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Computer science is a wide area, and it has changed our ways of living. From the invention of the transistor in the fifties to the latest released computer games, self-driving cars, and smart homes, the world as we know is now dependent on computer systems. Ever since the emergence of computer science and computer architecture, the need to compute has always been growing. The computing requirements of applications increase as the services provided by them make our lives easier, smarter and faster in diverse ways. In this Ph.D., the focus is on embedded systems. In general, an embedded system is everything that is not a general-purpose computer in the computer field. Embedded systems are found in all electronic systems or parts of the electronic systems. These new intelligent systems are found everywhere. For instance, typical embedded systems are smartphones, fitness wristband, Global Positioning Systems (GPSs), MP3 digital audio players, dishwashers, Television (TV) systems and almost everything powered by electricity requiring intelligence to provide a human being with a specific service. Today, thanks to the high-density integration of transistors (5 nanometers are announced by 2020), embedded systems can execute many complex tasks and with high energy efficiency. Thus, embedded systems are now everywhere and unavoidable, and they have a significant impact on our lives.

Embedded systems are found in several new application domains like the Internet of Things (IoT), big data, Advanced Driver-Assistance System (ADAS) [MGL + 16] and embedded vision and video. Recent examples of complex embedded computing systems can also be found in the aerospace area where embedded electronic devices must meet high expectations regarding fault tolerance, robustness, redundancy and system isolation for application safety. Companies like Airbus [air18] spend years designing, implementing and testing in real-life conditions embedded systems before putting them into service. This is due to the application specificities, especially in complex and constraint environments.

As said in paper [START_REF] Wolf | What is embedded computing?[END_REF], "an embedded system is a computer system with dedicated functions within a larger mechanical or electrical system, often with real-time constraints." Therefore, an embedded system is designed to fit a specific application in a constrained environment. Constraints are usually both hardware and software. For instance, constraints of embedded systems are generally the power consumption, timing response latency, time Introduction computing determinism, computing performance, robustness, cost, area and fault tolerance. Some of the listed constraints are antagonists. Indeed optimizing the latency of an application usually ends up in reducing its throughput. Or even, increasing the performance of an application leads to increasing the power consumption of the final system, as it goes faster; therefore, it consumes more energy. Finally, increasing performance often means increasing the cost of the application. Embedded systems are known to be complicated to design, implement and verify that they satisfy the required features with the related constraints. That is why the hardware needs to be leveraged by the software to make the application run efficiently in a constraint environment.

In 1965, a now-famous paper by Gordon Moore observed that every two years the number of transistors in a densely integrated circuit doubles. In addition to this Moore's law, computer manufacturers benefited from the Dennard scaling of MOSFET technology, which states that as transistors get smaller and faster, their power density stays constant so that the power use stays in proportion with the area. As a result, manufacturers continuously increased the operating frequency of integrated processors from the old Intel ® 4004 ® processing clock gated at 740 kHz in 1971 to the 2004 high-end Intel ® Pentium ® -4 clock gated at 4 GHz. The Dennard scaling broke down around 2004, corresponding to the 65nm CMOS technology nodes. Since then, semiconductor manufacturers have lost the ability to increase clock frequencies significantly without hitting a power wall. Since 2004, computer architects design parallel architectures to improve the computational capabilities without hitting this power wall.

Before 2004, computer architects already designed some parallel architectures. An example of them is the Texas Instruments (TI) Multiprocessor System-on-Chip (MPSoC), called C80 [START_REF] Dolle | A cost-effective risc/dsp microprocessor for embedded systems[END_REF], which integrates 4 Digital Signal Processor (DSP) cores with a Reduced Instruction Set Computer (RISC) core, designed to target energy-efficient computing for embedded systems. But this MPSoC could only be programmed by TI's experts, showing that multi-core architectures are more challenging to use. Multi-core software is indeed very different from single-core software due to concurrent executions, the sharing of resources and many other issues that will be discussed in this Ph.D. dissertation.

Increasing the number of cores using shared memory enables better performances up to a certain point (around up to tens of cores). At this point, the performances are limited by concurrent accesses to a single memory resource (shared memory). Nowadays, a new generation of architectures has been designed, called clustered architectures. These new architectures feature distributed memories to tackle the problem of shared memory. These new architectures are even more complicated to be programmed, involving huge software development costs.

The memory bandwidth is a significant performance factor. Most of the time, the main memory bandwidth (bandwidth between a processor and an external memory) is the bottleneck of high-performance applications onto parallel architectures. The main memory bandwidth is lower compared to the available internal on-chip memory bandwidth [START_REF] Williams | Roofline: an insightful visual performance model for multicore architectures[END_REF]. When the number of cores is increasing inside a processor, memory bandwidths often become the bottleneck of the application. In this case, the cores are not fed with data as fast as they can process them. The purpose of the memory hierarchy is to reduce the average memory latency access time and to reduce the memory traffic between memories. Avoiding the memory bandwidth wall requires temporal and spatial data locality to use the on-chip memory efficiently. It is crucial to handle such a bottleneck early in optimization stages, to get competitive performances on this new generation of clustered manycores.

Introduction

Outline of this Thesis

This thesis is organized into two main parts. Part I presents the background that introduces the state-of-the-art of our research area and the diverse problems tackled in this thesis. Part II gives and evaluates all contributions proposed in this thesis, that are designed and elaborated for clustered manycore processors.

Chapter 2 defines embedded parallel systems for high-performance computing. The main aspects of the optimization of the performance of an application are given and explained. This chapter also details and presents the MPPA ® manycore architecture that is the target of this thesis. Chapter 3 lists and explains standard programming models to program and abstract the deployment of parallel applications onto MPSoCs. This chapter adds and formally explains diverse dataflow programming models. Chapter 4 provides the state-of-the-art of communication technologies for parallel and distributed computer system architectures. Moreover, it provides keys to understand and handle the memory consistency and coherency of parallel architectures with complex memory models.

Chapter 5 explains and describes in details the design of an asynchronous communication library over the Kalray's Network on Chip (NoC) of the MPPA ® processor. This contribution is the pedestal of all next chapters of contribution presented in this thesis, and it is designed for high-throughput and low-latency execution. Chapter 6 provides a multi-threading runtime to enable threads on a Symmetric Multi-Processor system (SMP) machine at low-level. This multi-threading runtime is also the pedestal of most further chapters as it allows for efficient fine-grained multi-threading in the Compute Cluster (CC) of the MPPA ® processor. Chapter 7 presents a strategy to target and generate efficient code for clustered manycore architectures using a dataflow model as an application input representation. The chapter explains the technique that exploits a hierarchical dataflow model to enable efficient usage of several hierarchical levels of parallelisms of the targeted machine. Chapter 8 introduces an adaptation of an embedded reconfigurable dataflow runtime for the MPPA ® processor. The embedded runtime operates on the platform in a standalone way. Chapter 9 introduces the OpenVX standard, designed for efficient computer vision and Convolutional Neural Network (CNN) inference applications with embedded constraints for low-power MPSoC. This chapter proposes an implementation of an OpenVX framework for the MPPA ® processor. The framework is built to target the low-latency execution of OpenVX applications. The optimization of the execution latency provides shorter time reaction, that is important for an embedded system running in a car for instance. Chapter 10 presents the implementation and optimization of diverse applications onto the MPPA ® processor. Each application is explained and detailed, as well as their parallelization techniques to exploit the processing capabilities of a highly parallel machine. Chapter 11 concludes the work of this thesis and presents future contributions and researches to make the programming of clustered manycore architectures easier and with performance.

Part I Background 12 Embedded Parallel Systems implementation. Furthermore, as applications are becoming more and more complex, embedded systems require more and more heterogeneous computing capabilities to handle different kinds of processing. Thenceforth, complex embedded systems are confronted with a new parallel computing problem that is: the system heterogeneity.

At the software application level, many programming models exist, due to the diverse hardware architectures, their evolutions, the various programming environments provided by Multiprocessor System-on-Chip (MPSoC) vendors, and new ideas of researchers trying to simplify the programming of MPSoCs for application engineers. Programming these new architectures is a real challenge for all computer science scientists who need to exploit the hardware parallelism at a high-performance to cope with the ever-increasing computing workload of modern applications. A lot of standard and non-standard programming models are currently proposed, showing that it is an unsolved problem. Some of these programming models are listed and explained in Chapter 3.

In this thesis, we provide new runtimes and methods to ease the application development on a new generation of clustered manycores. To do that, we contribute to the firmwares, the OS, and the application layers targeting the Kalray MPPA ® processor.

General notions on embedded parallel architectures are presented in Section 2.1. The memory architectures and the memory hierarchy are introduced in Section 2.2. The massively parallel Kalray MPPA ® architecture is described in details in Section 2.3. Finally, we explain how the software in Section 2.4 uses these hardware platforms.

Embedded Parallel Architectures

Embedded parallel architectures are usually low-power and not made for general purpose computing as seen previously. As applications need more and more computing power, parallelism is required since we can no longer increase the computing frequency of Processing Elements (PEs) composing the (embedded) systems. That is why modern computing systems are parallel and heterogeneous.

Multiple Level of Parallelisms

Several types of hardware parallelism exist. The Flynn [Fly72] taxonomy describes and classifies the level of concurrency of computer systems. Only the most important categories are explained in this section, and each type is illustrated in figure 2.2. The idea is to classify computing architectures by their ability to manipulate concurrently (or not) the data and instructions.

The simplest is the Single Instruction, Single Data (SISD) which takes a single input with a single instruction and produces a single output, it is also known as a non-vectorial scalar Central Processing Unit (CPU).

The Single Instruction, Multiple Data (SIMD) instruction operates onto a vector of register(s) and perform the same instruction onto multiple data inputs providing numerous outputs in a single CPU clock cycle [START_REF] Richard | The cray-1 computer system[END_REF]. The SIMD parallelism method is part of the data parallel parallelism. Nowadays almost all CPUs, Digital Signal Processors (DSPs), Graphics Processing Units (GPUs) and hardware arithmetic unit in Field-Programmable Gate Arrays (FPGAs) use the SIMD level of parallelism. SIMD is also known as vector processing.

The Single Instruction, Multiple Threads (SIMT) (not part of the Flynn taxonomy as it is more recent), proposed by the Nvidia GPUs' hardware manufacturer for the first time in 2006, introduces the concept of executing the same instruction concurrently onto multiple threads. It is an execution model where SIMD is combined with multi-threading and implemented in the Nvidia Tesla GPU presented in [START_REF] Lindholm | Nvidia tesla: A unified graphics and computing architecture[END_REF]. SIMT is very efficient onto regular code but leads to poor performance when control flows diverge for instance with test statements. However, most recent enhancements of GPUs architectures like Volta [START_REF]Inside Volta: The World's Most Advanced Data Center GPU[END_REF], introduced in 2017, optimizes the execution of flow-divergence by using independent thread scheduling for interleaving such code statements.

The Multiple Instructions, Multiple Data (MIMD) is applied to most CPU-based multicore architectures. MIMD features several CPU for executing different instructions onto different input and output data concurrently. MIMD is also found in Very Long Instruction Word (VLIW) core at registers and instructions level. VLIW cores can execute multiple SIMD instructions onto multiple different inputs and outputs in a single clock cycle. Today MIMD defines modern multi/many core architectures where several levels of parallelisms can be found like vectorization and multi-thread execution that can be seen in Figure 2.2. Parallel computing is old; in 1975, Cray Research released the Cray-1 [START_REF] Richard | The cray-1 computer system[END_REF] parallel supercomputer. The Cray-1 made history of supercomputers as it was the first one to implement vector processing. At this time, Cray-1 was already providing 160 megaFLOPS (Floating Point Operations per Second). Today, MPSoCs implement parallelism at several levels: Instruction-Level Parallelism (ILP), thread-level and cluster-level also known as Non-Uniform Memory Access (NUMA) node. In March 2018, the world fastest supercomputer was the [iW18]. It delivers a measured performance onto LINPACK [DLP03] benchmarks of 93.01 petaFLOPS. This supercomputer exploits SIMD, thread-level, and cluster-level of parallelism.

Heterogeneous Parallel Systems

Embedded systems are becoming more and more involved with a lot of dedicated functions with aggressive performance constraints. Thus, such systems require heterogeneous computing to satisfy all requirements of the embedded computer system. Heterogeneity is defined by having different computing resources in the same systems. For example, a typical heterogeneous system regroups CPU cores, DSP cores, GPU cores, and specialized tightly coupled co-processors in a single chip.

Parallel heterogeneous computer systems are complicated to program, as the same system integrates several computing machines, programming constraints, programming models and with different performance bottlenecks. Moreover, they all need to be orches-We list and describe the typical latency and the purpose of each of these memory levels:

Register is also known as the core register file. Registers have a very low latency access time, within a machine clock cycle. Registers are used for internal core computations. They are fed by the system memory, usually from cache or local memories via Load / Store instructions.

Caches typically have several levels of hierarchy. Caches offer transparent memory access to the main memory. Typically, on cache hit, the level 1 is 1 ns and the level 2 is 4 ns. However, the Worst-Case Execution Time (WCET) of caches is challenging to be bound, in particular, in multi-core architectures, when the data coherence needs to be maintained among cores with performance [START_REF] Yau-Tsun Steven | Performance estimation of embedded software with instruction cache modeling[END_REF].

Local Memory or Tightly Coupled Memory (TCM) is an on-chip memory with its own address space. Deterministic response time can be achieved when using local memories. A typical memory access latency is between 1 ns and 4 ns usually depending on the local memory hierarchy. Unlike caches, local memories require explicit software management of data movements. Therefore, the resulting software implementations are more challenging and usually not portable to other architectures.

RAM is a volatile external memory. It has a high latency which is at least 100 ns depending on the memory load. The purpose of lower memory hierarchy levels is to reduce as much as possible core stalls when accessing this memory assuming that the running applications have enough data locality. Examples of RAM technologies are the Double Data Rate (DDR), the Graphical Double Data Rate (GDDR), and the High Bandwidth Memory (HBM) technologies.

Other memories exist, such as physical data storage devices but also remote data storage devices that can be accessed over a network. Remote data storage have a huge latency. A round-trip is in the order of 100 µs.

Memory Architectures

As seen in 2.2.1, the memory hierarchy is what is seen by a core in a memory system, whereas the memory architecture constitutes the entire memory system including how a set of cores are connected to the memories. The memory architecture of a computer system is composed of caches, local, and RAMs that are interconnected with each other on modern systems. The simplest memory architectures are composed of a single memory with a single core. Today most of them are ultra-low power embedded systems implementing a Micro-controller Unit (MCU). In this section, parallel computer memory architectures are introduced. Two principal memory models are presented, the shared memory and distributed memory models. The shared memory model is a unique memory, implementing several memory banks for performance, where cores and peripherals share this memory resource. The distributed memory model implements several memories dispatched over a network. Although distributed memory architectures are more complicated to program efficiently, the motivation for distributed memory is to let massively parallel applications scale onto highly concurrent computer systems.

Embedded Parallel Systems

Uniform Memory Access (UMA) architectures are based on the shared memory model where all cores see a single physical global address space. UMA is used in Symmetric Multi-Processor system (SMP) which is the most used parallel programming model (see Chapter 3 for more details). As several cores can access a unique memory, this memory usually has a full cross-bar to sustain the number of memory transaction requested by cores onto the different memory banks. However, when the number of cores increases, UMA architectures tend to provide poor performance because of the sharing of the memory and memory arbiters, leading to memory access conflicts.

Non-Uniform Memory Access (NUMA) architectures are distributed memory architectures with transparent memory accesses. Transparent memory access means that cores can access the global address space through their cache memory hierarchy. NUMA architectures are easier to program than distributed memory architectures as the data communication between cores is entirely hidden by the diverse levels of data caches which performs the communication automatically. Thus all data communications are done by Load / Store, which poorly scales onto massively parallel architectures as the user sees an SMP architecture where processors have very different memory latency access time. It is called the NUMA effect. Moreover, NUMA computer systems usually implement cache coherence, called CC-NUMA architectures, which generates huge coherence traffic when data updates occur (data sharing). As such, using NUMA computer systems efficiently requires to place the accessed memory buffers as close as possible to the computing resources, the cores.

Distributed Memory architectures are composed of an array of memories interconnected with a network. Memories composing this array have computing resources connected to them like cores or custom hardware accelerators. The network can be either a Network on Chip (NoC), an Ethernet network or any custom processor interconnects like the proprietary Intel QuickPath Interconnect (QPI) [Int18]. Such chips are also known as No Remote Memory Access (NORMA) architectures if no hardware or software emulated cache system [START_REF] Peter | Treadmarks: Distributed shared memory on standard workstations and operating systems[END_REF] is provided for transparent global memory accesses. Therefore, the programming of these architectures is challenging, and extremely complicated [Ras87] as all data movements must be explicit message-passing initiated by software. However, NORMA architectures make scalability possible when designing highly massively parallel systems. Indeed, computing resources are isolated from each other, making conflicts to access shared resources almost null; thus, allowing scaling.

