to the NB 

model described here) [54], whereas Zhang and colleagues demonstrated that different types of 

priors are effectively combined [4]. Here, we have gone a step further and investigated how top-

down (prior manipulation) and bottom-up (sensory cues) effects interact. Rather than inducing 

a prior through learning, as is widely done in the literature [46,47], we directly manipulated 

participants’ expectations. This manipulation assumes that instructions can generate a high-

level prior affecting perceptual processing in a way similar to a learned prior (as in [55]). 

Despite the amount of available data and the apparent simplicity of the problem, very 

few studies in the literature have applied normative explanations for bistable perception that 



40 
 

include data-fitting [54]. Although proposing a complete model of bistable perception based on 

circular inference goes beyond the scope of the paper, our present results suggest that a local 

message passing algorithm with the addition of information loops could constitute the basic 

principle of such a normative model. Some alternative normative models have relied on a 

simplified form of Markov Monte-Carlo sampling. More precisely, they assumed the current 

percept is based on taking one sample from the posterior distribution and using this sample as 

a prior for the next time step [56,57]. However, Markov Monte-Carlo sampling requires very 

long sampling times (because of temporal correlation between samples) to perform accurate 

inference. A possible argument in favor of circular inference would be that it can reach correct 

conclusions quickly and accurately in most perceptual tasks, except in particularly ambiguous 

cases [22], making circular inference a powerful model for perceptual inference in unambiguous 

cases. 

From a methodological point of view, and in contrast to most studies on bistable 

perception, in which participants continuously report the dominant percept with a sustained 

button-press [58,59], we asked participants to respond discontinuously, after being exposed to 

a go-signal [29]. This procedure has two main advantages. First, it minimizes the role of 

attention. Indeed, it has been shown that attention plays a crucial role in bistable perception, 

especially for certain bistable stimuli [41,60]. The inability to control for differences in 

attentional load between participants could be an important source of uncertainty and even 

partly explain the huge variability usually observed in some publications (see [29]). Second, this 

procedure is less affected by differences in reaction time, as one could use the time of the sound 

as a proxy for the time of the decision. As a consequence, discrete sampling not only seems ideal 

for a rigorous experimental exploration of bistable perception but is also useful for adapting this 

task to specific clinical populations with well-known attentional and motor problems. 

Finally, some limitations need to be acknowledged. First, because of the type of priors 

used (instructions), we were obligated to use a between-subjects design, which prevented us 

from comparing the effects of different instructions in the same participant. As a result, there 

were only 5 conditions per participant, and we could only fit our models to averaged data, 

ignoring variability between participants (see also [15,54]). Second, all the models under 

consideration were based on an assumption of temporal independence between the percepts at 

the time of the sounds. This assumption can be partly justified by the weak autocorrelation of 

the averaged data (see Supplementary Figure S6), although these autocorrelations may be 

stronger in individual participants [56]. Nevertheless, temporal statistics would not affect the 

qualitative predictions of the models [54]. In particular, temporal statistics without circular 
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inference would not provide a valid alternative to the present findings, including the slopes and 

the cue × instruction interaction. Third, a response bias could partially account for instruction 

effects (explicit priors). However, a response bias would have a similar effect over responses 

across different cue conditions while leaving perceptual processing completely unaffected. 

Although the above is a possible interpretation of the data, it remains highly improbable, given 

the non-linear interaction found between instructions and visual cues (see also Supplementary 

Figure S7 for additional arguments). 

Overall, this study confirms that circular inference can be observed to a certain degree 

in healthy individuals. This unprecedented observation opens a range of crucial questions that 

suggest opportunities for further research: in what other ways could circularity affect cognition, 

and what are its neural substrates? Crucially, we must determine under what circumstances 

circular inference generates aberrant beliefs or percepts, such as those observed in pathological 

(neurological or psychiatric) contexts. 

 

Methods 

Participants were healthy volunteers meeting the following inclusion criteria: age > 18 

years, provision of informed consent, normal or corrected-to-normal near visual acuity, no past 

or current medical history of neurological or psychiatric disorders, and no current or recent use 

of psychotropic medication or toxic drugs. Near visual acuity was quantified using the Parinaud 

score; we considered values less than or equal to 2 to be normal. Of the 65 participants initially 

recruited, 10 were excluded because of outlying mean RP values (with cutoffs set at 𝑄1 − 1.5 ×

𝐼𝑄𝑅 and 𝑄3 + 1.5 × 𝐼𝑄𝑅, where  𝑄1, 𝑄3 are the lower and upper quartiles respectively and 𝐼𝑄𝑅 

is the interquartile range). We highlight that 7 of the 10 excluded participants also exhibited 

qualitatively bizarre behavior (such as opposite effects of visual cues), indicating a 

misunderstanding of the instructions or low attention levels. 

 

Experimental setting and procedure.  

The general procedure (Figure 2) was inspired by Mamassian and Goutcher’s protocol 

[29] and consisted of 6 blocks of 5 consecutive runs. During each run, a 200 x 200 pixel NC 

displayed in the middle of a black screen was continuously presented to the participants. Using 

a forced-choice method, we asked participants to report their ongoing interpretation as soon as 

they heard a warning sound, which occurred 25 times in a pseudo-regular manner (mean inter-
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sound interval = 1.5 s, uniformly distributed between 1 and 2 s). Each response corresponded to 

a trial, providing a discontinuous sampling of the task’s perceptual dynamics. Runs were 

separated from one another by a black screen with a duration of 10 s to minimize between-run 

influences. The experiment was also interspersed with 5 between-block breaks of non-

predefined duration. Prior to the experiment, participants were informed that they would be 

presented with empty cubes, the 2 possible interpretations of which were explicitly mentioned. 

The basic instruction was to passively view these cubes without trying to constrain perception. 

We manipulated sensory evidence either by making the cubes homogeneously gray (i.e., 

perfectly ambiguous) or cuing them by shadows (Figure 1a (1-3,5-6)). This additional depth 

information was intended to bias perception toward one interpretation or the other. It was 

specified by two parameters. First, its orientation was defined in relation to the implicit prior. 

A shadow falling on the top left corner was expected to emphasize the SFA preference and thus 

was classified as a supporting cue. Conversely, a shadow that fell on the bottom right corner 

was characterized as a contradictory cue, as it went against implicit bias. Second, the strength 

of the cue (which can also be conceived in terms of the amount of sensory information) was 

controlled by the shadowing contrast level. Weak and strong cues corresponded to 20% and 

30% contrast, respectively. The 1st and 4th blocks always consisted of presentation of an 

ambiguous cube. The other blocks were randomly allocated a different type of cue, defined by 

the 2 x 2 factorial combination of 2 possible orientations (contradicting or supporting) and 2 

possible strengths (weak or strong). 

Participants were separated into 4 groups (n = 12, 14, 14, and 15) that differed in terms of 

how we altered their prior knowledge. The first group was presented with a tilted cube, which 

was expected to neutralize the SFA implicit bias (Figure 1a (4)). The remaining 3 groups viewed 

a normal cube—where the implicit prior is deemed present—but received different types of 

instructions, which we used to manipulate their implicit prior. In Group 2, instructions explicitly 

mentioned the presence of the implicit bias: 

 

“When looking at the cube, most people tend to see it with its front side on the 

right. Differently said, there is a natural tendency to see the cube mostly “from 

above”. In the present experiment, we aim to study the characteristics of this 

spontaneous preference.” 
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Because the statement was correct, the instructions were considered to support the 

spontaneous bias (supporting instructions). In Group 3, participants were informed about a 

natural tendency to see the cube primarily as though it were seen from below. The wording was 

similar, but the statement was incorrect, thus contradicting the implicit prior (contradictory 

instructions). In Group 4, the participants received no complementary information. In this case, 

their prior knowledge could be considered akin to the implicit bias (neutral instructions). Note 

that, to avoid any additional priming effects, the difference among the 4 groups was only verbal, 

while all groups received the same visual instructions, including the stimulus and the 2 possible 

interpretations. As shown in Table 1, the 4 groups did not significantly differ in terms of 

demographic characteristics. 

To neutralize the potential confounding bias of eye-movements, participants were 

additionally instructed to gaze at a fixation point in the middle of the screen. A training session 

allowed each participant to familiarize himself/herself with the stimuli and the apparatus. 

The experiments were implemented in MATLAB v. 2011b (MathWorks, Natich, MA), 

using Psychtoolbox v. 3.0.10. Stimuli were displayed on a 17-inch LED screen with a resolution 

of 1280 x 1024 pixels. Responses were collected using a classical computer keyboard. A chin-cup 

and forehead bar ensured immobilization of the participant’s head at a distance of 60 cm 

between the eye and the screen. 

 

Model-free analysis 

Measured Variable 

RP was calculated by taking the grand mean of responses across trials, runs and 

participants. It can be interpreted as the general probability to perceive one interpretation or 

the other on each trial. 

 

Statistical analysis 

Because RP is a ranged variable, we performed exclusively non-parametric analyses. The 

effects of priors, sensory evidence, and their interaction were tested using a linear mixed-effects 

model comprising the effects of cues and instructions as well as their interaction as fixed effects, 

together with Gaussian random effects for intercepts and slopes. For significant omnibus effects, 

we performed post hoc comparisons using either paired or unpaired rank-sum tests to clarify 
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simple effects in the 2 x 2 design. Finally, one-sample Wilcoxon signed rank tests were 

performed to compare the mean RP with 0.5, i.e., chance level. All significance tests were 

performed on the sample of the 55 participants (12, 14, 14 and 15 for each group respectively), 

they were two-tailed and used an alpha value of 0.05 in the statistical toolbox of Matlab v. 2011b 

(MathWorks, Natich, MA). 

 

Model-based analysis 

Models 

We conceptualized perception as an inferential process, in which the brain generates a 

subjective belief about the possible interpretations of the NC (i.e., a posterior probability) and 

uses it to make a perceptual decision, particularly whether it is an SFA or SFB cube. Three 

different models were fitted to the average RPs of the 4 groups. All the models assumed 

independence between the sequential perceptual decisions within a run. They differed in how 

the 3 main effects of the experiment (sensory evidence 𝑆, an implicit prior 𝑃𝑖𝑚𝑝𝑙, and an explicit 

prior 𝑃𝑒𝑥𝑝𝑙) were combined to give rise to the posterior probability 𝑃(𝑋|𝑆, 𝑃𝑖𝑚𝑝𝑙 , 𝑃𝑒𝑥𝑝𝑙). In this 

expression, 𝑋 is a binary variable that corresponds to the 3D interpretation (𝑋 = 1 corresponds 

to SFA, 𝑋 = 0 corresponds to SFB. 

The simplest model that was fitted to the data is the NB model, which assumes perfect 

integration of likelihoods and priors according to the Bayes theorem. Consequently, it’s 

equivalent to a basic multiplicative rule [54] (additive rule in the log scale) (eq. 1; Figure 4a, left 

panel). The WB model extended the NB model by assuming only partial trust to the sensory 

evidence and prior information (eq. 2; Figure 4a, middle panel). Crucially, both models are 

Bayesian models performing exact inference. Finally, the third model is a circular inference 

model [26] , meaning that information is not only weighted, as in the WB model, but it’s also 

amplified, due to information loops (eq. 3; Figure 4a, right panel). As a result, the CI model is 

doing sub-optimal inference, which renders it qualitatively different from the other 2 models. 

The 3 models are quantitatively described by the following equations: 

 

𝐿𝑅𝑃 = 𝐿𝑆 + 𝐿𝑖𝑚𝑝𝑙 + 𝐿𝑒𝑥𝑝𝑙                                                                                                                     (1) 

𝐿𝑅𝑃 = 𝐹(𝐿𝑆, 𝑤𝑆) + 𝐹(𝐿𝑖𝑚𝑝𝑙 + 𝐿𝑒𝑥𝑝𝑙, 𝑤𝑃)                                                                                         (2) 
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𝐿𝑅𝑃 = 𝐹(𝐿𝑆 + 𝐹(𝐿𝑆, 𝑤𝑆) + 𝐹(𝐿𝑃𝑟 , 𝑤𝑃), 𝑤𝑆) +  𝐹(𝐿𝑃𝑟 + 𝐹(𝐿𝑆, 𝑤𝑆) + 𝐹(𝐿𝑃𝑟 , 𝑤𝑃), 𝑤𝑃)        (3) 

 

where 𝐹(𝐿, 𝑤) is a sigmoid function: 

  

𝐹(𝐿,𝑤) = 𝑙𝑜𝑔 (
𝑤𝑒𝐿 + 1 − 𝑤

(1 − 𝑤)𝑒𝐿 + 𝑤
)                                                                                                      (4) 

 

and 𝐿𝑃𝑟 = 𝐿𝑖𝑚𝑝𝑙 + 𝐿𝑒𝑥𝑝𝑙. 𝐿𝑅𝑃 corresponds to the log-ratio of the RP and is taken to be equal to 

the log-posterior ratio. That assumption is because we assume that perceptual decisions are 

made using probability matching, a commonly observed strategy in sequential 2AFC tasks 

[20,54,61]. We note that applying a SoftMax to the log posterior odds (a more appropriate model 

for perceptual decisions) would only induce a global change in the gain of the former and would 

not affect any of our conclusions. 

 

𝐿𝑅𝑃 = 𝑙𝑜𝑔 (
𝑅𝑃

1 − 𝑅𝑃
)                                                                                                                             (5) 

 

The log-likelihood ratio 𝐿𝑠, the implicit log-prior ratio 𝐿𝑖𝑚𝑝𝑙 and the explicit log-prior ratio 𝐿𝑒𝑥𝑝𝑙 

are given by the following equations: 

 

𝐿𝑠 = 𝑙𝑜𝑔 (
𝑆

1 − 𝑆
)                                                                                                                                   (6) 

𝐿𝑖𝑚𝑝𝑙 = 𝑙𝑜𝑔 (
𝑃𝑖𝑚𝑝𝑙

1 − 𝑃𝑖𝑚𝑝𝑙
)                                                                                                                     (7) 

𝐿𝑒𝑥𝑝𝑙 = 𝑙𝑜𝑔 (
𝑃𝑒𝑥𝑝𝑙

1 − 𝑃𝑒𝑥𝑝𝑙
)                                                                                                                      (8) 

 

Because none of these variables was known, they were all treated as free parameters. To reduce 

as much as possible the total number of free parameters that needed to be optimized, we further 
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considered symmetry both in the effects of the cues and the instructions, resulting in 4 free 

parameters (𝐿𝑠,𝑠𝑡𝑟𝑜𝑛𝑔, 𝐿𝑠,𝑤𝑒𝑎𝑘 , 𝐿𝑖𝑚𝑝𝑙 , 𝐿𝑒𝑥𝑝𝑙). 

 Finally, 𝑤𝑆and 𝑤𝑃 (appearing only in the WB and CI models) correspond to participants’ 

trust (or weight) in the sensory evidence and priors, respectively, and constituted the 2 

additional free parameters of those models: 

 

𝑤𝑆 = 𝑃(𝑋 = 1|𝑆 = 1) = 𝑃(𝑋 = 0|𝑆 = 0)                                                                                      (9) 

𝑤𝑃 = 𝑃(𝑋 = 1|𝑃 = 1) = 𝑃(𝑋 = 0|𝑃 = 0)                                                                                  (10) 

 

Importantly, since the SFA prior was completely uninformative in the case of the titled cube, 

we considered the following: 

 

𝑤𝑃 > 0.5 𝑖𝑓 𝑁𝑜𝑟𝑚𝑎𝑙 𝐶𝑢𝑏𝑒, 𝑤𝑃 = 0.5 𝑖𝑓 𝑇𝑖𝑙𝑡𝑒𝑑 𝐶𝑢𝑏𝑒                                                              (11) 

 

As a control, we also considered the case in which 𝑤𝑃 has the same value in all conditions (see 

Supplementary Figure 1). 

An illustration of the different models is presented in Figure 4a The CI model (Figure 

4a, right panel) hypothesizes that the perceptual system performs approximate inference due 

to unbalanced inhibitory control. Those impairments lead to a failure to remove efficiently 

redundant messages: a reverberating prior, which is misinterpreted as sensory evidence, re-

ascends the hierarchy and corrupts the likelihood term and redundant sensory evidence, which 

descends the hierarchy and corrupts the prior term. Additionally, as in [26], a cross-term is 

added to each component, rendering likelihood and prior information completely inseparable. 

Because of those extra terms, the sensory evidence and prior components become aberrantly 

correlated, and consequently they generate an interaction (Figure 3c; [27]). Note that the WB 

model (Figure 4a, middle panel) can be derived from the CI model by removing the 

reverberated terms, while the NB model (Figure 4a, left panel) by further assuming: 𝑤𝑆 =

𝑤𝑃 = 1.  

The CI model used here was similar to the model used by Jardri and colleagues to explain 

participants’ behavior (both those suffering from schizophrenia and healthy participants) in a 
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probabilistic reasoning task [26]. Nevertheless, an important difference needs to be highlighted. 

In the present study, the redundant messages corrupted the original messages only once (there 

was still overcounting of information, but the amount of amplification stayed constrained), 

which is equivalent to setting 𝑎𝑆 and 𝑎𝑃 (the parameters in the original model that represented 

the number of times the redundant messages were taken into account) equal to 1. The reason 

was twofold. First, fixing the number of loops did not change the results qualitatively. Indeed, 

the resulting model predicted both a slope larger than 1 and an interaction between sensory 

evidence and priors, the two characteristic features of circular inference observed in the data. 

Second, the additional complexity (2 more free parameters) did not further improve the fit (see 

Supplementary Figure S2). 

Figure 4b illustrates the predictions of the 3 models. Contrary to the linear NB model, 

both the WB model and the CI model are non-linear models, due to the saturation of the 

posterior that is caused by the weights. Importantly, the 3 models make different predictions 

about the slope of the log-likelihood/log-posterior curve around 0: the NB model and WB model 

predict a slope equal to and smaller than one, respectively. Interestingly, only the CI model can 

generate a slope that is larger than one, due to overcounting of the prior and of sensory evidence. 

Moreover, it predicts interaction between the prior and sensory evidence, such that the slope 

differs depending on prior strength and weight (Figure 4c). 

Finally, in eq. 1-3, we assumed that instructions act as an additional prior term, 

essentially changing the strength of the implicit preference independently of the presence of a 

visual cue. As a result, any interaction between the effect of the cue and the effect of the 

instructions is forbidden under Bayesian formalisms and can only be explained by non-Bayesian 

mechanisms such as the presence of circular inference. It is worth noting though that alternative 

interpretations of the instructions (which are even more complex) might also generate such an 

interaction, notably likelihood-dependent instructions, or instructions that directly affect the 

reliability of the sensory evidence. Those additional models were also considered and compared 

to the CI model (see Supplementary Figures S3 and S4). 

 

Model fitting 

All the models were fitted to the data by minimizing the mean squared distance between 

the log(RP) ratio for the different conditions and the predictions of the models. Instead of 

simply considering the means, we used data points from each participant, making full use of the 
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available information but assuming that the parameters did not vary between participants. The 

optimal values for parameters were obtained using a non-linear programming method 

(sequential quadratic programming; a built-in MATLAB function), appropriate for non-linear 

constrained multivariable functions. To avoid local minima, the optimization process was 

repeated 100 times for each model, with initial values chosen each time randomly from the 

parameter space. 

 

Model comparison 

We compared the quality of the fits for the 3 models using BIC scores. We approximated 

the likelihoods of all the models as normally distributed. The BIC score can then be calculated 

by the following equation: 

 

𝐵𝐼𝐶 = 𝑛𝑙𝑜𝑔(𝜎2) + 𝑘𝑙𝑜𝑔(𝑛)                                                                                                             (12) 

 

where 𝑛 is the total number of data points (5 points per participant), 𝜎2 is the mean squared 

error, and 𝑘 is the number of free parameters (4 for NB, 6 for the other models). 
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Supplementary Material 

 

 

 

Figure S1: Comparison of models assuming different effects of priors in the case of the tilted cube. 

In the main text, we made the assumption that 𝑤𝑃 = 0.5 when the cube is tilted, since in that case the prior 

becomes uninformative and thus irrelevant. An alternative would be that the prior weight remains larger 

than 0.5 (as in the case of the normal cube), and that only the log-prior ratio becomes equal to zero. The 2 

alternatives cannot be differentiated in the cases of the NB and WB models, but they make different 

predictions in the case of the CI model, in which a reverberating likelihood term appears inside the prior 

term. This reverberating term disappears completely if we assume 𝑤𝑃 = 0.5, whereas it remains if we assume 

𝐿𝑃 = 0. Formal comparison of the two models using the BIC score revealed that the former (𝑤𝑃 = 0.5) 

outperformed the latter (𝑤𝑃 > 0.5) (BIC scores: -249.49 vs. -245.76, respectively).  
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Figure S2: Comparison of circular inference models with fixed and optimized loops. In a previous 

study, Jardri and colleagues considered a CI model in which the strength of climbing loops (reverberation of 

sensory evidence, 𝑎𝑆) and the strength of descending loops (reverberation of priors, 𝑎𝑃) were considered free 

parameters and were optimize [26]. The predictions of the model were summarized by the following 

equation: 𝐿𝐶 = 𝐹(𝐿𝑆 + 𝐹(𝑎𝑐𝐿𝑆, 𝑤𝑆) + 𝐹(𝑎𝑑𝐿𝑃, 𝑤𝑃), 𝑤𝑆) + 𝐹(𝐿𝑃 + 𝐹(𝑎𝑐𝐿𝑆, 𝑤𝑆) + 𝐹(𝑎𝑑𝐿𝑃 , 𝑤𝑃), 𝑤𝑃). In the 

current study, we fixed the values of these 2 extra parameters to 1, obtaining equation (1) (Main Text). The 

two models make the same qualitative predictions, as they both contain reverberating terms that render 

likelihood and prior inseparable. We quantitatively compared the two models using their BIC scores. We 

found that the simplified model (fixed loop strength) performed better than the full model (optimized loop 

strength) (BIC scores: -249.49 for the former vs. -243.44 for the latter). 
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Figure S3: Comparison of the CI model with a WB model in which the instructions are likelihood-

dependent. A likelihood-dependent effect of the instructions may constitute an alternative explanation for 

the interaction observed between the effect of the visual cues and that of the instructions/priors. In our 

framework, such an interpretation can be implemented as follows: 𝐿𝑅𝑃 = 𝐹(𝐿𝑆, 𝑤𝑆) + 𝐹(𝐿𝑖𝑚𝑝𝑙 , 𝑤𝑃,𝑖𝑚𝑝𝑙) +

𝐹(𝐿𝑒𝑥𝑝𝑙 , 𝑤𝑃,𝑒𝑥𝑝𝑙(𝐿𝑆)), where the weight attributed to the instruction is likelihood-dependent. Despite its 

plausibility, such an implementation drastically increases the complexity of the model, since it comprises 9 

free parameters (instead of 𝑤𝑃  , we now have [𝑤𝑃,𝑖𝑚𝑝𝑙 , 𝑤𝑃,𝑒𝑥𝑝𝑙(𝐿𝑆,𝑎𝑚𝑏), 𝑤𝑃,𝑒𝑥𝑝𝑙(𝐿𝑆,𝑆𝑡𝑟), 𝑤𝑃,𝑒𝑥𝑝𝑙(𝐿𝑆,𝑤𝑒𝑎𝑘)]). A 

formal comparison of the CI model with this version of the WB model reveals a clear superiority of the 

former (BIC scores: -249.49 vs -215.6, respectively). 
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Figure S4: Comparison of the CI model with a WB model in which the instructions directly affect 

the reliability of the visual cue. The observed interaction between visual cues and priors could be 

explained by assuming that the instructions do not act as a prior but instead change the reliability of the 

sensory evidence. In our framework, such an interpretation could be implemented as follows: 𝐿𝑅𝑃 =

𝐹(𝐿𝑆, 𝑤𝑆(𝐼𝑛𝑠𝑡𝑟)) + 𝐹(𝐿𝑖𝑚𝑝𝑙 , 𝑤𝑃), where the sensory weight depends on the instructions. This model 

comprises 7 free parameters, and a formal comparison with the CI model reveals that circularity (plotted on 

the left) offers the best interpretation of the data (BIC scores: -249.49 vs -239.35, respectively). 
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Figure S5: Descending loops can generate a bistable attractor. The present results suggest that an 

aberrant correlation between sensory evidence and priors might be at play in bistable perception, shaping 

which interpretation we see and when. In the same context, it is important to highlight that a Circular 

Inference model, but not a purely Bayesian model (e.g., the WB model), seems compatible with the 

phenomenology of bistable perception. When taking into account the dynamics, descending loops (i.e., 

amplifying accumulated data) introduce a positive feedback to the system, which generates a bistable 

attractor (2 stable states consisting of strong beliefs, one for each interpretation; red solid line). In contrast, 

a Bayesian model corresponds to a leaky integrator, in which the belief is similar to chance (blue dotted line) 

[27] and appears unable to generate bistability. 
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Figure S6: Average autocorrelation functions for the different cue conditions (different subplots) 

and the different prior conditions [(a): tilted group (N=12); (b): normal cube, no instructions (N=15); (c): 

normal cube, supporting instructions (N=14); (d): normal cube, contradictory instructions (N=14)]. Dashed 

lines correspond to 95% confidence intervals for a white noise process. Interestingly, with the exception of 

small lags (lag = 1), no other point in any of the autocorrelation functions exceeds the dashed lines, meaning 

that the effects of history (at least for the average data) are restricted to small time differences and can be 

neglected. Consequently, none of our models took into account temporal statistics (see Discussion for 

further consideration of this issue). 
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Figure S7: Transient preference (TP) as a function of time (black dots) and fitted power law model 

(blue curve). Transient preference can be defined as the RP for different time steps. As expected, TP attains 

a high value (TP(1) = 0.75) at the beginning of a run (t = 1), indicating the presence of an onset bias that 

rapidly decreases until reaching a stationary regime (TP(st. reg.) ~ 0.6) [29]. Interestingly, TP in the 

stationary regime is above chance, indicating the presence of a persistent bias even after the onset bias fades 

out (the implicit bias that we describe in the Main Text is a combination of those two biases). This figure 

is reassuring, since absence of this pattern would indicate either a response bias or a very long inter-stimulus 

interval. This figure corresponds to the normal cube/no instructions/no cue condition (N=15), but a similar 

pattern was obtained for all other conditions as well (not presented). 
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Abstract 

When facing ambiguous images, the brain cannot commit to a single percept and instead 

switches between mutually exclusive interpretations every few seconds, a phenomenon known 

as bistable perception. State-of-the-art mechanistic explanations suggest that bistability is the 

result of the combined action of three different processes, namely competition via lateral 

inhibition, slow adaptation and noise. Nevertheless, those models are largely based on ad-hoc 

assumptions, poorly adequate when it comes to functional questions. Here, we present a novel 

top-down approach to bistable perception, based on circular inference, a sub-optimal form of 

hierarchical probabilistic inference in which information is reverberated and amplified. We 

argue that descending loops, a type of circularity in which top-down predictions corrupt 

bottom-up sensory inputs, are essential for understanding both the existence and the 

phenomenology of bistability. More specifically, we show that descending loops result in the 

replacement of what is normally a temporal integration of unreliable sensory evidence by a 

bistable attractor switching between two highly trusted interpretations. Additionally, we 

demonstrate that the circular inference model is compatible with various qualitative aspects of 

bistability, including Levelt’s laws and the stabilizing effects of intermittent presentation of the 

stimulus. Finally, we use this model to make new testable predictions, notably about the 

behaviour of individuals exhibiting aberrant percepts or beliefs such as in schizophrenia. 

Importantly, this is the first study to provide theoretical evidence that circularity in hierarchical 

neural networks, a mechanism that has been linked to the generation of psychotic symptoms, 

could also underlie cognitive functions in non-clinical populations, a statement with important 

consequences for the conceptualization of psychosis and psychopathology in general. 
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Introduction 

 All perceptual systems have one fundamental goal: to interpret the surrounding 

environment based on noisy sensory evidence. In most cases, this task is performed very 

accurately and the correct interpretation is found. Sometimes, perceptual systems either fail to 

detect any meaningful interpretation (e.g. when sensory evidence is too degraded) or converge 

to the wrong one (e.g. visual illusions; [1,2]). Finally, a third possibility occurs (mainly in lab 

conditions, [3]) when ambiguity is high: the system detects more than one plausible 

interpretations but instead of committing to one of them, it switches every few seconds, a 

phenomenon known as bistable perception [4]. Despite ongoing scientific efforts, there has been 

no unanimous agreement either on the causes of bistability or its functional role. 

 The dominant mechanistic view of bistable perception suggests that it may result from 

the competition between different neuronal populations, each of them encoding a different 

interpretation of the sensory signal [5]. The two populations suppress each other via lateral 

inhibition while some form of slow negative feedback (e.g., spike frequency adaptation or 

synaptic depression) acts on the dominant population, weakening the interpretation that is 

currently perceived [6–10]. Additionally, injected noise renders switches irregular and in some 

models it can even be the driving force of the oscillatory behaviour [11–14]. Although these 

models have proven quite successful in describing different experimental observations (and 

linking them to the underlying neural mechanisms), they do not address functional 

considerations about bistable perception. 

 To overcome this issue, other groups suggested functional models of bistability, largely 

based on the idea that the brain is an inference machine and perception is equivalent to a 

probabilistic process ([15], e.g., Predictive Coding: [16,17] or Neural sampling: [18–20]). 

Compared to the mechanistic models, functional models make precise assumptions and 

predictions about the role and function of bistable perception (and perception in a more general 

sense) but they also suffer from their own shortcomings. More precisely, their inherent 

abstractness makes it hard to fit functional models to data but also to find links with an 

underlying neural implementation. Besides, one crucial question remains unanswered from a 

normative perspective, more particularly why would a system perceive something instead of 

nothing, if the sensory evidence that drives inference is completely unreliable (as is the case of 

completely ambiguous stimuli with flat priors). 

 In this paper, we tackle the problem of bistable perception by putting forward a model 

that gathers the advantages of both mechanistic and functional models while minimizing their 
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disadvantages. Based on previous experimental findings (Chapter 2), we suggest that bistability 

could be a perceptual manifestation of circular inference, a form of belief propagation in which 

priors and likelihoods are reverberated in the cortical hierarchy and consequently are 

overcounted and corrupted by each other (an idea similar to loopy belief propagation [21]; for a 

detailed description of the circular inference framework, see also [22,23]). In particular, we 

postulate that the phenomenology of bistable perception could be explained by the presence of 

“descending loops”, a form of circular inference where top-down expectations (through feedback 

connections) corrupt the sensory representations such that the system “sees what it expects” 

[24]. Of note, previous work from our group linked circular inference with pathological brain 

function, as in the case of schizophrenia [22], but also with normal brain functioning [25]. 

 In the following sections we derive the dynamics of inference in the presence of 

ambiguous sensory stimuli and descending loops. The result of circular inference is to replace 

what is normally a temporal integration of unreliable sensory evidence into a bistable attractor 

switching between two highly trusted interpretations. We demonstrate that this model can 

reproduce well known qualitative aspects of bistability, including the four Levelt’s laws and the 

effects of intermittent presentation, while it also makes new testable predictions (e.g. about the 

behaviour of schizophrenia patients). Since circularity arises from an imbalance between neural 

excitation and inhibition in recurrent brain circuits [24], our approach bridges normative 

interpretations of bistable perception and possible underlying neural mechanisms. 

 

Methods 

 In this section, we introduce a simplified circular inference model of bistable perception 

and we highlight its underlying functional assumptions. For reasons of clarity, we will refer to 

the example of the Necker cube, an ambiguous 2D figure which is equally compatible with 2 

different 3D cubes and generates bistability: a cube that is “seen from above” (later called the 

SFA Interpretation) and a cube that is “seen from below’’ (later called the SFB Interpretation) 

(Figure 1a). Note that the model can however be generalized to any other stimuli inducing 

perceptual rivalry. 

 

Generative model 

 Our model postulates that bistable perception is triggered by the same mechanisms and 

computations underlying normal perception. There is accumulating evidence that the brain 
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uses its cortical hierarchy to represent the causal structure of the world and then inverts this 

forward model in order to predict the most probable interpretation of the noisy sensory 

information, in other words perception can be viewed as an instance of hierarchical Bayesian 

inference [26,27] (Figure 1a). A particularly striking example of this inferential process is 3D 

vision (e.g., perception of the Necker cube). The brain has no direct access to the 3D structure 

of the perceived object. On the contrary it receives low-level 2D sensory information from the 

retina. In such context, the task of the perceptual system is to extract valuable depth cues from 

this sensory information and combine them with high level prior knowledge, to make ‘’educated 

guesses’’ about the 3D object. Evidence suggests that this is a gradual process [28], with different 

brain regions representing features of different complexity: the lower levels of the visual cortex 

represent the basic features of the stimulus such as contours and orientations while higher levels 

are responsible for more abstract information such as the 3D organization of the stimulus 

[29,30]. 

 In the case of the Necker cube, a veridical percept would correspond to a 2D object, 

representing a set of crossing lines. The presence of illusory depth cues forces the brain to 

consider the presence of depth. Nonetheless, since the cues are ambiguous and contradictory, 

the 2D projection of the hypothetical 3D stimulus could correspond to different 3D objects, 

namely the SFA and SFB interpretation mentioned before1. Consequently, in this work we 

assume that all visual information is processed by the visual system with respect to those 2 

possible interpretations: sensory inputs are taken as evidence for the SFA or SFB interpretation, 

while all higher-level variables are considered binary, with values 1 and 0 corresponding to SFA 

and SFB respectively. Furthermore, the 2 interpretations are considered as mutually exclusive, 

an assumption compatible with the epistemological truth that 2 different 3D objects cannot 

occupy the same space [16]. 

 We can represent the functional hierarchy where inference is implemented as a simple 

graphical model; a chain with 2 latent variables and an observation (Figure 1a). Roughly 

speaking, 𝑋2𝐷 could correspond to the 2D image, with orientation and depth of surfaces being 

explicitly represented (2
1

2
D sketch in Marr’s terminology) while 𝑋3𝐷 represents the 3D 

interpretation. Sensory information (𝑆) on the other hand can be regarded as the basic features 

of the image (or the primal sketch), where we receive a noisy measurement. The ultimate goal 

                                                           
1 It’s interesting to highlight that in a more general sense, the Necker cube is compatible with an infinity 
of 3D objects, among which the brain represents only the 2 symmetrical cubes. This reduction of possible 
causes could be the result of hyperpriors used by the brain and will not be considered by the current 
model. 
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of the perceptual system is to infer the 3D interpretation (𝑋3𝐷) using the noisy measurement 

and any available prior knowledge (for more information about the generative model, see 

Supplementary Material). 

 

 

Figure 1: Graphical representation of the model and neural implementation. (a.): The internal 

model is a simple pairwise graph with binary variables (except for the sensory evidence which is normally 

distributed). The brain interprets the depth cues (basic features) as indication of real depth. Consequently, 

it first reconstructs the 2D figure and from that, it predicts the 3D object. Note that in reality (real forward 

model) there is one single 2D stimulus containing contradictory depth cues. (b.): From the Bayesian model 

(a.) we derived an attractor model that does inference in the presence of loops. The model accumulates noisy 

evidence, while descending loops add a positive feedback and climbing loops increase the sensory gain. (c.): 

A neural implementation of the circular inference model. Reciprocal excitatory connections generate loops 

which are balanced by strong inhibitory connections. Dysregulation of this balance (too much excitation or 

not enough inhibition) results in amplification of information and sub-optimal inference. 

 

 As usual, we assume that sensory information is corrupted by Gaussian noise, with mean 

𝜇𝑛𝑜𝑖𝑠𝑒 (𝜇𝑛𝑜𝑖𝑠𝑒 = 0 if the cube is completely unbiased and 𝜇𝑛𝑜𝑖𝑠𝑒 ≠ 0 if there is a visual cue, e.g. 

contrast) and variance 𝜎𝑛𝑜𝑖𝑠𝑒
2  (Figure 2; black and grey distributions, corresponding to 

𝑃(𝑆|𝑋𝑟𝑒𝑎𝑙)). Crucially, the sensory evidence is ambiguous; the stimulus contains contradictory 

depth cues, although there is no real depth (2D structure). This implies that if the brain was 

using the correct model to do inference, then it would perceive the Necker cube as it is, a 2D 

object with illusory contradicting depth cues. 

 This is clearly not the case. The brain interprets the depth cues as meaningful (i.e., 

“depth cues signify the presence of depth”), and generates 3D explanations (SFA or SFB) of the 

sensorium which are driven by noisy inputs [11,13,31]. This also presupposes the representation 



66 
 

of a likelihood function containing two Gaussian distributions (internal mode), as illustrated in 

Figure 2 (red and blue dotted distributions; 𝑃(𝑆|𝑋2𝐷 = 1) ≠ 𝑃(𝑆|𝑋2𝐷 = 0)). Those distributions 

are assumed symmetrical, with mean ±𝜇𝑖𝑛𝑡 (independent of the type of the presented cube) and 

variance 𝜎𝑖𝑛𝑡
2 . 

