
HAL Id: tel-02132613
https://theses.hal.science/tel-02132613

Submitted on 17 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to Software Runtime for Clustered
Manycores Applied to Embedded and High-Performance

Applications
Julien Hascoët

To cite this version:
Julien Hascoët. Contributions to Software Runtime for Clustered Manycores Applied to Embedded
and High-Performance Applications. Embedded Systems. INSA de Rennes, 2018. English. �NNT :
2018ISAR0029�. �tel-02132613�

https://theses.hal.science/tel-02132613
https://hal.archives-ouvertes.fr

Contents

Acknowledgments 1

1 Introduction 3

1.1 General Context . 3
1.2 Scope of the Thesis . 5
1.3 Contributions . 6
1.4 Outline of this Thesis . 8

I Background 9

2 Embedded Parallel Systems 11

2.1 Embedded Parallel Architectures . 12
2.1.1 Multiple Level of Parallelisms . 12
2.1.2 Heterogeneous Parallel Systems . 13

2.2 Computer Memory Systems . 14
2.2.1 Memory Hierarchy . 14
2.2.2 Memory Architectures . 15

2.3 MPPA® Manycore Processor . 17
2.3.1 Architecture Overview . 17
2.3.2 Computing Resources . 18
2.3.3 Communications . 19

2.4 From Parallel Architectures to Software . 20
2.4.1 Operating Systems . 20
2.4.2 Classical Software Memory Layout 21
2.4.3 Software Management of the Virtual Memory 22
2.4.4 Software Concurrency . 22
2.4.5 Available Software for the MPPA® 23

2.5 Conclusion . 25

3 Parallel Programming Models 27

3.1 Task Programming Models . 28
3.1.1 Processes & Threads . 28
3.1.2 POSIX Threads . 29

i

ii CONTENTS

3.1.3 OpenMP Multi-threading . 29
3.2 Acceleration Programming Models . 32

3.2.1 Execution Model . 32
3.2.2 OpenCL . 32
3.2.3 OpenACC & OpenMP 4.0 with Modern Compilers 34

3.3 Dataflow Models . 35
3.3.1 Introduction . 35
3.3.2 Dataflow Overview, the Kahn Process Network 35
3.3.3 Dataflow Process Network . 35
3.3.4 Static Dataflow Models . 36
3.3.5 Dynamic Dataflow Models . 40
3.3.6 Parametrized Interfaced-based Synchronous Dataflow (SDF) 41

3.4 Graph Scheduling and Memory Allocation 41
3.4.1 Scheduling Methods for SDF Graphs 42
3.4.2 Memory Allocation . 43

3.5 Rapid Prototyping and Existing Dataflow-based Tools 45
3.5.1 PREESM: an Open Source Rapid Prototyping Framework 45
3.5.2 SPIDER: an Embedded Reconfigurable Dataflow Runtime 46
3.5.3 Other Tools Based on Dataflow Programming Models or Languages . 49

3.6 Conclusion . 49

4 Communication Protocols & Memory Consistency 51

4.1 State-of-the-Art of Communication Technologies for HPC 51
4.1.1 High-Performance Computing (HPC) Hardware Interconnects 52
4.1.2 HPC Software Programming . 52
4.1.3 “Asynchronous Copy” Primitives of OpenCL 54

4.2 Two-Sided Communications . 55
4.2.1 Rendezvous . 55
4.2.2 Synchronous-Asynchronous Send/Receive Protocol 56
4.2.3 Problem of Strict Matching . 56

4.3 One-Sided Communications . 56
4.3.1 Load/Store . 57
4.3.2 Put/Get Remote Direct Memory Accesses (RDMA) 57
4.3.3 Remote Atomic Operations . 58

4.4 Memory Consistency & Coherence . 58
4.4.1 Definitions . 58
4.4.2 Memory Consistency Models . 59
4.4.3 Memory Fences . 60

4.5 Managing Current Memory Accesses for the Kalray VLIW Core 61
4.5.1 Cache of the k1 VLIW Core . 61
4.5.2 Streaming Memory Accesses . 62
4.5.3 Managing the Coherency & Consistency of the k1 Very Long Instruc-

tion Word (VLIW) Core . 62
4.5.4 Atomic Instructions . 63

4.6 Conclusion . 65

CONTENTS iii

II Contributions 67

5 Fundamental Mechanisms for Communications and Synchronizations in
Distributed Computing 69

5.1 Challenges . 70
5.2 Design of Distributed Protocols of Communications and Synchronizations

for the Programmer . 71
5.2.1 Memory Segments . 71
5.2.2 One-sided . 72
5.2.3 Two-sided . 75
5.2.4 Restructuring: Data Layout . 76

5.3 Runtime Implementation of the Distributed Communications and Synchro-
nizations . 77
5.3.1 Memory Segments . 77
5.3.2 One-sided: Asynchronous Remote Atomic Operation & Remote Di-

rect Memory Access (RDMA) Put & Get Algorithm 77
5.3.3 Event Completion . 79
5.3.4 One-sided: RDMA and Remote Atomic Arbiters 79
5.3.5 Support of Eager Messages with Remote Queues 80
5.3.6 Data Restructuring Support on RDMA Put/Get 81

5.4 Use, Resource Allocation & Configurations 82
5.4.1 Resources Used for Enabling One-sided Operations 83
5.4.2 Two-sided operations . 84
5.4.3 Resources Necessary for Asynchronous One-Sided (AOS) in a Com-

pute Cluster . 84
5.5 Performance, Results: Latency & Throughput 86

5.5.1 Memory Throughput . 86
5.5.2 Memory Latency . 88
5.5.3 Network-on-Chip Scalability . 88
5.5.4 Remote Atomics Performance . 89
5.5.5 Remote Queue Throughput . 89

5.6 Advanced Asynchronous One-Sided Support 90
5.6.1 Support in the Linux Kernel . 91
5.6.2 Extensions and Support of the Standard

async_work_group_copy() in the Kalray OpenCL 91
5.7 Conclusion . 92

6 A Highly Efficient Multi-threading Runtime 95

6.1 Controlling and Enabling Threads for a Non-Coherent Multi-core Central
Processing Unit (CPU) . 96

6.2 Implementation of the New Multi-Threading Runtime 96
6.2.1 Logical Thread States . 96
6.2.2 Dealing with System False Positives and Masked Interrupts 97
6.2.3 Thread Control . 98

6.3 Synchronization Primitives . 103
6.4 Cooperative Scheduler . 103
6.5 Using New Multi-Threading Runtime (NMTR) to Enable OpenMP Multi-

Threading . 106
6.5.1 Configuration & Architecture . 106

iv CONTENTS

6.5.2 Internal Contributions to GNU Compiler Collection (GCC) libgomp 106
6.6 Auto-threading: Automatic Thread Scheduling on RDMA Completion . . . 107

6.6.1 Auto-threading: Design and Implementation 108
6.7 Results, Comparisons and Discussions . 110

6.7.1 Benchmarks . 110
6.8 Conclusion . 113

7 Software Synthesis based on a Hierarchical Static Dataflow Model for a
Clustered Manycore Processor 115
7.1 Hierarchy of IBSDF to Target a Hierarchical Manycore Processor 116

7.1.1 A Hierarchical Dataflow Application 117
7.1.2 Strategy: A Trade-off between Levels of Hierarchy 117

7.2 Exploiting Efficiently Two Levels of Parallelism 118
7.2.1 High-Level Hierarchy (Inter-Cluster) 118
7.2.2 Low-Level Hierarchy (Intra-Cluster) 119
7.2.3 Automatic Generation of Explicit Communications between Clusters 120

7.3 Automatic Clustering of IBSDF Graph . 121
7.3.1 Algorithm: Design and Implementation 121
7.3.2 Clustering Rules, Heuristics and Loop Modeling 122

7.4 Experimental Evaluation . 124
7.4.1 Results and Comparisons . 125
7.4.2 Comparisons with Flat IBSDF Mapping 126

7.5 Conclusion . 128

8 Porting an Embedded Runtime for Executing Reconfigurable Dataflow
onto a Clustered Manycore Processor 129
8.1 Architecture of the Distributed Dataflow Runtime 130

8.1.1 Insight of the Global Multi-Purpose Processor Array (MPPA)® Im-
plementation . 131

8.1.2 Structure of the Original Synchronization Protocol 131
8.1.3 Implementation of a Distributed Synchronization Protocol 132

8.2 Optimized Heuristic-based Scheduling . 134
8.2.1 Prohibitive Complexity and Footprint 134
8.2.2 Lightweight Scheduling, Simpler is Faster 134

8.3 Managing the Distributed Memory at Runtime 135
8.3.1 Distributed Local Memories instead of Caches 135
8.3.2 Thread-safe Local Memory Allocator 136

8.4 Results and Comparisons . 137
8.4.1 Memory Footprint of LRT . 137
8.4.2 Performance, and SPIDER Overhead 137

8.5 Conclusion . 139

9 A Distributed OpenVX Framework for a Clustered Manycore Processor141
9.1 Requirements and Positioning . 142

9.1.1 OpenVX Standard and Example . 142
9.1.2 Third Party Implementations & Optimizations 144
9.1.3 OpenVX and OpenCL . 145

9.2 A Low-Level Distributed Offloading Engine 145
9.2.1 Architecture of the Offloading Engine 145
9.2.2 Key Features of the Offloading Engine 146

CONTENTS v

9.2.3 Integration and Usage in the OpenVX Framework 148
9.3 Online Optimizations: vxVerifyGraph . 148

9.3.1 Optimization Workflow . 148
9.3.2 Automatic Kernel Fusion Optimizations 149
9.3.3 Distributed Static Memory Allocation 151

9.4 Explicit RDMA-based Communication Engines 151
9.4.1 A Tiling & Fusion RDMA Engine . 151
9.4.2 Tiling & Fusion Optimizations . 153

9.5 Complex Distribution and Memory Access Patterns 154
9.5.1 Dealing with Irregular Memory Accesses 154
9.5.2 Implementation of Distributed Reduction and Dynamic List Update 156

9.6 Results & Discussions . 158
9.6.1 Performances Analysis . 158
9.6.2 Benefits of Asynchronous RDMA Prefetching 158
9.6.3 Automatic Kernel Fusion . 159
9.6.4 Super-linear Speedup at Multi-Cluster Level 160
9.6.5 Irregular Memory Accesses Performance 161
9.6.6 Performance of the Harris Feature Point Detection 162

9.7 Conclusion . 163

10 Applications and Experimental Results for a Clustered Manycore Pro-
cessor 165

10.1 Macro Pipeline for the Computation of a 3D Stencil 165
10.1.1 Lattice Boltzmann Method (LBM) Algorithm and Background . . . 166
10.1.2 Implementation State-of-the-Art . 166
10.1.3 Optimizing a 3D LBM Stencil Application on Top of AOS 167
10.1.4 Results and Discussions . 171

10.2 A Low-Latency Distributed Fast Fourier Transform 174
10.2.1 Fast Fourier Transform . 174
10.2.2 Computing Techniques of Fast Fourier Transform 174
10.2.3 Distributed Fast Fourier Transform Implementation 176
10.2.4 Results & Discussions . 180

10.3 Distributed Runtime for CNN Inference . 181
10.3.1 General Architecture . 182
10.3.2 CNN Runtime for a Clustered Manycore 182
10.3.3 Results & Comparisons . 183

10.4 Conclusion . 184

11 Conclusions 187

11.1 Summary of our Contributions . 187
11.2 Future work . 189

11.2.1 Fundamental Mechanisms for Programming Manycores: Asynchronous
One-Sided (AOS) . 190

11.2.2 Standard Optimized Runtimes for Manycores 191
11.2.3 Parallelization Techniques . 192

11.3 Final Conclusion . 193

vi CONTENTS

A French Summary 195
A.1 Systèmes parallèles embarqués . 196

A.1.1 Le parallélisme et le processeur MPPA® de Kalray 196
A.1.2 Mémoires et protocoles de communication 197

A.2 Les modèles de programmation parallèle . 197
A.2.1 Interfaces de programmation d’applications 198
A.2.2 Modèles de flux de données . 198

A.3 Environnement d’exécution bas niveau pour architectures massivement pa-
rallèles . 198
A.3.1 Environnement distribué pour la communication asynchrone unila-

térale . 199
A.3.2 Environnement d’exécution multitâche symétrique performant : sans

verrou et transactionnel . 200
A.4 Exécution d’applications de flux de données pour architectures massivement

parallèles . 200
A.4.1 Stratégie pour ordonnancer efficacement un modèle statique de flux

de données hiérarchiques . 201
A.4.2 Portage et adaptation d’un environnement d’exécution embarqué

pour placer et ordonnancer un modèle flux de données paramétré
et dynamique . 201

A.5 Un environnement standard distribué pour la vision et applications sur ar-
chitectures massivement parallèles . 202
A.5.1 Environnement embarqué distribué pour l’exécution d’applications

OpenVX à basse latence . 202
A.5.2 Applications et environnements embarqués distribués à la main . . . 204

A.6 Conclusion . 204

List of Figures 209

List of Tables 211

Glossary 213

Personal Publications 220

Bibliography 234

Acknowledgments

To my family, my love ones, my friends, and my colleagues.

I express my sincerest thanks to my supervisors for their advice and time, Jean-François
Nézan, Benoît Dupont de Dinechin, and Karol Desnos.

I wish to thank Alain Girault and François Irigoin for their hard work on reviewing
this manuscript.

I thank all my work colleagues for their technical support on the software side: Pierre
Guironnet de Massas, Benoît Dupont de Dinechin, Samuel Jones, Patrice Gerin (special
thanks to the simulator without which I would be still debugging my first contribution),
Frederic Blanc, Karol Desnos, Minh Quan Ho, Marius Gligor, Julien Villette; and on the
hardware side: Vincent Ray, Nicolas Brunie, and Alexandre Blampey.

1

2 Acknowledgments

CHAPTER 1

Introduction

1.1 General Context

Computer science is a wide area, and it has changed our ways of living. From the invention
of the transistor in the fifties to the latest released computer games, self-driving cars, and
smart homes, the world as we know is now dependent on computer systems. Ever since
the emergence of computer science and computer architecture, the need to compute has
always been growing. The computing requirements of applications increase as the services
provided by them make our lives easier, smarter and faster in diverse ways.

In this Ph.D., the focus is on embedded systems. In general, an embedded system
is everything that is not a general-purpose computer in the computer field. Embedded
systems are found in all electronic systems or parts of the electronic systems. These new
intelligent systems are found everywhere. For instance, typical embedded systems are
smartphones, fitness wristband, Global Positioning Systems (GPSs), MP3 digital audio
players, dishwashers, Television (TV) systems and almost everything powered by electricity
requiring intelligence to provide a human being with a specific service. Today, thanks to the
high-density integration of transistors (5 nanometers are announced by 2020), embedded
systems can execute many complex tasks and with high energy efficiency. Thus, embedded
systems are now everywhere and unavoidable, and they have a significant impact on our
lives.

Embedded systems are found in several new application domains like the Internet of
Things (IoT), big data, Advanced Driver-Assistance System (ADAS) [MGL+16] and em-
bedded vision and video. Recent examples of complex embedded computing systems can
also be found in the aerospace area where embedded electronic devices must meet high
expectations regarding fault tolerance, robustness, redundancy and system isolation for
application safety. Companies like Airbus [air18] spend years designing, implementing and
testing in real-life conditions embedded systems before putting them into service. This is
due to the application specificities, especially in complex and constraint environments.

As said in paper [Wol02], “an embedded system is a computer system with dedicated
functions within a larger mechanical or electrical system, often with real-time constraints.”
Therefore, an embedded system is designed to fit a specific application in a constrained en-
vironment. Constraints are usually both hardware and software. For instance, constraints
of embedded systems are generally the power consumption, timing response latency, time

4 Introduction

computing determinism, computing performance, robustness, cost, area and fault toler-
ance. Some of the listed constraints are antagonists. Indeed optimizing the latency of an
application usually ends up in reducing its throughput. Or even, increasing the perfor-
mance of an application leads to increasing the power consumption of the final system, as
it goes faster; therefore, it consumes more energy. Finally, increasing performance often
means increasing the cost of the application. Embedded systems are known to be com-
plicated to design, implement and verify that they satisfy the required features with the
related constraints. That is why the hardware needs to be leveraged by the software to
make the application run efficiently in a constraint environment.

In 1965, a now-famous paper by Gordon Moore observed that every two years the num-
ber of transistors in a densely integrated circuit doubles. In addition to this Moore’s law,
computer manufacturers benefited from the Dennard scaling of MOSFET technology, which
states that as transistors get smaller and faster, their power density stays constant so that
the power use stays in proportion with the area. As a result, manufacturers continuously
increased the operating frequency of integrated processors from the old Intel® 4004® pro-
cessing clock gated at 740 kHz in 1971 to the 2004 high-end Intel® Pentium®-4 clock
gated at 4 GHz. The Dennard scaling broke down around 2004, corresponding to the
65nm CMOS technology nodes. Since then, semiconductor manufacturers have lost the
ability to increase clock frequencies significantly without hitting a power wall. Since 2004,
computer architects design parallel architectures to improve the computational capabilities
without hitting this power wall.

Before 2004, computer architects already designed some parallel architectures. An
example of them is the Texas Instruments (TI) Multiprocessor System-on-Chip (MPSoC),
called C80 [DS95], which integrates 4 Digital Signal Processor (DSP) cores with a Reduced
Instruction Set Computer (RISC) core, designed to target energy-efficient computing for
embedded systems. But this MPSoC could only be programmed by TI’s experts, showing
that multi-core architectures are more challenging to use. Multi-core software is indeed very
different from single-core software due to concurrent executions, the sharing of resources
and many other issues that will be discussed in this Ph.D. dissertation.

Increasing the number of cores using shared memory enables better performances up
to a certain point (around up to tens of cores). At this point, the performances are limited
by concurrent accesses to a single memory resource (shared memory). Nowadays, a new
generation of architectures has been designed, called clustered architectures. These new
architectures feature distributed memories to tackle the problem of shared memory. These
new architectures are even more complicated to be programmed, involving huge software
development costs.

The memory bandwidth is a significant performance factor. Most of the time, the main
memory bandwidth (bandwidth between a processor and an external memory) is the bottle-
neck of high-performance applications onto parallel architectures. The main memory band-
width is lower compared to the available internal on-chip memory bandwidth [WWP09].
When the number of cores is increasing inside a processor, memory bandwidths often be-
come the bottleneck of the application. In this case, the cores are not fed with data as fast
as they can process them. The purpose of the memory hierarchy is to reduce the average
memory latency access time and to reduce the memory traffic between memories. Avoiding
the memory bandwidth wall requires temporal and spatial data locality to use the on-chip
memory efficiently. It is crucial to handle such a bottleneck early in optimization stages,
to get competitive performances on this new generation of clustered manycores.

Scope of the Thesis 5

In this context, this Ph.D. aims at reducing the complexity of the software
development to decrease the development time, while keeping performance,
onto these new generations of complex MPSoCs.

1.2 Scope of the Thesis

This thesis is a collaboration between the Institute of Electronics and Telecommunica-
tions of Rennes (IETR)’s Video Analysis and Architecture Design for Embedded Resources
(VAADER) team and the Kalray French semiconductor company.

The focus is on a family of manycore architectures designed by the Kalray company.
This family of manycores features distributed memories to let parallel programs scale.
Kalray’s manycore architectures regroup cores into clusters that are fitted with a multi-
banked shared local memory; and then, these clusters are interconnected with a network-
on-chip. This MPSoC enables the use of up to 288 real cores running in parallel with their
own execution context. MPPA® is built for energy-efficient computing using the local
memories and Direct Memory Access (DMA) engines to move data off-chip on on-chip by
software. Such characteristics make the MPPA® processor a severe competitor regarding
low-power computing, but it is challenging to program, observe, and debug.

We study in this thesis programming models and Application Programming Interfaces
(APIs) for the latest generation of clustered architectures. Both programming models and
APIs abstract the targeted architecture using high-level models and documented functions.

APIs provide a set of functions enabling one or several features to be run onto a pro-
cessor. APIs are found at several levels of programming. Low-level programming is very
close to the targeted hardware. Programming at low-level is painful and requires an in-
deep knowledge of the targeted architecture. The portability of a low-level program is also
very poor. But it comes with unmatched performances when the programming is properly
performed. High-level and mid-level programming abstract hardware architectures to the
programmer. Programmers use high-level APIs, and the program can be compiled and
executed on several chips including usually general purpose processors and a given set of
processors for embedded systems. However, high-level APIs can also be found with high-
performance optimized libraries provided and sold by hardware manufacturers that most
of the time unleash the best performance for the use-cases addressed by the API. See for
instance the Intel® Math Kernel Library (MKL). The performances of those API comes
with a loss in terms genericity for the programmer.

A programming model aims to be a way or a style to express a computation. A
programming model is usually language agnostic whereas an API is not. An example of
programming model is OpenMP that is expressed using a specific API. The application
engineer only writes few isolated compilation directives in its source code, and if supported,
the sequential computation is automatically executed in parallel according to the directives.

In this thesis, the aim is to use dataflow programming models to describe an application
at a high level of abstraction. Many dataflow models exist, and they are widely used
in software compilers that are either low-level or high-level. Dataflow applications are
represented with computing blocks and exchange data using directed communication links.
As such a dataflow is usually represented as a directed graph where nodes represent the
computation and links between nodes represent the data communications. However, the
dataflow programming models have various refinements when going into details. It might
sometimes be troublesome for application engineers when complex applications have to
be ported efficiently. But still, dataflow programming is a great competitor for rapid
evaluation and application port onto complex parallel architectures. The Parallel and

6 Introduction

Real-time Embedded Executives Scheduling Method (PREESM) project, designed by the
IETR in the VAADER team, is a rapid prototyping dataflow framework that leverages
the modeling of high-level and architecture agnostic dataflow applications. The VAADER
team has focused its research work on parallel programming for 18 years. The PREESM
project started in 2007, and today it makes the development and automatic parallelization
of dataflow applications possible on x86 architectures and multi-core DSPs such as the TI
Keystone II.

In this thesis, we study, adapt, and propose new software runtimes and methods based
on dataflow programming models to fit this new generation of clustered architectures. We
use computer vision, deep learning, digital signal processing, and numerical simulation
applications to test the contributions of this thesis.

1.3 Contributions

This section introduces the software contributions introduced in the thesis for a clustered
manycore processor. Although this processor is a real machine, manufactured by TSMC
in 28nm, namely the MPPA® processor, all contributions aim at being generalized and
applied to similar architectures like the Epiphany-V chip [Olo16] and the PULP acceler-
ator [CRP+16]. Therefore, new techniques for programming the MPPA® processor are
introduced in this thesis. Some techniques are adaptations and optimizations of existing
methods, enabled for the first time on the MPPA® processor and others are new. The
contributions of this thesis are presented at high-level as follow:

• The application of the one-sided communication techniques on a two-sided network-
on-chip. Today deployed in production, the new communications engines abstract
the Kalray’s network-on-chip through high-performance and low-latency one-sided
communication primitives, but also, two-sided primitives. The runtime part, the
sharing of hardware resources and the ordering of communications are explained. It
is built for performance, and it provides a total abstraction of the hardware. An
important feature of this contribution is that the provided set of primitives can run
asynchronously (running in the background), making this contribution challenging to
implement, debug and validate (asynchronism is complicated). Moreover, one-sided
communications revolutionized the way of programming the MPPA® processor using
explicit communications. As such, it is also the foundation of all other contributions
of this thesis.

• An optimized multi-threading runtime to make fine-grained multi-threading possible
on the multi-core CPU (cluster) of the MPPA® processor. The runtime enables
in the bare-metal Kalray’s toolchain the well-known POSIX thread primitives and
OpenMP multi-threading. The contribution uses lock-free mechanisms to enable
efficient multi-threading. This runtime has production maturity, and, it is used in
almost all other contributions of this thesis as the primary operating system running
in the multi-core CPU of the MPPA® processor.

• Based on a hierarchical dataflow model, a strategy to generate efficient code for the
MPPA® manycore is presented and detailed. This hierarchical dataflow model that
was proposed and designed by the IETR’s VAADER team, is the key to the contribu-
tion. The strategy makes the use of two levels of parallelism possible and efficiently
exploited. The two levels of parallelism are the intra multi-core CPU level, and the
inter multi-core CPU level. The graph hierarchy of the model enables fine tuning

Contributions 7

at early stages of the dataflow application development. The first software synthe-
sis runtime back-end for the MPPA® processor is also presented. Fine speedups
are obtained and a drastic reduction time of the dataflow graph compilation is also
shown.

• The adaptation of a multi-thread embedded reconfigurable dataflow runtime is pro-
vided in the thesis, created by the IETR’s VAADER team. The embedded runtime
performs just-in-time scheduling of dataflow applications on embedded System-on-
Chip (SoC). In this contribution, the original runtime presented in paper [HPD+14],
is re-thought to make it run on the MPPA® processor. Most of the work consisted in
distributing the runtime on the set of multiple multi-core CPUs implementing limited
local memories. The scheduler and the memory allocation techniques have also been
redesigned.

• A distributed embedded framework for enabling low-latency execution of OpenVX ap-
plication graphs is provided. OpenVX is a modern computer vision and Convolutional
Neural Network (CNN) inference standard [G+17] to deploy computing pipelines from
a host to one or several accelerators. The proposed framework is a clean room im-
plementation of the OpenVX standard specification for the MPPA® processor. The
framework runs in standalone mode for the MPPA® processor, making the reconfig-
uration of OpenVX application graphs possible at runtime. The framework proposes
and adapts new techniques to optimize the execution of the OpenVX user graph
automatically and at runtime (embedded). Optimizations focus on the reduction of
the main memory bandwidth that is most of the time the performance bottleneck.
Therefore, the use of automatic kernel fusion and automatic data prefetching over the
Kalray’s network-on-chip at multiple multi-core CPU levels are used. The framework
targets low-latency execution (no batching) to provide a reactive system (for embed-
ded decisions). Results show super-linear speedups at multiple multi-core CPU levels
showing that the strategy is effective for clustered manycore architectures like the
MPPA® processor.

• Diverse applications using the software runtime contributions of this thesis are pro-
vided. These applications are low-level implementations of numerical simulation ap-
plication based on stencil computation, digital signal processing applications, com-
puter vision or CNN inference applications. In these contributions, parallelization
strategies are explained, and how their implementation is adapted to the MPPA® pro-
cessor. The use-cases are well-known and fundamental in parallel computing. More-
over, some implementations are quite complex since they target the MPPA® pro-
cessor at low-level. But still, thanks to the previous contributions of this thesis
the implementation of these applications are made possible and easier to be both
implemented and debugged.

The highlighted contributions are either part of academic researches for the IETR’s
VAADER team, projects (like the Mordered project) or have direct production values for
the Kalray company. The contributions were designed, discussed, implemented and tested
under the supervision for the IETR’s VAADER team and the Kalray’s engineering and
research core.

8 Introduction

1.4 Outline of this Thesis

This thesis is organized into two main parts. Part I presents the background that introduces
the state-of-the-art of our research area and the diverse problems tackled in this thesis.
Part II gives and evaluates all contributions proposed in this thesis, that are designed and
elaborated for clustered manycore processors.

Chapter 2 defines embedded parallel systems for high-performance computing. The
main aspects of the optimization of the performance of an application are given and ex-
plained. This chapter also details and presents the MPPA® manycore architecture that
is the target of this thesis. Chapter 3 lists and explains standard programming models to
program and abstract the deployment of parallel applications onto MPSoCs. This chap-
ter adds and formally explains diverse dataflow programming models. Chapter 4 provides
the state-of-the-art of communication technologies for parallel and distributed computer
system architectures. Moreover, it provides keys to understand and handle the memory
consistency and coherency of parallel architectures with complex memory models.

Chapter 5 explains and describes in details the design of an asynchronous communi-
cation library over the Kalray’s Network on Chip (NoC) of the MPPA® processor. This
contribution is the pedestal of all next chapters of contribution presented in this thesis,
and it is designed for high-throughput and low-latency execution. Chapter 6 provides a
multi-threading runtime to enable threads on a Symmetric Multi-Processor system (SMP)
machine at low-level. This multi-threading runtime is also the pedestal of most further
chapters as it allows for efficient fine-grained multi-threading in the Compute Cluster (CC)
of the MPPA® processor. Chapter 7 presents a strategy to target and generate efficient
code for clustered manycore architectures using a dataflow model as an application input
representation. The chapter explains the technique that exploits a hierarchical dataflow
model to enable efficient usage of several hierarchical levels of parallelisms of the targeted
machine. Chapter 8 introduces an adaptation of an embedded reconfigurable dataflow
runtime for the MPPA® processor. The embedded runtime operates on the platform
in a standalone way. Chapter 9 introduces the OpenVX standard, designed for efficient
computer vision and Convolutional Neural Network (CNN) inference applications with
embedded constraints for low-power MPSoC. This chapter proposes an implementation of
an OpenVX framework for the MPPA® processor. The framework is built to target the
low-latency execution of OpenVX applications. The optimization of the execution latency
provides shorter time reaction, that is important for an embedded system running in a car
for instance. Chapter 10 presents the implementation and optimization of diverse appli-
cations onto the MPPA® processor. Each application is explained and detailed, as well
as their parallelization techniques to exploit the processing capabilities of a highly parallel
machine. Chapter 11 concludes the work of this thesis and presents future contributions
and researches to make the programming of clustered manycore architectures easier and
with performance.

Part I

Background

9

12 Embedded Parallel Systems

implementation. Furthermore, as applications are becoming more and more complex, em-
bedded systems require more and more heterogeneous computing capabilities to handle
different kinds of processing. Thenceforth, complex embedded systems are confronted with
a new parallel computing problem that is: the system heterogeneity.

At the software application level, many programming models exist, due to the diverse
hardware architectures, their evolutions, the various programming environments provided
by Multiprocessor System-on-Chip (MPSoC) vendors, and new ideas of researchers trying
to simplify the programming of MPSoCs for application engineers. Programming these
new architectures is a real challenge for all computer science scientists who need to exploit
the hardware parallelism at a high-performance to cope with the ever-increasing computing
workload of modern applications. A lot of standard and non-standard programming models
are currently proposed, showing that it is an unsolved problem. Some of these programming
models are listed and explained in Chapter 3.

In this thesis, we provide new runtimes and methods to ease the application devel-
opment on a new generation of clustered manycores. To do that, we contribute to the
firmwares, the OS, and the application layers targeting the Kalray MPPA® processor.

General notions on embedded parallel architectures are presented in Section 2.1. The
memory architectures and the memory hierarchy are introduced in Section 2.2. The mas-
sively parallel Kalray MPPA® architecture is described in details in Section 2.3. Finally,
we explain how the software in Section 2.4 uses these hardware platforms.

2.1 Embedded Parallel Architectures

Embedded parallel architectures are usually low-power and not made for general purpose
computing as seen previously. As applications need more and more computing power,
parallelism is required since we can no longer increase the computing frequency of Process-
ing Elements (PEs) composing the (embedded) systems. That is why modern computing
systems are parallel and heterogeneous.

2.1.1 Multiple Level of Parallelisms

Several types of hardware parallelism exist. The Flynn [Fly72] taxonomy describes and
classifies the level of concurrency of computer systems. Only the most important categories
are explained in this section, and each type is illustrated in figure 2.2. The idea is to classify
computing architectures by their ability to manipulate concurrently (or not) the data and
instructions.

The simplest is the Single Instruction, Single Data (SISD) which takes a single input
with a single instruction and produces a single output, it is also known as a non-vectorial
scalar Central Processing Unit (CPU).

The Single Instruction, Multiple Data (SIMD) instruction operates onto a vector of
register(s) and perform the same instruction onto multiple data inputs providing numerous
outputs in a single CPU clock cycle [Rus78]. The SIMD parallelism method is part of the
data parallel parallelism. Nowadays almost all CPUs, Digital Signal Processors (DSPs),
Graphics Processing Units (GPUs) and hardware arithmetic unit in Field-Programmable
Gate Arrays (FPGAs) use the SIMD level of parallelism. SIMD is also known as vector
processing.

The Single Instruction, Multiple Threads (SIMT) (not part of the Flynn taxonomy as it
is more recent), proposed by the Nvidia GPUs’ hardware manufacturer for the first time in
2006, introduces the concept of executing the same instruction concurrently onto multiple

Embedded Parallel Architectures 13

threads. It is an execution model where SIMD is combined with multi-threading and
implemented in the Nvidia Tesla GPU presented in [LNOM08]. SIMT is very efficient onto
regular code but leads to poor performance when control flows diverge for instance with test
statements. However, most recent enhancements of GPUs architectures like Volta [Blo17],
introduced in 2017, optimizes the execution of flow-divergence by using independent thread
scheduling for interleaving such code statements.

The Multiple Instructions, Multiple Data (MIMD) is applied to most CPU-based multi-
core architectures. MIMD features several CPU for executing different instructions onto
different input and output data concurrently. MIMD is also found in Very Long Instruction
Word (VLIW) core at registers and instructions level. VLIW cores can execute multiple
SIMD instructions onto multiple different inputs and outputs in a single clock cycle. Today
MIMD defines modern multi/many core architectures where several levels of parallelisms
can be found like vectorization and multi-thread execution that can be seen in Figure 2.2.

Scalar

SISD

Scalar

Vectorial

SIMD SIMT

MIMD

VLIW /

Superscalar

Multi-core /
Manycore

Instruction

Processing

Element

Input Data

Output Data

MIMD

Figure 2.2 – Examples of Multiple Levels of Parallelism

Parallel computing is old; in 1975, Cray Research released the Cray-1 [Rus78] parallel
supercomputer. The Cray-1 made history of supercomputers as it was the first one to
implement vector processing. At this time, Cray-1 was already providing 160 megaFLOPS
(Floating Point Operations per Second). Today, MPSoCs implement parallelism at sev-
eral levels: Instruction-Level Parallelism (ILP), thread-level and cluster-level also known
as Non-Uniform Memory Access (NUMA) node. In March 2018, the world fastest super-
computer was the [iW18]. It delivers a measured performance onto LINPACK [DLP03]
benchmarks of 93.01 petaFLOPS. This supercomputer exploits SIMD, thread-level, and
cluster-level of parallelism.

2.1.2 Heterogeneous Parallel Systems

Embedded systems are becoming more and more involved with a lot of dedicated func-
tions with aggressive performance constraints. Thus, such systems require heterogeneous
computing to satisfy all requirements of the embedded computer system. Heterogeneity
is defined by having different computing resources in the same systems. For example, a
typical heterogeneous system regroups CPU cores, DSP cores, GPU cores, and specialized
tightly coupled co-processors in a single chip.

Parallel heterogeneous computer systems are complicated to program, as the same
system integrates several computing machines, programming constraints, programming
models and with different performance bottlenecks. Moreover, they all need to be orches-

Computer Memory Systems 15

We list and describe the typical latency and the purpose of each of these memory levels:

Register is also known as the core register file. Registers have a very low latency access
time, within a machine clock cycle. Registers are used for internal core computations.
They are fed by the system memory, usually from cache or local memories via Load / Store
instructions.

Caches typically have several levels of hierarchy. Caches offer transparent memory access
to the main memory. Typically, on cache hit, the level 1 is 1 ns and the level 2 is 4 ns.
However, the Worst-Case Execution Time (WCET) of caches is challenging to be bound,
in particular, in multi-core architectures, when the data coherence needs to be maintained
among cores with performance [LMW99].

Local Memory or Tightly Coupled Memory (TCM) is an on-chip memory with
its own address space. Deterministic response time can be achieved when using local
memories. A typical memory access latency is between 1 ns and 4 ns usually depending
on the local memory hierarchy. Unlike caches, local memories require explicit software
management of data movements. Therefore, the resulting software implementations are
more challenging and usually not portable to other architectures.

RAM is a volatile external memory. It has a high latency which is at least 100 ns
depending on the memory load. The purpose of lower memory hierarchy levels is to reduce
as much as possible core stalls when accessing this memory assuming that the running
applications have enough data locality. Examples of RAM technologies are the Double
Data Rate (DDR), the Graphical Double Data Rate (GDDR), and the High Bandwidth
Memory (HBM) technologies.

Other memories exist, such as physical data storage devices but also remote data stor-
age devices that can be accessed over a network. Remote data storage have a huge latency.
A round-trip is in the order of 100 µs.

2.2.2 Memory Architectures

As seen in 2.2.1, the memory hierarchy is what is seen by a core in a memory system,
whereas the memory architecture constitutes the entire memory system including how
a set of cores are connected to the memories. The memory architecture of a computer
system is composed of caches, local, and RAMs that are interconnected with each other on
modern systems. The simplest memory architectures are composed of a single memory with
a single core. Today most of them are ultra-low power embedded systems implementing
a Micro-controller Unit (MCU). In this section, parallel computer memory architectures
are introduced. Two principal memory models are presented, the shared memory and
distributed memory models. The shared memory model is a unique memory, implementing
several memory banks for performance, where cores and peripherals share this memory
resource. The distributed memory model implements several memories dispatched over a
network. Although distributed memory architectures are more complicated to program
efficiently, the motivation for distributed memory is to let massively parallel applications
scale onto highly concurrent computer systems.

16 Embedded Parallel Systems

Uniform Memory Access (UMA) architectures are based on the shared memory
model where all cores see a single physical global address space. UMA is used in Symmetric
Multi-Processor system (SMP) which is the most used parallel programming model (see
Chapter 3 for more details). As several cores can access a unique memory, this memory
usually has a full cross-bar to sustain the number of memory transaction requested by cores
onto the different memory banks. However, when the number of cores increases, UMA
architectures tend to provide poor performance because of the sharing of the memory and
memory arbiters, leading to memory access conflicts.

Non-Uniform Memory Access (NUMA) architectures are distributed memory ar-
chitectures with transparent memory accesses. Transparent memory access means that
cores can access the global address space through their cache memory hierarchy. NUMA
architectures are easier to program than distributed memory architectures as the data
communication between cores is entirely hidden by the diverse levels of data caches which
performs the communication automatically. Thus all data communications are done by
Load / Store, which poorly scales onto massively parallel architectures as the user sees an
SMP architecture where processors have very different memory latency access time. It is
called the NUMA effect. Moreover, NUMA computer systems usually implement cache co-
herence, called CC-NUMA architectures, which generates huge coherence traffic when data
updates occur (data sharing). As such, using NUMA computer systems efficiently requires
to place the accessed memory buffers as close as possible to the computing resources, the
cores.

Distributed Memory architectures are composed of an array of memories intercon-
nected with a network. Memories composing this array have computing resources con-
nected to them like cores or custom hardware accelerators. The network can be either a
Network on Chip (NoC), an Ethernet network or any custom processor interconnects like
the proprietary Intel QuickPath Interconnect (QPI) [Int18]. Such chips are also known as
No Remote Memory Access (NORMA) architectures if no hardware or software emulated
cache system [KCDZ94] is provided for transparent global memory accesses. Therefore,
the programming of these architectures is challenging, and extremely complicated [Ras87]
as all data movements must be explicit message-passing initiated by software. However,
NORMA architectures make scalability possible when designing highly massively parallel
systems. Indeed, computing resources are isolated from each other, making conflicts to
access shared resources almost null; thus, allowing scaling.

Heterogeneous Distributed Shared Memory architectures include previously de-
scribed memory architectures which are the UMA, NUMA and NORMA architectures but
exposed at different hierarchical levels in the computer system. The UMA model is exposed
at the multi-core CPU level; usually, less than 16 physical cores (nowadays), implementing
a shared data cache for transparent memory accesses and/or a single or several (shared)
local memories. The NUMA model is exposed at multi-cluster (a cluster is a multi-core
CPU) level, but the global address space is unified. Also, most of the time, a cache co-
herence protocol is provided at multi-cluster level. However, as very large NUMA systems
scale poorly because of the Load / Store protocol (see Section 4.3.1), the NORMA model is
then used with explicit communications. Such hierarchical memory models are more com-
plex to be programmed because both the hardware and the software are heterogeneous.
The hardware heterogeneity is due to the exposition of the shared and distributed memory
model. The software heterogeneity is due to the use of the SMP model at multi-core CPU

18 Embedded Parallel Systems

called the local shared memory which is an on-chip high-bandwidth and low-latency local
memory. The third level is the main global memory which is a DDR3 technology. The
second level of memory of MPPA® can be configured, either to cache the third level of
memory (software emulation of L2 cache using the Memory Management Unit (MMU)
inspired from [KCDZ94], like in conventional cache-based systems), or by default as a local
memory where the buffers are moved explicitly by software configured DMAs. The third
level can also be accessed by IO DMA interfaces or through the IO core L1 data cache by
Load/Store. Finally, on compute clusters, L1 caches are not coherent between cores and
DMA interfaces’ writes; thus, the memory coherency is managed by software using full
memory barrier, partial memory barrier or uncached memory accesses are used.

Memory Map: An Array of Distributed Local Memories

The hardware exposes a heterogeneous memory map of 20 address spaces (2 per IO and
1 per CC). The MPPA® processor implements a distributed memory architecture, with
one local memory per cluster. I/O cores access their local SMEM and private DDR via
Load/Store and by DMA interfaces. Compute clusters can also access their local SMEM
but not the DDR via Load/Store and by their DMA interface. The DMA interface must
be used to build up NoC packets and send them to the NoC to communicate between the
20 address spaces available.

2.3.2 Computing Resources

k1-Bostan VLIW Core

Each MPPA® core implements a 32-bit VLIW architecture which issues up to 5 instruc-
tions per cycle, for different execution units: branch & control unit (BCU), ALU0, ALU1,
load-store unit (LSU), multiply-accumulate unit (MAU) combined with a Floating Point
Unit (FPU). Each ALU is capable of 32-bit scalar or 16-bit SIMD operations, and the
two can be coupled for 64-bit operations. The MAU performs 32-bit multiplications with
a 64-bit accumulator and supports 16-bit SIMD operations. Finally, the FPU supports
one double-precision fused multiply-add (FMA) operation per cycle or two single-precision
operations per cycle. SIMD instructions are supported by the FPU to accelerate classical
floating-point computations (adds, multiplications, and complex calculations).

IO Subsystems

Each IO integrates two quad-cores. Each quad-core implements 4 cores of VLIW archi-
tecture as previously explained. Then IO subsystems are connected to a 4 GB of external
DDR3 memory and on-chip Shared Memory (SMEM) memory of 4 MB. Regarding mem-
ory accesses of cores, cached and uncached accesses can be performed for both Load and
Store operations (64-bit/cycle) in the SMEM and DDR3. For the shared memory, cached
and uncached atomics are available such as Load-and-Clear, Fetch-and-Add, and Compare-
and-Swap (CAS). Atomic cached operations provide execution efficiency when dealing with
critical algorithmic parallel paths that need mutual exclusion or atomic updates of vari-
ables. Each IO embeds 8 high-speed IO interfaces usually, called DMA, to communicate
through PCI Express First-In-First-Out queues (FIFOs), Ethernet, DDR3 and SMEM.
The PCI Express implements 16 lines of 8 Giga Transfer per Second per line; therefore,
a single line provides roughly 1 GB/s. As such, the maximum full-duplex PCI Express
theoretical bandwidth is up to 16 GB/s with the PCI Express DMAs. Finally, the software

MPPA® Manycore Processor 19

is in charge of maintaining the memory coherence between DMA reads/writes (for both
PCI Express and the NoC) and the cores.

Compute Clusters (CCs)

Each CC embeds 17 cores, 16 PEs and a Resource Manager (RM). CCs integrate a multi-
banked private local SMEM of 2 MB. Memory accesses of cores are supported only in this
SMEM, and only uncached atomic instructions are available. The same atomic instructions
are available in the IO subsystem as presented before. Each CC has one DMA interface
for communicating with external nodes. Here, the software is also in charge of maintaining
the memory coherence between DMA reads/writes and the cores.

2.3.3 Communications

Network-on-Chip

A full-duplex 32-bit wide NoC interconnects the 18 multi-core CCs (CPUs) of the MPPA® pro-
cessor. The NoC implements wormhole switching, with source routing, and supports guar-
anteed services through the configuration of flow injection parameters at the NoC interface:
the maximum rate σ; the maximum burstiness ρ; the minimum and the maximum packet
sizes (the size unit is the flit). A flit is 32-bit (4 bytes per cycles), meaning a bandwidth
of 2 GB/s per link direction when operating at 500 MHz. The NoC is a direct network
with a 2D torus topology. This network does not support Load/Store but only data NoC
stream and low-latency control NoC messages. Thus the software is in charge of converting
virtual memory addresses to the data stream (data NoC), and of converting this stream
back to the virtual address in the remote memory to initiate any communications between
any multi-core CPUs.

Control NoC Interface

The control NoC is made to communicate at very low-latency with 64-bit messages. It does
not have access to the memories (on-chip or off-chip memories); the messages are mapped
in the DMA interface registers. Each DMA interface implements 128 64-bit control NoC
receive mailboxes (Rx) and 4 transmission resources (Tx). These mailboxes can be used for
barriers and simple 64-bit messages with a notification on a list of processors (up to 17 cores
in CC). The barrier mode is mainly used for generic inter-core low-latency synchronization
and notification. For instance, forcing a remote core or a poll of remote cores out of idle
state in a single clock-cycle for the initiating core. A store in the peripheral space is a
posted operation. The 4 Tx resources must be shared between the cores of the multi-core
CPU. A NoC route and a remote control NoC Rx mailbox identification number (called a
tag in the range [0, 127]) must be configured to send a 64-bit message through each control
NoC Tx resource.

Direct Memory Access NoC Interface

The data NoC feature is made for high throughput. Therefore, it is a very asynchronous
hardware block that requires to be handled asynchronously by the software. Indeed
all outstanding incoming and outgoing transactions must be managed by the software
asynchronously for performance. Each data NoC DMA interface is composed of three
elements:

20 Embedded Parallel Systems

• Eight micro-cores, running concurrently, are available for each DMA interface. A
micro-core is a micro-programmable DMA core that needs to be programmed and
configured. It has a simple set of instructions such as reads, local and remote noti-
fications for local and remote completions and added support for the arithmetic of
internal read pointers and counters. It can execute up to 4 nested loops to describe
custom memory access patterns with high throughput. This throughput is limited
by the technology of the memory on which the micro-core is reading, the NoC link
size (4 bytes/cycle) and the memory access patterns.

• The data NoC implements 256 Rx Tags (range [0, 255]) per DMA interfaces to write
incoming data NoC packets in the local memory of compute clusters or in the DDR
memory of IOs. This Rx Tag has a write window described by a base address, a
size and a write pointer that need to be configured and managed at runtime. The
completion of the incoming data transfer is given by an End-of-Transfer (Eot). This
Eot command increments a 216-bit notification counter corresponding to the used Rx
Tag in the DMA interface of the MPPA® network.

• Each DMA interface implements 8 packet-shapers. A packet-shaper (DMA Tx) is a
hardware unit that is building data NoC packets using data coming from a PE or a
micro-core. Then, the packet-shaper sends these NoC packets in the MPPA® NoC
using the configured NoC route. Indeed all NoC routes and injection parameters
Quality-of-Service (QoS) need to be set by software.

2.4 From Parallel Architectures to Software

2.4.1 Operating Systems

An operating system is a low-level software that controls the hardware resources, makes
tasks scheduling possible and allows multiple processes to share diverse resources such as
the peripherals and the memory. The operating system is usually ported or developed
at bare-metal level. It can also be ported at the hypervisor level also known as Virtual
Machine Monitor (VMM) when targeting a virtual machine but it is out of the scope of
this thesis.

Bare-metal System

The so-called “bare-metal” system is directly based on the hardware without any runtime or
virtual support (ie the VMM). The programmer is in charge of everything such as powering
up the System-on-Chip (SoC), enabling instruction and data caches, enabling the MMU,
handling system interrupts and hardware trap exceptions, configuring FPU rounding mode,
setting up stacks of threads and many more architectural details related to the underlying
SoCs. Therefore, such mode cannot be used of portable software as most written software is
dependent on the hardware. Bare-metal programming is used for porting OS, hypervisors
or low-level runtime firmwares onto SoCs. Such a level of programming can only be used
by SoC experts, usually hardware providers.

Real-Time Operating System

A real-time OS is designed to meet real-time constraints: computation deadlines must be
met. Embedded systems usually use a real-time OS. Programmers have strong control over

From Parallel Architectures to Software 21

timings regarding the scheduling of tasks and external events mostly managed through in-
terrupt handlers. Such OS implements ready-to-use synchronization and message-passing
primitives between tasks. However, efficient multi-core implementations of such an OS is
not a simple task. A locking mechanism for mutual exclusion must usually protect the
shared resources. For instance, the scheduling task is inherently sequential in [MNW14]
("Scheduler’s lock"). Thus with fine-grained parallelisms, speedups can be poor because
of system runtime overhead. Indeed, most multi-threading implementations use locks for
managing threads scheduling and liveness, making the serialized software section a perfor-
mance bottleneck, as in [MNW14], GLIC [SLwRMSD18] and [HPD+14] x86.

Linux Operating System

Linux is one of the most used operating systems of the open source community [TRBD01].
It currently targets most mainstream computer architectures. The name Linux is used to
denote the entire system: the kernel and all user applications or system software interfaces
running on top of the kernel [Tor97]. A powerful feature of the Linux kernel is that it
cannot (should never) be corrupted by user software. The isolation between the user-
space and kernel-space is performed with hardware and software (IO-)MMU mechanism.
MMU entries are only filled by trustworthy kernel software on page fault exception. The
communication between user applications or system interfaces within the Linux kernel
is done using explicit Input/Output Control (IOCTL) functions, also known as system
calls. System calls are used to invoke kernel services or kernel machine specific drivers, for
instance to deal with Peripheral Component Interconnect Express (PCIE), Universal Serial
Bus (USB) or Ethernet interfaces. The Linux OS has been designed to operate onto parallel
machines like SMP and NUMA architectures. Linux manages the memory consistency of
the data (cached or un-cached), the instruction caches for relocated code, and page table
mappings for the virtual memory. Such features make Linux a great candidate for software
system portability onto complex parallel machines. Also, Linux provides a preemptive
scheduler, with task scheduling priorities or thread pinning to cores using thread affinity
special attributes that are provided by the execution runtime.

2.4.2 Classical Software Memory Layout

The memory contains all the executed instructions and user data of a program running on
one or several cores. Memory accesses are vital to the computer system performance, as
they are on the critical path of the computer system. Although the number of accesses to
instructions is higher than reads or writes in the memory, still application data accesses
are crucial for performance [WM95]. Figure 2.5 shows an embedded multi-core computer
program operating onto a memory. Cores can access the main memory through their
memory hierarchy that is presented in Section 2.2.1.

Memory

CPU1CPU0

.text

.data

.bss

.tls.cpu0

.tls.cpu1Read / Write

Instruc. fetch

Figure 2.5 – Typical CPU Cores Linked to a Memory with Memory Access examples

22 Embedded Parallel Systems

In the standard Executable and Linkable Format (ELF), the data segment nomenclature
shows the .text section that contains the executable machine code (instructions) of the
program which is shared and read-only in statically linked programs. The .data and .bss
sections of the program can be accessed by the read and write operations. These memory
sections are initialized for the .data and non-initialized for the .bss. The .tls section stands
for the Thread Local Storage (TLS) [Dre03] which can only be accessed by a core owning it
by read and write operations. In standard compilers, like GNU Compiler Collection (GCC),
the TLS is used using the __thread attribute to the object declaration. An instance of
these objects is then replicated in each thread’s TLS memory. Also, each core has its
own stack which contains variables of functions, and the heap is then found if a dynamic
allocator is available [WJNB95]. The stack and heap are at the end of the .bss section or
constitute an entire section by themselves in the memory. The stack and heap are accessed
by core using reads and writes operations.

All data segments are placed in the memory, which is concurrently accessed by all
running cores. The user program itself defines memory accesses. Accesses are either static,
dynamic or both depending on code sections. Static accesses are easily predictable, but
dynamic accesses will rely on the input data or complex addressing within computation
loops. Moreover, data reads and writes to the memory are usually more random than
instruction fetches that are easier to predict.

For years, computer scientists have been investigating methods to provide programs
with efficient memory accesses [SHW11]. However, this is a complex task as it strongly
depends on the application and its implementation. The computer memory systems are
sometimes misused, even if the hardware and the low-level software runtime implement
advanced mechanisms to compensate bad software application implementations (for in-
stance the irregular memory accesses). This hardware, software, or hybrid mechanisms are
explained below in this chapter.

2.4.3 Software Management of the Virtual Memory

Most processors operate in memory using virtual addresses, that are decoded by a MMU
to get the physical addresses, to send the memory request to the proper physical memory
or memory banks. Rich (most standard) operating systems use hardware and/or software
MMU as the Linux OS presented in Section 2.4.1. The MMU is a hash table which maps
virtual addresses to physical addresses. Figure 2.6 shows where IOMMU and MMU are
placed in a heterogeneous computer system and how they do interact with other units.
For performance, the MMU implements a Translation Lookaside Buffer (TLB), which is a
memory cache that can be hierarchical. The TLB associates the requested virtual address
to a physical address. If the requested virtual address is not mapped in the TLB, then a
hardware page fault exception is generated to the CPU. On a hardware page fault, which
is typically a TLB miss, the operating system takes over. It can either write a new entry
in the TLB from the software managed MMU, or stop the execution of the program if
it is a user-space segmentation fault. The segmentation fault occurs when the user-space
requested an address that is invalid memory access due to buggy software such as the
dereferencing of a NULL or corrupted pointer, or a stack overflow.

2.4.4 Software Concurrency

As most of the software written in this thesis runs on a manycore architecture, it is essential
to define the software concurrency.

24 Embedded Parallel Systems

The Kalray Exokernel

The Kalray exokernel has been designed and implemented by Pierre Guironnet de Massas,
Ph. D. [dM09], is the lowest software layer of the Kalray MPPA® processor. The exokernel
is situated at the same level of the hardware layer in the Figure 2.1. The goal of the Kalray
exokernel, also called hypervisor, is to prototype in software virtual hardware features such
as smarter DMA, caches [KCDZ94], spatial partitioning [MRPC10], and MMU virtualiza-
tion. When the implemented software features in the Kalray exokernel have maturated and
have become a bottleneck for the targeted applications, they can be implemented in hard-
ware in next chip generations. Virtualization is an essential feature for partitioning, system
isolation and debugging as parallel systems are becoming extremely complex; therefore, the
confinement of bugs or system failures is mandatory. Developing right above the Kalray
exokernel interface is also known as bare-hypervised level of development. We use below
the bare-hypervised level to describe the lowest and standard level of system development
on the Kalray MPPA® processor.

HAL Level

The HAL [PJ09] provides an abstraction of the hardware features and it can be hierarchical.
Usually, the functions of a HAL are hardware dependent. When this is huge architectural
changes between two versions of a chip, the HAL might genuinely change. On MPPA®, the
HAL simplifies the programming of the DMA NoC interface, for instance for configuring
NoC routes, NoC bandwidth limiters, DMA micro-engines or receiving channels. Also the
HAL provides functions to use the k1-VLIW core more easily, such as getting the CPU or
CC identifier, managing events and system registers.

OS Level

The Operating System (OS) is usually running over the Exokernel. The OS provides the
implementation of system calls, tasks, resource management, Processing Elements (PEs)
control for the software threads, synchronizations, interrupt handling atomicity when ac-
cessing the hardware from the user level. The OS cannot corrupt the Exokernel. For
performance, the OS is able to access the MPPA® hardware directly, but the Exokernel
has already set the access rights.

Applications & User Libraries Level

The applications run on the OS and can invoke OS services through system calls. A
system call is redirected to the Exokernel which then redirects it to the OS. If the OS
does not implement MMU protection mechanisms, and if the application is failing due
to a software bug, the application may corrupt the OS (not true on Linux for instance)
but not the Exokernel. Indeed, the Exokernel has always protected thanks to the MMU.
For performance, the application is able to access the MPPA® hardware directly but the
Exokernel and the OS have already set the access rights.

Software Emulated Distributed Shared Memory (DSM)

As the Compute Clusters (CCs) of the MPPA® processor do not have hardware support
for accessing the external off-chip memory, for programmability and the support of the
OpenCL-C memory model, a transparent memory access mechanism through Load-Store
was required. Also designed and implemented by Massas [dM09], the software emulated

Conclusion 25

L2 data cache is called the Distributed Shared Memory (DSM). The Distributed Shared
Memory (DSM) system, inspired by [KCDZ94], uses the MMU trap (miss) mechanism to
perform data page refill in the off-chip memory.

A part of the local memory of the CC serves as a ’cache’ to store the MMU pages,
transferred explicitly by the software configured DMA NoC interface. On TLB miss, if
another PE already holds the page within the CC, the TLB entry is immediately written. If
not the PE sends a request to the IO. Then the IO performs the refill. When the data arrives
at the PE, the PE returns from the MMU page fault handler and goes on with the execution
(called Return From Exception). Such software mechanisms are extremely complicated to
develop, debug, and validate. They are highly concurrent, with asynchronism, and a lot of
transitional states need to be handled.

2.5 Conclusion

This chapter introduces general notions about parallel computing and presents the Kalray
MPPA® processor. We define parallel embedded systems in the context of high-performance
computing. Multiple levels of parallelisms are exposed, as the targeted processor in this
thesis is the Kalray MPPA® architecture.

The MPPA® architecture implements multiple levels of parallelisms in the same SoC.
They are the SIMD (vector processing), ILP (VLIW), thread level (multiple PEs in a
CC), and the process level (multiple CCs in the same SoC). They are all used in the
contribution part of this thesis. We provide low-level details about the memory hierarchy,
the CC, the IO, the NoC and the DMA NoC interface. The NoC and the DMA NoC
interface explanations are essential for understanding the contribution in Chapter 5.

We also highlight issues encountered in parallel computing that are the main memory
bandwidth bottleneck (the memory wall), and the heterogeneity in the memory access la-
tency, memory types, and the available computing resources. Finally, issues in the design
and development at the system level are presented, like the management of the virtual
memory address space (Linux Kernel, Exokernel protection), the memory map of the stan-
dard ELF, and diverse OSs running in SMP mode in the compute nodes of MPPA® (CC
or IO).

One of the hidden biggest issues seldom mentioned is the debuggability and the ob-
servability of the parallel system implemented on such a heterogeneous parallel machine,
namely the MPPA®. Being able to debug, observe, and understand why the system is
failing requires in-depth knowledge of the low-level architecture when developing at the
system level. A lot of system level debug has been done while building the contributions
of both Chapter 5 and 6, without which the other contributions of this thesis would not
have been possible. Indeed, the complexity of the contributions presented in this thesis is
limited by my capacity to debug them. This is very difficult in a massively parallel envi-
ronment that needs to implement asynchronous transactions for performance, especially at
the system level.

26 Embedded Parallel Systems

CHAPTER 3

Parallel Programming Models

This chapter introduces parallel programming models usually used for programming Mul-
tiprocessor Systems-on-Chips (MPSoCs). One of the main goals of a programming model
is to hide the complexity of the targeting hardware. Several programming models exist,
and it is due to the diversity of applications and hardware architectures. But still, today
two kinds of programming models are identified. The first one is the multi-threading pro-
gramming model using a Symmetric Multi-Processor system (SMP) with a flat memory
hierarchy model (single address space). The second one is the acceleration programming
model where a host offloads some computations onto one or several accelerators. Many
programming models have been proposed for decades, and still, engineers and researchers
are looking for new ways to exploit and describe applications for MPSoCs efficiently. Once
again, this is due to the ever-increasing hardware complexity, system heterogeneity, and
new applications that are also becoming more and more complex. This chapter aims to
focus on existing standard or non-standard parallel programming models to target parallel
machines.

The Section 3.1.1 presents the task programming model using an SMP architecture.
The most commonly used models are explained in this section such as OpenMP multi-
threading and the Pthread programming Application Programming Interface (API). Ac-
celeration programming models are presented in Section 3.2. On the targeted clustered
architecture, the most used programming model is the acceleration because applications
require most of the time centralized control to manage input and output data. In this
section, we explain the purpose of such an execution model, and we describe the OpenCL
programming model currently available on the targeted clustered manycore in this thesis.
Section 3.3 presents dataflow programming models. We show the advantages and funda-
mental properties of such models. For instance, the hierarchical dataflow models are intro-
duced, that are important to target hierarchical machines like the Multi-Purpose Processor
Array (MPPA)® processor. We also give state-of-the-art about mapping/scheduling and
memory allocation of dataflow applications onto parallel processors. Fundamentals about
scheduling and memory allocation are presented in Section 3.4, not only in the context of
dataflow applications but also in case of general purpose computing. In Section 3.5, the
rapid prototyping is presented through diverse tools and models. In this thesis, the focus
is put on the Parallel and Real-time Embedded Executives Scheduling Method (PREESM)
framework and the Synchronous Parameterized Interfaced Dataflow Embedded Runtime

28 Parallel Programming Models

(SPIDER) embedded runtime. But other competitors targeting similar problems are also
highlighted in this section.

3.1 Task Programming Models

3.1.1 Processes & Threads

A task programming model runs onto an SMP architecture, or an Operating System (OS)
exposing an SMP architecture. The multitasking model uses a shared memory model
(section 2.2.2) where all tasks run onto cores and see a shared memory address space
as shown in Figure 3.1. It must be noted that write operations from one core in the
shared memory are seen by other cores depending on the multitasking model and task
memory access isolation. However, this common memory address space can either be an
Uniform Memory Access (UMA) or a Non-Uniform Memory Access (NUMA) system with a
Distributed Shared Memory (DSM) [KCDZ94]. In multitasking, tasks are either processes
or threads.

Figure 3.1 – Symmetric Multi-Processing

Processes are isolated from each other. They must use the OS kernel to communicate
with each other. In this way, processes are heavy to manage for an OS as hardware and
software Memory Management Unit (MMU) management are required to provide isolation.
But different processes operate independently from an OS point of view even though the
hardware, which has limited resources, is still shared.

Threads operate within a process. A thread is a sort of Lightweight Process. The
scheduling of threads within a process does not necessarily require the intervention of the
OS; thus, threads are more efficient for multitasking that involves a lot of task synchro-
nizations and communications. As such, the memory accesses of threads are not isolated
from each other within a process, meaning that concurrent executions can sometimes be
more complex to develop and more error prone than processes.

Multitasking is known to be efficient for UMA architectures. On UMA architectures,
inter-task communications are efficiently executed using Load/Store instructions (see Sec-
tion 4.3.1) natively supported in hardware. Nevertheless, multitasking is less adapted to
large NUMA distributed memory systems [KCDZ94]. In this context, inter-task communi-
cations based on implicit (i.e. hardware) Load/Store instructions and coherency messages
traffic on the interconnects are not efficient. The programmer can improve the efficiency at
the cost of profound code modifications replacing implicit Load/Store by explicit (software
calls) Put/Get operations (see Section 4.3.2). As such multitask for the parallel system is
usually combined with Message Passing Interface (MPI) [HDB+12] or SHMEM [CCP+10]

Task Programming Models 29

communications described in chapter 4. The main consequence is then that the optimized
software is hardware dependent limiting code reuse and maintainability.

3.1.2 POSIX Threads

The POSIX Threads norm, specified by the IEEE Computer Society was released in the
90s. POSIX defines a portable API to be implemented by the OS or developed over the
OS like the [SLwRMSD18]. The Pthread programming model is widely used in SMP
programming and implements the threading model as explained in Section 3.1.1. The
standard Pthread API is available in/over most multi-core OS like Linux and proposes a
large panel of low-level primitives, usable in C programming, to manage threads such as:

• pthread_t creation and joining of threads to deal with their life.

• pthread_|mutex|spinlock|_t mutex and spinlock for the protection shared re-
sources from concurrent accesses like memory or peripherals.

• sem_t semaphores for synchronizations and token consumption.

• pthread_barrier_t barriers for collective synchronizations.

• pthread_cond_t conditional variables for the implementation of more complex con-
ditions of synchronizations.

Therefore, Pthreads share the same memory space which is accessible by Load/Store,
and also implement synchronization operations that are required for multi-core program-
ming. The code sample in Figure 3.2 shows how to run multiple threads using the Pthread
API. The entry point is the main program which performs pthread_create by giving a
function task with its function argument arg. The new threads are scheduled by the OS,
and the thread task prints the OS thread identifier and the argument value in the range [0,
NB_THREAD-1]. In the end, the master thread running the main program performs the
pthread_join which returns when the corresponding thread thread[i] exited. The joining of
a thread has two implicit functions, it provides synchronization and memory consistency
(Section 4.4.1) management between the exit thread and the thread joining the exit thread.

The Pthread API provides very decent control of the thread resources as it is a low-
level multi-threading API. However, Pthread might sometimes be painful to use, especially
because of the passing of arguments to threads where data structures need to be written
by hand. Other models like OpenMP entirely hide such problems, making them easier to
use.

3.1.3 OpenMP Multi-threading

OpenMP multi-threading, is also known as OpenMP 3.0 [CJVDP08], is a portable multi-
threading API for SMP architectures implementing a shared memory model. Released
for the first time in 1997, OpenMP can be used in Fortan, C/C++ by adding compiler
directives that are caught only when OpenMP is enabled at compile time (-fopenmp).
Thus, it allows code portability when OpenMP is not supported, that is, important for
production software which is expensive to modify.

OpenMP 3.0 can be used for both task parallelism (omp task), data parallelism (omp
for). OpenMP 3.0 multi-threading implementations often use the POSIX runtime backend,
for instance, the one used in GNU Compiler Collection (GCC). Several and most commonly
used OpenMP compiler directives are available and explained as follows.