Heterogeneous Distributed Shared Memory architectures include previously described memory architectures which are the UMA, NUMA and NORMA architectures but exposed at different hierarchical levels in the computer system. The UMA model is exposed at the multi-core CPU level; usually, less than 16 physical cores (nowadays), implementing a shared data cache for transparent memory accesses and/or a single or several (shared) local memories. The NUMA model is exposed at multi-cluster (a cluster is a multi-core CPU) level, but the global address space is unified. Also, most of the time, a cache coherence protocol is provided at multi-cluster level. However, as very large NUMA systems scale poorly because of the Load / Store protocol (see Section 4.3.1), the NORMA model is then used with explicit communications. Such hierarchical memory models are more complex to be programmed because both the hardware and the software are heterogeneous. The hardware heterogeneity is due to the exposition of the shared and distributed memory model. The software heterogeneity is due to the use of the SMP model at multi-core CPU called the local shared memory which is an on-chip high-bandwidth and low-latency local memory. The third level is the main global memory which is a DDR3 technology. The second level of memory of MPPA ® can be configured, either to cache the third level of memory (software emulation of L2 cache using the Memory Management Unit (MMU) inspired from [START_REF] Peter | Treadmarks: Distributed shared memory on standard workstations and operating systems[END_REF], like in conventional cache-based systems), or by default as a local memory where the buffers are moved explicitly by software configured DMAs. The third level can also be accessed by IO DMA interfaces or through the IO core L1 data cache by Load/Store. Finally, on compute clusters, L1 caches are not coherent between cores and DMA interfaces' writes; thus, the memory coherency is managed by software using full memory barrier, partial memory barrier or uncached memory accesses are used.

Memory Map: An Array of Distributed Local Memories

The hardware exposes a heterogeneous memory map of 20 address spaces (2 per IO and 1 per CC). The MPPA ® processor implements a distributed memory architecture, with one local memory per cluster. I/O cores access their local SMEM and private DDR via Load/Store and by DMA interfaces. Compute clusters can also access their local SMEM but not the DDR via Load/Store and by their DMA interface. The DMA interface must be used to build up NoC packets and send them to the NoC to communicate between the 20 address spaces available.

Computing Resources k1-Bostan VLIW Core

Each MPPA ® core implements a 32-bit VLIW architecture which issues up to 5 instructions per cycle, for different execution units: branch & control unit (BCU), ALU0, ALU1, load-store unit (LSU), multiply-accumulate unit (MAU) combined with a Floating Point Unit (FPU). Each ALU is capable of 32-bit scalar or 16-bit SIMD operations, and the two can be coupled for 64-bit operations. The MAU performs 32-bit multiplications with a 64-bit accumulator and supports 16-bit SIMD operations. Finally, the FPU supports one double-precision fused multiply-add (FMA) operation per cycle or two single-precision operations per cycle. SIMD instructions are supported by the FPU to accelerate classical floating-point computations (adds, multiplications, and complex calculations).

IO Subsystems

Each IO integrates two quad-cores. Each quad-core implements 4 cores of VLIW architecture as previously explained. Then IO subsystems are connected to a 4 GB of external DDR3 memory and on-chip Shared Memory (SMEM) memory of 4 MB. Regarding memory accesses of cores, cached and uncached accesses can be performed for both Load and Store operations (64-bit/cycle) in the SMEM and DDR3. For the shared memory, cached and uncached atomics are available such as Load-and-Clear, Fetch-and-Add, and Compareand-Swap (CAS). Atomic cached operations provide execution efficiency when dealing with critical algorithmic parallel paths that need mutual exclusion or atomic updates of variables. Each IO embeds 8 high-speed IO interfaces usually, called DMA, to communicate through PCI Express First-In-First-Out queues (FIFOs), Ethernet, DDR3 and SMEM. The PCI Express implements 16 lines of 8 Giga Transfer per Second per line; therefore, a single line provides roughly 1 GB/s. As such, the maximum full-duplex PCI Express theoretical bandwidth is up to 16 GB/s with the PCI Express DMAs. Finally, the software is in charge of maintaining the memory coherence between DMA reads/writes (for both PCI Express and the NoC) and the cores.

Compute Clusters (CCs)

Each CC embeds 17 cores, 16 PEs and a Resource Manager (RM). CCs integrate a multibanked private local SMEM of 2 MB. Memory accesses of cores are supported only in this SMEM, and only uncached atomic instructions are available. The same atomic instructions are available in the IO subsystem as presented before. Each CC has one DMA interface for communicating with external nodes. Here, the software is also in charge of maintaining the memory coherence between DMA reads/writes and the cores.

Communications

Network-on-Chip

A full-duplex 32-bit wide NoC interconnects the 18 multi-core CCs (CPUs) of the MPPA ® processor. The NoC implements wormhole switching, with source routing, and supports guaranteed services through the configuration of flow injection parameters at the NoC interface: the maximum rate σ; the maximum burstiness ρ; the minimum and the maximum packet sizes (the size unit is the flit). A flit is 32-bit (4 bytes per cycles), meaning a bandwidth of 2 GB/s per link direction when operating at 500 MHz. The NoC is a direct network with a 2D torus topology. This network does not support Load/Store but only data NoC stream and low-latency control NoC messages. Thus the software is in charge of converting virtual memory addresses to the data stream (data NoC), and of converting this stream back to the virtual address in the remote memory to initiate any communications between any multi-core CPUs.

Control NoC Interface

The control NoC is made to communicate at very low-latency with 64-bit messages. It does not have access to the memories (on-chip or off-chip memories); the messages are mapped in the DMA interface registers. Each DMA interface implements 128 64-bit control NoC receive mailboxes (Rx) and 4 transmission resources (Tx). These mailboxes can be used for barriers and simple 64-bit messages with a notification on a list of processors (up to 17 cores in CC). The barrier mode is mainly used for generic inter-core low-latency synchronization and notification. For instance, forcing a remote core or a poll of remote cores out of idle state in a single clock-cycle for the initiating core. A store in the peripheral space is a posted operation. The 4 Tx resources must be shared between the cores of the multi-core CPU. A NoC route and a remote control NoC Rx mailbox identification number (called a tag in the range [0, 127]) must be configured to send a 64-bit message through each control NoC Tx resource.

Direct Memory Access NoC Interface

The data NoC feature is made for high throughput. Therefore, it is a very asynchronous hardware block that requires to be handled asynchronously by the software. Indeed all outstanding incoming and outgoing transactions must be managed by the software asynchronously for performance. Each data NoC DMA interface is composed of three elements:

• Eight micro-cores, running concurrently, are available for each DMA interface. A micro-core is a micro-programmable DMA core that needs to be programmed and configured. It has a simple set of instructions such as reads, local and remote notifications for local and remote completions and added support for the arithmetic of internal read pointers and counters. It can execute up to 4 nested loops to describe custom memory access patterns with high throughput. This throughput is limited by the technology of the memory on which the micro-core is reading, the NoC link size (4 bytes/cycle) and the memory access patterns.

• The data NoC implements 256 Rx Tags (range [0, 255]) per DMA interfaces to write incoming data NoC packets in the local memory of compute clusters or in the DDR memory of IOs. This Rx Tag has a write window described by a base address, a size and a write pointer that need to be configured and managed at runtime. The completion of the incoming data transfer is given by an End-of-Transfer (Eot). This Eot command increments a 2 16 -bit notification counter corresponding to the used Rx Tag in the DMA interface of the MPPA ® network.

• Each DMA interface implements 8 packet-shapers. A packet-shaper (DMA Tx) is a hardware unit that is building data NoC packets using data coming from a PE or a micro-core. Then, the packet-shaper sends these NoC packets in the MPPA ® NoC using the configured NoC route. Indeed all NoC routes and injection parameters Quality-of-Service (QoS) need to be set by software.

2.4 From Parallel Architectures to Software

Operating Systems

An operating system is a low-level software that controls the hardware resources, makes tasks scheduling possible and allows multiple processes to share diverse resources such as the peripherals and the memory. The operating system is usually ported or developed at bare-metal level. It can also be ported at the hypervisor level also known as Virtual Machine Monitor (VMM) when targeting a virtual machine but it is out of the scope of this thesis.

Bare-metal System

The so-called "bare-metal" system is directly based on the hardware without any runtime or virtual support (ie the VMM). The programmer is in charge of everything such as powering up the System-on-Chip (SoC), enabling instruction and data caches, enabling the MMU, handling system interrupts and hardware trap exceptions, configuring FPU rounding mode, setting up stacks of threads and many more architectural details related to the underlying SoCs. Therefore, such mode cannot be used of portable software as most written software is dependent on the hardware. Bare-metal programming is used for porting OS, hypervisors or low-level runtime firmwares onto SoCs. Such a level of programming can only be used by SoC experts, usually hardware providers.

Real-Time Operating System

A real-time OS is designed to meet real-time constraints: computation deadlines must be met. Embedded systems usually use a real-time OS. Programmers have strong control over timings regarding the scheduling of tasks and external events mostly managed through interrupt handlers. Such OS implements ready-to-use synchronization and message-passing primitives between tasks. However, efficient multi-core implementations of such an OS is not a simple task. A locking mechanism for mutual exclusion must usually protect the shared resources. For instance, the scheduling task is inherently sequential in [START_REF] Mistry | Adapting freertos for multicores: An experience report[END_REF] ("Scheduler's lock"). Thus with fine-grained parallelisms, speedups can be poor because of system runtime overhead. Indeed, most multi-threading implementations use locks for managing threads scheduling and liveness, making the serialized software section a performance bottleneck, as in [START_REF] Mistry | Adapting freertos for multicores: An experience report[END_REF], GLIC [START_REF] Oram | The GNU C Library Reference Manual[END_REF] and [HPD + 14] x86.

Linux Operating System

Linux is one of the most used operating systems of the open source community [START_REF] Torvalds | Just for fun: The story of an accidental revolutionary[END_REF].

It currently targets most mainstream computer architectures. The name Linux is used to denote the entire system: the kernel and all user applications or system software interfaces running on top of the kernel [START_REF] Torvalds | Linux: a portable operating system[END_REF]. A powerful feature of the Linux kernel is that it cannot (should never) be corrupted by user software. The isolation between the userspace and kernel-space is performed with hardware and software (IO-)MMU mechanism. MMU entries are only filled by trustworthy kernel software on page fault exception. The communication between user applications or system interfaces within the Linux kernel is done using explicit Input/Output Control (IOCTL) functions, also known as system calls. System calls are used to invoke kernel services or kernel machine specific drivers, for instance to deal with Peripheral Component Interconnect Express (PCIE), Universal Serial Bus (USB) or Ethernet interfaces. The Linux OS has been designed to operate onto parallel machines like SMP and NUMA architectures. Linux manages the memory consistency of the data (cached or un-cached), the instruction caches for relocated code, and page table mappings for the virtual memory. Such features make Linux a great candidate for software system portability onto complex parallel machines. Also, Linux provides a preemptive scheduler, with task scheduling priorities or thread pinning to cores using thread affinity special attributes that are provided by the execution runtime.

Classical Software Memory Layout

The memory contains all the executed instructions and user data of a program running on one or several cores. Memory accesses are vital to the computer system performance, as they are on the critical path of the computer system. Although the number of accesses to instructions is higher than reads or writes in the memory, still application data accesses are crucial for performance [START_REF] Wulf | Hitting the memory wall: implications of the obvious[END_REF]. Figure 2.5 shows an embedded multi-core computer program operating onto a memory. Cores can access the main memory through their memory hierarchy that is presented in Section 2.2.1. In the standard Executable and Linkable Format (ELF), the data segment nomenclature shows the .text section that contains the executable machine code (instructions) of the program which is shared and read-only in statically linked programs. The .data and .bss sections of the program can be accessed by the read and write operations. These memory sections are initialized for the .data and non-initialized for the .bss. The .tls section stands for the Thread Local Storage (TLS) [START_REF] Drepper | Elf handling for thread-local storage[END_REF] which can only be accessed by a core owning it by read and write operations. In standard compilers, like GNU Compiler Collection (GCC), the TLS is used using the __thread attribute to the object declaration. An instance of these objects is then replicated in each thread's TLS memory. Also, each core has its own stack which contains variables of functions, and the heap is then found if a dynamic allocator is available [START_REF] Paul R Wilson | Dynamic storage allocation: A survey and critical review[END_REF]. The stack and heap are at the end of the .bss section or constitute an entire section by themselves in the memory. The stack and heap are accessed by core using reads and writes operations.

Memory

All data segments are placed in the memory, which is concurrently accessed by all running cores. The user program itself defines memory accesses. Accesses are either static, dynamic or both depending on code sections. Static accesses are easily predictable, but dynamic accesses will rely on the input data or complex addressing within computation loops. Moreover, data reads and writes to the memory are usually more random than instruction fetches that are easier to predict.

For years, computer scientists have been investigating methods to provide programs with efficient memory accesses [START_REF] Daniel J Sorin | A primer on memory consistency and cache coherence[END_REF]. However, this is a complex task as it strongly depends on the application and its implementation. The computer memory systems are sometimes misused, even if the hardware and the low-level software runtime implement advanced mechanisms to compensate bad software application implementations (for instance the irregular memory accesses). This hardware, software, or hybrid mechanisms are explained below in this chapter.

Software Management of the Virtual Memory

Most processors operate in memory using virtual addresses, that are decoded by a MMU to get the physical addresses, to send the memory request to the proper physical memory or memory banks. Rich (most standard) operating systems use hardware and/or software MMU as the Linux OS presented in Section 2.4.1. The MMU is a hash table which maps virtual addresses to physical addresses. Figure 2.6 shows where IOMMU and MMU are placed in a heterogeneous computer system and how they do interact with other units. For performance, the MMU implements a Translation Lookaside Buffer (TLB), which is a memory cache that can be hierarchical. The TLB associates the requested virtual address to a physical address. If the requested virtual address is not mapped in the TLB, then a hardware page fault exception is generated to the CPU. On a hardware page fault, which is typically a TLB miss, the operating system takes over. It can either write a new entry in the TLB from the software managed MMU, or stop the execution of the program if it is a user-space segmentation fault. The segmentation fault occurs when the user-space requested an address that is invalid memory access due to buggy software such as the dereferencing of a N U LL or corrupted pointer, or a stack overflow.

Software Concurrency

As most of the software written in this thesis runs on a manycore architecture, it is essential to define the software concurrency.

The Kalray Exokernel

The Kalray exokernel has been designed and implemented by Pierre Guironnet de Massas, Ph. D. [dM09], is the lowest software layer of the Kalray MPPA ® processor. The exokernel is situated at the same level of the hardware layer in the Figure 2.1. The goal of the Kalray exokernel, also called hypervisor, is to prototype in software virtual hardware features such as smarter DMA, caches [START_REF] Peter | Treadmarks: Distributed shared memory on standard workstations and operating systems[END_REF], spatial partitioning [START_REF] Masmano | Xtratum for leon3: an open source hypervisor for high integrity systems[END_REF], and MMU virtualization. When the implemented software features in the Kalray exokernel have maturated and have become a bottleneck for the targeted applications, they can be implemented in hardware in next chip generations. Virtualization is an essential feature for partitioning, system isolation and debugging as parallel systems are becoming extremely complex; therefore, the confinement of bugs or system failures is mandatory. Developing right above the Kalray exokernel interface is also known as bare-hypervised level of development. We use below the bare-hypervised level to describe the lowest and standard level of system development on the Kalray MPPA ® processor.

HAL Level

The HAL [START_REF] Popovici | Hardware abstraction layer[END_REF] provides an abstraction of the hardware features and it can be hierarchical. Usually, the functions of a HAL are hardware dependent. When this is huge architectural changes between two versions of a chip, the HAL might genuinely change. On MPPA ® , the HAL simplifies the programming of the DMA NoC interface, for instance for configuring NoC routes, NoC bandwidth limiters, DMA micro-engines or receiving channels. Also the HAL provides functions to use the k1-VLIW core more easily, such as getting the CPU or CC identifier, managing events and system registers.

OS Level

The Operating System (OS) is usually running over the Exokernel. The OS provides the implementation of system calls, tasks, resource management, Processing Elements (PEs) control for the software threads, synchronizations, interrupt handling atomicity when accessing the hardware from the user level. The OS cannot corrupt the Exokernel. For performance, the OS is able to access the MPPA ® hardware directly, but the Exokernel has already set the access rights.