 

                 

Figure 2: Sensory Evidence. In reality, there is a 2D stimulus that generates noisy sensory evidence 

(measurements). In the totally ambiguous case (cube with no extra cues), the noise distribution is a 

Gaussian with mean 0 (black). Visual cues add a bias, which is equivalent to a shift of the Gaussian (grey). 

Conversely, the brain interprets the depth cues as meaningful, constructing separate representations for the 

two cubes (SFA, SFB; two objects cannot occupy the same space). That corresponds to a likelihood function 

with two non-overlapping Gaussian distributions in the internal model (dotted red and blue distributions). 

Consequently, there is a discrepancy between the real model and the internal model. 

 

Markovian statistics 

 Importantly, to make optimal decisions, the brain should not only count on current 

evidence, but also consider past perceptual decisions, in other words it should also take into 

account temporal regularities. Particularly in bistable perception, the dominant percept persists 

for a few seconds before switching back to the opposite interpretation, a behaviour attributed 

to correlated perceptual decisions [32]. 
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 This can be captured by Markovian statistics over variable 𝑋 (from now on used 

interchangeably with 𝑋3𝐷), resulting in a Hidden Markov Model (HMM; Figure 1a). Note that 

Markovian statistics constitute the simplest form of temporal dynamics and suggest that the 

current percept only depends on its very recent history. Formally, this can be expressed by the 

following equation: 

𝑃(𝑋𝑡, 𝑋𝑡+𝑑𝑡) = 𝑃(𝑋𝑡+𝑑𝑡|𝑋𝑡) × 𝑃(𝑋𝑡) ≠ 𝑃(𝑋𝑡+𝑑𝑡) × 𝑃(𝑋𝑡)                                                        (1) 

where 𝑋𝑡 is the 3D interpretation at time t, and dt is some arbitrary time-step. The Markovian 

temporal statistics can be quantified by the 2 transition rates 𝑟𝑜𝑛𝑑𝑡 and 𝑟𝑜𝑓𝑓𝑑𝑡 given by the 

following formulas: 

𝑟𝑜𝑛𝑑𝑡 = 𝑃(𝑋𝑡+𝑑𝑡 = 1|𝑋𝑡 = 0)                                                                                                      (2)   

𝑟𝑜𝑓𝑓𝑑𝑡 = 𝑃(𝑋𝑡+𝑑𝑡 = 0|𝑋𝑡 = 1)                                                                                                    (3) 

 Intuitively, the HMM is similar to a leaky integrator, where new information is 

accumulated over time while old information is discarded with a rate that depends on the 

transition rates (see also Continuous Model). Namely, the posterior probability at time t 

becomes the prior probability for time t+dt (Figure 1b). 

 Note that the two transition rates are not necessarily equal. Assuming 𝑟𝑜𝑛 ≠ 𝑟𝑜𝑓𝑓 

introduces a bias in the system, which we could interpret as an implicit preference for one of 

the two interpretations, unrelated to the presence of cues in the sensory evidence. This is very 

useful in the case of the Necker Cube, where people usually prefer the SFA interpretation, 

according to a general prior to view things from above [33]. 

 

Circular inference 

 Once built, the generative model needs to be inverted, to give a posterior probability. 

An intuitive and biologically plausible way to invert such a model is through the use of message-

passing algorithms [21]. One of these algorithms is belief propagation (BP), in which nodes 

exchange information reciprocally in the form of local messages and calculate beliefs 

(posteriors) simply by multiplying all the incoming information. Sensory evidence, in the form 

of a likelihood function, is propagated upwards, in a bottom-up fashion, while priors are sent in 

the opposite direction, in a top-down fashion. Because of the hierarchical structure of the 
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model, information in one node constitutes the sensory evidence of the node above and the 

prior information of the node below, leading to a recursive process. 

 It’s interesting to highlight that the reciprocal connectivity of the nodes in the algorithm 

closely resembles the recurrent structure (recurrent excitation) of the brain [34]. An important 

consequence of such reciprocity is that it creates loops in which information can be counted 

multiple times, resulting in overestimations in the posterior probabilities [22]. To avoid that, 

one must carefully remove all the redundant information that has already been taken into 

account (for more information and a mathematical description of Belief Propagation, see 

Supplementary Material). Crucially, the algorithm performs exact inference, provided that 

the generative model is an acyclic graph (as is the case here; [21]) and subtraction of the 

redundant information is done properly. 

 It has been hypothesized that inhibition might be tracking and removing all redundant 

information and that a tight balance between neural excitation and inhibition is fundamental 

for the brain to perform exact inference (Figure 1c). The slightest imbalance in favour of 

excitation could cause inefficient removal of redundant information, leading to a form of 

approximate inference known as circular inference [22]. Motivated by the understanding of 

psychotic symptoms in schizophrenia, like hallucinations and aberrant beliefs, this framework 

introduced a new parameter to the belief propagation algorithm, accounting for redundant 

exchange of information between the different nodes (see Continuous model). This means 

that a single piece of information (e.g. sensory evidence or prior) is integrated several times, due 

to "loops of information": descending loops on one hand in which sensory evidence is corrupted 

by priors, generating a system that “sees what it expects”; and climbing loops on the other hand 

in which the priors are corrupted by sensory evidence and the system “expects what it sees” [23]. 

This amplification of information leads to over-accumulation of evidence up to certainty (as for 

instance in the jumping-to-conclusions phenomenon observed in delusional individuals) [22]. 

Interestingly, recent evidence suggests that this altered form of belief propagation can be found 

in healthy populations as well, explaining their behaviour in probabilistic reasoning tasks [25] 

but also, most importantly, the integration of priors and sensory evidence in bistable perception 

tasks (Chapter 2). 

 Based on these findings, we assume that inference in our hierarchical model is also 

corrupted by loops (Figure 1b). As it will be explained later, only a system with loops (primarily 

descending loops) can generate a behaviour compatible with the phenomenology of bistability. 
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Decision criterion 

 Finally, no attempt to model perceptual decision making is complete without defining 

the decision criterion. In agreement with most studies, we consider “maximum a posteriori” 

(MAP), which is viewed as the optimal strategy in perceptual problems, since it maximizes 

accuracy. In our case, that means that a switch occurs when the logit of 𝑋 (𝐿) crosses 0. In 

addition to that, we also considered a more conservative criterion (see Supplementary 

Material), according to which the threshold depends on the current percept and switches only 

occur when there is substantial evidence in favour of the opposite interpretation. Compared to 

MAP, such a decision criterion has the additional advantage of making the perceptual system 

more robust to noise, allowing for the generation of gamma distributions of phase durations 

(see also the section on Distribution of phase durations and Supplementary Material). 

 

The continuous model 

 In the previous section we introduced a functional model able to use belief propagation 

to do probabilistic inference in a HMM, while information is amplified due to circular inferences. 

In a previous study, Jardri et al suggested that circular inference can be well approximated by a 

single discrete equation, which ignores the hierarchy and presents a belief as a sum of 2 terms: 

a likelihood term and a prior term, both corrupted by loops [25]. Based on this, we suggest that 

our dynamical circular inference model can also be approximated by a similar discrete equation 

(Figure 1b; see Supplementary Material for a detailed description of the discrete model). 

 Considering infinitesimally small time-steps (𝑑𝑡 → 0), the discrete model turns into the 

following stochastic equation, which describes how the belief about the 3D interpretation of the 

Necker cube changes over time (see derivation in Supplementary Material): 

𝑑𝐿

𝑑𝑡
= 2𝑤𝑆𝑎𝑃𝐿 + (𝑟𝑜𝑛𝑒

−𝐿 − 𝑟𝑜𝑓𝑓𝑒
𝐿) + (𝑟𝑜𝑛 − 𝑟𝑜𝑓𝑓) + 𝑤𝑖𝑛𝑡(2𝑤𝑆 − 1)(1 + 2𝑤𝑆𝑎𝑆)𝑛𝑡 = 𝑓(𝐿)         (4) 

where 𝐿 = 𝑙𝑜𝑔 (
𝑃(𝑋=1|𝑆0→𝑡)

𝑃(𝑋=0|𝑆0→𝑡)
) is the belief and 𝑛𝑡 is the noisy sensory evidence, modelled as a 

Gaussian process (with or without drift, depending on the 𝜇𝑛𝑜𝑖𝑠𝑒): 

𝑛𝑡~𝑁(𝜇𝑛𝑜𝑖𝑠𝑒𝑑𝑡, 𝜎𝑛𝑜𝑖𝑠𝑒
2 𝑑𝑡)                                                                                                                       (5) 
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𝑟𝑜𝑛 and 𝑟𝑜𝑓𝑓 represent the 2 transition rates, while 𝑎𝑆 and 𝑎𝑃 quantify the strength of the loops 

(climbing and descending respectively) and represent the amount of amplification of the 

feedforward/sensory and feedback/temporal information [25]. 

Finally, we can define the gain of the sensory evidence as follows: 

𝑣 = 𝑤𝑖𝑛𝑡(2𝑤𝑆 − 1)(1 + 2𝑤𝑆𝑎𝑆)                                                                                                        (6) 

where  𝑤𝑖𝑛𝑡 =
2𝜇𝑖𝑛𝑡

𝜎𝑖𝑛𝑡
2  is the reliability of the sensory evidence, according to the internal model, 

and 𝑤𝑆 corresponds to an additional feedforward weight. Interestingly, 𝑤𝑆 also appears in the 

first term, where it constrains the descending loops, an indication of the interaction between 

sensory evidence and priors in circular inference. Table 1 contains a summary of all the 

parameters of the model. 

 

 

Table 1: The parameters of the model 

 

 It‘s important to mention that the derivation of (4) requires 𝑟𝑜𝑛, 𝑟𝑜𝑓𝑓 and 𝑎𝑃 but not 𝑎𝑆 

to be proportional to 𝑑𝑡. This means that amplification of priors is considered as a gradual 

process, which builds up with time, while amplification of sensory evidence is considered 
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instantaneous. Note however that assuming 𝑎𝑆 proportional to 𝑑𝑡 would only result in (1 +

2𝑤𝑆𝑎𝑆) ≈ 1, meaning that the effect of the climbing loops would be negligible.  

 Taking a closer look at (4), we see that it consists of 4 terms, from which only the first 

two depend on 𝐿. The first term implements the effect of the descending loops and has the 

tendency to stabilise perception and push 𝐿 towards extreme values (positive or negative; as we 

will describe later, descending loops turn the system into a bistable attractor and the extreme 

values correspond to the new attractor states). This stabilising effect is balanced by the second 

term, which implements a leak towards the prior of the system (described below) and is 

quantified by the two transition rates. The third term adds a bias to the system (a non-zero 

prior), which is independent of the sensory evidence (an example of that could be the implicit 

preference of people to see things from above, creating a preference for the SFA interpretation 

of the Necker Cube; [33]). 

Finally, the noise term is a Gaussian process (with or without drift) multiplied by a 

weight that depends on the climbing loops and the internal model. The noise pushes the belief 

𝐿 away from its stable states, forcing it to explore the energy landscape imposed by the three 

first terms. We highlight that in case of 𝜇𝑛𝑜𝑖𝑠𝑒 ≠ 0 (e.g., after adding visual cues), a second bias, 

equal to the drift 𝜇𝑛𝑜𝑖𝑠𝑒, is added to the first [11,35,36]. Although they seem similar, the 2 biases 

have very different interpretations and functions. Contrary to the first bias, which depends on 

the difference of the transition rates and illustrates some prior knowledge about the statistics 

of the environment, the second term depends on the sensory evidence. As a result, it disappears 

when there is no stimulation, as in the case of intermittent presentation (see section about 

Intermittent presentation). 

 To summarise, eq. (4) corresponds to an attractor model, where switches are driven by 

noise [11]. Importantly, it’s entirely based on functional assumptions and all the parameters have 

a probabilistic interpretation. We note that the model does not contain adaptation (or any other 

form of slow negative feedback), as such a mechanism is not necessarily implied by the 

underlying function (see also Supplementary Material). Crucially, the presented model is a 

functional model with a straightforward mechanistic interpretation, enjoying advantages from 

both classes of models. 
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Simulations  

 For all the simulations later presented, we used the Euler – Maruyama algorithm. The 

time step was fixed at 𝑑𝑡 = 0.01𝑠. Both standard deviation of the noise (real model) and of the 

likelihood function (internal model) were taken equal to 1. The mean of the likelihood function 

was also fixed at ±1. 𝜇𝑛𝑜𝑖𝑠𝑒 = 0 for the completely ambiguous case and 𝜇𝑛𝑜𝑖𝑠𝑒 ≠ 0 when sensory 

evidence was biased, ranging between -1 and 1. Climbing loops were always considered as absent 

(𝑎𝑆 = 0) and descending loops were fixed at 𝑎𝑃 = 1, except if mentioned otherwise. 𝑤𝑆 was 

between [0.7, 1] and transition probabilities between [0.25, 1]. The difference between the 2 

transition probabilities was taken between [0, 0.25] (0 corresponds to the unbiased case). The 

initial belief in all simulations was 𝐿0 = 0. 

 

Results 

 In the previous section we presented an attractor model that describes the evolution of 

a system’s belief in a bistable context. The model was derived from first (normative) principles 

and illustrates a system that uses belief-propagation (more particularly a belief-propagation 

proxy [25]) to perform probabilistic inference in an internal, hierarchical model with Markovian 

statistics. Crucially, inference in the model is corrupted by the presence of loops, resulting in 

overcounting of information. 

 In this section, we explore the properties of the model in terms of dynamics but also in 

terms of behavioural predictions. As a first step, we highlight the importance of the descending 

loops in the generation of bistable perception, from a phenomenological and from a mechanistic 

point of view. Subsequently, we illustrate how the model can reproduce some of the most 

seminal features of bistable perception, like Levelt’s laws but also some counterintuitive 

findings, including stabilization of perception after a brief disappearance of the stimulus (for 

shorter intervals, bistable perception is known to get destabilized, a behaviour that is also 

predicted by our model, when considering state dependent transition rates; see 

Supplementary Material). Finally, we present further consequences of the model, notably 

detailed predictions about the performance of schizophrenia patients exposed to bistable 

stimuli. Table 2 summarises the characteristics / predictions of the model (with and without 

loops as well as for different decision criteria). 
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Table 2: Model Predictions for the different versions of the model. Robustness refers to how robust 

against noise are perceptual decisions. 

  

Preamble: the phenomenological features of bistable perception 

 From a phenomenological point of view, bistability is a unique experience. Prolonged 

viewing of an ambiguous stimulus generates unstable percepts that switch between two 

configurations, despite the stimulus being exactly the same. Perception in that case seems to be 

dissociated from stimulation. Additionally, despite the ambiguous and unreliable nature of the 

stimulus, each interpretation usually persists for many seconds before switching back, and most 

of the time, it is perceived with high levels of confidence. This fascinating phenomenon leads to 

several unresolved questions. For instance, why would a perceptual system choose to favour one 

interpretation instead of the other or, if we go a step further, why choose one interpretation 

instead of perceiving both at the same time? In addition to that, why would that system change 

its mind? Finally, how does this system generate strong beliefs in the absence of strong 

evidence? Following Hohwy and colleagues, we call the first question the “selection problem” 

and the second question the “alternation problem” [16]. Moreover, we call the third question the 

“confidence problem”. 

 In agreement with previous studies, we argue that “selection” is a simple consequence 

of the brain’s function: to make “perceptual” predictions under uncertainty [15–17]. According 

to this hypothesis, the brain chooses the cause that best explains its sensory evidence. If at a 

given moment the sensory evidence, combined with any available prior knowledge (e.g., SFA 

preference) points more strongly to a certain interpretation, this interpretation will be picked 

and perceived by the brain. 

 Furthermore, apart from the sensory evidence and the priors, additional information 

(e.g., epistemological truths) might have to be considered when solving ill-posed problems, 

such as the problem of 3D perception. For example, common sense dictates that two different 

objects cannot occupy the same part of the visual space [16]. We postulate that such a hyperprior 
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renders the 2 interpretations mutually exclusive, and consequently impossible to be perceived 

at the same time. 

 We further argue that the “alternation problem” is a consequence of another property of 

the brain: evidence accumulation. In the model, this is captured by the Markovian statistics and 

it is regulated by two transition rates. More particularly, the new noisy evidence is integrated 

into the past accumulated evidence and pushes the belief away from its stable state. Every time 

the belief crosses the threshold, a switch occurs. 

 Although the “selection” and the “alternation” problems can be solved rather easily by 

referring to general functions of the brain, the “confidence” problem seems more difficult to deal 

with. Despite being unstable, percepts usually persist many seconds before switching, while 

they also enjoy high levels of confidence. On the contrary, a system doing exact inference in the 

presence of some environmental volatility (i.e., a system without loops and with non-zero 

transition rates) would switch very often, since the belief would have the tendency to hover 

around the prior (Figure 3a,b (red)). This problem could be solved by considering a perfect 

integrator (𝑟𝑜𝑛 = 𝑟𝑜𝑓𝑓 = 0). Nevertheless, such a system would perform suboptimally in an 

unstable environment. In addition to that, even a perfect integrator is not able to generate 

strong beliefs in the absence of strong and reliable data, as for example when facing bistable 

stimuli. Crucially, both persistence and high confidence would be expected from a system that 

over-counts its accumulated evidence (prior knowledge), i.e. a system with descending loops. 

As shown in Figure 3a (blue), even weak descending loops increase the beliefs to extreme 

values, generating a system that is very confident about what it perceives, even if information is 

too noisy and ambiguous. At the same time, descending loops increase the persistence of the 

percepts, by amplifying the stabilizing effect of past information. In the next section, we will 

demonstrate that this dual effect of the descending loops is due to their ability to change the 

dynamics of the system by transforming it into a bistable attractor. 

  

Dynamical Systems Analysis  

 Let us now explore the dynamics of the model, by considering particular cases for the 

parameters of the system. First of all, let’s examine the case in which there are no descending 

loops. Then, 𝑎𝑃 = 0 and the first term disappears completely. The resulting system is equivalent 

to a HMM with transition rates 𝑟𝑜𝑛 and 𝑟𝑜𝑓𝑓 [37]. An example of such a system is presented in 
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Figure 3a (red), while dynamics is illustrated in Figure 3c,d. Importantly, a HMM has only one 

stable fixed point (the prior) (𝑓(𝐿) = 0, 𝑓′(𝐿) < 0) that depends on the 2 rates: 

𝐿𝑆𝑡,𝑎=0 = log (
𝑟𝑜𝑛
𝑟𝑜𝑓𝑓

)                                                                                                                             (7) 

𝐿𝑆𝑡,𝑎=0 is 0 if the 2 rates are equal (e.g., structure from motion) and non-zero if they are not 

equal (e.g., Necker Cube). Consequently, the belief hovers around the prior without getting 

large positive or negative values (Figure 3a (red)), especially if sensory evidence is rather 

unreliable (𝑤𝑆~0.5 or 𝜇𝑖𝑛𝑡  ~0, as in bistable perception) and the world relatively unstable 

(𝑟𝑜𝑛, 𝑟𝑜𝑓𝑓 > 0). Such a system would live in constant uncertainty, it would be overly affected by 

noise and would face serious difficulties in making perceptual decisions and acting upon them. 

 Descending loops push the belief away from the prior and towards more extreme values 

(Figure 3a, (blue)). The dynamics of a system with positive descending loops (𝑎𝑃 > 0) is shown 

in Figure 3c,d. If there is no leak (𝑟𝑜𝑛 = 𝑟𝑜𝑓𝑓 = 0), the system is inherently unstable and the 

slightest noise induces complete certainty (𝐿 = ±∞, see Figure 3c (orange)). For non-zero 

transition rates, the effect of the loops is constrained. In that case, for certain values of 𝑎𝑃 , 𝑟𝑜𝑛 

and 𝑟𝑜𝑓𝑓, they give rise to a bistable attractor (Figure 3c,d). 

 In the unbiased case (𝑟𝑜𝑛 = 𝑟𝑜𝑓𝑓 = 𝑟; e.g. structure from motion or 45°-tilted Necker 

cube), 𝐿 = 0 is always a fixed point (Figure 3c). When the descending loops are weak compared 

to the leak, it is the only fixed point of the system and it is stable. That is true up to the value: 

𝑎𝑃
𝑃𝑓
=
𝑟

𝑤𝑆
                                                                                                                                                 (8) 

At this value, the system undergoes a Pitchfork bifurcation (Figure 4a,b): The existing fixed 

point becomes unstable and 2 additional attractors are generated, given by the 2 symmetrical, 

non-zero solutions of the equation 𝑓(𝐿𝑠𝑡
𝐵𝑖𝑠𝑡) = 0. The stronger the descending loops (or the 

weaker the leak), the further apart the 2 symmetrical attractors are (Figure 4a,b). Furthermore, 

(8) means that it is harder to get a bistable attractor (more loops are needed) in cases of higher 

volatility (larger 𝑟) or more unreliable sensory evidence (𝑤𝑆 closer to 0.5). 
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Figure 3: Dynamics. (a.,b.): Without loops, the system is equivalent to a leaky integrator (red). The 

accumulation of noisy evidence results in a belief that hovers around the prior, indicating a system that is 

constantly uncertain about the environment and switches very often. The addition of descending loops 

(positive feedback) pushes the beliefs towards more extreme values and increases persistence, in agreement 

with the phenomenology of bistable perception (a.; blue). On the other hand, climbing loops increase the 

gain of the noise, resulting in more extreme beliefs combined with more switches (b.; grey). (c., d.): From a 

mechanistic point of view,  (positive) descending loops generate a bistable attractor, whose stable fixed 

points correspond to (strong beliefs about) the two interpretations (blue). On the contrary, a balanced 

system (no loops) has only one attractor, the prior (red). For the sake of completeness, we also present the 

effect of negative descending loops which act as a secondary leak (dashed blue) while (positive) descending 

loops in the absence of leak (zero transition rates) result in an inherently unstable system. The energy 

landscape can be symmetrical (c.) or assymetrical (d.) depending on whether the two rates are equal. Note 

that a strong bias forces the system to get stuck to one interpretation (light blue). 

 

 Adding a bias to the system (𝑟𝑜𝑛 ≠ 𝑟𝑜𝑓𝑓; e.g., SFA bias in Necker cube) creates an 

asymmetry in the energy landscape and shifts the fixed point away from 0 (Figure 3d). A Saddle 

Node (SN) bifurcation occurs when one of the 2 local extrema of  𝑓(𝐿) touches the x axis (Figure 

4c,d; for a mathematical description of the SN bifurcation, see Supplementary Material). 

Qualitatively speaking, a SN bifurcation retains the stability of the existing fixed point (contrary 

to the symmetrical case, here the position of the fixed point is a function of 𝑟𝑜𝑛, 𝑟𝑜𝑓𝑓 and 𝑎𝑃) and 

on top of that it generates an additional pair of stable and unstable fixed points (Figure 4c). A 

bistable attractor can exist only in a narrow range of biases (difference between 𝑟𝑜𝑛 and 𝑟𝑜𝑓𝑓), 

more particularly in the range constrained by the 2 SN bifurcation points (one for 𝑟𝑜𝑛 > 𝑟𝑜𝑓𝑓 

and one for 𝑟𝑜𝑛 < 𝑟𝑜𝑓𝑓; Figure 4d). Given that in reality a combination of weak sensory evidence 
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and weak priors is not very frequent, it is not strange that bistability is rather uncommon in 

everyday life. 

 

 

Figure 4: Bifurcation Diagrams. Descending loops change the dynamical behaviour of the system 

((a.,b.): Pitchfork bifurcation for symmetrical systems; (c.,d.): Saddle-Node bifurcation for asymmetrical 

systems). When transition rates become too small, the fixed points go to infinity and the system becomes 

unstable (b.). Additionally, bistability can exist in a narrow range around symmetry (d.). 

 

 Along with the effect of the positive descending loops, it’s worth considering what would 

happen if we added negative loops to the system (𝑎𝑃 < 0). While positive descending loops 

mean that redundant top down messages are propagated in the hierarchy, corrupting new 

sensory evidence, negative loops mean exactly the opposite: the system corrects too much for 

the redundant messages, to a point where it starts removing useful information as well 

(throwing away part of the prior messages). Despite the loss of information, the effect of the 

negative loops on dynamics is less overwhelming than the effect of the positive loops, 

resembling a secondary leak mechanism (they push 𝐿 towards 0, independently of the prior, 

Figure 3c (dotted)). 
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 Until now, our analysis focused mainly on the effects of the descending loops. Indeed, 

their role in bistable perception, according to the model, appears crucial, since they are the 

cause of the bistable attractor (it’s important to repeat that the model makes no assumptions 

about the dynamics; the presented dynamics is a necessity, imposed by the functional 

mechanisms). On the other hand, climbing loops play a less important role. According to (6), 

climbing loops increase the gain of the sensory evidence (noise) (Figure 3b) and consequently 

they act by destabilising perception and reducing the effect of the bias on predominance (for 

more details, see section on How schizophrenia patients perceive bistable stimuli). As a 

result, it is not possible to fully separate the effect of climbing loops from the effect of the 

reliability of sensory evidence (the other term in (6)). 

 To conclude, descending loops could constitute a crucial part of the machinery of a 

system exhibiting bistable perception. When they are strong enough to overcome the effect of 

the leak, they generate a bistable attractor, implementing a memory-like mechanism that 

pushes the belief towards more extreme values, based on the previous observations. This helps 

the system make decisions and act upon them in the absence of fully convincing evidence. In 

the next sections, we explore the predictions of the model regarding well known psychophysical 

features of bistable perception. 

 

Levelt’s Laws 

 An important qualitative feature of bistable perception is Levelt’s laws. These laws 

constitute a set of 4 psychophysical propositions relating the strength of the bistable stimulus 

to the phenomenology of binocular rivalry [35], and more generally of bistable perception [36]. 

Despite some recent modifications in their formulation (to account for new experimental data 

[38,39]), Levelt’s laws remain fundamental for our understanding of the machinery of bistability 

and an important crash-test for any potential model. We will present one by one the four revised 

propositions and will critically discuss them through the prism of the dynamical circular 

inference model. 
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Figure 5: Levelt’s Laws. The circular inference model qualitatively reproduces the 4 Levelt’s propositions. 

(a.): 1st proposition - Increasing the stimulus strength of one perceptual interpretation increases the 

predominance of this perceptual interpretation. (b.): 2nd proposition - Manipulating the stimulus strength 

of one perceptual interpretation of a bistable stimulus doesn’t influence equally the average dominance 

duration of both interpretations, but mainly affects the persistence  of the stronger interpretation. (c.): 3rd 

proposition - Increasing the difference in the stimulus strength between the 2 perceptual interpretations 

should result in a decrease in the perceptual alternation rate. (d.): 4th proposition - When we increase the 

strength of both interpretations, the number of switches increases. (e.,f.): Interpretation of the 4 laws 

according to the present framework. Adding a visual cue (drift) affects the stability of both attractors. The 

effects are not equal due to the non-linearities (e.; Propositions 1-3). In addition to that, increasing the 
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variance of the noise results in stronger destabilization from the stable states, hence more switches (f.; 

Proposition 4). 

 

 1st Levelt’s law 

  The first proposition links the stimulus strength with the predominance of each 

interpretation. It postulates that increasing the stimulus strength of one perceptual 

interpretation increases the predominance of this perceptual interpretation [36]. For example 

adding a cue to the Necker cube helps the relevant interpretation gain more perceptual 

dominance compared to its rival. Although in modern terminology proposition 1 sounds more 

like a tautology, it is still useful in order to detect stimulus features (or parameters of the model) 

that affect the strength of an interpretation [39]. Within our model, we can parameterize the 

strength of the sensory evidence by adjusting the drift 𝜇𝑛𝑜𝑖𝑠𝑒𝑑𝑡 of the Gaussian process, which 

biases the sampling of evidence (Figure 2). As expected, the more positive the drift the closer 

the relative predominance goes to 1 (the opposite for negative drift) (Figure 5a), in agreement 

with the first proposition. 

 

 2nd Levelt’s law 

 The second proposition is less intuitive than the first and posits that manipulating the 

stimulus strength of one perceptual interpretation of a bistable stimulus doesn’t influence 

equally the average dominance duration of both interpretations, but mainly affects the 

persistence of the stronger interpretation [36,40]. For example, increasing the strength of a 

visual cue in the Necker Cube example will mainly affect the mean dominance duration of the 

corresponding interpretation. The dynamical circular inference model is fully compatible with 

Levelt’s second law, as presented in Figure 5b: making the drift more positive (bias for SFA) will 

predominantly affect the mean phase duration of the SFA interpretation (the opposite happens 

for a negative drift and the SFB interpretation). Indeed, the drift acts as an additional bias term 

in (4), that deepens the well of the strong interpretation, while at the same time it makes the 

other well shallower (Figure 5e). This dual effect of the drift (not obvious in other models in 

which different variables represent the different interpretations, see also [11]), along with the 

model’s inherent non-linearity can explain Levelt’s second law [40]. 
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 3rd Levelt’s law 

 Levelt’s third proposition is closely related to the second proposition [39] and suggests 

that increasing the difference in the stimulus strength between the 2 perceptual interpretations 

should result in a decrease in the perceptual alternation rate [36]. In the Necker Cube example, 

this proposition implies that adding a visual cue results in fewer switches. Importantly, the 

dynamical circular inference model behaves exactly as the third proposition dictates. As shown 

in Figure 5c, alternation rate gets its maximum value for drift = 0 (completely ambiguous 

stimulus) and decreases symmetrically as the drift becomes more positive or negative, a direct 

consequence of the third law [40].  

  

 4th Levelt’s law 

 Finally, the fourth proposition goes one step further and discusses what happens to the 

alternation rate if we equally increase the strength of both interpretations. In this case, the 

number of switches increases, resulting in a higher alternation rate. Contrary to the 3 first 

propositions, the fourth one illustrates the effect of a simultaneous manipulation of both 

interpretations (global stimulus strength). In the model, this global manipulation can be 

captured by a change in the variance of the noise distribution 𝜎𝑛𝑜𝑖𝑠𝑒. A higher variance 

corresponds to increased sensory gain which results in more exploration of the energy landscape 

due to the noise (Figure 5f). Consequently, as illustrated in Figure 5d, increasing 𝜎𝑛𝑜𝑖𝑠𝑒 results 

in more switches, in agreement with Levelt’s fourth law. 

 

Intermittent presentation 

  When an ambiguous stimulus is presented continuously, switches between competing 

interpretations occur randomly every few seconds, with consecutive phase durations being 

largely independent [41]. Based on this observation, many researchers came to the conclusion 

that bistable perception is principally a memoryless process ([42], see also [43,44]). 

Nevertheless, this conclusion contravenes with another observation: the fact that people tend 

to perceive the same interpretation repeatedly, when ambiguous stimuli are presented 

intermittently, for a wide range of OFF-durations (intervals during which stimulus is absent) 

[45,46]. This second observation forced researchers to consider the presence of some perceptual 

memory [47], which manifests itself when the stimulus disappears from the screen. A variety of 
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mechanisms implementing this memory have been proposed, including low-level mechanisms 

such as adaptation (combined with sub-threshold effects; [9]), or high level memory 

mechanisms located outside the extrastriate cortex [46,48,49]. The dynamical circular inference 

model offers a different explanation for this stabilization effect, based on the descending loops. 

 In agreement with previously published experimental observations, our model predicts 

no significant correlation in the duration of successive phases [41,42], as we would expect from 

a model that doesn’t contain adaptation (or adaptation-like) mechanisms [44]. On the other 

hand, the model should be able to predict a stabilization effect, when the stimulus disappears 

for brief durations. In order to quantify stabilization, many studies referred to the alternation 

rate, which is the number of switches in a time interval [45,46,50]. However, this measure is not 

ideal as it can be affected by various confounding factors including different presentation 

durations and switches occurring during ON-duration (interval during which stimulus is 

present). Moreover, the alternation rate considers both interpretations together and obscures 

any possible asymmetries. Instead, we used the survival probability (SP) of each interpretation, 

which is the probability that the dominant percept at the end of an ON-duration would be 

dominant again when the stimulus reappears after the OFF-duration. 

 Figure 6a illustrates our interpretation of the phenomenon (5 ON-OFF cycles, 𝑎𝑃 > 0). 

In order to understand the behaviour of the model during intermittent presentation, we need 

to look at the phase portrait of the dynamical system (trajectories in absence of stimulation). 

Without descending loops (𝑎𝑃 = 0), the belief returns to its prior value (𝑙𝑜𝑔(
𝑟𝑜𝑛

𝑟𝑜𝑓𝑓
)), due to the 

leak (Figure 6b,f). The longer the OFF-duration, the more the belief approaches the prior. The 

resulting effect on SP is presented in Figure 6c,g (solid lines). For the unbiased system, the 

model predicts that both SP will decrease towards 0.5 (chance), with a time constant that 

depends on the transition rates. 

On the contrary, the SP in a biased system would reach symmetrical points above and 

below chance, with the values depending on the strength of the bias. Additionally, SP for the 

continuous case (stimulation is not interrupted; in that case we measure the survival probability 

in constant intervals) are also presented in Figure 6c,g (dashed lines). Importantly, we observe 

that even without descending loops, we can still get a relative stabilization in intermittent 

presentation, compared to continuous presentation (dashed lines are below solid lines), due to 

the accumulation of noise in the continuous case. On the other hand, this version of the model 

does not predict an increasing SP with the OFF-duration, while at the same time it imposes 

symmetrical convergence points for large OFF-durations.  
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 The descending loops (𝑎𝑃 > 0) change the behaviour of the system. The phase portrait 

of this system is presented in Figure 6d,h. Instead of one single point where all the trajectories 

meet, now we observe 2 clearly distinct basins of attraction, symmetrical for an unbiased system 

and asymmetrical for a biased system. Importantly and contrary to what we previously observed, 

the SP do not converge to symmetrical values. Instead, in an unbiased system the two 

probabilities reach the same value, which is not chance-level (they can increase or decrease with 

the OFF-duration, depending on the parameters) whereas in a biased system they converge to 

non-symmetrical values, which depend on the interaction of descending loops and transition 

rates (Figure 6e,i). Additionally, we observe again a relative stabilization compared to the 

continuous presentation (dashed lines).  

 An important comment needs to be made. The current version of the model does not 

predict a destabilization occuring for small OFF-durations, usually for values below 500ms. 

Other models have attributed this observation to a combined effect of adaptation and sub-

/near-threshold signals [9]. Another possibility in the present context is that, destabilization 

could be obtained by considering history-dependent transition rates (see Supplementary 

Material for more details). More particularly, when the system perceives interpretation 1 (e.g., 

SFA), the probability of switching from 1 to 0 (i.e, 𝑟𝑜𝑓𝑓) increases exponentially towards a high 

value, while the probability of switching from 0 to 1 (i.e., 𝑟𝑜𝑛) decreases exponentially towards a 

baseline value. The opposite happens when interpretation 0 (e.g., SFB) is the dominant 

interpretation. When none of the 2 interpretations is dominant (e.g. during OFF-durations), 

both rates go back to baseline. This adaptation-like mechanism destabilizes the dominant 

percept and boosts exploration of the whole energy landscape. 

From a functional point of view, such a mechanism forces the system to explore non-

optimal perceptual choices, like a non-optimal decision criterion (e.g Softmax). Alternatively, it 

could simply implement a hyperprior that things do not remain the same for a long time. 

Independently of the interpretation, changing rates result in time-dependent attractor states, 

which under certain circumstances can cause a destabilization for short OFF-durations (see 

Supplementary Material). 

 To summarise, dynamical circular inference predicts stabilization of bistable perception 

for longer OFF-periods. In addition to that, it makes specific predictions about the persistence 

of each interpretation separately, which could help to experimentally distinguish a system with 

loops from a system without loops. 
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Figure 6: Continuous vs Intermittent presentation. (a.): An interpretation of the phenomenon, based 

on the circular inference framework. When the stimulus disappears, the belief converges to an attractor. 

The behaviour of the system depends on the number and the value of the fixed points. (b.,c.,f.,g.): No loops 

- If there are no (descending) loops, when the stimulus disappears the beliefs converge to the prior ((b.): No 

implicit preference; (f.): Implicit preference). Consequently, for longer OFF-Durations, the 2 survival 

probabilities (blue and red solid lines) either converge to 0.5 ((c.): No implicit preference) or to 

symmetrical values ((g.): Implicit preference). In both cases, the stimulus is not stabilised for longer 

intervals. Interestingly, it is more stable compared to continuous presentation (dashed lines). (d.,e.,h.,i.): 

Descending loops – Descending loops generate a bistable attractor ((d.): No implicit preference; (h.): 

Implicit preference). Crucially, when they are strong enough, they cause stabilisation for longer intervals 

((e.): No implicit preference; (i.): Implicit preference). Furthermore, in the biased case, survival 

probabilities converge to assymetrical values. 