30 Parallel Programming Models

1. #define NB_THREAD (8)

2.

3. static pthread_t thread[NB_THREAD -1];

4.

6. void* task(void *arg) {

7. printf("Hello thread %ld\n", syscall(SYS_gettid));

8. return NULL;

9. }

10.

11. int main(int argc , char *argv []) {

12. for(int i=0;i<NB_THREAD -1;i++) {

13. if(pthread_create (& thread[i], NULL , task , NULL) != 0) {

14. assert (0 && "Failed create thread\n");

15. }

16. }

17. task(NULL);

18. for(int i=0;i<NB_THREAD -1;i++) {

19. if(pthread_join(thread[i], NULL) != 0) {

20. assert (0 && "Failed join thread\n");

21. }

22. }

23. return 0;

24.}

Figure 3.2 – Example of Pthread Multi-threading Programming.

• Management of data: Shared data are concurrently accessed and private data are
replicated within each threads usually placed in the .tls section (see Section 2.4.2).

• Synchronizations: provides a fine-grained controlling of the thread resources to deal
with data dependency and access shared resources. The following constructs are
available:

Barrier makes it possible to synchronize threads in a parallel region.

Critical sections are used to scope a code section that should be executed atom-
ically or serialized. Such a code section ends up being protected by a lock. If the
section is named, it has its own locking mechanism; otherwise, an unnamed global
lock is taken.

Atomics allow the compiler to generate hardware atomic instructions onto mem-
ory access of variables if available and supported in the compiler port. It provides
better performance than critical sections.

• Scheduling of parallel regions: A static schedule will spread the iterations of the work
statically onto threads at the beginning of the parallel region. Dynamic will decide
at each loop iterations on which thread the work will be executed, and, a chunk size
can be specified allowing the computation of several iterations at once.

• Reductions: Reductions operate on simple operators such as +,−, ∗, /, min, max.
The reduction of a parallel region is applied at the end of a parallel region by com-
bining results of the contributions of all threads. The reduction can often be imple-
mented using the atomic or critical clauses, but it will give lower performances.

A code snippet in Figure 3.3 shows simple OpenMP parallel clauses. In the runtime
back-end of GCC (libgomp), the first omp parallel directive starts the physical threads

Task Programming Models 31

of the parallel region (See Line 10 in Figure 3.3). These threads are neither joined nor
canceled, but they stay alive until the process ends. The threads operate within a process.
Indeed, the OpenMP runtime creates threads only once to avoid calling the OS each time a
parallel region is encountered, as system calls have a huge overhead. The second OpenMP
directive (See Line 14 in Figure 3.3) executes the for loop in parallel onto the specified
number of thread NB_THREAD. The schedule is set to dynamic and uses a chunk size of CHUNK
(See Line 15 in Figure 3.3). In this use case, a static schedule provides almost the same
performance as a dynamic schedule when the dynamic chunk is set to CHUNK (benched
onto a multi-core UMA x86 architecture). Also, the buffers a, b and c are shared and
the private d variable, placed on the stack of the master thread, is being replicated in
each thread.

1. #define NB_THREAD (16)

2. #define CHUNK (8*1024*1024)

3. #define SIZE (NB_THREAD*CHUNK)

4.

5. static float a[SIZE], b[SIZE], c[SIZE];

6.

7. int main(int argc , char *argv []) {

8. float d = 0;

9. /* Starts the internal threads */

10. #pragma omp parallel num_threads(NB_THREAD)

11. {

12. printf("Tid[%ld]\n", syscall(SYS_gettid));

13. /* Parallel For Loop */

14. #pragma omp parallel for shared(a, b, c) private(d)

15. schedule(dynamic , CHUNK)

16. for(int i=0 ; i<SIZE; i++) {

17. c[i] = a[i] * b[i] + d;

18. d += 1.0f;

19. }

20. }

21. return 0;

22.}

Figure 3.3 – Example of OpenMP 3.0 Multi-threading Programming.

OpenMP 3.0 exposes a relaxed memory consistency on a shared memory model which is
used to provide more efficient memory accesses. For instance, shared variables can exploit
uncached (also known as streaming) Loads and Stores or atomic instructions. As such,
each thread has a temporary view of the shared memory which means that it can exploit
the cache or a local memory to avoid going to the main memory for every variable reference.

Another feature since OpenMP 4.0 that can be used in OpenMP parallel regions is
the vectorization (omp simd) that applies the pragma ivdep compilation directive. Such
directive makes the compiler apply in-core parallelism using vectored instruction.

Kalray Original OS Kalray provides a multi-threading OS called NodeOS. This OS
was developed and available since Andey, the first MPPA® generation and presented in
[dDdML+13]. NodeOS provides both a subset of Pthread functions and OpenMP multi-
threading support. However, the OS has limitations such as the difficulty to get decent per-
formance on fine-grained multi-threading, the impossibility to interleave usage of OpenMP
and Pthread multi-threading, the lack of file system support and only up to 16 threads

32 Parallel Programming Models

(one-per Processing Elements (PEs)) is possible. In this thesis, we propose a new imple-
mentation of high efficient multi-threading runtime explained in Chapter 6.

3.2 Acceleration Programming Models

3.2.1 Execution Model

An acceleration programming model aims to offload a heavy computational workload onto
one or several external computing resources. The acceleration programming model usu-
ally implements the master/slaves model where a host (multi-core) Central Processing
Unit (CPU) plays the role of a master that deploys computations onto external or remote
computing resources playing the slave role.

3.2.2 OpenCL

OpenCL [G+11] is an open source Computing Language designed for heterogeneous pro-
grammable parallel platforms. The OpenCL standard is cross-platform and was developed
initially for CPU and Graphics Processing Unit (GPU) based architectures. The stan-
dard was created back at the end of the 2000s by the Khronos Group. OpenCL is well
known for its programming flexibility as it gives a strong control of the targeted hardware
architectures from a host application and it is said to be close-to-the-metal programming.

As OpenCL is an acceleration API, it involves a host processor and one or several
accelerators. In OpenCL, accelerators are called Compute Devices which are composed of
Compute Units. Compute Units are composed of Processing Elements which performs the
computation.

Classical Flow for an OpenCL Application

OpenCL programming can be tedious as a lot of things are in charge of the developer, for
instance, an OpenCL application will be described with the following typical sequence:

• Compute Device initialization.

• Compilation of the kernel.

• Creation of input and output buffers.

• Send or map input buffers to the accelerator memory space (Compute Device memory
space).

• Set the kernel arguments one by one.

• Send the command of execution to the compute device to execute the kernel.

• Read or map output buffers to retrieve results of the kernel to the host.

OpenCL Memory Model

The OpenCL memory model uses shared memory with multiple levels of memory hierarchy.
When writing OpenCL kernels, attributes can be set to the pointer of data. The __global

attribute specifies a shared data pointer between multiple Compute Units. In OpenCL,
an issue with global memory accesses (buffers implementing the __global attribute) is

Acceleration Programming Models 33

the sharing of cached data in multiple Compute Units. Known as the false sharing, it im-
plies a performance degradation due to additional data traffic to maintain the coherence.
The __local attribute defines memory buffers accessible in the Compute Unit only and
shared across Processing Elements in this Compute Unit. The __private attribute speci-
fies a memory accessible only by the Processing Element. As such, with these 3 levels of
memory hierarchy directly exposed in the OpenCL language, it makes it possible to tune
memory accesses efficiently for the targeted platform. However, as the low-level informa-
tion is exposed in OpenCL applications, an OpenCL application description will need to
be modified when targeting different MPSoCs for performance optimization. Indeed, as
the Systems-on-Chips (SoCs), the memory hierarchies and their geometries are different,
OpenCL implementations require adaptations for performance. Such adaptations make
OpenCL known to be difficult to use, as it requires knowing architecture specificities to
get competitive performances.

OpenCL Data-Parallel Support for the Kalray MPPA®

The OpenCL acceleration programming model is possible on MPPA® thanks to the DSM
system that provides memory accesses (through Load/Store) for the Processing Elements
(PEs) of the Compute Units to the main global memory of the accelerator, namely the
__global memory. Moreover, the DSM provides false sharing support when multiple Com-
pute Clusters (CCs) (Compute Units) modify the same page. The mechanism is called the
Reconciliation. However, the reconciliation system has a huge impact on the performance
as the software has to perform the byte-to-byte Read-Modify-Write. Figure 3.4 shows how
the data-parallel model of the Kalray’s OpenCL is mapped onto the MPPA® architecture.
The memory model is also observed, and it is noticed that the local memory of the Com-
pute Clusters (CCs) is used as a local memory (__local, __private) and the rest as a
cache of pages for letting the Distributed Shared Memory (DSM) operating to access the
global memory in the Double Data Rate (DDR) (__global).

...

Device (MPPA board)

...

Compute Cluster 1

Compute Unit 1

(PE 1)

SMEM

Constant/Global Memory (DDR)

Private/Local

Memory

(SMEM)

MMU/DSM MMU/DSM

Compute Unit 2

(PE 1)

Private/Local

Memory

(SMEM)

Compute Unit 16

(PE 1)

Private/Local

Memory

(SMEM)

...

Compute Cluster 16

Compute Unit 1

(PE 1)

SMEM

Private/Local

Memory

(SMEM)

Compute Unit 2

(PE 1)

Private/Local

Memory

(SMEM)

Compute Unit 16

(PE 1)

Private/Local

Memory

(SMEM)

Figure 3.4 – OpenCL Mapping of Applications and Memory Model
Source: Kalray’s OpenCL User Manual

Relation with the Nvidia CUDA Programming

Compute Unified Device Architecture (CUDA) is a proprietary API and a parallel com-
puting platform for GPU SoC, designed by the Nvidia company, supporting C/C++ and
Fortran. Nvidia is the world’s first GPUs company. They invented the GPU in 1999,
and have been a leader of parallel computing since that time. The CUDA programming
API is close to OpenCL but less verbose as CUDA is dedicated to GPU programming;
thus, less generic. CUDA abstracts the GPU programming by providing low-level virtual
instructions to the Nvidia GPUs for tuning and optimizing the execution of kernels. Such

34 Parallel Programming Models

a level of application description makes it possible to reach the GPU’s peak hardware
throughput but at the cost of using a proprietary API. In any case, best performances
of Nvidia GPUs are obtained using Nvidia optimized libraries like the cuBLAS, cuDNN,
and cuFFT [Nvi18]. The vendors’ level of optimizations are limited by the efficiency of the
well-known parallelization techniques and its roofline model [WWP09] but also bottlenecks
of the targeted architectures.

A Word on the Khronos Group

Founded in 2000, the Khronos Group is composed of universities and companies (large
and small) like ARM, Intel, and Nvidia. Together they define new APIs, documents, file
formats, and new open standards for the computing industry. The Khronos Group is
royalty-free and aims to develop cross-platform technologies to help to solve the following
problems: 3D graphics computing, virtual and augmented reality, parallel computing, neural
networks, and vision processing targeting computer desktops, embedded and safety-critical
devices [Gro18]. The recent standards of the Khronos Group are the OpenVX API, the
Vulkan API, the Neural Network Exchange Format (NNEF) and the SPIR-V Intermediate
Language.

3.2.3 OpenACC & OpenMP 4.0 with Modern Compilers

OpenACC [WSTaM12] and OpenMP 4.0 [Ope13] are modern APIs for host-based offloading
of computations onto an accelerator. OpenACC and OpenMP 4.0 aim to be at a high level
of hardware abstraction compared to OpenCL or CUDA programming where the machine
is exposed to the programmers; therefore, they OpenCL and CUDA are not easy to use
(complicated). As such, OpenACC execution backends can be implemented using OpenCL
or CUDA. OpenACC and OpenMP 4.0 propose compile time directives to gather code
sections to be offloaded onto a heterogeneous accelerator. If no accelerators are specified
or exist the parallelization is performed on the host. It is appreciated as it allows code
portability in any case as in section 3.1.3. The memory can not only be shared with
accelerators, but it can also be private to the accelerator. OpenACC and OpenMP 4.0
allow memory buffers to be mapped close to the computing resources.

OpenACC implements three parallelisms levels. The Gangs are used for coarse-grained,
Workers are used for fine-grained and Vectors for Single Instruction, Multiple Data (SIMD)
operations. The first experimental OpenACC implementation was released in GCC-5.
Today the GCC-8 release implements OpenACC for Nvidia GPU out-of-the-box with a
high level of maturity, directly mapped onto the CUDA API.

As an extension of multi-threading OpenMP 3.0 seen in section 3.1.3, OpenMP 4.0
adds the support of the target close to specifying where the scoped computations shall be
offloaded. OpenMP 4.0 is available onto the POSIX runtime for SMP but also targeting
Nvidia GPUs with modern compilers. The memory model is similar to OpenCL, with the
host memory and the device memory. All data movements are handled by the host using
either directly mapped memory or/and explicit Direct Memory Access (DMA) communi-
cations through system calls. In all cases, data movements are based on compiler directives
for the offloading of data computations.

Dataflow Models 35

3.3 Dataflow Models

3.3.1 Introduction

Graphical, block-based or diagram representations of applications are intuitive to use for
describing computer systems. The well-known Unified Modeling Language (UML) model
[Exe02] is a decent example of a graphical model, which is used by many high-level de-
signers for system engineering or the conception of object-oriented software systems. Most
designs for automating simple systems are based onto Grafcet (Petri-net) [MHH+85] and
Ladder [Win56] programming which are basic drawing-based programming models where
the designers describe Finite-State Machines (FSMs) using States and Transition Con-
ditions between these States. One of the first automated dataflow tools called BLOck
DIagram compiler (BLODI)[KJLV61], was pioneered in 1961. From that time, BLODI
provided primary predefined functions like adders and multiplier that can be connected
to build a computer system. High-level commercial system designs also exist such as the
Matlab Simulink®released for the first time in 1984 by Mathworks.

In this thesis, the focus will be put on the Synchronous Dataflow Graph (SDFG) model
that is widely used for application description and inspired many other models. The Syn-
chronous Dataflow Graph (SDFG) offers an interesting compromise between analyzability
and expressiveness.

In the dataflow community, the dataflow programming models are also called Model of
Computation (MoC). But in this thesis, we will call it a programming model for consistency.

Section 3.3.2 makes an overview of the dataflow programming model and presents one of
the first model: the Kahn Process Network (KPN). The Dataflow Process Network (DPN)
model is presented in Section 3.3.3 that defines the basics of dataflow models. Static
and dynamic dataflow models are respectively presented in Section 3.3.4 and 3.3.5. The
Section 3.3.6 presents a parametrized dataflow meta-model, that is used in the embedded
reconfigurable dataflow runtime, namely SPIDER.

3.3.2 Dataflow Overview, the Kahn Process Network

Dataflow programming models are widely used for the specification of data-driven algo-
rithms in many application areas. Dataflow programming models are architecture agnostic,
which makes them highly valuable for the specification of applications that can be deployed
on a wide variety of embedded systems.

As part of the first proposed dataflow programming models, the Kahn Process Net-
work (KPN) was proved to be Turing complete [Gil74]. Such a property means that the
model can compute anything that can be described by an algorithm but with the current
computing physical limits (computer memory or processing time). Kahn Process Network
(KPN) defines a network of potential concurrent tasks that are interconnected by directed
unbounded First-In-First-Out queues (FIFOs). FIFOs gather data tokens to be consumed
by the tasks when the production and consumption data of these tasks are available. In
the KPN, by definition [Gil74], tasks and data tokens are indivisible.

3.3.3 Dataflow Process Network

The Dataflow Process Network (DPN) programming model was defined by Lee and Parks
in [LP95] which is a generalization of the Kahn Process Network (KPN) programming
model. The Dataflow Process Network (DPN) programming model is formally presented
as follows:

36 Parallel Programming Models

Definition 3.3.3.1
A Dataflow Process Network (DPN) is a directed graph which is given by G = 〈V,E〉 where:

• V is the set of vertices of a graph G, where each vertex v ∈ V represents an indivisible
computational task, also called an actor, of the DPN. An actor is defined as follows:

– dinput_data refers to the set of input data ports of the actor v ∈ V .

– doutput_data refers to the set of output data ports of the actor v ∈ V .

– FC = {FC1, FC2, ..., FCn} is the set of Firing Conditions of the actor. When
the Firing Conditions (FC) of an actor v ∈ V are satisfied, the computation of
actor v can be triggered. It is usually called the firing of an actor.

– Rate refers to the number of indivisible data tokens consumed or produced on
a given input data port or output data port respectively. The actor is executed
when the number of tokens to consume for one firing of the actor is reached.
The rate is non-deterministic and may depend on the internal state of the actor,
on the number and value of tokens in FIFOs connected to the actor, or on time
or randomness. In other words, the rate defines the number of data tokens of
input and output ports of an actor of a dataflow graph.

• E represents a set of edges of graph G. Each edge e ∈ E is an unbounded First-
In-First-Out queue (FIFO) interconnecting two actors. A FIFO e ∈ E connects a
producer p, which writes data tokens in the FIFO, and a consumer c respectively
connected to the source and sink ports of an actor v ∈ V which reads the data tokens.
A FIFO also implements a delay if any. The delay corresponds to the number of
tokens placed in the associated FIFO at application initialization. The delay is usually
used to represent recursive computations with DPN.

As a summary and as a high-level definition, a dataflow graph is composed of communi-
cation edges representing FIFOs, that connect vertices or actors responsible for performing
the computations. Figure 3.5 shows a DPN example and its semantic. In this chapter,
the presented dataflow programming models are specialization in the Dataflow Process
Network (DPN) model.

Delay and
number of
tokens

FIFO

ActorA

Data
Ports

x4

A

C

DB

x3

x2

x2

x2

Figure 3.5 – DPN Programming Model Example and Semantic

3.3.4 Static Dataflow Models

Static dataflow programming models are not reconfigurable and deterministic. Therefore,
such programming models have their sequence of firing rules of all actors composing the
graph known at compile time. As such, it implies that the production and consumption
rates of all actors are known at compile time.

Dataflow Models 37

An essential property of some dataflow programming models is the data parallelism
(Section 2.1.1). The data parallelism of a dataflow graph is given by the Repetition Vector
(RV) of actors within the graph. The Repetition Vector (RV) is formally explained as
follows:

Definition 3.3.4.1 (Repetition Vector)
In dataflow programming model, the Repetition Vector (RV) refers to the number of exe-
cution of actors for single graph iteration. The RV defines the number of firings of each
actor as a function of the production and consumption rates of FIFOs, so that, the dataflow
graph is consistent and schedulable.

The RV of a Synchronous Dataflow (SDF) graph G is a vector containing an integer
value RV (a) for each actor a of G. An SDF graph completes a graph iteration when each
actor is executed as many times as specified by the RV, thus bringing back the graph to its
initial state in terms of the number of data tokens stored in each FIFO. The Repetition
Vectors (RVs) are computed at compile time using static data rates of actors [LM87], or it
can be computed at runtime in dynamic dataflow programming models if supported.

In this section, several static dataflow programming models are listed and some differ-
ences between them are highlighted.

• Synchronous Dataflow

The SDF programming model introduced in [LM87] is a specialization of the DPN
programming model that specifies for each FIFO the fixed number of data tokens pro-
duced and consumed at each execution (firing) of connected actors. SDF is probably
the most studied dataflow programming model. The SDF programming model popu-
larity is largely due to its analyzability, its predictability and its natural description
of concurrency, which make it suitable for efficient execution on MPSoCs.

• Single-Rate (SR) SDF, Homogeneous SDF or Directed Acyclic Graph
(DAG)

Also known as the Single-Rate Directed Acyclic Graph (DAG) (SRDAG), the Single
Rate SDF programming model is a specialization of the Synchronous Dataflow pro-
gramming model where the number of consumed and produced data tokens is equal on
each FIFO. More formally it means that ∀e ∈ E, rate(prod(e), e) = rate(cons(e), e)
for a given G = 〈V,E〉 dataflow graph. The graph is acyclic, meaning that no feed-
backs or cycles are allowed. As already seen, the rate defines the number of data
tokens of input and output ports of an actor of a dataflow graph. The Figure 3.6
shows an example of an SDF where its corresponding SRDAG transformation is given.

CA B 1 313
A B

1

1

1 1

1

1

C1

C3

C2

Figure 3.6 – Single-Rate Transformation SDF (left) to Single-Rate DAG (SRDAG) (right)

• Cyclo-Static Dataflow (CSDF)

The Cyclo-Static Dataflow (CSDF) programming model generalizes the SDF pro-
gramming model and provides statically the ability to vary the production and con-
sumption rates of an actor v ∈ V over graph iterations with a cyclic pattern. The

38 Parallel Programming Models

cyclo-static properties provide finer tuning of parallel application patterns, but it is
more complex to use when application graphs are big because of graph consistency
management. The reason for this complexity is that the translation from CSDF to
SDF is exponential. Figure 3.7 shows a CSDF example where production and con-
sumption rates of actor A varies over three graph iterations. The actor A produces
1, 2, and 3 data token triggering respectively 1, 2, and 3 times the B actor thanks to
the RV.

A B

{1,2,3}

1

Figure 3.7 – Cyclo-Static Dataflow (CSDF) Graph Example

Hierarchical Dataflow Models

The hierarchy is an important feature for a dataflow programming model. Indeed the
hierarchy in computer systems or in a dataflow application provides structuring and mod-
ularity. In dataflow models, the hierarchy mechanism associates an actor to a subgraph
instead of code. We present diverse hierarchical dataflow programming models below.

• Simple SDF Hierarchy: a Non-Compositional Dataflow Programming Model

The simple hierarchical SDF programming model, introduced in [LM87], adds the
possibility to associate an actor to a Synchronous Dataflow (SDF) subgraph. The
subgraph can contain several levels of hierarchy. The Flattening graph transformation
of a hierarchical dataflow graph consists in replacing the hierarchical actor with their
corresponding subgraph. However, an issue of the simple hierarchy programming
model is that the compositionality of hierarchical actors is not guaranteed between
the subgraphs and top graphs. In Figure 3.8, on the left can be seen a hierarchical
dataflow graph. To be concise, in a subgraph, when the internal RVs of actors imply
different production and consumption rates than the ones of the data input and
output data ports of the enclosing hierarchical actor, the compositionality rule of the
simple SDF hierarchy programming model is violated as seen in Figure 3.8 on the
SRDAG.

The compositionality of a dataflow programming model is defined as the behavioral
independence of the internal specification of the actors of a dataflow graph as pre-
sented in [TBG+13]. A compositional dataflow programming model implies that
modifications to a subgraph of a hierarchical graph will not influence the consistency
or schedulability of this hierarchical dataflow graph.

Dataflow Models 39

A BH 1 212

1 11 DC 3

Hierarchical

actor
A1

A2 B

1

1

1

1

1

1

1

1

1

1

D1

1

1

1

1

D2

C1

C4

C5

C6

C3

C2

A3

Figure 3.8 – Flattening and the Single-Rate Transformation
Hierarchical SDF (left) to Single-Rate DAG (SRDAG) (right)

• Interface-Based SDF Programming Model

The Interface-Based SDF (IBSDF) [PBR09] programming model is a hierarchical
extension of the SDF model. In addition to the SDF semantics, Interface-Based
SDF (IBSDF) adds the possibility to specify the internal behavior of an actor with
a dataflow subgraph instead of specifying it with code (compared to simple actors).
In the IBSDF programming model, the compositionality is enforced by the model
semantics and execution rules, which make it possible to translate each hierarchical
actor into an equivalent code with fixed production and consumption rates.

Contrary to the simple SDF hierarchy, the IBSDF programming model ensures the
compositionality of hierarchical dataflow graphs. As seen in Figure 3.9, the IBSDF
adds interfaces at the edges of hierarchical actors. An input interface has a broadcast
role, called Brd in Figure 3.9 which produces several times the same data token at
the input of the hierarchal actor. An output interface has a round buffer role which
sends the last data token in the output of the hierarchical actor. In IBSDF, the
compositionality feature enables independent computations of the RV of each hier-
archical graph or subgraph [PBR09] (at multiple levels). The IBSDF programming
model is a compositional dataflow programming model regarding the parent graphs
and children graphs.

A B

12 213 1 31

DBrd C

A BH 1 212

1 3 111 1 DC

o
u
t

in

Flattened Graph

A B
1

1 1

1

1

1

D1

1

1

1

1

D2

C1

C4

C5

C6

C3

C2

Brd1

Brd2

Data input
interface

Data output
interfaceo

u
t

in

Figure 3.9 – Flattening and Single-Rate Transformation of
IBSDF (left) to Single-Rate DAG (SRDAG) (right)

• Deterministic SDF with Shared FIFOs

Another hierarchical generalization of the SDF programming model called Determin-
istic SDF with Shared FIFOs (DSSF) is proposed in [TBG+13]. The main difference

40 Parallel Programming Models

between the DSSF and the IBSDF programming models is that DSSF compositional-
ity results from a graph analysis, whereas IBSDF graphs are inherently compositional.
In DSSF, a bottom-up analysis is used to expose compositionality of the hierarchical
graph, when possible. Based on this analysis, a hierarchical actor can be translated
into equivalent modular code with variable consumption and production rates.

Consistency and Schedulability

The consistency of a static dataflow graph noted G = 〈V,E〉 is usually checked using the
topological matrix of the graph. The topological matrix T is a size of |V | ∗ |E| in which
rows represent edges (E), and columns represent vertices (V). A coefficient of T (i, j) of
this topological matrix is computed as the number of tokens produced (+n) and consumed
(−1) for each edge related to each vertex. Lee proved in [LM87] that the graph G could
be scheduled, if and only if the rank of the T matrix if less than the number of vertices in
graph G.

3.3.5 Dynamic Dataflow Models

Reconfigurable dataflow programming models offer a tradeoff between dynamicity and
predictability that can be exploited by a runtime manager to verify application properties
or to perform optimizations at runtime, like the mapping of actor computations [HPD+14].
In real life, the implementation of dynamic dataflow programming models is a difficult task
to make it scale efficiently because of the sequentiality of the control path that is managed
by software.

• Parametrized SDF

Bhattacharya and Bhattacharyya introduced the Parameterized SDF (PSDF) in
[BB01]. The PSDF programming model inherits the SDF programming model prop-
erties, adds the hierarchy and adds parameters that can be used to change the pro-
duction and consumption rates of edges of actors; thus, changing the RV of actors
composing the graph. The PSDF is a dataflow meta-model, meaning that the se-
mantics of existing dataflow models can be augmented with a semantic element from
the meta-models. For instance, the model makes the reconfiguration of hierarchical
actors (subgraphs) possible at runtime. The parameter is an integer value that can
be modified during the execution of the graph at runtime by other actors; thus, the
mapping and scheduling might be impacted. The dynamic value of the parameters
can also be bounded. Such parameters imply quasi-static schedules. The Boolean
Parametric DataFlow (BPDF) [BFGL13] is also essential and offers more reconfigura-
bility than the PSDF. The hierarchy semantics in the PSDF programming model is
slightly different from the semantic implemented in the IBSDF programming model.
A PSDF graph performs a graph initialization process that is triggered at each graph
iteration, and it configures the production and consumption rates of the ports of
actors. A hierarchical actor implements an additional sub-initialization process (ex-
ecuted before the initialization process) that consumes the input data token of one
firing of the hierarchical actor and finalizes its configuration.

• Other Dynamic Dataflow Programming Models

Other dynamic dataflow programming models exist like the Schedulable Paramet-
ric Dataflow (SPDF) programming model explained in [FGP12], the Scenario-Aware
Dataflow (SADF) programming model described in [TGB+06] and the Boolean DataFlow

Dataflow Models 41

(BDF) programming model presented in [BL93]. All of these dynamic models ex-
tend from the Synchronous Dataflow (SDF) programming model. Scenario-Aware
Dataflow (SADF) provides analyzability, and a scenario gives the production and
consumption rates on the ports of actors. However, the scenario of some particular
actors, called detectors, (explained in the model in [TGB+06]) is defined by a stochas-
tic approach (Markov chain) that is difficult to use in real life applications [Des14].
Schedulable Parametric Dataflow (SPDF), known as a Turing-complete model, gives
decent analyzability and predictability. SPDF makes it possible to modify a param-
eter of an actor by a modifier actor. The modification of a parameter influence the
production and consumption rates of an actor, thus its schedule.

3.3.6 Parametrized Interfaced-based SDF

The Parameterized and Interfaced SDF (PiSDF) programming model is a reconfigurable
dataflow programming model presented by Desnos et al. in [DPN+13]. The Parameterized
and Interfaced SDF (PiSDF) inherits its hierarchy semantics from the IBSDF programming
model introduced in [PBR09].

The PiSDF programming model extends the SDF programming model by adding hier-
archical interfaces. Such an interface can implement a set of parameters that are associated
with vertices to make graph configuration possible, and dependency parameters for prop-
agating information of elements of the graph between each other. Also, it must be noted
that an interface of a hierarchical actor has the same property of a round buffer. The recon-
figuration in the PiSDF programming model is based on parameters which can modify the
rate of a graph. These production and consumption rates of actors can be specified with
expressions depending on these parameters. In PiSDF both static and dynamic parame-
ters can be specified, allowing partial graph reconfiguration. Following PiSDF execution
rules [DPN+13], an actor may trigger reconfiguration of the graph topology and intrinsic
parallelism by setting a new parameter value at runtime.

From Desnos et al., the Figure 3.10 summarizes the semantics of the Parameterized and
Interfaced dataflow Meta-Model (PiMM) model and comparison with previously initiated
programming models.

Data input
interface

Configuration
input interface

Configuration
output port

Configuration
input port

Configurable
parameter

Locally static
parameter

Parameter
dependency

Data output
interface

Delay and
number of
tokens

FIFO

Configuration
actor

Hierarchical
actor

Actor

PiMM

πSDFIBSDFSDF

A

Port
and rate3

x4

o
u
t

in

P

P Ah

Figure 3.10 – PiMM Semantics (Source [Des14])

Figure 3.11 depicts the graphical elements of the PiSDF semantics and gives an example
of a graph implementing a video filtering algorithm. At each iteration of the graph, which
corresponds to the processing of a new frame, the SetNbSlice actor triggers a reconfiguration
of the data rates by assigning a new value to parameter N . Reconfigurations enable a

Graph Scheduling and Memory Allocation 43

• The Ordering is the sequence of tasks to be fired (sequentially) for each PE of the
targeted machine.

• The Timing phase consists in assigning the tasks to a start time within the threads
where the tasks were previously mapped. Sometimes the timing phase is set to best
effort, meaning that the tasks are scheduled by an OS when the input data of the
task are available, and enough place is available in the output data buffer.

Fundamental Algorithms

The Depth-First Search (DFS) algorithm is a base of most graph parsing, analysis, trans-
formation algorithms. Introduced in 1972 by Tarjan [Tar72], the Depth-First Search (DFS)
algorithm has been used to find connected components. A DFS algorithm operates linearly
in time; thus, has a complexity of O(n), where n is the number of vertices. Therefore, DFSs
are intensively used in compilation passes.

Based on a Depth-First Search (DFS) algorithm, the topological sort gives the data
dependency schedule of a graph [KL95]. The topological sort places vertices of a graph
to be scheduled in a list, ordered with respect to the directed edges representing the data
dependencies. As the topological sort is based on a DFS algorithm, the topological sort
algorithm operates in linear time. In this thesis, we apply topological sorts to SRDAGs,
formally noted as G(V,E), to deal with the dependency order. The pseudo code of the
topological sort is given in algorithm 1.

Algorithm 1 Topological Sort Algorithm.

1: Input: Set_of_Vertices { Vertices composing a Graph } of a DAG
2: Output: Set_of_List_of_Sorted_Vertices { { } }
3: while Set_of_Vertices Not Sorted do
4: List_of_Current_Sorted_Vertices = { }
5: for Current_Vertex in Set_of_Vertices do
6: if Current_Vertex is in the Set_of_List_of_Sorted_Vertices then
7: continue
8: end if
9: Set_of_Predecessors = Get_Predecessors_Of_Vertex(Current_Vertex)

10: if Set_of_Predecessors are Sorted or Empty then
11: Add Current_Vertex to List_of_Current_Sorted_Vertices
12: Mark Current_Vertex as Sorted
13: end if
14: end for
15: Add the List_of_Current_Sorted_Vertices to Set_of_List_of_Sorted_Vertices
16: end while

Once the topological sort is applied to a Directed Acyclic Graph (DAG), many scheduler
algorithms exist which are classified as static or dynamic. A summary of static scheduling
algorithms is made in [SAS15]. For dynamic scheduling of DAGs, we usually use the LIST
scheduler explained by Brucker in [BB07]. This thesis reuses such algorithms and adapts
them to fit the targeted problems of automating the mapping and scheduling of parallel
dataflow-based application onto clustered manycore architectures.

44 Parallel Programming Models

3.4.2 Memory Allocation

The memory allocation is an essential procedure for efficient execution of parallel appli-
cations when targeting complex memory hierarchy architectures as seen in section 2.2.1.
Multiple levels of cache or local memories in the memory hierarchy of computer architec-
tures make it challenging to deploy automatically parallel applications. Bad placement
of buffers in the memory hierarchy, will lead to misuse of the Processing Elements (PEs)
composing the computer system.

When allocating memory resources for the execution of a dataflow graph, the misuse
of PEs is mostly due to the lack of data locality, meaning that PEs will spend a high
amount of time in memory access dependency stalls. That is why a smart and efficient
mapping/scheduling and memory allocation are required to use as efficiently as possible
the memory that is close to the PEs.

Memory Allocation Methods

The memory allocation consists in assigning a memory buffer (start address and size usually
in bytes) in a continuous virtual memory address space. The memory buffer lifetime is given
by the differences between the first and last memory access timestamp in the scheduled
application. In both static [ALP97] and dynamic [BAMJ13] dataflow applications, the
memory needs to be managed. For optimization purpose, the memory consumption has to
be minimized (mainly depends on the scheduling) and temporal and spatial data locality
needs to be maximized. The minimization of the memory footprint of an application has
been proved to be an NP-hard problem by Bouchard et al. in [BČH09].

The memory allocation has been widely studied in the past decades [Joh73]; however, a
decent memory allocation mainly depends on a memory aware schedule [BL93], the buffer
sizing technique [DPNA15] [SGB06], and graph level memory optimization [DPNA15]
[Des14].

Online Memory Allocation Algorithms

In the literature, many memory allocator algorithms have been designed for applications
running in real-time (online memory allocation). The allocation of memory buffers is done
in the heap as seen in Section 2.4.2.

• First-Fit (FF) was introduced by Johnson [Joh73] in 1973, and it is usually imple-
mented using double linked lists. The First-Fit (FF) memory allocator is a sequential
fit algorithm which returns the first buffer address with a given size that is available
within a memory space.

• Best-Fit (BF) [Joh73], is similar to the FF. However, it allocates memory buffers
that fit the best area in a memory space. More precisely, the used heuristic tries to
minimize the lost memory in the memory space.

• Binary-Buddy is probably the oldest memory allocator (1965). The algorithm
splits the memory space into static equal pieces (usually a power of 2) and attempts
to return memory buffers that best fit in this memory space.

• Doug Lea, known as the dlmalloc [LG96], is considered to be the best existing
allocator for a general purpose system. The dlmalloc is one of the most used memory
allocator providing good performances on a wide range of applications. The dlmalloc
is available in the GNU Compiler Collection (GCC) project in the C and C++

Rapid Prototyping and Existing Dataflow-based Tools 45

runtime libraries [SLwRMSD18]. The Doug Lea allocator is a refinement of the
Best-Fit (BF) with the binning of sizes of memory chunks.

• Half-fit, explained in [Oga95], is similar to the Binary-Buddy but provides a short
Worst-Case Execution Time (WCET) as it has only few memory accesses to operate;
thus, it drastically reduces Translation Lookaside Buffer (TLB) (Section 2.4.3), and
data cache (Section 2.2.1) misses.

Offline Memory Allocation

Offline memory allocations are used when the schedule of an application can be static.
Reaching optimal memory minimization of a statically scheduled application is more straight-
forward than dynamic memory allocation of an application. Indeed, offline allocators have
a global knowledge of the mapped application; however, it is still not a trivial task. An
offline allocation provides better optimization opportunities regarding the placement of
buffers for data locality and also memory footprint minimization, but solving this problem
is a challenge. The literature shows offline allocators in papers [MB00] [DGCDM97] [Des14]
[BČH09] that solve the global problem of allocating memory buffers of statically scheduled
tasks. They use graph coloring techniques modeling exclusion graphs to understand non-
overlapping lifetime buffers of the tasks to identify memory reuse opportunities. They
also use online allocators for offline memory allocations by simulating the static schedule.
The simulation of the static schedule aims to provide the lifetime of each buffer of the
schedule application. Memory buffers are allocated at their first usage, and they are freed
(recycled) when the last task using them completes. Found addresses of memory buffers
are then saved either in the .data or .text section of the Executable and Linkable Format
(ELF) file. The CPUs just read addresses of these memory buffers to proceed with the
computation.

3.5 Rapid Prototyping and Existing Dataflow-based Tools

The motivation of rapid prototyping is to bridge the gap between the ever-increasing hard-
ware complexity and the engineer’s productivity. As explained in [CH89], rapid prototyping
operates using system and application models with a specific semantic that is then used
to generate ready-to-use simulations or prototypes automatically. Using an application
specification written by an engineer, the rapid prototyping tool aims to abstract the imple-
mentation which is left to the automatic tool. Rapid prototyping tools usually operate with
high-level programming models or Domain Specific Language (DSL). A DSL is a computer
language that has been designed by a group of experts for a particular type of applications.

3.5.1 PREESM: an Open Source Rapid Prototyping Framework

The PREESM is an open source framework based on Eclipse developed by the Institute
of Electronics and Telecommunications of Rennes (IETR). PREESM allows the developer
to design dataflow-based algorithms using the PiSDF programming model or the IBSDF
programming model. The developer focuses on the dataflow application description and
PREESM generates code for the targeted embedded MPSoCs. The PREESM project1 has
been developed for research, development, and education purposes.

1Available at https://github.com/preesm/preesm

https://github.com/preesm/preesm

46 Parallel Programming Models

The PREESM’s development workflow presented in Figure 3.12 shows typical design
and compilation steps from the IBSDF graph specification by the developer, using a graph-
ical user interface, to the software synthesis.

Software
Synthesis

User
Interface

Hierarchical
Flattening

Scheduling
Mapping

Memory
Allocation

Single Rate
Transform

Figure 3.12 – Typical PREESM’s Rapid Prototyping Workflow

Each step of the workflow is described as follows.

• User Interface. The user interface is a point-and-click graph edition interface. It
allows the developer to design IBSDF or PiSDF application graphs. The vertices of
the model are then linked to C/C++ functions. Once the graph is completed the user
gives a scenario and the top level application graph entity. The scenario describes
the targeted architecture and its properties like the speed of the memory, the size of
data type, the number of cores and how they are interconnected.

• Hierarchical Flatenning. The hierarchical flattener is given a depth level to flatten
the hierarchy. Flattening the hierarchy consists in replacing hierarchical actors with
their equivalent sub-graph and connecting them to the parent graph. As such the
flattening depth defines the granularity of the hierarchical flattening operation.

• Single-Rate (SR) and Directed Acyclic Graph (DAG) Transformation. The
purpose of the Single-Rate (SR) transformation is to expose all the implicit data
parallelism of the dataflow graph. During this process, a lot of actors can be gener-
ated depending on the Repetition Vector (RV) of actors in the transformed dataflow
graph. Also, the transformation to a DAG is performed to simplify the mapping and
scheduling process as each vertex has to be scheduled only once.

• Scheduling and Mapping. The scheduling and mapping are done statically, oper-
ating on a Directed Acyclic Graph (DAG), several mapping and scheduling strategies
are available such as the FAST and LIST schedulers explained in [Kwo97]. More-
over, the scheduler uses the Architecture Benchmark Computer (ABC) framework,
designed and implemented by Pelcat et al. [PMAN09], that gives the developer the
opportunity to find the best tradeoff between accuracy and speed of the mapping
and scheduling simulation.

• Memory Allocation. The memory allocation, designed and implemented by Desnos
[Des14], is placed post-scheduling using refinements of the First-Fit (FF), Best-Fit
(BF) and graph coloring memory allocator algorithms. The memory allocation either
supports shared memory, where all buffers are allocated in a shared memory space,
or distributed memories where buffers can be allocated to different memory pools.
The distributed memory allocation is presented in [DPNA16].

• Software Synthesis. The current software synthesis back-ends of PREESM sup-
ports off-the-shelf multi-core processors running Linux or Windows, the Texas In-
strument C6x embedded MPSoC [TIC13], and the heterogeneous Texas Instruments
OMAP4 multi-core platform [HDN+12]. The software synthesis consists of generat-
ing C/C++ files containing: calls to functions implementing the internal behavior
of actor, calls to communication primitives between the computing resources of the
targeted platform and the synchronization. Usually, the generated files are then

Rapid Prototyping and Existing Dataflow-based Tools 47

integrated inside the pre-written platform specific project, designed to deploy the
computations.

In PREESM, all steps of the workflow are static; thus, they are executed offline. In the
next Section 3.5.2, we present a runtime that performs all of these steps online (except for
the software synthesis).

3.5.2 SPIDER: an Embedded Reconfigurable Dataflow Runtime

The SPIDER embedded runtime was initially introduced in [HPD+14] as a runtime man-
ager for the execution of reconfigurable PiSDF graphs on heterogeneous MPSoCs. The
SPIDER runtime can also be used as a rapid prototyping tool to deploy easily reconfig-
urable dataflow applications described in PiSDF.

Overview of the SPIDER Runtime

Written in C++2, the SPIDER runtime is organized as follows. SPIDER takes as an input
a PiSDF graph that is developed in the PREESM framework which is presented in Section
3.5.1. The SPIDER runtime then executes the graph transformations (flattening and SR-
DAG) if all parameters are available. If not, these transformations are performed when
reconfigurable parameters are set during the processing of the graph. Then, the SPIDER
runtime performs the mapping and scheduling and sends computation commands to the
PE of the platform.

SPIDER implements the master/slave organization [SSKH13]. The master of the run-
time system is called the SPIDER Global RunTime (GRT) which manages the PiSDF
graph topology and takes mapping and scheduling decisions. The slaves, called the Local
RunTimes (LRTs), are mapped onto the computing resources of the platform in charge of
executing the computation of actors. Local RunTimes (LRTs) are general purpose pro-
cessors, specialized processors or custom accelerators. As such, LRTs are lightweight slave
processes that execute actors. Moreover, the SPIDER GRT can perform the computation
of actors. Indeed, the SPIDER GRT is usually placed on a general purpose core.

Spider Structure

The internal structure and behavior of the SPIDER runtime are shown in Figure 3.13.
The runtime implements the master/slave model and uses job queues to transmit control
commands between the SPIDER GRT and the LRTs. Indeed, as the SPIDER GRT is
responsible for the scheduling and the management of the memory, low latency commu-
nications are required to control the slave LRTs. Two kinds of queue exist and they are
described as follows:

• Data channels that are used for the data path (high-throughput) of data tokens
exchange. Such data tokens are the memory buffers where the computation of actors
is carried out.

• Control queues that are used for the sending of computation commands, reconfigu-
ration parameters (partial or global) and the profiling of the dynamically scheduled
reconfigurable dataflow graph.

2available at https://github.com/preesm/spider

https://github. com/preesm/spider

48 Parallel Programming Models

Master

Slave

Slave

Schedule

Actors
1

Jobs
Queues

Send Order 2

Data Queues

Pool

... Exchange

Dataflow

Tokens

4

Fire Actors3

Parameters
Set Resolved

Parameters
5

Timings

Execution

Traces
6

Figure 3.13 – Internal Structure of the SPIDER Runtime

SPIDER Operations

The execution steps followed by SPIDER to run an actor are numbered in Figure 3.13.
First (Step 1), the GRT schedules an actor on a PE of the architecture, and sends (Step
2) the execution order through the dedicated job queue of the LRT of this PE. A job is
a message that embeds all data required to execute one instance of an actor: a job ID,
location of actor data and code, and identifiers of preceding actors in a graph execution.
When an LRT starts an actor execution (Step 3), it waits for data tokens to be available
in the input FIFOs specified in the job message, among a pool of data FIFOs. On actor
completion, data tokens are written in output FIFOs (Step 4), and the LRT sends new
parameter values (Step 5) if any, and execution traces back to the GRT for reconfiguration,
monitoring and debugging purposes (Step 6). Each LRT is associated with a job counter
that stores the integer job ID of the last executed job. As the job IDs increase monotonically
both with scheduling order and data dependencies between jobs, these job counters can
be used for synchronization purposes between LRTs, to check whether an LRT already
executed a given job.

Support of SPIDER for MPSoC

The SPIDER runtime divided into key parts that are either generic or platform specific.
The SPIDER runtime is divided as follows.

• The generic SPIDER GRT runtime is in charge of the management of the scheduling.

• The generic LRT is in charge of the computation.

• The platform-specific communications and synchronizations for the LRTs.

• The platform-specific communications and synchronizations for the SPIDER GRT.

• The platform-specific management of the parallelization (machine specific multitask-
ing).

Currently, open-source implementations of the SPIDER runtime have been proposed
for general purpose x86 architectures which are either based on Linux or Windows. Also
for embedded MPSoCs, the SPIDER runtime has been implemented for both the Texas
Instruments (TI) Keystone Digital Signal Processor (DSP) processor architectures, and

Conclusion 49

Xilinx’s Zynq heterogeneous platforms [HPD+14]. In this thesis, we will attempt to show
the feasibility of running such embedded reconfigurable dataflow runtime on the Kalray
MPPA® processor.

3.5.3 Other Tools Based on Dataflow Programming Models or Lan-
guages

In the literature, several dataflow-based tools are found that are mainly designed by re-
searchers or companies. All of these tools have their own semantics, but they target the
same objective: providing the developers with a higher level of abstraction using a dataflow
programming model in order to simplify the programming of MPSoCs with the desired
application requirements (real-time, Worst-Case Execution Time (WCET), performance
latency and throughput).

Orcc is a compilation framework based on a language called RVC-CAL. This language is
based on the DPN programming model which is a dynamic and non-deterministic dataflow
model [CPG+]. Unfortunately, this language does not provide the analyzability capabilities
required for the programming of embedded systems.

Scade/Lustre is a language for reactive system programming as it provides a logical
time notion. Scade/Lustre is described in [Ber07], and a code generator has been written
in Python for targeting the MPPA® processor in [GMRdD18]. The main difference with
the other approaches is that Scade allows sampling (sensors typically) in the firing of
nodes.

SigmaC is a language based on the CSDF model which is an extension of the SDF model.
SigmaC [dDAB+13] was supported in the Kalray MPPA® toolchain and was well-suited
for time-critical applications with a static behavior, i.e., computations are the same for all
the data and cannot change dynamically.

SLX Dataflow is the proprietary dataflow framework of the Silexica company 3. Like
the open-source framework PREESM, the Silexica framework [CLA13, CCS+08] provides
automatic optimization of dataflow applications. The framework implements the modeling
of the targeting architecture, static and dynamic code source analysis, memory communi-
cation optimizations and chooses the best available runtime environments.

3.6 Conclusion

This chapter introduces parallel programming models that are either inspired on, devel-
oped, enhanced or used in the contribution part of this thesis for the Kalray MPPA® pro-
cessor. We gave generalities about parallelism and how to interpret scalability and speedups
of parallel implementations. These notions are used in all contribution chapters of this the-
sis.

The multitasking and multi-threading models for SMP machines are introduced. Pthread
and the OpenMP multi-threading are presented in details in order to help the comprehen-
sion of the contribution of Chapter 6 that implements at bare-hypervised level an opti-
mized multi-threading runtime for managing the PEs of the Compute Clusters (CCs) of

3https://www.silexica.com

50 Parallel Programming Models

MPPA®(but also the Input/Output Subsystem (IO)). We also explain the purpose of accel-
eration programming models with standard models like OpenCL, OpenAMP and OpenMP
4.0. The Kalray MPPA® processor can be used in acceleration using OpenCL offloading
either from an x86 processor over the Peripheral Component Interconnect Express (PCIE)
bus (x86 offload on MPPA®) or from a Linux running on the IO multi-core over of the
Network on Chip (NoC) (stand-alone OpenCL). Such acceleration model is essential to be
understood as Section 5.6.2 contributes to the Kalray OpenCL runtime and Section 9.2
implements a low-level offloading runtime from the IO multi-core to the Compute Clusters
(CCs) at bare-hypervised level.

We then describe and define the state-of-the-art dataflow models. As seen, dataflow
models are suitable to describe computing pipeline and express application parallelisms.
The dataflow developer expresses the application in a dataflow model, and the presented
rapid prototyping tools make the deployment on available computing resources of the
targeting architecture automatically. Dataflow models are explained in details starting from
the KPN to the latest dataflow models like the PiMM or the IBSDF model; both exploited
in the contribution part of this thesis. Important features of the IBSDF dataflow model
are the hierarchy and the RV that are carefully exploited in the contribution of Chapter 7.
Moreover, the PiMM model, that can be expressed in the PREESM interface is the model
used in the SPIDER embedded runtime. In Chapter 8, we propose an implementation of
such an embedded reconfigurable dataflow runtime on a manycore machine like MPPA®.
Such an implementation of a reconfigurable dataflow runtime is the first ever made to the
best of our knowledge at this time (targeting an embedded manycore processor).

CHAPTER 4

Communication Protocols & Memory Consistency

This chapter presents diverse communication protocols commonly used in embedded and
High-Performance Computing (HPC) systems. A particular focus is put on HPC commu-
nications and synchronizations on both hardware and software. The memory consistency
is also explained to understand the diverse contributions proposed in this thesis.

As the new generation of clustered manycores aims to be used for embedded and HPC
systems, they include hundreds of cores with shared local memories. They are programmed
like super-computers, but it is a single chip. All manycores need to move data and syn-
chronize cores efficiently to reach their peak performance and efficiency targets. In this
thesis, the targeted experimental architecture is the Kalray Multi-Purpose Processor Array
(MPPA)® [SEU+15] processor, which integrates a local memory, shared by the cores of
each Compute Cluster (CC). For instance, it exists the Adapteva Epiphany 64 [VEMR14]
and the Epiphany-V [Olo16], which integrate local memories attached to each core. Using
these new architectures implies more complexity in the software to communicate between
cores. However, it is a way to reach energy-efficient computing. This background chapter
provides commonly used techniques for communications and gives advantages and draw-
backs of them.

Section 4.1 is a background of several technologies for communication and synchro-
nization that have been studied and analyzed to choose a subset of mechanisms for the
contribution presented in Chapter 5. Then the two-sided and one-sided protocols are ex-
plained in details in Sections 4.2 and 4.3. Then, we detail fundamental notions on the
memory consistency and coherence on parallel computer architectures in Section 4.4. The
management of the memory consistency of the Kalray Very Long Instruction Word (VLIW)
core is detailed in Section 4.5. The streaming and atomic memory accesses are also detailed,
as they are widely used in Chapters 5 and 6.

4.1 State-of-the-Art of Communication Technologies for HPC

Section 4.1.1 is an overview of HPC hardware interconnects that have been designed by
hardware manufacturers in the past decades. The Section 4.1.2 introduces HPC software
programming Application Programming Interfaces (APIs) proposed by academics and ven-
dors. The Section 4.1.3 presents standard OpenCL primitives, used for the performance
optimizations of communications.

52 Communication Protocols & Memory Consistency

4.1.1 HPC Hardware Interconnects

This section explains existing technologies that are deployed in production by hardware
vendors for high-performance data communications on well-known interconnects. Here we
introduce the Infiniband technology and derived versions of it over Ethernet networks, as
well as the latest communication technologies of Intel and Nvidia.

The Infiniband technology designed by Mellanox [RoC15] is widely deployed in high-
performance systems and data centers. It natively supports Remote Direct Memory Access
(RDMA) Put-Get, Send/Receive read -write and atomic operations. Based on the earlier
Virtual Interface Architecture (VIA), the Infiniband specification only lists Verbs, that is,
functions that must exist but whose syntax is left to vendors.

Vendors are free to create their own Verbs APIs which led to the Open-Fabrics As-
sociation (OFA) Verbs [CTK+09]. OFA Verbs have support for: two-sided and one-sided
operations, always asynchronous; reliable and unreliable modes, connection-oriented and
connection-less; remote direct memory access, send and receive; and atomic operations
on remote memory regions. To allow the direct access to endpoint memory, this virtual
memory must be pinned in physical memory and registered into the network interface I/O
Memory Management Unit (MMU). OFA Verbs offer cross-platform support across Infini-
band on IB network, iWARP on IP network and RDMA over Converged Ethernet (RoCE)
on Ethernet fabric.

iWARP uses IETF defined Remote Direct Data Placement (RDDP) to deliver RDMA
services over standard, unmodified IP network and standard TCP/IP Ethernet services.
Enhancements to the Ethernet data link layer enabled the application of advanced RDMA
services over the IEEE Data Center Bridging (DCB), that is, lossless Ethernet. In early
2010, this technology, now known as RoCE was standardized by the Infiniband Trade
Association (IBTA). RoCE utilizes advances in Ethernet (DCB) to eliminate the need to
modify and optimize iWARP to run efficiently over DCB. RoCE focuses on server-to-server
and server-to-storage networks, delivering the lowest latency and jitter and enabling more
straightforward software and hardware implementations. RoCE supports the OFA Verbs
interface seamlessly.

The GPUDirect specification was developed together by Mellanox and Nvidia. It is
composed of a new interface (API) within the Tesla Graphics Processing Unit (GPU) driver,
a new interface within the Mellanox Infiniband drivers, and a Linux kernel modification to
support direct communication between drivers. GPUDirect allows RDMA capable devices
to direct access GPU device memories, so that data can be directly transferred between
two GPUs without buffering in host memory. GPUDirect Verbs provide extended memory
registration functions to support GPU buffer and GPU memory de-allocation call-back for
efficient Message Passing Interface (MPI) implementations.

The Intel® Omni-Path technology competes with Infiniband, with the advantage that
the interfaces can be integrated into the Intel® processor themselves. It can be used
through the OpenFabrics library, which has an implementation of the Infiniband Verbs
API as standardized by the OFA.

4.1.2 HPC Software Programming

Today’s HPC programming models are based on the Single Program, Multiple Data (SPMD)
execution model, where a single program is spawned on N processing nodes. There is one
process per node, and each process is assigned a unique rank ∈ [0, N]. The main HPC
programming model is the Message Passing Interface (MPI), which combines the SPMD
execution model, explicit Send/Receive of data, and collective operations. The MPI stan-

State-of-the-Art of Communication Technologies for HPC 53

dard introduced one-sided communications in MPI-2, which have been reworked and can
be combined with split-phase synchronization in MPI-3.

Whereas most HPC applications still rely on message-passing semantics using tradi-
tional message-passing, the underlying communication systems have evolved several years
ago to build on one-sided communication semantics, starting with Cray SHMEM library [Fei95][GL04].
The rise of Partitioned-Global-Address-Space (PGAS) languages like Co-Array Fortran [NR98]
[MCASJ09], UPC and of Global Arrays motivated the development of one-sided commu-
nication layers, notably GasNet from Berkeley and Aggregate Remote Memory Copy In-
terface (ARMCI) from PNNL. Partitioned-Global-Address-Space (PGAS) languages and
Global Arrays combine the SPMD execution model, one-sided communications, and col-
lective operations.

The Cray SHMEM (SHared MEMory) library [CCP+10] was initially introduced by
Cray Research for low-level programming on the Cray T3D and T3E massively parallel
processors [Fei95]. This library defines symmetric variables as those with the same size,
type, and address relative to the processor local address space, and these naturally appear
as a by-product of the SPMD execution model. Dynamic memory allocation of symmetric
variables is supported with a shmalloc() operation. Static data and heap data obtained
through this symmetric allocator are implicitly registered. Thanks to the symmetric vari-
ables, it is possible to use one-sided operations easily such as Put and Get by referring to
local objects only. Put and Get operations are explained in details in Section 4.3. Besides
Put and Get variants, the SHMEM library supports remote atomic operations, and collec-
tive operations. The SHMEM library motivated the design of the F−− language [GNP90],
one of the first Partitioned-Global-Address-Space (PGAS) languages, which evolved into
Co-Array Fortran.

The Aggregate Remote Memory Copy Interface (ARMCI) [NC99] was designed as an
improvement over Cray SHMEM and IBM LAPI (IBM SP) and is used as the base of the
Global Arrays toolkit. The API is structured in three classes of operations:

• Data transfer operations: Put, Get, and Accumulate

• Synchronization operations: Atomic read-modify-write, and lock/mutex

• Utility operations: Memory allocation/deallocation, local/global Fence, and error
handling

The Berkeley Global Address Space Networking (GASNet) library [Bon08] is designed
as a compiler runtime library for the PGAS languages UPC and Titanium. It also provides
the foundations for the Rice University Co-Array Fortran 2.0, which aims to correct a
number of identified shortcomings [MCASJ09]. The GASNet library is structured with
a core API and an extended API. The core API includes memory registration primitives
and is otherwise based on the active message paradigm. Active message request handlers
must be attached to each instance of the SPMD program by calling a collective operation
gasnet_attach(). Active message request handlers categories include short, medium, and
long, depending on the size or argument lists. The extended API is meant primarily as
a low-level compilation target and can be implemented either with only the core API or
by leveraging higher-level primitives of the network interface cards. The extended API
includes Put, Get, and remote memset() operations. Data transfers are non-blocking, and
the synchronization barrier is split phase.

54 Communication Protocols & Memory Consistency

Conclusion & Problems for Clustered Manycores

However useful, classic HPC communication layers cannot be effectively applied to many-
core processors with local memories because of three differences:

• The memory capacity locally available to a core is about several gigabytes of memory
on HPC systems, while it is tens or hundreds of kilobytes on manycore processors.

• HPC communication libraries assume a symmetric memory hierarchy, where the total
memory is the union of the compute nodes memories. Manycore processors not only
have (on-chip) local memories but also one or more external Double Data Rate (DDR)
memory systems.

• A network-on-chip interface is much less capable than a macro network interface, but
it has significantly lower latencies.

4.1.3 “Asynchronous Copy” Primitives of OpenCL

OpenCL is an acceleration programming model available on the targeted clustered many-
core of this thesis, as already seen in Section 3.2.2. OpenCL structures a platform into a
Host connected to Compute Devices. Each Compute Device has a main memory, which is
shared by Compute Units. Each Compute Unit has a local memory, a cache for the main
memory, and Processing Elements (PEs) that share the local and the main memories. Each
Processing Element (PE) has registers and private memory. Computations are dispatched
from the Host to the Compute Units as Work Groups. A Work Group is composed of Work
Items, which are instances of a computation kernel written in the OpenCL-C dialect. This
dialect includes vector data-types and requires to tag memory objects with their address
space: __global (main memory), __local, __private, and __constant.

Performance Problems for Clustered Manycores

For clustered manycore processors, the main shortcoming of OpenCL is the inability to
support efficient communication between the local memories and synchronization between
the Compute Units. Communications between the local memories avoid additional memory
copies in the main memory and provide important speedups. This capability is essential
for efficient implementations of image processing, Convolutional Neural Network (CNN)
inference and other algorithms where tiling is applicable.

Performance Optimizations for Clustered Manycores

OpenCL was originally designed for the GPGPU manycore architecture, where context
switching at the cycle level is exploited to cover memory access stalls with useful compu-
tations. But Digital Signal Processors (DSPs) and static scheduling Central Processing
Unit (CPU)-based manycore architectures do not implement such context switching at
the cycle level. To target these architectures, OpenCL defines asynchronous prefetch
or copy operations between the main memory and the local memory. The program-
mers can manually use them to build processing pipelines to overlap communications
with computations. More specifically, OpenCL defines the async_work_group_copy and
async_work_group_strided_copy operations. The asynchronous copy operations of OpenCL
have proved highly useful in order to exploit Direct Memory Access (DMA) engines avail-
able on Field-Programmable Gate Arrays (FPGAs), DSPs or clustered manycore processors
like MPPA®.

One-Sided Communications 57

4.3.1 Load/Store

A Store takes data from the core register file and writes it at the requested memory address.
A Load requests data at a memory address and writes it in the register file. Load/Store is
the simplest method to transfer data.

Any memory access that has the correct MMU mapping regarding virtual and phys-
ical addresses allow the processor to access a memory segment through the cache hier-
archy. Manycore architectures either support transparent access to the main memory
through hardware caches or via MMU-based distributed shared memory system like Tread-
Marks [KCDZ94].

However, on large-scale parallel systems, Load/Store through multiple levels of cache
hierarchy can be a severe performance bottleneck when there is data sharing between
numerous Non-Uniform Memory Access (NUMA) nodes. It does not scale easily because
of the cache coherence traffic if supported. In particular, the implementation of reductions
and inter-core/node communications are complex to perform efficiently.

4.3.2 Put/Get Remote Direct Memory Accesses (RDMA)

RDMA is the backbone of distributed memory systems when “long-range” data transfers
are required. “Long-range” data transfers are usually large memory accesses (greater equal
than 64 bytes), over a network between two CPUs, and DMAs perform the effective data
transfer. A DMA is a hardware unit which can read and write in the memory by itself,
once it has been programmed by software.

RDMA is a one-sided communication protocol inspired by [NTKP06], [VCHP07] and [KP03].
Any communication initiator registered to a memory segment is a master on this memory.
A RDMA transfer can be initiated over a target memory segment using either the Put or
Get primitives. However, RDMA operations favor high-throughput over low-latency.

However, enabling RDMA operations still requires the management of the memory
consistency and the synchronizations. Examples in real-life applications and key features
of RDMA are shown as well as principles when using it in software implementations.

RDMA Features in Modern Systems:

• OS-bypass allows direct interaction between the application and a virtualized instance
of the network hardware, without involving the operating system.

• Zero-copy enables a system to place transferred data directly to its final memory
location, based on information included in the RDMA operations. Zero-copy is also
possible for Send/Receive protocols.

• One-sided operations allow communication to complete without the involvement of
the application thread on the remote side.

• Asynchronous operations are used to decouple the initiation of a communication from
its progress and subsequent completion, to allow communication to be overlapped
with computation.

• A relaxed memory consistency model is typically applied [IHIY14], and it is explained
in details in Section 4.4.2. A Relaxed memory consistency model allows operations to
execute asynchronously with out-of-order global completion. For comparison, Load-
/Store is also a one-sided operation which makes the RDMA protocol usually more
natural to manipulate than classical Send/Receive where an overhead exists because

58 Communication Protocols & Memory Consistency

of the strict matching of the operations Send and Receive (need to synchronize all
the time).

RDMA in Most HPC Systems

These communication technologies mostly apply at the backplane and system levels in data
centers and supercomputers:

• Inside a compute node, between cores and other bus masters, HT (HyperTransport),
QuickPath Interconnect (QPI) and PCIe support load/store as well as DMA (Direct
Memory Access) operations.

• Between compute nodes across a backplane or a chassis, Serial Rapid Input-Output
(sRIO) and Data Center Bridging (DCB). Ethernet variants such as RoCE (RDMA
over Converged Ethernet) mostly support RDMA operations.

• At the system level, between compute racks and the storage boxes, Infiniband or
Ethernet also support RDMA operations.

• Between systems, IP networks support the BSD sockets and client/server operations.

4.3.3 Remote Atomic Operations

A remote atomic operation consists of an initiator sending a message with an operation
using different operands to a remote or external computing resource. Then, this remote
computing resource executes the atomic operation possibly under certain conditions and
forwards the completion to the initiator. Atomic operations are explained in Section 4.5.4.

Remote atomic operations have proved to be efficient for inter-node synchronization[MRSD16,
BPG01] and more generally for parallel programming. For instance, they can provide
classical atomic remote instructions such as fetch-and-add, compare-and-swap and load-
and-clear. Such features are fundamental in distributed memory systems. Indeed most
applications require an atomic update of variables at some point during the execution on
massively parallel systems. It is also the case on shared memory architectures.

4.4 Memory Consistency & Coherence

Memory consistency and coherence are two different but fundamental concepts in parallel
computing. This section explains how memory systems behave and how to use them
properly by keeping in mind what happens in shared or distributed memories. For more
information regarding consistency and coherence of memory systems, refer to [SHW11].

4.4.1 Definitions

Consistency and coherence of memory systems are defined [SHW11] as follows:

Definition 4.4.1.1 (Consistency)
Consistency models define correct shared memory behavior concerning loads and stores
(memory reads and writes), without reference to caches or coherence. The consistency
model defines a set of rules and a contract that must be respected between the software
thread and the memory system. The contract is a set of information events of the memory
system guaranteeing the initiator the state of the memory regarding initiated reads and
writes operations to the memory system.

Memory Consistency & Coherence 59

Generally, a consistency model [SHW11] defines rules to be followed by the program-
mers to guarantee that shared resources of a concurrent system will obey the contract
(consistent).

Consistent means that the shared resource must be accessed atomically to prevent
the systems from races and corruptions. A race is observed when a variable in memory
is accessed concurrently without using a protection mechanism. Therefore, consistency
implies two important pieces of information regarding the access of a shared resource. First,
the acknowledgment of the accessed shared resources and secondly a synchronization effect
with other initiators that can access this shared resource.

Consistency models are necessary for shared or distributed memory systems accessed by
different initiators, such as processing elements or external mapped peripherals. As such,
the consistency of shared resources is also applied to the registers of hardware peripherals,
making their accesses not a trivial task in concurrent systems.