Applications & User Libraries Level

The applications run on the OS and can invoke OS services through system calls. A system call is redirected to the Exokernel which then redirects it to the OS. If the OS does not implement MMU protection mechanisms, and if the application is failing due to a software bug, the application may corrupt the OS (not true on Linux for instance) but not the Exokernel. Indeed, the Exokernel has always protected thanks to the MMU. For performance, the application is able to access the MPPA ® hardware directly but the Exokernel and the OS have already set the access rights.

Software Emulated Distributed Shared Memory (DSM)

As the Compute Clusters (CCs) of the MPPA ® processor do not have hardware support for accessing the external off-chip memory, for programmability and the support of the OpenCL-C memory model, a transparent memory access mechanism through Load-Store was required. Also designed and implemented by Massas [dM09], the software emulated L2 data cache is called the Distributed Shared Memory (DSM). The Distributed Shared Memory (DSM) system, inspired by [START_REF] Peter | Treadmarks: Distributed shared memory on standard workstations and operating systems[END_REF], uses the MMU trap (miss) mechanism to perform data page refill in the off-chip memory.

A part of the local memory of the CC serves as a 'cache' to store the MMU pages, transferred explicitly by the software configured DMA NoC interface. On TLB miss, if another PE already holds the page within the CC, the TLB entry is immediately written. If not the PE sends a request to the IO. Then the IO performs the refill. When the data arrives at the PE, the PE returns from the MMU page fault handler and goes on with the execution (called Return From Exception). Such software mechanisms are extremely complicated to develop, debug, and validate. They are highly concurrent, with asynchronism, and a lot of transitional states need to be handled.

Conclusion

This chapter introduces general notions about parallel computing and presents the Kalray MPPA ® processor. We define parallel embedded systems in the context of high-performance computing. Multiple levels of parallelisms are exposed, as the targeted processor in this thesis is the Kalray MPPA ® architecture.

The MPPA ® architecture implements multiple levels of parallelisms in the same SoC. They are the SIMD (vector processing), ILP (VLIW), thread level (multiple PEs in a CC), and the process level (multiple CCs in the same SoC). They are all used in the contribution part of this thesis. We provide low-level details about the memory hierarchy, the CC, the IO, the NoC and the DMA NoC interface. The NoC and the DMA NoC interface explanations are essential for understanding the contribution in Chapter 5.

We also highlight issues encountered in parallel computing that are the main memory bandwidth bottleneck (the memory wall), and the heterogeneity in the memory access latency, memory types, and the available computing resources. Finally, issues in the design and development at the system level are presented, like the management of the virtual memory address space (Linux Kernel, Exokernel protection), the memory map of the standard ELF, and diverse OSs running in SMP mode in the compute nodes of MPPA ® (CC or IO).

One of the hidden biggest issues seldom mentioned is the debuggability and the observability of the parallel system implemented on such a heterogeneous parallel machine, namely the MPPA ® . Being able to debug, observe, and understand why the system is failing requires in-depth knowledge of the low-level architecture when developing at the system level. A lot of system level debug has been done while building the contributions of both Chapter 5 and 6, without which the other contributions of this thesis would not have been possible. Indeed, the complexity of the contributions presented in this thesis is limited by my capacity to debug them. This is very difficult in a massively parallel environment that needs to implement asynchronous transactions for performance, especially at the system level.

CHAPTER 3

Parallel Programming Models

This chapter introduces parallel programming models usually used for programming Multiprocessor Systems-on-Chips (MPSoCs). One of the main goals of a programming model is to hide the complexity of the targeting hardware. Several programming models exist, and it is due to the diversity of applications and hardware architectures. But still, today two kinds of programming models are identified. The first one is the multi-threading programming model using a Symmetric Multi-Processor system (SMP) with a flat memory hierarchy model (single address space). The second one is the acceleration programming model where a host offloads some computations onto one or several accelerators. Many programming models have been proposed for decades, and still, engineers and researchers are looking for new ways to exploit and describe applications for MPSoCs efficiently. Once again, this is due to the ever-increasing hardware complexity, system heterogeneity, and new applications that are also becoming more and more complex. This chapter aims to focus on existing standard or non-standard parallel programming models to target parallel machines.

The Section 3.1.1 presents the task programming model using an SMP architecture. The most commonly used models are explained in this section such as OpenMP multithreading and the Pthread programming Application Programming Interface (API). Acceleration programming models are presented in Section 3.2. On the targeted clustered architecture, the most used programming model is the acceleration because applications require most of the time centralized control to manage input and output data. In this section, we explain the purpose of such an execution model, and we describe the OpenCL programming model currently available on the targeted clustered manycore in this thesis. Section 3.3 presents dataflow programming models. We show the advantages and fundamental properties of such models. For instance, the hierarchical dataflow models are introduced, that are important to target hierarchical machines like the Multi-Purpose Processor Array (MPPA) ® processor. We also give state-of-the-art about mapping/scheduling and memory allocation of dataflow applications onto parallel processors. Fundamentals about scheduling and memory allocation are presented in Section 3.4, not only in the context of dataflow applications but also in case of general purpose computing. In Section 3.5, the rapid prototyping is presented through diverse tools and models. In this thesis, the focus is put on the Parallel and Real-time Embedded Executives Scheduling Method (PREESM) framework and the Synchronous Parameterized Interfaced Dataflow Embedded Runtime Parallel Programming Models (SPIDER) embedded runtime. But other competitors targeting similar problems are also highlighted in this section.

Task Programming Models

Processes & Threads

A task programming model runs onto an SMP architecture, or an Operating System (OS) exposing an SMP architecture. The multitasking model uses a shared memory model (section 2.2.2) where all tasks run onto cores and see a shared memory address space as shown in Figure 3.1. It must be noted that write operations from one core in the shared memory are seen by other cores depending on the multitasking model and task memory access isolation. However, this common memory address space can either be an Uniform Memory Access (UMA) or a Non-Uniform Memory Access (NUMA) system with a Distributed Shared Memory (DSM) [START_REF] Peter | Treadmarks: Distributed shared memory on standard workstations and operating systems[END_REF]. In multitasking, tasks are either processes or threads. Processes are isolated from each other. They must use the OS kernel to communicate with each other. In this way, processes are heavy to manage for an OS as hardware and software Memory Management Unit (MMU) management are required to provide isolation. But different processes operate independently from an OS point of view even though the hardware, which has limited resources, is still shared.

Threads operate within a process. A thread is a sort of Lightweight Process. The scheduling of threads within a process does not necessarily require the intervention of the OS; thus, threads are more efficient for multitasking that involves a lot of task synchronizations and communications. As such, the memory accesses of threads are not isolated from each other within a process, meaning that concurrent executions can sometimes be more complex to develop and more error prone than processes.

Multitasking is known to be efficient for UMA architectures. On UMA architectures, inter-task communications are efficiently executed using Load/Store instructions (see Section 4.3.1) natively supported in hardware. Nevertheless, multitasking is less adapted to large NUMA distributed memory systems [START_REF] Peter | Treadmarks: Distributed shared memory on standard workstations and operating systems[END_REF]. In this context, inter-task communications based on implicit (i.e. hardware) Load/Store instructions and coherency messages traffic on the interconnects are not efficient. The programmer can improve the efficiency at the cost of profound code modifications replacing implicit Load/Store by explicit (software calls) Put/Get operations (see Section 4.3.2). As such multitask for the parallel system is usually combined with Message Passing Interface (MPI) [HDB + 12] or SHMEM [CCP + 10] communications described in chapter 4. The main consequence is then that the optimized software is hardware dependent limiting code reuse and maintainability.

POSIX Threads

The POSIX Threads norm, specified by the IEEE Computer Society was released in the 90s. POSIX defines a portable API to be implemented by the OS or developed over the OS like the [START_REF] Oram | The GNU C Library Reference Manual[END_REF]. The Pthread programming model is widely used in SMP programming and implements the threading model as explained in Section 3.1.1. The standard Pthread API is available in/over most multi-core OS like Linux and proposes a large panel of low-level primitives, usable in C programming, to manage threads such as:

• pthread_t creation and joining of threads to deal with their life.

• pthread_|mutex|spinlock|_t mutex and spinlock for the protection shared resources from concurrent accesses like memory or peripherals.

• sem_t semaphores for synchronizations and token consumption.

• pthread_barrier_t barriers for collective synchronizations.

• pthread_cond_t conditional variables for the implementation of more complex conditions of synchronizations.

Therefore, Pthreads share the same memory space which is accessible by Load/Store, and also implement synchronization operations that are required for multi-core programming. The code sample in Figure 3.2 shows how to run multiple threads using the Pthread API. The entry point is the main program which performs pthread_create by giving a function task with its function argument arg. The new threads are scheduled by the OS, and the thread task prints the OS thread identifier and the argument value in the range [0, NB_THREAD-1]. In the end, the master thread running the main program performs the pthread_join which returns when the corresponding thread thread[i] exited. The joining of a thread has two implicit functions, it provides synchronization and memory consistency (Section 4.4.1) management between the exit thread and the thread joining the exit thread.

The Pthread API provides very decent control of the thread resources as it is a lowlevel multi-threading API. However, Pthread might sometimes be painful to use, especially because of the passing of arguments to threads where data structures need to be written by hand. Other models like OpenMP entirely hide such problems, making them easier to use.

OpenMP Multi-threading

OpenMP multi-threading, is also known as OpenMP 3.0 [START_REF] Chapman | Using OpenMP: portable shared memory parallel programming[END_REF], is a portable multithreading API for SMP architectures implementing a shared memory model. Released for the first time in 1997, OpenMP can be used in Fortan, C/C++ by adding compiler directives that are caught only when OpenMP is enabled at compile time (-fopenmp). Thus, it allows code portability when OpenMP is not supported, that is, important for production software which is expensive to modify. OpenMP 3.0 can be used for both task parallelism (omp task ), data parallelism (omp for ). OpenMP 3.0 multi-threading implementations often use the POSIX runtime backend, for instance, the one used in GNU Compiler Collection (GCC). Several and most commonly used OpenMP compiler directives are available and explained as follows. • Management of data: Shared data are concurrently accessed and private data are replicated within each threads usually placed in the .tls section (see Section 2.4.2).

• Synchronizations: provides a fine-grained controlling of the thread resources to deal with data dependency and access shared resources. The following constructs are available:

Barrier makes it possible to synchronize threads in a parallel region.

Critical sections are used to scope a code section that should be executed atomically or serialized. Such a code section ends up being protected by a lock. If the section is named, it has its own locking mechanism; otherwise, an unnamed global lock is taken.

Atomics allow the compiler to generate hardware atomic instructions onto memory access of variables if available and supported in the compiler port. It provides better performance than critical sections.

• Scheduling of parallel regions: A static schedule will spread the iterations of the work statically onto threads at the beginning of the parallel region. Dynamic will decide at each loop iterations on which thread the work will be executed, and, a chunk size can be specified allowing the computation of several iterations at once.

• Reductions: Reductions operate on simple operators such as +, -, * , /, min, max.

The reduction of a parallel region is applied at the end of a parallel region by combining results of the contributions of all threads. The reduction can often be implemented using the atomic or critical clauses, but it will give lower performances.

A code snippet in Figure 3.3 shows simple OpenMP parallel clauses. In the runtime back-end of GCC (libgomp), the first omp parallel directive starts the physical threads of the parallel region (See Line 10 in Figure 3.3). These threads are neither joined nor canceled, but they stay alive until the process ends. The threads operate within a process. Indeed, the OpenMP runtime creates threads only once to avoid calling the OS each time a parallel region is encountered, as system calls have a huge overhead. The second OpenMP directive (See Line 14 in Figure 3.3) executes the for loop in parallel onto the specified number of thread NB_THREAD. The schedule is set to dynamic and uses a chunk size of CHUNK (See Line 15 in Figure 3.3). In this use case, a static schedule provides almost the same performance as a dynamic schedule when the dynamic chunk is set to CHUNK (benched onto a multi-core UMA x86 architecture). Also, the buffers a, b and c are shared and the private d variable, placed on the stack of the master thread, is being replicated in each thread. OpenMP 3.0 exposes a relaxed memory consistency on a shared memory model which is used to provide more efficient memory accesses. For instance, shared variables can exploit uncached (also known as streaming) Loads and Stores or atomic instructions. As such, each thread has a temporary view of the shared memory which means that it can exploit the cache or a local memory to avoid going to the main memory for every variable reference.

Another feature since OpenMP 4.0 that can be used in OpenMP parallel regions is the vectorization (omp simd ) that applies the pragma ivdep compilation directive. Such directive makes the compiler apply in-core parallelism using vectored instruction.

Kalray Original OS Kalray provides a multi-threading OS called NodeOS. This OS was developed and available since Andey, the first MPPA ® generation and presented in [dDdML + 13]. NodeOS provides both a subset of Pthread functions and OpenMP multithreading support. However, the OS has limitations such as the difficulty to get decent performance on fine-grained multi-threading, the impossibility to interleave usage of OpenMP and Pthread multi-threading, the lack of file system support and only up to 16 threads Parallel Programming Models (one-per Processing Elements (PEs)) is possible. In this thesis, we propose a new implementation of high efficient multi-threading runtime explained in Chapter 6.

Acceleration Programming Models

Execution Model

An acceleration programming model aims to offload a heavy computational workload onto one or several external computing resources. The acceleration programming model usually implements the master/slaves model where a host (multi-core) Central Processing Unit (CPU) plays the role of a master that deploys computations onto external or remote computing resources playing the slave role.

OpenCL

OpenCL [G + 11] is an open source Computing Language designed for heterogeneous programmable parallel platforms. The OpenCL standard is cross-platform and was developed initially for CPU and Graphics Processing Unit (GPU) based architectures. The standard was created back at the end of the 2000s by the Khronos Group. OpenCL is well known for its programming flexibility as it gives a strong control of the targeted hardware architectures from a host application and it is said to be close-to-the-metal programming.

As OpenCL is an acceleration API, it involves a host processor and one or several accelerators. In OpenCL, accelerators are called Compute Devices which are composed of Compute Units. Compute Units are composed of Processing Elements which performs the computation.

Classical Flow for an OpenCL Application

OpenCL programming can be tedious as a lot of things are in charge of the developer, for instance, an OpenCL application will be described with the following typical sequence:

• Compute Device initialization.

• Compilation of the kernel.

• Creation of input and output buffers.

• Send or map input buffers to the accelerator memory space (Compute Device memory space).

• Set the kernel arguments one by one.

• Send the command of execution to the compute device to execute the kernel.

• Read or map output buffers to retrieve results of the kernel to the host.

OpenCL Memory Model

The OpenCL memory model uses shared memory with multiple levels of memory hierarchy. When writing OpenCL kernels, attributes can be set to the pointer of data. The __global attribute specifies a shared data pointer between multiple Compute Units. In OpenCL, an issue with global memory accesses (buffers implementing the __global attribute) is the sharing of cached data in multiple Compute Units. Known as the false sharing, it implies a performance degradation due to additional data traffic to maintain the coherence. The __local attribute defines memory buffers accessible in the Compute Unit only and shared across Processing Elements in this Compute Unit. The __private attribute specifies a memory accessible only by the Processing Element. As such, with these 3 levels of memory hierarchy directly exposed in the OpenCL language, it makes it possible to tune memory accesses efficiently for the targeted platform. However, as the low-level information is exposed in OpenCL applications, an OpenCL application description will need to be modified when targeting different MPSoCs for performance optimization. Indeed, as the Systems-on-Chips (SoCs), the memory hierarchies and their geometries are different, OpenCL implementations require adaptations for performance. Such adaptations make OpenCL known to be difficult to use, as it requires knowing architecture specificities to get competitive performances.

OpenCL Data-Parallel Support for the Kalray MPPA ®

The OpenCL acceleration programming model is possible on MPPA ® thanks to the DSM system that provides memory accesses (through Load/Store) for the Processing Elements (PEs) of the Compute Units to the main global memory of the accelerator, namely the __global memory. Moreover, the DSM provides false sharing support when multiple Compute Clusters (CCs) (Compute Units) modify the same page. The mechanism is called the Reconciliation. However, the reconciliation system has a huge impact on the performance as the software has to perform the byte-to-byte Read-Modify-Write. ... Relation with the Nvidia CUDA Programming

Compute Unified Device Architecture (CUDA) is a proprietary API and a parallel computing platform for GPU SoC, designed by the Nvidia company, supporting C/C++ and Fortran. Nvidia is the world's first GPUs company. They invented the GPU in 1999, and have been a leader of parallel computing since that time. The CUDA programming API is close to OpenCL but less verbose as CUDA is dedicated to GPU programming; thus, less generic. CUDA abstracts the GPU programming by providing low-level virtual instructions to the Nvidia GPUs for tuning and optimizing the execution of kernels. Such a level of application description makes it possible to reach the GPU's peak hardware throughput but at the cost of using a proprietary API. In any case, best performances of Nvidia GPUs are obtained using Nvidia optimized libraries like the cuBLAS, cuDNN, and cuFFT [START_REF] Nvidia | GPU-Accelerated Libraries for Computing[END_REF]. The vendors' level of optimizations are limited by the efficiency of the well-known parallelization techniques and its roofline model [START_REF] Williams | Roofline: an insightful visual performance model for multicore architectures[END_REF] but also bottlenecks of the targeted architectures.