 

Distribution of phase durations 

 Another important feature of bistable perception, shared by human and non-human 

observers is the distribution of dominance durations. Surprisingly, although there is huge 

variability in the mean phase-duration between participants (but also within participants and 

between conditions or stimuli), there is an impressive similarity in the shape of the distribution 

of phase-durations, which is well approximated by a gamma or log-normal distribution [51–53] 

(but see also [54]). 

 It is well established theoretically that models in which switches are driven solely by 

noise do not generate gamma distributions, instead they produce histograms that look like 

exponentials [11]. For this reason, many attractor models assume some amount of adaptation 
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acting on top of the noise [11,14]. Adaptation is not strong enough to trigger a switch; It is 

sufficient though to push the mode of the distribution to higher durations. The dynamical 

circular inference model, is a functional model in which switches are only triggered by noise [14]. 

Crucially, the model, in its simplest form, does not contain any adaptation-like mechanism, 

since such a mechanism is not a necessary consequence of the function. It is thus not surprising 

that it produces histograms approximated by exponential distributions (Figure 7). This happens 

because when a switch occurs and while the belief is still close to the threshold, the slightest 

noise can push the belief back to the other side, causing an instantaneous switch. Indeed, no 

mechanism can prevent such a rapid alternation, leading to very high frequencies for short 

phase-durations. 

Various additional mechanisms could prevent those rapid switches, generating gamma 

distributions of phase-durations. Such a mechanism, based on a more conservative decision 

criterion, is presented in Supplementary Material.  Whenever a switch occurs, the threshold 

jumps to its symmetrical value. Such hysteresis is sufficient to prevent noise from causing an 

instantaneous switch. In particular, a switch occurs only when there is substantial evidence 

against the current interpretation, which makes the system robust and results in very infrequent 

short phase-durations and thus, gamma-distributed histograms (Figure S4). 
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Figure 7: Phase duration histogram. In agreement with previous results, our nosie-driven (switches are 

triggered by noise), circular inference model predicts exponential-like phase duration histograms, instead 

of the experimentally-observed gamma distributions. Importantly, a more conservative decision criterion 

generates gamma distributions (see Supplementary Material, Figure S4).  

 

How Schizophrenia patients perceive bistable stimuli? 

 So far, we have described a functional model of bistable perception, based on the notion 

of circular inference. Accumulating evidence supports the idea that circularity (and especially a 

small amount of descending loops) is a common property of the human brain, reflecting some 

inherent limitations of neural circuits [25] (see also Chapter 2). However, it has also been 

suggested that circular inference could be the cause of several cognitive and/or perceptual 

disorders, including schizophrenia [22,24]. In a previous study, Jardri et al found that on 

average, patients with schizophrenia have stronger climbing loops compared to a group of 

matched healthy controls [25]. Additionally, it was evidenced that “positive” (i.e., psychotic) 

symptoms, including hallucinations and delusions, correlate with  the amount of climbing loops 

(i.e., sensory evidence amplification), “negative” symptoms, including lack of motivation and 

anhedonia, correlate with the amount of descending loops (i.e., prior amplification) and finally 

cognitive disorganization correlates with the total amount of loops (𝑎𝑆 + 𝑎𝑃). Considering these 
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previous findings, an interesting question is what does the current dynamical circular inference 

model predict about the behaviour of schizophrenia patients exposed to bistable stimuli? 

 Figure 8c,d,g,h illustrates the effect of climbing loops on bias (Relative Predominance; 

Figure 8c,g) and stability (Mean Phase-Duration; Figure 8d,h). As previously shown, climbing 

loops increase the gain of the noise, facilitating the jumps between the 2 attractors (Figure 3b). 

Consequently, our model predicts that patients with more severe hallucinations and delusions 

should be less biased in their responses (both due to inherent priors and visual cues) but also 

less stable (especially the interpretation that is supported by the visual cue). Especially the effect 

of climbing loops on Relative Predominance, although it might seem counterintuitive (over-

counting of sensory evidence leads to a smaller effect of that evidence), illustrates the 

detrimental effect of the higher gain of noise on the accumulation of evidence. 

 Descending loops deepen the wells of the energy landscape and consequently, they 

produce the exact opposite effects. As shown in Figure 8a,b,e,f, they increase both the bias 

(Figure 8a,e) and the stability (Figure 8b,f) of schizophrenia patients with more severe 

negative symptoms.  

 Our model thus predicts different but specific patterns of behaviour when schizophrenia 

patients are exposed to bistable stimuli that depend on the predominance of their positive and 

negative symptoms. 

 

 

Figure 8: Predictions for Schizophrenia Patients. (a.,b.,e.,f.): Descending loops – Previous work [25] 

related the negative symptoms of schizophrenia with stronger descending loops. The current model predicts 

that patients with stronger descending loops (darker blue), or more severe negative symptoms, will exhibit 

a stronger bias (Relative Predominance) due to visual cues / drift ((a.): No implicit preference; (e.): 

Implicit preference), a stronger bias in the ambiguous condition in the assymetrical case (e.; RP at 0) and 

they will be more persistent (Mean Phase Duration) ((b.): No implicit preference; (f.): Implicit 
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preference). (c.,d.,g.,h.): Climbing loops - The same work [25] related the positive (psychotic) symptoms 

of schizophrenia with stronger climbing loops. The prediction for the patients with stronger climbing loops 

(more severe psychotic symptoms; darker grey) is exactly the opposite: weaker bias due to visual cues ((c.): 

No implicit preference; (g.): Implicit preference) or implicit prior (g.; RP at 0) and less persistence ((d.): 

No implicit preference; (h.): Implicit preference).    

 

Discussion 

 We introduced a novel functional approach to bistable perception, notably based on the 

idea that bistability could be the result of priors’ over-counting due to circular inferences [22]. 

More specifically, we presented a dynamical model with Markovian statistics, whose dynamics 

implements inference in a hierarchical representation of the world [21,26]. We postulated that 

due to inherent limitations of neural networks implementing inference (see also below for an 

alternative interpretation), priors are propagated between layers without control, forming loops 

of information (descending loops). The direct consequence of this phenomenon is that feedback 

messages moving from high-level association areas to lower-level sensory areas corrupt the 

feedforward messages moving in the opposite direction, causing the system to «see what it 

expects» [24]. This idea is in agreement with previous results (Chapter 2), suggesting that the 

way people integrate priors and sensory evidence in bistable perception cannot be fully captured 

by the Bayes theorem and instead it could be better explained by a circular inference model. 

 From the point of view of the underlying dynamics, the descending loops have equally 

important consequences: Due to their inherently stabilising effect, they push the system to 

undergo a Saddle-Node bifurcation (or Pitchfork, in the case of an unbiased system), resulting 

in the creation of a bistable attractor. The emerging dynamical system can explain various 

intriguing features of bistable perception, primarily its mere existence. The descending loops 

overcount and artificially inflate the accumulated noisy information. Hence, they lead to a 

system with high levels of conviction that perceives clearly, persistently and in alternation the 

2 potential interpretations. 

 Crucially, although descending loops are necessary for bistability, they are not sufficient. 

Even in the presence of descending loops, a system using the correct generative model would 

completely discard the visual information as completely unreliable, in other words it would 

ignore the depth cues, resulting in 2D percepts. In addition, we thus assumed that the system 

attributed some reliability to the sensory evidence (use the depth cues to infer depth), which 

corresponds to the system using the wrong internal model (Figure 2). One explanation is that 



89 
 

in everyday life, although ambiguity is a common obstacle for our perceptual systems, 

completely ambiguous stimuli are very rare [3,55]. In the general case, depth cues are tightly 

related to the presence of depth. As a result, in everyday situations, completely discarding 

sensory evidence would be suboptimal and equivalent to throwing away important information. 

 In addition to the existence of bistable perception, the dynamical circular inference 

model can also explain several qualitative features of bistability. It is compatible with Levelt’s 

four laws, while the descending loops also generate a memory-like mechanism that allows for 

stabilization of the percepts when the stimulus is presented intermittently. 

 Beyond our model, various other implementations have been proposed to account for 

bistability and some of its characteristics. On one hand, people have proposed mechanistic 

models and have either focused on the neural mechanisms [7,8,10] or the dynamics [6,9,11]. 

Typically, those models assume two competing populations of neurons and a combination of 

mechanisms including lateral inhibition, adaptation and noise. Despite their critical importance 

for our quantitative understanding of the phenomenon and its neural implementation, those 

models remain largely descriptive, a fact with important implications for their explanatory 

power. First, they are usually designed on an ad-hoc basis and their mechanisms are adjusted 

(without formal constraints) depending on the phenomenon they are trying to explain (e.g. 

[56]). On top of that, mechanistic models, with few exceptions (e.g. [40]), remain agnostic 

regarding the functional role of bistable perception. More particularly, although they are very 

good in answering the «what» questions (mechanisms and implementations), they are not 

appropriate for the «why» questions (epistemological questions). 

 To answer the second type of questions, other groups have put forward functional 

models of bistable perception, which approach the problem in a top-down fashion [16–20,57]. 

Essentially, those approaches focus on the type of problems that perceptual systems usually 

encounter (e.g., deal with uncertainty) and adequately impose functional constraints on the 

structure of the models (e.g. optimality constraints in Bayesian models). Although these models 

are equally important and complementary to the mechanistic models described above, they also 

have their own disadvantages: Functional models are more abstract models whose links with 

the real neural systems (and with the mechanistic models) are usually vague. Therefore, they 

are rarely fitted to real data and their predictions remain largely qualitative. Moreover, finding 

closed form solutions for those models is rarely possible. 

 The circular inference model presented in this paper reconciles those 2 approaches, 

keeping most of their advantages and solving some of their disadvantages. Basically, it’s an 
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attractor model based entirely on normative assumptions, whose parameters have a functional 

(probabilistic) interpretation. Similar to other attractor models, it assumes that switches in 

perceptual bistability are driven by noise, in agreement with existing evidence [12–14]. 

Additionally, its dynamical behaviour has important similarities with that of other attractor 

models [11]. 

 Crucially, despite apparent similarities, our model has fundamental differences from 

other attractor models. Most importantly, its properties are not ad-hoc, on the contrary 

everything is imposed by the underlying function of the system: to use belief propagation to do 

probabilistic inference in an internal model with loops. For example, the bistable attractor is 

not imposed to explain certain features of bistability, instead it’s a direct consequence of the 

descending loops. In the same vein, our model makes a clear distinction between a bias induced 

by sensory evidence and a bias resulting from the system’s implicit preference (prior 

knowledge), thus enabling the generation of asymmetries in the absence of stimulation 

(intermittent presentation). 

 Additionally, our model is different from other functional models, although they share 

some key assumptions, in particular the fact that perception is probabilistic in nature. Many 

functional models of bistable perception are based on the idea that inference is approximated 

by a sampling process, without explicit calculation and knowledge of the exact posterior 

distribution [18–20]. Although such an idea appears plausible, many sampling algorithms (e.g. 

Markov Chain Monte Carlo) require long sampling times to generate accurate results, making 

those solutions unrealistic. Additionally, it remains unclear whether those models could 

account for less trivial experimental results, including stabilization under intermittent 

presentation. 

 In the present model, we assume that sensory evidence is corrupted by Gaussian noise 

with zero-mean in the case of complete ambiguity. Other studies have considered more complex 

noise distributions, e.g. bimodal distributions which can be described as mixtures of 2 

symmetrical Gaussians [17]. We can note that despite their differences, considering alternative 

noise distributions has no effect on the qualitative results presented in the paper, provided that 

the average evidence is zero in case of perfect ambiguity and non-zero when there are additional 

visual cues. 

 It’s also important to highlight that contrary to other functional models, circular 

inference can be fitted to real data. On one hand, we were able to formalize the belief 

propagation algorithm with loops using a single stochastic differential equation, which was then 
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used to derive analytical and semi-analytical results. On the other hand, without important 

consequences, one can significantly reduce the number of free parameters to the following set: 

[sensory gain 𝑣, functional descending loops (𝑎𝑃
′ = 2𝑤𝑆𝑎𝑃) and bias (𝑏 = 𝑟𝑜𝑛 − 𝑟𝑜𝑓𝑓)], with the 

possible addition of the drift 𝜇𝑛𝑜𝑖𝑠𝑒. Those parameters can then be fitted to data, even with a 

brute-force approach. 

 It has been argued that circular inferences are linked, at the neurophysiological level, to 

an imbalance between neural excitation and inhibition in favour of excitation [24,58]. This 

imbalance might concern only local microcircuits, encompassing pyramidal cells and local 

interneurons (Figure 1c), or more global networks, potentially involving thalamocortical or 

cortico-striatal long range connections [24]. Although both are plausible neural 

implementations of loops, local interneurons make a better candidate in the particular case of 

bistable perception. Indeed, it has been argued that bistability is a rather low level process 

mainly occurring within the visual cortex ([4,59,60]; but see [61,62], arguing for the involvement 

of high-level areas) while the involvement of local inhibition is also supported by 

pharmacological evidence [63]. 

 Apart from normal brain functioning, circular inference has been used to account for 

clinical dimensions in schizophrenia [22,25]. Combined with those studies, the results presented 

here could have further consequences regarding our understanding and definition of 

psychopathology. More particularly, our model of bistable perception implies that the same 

generic mechanisms could be involved in severe symptoms, such as hallucinations and 

delusions in schizophrenia, but at a lesser degree could also explain common perceptual 

phenomena, such as bistable perception. Such a blurring of the boundaries between normal and 

pathological brain functioning appears in agreement with the idea that psychosis may exist 

along a continuum with normal experience [64–68]. Still, when and how exactly those 

mechanisms go awry and generate pathological symptoms remains an open question. In 

addition to that, the present model constitutes an extension of previous circular inference 

models, reinterpreting the framework in dynamical systems’ terms and relating it to other 

influential frameworks [69,70]. 

  Could circularity offer a relative advantage to perceptual systems using them or is it 

simply a manifestation of the inherent limitations of neural systems? According to the present 

results, a system performing exact inference in the face of very unreliable evidence would be too 

vulnerable against noise and might have difficulties in making decisions and acting. On the 

contrary, moderate descending loops could give a boost to the system by slightly amplifying its 
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priors and help it make robust decisions even when evidence is absent (after all, both “fighting” 

and “flying” are better than standing still; a similar explanation was suggested by Moreno-Bote 

and colleagues, who interpreted bistability as exploratory behaviour under uncertainty [40]). 

Moving a step further, a system with flexible descending loops (e.g. a system that can regulate 

its E/I balance through neuromodulators, such as dopamine, serotonin or acetylcholine [71,72]) 

could still use exact inference under most circumstances and only recruit the loops when there 

is a need (e.g. when the stimulus is completely unreliable but there is a need to decide, as in the 

case of bistable perception). This suggestion, although speculative, could reconcile the present 

results with evidence showing perfect balance between excitation and inhibition at different 

scales [73–75] and is furthermore easily testable (e.g., by measuring E/I balance during 

bistability and during stimulation with unambiguous stimuli). 

 Some limitations of the model presented here must be acknowledged. First of all, while 

the model tackles the problem of inference under ambiguity, it contains no learning. In fact, we 

assume that the internal model has already been learnt in advance and doesn’t change during 

the experiment, even after the addition of visual cues (Figure 2; only the drift changes, but not 

the internal model). Although this is a relatively strong assumption, it can be justified if we 

assume that enough training has taken place before the hypothetical experiment. 

 Finally, some small improvements to the model could be imagined in the near future. 

For instance, the current version does not explain why in certain cases, although there is 

evidence in favour of one interpretation, this interpretation does not gain access to 

consciousness. (e.g., during OFF-periods in intermittent presentation). In other words, 

although our simplified model predicts well perceptual behaviour when the 2 interpretations 

are the only relevant choices (e.g., when there is presentation of an ambiguous stimulus), it fails 

to predict perceptual decisions when additional interpretations become relevant (e.g., absence 

of cube when there is no stimulus, during OFF-periods). Despite that, the model is still able to 

explain the priming (and suppressing) effect observed when the stimulus is briefly removed. 

 In conclusion, we described bistable perception as a probabilistic inference process, 

under the influence of amplified priors due to the presence of descending loops in the cortical 

hierarchy. The model explains why bistable perception occurs in the first place and qualitatively 

predicts several of its properties. Additionally, it has important implications for the neural 

correlates of bistability and the relation between normal brain functioning and pathology, 

ultimately linking computation, behaviour and neural implementation. 
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Supplementary Material 

 

From belief propagation to the discrete model 

 Belief propagation (BP; or Sum-Product algorithm) is a general and efficient algorithm 

that performs inference in directed acyclic graphs (DAG) (Figure S1a; [21]). In the most general 

case, the DAG has first to be transformed into a factor graph (FG), which elucidates the 

factorization properties of the underlying joint distribution (Figure S1b). A FG contains 2 types 

of nodes: variable nodes represented by lower-case indices (e.g., 𝑖, 𝑗) and factor nodes 

represented by upper-case indices (e.g., 𝐼, 𝐽), connected with each other through edges. All the 

variable nodes directly connected to a factor node (e.g., 𝐼) appear in the corresponding factor 

(𝑓𝐼) and are represented by 𝒙𝑁𝐼.  

 BP works by propagating local messages between neighbouring nodes. There are 2 types 

of messages: messages going from variables to factors and messages going from factors to 

variables. Those messages can be computed recursively by the following equations (discrete 

variables): 

𝜇𝑗→𝐼(𝑥𝑗) = ∏ 𝜇𝐽→𝑗(𝑥𝑗)

𝐽𝜖𝑁𝑗\{𝐼}

                                                                                     (𝑆1) 

𝜇𝐼→𝑖(𝑥𝑖) = ∑ 𝑓𝐼
𝑥𝑁𝐼\{𝑖}

(𝑥𝑁𝐼) ∏ 𝜇𝑗→𝐼
𝑗∈𝑁𝐼\{𝑖}

                                                                   (𝑆2) 

𝑁𝑗 is the set of all factors directly connected to variable 𝑗. Given that the FG is derived from a 

DAG, the factor 𝑓𝐼(𝑥𝑁𝐼) is a conditional probability and represents the strength of the 

connection between the variables in 𝒙𝑁𝐼 . Eq. (𝑆1) simply means that the message from a variable 

j to a factor 𝐼 is the product of all the messages arriving at j, except for the message sent from 

this particular factor 𝐼. Similarly, a message sent from a factor 𝐼 to a variable 𝑖 is the product of 

all the messages arriving at 𝐼, except for the message sent from 𝑖, weighed by the factor 𝑓𝐼 and 

marginalized over all the other variables in 𝑥𝑁𝐼 ((𝑆2)). Once all messages have been propagated 

in both directions (one pass is sufficient for convergence to the correct posterior, when there 

are no loops), posterior probabilities can be computed as follows: 
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𝑏𝑖(𝑥𝑖) =
1

𝑍
∏𝜇𝐼→𝑖(𝑥𝑖)                                                                                             (𝑆3)

𝐼∈𝑁𝑖

 

where 𝑍 is the normalization constant. Consequently, posteriors can be calculated as the 

products of all the messages arriving at each node. 

 

 

Figure S1: BP and discrete model. (a.): The generative model as Bayesian network. (b.): The factor graph. 

(c.): Belief propagation. (d.): Circular inference. (e.): A simplified model for circular inference [25] . (f.): The 

discrete model. 

 

 In a previous paper, Jardri and Denève drew an analogy between BP and neural 

processing in recurrent, hierarchical networks (Figure S1c; [22]). They showed that, when 

considering pairwise graphs and binary variables and taking the log-ratios, factors can be 

omitted and BP recursive equations can be rewritten as follow: 

𝐵𝑖 =∑𝑀𝑗→𝑖                                                                                                                (𝑆4)

𝑗

 

𝑀𝑗→𝑖 = 𝐹(𝐵𝑗 −𝑀𝑖→𝑗 , 𝑤𝑗𝑖
1 , 𝑤𝑗𝑖

0)                                                                                 (𝑆5) 

In (𝑆4) and (𝑆5), 𝛭𝑗→𝑖 = log (
𝜇(𝑥𝑖=1)

𝜇(𝑥𝑖=0)
) and 𝐵𝑖 = log (

𝑏𝑖(𝑥𝑖=1)

𝑏𝑖(𝑥𝑖=0)
). 𝐹() on the other hand corresponds 

to a sigmoid function, defined in the following way: 
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𝐹(𝐵,𝑤1, 𝑤0) = log (
𝑤1𝑒𝐵 +𝑤0

(1 − 𝑤1)𝑒𝐵 + (1 − 𝑤0)
)                                                 (𝑆6) 

𝑤𝑗𝑖
1 and 𝑤𝑗𝑖

0 correspond to the strength of the (𝑗 → 𝑖) connection and are defined as the 

following conditional probabilities: 

𝑤𝑗𝑖
1 = 𝑃(𝑥𝑖 = 1|𝑥𝑗 = 1), 𝑤𝑗𝑖

0 = 𝑃(𝑥𝑖 = 1|𝑥𝑗 = 0)                                      (𝑆7) 

 In equation (𝑆5), the message is defined as a function of the belief of the variable that 

sends the message, minus the message sent in the opposite direction. This correction (similar 

to the correction in initial equations (𝑆1), (𝑆2)) is crucial, since it prevents the formation of 

circularity, i.e. reverberation of messages which are counted many times. Failure of the 

corrective mechanism (hypothesized to be implemented by inhibition) to subtract efficiently all 

the redundant information (e.g. due to E/I imbalance in favour of excitation) leads to circular 

inference (CI) (Figure S1d), in which case equation (𝑆5) is written as follows: 

𝑀𝑗→𝑖 = 𝐹(𝐵𝑗 − 𝑎𝑆
′𝑀𝑖→𝑗 , 𝑤𝑗𝑖

1 , 𝑤𝑗𝑖
0) , 𝑖𝑓 𝑖 𝑖𝑠 𝑏𝑒𝑙𝑜𝑤 𝑗                                               (𝑆9) 

𝑀𝑗→𝑖 = 𝐹(𝐵𝑗 − 𝑎𝑃
′𝑀𝑖→𝑗 , 𝑤𝑗𝑖

1 , 𝑤𝑗𝑖
0) , 𝑖𝑓 𝑖 𝑖𝑠 𝑎𝑏𝑜𝑣𝑒 𝑗                                            (𝑆10) 

Parameters 𝑎𝑆
′  and 𝑎𝑃

′  quantify the strength of the loops (climbing and descending respectively) 

per layer, in other words what part of each message gets reverberated within a single connection 

and take values between 0 and 1 (1 corresponds to exact inference, i.e. E/I balance). 

 Although the outcome of BP (and of CI) can be calculated recursively via eq. (𝑆4), (𝑆5) 

((𝑆4), (𝑆9), (𝑆10) for CI), the presence of the non-linear 𝐹 term makes it difficult to derive 

general and handy closed form solutions. For this reason, a simplification of the BP scheme was 

recently suggested, that keeps all the essential features of CI while presenting it in a more 

operational form (Figure S1e; [25]). In particular, hierarchy is reduced to a 3-node graph, 

comprising the prior information, the sensory information and the variable whose posterior 

needs to be calculated. Because the total effect of the loops depends on the number of possible 

reverberations (i.e. the number of layers in the hierarchy), parameters 𝑎𝑆
′  and 𝑎𝑃

′  where replaced 

by 𝑎𝑆 and 𝑎𝑃, which can take any value above 0 (with 0 corresponding to exact inference; values 

below 0 are also possible and signify an increased strength of inhibition, see Main Text) and 

quantify the overall amplification of information in the whole original hierarchy. This simplified 

CI model can be written as follows: 

𝐿 = 𝐹(𝐿𝑆 + 𝑅𝑆 + 𝑅𝑃 , 𝑤𝑆, 1 − 𝑤𝑆) + 𝐹(𝐿𝑃 + 𝑅𝑆 + 𝑅𝑃 , 𝑤𝑃 , 1 − 𝑤𝑃)        (𝑆11) 
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where 𝐿 is the log-odds ratio, 𝐿𝑆 is the log-likelihood ratio, 𝐿𝑃 is the log-prior ratio, 𝑤𝑆 is the 

feedforward weight, 𝑤𝑃 is the feedback weight and 𝑅𝑆, 𝑅𝑃 are the reverberated terms, computed 

as follow: 

𝑅𝑆 = 𝐹(𝑎𝑆𝐿𝑆, 𝑤𝑆, 1 − 𝑤𝑆)                                                                                  (𝑆12)  

𝑅𝑃 = 𝐹(𝑎𝑃𝐿𝑃 , 𝑤𝑃 , 1 − 𝑤𝑃)                                                                                 (𝑆13) 

For Gaussian noise, the log-likelihood ratio can be written in the following way: 

𝐿𝑆 =
2𝜇𝑖𝑛𝑡

𝜎𝜄𝑛𝑡
2 𝑆𝑡 = 𝑤𝑖𝑛𝑡𝑆𝑡                                                                                       (𝑆14) 

 where: 𝑆𝑡~𝑁(𝜇𝑛𝑜𝑖𝑠𝑒 , 𝜎𝑛𝑜𝑖𝑠𝑒
2 ) 

and (𝜇𝑖𝑛𝑡 , 𝜎𝑖𝑛𝑡, 𝜇𝑛𝑜𝑖𝑠𝑒 , 𝜎𝑛𝑜𝑖𝑠𝑒) are parameters of the internal / noise model (Main Text).  

In the discrete case, that corresponds to a random walk around 𝜇𝑛𝑜𝑖𝑠𝑒. 

 In eq. (𝑆11)  the first term represents the total bottom up information and the second 

term the total top down information. That comprises the original information (likelihood 

and prior respectively) along with the reverberated terms, that means the likelihood 

corrupting the prior and vice versa. Furthermore, an additional term is considered inside 

each component (a reverberated likelihood for the likelihood term and a reverberated prior 

for the prior term) that renders the 2 streams practically indistinguishable.  

 Both implementations of CI make the same assumptions and generate the same 

qualitative predictions. More particularly, they both hypothesize that redundant information is 

not fully removed from the propagated messages, leading to amplification of sensory evidences 

and/or priors [22,24]. Additionally, bottom-up information is corrupted by top-down 

information and vice versa, creating aberrant correlations between sensory evidence and priors 

([24,25]; Leptourgos et al, submitted). 

   The model presented here is similar to the model described by eq. (𝑆11) but it comprises 

dynamics too, resulting in the following equation (Figure S1f): 

 

𝐿𝑡+1 = 𝐹(𝐿𝑆 + 𝑅𝑆 + 𝑅𝑃 , 𝑤𝑆, 1 − 𝑤𝑆) + 𝐹(𝐿𝑡 + 𝑅𝑆 + 𝑅𝑃 , 1 − 𝑟𝑜𝑓𝑓 , 𝑟𝑜𝑛)     (𝑆15) 
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In (𝑆15) we take 𝑑𝑡 = 1 (discrete model). 𝐿𝑡 is the log-posterior ratio of variable 𝑋 (3D 

interpretation) at time t, which becomes the prior for the next time step. 𝑟𝑜𝑛, 𝑟𝑜𝑓𝑓 are the 

transition rates (see Main Text), which for simplicity and without loss of generality have been 

taken equal to the feedback weights (𝑟𝑜𝑛 = 𝑤𝑃
0, 𝑟𝑜𝑓𝑓 = 1 − 𝑤𝑃

1; in (𝑆13) 𝑤𝑃
1 = 𝑤𝑃 , 𝑤𝑃

0 = 1 − 𝑤𝑃).  

 Note that the 2 rates are not necessarily equal to each other. In that case, 

𝐹(0,1 − 𝑟𝑜𝑓𝑓, 𝑟𝑜𝑛) ≠ 0. In order to avoid reverberation of information in the absence of 

descending loops (𝑎𝑃 = 0), we defined 𝑅𝑃 as follows: 

𝑅𝑃 = 𝐹(𝑎𝑃𝐿𝑡 , 1 − 𝑟𝑜𝑓𝑓 , 𝑟𝑜𝑛) − 𝐹(0,1 − 𝑟𝑜𝑓𝑓 , 𝑟𝑜𝑛)                                       (𝑆16) 

 

From the discrete model to the continuous model 

 We now consider infinitesimally small time-steps (𝑑𝑡 → 0) and the corresponding 

sensory evidence 𝑑𝑆𝑡. As mentioned in the Main Text, we assume 𝑟𝑜𝑛, 𝑟𝑜𝑓𝑓 and 𝑎𝑃 to be 

proportional to 𝑑𝑡. Then equation (𝑆15) reads (after using (𝑆12), (𝑆14) and (𝑆16)): 

𝐿𝑡+𝑑𝑡 = 

𝐹(𝑤𝑖𝑛𝑡𝑑𝑆𝑡 + 𝐹(𝑎𝑆𝑤𝑖𝑛𝑡𝑑𝑆𝑡, 𝑤𝑆, 1 − 𝑤𝑆) + 𝐹(𝑎𝑃𝑑𝑡𝐿𝑡, 1 − 𝑟𝑜𝑓𝑓𝑑𝑡, 𝑟𝑜𝑛𝑑𝑡)

− 𝐹(0,1 − 𝑟𝑜𝑓𝑓𝑑𝑡, 𝑟𝑜𝑛𝑑𝑡), 𝑤𝑆, 1 − 𝑤𝑆) + 

+𝐹(𝐿𝑡 + 𝐹(𝑎𝑆𝑤𝑖𝑛𝑡𝑑𝑆𝑡, 𝑤𝑆, 1 − 𝑤𝑆) + 𝐹(𝑎𝑃𝑑𝑡𝐿𝑡 , 1 − 𝑟𝑜𝑓𝑓𝑑𝑡, 𝑟𝑜𝑛𝑑𝑡)

− 𝐹(0,1 − 𝑟𝑜𝑓𝑓𝑑𝑡, 𝑟𝑜𝑛𝑑𝑡), 1 − 𝑟𝑜𝑓𝑓𝑑𝑡, 𝑟𝑜𝑛𝑑𝑡) = 

= 𝐹𝑆 + 𝐹𝑃                                                                                                                                            (𝑆17) 

We linearize equation  (𝑆17) by taking the Taylor expansion of each term and keeping only the 

first order terms.  

The following general equalities hold (see Demonstrations below): 

𝐹(𝑥,𝑤, 1 − 𝑤) = (2𝑤 − 1)𝑥 + 𝑂(𝑥2), 𝑓𝑜𝑟 𝑥 → 0                                                         (𝑆18) 

𝐹(𝑥, 1 − 𝑟𝑜𝑓𝑓𝑑𝑡, 𝑟𝑜𝑛𝑑𝑡) = 𝑥 + 𝑑𝑡 (𝑟𝑜𝑛(1 + 𝑒
−𝑥) − 𝑟𝑜𝑓𝑓(1 + 𝑒

𝑥)) + 𝑂(𝑑𝑡2)                   (𝑆19) 

log(1 + 𝑥) = 𝑥 + 𝑂(𝑥2),        𝑓𝑜𝑟 𝑥 → 0                                                                                   (𝑆20) 
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Using (𝑆18)-(𝑆20) we get: 

𝐹(𝑎𝑆𝑤𝑖𝑛𝑡𝑑𝑆𝑡, 𝑤𝑆, 1 − 𝑤𝑆) = (2𝑤𝑆 − 1)𝑎𝑆𝑤𝑖𝑛𝑡𝑑𝑆𝑡 + 𝑂(𝑑𝑡
2)                                                (𝑆21) 

𝐹(𝑎𝑃𝑑𝑡𝐿𝑡 , 1 − 𝑟𝑜𝑓𝑓𝑑𝑡, 𝑟𝑜𝑛𝑑𝑡)  

= 𝑎𝑃𝑑𝑡𝐿𝑡 + 𝑑𝑡 (𝑟𝑜𝑛(1 + 𝑒
−𝑎𝑃𝑑𝑡𝐿𝑡) − 𝑟𝑜𝑓𝑓(1 + 𝑒

𝑎𝑃𝑑𝑡𝐿𝑡)) 

+ 𝑂(𝑑𝑡2)                                                                                                                                            (𝑆22) 

𝐹(0,1 − 𝑟𝑜𝑓𝑓𝑑𝑡, 𝑟𝑜𝑛𝑑𝑡) = 2𝑑𝑡(𝑟𝑜𝑛 − 𝑟𝑜𝑓𝑓) + 𝑂(𝑑𝑡
2)                                                             (𝑆23) 

 

From (𝑆22), using (𝑆20), one gets: 

𝐹(𝑎𝑃𝑑𝑡𝐿𝑡 , 1 − 𝑟𝑜𝑓𝑓𝑑𝑡, 𝑟𝑜𝑛𝑑𝑡) =  𝑎𝑃𝑑𝑡𝐿𝑡 + 2𝑑𝑡(𝑟𝑜𝑛 − 𝑟𝑜𝑓𝑓) + 𝑂(𝑑𝑡
2)                              (𝑆24)     

Using (𝑆18)-(𝑆24), one concludes: 

𝐹𝑆 = 𝑤𝑖𝑛𝑡(2𝑤𝑆 − 1)(1 + 𝑎𝑆(2𝑤𝑆 − 1))𝑑𝑆𝑡 + 𝑎𝑃𝑑𝑡(2𝑤𝑆 − 1)𝐿𝑡 +  𝑂(𝑑𝑡
2)                    (𝑆25) 

𝐹𝑃 = 𝐿𝑡 + 𝑎𝑆𝑤𝑖𝑛𝑡(2𝑤𝑆 − 1)𝑑𝑆𝑡 + 𝑎𝑃𝑑𝑡𝐿𝑡 + 𝑑𝑡 (𝑟𝑜𝑛(1 + 𝑒
−𝐿𝑡) − 𝑟𝑜𝑓𝑓(1 + 𝑒

𝐿𝑡))

+  𝑂(𝑑𝑡2)                                                                                                                 (𝑆26) 

Using (𝑆25) and (𝑆26), (𝑆17) becomes: 

𝐿𝑡+𝑑𝑡 = 𝐿𝑡 + 2𝑤𝑆𝑎𝑃𝑑𝑡𝐿𝑡 + 𝑑𝑡 (𝑟𝑜𝑛(1 + 𝑒
−𝐿𝑡) − 𝑟𝑜𝑓𝑓(1 + 𝑒

𝐿𝑡))

+ 𝑤𝑖𝑛𝑡(2𝑤𝑆 − 1)(1 + 2𝑤𝑆𝑎𝑆)𝑑𝑆𝑡 + 𝑂(𝑑𝑡
2)                                                 (𝑆27) 

Then: 

𝑑𝐿

𝑑𝑡
=
𝐿𝑡+𝑑𝑡 − 𝐿𝑡

𝑑𝑡

= 2𝑤𝑆𝑎𝑃𝐿 + (𝑟𝑜𝑛𝑒
−𝐿 − 𝑟𝑜𝑓𝑓𝑒

𝐿) + (𝑟𝑜𝑛 − 𝑟𝑜𝑓𝑓) + 𝑤𝑖𝑛𝑡(2𝑤𝑆 − 1)(1

+ 2𝑤𝑆𝑎𝑆)𝑛𝑡 

which is the equation of the Main text and 𝑛𝑡 is a Gaussian stochastic process. 
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Derivation of (𝑺𝟏𝟖) 

Using the definition of 𝐹() (eq. 𝑆(6)) and the Taylor expansion: 𝑒𝑥 = 1 + 𝑥 + 𝑂(𝑥2), one gets: 

𝐹(𝑥,𝑤, 1 − 𝑤) = log(𝑤(1 + 𝑥 + 𝑂(𝑥2)) + 1 − 𝑤) − log ((1 − 𝑤)(1 + 𝑥 + 𝑂(𝑥2)) + 𝑤) 

= log(1 + 𝑤𝑥 + 𝑂(𝑥2)) − log(1 + 𝑥 − 𝑤𝑥 + 𝑂(𝑥2)) 

Using (𝑆20), we get (𝑆18) 

 

Derivation of eq.(𝑺𝟏𝟗) 

Using the definition of 𝐹() (eq. 𝑆(6)): 

𝐹(𝑥, 1 − 𝑟𝑜𝑓𝑓𝑑𝑡, 𝑟𝑜𝑛𝑑𝑡) = 𝑥 + log (1 + 𝑑𝑡(−𝑟𝑜𝑓𝑓 + 𝑟𝑜𝑛𝑒
−𝑥)) − log (1 + 𝑑𝑡(𝑟𝑜𝑓𝑓𝑒

𝑥 − 𝑟𝑜𝑛)) 

Using (𝑆20), we get (𝑆19) 

 

Bifurcation analysis 

Pitchfork bifurcation 

We now consider the case when there is no stimulation. 