Definition 4.4.1.2 (Coherence)
A raw definition of coherence is that any effective modification of a memory address by
an initiator must be seen by other initiators reading this memory address if no other write
occurred at this memory address. From Hennessy and Patterson [HP11], it consists of three
invariants: (1) a load to memory location A by a core obtains the value of the previous store
to A by that core, unless another core has stored to A in between, (2) a load to A obtains
the value of a store S to A by another core if S and the load “are sufficiently separated in
time” and if no other store occurred between S and the load, and (3) stores to the same
memory location are serialized.

Coherence is a generic word to describe if a system is coherent or not; however, it
is usually applied to memory systems. Coherence is applied at several data cache levels
until the Last Level Cache (LLC), but it is also applied to instruction caches for fetching
the proper instructions in case of relocation [VWM04] for instance. Moreover, coherence
is also found when a DMA modifies the memory, when there is Translation Lookaside
Buffer (TLB) replacement in multi-threaded programs, or when the Linux kernel checks
if the hardware MMU is coherent with the software MMU. As previously said, sometimes
the software thread must deal explicitly with coherence and not only in multi-threaded
programs. For instance, when managing DMA writes and core reads, if the hardware does
not deal with implicit cache invalidation of the modified addresses range by the DMA, the
software will be in charge of doing the invalidation, only when the address range is going
to be updated in the memory.

4.4.2 Memory Consistency Models

The memory consistency model is related to the memory system architecture and the
initiator(s) of the memory transaction. The simplest memory consistency model is the
sequential consistency.

Definition 4.4.2.1 (Sequential Consistency)
The sequential consistency guarantees that all Load and Store operations are executed in
total order regarding the program order of a software thread. Sequential consistency allows
that a single software thread (and only a single software thread) can never corrupt data by
itself when the memory system reorders memory accesses for performance.

60 Communication Protocols & Memory Consistency

Relaxed Memory Consistency for Performance

The term relaxed means that memory accesses can be out-of-order even if memory reads
and writes happen sequentially in the calling thread. A relaxed memory consistency model
provides better performances, but it is more complicated to use regarding the software.
The additional complexity of relaxed memory consistency models is associated with the
software in charge of explicitly waiting for the completion of the memory system.

Relaxation is the foundation of the performance of memory systems in parallel comput-
ing. One-sided operations like Load/Store, Put Get and remote atomic transactions can be
reordered for performance. Reordering allows simpler or smarter implementation [SHW11]
of the arbitration of memory transactions for instance. In high-performance memory sys-
tems, memory transactions are scheduled in parallel at different addresses, and depending
on conflicts some resources can be slower than others regarding the initiator of the one-
sided operations. But the shared resources always sustain the highest possible throughput.
Depending on the implied targets and initiators, outstanding transactions usually complete
out-of-order, providing better performance as Read-After-Write (RAW) dependencies are
satisfied earlier, so that the computation can start as soon as possible. The RAW depen-
dency defines the data dependencies of a computation. Therefore, one-sided operations
benefit from a relaxed memory consistency model whereas two-sided operations do not
because of the strict-matching. However, two-sided might benefit from reordering but at a
lower level, like onto RDMA channels of an Infiniband network as in [LJW+04].

Memory Consistency Models in Real Life

The most used and implemented memory consistency model is called the Total Store Order
(TSO). TSO is implemented on x86 Intel, AMD and Sparc architectures which implement a
store First-In-First-Out queue (FIFO) to write data to caches. This store FIFO, also called
write-buffer, also plays the role of coalescing data writes. TSO provides a relaxed write →
read ordering. This FIFO is known as a write-buffer, whose purpose is to coalesce memory
accesses. Other well-known memory consistency models exist such as the Partial Store
Order (PSO) which relaxes write → read and write → write, and the Relaxed Memory
Order (RMO) where all combinations of read and write are relaxed. The relaxed memory
consistency model (RMO) is used on the MPPA® processor.

4.4.3 Memory Fences

Memory fences are fundamental in parallel software as they let the memory system be
“consistent” at a certain point in the execution thread. Memory fences are part of the
Instruction Set Architecture (ISA) of a core. The ISA defines all the supported instructions
of a core. Memory fences provide the calling thread with the information that read and/or
write operations are all completed. Also, fences can be commands of peripherals like DMAs
that require memory consistency points at the end of transactions. Several types of fences
exist:

• Write fence: waits for the completion of all outstanding writes initiated by the calling
thread to the memory system. From that point, no memory system reordering is
possible regarding previously initiated write transactions. On x86 it is mapped onto
the sfence instruction.

• Read fence: guarantees for the calling thread that all previous reads to the memory
have completed and are available in the core. The Read-After-Write (RAW) depen-

Managing Current Memory Accesses for the Kalray VLIW Core 61

dency is satisfied on completion, the data is then available at the register level. On
x86 it is mapped onto the lfence instruction.

• Full memory barrier: gives the completion of all outstanding read and write to the
memory system. All previous read and write transactions are completed including
outstanding atomic instructions before any other memory transactions can be initi-
ated. On x86 it is mapped onto the mfence instruction.

• Pipeline barrier: implements a full memory barrier and waits for all on-going instruc-
tions in the core pipeline to be complete.

In the standard GNU Compiler Collection (GCC) atomic, the full memory barrier is
available using the builtin __sync_synchronize() [Doc07] that will generate the mfence

instruction onto x86 architecture. At high levels of multi-thread programming, memory
fences are done by synchronization primitives provided by Multiprocessor System-on-Chip
(MPSoC) vendors in runtime libraries which are encapsulated in standard libraries, e.g.
the famous GNU C Library [SLwRMSD18].

4.5 Managing Current Memory Accesses for the Kalray VLIW

Core

Managing the memory consistency of concurrent programs is not a trivial task when pro-
gramming at low-level, that is without using high-level pthread-like synchronization primi-
tives. In high-performance implementations, lock-free algorithms are designed to avoid the
overhead of software serialization. Such implementations are difficult to write and validate
because of transitional states and concurrency. In this section, the memory consistency
management of the k1 VLIW is explained in details, making Chapter 5 and 6 easier to
understand.

4.5.1 Cache of the k1 VLIW Core

The data bus size of the k1 VLIW core is 64-bit. Each core can exchange 8 bytes per
cycle half-duplex. The k1 VLIW core implements a single level (L1) non-coherent 2-way
associative data cache of 8 KB, with a data cache line size of 64 bytes. The non-coherent
data cache means that modified data in upper memory levels will not be seen by this non-
coherent data cache without software interventions. The instruction cache is also a single
level cache and it has the same properties as the data cache.

The data cache of the k1 VLIW core implements a true Least Recently Used (LRU)
policy for the eviction of cache lines. The data cache implements a write-through policy,
using a write-buffer of 8 slots of 64-bit (8 bytes), whose purpose is to coalesce writes in the
second level memory, which is, on MPPA, the local memory of the Compute Cluster (CC).
Indeed the k1 VLIW processor is fitted with a Load-Store Unit able to deal with cached
accesses of size 1 (byte), 2 (half), 4 (word) or 8 (double) bytes. As such, when small stores
(less than 8 bytes) are initiated, the write-buffer will absorb all of them if possible, to avoid
consuming local memory bandwidth for memory transactions that are less than the size of
the data bus, which is 64-bit. Moreover, the data cache is not Write-Allocate, meaning that
if a cached store does not hit in the data cache, the data cache does not miss. The write
only goes in the write-buffer before being committed to the upper-level memory (local
memory). That is why the k1 core cache is usually called to implement a write-through
write-around policy. The only way to bring a data cache line in the data cache is to emit

62 Communication Protocols & Memory Consistency

a cached load at a cache-able memory address. On a cache hit the read-after-write data
dependency is 2 cycles, whereas on cache miss it is 11 cycles critical word first on aligned
memory access. The maximum number of outstanding miss (on-fly refill) is 1 with no hit
under miss support.

4.5.2 Streaming Memory Accesses

The k1 processor implements streaming memory accesses, providing the ability to bypass
the L1 data cache of the CPU for both the cache and write-buffer. Streaming memory
accesses aim to gain performance regarding the following points:

• Prefetch of data. Streaming loads have a higher latency of 10 cycles for the read-
after-write dependency onto which the load is supposed to return. As such the read
of the register has to be placed at least 10 cycles after the initiation of the load to
avoid k1 core stalls.

• Avoid trashing the data cache on sparse memory accesses. On sparse memory accesses
that are not at the geometry of the data cache, the L1 is trashed and useless as no
data locality is found. As such the streaming memory access makes it possible to
access and prefetch the data without involving the L1 data cache.

Streaming memory accesses are used in data-intensive and compute intensive applica-
tion to eliminate core stalls on data cache misses. For instance, streaming accesses are often
used in image processing, signal processing, linear algebra and also the low-level software
runtime to reach high-performance.

Also, the k1 core implements two types of streaming memory access: blocking and non-
blocking. The problem with non-blocking is that when debugging an application, the core
trap (exception) on memory access is not precise. It means that the architectural informa-
tion inside the core will not be given (bundle, memory access type, the address). Thus, for
debugging, we usually set the streaming in blocking mode and after, once the application
is functional, the streaming accesses are then enabled for performance. The blocking mode
provides only 1 outstanding load, whereas, in non-blocking mode, a streaming load request
FIFO of depth 10 (10 outstanding loads) makes it possible to absorb the memory latency
of the local memory from the k1 core.

The k1 VLIW core provides trapping and non-trapping streaming memory accesses of
size 1, 2, 4 and 8 bytes. Non-trapping loads, also known as speculative loads, allow the
developer or compiler to optimize memory accesses statically (compile time) by initiating
loads onto unchecked pointers or for managing unrolled loop remainders without any checks.
The semantic of non-trapping loads consists of loading to an address, and if the address
has no mapping in the MMU, the load silently fails (no traps are triggered). Then the core
places zero into the targeted register(s) where the loaded data was supposed to return.
The user code or generated code is then in charge of controlling the side effects.

4.5.3 Managing the Coherency & Consistency of the k1 VLIW Core

The k1 core implements a relaxed memory consistency model for performance thanks to
the write-buffer, the multi-banked local memory, and the streaming memory accesses. The
ordering between reads and writes is ensured for cached accesses alone (only), streaming
accesses alone (only) but not for both cached and streaming memory accesses.

The k1 core is fitted with the following cache management instructions.

Managing Current Memory Accesses for the Kalray VLIW Core 63

• wpurge. Request the write-buffer to commit in the local memory all outstanding
writes. The committing of dirty bytes in the local memory goes into the mem-
ory system and will be updated in the memory hierarchy in the next clock cycle
(pipelined).

• fence. This memory fence operation waits for the completion of all outstanding
writes to the memory for the write-buffer of the data cache or the streaming writes.
When the fence instruction returns, the core is guaranteed that the memory hierar-
chy is updated and consistent for other memory masters on the targeted memory. The
combination of the wpurge instruction followed by the fence instruction is equivalent
to a full runtime write memory barrier on the k1 VLIW core.

• [d,l]inval. The data cache invalidation instructions allow the k1 VLIW core to see
writes of other masters in the memory system. Two instructions are provided, the
dinval instruction invalidates the entire data cache, meaning that the entire data
cache will be cold after the operation. Thus, next loads on the stack, the heap, the
.data section or even the .bss section will miss. For finer-grained coherent reads, the
linval instruction can be used, which invalidates a single data cache line address.

• iinval. The iinval instruction operates onto the instruction cache. On statically
linked code, the coherency of the instruction cache does not need to be managed.
However, invalidation of the instruction cache needs to be done when the core relo-
cates code as the memory containing the code is modified. The iinval instruction
must be followed by a pipeline barrier to make sure that, when the core resumes the
execution, it will fetch the proper instructions from the memory system.

4.5.4 Atomic Instructions

An atomic operation is defined by atomically updating a data in memory using an atomic
read-modify-write operation. Atomics are usually simple operations like fetch-and-add,
test-and-set or compare-and-swap. Compare-and-swap makes it possible to perform any
fetch-and-OP operations. Some atomic operations are available in the hardware ISA, and
those, not supported in hardware, have to be implemented in software. For instance, GCC
implements the libatomic to implement software atomic operations when not supported in
hardware. Obviously, the software implementation will have worse performance but the
parallel software continues to work.

Efficient implementations of lock-free systems exist such as [LMS04] and [Mic02]. High-
performance parallel software cannot avoid lock-free implementations, but depending on
the application, it can be very complicated to design, verify and debug. The k1 VLIW
core implements both retry-free and lock-free atomics. In this section, we consider only
uncached atomics on both Compute Cluster (CC) and Input/Output Subsystem (IO) side.
Indeed the Input/Output Subsystem (IO) multi-core provides cached atomics that are
performed in the shared L1 data cache (Section 2.3.2) and explained in patent [DDRV17].

Several atomics exist and they are explained below.

Blocking Atomic - Software

The thread takes a lock, performs a full memory barrier, then the thread performs the
operation in memory, performs a full memory barrier and releases the lock. Blocking
atomics are widely used on simple multi-thread programs. When the lock is taken by a

64 Communication Protocols & Memory Consistency

thread, all other threads trying to take the lock stall until it is released. Only one thread
can run inside the locked code section, also called critical region or protected region.

Lock-free Atomic - Partially Hardware

Forward progress is a guaranty for one initiator. Lock-free atomics are implemented using
software loops as the atomic might fail when there is pressure at the memory address where
the atomic is performed. On failure, the initiator must retry. An example of the k1 VLIW
core is provided as follows.

• Atomic-Compare-Word-and-Swap. The use of this instruction is illustrated in the
code Figure 4.3. The C code shows how to use the Atomic-Compare-Word-and-Swap
instruction of the k1 VLIW core, called the ACWSU instruction. In this code, a
value at an address is read (old value at Line 6), then the k1 VLIW core performs
one or several operations on this value (new value at Line 8), and tries to write it (new
value at Line 10) in the memory system. The initiated write to the memory system
presents the old and new value, and the memory system compares if the current
value is equal to the old value or not. If yes, the current value in the memory system
is replaced by the new value in the memory system (Line 12), if not, the address
in the memory system is left unchanged and the current value is brought to the k1
VLIW core, for further attempts (Line 13 comments). On the k1 Bostan VLIW core,
the Atomic-Compare-Word-and-Swap operation operates on 32-bit operands, such as
integers (int) or single-precision float numbers (float).

1. static __uncached volatile float acc = 0.0f; // uncached shared data

2. #pragma omp parallel // parallel region

3. {

4. do {

5. // volatile forces the compiler to load ‘‘acc ’’

6. float old_value = acc;

7. // any operation

8. float new_value = old_value + 1.0f;

9. // atomic -compare -and -swap -uncached

10. float current_value = ACWSU(&acc , old_value , new_value);

11. if(current_value == new_value)

12. break; // success so we exit

13. // retry as the value changed in memory

14. } while (1);

15. }

Figure 4.3 – Atomic-Compare-Word-and-Swap in Practice on the k1 VLIW Core.

Retry-free Atomic - Fully Hardware

Also known as a wait-free atomic, forward progress is always guaranteed within a bounded
amount of time for all initiator executing the atomic at a given address. Wait-free atomics
have strong properties for the implementation of time-critical systems as the Worst-Case
Execution Time (WCET) is bounded. Examples for the k1 VLIW core is provided as
follow.

• Atomic-Load-Double-and-Clear. This instruction is an atomic read-modify-write in-
struction with high throughput. It consists in reading a value at an address in the

Conclusion 65

memory system, sending it to the k1 VLIW core, and resetting to zero the content
of the address read in the memory. The Atomic-Load-Double-and-Clear operation is
typically used to implement efficient locking mechanism in memory. The operation
takes an address of where to read and clears to zero the data in the memory. The
instruction is called the ALDCU.

• Atomic-Fetch-Double-and-Add. This instruction is an atomic fetch-and-add in the
memory. The instruction reads the data in the memory performs a signed addition
with a 32-bit operand, writes the new value in the memory system, and the old value
in the memory system is placed in the destination registers (a pair of 32-bit registers
as it operates on double words) of the fetch operation. The instruction is called the
AFDAU.

Atomic instructions play an essential role in parallel computing as they allow multi-
thread programs to synchronize cores, and to perform efficient reductions, and for lock-free
resource sharing. High-performance parallel implementations try to use as much as possible
retry-free atomics. However, they are not always usable, depending on performance needs,
and they have a real cost in hardware.

On MPPA®, we use by default the compare-and-swap for the sake of simplicity. Indeed,
the ACWSU instruction makes it possible to perform any fetch-and-OP in the memory system
atomically, but at the cost of a software loop, as seen in the code in Figure 4.3. Atomics
that are implemented with software loops can be time-consuming when there is a lot of
contention on the memory bank where the atomic is being executed; even though, forward
progress is always guaranteed for one initiator of the atomic. For code portability, the
usage of standard builtin atomics like [Doc07] or C++ 11 atomics is recommended.

4.6 Conclusion

Data communications and synchronizations are essential on distributed memory architec-
tures. The targeted clustered architecture is often known as a stream-based processor as
all data movements are up to the software because of the lack of a global cache system
supported in hardware. However, the fact that this processor implements local memories,
makes it a serious competitor in low-power computing with deterministic timing-responses.

Therefore, we explained in this chapter the state-of-the-art of high-performance com-
munication systems applied to diverse parallel programming models like OpenCL, PGAS,
MPI and low-level ones such as the RoCE and other families of APIs. Our focus is put on
the one-sided and two-sided communications. Details about the two-sided and one-sided
protocols are highlighted such as rendezvous, Load/Store, RDMA Put/Get operations, and
remote atomic operations.

The Kalray MPPA® processor implements in hardware a two-sided Network on Chip
(NoC) for hardware simplicity. The two-sided protocol being difficult to use by pro-
grammers, we decided to design and implement a one-sided communication API over the
MPPA® NoC. This implementation is explained in details in Chapter 5. The goal of the
new one-sided communication API is to ease the software development and provides high-
performance. The challenge in the development of the one-sided communication API is to
adapt these well-known protocols to a local memory based machine like MPPA®efficiently.

In this chapter, we thus leveraged the understanding of the memory system of the
MPPA® to make our contributions at both system and application levels as efficiently as
possible. We explained prerequisites about memory coherency and memory consistency on
parallel machines. We defined the memory consistency model of the MPPA® processor

66 Communication Protocols & Memory Consistency

and the x86 as it is the most used architectures. Low-level details have been given for
the Kalray VLIW core about the management of the memory consistency and coherency.
Cache management operations, atomic instructions, the implied performance latency, and
usage semantics have also been explained. Such details are required to understand high-
performance implementations in general and the following contributions of this thesis in
particular.

Part II

Contributions

67

CHAPTER 5

Fundamental Mechanisms for Communications and Synchronizations in

Distributed Computing

This chapter introduces fundamental mechanisms for communications and synchroniza-
tions applied to distributed computing on manycore processors. Manycore processors are
composed of multiple Symmetric Multi-Processor system (SMP) machines also called clus-
ters, which are a group of Processing Elements (PEs) sharing a coherence domain or a
local memory. Inside an SMP machine, the communication and synchronization are han-
dled by the Load, Store, Atomics, and Fence operations as explained in Section 4.3.1. At
the level of multiple SMPs, where distributed computations and memories are found, the
need for communicating and synchronizing is fundamental. Sections 4.2, 4.3.2, and 4.3.3
present mechanisms to communicate and synchronize programs distributed across clus-
ters, such as the Remote Direct Memory Access (RDMA) Put and Get operations, the
Atomic operations, the Send/Receive operations over channels and the Fence operations
[NTKP06]. Modern communication technologies like Infiniband [Sha03] and recent evolu-
tions of Peripheral Component Interconnect Express (PCIE) [Aja09] also implement these
operations, as they provide the foundation mechanisms for distributed communications
and synchronizations.

Prior to this thesis, the targeted manycore processor has PEs that already supports
Load, Store, Atomics, and Fence instructions but only at the SMP level, inside a Compute
Cluster (CC) as explained in Section 2.3.2. At the level of multiple SMPs (multi-CCs), the
hardware only supports simple Send/Receive operations with massive software assistance
to properly configure the Direct Memory Access (DMA) interface and the Network on Chip
(NoC) on both sides of the two-sided communications, as explained in Section 2.3.3. In this
chapter, we propose a comprehensive distributed software runtime and Application Pro-
gramming Interface (API) that leverages the RDMA, Atomic, Send/Receive channels, and
the Fence operations on top of a two-sided network of SMPs for a manycore architecture.

Two software solutions with production maturity were available at the beginning of this
thesis for inter-clusters communications and synchronizations: the Multi-Purpose Proces-
sor Array (MPPA)® Inter-Process Communication (IPC) and the MPPA® NoC com-
munication libraries. The IPC library [dDdML+13] is the oldest one and supports only
Send/Receive communications. The IPC library does not split the control path and the
data path; thus, several tens of thousands of machine cycles are required to initiate any
data transfer, making it inefficient for medium-grained distributed computations. Also,

70
Fundamental Mechanisms for Communications and Synchronizations in Distributed

Computing

this library does not abstract the hardware DMA and NoC details, making it difficult to
use for application software engineers. The MPPA® NoC communication library is even
more complicated to use as it exposes the low-level details of the DMA interface and NoC.
Data management and synchronizations are tough to handle for a non-expert of architec-
tural details. However, the biggest issue with these libraries is that they only implement
two-sided communications instead of one-sided communications. As explained in Section
4.2.3, in the MPPA® processor two-sided communications are difficult to use efficiently
because of the strict matching issue implied by the two-sided protocol [IHIY14].

In addition to these solutions, there have been several failed attempts to port APIs
like Message Passing Interface (MPI) or SHEM for this target manycore processor. In
particular, MPI is the most successful standard in High-Performance Computing (HPC)
systems and is designed for distributed memory machines. As seen in Chapter 4, this
failure is mainly since these supercomputing APIs assume gigabytes of memory per SMP
nodes. However, clustered manycores, like the CC of the MPPA®, integrates 2 megabytes
of local memory.

We propose and describe in this chapter a new lightweight communication library called
Asynchronous One-Sided (AOS). This library implements one-sided communication proto-
cols for better performance and ease of use. This new AOS API also implements two-sided
communications, with remote queues [BCL+95] for the Send/Receive operations. As the
Kalray NoC is implicitly a two-sided communication NoC, the implementation of one-sided
communications is a challenge.

This chapter describes the design, the implementation and low-level details of the dis-
tributed runtime and API for communications and synchronizations targeting a clustered
manycore architecture. In Section 5.1, we present an overview of the challenges for imple-
menting such communication protocols onto the NoC of a manycore processor. Section 5.2
presents the AOS library at the programmer level. We detail in Section 5.3 the design, the
algorithms and the implementation of the AOS library. The resources allocation regarding
the DMA NoC interface is explained in Section 5.4. Performance results and discussions
are provided in Section 5.5. Latest contributions in the MPPA® AccessCore toolchain
regarding the AOS communication engine are explained in Section 5.6.

5.1 Challenges

Asynchronous one-sided communications have proven to be efficient for HPC workloads by
overlapping communication with computation and with fundamental ordering properties.
However, enabling such a feature on a heterogeneous distributed local memory architecture
like MPPA® is a challenge.

Firstly, the AOS runtime system must manage hardware resources (memories, DMA
Rx Tags, DMA Tx packet-shapers and DMA micro-cores), which are explained in Section
5.4. This management of resources must be done for both local and remote resources in a
massively parallel environment.

Secondly, several features have to be abstracted and provided to the application pro-
grammers such as Quality-of-Service (QoS) configuration, synchronization and bindings at
the creation of communication segments for any protocol without the need for the pro-
grammer of being aware of the NoC topology for all on/off-chip memories. All abstracted
features must be spread across the number of potential initiators, registered to a memory
segment explained in Section 5.2.

Thirdly, as mentioned in [dDdML+13], the abstracted one-sided protocols should not
be limited by the number of physical hardware resources. Indeed, all PEs can communicate

Design of Distributed Protocols of Communications and Synchronizations for the
Programmer 71

with all PEs, and there are not enough hardware resources for that. These hardware re-
sources should be translated (virtualized) to different kinds of “software” components such
as memory segments management, RDMA, remote queues and automatic flow control with-
out reducing the performance of the hardware. Such an abstraction frees the application
programmer from managing physical hardware resources, and software job First-In-First-
Out queues (FIFOs) congestion control, which is often a complex issue and a source of
error.

Fourthly, the software RDMA engines must provide the programmer with ordering
properties for outstanding transactions and remote atomic operations, and maintain the
memory coherence and consistency (memory ordering) at synchronization points.

Finally, as distributed software might suffer from the congestion of software job FI-
FOs, software flow-control is required to avoid data races. To do this, AOS implements
a mechanism called “all-to-all client-to-server flow-control” for the remote atomic opera-
tions and RDMA to avoid data and request corruption when congestion occurs. Such
constraints make our new one-sided communication software implementation very compli-
cated to conceive, debug, and validate while reaching for the theoretical maximum hardware
throughput.

Not part of this contribution but it is a significant feature that has been tackled during
this Ph.D. is the observability issue. Observability is a big problem on highly parallel
processors. Therefore, we developed at the very beginning of this thesis the File IO library.
This library is a tool to speed up and ease the development as it makes the debugging
and the observability of the running parallel application simpler. The File IO library
aims to hide the complexity to bring in and out data from the local memories of the
MPPA® Multiprocessor System-on-Chip (MPSoC). To keep it simple, in the Operating
System (OS) system call handler, we implemented stubbed functions that perform a remote
procedure calls of functions like open, read, write, close (system calls). The NoC and PCIE
communications are handled automatically. For instance, all functions operating on files or
file descriptors require the support of system calls. It has been designed and implemented
at low-level for maximum performance; but, it is a synchronous runtime library, easier to
use but at a performance cost.

5.2 Design of Distributed Protocols of Communications and

Synchronizations for the Programmer

The AOS library provides two protocols that are the new one-sided operations and the
two-sided operations. Two-sided operations were already supported by the MPPA® IPC
API and the MPPA® NoC. An example of one-sided operations is shown in Figure 4.2,
and an example of a two-sided operation is in Figure 4.1.

The AOS library presents the manycore platform as a collection of execution nodes,
called CCs and Input/Output Subsystems (IOs). These nodes are composed of PEs and
their directly addressable local shared memory. There is a specific for the IOs which can
additionally access an external memory called the Double Data Rate (DDR) memory as
presented in Section 2.3.

5.2.1 Memory Segments

In our contribution, two types of memory segments are defined and can be used by the
programmer. A memory segment is a directly addressable buffer from the PEs of a node to
the mapped memory (for instance the local memory or the DDR memory). The first one is

72
Fundamental Mechanisms for Communications and Synchronizations in Distributed

Computing

the window memory segment that supports one-sided operations such as RDMA Put/Get
and remote atomic operations. Memory window can also be found in the MPI standard
[HDT+15]. Put/Get operations are low-latency and high-throughput RDMA operations
that are usually used to transfer large buffers between nodes. Remote atomics are used to
synchronize nodes, for instance with atomic add and atomic clear remote operations. The
second type is the remote queue memory segment that supports two-sided operations such
as the enqueue and dequeue operations (1-to-1 or N-to-1). Remote queues are mostly used
to enable fine-grained control or to implement the master/slave model as in an acceleration
programming model.

Multi-core

CPU A

Multi-core

CPU B

Create
Remote
Queue

Clone
Window

Clone
Remote
Queue Blocking

Create
WindowBlocking

Figure 5.1 – Memory Segment Usages with the Create and Clone Functions

The creation operation of the memory segment exposes a part of the memory. The
clone operation is then used by a PE to access the created memory segment. As seen
in Figure 5.1, the memory segment has to be created and cloned between either part of
the network to make the data communication possible. The NoC routes, addresses, DMA
configurations, and offsets are automatically resolved at this time. The initialization of
a communication link has to be carefully performed. The communication link is either
a window or a remote queue. For this purpose, a node creates a memory segment, of a
window type for instance, and this segment is associated with a unique 64-bit counter that
is registered in a broker. The clone operation on this unique 64-bit identifier connects
the initiator with the created memory segment. The clone operation implicitly provides
synchronization with the creator. The communication can immediately start once the
clone operation returns. Everything is managed by the internal software runtime enabling
the AOS API. Figure 5.1 shows how the memory segment creation and cloning operations
relate to each other.

5.2.2 One-sided

As seen in Section 4.3, one-sided communication provides the ability for a process to access
a remote memory without any involvement in the communication at the programmer point-
of-view. The one-sided communication functions that are provided to the programmer for
the data path, are thread safe.

Design of Distributed Protocols of Communications and Synchronizations for the
Programmer 73

RDMA Operations

In our communication runtime, the RDMA operations are the most used to move data
between the network of SMPs of the manycore architecture. RDMA transfers are made for
high-throughput with low-latency. RDMA operations operate on segments of type window.

We define two primitives to perform remote read and remote write of data over the
network respectively called Get and Put operations. Figure 5.2 shows the RDMA Put and
Get principles between two nodes. The Put operation reads local data, and sends them
to the network, in the cloned memory segment. The Get operation sends a remote read
request using the cloned segment. When the remote read request is processed, the data
are sent to the initiator (multi-core B) of the operation.

Multi-core

CPU A

Multi-core

CPU B

Create
Window

Clone
Window

Blocking

Get

Put

Process
Get Blocking

Figure 5.2 – RDMA Put and Get Operation on Window Memory Segments

From the programmer point-of-view, the Put and Get operations can be used either
in a synchronous or asynchronous mode. When an RDMA operation is initiated, the
synchronous mode gives the programmer the local completion when the calling operation
returns. In the asynchronous mode, RDMA operations are executed in the background.
The operation is associated with an event, given by the programmer, that can be tested
or waited. Upon the completion of the event, the programmer is provided with the local
completion, and not the remote completion.

The local completion of Put operations is given to the programmer upon completion
of the operation, but this is not the remote completion where data are written. Remote
completion or Put consistency is provided by the completion of an RDMA fence operation.
The completion of the RDMA fence operation guarantees that all outstanding Puts are
written and consistent in the targeted memory segment.

An important feature provided implicitly to the programmer is the flow-control of
RDMA transactions. Flow-control mechanisms are complicated for the programmer to be
implemented, which is why it is already provided by our contribution. Such mechanisms
avoid the corruption of data when the distributed software implementation suffers from
congestion.

Remote Atomic Operations

The remote atomic operation provides the programmer with fundamental and efficient
mechanisms for distributed computing. The remote atomic operations are the foundation
to perform: synchronizations, reductions, and collective operations between multiple SMPs
of a network. An example of remote atomic operations can be seen in Figure 5.3. Once

74
Fundamental Mechanisms for Communications and Synchronizations in Distributed

Computing

the segment is created and cloned, Put operations and remote atomic operations can be
performed. Put operations are performed asynchronously, and their remote completions
are guaranteed by the Fence operation or other remote atomic operations.

Multi-core

CPU A

Multi-core

CPU B

Create
Window

Clone
Window

Blocking

Async. Put

Process
Get

Async. Put
FetchaddBlocking

Fetchadd
processing

Async. Put

Fence

Blocking

Blocking

Get

RDMA Put/Get
Read after write

Figure 5.3 – RDMA Put and Get Operations with Remote Atomics on Window Memory Segments

We propose and provide to the programmer lightweight remote atomic operations such
as postadd, poke, fetchclear, fetchadd and peek. Our panel of remote atomic operation
is inspired by Infiniband [Sha03] and the supported atomic instructions of the targeted
machine. All of these operations take as input a target segment of type window and an
offset aligned 8 bytes (atomic alignment constraint) to which to remote atomic should be
applied in the segment. The peek and poke operation are respectively uncached 8-byte read
and write. The postadd operation atomically adds a signed value to a 64-bit counter in the
remote memory without returning any result to the initiator. The fetchadd operation is the
same as the postadd ; but, it returns the read value of the fetch-and-add atomic instruction
to the initiator. The fetchclear operation atomically clears the remote target value to zero,
and the value is sent to the initiator.

The Ordering of the One-sided Operations

As seen in [IHIY14], one-sided operations make it possible for the hardware and the software
runtime to relax the ordering of transaction. Indeed, one-sided operations can be reordered
in the background because the initiator of the one-sided operation is a master of the targeted
memory. The goal of such feature is to increase the performance of the overall distributed
memory system by providing to the programmer a relaxed memory consistency model.
In this section, we define a set of important rules of our new distributed communication
runtime that must be known by the programmer:

• Rule 1 The outstanding RDMA Put operations are strictly ordered from an initiator
point of view about their local completion, but not for their remote completion
(fence).

• Rule 2 Get operations are ordered when reading from the same memory segment
while reading from different memory segments is not ordered. Outstanding Put and

Design of Distributed Protocols of Communications and Synchronizations for the
Programmer 75

Get operations are not ordered on the same initiator for efficient parallel execution.
Hence, for any reason, when Read-After-Write (RAW) dependency occurs (Put fol-
lowed by a Get on the same memory segment), an RDMA fence completion must
be performed before initiating the Get operation. The fence operation is provided
by the one-sided engine and is part of the active message operations. In the mem-
ory consistency model, the completion of the Fence operation provides the remote
completion of all outstanding Puts to the targeted memory segment.

• Rule 3 Remote atomic operations are ordered if they target the same memory seg-
ment, else they are not. A powerful property with the outstanding RDMA trans-
action and the outstanding remote atomic operation is that they are ordered when
targeting the same segment. An example of such an ordering is provided in Figure
5.3. It is obtained thanks to a point-to-point software “virtual channel” between
each pair of segments. When an initiator (a PE) X posts several puts (RDMA
transactions) and then posts a remote atomic operation to a memory segment, the
posted remote atomic operation will be seen in this memory segment only after the
remote completion of the previously initiated puts of the initiator X. Such ordering
is essential for performance as the initiator can post high-throughput RDMA data
transfers along with a posted synchronization mechanism. Indeed, everything can be
done asynchronously from the initiator point of view. Therefore, this initiator can
go back to computation immediately without losing any time. At the programmer
level, this concept is called: the ordering between posted remote atomic operations
and outstanding RDMA transactions.

5.2.3 Two-sided

As seen in Section 4.2, two-sided communications allow the programmer to send data to
an opened communication channel and receive this data on the other side of this channel.
Currently, the programmer is provided with low-latency remote queues that are explained
below. The choice of remote queues has been conditioned by the need for low-latency and
high-throughput (in terms of Input/Output Operation per Second (IOPS)) control queues
at the user level.

Remote Queue Operations

For the programmer, the communication semantics of the remote queue is based on send
and receive operations. The remote queues aim to be used for control messaging, usually
small size messages. Small size messaging provides high throughput control concerning
IOPS. These operations operate on segments of type queue.

Once the memory segment is initiated, the user can send messages to the queue using
the enqueue operation and receive messages from the queue using dequeue. Figure 5.4
shows an example of remote queues for the programmer. Simple queue messaging uses 1-
to-1 communication where only one initiator sends messages to a remote queue. However,
the programmer is also provided with a remote queue mode where N-to-1 communications
are possible. In N-to-1 mode, the atomicity of enqueue and dequeue operations is ensured
for the user by our communication runtime. This N-to-1 capability is essential on massively
parallel systems that require runtime orchestration of activities (e.g., master/slave parallel
pattern).

Runtime Implementation of the Distributed Communications and Synchronizations 77

Data restructuring is generally used when using tiling techniques with or without over-
lap, halo region forwarding, transposition patterns, 2D, and 3D block transfers. 2D and
3D copies are special cases of strided copies, with stride-offsets on both src and dst buffers.
These offsets can be different from each other, as the local buffer is often smaller and
accommodates a sub-partition of the remote buffer. We call this capability the “on-the-fly
data restructuring”. Figure 5.5 shows the available RDMA Put/Get data restructuring
opportunities without a copy. Such patterns are useful and efficient for image processing,
Convolutional Neural Network (CNN) and many other stencil-based applications, where
tiling is applicable.

5.3 Runtime Implementation of the Distributed Communi-

cations and Synchronizations

This section explains how the distributed communications and synchronizations library,
called AOS, has been conceived and implemented. The implementation of the memory
segment management is explained in Section 5.3.1. The RDMA implementation over the
Kalray NoC and the implementation of the remote atomic operations are presented in Sec-
tion 5.3.2. The event completion engine, used to get the completion of any asynchronous
operations of the AOS API, is explained in Section 5.3.3. Section 5.3.4 provides the im-
plementation of an efficient job arbiter to process the remote atomic operations and the
RDMA operations. Finally, the remote queues, used for fine-grained two-sided communi-
cations, are described in Section 5.3.5.

5.3.1 Memory Segments

The creation and clone operations of the memory segments are used to initialize at user
level a communication link. As already seen, the communication link can be either a remote
queue or a memory window.

The segment creation and clone operations are handled thanks to a centralized broker
that references all living memory segments for all CCs and IOs. Therefore, the creation and
clone procedures ought to be performed by the programmer only at initialization time of the
distributed computing system for performance, but can be used whenever the programmer
needs them.

This centralized broker has been implemented using low-level message passing over the
NoC of the manycore. A multi-core Central Processing Unit (CPU) provides an identifier
referencing the created segment in this broker. Other multi-core CPUs can connect to the
created segments using the related identifier at the clone operation.

5.3.2 One-sided: Asynchronous Remote Atomic Operation & RDMA
Put & Get Algorithm

This section explains the implementation of the remote atomic and the RDMA operation.
The implementation is inspired by a well-known mechanism used in distributed computing,
called “active messages.” An active message is a low overhead message that acts as a call,
with or without returning a value and using a message payload as arguments. Paper
[MRSD16] also uses similar mechanisms to implementation inter-core notifications.

The one-sided user API functions take as arguments: a local virtual address that is
read or written, a remote target segment, transaction parameters (e.g., operation type,
size, stride, geometries) and an event for the completion of the initiated transaction. The

78
Fundamental Mechanisms for Communications and Synchronizations in Distributed

Computing

RDMA functions are Put and Get operations, and remote atomic operations postadd, poke,
fetchclear, fetchadd and peek. A fence operation is provided for the remote completion of
outstanding RDMA transactions of a targeted memory segment.

Algorithm 2 Active Message Initiator Algorithm (thread safe algorithm)

1: Input: segment, operation, parameters, blocking
2: Output: event
3: if not_valid(segment) or not_valid_op(operation, parameters) then
4: Return failure
5: end if
6: node_id = load_target_node_id(segment) /* Remote cluster ID */
7: amsg = Prepare active message transaction /* RDMA, Remote atomic or Fence */
8: Write memory barrier /* Commits outstanding user stores in local shared memory */
9: slot = atomic fetch add array_slots[node_id] /* Shared array in the cluster */

10: /* Flow-control: verify the number of outstanding transactions to avoid corruption */
11: while (slot + 1) >= (array_done_slots[node_id] + FIFO_SIZE) do
12: Idle PE /* OS yield possible */
13: end while
14: /* Check local or remote transaction */
15: if is_remote_transaction(segment, amsg) then
16: route = compute_route(segment) /* Compute network route */
17: Tx_configure(route) /* Tx hardware resource is protected by a lock */
18: Tx_send_message_notify(amsg) /* Remote memory in another cluster */
19: else
20: job_fifo[(slot + 1) % FIFO_SIZE] = amsg /* Write job in local shared memory */
21: Write memory barrier
22: Broadcast notify to all PEs /* Local shared memory of this cluster */
23: end if
24: event = prepare_event(segment, slot)
25: if is_blocking(blocking) then
26: Call Algorithm 3 (event) /* Blocking mode, wait for the event to occur */
27: end if
28: Return success

Algorithm 2 is used to send active message requests to the job arbiters, presented in
Algorithm 4. The Algorithm 2 is executed by the PEs inside each CC, in the AOS library
called by the programmer. We assumed that the input segment has already been created
or cloned. The provided Algorithm is thread safe, and it can be run on any PE of a CC of
the used manycore processor.

The remote atomic, the RDMA Put and Get are usually the critical path of data-
intensive applications. All one-sided data transfers are managed by the Algorithm 2.
Therefore, it needs to be efficient, thread-safe and programmer-friendly (e.g., manage-
ment of maximum outstanding jobs with flow-control). The RDMA and remote atomic
transactions operate on a window memory segment. Initiating a one-sided operation con-
sists in parsing the targeted segment parameters (Line 6 and 16 in Algorithm 2) such as the
requested segment protocol(s) (RDMA or remote atomics in our case), the NoC route, the
destination DMA Rx Tag and checking if the read or write transaction is not out-of-bounds
of the targeted remote window. Then the transaction is prepared by the initiator PE in
a CC, and it takes a slot (Line 9) on the targeted segment atomically. An N-to-N flow-

Runtime Implementation of the Distributed Communications and Synchronizations 79

control mechanism has been implemented for remote memory transactions “inter-node” and
local memory transactions “intra-node” (array_done_slot Line 11 in Algorithm 2) which
provides a back pressure mechanism when the hardware and low-level software is under
congestion. Then, the PE sends the request either to the NoC interface or writes the request
in the shared local memory. The completion ticket of the initiated transaction is computed
and set to an event (Line 24) which can be waited for later, using Algorithm 3. An event
is an opaque object that contains the necessary information to provide the programmer
with the completion of the related initiated transaction. Indeed, the programmer can give
a reference to an event to the algorithm, with a boolean flag “blocking” set to true. The
algorithm fills it with the necessary information of the operation and returns immediately
(the operation is outstanding). If this boolean flag is set to false, the algorithm will wait
until the completion of the operation before returning.

In our implementation, RDMA operations are immediately processed with our software
algorithms when the hardware resources are available. Remote atomic operations are
processed when all previous RDMA Puts are completed. These operations have a posted
variant (without a returned value), which can be very effective for the implementation of
reductions, and synchronizations onto distributed manycore architectures.

5.3.3 Event Completion

The completion of an event is associated with an operation, previously initiated by a PE
with the programmer. For instance, the operation can be an RDMA or a remote atomic
transaction. The completion of AOS events is managed by Algorithm 3.

Algorithm 3 is designed for managing the event completion with fast execution time.
An event is a condition that has only two states (true or false) for the programmer. This
event contains an address (Line 3 in Algorithm 3) to monitor and compare it with a value
(Line 2) using simple condition (Line 6) (e.g., equal, greater, less). Depending on the event
type of the associated transaction, the event can complete by getting hardware pending
events (Line 11 in Algorithm 3) and accumulate them into the content of address (Line
13). This sequence is required to prevent DMA Rx Tag End-of-Transfer (Eot) counter
from saturation. However, this sequence has to be atomic; thus, we use atomic uncached
instructions, and we notify all other PEs of the CC when the content of address is updated
and visible in the memory hierarchy. This broadcast notifies operation (Line 16 in Algo-
rithm 3) is done using a low-latency control NoC Rx mailbox in barrier mode which leads
only to a single posted store in the peripheral space for the processor.

For both low-latency and high-throughput of event processing, Algorithm 3 does not
rely on any interruption mechanisms to avoid trashing the instruction/data cache when
switching to interrupt handlers, suffering from interrupt noise and interrupt handler control
multiplexing and the overhead of context switching.

On more generic operating systems (Linux or Real-Time Operating System (RTOS)),
this algorithm could use a preemptive and cooperative multi-thread (Line 19 in Algorithm
3). Nevertheless, in a high-performance environment, the OSs used on the targeted many-
core have a simple run-to-completion multi-threading model in the matrix of Compute
Clusters (CCs). The AOS library also provides another algorithm to let the programmer
test, in a non-blocking way, whether or not the event is complete.

5.3.4 One-sided: RDMA and Remote Atomic Arbiters

The RDMA and remote atomic arbiters are high-performance algorithms that run on each
Resource Manager (RM) of each CC of the MPPA®. The RDMA job arbiter is used to

80
Fundamental Mechanisms for Communications and Synchronizations in Distributed

Computing

Algorithm 3 Active Wait Event Algorithm (thread safe algorithm)

1: Input: event
2: value = get_event_check_value(event)
3: address = get_event_check_address(event)
4: while true do
5: test_value = uncached load at address
6: if Evaluate condition value with test_value then
7: Read memory barrier /* Core & DMA coherence */
8: Return success /* Exit */
9: end if

10: if is_event_has_pending_dma_eot(event) then
11: eot = atomic load and clear on the End-of-Transfer (Eot) counter of the Rx Tag
12: if eot > 0 then
13: Atomic fetch add uncached eot at address
14: Write memory barrier
15: /* Force PEs to re-evaluate conditions */
16: Broadcast notify to all PEs
17: end if
18: end if
19: Idle PE // or OS yield possible
20: end while

process remote read transactions, that are the Get operations, initiated by the PEs. The
remote atomic arbiter is used to process remote atomic transactions, initiated by the PEs.

Algorithm 4 serves the request sent by Algorithm 2 for the RDMA. The algorithm uses
an efficient Round Robin (RR) arbitrations. The arbitrations are triggered on events (not
interrupts) sent by the DMA NoC interface or inter-PE events. These arbiters process
requests coming from the NoC or other intra-node PEs.

The RDMA job arbiter, in Algorithm 4, manages the execution of DMA jobs asyn-
chronously. It selects the associated DMA micro-engine, configures the NoC route, writes
the DMA micro-engine arguments, starts the DMA micro-engine, and updates the comple-
tion job ticket. No starvation is possible as one DMA micro-engine is dedicated to a single
job FIFO.

An active message is an operation containing a set of instructions with operands. When
the operation is performed, the active message job arbiter sends the result back to the
initiator (if any) and updates the completion job ticket. The more complicated part of
this software arbiter is that all active messages from an initiator are ordered with all
outstanding RDMA writes of this initiator. For the initiator, all outstanding incoming
RDMA transactions will complete before the posted remote atomic operation is processed.

5.3.5 Support of Eager Messages with Remote Queues

Classic two-sided Send/Receive operations have a significant overhead due to synchroniza-
tions between the sender and receiver nodes, and often require the use of temporary buffers
as opposed to zero-copy communication. Besides, real-life implementations present signif-
icant challenges [Gor04] for simplicity, programmability, performance, and predictability.

As a primitive of the two-sided protocol, we select the remote queue operations de-
scribed in [BCL+95], as it avoids the problems of classic message passing. First, it can be
implemented as a simple message queues that are proven to be efficient for fine-grained

Runtime Implementation of the Distributed Communications and Synchronizations 81

Algorithm 4 RDMA Engine Algorithm (this is a sequential task, communicating with
distributed software)

1: while true do
2: List_Job_Fifo = Get pending job fifos
3: for Job_Fifo in List_Job_Fifo do
4: /* Transactions are ordered per fifo */
5: DMA micro-engine = get associated micro-engine to Job_Fifo
6: if DMA micro-engine is ready then
7: Clear DMA micro-event event
8: Read-memory barrier
9: Read Job_Fifo[Currrent_Job_Fifo_Read_Ptr++] slot

10: if New NoC route != Current Tx packet-shaper NoC route then
11: Configure DMA Tx packet-shaper with New NoC route
12: end if
13: Write DMA micro-engine parameters & pointers
14: Start DMA micro-engine
15: /* For previous DMA job completions */
16: Update array_dones_slot[current] completion counter
17: Write memory barrier
18: /* Force PEs to re-evaluate conditions */
19: Broadcast notify to all PEs
20: Current_Job_Fifo_Read_Ptr %= FIFO_SIZE
21: end if
22: end for
23: Idle PE // or OS yield
24: end while

control and coordination of distributed computations. Also known as eager messages, it
allows low-latency for small messages. The maximum message size is usually given by an
eager limit (usually a small number of bytes) which is implementation-specific [LJW+04].
From the sender point of view, the local buffer can be immediately reused. On the receive
side, these eager messages can either arrive before or after the calling of the receiving prim-
itive. Moreover, remote queues also apply to N-to-1 communication whenever atomicity of
enqueue and dequeue operations can be ensured. The N-to-1 capability is essential on mas-
sively parallel systems that require run-time orchestration of activities (e.g., master/slave
parallel pattern). Finally, remote queues enable efficient communications as they enable
synchronization without introducing any locking mechanism from the programmer point
of view.

5.3.6 Data Restructuring Support on RDMA Put/Get

Contiguous and strided copies are essential “geometries” in RDMA communications as seen
in Figure 5.5. A strided transfer can have an offset between each contiguous data block
either on src or dst buffers, or even both. An efficient RDMA API (and the underlying
hardware) should be able to perform strided transfers with zero-copy, by automatically
incrementing read and write DMA offset at no cost.

The implementation of the data restructuring feature uses the DMA micro-engine which
runs a handwritten micro-code. The micro-code is a Kalray specific instruction set 2.3.3,
written in TCL [O+89] where the pseudo code is given in Algorithm 5. The implemented

82
Fundamental Mechanisms for Communications and Synchronizations in Distributed

Computing

micro-code implements a stride-to-stride data transfers where the object size, the number
of objects, the stride in bytes between the local object(s), and the stride in bytes between
the remote object(s) are specified. 2D transfers are possible using a single iteration of
Algorithm 5. However, 3D transfers require as many calls to Algorithm 5 as the depth of
the cube to be sent.

Algorithm 5 sets the absolute remote offset of the targeted memory window (Line 3).
Then a local address is set where the data to be sent shall be read (Line 4). Two loops are
used to send the object of size Object_Size in bytes, using 8 bytes coalescing first, and 1
byte for the remaining. The remote offset and the local address are then updated (Lines
14 and 15), and the object is sent as many time as needed, using the Nb_Object input
parameter. Once all objects are sent, Algorithm 5 sends the Eot command to the targeted
memory window (Line 18) and notifies locally the RM that the operation is complete (Lines
19 and 20). The DMA micro-engine stops (Line 21) until the RM reuses it for another
DMA job.

Algorithm 5 DMA Micro-engine Pseudo Code for Data Restructuring on a Window
Memory Segment
1: Input Local_Offset, Remote_Offset, Object_Size, Nb_Object, Local_Stride, Re-

mote_Stride
2: if Object_Size != 0 and Nb_Object != 0 then
3: Send set absolute Remote_Offset command to the target DMA Rx Tag
4: Set local read_pointer to Local_Offset (read pointer in local memory)
5: for i in 1 .. Nb_Object do
6: for j in 1 .. (Object_Size / 8) do
7: Read and Send 8 bytes /* 8 bytes coalescing */
8: Increment read_pointer of 8
9: end for

10: for j in 1 .. (Object_Size % 8) do
11: Read and Send 1 bytes /* Send remaining bytes */
12: Increment read_pointer of 1
13: end for
14: Send set relative Remote_Stride command to the target DMA Rx Tag
15: Add relative Local_Stride to local read_pointer
16: end for
17: end if
18: Send End-of-Transfer (Eot) command to the target DMA Rx Tag
19: Increment local DMA micro-engine event
20: Broadcast a notification to all local PEs of the CC
21: Stop DMA micro-engine

5.4 Use, Resource Allocation & Configurations

The AOS library performs a complex DMA NoC resource allocation at initialization time.
Indeed, as the AOS engine enables relaxed one-sided operations on an MPPA® chip, a lot of
software programmable hardware resources are used to deal with out-of-order completions
and to remove software locks. The used resources are the packet-shapers, the DMA micro-
cores, and DMA Rx Tags, all explained in Section 2.3.3. The packet-shaper is a hardware

Use, Resource Allocation & Configurations 83

functional unit that builds NoC packets to send them with a specific route over the NoC
of the MPPA® processor.

The DMA NoC interface sharing of resources between other existing runtimes also
needs to be managed. For instance, the Distributed Shared Memory (DSM) (Section 3.1.1),
the OpenCL runtime and the low-level runtimes of the Kalray Neural Network (KANN)
framework are important examples requiring interoperability tests.

Each Compute Cluster (CC) contains one DMA NoC interface that can access by read
and write operations the local memory of the CC as explained in Section 2.3.3. On the
Input/Output Subsystem (IO), 8 DMAs NoC interfaces are available for accessing the local
memories of the IO (Shared Memory (SMEM)-Low and SMEM-High) and the external
DDR off-chip memory by read and write operations.

As seen in Section 2.3.3, each DMA NoC interface has a limited range of hardware re-
sources. To summarize, 8 packet-shapers, 256 DMA Rx Tag resources, and 8 DMA micro-
engines are available in a single DMA NoC interface. As such, on a single MPPA® chip,
18 nodes are implemented, with 16 Compute Clusters (CCs) and 2 Input/Output Subsys-
tems (IOs) where the one-sided and two-sided asynchronous communication features are
implemented using the following set of hardware DMA NoC resources.

5.4.1 Resources Used for Enabling One-sided Operations

Managing the resource sharing to enable AOS on a two-sided NoC is complex. We highlight
and show the purpose of the resources for each DMA NoC interface of a Node (CC or IO)
of MPPA® in Table 5.1.

For One MPPA®

Chip

IO DMA NoC
Resources per Interface
(8 Interfaces per IO)

CC DMA
NoC Resources per Interface

(1 Interface per CC)
Return of RDMA
Get Operations

6 Rx Tags DDR-SMEM Low
or SMEM High

18 Rx Tags

Incoming RDMA
Put Operations

6 Rx Tags DDR
6 Rx Tags SMEM Low

or SMEM High
18 Rx Tags

Get Job Fifo 1 Rx Tag 1 Rx Tag
Return of Active
Message Data

6 Rx Tags DDR-SMEM Low
or SMEM High

18 Rx Tags

Active Message
Job FIFO

1 Rx Tag 1 Rx Tag

Return of Active
Message Flow-control

1 Rx Tag 1 Rx Tag

Send Transaction
Request

1 Packet-Shaper 1 Packet-Shaper

Serve Get Requests
of other Nodes

1 Packet-Shaper
1 Micro-engine

1 Packet-Shaper
1 Micro-engine

Process the Locally
Initiated Put

1 Packet-Shaper
1 Micro-engine

1 Packet-Shaper
1 Micro-engine

Serve Active Messages
of other Nodes

1 Packet-Shaper 1 Packet-Shaper

Table 5.1 – NoC Resources used by the AOS library for each of the Compute Cluster (CC) and
each of the Input/Output Subsystem (IO) Composing an Entire MPPA® Processor

84
Fundamental Mechanisms for Communications and Synchronizations in Distributed

Computing

One Rx Tag is required for each possible initiator Node for full-duplex (Put/Get) of
the 18 Nodes (16 CCs and 2 IOs) within this Node. It is necessary to obtain a relaxed
memory consistency model for the RDMA operations at multi-nodes level. The ordering
and the memory consistency of the AOS library are explained in section 5.2.2.

On Input/Output Subsystems (IOs), 6 Rx Tags are required for optimizing the band-
width of the data NoC targeting the DDR. 4 Rx Tags are used for the 4 rows or columns
of Compute Cluster (CC) and 2 Rx Tags more are used for the Input/Output Subsystems
(IOs) (IO-to-IO and loopback). Indeed, the routes used between IOs and CCs avoid turns
by using only the columns or the rows of the NoC. This optimization is applied to avoid
as much as possible the temporal sharing of data NoC links and limit NoC congestion.

5.4.2 Two-sided operations

The resource management for two-sided operations is simpler than the one-sided implemen-
tation, as the Kalray NoC is already two-sided. As such, Rx Tag resources are dynamically
allocated in a software pool at AOS segment creation. At chip level, a centralized broker is
in charge of the synchronizations and the forwarding of information such as the route and
the allocated Rx Tag in the targeted remote queue. Centralized control and dynamically
allocated resources have poor performances but this is not an issue since the segment cre-
ation is only perform once; therefore, it is not on the critical path of the application. The
implementation of the remote atomic and the remote queue messages reuses the packet-
shaper in Table 5.1 of the Send Transaction Request, for reducing the consumption of
DMA NoC interface. Moreover, for non-atomic messages of the remote queues, it uses the
packet-shaper and micro-engine of the one-sided Put operation, also visible in Table 5.1,
namely Process the Locally Initiated Put.

5.4.3 Resources Necessary for AOS in a Compute Cluster

The resources used by AOS in a compute cluster are shown in Figure 5.6, which represents
the DMA NoC interface configurations. One-sided operations (RDMA and remote atomics)
operate on the entire OS and application memory space. The Kalray exokernel is protected
from the OS and the applications by checking the configurations of the DMA NoC interface
at initialization time. The micro-engines, PEs and the RM can read into the memory and
write data in the packet-shapers. The packet-shapers then send data in the NoC with a
pre-configured route and destination Tag. The DMA Rx writes in the memory the new
incoming data to the window referenced by a Tag in the NoC header packet. On transfer
completion, an Eot increments a DMA register counter related to the DMA Rx Tag as seen
in Algorithm 3.

DMA NoC Interface Configurations Each hardware resource is configured at initial-
ization time of the AOS engine or in the control path of the AOS engine. Indeed the
configuration of hardware resources is not in the data transfer path for perfor-
mance. The following configuration parameters need to be set by the software operating
in the AOS initialization function, for each of the used DMA NoC interface resources. The
resources configurations are listed below:

• DMA Packet-shapers [0..7]

– Destination DMA Rx Tag in the range [0..255]

86
Fundamental Mechanisms for Communications and Synchronizations in Distributed

Computing

When a notification from a DMA Rx Tag or a DMA micro-engine occurs, the notified
processors go out of the idle state, or future execution of the idle instruction will not idle
the PE. A clear of the PE wake-up information should be done by software hereafter.

5.5 Performance, Results: Latency & Throughput

We use a multi-CCs execution model with a low-level POSIX-like (Pthreads) environment
for benchmarking. All measures were made onto an MPPA® operating at 500 MHz with
one or two 1066 MHz DDR3. Each DDR3 bus size is 64-bit wide which leads to a theoretical
and maximum memory bandwidth of 8.5 GB/s, and 17.0 GB/s using 2-DDRs. The NoC is
32-bit wide operates at 500 MHz too; therefore, it provides a bandwidth of up to 2.0 GB/s
per link. The SMEM of the CC has 1 NoC link providing 2.0 GB/s per link direction.
However, we use a typical data NoC payload packet size of 32 flits with a header of 2-flits
for a total typical packet size of 34 flits. Thus, it leads to a maximum efficient data transfers
throughput of 2 ∗ (32/34), which gives 1.88 GB/s full-duplex. The memory throughput
is defined as the memory bandwidth on which the node(s) or processor(s) are reading or
writing. The latency is defined as the time between the initiation and the completion of a
transaction; thus, it will depend on the size of the transaction.

5.5.1 Memory Throughput

Figure 5.7 and Figure 5.8 shows both DDR(s) and inter-cluster SMEM reads and writes,
respectively called Gets, and Puts. The throughput is measured onto the memory on
which the CCs are reading and writing. The size of the RDMA transactions in abscissa
and the number of CCs are varying, showing different saturation points. All throughput
benchmarks were with asynchronous RDMA transactions to saturate the software in charge
of configuring the DMA NoC interfaces. Thus software flow-control is heavily used to
prevent the local or remote FIFOs from getting corrupted.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 10 100 1000 10000 100000 1e+06

B
an

dw
id

th
 (

G
B

/s
)

Transfer Size (Bytes)

RDMA Engine Throughput - Read (Get)

1-DDR-1-CC
1-DDR-2-CCs
1-DDR-4-CCs
1-DDR-8-CCs

1-DDR-16-CCs
2-DDRs-1-CC

2-DDRs-2-CCs
2-DDRs-4-CCs
2-DDRs-8-CCs

2-DDRs-16-CCs
1-SMEM-1-CC

1-SMEM-2-CCs
1-SMEM-4-CCs
1-SMEM-8-CCs

1-SMEM-16-CCs

Figure 5.7 – RDMA Get (Read) Throughput GB/s (Asynchronous)

Firstly, for DDR memory accesses, we achieve more than 50% of maximum theoretical
throughput for data transfers larger than 4 KB and 94% for 32 KB in all topologies.
Secondly, it can be noticed that RDMA puts are better than gets. It is due to remote

Performance, Results: Latency & Throughput 87

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 10 100 1000 10000 100000 1e+06

B
an

dw
id

th
 (

G
B

/s
)

Transfer Size (Bytes)

RDMA Engine Throughput - Write (Put)

1-DDR-1-CC
1-DDR-2-CCs
1-DDR-4-CCs
1-DDR-8-CCs

1-DDR-16-CCs
2-DDRs-1-CC

2-DDRs-2-CCs
2-DDRs-4-CCs
2-DDRs-8-CCs

2-DDRs-16-CCs
1-SMEM-1-CC

1-SMEM-2-CCs
1-SMEM-4-CCs
1-SMEM-8-CCs

1-SMEM-16-CCs

Figure 5.8 – RDMA Put (Write) Throughput GB/s (Asynchronous)

server contention which is the point of serialization for the configuration of the DMA
interfaces. Indeed, on the software point of view, outstanding puts only rely on local flow-
control whereas outstanding gets rely on remote flow-control. Remote flow-control is more
complicated as it requires more software interactions with the DMA NoC interface. We
measure that our software implementation of RDMA support reaches more than 70% of
the peak hardware throughput for a contiguous data NoC stream size larger than 8 KB.
To conclude, the RDMA throughput provides the user application with efficient use of the
hardware, when having data stream size greater equal than 8 KB, and manages complex
flow-control mechanisms. Providing the programmer with performance and implicit flow-
control eases the implementation of explicit communications.

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06

T
im

e
(u

s)

Transfer Size (Bytes)

RDMA Engine Latency - Read (Get)

2.3 us Round-Trip (1168 cycles)

1-DDR-1-CC
1-DDR-2-CCs
1-DDR-4-CCs
1-DDR-8-CCs

1-DDR-16-CCs
2-DDRs-1-CC

2-DDRs-2-CCs
2-DDRs-4-CCs
2-DDRs-8-CCs

2-DDRs-16-CCs
1-SMEM-1-CC

1-SMEM-2-CCs
1-SMEM-4-CCs
1-SMEM-8-CCs

1-SMEM-16-CCs

Figure 5.9 – RDMA Get (Read) Latency µs (Blocking)

88
Fundamental Mechanisms for Communications and Synchronizations in Distributed

Computing

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06

T
im

e
(u

s)

Transfer Size (Bytes)

RDMA Engine Latency - Write (Put)

2.2 us Round-Trip (1095 cycles)

1-DDR-1-CC
1-DDR-2-CCs
1-DDR-4-CCs
1-DDR-8-CCs

1-DDR-16-CCs
2-DDRs-1-CC

2-DDRs-2-CCs
2-DDRs-4-CCs
2-DDRs-8-CCs

2-DDRs-16-CCs
1-SMEM-1-CC

1-SMEM-2-CCs
1-SMEM-4-CCs
1-SMEM-8-CCs

1-SMEM-16-CCs

Figure 5.10 – RDMA Put (Write) Latency µs (Blocking)

5.5.2 Memory Latency

The software in charge of configuring the DMA NoC interface introduces some latency.
Highly-coupled parallel software often leads to poor performance onto massively parallel
architectures. Therefore the transaction latency on such architectures is critical when
dealing with complex data dependence patterns that imply inter-clusters communications
(e.g., low-latency 6-steps Fast Fourier Transform (FFT) or low-latency CNN inference).
However, depending on the spatial and temporal memory locality, it is not always possible;
and thus, the latency of the transactions becomes important. We model the total round-
trip latency of the RDMA software/hardware engines when there are neither congestion
nor user/kernel interruptions. TT (B) is the Time to Transmit B bytes and is given by:
TT (B) = IPT +HLT + SPT +B/3.76+CT . Let IPT be the Initiator Processing Time
described in Algorithm 2, SPT the Server Processing Time explained in 5.3.4, HLT the
Hardware Latency Time for the NoC link/router and micro-engine memory accesses, CT
the Completion Time described in Algorithm 3 and the transfer time B/3.76 with B the
number of bytes to transfer. 3.76 bytes per cycles is the efficient data transfer bandwidth
considering a NoC header of 2 flits with a payload of 32 flits. Typical cost in cycles are
respectively: TT (B) = 500 + 100 + 300 +B/3.76 + 200 = 1100 +B/3.76.

Figure 5.9 and Figure 5.10 show round-trip latency using different compute matrix
geometries that are reading or writing into DDR(s) or one SMEM. The minimum latency
is 2.2µs. When transfer sizes are greater than 10 KB, we observe the point of rupture.
After the rupture point, this software latency becomes negligible compared to the latency
the of DMA micro-engine transfer. When there is no contention, for instance, as observed
in curve 1-DDR-4-CCs, we have precisely a curve derivative of 3.76 bytes per cycle after
this rupture point. Moreover, after this rupture point, the latency is impacted by the
bandwidth of the external memory, that is either the DDR or the SMEM of the CC.

5.5.3 Network-on-Chip Scalability

A strength of NoC-based manycore processors is the ability to scale on non-interferent
inter-node data transfers. Table 5.2 shows the internal compute matrix NoC bandwidth
using different matrix sizes and stream sizes. The peak input-output throughput of the 16

Performance, Results: Latency & Throughput 89

CCs is given by 2∗16∗3.76 bytes per cycles. Operating at 500 MHz, it provides 60.2 GB/s
peak bandwidth. Our new RDMA engine can reach more than 88% of peak performance
for inter-node transfers with a size of 16 KB.

Transfer Sizes
1KB 4 KB 16KB 64KB 256 KB

Nb Cluster(s)
1 0.7 2.7 3.5 3.8 3.8
4 2.7 11.0 14.2 15.2 15.4
8 5.5 21.8 28.3 30.5 30.8
16 10.7 42.8 56.3 60.2 60.2

Table 5.2 – NoC Bandwidth of the Compute Matrix in GB/s

The communication patterns are the following: each Compute Cluster (CC) initiates
an RDMA Put to a neighbor using NoC routes that do not overlap between each other at
runtime. When using 1 CC, we use the loopback feature of the NoC interface. No NoC
link sharing or point of serialization occur, but the share of the SMEMs for the DMA NoC
interface reads and writes. The SMEM is a multi-bank interleaved memory of 16 banks,
and each bank can sustain 8 bytes per cycle; therefore, providing a bandwidth of 64 GB/s,
this is not the bottleneck in our measurements.