A Word on the Khronos Group

Founded in 2000, the Khronos Group is composed of universities and companies (large and small) like ARM, Intel, and Nvidia. Together they define new APIs, documents, file formats, and new open standards for the computing industry. The Khronos Group is royalty-free and aims to develop cross-platform technologies to help to solve the following problems: 3D graphics computing, virtual and augmented reality, parallel computing, neural networks, and vision processing targeting computer desktops, embedded and safety-critical devices [START_REF][END_REF]. The recent standards of the Khronos Group are the OpenVX API, the Vulkan API, the Neural Network Exchange Format (NNEF) and the SPIR-V Intermediate Language.

OpenACC & OpenMP 4.0 with Modern Compilers

OpenACC [START_REF] Wienke | Openacc-first experiences with real-world applications[END_REF] and OpenMP 4.0 [START_REF]Openmp 4.0 specification[END_REF] are modern APIs for host-based offloading of computations onto an accelerator. OpenACC and OpenMP 4.0 aim to be at a high level of hardware abstraction compared to OpenCL or CUDA programming where the machine is exposed to the programmers; therefore, they OpenCL and CUDA are not easy to use (complicated). As such, OpenACC execution backends can be implemented using OpenCL or CUDA. OpenACC and OpenMP 4.0 propose compile time directives to gather code sections to be offloaded onto a heterogeneous accelerator. If no accelerators are specified or exist the parallelization is performed on the host. It is appreciated as it allows code portability in any case as in section 3.1.3. The memory can not only be shared with accelerators, but it can also be private to the accelerator. OpenACC and OpenMP 4.0 allow memory buffers to be mapped close to the computing resources.

OpenACC implements three parallelisms levels. The Gangs are used for coarse-grained, Workers are used for fine-grained and Vectors for Single Instruction, Multiple Data (SIMD) operations. The first experimental OpenACC implementation was released in GCC-5. Today the GCC-8 release implements OpenACC for Nvidia GPU out-of-the-box with a high level of maturity, directly mapped onto the CUDA API.

As an extension of multi-threading OpenMP 3.0 seen in section 3.1.3, OpenMP 4.0 adds the support of the target close to specifying where the scoped computations shall be offloaded. OpenMP 4.0 is available onto the POSIX runtime for SMP but also targeting Nvidia GPUs with modern compilers. The memory model is similar to OpenCL, with the host memory and the device memory. All data movements are handled by the host using either directly mapped memory or/and explicit Direct Memory Access (DMA) communications through system calls. In all cases, data movements are based on compiler directives for the offloading of data computations.

Dataflow Models

Introduction

Graphical, block-based or diagram representations of applications are intuitive to use for describing computer systems. The well-known Unified Modeling Language (UML) model [Exe02] is a decent example of a graphical model, which is used by many high-level designers for system engineering or the conception of object-oriented software systems. Most designs for automating simple systems are based onto Grafcet (Petri-net) [MHH + 85] and Ladder [START_REF] Wing | Ladder network analysis by signal-flow graph-application to analog computer programming[END_REF] programming which are basic drawing-based programming models where the designers describe Finite-State Machines (FSMs) using States and Transition Conditions between these States. One of the first automated dataflow tools called BLOck DIagram compiler (BLODI) [START_REF] Jr | A block diagram compiler[END_REF], was pioneered in 1961. From that time, BLODI provided primary predefined functions like adders and multiplier that can be connected to build a computer system. High-level commercial system designs also exist such as the Matlab Simulink ® released for the first time in 1984 by Mathworks.

In this thesis, the focus will be put on the Synchronous Dataflow Graph (SDFG) model that is widely used for application description and inspired many other models. The Synchronous Dataflow Graph (SDFG) offers an interesting compromise between analyzability and expressiveness.

In the dataflow community, the dataflow programming models are also called Model of Computation (MoC). But in this thesis, we will call it a programming model for consistency. Section 3.3.2 makes an overview of the dataflow programming model and presents one of the first model: the Kahn Process Network (KPN). The Dataflow Process Network (DPN) model is presented in Section 3.3.3 that defines the basics of dataflow models. Static and dynamic dataflow models are respectively presented in Section 3.3.4 and 3.3.5. The Section 3.3.6 presents a parametrized dataflow meta-model, that is used in the embedded reconfigurable dataflow runtime, namely SPIDER.

Dataflow Overview, the Kahn Process Network

Dataflow programming models are widely used for the specification of data-driven algorithms in many application areas. Dataflow programming models are architecture agnostic, which makes them highly valuable for the specification of applications that can be deployed on a wide variety of embedded systems.

As part of the first proposed dataflow programming models, the Kahn Process Network (KPN) was proved to be Turing complete [START_REF] Kahn | The semantics of a simple language for parallel programming[END_REF]. Such a property means that the model can compute anything that can be described by an algorithm but with the current computing physical limits (computer memory or processing time). Kahn Process Network (KPN) defines a network of potential concurrent tasks that are interconnected by directed unbounded First-In-First-Out queues (FIFOs). FIFOs gather data tokens to be consumed by the tasks when the production and consumption data of these tasks are available. In the KPN, by definition [START_REF] Kahn | The semantics of a simple language for parallel programming[END_REF], tasks and data tokens are indivisible.

Dataflow Process Network

The Dataflow Process Network (DPN) programming model was defined by Lee and Parks in [START_REF] Edward | Dataflow process networks[END_REF] which is a generalization of the Kahn Process Network (KPN) programming model. The Dataflow Process Network (DPN) programming model is formally presented as follows:

Parallel Programming Models Definition 3.3.3.1 A Dataflow Process Network (DPN) is a directed graph which is given by G = V, E where: • V is the set of vertices of a graph G, where each vertex v ∈ V represents an indivisible computational task, also called an actor, of the DPN. An actor is defined as follows:

d input_data refers to the set of input data ports of the actor v ∈ V .

d output_data refers to the set of output data ports of the actor v ∈ V .

- -Rate refers to the number of indivisible data tokens consumed or produced on a given input data port or output data port respectively. The actor is executed when the number of tokens to consume for one firing of the actor is reached.

FC = {F C 1 , F C 2 , ..., F C n }
The rate is non-deterministic and may depend on the internal state of the actor, on the number and value of tokens in FIFOs connected to the actor, or on time or randomness. In other words, the rate defines the number of data tokens of input and output ports of an actor of a dataflow graph.

• E represents a set of edges of graph G. Each edge e ∈ E is an unbounded First-In-First-Out queue (FIFO) interconnecting two actors. A FIFO e ∈ E connects a producer p, which writes data tokens in the FIFO, and a consumer c respectively connected to the source and sink ports of an actor v ∈ V which reads the data tokens.

A FIFO also implements a delay if any. The delay corresponds to the number of tokens placed in the associated FIFO at application initialization. The delay is usually used to represent recursive computations with DPN.

As a summary and as a high-level definition, a dataflow graph is composed of communication edges representing FIFOs, that connect vertices or actors responsible for performing the computations. Figure 3.5 shows a DPN example and its semantic. In this chapter, the presented dataflow programming models are specialization in the Dataflow Process Network (DPN) model. 

Delay and number of tokens

Static Dataflow Models

Static dataflow programming models are not reconfigurable and deterministic. Therefore, such programming models have their sequence of firing rules of all actors composing the graph known at compile time. As such, it implies that the production and consumption rates of all actors are known at compile time.

An essential property of some dataflow programming models is the data parallelism (Section 2.1.1). The data parallelism of a dataflow graph is given by the Repetition Vector (RV) of actors within the graph. The Repetition Vector (RV) is formally explained as follows: Definition 3.3.4.1 (Repetition Vector) In dataflow programming model, the Repetition Vector (RV) refers to the number of execution of actors for single graph iteration. The RV defines the number of firings of each actor as a function of the production and consumption rates of FIFOs, so that, the dataflow graph is consistent and schedulable.

The RV of a Synchronous Dataflow (SDF) graph G is a vector containing an integer value RV (a) for each actor a of G. An SDF graph completes a graph iteration when each actor is executed as many times as specified by the RV, thus bringing back the graph to its initial state in terms of the number of data tokens stored in each FIFO. The Repetition Vectors (RVs) are computed at compile time using static data rates of actors [START_REF] Edward | Synchronous data flow[END_REF], or it can be computed at runtime in dynamic dataflow programming models if supported.

In this section, several static dataflow programming models are listed and some differences between them are highlighted.

• Synchronous Dataflow

The SDF programming model introduced in [LM87] is a specialization of the DPN programming model that specifies for each FIFO the fixed number of data tokens produced and consumed at each execution (firing) of connected actors. SDF is probably the most studied dataflow programming model. The SDF programming model popularity is largely due to its analyzability, its predictability and its natural description of concurrency, which make it suitable for efficient execution on MPSoCs. for a given G = V, E dataflow graph. The graph is acyclic, meaning that no feedbacks or cycles are allowed. As already seen, the rate defines the number of data tokens of input and output ports of an actor of a dataflow graph. The Figure 3.6 shows an example of an SDF where its corresponding SRDAG transformation is given. • Cyclo-Static Dataflow (CSDF)

C A B 1 3 1 3 A B 1 1 1 1 1 1 C 1 C 3 C 2
The Cyclo-Static Dataflow (CSDF) programming model generalizes the SDF programming model and provides statically the ability to vary the production and consumption rates of an actor v ∈ V over graph iterations with a cyclic pattern. The Parallel Programming Models cyclo-static properties provide finer tuning of parallel application patterns, but it is more complex to use when application graphs are big because of graph consistency management. The reason for this complexity is that the translation from CSDF to SDF is exponential. Figure 3.7 shows a CSDF example where production and consumption rates of actor A varies over three graph iterations. The actor A produces 1, 2, and 3 data token triggering respectively 1, 2, and 3 times the B actor thanks to the RV.
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Hierarchical Dataflow Models

The hierarchy is an important feature for a dataflow programming model. Indeed the hierarchy in computer systems or in a dataflow application provides structuring and modularity. In dataflow models, the hierarchy mechanism associates an actor to a subgraph instead of code. We present diverse hierarchical dataflow programming models below.

• Simple SDF Hierarchy: a Non-Compositional Dataflow Programming Model

The simple hierarchical SDF programming model, introduced in [LM87], adds the possibility to associate an actor to a Synchronous Dataflow (SDF) subgraph. The subgraph can contain several levels of hierarchy. The Flattening graph transformation of a hierarchical dataflow graph consists in replacing the hierarchical actor with their corresponding subgraph. However, an issue of the simple hierarchy programming model is that the compositionality of hierarchical actors is not guaranteed between the subgraphs and top graphs. In Figure 3.8, on the left can be seen a hierarchical dataflow graph. To be concise, in a subgraph, when the internal RVs of actors imply different production and consumption rates than the ones of the data input and output data ports of the enclosing hierarchical actor, the compositionality rule of the simple SDF hierarchy programming model is violated as seen in Figure 3.8 on the SRDAG.

The compositionality of a dataflow programming model is defined as the behavioral independence of the internal specification of the actors of a dataflow graph as presented in [TBG + 13]. A compositional dataflow programming model implies that modifications to a subgraph of a hierarchical graph will not influence the consistency or schedulability of this hierarchical dataflow graph. • Interface-Based SDF Programming Model
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The Interface-Based SDF (IBSDF) [START_REF] Piat | Interfacebased hierarchy for synchronous data-flow graphs[END_REF] programming model is a hierarchical extension of the SDF model. In addition to the SDF semantics, Interface-Based SDF (IBSDF) adds the possibility to specify the internal behavior of an actor with a dataflow subgraph instead of specifying it with code (compared to simple actors).

In the IBSDF programming model, the compositionality is enforced by the model semantics and execution rules, which make it possible to translate each hierarchical actor into an equivalent code with fixed production and consumption rates.

Contrary to the simple SDF hierarchy, the IBSDF programming model ensures the compositionality of hierarchical dataflow graphs. As seen in Figure 3.9, the IBSDF adds interfaces at the edges of hierarchical actors. An input interface has a broadcast role, called Brd in Figure 3.9 which produces several times the same data token at the input of the hierarchal actor. An output interface has a round buffer role which sends the last data token in the output of the hierarchical actor. In IBSDF, the compositionality feature enables independent computations of the RV of each hierarchical graph or subgraph [START_REF] Piat | Interfacebased hierarchy for synchronous data-flow graphs[END_REF] (at multiple levels). The IBSDF programming model is a compositional dataflow programming model regarding the parent graphs and children graphs. between the DSSF and the IBSDF programming models is that DSSF compositionality results from a graph analysis, whereas IBSDF graphs are inherently compositional.
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In DSSF, a bottom-up analysis is used to expose compositionality of the hierarchical graph, when possible. Based on this analysis, a hierarchical actor can be translated into equivalent modular code with variable consumption and production rates.

Consistency and Schedulability

The consistency of a static dataflow graph noted G = V, E is usually checked using the topological matrix of the graph. The topological matrix T is a size of |V | * |E| in which rows represent edges (E), and columns represent vertices (V ). A coefficient of T (i, j) of this topological matrix is computed as the number of tokens produced (+n ) and consumed (-1) for each edge related to each vertex. Lee proved in [START_REF] Edward | Synchronous data flow[END_REF] that the graph G could be scheduled, if and only if the rank of the T matrix if less than the number of vertices in graph G.

Dynamic Dataflow Models

Reconfigurable dataflow programming models offer a tradeoff between dynamicity and predictability that can be exploited by a runtime manager to verify application properties or to perform optimizations at runtime, like the mapping of actor computations [HPD + 14].

In real life, the implementation of dynamic dataflow programming models is a difficult task to make it scale efficiently because of the sequentiality of the control path that is managed by software.

• Parametrized SDF Bhattacharya and Bhattacharyya introduced the Parameterized SDF (PSDF) in [START_REF] Bhattacharya | Parameterized dataflow modeling for dsp systems[END_REF]. The PSDF programming model inherits the SDF programming model properties, adds the hierarchy and adds parameters that can be used to change the production and consumption rates of edges of actors; thus, changing the RV of actors composing the graph. The PSDF is a dataflow meta-model, meaning that the semantics of existing dataflow models can be augmented with a semantic element from the meta-models. For instance, the model makes the reconfiguration of hierarchical actors (subgraphs) possible at runtime. The parameter is an integer value that can be modified during the execution of the graph at runtime by other actors; thus, the mapping and scheduling might be impacted. The dynamic value of the parameters can also be bounded. Such parameters imply quasi-static schedules. The Boolean Parametric DataFlow (BPDF) [START_REF] Bebelis | Bpdf: A statically analyzable dataflow model with integer and boolean parameters[END_REF] is also essential and offers more reconfigurability than the PSDF. The hierarchy semantics in the PSDF programming model is slightly different from the semantic implemented in the IBSDF programming model. A PSDF graph performs a graph initialization process that is triggered at each graph iteration, and it configures the production and consumption rates of the ports of actors. A hierarchical actor implements an additional sub-initialization process (executed before the initialization process) that consumes the input data token of one firing of the hierarchical actor and finalizes its configuration. The PiSDF programming model extends the SDF programming model by adding hierarchical interfaces. Such an interface can implement a set of parameters that are associated with vertices to make graph configuration possible, and dependency parameters for propagating information of elements of the graph between each other. Also, it must be noted that an interface of a hierarchical actor has the same property of a round buffer. The reconfiguration in the PiSDF programming model is based on parameters which can modify the rate of a graph. These production and consumption rates of actors can be specified with expressions depending on these parameters. In PiSDF both static and dynamic parameters can be specified, allowing partial graph reconfiguration. Following PiSDF execution rules [DPN + • The Ordering is the sequence of tasks to be fired (sequentially) for each PE of the targeted machine.

• The Timing phase consists in assigning the tasks to a start time within the threads where the tasks were previously mapped. Sometimes the timing phase is set to best effort, meaning that the tasks are scheduled by an OS when the input data of the task are available, and enough place is available in the output data buffer.

Fundamental Algorithms

The Depth-First Search (DFS) algorithm is a base of most graph parsing, analysis, transformation algorithms. Introduced in 1972 by Tarjan [Tar72], the Depth-First Search (DFS) algorithm has been used to find connected components. A DFS algorithm operates linearly in time; thus, has a complexity of O(n), where n is the number of vertices. Therefore, DFSs are intensively used in compilation passes.