If 𝑟𝑜𝑛 = 𝑟𝑜𝑓𝑓 = 𝑟, one gets: 

 

𝑓𝐿 =
𝑑𝑓

𝑑𝐿
= 2𝑤𝑆𝑎𝑃 − 𝑟(𝑒

−𝐿 + 𝑒𝐿)                                                                                                 (𝑆28) 

 

A pitchfork bifurcation occurs at the maximum value of 𝑎𝑃, for which 𝑓𝐿 < 0, ∀𝐿 (and 

consequently 𝑓 is monotonically descending → there is one stable fixed point) (Figure 4a,b) 

For 𝑎𝑃 < 0 → 𝑓𝐿 < 0,∀𝐿 

For 𝑎𝑃 ≥ 0, the first term in (𝑆28) is always non-negative, while the second term is always 

negative. Then we need:  2𝑤𝑆𝑎𝑃 < 𝑟(𝑒
−𝐿 + 𝑒𝐿), ∀𝐿 

We know that:  

min(𝑟(𝑒−𝐿 + 𝑒𝐿)) = 2𝑟                                                                                                                  (𝑆29) 

Then:  

if 2𝑤𝑆𝑎𝑃 < 2𝑟 ↔ 𝑎𝑃 <
𝑟

𝑤𝑆
, 𝑓𝐿 < 0, ∀𝐿 



100 
 

Consequently, a pitchfork bifurcation occurs when:  

𝑎𝑃
𝑃𝑓
=
𝑟

𝑤𝑆
 

For 𝑎𝑃 <
𝑟

𝑤𝑆
, there is one stable fixed point at 𝐿 = 0. For 𝑎𝑃 >

𝑟

𝑤𝑆
, there is an unstable fixed 

point at  𝐿 = 0 and two stable fixed points given by the following equation: 

 

𝑓(𝐿𝑓𝑝) = 2𝑤𝑆𝑎𝑃𝐿𝑓𝑝 + 𝑟(𝑒
−𝐿𝑓𝑝 − 𝑒𝐿𝑓𝑝) = 0                                                                              (𝑆30)  

 

The different cases are presented in Figure S2 (see also Figure 3c). 

 

                      

Figure S2: The Pitchfork Bifurcation 

 

 

Saddle-Node bifurcation 

If 𝑟𝑜𝑛 ≠ 𝑟𝑜𝑓𝑓, we get: 

𝑓𝐿 =
𝑑𝑓

𝑑𝐿
= 2𝑤𝑆𝑎𝑃 − (𝑟𝑜𝑛𝑒

−𝐿 + 𝑟𝑜𝑓𝑓𝑒
𝐿)                                                                                      (𝑆31) 

If 𝑎𝑃 = 0, there is one stable fixed point at 𝐿 = log (
𝑟𝑜𝑛

𝑟𝑜𝑓𝑓
) (MainText, Figure S3 (red)). 

If we extend the argument put forward in the case of the pitchfork bifurcation, we find that 

function 𝑓 stops being monotonically descending when: 
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𝑎𝑃 =
𝐴

𝑤𝑆
                                                                                                                                              (𝑆32) 

where: 𝐴 = 𝑟𝑜𝑛√
𝑟𝑜𝑓𝑓

𝑟𝑜𝑛
+ 𝑟𝑜𝑓𝑓√

𝑟𝑜𝑛

𝑟𝑜𝑓𝑓
                                                                                                (𝑆33) 

Because of the asymmetry introduced by the 2 rates, that is not a bifurcation point (Figure S3 

(light blue)). Instead, a Saddle-Node bifurcation occurs when one of the two local extrema 

crosses x-axis (Figure 4c,d). For the local extrema the following holds: 

𝑓𝐿 = 0 → 𝐿1,2 = log

(

 
𝑤𝑆𝑎𝑃 ∓√𝑤𝑆

2𝑎𝑃
2 − 𝑟𝑜𝑛𝑟𝑜𝑓𝑓

𝑟𝑜𝑓𝑓
)

                                                                  (𝑆34) 

Then, one can calculate the value (of 𝑎𝑃 , 𝑟𝑜𝑛 or 𝑟𝑜𝑓𝑓) at which SN bifurcation occurs simply by 

taking: 𝑓(𝐿1,2) = 0 

All the fixed points can be calculated from the following equation (Figure S3 (blue)): 

 

𝑓(𝐿𝑓𝑝) = 2𝑤𝑆𝑎𝑃𝐿𝑓𝑝 + 𝑟𝑜𝑛𝑒
−𝐿𝑓𝑝 − 𝑟𝑜𝑓𝑓𝑒

𝐿𝑓𝑝 + (𝑟𝑜𝑛 − 𝑟𝑜𝑓𝑓) = 0                                          (𝑆35)  

 

                     

Figure S3: The Saddle-Node bifurcation. The light blue curve corresponds to an extremely 

strong implicit bias (the system gets stuck to interpretation 1) 
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MAP decision criterion with hysteresis 

 In the Main Text we present a model whose perceptual decisions are based on MAP 

decision criterion. For binary variables, that is equivalent to making decisions according to the 

sign of the Log-Posterior-Ratio. Although it maximises accuracy, in ambiguous contexts MAP 

decisions are extremely vulnerable to noise, resulting in phase duration histograms which have 

an exponential shape (see section about Distribution of phase durations).   

 Here, we propose an alternative decision criterion whose threshold changes depending 

on the current dominant percept (Figure S4a). According to this MAP criterion with hysteresis, 

when the system perceives SFA interpretation (corresponding to positive logits), the threshold 

is moved to a negative value (𝐿 = −휀) and inversely, when it perceives SFB interpretation 

(negative logits), the threshold becomes slightly positive (𝐿 = 휀). When none of the 2 

interpretations dominates (e.g. when the cube disappears), the threshold is fixed to 0. In short, 

parameter ε implements some hysteresis of the threshold that makes the system more robust 

against noise: a switch can only be triggered when there is substantial evidence for the opposite 

interpretation. In other words, it is equivalent to some form of conservatism, which prevents 

switching unless it is necessary. 

 Crucially, the dynamical circular inference model with hysteresis predicts positively 

skewed phase duration histograms, similar to those observed experimentally (Figure S4b). 

Whenever a switch occurs, the threshold jumps to its symmetrical value. Interestingly, even 

small values of ε are sufficient to prevent noise from causing an instantaneous switch. 
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Figure S4: MAP with hysteresis and histogram. (a.): A switch occurs only if there is substantial evidence 

for the opposite interpretation (more conservative decision criterion). (b.) With this additional assumption, 

the model predicts gamma (or log-normal)-distributed phase duration histograms 
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Model with history-dependent transition rates 

 In the Main Text, we describe a model in which transition rates (𝑟𝑜𝑛, 𝑟𝑜𝑓𝑓) are fixed and 

do not change in time (eq. (4)). This model predicts various features of bistable perception, 

including the stabilisation of perception when the stimulus is presented intermittently (see 

section on Intermittent presentation, Main Text). That is because descending loops generate 

a memory-like mechanism, which primes perception towards the most recent observation. 

More particularly, in the absence of any stimulation, the belief 𝐿 moves towards the closest 

attractor, depending on the value before the disappearance of the stimulus. If the attractor is 

far enough from the threshold, the model predicts stabilisation. Because all the parameters are 

time-independent, the energy landscape is fixed, meaning that the model can only generate 

monotonic relationships between SP and OFF-Duration (either increase or decrease). As a 

result, the model cannot predict an initial destabilisation of perception, occurring for short 

OFF-Durations, which turns into stabilisation for longer disappearances.  

 Here we show that an extension of the model, which further assumes history-dependent 

transition rates, can additionally predict a destabilisation of perception when the OFF-Duration 

is short. As in the original model, in the extended model the belief 𝐿 is given by the equation 

eq. (4): 

𝑑𝐿

𝑑𝑡
= 2𝑤𝑆𝑎𝑃𝐿 + (𝑟𝑜𝑛(𝑡)𝑒

−𝐿 − 𝑟𝑜𝑓𝑓(𝑡)𝑒
𝐿) + (𝑟𝑜𝑛(𝑡) − 𝑟𝑜𝑓𝑓(𝑡)) + 𝑤𝑖𝑛𝑡(2𝑤𝑆 − 1)(1 + 2𝑤𝑆𝑎𝑆)𝑛𝑡

= 𝑓(𝐿) 

Contrary to the model presented in the Main Text, the extended model posits that transition 

rates evolve in time, based on a standard leaky-integrator: 

𝜏
𝑑𝑟𝑜𝑛
𝑑𝑡

= −𝑟𝑜𝑛 + 𝑟𝑜𝑛
+ + 𝑟𝑜𝑛,𝐵                                                                                    (𝑆35) 

𝜏
𝑑𝑟𝑜𝑓𝑓
𝑑𝑡

= −𝑟𝑜𝑓𝑓 + 𝑟𝑜𝑓𝑓
+ + 𝑟𝑜𝑓𝑓,𝐵                                                                           (𝑆36) 

where 𝜏 is the time constant, 𝑟𝑜𝑛,𝐵, 𝑟𝑜𝑓𝑓,𝐵 are the baseline values of the 2 rates, while 𝑟+ is an 

additional parameter having the following property: 

{

𝑖𝑓 𝑋 = 1:  𝑟𝑜𝑓𝑓
+ > 0, 𝑟𝑜𝑛

+ = 0

𝑖𝑓 𝑋 = 0:  𝑟𝑜𝑛
+ > 0, 𝑟𝑜𝑓𝑓

+ = 0

𝑖𝑓 𝑛𝑜𝑛𝑒 𝑖𝑠 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡: 𝑟𝑜𝑛
+ = 𝑟𝑜𝑓𝑓

+ = 0

                                                            (𝑆37)   

(𝑆37) means that when 𝑋 = 1 is the dominant interpretation, the transition rate from 0 to 1 

(𝑟𝑜𝑛) decreases towards its baseline (𝑟𝑜𝑛,𝐵), whereas the rate from 1 to 0 (𝑟𝑜𝑓𝑓) increases towards 
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an upper state (𝑟𝑜𝑓𝑓
+ + 𝑟𝑜𝑓𝑓,𝐵). The opposite is true if 𝑋 = 0 is the dominant interpretation. 

Finally, when neither of the two is dominant (e.g. during OFF-Duration), both rates go back to 

their baseline level. As a result, this mechanism destabilises the currently dominant 

interpretation, like adaptation in mechanistic models. Crucially, it also affects the energy 

landscape (the prior, which is given by eq. (7), changes in time), making the attractor that 

corresponds to the dominant percept shallower and the “non-dominant” attractor deeper. 

Consequently, it can further generate non-monotonic relationships between SP and OFF-

Duration. 

 Figure S5 illustrates the predictions of the model ((a) without loops and (b) with loops), 

in case of 𝑟𝑜𝑛,𝐵 = 𝑟𝑜𝑓𝑓,𝐵 (no bias), while Figure S6 illustrates an explanation based on the phase 

portraits (a,b) and the evolutions of the rates (c,d). In both cases, for small values of OFF-

Duration (<1s), SP decrease towards chance level (or even below; the fixed point is below 0, 

because 𝑟𝑜𝑓𝑓 > 𝑟𝑜𝑛) while for larger values (>1s) they increase again (both 𝑟𝑜𝑛 and 𝑟𝑜𝑓𝑓 have 

reached their baseline value). Importantly, the loops have the same effect as in the original 

model, more particularly they affect the convergence point (0.5 if there are no loops, >0.5  if 

there are loops).        

   

 

 

Figure S5: Intermittent Presentation with history-dependent transition rates (symmetrical 

case). In agreement with experimental evidence a model with history-dependent transition rates predicts 

destabilisation for short OFF-durations and stabilisation (if there are descending loops (b.)) for longer 

intervals. As in Figure 6, without loops the survival probabilities converge to 0.5 (a.). 
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Figure S6: An interpretation of the initial destabilisation in case of history-dependent transition 

rates. Panels (a.) and (b.) illustrate examples of the belief when the stimulus is ON (0:5s) and when it 

disappears (t>5s) ((a.): No loops; (b.): loops), while panels (c.) and (d.) illustrate the evolution of the 

transition rates ((c.): No loops; (d.): loops). The time-dependent rates generate time-dependent prior / 

attractors. E.g. in (a.), right after the disappearance of the stimulus (t=5s), 𝑟𝑜𝑛  is larger than 𝑟𝑜𝑓𝑓, resulting 

in a positive prior. In the absence of stimulation, both rates go to their baseline value (the two baseline 

values are equal – symmetrical case). Consequently, the difference between the rates becomes smaller, 

resulting in an attractor that moves towards 0.5. That causes a non-monotonic evolution of the belief for 

t>5, which gives rise to the survival probabilities in Figure S5 (a.). 
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Abstract 

Bistable perception is characterized by spontaneous switches of the perceived interpretation of 

the sensory stimulus, occurring every few seconds and generating uncorrelated sequences of 

dominance durations. Nevertheless, when bistable stimuli are intermittently presented, a 

specific pattern occurs with an increased number of switches for short blank durations, followed 

by a stabilisation phase for longer intervals. Although intermittent bistable perception has been 

extensively studied, a functional interpretation of the results is still lacking. Here we propose an 

experimental methodology able to overcome the shortcomings of previous studies. We used 

different versions of the Necker cube (normal and tilted), accounting for well-known perceptual 

biases. Sequences of those stimuli were discontinuously presented, separated by randomized, 

blank intervals of variable duration. We measured the survival probability for each 

interpretation and for all the blank intervals, reconstructing the entire stabilization curve. In 

complement to the typical stabilization pattern, we also evidenced a strong effect of the bias. 

Importantly, our results were well captured by a new computational framework called 

dynamical circular inference. This model suggests that descending loops in the cortical 

hierarchy are a fundamental property of the human brain, affecting the way we perceive the 

world. 
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Introduction 

 Bistable perception constitutes one of the few manifestations of a clear dissociation 

between the stimulation of a sensory organ and the resulting awareness, offering a unique 

window into the computational and neural processes underlying perceptual decision making 

and perceptual consciousness [1]. Continuous display of ambiguous figures generates 

spontaneous switches of the perceived interpretations, which results in a sequence of random 

and largely uncorrelated phase durations (intervals of persistence of a single interpretation) 

[2,3]. This observation led to the consensus that bistability is a memoryless process, mainly 

driven by noisy evidence [4–6]. 

 Despite the striking evidence for the dominant role of noise in triggering switches, the 

view that the effect of recent history can be a-priori neglected without further inquiry has been 

contested [7]. One of the main challenges came from the observation that discontinuous 

presentation of an ambiguous stimulus profoundly alters participants’ behaviour [8]. In their 

seminal study, Orbach and colleagues found that brief disappearance of the stimulus (up to 

~500ms) results in a destabilisation of the perceived interpretation, as denoted by the increase 

in the alternation rate; on the contrary, longer OFF-Durations led to a gradual decrease in the 

number of switches, which became almost zero for intervals larger than ~1.4s [9]. Those 

researchers attributed this dual effect of the blank interval to a form of fatigue (“satiation of 

orientation”), which builds-up when the stimulus is ON and decays when the stimulus is OFF. 

Most importantly, this study triggered a lot of discussions regarding the role of adaptation and 

the implementation of perceptual memory in bistable perception [10–12]. 

 Regardless of the huge impact this work had on the field, it suffered from a number of 

methodological issues. First, given the discontinuous presentation of the stimulus, the use of 

the reversal rate as the main variable is questionable: Reversal rate is defined as the number of 

switches during an interval and it can be affected by the overall time of exposure to the stimulus 

[8], while it also confounds switches due to disappearance with switches due to prolonged 

presentation (OFF-Duration vs ON-Duration effects; [13]). Second, reversal rate accounts for 

both types of switches (interpretation 1 to interpretation 2 and vice-versa), completely ignoring 

potential differences between the stimulus’ interpretations (e.g. eye-dominance in binocular 

rivalry or “seeing-from-above” bias in the Necker cube; [14,15]; see also Chapters 2-3 of the 

present thesis). In the same vein, those studies attributed stabilisation only to acute biases 

(short-term perceptual memory), completely ignoring the complementary effects of the chronic 

biases mentioned before (long-term priors) [16]. Finally, another (minor) shortcoming 
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corresponds to the lack of within-block randomization of the inter-stimulus interval (ISI; OFF-

Duration), which results in predictable response timings and could have led to contamination 

of the results due to expectation or lack of attention [8]. 

 Aside from these methodological issues, intermittent presentation has proved to be a 

difficult problem to solve from a computational point of view (especially the distinction between 

short and long intervals as well as the link with continuous presentation; [3,12]). In previous 

work (chapter 3 of the present thesis), we proposed a normative (Bayesian) framework for 

bistable perception based on the notion of circular inference [17]. More specifically, we argued 

that descending loops, a form of aberrant priors’ amplification, underlie the rich 

phenomenology of bistability: priors get trapped and over-counted, giving rise to a positive 

feedback that pushes beliefs towards more extreme values. From a mechanistic point of view, 

descending loops form a bistable attractor [5]. Crucially, descending loops (if strong enough) 

also implement a type of perceptual memory, causing stabilisation during intermittent 

presentation. 

 Here we use a novel, improved experimental methodology (briefly introduced in 

Chapter 3) to test the qualitative predictions of a dynamical circular inference model regarding 

intermittent presentation. We present two experiments, based on different versions of the 

Necker cube (normal and tilted cube). Our results can be well replicated (qualitatively) by a 

model with positive descending loops and add further support to our claim that circularity (and 

especially descending loops) makes up a constitutive element of our (perceptual) system, 

playing an important role in perceptual decision making in healthy populations. Besides, we 

propose that our method could form a standard technique, further used to understand both 

normal and pathological perceptual awareness. 

 

Methods  

 Our goal was to study the effect of the disappearance of the ambiguous stimulus within 

a range of OFF-Durations. We ran two different experiments, to further account for well 

documented chronic biases [16,18].  
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Participants 

 10 participants took part in each experiment. The two samples were independent. 

Participants were healthy volunteers meeting the following inclusion criteria: age > 18 years, 

provision of informed consent, normal or corrected-to-normal near visual acuity, no current 

medical history of neurological or psychiatric disorders, and no current or recent use of 

psychotropic medication or toxic drugs. Table 1 provides additional information about the two 

samples. 

 

 

Table 1: Participants and reaction times.  

 

Apparatus 

 Both experiments took place in a dark room. The stimuli were displayed either on a 15-

inch LED computer screen with a resolution of 1920x1080 pixels (experiment 1) or a 17-inch LED 

computer screen with a resolution of 1280x1024 pixels (experiment 2), both at 60 Hz. Responses 

were collected using either a keyboard (experiment 1) or a mouse (experiment 2). The 

background colour of the screen was black. The viewing distance was 60 cm and a headrest 

secured the position of the head. The experiments were implemented in MATLAB v. 2015b 

(MathWorks, Natich, MA), using Psychtoolbox v. 3.0.12. 
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Stimuli 

 The stimuli were 200x200 pixels (experiment 1) or 316x316 pixels (experiment 2), light-

gray Necker cubes. In each experiment we used a different version of the cube, expected to 

induce different implicit preferences to the participants [14]. In experiment 1, we used a normal 

cube (Figure 1a; left), known to be an asymmetrical stimulus (people have on average a 

preference for the “Seen From Above” (SFA) interpretation, as compared to the “Seen From 

Below” (SFB) interpretation; see also Chapters 2 and 3 of the present thesis). Contrariwise, a 

tilted cube was used in experiment 2 (Figure 1a; right), known to be on average symmetrical 

(no biases, except for potential idiosyncratic preferences). Stimuli were presented in the middle 

of the screen. A circular fixation point was added in the middle of each cube, to guide 

participants’ gaze. 

 

Experimental paradigm 

 As in previous studies, here we used a standard intermittent presentation paradigm 

(Figure 1b) [8,11,19,20]. Both experiments consisted of 12 blocks, each constituting a sequence 

of ON (stimulus is present) and OFF-Durations (stimulus is absent). Each ON-Duration was 

followed by an OFF-Duration, except for the last one in each block. A single trial contained an 

OFF-Duration, as well as the ON-Durations before and after. There were 64 ON-Durations (and 

63 OFF-Durations) per block, making up a set of 63 trials per block. Blocks were separated by 

10s black-screen breaks, while 2 additional breaks of non-predefined duration were also possible 

after the fourth and the eighth block. 

 Participants were instructed to report their dominant percept, as quickly as possible, 

every time the stimulus reappeared on the screen. Responses were given by pressing the relevant 

button (Right: Seen From Above/Right; Left: Seen From Below/Left). Contrary to other studies, 

ON-Durations did not have a standard length, instead the stimulus disappeared right after the 

first button-press. Consequently, participants could give only one response per ON-Duration 

(first impression), solving the problem of switches during stimulus’ presentation, but also 

avoiding confounding post-decision effects (e.g. accumulation of evidence after the button-

press) and making the task more interactive (increasing the sense of involvement and the levels 

of attention). 
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 Since we were interested in reconstructing the whole stabilisation curve (see Figure 2), 

we used a set of 9 OFF-Durations, different for each experiment. In experiment 1, blank periods 

were between 100 ms and 900 ms, with a 100 ms increment, while in experiment 2, they took 

the following values: {50, 100, 150, 300, 450, 600, 750, 900, 1050 [ms]}. The second set allowed 

for a higher resolution for short intervals (where an inversion from de-stabilisation to 

stabilisation usually occurs) but also a wider range of intervals. Crucially, blank intervals were 

randomized within each block, with 7 repetitions per block per interval. This gave a total 

number of 84 repetitions per OFF-Duration per experiment. 

 

 

 

Figure 1: Stimuli and experimental procedure. (a.): We used 2 different versions of the Necker cube, a 

normal cube (‘’Seen From Above’’ vs ‘’Seen From Below’’; experiment 1) and a tilted cube (‘’Seen From Right’’ 

vs ‘’Seen From Left’’; experiment 2). Their main difference is an implicit preference for the SFA interpretation, 

only present in the normal cube. (b.): Participants were presented with sequences of cubes, separated by 
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blank intervals. Every time the cube was on the screen, participants had to report their dominant percept by 

pressing a button. Once the button was pressed, the cube disappeared. We measured the survival 

probabilities for different Inter-Stimulus Intervals (ISI) and used them to reconstruct the stabilisation 

curves (SP - ISI).   

 

 Before the beginning of the experiment, participants were presented with the stimulus 

and the two possible interpretations and they had a training session of 5 blocks, 18 trials/block. 

Those results were not retained in the following analysis. 

 To avoid the confounding effects of eye-movements when the stimulus is present, 

participants were instructed to fixate on the central fixation point. 

 

Model-free analysis 

 As explained before, reversal rate is not ideal for quantifying stability when the stimulus 

is intermittently presented. Instead, we chose to use survival probabilities (SP), calculated 

separately for the two interpretations [21]. A SP can be defined as the probability of perceiving 

SFA (SFB) after a blank interval, given that SFA (SFB) was also perceived before the blank 

interval. Importantly, chronic and acute biases [16] have different effects on SP. More 

specifically, a long-term prior (e.g. SFA bias) generates a difference between the two SP, while 

a short-term bias makes the sum of the two SP not equal to 1 (see Figure 2 for an illustration). 

 Because SP takes values between 0 and 1 and the sample size was small, we used 

exclusively non-parametric statistics. The effect of the OFF-Duration was tested using a linear 

mixed-effects model (LMEM) comprising the effects of the blank interval and the different 

interpretations (SFA vs SFB) as well as their interaction as fixed effects, together with Gaussian 

random effects for intercepts and slopes (blank interval, interpretation and their interaction). 

In the tilted cube experiment, the (blank interval x interpretation) interaction term was omitted. 

Moreover, due to violation of the linearity assumption when considering all OFF-Durations 

together, in the tilted cube experiment we used two different linear models, one comprising 

blank intervals between 50 ms and 300 ms (destabilization) and one comprising longer intervals 

(300 ms ≤ OFF ≤ 1050 ms; stabilization). 

 Additionally, because we do not predefine the length of the ON-Duration, our results 

become vulnerable to longer reaction times (indeed, there is empirical and theoretical evidence 

suggesting a significant effect of the display duration on SP [3,9]). To control for that, we defined 
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a threshold (k = 600 ms) and split the data into two groups: a “Low Reaction Time” (LRT) group 

(RT<k) and a “High Reaction Time” (HRT) group (RT>k). Note that we chose a meaningful 

threshold, so that both groups contain sufficient amount of data (see Table 1 for a summary of 

the RT in the two experiments). Then, we repeated the above analysis (LMEM) in the different 

subgroups. 

 Finally, when necessary, we performed post-hoc comparisons using paired rank-sum 

tests to clarify simple effects in the 2 x 2 design and one-sample Wilcoxon signed rank tests to 

compare the mean SP with 0.5, i.e., chance level. To test specifically whether two SP (SP1, SP0) 

are symmetrical or not for a particular condition (if their sum is equal to 1), we used a paired 

rank-sum test to compare SP1 with (1-SP0) [20]. All significance tests were performed on the 

two samples of 10 participants each, they were two-tailed and used an alpha value of 0.05 in the 

statistical toolbox of Matlab v. 2015b (MathWorks, Natich, MA). 

 

Model and model predictions 

 Beyond suggesting a novel methodology for testing intermittent presentation in bistable 

perception, our primary goal was to test the predictions of a dynamical circular inference (dCI) 

model, described elsewhere (see Chapter 3), and in particular, to what extent descending loops 

play an important role in perception. 

 Here, we consider the more general version of the dCI model, in which the transition 

rates (the leak) are not stable, but change over time, depending on the current dominant 

percept, based on equations of leaky integration. As a result, we are able to capture not only the 

stabilisation trends (SP for longer OFF-Durations; captured also by dCI model with fixed 

transition rates) but also the initial destabilisation of the percepts (SP for shorter OFF-

Durations; not predicted by the simpler model). Note however that, since descending loops 

have important qualitative effects only on the convergence point of the SP (see Figure 2 and 

chapter 3 of the current thesis), our conclusions would be similar if the transition rates were 

fixed. 

 In brief, the dCI model with changing rates can be formalized in the following way: 

𝑑𝐿

𝑑𝑡
= 2𝑤𝑆𝑎𝑃𝐿 + (𝑟𝑜𝑛(𝑡)𝑒

−𝐿 − 𝑟𝑜𝑓𝑓(𝑡)𝑒
𝐿) + (𝑟𝑜𝑛(𝑡) − 𝑟𝑜𝑓𝑓(𝑡)) + 𝑤𝑖𝑛𝑡(2𝑤𝑆 − 1)(1 + 2𝑤𝑆𝑎𝑆)𝑛𝑡   (1)    

𝜏
𝑑𝑟𝑜𝑛

𝑑𝑡
= −𝑟𝑜𝑛 + 𝑟𝑜𝑛

+ + 𝑟𝑜𝑛,𝐵                                                                                                                          (2)                                                                                                                                      
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𝜏
𝑑𝑟𝑜𝑓𝑓

𝑑𝑡
= −𝑟𝑜𝑓𝑓 + 𝑟𝑜𝑓𝑓

+ + 𝑟𝑜𝑓𝑓,𝐵                                                                                                                 (3)  

Eq. 1 describes how the belief about the 3D interpretation of the cube changes in time, under 

the influence of the descending loops. Eq. 2 and 3 represent the evolution of the rates (note that 

𝑟𝑜𝑛
+  and 𝑟𝑜𝑓𝑓

+  are not fixed, but depend on the dominant percept) (for more details, see 

Supplementary Material of Chapter 3). We highlight that the noise term in (1) (last term) 

disappears during the OFF-Duration. 

 The predictions of the model (with and without descending loops; symmetrical and 

asymmetrical stimulus) are presented in Figure 2. When the stimulus is symmetrical (as in the 

tilted cube experiment; Figure 2(a.,b.)), the two SP overlap, as a result of the lack of a chronic 

bias. When there are no loops (Figure 2a), SP converges to 0.5 (the only fixed point of the 

system). In the presence of loops however (Figure 2b), SP reaches a different value (close to 1 if 

loops are strong enough), potentially causing stabilisation of both interpretations (note that in 

this case the sum of the SP is above 1, an indication of a persistent acute bias, generated by the 

loops). 

 When the stimulus is asymmetrical (as in the case of the normal cube experiment; 

Figure 2(c.,d.)), SP converge to different values. Without loops, they converge to symmetrical 

values above and below chance (Figure 2c). On the contrary, the descending loops generate a 

bistable attractor which forces SP to non-symmetrical values (Figure 2d; the location of the 

attractors depends on the strength of the loops and the baseline values of the two rates). 

 It’s interesting to highlight that in all four cases, the model is able to predict non-

monotonic stabilisation curves, in which an initial destabilisation is followed by a prolonged 

increase of the SP (which can lead to almost complete stability). We note however that the 

properties of the initial deepening depend on the choice of the parameters (mainly the 

parameters in eq. 2 and 3). 
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Figure 2: Model predictions for stabilization curves (SP – OFF-Durations). The model we used was 

the dynamical circular inference model, presented elsewhere (see Chapter 3). (a.): No bias (e.g. tilted cube), 

no (descending) loops. The 2 SP overlap and converge to 0.5. (b.): No bias, loops. SP overlap and converge 

to a value not equal to 0.5. (c.): Bias (e.g. normal cube), no loops. SP do not overlap and converge to 

symmetrical values. (d.): Bias, loops. SP do not overlap and converge to non-symmetrical values. [Bias: 

ron_b = 0.35, roff_b = 0.3; No Bias: ron_b = roff_b = 0.3; No loops: ap = ac = 0; Loops: ap = 1.5, ac = 0]. 

 

Results 

Experiment 1 (Normal cube) 

 The stabilisation curves from experiment 1 (normal cube) are presented in Figure 3a. 

Simple visual inspection unveils a lot about the stimulus and the underlying processes. The first 

thing that we observe is that the two curves (blue: SFA; red: SFB) do not overlap, as we would 

expect from an asymmetrical stimulus. Additionally, the values of the two SP for long OFF-

Durations are not symmetrical (do not sum to 1): the blue curve increases monotonically, 

reaching a value close to 0.8, while the red curve, after a steep initial decrease, remains stable 

around chance. 

 The model free-analysis (LMEM) revealed a significant effect of the OFF-Duration (β = 

0.0002, p < 0.001) while interpretation had no significant effect (p = 0.72). Instead, a significant 
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interaction between the OFF-Duration and the interpretation (β = -0.0004, p < 0.001) 

accounted for the difference between the blue and the red curve. As a control, we repeated the 

analysis after removing the shortest blank duration (OFF = 100 ms), which added a non-linear 

effect to the red curve (SFB). The results were not affected by the change. 

 To test whether the convergence points are symmetrical or not, we focused on the 

longest OFF-Duration (OFF = 900 ms). The comparison between SP(SFA; OFF = 900 ms) and (1 

– SP(SFB; OFF = 900 ms)) revealed a significant difference (p = 0.009), meaning that an acute 

bias is present, as we would expect from a system containing descending loops (Figure 2d). In 

addition to that and for the sake of completeness, we verified that SP(SFA; OFF = 900 ms)  was 

significantly larger than chance (p = 0.002), on the contrary SP(SFB; OFF = 900 ms) was not 

found different from 0.5 (p = 1). 

 Why is there no initial decrease in SP(SFA). Despite the monotonic increase of the blue 

curve, it’s worth noting that the curve starts from very low (SP(SFA; OFF = 100 ms) ~= 0.55). A 

value so close to chance for such a short OFF-Duration means that there is an initial 

destabilization for short blank durations, probably characterized by a very short time-scale, thus 

not captured by our experiment.   

 Is the result a consequence of the averaging across participants? Figure S1 illustrates the 

stabilization curves of the 10 individual participants. Interestingly, although they are noisier, we 

observe that the average pattern (blue above red; initial destabilization followed by 

stabilization; non-symmetrical convergence points) is also present for most subjects, suggesting 

that descending loops might be at work in most of our healthy participants.  

 Finally, to control for a potential contamination of the results by very long reaction 

times, we split the results into LRT and HRT and repeated the analysis for each category 

separately. Those stabilization curves are presented in Figure S3(a.,b.). As expected (longer 

reaction times imply more accumulation of evidence, hence SP being closer to chance), we 

found different profiles for the two subgroups: HRT curves (Figure S3a) were almost flat and 

very close to 0.5; more importantly, LRT curves (Figure S3b) did not differ qualitatively from 

the ones presented before. A similar model-free analysis gave similar results as for the entire 

sample (significant effect of OFF-Duration, non-significant effect of interpretation, significant 

interaction). 

 In summary, the results from experiment 1 are not compatible with a system that does 

exact inference (leaky integration of noisy evidence; Figure 2c); conversely they suggest that a 
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bistable attractor, potentially due to the positive feedback generated by descending loops, is a 

constitutive mechanism of our perceptual system. 

 

Experiment 2 (Tilted cube) 

 The stabilisation curves from experiment 2 (tilted cube) are presented in Figure 3b. 

Compared to the previous results, the most striking difference is that the 2 curves (blue: SFA; 

red: SFB) now overlap, given the symmetry (no general preference) of the tilted cube. 

Furthermore, both SP show an initial deepening (we remind that contrary to experiment 1, here 

the shortest OFF-Duration is 50 ms) while it’s noteworthy that for long blank durations, the two 

SP are not far from chance. 

 Different LMEM (to avoid violation of linearity) were used for the destabilisation (50 

ms:300 ms) and the stabilization (300 ms: 1050 ms) parts of the curves. The first LMEM gave a 

significant effect of the OFF-Duration (β = -0.0015, p < 0.001) and a trend for the effect of the 

interpretation (β = -0.047, p = 0.07), while the second one revealed again a significant (but this 

time positive - stabilisation) effect of the OFF-Duration (β = 0.0003, p < 0.001) and a non-

significant effect of the interpretation (p = 0.56), as we expected from the tilted version of the 

Necker cube. 

 Interestingly, there is no significant difference between SP(SFA; OFF = 1050 ms) and (1 

– SP(SFB; OFF = 1050 ms)) (p = 0.28), meaning that (at least for this blank interval) there is no 

acute bias, contrary to what we would expect from a system with descending loops (and contrary 

to experiment 1). Is this conclusion meaningful? Apart from the fact that a negative finding 

always need to be interpreted with caution (especially when the sample is small), we see an 

increasing trend for OFF-Durations between 300 ms and 1050 ms. Would this trend persist for 

longer intervals or the curves would converge at chance level? To definitely answer this 

question, we would need a new experiment, testing longer durations. Nevertheless, many 

previous studies have suggested high levels of stability for longer OFF-Durations, in agreement 

with the predictions of the dCI model with descending loops (Figure 2b; [8,9]. 

 Figure S2 presents the stabilization curves of the 10 individual participants. As in 

experiment 1, individuals exhibit the same pattern as the averaged data. It’s interesting to note 

however that we observe consistent biases within participants, suggesting the presence of 

idiosyncratic preferences, counterbalanced in the entire sample and thus not seen in the 

averaged data. Additionally, we see that few stabilization curves converge to chance, supporting 
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our claim that a bistable attractor is still at play, despite the averaged data suggesting the 

opposite. 

 Finally, FigureS3(c.,d.) presents the results for the HRT and the LRT subgroups. As 

before, no qualitative difference exists between the averaged data and the LRT data (same for 

the model-free analysis), while HRT results are closer to chance levels. 

 

 

Figure 3: Experimental stabilization curves. (a.): Normal cube (experiment 1). The SP do not overlap 

and converge to non-symmetrical values. (b.): Tilted cube (experiment 2). The SP overlap and for OFF=1050 

ms, their values are not significantly different from chance. It is not clear whether for longer blank durations 

the SP would increase or if they would converge to 0.5 

 

Discussion 

 Bistable perception is a unique phenomenon [10]. The visual competition generated by 

ambiguous stimuli offers a unique opportunity to explore the computational anatomy of 

perception [1,22,23]. Despite previous efforts, a holistic interpretation of the phenomenon, 

especially at the functional level, is still missing.  

 Here, we probed one of the less well-understood aspects of bistable perception, namely 

the stabilization profile when the stimulus is discontinuously presented [8]. Paradoxically, 

although the phenomenon is known for more than 50 years [9], it has been largely ignored by 

functional studies [14,22,24–26]. We investigated intermittent presentation of a bistable 

stimulus in healthy participants, using a novel methodology that overcomes various 

shortcomings of previous studies. We ran two experiments with different versions of the Necker 

cube, each having unique properties. First, we used a normal Necker cube, a common 
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ambiguous figure known to induce a strong and persistent bias (‘’Seen From Above’’ bias). This 

was contrasted with results from a tilted cube, in which the implicit preference has been 

neutralized. Both stimuli were tested in a variety of randomized blank-durations, ranging 

between a few tens of milliseconds to more than a second, giving us the opportunity to 

reconstruct the whole stabilisation curve. Importantly, stability was quantified by the two 

survival probabilities, two measures well suited for discontinuous stimulation [21], which clearly 

distinguish between chronic and acute biases [16] and ignore confounding factors such as the 

exposure time to stimulus [8]. 