5.5.4 Remote Atomics Performance

We benchmark the latency of the active message engines as they are used for synchroniza-
tion and reduction operations. Figure 5.11 shows the latency on different matrix size for
both asynchronous and blocking calls. In abscissa, we show the number of initiator CCs
that are targeting either in the spread or centralized mode the 16 CCs of the manycore.
Spread mode means that all initiators change their target CC each time they are sending
a request. They all target different CC. It can be understood as a scatter mode with no
overloading on receivers. It is quite well load-balanced, and the best performance is ex-
pected. Centralized mode means that all initiators target simultaneously the same node,
thus overload this node by increasing request processing. It is the case of the reduction
pattern for instance. It aims to measure the worst case of all possible active message
scheduling schemes at execution.

The best case initiator latency on a posted operation is 230 cycles (418ns), for instance,
postadd. The round-trip latency for the completion of a fetchadd operation is 1109 cycles,
2.2µs. Lots of conflicts occur when the 256 PEs send requests to the same cluster. Curve
“Async-Centralized-16-PEs” with 16 CCs shows such conflicts as this has a higher execution
time. In such a configuration, the N-to-N flow-control is generating much traffic to avoid
the corruption of software job FIFOs. The implementation can sustain such contention;
however, the latency explodes. An execution time of 17.5µs in asynchronous mode is
measured, whereas an execution time of less than a 1µs is measured when there is no
congestion.

5.5.5 Remote Queue Throughput

Remote queues provide an elementary support of two-sided communications for small low-
latency atomic messages (1-to-1 and N-to-1). Regarding the benchmark conditions, each
CC has a queue where the IO is sending messages to the CCs. Then the CCs gets this
message, sent by the IO, and responds using a remote queue message in N-to-1 mode. All

90
Fundamental Mechanisms for Communications and Synchronizations in Distributed

Computing

 0.1

 1

 10

 100

 2 4 6 8 10 12 14 16

T
im

e
(u

s)

Number of Cluster(s) Initiators

Active Message Engine Scaling Latency

2.174 MIOPS Initiator (230 cycles)

0.951 MIOPS Server (526 cycles)

2.2 us Round-Trip (1109 cycles)

Async-Spread-1-PE
Async-Centralized-1-PE

Blocking-Spread-1-PE
Blocking-Centralized-1-PE

Async-Spread-16-PEs
Async-Centralized-16-PEs

Blocking-Spread-16-PEs
Blocking-Centralized-16-PEs

Figure 5.11 – Active Message Latency

CCs are running concurrently; therefore, we use the N-to-1 feature for data NoC packet
atomicity. The hardware serializes received messages using this N-to-1 feature on the IO
side. Table 5.3 shows IOPS of one RM of the IO that is receiving a request from a CC and
is sending back a new job command to the responding CC. The benchmarks were carried
out using different data NoC packet sizes (Bytes) without any batching.

Packet Size in Bytes
16 B 32 B 64 B 128 B 248 B

Nb Cluster(s)
1 675 670 600 425 350

2 to 16 740 725 725 575 550

Table 5.3 – Performance of the Remote Queues in Kilo IOPS

For small messages, the results show that a simple double-buffering using 2 CCs satu-
rates the number of IOPS for one IO master PE. For messages bigger equal than 128 bytes,
the IOPS drops, as the time spent by the IO to send the message increases linearly with
the message size.

Such a communication pattern is crucial as it is used in offloading. Therefore, we
provide the limitation of such implementation when fine-grained parallelism is required by
an offloaded application, where the control is done by a host processor. In our case, the IO
is considered as a host processor, that is offloading computations onto the compute matrix
(though job queue commands).

5.6 Advanced Asynchronous One-Sided Support

This section presents the use of the Asynchronous One-Sided (AOS) in the Kalray Linux
Kernel ported onto the Input/Output Subsystem (IO) in Section 5.6.1. Also, we propose
the use of AOS in the OpenCL implementation presented in Section 5.6.2.

Advanced Asynchronous One-Sided Support 91

5.6.1 Support in the Linux Kernel

In the latest MPPA® AccessCore toolchain release (> 3.0), Linux, explained in Section
2.4.1, aims to be the primary Operating System (OS) running on the Input/Output Sub-
system (IO) of MPPA®. Indeed a port of the Linux OS has been performed onto 4-core of
an Input/Output Subsystem (IO) of MPPA®. It is possible thanks to the shared L1 data
cache of IOs as the Linux OS requires data cache coherency.

AOS was initially designed to operate at a bare-metal level for high-performance. As
Linux is a rich OS, it is mandatory to have a driver to access the AOS services. A driver
provides clean isolation between the user-land and kernel land, manages concurrent accesses
to the real hardware resources and makes it possible for the Linux kernel to check user
commands from Input/Output Control (IOCTL) in such a way that it will not corrupt
the Linux kernel. The memory swap feature of Linux is not activated in the Kalray port
onto the Input/Output Subsystem (IO) of MPPA®. Therefore, in collaboration with two
engineers, Guillaume Thouvenin (for the driver skeleton and tests) and Benjamin Mugnier
(user library and tests), the AOS engines were ported in the kernel space of the Kalray
Linux.

The driver skeleton consists of the creation of a new driver in the Kalray Linux, the
factorization of some of the IOCTLs, finding the proper sequence for initializing the AOS
driver at Linux boot time and the deployment of the AOS micro-firmware for efficient
scheduling of AOS jobs as in Algorithm 4. The user-space library performs the required
IOCTLs to invoke in kernel space (in the driver) the AOS services.

AOS Engines in Linux Kernel Space Most of the work consisted in porting in the
Linux kernel space the one-sided and two-sided operations of AOS namely, the RDMA
Put/Get operations, the remote queues and the remote atomic operations. The biggest
challenges were to deal with the virtual memory address space and the Kalray heteroge-
neous Linux memory map. The DMA NoC interface does not support IOMemory Man-
agement Unit (MMU). The translation between the virtual memory and physical memory
for initiating DMA NoC data transfers has to be managed by software. The transla-
tion between the virtual and physical address space is done in the kernel space using the
virt_to_phys function once the address virtual address has been retrieved in the kernel
space. Also, a Continuous Memory Allocator (CMA) allocator is provided for dealing with
continuous memory space for efficient big memory buffer data transfers. Otherwise, buffers
are split across the paged virtual memory space and a lot a software overhead is added as
there is no IOMMU support in the Kalray DMA NoC interface.

5.6.2 Extensions and Support of the Standard
async_work_group_copy() in the Kalray OpenCL

As seen in section 4.1.3, the OpenCL standard defines primitives providing explicit memory
accesses between the __global memory address space and the __local memory address
space. Our new designed AOS engine provides the necessary back-end to implement those
standard primitives of OpenCL efficiently. Indeed, the AOS library implements out-of-the-
box the required primitives to support standard OpenCL functions: “async_work_group_copy()”
and “async_work_group_strided_copy()”.

The Kalray’s OpenCL runtime operates at low-level (bare-hypervised), as such, most of
the work was to initialize the AOS engine in the initialization part of the OpenCL runtime.
The most complicated part was the interoperability of the AOS engines and the Distributed
Shared Memory (DSM) systems, regarding resource sharing and boot synchronizations. In

92
Fundamental Mechanisms for Communications and Synchronizations in Distributed

Computing

collaboration with Romaric Jodin, as the AOS primitives are part of the low-level runtime,
we also had to expose these new primitives, and allow them to be called from OpenCL-C
kernel. Indeed, OpenCL kernels that are deployed inside the CCs are loaded dynamically;
thus, the relocation is performed using a dynamic overlay.

Finally, the new support of asynchronous copies in the Kalray OpenCL is now provided
with extensions such as 2D and 3D asynchronous buffer copies. Moreover, batched and
arbitrary stride-to-stride transfers are also available and part of the Kalray extension. As
explained in Section 5.3.6, these functions provide zero-copy asynchronous memory trans-
fers. They are fundamental for performance optimizations on a manycore architectures
where the time to access the main memory is high.

Today, async_work_group_copy primitives are the state-of-the-art of the optimiza-
tion of OpenCL applications onto MPPA®. Indeed, the asynchronous work-group-copy
primitives allow the application developer to pre-fetch data from the __global memory
space to the __local memory space to overlap the computations with the communications.
The async_work_group_copy primitives give the ability for the developer to bypass the
Distributed Shared Memory (DSM) system which yields poor performances when memory
access patterns are sparse at the L2 cache geometry. Also, as the Distributed Shared Mem-
ory (DSM) system is write allocate at L2 level (contrary to the L1, see Section 4.5.1), it
reduces by half the consumed memory bandwidth on write-only memory buffers. As such,
the new free bandwidth can be used for other memory transactions, either by Load/Store
using the Distributed Shared Memory (DSM) or explicitly using the new asynchronous
work-group-copies.

5.7 Conclusion

We present the design and illustrate the advantages of a one-sided asynchronous (AOS)
communications and synchronizations programming library for the Kalray MPPA® pro-
cessor. The motivation is to apply to this and related CPU-based manycore processors
the established principles of one-sided communications libraries of supercomputers, in par-
ticular: the Cray SHMEM library, the PNNL ARMCI library, and the MPI-2 one-sided
communication API subset. The main difference between these communication libraries
and the proposed AOS library is that a supercomputer has a symmetric architecture, where
the compute nodes are identical, and the working memory is composed of the union of the
compute node local memories. Similar to Infiniband low-level API, the AOS programming
library supports the Read/Write, Put/Get and Remote Atomics protocols, but these have
been designed around the capabilities of an RDMA-capable NoC.

One-sided asynchronous operations are proven to be highly efficient on the MPPA® NoC
thanks to relaxed ordering and easier to use as the initiator is a master on the target
memories. Indeed, one-sided communications do not require strict matching whereas the
Send/Receive operations do in the two-sided protocol. Our software implementation can
sustain more than 70% of the hardware peak throughput when using RDMA Put-Get en-
gines for data transfer sizes greater equal than 8 KB. However, managing resource sharing,
flow-control, arbitration and notifications in software has limitations in terms of latency.
Based on this implementation and its results, the forthcoming 3rd-generation MPPA® pro-
cessor will include hardware accelerations for these critical functions. Very low-latency
transfers and peak throughput on small transactions will be obtained, along with respect-
ing important ordering properties for the global memory consistency.

This communications and synchronizations runtime not only provides the user with the
best performance on this hardware. It also hides the DMA NoC interface complexity to the

Conclusion 93

programmer without any penalty in efficiency. As explained in Section 5.1, multiple chal-
lenges are solved such as complex N-to-N flow control, resource sharing, abstraction of the
target processor architecture, and implicit synchronization at memory segment creation.
These provide significant ease for the programmer.

The AOS communication and synchronization library [HdDdMH17] has been deployed
in production in the MPPA® AccessCore toolchain since 2017. It supports diverse appli-
cation programming of the MPPA® processor for a range of low-level and in high-level
programming environments such as OpenCL, OpenMP, OpenVX (Chapter 9), execution
back-ends for static (Chapter 7), and dynamic dataflow (Chapter 8), programming mod-
els. The AOS library is also used by Kalray’s optimized application libraries like the BLIS
[VZVDG15] framework for high-performance Basic Linear Algebra Subprograms (BLAS),
and it is targeted by code generators such as for CNN inference. In 2018, AOS was also
deployed in Kalray’s networking solutions as one of the foundations for reaching IOPS
performance for NVMe use-cases [BYY+16].

94
Fundamental Mechanisms for Communications and Synchronizations in Distributed

Computing

CHAPTER 6

A Highly Efficient Multi-threading Runtime

In this chapter, we introduce and provide a new runtime for managing at low-level the
threads running on a multi-core processor with shared local memory. The performance
of such a multi-threading runtime is crucial, especially when fine-grained parallelism is
required. Our New Multi-Threading Runtime (NMTR) is based on lock-free mechanisms
[Bar93] [MP92], known to be effective for the implementation of Operating System (OS)
kernels, and efficient parallel implementations. In this chapter, we use these techniques to
implement a lightweight runtime, adapted to the targeted architecture fitted with shared
local memories. These shared local memories support atomic operations in hardware as
seen in Section 4.5.4. We explain in this chapter the various implementations of functions
and mechanisms operating on the multi-core Central Processing Units (CPUs) of the Multi-
Purpose Processor Array (MPPA)® processor, namely the 2 Input/Output Subsystems
(IOs) and the 16 Compute Clusters (CCs). This contribution provides the programmer
of the multi-cores with less scheduling and synchronization overheads compared to the
state-of-the-art multi-threading runtimes.

The chapter is organized as follows. We present in Section 6.1 the issues to be solved
to make the toolchain of the targeted manycore compatible with multi-threading, and the
limitations of the target processor when standard codes are executed. Section 6.2 presents
in details the new multi-threading runtime and gives the most essential algorithms that
were designed to enable efficient multi-threading. The synchronization primitives used by
the runtime are presented in Section 6.3, and the multi-thread cooperative scheduler is
explained in Section 6.4. In Section 6.5, we provide keys to enable OpenMP based on the
GNU Compiler Collection (GCC) libgomp runtime back-end and optimize it. We reduce
the used memory of the OpenMP runtime library when its use is ended at the application
level. The MPPA® OpenMP runtime of GCC libgomp depends on our new multi-threading
runtime. Section 6.6 explains a new multi-threading mode based on automatic thread
yielding onto Direct Memory Access (DMA) job event completion. Section 6.7 presents
experimental results evaluating the effect of our contributions on the runtime performances
and gives hints to enhance this new multi-threading runtime on MPPA®.

96 A Highly Efficient Multi-threading Runtime

6.1 Controlling and Enabling Threads for a Non-Coherent

Multi-core CPU

The threads are usually managed by a master thread or any other threads having access
to the credential or reference to these thread resources. The control of threads is ex-
plained in Section 3.1.2, using the Pthread standard. Our New Multi-Threading Runtime
(NMTR) provides the most commonly used thread management functions and enables effi-
cient and generic fined-grained multi-threading (e.g., thread creation, synchronization, and
semaphores). The internal low-level functions of the runtime are then exposed using the
standard Pthread Application Programming Interface (API) that we implemented.

In the targeted toolchain, the Pthread function definitions are given in the newlib open-
source library [new]. The newlib is usually built before the final compiler for the targeted
machine. As such, newlib provides the definition of most runtime functions or services
such as syscalls, input-output operations, errno, memory allocator and the Pthread API
definition (a bunch of .h standard files). Our NMTR then implements the Pthread API.

The support of Pthread functions makes it possible to run most Linux multi-threaded
applications on a single multi-core Central Processing Unit (CPU) of the Multi-Purpose
Processor Array (MPPA)® which is either an Input/Output Subsystem (IO) or a Compute
Cluster (CC). However, out-of-the box multi-thread programs commonly assume a coher-
ent memory hierarchy. As the Compute Clusters (CCs) of the MPPA® processor do not
support a coherent memory hierarchy, the software runtime performs cache management
operations at synchronization points, providing software coherency for most multi-threaded
programs. However, an off-the-shelf lock-free multi-threaded software, written for perfor-
mance, will not work as it usually requires a coherent memory hierarchy.

6.2 Implementation of the New Multi-Threading Runtime

In this section, we present the diverse states of the thread resource in Section 6.2.1. For
performance, the management of false positive, and masked interrupts are explained in
Section 6.2.2. Section 6.2.3 presents the basic primitives that are used to control the
thread execution.

6.2.1 Logical Thread States

Each executing thread is in a state or a transition at some point during its execution. At
the start, threads are pre-booted by the runtime and placed in the idle state. Figure 6.1
shows the typical states of a thread in our NMTR. The states of threads represented in
Figure 6.1 are a coarse-grained simplification of the actual thread implementation. Details
of the actual thread states and their implementations are explained in Section 6.2.

Implementation of the New Multi-Threading Runtime 97

Running

Joinable

Idle

Exiting
- creation

- condition evaluation

- exit

- return

clear

wake-up
- memory free

- thread slot free

- user join

- yield

- synchro. locked

Figure 6.1 – Specific States & Transitions of Threads in the NMTR

6.2.2 Dealing with System False Positives and Masked Interrupts

In this section, difficulties to achieve high-performance implementation for our NMTR
are exposed. The problem of interrupts is explained and hints to overcome this issue are
suggested. Solutions are then adapted to our proposed NMTR.

An interrupt is an external event that stops the current execution of the running thread,
to make it switch to another function handler. An interrupt handler is usually a short
procedure. However, the Operating System (OS) must perform a full context switch.
When the interrupt handler completes, the initial thread is resumed.

Interrupts Issues

Interrupt-based systems are widely used in computer systems for dealing with external
events. As such, interrupts trigger actions, possibly when one or several events occur at
some point during the execution. On a large system, many events can happen during the
execution. Therefore, dealing with interrupts usually leads to poor performance, because
of the following four issues:

1. Instruction and data cache stalls (misses) due to a loss of locality as the core switches
to other handlers.

2. Core context switch. Additional latency is due to the spilling of the entire register file
memory and reloading another context from memory. Depending on the operating
system, multiple switches between the user-space and kernel space must take place.

3. The aggregation of several interrupts in the same interrupt handler that requires
additional software control. The core needs to find out what happened: overhead.

4. Thread management overhead. Each thread may be blocked on one or several con-
ditions which must be checked by the scheduler: more overhead.

In high-performance computing, interrupts are known to be the wrong approach for the
implementation of effective control of fined-grained external events [CAR14]. For latency
optimization, experts would instead use polling to react faster. Furthermore, in the Linux
kernel space, such polling mechanisms with disabled interrupts are used to make low-
latency time reaction possible. However, limitations can be reached on such “best effort”
implementations regarding real-time computing.

98 A Highly Efficient Multi-threading Runtime

System Masked Interrupts & False Positive

Interrupts can be masked; if this is the case, nothing happens for the core when the
interruption occurs. Indeed, the core does not switch to an interrupt handler when the
interruption occurs. Masked interrupts consist in waking the core up if it was idled when
an external event is generated by one of the following initiators: Direct Memory Access
(DMA), Peripheral Component Interconnect Express (PCIE), Input/Output Subsystem
(IO)-Memory Management Unit (MMU) or any other IO device. Instead of switching to
an interrupt handler, the core polls the memory or the peripherals for an event. In most
OSs, such mechanisms can only be performed in kernel space as they require atomicity,
ordering, and the control data must be centralized.

Another issue is the handling of false positives. False positives may happen when cores
(Processing Elements (PEs)) share the same events of external resources. In this case,
when the cores are awakened, they must be robust to data races in control structures and
manage the hardware resource sharing correctly. For performance, locks are prohibited,
and we use states (shared data) in memory to perform decisions. These states in memory
are usually multiple readers and a single writer. At worst, a lock-free atomic operation
is used when multiple writers need to perform atomic updates on some particular data
structures in memory. Therefore, the main requirements are always to guarantee atomicity
and commit order regarding the handling of the completion of external events. Also, the
aggregation of events must be performed to avoid the loss of events. The technique consists
of processing every pending request before deciding to idle the core, only in this order. The
core goes out of idle state when new external events occur.

6.2.3 Thread Control

As seen in Section 3.1.2, the pthread_|create|join| yield|exit| primitives are suffi-
cient to control the threads. We implemented these functions on the user-space side to
make them light and efficient. Indeed, these functions use neither syscalls nor interrupts
which can have a significant overhead.

All of these functions are lock-free. On massively parallel architectures, an efficient low-
level software is achieved using lock-free software implementation when possible. Indeed,
when a lock mechanism is used on a congestion state, the latency in cycles of the critical
section is given by the number of cores multiplied by the number of cycles of the critical
section itself and the latency to take and release the lock when it is available.

The thread object is an opaque pointer from the programmer point of view. Opaque
pointers hide the implementation of the object. Many software libraries use such a tech-
nique to hide the manipulated objects from the programmers, like the newlib [new] or most
APIs of the well-known Khronos consortium.

We provide the pseudo-code of our implementation of the NMTR in Algorithms 6, 8,
and 9. Behavioral and implementation details for all the referenced algorithms are also
given.

Thread Creation

The creation of threads is a fundamental operation of the NMTR. This procedure let
the programmer execute a function handler onto a PE, for parallel computing. In our
NMTR, the thread creation function is always called at the user level, providing competitive
performance.

Implementation of the New Multi-Threading Runtime 99

The entry point of the main program is executed on the first PE of each multi-core
CPU of MPPA®, which is in our case the CC or the IO. As explained in Section 2.3.2,
CCs have 16 PEs, and IOs have 4 Resource Managers (RMs), denoted NB_CORES.

On each PE, it is currently possible to execute up to 4 software threads, denoted
NB_SOFT. There is neither preemption mechanism nor thread migration, meaning that
the threads are cooperatively executed on the PE to which it is assigned. The cooperative
execution means that there is no preemptive scheduling. The PE releases the running
thread only on some specific thread management functions that are explained below in
this chapter.

The pseudo code for creating threads from any cores is given in Algorithm 6. This
algorithm takes as inputs the address of the function to be executed, the address of the
data given to this function, the core ID in the range [0 ... (NB_CORES -1)], and a selection
mode that either specifies the core to which the function should be executed or choose the
core with fewer threads (AUTOMATIC_SELECTION).

The output of the algorithm is an opaque thread object that contains:

• The ID of the core to which the thread is pinned.

• The ID of the software thread running on this core.

• The state of the thread, such as idle, running, exiting or joinable.

• The ID of a slot in a pre-allocated array to store some internal information related to
the thread, such as the stack address, the Thread Local Storage (TLS) address, the
user callback address, and the architectural states of the k1-Very Long Instruction
Word (VLIW) core.

When the Selection_Mode input is set to automatic (AUTOMATIC_ SELECTION),
the core calling the thread creation algorithm selects the first available thread slot, in order,
concerning the number of hardware core. A thread slot is an idle soft-thread resource on
a hardware PE that is waiting to execute a function handler.

The main thread operates on core 0 slot 0, which is the entry-point of the program
running on the multi-core CPU. When creating threads in automatic mode, this main
thread selects new thread resources to be placed on a core in the following order: Slot
0 core [1 ... (NB_CORES -1)], Slot 1 core [0 ... (NB_CORES -1)], Slot 2 core [0 ...
(NB_CORES -1)], Slot 3 core [0 ... (NB_CORES -1)]. A very efficient implementation
is to use the count-trailing-zero1 instruction followed by a compare-and-swap2 to update
atomically and concurrently the thread array element of bits, in a lock-free manner (see
Line 15 of Algorithm 6).

The streaming loads (uncached) and atomic operations (uncached) are explained in Sec-
tion 4.5.4 for the k1-VLIW core. In the described algorithms, the compare-and-swap atomic
memory operation has the following semantic: boolean = compare-and-swap(old_value,
new_value). For the implementation of both the IO and the CC, the k1-VLIW atomics
have the same effect as uncached memory operations, as explained in Section 4.5.4.

Thread Yield

The yield operation let the programmer put the calling thread in idle state. The current
thread is placed in idle state and ready to be rescheduled once other threads operating on

1Standard GNU Compiler Collection (GCC) builtin: __builtin_ctz
2Standard GCC atomic: __atomic_compare_exchange

100 A Highly Efficient Multi-threading Runtime

Algorithm 6 Thread Creation Algorithm (this is a thread safe algorithm).

1: init: 64bit_slot_mask_addr = ∼(((∼0ULL) << (NB_SOFT*NB_CORES)) | 1)
64bit_slot_obj_alloc_addr = ∼0ULL

2: Input: Function_data_addr, Function_addr, Selection_Mode, Core_ID
3: Output: Thread_Object { Core_ID, Thread_ID, Core_State,

Static_Memory_Slot_ID }
4: Static Thread_Object_Table[NB_CORES * NB_SOFT]
5: slot_mask = load-uncached(&64bit_slot_mask_addr)
6: slot_object_alloc_mask = load-uncached(&64bit_slot_obj_alloc_addr)
7: while true do
8: if slot_mask == 0 then
9: Return failure, no thread slot available

10: end if
11: if Selection_Mode != AUTOMATIC_SELECTION then
12: slot_mask &= ((1ULL<<(3*NB_CORES)) | (1ULL<<(2*NB_CORES)) |

(1ULL<<NB_CORES) | (1ULL)) << Core_ID
13: end if
14: Thread_ID = count-trailing-zero(slot_mask)
15: if compare-and-swap(&64bit_slot_mask_addr, slot_mask,

slot_mask & (∼1ULL<<Thread_ID)) then
16: break
17: end if
18: slot_mask = load-uncached(&64bit_slot_mask_addr) /* Let’s retry */
19: end while
20: while true do
21: if slot_object_alloc_mask == 0 then
22: /* Always success, enough memory and atomic */
23: Thread_Object = dynamic alloc heap with libc
24: break
25: else
26: Slot_object_alloc_ID = count-trailing-zero(slot_object_alloc_mask)
27: if compare-and-swap(&64bit_slot_obj_alloc_addr,

slot_object_alloc_mask,
slot_object_alloc_mask & (∼1ULL<<Slot_object_alloc_ID)) then

28: break
29: end if
30: end if
31: slot_object_alloc_mask = load-uncached(&64bit_slot_obj_alloc_addr)
32: end while
33: Thread_Object = { .Core_ID = Thread_ID % NB_CORES,

.Thread_ID = Thread_ID, .Core_State = Created,

.Static_Memory_Slot_ID = Slot_object_alloc_ID }
34: Streaming-store to write core context in the Thread_ID slot (Function_data_addr,

Function_addr, Thread_Local_Storage_addr, Thread_Stack_addr)
35: Write memory barrier /* Stalls the core until all write accesses are completed */
36: Streaming-store to write Runnable state to the Thread_ID slot
37: Write memory barrier /* Stalls the core until all write accesses are completed */
38: Broadcast notify to all PEs
39: Return success

Implementation of the New Multi-Threading Runtime 101

the same core are idled, at the exception of the main thread to prevent deadlock. Also, if no
other software threads are running on the core, it means that only one thread is currently
running on the hardware core, thus, the yield operation simply goes to the scheduler, and
the scheduler immediately reschedules this yielding thread.

The yield operation is given in Algorithm 7. Before calling the cooperative scheduler,
all callee-saved registers, plus other registers such as the stack pointer, the return address,
the frame pointer for the debugger, the Thread Local Storage (TLS) pointer (__thread
attribute to variables as seen in Section 2.4.2) and the Global Offset Table (GOT) pointer
for Position Independent Code (PIC) code are stored in the stack. A basic rule of a thread
re-scheduling is that the core must retrieve the same state that it has, before the context
switch procedure.

Algorithm 7 Thread Yielding (this is a thread safe function).

1: Comes from the user code
2: Broadcast notify to all PEs /* Avoid deadlock when one thread runs on this core */
3: Get the Stack pointer in the core context
4: Decrement the Stack pointer by the size of the register file
5: Write core registers’ content at the Stack pointer address (save context)
6: Call the cooperative scheduler
7: Get the return value of the scheduler which is the current thread’s Stack Pointer
8: Read the new core context from memory at the Stack pointer (restore context)
9: Increment of the Stack pointer by the size of the register file

10: Goes to the user code

We benchmarked the low-level primitive for yielding a thread in a CC of MPPA® at
204 machine cycles. All Load/Store operations have been programmed as uncached to pre-
fetch data in advance and eliminate L1 misses during the context switch and for accessing
the shared variables within the scheduler.

Thread Exit or Return

The thread exit or return allows the programmer to terminate the running thread. This
operation changes the thread to the Finished state and calls the yield operation.

The NMTR commits all pending writes in the memory and updates the user-space
thread object to Finished state. Then the scheduler, explained below in Section 6.4, cleans
and removes the thread from the internal slots (compare-and-swap).

When the scheduler is called, the scheduler sets the state of thread object structure
to Exiting state. The Exiting state of a thread makes the join operation possible of the
thread object structure. The join operation is explained below.

The exit function is either explicitly called by the calling user thread or implicitly called
when the user thread function returns. Once the thread becomes joinable, no interactions
between the scheduler and the joinable thread are visible. Indeed, the user-space opaque
thread structure contains all the required information for the join operation.

Thread Join

The join function allows any threads that own the thread structure address to join the
exited thread. The join operation has a synchronization effect with the joined thread,
as well as memory consistency maintenance between the joined threads and the thread
initiating the joining operation.

102 A Highly Efficient Multi-threading Runtime

Algorithm 8 Thread Join (this is a thread safe function).

1: Input: Thread_Object { Core_ID, Thread_ID, Core_State,
Static_Memory_Slot_ID }

2: Core_State = load-uncached(&Thread_Object.Core_State)
3: Memory_Slot_ID = load-uncached(&Thread_Object.Static_Memory_Slot_ID)
4: slot_object_alloc_mask = load-uncached(&64bit_slot_obj_alloc_addr)
5: while Core_State is not Joined do
6: if Core_State is Exiting then
7: while true do
8: if compare-and-swap(&Thread_Object.Core_State,

Core_State, Joined) then
9: if Memory_Slot_ID is dynamic then

10: Free Memory_Slot /* Always success and atomic */
11: goto exit_success
12: end if
13: while true do
14: new_slot_object_alloc_mask =

slot_object_alloc_mask | (1ULL<<Memory_Slot_ID)
15: if compare-and-swap(&64bit_slot_obj_alloc_addr,

slot_object_alloc_mask, new_slot_object_alloc_mask) then
16: goto exit_success
17: end if
18: slot_object_alloc_mask = load-uncached(&64bit_slot_obj_alloc_addr)
19: end while
20: else
21: goto exit_success
22: end if
23: end while
24: end if
25: Call Yielding to release the core (See Algorithm 7) /* Thread is running */
26: Core_State = load-uncached(&Thread_Object.Core_State)
27: end while
28: Label exit_success: Return success

Synchronization Primitives 103

6.3 Synchronization Primitives

Synchronizations are unavoidable in parallel computing to satisfy multi-core Read-After-
Write (RAW) data dependencies. The efficiency of the synchronization primitives is one
of the keys to enable competitive multi-threading at fine-grained. Algorithm 9 shows the
architecture of the synchronization primitives. These primitives are usable at low-level by
the NMTR or using the pthread API for the barriers, mutexes, and semaphores.

Algorithm 9 Synchronization Primitive Algorithm (this is a thread safe function).

1: init: The memory updated atomically is already initialized and consistent
2: Input: Opaque Object Address
3: Write memory barrier /* Stalls the core until all write accesses are completed */
4: while true do
5: boolean = Execute in memory an atomic operation /* Lock-free for performance */
6: if boolean is true then
7: break
8: else if is an asynchronous call then
9: Return try again flag

10: end if
11: Call the yield operation /* the scheduler is called */
12: end while
13: Full memory barrier /* Stalls the core until all read/write accesses are completed */
14: Broadcast notify to all PEs /* force all core to re-evaluate conditions */
15: Return success

Firstly, the CPU commits in memory all pending outstanding writes. The core uses a
write memory barrier to make it possible (see Line 3 in Algorithm 9).

Secondly, the synchronization function attempts to perform an atomic modification in
the memory (see Line 5 in Algorithm 9), on failure, the CPU either yields to another
software thread if any or return to the user the try-again information for later calls.

Finally, upon success, the CPU executes a broadcast notification to wake-up all poten-
tial PEs waiting to be unlocked by the memory modification performed with a lock-free
atomic operation (see Line 14 in Algorithm 9).

As the k1-VLIW core lacks memory coherency support, the runtime invalidates by
default the L1 data cache when a lock is taken, when a semaphore token is taken, and
when a barrier is completed. Indeed, the lack of hardware L1 data cache coherency means
that the software must make sure that future Loads (Reads in the local shared memory)
see the modifications of the writes in memory of other (physical) PEs or DMAs.

6.4 Cooperative Scheduler

The cooperative scheduler makes it possible to run several logical threads on a single core.
When a thread is created, it is placed in one of the internal thread slots. The hardware
core can execute up to NB_SOFT threads in a cooperative multi-threading mode. Unlike
preemptive scheduling, cooperative scheduling makes the multi-threading very efficient as
there are no interrupts. Interrupt issues are explained above in Section 6.2.2.

Each time the thread creation Algorithm 6 creates a new thread, the thread is placed
in an internal thread slot and marked as runnable for NMTR. When the PE calls the

104 A Highly Efficient Multi-threading Runtime

scheduler presented in Algorithm 10, it will schedule one of the runnable threads whenever
a specific condition is satisfied. These conditions are explained in Table 6.1.

When executing the scheduler code, the core operates on the stack of the calling thread
of the scheduler (this is not preemptive scheduling). Currently, there are no stack overflow
checks; however, as stacks are setup at boot time (known by the NMTR), it is possible to
check their current state each time the core enters the scheduler. It could also be possible
to protect the stack using the MMU feature of the core; but, it was not done due to the
lack of time and work priorities.

Algorithm 10 Cooperative Scheduler Algorithm (this is a thread safe function)

1: Input: an opaque Event, Thread_Object { Core_ID, Thread_ID, Core_State,
Static_Memory_Slot_ID }

2: if Thread_Object.Core_State is Finished then
3: /* Thread Returned or Exited */
4: while true do
5: slot_mask = load-uncached(&64bit_slot_mask_addr)
6: Thread_ID = count-trailing-zero(slot_mask)
7: if compare-and-swap(&64bit_slot_mask_addr, slot_mask,

slot_mask | (1ULL<<Thread_ID)) then
8: break
9: end if

10: end while
11: Write memory barrier /* Stalls the core until all write accesses are completed */
12: Broadcast notify to all PEs
13: Streaming-store to write Exiting State to Thread_Object.Core_State
14: Broadcast notify to all PEs
15: end if
16: /* Cur_Slot_Thread in range [0 ... NB_SOFT - 1] */
17: Cur_Slot_Thread = Threads_ID / NB_CORES
18: Nb_Soft_Thread = NB_SOFT - 1 /* to support core idle */
19: while true do
20: for i in (Cur_Slot_Thread+1) ... (Cur_Slot_Thread + Nb_Soft_Thread) do
21: New_Thread_ID = (i % NB_SOFT)*NB_CORES+Thread_Object.Core_ID
22: if New_Thread_ID is Runnable then
23: if New_Thread_ID event is NULL then
24: Return success and Return New_Thread_ID stack pointer
25: else if Specific test event handler on Event is true then
26: Return success and Return New_Thread_ID stack pointer
27: end if
28: end if
29: end for
30: Nb_Soft_Thread = NB_SOFT /* Will need to check all soft threads now */
31: Core idle state /* Woken-up by the doorbell */
32: end while

Scheduler: Condition Invocation

NMTR operates using a cooperative scheduling policy. Therefore, the scheduler is called
only at some specific points in NMTR. These points are listed and explained in Table

Cooperative Scheduler 105

6.1. When the scheduler is called from a thread, the scheduler tries to run another thread
assigned to this core, if any exists. The thread calling the scheduler is then re-scheduled,
if the condition (see Table 6.1) that made it yielded before, becomes true.

Table 6.1 – Scheduler Condition Call on Standard Primitives for Cooperative Multi-Threading

Standard Primitive Scheduler Condition Call

pthread_yield
On the primitive call
as it release the CPU

pthread_mutex_lock
On the primitive call, if the lock

is already taken

pthread_barrier_wait
On the primitive call, if the number of

contributors to the barrier
is not reached

sem_wait
On the primitive call, if the semaphore

do not have any available
tokens

pthread_cond_wait
On the primitive call, if the condition

is not satisfied (blocked)

pthread_exit
On the primitive call, the thread is destroyed

unconditionally

Thread handler returns
In C/C++ on the return statement, the thread is destroyed

unconditionally

Another specific case for calling the scheduler is right after the boot and initialization of
our new NMTR. The scheduler is called on all cores not running the main() function. Then,
if a new thread is created by the programmer, the selected idling core will immediately
take this new thread and schedule it.

Scheduler: Condition of Thread Scheduling

The scheduler is local to each PE. Each thread is pinned to a unique PE. The scheduler
executes threads in Round Robin (RR) policy. It executes the pinned threads in run-to-
completion mode if any. The thread is descheduled only when it encounters one of the
primitives explained in Table 6.1. When no threads are runnable for a given core, the core
goes in the idle state. To avoid deadlocks (non-progress of any resources), it is important
that the core checks all states of threads assigned to this core, before switching to the idle
state.

Our newly NMTR makes it possible to associate an event to a specific condition (see the
input of Algorithm 10). If this event is NULL (empty) and the selected thread is runnable,
the thread is elected. If the event is not NULL and the selected thread is runnable, then a
specific condition is evaluated. This mechanism enables conditioning of the schedulability
of a thread on a predefined event occurrence. Indeed we use this feature for enabling thread
activation on DMA transfer completions. Custom events can be built with user-defined
conditions in memory or with other external events.

106 A Highly Efficient Multi-threading Runtime

6.5 Using NMTR to Enable OpenMP Multi-Threading

Our new NMTR makes it possible to run an OpenMP multi-threading runtime, thanks to
the provided set of features of our contribution. The needed features are the support of
thread creations, the semaphores, and the mutexes.

6.5.1 Configuration & Architecture

The libgomp module of the GNU Compiler Collection (GCC) project has been avail-
able since 2006. In Section 6.1, our newlib library is a dependency when building the
GCC compiler for generating code for the k1-VLIW processor. As presented in Section
2.3.2, the Compute Cluster (CC) is composed of 16 user PEs, and the Input/Output
Subsystem (IO) is composed of 4 RMs with a shared L1 data cache. The OpenMP lib-
gomp runtime back-end of GCC uses the sysconf POSIX standard primitive with the
_SC_NPROCESSORS_ONLN argument to request the runtime for the number of avail-
able threads. By default, we return NB_CORES in both the Input/Output Subsystem
(IO) and Compute Cluster (CC) of the MPPA® processor, respectively 4 and 16.

The definition of the Pthread API within the newlib library allows the GCC compiler
to build the OpenMP runtime. Indeed we use the Pthread execution back-end, based on
the Pthread API, to make OpenMP multi-threading possible.

Build of the new

multi-threading

runtime

Build of

the GCC

bootstrap

Build

of the

newlib

Buid and test

GCC Testsuite

C/C++/Fortan

Build and unitary

test for pthread

and OpenMP

Build of the

libgomp for the

OpenMP Runtime

Figure 6.2 – Build and Test Process for the Integration of the
New Multi-threading Runtime in the Software Toolchain

In Figure 6.2, the process for building and testing the new multi-threading runtime is
presented. First, the GCC is built for generating code for the k1-VLIW core. Then, the
newlib and our new multi-threading runtime are compiled. Finally, the OpenMP runtime
is built and validated. All of these steps are run automatically each time a developer
contributes to the project, integrating all of these tools and runtimes to avoid regressions.

6.5.2 Internal Contributions to GCC libgomp

The OpenMP runtime back-end of GCC, based on the POSIX threads, creates threads using
the pthread_create primitive. For performance issues, the OpenMP runtime neither joins
nor destroys the created threads. As such, the libgomp places the thread in a wait mode
(sem_wait) when a parallel region is ended. On the Linux system, this is not a problem
as the memory is usually at least a gigabyte, which means that hundreds of threads can
be run. Also, the Linux system can clean up the threads and their used memory when the
process is exiting (either on failure or success).

The NMTR does not implement the threads and memory clean up. If the threads
started by the OpenMP runtime need to be recycled to do other things, they have to be
joined and the memory they used must be freed in order to be recycled for later use. Freeing
the memory let the user run legacy OpenMP code at some point, and starts new Pthread
threads without using any additional memory. For OpenMP performance, the threads can
be left in idle mode, ready to compute the next parallel region.

Auto-threading: Automatic Thread Scheduling on RDMA Completion 107

Destruction of the Parallel Region Threads

The standard OpenMP libgomp runtime of GCC has been modified to make the join-
ing of threads possible. The OpenMP runtime already implements an internal primitive
called the gomp_free_thread that makes the master of the OpenMP Team (master of the
OpenMP parallel region) send exit messages to the threads of the parallel region. Each
master thread stores information about the number of threads that were created for the
parallel region in the TLS (See Section 2.4.2). In this TLS memory section, we save the
pthread_t opaque pointers that reference the created threads by the OpenMP runtime.
On gomp_free_thread call, we then iterate on the saved referenced threads and call the
pthread_join primitive on these threads, to clean up all the used memory areas.

Thanks to this contribution, we can now mix OpenMP and pthread multi-threading
without any extra memory usage such as the internal stack of threads or thread reference
structures. In local memory-based processors, the on-chip memory is scarce and needs to
be efficiently managed to reduce the main memory bandwidth, which is one of the main
bottlenecks on such chips.

Optimization of the OpenMP Runtime

Another contribution to this runtime for efficient OpenMP is the implementation of a
static pool of POSIX synchronization objects that are intensively used by the OpenMP
libgomp runtime, each time the master thread encounters an OpenMP parallel region. We
implemented a pool of statically allocated mutexes and semaphores, each composed of 32
slots. The allocation and freeing of these resources is performed using a lock-free mecha-
nism based on a 32-bit variable updated atomically by compare-and-swap instructions in
memory as in previous algorithms. Each bit set to 1 represents a free slot. When no static
slots are available, the runtime automatically switches to the dynamic allocator provided
by the newlib library, which is thread-safe.

6.6 Auto-threading: Automatic Thread Scheduling on RDMA

Completion

Almost all applications optimized for the MPPA® processor and other DMA-enabled ar-
chitectures try to overlap communications and computations. To do so, N-buffering tech-
niques are used [ZK06], but they are complicated to implement and validate in real-life
applications. Indeed, the explicit writing of software asynchronous DMA transfers by hand
is tedious and error-prone.

The contribution presented in this section aims to automate the classical double or
N-buffering technique of DMA-enabled architectures. The N-buffering technique makes
the overlapping of data communications and computations possible. This contribution is
inspired by the hyper-threading technology of CPUs (task-parallelism) or hardware multi-
thread of Graphics Processing Units (GPUs) (data-parallelism).

Our contribution instead operates at coarser granularity, as the yielding and re-scheduling
operations of a thread is within the hundred of machine cycles whereas, for traditional CPUs
and GPUs, it is within the machine cycle. A practical consequence is that memory trans-
fers must be big enough to cover to software overhead of context switching. To understand
this section, it is advised to read Chapter 5. The contribution presented in this section
is based on the Asynchronous One-Sided (AOS) API and runtime, that are presented in
Chapter 5.

108 A Highly Efficient Multi-threading Runtime

6.6.1 Auto-threading: Design and Implementation

The auto-threading mechanism requires support in both our new NMTR and Remote
Direct Memory Access (RDMA) communication runtime. As such, the two runtimes need
to be compatible with each other. As seen in Section 5.3.3 (AOS library in Chapter 5)
in Algorithm 3, it is possible to yield instead of idling the core when the AOS event
completion operation is not completed. Firstly, the weak dependency between the two
runtimes is explained. Secondly, a typical use-case implementing the automatic yield onto
RDMA is presented.

Enabling the Feature with Weak Dependency

Weak dependencies let the developer add objects in an Executable and Linkable Format
(ELF) statically and efficiently. In a compiled object file, a ’weak’ dependency symbol 3 is
resolved at compile time statically if the symbol exists within the list of object files given to
the linker. If not, the symbol is set to NULL statically. It makes it possible to add statically
linked functions to object file very efficiently (the function pointer becomes immediate in
the final ELF), and it is configured using the following link flag -Wl,–defsym=foo=toto
where ’foo’ will take the ’toto’ address (case of the GNU Compiler Collection (GCC)
linker). With such mechanisms, it is possible to either activate or deactivate at link time
some features that are in the hot text path (.text).

A ’weak’ dependency function has been implemented in our NMTR that can be over-
loaded at link time of the ELF.

Interaction with the Asynchronous One-sided Communication Engine

As this ’weak’ dependency function is in the multi-threading runtime, the call to the test
event function of the asynchronous one-sided API is now possible whenever the user wants
to enable it. The call to the function can be seen in Algorithm 10 at Line 25. This function
is called to test if a thread shall be re-scheduled or not. The thread becomes schedulable
when the data requested by the Asynchronous One-Sided (AOS) communication library
is returned and consistent in the memory. If not, the scheduler continues to test events
and goes into the idle state when all potential NB_SOFT events are tested unsuccessfully.
Each time an event pops in memory or the DMA Network on Chip (NoC) interface, the
PE goes out of the idle state of the scheduler, and the PE tries again to test all potential
NB_SOFT events.

Thanks this feature, it is possible to write N-buffering techniques automatically only
by using more threads on a single core (NB_SOFT = 4 threads at most). We provide a
C example in Figure 6.3 to show how to use it in real-life application.

3https://gcc.gnu.org/onlinedocs/gcc-4.7.1/gcc/Function-Attributes.html

Auto-threading: Automatic Thread Scheduling on RDMA Completion 109

#define N_CORE (16) /* Compute Cluster has 16 cores */

#define N_BUFFERING (2) /* Number of buffer used */

#define LOCAL_SIZE (4096) /* local working set size */

#define LOCAL_WORKING_SET_NB (1024) /* number of working set to compute */

/* thread reference */

static pthread_t thread[N_BUFFERING*N_CORE - 1];

/* rdma segment */

static mppa_async_segment_t rdma_data_segment;

/* data in cluster ’s smem */

float local_data[N_CORE][N_BUFFERING][LOCAL_SIZE];

void* task(void *arg) {

const int tid = syscall(SYS_gettid); /* thread ID */

const size_t size = sizeof(local_data[tid][0]); /* Size to compute */

for (int i = 0 ; i < LOCAL_WORKING_SET_NB ; i++) {

if (mppa_async_get(

local_data[tid][i%N_BUFFERING], /* local address */

&rdma_data_segment , /* remote segment */

size * LOCAL_WORKING_SET_NB * tid + size * i, /* offset */

size , /* size of the linear data */

NULL) != 0) { /* blocking but yields inside */

assert (0 && "Failed get data\n");

}

/* yielding happen at the frontiers of kernel execution */

kernel_compute(local_data[tid][i%N_BUFFERING]); /* compute */

if (mppa_async_put(

local_data[tid][i%N_BUFFERING], /* local address */

&rdma_data_segment , /* remote segment */

size * LOCAL_WORKING_SET_NB * tid + size * i, /* offset */

size , /* size of the linear data */

NULL) != 0) { /* blocking but yields inside */

assert (0 && "Failed get data\n");

}

}

return NULL;

}

int main(int argc , char *argv []) {

/* get reference on remote data in another memory (for rdma accesses) */

if (mppa_async_segment_clone (& rdma_data_segment , 0/* segment id*/,

NULL/* unused */, 0/* unused */, NULL/* blocking */) != 0) {

assert (0 && "Failed clone segment data\n");

}

for (int i = 0 ; i < N_BUFFERING*N_CORE - 1 ; i++) {

if (pthread_create (& thread[i], NULL , task , NULL) != 0) {

assert (0 && "Failed create thread\n");

}

}

task(NULL); /* work of main thread */

for (int i = 0 ; i < N_BUFFERING*N_CORE - 1 ; i++) {

if (pthread_join(thread[i], NULL) != 0) {

assert (0 && "Failed join thread\n");

}

}

return 0;

}

Figure 6.3 – Auto-thread onto RDMA Transfers for Automatic Double Buffering (parallel code)

110 A Highly Efficient Multi-threading Runtime

It is also possible to combine the automatic yielding onto RDMA transfers with OpenMP
parallel regions. The purpose is to have several (at least 2) OpenMP teams (parallel re-
gions) that are collectively re-scheduled to work together onto the data coming from the
DMA. By doing this, the programmer easily implements communication and computation
overlapping without coding complex explicit asynchronous RDMA transfers. The com-
pletion of RDMA jobs, the allocation of outstanding buffers and the buffer rotation are
more straightforward to be performed thanks to the runtime. Indeed when attempting
to hide the memory access latency, buffers usually have several states onto which they
rotate, namely, the read state, the compute state and the write state, which are not trivial
to manage in the application code.

6.7 Results, Comparisons and Discussions

6.7.1 Benchmarks

Several benchmarks are used to compare the original multi-thread runtime versus our
NMTR. The execution times are measured on the MPPA® chip, on a single Compute
Cluster (CC). We vary the number of Processing Elements (PEs) dynamically during the
execution of the benchmark. The results are cross-checked with a sequential reference
implementation at the end of the execution. The only change is the multi-thread runtime
linked to the benchmark.

Elementary Primitives: Original Runtime Vs NMTR

When 16 PEs are running, the experimental results show that our lock-free NMTR outper-
forms classical lock-based implementation by a factor of 10 on the barrier synchronization
primitives (collective operation). A factor of 15 is shown for the thread create operations,
and 22 for the thread join operations.

The barrier is benchmarked by iterating over it ten thousand times in each started
threads. No computation is performed between successive calls to the barrier in threads.
In Figure 6.4, the overhead latency of the barrier corresponds to one call. A full memory
barrier is issued each time a thread enters and leaves the barrier.

For the mutex and semaphore benchmarks, we use both synchronization objects as a
locking mechanism to increment a variable in memory. In both multi-threading runtimes,
a full memory barrier is performed when entering the synchronization primitive and when
leaving it. For both the semaphore and the mutex synchronization mechanisms the new
multi-threading runtime is better by a factor of 2. As the locked code section only consists
of loading, incrementing, and storing the variable in the shared memory, the latency is
mainly induced by the multi-threading runtime itself.

It can be observed in Figure 6.4 that the semaphores and the mutexes of NMTR
have different latency, whereas they almost provide the same service. Indeed, a binary
semaphore is equivalent to a mutex for the user. The performance difference is due to the
implementation of the atomic in memory that is retry-free for the mutex and lock-free for
the semaphore. The lock-free implementation of the semaphore uses a compare-and-swap
with a loop because it requires a saturation to 0 when no tokens are available. Lock-free
guarantees forward progress for one initiator, but the other one needs to retry on failure.
The retry-free means that the atomic always succeed; therefore, the throughput is better,
providing less overhead at the end.

Results, Comparisons and Discussions 111

 0

 1000

 2000

 3000

 4000

 5000

 6000

 2 4 6 8 10 12 14 16

La
te

nc
y

in
 M

ac
hi

ne
 C

yc
le

s

Number of Cores

Latency of Runtime Functions

Create Original Runtime
Create New Runtime
Join Original Runtime

Join New Runtime

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 2 4 6 8 10 12 14 16

La
te

nc
y

in
 M

ac
hi

ne
 C

yc
le

s

Number of Cores

Latency of Runtime Functions

Barrier Original Runtime
Barrier New Runtime

Mutex Original Runtime
Mutex New Runtime

Semaphore Original Runtime
Semaphore New Runtime

Figure 6.4 – Performance Comparisons of Thread Creation,
Join and Basic Synchronization Primitives on 16 Cores

Elementary Primitives: What happens when more than 16 threads are used?

The original runtime does not support more than 16 threads, meaning that only one thread
per core is possible. The new runtime of our contribution makes it possible to run up to
NB_SOFT per core in both the CC and IO, as seen in previous sections. We run the same
benchmark, but more threads are used (×NB_SOFT) in Figure 6.5. Results with less
overhead are observed for the creation and join operations. Figure 6.5 also shows a linear
increase of the latency for the mutex and semaphore, but the barrier remains very efficient.
Again, the performance is due to efficient the retry-free atomics and the masked interrupts
used as events to load and check conditional variables in the memory.

 100

 150

 200

 250

 300

 350

 400

 450

 10 20 30 40 50 60

La
te

nc
y

in
 M

ac
hi

ne
 C

yc
le

s

Number of Soft Threads

Latency of Runtime Functions

Create New Runtime
Join New Runtime

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 10 20 30 40 50 60

La
te

nc
y

in
 M

ac
hi

ne
 C

yc
le

s

Number of Soft Threads

Latency of Runtime Functions

Barrier New Runtime
Mutex New Runtime

Semaphore New Runtime

Figure 6.5 – Performance Comparisons of Thread Creation,
Join and Basic Synchronization Primitives on 64 Threads

OpenMP Benchmarks

The original OpenMP runtime starts threads only once and leaves them internally created,
waiting on a semaphore, ready to execute jobs for performance. As such, in the benchmark
of this section, OpenMP teams of 16 Processing Elements (PEs) are already created, and
we measure the speedup obtained onto parallel for regions.

112 A Highly Efficient Multi-threading Runtime

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1000 10000 100000

S
pe

ed
up

Parallel Region Granularity in Machine Cycles

Speedup Parallel For

Original Runtime
New Runtime

Figure 6.6 – Performance of the OpenMP GCC libgomp,
Based on our New Multi-threading Runtime with 16 Threads Running

In abscissa, we vary the execution time (in machine cycles) of one parallel task of the
parallel region. This measure of latency of the parallel task is done outside of the OpenMP
region, sequentially, for fair measurements. Hence, the entire overhead of the OpenMP
runtime is observed.

The two runtimes (the original one and our new one) are part of the GCC libgomp, but
the new runtime implements static memory allocation for both pthread objects and some
data structures of the GCC libgomp. Indeed, when the compiler uses our NMTR, as we
modified the generic source of OpenMP runtime library of GCC for these optimizations,
we automatically benefit from them.

As a result, our new runtime behaves more efficiently than the original one. In Fig-
ure 6.6, a gain of more than 10% is shown on fine-grained multi-threading using the
OpenMP runtime based on our new multi-threading runtime. The gain is automatic
without modifying any source code line. Also, our NMTR makes it possible to use
simultaneously pthread and OpenMP multi-threading whereas the original did not.

Toward Higher Performance in the OpenMP Runtime for Fine-Grained Multi-
Threading

In the future, the implementation of static pools of internal OpenMP data structures to
bypass as much as possible calls to the dynamic memory allocator of the newlib will be
considered. Another optimization is to re-implement the generic synchronization code to
make it lock-free. The GCC OpenMP libgomp already implements such mechanisms (at
some point), using standard builtins as explained in Section 4.5.4. However, some work is
still required to make sure that this would be functional and more efficient than the current
implementation. Finally, streaming loads for sharing data could also be implemented
directly in the libgomp runtime. Such optimization requires much more effort as loads will
need to be either explicitly written by hand or by using a named address space4 as an
attribute to pointers to make the compiler generate streaming load on memory accesses
through this pointer. Also, it is often required to modify the code so that the loads are
schedule earlier as the streaming-load latency for Read-After-Write (RAW) dependency is
higher.

4https://gcc.gnu.org/onlinedocs/gcc/Named-Address-Spaces.html

Conclusion 113

Auto-threading

The presented results show the benefice of auto-threading onto RDMA transfers explained
in Section 6.6. The data transfers are coded synchronously and are easily readable. We
run three benchmarks, namely the copy, vector add and an image filtering operation.
These applications are greedy in terms of memory. They show how efficient our new
auto-threading mechanism is when yielding onto the completion of RDMA transfers. We
measure the main memory bandwidth (external) of the application, that is linear with the
execution time. The memory bandwidth of the application is defined as the throughput
of the application. Without auto-threading, such synchronous data transfers induce stalls
of the thread that initiates the data transfer(s); thus, it has less performance as we see in
Table 6.2. Such measures provide the efficiency of the memory throughput which is the
purpose of the auto-threading feature, that is, hide the memory access latency.

1 Cluster - 1 PE
Benchmark
Size data set

Auto-threading
Disable
GB/s

Auto-threading
2 Thread

GB/s

Auto-threading
4 Threads

GB/s

copy
4 Mega Bytes

2.8 3.03 3.04

vector add
4 Mega Words

1.0 1.59 1.6

Filter 1x1 - 1080p
4 x 8-bit channels

0.348 0.404 0.400

Table 6.2 – Auto-threading Throughput on Three Different Use-cases

On the vector add benchmark, we show an execution time speedup of 60% when en-
abling the auto-threading feature. The stall time of the PE onto the waiting of the comple-
tion of RDMA transfers is almost reduced to the overhead of a context switch. In this case,
the system is not bound by the memory wall as only one PE is used. Performance could be
better if we optimized the benchmarked use-case in assembly using classical optimization
like Single Instruction, Multiple Data (SIMD) and streaming memory access with packing.
The kernel could also be parallelized in the CC, using only one PE to perform the RDMA
communications.

6.8 Conclusion

This chapter proposes a new implementation to make lightweight multi-threading possible
on a multi-core Symmetric Multi-Processor system (SMP). Main problems are explained,
and the low-level implementation is provided to overcome the issue of standard locking
mechanisms [MP92]. Performance improvements here are mainly due to the lack of op-
timization in the original runtime. Indeed, the original runtime uses locking mechanisms
when atomicity and commit orders are required to accesses a shared resource. We instead
use lock-free mechanisms for atomic updates of shared data structures and order the mem-
ory accesses to them. This chapter shows that writing such runtime is not a trivial task as
it requires mastering the architecture along with managing the memory consistency and
coherency of low-level parallel software at the system level.

114 A Highly Efficient Multi-threading Runtime

OpenCL Task-Parallel

This new multi-threading runtime is used in the proof-of-concept of the OpenCL task
parallel runtime, but also in the OpenCL data parallel runtime running in production.
The OpenCL task parallel model was elaborated in collaboration with Minh Quan during
his Ph.D. thesis. In OpenCL data parallel model, each PE of a Compute Cluster (CC)
(Compute Unit), is a Work-Group as explained in Section 3.2.2. Such a strategy represents
a severe bottleneck regarding the local (__local) memory of the Compute-Unit as it cannot
be shared across cores of the same Compute Cluster (CC) (Compute Unit) (64 KB of
local memory maximum). The OpenCL task parallel model maps a Work-Group on a
single Compute Cluster (CC) meaning that only one PE executes the Work-Group and the
threads need to be managed inside the Work-Group. Such a mode allows much bigger local
memory size (1 MB), that is useful for advanced data pre-fetching and for keeping the hot
data path as close as possible to the PEs within the Compute Cluster (CC). With assembly
optimization, larger local memory for asynchronous RDMA prefetching and explicit multi-
threading inside the CC, Quan and I obtained an execution time three times better than
the original OpenCL data parallel, using the OpenCL task parallel mode for a General
Matrix Multiply (GEMM) 4096 ∗ 4096 use-case [KVL91].

Maturity, Standard Tests, and Today’s Usages

Our NMTR has high maturity. NMTR supports the most used pthread primitives like
mutex, spin, barrier, and semaphores. It also supports the TLS data section that is heavily
used in the newlib and the OpenMP runtime of GCC. The runtime also supports the entire
C/C++/Fortran OpenMP standard test suite of GCC 4.9. Finally, since late 2017, it is
used in most Kalray’s products internally, and it is today the default multi-threading run-
time since AccessCore 3.0 (Kalray’s toolchain name). For instance, it is used in the OpenCL
runtime, Kalray Neural Network (KANN) runtime, the OpenVX framework presented in
Chapter 9, the Synchronous Parameterized Interfaced Dataflow Embedded Runtime (SPI-
DER) runtime presented in Chapter 8, and the Kalray’s networking solutions.

CHAPTER 7

Software Synthesis based on a Hierarchical Static Dataflow Model for a

Clustered Manycore Processor

This chapter presents a new strategy for mapping a static dataflow programming model
the targeted manycore. Indeed, manycore processors are not widely deployed due to their
programming complexity, and because applications are not adapted to these architectures.
To exploit the performance of complex clustered manycores, the application has to be split
and mapped onto the available cores. This task is complex and time consuming. Dataflow
programming models inherently make it possible as they represent an application with a
set of actors (functions) communicating between each other with First-In-First-Out queues
(FIFOs) (data) as already seen in Section 3.3.

Computer system architectures are more and more complex. They often implement
more Processing Elements (PEs) and memories. Computer system architectures are hi-
erarchical in terms of memory architectures (caches and local memories) but now also
concerning Processing Elements (PEs) architecture (i.e., clusters of cores for instance). It
is a way to both increase the computation capabilities and keeps the system under control.

Research on dataflow modeling leads to the continuing introduction of new dataflow
models. The hierarchy has been introduced in several dataflow semantics. For instance,
static extensions of the Synchronous Dataflow (SDF) model such as the Interface-Based
SDF (IBSDF) [PBR09] and the Compositional Temporal Analysis (CTA) models have been
proposed to enforce the compositionality of applications. The hierarchy of these models en-
hances the expressiveness and conciseness of the models while preserving their predictabil-
ity. A model is compositional if the properties (schedulability, deadlock freeness) of an
application graph composed of several sub-graphs are independent of the internal specifi-
cations of these sub-graphs [Ost95]. IBSDF interfaces are inherited by the Parameterized
and Interfaced dataflow Meta-Model (PiMM) meta-model and its application to the SDF
programming model called Parameterized and Interfaced SDF (PiSDF) [DPN+13].

Previous works on Parallel and Real-time Embedded Executives Scheduling Method
(PREESM) use the hierarchy feature to ease the application description. IBSDF has
first proved to be an efficient way to model dataflow applications [PAPN12], and most
of the applications developed using PREESM, and the PiSDF programming model uses
the hierarchy feature. More recently, Deroui and al. used the hierarchy feature of IBSDF
for the fast throughput evaluation of applications [DDNMK17a, DDNMK17b].

116
Software Synthesis based on a Hierarchical Static Dataflow Model for a Clustered

Manycore Processor

The hierarchy feature is not used so far in the mapping/scheduling and the code gener-
ation of PREESM. Hierarchical graphs are flattened before they are processed. Flattening
all the hierarchy is problematic to process large dataflow graphs for architectures with
hundreds of cores. As seen above, the mapping and scheduling problems are known to be
NP-complete. The time to compute the scheduling and the mapping increases exponentially
with the number of actors to map and with the number of PEs of the targeted computer.
The memory allocation is also an NP-hard problem as already mentioned in Section 3.3.4.
The use of flattened graphs may also increase the number of synchronizations between PEs
during the execution and thus actively degrade the overall system performances. When
Piat and al. defined the IBSDF programming model [PBR09], the main idea was to use
the hierarchy levels as code closures. The IBSDF fosters sub-graph composition making
sub-graph executions equivalent to imperative language function calls. This idea has not
been used so far in the code generators of PREESM.

In this chapter, we show that the hierarchy of the dataflow graphs can be used to
program efficiently hierarchical computer system architectures. To do so, we exploit the
dataflow graph hierarchy of the Interface-Based SDF (IBSDF) model. The upper hierar-
chy levels of the IBSDF graph are used for the mapping/scheduling between clusters of
the Multi-Purpose Processor Array (MPPA), called the coarse grain mapping/scheduling.
The hierarchical approach thus reduces data movements between clusters and increases
the arithmetic intensity inside clusters. The arithmetic intensity is the amount of pro-
cessing done for each byte of data transferred to a Compute Cluster (CC). Maximizing
the arithmetic intensity is essential to achieve decent performance for applications running
on a clustered architecture like MPPA® or any other multi-core Central Processing Units
(CPUs).

The lower levels of the graph are used for the mapping/scheduling inside the clusters. It
is called the fine-grained mapping/scheduling. Repetitions of an actor in the IBSDF graph
are analyzed and clustered to generate code including Open Multi-Processing (OpenMP)
primitives and for loops. The MPPA® toolchain compiles this code, and it is executed in
parallel inside one cluster. This approach makes the mapping and the scheduling of static
dataflow application graphs onto the PEs of a clustered manycore architecture faster, while
preserving the parallelism of the application.

The contribution presented in this chapter has been designed, implemented and tested
in the open source project PREESM. It has been integrated since the PREESM release 2.3,
and it requires the Kalray AccessCore release 2.9 or higher for compilation and execution.

This chapter is organized as follow. First, our strategy for targeting manycore pro-
cessors using IBSDF graphs is presented in Section 7.1. We detail how the coarse grain
and the fine-grained parallelisms of the applications are efficiently exploited in Section
7.2. Then, Section 7.3 presents the graph Clustering transformation. Finally, Section 7.4
presents benchmark results, discusses limitations and provides hints for enhancements.

7.1 Hierarchy of IBSDF to Target a Hierarchical Manycore

Processor

This section explains how the mapping and scheduling can benefit from the hierarchical
feature in IBSDF. We illustrate this contribution with an image processing application.
This application and its IBSDF hierarchical dataflow graph are presented in Section 7.1.1.
Section 7.1.2 explains the design, the choices, and the implementation in the PREESM
tool.

Hierarchy of IBSDF to Target a Hierarchical Manycore Processor 117

7.1.1 A Hierarchical Dataflow Application

We consider an image processing application described by its IBSDF graph in Figure 7.1.
The purpose of this application is to apply a commonly used Sobel image filter and two
morphological operators (one Erosion and one Dilation) to detect the edges of the processed
image.

The IBSDF graph is composed of six actors at the top level of the hierarchy. Three
of them, with red borders, are hierarchical actors. Each of the three sub-graph includes
a single actor. The actor production and consumption rates are given by a parameter
m. This parameter gives the number of execution of the actors. Indivisible data tokens
exchanged in this graph are pixel lines of width w.

(h+10*n) h(h/n+8) (h/n+4) h/n(h/n+10)h

Sobel ErosionDilation

Sobel Dilation Erosion(h/n+8) (h/n+4)(h/n+10)
m m m

(h/n)
m

Read
frame Split Display

input output

1 Framen Slices n*m Slices1 Frame n*m Slices

h

n*m Slices

Figure 7.1 – IBSDF Graph: Edges Detection and Denoising

Using the original PREESM workflow, introduced in Section 3.5.1 and represented in
Figure 3.12, the Hierarchical Flattening operation replaces hierarchical actors with their
sub-graphs.