Based on a Depth-First Search (DFS) algorithm, the topological sort gives the data dependency schedule of a graph [KL95]. The topological sort places vertices of a graph to be scheduled in a list, ordered with respect to the directed edges representing the data dependencies. As the topological sort is based on a DFS algorithm, the topological sort algorithm operates in linear time. In this thesis, we apply topological sorts to SRDAGs, formally noted as G(V, E), to deal with the dependency order. The pseudo code of the topological sort is given in algorithm 1.

Algorithm 1 Topological Sort Algorithm. Set_of_Predecessors = Get_Predecessors_Of_Vertex(Current_Vertex) Add the List_of_Current_Sorted_Vertices to Set_of_List_of_Sorted_Vertices 16: end while Once the topological sort is applied to a Directed Acyclic Graph (DAG), many scheduler algorithms exist which are classified as static or dynamic. A summary of static scheduling algorithms is made in [START_REF] Singh | A survey of static scheduling algorithm for distributed computing system[END_REF]. For dynamic scheduling of DAGs, we usually use the LIST scheduler explained by Brucker in [START_REF] Brucker | Scheduling algorithms[END_REF]. This thesis reuses such algorithms and adapts them to fit the targeted problems of automating the mapping and scheduling of parallel dataflow-based application onto clustered manycore architectures.

Memory Allocation

The memory allocation is an essential procedure for efficient execution of parallel applications when targeting complex memory hierarchy architectures as seen in section 2.2.1. Multiple levels of cache or local memories in the memory hierarchy of computer architectures make it challenging to deploy automatically parallel applications. Bad placement of buffers in the memory hierarchy, will lead to misuse of the Processing Elements (PEs) composing the computer system.

When allocating memory resources for the execution of a dataflow graph, the misuse of PEs is mostly due to the lack of data locality, meaning that PEs will spend a high amount of time in memory access dependency stalls. That is why a smart and efficient mapping/scheduling and memory allocation are required to use as efficiently as possible the memory that is close to the PEs.

Memory Allocation Methods

The memory allocation consists in assigning a memory buffer (start address and size usually in bytes) in a continuous virtual memory address space. The memory buffer lifetime is given by the differences between the first and last memory access timestamp in the scheduled application. In both static [START_REF] Adé | Data memory minimisation for synchronous data flow graphs emulated on dsp-fpga targets[END_REF] and dynamic [START_REF] Brunet | Design space exploration of high level stream programs on parallel architectures: a focus on the buffer size minimization and optimization problem[END_REF] dataflow applications, the memory needs to be managed. For optimization purpose, the memory consumption has to be minimized (mainly depends on the scheduling) and temporal and spatial data locality needs to be maximized. The minimization of the memory footprint of an application has been proved to be an NP-hard problem by Bouchard et al. in [START_REF] Bouchard | About equivalent interval colorings of weighted graphs[END_REF].

The memory allocation has been widely studied in the past decades [START_REF] David | Near-optimal bin packing algorithms[END_REF]; however, a decent memory allocation mainly depends on a memory aware schedule [START_REF] Tobin | Scheduling dynamic dataflow graphs with bounded memory using the token flow model[END_REF], the buffer sizing technique [START_REF] Desnos | Buffer merging technique for minimizing memory footprints of synchronous dataflow specifications[END_REF] [SGB06], and graph level memory optimization [START_REF] Desnos | Buffer merging technique for minimizing memory footprints of synchronous dataflow specifications[END_REF] [Des14].

Online Memory Allocation Algorithms

In the literature, many memory allocator algorithms have been designed for applications running in real-time (online memory allocation). The allocation of memory buffers is done in the heap as seen in Section 2.4.2.

• First-Fit (FF) was introduced by Johnson [START_REF] David | Near-optimal bin packing algorithms[END_REF] in 1973, and it is usually implemented using double linked lists. The First-Fit (FF) memory allocator is a sequential fit algorithm which returns the first buffer address with a given size that is available within a memory space.

• Best-Fit (BF) [START_REF] David | Near-optimal bin packing algorithms[END_REF], is similar to the FF. However, it allocates memory buffers that fit the best area in a memory space. More precisely, the used heuristic tries to minimize the lost memory in the memory space.

• Binary-Buddy is probably the oldest memory allocator (1965). The algorithm splits the memory space into static equal pieces (usually a power of 2) and attempts to return memory buffers that best fit in this memory space.

• Doug Lea, known as the dlmalloc [START_REF] Lea | A memory allocator[END_REF], is considered to be the best existing allocator for a general purpose system. The dlmalloc is one of the most used memory allocator providing good performances on a wide range of applications. The dlmalloc is available in the GNU Compiler Collection (GCC) project in the C and C++ runtime libraries [START_REF] Oram | The GNU C Library Reference Manual[END_REF]. The Doug Lea allocator is a refinement of the Best-Fit (BF) with the binning of sizes of memory chunks.

• Half-fit, explained in [START_REF] Ogasawara | An algorithm with constant execution time for dynamic storage allocation[END_REF], is similar to the Binary-Buddy but provides a short Worst-Case Execution Time (WCET) as it has only few memory accesses to operate; thus, it drastically reduces Translation Lookaside Buffer (TLB) (Section 2.4.3), and data cache (Section 2.2.1) misses.

Offline Memory Allocation

Offline memory allocations are used when the schedule of an application can be static.

Reaching optimal memory minimization of a statically scheduled application is more straightforward than dynamic memory allocation of an application. Indeed, offline allocators have a global knowledge of the mapped application; however, it is still not a trivial task. An offline allocation provides better optimization opportunities regarding the placement of buffers for data locality and also memory footprint minimization, but solving this problem is a challenge. The literature shows offline allocators in papers [MB00] [DGCDM97] [Des14]

[BČH09] that solve the global problem of allocating memory buffers of statically scheduled tasks. They use graph coloring techniques modeling exclusion graphs to understand nonoverlapping lifetime buffers of the tasks to identify memory reuse opportunities. They also use online allocators for offline memory allocations by simulating the static schedule. The simulation of the static schedule aims to provide the lifetime of each buffer of the schedule application. Memory buffers are allocated at their first usage, and they are freed (recycled) when the last task using them completes. Found addresses of memory buffers are then saved either in the .data or .text section of the Executable and Linkable Format (ELF) file. The CPUs just read addresses of these memory buffers to proceed with the computation.

Rapid Prototyping and Existing Dataflow-based Tools

The motivation of rapid prototyping is to bridge the gap between the ever-increasing hardware complexity and the engineer's productivity. As explained in [START_REF] Cooling | The emergence of rapid prototyping as a realtime software development tool[END_REF], rapid prototyping operates using system and application models with a specific semantic that is then used to generate ready-to-use simulations or prototypes automatically. Using an application specification written by an engineer, the rapid prototyping tool aims to abstract the implementation which is left to the automatic tool. Rapid prototyping tools usually operate with high-level programming models or Domain Specific Language (DSL). A DSL is a computer language that has been designed by a group of experts for a particular type of applications.

PREESM: an Open Source Rapid Prototyping Framework

The PREESM is an open source framework based on Eclipse developed by the Institute of Electronics and Telecommunications of Rennes (IETR). PREESM allows the developer to design dataflow-based algorithms using the PiSDF programming model or the IBSDF programming model. The developer focuses on the dataflow application description and PREESM generates code for the targeted embedded MPSoCs. The PREESM project1 has been developed for research, development, and education purposes.

Parallel Programming Models

The PREESM's development workflow presented in Figure 3.12 shows typical design and compilation steps from the IBSDF graph specification by the developer, using a graphical user interface, to the software synthesis. • Hierarchical Flatenning. The hierarchical flattener is given a depth level to flatten the hierarchy. Flattening the hierarchy consists in replacing hierarchical actors with their equivalent sub-graph and connecting them to the parent graph. As such the flattening depth defines the granularity of the hierarchical flattening operation.

• Single-Rate (SR) and Directed Acyclic Graph (DAG) Transformation. The purpose of the Single-Rate (SR) transformation is to expose all the implicit data parallelism of the dataflow graph. During this process, a lot of actors can be generated depending on the Repetition Vector (RV) of actors in the transformed dataflow graph. Also, the transformation to a DAG is performed to simplify the mapping and scheduling process as each vertex has to be scheduled only once.

• Scheduling and Mapping. The scheduling and mapping are done statically, operating on a Directed Acyclic Graph (DAG), several mapping and scheduling strategies are available such as the FAST and LIST schedulers explained in [START_REF] Kwok | High-performance algorithms for compile-time scheduling of parallel processors[END_REF]. Moreover, the scheduler uses the Architecture Benchmark Computer (ABC) framework, designed and implemented by Pelcat et al. [START_REF] Pelcat | Scalable compile-time scheduler for multi-core architectures[END_REF], that gives the developer the opportunity to find the best tradeoff between accuracy and speed of the mapping and scheduling simulation.

• Memory Allocation. The memory allocation, designed and implemented by Desnos [Des14], is placed post-scheduling using refinements of the First-Fit (FF), Best-Fit (BF) and graph coloring memory allocator algorithms. The memory allocation either supports shared memory, where all buffers are allocated in a shared memory space, or distributed memories where buffers can be allocated to different memory pools.

The distributed memory allocation is presented in [START_REF] Desnos | Distributed memory allocation technique for synchronous dataflow graphs[END_REF].

• Software Synthesis. The current software synthesis back-ends of PREESM supports off-the-shelf multi-core processors running Linux or Windows, the Texas Instrument C6x embedded MPSoC [START_REF]Texas Instruments: Tms320c6678[END_REF], and the heterogeneous Texas Instruments OMAP4 multi-core platform [HDN + 12]. The software synthesis consists of generating C/C++ files containing: calls to functions implementing the internal behavior of actor, calls to communication primitives between the computing resources of the targeted platform and the synchronization. Usually, the generated files are then integrated inside the pre-written platform specific project, designed to deploy the computations.

In PREESM, all steps of the workflow are static; thus, they are executed offline. In the next Section 3.5.2, we present a runtime that performs all of these steps online (except for the software synthesis).

SPIDER: an Embedded Reconfigurable Dataflow Runtime

The SPIDER embedded runtime was initially introduced in [HPD + 14] as a runtime manager for the execution of reconfigurable PiSDF graphs on heterogeneous MPSoCs. The SPIDER runtime can also be used as a rapid prototyping tool to deploy easily reconfigurable dataflow applications described in PiSDF.

Overview of the SPIDER Runtime

Written in C++2 , the SPIDER runtime is organized as follows. SPIDER takes as an input a PiSDF graph that is developed in the PREESM framework which is presented in Section 3.5.1. The SPIDER runtime then executes the graph transformations (flattening and SR-DAG) if all parameters are available. If not, these transformations are performed when reconfigurable parameters are set during the processing of the graph. Then, the SPIDER runtime performs the mapping and scheduling and sends computation commands to the PE of the platform.

SPIDER implements the master/slave organization [START_REF] Kumar Singh | Mapping on multi/many-core systems: survey of current and emerging trends[END_REF]. The master of the runtime system is called the SPIDER Global RunTime (GRT) which manages the PiSDF graph topology and takes mapping and scheduling decisions. The slaves, called the Local RunTimes (LRTs), are mapped onto the computing resources of the platform in charge of executing the computation of actors. Local RunTimes (LRTs) are general purpose processors, specialized processors or custom accelerators. As such, LRTs are lightweight slave processes that execute actors. Moreover, the SPIDER GRT can perform the computation of actors. Indeed, the SPIDER GRT is usually placed on a general purpose core.

Spider Structure

The internal structure and behavior of the SPIDER runtime are shown in Figure 3.13. The runtime implements the master/slave model and uses job queues to transmit control commands between the SPIDER GRT and the LRTs. Indeed, as the SPIDER GRT is responsible for the scheduling and the management of the memory, low latency communications are required to control the slave LRTs. Two kinds of queue exist and they are described as follows:

• Data channels that are used for the data path (high-throughput) of data tokens exchange. Such data tokens are the memory buffers where the computation of actors is carried out.

• Control queues that are used for the sending of computation commands, reconfiguration parameters (partial or global) and the profiling of the dynamically scheduled reconfigurable dataflow graph. 

Parallel Programming Models

SPIDER Operations

The execution steps followed by SPIDER to run an actor are numbered in Figure 3.13. First (Step 1), the GRT schedules an actor on a PE of the architecture, and sends (Step 2) the execution order through the dedicated job queue of the LRT of this PE. A job is a message that embeds all data required to execute one instance of an actor: a job ID, location of actor data and code, and identifiers of preceding actors in a graph execution.

When an LRT starts an actor execution (Step 3), it waits for data tokens to be available in the input FIFOs specified in the job message, among a pool of data FIFOs. On actor completion, data tokens are written in output FIFOs (Step 4), and the LRT sends new parameter values (Step 5) if any, and execution traces back to the GRT for reconfiguration, monitoring and debugging purposes (Step 6). Each LRT is associated with a job counter that stores the integer job ID of the last executed job. As the job IDs increase monotonically both with scheduling order and data dependencies between jobs, these job counters can be used for synchronization purposes between LRTs, to check whether an LRT already executed a given job.

Support of SPIDER for MPSoC

The SPIDER runtime divided into key parts that are either generic or platform specific.

The SPIDER runtime is divided as follows.

• The generic SPIDER GRT runtime is in charge of the management of the scheduling.

• The generic LRT is in charge of the computation.

• The platform-specific communications and synchronizations for the LRTs.

• The platform-specific communications and synchronizations for the SPIDER GRT.

• The platform-specific management of the parallelization (machine specific multitasking).

Currently, open-source implementations of the SPIDER runtime have been proposed for general purpose x86 architectures which are either based on Linux or Windows. Also for embedded MPSoCs, the SPIDER runtime has been implemented for both the Texas Instruments (TI) Keystone Digital Signal Processor (DSP) processor architectures, and Xilinx's Zynq heterogeneous platforms [HPD + 14]. In this thesis, we will attempt to show the feasibility of running such embedded reconfigurable dataflow runtime on the Kalray MPPA ® processor.

Other Tools Based on Dataflow Programming Models or Languages

In the literature, several dataflow-based tools are found that are mainly designed by researchers or companies. All of these tools have their own semantics, but they target the same objective: providing the developers with a higher level of abstraction using a dataflow programming model in order to simplify the programming of MPSoCs with the desired application requirements (real-time, Worst-Case Execution Time (WCET), performance latency and throughput).

Orcc is a compilation framework based on a language called RVC-CAL. This language is based on the DPN programming model which is a dynamic and non-deterministic dataflow model [CPG + ]. Unfortunately, this language does not provide the analyzability capabilities required for the programming of embedded systems.

Scade/Lustre is a language for reactive system programming as it provides a logical time notion. Scade/Lustre is described in [START_REF] Berry | SCADE: Synchronous design and validation of embedded control software[END_REF], and a code generator has been written in Python for targeting the MPPA ® processor in [START_REF] Graillat | Parallel code generation of synchronous programs for a manycore architecture[END_REF]. The main difference with the other approaches is that Scade allows sampling (sensors typically) in the firing of nodes.

SigmaC is a language based on the CSDF model which is an extension of the SDF model. SigmaC [dDAB + 13] was supported in the Kalray MPPA ® toolchain and was well-suited for time-critical applications with a static behavior, i.e., computations are the same for all the data and cannot change dynamically.

SLX Dataflow is the proprietary dataflow framework of the Silexica company 3 . Like the open-source framework PREESM, the Silexica framework [CLA13, CCS + 08] provides automatic optimization of dataflow applications. The framework implements the modeling of the targeting architecture, static and dynamic code source analysis, memory communication optimizations and chooses the best available runtime environments.

Conclusion

This chapter introduces parallel programming models that are either inspired on, developed, enhanced or used in the contribution part of this thesis for the Kalray MPPA ® processor. We gave generalities about parallelism and how to interpret scalability and speedups of parallel implementations. These notions are used in all contribution chapters of this thesis.

The multitasking and multi-threading models for SMP machines are introduced. Pthread and the OpenMP multi-threading are presented in details in order to help the comprehension of the contribution of Chapter 6 that implements at bare-hypervised level an optimized multi-threading runtime for managing the PEs of the Compute Clusters (CCs) of MPPA ® (but also the Input/Output Subsystem (IO)). We also explain the purpose of acceleration programming models with standard models like OpenCL, OpenAMP and OpenMP 4.0. The Kalray MPPA ® processor can be used in acceleration using OpenCL offloading either from an x86 processor over the Peripheral Component Interconnect Express (PCIE) bus (x86 offload on MPPA ® ) or from a Linux running on the IO multi-core over of the Network on Chip (NoC) (stand-alone OpenCL). Such acceleration model is essential to be understood as Section 5.6.2 contributes to the Kalray OpenCL runtime and Section 9.2 implements a low-level offloading runtime from the IO multi-core to the Compute Clusters (CCs) at bare-hypervised level.