 Our results reproduced the well-known pattern of intermittent presentation [9]: an 

initial destabilization (for OFF-Durations below ~= 400 ms) is followed by a long lasting 

stabilization (in our experiment the longest interval tested was ~= 1 s, but evidence suggests that 

the same percept persists even after tens of seconds [8]). Interestingly, our results illustrate a 

striking effect of the priors on this pattern: when there is an asymmetry between the two 

interpretations (e.g. normal cube), only the strong interpretation is clearly stabilised (Figure 

3a; blue curve). On the contrary, the SP of the weak interpretation remains close to chance, 

even for long OFF-Durations (Figure 3a, red curve). This result is also crucial from a 

methodological point of view, since it demonstrates the limitations of measures which do not 

separate the two interpretations, such as the reversal rate. 

 We interpreted those results in the context of the recently proposed dynamical circular 

inference framework (see Chapter 3). According to dCI, bistability and its rich phenomenology 

is generated by descending loops in brain circuits. Descending loops are a type of information 

loops, which cause reverberation and uncontrolled amplification of priors descending the 

cortical hierarchy [17,27]. Our previous work showed that when combined with dynamics 

(Hidden Markov Model), descending loops transform the system which is normally a leaky 

integrator of ambiguous sensory evidence into a bistable attractor, with two stable belief states. 

Among other things, this affects the behaviour of the system when the stimulus is presented 

intermittently (Figure 2). Crucially, our current experimental results are not compatible with a 

simple integrator, instead they are qualitatively well captured by a system with (descending) 

loops. 

 From this point of view, this study can be added to the accumulating evidence 

suggesting that loops (especially descending loops) are a fundamental mechanism of normal 

(non-pathological) brain circuits. A recent study found that the behaviour of healthy 

participants (and of schizophrenia patients) in a probabilistic reasoning task was best accounted 
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by a circular inference model with prominent descending loops (although the main difference 

between patients and controls was found in the amount of climbing loops) [28]. In the same 

vein, our previous work showed that the combination of priors and sensory evidence in bistable 

perception follows the rules dictated by circularity (see Chapter 2 of the present thesis) 

 Is circular inference the only possible interpretation of the current results? The true 

answer is certainly not. As argued before, descending loops generate a system that is 

(mechanistically speaking) equivalent to a bistable attractor. In principle, any mechanism / 

function with similar dynamics (which continues affecting behaviour in the absence of 

stimulation) could have produced those results (see for example [12], for a mechanistic 

interpretation of the effects of intermittent presentation of the stimulus). However, combined 

with the more restrictive evidence mentioned above ([28]; Chapter 2 of the thesis), circular 

inference seems a very plausible candidate. 

 Although the results presented here strongly point to the presence of an acute bias 

(bistable attractor), they are not conclusive. This is particularly true for the tilted presentation 

experiment, in which SP were not significantly different from chance (for OFF = 1050 ms), 

despite the increasing trend. To further clarify this point, an additional experiment is necessary, 

testing longer OFF-Durations. 

 A step further could also be reached by moving from qualitative comparisons to more 

quantitative approaches, including model fitting and model comparisons. This would allow us 

to give a more detailed account of participants’ behaviour, not only at the level of the group, but 

also at the level of the individuals, e.g. by detecting subgroups with different characteristics (no 

loops, more prominent descending loops, climbing loops etc.).  

 Finally, another interesting extension of this study would be to include other groups 

known to present prediction impairments, such as schizophrenia patients or even healthy 

populations experiencing non-clinical hallucinations [29]. The circular inference framework 

was initially introduced as a model of psychosis (schizophrenia), consequently the present 

methodology could shed more light to the mechanisms underlying symptoms such as 

hallucinations and delusions. 

 In summary, we introduced a new methodology to study intermittent presentation of 

an ambiguous stimulus, also testing the relevant qualitative predictions of our dynamical 

circular inference model. Our results are compatible with the idea that descending loops shape 
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the way we perceive the world, playing a role far beyond schizophrenia and the related 

psychosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



131 
 

Supplementary Material 

 

                               

Figure S1: Results of individuals in experiment 1 (Normal cube). In almost all the cases, the blue curve 

(SFA) is above the red (SFB) and the SP converge to non-symmetrical values. 
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Figure S2: Results of individuals in experiment 2 (Tilted cube). Idiosyncratic biases are present in most 

participants.  
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Figure S3: Experimental results separately for trials with low and high reaction times. High 

reaction time makes the stabilization curves flatter. For low reaction times, the curves are qualitatively 

similar to those in the main text. 
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Abstract 

Schizophrenia is a complex and heterogeneous mental disorder, and researchers have 

only recently begun to understand its neuropathology. However, since the time of Kraepelin 

and Bleuler, much information has been accumulated regarding the behavioral abnormalities 

usually encountered in patients suffering from schizophrenia. Despite recent progress, how the 

latter are caused by the former is still debated. Here, we argue that Circular Inference, a 

computational framework proposed as a potential explanation for various schizophrenia 

symptoms, could help end this debate. Based on Marr’s three levels of analysis, we discuss how 

impairments in local and more global neural circuits could generate aberrant beliefs, with far-

ranging consequences from probabilistic decision making to high-level visual perception in 

conditions of ambiguity. Interestingly, the Circular Inference Framework appears to be 

compatible with a variety of pathophysiological theories of schizophrenia while simulating the 

behavioral symptoms. 
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Introduction 

We live in an ambiguous and constantly evolving environment. Being able to make sense 

and act in such an uncertain world is fundamental for our survival. Consequently, one would 

expect our brain to be equipped with mechanisms capable of representing and using this 

uncertainty to draw valid conclusions. Indeed, today there is substantial evidence that various 

cognitive and motor tasks are probabilistic in nature [1-3], and many of these tasks are 

performed by humans almost optimally [4,5]. At the same time, scientists have become more 

and more interested in tasks in which human performance is suboptimal [6,7], which could be 

due to the use of wrong information or the use of approximations. More recently, this type of 

impaired inference has been theorized to be at the roots of various neurological or mental 

disorders, including schizophrenia (Cf. Box 1) [8-10]. 

In this review, we focus on a particular framework for schizophrenia, called Circular 

Inference [10,17,18]. In the first part, we discuss important computational and algorithmic 

aspects of the framework and its relevance to perception and cognition. In the second part, we 

propose potential neural and anatomical implementations of the framework and draw 

connections with other well established neurobiological models of schizophrenia [19,20]. 

 

Box 1: The schizophrenia spectrum 

Schizophrenia is a common mental disorder (approximately 1% lifetime prevalence), with a 

heterogeneous genetic and neurobiological background, that may clinically result in some 

combination of positive symptoms (i.e., features that are not normally present, such as 

hallucinations, delusions or disorganized thinking), negative symptoms (i.e., characterized by 

the absence of normal functions, such as social withdrawal or affective flattening) and a broad 

set of cognitive dysfunctions [11]. A unique molecular process/cognitive domain appears 

unlikely to be involved in schizophrenia, and among the various pathophysiological models 

proposed to account for this complex phenotype, a widespread change in the neural balance of 

excitation/inhibition has received multiscale support [12]. The main findings in schizophrenia 

are: (i) the reduction in the GABA-synthesizing enzyme GAD-67 measured in post-mortem 

tissue [13]; (ii) abnormalities in Delta/Gamma/Theta band oscillations [14]; (iii) the effectiveness 

of D2R antagonists on psychotic symptoms [15], suggesting a dopamine hyperfunction (at least 

in the mesolimbic pathway); and (iv) the similarity in clinical manifestations after administering 

NMDAR antagonists to healthy volunteers [16], suggesting NMDAR hypofunction. 
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The computational level: The Bayesian formalism 

 When we look at the face of a person, we instantly perceive it as three dimensional since 

we have depth perception. Although that might seem like a trivial task, which is executed by 

the brain in a few msec with amazing accuracy, the truth is very different. The 3D shape of a 

face has to be inferred from the ambiguous 2D retinal projection, using only the inconclusive 

visual information and prior knowledge accumulated from the past. The optimal integration of 

such ambiguous information can be formalized using the Bayes theorem: 

𝑃(𝑌|𝑋) =
𝑃(𝑋|𝑌)𝑃(𝑌)

𝑃(𝑋)
                                                                                                                        (1) 

where 𝑌 and 𝑋 are random variables (continuous or discrete) representing the 3D interpretation 

and the 2D retinal image, respectively; 𝑃(𝑌|𝑋) is the posterior probability representing our 

subjective belief about the 3D interpretation after receiving the new sensory evidence; 𝑃(𝑌) is 

the prior or our subjective belief before the new evidence; 𝑃(𝑋|𝑌) is the likelihood function that 

formalizes the dependence of the sensory evidence on the 3D interpretation; and finally 𝑃(𝑋) is 

a normalization term that ensures that the posterior is a probability distribution summing to 1. 

From such a perspective, visual perception can be seen as the process of guessing the 

most probable cause (e.g., 3D object) of the sensory evidence (e.g., 2D retinal image) [21]. For 

the guess to be optimal (at least for Gaussian variables), likelihood and prior knowledge have to 

be weighted by their precision, which corresponds to the inverse of the variance of the 

respective probability distributions. If the information is very precise, then its relative 

contribution becomes larger.  

 

The algorithmic level: Belief propagation and circularity 

  In real life, most of the decision-making problems, perceptual or not, that we have to 

solve depend on many variables. In many cases, finding the posterior probability of those 

variables is not an easy task, as it might need calculation of intractable integrals or simply a 

huge number of summations, which increases exponentially with the number of variables. This 

problem can be solved by using a generative model, which is a hierarchical representation of 

the causal structure of the world. A generative model consists of nodes, representing variables, 

and edges, representing conditional dependencies. Nodes can be arranged in a hierarchical way 
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such that variables in one layer are potential causes of the variables in the layer below (Cf. 

Figure 1a). 

 A very general, powerful and efficient algorithm to perform inference in such a 

generative model is belief propagation (i.e., the sum-product algorithm, [23]). In belief 

propagation, sensory information 𝑆 (in Figure 1a, this corresponds to the probability of a leaf 

being present based only on sensory information) climbs the hierarchy in a feedforward way 

(bottom-up processing) and at the same time, prior information 𝑃 (e.g., probability of being in 

a forest, before receiving any sensory information) moves downwards as feedback (top-down 

processing). Then, each node calculates a belief for the underlying variable (equivalent to the 

posterior, e.g. 𝑃(𝑋𝑡𝑟𝑒𝑒|𝑆))  and sends local messages (e.g., 𝑀𝑡𝑟𝑒𝑒→𝑙𝑒𝑎𝑓 = 𝑃(𝑋𝑙𝑒𝑎𝑓|𝑋𝑡𝑟𝑒𝑒)) to all the 

neighboring nodes. As a result, information, in the form of beliefs, is propagated throughout 

the whole system. 

If we assume binary variables and use the log-ratios of the probabilities, then beliefs and 

messages can be calculated by the following recursive equations [10]: 

 

𝑀𝑖𝑗
𝑡+1 = 𝑊𝑖𝑗(𝐵𝑖

𝑡 −𝑀𝑗𝑖
𝑡 )                                                                                                                         (2) 

 

𝐵𝑖
𝑡+1 =∑𝑀𝑗𝑖

𝑡+1

𝑗

                                                                                                                                    (3) 

where: 

𝑀𝑖𝑗
𝑡  is the message from node i to node j in time t 

 𝐵𝑖
𝑡 is the belief of node i at time t 

𝑊𝑖𝑗(𝐵) is a sigmoid function of 𝐵 

The second equation simply means that each node calculates a belief by summing the 

messages coming from all its neighbors (e.g., the belief about the presence of a tree is equal to 

the sum of the messages from the forest and the leaf nodes). The first equation, on the other 

hand, means that the message travelling from node (i) to node (j) (e.g., from forest to tree) is a 

function of the belief of the sending node (i) (in our example, the forest), after we subtract the 

effect that the receiving node (j) has on the sending node (i) (e.g., message from tree to forest). 
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Figure 1. Circular Belief Propagation: principles and possible neural implementations. a) Belief 

propagation in a generative model with 3 nodes (the « leaf » is caused by a « tree », which is caused by a « 

forest »). Messages are locally propagated between nodes (in black), while redundant information is 

removed (in red). For any 2 neighboring nodes, when we consider message passing in one direction, the 

redundant information consists of the message sent in the opposite direction; b) A first possible neural 

implementation of the inhibitory control mechanisms, consists in local inhibitory loops (in red). Different 

pools of inhibitory interneurons could be responsible for removing redundant feedforward sensory evidence 

or top-down prior information. The presented network corresponds to the generative model introduced in 

figure (1a) and the gray connections represent excitatory synapses (between pyramidal cells in different 

cortical areas or between pyramidal cells in one cortical area and the corresponding inhibitory 

interneurons); c) This is compatible with microscopic findings showing that pyramidal neurons (in green) 

are surrounded by different types of GABAergic interneurons (in red, taken from Wei-Chund Allen et al., 

PLoS Biol 2006); e) A second possible neural implementation of the inhibitory control mechanism consists 

in long-range inhibitory connections (red) between subcortical structures (e.g., different parts of the 

striatum, caudate or thalami) and the cortical mantle. Colored nodes correspond to the 3 projection areas 

presented in (d); functional subcortical-cortical territories are color-coded and presented on brain sagittal 

(left) and coronal views (right). Blue is for sensory-motor circuits, green for associative circuits, and pink 

for limbic circuits). 

 

 

 

This correction is crucial. Without it, the algorithm would produce loops, i.e., 

reverberations of bottom-up and/or top-down information. In such “loopy” belief propagation, 
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the consequences are treated as causes and vice-versa, and the information in the upward and 

the downward stream can be mixed and overcounted. As a result, beliefs can take extreme values 

(e.g., absolute certainty) and the system becomes overconfident (Figure 3, see also the section 

on Behavioral Correlates). In other cases, beliefs can be reversed (believe that something is 

present when there is nothing, i.e., having an aberrant perceptual belief or an hallucination) or 

start oscillating (i.e., a phenomenon called frustrated network). Recently, this kind of circular 

propagation of information in cortical and subcortical networks of the brain has been suggested 

to underlie the positive and possibly the negative and disorganized symptoms of schizophrenia 

[18]. In the next section, we will describe the possible neural and anatomical implementations 

of belief propagation in the brain, and we will discuss how circular inference might be associated 

with well-known physiological and anatomical impairments in schizophrenia. 

 

The neural level: Implementing inhibitory loops 

 Currently, the brain is commonly considered a hierarchical system [24,25]. Many 

algorithms could be used by such a system to make probabilistic inferences [23]. Again, among 

the many suggestions, belief propagation is certainly one of the most biologically plausible since 

it is analogous to the integration and propagation of activity in neurons and neural 

microcircuits. Neural models implementing different versions of belief propagation can be very 

efficient and robust but also perform a variety of cognitive processes [26-31]. Finally, belief 

propagation is flexible and can be implemented with both discrete and continuous variables 

while at the same time representing the whole probability distributions and not just estimates. 

 Because belief propagation works by propagating top-down messages from high-level 

representations to low-level sensory features and bottom-up messages in the other direction, 

precisely controlling message-passing in the hierarchical network is crucial to avoid circularity, 

which would result in an overcounting of ascending or descending information [10]. At the 

neural level, this operation can be ensured by inhibition, which is in charge of suppressing the 

information just sent in the cortical hierarchy from any feedback message. We recently 

proposed that two types of inhibitory connections could carry out this mission [17], i.e. one type 

removes redundant feedback messages from the bottom-up stream and symmetrically the other 

type removes  redundant feedforward messages from the top-down stream (Cf. Figure 1b, d). 

This implementation is notably supported by recent findings showing that influences along 

feedforward projections and those along feedback projections, synchronize in different 

frequency bands in human visual cortex [32]. Such a microcircuit would optimally balance 
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excitation and inhibition (i.e., maintain the E/I ratio at approximately 1). If the E/I ratio is 

impaired in favor of excitation, sensory evidence (bottom-up information) and prior 

expectations (top-down information) reverberate in the network, causing Circular Inference. 

Such inhibitory control could rely on local inhibitory loops, i.e., inhibitory interneurons 

controlling the feedforward and feedback flows (Cf. Figure 1b,c). A nonspecific global 

disruption in inhibition is notably supported by the examination of arrays of genes related to 

GABA neurotransmission (GAD-67 being only one) that showed abnormal expression in 

association, limbic, motor and sensory cortices [33]. In the same vein, GABA concentration 

deficits in the occipital cortex of schizophrenia patients have been found to be correlated with 

impaired behavioral measures of visual inhibition [34]. Despite a widespread inhibitory deficit 

(i.e., local impairments at each level of the cortical hierarchy), this model predicts an 

inhomogeneous spatial pattern of aberrant beliefs [17], which are compatible with brain imaging 

findings in schizophrenia patients [19]. 

Beyond the local circuit, a second possible implementation relies on long-range 

inhibitory loops (Cf. Figure 1c, d). Two prominent long-range extracortical inputs, limbic and 

thalamic, drive neocortical inhibition [35]. For example, spiral projections between the striatum, 

a key structure involved in psychosis in general [36] and hallucinations in particular [37], and 

the neocortex would be a good candidate for inhibitory control of feedback signals (Figure 1d, 

left, e). Interestingly, a similar implementation has been proposed for sending reward 

prediction errors from the frontal to sensorimotor areas as required for hierarchical 

reinforcement learning [38]. In the same vein, thalamocortical dysconnectivity is a replicated 

finding in schizophrenia [20], which may result in long-range inhibitory dysfunctions. 

Thalamocortical loops (Figure 1d, right,e) would constitute a good candidate for the inhibitory 

control of feedforward signals since it forms multiple parallel pathways to relay information to 

and from the cortex [39]. The Inflow and outflow of causal information between the visual cortex 

and the thalamus has been recently shown to be affected in schizophrenia [40]. Interestingly, 

using a computational model of the neural dynamics in resting-state fMRI, Yang et al. have 

found that increasing the effective strength of connectivity at either the local or long-range level 

resulted in an elevated E/I ratio that was able to capture both the local and global neural 

variability observed in schizophrenia [41]. Again, such impairments have been found to be 

maximum in association networks [42], which appear compatible with fMRI capture studies 

showing increased signal in modality-dependent association cortices during hallucinations [43]. 
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Figure 2. Behavioral consequences of Circular Inference. a) In a system with climbing loops, sensory 

evidence is reverberated and corrupts the prior knowledge (orange arrow). As a result, such a system expects 

what it perceives (for example, even very weak evidence for leaves will result in expectations for leaves, which 

in turn reinforces the initial input); b) In the opposite case of a system with descending loops, the prior is 

reverberated and thus corrupts sensory evidence (green arrow). Consequently, this system perceives what it 

expects (for example, expecting that you are in a forest will automatically result in seeing leaves, even during 

winter); c) If both climbing loops and descending loops are present, in cases where sensory evidence 

contradicts the prior, the system (also called « frustrated network ») might start believing two mutually 

exclusive facts simultaneously; for example, leaves are present and absent at the same time, on the same 

tree. 

 

Behavioral correlates of circular inference 

Circular inference may result from either a form of inhibitory loop implementations (i.e., 

local or long-range), producing serious impairments in perception and decisions under 

uncertainty. For instance, circular inference can result in strange coincidence detection, a 

percept in the absence of corresponding sensory input (i.e., hallucinations, see Figure 2a,b), 

making decisions on the basis of limited evidence (jumping to conclusions), or the learning of 

unshakable aberrant beliefs (i.e., delusions), as observed during the prodromal and acute 

psychotic phase of schizophrenia. Circular inference can also result in strong, mutually 

incompatible representations at different levels of the hierarchy (i.e., dissociative thoughts, Cf. 

Figure 2c). 

In order to validate the circular inference framework at the behavioural level, we used 

an adapted version of the beads-task paradigm, the “fisher task”, where a fish, either red or 

black, is fished from one of 2 lakes, each with different percentages of red and black fishes. We 
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systematically manipulated the prior probabilities (𝑃(𝑋𝑙𝑎𝑘𝑒), representing the preference of the 

fisherman) and likelihoods (𝑃(𝑋𝑓𝑖𝑠ℎ|𝑋𝑙𝑎𝑘𝑒), i.e. the real percentages of red and black fishes in 

each lake) and asked participants to report their confidence ((𝑃(𝑋𝑙𝑎𝑘𝑒|𝑋𝑓𝑖𝑠ℎ), i.e. the posterior 

probability). We showed that the behavior of schizophrenia patients and controls was best 

explained by a parametric circular inference model [18]. The signature of circularity included a 

sigmoidal shape (rather than a linear curve) for confidence (log-posterior ratio) as a function of 

log-likelihood and log-prior ratio, slopes larger than 1 for weakly informative likelihood and 

priors (instead of slope equal to one) and nonlinear interactions between likelihood and priors 

(e.g., larger slopes for non-informative prior or likelihood), as illustrated in Figure 3. Using this 

framework, we have recently shown that positive symptoms correlated with the strength of the 

ascending loops (i.e., an impaired inhibition of redundant bottom-up inputs), negative 

symptoms correlated with the strength of descending loops (i.e., an impaired inhibition of 

redundant top-down inputs), and disorganized symptoms correlated with both impairments. 

Beyond the support of an association between psychotic symptoms and sensory overcounting, 

this finding is compatible with the paradoxical finding that patients with schizophrenia, notably 

those with psychotic features, are less vulnerable to sensory illusions [22,44]. Circular Inference 

thus appears to be able to model high-level but also low-level impairments in the schizophrenia 

spectrum. Interestingly, we found that circular inference was also present in control subjects, 

especially in the case of descending loops. A tendency to “perceive what we expect” 

(misinterpret top-down predictions as if they were external sensory signals) may be widely 

present in the general population. This may account in turn for the strength of certain 

perceptual illusions as well as for bistable perception, a phenomenon that only requires a small 

amount of descending loops (Cf. Box 2). 
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Figure 3. Bayes and Circular Inference predictions. The Log-Posterior-Ratio is plotted as a function of 

the Log-Likelihood-Ratio (for different values of the Prior). Dashed lines represent simple Bayes predictions, 

while plain lines correspond to Circular Inference model predictions. The orange curve is for the cases where 

priors agree with sensory evidence. The red curve is for the case where priors disagree with sensory evidence. 

The blue curve is for uninformative prior. Two important features of Circular Inference are illustrated. First, 

there is an interaction between sensory evidence and priors, i.e., the slope of the blue sigmoid curve, 

corresponding to ambiguous prior, is larger than the slope of the other 2 sigmoids. This relationship is not 

captured by simple Bayes. Second, in all 3 cases presented, the slopes of the sigmoids are larger than the 

slopes of the corresponding dashed lines (equal to 1), suggesting overconfidence caused by Circular 

Inference. This is compatible with the « jumping-to-conclusion » phenomenon, which was previously shown 

to be associated with delusional beliefs. 

 

 

Box 2. Circular inference and bistability 

Beyond confidence in behavioral decisions, Circular Inference may also account for bistable 

perception due to the presence of descending loops (e.g., an incomplete cancellation of 

redundant top-down messages). The problem of bistable perception can be formalized using a 

Hidden Markov Model: The current percept (e.g., one of the two configurations of a “Necker 

Cube”) depends on the previous percept (“Markov”) and is updated by an indirect, noisy sensory 

observation (“Hidden”). Without circularity, there is only one stable belief corresponding to the 

prior probability of each configuration (in that case, the figure would always be perceived as 

ambiguous, Cf. Figure 4a, b, c, f). Noisy and ambiguous sensory inputs can make the posterior 

hover around the prior but can never give rise to a strong unambiguous percept (e.g., a period 
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when the probability is consistently high for one interpretation, i.e., orange and green gradients 

in Figure 4f, g). Moreover, it cannot capture many other aspects of bistable perception (such 

as gamma distribution of the percept durations). However, in the presence of a limited degree 

of descending loops, the system becomes bistable (Cf. Figure 4d, e, g). This system can thus 

generate strong and persistent percepts. Such a parametric model applied to bistable perception 

data could be a powerful tool to disentangle the contribution of ascending and descending 

inference loops. Bistable perception is also known to be affected in schizophrenia [22]. 

 

 

 

Figure 4. Circular Inference and the dynamics of bistable perception. The Necker Cube is a bistable 

percept with 2 possible interpretations (c), i.e., a 3D cube as seen from above (in green) or a 3D cube as seen 

from below (in orange). The following two belief-propagation networks are considered: a balanced network 

without loops (a) and a network with a small amount of impaired descending loops (descending circular 

inference) (d). Perception of the Necker Cube in a balanced network looks like a « random walk » around 

chance level (f), which appears unable to generate strong and persistent representations (b). In contrast, 

overcounting of priors in a network with descending loops (d) leads to bistability by increasing the strength 

and persistence of percepts (g), i.e., through a bistable attractor (e). These simulations appear in agreement 

with recent findings showing that healthy participants may exhibit small amounts of descending loops [18]. 

 

Conclusion and perspectives 

This brief review has highlighted areas of recent progress in computational approaches 

to schizophrenia. In such a context, the understanding of how neural networks interact to 

produce mental events in an uncertain world is an important goal. We chose to focus on a 

particular hierarchical Bayesian framework, i.e. the Circular Inference model. However, it should 

be highlighted that Computational Psychiatry [45,46] is a rapidly growing field, and various 

other ideas have also been suggested to account for the schizophrenia spectrum, including 

impaired predictive coding [9, see also [18] for a comprehensive comparison with Circular 
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Inference], or defective outcome prediction, due to problematic error-likelihood predictions in 

the prefrontal cortex [47]. 

We noted that a tightly calibrated balance between excitation and inhibition is crucial 

to ensure an efficient functioning of the nervous system. Among the proposed 

pathophysiological models of schizophrenia, an impaired E/I ratio is able to capture several 

features of the disorder (positive symptoms, cognitive deficits, etc.). Various hypotheses about 

the neural impairment involved in schizophrenia have been proposed and are still debated, e.g., 

are we facing a deficit that could be widespread across the cortical hierarchy? Or would the 

disorder result more from focal dysfunctions in a few “hotspots”, such as the thalamic or limbic 

loops?  

Significantly, the Circular Inference model, is compatible with these apparently 

competing hypotheses and can begin to associate different scales of understanding. Even if 

Circular Inference first received direct experimental behavioral support in schizophrenia[18], 

there is an urgent need to close current knowledge gaps. In particular, this framework needs to 

be validated at the neurophysiological level (e.g., using a multiscale approach combining 

computational modeling with electroencephalography, to detect the dynamical footprints of 

the reverberated messages, or with Magnetic Resonance Spectroscopy to confirm an E/I 

imbalance in the thalami or the striatum of patients suffering from schizophrenia), and its 

neural implementation needs to be further characterized. 
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Abstract 

Schizophrenia is a devastating psychiatric disorder characterized by heterogeneous symptoms, 

including aberrant percepts (hallucinations) and fixed, idiosyncratic beliefs (delusions), 

grouped under the term “positive symptoms”. Previous work has shown that the positive 

dimension of schizophrenia is linked to impairments in inference mechanisms, in particular the 

aberrant amplification of sensory information due to circular inference. Additionally, common 

perceptual phenomena such as bistable perception, a persistent oscillation between two 

mutually exclusive interpretations under conditions of high ambiguity, have also been 

associated with moderate forms of circularity in non-clinical populations. In this study, we 

sought to better understand the computational (inferential) mechanisms associated with 

schizophrenia, using bistability as a tool. Two groups of schizophrenia patients, with prominent 

positive symptoms, were compared with matched groups of healthy controls in two tasks 

including bistable visual stimuli (i.e., the Necker cube, NC). First, participants were 

continuously exposed to different versions of the NC (ambiguous or with additional visual cues) 

and reported their dominant percept every time a sound signal was given. In the second 

experiment, participants were discontinuously exposed to ambiguous cubes and responded as 

quickly as possible every time the cube appeared on the screen. In the continuous-presentation 

experiment, we found that patients were less affected by visual cues and less stable than 

controls, while we also observed a (group x cue) interaction. Interestingly, we also found that 

patients exhibit a tendency to ignore evidence that contradicted their implicit preference to see 

cubes from above, which, together with the reduced effect of supporting cues, correlated with 

non-clinical psychotic traits and the severity of positive symptoms. In the discontinuous-

presentation experiment, we found that patients exhibited an enhanced destabilization (for 

short blank intervals) and a reduced stabilization of the weak (“Seen-From-Below”) 

interpretation (for longer intervals). In-silico simulations based on dynamical circular inference 

can account for these specific patterns in a model combining enhanced climbing loops with an 

overestimation of the environmental volatility. Altogether, our results provide additional 

evidence for the involvement of circularity in the generation of psychotic experiences, pointing 

towards an enhancement of bottom-up, rather than top-down processing. 
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Introduction 

 Schizophrenia is a devastating and heterogeneous disorder with a high lifetime 

prevalence (approximately 0.5% - 1% [1]). Patients diagnosed with schizophrenia exhibit a 

variety of symptoms, which are usually subdivided into three major (and largely independent) 

clusters [2,3]: the positive dimension, including psychotic symptoms such as hallucinations 

(aberrant percepts in the absence of sensory input) and delusions (bizarre and fixed beliefs); the 

negative dimension, defined as the absence of normal behaviors and comprising symptoms such 

as lack of volition, reduced speech, social withdrawal and emotional blunting; finally a set of 

cognitive impairments including deficits in working memory and attention but also irrational 

speech and disorganization. 

 Although the exact causes of schizophrenia remain a subject of debate, there is a 

growing consensus that impairments in predictive processing of the brain might underlie the 

positive (and potentially the other) dimension(s) of the disorder [4–7]. In the same vein, we 

suggested a few years ago that hallucinations and delusions might be the result of uncontrolled 

propagation of probabilistic messages between cortical areas representing a hierarchical 

internal model of the external world [8]. At the neurophysiological level, this circular inference 

(CI) was proposed to be a consequence of an imbalance between neural excitation and 

inhibition [9,10], a property that has been extensively linked with schizophrenia and psychosis 

[11,12]. More recently, the pertinence of the framework was demonstrated using a variant of the 

beads task (named the ‘’Fisher task’’).  In this experiment, the behavior of schizophrenia patients 

was best captured by a CI model (compared to purely Bayesian models), while the most striking 

difference between patients and healthy controls was in the amount of climbing loops in a 

hierarchical neural model (i.e., amplification of sensory evidence) [13]. In addition to that, 

climbing loops correlated with the severity of the positive symptoms whereas descending loops 

(i.e., amplification of priors) correlated with the severity of the negative symptoms, suggesting 

that different dimensions might be related to different model parameters and thus, underlying 

mechanisms. 

 Strikingly, CI has also been associated with normal brain functioning. In the same study, 

Jardri and colleagues found that a CI model best accounted not only for patients’ responses, but 

also for the behavior of healthy participants [13]. Furthermore, in the first part of the thesis 

(Chapters 2,3 and 4), we presented a detailed computational account of bistable perception 

(switching between mutually exclusive interpretations, while the sensory organ is stimulated by 

an unchanged, ambiguous stimulus), based on the notion of circularity (Chapter 3), which was 
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also validated by experimental evidence (Chapters 2 and 4). Interestingly, both studies 

highlighted the importance of descending loops in explaining cognitive processing 

(probabilistic reasoning in the former, high-level perceptual processing in the latter) in healthy 

populations.   

 In the light of the aforementioned results, we would like to advance the following 

statement: mild circularity (and mostly descending loops) is a general property of the brain, 

affecting the way we interpret and interact with the world. An increased amount of loops, 

following genetic or neurodevelopmental abnormalities, could lead to important deviations 

from Bayesian optimality, resulting in serious cognitive, perceptual or even motor impairments 

and the manifestation of pathological symptoms. For example, too strong climbing loops could 

result in a system that ‘’expects what it sees’’, causing sensory-driven hallucinations and reduced 

vulnerability to visual illusions, both observed in schizophrenia. 

 The current work combines previous results and methodologies in order to test the 

above hypothesis and bring new insights regarding the mechanisms underlying the various 

clinical dimensions of schizophrenia. Having established links between circular inference and 

bistable perception on one hand and circular inference and schizophrenia on the other, we used 

bistable perception as a tool to probe the computational (inferential) abnormalities related to 

schizophrenia. We compared the performance of schizophrenia patients with that of matched 

healthy controls in two bistable perception tasks. First, we used a task in which the stimulus 

(Necker cube) was continuously displayed and responses were collected in a discontinuous 

fashion [14]. Additionally, the strength of the sensory evidence was manipulated by adding 

visual cues (see also Chapter 2). Second, we used a task in which the cubes were discontinuously 

presented, using the methodology introduced in Chapter 4 [15,16]. Importantly, we referred to 

a dynamical circular inference model (see Chapter 3) to make qualitative predictions about 

patients’ behavior, for different scenarios (increased climbing loops, increased descending loops 

etc.). 

 The preliminary results presented in this chapter show significant differences between 

patients with schizophrenia and healthy controls, supporting the idea that the machinery 

underlying bistable perception is impaired in schizophrenia. Although a system with stronger 

climbing loops could explain most of the observed patterns, it fails to capture certain trends, 

suggesting the presence of secondary (or more complex) deficits. We critically discuss what 

those deficits could be, along with more general alternative interpretations of the data. 
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Methods  

 We conducted two bistable perception experiments (continuous presentation of the 

Necker cube: later called CNC; and discontinuous presentation of the Necker cube: latter called 

DNC). For each of them, two groups of participants were enrolled: a group of schizophrenia 

patients with prominent positive symptoms and a group of healthy controls We would like to 

highlight that the findings presented in this chapter are preliminary (i.e., from a relatively small 

sample), and that recruitment is still on-going (expected final samples are of 30 patients and 30 

controls per experiment). 

  

Participants 

 12 schizophrenia patients and 17 healthy control subjects participated in the first 

experiment (CNC), while 9 patients and 14 healthy participants took part in the second one 

(DNC). Among them, 8 patients and 4 controls participated in both experiments (first in CNC, 

then in DNC). The groups were matched in age and sex. Table 1 provides additional information 

about the four samples. All the participants were recruited in the Lille city area and were tested 

in the same experimental conditions on the CURE research platform. Patients all met the ICD-

10 criteria for schizophrenia [17]. The main inclusion criteria, for both groups, were the 

following: age > 18 years, provision of informed consent, normal or corrected-to-normal visual 

acuity, no past or current medical history of neurological, sensory or psychiatric disorders (for 

patients, that included the absence of an Axis-II or secondary Axis-I diagnosis), and no current 

or recent use of psychotropic medication or toxic drugs. A senior psychiatrist confirmed the 

absence of psychiatric symptoms in the control groups using the Mini International 

Neuropsychiatric Interview (MINI-ICD-10) [18]. The study was approved by an ethics committee 

(CPP Sud-Ouest Outre-Mer I). 
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Table 1: Characteristics of the recruited samples.  

  

Symptoms’ (patients) and psychotic traits’ (patients, controls) assessment  

 Symptoms’ severity was assessed in schizophrenia patients using the Positive and 

Negative Syndrome Scale (PANSS) [19], with items clustered in reference to a 5-factor model, 

i.e., positive, negative, disorganized, excited and depressed factors [20]. In addition to that, we 

measured non-clinical psychotic traits in all the samples using two different scales: the ‘’Peters 

et al. Delusions Inventory – 21’’ (PDI-21), measuring non-clinical beliefs [21] and the revised 

‘’Launay Slade Hallucinations Scale’’ (LSHS-R) measuring non-clinical hallucinations [22]. 

Scores obtained for these different scales are presented in Table 1.  

 

Neuropsychological tests 

 All the participants also passed 3 neuropsychological tests, to make sure that their 

cognitive abilities were not severely impaired: a Stroop interference task (for cognitive 
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inhibition), the Bells cancellation task (for spatial attention) and the digit span task (for working 

memory) (see Table 1). 

 

Patients’ medications 

 All the recruited patients exhibited a partial remission. They notably received 

antipsychotic drugs (typical and/or atypical antipsychotics), and in some cases minor 

tranquilizers. In order to account for potential confounding effects, we referred to Olanzapine-

equivalency (OLZ-eq) (antipsychotics; [23]) and Diazepam-equivalency (DZP-eq) (minor 

tranquilizers; [24]) (see Table 1). 

 

Apparatus 

 Both experiments took place in the same dark room. The stimuli were displayed on a 17-

inch LED computer screen with a resolution of 1280x1024 pixels, at 60 Hz. Responses were 

collected using a keyboard. The background colour of the screen was black. The viewing 

distance was 60 cm and a head-rest secured the position of the head. The experiments were 

implemented in MATLAB v. 2015b (MathWorks, Natich, MA), using Psychtoolbox v. 3.0.12. 

 

Stimuli 

 The stimuli were 200x200-pixels, light-gray (or contrasted; see Experimental 

paradigm) Necker cubes. In both experiments we used a normal cube (Figure 1a), expected to 

generate an implicit preference for the “Seen From Above” (SFA) interpretation, as compared to 

the “Seen From Below” (SFB) interpretation ([25]; see also Chapters 2,3 and 4 of the current 

thesis). Stimuli were presented in the middle of the screen. A circular fixation point was added 

in the middle of each cube, to guide participants’ gaze. 