In our use-case, when the Hierarchical Flattening is performed, the number of automat-
ically generated actors after the Single-Rate transformation becomes 3∗n∗m. The output
of the Hierarchical Flattening transformation is the input of the single-rate transformation.
The Single-Rate transformation reveals the whole parallelism of the dataflow application.
In our case, the Repetition Vector (RV) is used to extract the data-parallelism of the sub-
graphs. The RV is explained in Section 3.3.4. The actors generated by the Single-Rate
and the Hierarchical Flattening transformations have to be mapped on PEs. Precisely,
3 ∗ (n ∗m+ 1) actors and (4 ∗ n ∗m+ 1) communication edges are generated which have
to be handled by the scheduler and mapper. Many more would be for complex application
graphs.

7.1.2 Strategy: A Trade-off between Levels of Hierarchy

Our new hierarchical approach consists in exploiting the graph hierarchy in the different
steps of the development flow instead of systematically flattening it. In the proposed
method, we propose to specify whether or not the hierarchical actors should be flattened. In
Figure 7.2, the Hierarchical Flattening operation is executed with a certain depth, meaning
that the workflow will not flatten all the graph but only up to the specified depth. In the
case of the graph presented in Figure 7.1, the depth of the flattening transformation is
zero. Therefore, the graph is left unchanged for all actors in the graph. The exploitation of

118
Software Synthesis based on a Hierarchical Static Dataflow Model for a Clustered

Manycore Processor

the different levels of parallelism is presented in Section 7.2, and the clustering is presented
in Section 7.3. As a summary, the method consists in exploiting several granularities of
parallelism captured by nested, non-flattened, hierarchical graphs.

User Interface

Partial
Hierarchical
Flattening

Scheduling
Mapping

Single Rate
TransformClustering

Software
Synthesis

Parallel Loop
Codegen

Memory
Allocation

Figure 7.2 – New PREESM Workflow for Clustering and Parallel Loop Generation

We define a clustered actor as a non-flattened hierarchical actor. Clustered actors have
larger memory footprints and execution time. They can be mapped onto one core as a single
actor. Thus, the complexity to map a single actor is simpler than mapping the equivalent
set of actors resulting from a flattening of the graph and its associated single-rate.

7.2 Exploiting Efficiently Two Levels of Parallelism

In the targeted architecture, two levels of parallelism are exploited: the coarse-grained
and fine-grained parallelisms. Coarse-grained parallelism is found at the top-level of the
hierarchy, where the graph contains clustered actors. Fine-grained parallelism is retrieved
in sub-graphs of non-flattened hierarchical actors. In our case, the fine-grained parallelism
is extracted from RVs during the software synthesis of hierarchical actors.

This approach aims to simplify the scheduling and mapping for clustered manycore
processors but also off-the-shelf Symmetric Multi-Processor system (SMP) processors and
multi-core Digital Signal Processor (DSP). Indeed, the software synthesis for hierarchical
actors produces For-Loops, for loops like in the C semantics, that are exploited by compiler
optimizations to extract the Instruction-Level Parallelism (ILP) (i.e., unroll and jam),
or by OpenMP compilation passes that generate parallel code. Therefore, our proposal
takes advantage of both high-level parallelism presented in Section 7.2.1 for the Compute
Cluster (CC) (but also for the PEs for SMP architectures) using the hierarchical mapping
strategy, and low-level parallelization explained in Section 7.2.2 for PE level. Section 7.2.3
explains how the software synthesis of explicit communications is performed. Optimization
choices are provided, as well as a comparison to explicit handwritten communications using
standard communication libraries.

Our approach lets the programmer select the most adapted hierarchy level. The
PREESM programmer may decide what must remain hierarchical and what should be
flattened. The scheduling is computed after the Single-Rate operation is applied.

7.2.1 High-Level Hierarchy (Inter-Cluster)

The mapping of the high-level hierarchical actors is used for coarse-grained parallelism
granularity. The high-level is applied to inter-cluster parallelism. The coarse-grained map-
ping is supported by the hierarchy feature of the used dataflow model and has several
advantages.

Exploiting Efficiently Two Levels of Parallelism 119

Firstly, the hierarchical actor software synthesis makes it possible to generate mem-
ory access automatically coalescing for actors of their sub-graph, whereas flattening the
hierarchy generates many smaller data transfers (one for each firing of the actor in the
flattened sub-graph). Memory access coalescing is a key to increasing the performance of
the memory system. The sizes of the memory transactions are bigger; therefore, fewer
memory transactions are required for a given use-case.

Secondly, the hierarchical actor software synthesis reduces the mapping complexity
drastically when the number of PEs and actors increases. The CCs of the MPPA® pro-
cessor are seen each as a single multi-core CPU, when our new coarse-grained application
mapping is used. On a clustered architecture, hierarchical actors are mapped on a CC,
whereas actors of sub-graphs are mapped at the core level.

Cluster 1

Cluster 2

Cluster 3

Cluster n

Read
frame Split DilationSobel Erosion Display

DilationSobel Erosion

DilationSobel Erosion

DilationSobel Erosion

Synchro Synchro

Figure 7.3 – Gantt Chart of the Hierarchic Scheduling

Figure 7.3 shows the inter-cluster parallelism at the top-level of hierarchy. The Read
frame actor reads the images in a file stored on a hard drive disk, using stubbed system
calls (open, read, and close). The CCs run concurrently in parallel the mapped hierarchical
actors, Sobel, Dilation, Erosion hierarchical actors, and perform inter-cluster synchroniza-
tions. The Split does not copy any data but makes it possible to split the work of the CCs
from 1 to n. Then the data are copied in the local memory of the CCs and computed.
Once the parallel region of the CC is ended all contributors merge all results to the Display
actor.

The proposed technique provides efficient usage of the on-chip memory and coalescing
for data transfers. Moreover, the on-chip and off-chip memory are automatically allocated
using the heterogeneous memory static allocator described in [DPNA16]. The used memory
allocator supports both distributed memory and shared memory architectures.

7.2.2 Low-Level Hierarchy (Intra-Cluster)

The new support of hierarchical actors mapping and code generation allows both code fac-
torization and more computational efficiency on fine-grained parallel code regions. The low
level exploits intra-cluster parallelism. Fine-grained parallelism implies several concurrent
computations, where the synchronization and memory consistency need to be managed ef-
ficiently. The generated code sections of hierarchical actors are automatically parallelized
using OpenMP (if available). The intra-cluster parallelism is automatically extracted from
the Repetition Vectors (RVs) of actors that have a potential source of parallelism in sub-
graphs.

For instance, if a hierarchical actor A consumes N∗M tokens and actor B in hierarchical
actor A consumes N , an RV of M (see Lines 8, 12, 16 in Figure 7.4) is automatically
extracted and printed by the parallel code generator. This new feature allows for the
automatic extraction of the RVs in sub-graphs, that contains actors that are a potential
source of parallelism. In most cases, the number of loop iterations is known, as the firing of

120
Software Synthesis based on a Hierarchical Static Dataflow Model for a Clustered

Manycore Processor

actors is known thanks to the Directed Acyclic Graph (DAG), but also as the SDF graph
is schedulable. The loops are generated in C language using a static finite For-Loop. A
For-Loop is sequential, but our new software synthesis adds an "omp parallel for" to get
parallelism for any architecture supporting the multi-threading model of OpenMP 3.0.

The parallel section is automatically inserted unlike [CPG+]. In this case, OpenMP
3.0 is very efficient as the number of For-Loop iterations is known at compile time. Thus
thread-level parallelism is used for the hierarchical actors that are mapped onto the CCs.
Synchronization points are the fork and join of the OpenMP runtime (see Lines 7, 11,
15 in Figure 7.4). The memory consistency points and the placements of synchronization
points are known at compile time. Therefore, at the cluster level, the execution time is
predictable, not only for sequential execution but also for parallel execution when using
OpenMP 3.0 on finite For-Loops.

7.2.3 Automatic Generation of Explicit Communications between Clus-
ters

On clustered architectures, the efficiency of data communications is crucial. A significant
contribution is the use of automatically generated Remote Direct Memory Access
(RDMA) explicit memory accesses transfers.

We show that explicit Direct Memory Access (DMA) communications outperform the
shared memory approach provided by data caches through Load/Store. Moreover, the
programmer does not need to know what happens at neither compile-time nor runtime.
Indeed, as the application is already broken into pieces, thanks to the dataflow model,
the automatic generation of explicit data communications is entirely hidden from the user
once the dataflow application is described. Coherency, consistency, and synchronizations
are also dealt with automatically by our new PREESM tool.

Our code generation is similar to [HDB+12], based on OpenMP 3.0, mixed with MPI-3
and using one-sided communications. The main difference is that our parallel code is gen-
erated automatically from an IBSDF dataflow graph and not handwritten as in [HDB+12].
The one-sided communication engine, used in this chapter for targeting the MPPA® pro-
cessor is presented in Chapter 5. The one-sided operations make it possible for the Compute
Clusters (CCs) to access asynchronously or synchronously the main off-chip memory and
other Compute Clusters (CCs) local memories.

Regarding MPPA®’s new code generation support, the Compute Clusters (CCs) are
seen as a single multi-core CPU for mapping at the coarse-grain level. The generated code
is very close to the OpenMP mixed with Message Passing Interface (MPI)-3 [HDT+15]
[HDB+12] using one-sided communications. However, we are here able to automatically
generate parallel code using an IBSDF dataflow graph as input.

Concerning inter-cluster parallelism, the synchronizations are performed by explicit
transfers directly across CCs at lines 2 and 22 in Figure 7.4. With our current software
synthesis, inter-cluster data transfers go to and from the external memory (Double Data
Rates (DDRs)).

The Compute Clusters (CCs) perform explicit memory data transfers that are based
on highly efficient RDMA Put Get memory accesses thanks to the local memories. In Fig-
ure 7.4, RDMA accesses are done with put and get primitives at lines 19 and 4 respectively.
The wait primitives ensure the RDMA transaction completion at lines 5 and 20.

Such code generation pattern has several advantages for an architecture like the MPPA® but
also for other DSPs or general purpose processors. On the MPPA®, we automatically per-
form coalesced memory accesses at code generation as shown in Figure 7.4.

Automatic Clustering of IBSDF Graph 121

1. /* Inter -Cluster Synchronization */

2. synchro (...);

3. /* Main to Local Memory Coalescing */

4. get(..., tag); /* reads buffer */

5. wait(tag); /* wait end of transfer */

6. /* Parallel Hierarchical Sobel */

7. #pragma omp parallel for /* intra -cluster */

8. for(int i=0;i<M;i++)

9. sobel (...); /* Sobel Kernel */

10. /* Parallel Hierarchical Dilation */

11. #pragma omp parallel for /* intra -cluster */

12. for(int i=0;i<M;i++)

13. dilation (...); /* Dilation Kernel */

14. /* Parallel Hierarchical Erosion */

15. #pragma omp parallel for /* intra -cluster */

16. for(int i=0;i<M;i++)

17. erosion (...); /* Erosion Kernel */

18. /* Local to Main Memory Coalescing */

19. put(..., tag); /* send buffer */

20. wait(tag); /* wait end of transfer */

21. /* Inter -Cluster Synchronization */

22. synchro (...);

Figure 7.4 – Generated Code Example
inside the CCs of the Manycore Processor

Memory coalescing means that multiple data transfers are merged in one. It allows both
the reduction of main memory data requests (requests traffic) and optimizes the usage of
the local memory (local memory). When chaining kernels locally (i.e., IBSDF actors),
without any communications other than intra-cluster communications, and synchroniza-
tions (shared memory), the execution overhead is very small.

The automatic optimization provided by our code generated limits data movements that
are both very time and power consuming. The code generated in Figure 7.4 illustrates what
is done on dataflow applications when both spatial and temporal data locality is exploited.

7.3 Automatic Clustering of IBSDF Graph

This section presents the new Clustering operation shown in Figure 7.2, represents the
workflow described in this chapter. We explain the design and implementation of the
algorithm itself in Section 7.3.1. Section 7.3.2 contents the different heuristics regarding
clustering decisions, the clustering rules and the modeling of internal loops. The modeling
of internal loops is the intermediate representation that is later used to synthesize parallel
loops.

7.3.1 Algorithm: Design and Implementation

The clustering of a dataflow graph groups two adjacent actors (nodes) of the graph. The
clustering algorithm is an automation of the Pairwise Grouping of Adjacent Nodes (PGAN)
theorized by S. Bhattacharyya in [BML12]. The Clustering operation has a side effect which
is the loss of the inherent parallelism expressed in SDF models. When actors are grouped,
a nested loop schedule is built as represented in Figure 7.5. The loop iterations are set
according to the Repetition Vectors (RVs) of the grouped actors. Thanks to those nested
loops, it is possible to make them run in parallel using data parallelism.

122
Software Synthesis based on a Hierarchical Static Dataflow Model for a Clustered

Manycore Processor

The pseudo-code presented in Algorithm 11 gives the automated process of the Clus-
tering workflow. In practice, only acyclic graphs can be clustered. As shown in Figure 7.2,
the Clustering is performed after the Hierarchical Flattening operation, where the level of
flattening is specified by the programmer.

Algorithm 11 operates on the entire top level graph. The algorithm retrieves the re-
maining hierarchical actors off the top level graph, and, it gets each associated graph
recursively to flatten everything.

Then the clustering is executed N − 1 times. N is the number of actors constituting
the sub-graph to be clustered. At Line 9 of Algorithm 11, the ’Get two mergeable ac-
tors’ process is an external function of the algorithm that follows specific rules and where
different strategies can be tested, as explained in Section 7.3.2. Once the sub-graph is com-
pletely clustered, a schedule of nested loops is generated. These loops communicate with
each other; therefore, memory buffers have to be set in the memory to make it possible.
Currently, this static memory allocator uses a single buffer, and a pointer is incremented
each time a loop iteration is started. However, more advanced static memory allocation
techniques can be used as already presented and implemented in Desnos [Des14].

Hierarchical actors that are neither flattened nor clustered will generate errors in the
synthesis workflow. Therefore, after the clustering operation, hierarchical actors are as-
sociated with nested loops. These nested loops, their related actor functions, their input
buffers, and their output buffers are printed during the software synthesis.

Algorithm 11 Pseudo Code of the Clustering Algorithm

1: Input: Top-Level Acyclic Graph: G(E,V)
2: Output: Acyclic Graph
3: List of HierarchicalActors = Build list of all Hierarchical Actors of G(E,V)
4: for Actor in List of HierarchicalActors do
5: Loops = Create loop
6: SubGraph = Getting associated graph of Actor
7: FlatSubGraph = Flattening of the SubGraph (until no more hierarchy)
8: while FlatSubGraph not contain 1 Actor do
9: TupleOfActors = Get two mergeable actor(FlatSubGraph)

10: FlatSubGraph = Construct the new graph (FlatSubGraph)
11: Add TupleOfActors in the Loops Model in right order
12: end while
13: Memory = 0 (Initialization of number of bytes consumed of Actor)
14: for TupleActor in Loops do
15: Memory += Allocate internal working memory for the TupleActor
16: end for
17: Add Loops to the attributes of Actor (for software synthesis)
18: Add Memory to the attributes of Actor (for software synthesis)
19: end for
20: Return G(E,V)

7.3.2 Clustering Rules, Heuristics and Loop Modeling

This section explains what has been automated regarding the clustering decisions and rules.
The Clustering workflow has been split into two main parts.

The first part is the algorithm explained in Section 7.3.1. It links the clustering process
with the rest of the framework, and it calls the clustering decision method (Line 9 of

Automatic Clustering of IBSDF Graph 123

Algorithm 11). The second part is the clustering algorithm itself. It takes the clustering
decisions.

Rules Grouping together two actors that are adjacent is not a sufficient constraint. The
two actors must also meet the following constraint.

Let’s consider, the grouping of actor A and B (AB in this order), where B depends
on A. The union of the successors of A and the predecessors of B must be empty. More
formally: Predecessors(B) ∪ Successors(A) = ∅. When such a constraint is satisfied,
the two actors can be merged. We consider rA and rB as the Repetition Vector (RV) of
actor A and B respectively. As shown in [BML12], the formal and factorized forms for
representing the two new clustered actors is represented as follow:

GCD(rA, rB)

[(

rA

GCD(rA, rB)

)

A

(

rB

GCD(rA, rB)

)

B

]

Where the GCD function computes the greatest common divisor.

Loop Modeling The outcome of the clustering algorithm is a sequence of For-Loops. A
For-Loop implements a scalar that represents the number of iterations and the function to
be run iteratively. When considering the previous example that was grouping the A and
B actors, we show here the generated loops in Figure 7.5. rA and rB are static meaning
that the gcd variable is statically evaluated and computed by the clustering workflow. The
gcd variable is the greatest common divisor of rA and rB.

for(int i = 0 ; i < gcd ; i++){

for(int j = 0 ; j < rA / gcd ; j++){

/* Let’s give the proper offset in the buffer */

call_A(ptr_a + i * rA / gcd * size_a + j * size_a , ...); /* A */

}

for(int k = 0 ; k < rB / gcd ; k++){

/* Let’s give the proper offset in the buffer */

call_B(ptr_b + i * rB / gcd * size_b + k * size_b , ...); /* B */

}

}

Figure 7.5 – Generalized Nested Loop Generation

The input and output pointers need to be set according to the loop iterations. Indeed
the buffers, precisely the pointers ptr_a or ptr_b in Figure 7.5, are given to the generated
low-level functions within the C code software synthesis back-end. Such loops are very
similar to the OpenCL data-parallel mode, where the work-group uses the global id and
local id to address the memory. However, OpenCL computes these ids dynamically whereas
our new software synthesis does it statically. However, the input is a static Interface-Based
SDF (IBSDF) graph and not an OpenCL code.

Heuristics On complex graphs, the efficiency of the clustering depends on the merg-
ing order of actors. As of today, we implemented a simple clustering method that takes
randomly two nodes (actors) and makes sure they respect the defined rules explained pre-
viously. It is a big limitation that is due to work priorities of this thesis. However, it
is possible to implement other heuristics that can bring better loop builds regarding the
parallelism degree and memory usage. Some ideas that could be tested are listed below:

124
Software Synthesis based on a Hierarchical Static Dataflow Model for a Clustered

Manycore Processor

• Select Actors with the bigger Repetition Vector (RV) first

• Select Actors with the smaller Repetition Vector (RV) first

• Select Actors with the bigger memory footprint first for minimizing the communica-
tion (most promising [CSWZ16])

• Select Actors with the smaller memory footprint first

Such clustering parameters can then be added as a parameter to the workflow to be
tested accordingly depending on the dataflow application graph.

7.4 Experimental Evaluation

Our example is an image filtering application consisting of basic image processing steps,
namely the sobel, erosion, and dilation kernels. Benchmarks have been run with a VGA
resolution (640 ∗ 480) for all architectures. The main purpose of this experimental eval-
uation is to show that the proposed hierarchical code generation has benefits for both
mapping/scheduling as well as for the memory allocation. All benchmarks have been com-
piled using the GNU Compiler Collection (GCC) using -O3 optimization. No assembly
nor intrinsic optimization are used, as the main goal is to show our ability to exploit
automatically both the parallelism and the data locality of a dataflow application.

Kalray MPPA®: Regarding the benchmark environment, the MPPA® is plugged into
the motherboard of an Intel host processor where MPPA®’s Input/Output Subsystems
(IOs) perform Peripheral Component Interconnect Express (PCIE) communications at
runtime. Two execution modes are used. The first one uses the software emulated L2
cache where main memory accesses are done by Load-Store. The second uses explicit
RDMA operation to perform one-sided memory accesses as presented in Chapter 5. A
code sample for one-sided operations is listed in Figure 7.4. We focus our analysis on
explicit memory accesses over RDMA, as the software emulated L2 cache provides lower
performances because of irregular memory access patterns.

Inside the Compute Cluster (CC), the Kalray’s proprietary Operating System (OS) runs
an OpenMP implementation based on GNU Compiler Collection (GCC) libgomp as seen in
Chapter 6. When the L2 cache is not used, the buffer allocation is done by [DPNA16], the
generated code size, the OS size, and the library sizes should never exceed the 2 megabytes
of local memory for each CC. If it is the case, both the workflow and the runtime (for
advanced users) outcome an error.

Texas Instruments (TI) C66X: Texas Instruments (TI) C66X runs 8 DSP cores at
1 GHz. This Multiprocessor System-on-Chip (MPSoC) has a hardware L2 data cache
enabling accesses to the main memory. IO communications are managed before and after
running the application. Paper [SJA+13] presents the efficient bare-metal implementation
of OpenMP multi-threading for the TI C66x.

Intel® Core i7: The Intel® Core i7 is a high-end Sandybridge architecture operating
at 3.6 GHz with a DDR3 technology as main memory. The OS is a Linux system, and the
used OpenMP runtime is based on the GCC libgomp library.

Experimental Evaluation 125

7.4.1 Results and Comparisons

This section presents the strong scaling results for three multi-core architectures, but the
main focus is given to the Kalray’s manycore processor. Table 7.1 presents the measured
performances using the hierarchical actor software synthesis presented in 7.2.2. Compared
to the single-core execution, a fair speedup is achieved on the TI C66X, with a maximum
speedup of 7.2 on 8 cores. The Intel®Sandybridge off-the-shelf processor also presents fair
speedup, up to 4.2, which is fair for an architecture with 4 physical cores (hyper-threaded).

Strong scaling is defined as how the solution time varies with the number of processors
for a fixed total problem size. Strong scaling is important as it shows how efficient is
the parallel strategy of the application when the number of core increases. Moreover, it
shows how efficient is the additional code or the sequential code that is used to control
the parallelization of the application. If the multi-threading software runtime has indecent
performance, the strong scaling might rapidly saturate and drop due to the overhead of
the software thread scheduling. Also, bad strong scaling results can also be due to a fined
granularity of the parallel region.

Multi-core
CPUs

TI C6678 EVM
1 GHz

Core i7-3820
3.6 GHz

Nb Cores FPS Speedup FPS Speedup
1 8.9 1.0 49.3 1.0
2 17.6 1.9 91.6 1.8
4 33.8 3.8 155.6 3.1
8 64.4 7.2 211.5 4.2

Table 7.1 – Frames per second (fps) and Speedups for TI DSP and Intel Processor

Table 7.2 shows mono-cluster (CPU of 16 Very Long Instruction Word (VLIW) cores)
results using explicit communications and the distributed shared memory which emulates a
software L2 data cache for off-chip memory accesses. As shown in Figure 7.4, the software
synthesis that uses explicit memory accesses with RDMA outperforms the shared memory
approach over the data cache up to 22%. This table shows speedups of 13.4 when using
explicit communications, and 11.2 when data accesses are performed by L2 data cache.
Therefore, the scalability is efficient in both cases.

Mono-cluster
MPPA®

MPPA® 400 MHz
L2 Cache

MPPA® 400 MHz
RDMA

Nb Cores FPS Speedup FPS Speedup
1 3.6 1.0 3.7 1.0
2 6.9 1.9 7.4 2.0
4 13.3 3.7 14.5 3.9
8 24.4 6.8 27.4 7.4
16 40.5 11.2 49.4 13.4

Table 7.2 – fps and Speedups for one MPPA® Cluster

MPPA® Results The application mapping is performed at the CC level. CCs are
considered as multi-core CPU to map clustered actors, and we exploit sub-graph parallelism
inside CCs when possible to obtain thread-level parallelism.

126
Software Synthesis based on a Hierarchical Static Dataflow Model for a Clustered

Manycore Processor

(a) Flat Mapping (b) Hierarchical Mapping

Figure 7.6 – MPPA® Matrix Result in fps

Figure 7.6b plots the application performance in fps, measured when using a variable
number of PEs per CC, and a variable number of CCs on the MPPA®. Using one PE in
each of the 16 Compute Clusters (CCs) provides lower fps than using 16 PE of a single
CC, because of the intensive usage of the local on-chip memory and Network on Chip
(NoC) communications are reduced compared to the multi-cluster approach. However, in
our case, this runtime overhead remains low as the parallelism is known statically. It can
be noticed that performances in 7.6b for one CC are lower than the ones shown in the
mono-cluster configuration of Table 7.2.

Furthermore, the IBSDF application description provides as parameters the granularity
of the different level of parallelism. The idea is to have a memory allocation and scheduling
(mapping) aware of the location of the memory compared to the location of the PEs. Such
optimization is crucial as unnecessary data movements and the sharing of data (cache
stalls on coherent architectures) will make the performances drop drastically. Parallelism
is done using OpenMP 3.0 thanks to the automatically generated omp parallel for compiler
directives on finite for loops. Then as the application mapping is solved statically, the
number of loop iterations is known by the compiler, and thus it is easier to predict the
execution time.

A total speedup of 58.7 is reached when using all 16 PEs of all 16 Compute Clusters
(CCs). Although we have some scalability, we hit the memory bandwidth wall (Section
7.4.2) of manycore processors when the 256 Processing Elements (PEs) are competing for
the main memory (external). Thus we focus on local memory usage at code generation to
save main memory bandwidth.

7.4.2 Comparisons with Flat IBSDF Mapping

Performances Analysis For shared memory architectures Intel and TI C6678 EVM, the
flat IBSDF gives the same performances as in Table 7.1. Figure 7.6a performances are lower
than 7.6b by 4% when using all processing elements of the manycore. This difference is
mainly due to RDMA memory accesses coalescing, which are provided by the hierarchical
mapping approach. This phenomenon is well shown by Figure 7.7a when using 8 CCs
with 16 cores. The flat state-of-the-art IBSDF mapping makes each core perform RDMA
transactions, which increases the ratio communication vs compute by 7.8% concerning our
new hierarchical approach.

Experimental Evaluation 127

Memory Wall in Manycore The NoC communication overhead measures the time
taken by communications of all compute CCs with the main memory using RDMA. Thence-
forth, the measurement considers parallel NoC communications and accumulates only the
ones whose delays have an impact on the global processing time of a frame. We measure
the critical communication path as the system is massively parallel, and some communi-
cations are overlapped with the computation of other CCs. In our hierarchical software
synthesis method, Figure 7.7b shows where the bottleneck is when the number of PEs and
CCs increases. In Figure 7.7b, the lower is the better as it shows the stalls of PEs on
off-chip memory accesses (high memory access latency). In this application, NoC com-
munications are less than 8% when using 1/4 of the processor capabilities (for instance 8
CCs with 8 PEs of the MPPA® manycore processor). Main memory accesses are start-
ing to become significant when using more than half of the chip capability. Indeed, we
have many processing elements that are competing for main memory accesses. The ratio
between computation and NoC communications is higher than 30% when all PEs of an
MPPA® processor are used.

(a) Flat Mapping (b) Hierarchical Mapping

Figure 7.7 – MPPA® Matrix Results Ratios between NoC Communications and Processing
Time (lower is better, lower means more PEs efficiency).

Communication Overheads Relative to Total Execution Time.

However, the software synthesis code exploits the on-chip local memory when chain-
ing kernels (sobel, erode and dilation). It reduces significantly the pressure on the main
memory that is a huge performance bottleneck (main memory bandwidth). But still,
Figures 7.7a and 7.7b are crucial to analyze what needs to be optimized on manycore
processors. The key to the performance (and parallel scalability) is to exploit the local
memories by chaining kernels locally; otherwise, the application is always going to be IO
bound [WWP09]. Nevertheless, in our example, the communication and computation ratio
becomes essential when using all PEs. In the next chapters, we focus on automatic buffer
prefetching, also using RDMA. Prefetching is crucial to reach the peak performance of
manycores as it reduces the stall duration of PE blocked by Read-After-Write (RAW) data
dependencies.

Mapping The mapping problem is NP-complete [BB07]. Its complexity increases ex-
ponentially with the numbers of PEs and actors. On a manycore with 256 Processing
Elements (PEs), it becomes very complicated for both theoretical mapping algorithms and
their implementations. In our case, once the application parallelism is revealed by applying

128
Software Synthesis based on a Hierarchical Static Dataflow Model for a Clustered

Manycore Processor

the flattening and single-rate transformation to all hierarchical actors, the resulting graph
contains more than 1,000 actors and 800 edges to be mapped on 256 Processing Elements
(PEs). Thus, the flat IBSDF graph is scheduled and mapped on the processing elements
in 26 minutes. With the hierarchical mapping approach, the process lasts less than one
second. On more complex applications, for instance, use cases with more than 10,000
actors, the hierarchical approach is a must-have feature as the mapping time explodes.

7.5 Conclusion

In this chapter, we introduce a new technique to exploit both coarse-grained and fine-
grained parallelism based on a hierarchical dataflow programming model. The main ad-
vantage of this strategy is that it provides the transformation workflow with scheduling and
code generation simplifications. Our strategy also improves data locality, which is crucial
for high-performance and power consumption. Indeed data movements have a significant
impact concerning time and energy, especially for embedded MPSoCs.

The fine-grained parallelism is retrieved by applying omp parallel for onto Repetition
Vectors (RVs) automatically extracted in a hierarchical actor. We show that this approach
matches not only manycore processors with a distributed memory architecture but also
multi-core architectures with shared memory.

In the future, System-on-Chip (SoC) will embed more and more heterogeneous PEs
and memories. Therefore, the mapping on such architectures will become more and more
complex. In our example, we used a low-level image processing application and show
significant speedups when the number of PEs increases. The mapping of an application
is not a simple problem, and it is becoming more and more involved with increases in
architectural complexity (number of PEs, PE heterogeneity within the same SoC, memory
hierarchy, hardware accelerators). The hierarchy of dataflow programming models is one
of the key assets to program complex architectures like the Kalray MPPA® manycore
processor.

CHAPTER 8

Porting an Embedded Runtime for Executing Reconfigurable Dataflow

onto a Clustered Manycore Processor

As shown in Chapter 7, dataflow models can be used at compile time to ease the program-
ming of manycore processors. The programming model used in this work at compile time
is the Interface-Based SDF (IBSDF), and its hierarchical semantics. IBSDF interfaces are
inherited by the Parameterized and Interfaced dataflow Meta-Model (PiMM) meta-model,
and its application to the Synchronous Dataflow (SDF) programming model, called Param-
eterized and Interfaced SDF (PiSDF) [DPN+13]. PiSDF extends the semantics of IBSDF
by introducing explicit parameters, and a parameter dependency tree. The primary goal
is to increase the expressivity of the IBSDF, and thus, to model advanced real-life appli-
cations in which much control and decisions have to be handled at runtime. Compared
with dynamic dataflow semantics, the PiSDF maintains strong predictability, enforces the
conciseness, and readability of application descriptions.

The parameters introduced in the PiSDF programming model can be modified at
runtime. The dedicated runtime called Synchronous Parameterized Interfaced Dataflow
Embedded Runtime (SPIDER) has been developed to execute an application efficiently,
described using the PiSDF model, as seen Section 3.5.2. Paper [HPD+14] shows that SPI-
DER outperforms Open Multi-Processing (OpenMP), and the dynamic dataflow compiler
Open RVC-CAL Compiler (Orcc), proving that the PiSDF offers an excellent trade-off be-
tween dynamicity and predictability. The original implementation of the SPIDER runtime
supports shared memory based Multiprocessor Systems-on-Chips (MPSoCs), and experi-
ments have been done on Intel® Central Processing Units (CPUs) and multi-core Digital
Signal Processors (DSPs). Supporting shared memory architectures on the recent PiSDF
programming model was challenging and a necessary milestone in this research.

We show in this chapter how we have adapted the SPIDER runtime for executing
applications described in PiSDF onto clustered manycore machines. The development
part of this work has been done by Hugo Miomandre during his final year internship under
the supervision of Karol Desnos and myself for debugging. The internship was partially
supported by the Mordred project, funded by the GdR ISIS of the CNRS.

Shared-memory architectures are easier to use than distributed memory architectures
models thanks to their global address space, and the provided hardware synchronization
mechanisms (usually atomics). The key challenges to target the Multi-Purpose Processor
Array (MPPA)® and more generally clustered manycore architectures are listed below.

130
Porting an Embedded Runtime for Executing Reconfigurable Dataflow onto a Clustered

Manycore Processor

• Initializations of more than 256 Processing Elements (PEs)

• Sharing of resources

• Finalizations and exits

• Memory allocation (distributed and shared memories)

• Synchronizations (distributed and shared memories)

• Communications (distributed and shared memories)

The proposed extension supports Direct Memory Access (DMA)-enabled architectures
implementing One-Sided communications developed during this thesis and described in
Chapter 5. The original implementation of SPIDER is designed and partitioned as follow:
graph modeling, graph transformation, graph scheduling/mapping, memory allocation,
synchronizations, and communications. We will see in this chapter how both the architec-
ture independent front-end and the architecture dependent back-end have been modified
to make it fit the Kalray MPPA® manycore processor.

This chapter is organized as follows. Section 8.1 presents the architecture of the SPI-
DER runtime. Optimization heuristics regarding the scheduling are explained in Sec-
tion 8.2. The management of the distributed memory and explicit memory communications
are presented in Section 8.3. Finally, Section 8.4 contains results, explains and compares
them with previous results given in Chapter 7.

8.1 Architecture of the Distributed Dataflow Runtime

SPIDER operates as an offloading runtime similar to OpenCL or OpenMP 4.0. The main
application offloads computations on the acceleration cores. The dataflow runtime has a
master/slave approach.

As seen in Section 3.5.2, the master process needs a PiSDF graph description of the
application generated by Parallel and Real-time Embedded Executives Scheduling Method
(PREESM) and distributes at runtime the computation on the slave PEs, called Local
RunTime (LRT).

Such a model offers several advantages such as a centralized control, the ability to
trigger the offloading of any dataflow graphs, depending on external events, and to manage
error recovery on complex parallel systems.

We contributed two ports. The first one uses shared memory, which runs on a single
Input/Output Subsystem (IO) of the MPPA® processor. The second one uses 16 Compute
Clusters (CCs) and one IO of the MPPA® processor, and it performs automatically explicit
DMA communications to handle the distributed local memories of the clustered manycore
architecture.

The first porting step consisted in compiling the original SPIDER runtime for the
Kalray Very Long Instruction Word (VLIW) core using only the bare-hypervised toolchain.
Then, using the pthread Application Programming Interface (API), the SPIDER runs on
the main program thread, and up to 3 Local RunTimes (LRTs) running on 3 threads are
possible using the multi-threading runtime presented in Chapter 6 onto the Input/Output
Subsystem (IO) of MPPA®.

Such support was not as easy as it is on a Linux system because of the stack size
limitation, unsupported low-level functions, that needed to be bypassed or reimplemented,
differently and the heterogeneous memory map of the Input/Output Subsystem (IO) (two

132
Porting an Embedded Runtime for Executing Reconfigurable Dataflow onto a Clustered

Manycore Processor

1) When an LRT completes a task, the PE running the LRT writes the produced data
tokens into shared memory. On completion of the task, the LRT sets its job ID to the
completed job ID. A job ID is a 64-bit monotonic counter that identifies the task that
is fired on an LRT. The job ID is used to synchronize PEs with each other during the
execution. Therefore, the job ID is written in the corresponding slot (related to the PE),
in an array of slot in shared memory, precisely the array[LRT number] slot. Each slot has
multiple readers and a single writer.

2) Once this LRT is available for further computing, it tries to get a new job from its
task job queue.

3) Before the firing of the popped task, the LRT must wait for the completion of
preceding tasks. Such constraints are the native data dependency of the application. For
that purpose, job messages contain the job ID of each preceding task and the ID of each
LRT that executed these jobs. Thus the LRT will compare the expected job counter values,
given by the job IDs, and the actual job counter values of the specified remote LRTs.

For convenience, job counter values of all LRTs are stored in a single array explained in
(1), accessible as Read-Only to all PEs. Such synchronization mechanisms are quite simple
to implement with shared memory architectures. Indeed, the access to these job counters
and IDs are performed by Load/Store in the shared memory, respecting the memory con-
sistency rules of the targeted architecture. As already seen in Chapter 4.4, the memory
consistency is guaranteed by the special full memory barrier instruction to prevent data
races.

A Word on the SPIDER Implementation for the Texas Instruments (TI) Key-
stone II On previous SPIDER implementations [HPD+14], designed for the PEs of the
TI Keystone II architecture, this synchronization mechanism uses hardware queues to man-
age data dependencies. The TI Keystone II implements many hardware queues, making
the synchronization of large dataflow graphs possible (few thousands of vertices at a time).
Such hardware specific implementation shows that the SPIDER architecture provides a
proper partitioning of the key actions of the runtime, and allow these actions to be accel-
erated by hardware specific features of the targeted platform.

8.1.3 Implementation of a Distributed Synchronization Protocol

The objective of the new synchronization algorithm is to both distribute the control of
synchronizations and bound the number of Network on Chip (NoC) communications per
data dependency necessary to fire an actor (run its associated task sequentially).

The proposed algorithm built on the “observer design pattern” [Gam95], where the
observers are the LRTs waiting for the completion of a preceding actor and the notifier is
the LRT executing this actor. The operating principle of the algorithm is based on three
key actions:

Register: When an LRT pops a new job from its queue, it scans the set of preceding
actors in the job descriptor (sent by the SPIDER GRT running on the Input/Output
Subsystem (IO)), and sends a notification request to each LRT executing the preceding
actors. A notification request encapsulates both the ID of its sender LRT, and the awaited
job ID.

Notify: On job completion, an LRT updates its job counter, then process all its pending
notification requests with an awaited ID lower than the new job counter value. Software
flow control is performed to avoid data corruption on congestion.

Architecture of the Distributed Dataflow Runtime 133

Peek: Optionally and for optimization purpose, after sending all its notification re-
quests, an LRT can check, once and on its own, the job counter values of all LRTs that
have not yet answered.

The goal of a peek, which consists of a remote 8-byte load in a remote memory over the
NoC, is to avoid waiting for a notification from a busy LRT whose job counter is already
greater than the awaited value.

The remote 8-byte load is part of the set of primitives provided by the Asynchronous
One-Sided (AOS) distributed communication API. As the latency of the Peek operation is
high, typically more than a thousand of cycles (see Figure 5.11), the written transaction
performs several asynchronous calls for the overlapping of as many transactions as possible
(along with the coalescing of information within bit-fields).

Using these actions, each data dependency requires at most five communications through
the NoC: two to send a notification request, one to send a notification, and two for a Peek.
Hence, a finite number of NoC communications per dependency is needed, which fulfills
the communication bounding goal.

Answer Notification RequestsLRTb

Start
i=0

Req[NbLRT]

Val[NbLRT]

Yes

++i < NbLRT

Val[i]>=
Job count

No

Clear
Req[i]

Post
LRTi.Sem[b]

Exit

Request M Notifications

No

++i < M

LRTi
pending

LRTa

Start
i=0

No

Set
Sem[#LRTi]

Sem[NbLRT]

Post
LRTi.Req[a]

Call Answer
notif. request

Yes

LRTM
pending

No

Call Answer
notif. request

Yes

Read

Read

Set

Yes

Ni:
LRTi:
Vali:

Notifs (i in [1..M])
Source LRT for Ni

Trigger for Ni on LRTi

LRTi.Val[a]

= Vali

Yes

Req[i]
pending

No

No

Exit

No

Read

Clear

Read

Set

Set

Clear

NoC

LRTa
Variable

LRTb
Variables

Figure 8.2 – Algorithms for Distributed Synchronizations for the Actor Firings.
The number of requests is the number of input First-In-First-Out queues (FIFOs) of the next

actor.

The algorithm flow-chart in Figure 8.2 details the distributed synchronization protocol.
The protocol implements an all-to-all (LRTs) synchronization mechanism. The left part
of the diagram describes the observer LRTa popping a new job from its job queue and
the right part explains the notification sequence when LRTb processes pending notification
requests. To simplify the figure, the peek action was omitted. The protocol requires
three synchronization vectors for each LRT, allocated in the local memory of the PE: Sem
contains the LRTs IDs of sent but pending notification request. Req registers the LRTs
IDs of received notification requests. Val contains the job counter values awaited by LRTs

134
Porting an Embedded Runtime for Executing Reconfigurable Dataflow onto a Clustered

Manycore Processor

registered in Req . The size of each array corresponds to the total number of LRTs in the
system NbLRT .

8.2 Optimized Heuristic-based Scheduling

This section focuses on mapping and scheduling. It is complicated to be handled at runtime
when using the commonly used methods. The Section 8.2.1 defines the problem and its
bottleneck, and Section 8.2.2 describes a solution using a simple and efficient mechanism
when targeting massively parallel architectures.

8.2.1 Prohibitive Complexity and Footprint

The original scheduler implemented in SPIDER is a LIST scheduling heuristic described
in [Kwo97]. When the input parameters of a dataflow graph are set dynamically, the GRT
analyzes the data exchange rates in the PiSDF graph and generates an equivalent Single-
Rate Directed Acyclic Graph (DAG) graph, exposing explicitly all data parallelism. Actors
of the DAG are obtained by duplicating actors of the PiSDF graph as many times as their
number of firings; themselves obtained analytically from data consumption and production
rates [LM87]. Then, the GRT handles the mapping and scheduling of each actor, taking
into account the dependencies of the DAG and mapping constraints if any. A mapping
constraint can be some user defined task assignments to specific PEs, and the local memory
usage on clustered architectures.

The issue, with the LIST scheduler, is that its complexity becomes prohibitively large
when targeting a processor with hundreds of PEs. Indeed, it is O(A.log(A) + P.(A +
E)) [Kwo97], where A and E are the number of actors and dependencies in the DAG (ver-
tices and edges), and P is the number of cores. As already seen, manycore architectures
implement hundreds of cores and require many parallelisms to be useful. Therefore, the
number of DAG actors to be scheduled in parallel increases roughly linearly with the num-
ber of PEs. Consequently, the complexity of the LIST scheduling increases quadratically
with the number of PEs, making it a bottleneck for runtime scheduling.

8.2.2 Lightweight Scheduling, Simpler is Faster

We replaced the original LIST scheduler with a less complex scheduling algorithm based
on a specialized Round Robin (RR) heuristics. Firstly, the new algorithm was designed to
reduce the memory footprint and the latency of job scheduling decisions. The main idea is
to increase as much as possible the dispatch rate of the job, in other words: the performance
in Input/Output Operation per Seconds (IOPSs) of the GRT (scheduler). The classical
RR heuristic iterates circularly on a list of LRTs, and sends jobs to the first available LRT.

This heuristic lowers the scheduling complexity down to O(A + E), as a topological
ordering of actors is required. However, we found that the evaluation of the actor execution
time and the job fairness distribution to LRTs were no longer required, as a lot of LRTs
are available, and, at least one LRT is always ready to compute.

Secondly, memory usage is optimized by interleaving the PEs from different CCs in the
list on which our RR algorithm iterates. In each Compute Cluster (CC), 16 PEs share a
local memory and a NoC interface. The goal is to prevent too many jobs from being sent
simultaneously to PEs on the same CC. As such, it provides higher on-chip memory usage
and reduces the pressure on the local memory of the CC. Indeed, multiple tasks starting
their execution try to synchronize themselves with their predecessor actors, and allocate

Managing the Distributed Memory at Runtime 135

local memory in the CC for their input and output buffers (see Section 8.3). Therefore, the
scatter of jobs among CCs prevents and reduces the wait time to access shared Compute
Cluster (CC) resources.

Thirdly, the specialized RR algorithm uses a flow control mechanism to avoid overflow-
ing job queues. The GRT sends a job to an LRT only if the remote job queue contains
enough space to receive the job. For that purpose, LRTs send their job counter value to
the GRT on job completion. The statically configurable size of job queues has to be large
enough to prevent starvation of the LRTs, but small enough to keep the memory footprint
under control.

Finally, the RR scheduler was tuned to take into account the available memory in the
Compute Cluster (CC). When the task of an actor is scheduled, the required amount of
memory for its execution is computed, and the scheduler does not send it to an LRT that
is not able to run it due to the lack of local memory. The measurement of memory space
available in the local memory of the CC, associated with each PE, is done off-line but can
be performed at runtime, while initializing the SPIDER.

8.3 Managing the Distributed Memory at Runtime

Section 8.3.1 explains issues encountered when dealing with the array of local memories
of the MPPA® processor. The MPPA® architecture implements neither global cache
hierarchy nor cache coherence at any levels. As such it is challenging to control and move
data explicitly by software, which is also pointed out in the paper [WWP09] regarding
DMA-enabled processors. Section 8.3.2 explains the memory allocator in each Compute
Cluster (CC), and the handling of the corner and unsupported cases (deadlock, congestion).

8.3.1 Distributed Local Memories instead of Caches

Once an LRT pops a new job, it needs to allocate memory to accommodate the input
and output buffers of the corresponding actor. As the original SPIDER was implemented
for shared memory architectures, where PEs (LRTs) access the main memory, usually
DDR technology in embedded systems, through their data cache, the SPIDER GRT uses
a single global memory allocator. Data pointers on globally allocated data tokens of the
FIFOs are sent to the LRT job queues, and LRTs can access data tokens using Load/Store
instructions. The hardware data cache does the communication automatically (implicitly)
by refilling the requested data from the main memory into the cache close to the PEs.
However, memory consistency operations at synchronization points are still required (full
memory barrier).

On a local memory based manycore architecture, the memory in the multi-core Com-
pute Clusters (CCs) needs to be allocated by each local runtime, as well as the movement
of data. Once again, the movement of data is performed by the Asynchronous One-Sided
(AOS) communication API, using the Remote Direct Memory Access (RDMA) Put/Get
protocol as shown in Figure 8.1.

Linear (contiguous) Get operations are used to read the input FIFOs of the actor from
the DDR to the on-chip local memory of the CC. When the execution of the scheduled
actor completes locally in the Compute Cluster (CC), linear (contiguous) Put operations
are initiated by the LRT to write back the data in the DDR memory. RDMA fences are then
issued to get the completion of the multi-CC Read-After-Write (RAW) data dependency.

Furthermore, distributed local memories are limited, thus making the control software
more complicated and error-prone. In such a case, memory resources may be exhausted

136
Porting an Embedded Runtime for Executing Reconfigurable Dataflow onto a Clustered

Manycore Processor

frequently, but do not necessarily impose the termination of the application. For instance,
a memory allocation may fail for an actor A when another actor B, executed in the same
CC, uses all the available local memory. On completion of the execution of actor B, its
memory can be reused, possibly after sending output buffers back to the main external
memory (off-chip). Then actor A may successfully perform its memory allocation in the
local memory.

8.3.2 Thread-safe Local Memory Allocator

The flow-chart in Figure 8.3 describes a new algorithm to allocate space in the local memory
of a clustered manycore architecture. Such allocation procedure ensures that all scheduled
jobs on an LRT running in a CC manage to allocate their required memory, as long as it does
not exceed the maximum capacity of the local memory space of the CC (see Section 8.2).
When the firing conditions of a mapped actor are fulfilled, the LRT attempts to allocate
its buffers using the algorithm in Figure 8.3.

Cluster-level
Shared
Memory

Start alloc

Release lock

DEADLOCK Exit

Success

True

Yes

Failure

No

Lock

Pend

Post

Read

Set

Get lock

False

Shared
Variables

Cluster

Allocating Data

Size =
Ʃ buffersize

Increment
nbactiveLRT

Set
alloc_flag

Clear
alloc_flag

Try
alloc(size)

nbactiveLRT

> 0

Check
alloc_flag

nbactiveLRT

LRT

Figure 8.3 – Algorithm for the Local Memory Allocation in the CC.

As multiple cores may compete for local memory space, a CC level lock, based on atomic
instructions, is required to prevent the memory allocator from data structure corruption.
The critical section of this algorithm also protects a shared counter, NbActiveLRT that
represents the number of actors (task) currently executed on the Processing Elements
(PEs) concurrently within the CC. If the number of active LRT is greater than zero and
a memory allocation fails, the LRT should release the lock, and try again later. If not,
a deadlock is detected as no other LRT is currently using CC memory, and there is no
reason for more memory to be available during a future allocation attempt. The deadlock
detection is an expendable safety feature if, as presented in Section 8.2, the scheduling

Conclusion 139

The top performance obtained for the static execution is 217 fps. For this video reso-
lution, the reconfigurable PiSDF graph, executed with SPIDER, peaks at 47 fps. Besides
the SPIDER runtime overhead, the difference between the performance of the static and
reconfigurable executions are mostly due to the lack of memory optimization in the re-
configurable implementation (dynamic). In the reconfigurable version, many copy calls
(memcpy in C) are performed to create the image slices in the Split actor and to merge
processed slices into a contiguous buffer before Display. Thanks to compile-time optimiza-
tions, these memcpy calls are replaced with pointer and DMA offset operations in the static
version reducing the memory transfers by a factor of 3 (memory bandwidth reduction of
the memory accesses).

8.5 Conclusion

This chapter presents an implementation of a runtime manager that leverages reconfig-
urable dataflow graphs on manycore architectures. To the best of our knowledge, this
is the first online mapping, and scheduling of a parametric dataflow application onto a
clustered manycore architecture.

At first, we ported the runtime on a single multi-core CPU, namely the Input/Output
Subsystem (IO) of the MPPA® for legacy. We then expanded the runtime globally on
the MPPA® processor. The master GRT runtime operates on the IO and the slaves on
the CC. For that, our runtime supports distributed memories and manages explicit cores
data communications using RDMA, queues, and remote atomic operations for synchroniza-
tions. Furthermore, some scheduling methods based on efficient heuristics are introduced
to let the master runtime feed all the slaves mapped on the Processing Elements (PEs)
of the Compute Clusters (CCs). New memory allocation algorithms were also specifically
designed to provide efficient usage of the on-chip memory and for catching memory allo-
cation errors, if any, as memory is a critical resource on manycore processors with local
memories. Experiments on the Kalray MPPA® processor demonstrate the feasibility of
such a runtime, its potential concerning application performances, and energy efficiency.

However, such distributed runtime was challenging to implement, debug and validate.
Indeed, the highly concurrent environment, with several multi-core CPUs, and with differ-
ent memory maps is difficult to analyze. For instance, the implementation of flow control,
the lack of hardware memory coherency, the management of explicit communications and
memory allocation were all challenging. However, the final solution is today operational
with high software maturity.

140
Porting an Embedded Runtime for Executing Reconfigurable Dataflow onto a Clustered

Manycore Processor

CHAPTER 9

A Distributed OpenVX Framework for a Clustered Manycore Processor

As already seen in previous chapters, the programming of Direct Memory Access (DMA)-
enabled processors is challenging and difficult [WWP09]. To make it easier, this chapter
describes the first OpenVX implementation for the Kalray Multi-Purpose Processor Array
(MPPA)® processor.

OpenVX [G+17] is a standard developed by the Khronos group for cross-platform accel-
eration of computer vision and deep learning applications. It is a domain specific Applica-
tion Programming Interface (API) (like a Domain Specific Language (DSL)) that abstracts
the architecture complexity (heterogeneity) of the processor. Moreover, OpenVX is a se-
rious candidate for application engineers who need high-performance embedded software
for vision and learning applications. All optimizations are performed automatically by
the proposed framework for a wide range of application kernels. OpenVX aims to be at
a much higher level than other standards such as OpenCL, OpenMP or academic models
like Interface-Based SDF (IBSDF) or Parameterized and Interfaced dataflow Meta-Model
(PiMM), which require a clear understanding of the application and its manual paral-
lelization. OpenVX vendors perform all optimization work to make the application run
efficiently.

The Khronos OpenVX standard [G+17] uses a graph-based approach to ease the design
of computer vision pipelines and decrease the time to market. The graph-based computing
may optimize sequences of kernels at graph level to get the best out of the hardware capa-
bilities. The graph-level approach makes it possible to optimize at high-level of sequences
of kernels, and at low-level, to use stream memory accesses or use vector instructions (Sin-
gle Instruction, Multiple Data (SIMD)). Both low-level and high-level optimizations are
up to the OpenVX vendors.

In the computer vision domain, open-source libraries, like OpenCV, are also designed
for rapid prototyping onto general purpose parallel processors. However, in these libraries,
the computation is performed explicitly at each function call; therefore, it is impossible
to perform global optimization over several functions. For instance, it is impossible to
group kernels to increase data locality. Such optimizations are of utmost importance for
performance optimization as it reduces the memory traffic, a bottleneck in most High-
Performance Computing (HPC) systems.

Our OpenVX implementation targets low latency and parallel graph execution to en-
able reactive embedded systems. Each compute-intensive kernel is distributed on the en-

142 A Distributed OpenVX Framework for a Clustered Manycore Processor

tire Compute Cluster (CC) matrix of the MPPA® processor. Low latency implementa-
tions (also called batch-1) are very different from high throughput implementations. High
throughput implementations are usually based on the pipelining of the graph execution,
which is not very complicated. In our case, we do not use graph pipelining optimization.
Instead, we distribute each node on all available computing resources. We automatically
perform the scheduling, the memory allocations, and the data transfers to satisfy multi-
cluster Read-After-Write (RAW) dependencies.

Our OpenVX framework has been written from scratch, starting from the specification
and the Khronos API provided in https://github.com/KhronosGroup/ OpenVX-Registry.
The implementation is based on the multi-threading runtime and the asynchronous one-
sided API that are both presented in Chapters 5 and 6 respectively.

Section 9.1 presents the OpenVX standard, third-party implementations, and compares
OpenVX with OpenCL. Section 9.2 explains the back-end for offloading computations from
the Input/Output Subsystem (IO) to the Compute Clusters (CCs) of the MPPA® proces-
sor. The dynamic optimization is described in the vxVerifyGraph, Section 9.3

9.1 Requirements and Positioning

In Section 9.1.1, we explain the main ideas of the OpenVX standard such as the different
objects, and the architecture itself. In Section 9.1.2, we describe existing third-party imple-
mentations that are either academic or commercial. Implementations details are given as
well as the design strategies and runtime dependencies. Section 9.1.3 explains differences
between OpenCL and OpenVX.

9.1.1 OpenVX Standard and Example

The OpenVX standard [G+17] is a graph-based API designed by the Khronos group for
developing computer vision and deep learning applications on embedded platforms. The
standard is usually implemented and proposed by hardware manufacturers in their pro-
gramming environments. OpenVX is not only designed for a Central Processing Unit
(CPU)-Graphics Processing Unit (GPU) target like OpenCL but is also reminiscent of
dataflow programming models. Indeed OpenVX has already shown its efficiency for the pro-
gramming of a host associated or not with remote computing resources like Nvidia® GPUs
or FPGA using CUDA® or OpenCL respectively.

As seen in Section 3.3, dataflow programming models are architecture-agnostic, highly
valuable for exposing high-level optimization opportunities and enabling automatic deploy-
ment of applications on a wide variety of embedded platforms [LM87]. The OpenVX pro-
gramming model is a Single-Rate (SR) specialization of the Synchronous Dataflow (SDF)
programming model [BML99, LM87] where production and consumption rates of the graph
nodes (the actors) are equals. So a specific strength of OpenVX is to expose the graph
structure of the entire processing pipeline, to enable implementations to perform high-level
optimizations, and to allow vendors to get the most out of their machines.

Figure 9.1 shows an example of OpenVX code. In this example, we removed error
checks to simplify the code, but a real application would check the return values by the
creations, verify, releases and process OpenVX functions.

A context describes the accelerator device where the computation is going to be of-
floaded. The standard includes very few platform-specific functions and data structures.
One of these functions creates the platform description using as an input a platform-specific
structure. The structure platform at Line 2 of the code Figure 9.1, described the config-

Requirements and Positioning 143

uration for the Kalray MPPA® processor. This platform-specific object is explained in
Section 9.2.

1. vx_uint32 width = 1920, height = 1080; // Full HD image

2. vx_context context = vxCreateContextFromPlatform (& platform);

3. vx_graph graph = vxCreateGraph(context); // Creation of the graph

4. vx_image images [] = { // Creation of images

5. vxCreateImage(context , width , height , VX_DF_IMAGE_U8), // Real

6. vxCreateVirtualImage(graph , 0, 0, VX_DF_IMAGE_U8), // Virtual

7. vxCreateVirtualImage(graph , 0, 0, VX_DF_IMAGE_U8), // Virtual

8. vxCreateVirtualImage(graph , 0, 0, VX_DF_IMAGE_U8), // Virtual

9. vxCreateImage(context , width , height , VX_DF_IMAGE_U8), // Real

10. };

11. vx_node nodes[] = { // Create the graph or pipeline of kernels

12. vxGaussian3x3Node(graph , images [0], images [1]),

13. vxSobel3x3Node(graph , images [1], images [2], images [3]),

14. vxMagnitudeNode(graph , images [2], images [3], images [4]),

15. };

16. vxVerifyGraph(graph); // Graph verification and compilation

17. vxuFReadImage(images [0], in_fd); // Read input image

18. vxProcessGraph(graph); // Graph execution

19. vxuFWriteImage(images [4], out_fd); // Write output image

20. for (int i = 0; i < dimof(nodes); i++)

21. vxReleaseNode (&nodes[i]); // Delete nodes

22. for (int i = 0; i < dimof(images); i++)

23. vxReleaseImage (& images[i]); // Delete images

24. vxReleaseGraph (& graph); // Delete graph

25. vxReleaseContext (& context); // Delete context

Figure 9.1 – Example of an OpenVX Application.

Once the context is created, the OpenVX graph is created with a direct reference to the
parent context. This is required for the static optimization passes during the vxVerifyGraph
function. The compiler needs to know the platform to perform the proper optimization
choices. The OpenVX graph is composed of vertices and edges. The vertices are called
OpenVX Nodes. The developer can select nodes in a list of standard kernels [G+17], and
supported by the platform thanks to the vendor. The edges correspond to OpenVX buffers
(Images, LUTs, Arrays, and Pyramids for instance) and link the vertices which produce
and consume data.

Two kinds of buffers exist: the user buffers, allocated and accessible from the memory
space of the OpenVX host application; and the virtual buffers, that contain data exchanged
between the vertices of the graph. Virtual buffers cannot be accessed by the host applica-
tion, and they may be suppressed by using kernel fusion optimization techniques. In the
code of Figure 9.1, only the input and output images are user buffers (Lines 5 and 9).

Once the graph is created, it has to be verified and compiled. To do so, the user
explicitly calls the vxVerifyGraph function. On success, the user calls the vxProcessGraph
function to execute one iteration of the OpenVX graph explicitly. In OpenVX, there exists
functions to access the data of the OpenVX objects (Images and Arrays for instance).
Instead, we chose to add custom vendor-specific nodes to manage the Input-Output of the
graph, namely vxuFReadImage and vxuFWriteImage. They respectively fill up the input
image and write the output image data to the hard-drive disk or a stubbed display function
over Peripheral Component Interconnect Express (PCIE) [Aja09].

144 A Distributed OpenVX Framework for a Clustered Manycore Processor

9.1.2 Third Party Implementations & Optimizations

An implementation of the OpenVX standard is provided by all Intellectual Property (IP)
and chip vendors who target computer vision applications. OpenVX implementations are
also available from GPUs and Field-Programmable Gate Array (FPGA) vendors, and they
use the offloading foundations of CUDA®or OpenCL programming models.

Seminal OpenVX optimizations techniques are described in [RVD+14]: Inter-Process
Communication (IPC) aggregation, pipelining, data prefetching, SIMD execution, and mul-
tiple levels of block tiling. All of these optimizations are the basics of efficient parallel
implementations [WWP09], and they are applied to third-party OpenVX frameworks pre-
sented in this section.

The Nvidia® VisionWorks framework, presented in [BA14] implements OpenVX using
CUDA for GPU offloading. The Advanced Micro Devices (AMD) open-source framework
described in [GP16] uses either OpenCL for GPU offloading or the host CPU for compu-
tations. AMD kernels use SIMD and streaming Load/Store to access sparse data at CPU
level efficiently. Also, they use OpenCL to offload kernels onto GPU when available. Both
frameworks target GPU-based accelerators or the host processor.

The ADRENALINE framework presented in [THB14] [THMB15] features a series of
optimization techniques including kernel fusion, overlap tiling by recomputing halo regions
(ghost regions [KS10]), and double buffering for overlapping computation and communica-
tions. ADRENALINE provides a virtual prototyping platform, currently implementing a
single cluster and a host CPU. Their runtime is built on OpenCL 1.1 [G+11] with an ex-
tension to exploit the on-chip memory efficiently, avoiding round trips to the main memory
(external) whenever possible.

By comparison with ADRENALINE, our work focuses on OpenVX graph optimizations
in a standalone mode (without external CPU), and targets low latency execution times
using multiple clusters. The standalone mode let our framework compile on-the-fly, with
a call to vxVerifyGraph at runtime, the OpenVX graph onto the target processor, when a
configuration parameter of the OpenVX application changes. We instantiate a multi-core
host CPU on one Input/Output Subsystem (IO) CPU, accelerated by up to 16 Compute
Clusters (CCs), and we use asynchronous inter-cluster Remote Direct Memory Access
(RDMA) transfers to exchange halo regions and use the main memory (external).

While OpenCL can also be used to deploy kernels onto the 16 CCs, this standard
does not support local memory sharing between kernels. Indeed, all __global data are
committed back to the main memory, and __local data does not persist between kernels.
Such optimization feature makes kernel fusion optimization impossible; therefore, the main
memory bandwidth becomes the main performance bottleneck. Vendor-specific extensions
could be used to reuse memory between OpenCL kernels as in [THMB15], but these are
non-standard and not part of the Kalray OpenCL offer. Moreover, the Kalray OpenCL host
runtime requires Linux which cannot be used for efficient, soft real-time systems because
of process scheduling jitter and system call overhead.

Halide [VZT+18], is a programming language (close to OpenVX) designed to exploit
modern processors efficiently for tensor and computer vision applications. The Halide
frond-end implements hardware independent computations like a parser, a scheduler, and
an optimizer (memory allocation, synchronization, distribution). The execution part of
our new distributed OpenVX framework could be a back-end for Halide to target the
MPPA® processors.

A Low-Level Distributed Offloading Engine 145

9.1.3 OpenVX and OpenCL

OpenVX and OpenCL have a different role. OpenVX implements predefined kernels
for computer vision and neural network applications, whereas OpenCL does not. Some
OpenVX implementations are built on top of OpenCL. Indeed as mentioned above, the
OpenVX implementation of AMD uses OpenCL to offload onto GPUs the computation of
OpenVX kernels. Therefore, OpenCL is used at a lower level of implementation.

Moreover, as mentioned in Section 3.2.2, OpenCL exploits the memory hierarchy of the
machine with the keywords __global, __local and __private, making OpenCL software
challenging to write, and architecture dependent for the optimizations.

OpenVX hides the machine complexity from the programmer. Indeed, the OpenVX
can be seen as an optimized library (like a DSL) for executing a Directed Acyclic Graph
(DAG) of predefined kernels (functions). The standard also let the user add his/her own
kernels. However, custom kernels are much more challenging to integrate and optimize
automatically during the OpenVX graph optimization.

Finally, OpenCL defines the control-flow during the execution, whereas in OpenVX,
the control-flow (control-path) is derived from the graph that is compiled and executed.

The OpenVX standard separates the control-path (kept implicit) from the data-path,
providing inherently much more effective when exploited and implemented by System-on-
Chip (SoC) manufacturers.

9.2 A Low-Level Distributed Offloading Engine

The offloading of computations from a host to one or several accelerators is not a trivial
task. In the case of the MPPA® processor, the accelerators are the 16 Compute Clus-
ters (CCs). As mentioned in Section 9.1.1, OpenVX is built as an acceleration program-
ming API where the user application runs on a host CPU, and the described application
graph can be executed anywhere: GPU, FPGA, and/or custom accelerators. With the
MPPA® Multiprocessor System-on-Chip (MPSoC), one IO is the host and the CCs run
the compute-intensive parts of the application graph.

Therefore, an offloading engine has been designed. Its design is inspired from the
OpenACC [WSTaM12] runtime back-end of GNU Compiler Collection (GCC). OpenACC
is the base of another famous offloading standard programming API, called OpenMP 4.0.
As we target efficient and light-weight embedded computing, the offloading from a Linux
Operating System (OS) running on the Input/Output Subsystem (IO) have been excluded.

We first describe the architecture of this offloading engine in Section 9.2.1. We provide
key feature to performance in Section 9.2.2, and we explain the relationship between the
OpenVX framework built on top of it in Section 9.2.3.

9.2.1 Architecture of the Offloading Engine

The offloading engine is responsible for the deployment of self-synchronizing computations.
On the IO, the offloading engine operates in user-space of the multi-threading runtime
presented in Chapter 6. OpenMP multi-threading is used to parallelize the distributed
kernels inside each CC. Figure 9.2 shows the offloading engine architecture on which the
OpenVX distributed framework is built.

The architecture of the offloading engine lies on the RDMA Network on Chip (NoC)
of the MPPA® processor. The main memory is the Double Data Rate (DDR) memory
that is accessed using one-sided operations for the CC. The IO has direct access to this
memory using Load-Store. The use of the main memory is mandatory as most of the time

A Low-Level Distributed Offloading Engine 147

compiled using the Position Independent Code (PIC) compile flag, and embedded in the
host program (in the Input/Output Subsystem (IO)), so that the accelerators, namely the
CCs can access the object file. The dynamic overlay is a major feature for time-predictable
memory access of the CPU to the .text section. Indeed, the global system caches for
accessing the instructions are not time-predictable and very difficult to analyze. Therefore,
using a dynamic overlay is important in recent OpenVX Safety-Critical specifications (real-
time performance and deterministic) presented in [Gid17].

3) Local buffer allocation associated to an identifier. The pre-allocation of buffers
makes it possible to have an array of, off-line allocated, static pointers with associated
identifiers. These memory areas are used to store the statically allocated data, that is
performed by the distributed memory allocator presented in Section 9.3.3.