We then describe and define the state-of-the-art dataflow models. As seen, dataflow models are suitable to describe computing pipeline and express application parallelisms. The dataflow developer expresses the application in a dataflow model, and the presented rapid prototyping tools make the deployment on available computing resources of the targeting architecture automatically. Dataflow models are explained in details starting from the KPN to the latest dataflow models like the PiMM or the IBSDF model; both exploited in the contribution part of this thesis. Important features of the IBSDF dataflow model are the hierarchy and the RV that are carefully exploited in the contribution of Chapter 7. Moreover, the PiMM model, that can be expressed in the PREESM interface is the model used in the SPIDER embedded runtime. In Chapter 8, we propose an implementation of such an embedded reconfigurable dataflow runtime on a manycore machine like MPPA ® . Such an implementation of a reconfigurable dataflow runtime is the first ever made to the best of our knowledge at this time (targeting an embedded manycore processor). This chapter presents diverse communication protocols commonly used in embedded and High-Performance Computing (HPC) systems. A particular focus is put on HPC communications and synchronizations on both hardware and software. The memory consistency is also explained to understand the diverse contributions proposed in this thesis.

As the new generation of clustered manycores aims to be used for embedded and HPC systems, they include hundreds of cores with shared local memories. They are programmed like super-computers, but it is a single chip. All manycores need to move data and synchronize cores efficiently to reach their peak performance and efficiency targets. In this thesis, the targeted experimental architecture is the Kalray Multi-Purpose Processor Array (MPPA) ® [SEU + 15] processor, which integrates a local memory, shared by the cores of each Compute Cluster (CC). For instance, it exists the Adapteva Epiphany 64 [START_REF] Varghese | Programming the adapteva epiphany 64-core network-on-chip coprocessor[END_REF] and the Epiphany-V [START_REF] Olofsson | Epiphany-v: A 1024 processor 64-bit RISC system-onchip[END_REF], which integrate local memories attached to each core. Using these new architectures implies more complexity in the software to communicate between cores. However, it is a way to reach energy-efficient computing. This background chapter provides commonly used techniques for communications and gives advantages and drawbacks of them.

Section 4.1 is a background of several technologies for communication and synchronization that have been studied and analyzed to choose a subset of mechanisms for the contribution presented in Chapter 5. Then the two-sided and one-sided protocols are explained in details in Sections 4.2 and 4.3. Then, we detail fundamental notions on the memory consistency and coherence on parallel computer architectures in Section 4.4. The management of the memory consistency of the Kalray Very Long Instruction Word (VLIW) core is detailed in Section 4.5. The streaming and atomic memory accesses are also detailed, as they are widely used in Chapters 5 and 6.

State-of-the-Art of Communication Technologies for HPC

Section 4.1.1 is an overview of HPC hardware interconnects that have been designed by hardware manufacturers in the past decades. The Section 4.1.2 introduces HPC software programming Application Programming Interfaces (APIs) proposed by academics and vendors. The Section 4.1.3 presents standard OpenCL primitives, used for the performance optimizations of communications.

HPC Hardware Interconnects

This section explains existing technologies that are deployed in production by hardware vendors for high-performance data communications on well-known interconnects. Here we introduce the Infiniband technology and derived versions of it over Ethernet networks, as well as the latest communication technologies of Intel and Nvidia.

The Infiniband technology designed by Mellanox [RoC15] is widely deployed in highperformance systems and data centers. It natively supports Remote Direct Memory Access (RDMA) Put-Get, Send/Receive read -write and atomic operations. Based on the earlier Virtual Interface Architecture (VIA), the Infiniband specification only lists Verbs, that is, functions that must exist but whose syntax is left to vendors.

Vendors are free to create their own Verbs APIs which led to the Open-Fabrics Association (OFA) Verbs [CTK + 09]. OFA Verbs have support for: two-sided and one-sided operations, always asynchronous; reliable and unreliable modes, connection-oriented and connection-less; remote direct memory access, send and receive; and atomic operations on remote memory regions. To allow the direct access to endpoint memory, this virtual memory must be pinned in physical memory and registered into the network interface I/O Memory Management Unit (MMU). OFA Verbs offer cross-platform support across Infiniband on IB network, iWARP on IP network and RDMA over Converged Ethernet (RoCE) on Ethernet fabric.

iWARP uses IETF defined Remote Direct Data Placement (RDDP) to deliver RDMA services over standard, unmodified IP network and standard TCP/IP Ethernet services. Enhancements to the Ethernet data link layer enabled the application of advanced RDMA services over the IEEE Data Center Bridging (DCB), that is, lossless Ethernet. In early 2010, this technology, now known as RoCE was standardized by the Infiniband Trade Association (IBTA). RoCE utilizes advances in Ethernet (DCB) to eliminate the need to modify and optimize iWARP to run efficiently over DCB. RoCE focuses on server-to-server and server-to-storage networks, delivering the lowest latency and jitter and enabling more straightforward software and hardware implementations. RoCE supports the OFA Verbs interface seamlessly.

The GPUDirect specification was developed together by Mellanox and Nvidia. It is composed of a new interface (API) within the Tesla Graphics Processing Unit (GPU) driver, a new interface within the Mellanox Infiniband drivers, and a Linux kernel modification to support direct communication between drivers. GPUDirect allows RDMA capable devices to direct access GPU device memories, so that data can be directly transferred between two GPUs without buffering in host memory. GPUDirect Verbs provide extended memory registration functions to support GPU buffer and GPU memory de-allocation call-back for efficient Message Passing Interface (MPI) implementations.

The Intel ® Omni-Path technology competes with Infiniband, with the advantage that the interfaces can be integrated into the Intel ® processor themselves. It can be used through the OpenFabrics library, which has an implementation of the Infiniband Verbs API as standardized by the OFA.

HPC Software Programming

Today's HPC programming models are based on the Single Program, Multiple Data (SPMD) execution model, where a single program is spawned on N processing nodes. There is one process per node, and each process is assigned a unique rank ∈ [0, N ]. The main HPC programming model is the Message Passing Interface (MPI), which combines the SPMD execution model, explicit Send/Receive of data, and collective operations. The MPI stan-dard introduced one-sided communications in MPI-2, which have been reworked and can be combined with split-phase synchronization in MPI-3.

Whereas most HPC applications still rely on message-passing semantics using traditional message-passing, the underlying communication systems have evolved several years ago to build on one-sided communication semantics, starting with Cray SHMEM library [START_REF] Feind | Shared memory access (shmem) routines[END_REF] The Cray SHMEM (SHared MEMory) library [CCP + 10] was initially introduced by Cray Research for low-level programming on the Cray T3D and T3E massively parallel processors [START_REF] Feind | Shared memory access (shmem) routines[END_REF]. This library defines symmetric variables as those with the same size, type, and address relative to the processor local address space, and these naturally appear as a by-product of the SPMD execution model. Dynamic memory allocation of symmetric variables is supported with a shmalloc() operation. Static data and heap data obtained through this symmetric allocator are implicitly registered. Thanks to the symmetric variables, it is possible to use one-sided operations easily such as Put and Get by referring to local objects only. Put and Get operations are explained in details in Section 4.3. Besides Put and Get variants, the SHMEM library supports remote atomic operations, and collective operations. The SHMEM library motivated the design of the F --language [GNP90], one of the first Partitioned-Global-Address-Space (PGAS) languages, which evolved into Co-Array Fortran.

The Aggregate Remote Memory Copy Interface (ARMCI) [NC99] was designed as an improvement over Cray SHMEM and IBM LAPI (IBM SP) and is used as the base of the Global Arrays toolkit. The API is structured in three classes of operations:

• Data transfer operations: Put, Get, and Accumulate • Synchronization operations: Atomic read-modify-write, and lock/mutex • Utility operations: Memory allocation/deallocation, local/global Fence, and error handling

The Berkeley Global Address Space Networking (GASNet) library [START_REF] Bonachea | Gasnet specification[END_REF] is designed as a compiler runtime library for the PGAS languages UPC and Titanium. It also provides the foundations for the Rice University Co-Array Fortran 2.0, which aims to correct a number of identified shortcomings [START_REF] Mellor-Crummey | A New Vision for Coarray Fortran[END_REF]. The GASNet library is structured with a core API and an extended API. The core API includes memory registration primitives and is otherwise based on the active message paradigm. Active message request handlers must be attached to each instance of the SPMD program by calling a collective operation gasnet_attach(). Active message request handlers categories include short, medium, and long, depending on the size or argument lists. The extended API is meant primarily as a low-level compilation target and can be implemented either with only the core API or by leveraging higher-level primitives of the network interface cards. The extended API includes Put, Get, and remote memset() operations. Data transfers are non-blocking, and the synchronization barrier is split phase.

Conclusion & Problems for Clustered Manycores

However useful, classic HPC communication layers cannot be effectively applied to manycore processors with local memories because of three differences:

• The memory capacity locally available to a core is about several gigabytes of memory on HPC systems, while it is tens or hundreds of kilobytes on manycore processors.

• HPC communication libraries assume a symmetric memory hierarchy, where the total memory is the union of the compute nodes memories. Manycore processors not only have (on-chip) local memories but also one or more external Double Data Rate (DDR) memory systems.

• A network-on-chip interface is much less capable than a macro network interface, but it has significantly lower latencies.

"Asynchronous Copy" Primitives of OpenCL

OpenCL is an acceleration programming model available on the targeted clustered manycore of this thesis, as already seen in Section 3.2.2. OpenCL structures a platform into a Host connected to Compute Devices. Each Compute Device has a main memory, which is shared by Compute Units. Each Compute Unit has a local memory, a cache for the main memory, and Processing Elements (PEs) that share the local and the main memories. Each Processing Element (PE) has registers and private memory. Computations are dispatched from the Host to the Compute Units as Work Groups. A Work Group is composed of Work Items, which are instances of a computation kernel written in the OpenCL-C dialect. This dialect includes vector data-types and requires to tag memory objects with their address space: __global (main memory), __local, __private, and __constant.

Performance Problems for Clustered Manycores

For clustered manycore processors, the main shortcoming of OpenCL is the inability to support efficient communication between the local memories and synchronization between the Compute Units. Communications between the local memories avoid additional memory copies in the main memory and provide important speedups. This capability is essential for efficient implementations of image processing, Convolutional Neural Network (CNN) inference and other algorithms where tiling is applicable.

Performance Optimizations for Clustered Manycores

OpenCL was originally designed for the GPGPU manycore architecture, where context switching at the cycle level is exploited to cover memory access stalls with useful computations. But Digital Signal Processors (DSPs) and static scheduling Central Processing Unit (CPU)-based manycore architectures do not implement such context switching at the cycle level. To target these architectures, OpenCL defines asynchronous prefetch or copy operations between the main memory and the local memory. The programmers can manually use them to build processing pipelines to overlap communications with computations. More specifically, OpenCL defines the async_work_group_copy and async_work_group_strided_copy operations. The asynchronous copy operations of OpenCL have proved highly useful in order to exploit Direct Memory Access (DMA) engines available on Field-Programmable Gate Arrays (FPGAs), DSPs or clustered manycore processors like MPPA ® .
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Load/Store

A Store takes data from the core register file and writes it at the requested memory address. A Load requests data at a memory address and writes it in the register file. Load/Store is the simplest method to transfer data. Any memory access that has the correct MMU mapping regarding virtual and physical addresses allow the processor to access a memory segment through the cache hierarchy. Manycore architectures either support transparent access to the main memory through hardware caches or via MMU-based distributed shared memory system like Tread-Marks [START_REF] Peter | Treadmarks: Distributed shared memory on standard workstations and operating systems[END_REF].

However, on large-scale parallel systems, Load/Store through multiple levels of cache hierarchy can be a severe performance bottleneck when there is data sharing between numerous Non-Uniform Memory Access (NUMA) nodes. It does not scale easily because of the cache coherence traffic if supported. In particular, the implementation of reductions and inter-core/node communications are complex to perform efficiently.

Put/Get Remote Direct Memory Accesses (RDMA)

RDMA is the backbone of distributed memory systems when "long-range" data transfers are required. "Long-range" data transfers are usually large memory accesses (greater equal than 64 bytes), over a network between two CPUs, and DMAs perform the effective data transfer. A DMA is a hardware unit which can read and write in the memory by itself, once it has been programmed by software.

RDMA is a one-sided communication protocol inspired by [START_REF] Nieplocha | High performance remote memory access communication: The armci approach[END_REF], [START_REF] Vaidyanathan | Efficient asynchronous memory copy operations on multi-core systems and i/oat[END_REF] and [START_REF] Nieplocha | Optimizing mechanisms for latency tolerance in remote memory access communication on clusters[END_REF]. Any communication initiator registered to a memory segment is a master on this memory. A RDMA transfer can be initiated over a target memory segment using either the Put or Get primitives. However, RDMA operations favor high-throughput over low-latency.

However, enabling RDMA operations still requires the management of the memory consistency and the synchronizations. Examples in real-life applications and key features of RDMA are shown as well as principles when using it in software implementations.

RDMA Features in Modern Systems:

• OS-bypass allows direct interaction between the application and a virtualized instance of the network hardware, without involving the operating system.

• Zero-copy enables a system to place transferred data directly to its final memory location, based on information included in the RDMA operations. Zero-copy is also possible for Send/Receive protocols.

• One-sided operations allow communication to complete without the involvement of the application thread on the remote side.

• Asynchronous operations are used to decouple the initiation of a communication from its progress and subsequent completion, to allow communication to be overlapped with computation.

• A relaxed memory consistency model is typically applied [START_REF] Khaled Z Ibrahim | An evaluation of one-sided and two-sided communication paradigms on relaxed-ordering interconnect[END_REF], and it is explained in details in Section 4.4.2. A Relaxed memory consistency model allows operations to execute asynchronously with out-of-order global completion. For comparison, Load-/Store is also a one-sided operation which makes the RDMA protocol usually more natural to manipulate than classical Send/Receive where an overhead exists because of the strict matching of the operations Send and Receive (need to synchronize all the time).

RDMA in Most HPC Systems

These communication technologies mostly apply at the backplane and system levels in data centers and supercomputers:

• Inside a compute node, between cores and other bus masters, HT (HyperTransport), QuickPath Interconnect (QPI) and PCIe support load/store as well as DMA (Direct Memory Access) operations.

• Between compute nodes across a backplane or a chassis, Serial Rapid Input-Output (sRIO) and Data Center Bridging (DCB). Ethernet variants such as RoCE (RDMA over Converged Ethernet) mostly support RDMA operations.

• At the system level, between compute racks and the storage boxes, Infiniband or Ethernet also support RDMA operations.

• Between systems, IP networks support the BSD sockets and client/server operations.

Remote Atomic Operations

A remote atomic operation consists of an initiator sending a message with an operation using different operands to a remote or external computing resource. Then, this remote computing resource executes the atomic operation possibly under certain conditions and forwards the completion to the initiator. Atomic operations are explained in Section 4.5.4.

Remote atomic operations have proved to be efficient for inter-node synchronization[MRSD16, BPG01] and more generally for parallel programming. For instance, they can provide classical atomic remote instructions such as fetch-and-add, compare-and-swap and loadand-clear. Such features are fundamental in distributed memory systems. Indeed most applications require an atomic update of variables at some point during the execution on massively parallel systems. It is also the case on shared memory architectures.

Memory Consistency & Coherence

Memory consistency and coherence are two different but fundamental concepts in parallel computing. This section explains how memory systems behave and how to use them properly by keeping in mind what happens in shared or distributed memories. For more information regarding consistency and coherence of memory systems, refer to [START_REF] Daniel J Sorin | A primer on memory consistency and cache coherence[END_REF].

Definitions

Consistency and coherence of memory systems are defined [START_REF] Daniel J Sorin | A primer on memory consistency and cache coherence[END_REF] as follows: Definition 4.4.1.1 (Consistency) Consistency models define correct shared memory behavior concerning loads and stores (memory reads and writes), without reference to caches or coherence. The consistency model defines a set of rules and a contract that must be respected between the software thread and the memory system. The contract is a set of information events of the memory system guaranteeing the initiator the state of the memory regarding initiated reads and writes operations to the memory system.

Generally, a consistency model [START_REF] Daniel J Sorin | A primer on memory consistency and cache coherence[END_REF] defines rules to be followed by the programmers to guarantee that shared resources of a concurrent system will obey the contract (consistent).

Consistent means that the shared resource must be accessed atomically to prevent the systems from races and corruptions. A race is observed when a variable in memory is accessed concurrently without using a protection mechanism. Therefore, consistency implies two important pieces of information regarding the access of a shared resource. First, the acknowledgment of the accessed shared resources and secondly a synchronization effect with other initiators that can access this shared resource.

Consistency models are necessary for shared or distributed memory systems accessed by different initiators, such as processing elements or external mapped peripherals. As such, the consistency of shared resources is also applied to the registers of hardware peripherals, making their accesses not a trivial task in concurrent systems.