 

Experimental paradigms 

 The first experiment (CNC, see Figure 1b) was inspired by the Mamassian and 

Goutcher’s protocol [14] and consisted of 6 blocks of 5 consecutive runs. Using a forced-choice 
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method, we asked participants to report their ongoing interpretation as soon as they heard a 

warning sound, which occurred 25 times per run in a pseudo-regular manner (mean inter-sound 

interval = 1.5 s, uniformly distributed between 1 and 2 s). Each response corresponded to a trial, 

providing a discontinuous sampling of the task’s perceptual dynamics. Runs were separated 

from each other by a 10 s black screen to minimize between-run influences. The experiment was 

also interspersed with 5 between-block breaks of non-predefined duration. 

We manipulated sensory evidence either by making the cubes homogeneously gray (i.e., 

perfectly ambiguous) or cuing them using shadows (Figure 1a). This additional depth 

information was intended to bias perception toward one interpretation or the other. It was 

specified by two parameters: 

- First the orientation, which was defined in relation to the implicit prior. A shadow falling 

on the top left corner was expected to emphasize the SFA preference (classified as a 

supporting cue). Conversely, a shadow that fell on the bottom right corner was 

characterized as a contradictory cue, as it went against implicit bias. 

- Second, the strength of the cue (which can also be conceived in terms of the amount of 

sensory information), controlled by the shadowing contrast level. Weak and strong cues 

corresponded to 20% and 30% contrast, respectively. 

The 1st and 4th blocks always consisted of presentation of an ambiguous cube. The other 

blocks were randomly allocated a different type of cue, defined by the 2 x 2 factorial combination 

of 2 possible orientations (contradicting or supporting) and 2 possible strengths (weak or 

strong). 

 The second experiment (DNC) was an ‘’intermittent presentation’’ experiment, similar 

to the ones described in Chapter 4 (Figure 1c) [15,16]. It consisted of 12 blocks, each constituting 

a sequence of ON- (stimulus is present) and OFF-Durations (stimulus is absent). A single trial 

contained an OFF-Duration, as well as the ON-Durations before and after. There were 64 ON-

Durations (and 63 OFF-Durations) per block, making up a set of 63 trials per block. Blocks were 

separated by 10 s black-screen breaks, while 2 additional breaks of non-predefined duration were 

also possible after the fourth and the eighth block. 

 Likewise CNC, DNC was also a forced choice task. Participants were instructed to report 

their dominant percept, as quickly as possible, every time the stimulus reappeared on the 

screen. Responses were given by pressing the relevant button (Right: Seen From Above/Right; 

Left: Seen From Below/Left). ON-Durations did not have a standard length, instead the stimulus 
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disappeared right after the first button-press. Consequently, participants could give only one 

response per ON-Duration (i.e., their first impression), solving the problem of switches during 

stimulus’ presentation, but also avoiding confounding post-decision effects (e.g. accumulation 

of evidence after the button-press) and making the task more interactive (increasing the sense 

of involvement and the levels of attention). 

 As in Chapter 4, we were interested in reconstructing the whole stabilisation curve. 

Consequently, we used a set of 9 OFF-Durations: {50, 100, 150, 300, 450, 600, 750, 900, 1050 

[ms]}, the same as in the tilted cube experiment presented before. This set, different from the 

one used in the normal cube experiment in healthy controls (see Chapter 4) allowed for a higher 

resolution for short intervals (where an inversion from de-stabilisation to stabilisation usually 

occurs) but also a wider range of intervals. Crucially, blank intervals were randomized within 

each block, with 7 repetitions per block per interval. This gave a total number of 84 repetitions 

per OFF-Duration per experiment. 

Before both experiments, participants were presented with the stimulus and the two 

possible interpretations and they had a training session (CNC: 3 runs, 25 trials/run, only 

ambiguous cube; DNC: 5 blocks, 18 trials/block). Those results were not retained in the 

following analysis. The basic instruction was to passively view the cubes without trying to 

constrain perception. 

 To avoid the confounding effects of eye-movements when the stimulus is present, 

participants were instructed to fixate on the central fixation point. 
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Figure 1: Stimuli and experimental paradigms. (a.): The stimuli were Necker cubes, completely 

ambiguous (CNC and DNC) or disambiguated with the addition of contrast (strong or weak; supporting the 

implicit preference or not; only in CNC). (b.): The CNC paradigm is inspired by (Mamassian and Goutcher, 

2005) and is described in depth in Chapter 2. In brief, a cube was continuously displayed and participants 

reported the perceived interpretation (by pressing a button) every time they heard a warning sound. (c.): 

The DNC protocol was introduced in Chapter 4. The cubes were presented intermittently, separated by a 

black screen that lasted from 50 to 1050 ms (9 randomized blank intervals). Every time the cube reappeared 

on the screen, participants reported their first impression by pressing the relevant button. The cube 

disappeared right after the participants’ response. We measured the survival probabilities for both 

interpretations and for all the blank intervals. 

 

Model-free analysis 

 In experiment 1 (CNC experiment), the main variable was the relative predominance 

(RP), which corresponds to the probability of perceiving the SFA interpretation. Additionally, 

we measured stability by calculating the survival probabilities (SP) (separately for each 

interpretation), which is the probability that a percept persists between two sounds, 

conditioned upon the previous percept [14]. As in our previous work (Chapter 4), the main 

variable in experiment 2 (DNC) was the survival probability (SP) computed for each 

interpretation.  

 Because both RP and SP take values between 0 and 1 and the sample size was small, we 

used exclusively non-parametric statistics. To account for the different effects while avoiding 

multiple comparisons problems, we used linear mixed-effects models (LMEM). In particular, in 
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CNC, we used different models for the effects on RP and SP: For the former (RP), we used a 

LMEM comprising the effects of the group (patients vs healthy controls) and the effect of the 

contrast as well as their interaction as fixed effects, together with Gaussian random effects for 

intercepts and slopes. For the latter (SP), we used the same model adding the effect of the 

response (SFA vs SFB) and all the 2-way ((cue x group), (cue x response), (group x response)) 

and 3-way (cue x group x response) interactions as fixed effects, while as random effects we 

considered, apart from the random intercepts, the effects of the response, the contrast and their 

interaction per participant (random slopes). In the case of patients, in order to further 

investigate the possibility that supporting and contradicting evidence do not have the same 

effect on RP and SP (as well as to test potential violation of Levelt’s 2nd law [26]), we repeated 

this analysis, using Friedman’s test and focusing on this group while considering separately the 

conditions in which the visual cue supports / contradicts the implicit SFA-preference (for SP, 

the analysis was performed separately for the two SP as well).  

 In the DNC experiment, to avoid the problems posed by the violation of linearity, we 

used distinct linear models for the destabilisation period (OFF-Durations between 50 and 150 

ms) and the stabilisation period (OFF-Durations between 300 and 1050 ms, see also Chapter 4). 

They both comprised the following terms: group, contrast, response, all the 2-way interactions 

and a 3 way interaction as fixed effects and random intercept and slopes for contrast, response 

and their interaction. Additionally, because we do not predefine the length of the ON-Duration, 

our results were vulnerable to longer reaction times (apart from the known effect of the 

presentation time on intermittent bistable perception [15,27], we expected patients to be slower 

in giving their responses [28]). To control for that, we re-analyzed the data after splitting them 

into two subgroups, based on a threshold (k = 700 ms): a “Low Reaction Time” (LRT) subgroup 

(RT<k) and a “High Reaction Time” (HRT) subgroup (RT>k). Note that we chose a meaningful 

threshold, so that both groups (both for patients and controls) contain sufficient amount of 

data. 

 Furthermore, when necessary, we performed post-hoc comparisons for both 

experiments using paired (or unpaired) rank-sum tests to clarify simple effects in the 2 x 2 design 

and one-sample Wilcoxon signed rank tests to compare the results in different conditions with 

the chance level (0.5). In the DNC experiment, to test specifically whether two SP (SP1, SP0) are 

symmetrical or not for a particular condition (if their sum is equal to 1), we used a paired rank-

sum test to compare SP1 with (1-SP0) [29]. All significance tests were performed on the entire 

samples, they were two-tailed and used an alpha value of 0.05 in the statistical toolbox of Matlab 

v. 2015b (MathWorks, Natich, MA).  
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 Finally, to account for the effects of medication and symptoms (in both experiments), 

we added the equivalent doses of OLZ and DZP as well as the PDI, LSHS and PANSS scores to 

the linear models as covariates. Note that since medication and PANSS scores are defined only 

for patients, the corresponding linear models only included this group. In addition to that, to 

further probe the links between medication/ symptoms and bistable perception, we looked 

directly for associations using the Spearman’s rank correlation coefficient r. Again, we would 

like to highlight that due to the small samples and the large number of potential correlations, 

we only explored associations with a particular meaning or for which we had preliminary 

evidence (e.g. positive effects in the LMEM). 

 

Model and model predictions 

 The results of the two experiments were interpreted in the context of a dynamical 

circular inference (dCI) model, which is described in detail in Chapter 3.  

 As we did in Chapter 4 and in order to account also for the initial destabilization when 

the stimulus is intermittently presented (DNC experiment), we considered the more general 

version of the dCI model, in which the transition rates (the leak) are not stable, but change over 

time, depending on the current dominant percept, based on equations of leaky integration (see 

Supplementary Material in Chapter 3). 

 In brief, the dCI model with changing rates can be formalized in the following way: 

𝑑𝐿

𝑑𝑡
= 2𝑤𝑆𝑎𝑃𝐿 + (𝑟𝑜𝑛(𝑡)𝑒

−𝐿 − 𝑟𝑜𝑓𝑓(𝑡)𝑒
𝐿) + (𝑟𝑜𝑛(𝑡) − 𝑟𝑜𝑓𝑓(𝑡)) + 𝑤𝑖𝑛𝑡(2𝑤𝑆 − 1)(1 + 2𝑤𝑆𝑎𝑆)𝑛𝑡   (1)    

𝜏
𝑑𝑟𝑜𝑛

𝑑𝑡
= −𝑟𝑜𝑛 + 𝑟𝑜𝑛

+ + 𝑟𝑜𝑛,𝐵                                                                                                                           (2)                                                                                                                                      

𝜏
𝑑𝑟𝑜𝑓𝑓

𝑑𝑡
= −𝑟𝑜𝑓𝑓 + 𝑟𝑜𝑓𝑓

+ + 𝑟𝑜𝑓𝑓,𝐵                                                                                                                      (3)  

The predictions of the model (for an asymmetrical stimulus) for different parameters 

(descending loops, climbing loops and baseline transition rates, vaguely corresponding to an 

estimate of the environmental volatility) are presented in Figure 2. In the Panels g,h and i, the 

difference between the two rates is kept constant. When the stimulus is continuously presented, 

descending loops and climbing loops have opposite results on RP and SP. More specifically, 

descending loops increase both bias (due to the implicit preference (ambiguous condition) and 

to visual cues; Figure 2a) and persistence (Figure 2b), while climbing loops decrease them 

(Figures 2(d.,e.)). Note that increasing the baseline rates has the same effect as increasing the 
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climbing loops (in a CNC experiment) (Figure 2(g.,h.)). Crucially, all those alterations predict 

a change in the slope of the curves, which corresponds to an expected interaction between the 

cue and the group. This prediction differentiates those interpretations from others, such as a 

change in one of the two rates, which would only cause a shift of the psychometric curve to the 

left or to the right (Figure S1). It’s important to highlight that the predictions described here 

(dCI model with changing rates) are qualitatively the same as the ones presented in Chapter 3 

for the simpler version of the model (see also Figure 8 in Chapter 3). 

 Descending loops and climbing loops also have opposite results on the stabilisation 

curves, when the ambiguous stimulus is discontinuously displayed. Panels c, f and i in Figure 

2 demonstrate the effect of the blank period on the SP, for different values of descending loops 

(Figure 2c), climbing loops (Figure 2f) and baseline rates (Figure 2i). It’s convenient to 

consider the two parts of the curve separately (initial destabilization followed by a more 

persistent stabilization). For the stabilization part of the curve, the more complex model with 

the changing rates makes the same predictions as the dCI model with a constant prior (rates) 

(Chapter 3). In particular, stronger descending loops (which push the two stable fixed points 

of the system further away from 0.5 – chance level) result in more stabilization (convergence of 

both SP to larger values). On the contrary, both stronger climbing loops and higher rates cause 

a decrease in the stabilisation (at least for as long as there is a bistable attractor), but for different 

reasons: the higher rates bring the attractors closer to 0.5, while the stronger climbing loops 

increase the effect of the noisy evidence (the sensory gain) when the stimulus is present (and 

until a decision is made). 

 Interestingly, in the destabilisation phase there is a dissociation between climbing loops 

and rates: while stronger loops (climbing and descending) cause less destabilisation (SP 

decreases less), higher rates have the opposite effect, enhancing destabilisation of both percepts. 

Overall, we see a triple dissociation between climbing loops, descending loops and transition 

rates, which could guide the interpretation of our results in the context of circular inferences. 

We note however that, in the absence of analytical results, our predictions regarding the 

destabilisation phase in intermittent bistable perception are entirely based on simulations. 

Although those predictions are true for a wide range of parameters, a formal proof of the 

generality of the result still needs to be presented.  
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Figure 2: Model Predictions for CNC and DNC experiments.  Panels a, b, d, e, g and h correspond to 

predictions for the CNC experiment while panels c, f and i illustrate the predictions for the DNC experiment. 

Three possible alterations are depicted. Lighter colours illustrate smaller values of the parameters. 

(a.,b.,c.): Stronger descending loops result in enhanced effects of cues on RP (a.; drift ≠ 0), more biased 

responses in the ambiguous condition (a.; drift = 0), more stability (b.) while they also generate more 

stabilisation and less destabilisation when the stimulus is intermittently presented (c.). (d.,e.,f.): The 

opposite effects are caused by a strengthening of the climbing loops. In that case, we observe a weaker effect 

of cues on RP, less biased responses in the ambiguous condition, less stability, less stabilisation and less 

destabilisation (the last prediction is the same between climbing and descending loops). (g.,h.,i.): Higher 

baseline transition rates produce qualitatively the same behaviour as the stronger climbing loops, apart 

from an enhanced destabilisation for short blank durations in intermittent presentation tasks. Note that all 

3 manipulations produce a non-linear multiplicative effect on RP, instead of a simple shift of the 

psychometric curve. 

 

Results 

 Patients and healthy controls were matched between the two experiments in terms of 

demographic characteristics, medication, and symptoms’ severity (Table 1).  

 

Experiment 1 (CNC) 

 The results of the CNC experiment are presented in Figure 3. In terms of bias (Realtive 

Predominance (RP)), there is an important difference in the slopes of the two curves (Figure 
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3a), suggesting a difference in the effect of the visual cues between the two groups. Additionally, 

we observe higher stability for controls (Survival Probabilities (SP); Figure 3b), at least for the 

interpretation that is supported by the visual cue. 

 

 Relative Predominance 

 The linear mixed models for the RP revealed a significant effect of the visual cues (β = 

0.45, p < 0.001). There was no significant effect of the group (p = 0.7), instead there was a strong 

(cue x group) interaction (β = -0.38, p < 0.001), resulting in a smaller slope and weaker effects 

of the visual cues in patients (Figure 3a; red curve). Both groups exhibited an implicit 

preference, as implied by the significant difference between the RP in the ambiguous condition 

and chance (p = 0.011 for controls; p = 0.027 for patients). Although controls were on average 

more biased than patients when there was no cue, the difference didn’t reach statistical 

significance (p = 0.32).  

 In order to explore potential asymmetries in the effect of the cues in patients, we 

repeated the analysis, considering only this group and separating supporting and contradictory 

cues. We found that the supporting cues (strong and weak) had a significant (albeit weak) effect 

on RP (non-parametric Friedman’s test: 𝝌𝟐(2) = 6.5, p = 0.039). Interestingly, the effect of the 

contradictory cues (strong and weak) was not found significant (non-parametric Friedman’s 

test: p = 0.47), suggesting that patients might be ignoring dis-confirmatory evidence [30]. A 

direct comparison between the effect of the strong supporting cue and the strong contradictory 

cue didn’t reach statistical significance (Comparison: [RP(Str Supp) – RP(Amb)] with [RP(Amb) 

– RP(Contr Cue)]; p = 0.15). As a control, this analysis was repeated in healthy subjects: we found 

that both types of cues significantly affected RP (supporting evidence: 𝝌𝟐(2) = 19.01, p < 0.001; 

contradicting evidence: 𝝌𝟐(2) = 14.94, p < 0.001) while a direct comparison between the effects 

of strong opposite cues didn’t give significant results (p = 0.46). 

 

 Survival Probability 

 A similar analysis was repeated for stability (SP), revealing significant effects of the visual 

cues (β = 0.22, p < 0.001) and of the response (β = -0.11, p < 0.001) (participants were more 

stable when perceiving SFA than when perceiving SFB) but no significant effects of the group 

(p = 0.29). Additionally, we found significant two-way interactions (group x cue: β = -0.19, p = 
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0.003; response x cue: β = -0.49, p < 0.001; group x response interaction was not found 

significant (p = 0.58)), meaning that patients (Figure 3b; red curves) were less affected by cues 

than controls (Figure 3b; blue curves) and that cues had opposite effects on the two SP. Finally, 

we also evidenced a significant cue x group x response 3-way interaction (β = 0.38, p < 0.001). 

As with RP, there was no significant difference in the stability of the two groups in the 

ambiguous condition, for any of the two responses (although SP(SFA) was larger for controls, 

compared to patients; SFA: p = 0.11; SFB: p = 0.77).   

 Likewise RP, in order to test whether there were asymmetries in the effects of the cues 

on stability, we used Friedman’s test separately for supporting and contradictory cues, 

individually for patients and healthy controls. For the “Seen From Above” interpretation (SFA), 

we found significant effects both for the supporting cues (𝝌𝟐(2) = 11.76, p = 0.003) and for the 

contradictory cues (𝝌𝟐(2) = 7.18, p = 0.03) for controls, but also for patients (Supp: 𝝌𝟐(2) = 6.17, 

p = 0.045; Contr: 𝝌𝟐(2) = 6, p = 0.049). Note however that for patients, the effect of the 

contradictory cue was in the opposite direction, denoting again a potential bias against 

disconfirmatory evidence. For the “Seen From Below” interpretation, there was a significant 

effect of the contradictory cues (𝒙𝟐(2) = 11.41, p = 0.003) but no significant effect for the 

supporting cues (p = 0.49) for healthy controls. For patients on the other hand, neither the 

supporting cues (p = 0.37) nor the contradictory cues (p = 0.26) changed significantly the 

persistence of SFB.  

 

 2nd Levelt’s law 

 Overall, in healthy participants, we observed a stronger effect of the cues on the stability 

of the interpretation that is supported by the contrast, compared with the opposite 

interpretation. That is in agreement with the revised 2nd Levelt’s law, suggesting that 

“Manipulations of stimulus strength of one perceptual interpretation of a bistable stimulus will 

mainly influence the average dominance duration of the perceptual interpretation 

corresponding to the strongest stimulus” [26,31]. Interestingly, this proposition seems to be 

violated in patients with schizophrenia, potentially due to a bias against disconfirmatory 

evidence [30] (see also Figure S2). 
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Figure 3: Results of the CNC experiment. (a.): RP as function of the cue condition. Patients were less 

biased by visual cues, compared to healthy controls. A (group x cue) interaction was observed. Patients were 

not affected by contradictory evidence. (b.): SP (calculated separately for the two interpretations) as a 

function of the cue condition. Patients were less stable than healthy participants when perceiving the 

interpretation that was supported by the cue. 

 

 Medication 

 In order to control for a potential confounding effect of medication on the previous 

results, OLZ-eq and DZP-eq were added to the model as fixed effects (separately and all 

together). None were significant (or affected the rest of the results), except for a trend for OLZ 

(β = -0.0017, p = 0.052). It suggests that an increase in antipsychotic dosage decreases RP. In 

order to further understand this effect, we looked for correlations between the OLZ-eq and the 

RP for the different cue conditions, using Spearman’s rank correlation coefficient. We found no 

significant correlations. For the sake of completeness, we also tried Pearson’s correlation. 

Interestingly, we found a significant negative correlation between OLZ and the RP for the strong 

contradictory cue (𝒓 = -0.77, p = 0.003), suggesting that medication might reverse the bias 

against dis-confirmatory evidence, mentioned before. In any case, a larger sample could help us 

decide whether those results are meaningful, or an artefact due to the small sample.  

 

 Severity of symptoms / non-clinical psychotic traits 

 A similar method was used to assess the relationship that may exist between the 

symptoms’ severity (and the non-clinical traits) and bistable perception. Neither PDI, nor LSHS 
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yielded significant results when added as covariates to the linear models. Conversely, we found 

a significant positive effect of the depressed factor of PANSS on RP (β = 0.012, p = 0.042), as 

well as a trend for the positive factor (β = 0.008, p = 0.068), meaning that more severe 

symptoms (positive or affective) are related with higher RP. In addition to that, we found that 

when combining patients and controls, both PDI and LSHS were positively correlated with the 

RP for strong contradictory cue (PDI: 𝒓𝒔 = 0.46, p = 0.013; LSHS: 𝒓𝒔 = 0.37, p = 0.048), suggesting 

an enhancement of the bias against dis-confirmatory bias in participants with stronger 

psychotic traits (Figure 4(a.,b.)). Moreover, LSHS also correlated negatively with the RP for the 

weak supporting cue (𝒓𝒔 = 0.41, p = 0.028) (Figure 4d), offering evidence for a link between 

hallucinations and a weakened effect of visual cues (see Figure 2). Finally, we found a positive 

correlation between the positive factor of PANSS and RP for strong contradictory cues (𝒓𝒔 = 

0.68, p = 0.015) (Figure 4c), in agreement with our previous observations.  

 

 

Figure 4: Correlations in CNC experiment. (a.,b.,c.): Non-clinical psychotic traits ((a.): non-clinical 

hallucinations (LSHS); (b.): non-clinical beliefs (PDI)) and the severity of the positive symptoms in patients 

(c.) were associated with a larger RP (closer or above chance) in the presence of strong contradictory cues, 

potentially denoting an enhanced bias against dis-confirmatory evidence. (d.): Non-clinical hallucinations 

(LSHS) were also positively correlated with RP in the presence of a weak supporting cue, linking the false 
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percepts with the slope of the RP curve. Healthy controls are represented by blue dots and patients by red 

dots. 

 

 Model-based interpretation 

 Our results are compatible with our first hypothesis that psychotic symptoms in 

schizophrenia are caused by an aberrant amplification of sensory evidence in the cortical 

hierarchy (climbing loops; Figure 2(d.,e.)) [13]. Interestingly they could also be explained by 

dysregulated temporal statistics, in particular by a system with pathologically high transition 

rates, for example a system that over-estimates the environmental volatility (Figure 2(g.,h.)). 

On the contrary, the present findings rule out the alternative hypothesis that schizophrenia’s 

symptoms may result from over-counted priors, due to the presence of descending loops 

(Figure 2(a.,b.)). Similarly, they rule out the possibility that patients are simply less (or more) 

biased, as a result of smaller (or larger) difference between the two transition rates (Figure S1).  

 

Experiment 2 (DNC) 

 Figure 5 illustrates the stabilization curves for SFA (left panel) and SFB (right panel). 

We observe two main differences between schizophrenia patients (red curves) and healthy 

subjects (blue curves): First, patients’ SFB curve converges to a lower value, closer to chance. 

Second, patients get more destabilized than controls in the first (destabilization) part, for both 

interpretations. Importantly, our results in healthy participants largely replicated our previous 

results reported in Chapter 4. 
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Figure 5: Stabilisation curves from DNC experiment. The curves were separately plotted for the two 

interpretations. Patients exhibited a trend for enhanced destabilisation for short OFF-Durations (both 

interpretations) as well as less stability for longer durations (SFB / Weak interpretation). We observed no 

difference between the groups in the stabilisation of the strong interpretation (SFA). 

 

 Stabilization curves – Destabilization part 

 As explained in the Methods, since blank duration has a non-linear effect on SP, we 

used different linear mixed models for the destabilisation part (50 ms:150 ms) and the 

stabilization part (300 ms:1050 ms)of the curves. The LMEM for the destabilisation part gave a 

significant effect of the OFF-Duration (β = -0.001, p = 0.003; the negative effect denotes 

destabilisation) and of the response (β = 0.208, p < 0.001; SFB is more stable, possibly due to a 

slower destabilisation), on the other hand there was no significant effect of the group (p = 0.62). 

In terms of 2-way interactions, we found a significant (OFF-Duration x response) interaction (β 

= -0.002, p < 0.001; SFB decreases more steeply) and a trend for the (OFF-Duration x group) 

interaction (β = -0.001, p = 0.089; patients get destabilised more quickly than controls), while 

(group x response) interaction didn’t reach statistical significance (p = 0.99). Finally, there was 

no 3-way interaction either (p = 0.37). 

 In order to verify whether the amount of destabilization was different between the two 

groups, we compared their SP in the relevant conditions (OFF = 150 ms and OFF = 300 ms), in 

which maximum destabilization occurs. Although none of those comparisons reached statistical 

significance (SFA, OFF = 150ms: p = 0.18; SFB, OFF = 150ms: p = 0.75; SFA, OFF = 300ms: p = 

0.43; SFB, OFF = 300ms: p = 0.28), we highlight that patients were always more destabilised 

than controls.  

 

 Stabilization curves – Stabilization part 

 Interestingly, the LMEM for the stabilisation part revealed a significant effect of the 

OFF-Duration (β = 0.0003, p < 0.001; the positive effect denotes stabilisation) while there was 

also a trend for a 3-way interaction (β = -0.0002, p = 0.076; the (Off-Duration x group) 

interaction is more pronounced for SFB than for SFA). All the other effects were found not 

significant (group: p = 0.59; response: p = 0.18; (Off-Duration x group): p = 0.84; (Off-Duration 

x response): p = 0.18; (group x response): p = 0.98). 
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 We also tested whether the convergence points were symmetrical, separately for 

patients and controls (comparison: SP(SFA; OFF = 1050 ms) with (1 – SP(SFB; OFF = 1050 ms))) 

[29]. Asymmetrical convergence denotes the presence of an acute bias, a characteristic of the 

descending loops (see Chapter 4; [32]). The result was significant for controls (p = 0.002), while 

for patients we only found a trend (p = 0.07), potentially due to the small sample. Additionally, 

we found that both groups’ SP for SFB and OFF = 1050 ms were not significantly different from 

chance (controls: p = 0.24; patients: p = 0.055), on the contrary SP for SFA were significantly 

above chance (controls: p < 0.001; patients: p = 0.008). Finally, the convergence point of the 

SFB curve, but not that of the SFA curve was significantly different between the two groups 

(SP(SFB; OFF = 1050 ms): p = 0.02; SP(SFA; OFF = 1050 ms): p = 0.68).  

 

 Individuals 

 Figures S3 and S4 illustrate the stabilization curves of the 14 controls and the 9 patients 

respectively, individually for each participant. As in our previous experiments (Chapter 4), 

although results of individuals are noisier, we observe that the average pattern (blue above red; 

initial destabilization followed by stabilization; non-symmetrical convergence points) is also 

present for most subjects, suggesting that the results presented above are indeed meaningful. 

However, an interesting observation is that almost half of the patients’ curves converge to 

symmetrical points, indicating the lack of memorisation / acute bias, which in the circular 

inference framework can be interpreted as lack of descending loops. This between patients 

variability could have important theoretical and clinical implications (see Chapter 7) and needs 

to be further investigated in our future work (participant per participant fitting, categorization 

of patients in subgroups, based on (the phenomenology of) their symptoms etc.). 

 

 Reaction time 

 Furthermore, we ensured that between-groups differences in reaction times (RT) did 

not affected our results. Figure S5 presents the average reaction times for the two groups and 

for the different OFF-Durations. A comparison between the two groups, after collapsing all the 

OFF-Durations, revealed only a statistical trend (p = 0.055) (note that an analysis taking into 

account within-group differences (different OFF-Durations) gave the same result regarding the 

group effect). To make sure that our results were not contaminated by very long reaction times 

(the distribution of RT in patients has a longer tail), we split the results into LRT and HRT 
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(threshold: RT = 0.7 s) and repeated the analysis for each category separately. Those 

stabilization curves are presented in Figure S6. As expected (longer reaction times imply more 

accumulation of evidence, hence SP being flatter and closer to chance), we found different 

profiles for the two subgroups: HRT curves (Figure S6(a.,c.)) were almost flat and close to 0.5; 

more importantly, LRT curves (Figure S6(b.,d.)) did not differ qualitatively from the ones 

presented before. A similar model-free analysis gave similar results as for the entire sample for 

the destabilization part, while for the stabilization part the effects of the response (β = -0.14, p 

= 0.03; SFA is more stable than SFB) and the 3-way interaction (β = -0.0003, p = 0.004) became 

significant. 

 

 Medication, severity of symptoms and non-clinical psychotic traits 

 We found no significant effects of medication, for any type of equivalent dosage (OLZ, 

DZP). Additionally, results were not significant, when we added PDI or LSHS in the LMEM 

(overall or LRT) as covariates. Nevertheless, we found a significant positive effect of the positive 

factor of PANSS in the destabilization phase (β = 0.014, p = 0.03; this effect did not survive in 

LRT), but also significant positive effects of the positive factor (β = 0.016, p < 0.001) and the 

negative factor (β = 0.014, p = 0.03; this effect also did not survive in LRT) of PANSS in the 

stabilization phase. In the correlation analysis that followed, we found a significant negative 

correlation between LSHS (controls and patients taken together) and the stabilization point of 

the SFB curve (SP(SFB; OFF=1050ms)) (𝒓𝒔 = -0.51, p = 0.01), substantiating a potential link 

between hallucinations and the decreased stabilisation of the weak (SFB) interpretation (Figure 

6). 

 

 Model-based interpretation 

 The results of the DNC experiment are largely in agreement with our previous results 

(CNC experiment; [13]), suggesting that schizophrenia (and psychotic symptoms in particular) 

is a manifestation of over-counted sensory information (climbing loops) Note that this 

interpretation does not explain why patients were more destabilized for short blank intervals. 

This result could signify the presence of a secondary impairment in the representation of the 

temporal statistics of the environment (increased rates).  
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Figure 6: Correlations for DNC experiment. The reduced stabilisation of the SFB interpretation for long 

blank intervals (OFF = 1050 ms) (that corresponds to SP being closer to 0) correlated with the non-clinical 

psychotic traits in the entire sample (non-clinical hallucinations (LSHS)). Healthy controls are represented 

by blue dots and patients by red dots. 

 

Discussion 

 In the present work, we compared schizophrenia patients with matched healthy controls 

in two bistable perception tasks: a continuous-presentation task (CNC), inspired by [14] and an 

intermittent-presentation task (DNC), introduced earlier in this thesis (Chapter 4). The two 

studies were largely based on the circular inference framework, a form of probabilistic inference 

in which information can be amplified because of the presence of loops [8,10]. Having 

established theoretical (see Chapter 3 but also [8,33]) and empirical links (see Chapters 2,4 and 

[13]) between circularity and both schizophrenia and bistability, here we sought to use 

perception of ambiguous stimuli as a tool to probe the mechanisms that generate aberrant 

inference in the disorder. More particularly, we asked to what extent sensory amplification 

(rather than prior amplification) can explain psychotic symptoms and whether additional 

mechanisms might be at play. Additionally, we could address the role of dynamics, largely 

neglected in previous CI work, in the generation of the symptomatology. 

 Despite limited samples, we evidenced significant differences between the groups in the 

way they perceive ambiguity, suggesting that the perceptual mechanisms, responsible for 
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bistability, are seriously impaired in schizophrenia. In the CNC experiment, we discovered that 

patients are less biased by visual cues, while they are also less stable than healthy participants. 

Crucially, instead of a simple additive group effect on RP (like the one presented in Figure S1), 

we observed a multiplicative effect (interaction; see also Figure 2), which rules out the 

possibility that patients simply exhibit a weaker implicit preference (Figure S1). 

 In addition to that, we found preliminary results for a “bias against disconfirmatory 

evidence” in patients [30], although our limited statistical power did not allow for a clear 

rejection of the possibility that such an asymmetry is a general trend in both groups. 

Interestingly, we found that this bias was exacerbated in participants with more severe psychotic 

traits / symptoms, while it was also found reduced with higher dosage of medication. Our 

discovery of a negative correlation between non-clinical hallucinations’ traits (LSHS) and the 

RP in a supporting-cue condition strengthened our claim for a link between the reduced slope 

of the RP and the psychotic symptoms. 

 Additionally, the DNC experiment revealed differences between the two groups in both 

parts of the stabilization curves. In the early destabilization part, we found hints (the difference 

didn’t reach statistical significance) of faster and stronger destabilization (reduction of the SP) 

in patients, as compared with healthy participants. On top of that, we observed a weaker 

stabilization of the SFB interpretation in patients, which also correlated with the non-clinical 

hallucinations’ traits (LSHS).  

 The present results are largely in agreement with previous experiments, which used 

bistable perception to study different psychopathologies such as schizophrenia and bipolar 

disorder. Most studies found increased reversal rates and reduced cognitive control both in 

schizophrenia and in bipolar disorder ([34,35]; but see also [36]), which has been linked to 

increased effects of noise [37]. More recently, Schmack and colleagues created a bridge between 

psychotic symptoms, bistable perception and impaired predictive processing [38]: they 

associated non-clinical bizarre beliefs (PDI score) in healthy subjects with reduced stability in 

an intermittent presentation task on one hand and with an enhanced belief-induced bias on the 

other. They also suggested a two-level explanation including weak low-level predictions and 

strong high-level predictions. In two follow-up studies, they extended their discontinuous-

presentation result in a group of schizophrenia patients [39] but failed to do the same for the 

high-level predictions [40]. 

Our results replicated the findings regarding stability in continuous- and discontinuous-

presentation bistable tasks and extended them, first by considering more conditions (e.g. visual 
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cues in CNC and multiple blank durations (instead of one single interval) in DNC) and second 

by suggesting methodological improvements. As explained in Chapter 2, our continuous-

presentation method [14] minimizes the role of attention which has been shown to play a crucial 

role in bistable perception [41,42], a function known to be impaired in schizophrenia [43]. 

Second, the present method solves the problems posed by potential motor deficits in patients: 

This procedure is not affected by differences in reaction time, as one could use the time of the 

sound as a proxy for the time of the decision. Regarding the methodological advantages of our 

discontinuous-presentation experiment, we briefly mention the use of SP instead of reversal 

rates, the consideration of potential chronic biases and asymmetries between the two 

interpretations, the reconstruction of the entire stabilization curve and the randomization of 

the blank intervals. For more details, please refer to the corresponding section in Chapter 4. 

 Today, there is an abundance of evidence suggesting that the brain is a probabilistic 

machine, constantly guessing what is out there, what could be the result of a decision or what 

is the most probable outcome of an action [44–47]. To optimize predictions, it must combine 

sensory information with constantly updated priors, which can be mapped on feed-forward and 

feedback processing respectively [48]. Taken together, our results speak to a profound alteration 

in predictive mechanisms in schizophrenia. In a previous study, Jardri and colleagues used a 

variation of the beads task to probe those alterations [13]. They concluded that schizophrenia is 

mainly caused by an aberrant amplification of the sensory evidence (i.e. climbing loops), which 

results in suboptimal inferences and consequently in biased decisions (e.g. “jumping to 

conclusions”, common in patients with prominent delusions [49,50]), false percepts but also 

bizarre and unshakable beliefs [8]. The results presented here are compatible with such an 

explanation, whose qualitative predictions are presented in Figure 2(d.,e.,f.). On the contrary, 

our results contradict the hypothesis that schizophrenia is due to prior-amplification (Figure 

2(a.,b.,c.)). It’s worth noting though that descending loops can also generate hallucinations and 

other false percepts and beliefs and might underlie other types of psychotic experiences (see 

Chapter 7). As a result, the possibility that patients have less descending loops (reduced over-

counting of priors) seems less plausible. 

 In Chapter 3, we showed that in the context of dynamical circular inference, climbing 

loops essentially increase the gain of the noisy sensory evidence. Interestingly, this gain depends 

not only on the climbing loops, but also on the properties of the internal model (mean and 

variance of the likelihood function, feed-forward weight etc.). We highlight that an impairment 

in any of those parameters would have the same effect on the behaviour of the patients, 

consequently the present study cannot vote for one of those alternatives. 
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 Despite the good qualitative agreement, we must highlight that certain patterns in the 

data do not fit in the above interpretation. First, in the DNC experiment we did not observe a 

reduced stabilization in patients in the SFA interpretation (Figure 5; left panel), as we would 

expect from a system with stronger climbing loops. Although this could be an important 

deviation from the model’s predictions, we note that for 0FF=1050ms, both SP still increase, 

consequently a difference might appear later. A follow-up experiment, testing longer intervals, 

would be necessary to clarify this point. 