4) Execute kernel with arguments (name and arguments). The execution of ker-
nels consists in sending the name of the function to be run, and its arguments. All sent
jobs and commands are executed in order, by the selected CCs of the created execution
platform. The execution of a kernel is always asynchronous for the host. The completion
of the running kernels is provided to the host using a computation pipeline barrier. The
barrier waits for the completion of outstanding kernels, running in the selected Compute
Clusters (CCs).

5) Multi-cluster synchronization, synchronous or asynchronous collective. Asyn-
chronous collectives regarding the host make the synchronization of a pool of Compute
Clusters (CCs) within the pipeline possible, without any intervention of the host. It pro-
vides efficient synchronization mechanisms, controlled by the host CPU, to deal with multi-
cluster Read-After-Write (RAW) dependencies in the main memory (external).

All of the above features are available through new primitives that have been designed
for our needs. They are all executed by the host multi-core CPU, asynchronously to
avoid stalls, and atomically to prevent data races. However, sent jobs and commands are
processed in the execution order on the CCs side. Thus, pipeline barriers are provided to
ensure the completion of all outstanding jobs and commands that were dispatched to the
targeted CCs. In this way, transactions are always pipelined in job queues for execution
efficiency with regards to the host. The offloading engine provides software flow-control
mechanisms for the job queues to prevent data corruption when the multi-cluster system
is congested.

The implementation does not implement locking mechanisms in the data path. Effi-
cient software runtime implements separated control and data path. Functions like code
relocation, pre-booting of OpenMP thread teams, memory allocations, and system initial-
izations are performed once when the host starts the application. In the data path, the
application uses pre-computed routes, a pre-loaded piece of code, and statically allocated
memory buffers that make high-performance implementation possible.

As a result, at 500 MHz, the measured Input/Output Operation per Second (IOPS)
from the host point of view is 731.3 kilo IOPS, meaning an asynchronous request to a
CC takes 681 machine cycles on average. Such a throughput is enough for our OpenVX
acceleration framework, built on top of this new offloading engine.

148 A Distributed OpenVX Framework for a Clustered Manycore Processor

9.2.3 Integration and Usage in the OpenVX Framework

The OpenVX application runs on the host multi-core CPU and uses an acceleration API.
The OpenVX context references the number of CCs in range [0, 15] and the number of PEs
in range [0, 15] inside each compute cluster of an MPPA® processor. For the MPPA®, we
propose an example of platform specific implementation in Figure 9.3.

struct _vx_platform platform = {

/* use 8 clusters to process the graph starting from cluster 2 */

.cluster_id_list = { 2, 3, 4, 5, 6, 7, 8, 9, 10 },

/* use 8 clusters */

.nb_cluster = 8,

/* 16 PEs per cluster used by the OpenMP runtime */

.nb_pe_per_cluster = 16,

/* output OpenVX graph for debug */

.dump_dotty_graph = 1,

/* need kernel fusion for performance */

.disable_kernel_fusion_optimization = 0,

};

...

/* build the context with requested MPPA specific OpenVX platform */

vx_context context = vxCreateContextFromPlatform (& platform);

Figure 9.3 – Example of the Support Platform Description of the MPPA® Processor

Each OpenVX node is distributed on all available CCs (flat distribution) linked to the
OpenVX context. The distribution is achieved by operating a low-level kernel offloading
engine in a lightweight multi-threaded runtime onto the host CPU.

The parallelization relies on OpenMP3 # pragma omp parallel for work sharing be-
tween cores inside a CC and uses the RDMA NoC API [HdDdMH17] to perform inter-
cluster data transfers and main memory accesses.

9.3 Online Optimizations: vxVerifyGraph

The framework for running OpenVX applications on stand-alone clustered manycore pro-
cessors is based on a distributed runtime execution environment. Starting from [WM14],
which targets Load/Store CPU+GPU architectures with shared memory, we adapt and au-
tomate optimizations for both Load/Store (synchronous, intra-cluster) and RDMA (asyn-
chronous, inter-cluster) types of memory accesses.

9.3.1 Optimization Workflow

The workflow specifies the automatic steps performed during the OpenVX graph dynamic
optimization vxVerifyGraph. The workflow is executed onto the embedded host; thus,
graph optimization can be done at runtime if external parameters change. As shown in
Figure 9.4, the workflow takes as input the OpenVX application and produces computation
commands for one or several accelerators.

Online Optimizations: vxVerifyGraph 149

IR Graph

Building
Scheduling

Kernel

Fusion

Memory

Allocation

Command

Generation

Figure 9.4 – OpenVX Verify Graph Workflow - vxVerifyGraph [G+17]

a) IR Graph Building provides the internal Intermediate Representation (IR), a Single-
Rate (SR) Directed Acyclic Graph (DAG) on which the next passes of the optimization
workflow operate. The graph builder takes user buffers which are OpenVX objects, looks
for adjacent nodes using a Depth-First Search (DFS) and propagates object properties to
buffers and nodes, such as image sizes and configuration parameters of OpenVX kernels.

Several errors may be detected and dealt with during the graph building process: un-
connected buffers or nodes, cycles, multiple buffer writers, and the absence of input or
output buffers for the OpenVX application. When errors are detected, the graph building
results in failure giving the user the list of implicated nodes or buffers.

b) Scheduling is based on a topological sort of the Single-Rate (SR)-DAG presented
in [KL95]. It is performed to enforce the graph dependencies for kernel executions, and its
complexity is O(n). In practice, we implemented the Algorithm 1 presented in Section 3.3.

c) Kernel Fusion is the critical optimization that let kernels reuse data already copied
in the on-chip memory (local memories). This optimization aims at reducing the main
memory (external) bandwidth. Adjacent kernels (nodes) are fused to make this optimiza-
tion possible. Kernel fusion opportunities are identified by a simple constraint satisfaction
algorithm that ensures memory allocation feasibility. The schedule is updated after each
kernel fusion. The complexity of the fusion optimization algorithm is O(n) where n is the
number of kernels. The kernel fusion optimization is presented in details in Section 9.3.2.

d) Memory Allocation pass is performed by an allocator of distributed memory oper-
ating on the schedule (once the fusion optimization is completed). As explained in 9.3.3,
virtual buffers are allocated in the main memory (external) or the internal on-chip memo-
ries (local memories).

e) Command Generation performs the computation of arguments for the RDMA-based
tiling engine. The commands are saved in lookup tables. The runtime of the RDMA-based
tiling engine running the compute clusters is presented in 9.4. The basic tiling principle is
to split a buffer (1D or 2D) into tiles and to distribute them onto the computing resources.
Once commands are generated, the vxProcessGraph consists in sending commands to the
CCs as seen in Section 9.2. The commands are sent asynchronously, but their executions
are scheduled in order across the matrix of CCs.

9.3.2 Automatic Kernel Fusion Optimizations

As explained in Chapter 7, the kernel fusion optimization consists in grouping two adjacent
kernels together to avoid temporary buffers being copied to the external memory. Again,
this technique is inspired by the Pairwise Grouping of Adjacent Nodes algorithm [BML99].

However, in this chapter, the grouping or kernel fusion algorithm is different. The
kernel fusion optimization operates at a multi-cluster level as each kernel is
distributed on the entire CC matrix to achieve low latency.

As each vertex of the SR-DAG is distributed on all available CCs, it makes data depen-
dency between fused kernels a multi-dimensional problem as shown in Figure 9.7. Fusion
decisions are based on the following constraints: the pattern type of kernel to fuse, the

150 A Distributed OpenVX Framework for a Clustered Manycore Processor

amount of local memory required, and the type of input and/or output buffers have to
be virtual (see Section 9.1.1). The real buffers cannot be fused because in the OpenVX
specification, these buffers should stay accessible by the host application. The O(n) fusion
optimization pass, takes the main graph schedule as an input and produces a new schedule
that represents the new fused kernels.

 Fusion 1

 Fusion 2 Fusion 3

magnitude_1

sobel3x3_1

USER_OUTPUTS

sobel3x3_0

magnitude_0

threshold_0

magnitude_2

threshold_1

USER_INPUTS

gaussian_0

 Fusion 1

magnitude_0

not_0

USER_OUTPUTS

USER_INPUTS

imageCopy_0 imageCopy_1

Figure 9.5 – Example of a Graph Display from the IO, Schedule and Fusion Optimizations

This new schedule is then placed in the main graph schedule until all fusion oppor-
tunities are applied to the application graph. The scheduling policy consists of executing
fused kernels in depth first. The supported patterns of kernel fusion are any combinations
of point-to-point operator kernels using overlap tiling or not.

The fusion optimization avoids recomputing halo regions and removes useless memory
copies for the management of halo regions. However, it is involved regarding inter-cluster
data transfers and the memory allocation of input and output tiles, as buffers need to be
padded on the borders for halo exchange (see borders of distributed tiles in Figure 9.7).

Moreover, for the debugging of the scheduling optimizations of the graph, we have
implemented a stubbed function over PCIE to visualize the OpenVX computation graph
defined by the user. If not disabled by the platform description already presented and shown
in Figure 9.3. It allows the user to check the described graph and successful optimization,
as well as, the schedule of the nodes.

Figure 9.5 shows an example of an OpenVX graph schedule, dumped by the host. The
USER_INPUTS boxes are the input buffers and the USER_OUTPUTS boxes are the
output buffers of each graph. These buffers are real buffers that can be accessed by the
host application. Kernel fusion decisions are shown by a blue box over the kernels in
Figure 9.5. On the left graph, three fusion optimizations have been automatically found,
and on the right graph, one fusion optimization has been performed.

Explicit RDMA-based Communication Engines 151

9.3.3 Distributed Static Memory Allocation

The distributed memory allocator manages the memory consumed by the virtual buffers
of the OpenVX application. User buffers are already allocated at object creation (buffers).
The distributed memory allocation operates after the scheduling and the kernel fusion
passes. The allocator has two memory pools which are the array of symmetric local mem-
ories and the main memory. The memory allocation is mainly governed by the graph
schedule, through the lifetime of virtual objects, the kernel fusion decisions, the kernel
dependency patterns, spills in the main memory for user buffers, and also the N-buffering
and tiling configurations parameters usually depending on image sizes.

By default, the runtime automatically spills buffers to the main memory (external)
during the computation when the local memories are full.

The RDMA-based tiler, described in Algorithm 12, spills and tiles images that do
not fit into the available local memories. Inside each compute cluster, a memory area
of 1.4 megabytes is reserved at the OpenVX context creation. This memory buffer size
is configured in the OpenVX platform’s specific files of the framework itself but is easily
tunable to target any RDMA-enabled clustered manycores.

This memory area contains temporary multidimensional buffers (virtual buffers of the
OpenVX standard) that are allocated by a first-fit memory allocator giving buffer offsets
in the local memory of each CC. The first-fit algorithm takes buffers related to vertices
in their schedule list order and recycles the memory once their live range has ended. On
classical OpenVX applications, 4 buffers are allocated in each local memory before being
reused.

Finally, the memory allocation is guaranteed to succeed as the kernel fusion optimiza-
tion pass is aware of the available size remaining in the local memories when fusing kernels.
Indeed, when the kernel fusion requires too much memory, the fusing optimization pass
chooses the RDMA-based tiler to spill on the main memory. The RDMA-based tiler splits
the computation automatically to make it fit in the local memories, thanks to Algorithm 12.

9.4 Explicit RDMA-based Communication Engines

9.4.1 A Tiling & Fusion RDMA Engine

The RDMA-based tiler operates at runtime (graph execution) inside each CC concurrently,
distributing the execution of each OpenVX node across the entire matrix of
compute clusters. This technique is essential to achieve low-latency execution more-
over, is unlike classic dataflow graph execution, where actors are mapped to different CCs
[dDAB+13, CDG+14]. Algorithm 12 receives commands through the job queues as seen in
Figure 9.2 when the host application calls vxProcessGraph. Command arguments are the
input and output images, tile geometries, halo geometries, the N-buffering configuration
to absorb main memory latency; the start compute offset in images stored in the main
memory (external) for each CC and the number of CCs that execute the kernel concur-
rently. Halo geometries are provided by a hand-written oracle, which is used during the
scheduling.

152 A Distributed OpenVX Framework for a Clustered Manycore Processor

Algorithm 12 An Automatic Distributed RDMA-based Overlap Tiler Concurrently Op-
erating onto Multiple Compute Clusters.

1: Input: InImg, Width, Height, NbTotalTiles, N, TileWidth, TileHeight, HxIn/Out,
HyIn/Out, NbTileStartOff, NbTiles

2: Output: OutImg
3: /* Set multidimensional pointers in local memory */
4: Set InTiles[N][TileHeight+2*HyIn][TileWidth+2*HxIn]
5: Set OutTiles[N][TileHeight+2*HyOut][TileWidth+2*HxOut]
6: for i := 0 to N-1 step 1 /* Warm up the pipeline */ do
7: InTilesEvent[i] ← Asynchronous Get Stride-to-Dense from (In-

Img+NbTileStartOff+i) to InTiles[i]
8: end for
9: for i := N to NbTiles+N step 1 /*Pipeline Loop */ do

10: ProcIdx := (i-N)%N /* Compute Buffer Index */
11: FetchIdx := i%N /* Prefetch Buffer Index */
12: /* Wait for DMA Transactions Completions */
13: Wait Get InTilesEvent[ProcIdx]
14: /* Only one wait if in-place computation */
15: Wait Put OutTilesEvent[ProcIdx]
16: /* Compute Tile i-N in Parallel in the Node */
17: OutTile[ProcIdx] := Kernel(InTiles[ProcIdx)])
18: if OutImg is local then
19: Async. Puts of halo regions to adjacent compute clusters for fused kernels depen-

dencies
20: else
21: if i < NbTiles+N then
22: OutTiles[ProcIdx] ← Async. Put Dense-to-Stride to (Out-

Img+NbTileStartOff+i) from OutTiles[ProcIdx] /* Write to Main Memory
*/

23: end if
24: end if
25: /* Prefetch Tile i from Main Memory */
26: if i < NbTiles then
27: InTilesEvent[FetchIdx] ← Async. Get Stride-to-Dense from (In-

Img+NbTileStartOff+i) to InTiles[FetchIdx]
28: end if
29: end for
30: Async. Fence /* Memory Consistency, Mandatory for Global Read-After-Write Depen-

dencies */
31: Synchronize NbNodes Clusters /* Ordered with Fences */

Firstly, the distributed tiler either retrieves input tiles from the main memory using
N-buffering (Line 7) and sets local multidimensional input pointers (Lines 4 and 5) to
previous local output buffers of a previously executed kernel when it is “fused” with the
current one.

Secondly, the master thread of the CC calls the compute kernel (Line 17). It performs
intra-cluster parallelization with OpenMP compilation directives.

Thirdly, the output is either copied back to the main memory for OpenVX user buffers
(Line 22) or remains local, if the next kernel is fused with the current one. When the

Explicit RDMA-based Communication Engines 153

next kernel is fused, depending on kernel fusion patterns, halo exchanges are initiated to
adjacent compute clusters to satisfy inter-cluster data dependencies (Line 19).

Finally, memory consistency operations are initiated to memories that have outstanding
writes (Line 30) before the multi-cluster synchronization (Line 31).

9.4.2 Tiling & Fusion Optimizations

This section illustrates the multi-cluster tiling, and the tiling combined with the fusion
optimization at the multi-cluster level.

Tiling

Figure 9.6 shows the tiling distribution for a 2D stencil computation using 4 CCs. A
typical use case would be an edge detector followed by morphological operators. Steps
1, 3, and 5 a copy data from/to the main memory from/to the local memories of the
CCs, which is shown in Algorithm 12 at Lines 7 and 22. Red arrows show main memory
(external) spaced [HdDdMH17] transfers with the local memories (on-chip memory). The
Algorithm 12 performs automatic data prefetching to hide the main memory access latency.
As explained in [WWP09], reducing latency by software and hardware prefetching is a key
to performance. Memory accesses are often the bottleneck in high-performance computing.
Steps 2 and 4 perform the computations in parallel in each used CCs.

Main

Memory

C0 C2

C1

C3
Main

Memory

C0 C2

C3

C1

Main Memory Transfer

Write

Read

Main

Memory

Read

Write

Step 1

Step 2

Step 3

Step 4

Step 5

Figure 9.6 – Automated Multi-clusters Tiling

Tiling can be improved as the main memory bandwidth wall is a bottleneck. The fusion
optimization is proposed here to tackle this problem.

Tiling Combined with Fusion

Figure 9.7 shows the tiling combined with kernel fusion optimization, also using a 2D
stencil computation with 4 CCs. Steps 1 and 5 perform copy from/to the main memory.
At step 3, the black arrows represent strided inter-cluster asynchronous RDMA transfers,
also shown Line 27 of Algorithm 12.

When fused kernels are executed, each CC stores tiles that are automatically reused
from one kernel to the next. Therefore, the N-buffering N variable of Algorithm 12 is always

154 A Distributed OpenVX Framework for a Clustered Manycore Processor

set to 1 when fusing to maximize the on-chip memory usage, minimize data transfers, and
save main memory bandwidth. We exploit inter-cluster RDMA data transfers to reduce
the number of external memory accesses.

Halo

Region

Kernel 1

Kernel 2

Fused

C3

Main

Memory

C0 C2

C1

C0 C2

C3

C1

Main Memory Transfer

Halo Exchange

Main

Memory

Write

Read

Step 1

Step 2

Step 3

Step 4

Step 5

Figure 9.7 – Automated Multi-clusters Tiling Combined with Fusion

Thanks to the fusion optimization, we gain a factor of 2 on the data copied in the main
memory. Indeed, the main memory bandwidth (external) is often a performance bottleneck
for manycore architectures [WWP09].

The RDMA-based tiler (Algorithm 12) can be used straight out of the box by other ar-
chitectures supporting asynchronous one-sided communications, such as OpenCL async_work_group_copy(),
Message Passing Interface (MPI)-3 one-sided operations, or even the low-level onto the
eDMA feature of the Texas Instruments (TI) Keystone II.

9.5 Complex Distribution and Memory Access Patterns

DMA-enabled architectures have always been challenging to program, mainly because all
data transfers are explicit.

9.5.1 Dealing with Irregular Memory Accesses

Irregular memory accesses happen in some OpenVX standard kernels like geometrical trans-
formations. These irregular memory access patterns are difficult to predict during the ver-
ification and optimization of the graph in vxVerifyGraph. Therefore, the proposed tiling
solutions presented in Section 9.4 cannot be used for such problems. There exist two types
of geometrical transformations which are the affine and the perspective transformations in
OpenVX.

The warp affine transformation is defined by 2∗3 matrix. It translates pixel coordinates
from the input to the output image. Let us consider M the transformation matrix, O and
I respectively the output and input image. We use the formula provided as follows and
presented in the Warp Affine section of [G+17]:

xt = M1,1 ∗ x+M1,2 ∗ y +M1,3

yt = M2,1 ∗ x+M2,2 ∗ y +M2,3

O(x, y) = I(xt, yt)

Complex Distribution and Memory Access Patterns 155

The warp perspective transformation is defined with a 3 ∗ 3 matrix. It translates and
rotates pixel coordinates from the input to the output image. Let us consider M the
transformation matrix, O and I respectively the output and input image. We use the
formula provided as follows and presented in the Warp Perspective section of [G+17]:

xt = M1,1 ∗ x+M1,2 ∗ y +M1,3

yt = M2,1 ∗ x+M2,2 ∗ y +M2,3

zt = M3,1 ∗ x+M3,2 ∗ y +M3,3

O(x, y) = I
(xt

zt
,
yt

zt

)

To compute the output O, we iterate on the output pixel coordinates x and y. We
compute the coordinates xt, yt and zt of the input pixels I in the following cases:

• Warp Affine: O(x, y) = I(xt, yt)

• Warp Perspective: O(x, y) = I
(

xt
zt ,

yt
zt

)

The matrix M is provided by the OpenVX user, thus unknown, meaning that memory
access patterns can be irregular.

The computation of the coordinates is performed using floating point operations and
converted back to integers once computed. The computed coordinates are used to access
the input pixel and write this accessed input pixel on the (x, y) coordinates of the output
image.

We show an example of a geometrical transformation in Figure 9.8. The transformation
is a rotation using the warp perspective. When there is no correspondence between the
output pixel and the input pixel, a black pixel is set.

Figure 9.8 – Example of Geometrical Transformation, namely a Rotation.

Irregular memory patterns are challenging to manage on DMA-enabled architectures.
As such when the data movements depend on the input data itself, it is hard to handle
efficiently. Such a problem usually requires a global cache system. Kalray provides at low-
level an implementation of the Distributed Shared Memory (DSM) system where the PEs
of the CCs matrix have direct access to the main memory using the Memory Management
Unit (MMU) that is presented in Section 2.4.5. However, the current DSM system is not
acceptable in our proposed OpenVX framework because of the following issues:

156 A Distributed OpenVX Framework for a Clustered Manycore Processor

• It requires at least 500 kilobytes of local memory to operate, and the local memory
is a critical resource for performance.

• It cannot be unplugged dynamically when a kernel of a graph does not need it.

• It does not implement prefetching mechanisms.

Our contribution to the efficient execution of these OpenVX kernels is to implement
a cache of 2D tiles in Algorithm 13. The tile geometry is set with the TileWidth and
TileHeight parameter at Line 1, at initialization time. Furthermore, arguments of this
algorithm define the geometry of the 2D tiles that are cached with parameters CacheWidth
and CacheHeight. The goal of such a system is to fetch on demand and depending on
the transformation, the input pixel to be placed in the output pixel. The cache of
tiles is dedicated to the geometrical transformations, but the idea can be applied to other
use-cases.

Such configurability let the graph verification pass of OpenVX analyze the geometrical
transformations and configure the cache accordingly to get a high rate of hits in fetched
tiles.

Algorithm 13 runs on each PE of each CC running the geometrical transformation
concurrently. As in Section 9.4, the output image is tiled inside the CC, and each PE
operates on an image tile. The parallelization of a sub-tile inside one CC is managed by
OpenMP. Moreover, the loop presented in Line 7 of Algorithm 13 is tiled to provide a
better locality of 2D tiling at the global level of the explicit cache of tiles.

Black pixels in Figure 9.8 (top of the right image) corresponds to computed input
coordinates that were out of the input image geometry. The condition observed in Line
9 of Algorithm 13 manages this corner case. Initialization of the output image to black
could be done at initialization time; but, for performance, it is performed while iterating
on the output pixels, on-the-fly. This optimization avoids accessing the entire output tile
at initialization time, thus reducing memory accesses.

With such an algorithm architecture, fined tuning could be done during the verify graph
process to configure the cache with the following parameters: line width and height, tile
offset of in the image (middle, end, beginning, custom). We tuned our new cache of 2D
tiles to fetch in lines for x translations and y translations for affine transformations, but
further prospection and effort could be done for perspective transformations.

9.5.2 Implementation of Distributed Reduction and Dynamic List Up-
date

The Harris corner detection is part of the OpenVX standard, and it is used to detect key
points within an image. For instance, these points can later be used for motion vector
estimation.

The Harris corner detection algorithm requires the implementation of reductions when
running in parallel. Reductions are explained in Section 3.1.3. In parallel computing,
when we consider a distributed machine with local memories like the Kalray MPPA®,
the parallel implementation of reduction is not easy. The Asynchronous One-Sided (AOS)
library (Chapter 5) has been developed to solve this problem, thanks to remote atomic
operations. Indeed remote atomic operations are powerful to deal with atomic updates of
variables in distributed memory systems fitted with local memories (only).

The Harris corner detection performs a reduction at some points during the execution
to compute the maximum value of an image. This image is split across the array of local

Complex Distribution and Memory Access Patterns 157

Algorithm 13 A Reconfigurable 2D Explicit Cache of Tiles for Geometrical Transforma-
tions. Each PE of a CC implements its own 2D cache.
1: Input: InImg, MatrixTransformation, TileWidth, TileHeight, NbTiles, CacheWidth,

CacheHeight
2: Output: OutImg
3: /* Set multidimensional pointers in local memory */
4: Set InTile[CacheHeight][CacheWidth] /* Each PE has it own */
5: Set OutTile[TileHeight][TileWidth] /* Each PE has it own */
6: for i := 0 to NbTiles step 1 /*Pipeline Loop */ do
7: for OutPoint in OutTile /*Loop over pixels in parallel */ do
8: Compute InPoint = MatrixTransformation ∗OutPoint
9: if InPoint is out of bound of InImg then

10: Write Border Pixel in OutPoint
11: else
12: if Check InPoint Hit in Current InTile then
13: Write InPoint in OutPoint
14: else
15: Async. Get of a new InTile from InImg
16: Write InPoint in OutPoint
17: end if
18: end if
19: end for
20: Async. Put of Current OutTile in OutImg
21: end for
22: Async. Fence /* Memory Consistency, Mandatory for Global Read-After-Write Depen-

dencies */
23: Synchronize NbNodes Clusters /* Ordered with Fences */

memories of different CCs. The image tiling is the same as in Figure 9.6, but for one kernel
only. Our implementation is derived from the classical MapReduce programming model
used in the parallel multi-cluster implementation.

In the Harris corner detection algorithm, a maximum value is computed. As this
computation is spread on all the available CCs, each CC computes its own local maximum
value and sends it to all other CCs computing the distributed Harris corner detection
node. Therefore, an all-to-all CCs data communication is performed to send all CCs the
contribution of each CC.

We use asynchronous RDMA Put operations followed by posted remote atomic (postadd)
operations to unlock all remote CCs. Thus, after posting these operations, each CC waits
on the variable to be unlocked. As RDMA operations are ordered with posted remote
atomic operations, when the CC is unlocked, it immediately performs the local computing
of the maximum value of each contributor (the other CCs).

Finally, the Harris corner detector outputs a list of coordinates of points that need to be
written back in the main memory (external), to be directly accessible by the host, hosting
the OpenVX user application. Each CC has to write its local list of found coordinates.
The list sizes are different, and they depend on the image content. Therefore, we use the
remote atomic named fetchadd (see Chapter 5) on a counter mapped in the main memory.
This counter is initialized to 0 at the beginning of the execution by the host. The fetched
value in the CC is then used to write at a proper offset in the list (OpenVX vx_array

158 A Distributed OpenVX Framework for a Clustered Manycore Processor

object) mapped in the main memory (external) as well. Thanks to this algorithm, it is
possible to combine efficiently the contribution of several CCs.

9.6 Results & Discussions

Optimizations performed by the framework are fully automated. They do not require any
user inputs. This section shows the impact of automatic optimization passes regarding
fusion and prefetching on the execution time. The graph verification and scheduling were
done offline for benchmarking. The entire distributed framework (workflow, runtime, and
kernels) has been implemented in standard C99 for efficient execution in embedded systems,
and without any complex library dependency but the C library.

Before explaining the results, we highlight three cases of speedups:

• Sub-linear: means that the parallelization is below the theoretical speedup when
increasing the number of cores. Such a low speedup is due to several known parallel
programming problems, which are the Amdhal’s law (some part of the application
cannot be run in parallel), the overhead of the extra software control for the paral-
lelization, and the data transfers used to spread data across the available cores.

• Linear: means that the cores are well exploited, and the speedup increases linearly
with the number of cores. The application is embarrassingly parallel usually when
the computations are independent (no data dependency between cores and the NoC
communications are not stressed).

• Super-linear: means that the speedup factors are above the number of cores. Such
a speedup is usually misunderstood as it somehow breaks classical speedup laws that
bound the maximum theoretical speedup of parallel applications, like the Amdhal’s
law. However, super-linear speedups can be obtained in a few cases, usually in HPC.
It can be observed while focusing optimizations onto memory accesses [WWP09],
while eliminating costly stalls on the main memory accesses, and exploiting shared
on-chip memories very efficiently.

9.6.1 Performances Analysis

We use single-channel images (VX_DF_IMAGE_U8) for benchmarking with image sizes
corresponding to VGA (480p) and full HD (1080p). Strong scaling is shown when varying
the number of CCs, and the number of PEs is set to 16 within each CC. The operating
chip frequency is 500 MHz. It uses a single DDR3 channel running at 1333 MHz. The
power consumption of the chip varies from 4 to 12 Watts, depending on the use case
and the optimizations applied (fusion, prefetching and core-level optimization). We use
point operator kernels using tiling or overlap tiling techniques with either halo regions
inter-cluster data transfers or spilling, depending on the optimization level.

9.6.2 Benefits of Asynchronous RDMA Prefetching

Figures 9.9 and 9.10 compare the execution latency of a single kernel using synchronous
strided-to-dense RDMA main memory accesses compared to asynchronous accesses imple-
menting N-buffering (see bench_N_BUFF results). Five kernels (copy, conv3x3, threshold,
dilate, or) have been evaluated. We found that asynchronous RDMA prefetch is a must-
have for performance, as long as the main memory is not the bottleneck. Our RDMA

Results & Discussions 159

prefetching mechanism provides up to 80% better performance than the blocking memory
accesses. Quasi-linear speedups are obtained for up to 8 clusters before becoming memory
bound with the main memory (external memory).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 3 4 5 6 7 8

F
ra

m
e

pe
r

S
ec

on
d

(F
P

S
)

Number of Clusters (16-core per Cluster)

Tiling Engine Performance on 480p Images - Batch 1

copy
conv3x3

threshold
dilate

or
copy_N_BUF

conv3x3_N_BUF
threshold_N_BUF

dilate_N_BUF
or_N_BUF

Figure 9.9 – Automatic Tiling Engine Performance. VGA Images.
Simple Tiling vs Tiling with N-Buffering (N_BUF = N-Buffering = Prefetch).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6 7 8

F
ra

m
e

pe
r

S
ec

on
d

(F
P

S
)

Number of Clusters (16-core per Cluster)

Tiling Engine Performance on 1080p Images - Batch 1

copy
conv3x3

threshold
dilate

or
copy_N_BUF

conv3x3_N_BUF
threshold_N_BUF

dilate_N_BUF
or_N_BUF

Figure 9.10 – Automatic Tiling Engine Performance. Full HD Images.
Simple Tiling vs Tiling with N-Buffering (N_BUF = N-Buffering = Prefetch).

9.6.3 Automatic Kernel Fusion

Figures 9.11 and 9.12 compare results with tiling with prefetch, and tiling with prefetch
combined with kernel fusion. As seen in Figure 9.12 for full HD images with the edge_detect_pipeline
(Median, Sharr and Magnitude pipeline), the kernel fusion optimizer can fuse the kernels
when the execution platform integrates 10 CCs and more.

Indeed, with this edge_detect_pipeline, the entire data set fills all available local mem-
ories, when the number of CCs is higher than 10, making the fusion optimization possible

160 A Distributed OpenVX Framework for a Clustered Manycore Processor

(Figure 9.7). Similar speedups are also noticed for other cases for both image resolutions
(full HD and VGA).

Data copies in the main memory (external) are avoided, thus providing an extra speedup
of 25 % in this case compared to the spilling N-buffering version.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 2 4 6 8 10 12 14 16

F
ra

m
e

pe
r

S
ec

on
d

(F
P

S
)

Number of Clusters (16-core per Cluster)

Fused Kernel Pipeline Performances on 480p Images - Batch 1

edge_detect_pipeline_N_BUF
filtering_pipeline_N_BUF

box_closing_pipeline_N_BUF
edge_detect_pipeline_FUSION

filtering_pipeline_FUSION
box_closing_pipeline_FUSION

Figure 9.11 – Automatic RDMA-based Kernel Fusion Performance. VGA Images.
Tiling with N-Buffering (N_BUF = N-Buffering = Prefetch) vs Kernel Fusing (FUSION).

 0

 50

 100

 150

 200

 250

 300

 2 4 6 8 10 12 14 16

F
ra

m
e

pe
r

S
ec

on
d

(F
P

S
)

Number of Clusters (16-core per Cluster)

Fused Kernel Pipeline Performances on 1080p Images - Batch 1

edge_detect_pipeline_N_BUF
filtering_pipeline_N_BUF

box_closing_pipeline_N_BUF
edge_detect_pipeline_FUSION

filtering_pipeline_FUSION
box_closing_pipeline_FUSION

Figure 9.12 – Automatic RDMA-based Kernel Fusion Performance. Full HD Images.
Tiling with N-Buffering (N_BUF = N-Buffering = Prefetch) vs Kernel Fusing (FUSION).

9.6.4 Super-linear Speedup at Multi-Cluster Level

In the edge_detect_pipeline of Figure 9.12, super-linear speedups are observed. On full
HD images (1080p), 1 compute cluster provides 4.62 Frames per second (fps) and the 16-
cluster version with kernel fusions, asynchronous strided inter-cluster halo regions exchange
provides 78.07 fps, for a speedup of 16.9. As already seen, super-linear speedups are usually
misunderstood as they contradict the classical theoretical speedup law’s. On complex
memory hierarchy processors, super-linear speedups are achieved by optimizing memory

Results & Discussions 161

accesses at multiple levels of the memory hierarchy. Several parameters need to be taken
into account. These parameters are memory access locality (shared cache or local shared-
memory), multiple levels of tiling geometries, and asynchronous prefetching mechanisms.
On the Kalray MPPA® processor, such speedup is obtained thanks to the exploitation
of the on-chip local memories, and the use of asynchronous (strided) inter-cluster data
transfers, which eliminate main memory access stalls.

The main memory (external) bandwidth wall needs to be avoided to fully exploit the
processing capabilities of low-power massively parallel architectures [WWP09]. Other
cases, filtering_pipeline (Sobel, Magnitude, Erode & Dilate) and box_closing_pipeline
(Conv3x3, Erode & Threshold) have both speedups of 15.1 on full HD images.

9.6.5 Irregular Memory Accesses Performance

With this contribution, we let geometrical transformation algorithms run on the targeted
clustered manycore processor. As already explained, irregular access patterns are difficult
to manage on clustered architectures. In Figures 9.13 and 9.14, we show the multi-clusters
throughput (fps) for geometrical transformations. In the CC, all PEs run in parallel the 2D
explicit cache of tiles. Although we observe at best a speedup of 10 with full HD images for
the translation, the performance for the Warp Perspective transformation is poor. Indeed
the Warp Affine transformation (translation) still has more regular memory access patterns
(better data locality).

 0

 200

 400

 600

 800

 1000

 1200

 2 4 6 8 10 12 14 16

F
ra

m
e

pe
r

S
ec

on
d

(F
P

S
)

Number of Clusters (16-core per Cluster)

RDMA-based 2D Cache Engine Performance on 480p Images - Batch 1

480p_x_Translation
480p_y_Translation

480p_xy_Translation
480p_Rotation_PI_over_4

Figure 9.13 – RDMA-based 2D Explicit Cache of Tiles Performance.
VGA Images.

More advanced static analysis during the vxGraphVerify process could be done to con-
figure the 2D explicit cache of tiles better. Still, the mechanism is generic and always
working, only fine-tuning is now required to carefully set the input parameters of to 2D
explicit cache of tiles (offset, 2D dimension, local tiling). Such optimization is not the
purpose of this thesis.

In a mono-cluster implementation, when the platform-specific attribute nb_pe_per_cluster
is in the range [1, 16], the performance also shows little speedups in Figures 9.15 and 9.16.
The best-observed speedup is for the XY translation where we show a speedup of 14
between 1 and 16 PEs running the 2D explicit cache of tiles.

162 A Distributed OpenVX Framework for a Clustered Manycore Processor

 0

 50

 100

 150

 200

 250

 2 4 6 8 10 12 14 16

F
ra

m
e

pe
r

S
ec

on
d

(F
P

S
)

Number of Clusters (16-core per Cluster)

RDMA-based 2D Cache Engine Performance on 1080p Images - Batch 1

1080p_x_Translation
1080p_y_Translation

1080p_xy_Translation
1080p_Rotation_PI_over_4

Figure 9.14 – RDMA-based 2D Explicit Cache of Tiles Performance.
Full HD Images.

 0

 50

 100

 150

 200

 250

 2 4 6 8 10 12 14 16

F
ra

m
e

pe
r

S
ec

on
d

(F
P

S
)

Mono-Cluster - Number of Processing Elements

RDMA-based 2D Cache Engine Performance on 480p Images - Batch 1

480p_x_Translation
480p_y_Translation

480p_xy_Translation
480p_Rotation_PI_over_4

Figure 9.15 – Mono-Cluster RDMA-based 2D Explicit Cache of Tiles Performance.
VGA Images.

9.6.6 Performance of the Harris Feature Point Detection

In Table 9.1, we show the multi-clusters performance for the detection of feature points
within an image. The current implementation has limitations. It can be observed in Table
9.1 that all cluster combinations are not supported. There is currently a limitation as only
the fusion optimization part has been implemented, and not the generic implementation
that makes the execution of the Harris corner detector possible independently of the amount
of memory available in multiple CCs. Such a feature should be implemented in the future.

Still, inside each CC, 16 PEs are processing the local tile concurrently. At the multi-
cluster level we show a speedup of 5.6 between 2 CCs and 16 CCs of V GA images (theo-
retical is 8). A speedup of 1.85 is observed between 8 CCs and 16 CCs (theoretical is 2).
No super-linear speedups are observed in this benchmark, as only the fusion optimization
has been implemented, and also, as the algorithm requires reductions. Reductions are se-

Conclusion 163

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 6 8 10 12 14 16

F
ra

m
e

pe
r

S
ec

on
d

(F
P

S
)

Mono-Cluster - Number of Processing Elements

RDMA-based 2D Cache Engine Performance on 1080p Images - Batch 1

1080p_x_Translation
1080p_y_Translation

1080p_xy_Translation
1080p_Rotation_PI_over_4

Figure 9.16 – Mono-Cluster RDMA-based 2D Explicit Cache of Tiles Performance.
Full HD Images.

quential at the memory system point of view. Thus, it implies additional synchronizations
with remote atomic operations. It is hard to get linear speedups with such constraints.

Benchmark
Harris Corners

Number of Clusters

Video VGA
640 x 480

(fps)

Video HD
1280 x 720

(fps)

Video Full HD
1920 x 1080

(fps)

2 136 - -
4 247 - -
6 336 124 -
8 454 162 -
10 484 190 -
12 575 230 -
14 575 231 -
16 770 295 124

Table 9.1 – Multi-cluster Performance of the Harris Corner Detection
of OpenVX on MPPA® in fps

9.7 Conclusion

In this chapter, we describe the implementation and benchmark the experimental results
of the first OpenVX framework for the Kalray MPPA® processor second generation. The
framework is built for the low-latency execution of OpenVX application graphs. Imple-
mented on top of the AOS API (see Chapter 5), and the new multi-threading runtime (see
Chapter 6), the entire framework has been written from scratch in C, starting from the
API specification provided by the Khronos group (around 20 thousand lines of code).

The main focus is put here on the throughput of the explicit data communications for
enabling low-latency execution of an OpenVX graph. The strategy consists in mapping each
OpenVX node of the graph on all available Compute Clusters (CCs) for the acceleration
matrix of MPPA®. The parallelization of each OpenVX kernel (node) is fully automated
from the point of view of the user of OpenVX.

164 A Distributed OpenVX Framework for a Clustered Manycore Processor

On massively parallel architectures, one of the main performance bottlenecks is the main
memory bandwidth (external memory). The main memory (external) also features long
memory access latencies. Our framework automatically addresses these two bottlenecks by
exploiting the on-chip local memories as much as possible (kernel fusion), and by operating
RDMA engines in asynchronous mode (data prefetching).

The framework performs automated optimizations, including kernel fusion, kernel ex-
ecution tiling, and N-buffering of external memory transfers. The kernel fusion technique
eliminates intermediate buffers and main memory (external) accesses. Thus, it saves main
memory bandwidth that is most of the time the performance bottleneck [WWP09].

One of the main contributions is the automatic distribution of OpenVX nodes on the
available local memories of the CCs. Thanks to such a feature, we can reach low-latency
execution. However, this strategy requires asynchronous inter-cluster RDMA transfers to
handle multi-cluster RAW dependencies, which are complicated to implement.

The results are measured using the real MPPA® hardware. We show some linear and
super-linear speedups at the multi-cluster level, which demonstrate that the MPSoC is well
exploited.

Moreover, another significant contribution in this Chapter is the design of an offload-
ing engine presented in Section 9.2. This engine offers a very efficient entry point from
the host to offload and control the multi-core CPUs (Compute Clusters (CCs)) of the
MPPA® MPSoC. Thanks to this contribution, the usefulness and the ease of use of this
engine, it is today the back-end of several optimized libraries offloaded from the IO to the
CCs. These libraries are the BLIS [VZVDG15] framework, the FFTW library, internal
projects targeting embedded systems, and our new low-latency OpenVX implementation.

CHAPTER 10

Applications and Experimental Results for a Clustered Manycore Processor

In this chapter, three embedded and high-performance applications are presented. They
have been implemented to evaluate the two runtimes introduced in Chapters 5 and 6.
Using these two runtimes, the three applications have been implemented by hand onto the
targeted clustered manycore architecture. We compare the results with the state-of-the-art
using the new contributions of both applications and runtimes.

The chapter focuses on parallelization methods to exploit efficiently clustered manycore
architectures like the Kalray Multi-Purpose Processor Array (MPPA)® processor. Each
Compute Cluster (CC) is an omniscient multi-core Central Processing Unit (CPU) that is
aware of the current state of the application running in parallel in the other CCs. This
model is similar to the Bulk Synchronous Parallel (BSP) execution model [KEHS+15] (flat
model). It avoids the classical master/slave approach. Indeed, the master can quickly
become a bottleneck when fine-grained parallelism is required, as seen in Chapter 6.

The first application (Section 10.1) is a 3D-stencil used in numerical simulations, for
instance, fluid simulation for the weather forecast, wind, and ocean. The second one
(Section 10.2.1) is the Fast Fourier Transform (FFT), that is used in most signal processing
applications. We show in this chapter the first implementation of a distributed Fast Fourier
Transform (FFT) implementation on MPPA®. The third application, currently part of
the Kalray Neural Network (KANN) framework, is a distributed runtime for executing
inference Convolutional Neural Network (CNN) applications at low-latency.

10.1 Macro Pipeline for the Computation of a 3D Stencil

Section 10.1.1 presents the application. Section 10.1.2 introduces an implementation of
the targeted 3D stencil application. Section 10.1.3 explains the contribution for optimizing
this 3D stencil application.

The presented work is part of the Ph.D. thesis of Minh Quan Ho, who wrote the new
implementation, and myself for the communication runtime, the debugging and technical
discussions.

166 Applications and Experimental Results for a Clustered Manycore Processor

10.1.1 Lattice Boltzmann Method (LBM) Algorithm and Background

The 3D-stencil is a Lattice Boltzmann Method (LBM) used in simulations. The LBM is
widely used in computational fluid dynamics for incompressible and weakly compressible
flows as explained in paper [Suc01]. For instance, LBM algorithms are used to simulate
oceans, failure of nuclear reactors, and volcano eruptions.

A lattice is a structured geometrical shape composed of points or objects in space.
Such stencil applications cannot fit in the local memory and must be stored in the main

memory (external).
An LBM model is characterized by its stencil type, denoted DdQq, where d is the

number of space dimensions (one, two or three) and q is the number of Particle Distribution
Function (PDF), as explained in [CCJM97]. Physically, an LBM time step on a lattice node
is broken into a collision and a propagation step, also known as the streaming step.

The collision applies a predefined physical model on the lattice distribution vectors.
The propagation updates these new distribution values for each node. The most used
stencil types are D2Q5, D2Q9, and D3Q19 (see Figure 10.1) or D3Q27. The nodes are the
points from 1 to 18 and the center point in Figure 10.1. Nodes can also be found at the
corners of the cube, but they are not dependencies for the D3Q19 stencil, they are for the
D3Q27 stencil.

12

15

5

16

11

73

1

9

8

2

10

14

18

6

17

13

4

Figure 10.1 – LBM D3Q19 Stencil

10.1.2 Implementation State-of-the-Art

In this section, we explain an implementation of a 3D-stencil onto a Direct Memory Access
(DMA)-enabled manycore processor. From a programming point of view, LBM applica-
tions are easy to implement and well-suited for parallelization on modern multi-/manycore
platforms. However, LBMs are known for their low arithmetic intensity, and their high
memory bandwidth. Indeed, the entire data set, usually a gigabyte of data, has to be
streamed in the processor most of the time for computing a single step of the simulation
algorithm. The execution time highly depends on the memory access schedule and the
theoretical bandwidth of the main memory (external memory).

The initial implementation uses the Kalray OpenCL data parallel programming model
presented in Section 3.2.2. The Kalray OpenCL model uses the Distributed Shared Memory
(DSM) (see Section 2.4.5) to support direct memory access to the off-chip Double Data Rate
(DDR) memory. However, such direct memory accesses using the DSM are synchronous,

Macro Pipeline for the Computation of a 3D Stencil 167

and cache effects are also a bottleneck. The bottleneck is due to the software managed
cache, aliasing conflicts, and the small number of pages that can be cached in the local
memories (on-chip memories).

Hence, using explicit asynchronous transfers between off-chip and on-chip memories
aims to boost performance, to reduce the overheads and the execution time. However,
it implies important code re-structuration, as well as new communication primitives and
algorithms.

Most existing LBM implementations on Graphics Processing Unit (GPU) employ the
fused two-lattice approach as the most comfortable and most computationally efficient
method. In particular, OpenCL Processor Array LBM (OPAL) from [OTK15] implements
a one-step two-lattice 3D LBM solver based on the D3Q19 stencil. OPAL is designed to be
portable and straightforward on GPUs, accelerators, and other OpenCL-enabled devices.

10.1.3 Optimizing a 3D LBM Stencil Application on Top of Asynchronous
One-Sided (AOS)

We take the D3Q19 LBM application from OPAL presented in paper [OTK15] as a reference
configuration. The data dependencies are shown in Figure 10.1. We propose in this section
a generic 3D LBM streaming algorithm with domain decomposition. We detail index and
halo size calculation for any configuration of the stencil distribution in Figure 10.3. For
each iteration, the entire data set is streamed in the local memories. As for the OpenCL
implementation, this sequence is repeated as many time as required (fixed number of
iterations).

We optimize memory accesses by pre-fetching 3D tiles using Algorithm 14. A 3D tile
is a convex polyhedron bounded by six quadrilateral faces. Moreover, other optimization
parameters can be tuned, even on other architectures, such as the DdQq, the halo size, and
the number of time steps T for the LBM simulation.

Supporting 3D Data Transfers in the AOS Library

Efficient 3D-stencil computations on a DMA-enabled processor implies 3D data movement
support at low-level. Therefore, the AOS Application Programming Interface (API) of
Chapter 5 has been slightly extended to support generic 2D and 3D data transfers easily.

2D transfers directly use Put and Get primitives presented in the Section 5.3.6. In the
case of 3D buffers, new 3D transfer primitives based on Put and Get have been developed
[JH16]. The 3D transfer primitives have been implemented over the 2D transfer ones at
low-level. Indeed a 3D transfer is a sequence of 2D transfers. This is basically a “for loop”
over the 2D transfer proposed by Algorithm 5 and illustrated in Figure 5.5.

Implementation Architecture

Firstly, the LBM kernel of OPAL is rewritten in C99 code. Given the similarity between
OpenCL-C and standard C99, the porting process is easier. Therefore, the one-step two-
lattice method is re-applied using a pull scheme, as in the original OPAL. The pull scheme
means that the CPUs use remote reads (Get) and remote write (Put) to access the data.

Secondly, two instances of the 3D lattice grid (LatticeEven, LatticeOdd), each containing
Lx×Ly×Lz nodes, are allocated in the main memory (external) and are accessed in a node-
wise layout. For consistency, the distribution values of a lattice are stored consecutively.

170 Applications and Experimental Results for a Clustered Manycore Processor

Prol-
ogue

m=0 1 2 3 4 5 6 7 Epil-
oguei=0 1 2 0 1 2 0 1

buf[0] G WCP WG WCP WG WCP W
buf[1] G WCP WG WCP WG WCP W
buf[2] G WCP WG WCP WG

Table 10.1 – 3-depth pipeline (triple-buffering) which allows a 2-step distance between GET and
WAIT, but only a 1-step distance between PUT and WAIT, thus the PUT transfer will not be well
overlapped (m: index of subdomain to compute, i: index of local buffer slot; G = GET; P = PUT;

W = WAIT; C = COMPUTE; WCP = {WAIT + COMPUTE + PUT}; WG = {WAIT + GET}).

for compactness; however, the local post-collision 3D tiles are placed in the second grid.
These two global grids are then swapped before starting the processing of the next time
step (for out-of-place computing in the main memory).

The algorithm uses multiple CCs at the number of NB_CC and exploits all Processing
Elements (PEs) in each CC. The multi-threading is enabled using the POSIX API (create,
join), introduced in Section 3.1.2). As there are 16 CCs available on MPPA®, each CC
is then responsible for M

16 subdomains.
Depending on the value of M , there might be K trailing subdomains (K ∈ [0..15]). If

K > 0, the algorithm must perform an extra step to copy, update and put back these K
trailing subdomains by K CCs, while the other CCs are waiting. A synchronization barrier
(Line 14) at the end of each time step is needed between all CCs to avoid data races at the
next time step. This procedure is then repeated as many times as the number of timesteps.

The double-buffering (2-depth) pipeline in Algorithm 14 is the simplest to overlap
communication and one compute-step.

As the computation is faster than the data transfers, deeper pipelines such as triple- or
quadruple-buffering provide better overlapping of the communication and the computation.
However, deeper pipelines require more local memory space in the CC.

In Figure 10.1, we show how a 3-depth pipeline behaves. Note that the time spent
in GET and PUT is considered negligible (non-blocking) and transfers are executed in the
background. However, the time spent in COMPUTE depends on the speed of the core, while
the WAIT time depends on how fast the memory system serves the RDMA transfer requests
and how they are hidden entirely or partially by the COMPUTE function.

Local and Remote Management of Copy-index

Here, we present the computation of the copy indexes, subdomain sizes, and halo cutoff
managements depending on geometric positions of the subdomains. Adding a ghost layer
surrounding the computational domain is a common technique to simplify the implemen-
tation of the streaming step at boundary cells, as seen in [MHTR08]. However, we choose
not to use this approach in our work, mainly to minimize the main memory allocation and
avoid wasting bandwidth and storage for moving ghost cells.

However, in our 3D decomposition algorithm, this decision requires careful calculation
of copy parameters for the subdomain indexes. The pre-collision 3D tile S embeds two
additional halo layers for each dimension (Fd). Its computational space begins at (1, 1, 1)
and ends at (Fx − 2, Fy − 2, Fz − 2) included. Halo layers are shown in Figure 10.2. They
are the 3D tiles placed all around the internal darker green 3D tile that is copied into the
local memories of the CC. When fetching a non-boundary subdomain (main block + halo)
from main memory to S, the arrival point of data at the local buffer is set to (0, 0, 0), and

Macro Pipeline for the Computation of a 3D Stencil 171

the remote point is computed as the global beginning position of the subdomain minus one
(back-off) in each dimension ((md × Cd)− 1).

A boundary subdomain can have up to three missing sides, depending on its location,
as it can be observed in Figure 10.3. Consequently, the halo layer of these missing sides
needs to be pruned from the copied 3D tile. The remote read-point and local write-point
must also be adjusted as well.

10.1.4 Results and Discussions

Benchmarking Environment

The pipelined 3D LBM algorithm is implemented on the MPPA® second generation plat-
form using POSIX threads (see Chapter 6) and asynchronous 3D primitives from AOS (see
Chapter 5). By default, MPPA®-256 cores are set to run at 400 MHz, and LP-DDR3
frequency is configured at 1066 MHz, i.e., ∼8.5 GB/s peak per DDR.

Note that MPPA® embeds two DDR interfaces (North and South) and the current
OpenCL runtime only uses one DDR and exposes 1 GB of available main device memory,
while the MPPA® AOS library exposes both single and double-DDRs modes.

Different cubic cavity sizes, varying from 64 to 224, are used in our tests, with some
exceptions. Problem sizes larger than 160 cannot be run in OpenCL on MPPA® due to
the 1 GB device memory limit (OpenCL provider’s limitation). Local work-group size in
OPAL OpenCL is always set to 32× 1× 1, as it delivers the best performance in most of
the cases.

In single-DDR mode (POSIX and OpenCL), both LatticeEven and LatticeOdd are
allocated on the North DDR. In double-DDRs mode (POSIX-only), the LatticeEven buffer
is allocated on the North DDR, and the LatticeOdd is on the South DDR.

The effective throughput of the double-DDRs mode can be considered as twice as one
of the single-DDR mode; thus 2× performance is expected.

We present below execution times of the OPAL kernel rewritten with our new POSIX
pipelined algorithm on the MPPA®-256, called OPAL_async, in 3-depth and 4-depth
pipelines, and following the local two-lattice method on various cavity sizes. These tests
are further run in both single- and double-DDRs modes. All these runs are checked for
correctness against the original OPAL code on GPU.

LBM performances are measured in Mega Lattice Updates per Second (MLUPS).
Therefore, it measures the speed of the system to compute lattice objects per seconds,
precisely the speed to update a point presented in Figure 10.2.

Pipelined 3D LBM Stencil on MPPA®

As seen in Figure 10.4, the OPAL_async algorithm outperforms the OpenCL version by
more than 30% in the single-DDR mode (from 12 MLUPS to 16±1 MLUPS). Furthermore,
we notice that the configuration with less Halo Bandwidth (HBW) (3-depth, 36% HBW)
delivers higher performance than the 4-depth configuration (43% HBW). While consuming
memory bandwidth, halo cells are copied because of the read-dependency between neigh-
bors. It does not contribute to the final performance. Figure 10.4 shows that the less
memory bandwidth the halo cells take up, the more performance we obtain.

Such a result leads us to think that the HBW of 2D/3D-stencil computations aimed to
reach Exascale, like weather forecast, ocean simulation and computational fluid dynamics,
should be lessened on future clustered manycore processors. For this to happen, these
manycore chips should embed larger local memory on each CC (compute unit) to tear

172 Applications and Experimental Results for a Clustered Manycore Processor

down the useless part of halo exchange due to domain decomposition. Finally, Figure 10.4
also shows the expected 2× speedup for using two DDRs instead of one.

1
0

1
5

2
0

2
5

3
0

3
5

4
0

Cavity size

P
e

rf
o

rm
a

n
c
e

 (
M

L
U

P
S

)

Double−DDR Async 3−depth (36 % halo BW)

Double−DDR Async 4−depth (43 % halo BW)

Single−DDR Async 3−depth (36 % halo BW)

Single−DDR Async 4−depth (43 % halo BW)

Single−DDR OpenCL, Workgroup = 32x1x1

64 96 128 160 192 224

Figure 10.4 – OPAL_async vs. OPAL OpenCL on MPPA® for duration = 1000 steps.

Performance Extrapolation

For a better understanding of the benefit of our pipeline algorithm, we modified the
OPAL_async code to be able to work with arbitrary depths. Different pipeline depths
were then tried out (1, 2, 4, 6, 8), to see if increasing the number of asynchronous buffers
improves the performance.

Thus, the node size is reduced to 8×8×8 to make the storage of up to eight subdomains
possible in the local memory of one CC. Moreover, instead of using all the 16 CCs, we now
vary this number of CCs and set the domain size to 1283 to study the strong scalability of
the algorithm. We use only the double-DDRs mode to obtain the best performance.

In Figure 10.5, as expected, the 1-depth code (blue line) is slower than other versions
with communication-computation overlapping. However, we obtain exactly the same per-
formance as the double-buffering case when using more than two buffers (4, 6, 8). The
performance line scales from 1 CC to 8 CCs, then reaches almost a stable value of between
20-22 MLUPS from 8 CCs to 16 CCs.

To explain this, we added the sustained throughput of 3D transfer (red line) from the
Kalray unit test dedicated to 3D asynchronous copy. This test only does some ping-pong
copies to the DDR and does not perform any calculation (Arithmetic Intensity (AI) = 0
flops/byte explained in the Roofline model [WWP09]). We observe that the native 3D
copy reaches the maximum throughput with as few as four CCs (6GB/s), then remains
the same for higher numbers of CCs. Therefore, four CCs are enough to saturate the DDR
bandwidth. Unlike the 3D unit test, our LBM code performs real computation on the
copied data. Its Arithmetic Intensity (AI) is about 350/(2 ∗ 19 ∗ 4) = 2.3 flops/byte, which
means that each CC spends more time working on a 3D data node. The result explains in

Macro Pipeline for the Computation of a 3D Stencil 173

Figure 10.5 the MLUPS performance which reaches its upper bound for 8 CCs, instead of
4 CCs.

Another precise way to interpret the performance of 20-22 MLUPS is to apply the
performance estimation formula presented by McIntosh-Smith & al. [MSBCP14]:

P =
B × 109

19× 2× 4× 106
(MLUPS) (10.1)

in which B is the effective memory bandwidth in GB/s. To take into account the additional
cost of halo copy in our decomposition algorithm, we multiply P by (1 − HBW), the
effective part of bandwidth (main node) which generates the real performance:

Ph =
6.0× 109

19× 2× 4× 106
× 83

103
= 20.2 MLUPS (10.2)

The formula for Ph shows a little performance gain to perform asynchronous transfers
on clustered manycore processors as for today.

However, it can be seen that the overlapping gain time is small compared to the wait
time for data due to the DDR3 bottleneck. It also demonstrates the memory-bound prop-
erty of general stencil computations. We think that newer memory technologies like DDR4
and High Bandwidth Memory (HBM) will be a performance boost on these architectures.

The scale-down of the 3D throughput versus the peak 17GB/s of two DDRs is caused by
the fact that strided copies (2D/3D) must read data from a lot of different DDR memory
banks. Furthermore, these copies are poorly aligned due to the access pattern of the
application (Q = 19 floats). This efficiency factor of 3D transfers can be compared to the
linear copies (contiguous).

0
5

1
0

1
5

2
0

2
5

3
0

3
5

Number of clusters

P
e

rf
o

rm
a

n
c
e

 (
M

L
U

P
S

)

0
1

2
3

4
5

6
7

3
D

 t
ra

n
s
fe

r
b

a
n

d
w

id
th

 (
G

B
/s

)

Pipeline−depth=1 (MLUPS)

Pipeline−depth=2 (MLUPS)

Pipeline−depth=4 (MLUPS)

Pipeline−depth=6 (MLUPS)

Pipeline−depth=8 (MLUPS)

3D transfer bandwidth (GB/s)

1 2 4 6 8 10 12 14 16

Figure 10.5 – Performance extrapolation of OPAL_async with 8× 8× 8 subdomains with the
first eight CCs correlation represented by a gray line for 1000 timesteps and cavity size 128.

A correlation, computed by the lm function in R, from 1 to 8 CCs would give the
performance expectation of our streaming algorithm if we were not bounded by the memory

174 Applications and Experimental Results for a Clustered Manycore Processor

bandwidth (affine gray line). These results confirm that our pipelined LBM algorithm is
strongly scalable, but is quickly memory-bound on MPPA®.

Indeed, the performance of the designed algorithm is limited by the hardware memory
bandwidth when 8 CCs or more are used.

Our results also show that the imbalance between computing power and data through-
put is one of the most substantial drawbacks of actual clustered manycore processors, and
demonstrate the interest of future memory technologies with high-bandwidth.

10.2 A Low-Latency Distributed Fast Fourier Transform

In this contribution, we use multiple CCs to parallelize the well-known FFT algorithm,
contrary to [HNEdD15] where the computation targets only one CC. Distributing the FFT
computation over several CCs reduces the execution time; thus, its execution latency.

10.2.1 Fast Fourier Transform

Fourier analysis converts time (or space) to frequency (or wavenumber) and vice versa.
Fourier analysis has many scientific applications in physics, signal processing, imaging,
probability theory, statistics, cryptography, numerical analysis, acoustics, geometry, and
other areas.

The Fast Fourier transform (FFT) [HJB84] algorithms compute the Discrete Fourier
Transform (DFT) while reducing the complexity from N2 to Nlog2(N). Let us consider a
complex 1D array of N values. The raw DFT is defined by the following formula:

X(f) =
N−1
∑

k=0

xke
−2iπkf/N =

N−1
∑

k=0

xkW
kf
N (10.3)

WN = e−2iπ/N (10.4)

10.2.2 Computing Techniques of Fast Fourier Transform

The FFT algorithms [CT65] re-factor formula 10.3, and they are known as the: Radix-2,
Radix-4, and the Six-Steps FFT. FFT algorithms compute the same values as the DFT
except for possible rounding errors. These FFT algorithms can be used independently
or combined, providing several trade-offs concerning computational complexity, memory
requirement, and parallelism. The challenge here is to find the optimal combination of
FFT algorithms for execution on the MPPA®. Below, we discuss the FFT algorithms
which have been used or tested in this work.

Radix-2

The Radix-2 algorithm is applied to inputs whose sizes are powers of 2. Its complexity is
10
2 Nlog2(N). The Radix-2 Decimation-In-Time equation is listed below [Che00]:

X(f) =

N
2
−1

∑

k=0

x2kW
2kf
N +

N
2
−1

∑

k=0

x2k+1W
(2k+1)f
N

(10.5)

A Low-Latency Distributed Fast Fourier Transform 175

Radix-4

The Radix-4 algorithm is applied to inputs whose sizes are powers of 4. Its complexity is
34
8 Nlog4(N). Note that by default a complex multiplication requires four multiplications
and two additions. For this reason, the Radix-4 algorithm might be more suitable regarding
performance as it requires fewer multiplications than the Radix-2 algorithm. The Radix-4
Decimation-In-Frequency equation is given by the following formula [Che00]:

X(f) =

N
4
−1

∑

k=0

[

x(k) + x(k+N
4
)(−i)f+

x(k+ 2N
4

)(−1)f + x(k+ 3N
4

)(i)
f
]

W kf
N

(10.6)

Six-Steps

The Six-Steps method [SG12] is another way of computing FFTs. Whereas the Radix-2
and Radix-4 algorithms are sequential, this method provides an efficient way to parallelize
the FFT computations by splitting them into smaller ones. The six steps are:

1. Transpose, Transposition of the matrix interpretation of the complex 1D input.

2. Fast Fourier Transform, Independent FFT computations provide the maximum
degree of parallelism.

3. Transpose, Transposition of the matrix interpretation.

4. Twiddle Correction, Complex multiplication by each corresponding Twiddle factor
on the entire complex matrix with the coefficient e−2iπ∗ row∗line

matrixSize .

5. Fast Fourier Transform, Independent FFT computations provide the maximum
degree of parallelism.

6. Transpose, Transposition of the matrix interpretation.

This algorithm provides both embarrassing parallelism and data locality during the
FFT steps (2) and (5), which means that it is very suitable for parallel implementations
and efficient on-chip memory usage. Moreover, this method can make the use of either the
Radix-2 or the Radix-4 algorithms possible during FFT steps.

Real to Complex FFT

A real N -point FFT computation can be folded into a complex N
2 -point FFT. The idea is

to store at the input of the FFT computation the even part in the real indexes and the
odd part in the imaginary indexes. Then the FFT is performed, and the output samples
are combined together in order to extract the N -point FFT final result with the following
formulas:

X(f) =
1

2

[

(x(f) + x(N
2
−f))− i(x(f) − x(N

2
−f))e

−2iπ f

N

]

f∈[0,N
2
[

(10.7)

X(f) =
1

2

[

(x(0) + x(0))− i(x(0) − x(0))
]

f=N
2

(10.8)

176 Applications and Experimental Results for a Clustered Manycore Processor

This process is very efficient, as it reduces the number of operations for a real N-point
FFT of a real signal almost by half.

10.2.3 Distributed Fast Fourier Transform Implementation

Strategy Overview and Positioning

We position our work versus previous contributions [HNEdD15] and we explain the low-
level implementation of the low-latency distributed FFT over the RDMA Network on Chip
(NoC) of the Kalray manycore processor.

Unlike [HNEdD15], the new implementation distributes the work on all available CCs.
In [HNEdD15], the algorithm is designed using fixed-point operations to reduce the mem-
ory footprint to fit the 2 megabytes of local memory. Such optimization is possible because
the targeted project did not require floating-point precision. Moreover, despite the care-
ful management of the fixed-point implementation, a Symmetric Multi-Processor system
(SMP) implementation in a single CC is a lot simpler than a distributed implementation
over several CCs. However, this step is taken in our new implementation.

Our distributed FFT implementation is also based on the six-step method. The six-step
method let us distribute the work on several CCs.

To the best of our knowledge, this FFT implementation is the first to break the limita-
tion of the single CC implementation using the SMP model. Thanks to this contribution,
it is possible to run complex floating-point FFTs of size greater than 216, for instance, 218

and 220 (the million points FFT), on an MPPA® second generation.
Slices of the matrix of the six-step method are mapped in each CC. A constraint is that

the matrix must be squared; thus, it leads to supporting FFT sizes matching the power of
4. The parallelization in the CC is managed using the same mechanism already proposed
in [HNEdD15], but single precision floating-point numbers are used instead of integer in
fixed-point.

Architecture of the Implementation

All steps are illustrated in Figure 10.6, which shows precisely the distribution of a 256-point
complex FFT on 4 CCs. A first step consists in interpreting the input, a one-dimensional
array of complexes, as a matrix. The 256-point input is interpreted as a 16 ∗ 16 square
matrix. We slice the matrix into identical block sizes, that are copied from the main
memory (external DDR memory) to the local memories of the CCs.

Secondly, we transpose the matrix using inter-cluster asynchronous RDMA transfers
(stride-to-stride). Transposing a matrix distributed on several CCs requires that each CC
communicates with all other CCs participating in the computation of the FFT. As such
an all-to-all communication pattern has to be performed.

Then each CC executes in parallel using the SMP model independent FFTs of size√
256 = 16 considering our example in Figure 10.6.