Definition 4.4.1.2 (Coherence)

A raw definition of coherence is that any effective modification of a memory address by an initiator must be seen by other initiators reading this memory address if no other write occurred at this memory address. From Hennessy and Patterson [START_REF] John | Computer architecture: a quantitative approach[END_REF], it consists of three invariants: (1) a load to memory location A by a core obtains the value of the previous store to A by that core, unless another core has stored to A in between, (2) a load to A obtains the value of a store S to A by another core if S and the load "are sufficiently separated in time" and if no other store occurred between S and the load, and (3) stores to the same memory location are serialized.

Coherence is a generic word to describe if a system is coherent or not; however, it is usually applied to memory systems. Coherence is applied at several data cache levels until the Last Level Cache (LLC), but it is also applied to instruction caches for fetching the proper instructions in case of relocation [START_REF] Verma | Dynamic overlay of scratchpad memory for energy minimization[END_REF] for instance. Moreover, coherence is also found when a DMA modifies the memory, when there is Translation Lookaside Buffer (TLB) replacement in multi-threaded programs, or when the Linux kernel checks if the hardware MMU is coherent with the software MMU. As previously said, sometimes the software thread must deal explicitly with coherence and not only in multi-threaded programs. For instance, when managing DMA writes and core reads, if the hardware does not deal with implicit cache invalidation of the modified addresses range by the DMA, the software will be in charge of doing the invalidation, only when the address range is going to be updated in the memory.

Memory Consistency Models

The memory consistency model is related to the memory system architecture and the initiator(s) of the memory transaction. The simplest memory consistency model is the sequential consistency.

Definition 4.4.2.1 (Sequential Consistency)

The sequential consistency guarantees that all Load and Store operations are executed in total order regarding the program order of a software thread. Sequential consistency allows that a single software thread (and only a single software thread) can never corrupt data by itself when the memory system reorders memory accesses for performance.

Relaxed Memory Consistency for Performance

The term relaxed means that memory accesses can be out-of-order even if memory reads and writes happen sequentially in the calling thread. A relaxed memory consistency model provides better performances, but it is more complicated to use regarding the software. The additional complexity of relaxed memory consistency models is associated with the software in charge of explicitly waiting for the completion of the memory system.

Relaxation is the foundation of the performance of memory systems in parallel computing. One-sided operations like Load/Store, Put Get and remote atomic transactions can be reordered for performance. Reordering allows simpler or smarter implementation [START_REF] Daniel J Sorin | A primer on memory consistency and cache coherence[END_REF] of the arbitration of memory transactions for instance. In high-performance memory systems, memory transactions are scheduled in parallel at different addresses, and depending on conflicts some resources can be slower than others regarding the initiator of the onesided operations. But the shared resources always sustain the highest possible throughput. Depending on the implied targets and initiators, outstanding transactions usually complete out-of-order, providing better performance as Read-After-Write (RAW) dependencies are satisfied earlier, so that the computation can start as soon as possible. The RAW dependency defines the data dependencies of a computation. Therefore, one-sided operations benefit from a relaxed memory consistency model whereas two-sided operations do not because of the strict-matching. However, two-sided might benefit from reordering but at a lower level, like onto RDMA channels of an Infiniband network as in [LJW + 04].

Memory Consistency Models in Real Life

The most used and implemented memory consistency model is called the Total Store Order (TSO). TSO is implemented on x86 Intel, AMD and Sparc architectures which implement a store First-In-First-Out queue (FIFO) to write data to caches. This store FIFO, also called write-buffer, also plays the role of coalescing data writes. TSO provides a relaxed write → read ordering. This FIFO is known as a write-buffer, whose purpose is to coalesce memory accesses. Other well-known memory consistency models exist such as the Partial Store Order (PSO) which relaxes write → read and write → write, and the Relaxed Memory Order (RMO) where all combinations of read and write are relaxed. The relaxed memory consistency model (RMO) is used on the MPPA ® processor.

Memory Fences

Memory fences are fundamental in parallel software as they let the memory system be "consistent" at a certain point in the execution thread. Memory fences are part of the Instruction Set Architecture (ISA) of a core. The ISA defines all the supported instructions of a core. Memory fences provide the calling thread with the information that read and/or write operations are all completed. Also, fences can be commands of peripherals like DMAs that require memory consistency points at the end of transactions. Several types of fences exist:

• Write fence: waits for the completion of all outstanding writes initiated by the calling thread to the memory system. From that point, no memory system reordering is possible regarding previously initiated write transactions. On x86 it is mapped onto the sfence instruction.

• Read fence: guarantees for the calling thread that all previous reads to the memory have completed and are available in the core. The Read-After-Write (RAW) depen-dency is satisfied on completion, the data is then available at the register level. On x86 it is mapped onto the lfence instruction.

• Full memory barrier: gives the completion of all outstanding read and write to the memory system. All previous read and write transactions are completed including outstanding atomic instructions before any other memory transactions can be initiated. On x86 it is mapped onto the mfence instruction.

• Pipeline barrier: implements a full memory barrier and waits for all on-going instructions in the core pipeline to be complete.

In the standard GNU Compiler Collection (GCC) atomic, the full memory barrier is available using the builtin __sync_synchronize() [Doc07] that will generate the mfence instruction onto x86 architecture. At high levels of multi-thread programming, memory fences are done by synchronization primitives provided by Multiprocessor System-on-Chip (MPSoC) vendors in runtime libraries which are encapsulated in standard libraries, e.g. the famous GNU C Library [START_REF] Oram | The GNU C Library Reference Manual[END_REF].

Managing Current Memory Accesses for the Kalray VLIW Core

Managing the memory consistency of concurrent programs is not a trivial task when programming at low-level, that is without using high-level pthread-like synchronization primitives. In high-performance implementations, lock-free algorithms are designed to avoid the overhead of software serialization. Such implementations are difficult to write and validate because of transitional states and concurrency. In this section, the memory consistency management of the k1 VLIW is explained in details, making Chapter 5 and 6 easier to understand.

Cache of the k1 VLIW Core

The data bus size of the k1 VLIW core is 64-bit. Each core can exchange 8 bytes per cycle half-duplex. The k1 VLIW core implements a single level (L1) non-coherent 2-way associative data cache of 8 KB, with a data cache line size of 64 bytes. The non-coherent data cache means that modified data in upper memory levels will not be seen by this noncoherent data cache without software interventions. The instruction cache is also a single level cache and it has the same properties as the data cache.

The data cache of the k1 VLIW core implements a true Least Recently Used (LRU) policy for the eviction of cache lines. The data cache implements a write-through policy, using a write-buffer of 8 slots of 64-bit (8 bytes), whose purpose is to coalesce writes in the second level memory, which is, on MPPA, the local memory of the Compute Cluster (CC). Indeed the k1 VLIW processor is fitted with a Load-Store Unit able to deal with cached accesses of size 1 (byte), 2 (half), 4 (word) or 8 (double) bytes. As such, when small stores (less than 8 bytes) are initiated, the write-buffer will absorb all of them if possible, to avoid consuming local memory bandwidth for memory transactions that are less than the size of the data bus, which is 64-bit. Moreover, the data cache is not Write-Allocate, meaning that if a cached store does not hit in the data cache, the data cache does not miss. The write only goes in the write-buffer before being committed to the upper-level memory (local memory). That is why the k1 core cache is usually called to implement a write-through write-around policy. The only way to bring a data cache line in the data cache is to emit a cached load at a cache-able memory address. On a cache hit the read-after-write data dependency is 2 cycles, whereas on cache miss it is 11 cycles critical word first on aligned memory access. The maximum number of outstanding miss (on-fly refill) is 1 with no hit under miss support.

Streaming Memory Accesses

The k1 processor implements streaming memory accesses, providing the ability to bypass the L1 data cache of the CPU for both the cache and write-buffer. Streaming memory accesses aim to gain performance regarding the following points:

• Prefetch of data. Streaming loads have a higher latency of 10 cycles for the readafter-write dependency onto which the load is supposed to return. As such the read of the register has to be placed at least 10 cycles after the initiation of the load to avoid k1 core stalls.

• Avoid trashing the data cache on sparse memory accesses. On sparse memory accesses that are not at the geometry of the data cache, the L1 is trashed and useless as no data locality is found. As such the streaming memory access makes it possible to access and prefetch the data without involving the L1 data cache.

Streaming memory accesses are used in data-intensive and compute intensive application to eliminate core stalls on data cache misses. For instance, streaming accesses are often used in image processing, signal processing, linear algebra and also the low-level software runtime to reach high-performance.

Also, the k1 core implements two types of streaming memory access: blocking and nonblocking. The problem with non-blocking is that when debugging an application, the core trap (exception) on memory access is not precise. It means that the architectural information inside the core will not be given (bundle, memory access type, the address). Thus, for debugging, we usually set the streaming in blocking mode and after, once the application is functional, the streaming accesses are then enabled for performance. The blocking mode provides only 1 outstanding load, whereas, in non-blocking mode, a streaming load request FIFO of depth 10 (10 outstanding loads) makes it possible to absorb the memory latency of the local memory from the k1 core.

The k1 VLIW core provides trapping and non-trapping streaming memory accesses of size 1, 2, 4 and 8 bytes. Non-trapping loads, also known as speculative loads, allow the developer or compiler to optimize memory accesses statically (compile time) by initiating loads onto unchecked pointers or for managing unrolled loop remainders without any checks. The semantic of non-trapping loads consists of loading to an address, and if the address has no mapping in the MMU, the load silently fails (no traps are triggered). Then the core places zero into the targeted register(s) where the loaded data was supposed to return. The user code or generated code is then in charge of controlling the side effects.

Managing the Coherency & Consistency of the k1 VLIW Core

The k1 core implements a relaxed memory consistency model for performance thanks to the write-buffer, the multi-banked local memory, and the streaming memory accesses. The ordering between reads and writes is ensured for cached accesses alone (only), streaming accesses alone (only) but not for both cached and streaming memory accesses.

The k1 core is fitted with the following cache management instructions.

• wpurge. Request the write-buffer to commit in the local memory all outstanding writes. The committing of dirty bytes in the local memory goes into the memory system and will be updated in the memory hierarchy in the next clock cycle (pipelined).

• fence. This memory fence operation waits for the completion of all outstanding writes to the memory for the write-buffer of the data cache or the streaming writes.

When the fence instruction returns, the core is guaranteed that the memory hierarchy is updated and consistent for other memory masters on the targeted memory. The combination of the wpurge instruction followed by the fence instruction is equivalent to a full runtime write memory barrier on the k1 VLIW core.

• [d,l]inval. The data cache invalidation instructions allow the k1 VLIW core to see writes of other masters in the memory system. Two instructions are provided, the dinval instruction invalidates the entire data cache, meaning that the entire data cache will be cold after the operation. Thus, next loads on the stack, the heap, the .data section or even the .bss section will miss. For finer-grained coherent reads, the linval instruction can be used, which invalidates a single data cache line address.

• iinval. The iinval instruction operates onto the instruction cache. On statically linked code, the coherency of the instruction cache does not need to be managed. However, invalidation of the instruction cache needs to be done when the core relocates code as the memory containing the code is modified. The iinval instruction must be followed by a pipeline barrier to make sure that, when the core resumes the execution, it will fetch the proper instructions from the memory system.

Atomic Instructions

An atomic operation is defined by atomically updating a data in memory using an atomic read-modify-write operation. Atomics are usually simple operations like fetch-and-add, test-and-set or compare-and-swap. Compare-and-swap makes it possible to perform any fetch-and-OP operations. Some atomic operations are available in the hardware ISA, and those, not supported in hardware, have to be implemented in software. For instance, GCC implements the libatomic to implement software atomic operations when not supported in hardware. Obviously, the software implementation will have worse performance but the parallel software continues to work. Efficient implementations of lock-free systems exist such as [START_REF] Ladan | An optimistic approach to lock-free fifo queues[END_REF] and [START_REF] Maged | High performance dynamic lock-free hash tables and list-based sets[END_REF]. Highperformance parallel software cannot avoid lock-free implementations, but depending on the application, it can be very complicated to design, verify and debug. The k1 VLIW core implements both retry-free and lock-free atomics. In this section, we consider only uncached atomics on both Compute Cluster (CC) and Input/Output Subsystem (IO) side. Indeed the Input/Output Subsystem (IO) multi-core provides cached atomics that are performed in the shared L1 data cache (Section 2.3.2) and explained in patent [DDRV17].

Several atomics exist and they are explained below.

Blocking Atomic -Software

The thread takes a lock, performs a full memory barrier, then the thread performs the operation in memory, performs a full memory barrier and releases the lock. Blocking atomics are widely used on simple multi-thread programs. When the lock is taken by a thread, all other threads trying to take the lock stall until it is released. Only one thread can run inside the locked code section, also called critical region or protected region.

Lock-free Atomic -Partially Hardware

Forward progress is a guaranty for one initiator. Lock-free atomics are implemented using software loops as the atomic might fail when there is pressure at the memory address where the atomic is performed. On failure, the initiator must retry. An example of the k1 VLIW core is provided as follows.

• Atomic-Compare-Word-and-Swap. The use of this instruction is illustrated in the code Figure 4.3. The C code shows how to use the Atomic-Compare-Word-and-Swap instruction of the k1 VLIW core, called the ACWSU instruction. In this code, a value at an address is read (old value at Line 6), then the k1 VLIW core performs one or several operations on this value (new value at Line 8), and tries to write it (new value at Line 10) in the memory system. The initiated write to the memory system presents the old and new value, and the memory system compares if the current value is equal to the old value or not. If yes, the current value in the memory system is replaced by the new value in the memory system (Line 12), if not, the address in the memory system is left unchanged and the current value is brought to the k1 VLIW core, for further attempts (Line 13 comments). On the k1 Bostan VLIW core, the Atomic-Compare-Word-and-Swap operation operates on 32-bit operands, such as integers (int) or single-precision float numbers (float).

1. static __uncached volatile float acc = 0.0 f ; // uncached shared data 2. # pragma omp parallel // parallel region 3. { 4. do { 5.

// volatile forces the compiler to load '' acc '' 6.

float old_value = acc ; 7.

// any operation 8.

float new_value = old_value + 1.0 f ; 9.

// atomic -compare -and -swap -uncached 10.

float current_value = ACWSU (& acc , old_value , new_value ) ; 11.

if ( current_value == new_value ) 12.

break ; // success so we exit 13.

// retry as the value changed in memory 14.

} while (1) ; 15. } 

Retry-free Atomic -Fully Hardware

Also known as a wait-free atomic, forward progress is always guaranteed within a bounded amount of time for all initiator executing the atomic at a given address. Wait-free atomics have strong properties for the implementation of time-critical systems as the Worst-Case Execution Time (WCET) is bounded. Examples for the k1 VLIW core is provided as follow.

• Atomic-Load-Double-and-Clear. This instruction is an atomic read-modify-write instruction with high throughput. It consists in reading a value at an address in the memory system, sending it to the k1 VLIW core, and resetting to zero the content of the address read in the memory. The Atomic-Load-Double-and-Clear operation is typically used to implement efficient locking mechanism in memory. The operation takes an address of where to read and clears to zero the data in the memory. The instruction is called the ALDCU.

• Atomic-Fetch-Double-and-Add. This instruction is an atomic fetch-and-add in the memory. The instruction reads the data in the memory performs a signed addition with a 32-bit operand, writes the new value in the memory system, and the old value in the memory system is placed in the destination registers (a pair of 32-bit registers as it operates on double words) of the fetch operation. The instruction is called the AFDAU.

Atomic instructions play an essential role in parallel computing as they allow multithread programs to synchronize cores, and to perform efficient reductions, and for lock-free resource sharing. High-performance parallel implementations try to use as much as possible retry-free atomics. However, they are not always usable, depending on performance needs, and they have a real cost in hardware.

On MPPA ® , we use by default the compare-and-swap for the sake of simplicity. Indeed, the ACWSU instruction makes it possible to perform any fetch-and-OP in the memory system atomically, but at the cost of a software loop, as seen in the code in Figure 4.3. Atomics that are implemented with software loops can be time-consuming when there is a lot of contention on the memory bank where the atomic is being executed; even though, forward progress is always guaranteed for one initiator of the atomic. For code portability, the usage of standard builtin atomics like [START_REF]Built-in functions for atomic memory access[END_REF] or C++ 11 atomics is recommended.

Conclusion

Data communications and synchronizations are essential on distributed memory architectures. The targeted clustered architecture is often known as a stream-based processor as all data movements are up to the software because of the lack of a global cache system supported in hardware. However, the fact that this processor implements local memories, makes it a serious competitor in low-power computing with deterministic timing-responses.