 A second discrepancy is found in the destabilization profiles of the same curves. More 

particularly, we observed enhanced destabilization for patients, despite the climbing loops 

predicting the opposite (Figure 2f). Although this result did not reach significance in our 

preliminary sample, it’s highly probable that it will become significant in a larger sample. What 

could have caused this effect? One possibility is that patients, apart from over-counting their 

sensory information, also overestimate the environmental volatility (increased baseline rates; 

Figure 2i). A system with more leak (in which the difference between the rates is kept constant), 

would accumulate less information, ultimately exhibiting a stabilization profile similar to the 

observed one. Note that apart from the difference in the destabilization, a system with increased 

rates behaves qualitatively in exactly the same as a system with strong climbing loops.  

 Could a single impairment in the rates underlie all the observed differences? Although 

the present results seem consistent with such an interpretation, we argue that this is highly 

improbable. In the work by Jardri and colleagues, dynamics was irrelevant, as a result a 

difference in the rates wouldn’t have produced the observed deviation between patients and 

controls [13].  

 The idea that patients have increased baseline transition rates might seem at odds with 

some recent results, suggesting that psychotic patients underestimate environmental volatility 

[51]. This contradiction might be due to differences in the experimental design. More 

particularly, in the Powers et al study, the contingencies were actually changing, as a result 

participants had to learn online how quickly they change. Conversely, in the present study 

switches do not correspond to real events, hence the rates are not learnt during the task, but 

vaguely reflect an a priori estimation of the temporal statistics of the environment. 

 Apart from those two major disagreements, we also found preliminary proof for a “bias 

against dis-confirmatory evidence” (BADE), which is also not directly predicted by our dCI 

model. A BADE has been shown a prominent characteristic of delusional patients [30,52] and 

healthy individuals with high delusions-proneness [53] in reasoning tasks and has been linked 
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to the generation and maintenance of fixed beliefs [54,55]. To the best of our knowledge, the 

presence of such a bias in perception has been largely neglected. If the bias survives in the final 

sample (and is shown to be a unique characteristic of patients), it could signify a secondary 

impairment or potentially a compensatory mechanism, reducing the constant update of the 

high-level beliefs by the amplified sensory information, at the cost of throwing away useful 

information. Alternatively, it could be a by-product of climbing loops, in particular a 

consequence of the aberrant learning caused by the reverberated sensory input [8].  

 A few limitations must be mentioned. First, as mentioned earlier, there is a problem of 

statistical power, due to the preliminary character of the results. We expect to have 30 

participants per group / per experiment in the final sample, which is large enough (according 

to sample size estimations) to address the open questions mentioned above.  

 Second, all our interpretations are based on qualitative comparisons between the data 

and simulations. Although this approach gives important (albeit rough) intuitions regarding the 

underlying mechanisms, a model fitting procedure (at the level of individuals) is necessary in 

order to arbitrate between the different possible interpretations. This quantitative account 

could demonstrate the respective roles of loops and rates in the observed behaviour and account 

for differences between different subgroups of patients (e.g. patients with auditory 

hallucinations vs patients with multi-modal, audio-visual hallucinations). Such an analysis is 

scheduled for when we reach the final sample-size. 

 Finally, an impaired contrast sensitivity in patients [56] could have contributed to the 

observed difference in the CNC experiment. Such an impairment has been linked to a more 

general gain control problem in schizophrenia, potentially mediated by a hypo-function of the 

NMDA receptors [57,58]. In order to control for that, an additional test will have to be added in 

the battery of neuropsychological tests already applied, explicitly testing the capacity of 

participants to perceive the contrast between the lines. 

 In summary, this study brings new evidence to the long lasting debate of whether 

inferences in schizophrenia are mainly prior- or sensory-driven [4–7,13,39,51,59,60]. Beyond the 

algorithmic differences (belief propagation vs predictive coding etc.) and the nature of the 

impairment (loops vs impairment in precision-weighting etc.), our preliminary evidence 

support the view that psychosis is the result of aberrantly strong bottom-up processing. Further 

work is necessary in order to associate the phenomenology of the symptoms (macro-scale) with 

brain computations on one hand (meso-scale) and neural processing on the other hand (micro-

scale), resulting in a holistic, multi-scale account of psychosis. 
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Supplementary Material 

 

                   

Figure S1: Predictions for different ron. Unlike changing the strength of loops (climbing and descending) 

or the value of both baseline rates (Figure 2), altering only one of the rates (e.g. baseline ron) results in a 

shift of the psychometric curve to the left or to the right (additive effect) but not in a change of the slope 

(multiplicative effect).  

 

 

Figure S2: Mean phase durations (MPD) in the CNC experiment. This figure complements Figure 3 in 

the main text, showing that patients violate Levelt’s revised second proposition, which dictates that a change 

in the stimulus strength (e.g. by adding a visual cue) affects mainly the MPD of the currently stronger 

interpretation. Patients are much less affected by cues compared to controls, while they seem to completely 

ignore contradictory evidence. 
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Figure S3: Stabilization curves for controls (individuals). 
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Figure S4: Stabilization curves for patients (individuals). 
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Figure S5: Reaction times for different OFF-Durations in the DNC experiment. As expected, patients 

were slower than controls (statistical trend), while there was also a small effect of cue (RT decreases for 

longer intervals). 

 

 

Figure S6: Results of DNC experiment for LRT and HRT subgroups. As expected, the HRT curves were 

flatter and closer to chance. On the other hand, LRT curves had the same shape as the overall curves (Figure 

5) 
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Abstract 

Psychotomimetic drugs are known to mimic psychosis in non-clinical individuals. 

Among these agents, serotonergic agonists (i.e., psychedelics) can distort perception and induce 

hallucinations without confusion. Importantly, hallucinations induced by psychedelics exhibit 

features that are profoundly different from those observed in common psychiatric disorders. 

These experiences are primarily multisensory and often associated with synaesthesia, which 

appears in clear contradiction with the high prevalence of distressing voices heard by 

schizophrenia patients. In this paper, we introduce a unifying account for these different 

experiences based on circular inference, a form of suboptimal probabilistic inference in which 

information gets erroneously amplified due to dysregulations of the neural excitatory-to-

inhibitory (E/I) balance. Using in-silico simulations, we show that psychedelics could 

destabilize the E/I balance in the cortical hierarchy in favour of prior information (a 

phenomenon named “descending loops”). This prior overcounting tends to accumulate in 

sensory areas, which become over-integrated. Considering that the brain builds representations 

through message-passing between neuronal populations, this over-integration gives rise to 

prior-driven aberrant experiences with a strong crossmodal character. A different mechanism 

might occur in schizophrenia, based on the formation of “climbing loops” in the cortical 

hierarchy. By amplifying sensory information and enhancing segregation of the sensory 

representations, this second form of E/I imbalance results in two well-known features of the 

disorder, i.e., unimodal hallucinations and a reduced vulnerability to illusions. Crucially, this 

distinction between drug-induced and schizophrenia-related hallucinations also reveals a 

missing link between erroneous message-passing and neuromodulation. To fill this gap, we 

propose a canonical micro-circuit implementing circular belief-propagation in which the two 

inference loops previously introduced could be controlled by different neuromodulators acting 

on the E/I balance: the “descending loops”, under serotonergic control (the primary target of 

psychedelics), and the “climbing loops” regulated by dopamine (whose role in the 

pathophysiology of schizophrenia is widely accepted). 
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Introduction 

 Hallucinations can be defined as percepts occurring while the person is awake and 

without external stimulation of the relevant sensory organ. Even if these experiences can be 

observed in non-clinical populations [1], hallucinations often constitute the hallmark of 

psychiatric disorders, such as schizophrenia [2] or borderline personality [3], and are common 

symptoms in  neurodegenerative diseases [4]. Interestingly, hallucinatory experiences can also 

be induced using psychotomimetic drugs. 

 A particular class of hallucinogenic drugs, known as “classic psychedelics” [5], has 

fascinated science for more than a century. Major psychedelics include naturally occurring 

chemicals such as mescaline (extracted from the peyote cactus), psilocybin (“magic 

mushrooms”) and N,N-Dimethyltryptamine (DMT), as well as synthetic compounds such as  

lysergic acid diethylamide (LSD) [6]. Long before the first scientists’ experimentations with 

mescaline, various cultures used the psychoactive properties of these drugs either to improve 

their physical performance in hunting (e.g. Cashinahua people in Brazil and Peru) or to gain 

spiritual guidance (e.g. Shipibo shamans) [7,8]: shamans typically drink the ayahuaska brew 

(which contains DMT) sat in a dark place and use songs and perfumes to shape their visions [8]. 

Interestingly enough, those Amazonian tribes recognized the capacity of psychedelics to 

enhance the talk between sensory modalities long before the discovery of LSD-induced 

synaesthesia [9]. 

 All classic psychedelics are serotonergic agonists with a high affinity to 5HT2A receptors 

[7,10]. Those receptors mediate most of the psychoactive effects of psychedelics, as 

demonstrated by the blocking ability of 2A antagonists, such as Ketanserin [11], even if other 

receptors, including 5HT2C, 5HT1A, 5HT5A as well dopaminergic and beta adrenergic receptors, 

were also proposed to play a role in these effects [12–14]. 5HT2A receptors are found in both the 

cortex and subcortical regions, but they are predominantly expressed in cortical layer V 

pyramidal cells, suggesting a cardinal involvement of deep layers in the phenomenology of 

psychedelics [10,15]. 

From a neurophysiological point of view, serotonergic drugs induce increased activation 

in a variety of cortical regions (including primary visual cortex and more frontal areas [16,17]) as 

well as profound changes in the functional connectivity in the Default-Mode Network and 

within/between Resting-State networks and Task-Positive networks [17]. Finally, psychedelics 

can decrease the power of alpha-band oscillations (although a reduction in a wider range of 
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frequencies has also been discovered; [17]), which has been interpreted as an increased 

excitability in the absence of external stimulation [18]. 

 At the phenomenological level, psychedelics induce profound changes to the people 

who consume them [6]. They notably induce perceptual, emotional and cognitive alterations 

[19], while they can also generate mystical experiences and result in a diminished sense of self 

(“ego-dissolution”) and a feeling of unboundedness [20,21]. Perceptual abnormalities comprise 

elementary and complex hallucinations (mostly visual or crossmodal), visual illusions, 

intensification of perceptual experience and mental imagery, together with synaesthesia, a 

(otherwise) rare perceptual phenomenon in which activation of one modality leads to subjective 

experiences in other modalities as well [22]. 

Interestingly, the content of these hallucinatory experience (e.g. “the spirits” in the case 

of the Amazonian Shipibo shamans) can be modulated by the activation of other sensory 

modalities (a phenomenon called “effect of setting”; e.g. singing of songs or spraying of 

perfumes) but also by the emotional state of the consumer prior the administration of the drug 

(named “effect of set”)  [8,23]. In summary, serotonergic hallucinogens generate rich 

experiences, including a dominant crossmodal component (complex hallucinations with 

synaesthesia), and also in some cases a top-down component with increased mental imagery 

and emotional effects [24–26]). 

 This description appears to be very different from the psychotic experiences observed in 

schizophrenia [27,28]. At the molecular level, schizophrenia has been linked to an increased 

presynaptic storage and release of striatal dopamine [29]. Glutamatergic [30,31], gabaergic [32] 

and serotonergic [28] abnormalities were also occasionally found associated to these 

dopaminergic dysregulations. At the phenomenological level, patients with schizophrenia 

mainly report hearing voices with a dominant negative affective content, although a minority 

of patients also describe multisensory (usually audio-visual) hallucinations [33–35]. In 

schizophrenia, these experiences are regularly found coupled with a reduced sensitivity to 

illusions [36]. 

 These differences immediately raise new questions: What links exist between 

serotonergic agonism and the aberrant crossmodal experiences previously described? Is drug-

induced psychosis functionally and mechanistically linked to schizophrenia-related psychosis? 

And if so, what mechanism(s) is(are) at the roots of this phenomenological variability? Are the 

different neurotransmitters (dopamine and serotonin) directly involved in such variability [28]? 

The recent third wave of psychedelic science together with the burgeoning field of 
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computational psychiatry [37] recently brought those questions to light and a number of 

insightful theories started to address them (Corlett et al., 2009; Carhart-Harris, 2018; see 

Swanson, 2018 for a comprehensive review). Despite those efforts, a unifying, multiscale account 

of psychosis ranging from psychedelics to schizophrenia is still lacking. 

 In a first section of this paper, we will integrate available findings in a unique 

computational framework, able to capture the different facets of these psychotic experiences. 

We will notably defend the idea that circular inferences (CI), a form of suboptimal hierarchical 

probabilistic inference in which likelihood and prior corrupt and amplify each other [40,41], can 

offer a holistic and functional explanation for psychosis, beyond schizophrenia. Using in silico 

simulations, we will show how different suboptimal inferences may be linked to various forms 

of hallucinations. This will allow us to establish a link between observations made at the meso-

scale (e.g., the “erroneous” message-passing between neurons involved in representations’ 

building) and those made at the macro-scale (e.g., the behavioural and phenomenological 

manifestations of psychosis). 

In a second section, we will review empirical evidence supporting a link between meso-

scale and micro-scale findings, in other words between the different types of false inferences 

introduced and the modulation exerted by serotonin and dopamine. Our demonstration will 

build upon the critical role played by the balance between excitatory (E) and inhibitory (I) 

inputs in information processing within neural circuits. We state that one of the overarching 

goal of serotonin and dopamine systems is to regulate the neural E/I balance and to 

consequently control feedforward and feedback flows of information. More particularly, we will 

defend the idea that the amplification of feedback information (later called “descending 

inference loops”) is controlled by serotonin (linked to the effects of psychedelics [7]), while the 

overcounting of feedforward information (later called “climbing loops”) is controlled by 

dopamine (linked to schizophrenia [29]). This reformulation will allow us to implement the CI 

model as a canonical microcircuit able to integrate different scales of understanding 

hallucinations and hopefully pave the way for future biophysically detailed models of these 

phenomena. 
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The circular inference framework 

 Because a detailed description of the circular inference (CI) framework has already been 

made available [40–42], we will only summarise the basic concepts needed to reformulate the 

problem of drug-induced psychosis. 

 The brain presents a highly recurrent architecture in which lateral/feedback 

connections actually dominate feed-forward inputs coming from sensory areas with a ratio of 

9:1 [43]. These circuits naturally generate large levels of spontaneous neural activity [44], directly 

questioning how the system disentangles self-generated signals from true/new sensory events. 

This problem seems particularly acute for perceptual inference, in which sensory cues are 

integrated with prior expectations [40,45–48]. Such integration requires both feed-forward and 

feedback connections, incidentally creating internal information loops [49]. According to the 

circular inference (CI) framework, a finely tuned balance between neural excitation (E) and 

inhibition (I), a well-known property of brain circuits [50], could keep the information flow 

under surveillance, removing all redundant messages. 

A dysregulation of the E/I balance (due to impaired inhibition, too much excitation or 

disruptions in the neuromodulation systems responsible for the tuning of the E/I balance [51–

53]) results in the uncontrolled recruitment of these loops. In this case, sensory and prior 

information are reverberated in the neural circuit and eventually get aberrantly corrupted and 

over-counted [40,41]. A “descending loop” (quantified by parameter 𝑎𝑃; see Supplementary 

Material) is defined as the corruption of the feed-forward sensory information by the feedback 

(top-down) information, leading to an amplification of the priors. Conversely, a “climbing loop” 

(𝑎𝑆) is generated when the sensory evidence corrupts the prior, leading to the amplification of 

the likelihood. 

We previously showed that such circularity could be an important feature of perceptual 

inference in humans (Leptourgos et al, submitted) while in extreme cases, it generates psychotic 

symptoms, including hallucinations and delusions [54,55]. This idea is in line with related 

theories which postulate that schizophrenia may result from an impairment in brain’s predictive 

mechanisms [56]. 
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Building a two-parallel-hierarchies’ generative model 

 When we formalise brain function as hierarchical Bayesian inference, we assume that 

the brain learns the causal structure of the world [47,57]. This generative model is roughly 

reflected in the cortical hierarchy from primary sensory areas to association areas, with each 

level representing variables of increasing abstractness [40]. Inference on the other hand 

corresponds to the inversion of this model, which detects the most probable cause of the sensory 

evidence (in CI, inference is implemented as belief propagation). 

 Previous work on CI focused on simple generative models which consisted of one single 

hierarchy (e.g. the pairwise graph: ForestTreeLeafColour green [40]). Those simplified 

models formalised the inferential processes in one single sensory modality, but failed to account 

for cross-modal phenomena, like the ones dominating the phenomenology of psychedelics. 

Here we extend the generative models previously used by considering 2 parallel hierarchies, 

each of them forming a pairwise graph reflecting a different sensory modality (e.g. audition and 

vision). Note that the presented results can be generalized to graphs with more than one parent 

[40]. The two modalities share a common node at the top and through this node stimuli in one 

modality affect inferences in the other. The nodes within each of the two hierarchies can be 

interpreted as different sensory areas (e.g. the ventral visual stream from V1 to V4) while the top 

node could coincide with an higher-order association cortex, where multisensory integration 

occurs (e.g. the superior temporal sulcus or the occipital-temporal junction [58–60]). For 

illustration purpose, we will consider the example of the audio-visual stimulus of a bird and a 

bird song. This complex stimulus results from the integration of a visual (bird) and an auditory 

(bird song) signals, each of them producing sensory evidence processed in each relevant 

modality. Figure 1(a,b) illustrates the generative model with corresponding anatomical 

interpretations. 

 For the sake of simplicity we will consider belief propagation (with or without 

circularity) in graphical models specific to binary variables, suitable for modelling decision 

making in  “2-alternative forced choice tasks” (Jardri and Denève, 2013b; Leptourgos et al, 

submitted). Each node represents a variable and corresponds to a binary decision (i.e., “is the 

variable present or absent?”). All probabilistic quantities (likelihoods, priors and posteriors) are 

expressed as log-ratios. Sensory evidence is provided as a message clamped at the bottom of the 

hierarchy, with very positive/negative values corresponding to strong evidence that the bottom 

variable is present/absent and log-values close to zero corresponding to high uncertainty. 

Likewise, one can add priors to the system as messages clamped at the top of the hierarchy (e.g. 
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expectations, memories, emotional cues etc, reaching the association cortex from higher levels, 

such as the prefrontal cortex, not included explicitly in the model). The conditional probabilities 

that quantify the strength of the reciprocal causal links between connected nodes can be 

interpreted as weights (feed-forward (𝑤𝑆) and feedback (𝑤𝑃) weights). In our simulations they 

take values between 0.9 and 0.95. Finally, in all the presented simulations both modalities 

consisted of four layers (nodes). Note however that, since amplification depends on the number 

of connections, hierarchies with different number of nodes might be differentially affected by 

the loops (Figure S3) [61]. 

 

 

Figure 1: Generative model and cortical representation: (a.): Contrary to previous accounts of circular 

inference [40,41] (see also Chapters 2,3), here we consider a model with two hierarchies ,each representing 

a different sensory modality (e.g. audition (orange) and vision (green)). The two modalities are connected 

through the top node (grey), which corresponds to the locus of multisensory integration (e.g. association 

cortex). Our example illustrates how different stimulations of the two sensory modalities might have arisen 

from the same “multi-modal” stimulus. Inference corresponds to the inversion of this forward model. (b.): 

A potential implementation of the generative model in (a.) by the brain’s hierarchical structure. According 

to Bayesian accounts of perception, the brain learns the causal structure of the world, which is represented 

in the cortical hierarchy. Filled nodes correspond to higher regions (OFC, ACC and hippocampus), 

potentially sending different kinds of feedback information to the sensory association cortex. 
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Synaesthesia, hallucinations and visual illusions 

 In order to establish a link between the meso-scale (i.e., probabilistic computations 

implemented by a message-passing algorithm) and the macro-scale (i.e., phenomenological 

varieties of the psychotic experience under psychedelics and in schizophrenia), we ran several 

in silico simulations for different scenarios. Those scenarios correspond to well-known effects 

of psychedelics and can be linked to aberrant inferences:  

- In the “synaesthesia” scenario, we stimulated one modality (e.g., audition) with a 

strong sensory evidence (𝐿𝐴 = 3) while the other modality (e.g., vision) received 

weaker negative evidence (𝐿𝑉 = −1.7). 

- In the “sensory-driven hallucination” scenario, both modalities were stimulated only 

by noise, but in one of the two modalities the value of the sensory evidence was 

slightly positive (𝐿𝐴 = 0.4, 𝐿𝑉 = −0.3; in this context, noise corresponds to 

unreliable information). In both cases, to avoid additional confounding effects, we 

did not consider any prior (𝐿𝑃 = 0). 

- Finally, in the “visual illusion” scenario, there was a contradiction between the 

sensory stimulation and the prior (𝐿𝐴 = −1.4, 𝐿𝑉 = −1.4, 𝐿𝑃 = 1,). 

 

Message passing with and without loops 

 Belief propagation works by iteratively calculating probabilistic messages and beliefs 

(log-posterior-ratios) (for technical details about belief propagation with and without loops, 

please refer to the Supplementary Material and to relevant books and papers [40–42,49]). In 

general (i.e., in the absence of loops), sensory information climbs the cortical hierarchy, moving 

from sensory to association areas, and conversely prior information descends the hierarchy (in 

the opposite direction). In the current model, two parallel hierarchies can talk to each other via 

the top node. In other words, because of the (potential) binding, the presence of a stimulus in 

one modality increases the probability that there is a stimulus in the other modality too [58]. 

Once the sensory information reaches the association cortex, it does not stop there but can 

enter the opposite hierarchy as a prior (Figure 2a). In summary and in the absence of loops, 

each sensory modality receives three types of information: (i) its own sensory evidence, (ii) the 

sensory evidence from the other modality (computed as a prior), and (iii) prior knowledge that 

reaches the association cortex from the top. 
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 Adding loops to the model disrupts the conventional message-passing. Because of the 

loops, information is not only propagated in one direction but instead gets reverberated and 

counted multiple times. Examples of the message-passing schemas in the presence of 

descending and climbing loops are provided in Figure 2(b,c). 

 Descending loops cause reverberation of the feedback information (priors and/or 

sensory information coming from the opposite modality) which re-climbs the hierarchy (Figure 

2b; curved arrows). This redundant message re-enters the opposite sensory modality, in which 

it gets reverberated again due to the descending loops, and this vicious circle continues until 

beliefs reach their saturation point [41], making them almost indistinguishable. 

 In the case of climbing loops, sensory information is reverberated and re-descends the 

original hierarchy as feedback (Figure 2c; curved arrows). Contrary to what we just described 

for the descending loops, when the system is corrupted only by climbing loops, the reverberated 

message does not re-enter in the opposite modality, but remains trapped in the original one. As 

a result, we observe a unimodal amplification of sensory evidence, leaving the opposite modality 

practically unaffected. 

 As we will explain in the next sections, this difference in the locus of the amplification 

of information has major effects on the phenomenology of the resulting experiences. 
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Figure 2: Circular inference and synaesthesia: (a.-c.): Belief propagation (without (a.) and with loops 

(b.,c.)). Information from the sensory organs climbs the hierarchy and enters in the opposite hierarchy, due 

to the multisensory integration occurring in the association cortex. In the presence of descending loops (b.), 

information gets amplified in both modalities rendering the two modalities almost indistinguishable. 

Conversely, climbing loops (c.) force information to reverberate only inside the original modality, enhancing 

segregation between modalities. In synaesthesia, we consider what happens when one modality (e.g. 

audition) is strongly stimulated by unambiguous sensory evidence (e.g. birdsong; 𝐿𝐴 = 3) while the other 

modality (e.g. vision) receives negative evidence (absence of bird; 𝐿𝑉 = −1.7). (d.,e.): Results of simulations 

for synaesthesia. In the absence of loops, the system hears the birdsong (belief above 0.5) but is more 

uncertain regarding the presence of a bird (belief close to 0.5). Because of the cross-amplification caused by 

descending loops (d.), the strong auditory information results in both beliefs increasing towards 1, eliciting 

an inversion in the case of vision. Thus, the system perceives the image of a bird, although only audition is 

stimulated by the birdsong (synaesthesia). On the contrary, climbing loops cannot generate such an 

inversion (or synaesthesia), because self-amplification inside the visual hierarchy reduces the visual belief 

towards 0. 

 

Different types of loops for different clinical properties? 

 We explored the effects of loops in different scenarios, corresponding to different 

patterns of activation of the CI model. Since we were interested in how the two modalities 

interact to produce unimodal or crossmodal aberrant experiences, we focused on the beliefs 

generated by each modality (i.e., at the level of top nodes before higher-order association cortex, 

corresponding to the most abstract unimodal stimuli; e.g. objects and sounds/voices). We tested 

the models with different parameters’ values (i.e., weights, strength of the loops, likelihoods and 

prior) which did not affect the qualitative impact of loops on the beliefs. Results were obtained 

after 50 iterations of the algorithm, with each iteration corresponding to one exchange of 

messages in both directions between all the connected nodes. 

 First, we explored the consequences of strongly activating one of the two modalities. 

This scenario is illustrated in Figure 2(a-c), with relevant beliefs shown in Figure 2(d,e). In our 

example, the system receives a strong auditory activation from a birdsong (orange hierarchy), 

but no corresponding visual stimulation (evidence supports the absence of a bird; green 

hierarchy). When the system does exact inference (belief propagation without loops; Figure 

2a), those two pieces of sensory evidence climb their respective hierarchy, reach the association 

cortex (i.e., the grey node) and enter the opposite hierarchy where they are fed-back as priors 

(Figure 2a).  Such a system predicts (and experiences) the presence of a birdsong 

(𝑃(𝑏𝑖𝑟𝑑𝑠𝑜𝑛𝑔|𝑆𝐴, 𝑆𝑉) ≫ 0.5) and the absence of a bird (𝑃(𝑏𝑖𝑟𝑑|𝑆𝐴, 𝑆𝑉) < 0.5) (Figure 2(d,e); left 

bars for each modality). 
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 The addition of descending loops to the system results in amplification of both types of 

sensory information in each modality (Figure 2b). Because of this cross-amplification, the 

system as a whole is dominated by the strongest sensory input, which in our example is the 

positive auditory stimulation. Consequently, there is an artificial rise in both beliefs, resulting 

in an over-confidence regarding the presence of a birdsong and an inversion of the belief about 

the bird (Figure 2d; right bar for each modality). In short, the presence of descending loops 

enhances the communication between the different sensory modalities, which results in a 

concomitant experience in the second modality, a phenomenon that corresponds to 

synaesthesia [9]. 

 On the contrary, climbing loops degrade the communication between modalities, as a 

result of the loopy amplification of information within the modality of origin. This makes 

synaesthetic experiences impossible. In our example the positive evidence for the birdsong is 

amplified within the auditory modality, whereas the negative evidence for the bird is amplified 

within the visual modality. Therefore, the system is over-confident that there is a birdsong but 

without the image of a bird (Figure 2e, right bar for each modality). 

 In the second and third scenarios, we wondered whether the added loops could generate 

strong beliefs even in the absence of strong sensory stimulations (hallucinations). We thus 

tested the case when both modalities are stimulated by noise, without the presence of priors 

(Figure S1, i.e., both sensory evidences are close to chance (zero)). In the absence of any 

convincing information, a system that does exact inference remains practically indecisive 

(beliefs close to 0.5). However, in agreement with previous results [40], loops generate strong 

beliefs, with unique patterns for each type of impairment. Descending loops generate a strong, 

crossmodal and sensory-driven experience (a multisensory hallucination combining a bird with 

a birdsong) whereas climbing loops result in segregated sensory modalities, carrying opposite 

results (clear presence of birdsong combined with clear absence of bird; sensory driven 

unimodal hallucination). Here it is important to highlight that climbing loops do not exclude 

multisensory experiences and could also generate a “crossmodal” hallucination. This particular 

case would need a concomitant stimulation of both modalities with noisy evidence whose value 

is (even slightly) above chance. Nevertheless, this does not correspond to a pure crossmodal 

phenomenon, since the two percepts are generated by unrelated causes. 

 Finally, for the sake of completeness, the third scenario probed the effect of a prior that 

contradicts the sensory evidence (Figure S2). This could correspond to illusory perception (i.e., 

a misperception caused by strong priors [62]), but also to the phenomenon of mental imagery 
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or even to what we could name a prior-driven hallucination (if sensory evidence is absent) 

[24,25]. We consider structurally identical sensory hierarchies, consequently the beliefs about 

the two stimuli are identical (but see also Figure S3). Importantly, descending loops amplify 

the prior, resulting in more illusions and stronger mental imagery (or prior-driven 

hallucinations). On the contrary, climbing loops force the system to resort more to its sensory 

evidence, which leads to more veridical percepts (decreased susceptibility to illusions) [40]. 

 Previous research has shown that both climbing and descending loops can generate 

psychotic symptoms such as hallucinations and delusions [40,41]. However, the above 

considerations speak to a clear distinction between the phenomenological properties of the 

aberrant experiences generated by these two kinds of loops. Descending loops enhance 

communication between sensory modalities (potentially between cognitive modules as well), 

generating strong multisensory, sensory-driven or prior-driven experiences, such as 

simultaneous crossmodal hallucinations, synaesthesia, mental imagery and more visual 

illusions. On the other hand, climbing loops intensify segregation between the sensory 

hierarchies, while they also amplify sensory information, resulting in unimodal aberrant 

experiences and less vulnerability to illusions. Interestingly, the former appears closer to the 

phenomenological properties of the drug-induced psychosis (psychedelics) while the latter 

shares important properties with the phenomenology of schizophrenia (see also [54], for 

experimental evidence from schizophrenia patients). 

Based on these simulations, we would like to suggest that psychedelics (and serotonergic 

agonism in general) generate transient descending loops in cortical circuits implementing belief 

propagation, while neurodevelopmental and genetic abnormalities could instigate more 

permanent climbing loops in patients with schizophrenia. Note however that in schizophrenia, 

different life trajectories could result in different impairments, potentially underlying the 

phenomenological variability observed among schizophrenia patients: e.g. prominent 

descending loops might also generate combined audio-visual hallucinations in a minority of 

patients [35] and where also found associated with more negative symptoms [54]. In the next 

sections, we will specifically investigate the links between the meso-scale and the micro-scale 

(neural circuits), suggesting detailed implementations for the different types of loops. 
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From computations to implementations: loops are modulated by different 

neuromodulators 

 Since the seminal paper by Schultz et al [63], that linked dopamine with reward 

prediction errors, the functional role of the different neuromodulation systems has been vividly 

debated. The goal of this section is to put forward a novel conceptualisation of two 

neurotransmitters (serotonin and dopamine), as regulators of the E/I balance in different parts 

of the cortical circuits. An exhaustive review of the relevant literature on neuromodulation can 

be found elsewhere [64–66] and is beyond the scope of the paper. 

 In the previous section we suggested a unification of the different psychotic experiences 

based on the computational principle of circular inference. We argued that the hallucinogenic 

capacity of psychedelic drugs could be linked with their ability to generate descending loops in 

cortical circuits, while psychosis in schizophrenia (at least, in a majority of patients) could be 

related to an amplification of sensory evidence (climbing loops). This statement has a direct 

consequence: serotonin (the main neurotransmitter affected by psychedelics [12]) should be 

involved in the regulation / prevention of the descending loops whereas dopamine (linked to 

the pathophysiology of schizophrenia [29]) should be related to climbing loops. 

 Serotonin is synthesized primarily in the raphe nuclei [67]. Serotonergic receptors are 

expressed in various cortical and sub-cortical regions, including the claustrum and parts of the 

frontal, temporal, parietal and occipital lobes [10], with high concentration of the 5HT2A-type 

receptors found in layer V pyramidal cells and in middle layer interneurons [15]. Importantly, 

serotonin has been linked to a variety of processes [66] with a special focus on aversive learning 

(contrasting with dopamine; [68,69]) and mood regulation [70,71]. Although direct evidence 

about the involvement of serotonin in perceptual processing is sparser, such a connection is 

strongly implied by both the abundance of serotonergic receptors in sensory cortices [72] and 

the effects of the serotonergic drugs [73,74]. 

Crucially, Moreau et al showed that serotonin has laminar specific (and receptor-

specific) effects on the E/I balance in the rat visual cortex [52], in agreement with 

neurophysiological considerations of the CI framework [41]. In addition to that, various studies 

have established a link between psychedelics and bistable perception [75,76], a phenomenon 

that has already been related to circularity (Leptourgos et al., 2017; Leptourgos et al, submitted). 

In particular, psilocybin was shown to increase persistence in bistable perception tasks, a result 

consistent with the idea that serotonergic agonists could enhance descending loops. Finally, 
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optogenetic activation of 5HT neurons in the dorsal raphe nucleus promoted exploitative 

behaviour in mice, in line with prior-driven behaviours that can be induced by descending loops 

[77]. 

 Similarly to serotonin, dopamine has also been related to various cognitive processes, 

mostly non-perceptual given the sparse dopaminergic projections to sensory cortices [78]. From 

very early, dopamine was associated with the representation of reward prediction errors 

[63,79,80]. More recently, different experimental studies also demonstrated a direct modulatory 

effect of dopamine on the visual cortex, comparable to attention [81] while theoretical 

considerations (mostly Bayesian in nature) started shifting away from reward-learning and 

towards probabilistic (perceptual) inference [66]. Such accounts include dopaminergic 

activation as a representation of uncertainty [82–84] or as sensory prediction error [85] and are 

closely related to the idea that dopamine controls the propagation of sensory information, that 

we suggest here. Besides, theories of schizophrenia conceptualizing the hyperdopaminergic 

tone as aberrant salience [86] or as over-precise prediction error [87–89], speak directly to the 

notion of climbing loops [40,42]. Finally, it’s worth highlighting some results by Happel et al, 

suggesting that dopaminergic modulation via D1/D5 receptors regulates positive, sensory-

dependent, thalamo-cortical feedback, offering some direct evidence for a possible neural 

substrate of long-range climbing loops in the auditory sensory hierarchy [90]. 

 In this section, we briefly reviewed some evidence corroborating our suggestion that 

serotonin and dopamine could modulate the mechanisms controlling descending and climbing 

loops respectively. This suggestion has far-ranging consequences, from the functional role of 

neuromodulation to the potential development of new antipsychotic treatments (see 

Discussion). In the next section we present a reformulation of the circular inference algorithm, 

which anatomically distinguishes between the different types of loops. Based on that, we will 

put forward a detailed microcircuit, implementing circular inference. 

 

From computations to implementations: loops are mapped on different types 

of inhibition 

 We have highlighted that belief propagation (and also the CI framework) depends 

entirely on a precise correction of the propagated information, which prevents the formation of 

loops [40,49]. Previous formulations of the algorithm considered a correction at the level of the 

messages (eq. S2). Nonetheless, this formulation has two important drawbacks. First, it is not 
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clear how the system recognises which part of the information is redundant at each time-step. 

Importantly, the use of auxiliary nodes (a node per message, representing the rectified belief; 

eq. S2) is improbable, due to increased anatomical complexity. Second, it doesn’t clearly 

differentiate between climbing and descending loops at the anatomical and neurophysiological 

levels, rendering the quest for neural substrates almost impossible. 

 Here, we overcome both obstacles by suggesting a novel formulation of the algorithm, 

based on the idea that the correction occurs at the level of the beliefs and not inside the 

messages (please refer to Supplementary Material for further details). For a pairwise graph, 

the resulting beliefs can be written as follows: 

𝐵𝑛 = 𝑀(𝑛−1)→𝑛 +𝑀(𝑛+1)→𝑛 − 𝑓(𝐵𝑛, 𝐵𝑛−1, 𝑎𝑃) − 𝑔(𝐵𝑛, 𝐵𝑛+1, 𝑎𝑆)                                            (1)   

Messages are simply sigmoid functions of the beliefs of the sending nodes (without correction), 

while the last two terms correspond to the subtraction of the redundant prior (𝑓 term) and 

sensory (𝑔 term) information. 

 The neural interpretation of eq. 1 is straightforward. Belief at level 𝑛 (e.g. represented by 

pyramidal cells in a certain cortical/sensory area) is generated by integrating excitatory inputs 

from the levels above and below, which are balanced by inhibitory inputs from interneurons at 

the same level. Inhibition is driven by reciprocal excitation from the same level and inputs from 

the levels above and below (Figure 3). Interestingly, a single interneuron could receive input 

from multiple areas (each representing different variables), compatible with the observation 

that excitatory cells are 4 times more numerous than the inhibitory cells. 

 Crucially, these correction terms are not equivalent. The prior term depends on the 

belief of the node at the same level and that of the level below. Conversely, the sensory term 

depends on beliefs at the same level and the level above. That speaks to an important anatomical 

difference between the two inhibitory mechanisms: interneurons removing descending loops 

are driven by lateral and feed-forward connections; vice-versa, those responsible for climbing 

loops’ control are driven by lateral and feedback connections (Figure 3). 