We perform a transposition at CCs level. The twiddle correction is then computed.
The twiddle correction multiplies each value of the distributed matrix by a correspond-
ing complex factor computed by e−2iπ∗ row∗line

matrixSize . The row and line are respectively the
numbers of rows and lines of the interpreted global matrix. However, we computed off-line
these coefficients as the transcendent functions, namely the cos and sin functions of the
math library, have a significant cost.

Finally, we repeat a pass of embarrassingly parallel FFTs and a distributed transposi-
tion. The final distributed transposition keeps the sparse memory accesses on-chip, instead

178 Applications and Experimental Results for a Clustered Manycore Processor

Algorithm 15 Out-of-place Distributed Transposition Algorithm Operation on All CCs
1: Input: In_M, T_W, T_H, NB_CC
2: Output: O_M
3: Synchronize all compute cluster // Weak synchronization, no ordering
4: cid = ID current cluster // ID in range 0 and (NB_CC-1)

// Interleave RDMA transfer across clusters
5: for j in cid ... (NB_CC - 1 + cid) do
6: if j == cid then
7: Optimized local transpose // Streaming memory accesses
8: Continue // Go next iteration
9: end if

10: for i in 0 ... (T_H- 1) do
11: Size = size of a float-complex
12: target_cid = cid % NB_CC
13: Async. Put (

In_M+Size*T_W/NB_CC*j+Size*j, // Local address
j, // Target cluster ID
O_M+Size*T_W/NB_CC*cid+Size*T_W*j, // Remote address
Size, // Object size
T_W/NB_CC, // Number of objects
Size*T_W, // Local stride
Size) // Remote stride

14: end for
15: Async. Postadd to CC of ID j // Asynchronous posted remote atomic
16: end for
17: Wait NB_CC - 1 contribution of remote atomics

= 8 bytes) loads and stores. The internal loop issues 16 sequential streaming loads, and
then 16 sequential streaming stores, in the same order as they were loaded. In theory,
this makes it possible to move 8 bytes per cycle without any PE stalls on the memory
hierarchy. In practice, if there is no memory contention, aligned memory accesses, and no
Read-After-Write (RAW) core stalls due to poor software implementation, moving 8 bytes
per cycle is possible.

The implementation provides a speedup of almost 2 compare to the cached Load/Store
one, on a single-core. A matrix of size 256 ∗ 256, at 500 MHz, is transposed in 0.57
millisecond (3.7 bytes/cycle). The streaming-based implementation is 0.31 millisecond
(6.7 bytes/cycle). In the CC, the streaming Load/Store pipeline has an efficiency of 84
% of the peak hardware memory throughput. Results are independent of the matrix
content, and the read and write buffers are invalidated by software at the L1 cache level
before transposing the matrix. The measurements are performed using an average of the
execution times over a thousand executions.

Memory Footprint

Each CC, part of the parallel processing of the distributed FFT, allocates two buffers for
the FFT data elements. These two buffers are used to deal with the matrix transposition
which relies on double buffering. Otherwise, fined-grained multi-cluster synchronizations
are required; that is very time consuming for MPPA®. Indeed, each synchronization costs
at least 2.2 microseconds (see Chapter 5).

A Low-Latency Distributed Fast Fourier Transform 179

Efficient fined-grained synchronizations would make it possible to remove the second
transposition buffer and instead use far smaller buffers to accommodate temporary tiles
for the transposition. Many synchronizations are needed to avoid data races.

Moreover, the twiddles of the twiddle correction of the distributed six-step FFT are
precomputed. However, we only compute the first twiddle of each row and the rotating
twiddle, to make on-line twiddle computation possible using the homothety math technique.
This optimization reduces the memory footprint.

Then if we consider a distributed FFT in blocks of size Size, the small FFTs run in
each PE of the CC is of size

√
Size. Thus, we also compute off-line the twiddles of this

small FFT. These twiddles are quite light in terms of memory footprint. For instance,
considering a million point FFT, the size of the FFT run in each PE is only 1024-point.

A summary of the formula to be used to compute the memory footprint in each CC is
given in Table 10.2. Thus, using 16 CCs, the biggest FFT size with local memory (on-chip
memory) of 2 megabytes is 220 = 1048576 as the memory is 8∗2∗1048576/16+

√
1048576∗

8 ∗ 2 ∗ 2/16 + log2(
√
1048576) ∗ 8 ∗

√
1048576 = 1132544 bytes.

Buffer Types
Distributed FFT of Size

Size (bytes)
Transpose

Two Buffers
8 ∗ 2 ∗ Size/NB_CC

Distributed FFT
Twiddles

8 ∗ 2 ∗ 2 ∗
√
Size/NB_CC

Local FFT
Twiddle

8 ∗ log2(
√
Size) ∗

√
Size

Table 10.2 – Summary of the Memory Footprint of the Distributed FFT on Several CCs

Floating-point Single Instruction, Multiple Data (SIMD) Instructions

The k1 Very Long Instruction Word (VLIW) core implements SIMD operators to process
efficiently single precision complex multiplications. Indeed a complex multiplication is
defined as: (Ar + iAi) ∗ (Br + iBi) = (ArBr − AiBi) + i(ArBi + AiBr). The real part,
Cr = (ArBr − AiBi), is computed using a floating-point instruction implementing a dual
multiply and subtract in one cycle. The imaginary part Ci = (ArBi + AiBr) is obtained
using a floating operator with cross dual multiply and addition. The register width of the
k1 VLIW core is 32-bit. A single precision floating-point number can fit. Moreover, for
64-bit SIMD operations, it is possible to work on register pairs (Section 2.3.2).

Figure 10.7 shows the elementary vectorized instructions to perform a complex multi-
plication on the k1 VLIW core. As the compiler usually has difficulties to generate such
instructions, we wrote the code using inline assembler, as it avoids dealing with the reg-
ister allocation, the stack management, and the Application Binary Interface (ABI). The
ABI is a hardware-dependent format that defines the rules to manage data structure, calls
to routines in a machine code point-of-view. Using inline assembler or intrinsics still, let
the compiler optimize what is placed. Intrinsics would have been better, but they are
not supported by the GNU Compiler Collection (GCC) toolchain in this case. The fcma
(Floating-Point Cross Multiply-Add) and the fdms (Floating-Point Multiply-Subtract)
provide 3 floating point operations each per cycle. Such SIMD optimizations make a theo-
retical speedup of 3 possible, but in practice, it is not the case because of memory hierarchy
stalls and the Load/Store Unit bandwidth.

Distributed Runtime for CNN Inference 181

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 2 4 6 8 10 12 14 16

F
F

T
 p

er
 S

ec
on

d
-

La
te

nc
y

is
 1

 /
(F

F
T

 p
er

 S
ec

on
d)

Number of Clusters (16-core per Cluster)

Huge FFT Benchmark - Batch 1

65536-Point Complex (2^16)
262144-Point Complex (2^18)

1048576-Point Complex (2^20)

Figure 10.9 – Execution Time of Distributed Multi-Cluster FFT.
The Higher, The Better.

million-point FFT the transposition steps take more than 65 % of the total execution time
(126 FFT/second of 220-point).

Limitations & Conclusion

With this new implementation, the largest FFT is a million single-precision complex points
(220) on a full MPPA® processor, This is currently a limitation, and some work is already
on-going to use the main memory (external). The applied technique is the same as the one
used in the OpenVX framework (see Chapter 9).

Using the main memory (external) is possible thanks to the contribution of Chapter
5 that drastically decreased the complexity of programming the MPPA® processor along
with providing performance. However, AOS has its limitation that is well seen in such
benchmarks. Indeed, in this FFT implementation, fined-grained communications over NoC
are required, making the implementation behave poorly for small FFTs.

However, this implementation is the first to break the limit of 216 floating-point FFT
limit for executing on the MPPA® processor. We show that an all-to-all communication
pattern, implemented by the flat distributed matrix transpose, is possible. Finally, FFT,
and in particular huge FFTs, are known to be complicated to implement efficiently due to
the irregular memory access patterns. They are even more challenging on distributed local
memory architectures like MPPA®, where all data movements, computation distributions,
and synchronizations are performed by software (DMA).

A version of this FFT is proposed and available on GitHub. Usage requirements are
provided on the GitHub website: https://github.com/kalray/Benchmark_FFT

10.3 Distributed Runtime for CNN Inference

CNN applications are state-of-the-art for today computer vision and artificial intelligence
applications. In the future, CNNs will be unavoidable for embedded computing. CNN
applications are both data and compute intensive. Thus, CNNs are the typical benchmarks
to evaluate embedded computing platforms for car manufacturers and high-performance
systems.

Distributed Runtime for CNN Inference 183

of automatic RDMA communications and multicast operations. The code generator pro-
vides information like the number of CC used, and the local memory size to be allocated
in each CC to execute the CNN inference.

Here, we use the MPPA® in acceleration mode over the Peripheral Component Inter-
connect Express (PCIE), with an external Intel®host x86. Each CC implements a function
handler that is executed for running the generated code. We list, in execution order, the
performed steps to deploy and enable such a back-end runtime for the MPPA® processor.

• The x86 host boots the MPPA® over the PCIE, and the controller of MPPA® creates
control queues to communicate with the host.

• The controller allocates the array of the weights and input for neurons (usually an
image) in the main memory (external), and notifies the host over PCIE queues. Then,
the host x86 sends the weights of the CNN application.

• The controller initializes the distributed runtimes like the AOS library (see Chapter
5) and our multicast engine to send the weights efficiently to the CC.

• Each CC initializes its runtime, allocates an array of memory to store copies of the
input neurons and the weights (see Figure 10.10).

• Each CC and the controller creates and clones the memory windows (see Chapter 5)
to make each node able to access the memory of other nodes. The memory window
is defined as AOS segments where RDMA Put and Get operations are performed.
The communication paths are used for inter-cluster data transfers to satisfy the data
transfers/exchanges of the mapped sequence of CNN layers.

• When the system is ready and synchronized, the input data are sent to the main
memory (external), the generated code is executed, and finally, the output data is
copied to the x86 host.

Multicast Engine

CNN implementations copy all weights (network parameters) in the on-chip memory of the
System-on-Chip (SoC) in charge of computing the CNN inference.

The Kalray NoC supports multicast operations, handled by software. We wrote a DMA
micro-code that reads linear buffers (same as Algorithm 5 but for linear transfers), and
we computed custom multicast routes to deliver the data elements to the proper CCs.
Multicasted elements are delivered on the CC side on a preconfigured and ready Rx data
tag with an end-of-transfer (End-of-Transfer (Eot)) for the completion on the DMA NoC
interface of this CC. Figure 10.11 shows the topology of the multicast data transfers onto
the CCs. Such a data communication scheme reduces the transfer time by 3. Thanks to
this contribution, we measure a cumulated in-coming data bandwidth of 24 gigabytes per
second in the 16 CCs using a single DDR3.

As seen in Chapter 5, using 16 CCs the best unicast measured bandwidth is 8 gigabytes
per second for the main memory (external DDR3).

10.3.3 Results & Comparisons

We compare here our MPPA® CNN framework implementation to the Nvidia Tegra X1
Maxwell architecture, using the famous GoogleNet [SLJ+15] network in inference mode.

Conclusion 185

The FFT implementation shows linear speedup inside one CC and near linear speedup
when distributing the computation of several CCs. FFTs are known to have non-contiguous
memory access patterns. The six-step method splits an FFT into many smaller FFTs and
provides embarrassingly parallelism and data locality during FFT steps. However, this
method needs at some points a global transposition of the data set. When using multiple
CCs, the overhead of the software implementation of inter-clusters RDMA transfers is
significant, and it drastically bounds the speedup.

As this bottleneck has been identified, future generations of the MPPA® processor
will accelerate DMA NoC configurations. Such a feature will reduce the inter-clusters
communication time; and thus, speed up the overall timing latency of the application.

The distributed runtime for the execution of low-latency CNN applications is part
of a collaborative work done with two Kalray’s engineers. The targeted use-case is the
GoogLeNet CNN, in inference mode. We show that the MPPA® processor features enough
computing power considering both memory bandwidth (off-chip, on-chip, multicast) and
processing with SIMD and streaming memory accesses, to compete with Nvidia’s Maxwell
embedded GPU.

Despite the hardware technology differences, for instance, the 20nm, the DDR4 and
690 MHz operating frequency for the Nvidia GPU and the 28nm, the DDR3 and the
500 MHz for the Kalray MPPA®, the final implementation is competitive thanks to the
VLIW cores that provide efficient Instruction-Level Parallelism (ILP), the inter-cluster
asynchronous RDMA transfers, and the multicast operations (avoid the bandwidth wall).

186 Applications and Experimental Results for a Clustered Manycore Processor

CHAPTER 11

Conclusions

The programming of clustered manycore processors with distributed local memories is
challenging, especially when these local memories are small. However, such machines are
serious competitors concerning low-power computing. Explicit software communication is
painful, engineering time consuming, fastidious, and error-prone. That is why automatic
tools and software runtime that carry out all of these issues are required.

In this thesis, we proposed novel techniques applied to clustered manycore architec-
tures like the Kalray Multi-Purpose Processor Array (MPPA)® that is at the center of the
work. The presented techniques leverage the challenges of data movements and explicit
parallelism at the metal level on the MPPA® processor. As the MPPA® processor is
a local memory based architecture implementing a partitioned global address, it makes
our contributions even more challenging to be designed, implemented, debugged and val-
idated. We also proposed higher level tools and frameworks to make the programming of
the MPPA® processor more accessible using both static and dynamic dataflow models.
Dataflow models provide the user with an intuitive way of expressing application paral-
lelisms, that can enable many optimizations, thanks to the model analyzability. Finally, we
presented a distributed framework for the execution of OpenVX graphs at low-latency, and
also, low-level implemented parallel applications running on the Kalray MPPA® processor.

Throughout this work, one of the most difficult thing to perform when developing in
a massively parallel environment is understanding why it fails. As such, the complexity
of the developed system is limited by my capacity to debug, observe and understand the
problem to make the contribution work.

11.1 Summary of our Contributions

This section summarizes our main contributions. Some of them have production maturity,
and others do not. These contributions are all running on or for targeting the Kalray
MPPA® processor. Most of these contributions could be generalized to any clustered
manycore architectures.

In Chapter 5, a new communication technique and Application Programming Inter-
face (API) has been designed and implemented at bare-hypervised level to reach high-
throughput and low-latency. In the contribution, we explain in details the runtime initial-
ization and the allocation of the hardware Direct Memory Access (DMA) Network on Chip

188 Conclusions

(NoC) resources. The distributed communication runtime provides asynchronous one-sided
communication with a relaxed memory consistency model at the multi-cluster level. The
runtime initialization is quite complicated, but the execution part has been refactorized
many times to converge to a high-performance and light-weight implementation. Results
show nearly peak hardware throughput when using data transfers of size greater than
4 kilobytes. On the Kalray 3rd MPPA® generation, part of the proposed software en-
gines are performed in hardware, making the Input/Output Operation per Second (IOPS)
throughput almost 20 times better than our software implementation. Indeed, this contri-
bution helped both the hardware functional specification and the hardware implementation
specification.

In Chapter 6, a new highly efficient multi-threading runtime is proposed. The runtime
is implemented in the Kalray bare-metal toolchain right over the Kalray’s exokernel. The
runtime enables POSIX threads and OpenMP multi-threading to make efficient fine-grained
threading possible. Results show a reduction of the execution times of up to 22 compared
to the state-of-the-art. Such improvements are made possible thanks to the use of lock-free
implementations, at the cost of complexity. The contribution has a high maturity level as
it is used in many Kalray’s products as the main multi-threading runtime running in the
Compute Clusters (CCs) and Input/Output Subsystems (IOs) for the MPPA® processor.
Moreover, this runtime also passes the entire C/C++/Fortran test-suite of the libgomp of
the GNU Compiler Collection (GCC) project.

Chapter 7 presents a strategy to statically map an academic dataflow programming
model efficiently on a manycore architecture with multiple levels of parallelism. Designed
and implemented in the Institute of Electronics and Telecommunications of Rennes (IETR),
the Parallel and Real-time Embedded Executives Scheduling Method (PREESM) frame-
work uses a dataflow graph compilation technique that systematically flattens all graph
hierarchy in the first compilation pass. This process often ends up in producing many ac-
tors to be mapped on cores, which is problematic on manycore architecture as the optimal
mapping and scheduling problem is known to be NP-complete. Therefore, we proposed in
this thesis a technique that consists in keeping/exploiting the graph hierarchy, and per-
forming only a hierarchical mapping at coarse-grained. The fine-grained parallelism, inside
the hierarchy, is retrieved by generating parallel for-loops using OpenMP multi-threading.
Such a technique reduces the mapping complexity and preserves application parallelism.
Experimental results show a mapping time reduction of more than 1000, and 6 % better
performances than the systematic flattening.

Chapter 8 presents an embedded reconfigurable dynamic dataflow runtime for a clus-
tered manycore architecture. The original runtime, designed and implemented by the Video
Analysis and Architecture Design for Embedded Resources (VAADER) team at IETR, was
introduced in 2014 [HPD+14]. As clustered manycore architectures feature distributed local
memories with a partitioned global address space, this embedded reconfigurable dataflow
runtime had to be deeply modified to make explicit inter-process communications pos-
sible (automatically). The master runtime, that schedules and distributes the work of
the dataflow application, is statically mapped onto a host multi-core Central Processing
Unit (CPU) (IO) and the workers are placed on the matrix of CCs. Each core of the
MPPA® processor triggers the inter-process communications automatically when jobs are
sent to them by the host runtime. Among the main contributions, the scheduler and the
memory allocator have been redesigned. A light-weight scheduling heuristic is introduced
to let the host keep up with the high degree of parallelism of manycores, and to provide
efficient use of the on-chip local memories. Finally, as the local memories are small with

Future work 189

1.5 megabytes at most, a parallel deadlock avoidance algorithm is added to avoid local
memory starvation and for sharing the memory between the cores inside one CC.

In Chapter 9, a new distributed framework for executing low-latency OpenVX applica-
tions on a clustered manycore processor is proposed. OpenVX is a modern and standard
API that is defined by the Khronos Group for describing computer vision and inference
neural network applications. OpenVX is built as an acceleration programming API where
the computation is described by a Directed Acyclic Graph (DAG). As Directed Acyclic
Graphs (DAGs) are used to express the computation, and a verification pass has to be
issued before the actual processing of the OpenVX graph, it is possible to perform many
optimizations during this verification. Our framework is an embedded runtime, that op-
erates in user-space, running on the manycore processor host. The framework does not
require any external resources or offline analysis to operate. It runs standalone. On the
MPPA® processor, the front-end OpenVX framework is mapped on a host (IO) which
deals with the OpenVX buffers and graphs described in the application by the developer.
The tasks are offloaded on the acceleration matrix of CCs. Therefore, if the OpenVX
graph changes, or if an external event changes a parameter, the user can retrigger the
graph verification. It will reoptimize the overall execution of the computing graph pipeline
automatically. To minimize the execution time, each kernel is automatically distributed
on all available CCs of MPPA®. In the proposed framework, it is possible to specify
at the creation of the OpenVX context a list of CCs, the number of cores in each CC,
and to disable optimization passes. By default, this distributed framework performs auto-
matic scheduling and static memory allocation of the graph execution, and fully automated
optimization such as automatic and explicit Remote Direct Memory Access (RDMA) pre-
fetching and kernel fusion. Pre-fetching and kernel fusion are the keys of performance on
manycore machines as they respectively enable the overlapping of the computations and
the communications, and avoid the main memory bandwidth wall which is one of the most
significant problems in high-performance implementations. Such automated optimizations
allow the user to reach super-linear speedups at the multi-clusters level, showing that the
manycore architecture is efficiently exploited.

In Chapter 10, new distributed low-level implementations of diverse applications are
described: a 3D stencil application, a Fast Fourier Transform (FFT), and a custom run-
time for low-latency execution of inference Convolutional Neural Network (CNN) applica-
tions. The parallelization strategy and mapping of each use-case is explained as well as
its implementation. Classical hand-written optimizations are used to reach competitive
performances. At the core level, a manual pipeline of streaming memory accesses is used
to provide efficient sparse memory accesses. Single Instruction, Multiple Data (SIMD)
instructions are also exploited. At the multi-core level, explicit Pthread and OpenMP are
then used for parallelizing each kernel inside each CC. At the multi-cluster level, distributed
and asynchronous one-sided communications are leveraged to both pre-fetch data from the
main memory (hide the high external memory access latency) and perform inter-cluster
communication to avoid the main memory bandwidth wall. All optimizations described in
this chapter are done manually. Experimental results show linear speedups when the main
memory bandwidth no longer bounds the performances.

11.2 Future work

Some contributions listed below of this thesis deserve to be enhanced either by adding
functionalities, or removing current limitations, or entirely re-designed due to the lack of

190 Conclusions

time and for proof-of-concept work. Others will need more engineering efforts to reach a
higher maturity, required for production software.

11.2.1 Fundamental Mechanisms for Programming Manycores: Asyn-
chronous One-Sided (AOS)

Relaxed Remote Atomic Operations

Currently, remote atomic operations are strictly ordered with respect to RDMA operations
on a memory segment. Such a feature is useful for programmers and makes data transfers
and synchronization transactions efficient on distributed local memory architectures. The
programmer performs locally posted asynchronous operations, and the core can switch
immediately to the next computation. The ordering is ensured by the runtime proposed
in Chapter 5.

In some cases, such an ordering is not useful. For instance, when implementing end-
to-end software flow-control mechanisms or when trying to synchronize several initiators
with each other as fast as possible, the ordering feature can result in a significant software
overhead. For this purpose, the solution is to provide relaxed (unordered) remote atomic
operations. The ordering could be requested by a specified flag when calling the remote
atomic operation. Such a feature is quite complicated to implement. It will require more
hardware resources on the DMA NoC interface of MPPA® to handle the completion and
the remote notification.

Efficient Collective Operations, with Broadcast

Efficient collective operations (like barrier or broadcast operations) are complex to design
and implement on distributed memory architectures. Collective operations define concur-
rent communications between several CPUs, usually in a distributed environment. Collec-
tive operations are usually state-full. Each participant of the distributed communication
has to be aware of the states of all participants in the communication.

For instance, collective operations ease the implementation of global barriers and broad-
cast operations. Broadcast operations are essential to reduce the pressure on the main
memory, but it depends on how they are implemented. For instance in this thesis, in the
case of the targeted manycore architecture, data can be read only once, and all partici-
pants receive them. However, collectives are challenging to implement because of resources
sharing, lock-free mechanisms to make it efficient, and the high concurrency.

The support of collectives over the NoC of the MPPA® processor will be a significant
advance, in the software stack for developing and optimizing parallel distributed applica-
tions.

Large Scale Asynchronous One-Sided: Multi-MPPA Support

Asynchronous one-sided communications are only supported on a single MPPA® chip.
The current implementation has not been designed to scale with multiple MPPA® chips.
However, redesigning the way the hardware resources are shared would make the sup-
port of asynchronous one-sided communications possible over multiple MPPA® chips. As
the implementation will be even more concurrent, such distributed software development
will require time and careful design. Moreover, the debugging of such implementation is
very complex and will require more instrumentations to let the designer understand what
happens.

Future work 191

Asynchronous One-Sided with Kernel Bypass onto Linux

Generic and robust Linux drivers are complicated and have significant overheads. There-
fore, when optimizing the execution time of the communications of a Linux application,
the Linux driver is often the bottleneck. State-of-the-art optimizations use kernel bypass
techniques to access the DMAs from the user-space directly.

Such optimizations are complex and dangerous, but they provide the user with low
overhead implementations. Indeed, kernel bypass techniques imply many constraints such
as the sharing of resources with other Linux processes and the driver itself, but also careful
management of the memory regarding both the Linux virtual memory and the memory
map of the peripherals.

11.2.2 Standard Optimized Runtimes for Manycores

Optimization of the Standard GCC OpenMP Runtime Library

The libgomp runtime provided by the GCC project is a generic implementation of the
OpenMP runtime. It uses the POSIX multi-threading backend. Therefore, the multi-
threading runtime presented in Chapter 6 optimizes the implementation of the POSIX
thread primitives. However, the standard OpenMP runtime of GCC is not. For instance,
the OpenMP runtime of GCC does not implement lock-free mechanisms to update shared
variables. This runtime also uses intensively the dynamic memory allocator which is quite
slow.

The first contribution could be the bypassing of some primitives of the POSIX threads
used inside the GCC OpenMP runtime. Directly mapped atomic instructions could re-
place these primitives. Moreover, atomic instructions could be used to update concurrently
shared variables inside the OpenMP runtime of GCC. Finally, an important optimization
could be the static memory allocation of internal memory resources of the OpenMP run-
time. Indeed, the dynamic memory allocations performed by the OpenMP runtime has a
significant overhead on fine-grained multi-threading.

OpenMP 4.0 Support for MPPA®

OpenMP has been widely used in both rapid parallel implementations and high-performance
parallel implementations. Moreover, OpenMP is very appreciated for production software
as the parallelization only consists in inserted few compilation directives in the original
code. Indeed, in production software, the modification of the code costs a lot. As such
OpenMP is well suited to parallelize applications efficiently at a reduced cost.

With a modern GCC or Low-Level Virtual Machine (LLVM) compiler, it is possible to
support OpenMP 4.0. It will be a significant advance in the software stack for offloading
computation from a Linux or a Real-Time Operating System (RTOS) to the acceleration
matrix of CCs.

A High Efficient Light-Weight OpenCL for MPPA®

The current OpenCL support of MPPA® uses an open-source front-end that requires a
Linux system. In some embedded systems and high-performance designs, Linux is banished.
Therefore, the need for a light-weight and high efficient (Linux independent) OpenCL
support is essential.

The idea is to build on top of the bare-metal distributed offloading runtime, presented
in Section 9.2, a new OpenCL front-end. The OpenCL runtime and compiler front-end

192 Conclusions

should support the data parallel and the task parallel modes. The two modes could switch
at runtime, depending on use-cases. However, the host would have to compile the OpenCL
kernels off-line. Otherwise, the IO of MPPA® should run a compiler. With such a feature,
efficient and fine-grained offloading of computations from the IO of MPPA® to the CCs
could be done. It should ease the programming of MPPA® for application engineers.

Moreover, standard extensions, like the one presented in Section 5.6.2, have to be
supported to provide software engineers with optimization tools.

A vendor specific feature for efficient exploitation of the distributed local memories of
the MPPA® processor has to be available: the exposition of inter-CCs communications in
the compute kernel of OpenCL at runtime.

11.2.3 Parallelization Techniques

Off-chip RDMA-based Time-skewing

Time-skewing techniques reduce the main memory bandwidth by restructuring memory
accesses of an application to increase data locality in iterative stencil applications. Many
works, such as polyhedral optimizations use and exploit time-skewing techniques, but they
are all based on Load/Store memory accesses. Such optimizations could also be applied
to dataflow programming in a tool like PREESM or an embedded dataflow runtime like
Synchronous Parameterized Interfaced Dataflow Embedded Runtime (SPIDER).

Automatic off-chip RDMA-based time-skewing has never been attempted. Such a con-
tribution could break the current limitation of kernel fusion optimizations that are used in
the proposed OpenVX low-latency implementation (see Chapter 9).

The idea is to write an explicit tiling algorithm which performs automatic time-skewing.
The algorithm is given a number of steps which should be computed, before spilling the
entire data-set in the main memory (external).

Such an algorithm is complex to design as it implements multi-dimensional memory
access patterns, asynchronous inter-CCs communications in a highly concurrent environ-
ment, and it must be flexible enough to execute various computations at the different
skewed steps.

Toward a Warp Inspired Execution Model

On Graphics Processing Units (GPUs), a warp is a parallel code section that is executed
temporally in parallel. All cores that are participating in the execution of a warp execute
the same instruction at each clock cycle (Single Instruction, Multiple Threads (SIMT)). As
there is hardware multi-threading onto GPUs, when a warp accesses to a location of data
in the memory hierarchy, the stall on the Read-After-Write (RAW) dependency make the
entire warp switch to another warp in the clock cycle. Therefore, thousands of threads are
used to overlap computations and communications by Load/Store on GPUs thanks to this
hardware multi-threading.

On MPPA®, such hardware multi-threading is not possible but a warp inspired ex-
ecution model could be made possible at a higher level of granularity. The (hardware)
multi-threading of GPUs is done on Load/Store transactions, whereas the (software) multi-
threading on MPPA® could be done on DMA transactions. The idea would consist in
starting several structured teams (groups) of POSIX threads (it could be OpenMP teams),
and the master thread of each team performs DMA transactions with the main memory.
On the completion of the DMA transaction, the entire team of threads is rescheduled by the
multi-threading runtime. Such a contribution is quite challenging to design as it involves

Final Conclusion 193

low-level runtime implementation, asynchronous communications, and updates of shared
variables using lock-free mechanisms for performance.

11.3 Final Conclusion

This thesis gave me the opportunity to work on software runtimes for helping with the
programming of a new generation of clustered manycore architectures. Throughout this
work, I proposed, developed, and validated fundamental low-level mechanisms for program-
ming new clustered manycore architectures with local memories. The complexity of these
architectures should be hidden by programming models allowing the application engineers
to optimize their applications. However, exotic programming models are complicated to
be pushed into mainstream programming due to software legacy and portability. I believe
that standard, well-documented, and high-level APIs (like OpenMP, OpenVX, Vulkan, and
new programming models) are a competitive answer to abstract these architectures. As
vendors usually implement these APIs, they likely provide application engineers with the
best possible performance of the platform. One of the biggest challenges is to make these
high-level programming models and tools (like compilers) able to reach peak performance
of the platform, to make the life of application engineers easier, and to provide a faster
time to market.

194 Conclusions

ANNEXE A

French Summary

Le monde de l’informatique est vaste et il a changé nos modes de vie depuis maintenant
des décennies. Depuis l’invention du transistor dans les années 50 jusqu’aux tous nouveaux
téléphones intelligents, voitures autonomes et maisons intelligentes, le monde que nous
connaissons aujourd’hui est devenu dépendant des systèmes informatiques. Ces exemples
font partie de ce qui est couramment appelés les “systèmes informatiques embarqués”. Ces
systèmes visent à remplir des fonctions spécifiques dans un environnement restreint avec
diverses contraintes telles que l’énergie, le coût, la place, la durée de vie et les performances.
Ajouté à cela, depuis l’émergence des machines de calcul et de l’informatique, le besoin en
calcul n’a jamais cessé de grandir. En terme de puissance de calcul, la demande des appli-
cations modernes est de plus en plus énorme. L’automatisation, la rapidité d’exécution et
les services fournis permettent plus de facilité, souplesse et économie de diverses manières.

Cependant l’informatique (embarquée) moderne est de plus en plus difficile à appréhen-
der pour les ingénieurs et les utilisateurs des systèmes informatiques. C’est d’autant plus
vrai pour les ingénieurs amenés à programmer la machine à niveau relativement bas (assez
proche de la machine). Les systèmes informatiques modernes sont très concurrentiels et
hétérogènes ce qui rend leur utilisation difficile. Pour palier à ce problème, des méthodes et
modèles de calcul existent afin de réduire cette complexité et abstraire le plus possible l’ar-
chitecture de la machine de calcul utilisée. Cela est encore plus vrai en ce qui concerne les
systèmes informatiques parallèles et embarqués qui seront au centre des travaux présentés.

Dans cette thèse, des modèles de calcul tels que les modèles flux de données sont utilisés,
mais aussi des interfaces de programmation d’applications sont exploitées et implémentées
en partant de rien, de la machine à nu (le métal). Grâce à elles, il est possible de réduire
considérablement les temps de développement des logiciels informatiques déployés sur des
machines parallèles complexes. Comme les applications embarquées parallèles tendent à
devenir dynamiques mais toujours avec des parties statiques, et avec de fortes contraintes
en termes de performance, à savoir en cadence et latence, il est nécessaire que l’outillage
servant au développement de ces applications soit robuste, efficace, utilisable (le plus faci-
lement possible pour l’ingénieur non expert de la machine), observable et débogable.

Les modèles de programmation parallèle 197

comme il est classiquement trouvé sur les processeurs parallèles. Les mémoires locales du
processeur MPPA® impliquent une gestion explicite par logiciel de la communication entre
la/les mémoire(s) externe(s) et interne(s) de la machine. Ces mémoires sont toutes inter
connectées par un réseau sur puce capable de véhiculer jusqu’à 4 octets par cycle dans les
deux sens. Cette gestion explicite de la communication est un vrai défi pour les ingénieurs
logiciels. Cependant une telle caractéristique rend le processeur MPPA® très efficace en
terme de rapport de puissance de calcul et d’énergie, mais également stable concernant ses
temps de calcul pour une application donnée.

A.1.2 Mémoires et protocoles de communication

Dans les systèmes embarqués, la mémoire est une ressource précieuse. Même si la plupart
de la surface en silicium d’un processeur est de la mémoire (en moyenne 80%), celle-ci
doit être gérée et utilisée avec précaution. Il existe différentes mémoires dans les systèmes
informatiques modernes. La file de registres est une petite mémoire dans les cœurs de calcul
où l’exécution courante se passe. Les registres ont une très faible latence d’accès qui est
de l’ordre du cycle machine. Il est ensuite trouvé différents niveaux de mémoire sur puce
qui servent à éponger et réduire les attentes de réponse du système de mémoire externe.
En effet, les mémoires externes mettent un temps élevé à répondre, comparé à la fréquence
de fonctionnement des processeurs. Dans cette thèse, une partie importante des travaux
consiste à utiliser efficacement le système mémoire sur puce avec notamment l’utilisation de
communications explicites ou par le pré-chargement de données au travers de la hiérarchie
de cache.

Comme les communications explicites sont incontournables pour programmer le pro-
cesseur MPPA® de Kalray et plus généralement les machines implémentant des mémoires
locales, deux protocoles de communication fondamentaux sont mis en avant. La première
est la communication bilatérale. Le MPPA® expose un réseau sur puce qui permet de
communiquer seulement de manière bilatérale. C’est à dire que la communication peut être
initiée seulement si le receveur et le transmetteur sont tous les deux prêts : données consis-
tantes, ressources matérielles configurées, et synchronisées. La communication bilatérale a
donc une caractéristique de correspondance très stricte entre l’émetteur et le receveur. Cela
peut parfois être handicapant concernant l’optimisation de la communication notamment
sur l’ordre. La seconde est la communication unilatérale qui permet à l’initiateur de la
communication d’être maître sur une ou plusieurs mémoires distantes. La communication
unilatérale permet la relaxation du système mémoire, c’est à dire que le système mémoire
offre la capacité d’ordonnancer les transactions mémoires dans le désordre afin d’être plus
performant. L’ordre et les synchronisations avec le système mémoire sont assurés par des
opérations dédiées à cet effet, faites a posteriori. Ces opérations ont pour but de maintenir
la consistance mémoire entre plusieurs initiateurs. Typiquement, garantir que les écritures
et lectures d’un cœur et d’un périphérique en mémoire seront correctement ordonnées, afin
que l’un, puisse voir les écritures de l’autre dans une mémoire (partagée ou distribuée).

A.2 Les modèles de programmation parallèle

Les modèles de programmation parallèle permettent d’abstraire plus ou moins la machine
sur laquelle s’exécute le programme. Certains modèles sont relativement proches du maté-
riel alors que d’autres sont de haut niveau. Très souvent, plus le modèle de programmation
est loin de la machine d’exécution, moins l’utilisateur a le contrôle sur ce qui s’exécute sur

198 French Summary

la machine. Les travaux présentés mettent l’accent sur des modèles multitâches et modèles
d’accélérations d’applications.

A.2.1 Interfaces de programmation d’applications

Les interfaces de programmation d’applications sont aujourd’hui très réputées car elles per-
mettent d’exploiter les caractéristiques matérielles et logicielles exposées par les vendeurs
ou développeurs logiciels de la machine visée. L’interface de programmation d’applications
Pthread et OpenMP sont standard et permettent d’exploiter le parallélisme sur un modèle
de mémoire partagée et symétrique. Ce modèle a pour but d’exploiter efficacement une
machine parallèle et symétrique. Il donne un contrôle assez fin sur les cœurs de calcul, ce
qui permet de contrôler à bas niveau le cycle de vie des tâches et leurs ressources. Les
environnements d’exécution multitâches utilisent principalement des mécanismes d’exclu-
sions mutuelles (verrous) afin de gérer le partage de ressources entre les différents cœurs de
calcul. OpenCL, OpenMP4 et Vulkan sont des interfaces de programmation standard qui
offrent la possibilité de déployer un calcul ou une portion de calcul (lourde) sur un accélé-
rateur. Le but est de décharger la machine sur laquelle tourne l’application principale d’un
calcul gourmand en ressources (calcul et mémoire) pour l’accélérer sur une ou plusieurs
ressources de calcul externes. OpenCL et Vulkan sont globalement assez proches de la ma-
chine visée car ils exposent des caractéristiques spécifiques à l’architecture telles que la
hiérarchie mémoire, le nombre de cœurs, la taille des mémoires locales, et des accélérations
spécifiques au calcul visé.

A.2.2 Modèles de flux de données

Les modèles de flux de données sont très intéressants pour la description d’applications qui
sont contrôlées par le mouvement des données. Le principe de base d’un modèle de flux
de données correspond à un graphe où les nœuds représentent des calculs sur les données
d’entrée et produisent une ou plusieurs sorties. Les arcs représentent les connections entre
ces nœuds qui décrivent donc les dépendances du calcul à réaliser. Beaucoup de modèles
de flux de données existent, mais la plupart sont des modèles non standard. Dans cette
thèse, des modèles de flux de données, développés par Institute of Electronics and Tele-
communications of Rennes (IETR) dans l’équipe Video Analysis and Architecture Design
for Embedded Resources (VAADER) seront exploités afin d’utiliser le plus efficacement
possible une architecture massivement parallèle. Le premier modèle est un flux de données
hiérarchique et statique qui permet un réglage fin des différents niveaux de parallélisme
possibles dans les architectures modernes. Le second modèle de flux de données réconcilie
les modèles de flux de données dynamiques non déterministes et le pleinement statique.
Appelé Parameterized and Interfaced dataflow Meta-Model (PiMM), ce modèle composi-
tionable donne la possibilité de reconfiguration dynamique des graphes composant l’appli-
cation. Cette reconfiguration peut être effectuée une seule fois par itération de graphe, ce
qui donne au modèle plus de prédictibilité.

A.3 Environnement d’exécution bas niveau pour architec-

tures massivement parallèles

Cette section décrit les deux principaux environnements d’exécution bas niveau propo-
sés dans cette thèse et qui seront ensuite utilisés dans toutes les autres contributions de

Environnement d’exécution bas niveau pour architectures massivement parallèles 199

cette thèse, mais aussi dans la plupart des produits logiciels fonctionnant sur le processeur
MPPA® deuxième génération de Kalray à partir de 2017.

A.3.1 Environnement distribué pour la communication asynchrone uni-
latérale

Les principaux travaux de recherche sur la communication unilatérale (one-sided commu-
nications en Anglais) sont principalement liés à la communication visant à échanger des
données entre des nœuds de calcul qui ont d’énormes mémoires, soit plusieurs gigaoctets de
mémoire. L’état de l’art de ces systèmes de communication résulte donc à des propositions
d’interface de la communication de plusieurs mégaoctets. Cela n’est pas acceptable pour
une architecture massivement parallèle avec des mémoires locales de 2 mégaoctets. Cette
contribution, qui est la principale brique sur laquelle repose les autres contributions de
cette thèse, permet de faire de la communication asynchrone très efficace sur le processeur
MPPA® qui implémente un réseau connecté de mémoires locales distribuées.

Les principaux défis de cette contribution sont la gestion du partage de ressources
matérielles, l’asynchronisme de l’implémentation et le fait que l’environnement distribué
de communication soit hautement concurrentiel. En effet, l’émulation de communications
asynchrones unilatérales sur un réseau du puce capable de communiquer seulement de
manière bilatérale implique une forte assistance logicielle. Cette assistance logicielle met
en œuvre de l’ordonnancement de tâches de transferts, des mécanismes de contrôle de
flux basés sur des crédits logiciels, et partage des données de contrôle sans mécanisme
d’exclusion mutuelle. L’absence de mécanisme d’exclusion mutuelle permet d’atteindre une
haute performance sur le logiciel multitâche grâce à l’utilisation des opérations atomiques
du cœur et des périphériques.

Cet environnement expose la machine MPPA® comme un réseau de mémoires où n’im-
porte quel nœud multi-cœurs peut avoir accès à n’importe quelles mémoires au travers du
réseau sur puce. Cette communication peut être initiée de manière asynchrone afin de pou-
voir masquer les latences de communication avec du calcul. L’accès à la mémoire distante
est possible en ouvrant une fenêtre mémoire contiguë sur la mémoire locale. Cette fenêtre
peut ensuite être clonée pour faire le lien entre les deux participants à la communication,
qui est illustrée sur la Figure A.2. Cette action est synchronisante, ce qui rend l’utilisation
de l’environnement de communication plus simple vis à vis des éventuelles situations de
course à l’initialisation des applications distribuées sur le processeur MPPA®. Une fois
que le canal de communication unilatéral est établi, l’utilisateur peut initier des communi-
cations asynchrones fournissant une haute bande passante en fonction de l’état global du
système (contention du réseau sur puce, de l’initiateur ou du serveur). L’environnement
distribué de communication permet aussi de synchroniser efficacement différents nœuds
multi-cœurs grâce à l’émulation logicielle d’opérations atomiques dans les mémoires locales
distantes des nœuds. Ces opérations ont la propriété d’être strictement ordonnées avec
les transactions mémoires asynchrones en vol sur la fenêtre mémoire distante visée. Cela
permet à l’initiateur de poster toutes les opérations localement sans avoir à attendre les
complétions de celles-ci. L’ordre est géré automatiquement à distance par l’environnement
de communication proposé dans cette contribution.

L’implémentation logicielle étant dans le chemin critique de la performance, l’environ-
nement permet d’atteindre 70% de la performance crête du processeur pour des transferts
mémoires supérieurs ou égaux à 8 kilo octets. Sur la prochaine génération du processeur
MPPA®, certaines parties du logiciel de cet environnement seront matérialisées pour at-
teindre la crête du processeur sur des petites transactions mémoires.

Exécution d’applications de flux de données pour architectures massivement parallèles201

proposé une adaptation d’un environnement d’exécution embarqué pour ordonnancer à
l’exécution un modèle de flux de données paramétré et reconfigurable.

A.4.1 Stratégie pour ordonnancer efficacement un modèle statique de
flux de données hiérarchiques

Le placement et l’ordonnancement de tâches sur une architecture massivement parallèle
n’est pas trivial. Il a été démontré que le placement et l’ordonnancement est un problème
NP-complet. Cela signifie donc que le problème ne peut pas être résolu de manière optimale
en un temps polynomial. En effet le temps de placement et ordonnancement augmente de
manière exponentielle avec le nombre de cœurs et le nombre de tâches à placer sur ces cœurs
de calcul. Basée sur un modèle de flux de données hiérarchique et statique, la stratégie pour
placer et ordonnancer une application parallèle exploite les deux niveaux de hiérarchie
de parallélisme de la plateforme et la hiérarchie du modèle de calcul. Le modèle flux de
données hiérarchique et statique implémente des acteurs qui sont des calculs atomiques et
indivisibles. Ces acteurs sont inter-connectés par des arcs qui contiennent des données. La
hiérarchie du modèle permet d’associer un acteur à un sous graphe flux de données.

La preuve de concept est évaluée dans Parallel and Real-time Embedded Executives
Scheduling Method (PREESM) qui est un outil graphique qui permet de décrire des ap-
plications de flux de données conçu par l’équipe VAADER au sein du laboratoire IETR.
Originalement, le processus de compilation d’un graphe de flux de données hiérarchique
applicatif était systématiquement mis à plat. La mise à plat d’un graphe flux de données
hiérarchique consiste à remplacer les acteurs hiérarchiques par leurs graphes correspon-
dants. Cette mise à plat peut produire beaucoup d’acteurs qui devront ensuite être placés
et ordonnancés sur les cœurs de la plateforme. Dans cette contribution, la mise à plat n’est
plus nécessaire (mais toujours possible) ce qui permet d’avoir moins d’acteurs à placer et à
ordonnancer sur la plateforme visée. Cela provoque une perte de parallélisme, mais celui-ci
est ensuite exploité par la génération de boucle à itération finie et parallèle. Le groupage
d’acteurs permet de construire cette représentation, et un ordonnancement d’acteurs à
exécuter de manière séquentielle et itérative. Cette représentation est ensuite récupérée
au moment de la code génération pour l’architecture visée. Des directives de compilation
OpenMP sont automatiquement générées afin de récupérer le parallélisme perdu en amont.
Les résultats montrent une immense réduction du temps de placement et ordonnancement
en utilisant cette méthode, ainsi qu’un gain en performance qui est du à la fusion de cer-
tains accès à la mémoire principale. Cette fusion est apportée par la passe de groupage
d’acteurs dans les sous graphes qui n’ont pas été mis à plat.

A.4.2 Portage et adaptation d’un environnement d’exécution embarqué
pour placer et ordonnancer un modèle flux de données paramétré
et dynamique

Les systèmes embarqués complexes qui utilisent des modèles de flux de données tendent
de plus en plus vers la reconfigurabilité dynamique. Le modèle de flux de données permet
d’exploiter la reconfiguration partielle ou totale de l’application, et donc de son parallé-
lisme interne. Appelé Synchronous Parameterized Interfaced Dataflow Embedded Runtime
(SPIDER) et proposé par l’équipe VAADER dans le laboratoire IETR, cet environnement
d’exécution embarqué permet de placer et ordonnancer à l’exécution un méta modèle de
flux de données paramétrique sur une plateforme parallèle. L’environnement a été ini-
tialement implémenté pour supporter les architectures parallèles symétriques à mémoire
partagée. SPIDER adopte une approche maître et travailleur où l’ordonnanceur fonctionne

202 French Summary

sur le maître et les travailleurs exécutent les commandes de calcul envoyées par le maître.
L’environnement est proprement architecturé en langage C++ avec une partie plateforme
spécifique, un ordonnanceur, un manageur de mémoires partagées dans les nœuds multi-
cœurs, et des mécanismes abstraits de communications et synchronisations.

Dans cette contribution, le processeur MPPA® de Kalray implémentant un réseau de
mémoire distribuée est visé. Le maître de SPIDER est placé sur un multi-cœurs ayant
accès aux entrées/sorties et les travailleurs sont placés sur les cœurs des multi-cœurs de la
matrice d’accélération. Comme SPIDER a été développé sur un modèle de mémoires par-
tagées, l’environnement doit être modifié et adapté sur un modèle de mémoires distribuées.
Le principal défi est la gestion explicite de la communication, qui sur l’architecture à mé-
moire partagée se fait automatiquement par le cœur au travers de son unité de chargement
et déchargement de données, alors que sur MPPA®, elle doit se faire de manière explicite
par des transferts Direct Memory Access (DMA) logiciels. Ces transferts explicites sont
utilisés pour véhiculer les données de contrôle des queues de commandes, ainsi que pour
transférer les données d’entrées et de sorties des acteurs placés par le maître sur les cœurs
des nœuds multi-cœurs de la matrice d’accélération. De nouveaux placeur et ordonnanceur
sont proposés afin d’optimiser la cadence d’envoi des commandes, mais aussi afin d’utiliser
plus efficacement la mémoire locale des nœuds multi-cœurs. La mémoire locale est une res-
source précieuse, donc l’heuristique de placement est modifiée pour prendre en compte le
taux d’utilisation des mémoires locales dynamiquement à l’exécution. L’idée principale est
de réduire la contention sur les demandes d’allocations de données qui permettent l’exécu-
tion de l’acteur dans le nœud multi-cœurs. Les résultats sont prometteurs car ils montrent
des facteurs d’accélérations proches de la limite théorique donnée par la loi l’Amdahl.

A.5 Un environnement standard distribué pour la vision et

applications sur architectures massivement parallèles

Un nouvel environnement distribué pour l’exécution d’applications au standard OpenVX
est proposé dans ces travaux. L’environnement distribué donne la possibilité à un utilisateur
de faire fonctionner des applications OpenVX qui sont automatiquement parallélisées sur
un processeur massivement parallèle. Cette section présente aussi plusieurs applications
implémentées à bas niveau. Les méthodes de parallélisation sont expliquées mais également
la façon dont elles ont été adaptées à un processeur massivement parallèle qui embarque
des mémoires locales.

A.5.1 Environnement embarqué distribué pour l’exécution d’applica-
tions OpenVX à basse latence

OpenVX est une interface de programmation moderne et standard proposée par Khronos
qui permet de déployer des applications de vision par ordinateur ou de réseaux de neu-
rones en inférence (exécution d’un réseau déjà entrainé) sur un ou plusieurs accélérateurs.
OpenVX est donc une interface de programmation en accélération où l’application fonc-
tionne sur un hôte et le calcul est déporté sur l’accélérateur. La principale caractéristique
de l’OpenVX comparée aux autres interfaces de programmation telles que l’OpenCV, est
que le calcul est décrit par un graphe acyclique dirigé. Ce graphe est ensuite explicite-
ment vérifié par une fonction du standard, et le vrai calcul est ensuite lancé par une autre
fonction depuis l’hôte embarquant l’application OpenVX.

L’environnement distribué permettant le support de l’OpenVX sur le processeur MPPA® de
Kalray est une nouvelle implémentation au C99 en partant de la spécification de l’interface

Un environnement standard distribué pour la vision et applications sur architectures
massivement parallèles 203

de programmation du standard de Khronos. La seule dépendance est celle de la librairie
C, son mécanisme d’allocation de zone mémoire dynamique ainsi que d’un éditeur de lien
dynamique fonctionnant du côté de la matrice d’accélération massivement parallèle. Une
caractéristique importante de l’environnement est qu’il est totalement autonome. En effet,
l’environnement fonctionne sans assistance externe. Il a seulement besoin d’un hôte multi-
cœurs où est placé l’environnement qui implémente l’interface de programmation OpenVX.
Le calcul intensif est ensuite déployé automatiquement sur les différents nœuds multi-cœurs
de la plateforme massivement parallèle visée.

IR Graph

Building
Scheduling

Kernel

Fusion

Memory

Allocation

Command

Generation

Figure A.3 – Vérification et optimisation du graphe OpenVX applicatif - vxVerifyGraph [G+17]

L’intelligence de cet environnement repose sur l’optimisation automatique de l’exécu-
tion de la chaine de calcul décrite par le graphe OpenVX acyclique dirigé. Cela signifie donc
que l’environnement est capable de placer, ordonnancer et optimiser automatiquement les
tâches de calcul depuis l’hôte multi-cœurs sur la matrice d’accélération, et tout cela est fait
à l’exécution de l’application de manière autonome et embarquée. Le processus qui permet
de faire cela est décrit par la Figure A.3.

Halo

Region

Kernel 1

Kernel 2

Fused

C0

C0

C2

C2

C1

C3

C3

C1

Main

Main Memory Transfer

Halo Exchange

Memory

WriteRead

Figure A.4 – Automatisation de la fusion de nœuds standard OpenVX à l’exécution

Dans l’environnement, la représentation interne du graphe de calcul est d’abord construite
à partir de la description standard OpenVX. L’ordonnancement est un tri topologique qui
est raffiné avec une passe de fusion de nœuds de calcul afin d’éviter le plus possible les copies
de données en mémoire principale. En effet la fusion de nœuds, illustrée par la Figure A.4,
permet de sauver de la bande passante sur la mémoire externe qui est le principal bouchon
de performance des applications sur les architectures massivement parallèles. Si la fusion
n’est pas possible, un algorithme de tuilage automatique est appelé et celui-ci implémente
du pré chargement automatique de tuiles afin de masquer les latences d’accès à la mé-
moire principale (masquer la communication avec du calcul automatiquement). Les causes
d’impossibilité de faire de la fusion de nœuds sont par exemple les formes de tuiles non
supportées, les échanges inter nœuds multi-cœurs très difficiles, ou encore le manque de mé-

204 French Summary

moires locales adressable directement depuis les cœurs des nœuds multi-cœurs. Lorsque les
optimisations sont finies, le processus de vérification du graphe OpenVX lance l’allocation
statique des zones mémoires distribuées dans les mémoires locales des nœuds multi-cœurs
de la matrice d’accélération. Ensuite, les commandes de calcul sont générées puis envoyées
à la matrice d’accélération au moment du lancement de l’exécution du graphe fait par
l’utilisateur OpenVX.

Puisque le besoin des applications embarquées (voitures autonomes par exemple) re-
quière des systèmes les plus réactifs possibles, l’implémentation vise une exécution très
basse latence. Pour répondre à ce besoin, chaque nœud du graphe OpenVX applicatif est
distribué automatiquement sur toute la matrice d’accélération. Les résultats montrent des
facteurs d’accélération supers linéaires au niveau multi-nœuds multi-cœurs, ce qui indique
que la hiérarchie mémoire du processeur MPPA® de Kalray est bien utilisée.

A.5.2 Applications et environnements embarqués distribués à la main

Il est présenté plusieurs applications qui sont implémentées à bas niveau sur le processeur
massivement parallèle dans cette section. Les travaux réinvestissent les environnements
d’exécution proposés afin d’optimiser les applications implémentées à bas niveau sur la
machine visée. Tout d’abord, chaque application est expliquée, caractérisée, et ses mé-
thodes propres de parallélisation sont abordées. Trois applications sont visées. La première
est une application de stencil 3D utilisée dans les simulations numériques pour prédire par
exemple la météo ou encore simuler les phénomènes océanographiques. Ensuite, une implé-
mentation distribuée de la transformée de Fourier est proposée. Celle-ci est fondamentale
dans le traitement du signal. La dernière contribution est un environnement d’exécution
très spécifique permettant de faire fonctionner des réseaux de neurones en inférence.

Les travaux permettent à l’utilisateur de déployer automatiquement l’application op-
timisée à bas niveau sur MPPA®. Les optimisations misent en œuvre sont basées sur
les communications asynchrones unilatérales explicites et l’environnement multitâche pro-
posé dans les nœuds multi-cœurs de la machine massivement parallèle. Les optimisations
effectuées se concentrent sur le pré chargement de données, la restructuration des accès
mémoires dans les mémoires externes afin d’augmenter la localité spatiale et temporelle.
De plus, la fusion des différents processus de calcul est exploitée pour éviter le bouchon de
bande passante des mémoires externes.

A.6 Conclusion

La programmation des processeurs embarqués parallèles et hétérogènes est un énorme défi.
Les mémoires locales du processeur MPPA® font de lui une machine très efficace en termes
de rapport de puissance de calcul et d’énergie. Cependant, la programmation d’une telle
architecture est difficile pour les ingénieurs logiciels. Pour faciliter les développements et
la maturation des applications logicielles sur ce type de processeur, différents outils ont été
proposés et adaptés à l’architecture MPPA®.

Dans cette thèse, plusieurs approches sont exploitées. Premièrement, le problème de la
communication explicite très efficace et relativement simple à utiliser par l’ingénieur logi-
ciel sur MPPA® a été proposée, implémentée et validée. La parallélisation dans les nœuds
multi-cœurs a été ensuite proposée par un environnement multitâche très efficace du fait
qu’il utilise des mécanismes de synchronisation transactionnelle et sans exclusions mu-
tuelles. Ces deux contributions ont ensuite permis d’élaborer des systèmes plus complexes
mais cependant elles devaient être de maturité suffisamment élevées pour être utilisées

Conclusion 205

dans les prochaines contributions. Basée sur un modèle de flux de données hiérarchique et
statique, une génération de code automatique visant le processeur MPPA® est réalisée.
Cette contribution met en avant l’exploitation d’un modèle de calcul hiérarchique pour
viser une architecture implémentant plusieurs niveaux hiérarchiques de parallélisme. Un
environnement d’exécution de modèle de flux de données dynamique, proposé par l’équipe
VAADER dans le laboratoire IETR, a été porté et adapté sur le MPPA®. Cet environne-
ment permet de placer et ordonnancer des applications de flux de données paramétriques
à l’exécution sur MPPA® de manière autonome. Un nouvel environnement distribué pour
permettre l’exécution d’applications OpenVX sur un processeur massivement parallèle a
été proposé. OpenVX est une interface de programmation standard et moderne qui permet
de déployer du calcul sur un ou plusieurs accélérateurs depuis un hôte pour les applica-
tions de vision par ordinateur et de réseaux de neurones en inférence. L’environnement a
été construit en partant de rien, uniquement de la spécification des fonctions du consor-
tium Khronos et vise une exécution du graphe OpenVX très basse latence (implémentation
hautement concurrentielle et asynchrone). L’environnement effectue l’optimisation de l’ap-
plication automatiquement à l’exécution en appliquant des techniques telles que le pré
chargement de données pour masquer les latences d’accès aux mémoires externes, ainsi que
la fusion de nœuds de calcul pour éviter les copies de données en mémoire externe et éviter
les problèmes de bande passante mémoire. En effet, sur les architectures massivement pa-
rallèles, le bouchon de performance est souvent situé sur la bande passante de la mémoire
externe au processeur. C’est pour cela que des méthodes de fusion de calcul avancées sont
appliquées afin d’augmenter la localité temporelle et spatiale de l’application. Diverses im-
plémentations d’applications embarquées et hautes performances ont été aussi proposées
et automatiquement optimisées sur le processeur MPPA® d’un point de vue utilisateur.
Ces applications, telles que le stencil 3D et la transformée de Fourier distribuée, sont très
concurrentielles et difficiles à mettre en œuvre.

Pour conclure, toutes les contributions qui sont présentées dans cette thèse ont été
réalisées sur la véritable machine MPPA® seconde génération, testées et validées. De tels
travaux ont impliqué des séances de déboguages intensives pour comprendre pourquoi
la contribution ne fonctionnait pas afin de faire fonctionner la proposition finale. C’est
pourquoi, tous les systèmes, applications, et librairies optimisées, présentés dans ces travaux
de thèse sur MPPA® ont été limités par ma capacité à les observer.