 Based on this argument and our knowledge about the intra-laminar connectivity of the 

sensory cortex, we would like to introduce a specific neural implementation of the CI 

framework. 
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Figure 3: Different types of inhibition are responsible for descending and climbing loops: The 

corrections that remove redundant information can take place at the level of the beliefs, resulting in a 

reformulation of the circular inference algorithm. According to that, feedback-driven inhibition regulates 

climbing loops, while feed-forward-driven inhibition removes descending loops. This distinction allows to 

draw links with anatomical structures implementing the different correction mechanisms. [light grey: E-E 

connections; dark grey: E-I connections]. 

 

A canonical microcircuit implementing circular inference in the sensory cortex 

 The cortex is widely viewed as a hierarchical structure [91], whose networks are 

organized in a laminar specific way, leading to the notion of “canonical” microcircuits [92,93]. 

Those repeated circuits have long been viewed as the basis of many cortical computations 

[94,95]. What is the structure of those microcircuits and how are they linked to CI? 

 Figure 4 illustrates the (simplified) canonical microcircuit implementing CI. We suggest 

that pyramidal cells in the superficial layers act as integrators [96], receiving all the available 

information and generating the beliefs. Both pyramidal cells and interneurons play important 

roles [97] and exhibit strong laminar specificity [93,98,99]. Feed-forward and feedback 

connections consist of pyramidal cells’ axons [100], mostly targeting other pyramidal cells [101]. 
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Following the dominant view, feed-forward information originates from L2/3 pyramidal 

cells (and thalamus) and mainly targets L4, projecting both on pyramidal cells and on 

interneurons in a non-selective way [102]. Those neurons then project on superficial layers 

(Markov et al., 2014; but see also Pluta et al., 2015) and from there information reaches deep 

layers and especially L5 [105]. Opposite inter-laminar connectivity within an area (e.g. dashed 

line from L5/6 to L4) is less frequent. Nevertheless, strong connections exist between L5/6 

pyramidal cells and L4 interneurons [106]. 

In the opposite direction, feedback is less selective: it originates predominantly from the 

deep layers and targets all layers except L4 [103,107,108] but also non-specific thalamic nuclei 

[95]. Importantly, a lot of feedback connections terminate on interneurons in L2/3 [101] but also 

in L1 [109], which then form reciprocal connections with pyramidal cells in superficial layers 

[98,99]. 

 This description of the cortical microcircuits illustrates in a dramatic way how the 

recurrent connectivity of the brain leads to the generation of information loops (Figure 4(b,c)). 

Top-down information re-climbs the hierarchy, trapped in descending loops (L2/3(V2) – 

L5/6(V2) – L2/3(V1) – L4(V2) – L2/3(V2)). Similarly, sensory information forms a positive 

feedback, involving cortical (L2/3(V2) – L4(V4) – L2/3(V4) – L5/6(V4) – L2/3(V2)) or thalamo-

cortical (L2/3(V2) – L5/6(V2) – Thalamus – L4(V2) – L2/3(V2)) climbing loops [90]. 

 More importantly, this illustration gives crucial hints about the implementation of the 

inhibitory mechanisms controlling the propagation of information. As described before, 

descending loops are balanced by inhibition driven by feed-forward excitatory inputs. This 

description fits nicely with L4 (and potentially deep layer) interneurons (Figure 4b). Hypo-

activation of those interneurons (e.g. because of aberrant modulation of deep layers by 

serotonin, as observed with psychedelics) would lead to dis-inhibition of this part of the cortical 

circuits, resulting in an amplification of priors and to crossmodal aberrant experiences. 

 Likewise, climbing loops are balanced by feedback-driven inhibition. This description 

points to L1 interneurons [93], with the possible involvement of L2/3 interneurons as well. 

Impairments of inhibition in superficial layers (e.g. due to dopaminergic abnormalities in 

schizophrenia) would cause amplification of sensory information and thus more segregation of 

the sensory modalities. Note that this suggestion is compatible with the influential 

“dysconnectivity hypothesis” [110] and especially with a variation of this theory implicating 

thalamo-cortical loops [111]. 



212 
 

General discussion 

 The goal of this paper was twofold: (i) first, to propose a new multiscale theory of 

psychedelics, based on the circular inference framework, and second (ii)  to address different 

open issues of the framework, related to phenomenology and neural implementation. Overall, 

we argue for a link between the macro-scale (phenomenological experience), the meso-scale 

(computational mechanisms) and the micro-scale (cortical microcircuits and 

neuromodulation), putting forward a unifying account of psychosis under the prism of circular 

belief propagation. 

 Previous work has linked climbing loops with psychotic symptoms in schizophrenia, 

including auditory hallucinations, persecutory delusions, jumping-to-conclusions bias and less 

vulnerability to illusions [36,40,54]. Additionally, we have suggested that mild (descending) 

loops might play an important role in normal brain function [54], underlying common 

perceptual phenomena such as bistable perception (Leptourgos et al., 2017; Leptourgos et al, 

submitted). Here, we extended those accounts by showing that different loops can generate 

experiences with different phenomenological properties. In agreement with our previous results 

on schizophrenia, we demonstrated that climbing loops increase segregation between sensory 

modalities, generating sensory-driven unimodal hallucinations and less susceptibility to 

illusions and imagery. Conversely, our simulations suggested that descending loops lead to 

over-integrated sensory hierarchies which result in prior-driven or sensory-driven crossmodal 

hallucinations, synaesthesia, visual illusions and increased mental imagery, all common features 

in psychedelics-induced psychosis (other common properties such as the effect of set / effect of 

emotions on perception, could also be explained by amplified top-down effects [26]). We 

concluded that, while climbing loops might be a prominent impairment at the roots of 

schizophrenia symptoms, descending loops could underlie the rich phenomenology induced by 

serotonergic agonism. 
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Figure 4: Canonical microcircuit implementing circular inference: (a.): Superficial layers act as 

integrators, receiving all information and generating the beliefs. Feedforward information originates from 

pyramidal cells in superficial layers (e.g. in V1) and targets pyramidal cells and interneurons in L4 (e.g. in 

V2), which then project on superficial layers. Less often, superficial layers target directly superficial layers 

of the level above (especially when the cortical regions are far apart). Feedback information originates from 

pyramidal cells in deep layers (e.g. in V4) and targets all layers except L4. Most often it targets pyramidal 

cells and interneurons in L2/3 but also in L1, which form reciprocal connections with each other. Within a 

cortical level, superficial layers project directly on deep layers, which then drive inhibition in L4. (b.,c.): This 

reciprocal connectivity between levels generates loops (L2/3(V2) – L4(V4) – L2/3(V4) – L5/6(V4) – 

[Thalamus – L4(V2)] – L2/3(V2): climbing loop, L2/3(V2) – L5/6(V2) – L2/3(V1) – L4(V2) – L2/3(V2): 

descending loop), which can be avoided if inhibition successfully removes all redundant information 

(balances excitation). Inhibition driven by bottom-up information, mediated by interneurons in L4 

(potentially also interneurons in L5/6) removes descending loops whereas feedback-driven inhibition, 

mediated by interneurons in L2/3 (and/or L1) is responsible for climbing loops. We hypothesize that the 

former is regulated by serotonin while the latter is mainly regulated by dopamine. Serotonergic agonists 

such as LSD dys-regulate the control of information, mainly through the 5HT2A receptors (predominantly 

expressed in pyramidal cells in L5), leading to the generation of descending loops. In the case of 

schizophrenia, alterations in the dopaminergic pathways (mesolimbic and/or meso-cortical) could affect 

information processing in cortical microcircuits (with the possible implication of long range connections 

with thalamus, striatum or PFC), resulting in climbing loops. 

  

 This theoretical distinction between schizophrenia and psychedelics has important 

implications for the neural substrates of these inference loops. The involvement of serotonin 

(and more particularly of the 5HT2A receptors) in the psychotic effects of psychedelics has been 

undisputed for almost 20 years [11]. Similarly, successive dopaminergic theories of schizophrenia 

have been widely accepted, in view of the efficacy of typical antipsychotics (mostly D2R-

antagonsists) and the psychotomimetic effects of amphetamines (DA-agonists) [29]. Given the 

suggested link between psychedelics/schizophrenia and descending/climbing loops, we further 

postulated that serotonin modulates the former, while dopamine modulates the latter, both by 

regulating the E/I balance in different parts of the cortical microcircuits, responsible for the 

integration of sensory evidence and priors. Remained the question of the structure of those 

microcircuits. 

 In the third and final part of the paper, we addressed this issue by delineating a canonical 

microcircuit which implements CI, further linking computation with neural implementation 

(see also Bastos et al., 2012, for a related microcircuit implementing predictive coding). Inspired 

by a novel formulation of the CI equations, in which different loops are regulated by different 

types of inhibition, we argued that feedback-driven inhibitory interneurons situated in 

superficial layers (L2/3 and/or L1) mediate climbing loop-control. Conversely, inhibition in the 

deeper layers (L4 and/or L5/6), driven by feed-forward information, is mainly responsible for 
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descending loop-regulation. In combination with the previous arguments, we deduced that 

impairments in the climbing loop control, potentially underlined by dopaminergic hyper-

function, mediate the segregated pattern that we observe in schizophrenia. On the other hand, 

impairments in the descending loop regulation, triggered by serotonergic agonists, result in the 

integrated pattern that we see in psychedelics. 

 Interestingly, this unifying framework is related to a number of different theories that 

addressed the problem of psychosis [6], many of which built on the idea that hallucinatory 

phenomena result from impairments in predictive mechanisms of the brain [19,38,112,113]. In 

one study, Muthukumaraswamy et al suggested that enhanced priors, mediated by over-

activation of deep layers, generate subjective effects of psychedelics [19], while in another study, 

Corlett and colleagues associated the same effects with impaired bottom-up processing 

(combined with intact top-down processing), mediated by enhanced AMPA signalling [38]. 

 The present account is also compatible with another influential contemporary theory of 

psychedelics, the entropic brain theory (EBT; [39,114]). EBT suggests that psychedelics increase 

the entropy of brain activity, rendering it more chaotic and susceptible to intrinsic and extrinsic 

influences, while they also increase connectivity between unrelated brain networks, in 

agreement with the enhanced integration induced by descending loops [16,17]. Note however 

that CI, contrary to EBT, is a functional theory directly derived from normative principles. 

 It’s important to highlight that the CI framework is (among other things) a theory of 

psychedelics, and as such it interprets drug-induced synaesthesia, while it remains unclear 

whether it can also interpret developmental synaesthesia (e.g. grapheme-color synaesthesia, 

experienced by a small number of people without any drug consumption). Consequently, the 

link between our theory and theories of developmental synaesthesia remains debatable at best 

[22]. That said, it is difficult to disregard the similarity between the descending loops 

(amplification of priors) and ideas such as the “disinhibited prior” [115]. 

 Importantly, the CI framework introduced in this paper makes a number of new testable 

predictions. First, it offers a tentative explanation to the phenomenological and neurobiological 

variability observed in schizophrenia. Indeed, although the majority of patients experience 

auditory hallucinations, a sub-group of patients (around 30%) also experience both auditory 

and visual hallucinations [34,116–119]. Additionally, although most of the patients respond well 

to typical antipsychotic medication (DA-antagonists), one on four exhibits refractory 

hallucinations [120]. Crucially, most of these “treatment-resistant” hallucinations still respond 

well to Clozapine, an atypical antipsychotic characterized by a high affinity for serotonin 
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[28,120]. Although evidence for a link between these two groups (i.e., patients exhibiting 

complex multisensory hallucinations, which are also drug-refractory) is for now very sparse [4], 

it’s tempting to suggest that most schizophrenia patients exhibit a dopaminergic dysregulation 

which generates predominant climbing loops in the cortical hierarchy that could be corrected 

by first-line antipsychotics (type A schizophrenia; [121]). A minority of patients, with primary or 

associated serotonergic impairments and predominant descending loops, would express more 

crossmodal and treatment-resistant hallucinations, which better respond to agents with 

serotonergic antagonism properties, such as Clozapine or even Ketanserin (a good candidate for 

type B schizophrenia; [121]). A recently published cases-report supports this claim [122]. 

 The aforementioned prediction calls for two important methodological comments. First, 

phenomenology is crucial when studying schizophrenia, e.g. for building computational assays 

[123]. Different abnormalities might underlie different groups of patients with differences in 

symptomatology [54] or phenomenology. If not taken into account, this variability could at 

minima contaminate the results, leading to contradicting evidence (e.g. prior-driven vs sensory-

driven symptoms). Second, despite the importance of multisensory hallucinations as a potential 

diagnostic tool, few studies have studied them systematically [33,35]. As a result, it’s difficult to 

evaluate objectively their prevalence (as opposed to serial hallucinations), both in schizophrenia 

and under psychedelics [4]. 

 Another important prediction of the model comes from the fact that descending loops 

cause amplification of information in both modalities. As presented in Figure 2, this results in 

a general over-confidence, affecting both modalities. Interestingly, this is a unique prediction, 

since different models (e.g. those based on increased prior weights; not presented here) would 

only generate over-confidence in the non-stimulated modality and an under-confidence in the 

stimulated one, a different prediction that can be easily tested behaviourally in future works. 

 Finally, one more testable prediction concerns the laminar and input specificity of 

inhibition related to schizophrenia and to drug-induced psychosis. Although standard imaging 

techniques do not possess the necessary spatial resolution to test so precise assumptions, recent 

advances in high-field laminar fMRI should allow for arbitration between different 

implementations or theories [124]. 

 We need to acknowledge some limitations to this work. The present model was designed 

to account for differences in the number of recruited modalities during hallucinations, still it 

does not directly address the question why hallucinations are mostly auditory in schizophrenia 

but visual under psychedelics. We note that such a difference might be less related with the 
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mechanisms and more related with structural constraints of each modality, including the 

number of cortical connections (Figure S3) [61], modality-dependent distinctions in cortical 

microcircuits or dissimilar expression of the implicated receptors. 

 Additionally, we defined in this work crossmodal hallucinations as aberrant experiences 

occurring simultaneously in more than one modalities and having a common cause. Future 

work will have to distinguish between crossmodal hallucinations with additional fusion (e.g. 

seeing a bird and hearing a birdsong, as with anti-muscarinic drugs) and crossmodal 

hallucinations in which binding is less obvious, as with psychedelics (e.g. hearing a voice and 

seeing the content of the voice). In this vein, we suggest that the incorporation of aberrant 

learning in the psychedelics’ CI model, caused by descending loops, would strengthen non-

existent associations, leading to bizarre crossmodal combinations [40]. 

 Finally, a cautious approach is needed regarding the potential neural substrates of CI. 

First, our reconceptualization of dopamine’s function does not attribute separate roles to D1 and 

D2 receptors, given the lack of evidence regarding their differential contributions to the 

dopaminergic effects on sensory cortices [29]). In addition to that, the suggested microcircuit 

is necessarily simplified, ignoring less frequent connections, interneuron specificities (e.g. 

differences between fast-spiking interneurons and adaptive interneurons [99]) and within layer 

details (e.g. detailed connectivity within L2/3), potentially underlying complementary functions 

such as amplification for sustained activity or filtering. 

 Overall, we put forward a unifying, trans-nosographic and multiscale account of 

psychosis, with a special focus on psychedelics. We feel that future work could complete this 

effort, by adding even more psychotic experiences (e.g. hallucinations occurring in Parkinson’s 

disease or experiences related to anti-muscarinic drugs) and considering alternative underlying 

mechanisms (e.g. the aberrant weighting of priors or sensory evidence in the context of circular 

inference or predictive coding). 
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Supplementary Material 1: Additional simulations (scenarios 2,3 / Different 

number of nodes) 

 

 

 

Figure S1: Circular Inference and hallucinations: The scenario is similar to Figure 2 (synaesthesia), 

except that both modalities are stimulated by very unreliable evidence (noise; 𝐿𝐴 = 0.4; 𝐿𝑉 = −0.3). As in 

synaesthesia, descending loops (a.) cause simultaneous activation of the two modalities (because of the 

cross-amplification), eliciting a simultaneous cross-modal hallucination. On the other hand, climbing loops 

(b.) have different effects in the two modalities, resulting in a unimodal, auditory hallucination. We note 

that in (b.), we present the belief at the bottom node, in which the effect of the climbing loops is more easily 

observable (for the top node, the effect is qualitatively the same but quantitatively weaker). 
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Figure S2: Circular inference and illusions (mental imagery or prior driven hallucinations): 

Because the (contradicting) prior is weaker than the sensory information (𝐿𝐴 = 𝐿𝑉 = −1.4;  𝐿𝑃 = 1), in the 

absence of loops both beliefs are below 0.5 (both the bird and the birdsong are absent; note that the beliefs 

are equal in the two modalities because the two hierarchies are identical and they receive equally strong 

stimulation). (a.) When the prior is amplified (descending loops), inference is dominated by the feedback, 

resulting in beliefs close to 1 (that could correspond to an illusion, enhanced mental imagery or a prior-

driven hallucination, depending on the context). (b.) Climbing loops (amplification of sensory information) 

have the opposite effect (less vulnerability to illusions, weaker mental imagery and no prior-driven 

hallucinations) [40]. 
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Figure S3: The number of loops affects the amount of amplification. (a.): Descending loops in a model 

with four levels / variables per hierarchy result in synaesthesia. (b.): Exactly the same simulation, but this 

time the visual hierarchy has only 2 levels / variables, resulting in reduced amplification (in the visual 

hierarchy) due to descending loops. Consequently, synaesthesia does not occur. Similar results can be 

obtained for the other simulations presented in the Main Text. [La = 2.1; Lv = -1.7]. 

 

 

 

 

 

 

 

 

 



221 
 

Supplementary Material 2: The reformulated CI algorithm 

 In previous works [40,41], we suggested that the circular inference algorithm can be 

written in the following form: 

𝐵𝑛 = ∑ 𝑀𝑘→𝑛
𝑘={𝑛+1,𝑛−1}

                                                                                                                      (𝑆1) 

𝑀𝑘→𝑛 = 𝐹(𝐵𝑘 −𝑀𝑛→𝑘 , 𝑤)                                                                                                                (𝑆2) 

where, 𝐹(𝐵,𝑤) = 𝑙𝑜𝑔 (
𝑤𝑒𝐵+(1−𝑤)

(1−𝑤)𝑒𝐵+𝑤
) is a sigmoid function.  

Those two equations calculate iteratively the posterior probabilities for each variable 

(𝑆1) and the probabilistic messages exchanged by nodes (𝑆2), in a way that draws an analogy 

with neural processing in recurrent hierarchical networks. Importantly, eq. (𝑆2) tells us that 

messages are a function of the belief of the node that sends the message, corrected by the 

message sent in the opposite direction. This correction is crucial, because it controls the 

propagation of information, making sure that no message gets counted more than once (due to 

loops). 

Despite its efficiency, this formulation has two main drawbacks. First, such a correction 

is difficult to be implemented in cortical circuits, because it assumes the additional calculation, 

for each node, of the k (𝐵𝑘 −𝑀𝑛→𝑘) terms. Given the complexity of real-life generative models, 

such a solution seems extremely inefficient (e.g. in terms of metabolic cost), but also it makes 

the system vulnerable to small perturbations (failure in any of the nodes would lead to a cascade 

of miscalculations, resulting in completely aberrant inferences). In addition to that, although it 

has been postulated that different mechanisms control the different types of potential loops 

[40], this formulation gives no information about their potential anatomical differences. 

 To account for those drawbacks, we suggest here a novel formulation of equations 

(𝑆1, 𝑆2), where we assume that corrections occur at the level of the beliefs (𝑆1). The details of 

such an algorithm are beyond the scope of this paper and they will be presented in future work. 

In general, we suggest that equations (𝑆1, 𝑆2) can be rewritten as follows: 

𝐵𝑛 = 𝑀(𝑛−1)→𝑛 +𝑀(𝑛+1)→𝑛 − 𝑓(𝐵𝑛, 𝐵𝑛−1, 𝑎𝑃) − 𝑔(𝐵𝑛 , 𝐵𝑛+1, 𝑎𝑆)                                          (𝑆3) 

𝑀𝑘→𝑛 = 𝐹(𝐵𝑘 , 𝑤)                                                                                                                                (𝑆4) 

Those equations also describe the iterative calculation of posteriors and messages, but 

now corrections appear as separate (non-linear) terms (𝑓 and 𝑔) in (𝑆3). Consequently, 
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reciprocal excitation generates loops, but redundant information is removed by inhibitory 

interneurons targeting directly the neurons that calculate beliefs (pyramidal cells in L2/3, 

according to our microcircuit). More particularly, inhibition learns to track excitation (E/I 

balance; [125]), while neuromodulation might be driving this learning. Importantly, inhibition 

tracking excitation from the two streams (feed-forward and feedback) has different properties: 

interneurons that remove descending loops are driven by lateral and feed-forward excitation 

(indeed descending loops are generated between nodes 𝑛 and (𝑛 − 1)), while interneurons 

removing climbing loops are driven by lateral and feedback connections (from nodes 𝑛 and (𝑛 +

1)) (note that a simple subtraction of the opposite message is not possible, given the inequality 

𝐹(𝐵 −𝑀) ≠ 𝐹(𝐵) − 𝐹(𝑀)). 
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 The goal of this thesis was to study the computational mechanisms underlying 

perception under ambiguity in the general population, but also the reality distortion (i.e., 

aberrant percepts and beliefs) which characterises the psychosis spectrum. We hypothesized 

that circular inference, a suboptimal predictive process, is present in both healthy individuals 

and psychotic patients (or individuals under the influence of psychedelic drugs), albeit in 

different amounts, affecting the way they perceive the world. The present findings largely 

support this claim. 

 

Circular inference in bistable perception in the general population 

 Bistability occurs under conditions of high ambiguity [38]. Interestingly, previous 

research has shown that the effect of circularity becomes more noticeable when there is high 

uncertainty [35]. We hypothesized that if loops exist in the cortical hierarchy of healthy 

individuals, then we should be able to detect their trace in bistable perception tasks. 

 In a sequence of three experiments (Chapters 2 and 4), we found different types of 

indication that loops are indeed a fundamental mechanism of our perceptual system. On one 

hand, we observed that the combination of low-level visual cues with high-level priors follows 

a circular inference rule. This result was substantiated by an interaction between the two effects, 

which cannot occur under purely Bayesian assumptions, but emerges naturally in the presence 

of loops [39]. On the other hand, we discovered that the dynamics of the behaviour of healthy 

participants in an intermittent presentation task (the stimulus is displayed discontinuously on 

the screen) is not compatible with a pure integrator (Bayesian system), instead it displays the 

features of a bistable attractor, as expected of a system with descending loops. The question that 

naturally arises then is the following: How can circular inference explain the existence and the 

rich phenomenology of bistable perception? 

 Historically, most theoretical approaches to bistable perception consisted of 

mechanistic models, focusing either on the biophysical mechanisms or the dynamics [40,41]. 

We suggested a novel functional model (Chapter 3) which can answer epistemological 

questions, including the alternation problem (“Why switches occur?”) and the selection problem 

(“Why we perceive one interpretation at a time?”) [42]. In addition to that, the dynamical 

circular inference model2 assigns a fundamental role to descending loops: they turn the leaky 

integrator into a bistable attractor with two highly trusted states, hence they explain the 

                                                           
2 it can be distinguished from previous circular inference models, thanks to the presence of dynamics 
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confidence problem (“Why do we perceive clear interpretations in the absence of reliable 

data?”). Furthermore, this model can explain various qualitative features of bistability, including 

the Levelt’s laws [43] and the stabilisation occurring under discontinuous presentation of the 

stimulus [44] (see also Chapter 4). 

 Plenty of studies in the past found that the brain functions as an ideal, Bayesian observer 

([45–48] to mention a few). The present results suggest that, although the brain is equipped 

with the necessary machinery for Bayesian inference, there are inherent limitations in its use 

[49–52]. It must be highlighted though that it is not clear yet whether this suboptimality is due 

to inherent limitations in the neural mechanisms or whether it subserves a specificfunction (see 

Chapter 3 for more details). 

 

Circular inference in the psychosis spectrum 

 Circular inference was originally proposed as a model for the positive symptoms of 

schizophrenia. Using in-silico simulations, Jardri and Denève showed that both climbing loops 

and descending loops are able to generate aberrant percepts (i.e., hallucinations), false and 

persistent beliefs (i.e., delusions) but also a state of increased confidence [35]. Based on 

behavioural arguments (decreased vulnerability to visual illusions [37], combined with a 

“Jumping To Conclusions” bias [8] in schizophrenia patients, especially those with prominent 

delusions), they suggested that an amplification of sensory evidence, rather than an 

amplification of priors, explains better those symptoms. A subsequent probabilistic reasoning 

task confirmed this hypothesis, also revealing a complex association between the different 

clusters of symptoms and the different types of loops [36].  

 In Chapter 6 of the present thesis, we questioned the fact that an increased amount of 

climbing loops could be necessary and/or sufficient to explain schizophrenia-related psychosis. 

Beyond circularity, we wondered if additional mechanisms are at play and especially what is the 

role of the dynamics, which had been largely ignored by previous studies. We compared patients 

with prominent positive symptoms with matched healthy controls in two bistable perception 

tasks, similar to the ones used in healthy participants in the first part of the thesis. Our results 

support the idea that climbing loops are enhanced in patients. Importantly, climbing loops 

alone cannot explain all the observations. In particular we observed an increased destabilization 

of schizophrenia patients for short blank durations in an intermittent presentation task, a 

finding that goes against the predictions of the model. We suggest that a 2-factor theory explains 
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all the findings, namely an increase in the sensory-amplification (climbing loops) combined 

with an overestimation of the environmental volatility. Note that those two impairments might 

have a hidden link, for example the overestimation of the volatility (increased transition rates) 

might be caused by aberrant learning, a demonstrated effect of the loops [35]. 

An intriguing characteristic of psychosis is its phenomenological variability. Psychosis 

is a prominent clinical dimension in many psychiatric and neurological disorders 

(schizophrenia, affective psychosis, borderline personality disorder, Parkinson’s disease, 

Charles-Bonnet syndrome, Alzheimer’s disease etc.; [53–57]) but can occur in non-clinical 

populations too [58]. Additionally, it can be triggered by various psychotomimetic agents, such 

as serotonergic agonists / psychedelics [59]. Despite sharing some common features (they all 

include a detachment from reality), each psychotic experience has unique phenomenological 

properties. In Chapter 7 we argue that different phenomenologies might be underpinned by 

different mechanisms, in particular different types of loops. We suggest that the crossmodal, 

mainly prior-driven experiences, common under psychedelics, are triggered by descending 

loops. On the contrary, we show that climbing loops enhance segregation between sensory 

modalities, resulting in unimodal, sensory-driven hallucinations, as reported in schizophrenia 

(and in agreement with our previous findings). Furthermore, based on this phenomenological 

distinction and to fill the gap between erroneous message-passing and neuromodulation, we 

propose a canonical micro-circuit implementing circular belief-propagation in which the two 

inference loops could be controlled by different neuromodulators acting on the E/I balance: the 

descending loops, under serotonergic control (the primary target of psychedelics), and the 

climbing loops regulated by dopamine (whose role in the pathophysiology of schizophrenia is 

widely accepted). 

 Overall, our results suggest that circular inference is a common feature of the human 

brain. It explains a variety of observations, ranging from normal to pathological brain 

functioning and spanning the psychosis spectrum. 

 

Limitations and future directions 

 This work makes a number of novel predictions, while it also suffers from several 

limitations. Both predictions and limitations have been highlighted in the different chapters of 

the thesis. Here we summarise some of them, which we think could offer new opportunities for 

scientific inquiry. 
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 In Chapter 2, due to the experimental paradigm and more specifically to the 

manipulation of the prior (between-group design), we only fitted the models to the 

average data but not to individuals. It would be interesting to repeat this experiment, 

using a within-group design (e.g., as in [60]), allowing for model-fitting at the level of 

individuals. Such a study has been designed and will constitute the work of future 

students in the team; 

 In Bayesian accounts, inference and learning make up the two sides of the same coin 

[6,31,35]. In our functional model (dynamical circular inference; Chapter 3), we only 

considered inference, but we completely ignored learning. Importantly, the addition of 

learning could generate secondary effects, for example loops could affect the 

feedforward weights and the transition rates (see [35] for more details); 

 In Chapter 4, in the tilted cube experiment, we didn’t find an acute bias for the longest 

blank duration (1050 ms), which indicates the absence of descending loops. 

Nevertheless, persistence exhibits an increasing trend for long OFF-Durations, 

implying that such a bias could potentially become visible for longer intervals. A follow-

up experiment, testing intervals larger than 1050 ms (e.g. between 1 and 2 s), could 

resolve this doubt. 

 In Chapter 6, we only presented preliminary results from a small number of 

participants. Our findings (especially the negative results and the “Bias Against 

Disconfirmatory Evidence”) will have to be tested in a larger sample (30 participants per 

group, per experiment). Crucially, a participant per participant fitting procedure along 

with Bayesian model comparison will also have to confirm our qualitative conclusions. 

These complementary analyses have been scheduled when we will have reached the 

final sample-size; 

 In Chapter 7 we made a number of predictions regarding the computational 

mechanisms of drug-induced and schizophrenia-related psychosis and their neural 

correlates. Those predictions could be tested experimentally, using both behaviour (e.g. 

the “Fisher task”; [36]) and imaging (e.g. laminar fMRI; [61]). 

 More generally, all the current work on circular inference has focused on binary 

variables. Extending the framework by considering Gaussian variables (continuous 

variables in general) could give the opportunity to compare it directly with different 

theories, such as predictive coding [13,42,62] and the Hierarchical Gaussian Filter [63].  
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Résumé 
 
 Nous évoluons dans un monde incertain. De ce fait, notre 

survie dépend de notre capacité à prendre rapidement des décisions, et ce 

de manière fiable et adaptative. Il est possible de mieux comprendre cette 

capacité en considérant la perception comme un processus d’inférence 

probabiliste au cours duquel les informations sensorielles sont combinées 

à nos attentes pour produire une interprétation plausible de notre 

environnement. Les théories récentes de psychiatrie computationnelle 

suggèrent par ailleurs que la grande variabilité des troubles 

psychiatriques, au rang desquelles figure la schizophrénie, pourrait 

résulter d’une altération de ces mêmes processifs prédictifs. L’Inférence 

Circulaire est l’une de ces théories. Ce cadre de pensée stipule qu’une 

propagation incontrôlée d’information dans la hiérarchie corticale 

pourrait générer des percepts ou des croyances aberrantes. Afin 

d’explorer le rôle joué par l’Inférence Circulaire en condition normale ou 

pathologique, ce travail de thèse s’est appuyé sur des tâches de prise de 

décision en conditions perceptives ambigües. 

Dans une première partie, nous nous sommes intéressés au 

rôle joué par la circularité dans la perception bistable. Le phénomène de 

bistabilité survient lorsque deux interprétations se succèdent à intervalle 

régulier pour un même percept. Nous présentons les résultats d’une tâche 

conduite en population saine où nous avons manipulé les informations 

sensorielles et à priori utilisées par les participants lors de la visualisation 

d’un cube de Necker (article 1). Nous avons pu montrer un effet propre à 

chaque manipulation, mais également une interaction entre ces deux 

sources d’information, incompatible avec une intégration Bayésienne 

optimale. Résultat confirmé par la comparaison de divers modèles 

computationnels ajustés aux données, qui a pu mettre en évidence la 

supériorité de l’Inférence Circulaire sur les modèles Bayésiens classiques. 

Nous avons ensuite voulu tester un modèle fonctionnel de la bistabilité 

(article 2). Nous avons donc dérivé la dynamique du modèle et montré 

que la présence de boucles descendantes dans la hiérarchie corticale, 

transformait ce qui était jusque là un intégrateur imparfait du bruit 

sensoriel en modèle à attracteur bistable. Ce modèle ne reproduit pas 

seulement le phénomène de bistabilité, mais également l’ensemble de ces 

caractéristiques phénoménologiques. Dans un 3ème article, nous avons 

testé une prédiction, notamment en cas de présentation discontinue d’un 

stimulus bistable. Deux expériences complémentaires utilisant un 

paradigme de présentation intermittente du cube de Necker ont donc été 

conduites en population générale. Nos resultats etaient compatible avec 

les prédictions faites par le modèle de l’Inférence Circulaire Dynamique, 

suggérant que la circularité puisse être un mécanisme générique à 

l’origine de notre façon de voir le monde. 

Dans la seconde partie de ce travail, nous avons étudié 

l’Inférence Circulaire en condition pathologique, notamment lors 

d’expériences psychotiques (schizophrénie, psychédéliques). Nous avons 

utilisé la perception bistable pour explorer les mécanismes 

computationnels à l’œuvre dans la schizophrénie (article 4,5). Nous 

avons comparé les performances de patients présentant des symptômes 

psychotiques à des témoins sains appariés lors d’une tâche de perception 

bistable. Nous avons pu montrer chez les patients une amplification des 

informations sensorielles combinée à une surestimation de la volatilité 

environnementale. Enfin nous terminons ce travail en proposant une 

approche transversale de l’effet des psychédéliques (article 6), sur la 
base des résultats précédents et de la spécificité clinique de ces 

expériences sensorielles cross-modales, afin de relier l’échelle 

macroscopique (i.e., comportement et phénoménologie), mésoscopique 

(i.e., les boucles inférentielles) et microscopique (i.e., les différents 
neurotransmetteurs impliqués aboutissant à un microcircuit canonique). 
 

Mots Clés 
 
Inférence Bayésienne, Inférence circulaire, schizophrénie, psychose, 
perception bistable, Cube de Necker, psychédéliques, microcircuit 
canonique, hierarchique, fonctionnel, dynamique 

 

Abstract 
 
We live in an uncertain world, yet our survival depends on how quickly 

and accurately we can make decisions and act upon them. To address this 

problem, modern neuroscience reconceptualised perception as an 

inference process, in which the brain combines sensory inputs and prior 

expectations to reconstruct a plausible image of the world. In addition to 

that, influential theories in the emerging field of computational 

psychiatry suggest that various psychiatric disorders, including 

schizophrenia, could be the outcome of impaired predictive processing. 

Among those theories, the circular inference framework suggests that an 

unconstrained propagation of information in the cortex, underlain by an 

excitatory to inhibitory imbalance, can generate false percepts and beliefs, 

similar to those exhibited by schizophrenia patients. In the present thesis, 

we probed the role of circular inference from normal to pathological 

brain functioning, gaining insights from perceptual decision making in 

the presence of high ambiguity. 

 In the first part of the thesis, we focused on the role of 

circularity in bistable perception in the general population. Bistability 

occurs when two mutually exclusive interpretations compete and switch 

as dominant percepts every few seconds. In a 1st article, we manipulated 

sensory evidence and priors in a Necker cube task, asking how the brain 

combines low-level and high-level information to form perceptual 

interpretations. We found a significant effect of each manipulation but 

also an interaction between the two, a finding incompatible with Bayes-

optimal integration. Bayesian model comparison further supported this 
observation, showing that a circular inference model outperformed purely 

Bayesian models. Having established a link between circular inference 

and bistable perception, we then put forward a functional theory of 

bistability, based on circularity (2nd article). In particular, we derived the 

dynamics of a dynamical circular inference model, showing that 

descending loops (i.e. a form of circularity resulting in aberrant 

amplification of the priors) transform what is normally a leaky integration 

of noisy evidence into a bistable attractor with two highly trusted stable 

states. Importantly, this model can explain both the existence and the 

phenomenological properties of bistable perception, making a number of 

testable predictions. Finally, in a 3rd article, we tested one of the model’s 

predictions, namely the perceptual behaviour when the stimulus is 

presented discontinuously. We ran two Necker cube experiments using a 

novel intermittent-presentation methodology, and we calculated the 

stabilisation curves (i.e. persistence as a function of blank durations). We 

found that participants’ behaviour was compatible with the model’s 

prediction for a system with descending loops, suggesting that circularity 

constitutes a general mechanism that shapes the way healthy individuals 

perceive the world. 

 In the second part, we studied circular inference in 

pathological conditions related to psychosis. We notably focused on two 

varieties of the psychotic experience, namely schizophrenia-related 

psychosis and drug-induced psychosis. After discussing the links 

between behaviour, aberrant message-passing and the corresponding 

neural networks (4th article), we used bistable perception to probe the 

computational mechanisms underlying schizophrenia in a 5th article. We 

compared patients with prominent positive symptoms with matched 

healthy controls in two bistable perception tasks. Our results suggest an 

enhanced amplification of sensory inputs in patients, combined with an 

overestimation of the environmental volatility. In the last article (6th), we 

delineated a multiscale account of psychedelics, ultimately linking the 

macroscale (i.e. phenomenological considerations such as the 
crossmodal character of the psychedelics experience), the mesoscale (i.e. 

loops) and the microscale (i.e. neuromodulators and canonical 
microcircuits). 
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