206 French Summary

List of Figures

2.1 Software Architecture . 11
2.2 Examples of Multiple Levels of Parallelism 13
2.3 Nvidia Drive PX 2: A Complex and Highly Parallel Heterogeneous Embed-

ded System for Autonomous Driving . 14
2.4 MPPA® Processor . 17
2.5 Typical Central Processing Unit (CPU) Cores Linked to a Memory with

Memory Access examples . 21
2.6 (IO)Memory Management Unit (MMU) Role in a Heterogeneous Computer

System . 23

3.1 Symmetric Multi-Processing . 28
3.2 Example of Pthread Multi-threading Programming. 30
3.3 Example of OpenMP 3.0 Multi-threading Programming. 31
3.4 OpenCL Mapping of Applications and Memory Model Source: Kalray’s

OpenCL User Manual . 33
3.5 Dataflow Process Network (DPN) Programming Model Example and Semantic 36
3.6 Single-Rate Transformation Synchronous Dataflow (SDF) (left) to Single-

Rate Directed Acyclic Graph (DAG) (SRDAG) (right) 37
3.7 Cyclo-Static Dataflow (CSDF) Graph Example 38
3.8 Flattening and the Single-Rate Transformation Hierarchical SDF (left) to

Single-Rate DAG (SRDAG) (right) . 38
3.9 Flattening and Single-Rate Transformation of Interface-Based SDF (IBSDF)

(left) to Single-Rate DAG (SRDAG) (right) 39
3.10 PiMM Semantics (Source [Des14]) . 41
3.11 Parameterized and Interfaced SDF (PiSDF) Programming Model Semantics

and Example . 42
3.12 Typical PREESM’s Rapid Prototyping Workflow 45
3.13 Internal Structure of the SPIDER Runtime 48

4.1 Two-Sided Communication Examples. The sending transfer initiated by the
left CPU must strictly match the received command initiated by the right
CPU. 55

4.2 One-Sided Communication Examples . 56
4.3 Atomic-Compare-Word-and-Swap in Practice on the k1 VLIW Core. 64

207

208 List of Figures

5.1 Memory Segment Usages with the Create and Clone Functions 72
5.2 Remote Direct Memory Access (RDMA) Put and Get Operation on Window

Memory Segments . 73
5.3 RDMA Put and Get Operations with Remote Atomics on Window Memory

Segments . 74
5.4 Enqueue and Dequeue Operation using Remote Queue Memory Segments . 75
5.5 RDMA Put/Get Data Transfer Restructuring Pattern 76
5.6 Architecture of Asynchronous One-Sided (AOS) in a Compute Cluster . . . 85
5.7 RDMA Get (Read) Throughput GB/s (Asynchronous) 86
5.8 RDMA Put (Write) Throughput GB/s (Asynchronous) 87
5.9 RDMA Get (Read) Latency µs (Blocking) 87
5.10 RDMA Put (Write) Latency µs (Blocking) 88
5.11 Active Message Latency . 90

6.1 Specific States & Transitions of Threads in the New Multi-Threading Run-
time (NMTR) . 97

6.2 Build and Test Process for the Integration of the New Multi-threading Run-
time in the Software Toolchain . 106

6.3 Auto-thread onto RDMA Transfers for Automatic Double Buffering (parallel
code) . 109

6.4 Performance Comparisons of Thread Creation, Join and Basic Synchroniza-
tion Primitives on 16 Cores . 111

6.5 Performance Comparisons of Thread Creation, Join and Basic Synchroniza-
tion Primitives on 64 Threads . 111

6.6 Performance of the OpenMP GCC libgomp, Based on our New Multi-threading
Runtime with 16 Threads Running . 112

7.1 IBSDF Graph: Edges Detection and Denoising 117
7.2 New PREESM Workflow for Clustering and Parallel Loop Generation . . . 118
7.3 Gantt Chart of the Hierarchic Scheduling 119
7.4 Generated Code Example inside the Compute Clusters (CCs) of the Many-

core Processor . 121
7.5 Generalized Nested Loop Generation . 123
7.6 MPPA® Matrix Result in Frames per second (fps) 126
7.7 MPPA® Matrix Results Ratios between Network on Chip (NoC) Communi-

cations and Processing Time (lower is better, lower means more Processing
Elements (PEs) efficiency). Communication Overheads Relative to Total
Execution Time. 127

8.1 Architecture of the Reconfigurable Dataflow Runtime onto a DMA-Enabled
Clustered Manycore Processor . 131

8.2 Algorithms for Distributed Synchronizations for the Actor Firings. The
number of requests is the number of input First-In-First-Out queues (FIFOs)
of the next actor. 133

8.3 Algorithm for the Local Memory Allocation in the CC. 136
8.4 Parametrized Image Filtering Application. 137
8.5 Application Performance on a 4K Video . 138

9.1 Example of an OpenVX Application. 143
9.2 OpenVX Offloading Engine Architecture . 146

List of Figures 209

9.3 Example of the Support Platform Description of the MPPA® Processor . . 148
9.4 OpenVX Verify Graph Workflow - vxVerifyGraph [G+17] 149
9.5 Example of a Graph Display from the Input/Output Subsystem (IO), Sched-

ule and Fusion Optimizations . 150
9.6 Automated Multi-clusters Tiling . 153
9.7 Automated Multi-clusters Tiling Combined with Fusion 154
9.8 Example of Geometrical Transformation, namely a Rotation. 155
9.9 Automatic Tiling Engine Performance. VGA Images. Simple Tiling vs

Tiling with N-Buffering (N_BUF = N-Buffering = Prefetch). 159
9.10 Automatic Tiling Engine Performance. Full HD Images. Simple Tiling vs

Tiling with N-Buffering (N_BUF = N-Buffering = Prefetch). 159
9.11 Automatic RDMA-based Kernel Fusion Performance. VGA Images. Tiling

with N-Buffering (N_BUF = N-Buffering = Prefetch) vs Kernel Fusing (FU-
SION). 160

9.12 Automatic RDMA-based Kernel Fusion Performance. Full HD Images. Tiling
with N-Buffering (N_BUF = N-Buffering = Prefetch) vs Kernel Fusing (FU-
SION). 160

9.13 RDMA-based 2D Explicit Cache of Tiles Performance. VGA Images. 161
9.14 RDMA-based 2D Explicit Cache of Tiles Performance. Full HD Images. . . 162
9.15 Mono-Cluster RDMA-based 2D Explicit Cache of Tiles Performance. VGA

Images. 162
9.16 Mono-Cluster RDMA-based 2D Explicit Cache of Tiles Performance. Full

HD Images. 163

10.1 Lattice Boltzmann Method (LBM) D3Q19 Stencil 166
10.2 3D LBM/stencil decomposition where a Main-node subdomain (green) is

copied with its surrounding halo layers (if exists) and one extra subdomain
(blue) is needed to store the post-collision state. 168

10.3 Local/Remote copied index in 2D (in lattice node) with A: beginning of the
local buffer = (0,0); R: beginning of the remote main node 3D tile (without
halo); B: beginning of the copied 3D tile (S), represented by: Ba: index of
S on local memory (from A) and Br: index of S on main memory (from R). 169

10.4 OPAL_async vs. OPAL OpenCL on MPPA® for duration = 1000 steps. . . 172
10.5 Performance extrapolation of OPAL_async with 8× 8× 8 subdomains with

the first eight CCs correlation represented by a gray line for 1000 timesteps
and cavity size 128. 173

10.6 Architecture of the Distributed FFT for Low-Latency Execution over Several
Compute Clusters (CCs). 177

10.7 Example of a Vectorization (pair of registers) in the k1 VLIW PE. 180
10.8 Execution Time of the Mono-Cluster Fast Fourier Transform (FFT). The

Higher, The Better. 180
10.9 Execution Time of Distributed Multi-Cluster FFT. The Higher, The Better. 181
10.10Architecture of the Kalray Neural Network (KANN) Framework. 182
10.11Broadcast Operation From the Main Double Data Rate (DDR)3 Memory to

the CCs. 184

A.1 Le processeur MPPA® de Kalray . 196
A.2 Utilisation des segments mémoires et des protocoles 200
A.3 Vérification et optimisation du graphe OpenVX applicatif - vxVerifyGraph [G+17]203
A.4 Automatisation de la fusion de nœuds standard OpenVX à l’exécution . . . 203

210 List of Figures

List of Tables

5.1 NoC Resources used by the AOS library for each of the Compute Cluster
(CC) and each of the Input/Output Subsystem (IO) Composing an Entire
MPPA® Processor . 83

5.2 NoC Bandwidth of the Compute Matrix in GB/s 89
5.3 Performance of the Remote Queues in Kilo Input/Output Operation per

Second (IOPS) . 90

6.1 Scheduler Condition Call on Standard Primitives for Cooperative Multi-
Threading . 105

6.2 Auto-threading Throughput on Three Different Use-cases 113

7.1 fps and Speedups for Texas Instruments (TI) Digital Signal Processor (DSP)
and Intel Processor . 125

7.2 fps and Speedups for one MPPA® Cluster 125

9.1 Multi-cluster Performance of the Harris Corner Detection of OpenVX on
MPPA® in fps . 163

10.1 3-depth pipeline (triple-buffering) which allows a 2-step distance between
GET and WAIT, but only a 1-step distance between PUT and WAIT, thus the
PUT transfer will not be well overlapped (m: index of subdomain to compute,
i: index of local buffer slot; G = GET; P = PUT; W = WAIT; C = COMPUTE;

WCP = {WAIT + COMPUTE + PUT}; WG = {WAIT + GET}). 170
10.2 Summary of the Memory Footprint of the Distributed FFT on Several CCs 179
10.3 Performance of the GoogleNet Convolutional Neural Network (CNN) batch-

1 (latency = throughput) using Single-precision Floating-point Operation . 184

211

212 List of Tables

Glossary

ABC Architecture Benchmark Computer. 46

ABI Application Binary Interface. 179

ADAS Advanced Driver-Assistance System. 3, 14

AI Arithmetic Intensity. 172, 184

AMD Advanced Micro Devices. 144, 145

AOS Asynchronous One-Sided. 70–72, 77, 79, 82–85, 90–93, 107, 108, 131, 133, 135, 156,
163, 167, 171, 177, 180, 181, 183

API Application Programming Interface. 5, 27, 29, 32–34, 51–53, 55, 65, 69–72, 77, 81,
92, 96, 98, 103, 106–108, 130, 131, 133, 135, 141, 142, 145, 146, 148, 163, 167, 170,
180, 187, 189, 193

ARM Advanced Reduced Instruction Set Computer (RISC) Machine. 14

ARMCI Aggregate Remote Memory Copy Interface. 53

BDF Boolean DataFlow. 40

BF Best-Fit. 44, 46

BLAS Basic Linear Algebra Subprograms. 93

BLODI BLOck DIagram compiler. 35

BPDF Boolean Parametric DataFlow. 40

BSP Bulk Synchronous Parallel. 165

CC Compute Cluster. 8, 17–19, 24, 25, 33, 49, 51, 61, 63, 69–71, 76–79, 82–84, 86, 88–91,
95, 96, 99, 101, 106, 110, 111, 113, 114, 116, 118–121, 124–127, 130, 131, 134–139,
142, 144–149, 151–153, 155–159, 161–165, 168, 170–174, 176–180, 183–185, 188, 189,
191, 192

CEA Centre des Energies Atomiques. 17

213

214 Glossary

CMA Continuous Memory Allocator. 91

CNN Convolutional Neural Network. 7, 8, 54, 77, 88, 93, 165, 181–185, 189

CPU Central Processing Unit. 6, 7, 12–14, 16, 17, 19, 21, 22, 24, 32, 45, 54–57, 62, 77,
95, 96, 99, 103, 105, 107, 116, 119, 120, 125, 129, 138, 139, 142, 144, 145, 147, 148,
164, 165, 167, 184, 188, 190

CSDF Cyclo-Static Dataflow. 37, 38, 49

CTA Compositional Temporal Analysis. 115

CUDA Compute Unified Device Architecture. 33, 34

DAG Directed Acyclic Graph. 37–39, 43, 45, 46, 120, 134, 145, 149, 189

DCB Data Center Bridging. 52, 58

DDR Double Data Rate. 15, 18, 20, 33, 54, 71, 83, 84, 86, 88, 120, 124, 131, 135, 145,
166, 171–173, 176, 177, 183–185

DFS Depth-First Search. 42, 149

DFT Discrete Fourier Transform. 174

DMA Direct Memory Access. 5, 14, 18–20, 24, 25, 34, 54, 57–60, 69, 70, 72, 78–89, 91,
92, 95, 98, 103, 105, 107, 108, 110, 120, 130, 131, 135, 139, 141, 154, 155, 166, 167,
181, 183, 185, 187, 190–192, 202

DPN Dataflow Process Network. 35–37, 48

DSL Domain Specific Language. 45, 141, 145

DSM Distributed Shared Memory. 24, 25, 28, 33, 82, 91, 92, 155, 166

DSP Digital Signal Processor. 4, 6, 12–14, 48, 54, 118, 120, 124, 125, 129

DSSF Deterministic SDF with Shared FIFOs. 39

ELF Executable and Linkable Format. 22, 25, 45, 108

Eot End-of-Transfer. 20, 79, 80, 82, 84, 85, 183

FF First-Fit. 44, 46

FFT Fast Fourier Transform. 88, 165, 174–176, 178–181, 184, 185, 189

FIFO First-In-First-Out queue. 18, 35–37, 39, 47, 48, 60, 62, 71, 80, 83, 86, 90, 115, 133,
135

FLOPS Floating Point Operations per Second. 13, 17

FPGA Field-Programmable Gate Array. 12, 54, 144, 145

fps Frames per second. 125, 126, 137–139, 160, 161, 163

FPU Floating Point Unit. 18, 20

Glossary 215

FSM Finite-State Machine. 35

GCC GNU Compiler Collection. 22, 29, 30, 34, 44, 61, 63, 95, 99, 106, 107, 112, 114, 124,
145, 179, 188, 191, 200

GCC GNU Compiler Collection. 106, 108

GDDR Graphical Double Data Rate. 15

GEMM General Matrix Multiply. 114

GOT Global Offset Table. 101

GPS Global Positioning System. 3

GPU Graphics Processing Unit. 12–14, 32–34, 52, 54, 107, 142, 144, 145, 148, 167, 171,
184, 185, 192

GRT Global RunTime. 47, 48, 131, 132, 134, 135, 138, 139

HAL Hardware Abstraction Layer. 11, 24

HBM High Bandwidth Memory. 15, 173

HBW Halo Bandwidth. 171

HPC High-Performance Computing. 51–54, 58, 70, 141, 158

IBSDF Interface-Based SDF. 38–40, 45, 49, 115–117, 120, 121, 123, 126, 128, 129, 141

IBTA Infiniband Trade Association. 52

IETR Institute of Electronics and Telecommunications of Rennes. 5–7, 45, 188, 198, 201,
205

ILP Instruction-Level Parallelism. 13, 25, 118, 185

IO Input/Output Subsystem. 17–20, 25, 49, 63, 71, 77, 83, 84, 90, 91, 95, 96, 98, 99, 106,
111, 124, 130–132, 138, 139, 142, 144, 145, 147, 150, 164, 188, 189, 192

IOCTL Input/Output Control. 21, 91

IOPS Input/Output Operation per Second. 75, 90, 93, 134, 147, 188

IoT Internet of Things. 3

IP Intellectual Property. 144

IPC Inter-Process Communication. 69, 71, 144

IR Intermediate Representation. 149

ISA Instruction Set Architecture. 60, 63

KANN Kalray Neural Network. 82, 114, 165, 182

KPN Kahn Process Network. 35, 49

216 Glossary

LBM Lattice Boltzmann Method. 166–168, 171–173, 184

LLC Last Level Cache. 59

LLVM Low-Level Virtual Machine. 191

LRT Local RunTime. 47, 48, 130–137

LRU Least Recently Used. 61

MCU Micro-controller Unit. 15

MIMD Multiple Instructions, Multiple Data. 13

MKL Math Kernel Library. 5

MLUPS Mega Lattice Updates per Second. 171–173

MMU Memory Management Unit. 18, 20–25, 28, 52, 57, 59, 62, 91, 98, 104, 155

MoC Model of Computation. 35

MPI Message Passing Interface. 28, 52, 53, 56, 65, 70, 92, 120, 154

MPPA Multi-Purpose Processor Array. 5–8, 11, 12, 17–20, 23–25, 27, 31, 33, 48, 49,
51, 54, 60, 61, 65, 69–71, 79, 82, 83, 86, 90–93, 95, 96, 99, 101, 106, 107, 110, 116,
119, 120, 124–131, 135, 137–139, 141–146, 148, 156, 161, 163–165, 170–174, 176–178,
181–185, 187–192, 196, 197, 199, 200, 202, 204, 205

MPSoC Multiprocessor System-on-Chip. 4, 5, 8, 12, 13, 27, 33, 37, 45, 46, 48, 61, 71,
124, 128, 129, 145, 164, 182, 184

NMTR New Multi-Threading Runtime. 95–98, 101, 103–106, 108, 110, 112, 114

NoC Network on Chip. 8, 16, 18–20, 24, 25, 49, 65, 69–72, 77–92, 108, 126, 127, 132–134,
138, 145, 146, 148, 158, 176, 177, 180, 181, 183, 185, 187, 190

NORMA No Remote Memory Access. 16

NUMA Non-Uniform Memory Access. 13, 16, 21, 28, 57

OFA Open-Fabrics Association. 52

OpenMP Open Multi-Processing. 116, 129

Orcc Open RVC-CAL Compiler. 129

OS Operating System. 11, 12, 20–25, 28–31, 42, 71, 79, 84, 90, 91, 95, 97, 98, 124, 145

PCIE Peripheral Component Interconnect Express. 21, 49, 69, 71, 98, 124, 143, 150, 183

PDF Particle Distribution Function. 166

PE Processing Element. 12, 19, 20, 24, 25, 31, 33, 42, 43, 46, 47, 49, 54, 69–72, 75, 77–82,
84, 85, 90, 98–101, 103–106, 108, 110, 111, 113–119, 126–128, 130–139, 146, 148,
155–158, 161, 162, 170, 177–180

Glossary 217

PGAN Pairwise Grouping of Adjacent Nodes. 121

PGAS Partitioned-Global-Address-Space. 53, 65

PIC Position Independent Code. 101, 147

PiMM Parameterized and Interfaced dataflow Meta-Model. 41, 49, 115, 129, 141, 198

PiSDF Parameterized and Interfaced SDF. 40, 41, 45–47, 115, 129–131, 134, 137–139

PREESM Parallel and Real-time Embedded Executives Scheduling Method. 6, 27, 45,
46, 49, 115–118, 120, 130, 131, 182, 188, 192, 201

PSDF Parameterized SDF. 40

PSO Partial Store Order. 60

QoS Quality-of-Service. 20, 70

QPI QuickPath Interconnect. 16, 58

RAM Random Access Memory. 14, 15

RAW Read-After-Write. 60, 74, 103, 112, 127, 135, 142, 147, 164, 178, 192

RDDP Remote Direct Data Placement. 52

RDMA Remote Direct Memory Access. 52, 57, 58, 60, 65, 69, 71–81, 83, 84, 86–88, 91,
92, 108, 110, 113, 114, 120, 124–127, 135, 139, 144–146, 148, 149, 151–154, 157, 158,
160–164, 168, 170, 176–178, 180, 183, 185, 189, 190, 192

RISC Reduced Instruction Set Computer. 4, 14

RM Resource Manager. 19, 79, 82, 84, 90, 99, 106

RMO Relaxed Memory Order. 60

RoCE RDMA over Converged Ethernet. 52, 65

RR Round Robin. 79, 105, 134, 135

RTOS Real-Time Operating System. 79, 191

RV Repetition Vector. 36–40, 46, 49, 117–119, 121, 123, 124, 128

SADF Scenario-Aware Dataflow. 40

SDF Synchronous Dataflow. 37–40, 42, 49, 115, 116, 120, 121, 123, 129, 141, 142

SDFG Synchronous Dataflow Graph. 35

SIMD Single Instruction, Multiple Data. 12, 13, 18, 25, 34, 113, 141, 144, 179, 185, 189

SIMT Single Instruction, Multiple Threads. 12, 13, 192

SISD Single Instruction, Single Data. 12

SMEM Shared Memory. 18, 19, 83, 86, 88, 89

218 Glossary

SMP Symmetric Multi-Processor system. 8, 16, 21, 25, 27–29, 34, 49, 69, 70, 72, 73, 113,
118, 176

SoC System-on-Chip. 7, 20, 25, 33, 128, 145, 183, 184

SPDF Schedulable Parametric Dataflow. 40

SPIDER Synchronous Parameterized Interfaced Dataflow Embedded Runtime. 27, 35,
46–49, 114, 129–132, 134, 135, 137–139, 192, 201, 202

SPMD Single Program, Multiple Data. 52, 53

SR Single-Rate. 37, 45, 46, 142, 149

SRDAG Single-Rate DAG. 37–39, 43

sRIO Serial Rapid Input-Output. 58

TCM Tightly Coupled Memory. 15

TI Texas Instruments. 4, 6, 48, 124–126, 132, 154

TLB Translation Lookaside Buffer. 22, 25, 44, 59

TLS Thread Local Storage. 22, 99, 101, 107, 114

TSO Total Store Order. 60

TV Television. 3

UMA Uniform Memory Access. 16, 28, 31

UML Unified Modeling Language. 34

USB Universal Serial Bus. 21

VAADER Video Analysis and Architecture Design for Embedded Resources. 5–7, 188,
198, 201, 205

VIA Virtual Interface Architecture. 52

VLIW Very Long Instruction Word. 13, 17, 18, 24, 25, 51, 61–65, 99, 103, 106, 125, 130,
179, 180, 185, 196

VMM Virtual Machine Monitor. 20

WCET Worst-Case Execution Time. 15, 44, 48, 64

Personal Publications

[HDD18] Hascoët, Julien and de Dinechin, Benoît Dupont and Desnos, Karol and
Nezan, Jean-François. A Distributed Framework for Low-Latency OpenVX
over the RDMA NoC of a Clustered Manycore. 2018 IEEE High Performance
extreme Computing Conference (HPEC), 2018 Conference.

[MHDM18] Miomandre, Hugo and Hascoët, Julien and Desnos, Karol and Martin, Kevin
JM and de Dinechin Kalray, Benoît Dupont and Nezan, Jean-François. Em-
bedded Runtime for Reconfigurable Dataflow Graphs on Manycore Archi-
tectures. Proceedings of the 9th Workshop and 7th Workshop on Parallel
Programming and RunTime Management Techniques for Manycore Archi-
tectures and Design Tools and Architectures for Multicore Embedded Com-
puting Platforms.

[HDG17] Hascoët, Julien and de Dinechin, Benoît Dupont and de Massas, Pierre
Guironnet and Ho, Minh Quan. Asynchronous one-sided communications
and synchronizations for a clustered manycore processor. Proceedings of the
15th IEEE/ACM Symposium on Embedded Systems for Real-Time Multi-
media, 2017 Conference.

[HDN17] Hascoët, Julien and Desnos, Karol and Nezan, Jean-François and de
Dinechin, Benoît Dupont. Hierarchical Dataflow Model for efficient pro-
gramming of clustered manycore processors. Application-specific Systems,
Architectures and Processors (ASAP), 2017 IEEE 28th International Con-
ference.

[MHD17] Miomandre, Hugo and Hascoet, Julien and Desnos, Karol and Martin, Kevin
and de Dinechin, Benoit Dupont and Nezan, Jean Francois. Demonstrating
the SPIDER Runtime for Reconfigurable Dataflow Graphs Execution onto
a DMA-based Manycore Processor. IEEE International Workshop on Signal
Processing Systems, 2017 Conference.

[HOT17] Ho, Minh-Quan and Obrecht, Christian and Tourancheau, Bernard and de
Dinechin, Benoît Dupont and Hascoet, Julien. Improving 3D Lattice Boltz-
mann Method stencil with asynchronous transfers on many-core processors.
36th IEEE International Performance Computing and Communications Con-
ference (IPCCC 2017).

219

220 Personal Publications

[HNE15] Hascoet, Julien and Nezan, Jean-Francois and Ensor, Andrew and de
Dinechin, Benoît Dupont. Implementation of a fast Fourier transform al-
gorithm onto a manycore processor. Design and Architectures for Signal and
Image Processing (DASIP), 2015 Conference.

Bibliography

[air18] Airbus, 2018. http://www.airbus.com. 3

[Aja09] Jasmin Ajanovic. Pci express 3.0 overview. In Proceedings of Hot Chip: A
Symposium on High Performance Chips, 2009. 69, 143

[ALP97] Marleen Adé, Rudy Lauwereins, and JA Peperstraete. Data memory min-
imisation for synchronous data flow graphs emulated on dsp-fpga targets.
In Proceedings of the 34th annual Design Automation Conference, pages
64–69. ACM, 1997. 44

[BA14] F Brill and E Albuz. Nvidia visionworks toolkit. In GPU Technology
Conference, 2014. 144

[BAMJ13] S. C. Brunet, C. Alberti, M. Mattavelli, and J. W. Janneck. Design space
exploration of high level stream programs on parallel architectures: a focus
on the buffer size minimization and optimization problem. In Image and
Signal Processing and Analysis (ISPA), pages 738–743. IEEE, 2013. 44

[Bar93] Greg Barnes. A method for implementing lock-free shared-data structures.
In Proceedings of the fifth annual ACM symposium on Parallel algorithms
and architectures, pages 261–270. ACM, 1993. 95

[BB01] Bishnupriya Bhattacharya and Shuvra S Bhattacharyya. Parameterized
dataflow modeling for dsp systems. IEEE Transactions on Signal Process-
ing, 49(10):2408–2421, 2001. 40

[BB07] Peter Brucker and P Brucker. Scheduling algorithms, volume 3. Springer,
2007. 42, 43, 127

[BČH09] Mathieu Bouchard, Mirjana Čangalović, and Alain Hertz. About equiva-
lent interval colorings of weighted graphs. Discrete Applied Mathematics,
157(17):3615–3624, 2009. 44, 45

[BCL+95] Eric A Brewer, Frederic T Chong, Lok T Liu, Shamik D Sharma, and
John D Kubiatowicz. Remote queues: Exposing message queues for opti-
mization and atomicity. In Proceedings of the seventh annual ACM sym-
posium on Parallel algorithms and architectures, pages 42–53. ACM, 1995.
70, 80

221

http://www.airbus.com

222 Bibliography

[Ber07] Gérard Berry. SCADE: Synchronous design and validation of embedded
control software. In Next Generation Design and Verification Methodologies
for Distributed Embedded Control Systems, pages 19–33. Springer, 2007. 49

[Ber18] Berkeley. Latency Numbers Every Programmer Should Know, 2018.
https://people.eecs.berkeley.edu/~rcs/research/interactive_

latency.html. 14

[BFGL13] Vagelis Bebelis, Pascal Fradet, Alain Girault, and Bruno Lavigueur. Bpdf:
A statically analyzable dataflow model with integer and boolean parame-
ters. In Embedded Software (EMSOFT), 2013 Proceedings of the Interna-
tional Conference on, pages 1–10. IEEE, 2013. 40

[BL93] Joseph Tobin Buck and Edward A Lee. Scheduling dynamic dataflow
graphs with bounded memory using the token flow model. In Acoustics,
Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE Interna-
tional Conference on, volume 1, pages 429–432. IEEE, 1993. 40, 42, 44

[Blo17] Nvidia Developer Blog. Inside Volta: The World’s Most Advanced Data
Center GPU, 2017. https://devblogs.nvidia.com/inside-volta/. 13

[BML99] Shuvra S Bhattacharyya, Praveen K Murthy, and Edward A Lee. Synthesis
of embedded software from synchronous dataflow specifications. Journal
of VLSI signal processing systems for signal, image and video technology,
21(2):151–166, 1999. 142, 149

[BML12] Shuvra S Bhattacharyya, Praveen K Murthy, and Edward A Lee. Software
synthesis from dataflow graphs, volume 360. Springer Science & Business
Media, 2012. 121, 123

[Bon08] Dan Bonachea. Gasnet specification. Technical report, 2008. 53

[BPG01] Darius Buntinas, Dhabaleswar K Panda, and William Gropp. Nic-based
atomic remote memory operations in myrinet/gm. In IN MYRINET/GM,”
IN WORKSHOP ON NOVE USES OF SYSTEM AREA NETWORKS
(SAN1). Citeseer, 2001. 58

[BYY+16] Janki Bhimani, Jingpei Yang, Zhengyu Yang, Ningfang Mi, Qiumin Xu,
Manu Awasthi, Rajinikanth Pandurangan, and Vijay Balakrishnan. Un-
derstanding performance of i/o intensive containerized applications for
nvme ssds. In Performance Computing and Communications Conference
(IPCCC), 2016 IEEE 35th International, pages 1–8. IEEE, 2016. 93

[CAR14] Ivano Cerrato, Mauro Annarumma, and Fulvio Risso. Supporting fine-
grained network functions through intel dpdk. In Software Defined Net-
works (EWSDN), 2014 Third European Workshop on, pages 1–6. IEEE,
2014. 97

[CCJM97] Nianzheng Cao, Shiyi Chen, Shi Jin, and Daniel Martinez. Physical sym-
metry and lattice symmetry in the lattice Boltzmann method. Physical
Review E, 55(1):R21, 1997. 166

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://devblogs.nvidia.com/inside-volta/

Bibliography 223

[CCP+10] Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff
Kuehn, Chuck Koelbel, and Lauren Smith. Introducing openshmem:
Shmem for the pgas community. In Proceedings of the Fourth Conference
on Partitioned Global Address Space Programming Model, page 2. ACM,
2010. 28, 53

[CCS+08] Jianjiang Ceng, Jerónimo Castrillón, Weihua Sheng, Hanno Scharwächter,
Rainer Leupers, Gerd Ascheid, Heinrich Meyr, Tsuyoshi Isshiki, and Hi-
roaki Kunieda. Maps: an integrated framework for mpsoc application
parallelization. In Proceedings of the 45th annual Design Automation Con-
ference, pages 754–759. ACM, 2008. 49

[CDG+14] Loïc Cudennec, Paul Dubrulle, François Galea, Thierry Goubier, and Re-
naud Sirdey. Generating code and memory buffers to reorganize data on
many-core architectures. In Procedia Computer Science, volume 29, pages
1123–1133, 2014. 151

[CEL+03] Silviu Ciricescu, Ray Essick, Brian Lucas, Phil May, Kent Moat, Jim Nor-
ris, Michael Schuette, and Ali Saidi. The reconfigurable streaming vector
processor (rsvptm). In Proceedings of the 36th annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, page 141. IEEE Computer Society,
2003. 76

[CH89] JE Cooling and TS Hughes. The emergence of rapid prototyping as a real-
time software development tool. In Software Engineering for Real Time
Systems, 1989., Second International Conference on, pages 60–64. IET,
1989. 45

[Che00] Yao-Ting Cheng. Autoscaling radix-4 fft for tms320c6000. application
report SPRA654, 2000. 174, 175

[CJVDP08] Barbara Chapman, Gabriele Jost, and Ruud Van Der Pas. Using OpenMP:
portable shared memory parallel programming, volume 10. MIT press, 2008.
29

[CLA13] Jeronimo Castrillon, Rainer Leupers, and Gerd Ascheid. Maps: Mapping
concurrent dataflow applications to heterogeneous mpsocs. IEEE Trans-
actions on Industrial Informatics, 9(1):527–545, 2013. 49

[CPC16] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis
of deep neural network models for practical applications. arXiv preprint
arXiv:1605.07678, 2016. 184

[CPG+] M. Chavarras, F. Pescador, M. J. Garrido, E. Juairez, and C. Sanz. A
multicore DSP HEVC decoder using an actorbased dataflow model and
OpenMP. 61(2):236–244. 49, 120

[CRP+16] Francesco Conti, Davide Rossi, Antonio Pullini, Igor Loi, and Luca Benini.
Pulp: A ultra-low power parallel accelerator for energy-efficient and flexible
embedded vision. Journal of Signal Processing Systems, 84(3):339–354,
2016. 6

224 Bibliography

[CSWZ16] Jiecao Chen, He Sun, David Woodruff, and Qin Zhang. Communication-
optimal distributed clustering. In Advances in Neural Information Process-
ing Systems, pages 3727–3735, 2016. 124

[CT65] James W Cooley and John W Tukey. An algorithm for the machine calcula-
tion of complex fourier series. Mathematics of computation, 19(90):297–301,
1965. 174

[CTK+09] David Cohen, Thomas Talpey, Arkady Kanevsky, Uri Cummings, Michael
Krause, Renato Recio, Diego Crupnicoff, Lloyd Dickman, and Paul Grun.
Remote direct memory access over the converged enhanced ethernet fabric:
Evaluating the options. In High Performance Interconnects, 2009. HOTI
2009. 17th IEEE Symposium on, pages 123–130. IEEE, 2009. 52

[dDAB+13] Benoît Dupont de Dinechin, Renaud Ayrignac, Pierre-Edouard Beaucamps,
Patrice Couvert, Benoit Ganne, Pierre Guironnet de Massas, François
Jacquet, Samuel Jones, Nicolas Morey Chaisemartin, Frédéric Riss, et al.
A clustered manycore processor architecture for embedded and acceler-
ated applications. In High Performance Extreme Computing Conference
(HPEC), 2013 IEEE, pages 1–6. IEEE, 2013. 49, 151

[dDdML+13] Benoît Dupont de Dinechin, Pierre Guironnet de Massas, Guillaume Lager,
Clément Léger, Benjamin Orgogozo, Jérôme Reybert, and Thierry Strudel.
A distributed run-time environment for the kalray mppa®-256 integrated
manycore processor. Procedia Computer Science, 18:1654–1663, 2013. 31,
69, 70

[DDNMK17a] Hamza Deroui, Karol Desnos, Jean-Francois Nezan, and Alix Munier-
Kordon. Relaxed subgraph execution model for the throughput evalua-
tion of ibsdf graphs. In International Conference on Embedded Computer
Systems: Architecture, Modeling and Simulation SAMOS, 2017. 115

[DDNMK17b] Hamza Deroui, Karol Desnos, Jean-Francois Nezan, and Alix Munier-
Kordon. Throughput evaluation of dsp applications based on hierarchical
dataflow models. In Proceedings of the 50th International Symposium on
Circuits and Systems. ISCAS, 2017. 115

[DDRV17] Benoit Dupont De Dinechin, Marta RYBCZYNSKA, and RAY Vincent.
Atomic instruction having a local scope limited to an intermediate cache
level, September 7 2017. US Patent App. 15/452,073. 63

[Des14] Karol Desnos. Memory Study and Dataflow Representations for Rapid
Prototyping of Signal Processing Applications on MPSoCs. PhD thesis,
INSA de Rennes, 2014. 40, 41, 44, 45, 46, 122, 207

[DGCDM97] Eddy De Greef, Francky Catthoor, and Hugo De Man. Array placement for
storage size reduction in embedded multimedia systems. In Application-
Specific Systems, Architectures and Processors, 1997. Proceedings., IEEE
International Conference on, pages 66–75. IEEE, 1997. 45

[DLP03] Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. The linpack bench-
mark: past, present and future. Concurrency and Computation: practice
and experience, 15(9):803–820, 2003. 13

Bibliography 225

[dM09] P Guironnet de Massas. Etude de méthodes et mécanismes pour un ac-
ces transparent et efficace aux données dans un systeme multiprocesseur
sur puce. PhD thesis, Institut National Polytechnique de Grenoble-INPG,
2009. 24

[Doc07] GCC Documentation. Built-in functions for atomic memory access, 2007.
https://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.

html. 61, 65

[DPN+13] Karol Desnos, Maxime Pelcat, Jean-François Nezan, Shuvra S Bhat-
tacharyya, and Slaheddine Aridhi. Pimm: Parameterized and interfaced
dataflow meta-model for mpsocs runtime reconfiguration. In Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS
XIII), 2013 International Conference on, pages 41–48. IEEE, 2013. 41,
115, 129

[DPNA15] Karol Desnos, Maxime Pelcat, Jean-François Nezan, and Slaheddine
Aridhi. Buffer merging technique for minimizing memory footprints of syn-
chronous dataflow specifications. In Acoustics, Speech and Signal Process-
ing (ICASSP), 2015 IEEE International Conference on, pages 1111–1115.
IEEE, 2015. 44

[DPNA16] Karol Desnos, Maxime Pelcat, Jean-François Nezan, and Slaheddine
Aridhi. Distributed memory allocation technique for synchronous dataflow
graphs. In Signal Processing Systems (SiPS), 2016 IEEE International
Workshop on, pages 45–50. IEEE, 2016. 46, 119, 124

[Dre03] Ulrich Drepper. Elf handling for thread-local storage. Technical report,
Technical report, Red Hat, Inc., 2003. URL http://people. redhat. com/-
drepper/tls. pdf. 6.4. 1, 2003. 22

[DS95] Michael Dolle and Manfred Schlett. A cost-effective risc/dsp microproces-
sor for embedded systems. IEEE Micro, 15(5):32–40, 1995. 4

[Exe02] UML Executable. A foundation for model-driven architecture. Stephen J,
2002. 35

[Fei95] Karl Feind. Shared memory access (shmem) routines. Cray Research, 1995.
53

[FGP12] Pascal Fradet, Alain Girault, and Peter Poplavko. Spdf: A schedulable
parametric data-flow moc. In Proceedings of the Conference on Design,
Automation and Test in Europe, pages 769–774. EDA Consortium, 2012.
40

[Fly72] Michael J Flynn. Some computer organizations and their effectiveness.
IEEE transactions on computers, 100(9):948–960, 1972. 12

[G+11] Khronos OpenCL Working Group et al. The opencl specification version
1.1. www.khronos.org/registry/cl/specs/opencl-1.1.pdf, 2011. 32, 144

[G+17] Khronos Vision Working Group et al. The openvx specification v1. 1. Web:
www.khronos.org/registry/OpenVX/specs/1.1/OpenVX_Specification_1_1.pdf,
2017. 7, 141, 142, 143, 149, 154, 155, 203, 209

https://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Atomic-Builtins.html

226 Bibliography

[Gam95] Erich Gamma. Design patterns: elements of reusable object-oriented soft-
ware. Pearson Education India, 1995. 132

[Gid17] Radhakrishna Giduthuri. The OpenVX Safety Critical, 2017.
https://www.khronos.org/registry/OpenVX/specs/1.1_SC/OpenVX_

Specification_SC_1_1.pdf. 147

[Gil74] KAHN Gilles. The semantics of a simple language for parallel program-
ming. Information processing, 74:471–475, 1974. 35

[GL04] Alexandros V Gerbessiotis and Seung-Yeop Lee. Remote memory access: A
case for portable, efficient and library independent parallel programming.
Scientific Programming, 12(3):169–183, 2004. 53

[GMRdD18] Amaury Graillat, Matthieu Moy, Pascal Raymond, and Benoît Dupont
de Dinechin. Parallel code generation of synchronous programs for a many-
core architecture. In Design, Automation and Test in Europe, 2018. 49

[GNP90] David Gelernter, Alexandru Nicolau, and David A Padua. Languages and
compilers for parallel computing. Pitman, 1990. 53

[Gor04] Sergei Gorlatch. Send-receive considered harmful: Myths and realities of
message passing. ACM Trans. Program. Lang. Syst., 26(1):47–56, January
2004. 80

[GP16] Radhakrishna Giduthuri and Kari Pulli. Openvx: a framework for acceler-
ating computer vision. In SIGGRAPH ASIA 2016 Courses, page 14. ACM,
2016. 144

[Gro18] Khronos Group. Khronos Website, 2018. 34

[HDB+12] Torsten Hoefler, James Dinan, Darius Buntinas, Pavan Balaji, Brian Bar-
rett, Ron Brightwell, William Gropp, Vivek Kale, and Rajeev Thakur.
Leveraging mpi’s one-sided communication interface for shared-memory
programming. Recent advances in the message passing interface, pages
132–141, 2012. 28, 120

[HdDdMH17] Julien Hascoët, Benoît Dupont de Dinechin, Pierre Guironnet de Massas,
and Minh Quan Ho. Asynchronous one-sided communications and synchro-
nizations for a clustered manycore processor. In Proceedings of the 15th
IEEE/ACM Symposium on Embedded Systems for Real-Time Multimedia,
pages 51–60. ACM, 2017. 93, 148, 153

[HDN+12] Julien Heulot, Karol Desnos, J-F Nezan, Maxime Pelcat, Mickaël Raulet,
Hervé Yviquel, P-L Lagalaye, and J-C Le Lann. An experimental toolchain
based on high-level dataflow models of computation for heterogeneous mp-
soc. In Design and Architectures for Signal and Image Processing (DASIP),
2012 Conference on, pages 1–2. IEEE, 2012. 46

[HDT+15] Torsten Hoefler, James Dinan, Rajeev Thakur, Brian Barrett, Pavan Bal-
aji, William Gropp, and Keith Underwood. Remote memory access pro-
gramming in mpi-3. ACM Transactions on Parallel Computing, 2(2):9,
2015. 72, 120

https://www.khronos.org/registry/OpenVX/specs/1.1_SC/OpenVX_Specification_SC_1_1.pdf
https://www.khronos.org/registry/OpenVX/specs/1.1_SC/OpenVX_Specification_SC_1_1.pdf

Bibliography 227

[HJB84] Michael Heideman, Don Johnson, and C Burrus. Gauss and the history of
the fast fourier transform. IEEE ASSP Magazine, 1(4):14–21, 1984. 174

[HNEdD15] Julien Hascoet, Jean-Francois Nezan, Andrew Ensor, and Benoît Dupont
de Dinechin. Implementation of a fast fourier transform algorithm onto
a manycore processor. In Design and Architectures for Signal and Image
Processing (DASIP), 2015 Conference on, pages 1–7. IEEE, 2015. 174, 176

[HP11] John L Hennessy and David A Patterson. Computer architecture: a quan-
titative approach. Elsevier, 2011. 59

[HPD+14] Julien Heulot, Maxime Pelcat, Karol Desnos, Jean-Francois Nezan, and
Slaheddine Aridhi. Spider: A synchronous parameterized and interfaced
dataflow-based rtos for multicore dsps. In Education and Research Confer-
ence (EDERC), 2014 6th European Embedded Design in, pages 167–171.
IEEE, 2014. 7, 21, 40, 46, 48, 129, 132, 188

[IHIY14] Khaled Z Ibrahim, Paul H Hargrove, Costin Iancu, and Katherine Yelick.
An evaluation of one-sided and two-sided communication paradigms on
relaxed-ordering interconnect. In Parallel and Distributed Processing Sym-
posium, 2014 IEEE 28th International, pages 1115–1125. IEEE, 2014. 56,
57, 70, 74

[Ins17] Texas Instrument. Multicore DSP-ARM Keystone II System-on-Chip
(SoC), 2017. http://www.ti.com/lit/ds/symlink/66ak2h12.pdf. 14

[Int18] Intel. Intel QuickPath Interconnect, 2018. https://www.

intel.com/content/www/us/en/io/quickpath-technology/

quickpath-technology-general.html. 16

[iW18] National Supercomputing Center in Wuki. Sunway TaihuLight Super-
computer System, 2018. http://www.nsccwx.cn/wxcyw/soft1.php?word=
soft&i=46. 13

[JH16] Benoit Dupont de Dinechin Julien Hascoet. Kalray MPPA Asynchronous
One-Sided Library, 2016. 167

[Joh73] David S Johnson. Near-optimal bin packing algorithms. PhD thesis, Mas-
sachusetts Institute of Technology, 1973. 44

[Kal] Kalray. Deep Learning for High-Performance Embedded Applications. 182

[KCDZ94] Peter J Keleher, Alan L Cox, Sandhya Dwarkadas, and Willy Zwaenepoel.
Treadmarks: Distributed shared memory on standard workstations and
operating systems. In USENIX Winter, volume 1994, pages 23–36, 1994.
16, 18, 24, 25, 28, 57

[KEHS+15] Hee-Seok Kim, Izzat El Hajj, John Stratton, Steven Lumetta, and Wen-Mei
Hwu. Locality-centric thread scheduling for bulk-synchronous program-
ming models on cpu architectures. In Code Generation and Optimization
(CGO), 2015 IEEE/ACM International Symposium on, pages 257–268.
IEEE, 2015. 165

http://www.ti.com/lit/ds/symlink/66ak2h12.pdf
https://www.intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-general.html
https://www.intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-general.html
https://www.intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-general.html
http://www.nsccwx.cn/wxcyw/soft1.php?word=soft&i=46
http://www.nsccwx.cn/wxcyw/soft1.php?word=soft&i=46

228 Bibliography

[KJLV61] John L Kelly Jr, Carol Lochbaum, and Victor A Vyssotsky. A block dia-
gram compiler. Bell System Technical Journal, 40(3):669–676, 1961. 35

[KL95] David J King and John Launchbury. Structuring depth-first search algo-
rithms in haskell. In Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 344–354. ACM,
1995. 43, 149

[KP03] J Nieplocha V Tipparaju M Krishnan and G Santhanaraman DK Panda.
Optimizing mechanisms for latency tolerance in remote memory access
communication on clusters. In IEEE International Conference on Cluster
Computing, page 138. IEEE, 2003. 57

[KS10] Fredrik Berg Kjolstad and Marc Snir. Ghost cell pattern. In Proceedings
of the 2010 Workshop on Parallel Programming Patterns, page 4. ACM,
2010. 144

[KVL91] Bo Kågström and Charles F Van Loan. GEMM-based level-3 BLAS. Cornell
Theory Center, Cornell University, 1991. 114

[Kwo97] Yu-Kwong Kwok. High-performance algorithms for compile-time scheduling
of parallel processors. PhD thesis, 1997. 42, 46, 134

[LG96] Doug Lea and Wolfram Gloger. A memory allocator, 1996. 44

[LH89] Edward A Lee and Soonhoi Ha. Scheduling strategies for mul-
tiprocessor real-time dsp. In Global Telecommunications Confer-
ence and Exhibition’Communications Technology for the 1990s and Be-
yond’(GLOBECOM), 1989. IEEE, pages 1279–1283. IEEE, 1989. 42

[LJW+04] Jiuxing Liu, Weihang Jiang, Pete Wyckoff, Dhabaleswar K Panda, David
Ashton, Darius Buntinas, William Gropp, and Brian Toonen. Design and
implementation of mpich2 over infiniband with rdma support. In Parallel
and Distributed Processing Symposium, 2004. Proceedings. 18th Interna-
tional, page 16. IEEE, 2004. 56, 60, 81

[LM87] Edward A Lee and David G Messerschmitt. Synchronous data flow. Pro-
ceedings of the IEEE, 75(9):1235–1245, 1987. 37, 38, 39, 134, 142

[LMS04] Edya Ladan-Mozes and Nir Shavit. An optimistic approach to lock-free
fifo queues. In International Symposium on Distributed Computing, pages
117–131. Springer, 2004. 63

[LMW99] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Performance es-
timation of embedded software with instruction cache modeling. ACM
Transactions on Design Automation of Electronic Systems (TODAES),
4(3):257–279, 1999. 15

[LNOM08] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym.
Nvidia tesla: A unified graphics and computing architecture. IEEE mi-
cro, 28(2), 2008. 13

[LP95] Edward A Lee and Thomas M Parks. Dataflow process networks. Proceed-
ings of the IEEE, 83(5):773–801, 1995. 35

Bibliography 229

[LPF13] Thierry Lepley, Pierre Paulin, and Eric Flamand. A novel compilation ap-
proach for image processing graphs on a many-core platform with explic-
itly managed memory. In Proceedings of the 2013 International Conference
on Compilers, Architectures and Synthesis for Embedded Systems, page 6.
IEEE Press, 2013. 55

[MB00] Praveen K Murthy and Shuvra S Bhattacharyya. Shared memory imple-
mentations of synchronous dataflow specifications. In Design, Automation
and Test in Europe Conference and Exhibition 2000. Proceedings, pages
404–410. IEEE, 2000. 45

[MCASJ09] John Mellor-Crummey, Laksono Adhianto, William N. Scherer, III, and
Guohua Jin. A New Vision for Coarray Fortran. In Proc. of the Third
Conference on Partitioned Global Address Space Programing Models, PGAS
’09, pages 5:1–5:9, 2009. 53

[MGL+16] Markus Maurer, J Christian Gerdes, Barbara Lenz, Hermann Winner, et al.
Autonomous driving. Springer, 2016. 3

[MHH+85] Kichie Matsuzaki, Seiji Hata, Junichi Hamano, Youichi Kurashima, and
Masahiro Torii. Petri-net structured sequence control language with
grafcet-like graphical expression for programmable controllers. In Proc.
IECON’85, pages 433–438, 1985. 35

[MHTR08] Keijo Mattila, Jari Hyväluoma, Jussi Timonen, and Tuomo Rossi. Com-
parison of implementations of the lattice-Boltzmann method. Computers
& Mathematics with Applications, 55(7):1514–1524, 2008. 170

[Mic02] Maged M Michael. High performance dynamic lock-free hash tables and
list-based sets. In Proceedings of the fourteenth annual ACM symposium
on Parallel algorithms and architectures, pages 73–82. ACM, 2002. 63

[MNW14] James Mistry, Matthew Naylor, and Jim Woodcock. Adapting freertos
for multicores: An experience report. Software: Practice and Experience,
44(9):1129–1154, 2014. 21

[MP92] Henry Massalin and Calton Pu. A lock-free multiprocessor os kernel. ACM
SIGOPS Operating Systems Review, 26(2):108, 1992. 95, 113

[MRPC10] Miguel Masmano, Ismael Ripoll, S Peiró, and A Crespo. Xtratum for
leon3: an open source hypervisor for high integrity systems. In European
Conference on Embedded Real Time Software and Systems. ERTS2, volume
2010, 2010. 24

[MRSD16] Kevin JM Martin, Mostafa Rizk, Martha Johanna Sepulveda, and Jean-
Philippe Diguet. Notifying memories: a case-study on data-flow applica-
tions with noc interfaces implementation. In Proceedings of the 53rd Annual
Design Automation Conference, page 35. ACM, 2016. 58, 77

[MSBCP14] Simon McIntosh-Smith, Michael Boulton, Dan Curran, and James Price.
On the performance portability of structured grid codes on many-core com-
puter architectures. In Supercomputing, pages 53–75. Springer, 2014. 173

230 Bibliography

[NC99] Jarek Nieplocha and Bryan Carpenter. Armci: A portable remote memory
copy library for distributed array libraries and compiler run-time systems.
Parallel and Distributed Processing, pages 533–546, 1999. 53

[new] newlib. https://github.com/bminor/newlib. 96, 98

[NR98] Robert W. Numrich and John Reid. Co-array fortran for parallel program-
ming. SIGPLAN Fortran Forum, 17(2):1–31, August 1998. 53

[NTKP06] Jarek Nieplocha, Vinod Tipparaju, Manojkumar Krishnan, and Dha-
baleswar K Panda. High performance remote memory access communi-
cation: The armci approach. International Journal of High Performance
Computing Applications, 20(2):233–253, 2006. 57, 69

[Nvi15] Nvidia. Nvidia Tegra X1, 2015. http://www.nvidia.com/object/

tegra-x1-processor.html. 14

[Nvi17] Nvidia. Nvidia Drive PX 2, 2017. https://www.nvidia.com/en-us/

self-driving-cars/drive-px/. 14

[Nvi18] Nvidia. GPU-Accelerated Libraries for Computing, 2018. https://

developer.nvidia.com/gpu-accelerated-libraries. 34

[O+89] John K Ousterhout et al. Tcl: An embeddable command language. Citeseer,
1989. 81

[Oga95] Takeshi Ogasawara. An algorithm with constant execution time for dy-
namic storage allocation. In Real-Time Computing Systems and Applica-
tions, 1995. Proceedings., Second International Workshop on, pages 21–25.
IEEE, 1995. 44

[Olo16] Andreas Olofsson. Epiphany-v: A 1024 processor 64-bit RISC system-on-
chip. CoRR, abs/1610.01832, 2016. 6, 51

[Ope13] ARB OpenMP. Openmp 4.0 specification, june 2013, 2013. 34

[Ost95] J.S. Ostroff. Abstraction and composition of discrete real-time systems.
Proc. of CASE, 95:370–380, 1995. 115

[OTK15] Christian Obrecht, Bernard Tourancheau, and Frédéric Kuznik. Perfor-
mance Evaluation of an OpenCL Implementation of the Lattice Boltzmann
Method on the Intel Xeon Phi. Parallel Processing Letters, 25(03):1541001,
2015. 167

[Pap16] Jean-Charles Papin. A Scheduling and Partitioning Model for Stencil-based
Applications on Many-Core Devices. PhD thesis, Université Paris-Saclay,
2016. 42

[PAPN12] Maxime Pelcat, Slaheddine Aridhi, Jonathan Piat, and Jean-François
Nezan. Physical Layer Multi-Core Prototyping: A Dataflow-Based Ap-
proach for LTE eNodeB. Springer, 2012. 115

[PBR09] Jonathan Piat, Shuvra S Bhattacharyya, and Mickaël Raulet. Interface-
based hierarchy for synchronous data-flow graphs. In Signal Processing
Systems, 2009. SiPS 2009. IEEE Workshop on, pages 145–150. IEEE, 2009.
39, 41, 115, 116

http://www.nvidia.com/object/tegra-x1-processor.html
http://www.nvidia.com/object/tegra-x1-processor.html
https://www.nvidia.com/en-us/self-driving-cars/drive-px/
https://www.nvidia.com/en-us/self-driving-cars/drive-px/
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries

Bibliography 231

[PJ09] Katalin Popovici and Ahmed Jerraya. Hardware abstraction layer. In
Hardware-dependent Software, pages 67–94. Springer, 2009. 11, 24

[PMAN09] Maxime Pelcat, Pierrick Menuet, Slaheddine Aridhi, and Jean-François
Nezan. Scalable compile-time scheduler for multi-core architectures. In
Proceedings of the Conference on Design, Automation and Test in Europe,
pages 1552–1555. European Design and Automation Association, 2009. 46

[PNA10] M. Pelcat, J. F. Nezan, and S. Aridhi. Adaptive multicore scheduling for
the LTE uplink. In NASA/ESA Conference on Adaptive Hardware and
Systems, pages 36–43, 2010. 42

[Ras87] Richard F Rashid. Designs for parallel architectures. Unix Review, 5(4):36–
43, 1987. 16

[RoC15] Mellanox, roce vs. iwarp competitive analysis, white paper, August 2015.
52

[Rus78] Richard M Russell. The cray-1 computer system. Communications of the
ACM, 21(1):63–72, 1978. 12, 13

[RVD+14] Erik Rainey, Jesse Villarreal, Goksel Dedeoglu, Kari Pulli, Thierry Lepley,
and Frank Brill. Addressing system-level optimization with openvx graphs.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 644–649, 2014. 144

[SAS15] Khushboo Singh, Mahfooz Alam, and Sushil Kumar Sharma. A survey of
static scheduling algorithm for distributed computing system. International
Journal of Computer Applications, 129(2), 2015. 43

[SEU+15] Selma Saidi, Rolf Ernst, Sascha Uhrig, Henrik Theiling, and Benoît Dupont
de Dinechin. The shift to multicores in real-time and safety-critical sys-
tems. In 2015 International Conference on Hardware/Software Codesign
and System Synthesis, CODES+ISSS 2015, Amsterdam, Netherlands, Oc-
tober 4-9, 2015, pages 220–229, 2015. 17, 51

[SG12] Bogdan Spinean and Georgi Gaydadjiev. Implementation study of fft on
multi-lane vector processors. In Digital System Design (DSD), 2012 15th
Euromicro Conference on, pages 815–822. IEEE, 2012. 175

[SGB06] Sander Stuijk, Marc Geilen, and Twan Basten. Exploring trade-offs in
buffer requirements and throughput constraints for synchronous dataflow
graphs. In Design Automation Conference, 2006 43rd ACM/IEEE, pages
899–904. IEEE, 2006. 44

[Sha03] Tom Shanley. Infiniband Network Architecture. Addison-Wesley Profes-
sional, 2003. 69, 74

[SHW11] Daniel J Sorin, Mark D Hill, and David A Wood. A primer on memory
consistency and cache coherence. Synthesis Lectures on Computer Archi-
tecture, 6(3):1–212, 2011. 22, 58, 59, 60

232 Bibliography

[SJA+13] Eric Stotzer, Ajay Jayaraj, Murtaza Ali, Arnon Friedmann, Gaurav Mitra,
Alistair P Rendell, and Ian Lintault. Openmp on the low-power ti keystone
ii arm/dsp system-on-chip. In International Workshop on OpenMP, pages
114–127. Springer, 2013. 124

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1–9, 2015.
183

[SLwRMSD18] Andrew Oram Sandra Loosemore with Richard M. Stallman, Roland Mc-
Grath and Ulrich Drepper. The GNU C Library Reference Manual,
2018. https://www.gnu.org/software/libc/manual/pdf/libc.pdf. 21,
29, 44, 61

[SSKH13] Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jörg Henkel.
Mapping on multi/many-core systems: survey of current and emerging
trends. In Proceedings of the 50th Annual Design Automation Conference,
page 1. ACM, 2013. 47

[Suc01] Sauro Succi. The lattice Boltzmann equation: for fluid dynamics and be-
yond. Oxford university press, 2001. 166

[Sut05] Herb Sutter. The free lunch is over: A fundamental turn toward concur-
rency in software. Dr. Dobb’s journal, 30(3):202–210, 2005. 23

[Tar72] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM
journal on computing, 1(2):146–160, 1972. 43

[TBG+13] Stavros Tripakis, Dai Bui, Marc Geilen, Bert Rodiers, and Edward A Lee.
Compositionality in synchronous data flow: Modular code generation from
hierarchical sdf graphs. ACM Transactions on Embedded Computing Sys-
tems (TECS), 12(3):83, 2013. 38, 39

[TGB+06] Bart D Theelen, Marc CW Geilen, Twan Basten, Jeroen PM Voeten, Ste-
fan Valentin Gheorghita, and Sander Stuijk. A scenario-aware data flow
model for combined long-run average and worst-case performance analysis.
In Formal Methods and Models for Co-Design, 2006. MEMOCODE’06.
Proceedings. Fourth ACM and IEEE International Conference on, pages
185–194. IEEE, 2006. 40

[THB14] Giuseppe Tagliavini, Germain Haugou, and Luca Benini. Optimizing mem-
ory bandwidth in openvx graph execution on embedded many-core ac-
celerators. In Design and Architectures for Signal and Image Processing
(DASIP), 2014 Conference on, pages 1–8. IEEE, 2014. 144

[THMB15] Giuseppe Tagliavini, Germain Haugou, Andrea Marongiu, and Luca
Benini. Adrenaline: an openvx environment to optimize embedded vision
applications on many-core accelerators. In Embedded Multicore/Many-core
Systems-on-Chip (MCSoC), 2015 IEEE 9th International Symposium on,
pages 289–296. IEEE, 2015. 144

https://www.gnu.org/software/libc/manual/pdf/libc.pdf

Bibliography 233

[TIC13] Texas Instruments: Tms320c6678, 2013. ".http://www.ti.com/product/
tms320c6678. 46

[Tor97] Linus Torvalds. Linux: a portable operating system. Master’s thesis,
University of Helsinki, dept. of Computing Science, 1997. 21

[TRBD01] Linus Torvalds and David Read By-Diamond. Just for fun: The story of
an accidental revolutionary. Harper Audio, 2001. 21

[VCHP07] Karthikeyan Vaidyanathan, Lei Chai, Wei Huang, and Dhabaleswar K
Panda. Efficient asynchronous memory copy operations on multi-core sys-
tems and i/oat. In Cluster Computing, 2007 IEEE International Confer-
ence on, pages 159–168. IEEE, 2007. 57

[VEMR14] Anish Varghese, Bob Edwards, Gaurav Mitra, and Alistair P Rendell. Pro-
gramming the adapteva epiphany 64-core network-on-chip coprocessor. In
Parallel & Distributed Processing Symposium Workshops (IPDPSW), 2014
IEEE International, pages 984–992. IEEE, 2014. 51

[VWM04] Manish Verma, Lars Wehmeyer, and Peter Marwedel. Dynamic overlay
of scratchpad memory for energy minimization. In Proceedings of the 2nd
IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis, pages 104–109. ACM, 2004. 59

[VZT+18] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions. arXiv preprint arXiv
1802.04730, 2018. 144

[VZVDG15] Field G Van Zee and Robert A Van De Geijn. Blis: A framework for
rapidly instantiating blas functionality. ACM Transactions on Mathemat-
ical Software (TOMS), 41(3):14, 2015. 93, 164

[Win56] Omar Wing. Ladder network analysis by signal-flow graph-application
to analog computer programming. IRE Transactions on Circuit Theory,
3(4):289–294, 1956. 35

[WJNB95] Paul R Wilson, Mark S Johnstone, Michael Neely, and David Boles. Dy-
namic storage allocation: A survey and critical review. In Memory Man-
agement, pages 1–116. Springer, 1995. 22

[WM95] Wm A Wulf and Sally A McKee. Hitting the memory wall: implications
of the obvious. ACM SIGARCH computer architecture news, 23(1):20–24,
1995. 21

[WM14] Mohamed Wahib and Naoya Maruyama. Scalable kernel fusion for memory-
bound gpu applications. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages
191–202. IEEE Press, 2014. 148

[Wol02] Wayne Wolf. What is embedded computing? Computer, 35(1):136–137,
2002. 3

".http://www.ti.com/product/tms320c6678
".http://www.ti.com/product/tms320c6678

234 Bibliography

[WSTaM12] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey.
Openacc—first experiences with real-world applications. In European Con-
ference on Parallel Processing, pages 859–870. Springer, 2012. 34, 145

[WWP09] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an
insightful visual performance model for multicore architectures. Commu-
nications of the ACM, 52(4):65–76, 2009. 4, 34, 127, 135, 141, 144, 153,
154, 158, 161, 164, 172

[ZK06] Christian Zinner and Wilfried Kubinger. Ros-dma: a dma double buffering
method for embedded image processing with resource optimized slicing. In
Real-Time and Embedded Technology and Applications Symposium, 2006.
Proceedings of the 12th IEEE, pages 361–372. IEEE, 2006. 107

	Acknowledgments
	1 Introduction
	1.1 General Context
	1.2 Scope of the Thesis
	1.3 Contributions
	1.4 Outline of this Thesis

	I Background
	2 Embedded Parallel Systems
	2.1 Embedded Parallel Architectures
	2.1.1 Multiple Level of Parallelisms
	2.1.2 Heterogeneous Parallel Systems

	2.2 Computer Memory Systems
	2.2.1 Memory Hierarchy
	2.2.2 Memory Architectures

	2.3 MPPA® Manycore Processor
	2.3.1 Architecture Overview
	2.3.2 Computing Resources
	2.3.3 Communications

	2.4 From Parallel Architectures to Software
	2.4.1 Operating Systems
	2.4.2 Classical Software Memory Layout
	2.4.3 Software Management of the Virtual Memory
	2.4.4 Software Concurrency
	2.4.5 Available Software for the MPPA®

	2.5 Conclusion

	3 Parallel Programming Models
	3.1 Task Programming Models
	3.1.1 Processes & Threads
	3.1.2 POSIX Threads
	3.1.3 OpenMP Multi-threading

	3.2 Acceleration Programming Models
	3.2.1 Execution Model
	3.2.2 OpenCL
	3.2.3 OpenACC & OpenMP 4.0 with Modern Compilers

	3.3 Dataflow Models
	3.3.1 Introduction
	3.3.2 Dataflow Overview, the Kahn Process Network
	3.3.3 Dataflow Process Network
	3.3.4 Static Dataflow Models
	3.3.5 Dynamic Dataflow Models
	3.3.6 Parametrized Interfaced-based sdf

	3.4 Graph Scheduling and Memory Allocation
	3.4.1 Scheduling Methods for sdf Graphs
	3.4.2 Memory Allocation

	3.5 Rapid Prototyping and Existing Dataflow-based Tools
	3.5.1 PREESM: an Open Source Rapid Prototyping Framework
	3.5.2 SPIDER: an Embedded Reconfigurable Dataflow Runtime
	3.5.3 Other Tools Based on Dataflow Programming Models or Languages

	3.6 Conclusion

	4 Communication Protocols & Memory Consistency
	4.1 State-of-the-Art of Communication Technologies for HPC
	4.1.1 hpc Hardware Interconnects
	4.1.2 hpc Software Programming
	4.1.3 ``Asynchronous Copy'' Primitives of OpenCL

	4.2 Two-Sided Communications
	4.2.1 Rendezvous
	4.2.2 Synchronous-Asynchronous Send/Receive Protocol
	4.2.3 Problem of Strict Matching

	4.3 One-Sided Communications
	4.3.1 Load/Store
	4.3.2 Put/Get Remote Direct Memory Accesses (RDMA)
	4.3.3 Remote Atomic Operations

	4.4 Memory Consistency & Coherence
	4.4.1 Definitions
	4.4.2 Memory Consistency Models
	4.4.3 Memory Fences

	4.5 Managing Current Memory Accesses for the Kalray VLIW Core
	4.5.1 Cache of the k1 VLIW Core
	4.5.2 Streaming Memory Accesses
	4.5.3 Managing the Coherency & Consistency of the k1 vliw Core
	4.5.4 Atomic Instructions

	4.6 Conclusion

	II Contributions
	5 Fundamental Mechanisms for Communications and Synchronizations in Distributed Computing
	5.1 Challenges
	5.2 Design of Distributed Protocols of Communications and Synchronizations for the Programmer
	5.2.1 Memory Segments
	5.2.2 One-sided
	5.2.3 Two-sided
	5.2.4 Restructuring: Data Layout

	5.3 Runtime Implementation of the Distributed Communications and Synchronizations
	5.3.1 Memory Segments
	5.3.2 One-sided: Asynchronous Remote Atomic Operation & rdma Put & Get Algorithm
	5.3.3 Event Completion
	5.3.4 One-sided: rdma and Remote Atomic Arbiters
	5.3.5 Support of Eager Messages with Remote Queues
	5.3.6 Data Restructuring Support on rdma Put/Get

	5.4 Use, Resource Allocation & Configurations
	5.4.1 Resources Used for Enabling One-sided Operations
	5.4.2 Two-sided operations
	5.4.3 Resources Necessary for aos in a Compute Cluster

	5.5 Performance, Results: Latency & Throughput
	5.5.1 Memory Throughput
	5.5.2 Memory Latency
	5.5.3 Network-on-Chip Scalability
	5.5.4 Remote Atomics Performance
	5.5.5 Remote Queue Throughput

	5.6 Advanced Asynchronous One-Sided Support
	5.6.1 Support in the Linux Kernel
	5.6.2 Extensions and Support of the Standard async_work_group_copy() in the Kalray OpenCL

	5.7 Conclusion

	6 A Highly Efficient Multi-threading Runtime
	6.1 Controlling and Enabling Threads for a Non-Coherent Multi-core cpu
	6.2 Implementation of the New Multi-Threading Runtime
	6.2.1 Logical Thread States
	6.2.2 Dealing with System False Positives and Masked Interrupts
	6.2.3 Thread Control

	6.3 Synchronization Primitives
	6.4 Cooperative Scheduler
	6.5 Using nmrt to Enable OpenMP Multi-Threading
	6.5.1 Configuration & Architecture
	6.5.2 Internal Contributions to gcc libgomp

	6.6 Auto-threading: Automatic Thread Scheduling on RDMA Completion
	6.6.1 Auto-threading: Design and Implementation

	6.7 Results, Comparisons and Discussions
	6.7.1 Benchmarks

	6.8 Conclusion

	7 Software Synthesis based on a Hierarchical Static Dataflow Model for a Clustered Manycore Processor
	7.1 Hierarchy of IBSDF to Target a Hierarchical Manycore Processor
	7.1.1 A Hierarchical Dataflow Application
	7.1.2 Strategy: A Trade-off between Levels of Hierarchy

	7.2 Exploiting Efficiently Two Levels of Parallelism
	7.2.1 High-Level Hierarchy (Inter-Cluster)
	7.2.2 Low-Level Hierarchy (Intra-Cluster)
	7.2.3 Automatic Generation of Explicit Communications between Clusters

	7.3 Automatic Clustering of IBSDF Graph
	7.3.1 Algorithm: Design and Implementation
	7.3.2 Clustering Rules, Heuristics and Loop Modeling

	7.4 Experimental Evaluation
	7.4.1 Results and Comparisons
	7.4.2 Comparisons with Flat IBSDF Mapping

	7.5 Conclusion

	8 Porting an Embedded Runtime for Executing Reconfigurable Dataflow onto a Clustered Manycore Processor
	8.1 Architecture of the Distributed Dataflow Runtime
	8.1.1 Insight of the Global mppa® Implementation
	8.1.2 Structure of the Original Synchronization Protocol
	8.1.3 Implementation of a Distributed Synchronization Protocol

	8.2 Optimized Heuristic-based Scheduling
	8.2.1 Prohibitive Complexity and Footprint
	8.2.2 Lightweight Scheduling, Simpler is Faster

	8.3 Managing the Distributed Memory at Runtime
	8.3.1 Distributed Local Memories instead of Caches
	8.3.2 Thread-safe Local Memory Allocator

	8.4 Results and Comparisons
	8.4.1 Memory Footprint of LRT
	8.4.2 Performance, and SPIDER Overhead

	8.5 Conclusion

	9 A Distributed OpenVX Framework for a Clustered Manycore Processor
	9.1 Requirements and Positioning
	9.1.1 OpenVX Standard and Example
	9.1.2 Third Party Implementations & Optimizations
	9.1.3 OpenVX and OpenCL

	9.2 A Low-Level Distributed Offloading Engine
	9.2.1 Architecture of the Offloading Engine
	9.2.2 Key Features of the Offloading Engine
	9.2.3 Integration and Usage in the OpenVX Framework

	9.3 Online Optimizations: vxVerifyGraph
	9.3.1 Optimization Workflow
	9.3.2 Automatic Kernel Fusion Optimizations
	9.3.3 Distributed Static Memory Allocation

	9.4 Explicit RDMA-based Communication Engines
	9.4.1 A Tiling & Fusion rdma Engine
	9.4.2 Tiling & Fusion Optimizations

	9.5 Complex Distribution and Memory Access Patterns
	9.5.1 Dealing with Irregular Memory Accesses
	9.5.2 Implementation of Distributed Reduction and Dynamic List Update

	9.6 Results & Discussions
	9.6.1 Performances Analysis
	9.6.2 Benefits of Asynchronous rdma Prefetching
	9.6.3 Automatic Kernel Fusion
	9.6.4 Super-linear Speedup at Multi-Cluster Level
	9.6.5 Irregular Memory Accesses Performance
	9.6.6 Performance of the Harris Feature Point Detection

	9.7 Conclusion

	10 Applications and Experimental Results for a Clustered Manycore Processor
	10.1 Macro Pipeline for the Computation of a 3D Stencil
	10.1.1 lbm Algorithm and Background
	10.1.2 Implementation State-of-the-Art
	10.1.3 Optimizing a 3D LBM Stencil Application on Top of aos
	10.1.4 Results and Discussions

	10.2 A Low-Latency Distributed Fast Fourier Transform
	10.2.1 Fast Fourier Transform
	10.2.2 Computing Techniques of Fast Fourier Transform
	10.2.3 Distributed Fast Fourier Transform Implementation
	10.2.4 Results & Discussions

	10.3 Distributed Runtime for CNN Inference
	10.3.1 General Architecture
	10.3.2 CNN Runtime for a Clustered Manycore
	10.3.3 Results & Comparisons

	10.4 Conclusion

	11 Conclusions
	11.1 Summary of our Contributions
	11.2 Future work
	11.2.1 Fundamental Mechanisms for Programming Manycores: Asynchronous One-Sided (AOS)
	11.2.2 Standard Optimized Runtimes for Manycores
	11.2.3 Parallelization Techniques

	11.3 Final Conclusion

	A French Summary
	A.1 Systèmes parallèles embarqués
	A.1.1 Le parallélisme et le processeur MPPA® de Kalray
	A.1.2 Mémoires et protocoles de communication

	A.2 Les modèles de programmation parallèle
	A.2.1 Interfaces de programmation d'applications
	A.2.2 Modèles de flux de données

	A.3 Environnement d'exécution bas niveau pour architectures massivement parallèles
	A.3.1 Environnement distribué pour la communication asynchrone unilatérale
	A.3.2 Environnement d'exécution multitâche symétrique performant: sans verrou et transactionnel

	A.4 Exécution d'applications de flux de données pour architectures massivement parallèles
	A.4.1 Stratégie pour ordonnancer efficacement un modèle statique de flux de données hiérarchiques
	A.4.2 Portage et adaptation d'un environnement d'exécution embarqué pour placer et ordonnancer un modèle flux de données paramétré et dynamique

	A.5 Un environnement standard distribué pour la vision et applications sur architectures massivement parallèles
	A.5.1 Environnement embarqué distribué pour l'exécution d'applications OpenVX à basse latence
	A.5.2 Applications et environnements embarqués distribués à la main

	A.6 Conclusion

	List of Figures
	List of Tables
	Glossary
	Personal Publications
	Bibliography