Therefore, we explained in this chapter the state-of-the-art of high-performance communication systems applied to diverse parallel programming models like OpenCL, PGAS, MPI and low-level ones such as the RoCE and other families of APIs. Our focus is put on the one-sided and two-sided communications. Details about the two-sided and one-sided protocols are highlighted such as rendezvous, Load/Store, RDMA Put/Get operations, and remote atomic operations.

The Kalray MPPA ® processor implements in hardware a two-sided Network on Chip (NoC) for hardware simplicity. The two-sided protocol being difficult to use by programmers, we decided to design and implement a one-sided communication API over the MPPA ® NoC. This implementation is explained in details in Chapter 5. The goal of the new one-sided communication API is to ease the software development and provides highperformance. The challenge in the development of the one-sided communication API is to adapt these well-known protocols to a local memory based machine like MPPA ® efficiently.

In this chapter, we thus leveraged the understanding of the memory system of the MPPA ® to make our contributions at both system and application levels as efficiently as possible. We explained prerequisites about memory coherency and memory consistency on parallel machines. We defined the memory consistency model of the MPPA ® processor and the x86 as it is the most used architectures. Low-level details have been given for the Kalray VLIW core about the management of the memory consistency and coherency. Cache management operations, atomic instructions, the implied performance latency, and usage semantics have also been explained. Such details are required to understand highperformance implementations in general and the following contributions of this thesis in particular. Prior to this thesis, the targeted manycore processor has PEs that already supports Load, Store, Atomics, and Fence instructions but only at the SMP level, inside a Compute Cluster (CC) as explained in Section 2.3.2. At the level of multiple SMPs (multi-CCs), the hardware only supports simple Send/Receive operations with massive software assistance to properly configure the Direct Memory Access (DMA) interface and the Network on Chip (NoC) on both sides of the two-sided communications, as explained in Section 2.3.3. In this chapter, we propose a comprehensive distributed software runtime and Application Programming Interface (API) that leverages the RDMA, Atomic, Send/Receive channels, and the Fence operations on top of a two-sided network of SMPs for a manycore architecture.

Part II

Contributions

Two software solutions with production maturity were available at the beginning of this thesis for inter-clusters communications and synchronizations: the Multi-Purpose Processor Array (MPPA) ® Inter-Process Communication (IPC) and the MPPA ® NoC communication libraries. The IPC library [dDdML + 13] is the oldest one and supports only Send/Receive communications. The IPC library does not split the control path and the data path; thus, several tens of thousands of machine cycles are required to initiate any data transfer, making it inefficient for medium-grained distributed computations. Also,
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this library does not abstract the hardware DMA and NoC details, making it difficult to use for application software engineers. The MPPA ® NoC communication library is even more complicated to use as it exposes the low-level details of the DMA interface and NoC. Data management and synchronizations are tough to handle for a non-expert of architectural details. However, the biggest issue with these libraries is that they only implement two-sided communications instead of one-sided communications. As explained in Section 4.2.3, in the MPPA ® processor two-sided communications are difficult to use efficiently because of the strict matching issue implied by the two-sided protocol [START_REF] Khaled Z Ibrahim | An evaluation of one-sided and two-sided communication paradigms on relaxed-ordering interconnect[END_REF].

In addition to these solutions, there have been several failed attempts to port APIs like Message Passing Interface (MPI) or SHEM for this target manycore processor. In particular, MPI is the most successful standard in High-Performance Computing (HPC) systems and is designed for distributed memory machines. As seen in Chapter 4, this failure is mainly since these supercomputing APIs assume gigabytes of memory per SMP nodes. However, clustered manycores, like the CC of the MPPA ® , integrates 2 megabytes of local memory.

We propose and describe in this chapter a new lightweight communication library called Asynchronous One-Sided (AOS). This library implements one-sided communication protocols for better performance and ease of use. This new AOS API also implements two-sided communications, with remote queues [BCL + 95] for the Send/Receive operations. As the Kalray NoC is implicitly a two-sided communication NoC, the implementation of one-sided communications is a challenge.

This chapter describes the design, the implementation and low-level details of the distributed runtime and API for communications and synchronizations targeting a clustered manycore architecture. In Section 5.1, we present an overview of the challenges for implementing such communication protocols onto the NoC of a manycore processor. Section 5.2 presents the AOS library at the programmer level. We detail in Section 5.3 the design, the algorithms and the implementation of the AOS library. The resources allocation regarding the DMA NoC interface is explained in Section 5.4. Performance results and discussions are provided in Section 5.5. Latest contributions in the MPPA ® AccessCore toolchain regarding the AOS communication engine are explained in Section 5.6.

Challenges

Asynchronous one-sided communications have proven to be efficient for HPC workloads by overlapping communication with computation and with fundamental ordering properties. However, enabling such a feature on a heterogeneous distributed local memory architecture like MPPA ® is a challenge.

Firstly, the AOS runtime system must manage hardware resources (memories, DMA Rx Tags, DMA Tx packet-shapers and DMA micro-cores), which are explained in Section 5.4. This management of resources must be done for both local and remote resources in a massively parallel environment.

Secondly, several features have to be abstracted and provided to the application programmers such as Quality-of-Service (QoS) configuration, synchronization and bindings at the creation of communication segments for any protocol without the need for the programmer of being aware of the NoC topology for all on/off-chip memories. All abstracted features must be spread across the number of potential initiators, registered to a memory segment explained in Section 5.2.

Thirdly, as mentioned in [dDdML + 13], the abstracted one-sided protocols should not be limited by the number of physical hardware resources. Indeed, all PEs can communicate Design of Distributed Protocols of Communications and Synchronizations for the Programmer 71 with all PEs, and there are not enough hardware resources for that. These hardware resources should be translated (virtualized) to different kinds of "software" components such as memory segments management, RDMA, remote queues and automatic flow control without reducing the performance of the hardware. Such an abstraction frees the application programmer from managing physical hardware resources, and software job First-In-First-Out queues (FIFOs) congestion control, which is often a complex issue and a source of error.

Fourthly, the software RDMA engines must provide the programmer with ordering properties for outstanding transactions and remote atomic operations, and maintain the memory coherence and consistency (memory ordering) at synchronization points.

Finally, as distributed software might suffer from the congestion of software job FI-FOs, software flow-control is required to avoid data races. To do this, AOS implements a mechanism called "all-to-all client-to-server flow-control" for the remote atomic operations and RDMA to avoid data and request corruption when congestion occurs. Such constraints make our new one-sided communication software implementation very complicated to conceive, debug, and validate while reaching for the theoretical maximum hardware throughput.

Not part of this contribution but it is a significant feature that has been tackled during this Ph.D. is the observability issue. Observability is a big problem on highly parallel processors. Therefore, we developed at the very beginning of this thesis the File IO library. This library is a tool to speed up and ease the development as it makes the debugging and the observability of the running parallel application simpler. The File IO library aims to hide the complexity to bring in and out data from the local memories of the MPPA ® Multiprocessor System-on-Chip (MPSoC). To keep it simple, in the Operating System (OS) system call handler, we implemented stubbed functions that perform a remote procedure calls of functions like open, read, write, close (system calls). The NoC and PCIE communications are handled automatically. For instance, all functions operating on files or file descriptors require the support of system calls. It has been designed and implemented at low-level for maximum performance; but, it is a synchronous runtime library, easier to use but at a performance cost.
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The AOS library provides two protocols that are the new one-sided operations and the two-sided operations. Two-sided operations were already supported by the MPPA ® IPC API and the MPPA ® NoC. An example of one-sided operations is shown in Figure 4.2, and an example of a two-sided operation is in Figure 4.1.

The AOS library presents the manycore platform as a collection of execution nodes, called CCs and Input/Output Subsystems (IOs). These nodes are composed of PEs and their directly addressable local shared memory. There is a specific for the IOs which can additionally access an external memory called the Double Data Rate (DDR) memory as presented in Section 2.3.

Memory Segments

In our contribution, two types of memory segments are defined and can be used by the programmer. A memory segment is a directly addressable buffer from the PEs of a node to the mapped memory (for instance the local memory or the DDR memory). The first one is the window memory segment that supports one-sided operations such as RDMA Put/Get and remote atomic operations. Memory window can also be found in the MPI standard [HDT + 15]. Put/Get operations are low-latency and high-throughput RDMA operations that are usually used to transfer large buffers between nodes. Remote atomics are used to synchronize nodes, for instance with atomic add and atomic clear remote operations. The second type is the remote queue memory segment that supports two-sided operations such as the enqueue and dequeue operations (1-to-1 or N-to-1). Remote queues are mostly used to enable fine-grained control or to implement the master/slave model as in an acceleration programming model. The creation operation of the memory segment exposes a part of the memory. The clone operation is then used by a PE to access the created memory segment. As seen in Figure 5.1, the memory segment has to be created and cloned between either part of the network to make the data communication possible. The NoC routes, addresses, DMA configurations, and offsets are automatically resolved at this time. The initialization of a communication link has to be carefully performed. The communication link is either a window or a remote queue. For this purpose, a node creates a memory segment, of a window type for instance, and this segment is associated with a unique 64-bit counter that is registered in a broker. The clone operation on this unique 64-bit identifier connects the initiator with the created memory segment. The clone operation implicitly provides synchronization with the creator. The communication can immediately start once the clone operation returns. Everything is managed by the internal software runtime enabling the AOS API. Figure 5.1 shows how the memory segment creation and cloning operations relate to each other.

Multi-

One-sided

As seen in Section 4.3, one-sided communication provides the ability for a process to access a remote memory without any involvement in the communication at the programmer pointof-view. The one-sided communication functions that are provided to the programmer for the data path, are thread safe.
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RDMA Operations

In our communication runtime, the RDMA operations are the most used to move data between the network of SMPs of the manycore architecture. RDMA transfers are made for high-throughput with low-latency. RDMA operations operate on segments of type window.

We define two primitives to perform remote read and remote write of data over the network respectively called Get and Put operations. Figure 5.2 shows the RDMA Put and Get principles between two nodes. The Put operation reads local data, and sends them to the network, in the cloned memory segment. The Get operation sends a remote read request using the cloned segment. When the remote read request is processed, the data are sent to the initiator (multi-core B) of the operation. From the programmer point-of-view, the Put and Get operations can be used either in a synchronous or asynchronous mode. When an RDMA operation is initiated, the synchronous mode gives the programmer the local completion when the calling operation returns. In the asynchronous mode, RDMA operations are executed in the background. The operation is associated with an event, given by the programmer, that can be tested or waited. Upon the completion of the event, the programmer is provided with the local completion, and not the remote completion.

Multi-

The local completion of Put operations is given to the programmer upon completion of the operation, but this is not the remote completion where data are written. Remote completion or Put consistency is provided by the completion of an RDMA fence operation. The completion of the RDMA fence operation guarantees that all outstanding Puts are written and consistent in the targeted memory segment.

An important feature provided implicitly to the programmer is the flow-control of RDMA transactions. Flow-control mechanisms are complicated for the programmer to be implemented, which is why it is already provided by our contribution. Such mechanisms avoid the corruption of data when the distributed software implementation suffers from congestion.

Remote Atomic Operations

The remote atomic operation provides the programmer with fundamental and efficient mechanisms for distributed computing. The remote atomic operations are the foundation to perform: synchronizations, reductions, and collective operations between multiple SMPs of a network. An example of remote atomic operations can be seen in Figure 5 We propose and provide to the programmer lightweight remote atomic operations such as postadd, poke, fetchclear, fetchadd and peek. Our panel of remote atomic operation is inspired by Infiniband [START_REF] Shanley | Infiniband Network Architecture[END_REF] and the supported atomic instructions of the targeted machine. All of these operations take as input a target segment of type window and an offset aligned 8 bytes (atomic alignment constraint) to which to remote atomic should be applied in the segment. The peek and poke operation are respectively uncached 8-byte read and write. The postadd operation atomically adds a signed value to a 64-bit counter in the remote memory without returning any result to the initiator. The fetchadd operation is the same as the postadd ; but, it returns the read value of the fetch-and-add atomic instruction to the initiator. The fetchclear operation atomically clears the remote target value to zero, and the value is sent to the initiator.

The Ordering of the One-sided Operations

As seen in [START_REF] Khaled Z Ibrahim | An evaluation of one-sided and two-sided communication paradigms on relaxed-ordering interconnect[END_REF], one-sided operations make it possible for the hardware and the software runtime to relax the ordering of transaction. Indeed, one-sided operations can be reordered in the background because the initiator of the one-sided operation is a master of the targeted memory. The goal of such feature is to increase the performance of the overall distributed memory system by providing to the programmer a relaxed memory consistency model. In this section, we define a set of important rules of our new distributed communication runtime that must be known by the programmer:

• Rule 1 The outstanding RDMA Put operations are strictly ordered from an initiator point of view about their local completion, but not for their remote completion (fence).

• Rule 2 Get operations are ordered when reading from the same memory segment while reading from different memory segments is not ordered. Outstanding Put and Design of Distributed Protocols of Communications and Synchronizations for the Programmer 75

Get operations are not ordered on the same initiator for efficient parallel execution. Hence, for any reason, when Read-After-Write (RAW) dependency occurs (Put followed by a Get on the same memory segment), an RDMA fence completion must be performed before initiating the Get operation. The fence operation is provided by the one-sided engine and is part of the active message operations. In the memory consistency model, the completion of the Fence operation provides the remote completion of all outstanding Puts to the targeted memory segment.

• Rule 3 Remote atomic operations are ordered if they target the same memory segment, else they are not. A powerful property with the outstanding RDMA transaction and the outstanding remote atomic operation is that they are ordered when targeting the same segment. An example of such an ordering is provided in Figure 5.3. It is obtained thanks to a point-to-point software "virtual channel" between each pair of segments. When an initiator (a PE) X posts several puts (RDMA transactions) and then posts a remote atomic operation to a memory segment, the posted remote atomic operation will be seen in this memory segment only after the remote completion of the previously initiated puts of the initiator X. Such ordering is essential for performance as the initiator can post high-throughput RDMA data transfers along with a posted synchronization mechanism. Indeed, everything can be done asynchronously from the initiator point of view. Therefore, this initiator can go back to computation immediately without losing any time. At the programmer level, this concept is called: the ordering between posted remote atomic operations and outstanding RDMA transactions.

Two-sided

As seen in Section 4.2, two-sided communications allow the programmer to send data to an opened communication channel and receive this data on the other side of this channel. Currently, the programmer is provided with low-latency remote queues that are explained below. The choice of remote queues has been conditioned by the need for low-latency and high-throughput (in terms of Input/Output Operation per Second (IOPS)) control queues at the user level.

Remote Queue Operations

For the programmer, the communication semantics of the remote queue is based on send and receive operations. The remote queues aim to be used for control messaging, usually small size messages. Small size messaging provides high throughput control concerning IOPS. These operations operate on segments of type queue.

Once the memory segment is initiated, the user can send messages to the queue using the enqueue operation and receive messages from the queue using dequeue. Figure 5.4 shows an example of remote queues for the programmer. Simple queue messaging uses 1to-1 communication where only one initiator sends messages to a remote queue. However, the programmer is also provided with a remote queue mode where N-to-1 communications are possible. In N-to-1 mode, the atomicity of enqueue and dequeue operations is ensured for the user by our communication runtime. This N-to-1 capability is essential on massively parallel systems that require runtime orchestration of activities (e.g., master/slave parallel pattern).
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Data restructuring is generally used when using tiling techniques with or without overlap, halo region forwarding, transposition patterns, 2D, and 3D block transfers. 2D and 3D copies are special cases of strided copies, with stride-offsets on both src and dst buffers. These offsets can be different from each other, as the local buffer is often smaller and accommodates a sub-partition of the remote buffer. We call this capability the "on-the-fly data restructuring". Figure 5.5 shows the available RDMA Put/Get data restructuring opportunities without a copy. Such patterns are useful and efficient for image processing, Convolutional Neural Network (CNN) and many other stencil-based applications, where tiling is applicable.

Runtime Implementation of the Distributed Communications and Synchronizations

This section explains how the distributed communications and synchronizations library, called AOS, has been conceived and implemented. The implementation of the memory segment management is explained in Section 5.3.1. The RDMA implementation over the Kalray NoC and the implementation of the remote atomic operations are presented in Section 5.3.2. The event completion engine, used to get the completion of any asynchronous operations of the AOS API, is explained in Section 5.3.3. Section 5.3.4 provides the implementation of an efficient job arbiter to process the remote atomic operations and the RDMA operations. Finally, the remote queues, used for fine-grained two-sided communications, are described in Section 5.3.5.

Memory Segments

The creation and clone operations of the memory segments are used to initialize at user level a communication link. As already seen, the communication link can be either a remote queue or a memory window.

The segment creation and clone operations are handled thanks to a centralized broker that references all living memory segments for all CCs and IOs. Therefore, the creation and clone procedures ought to be performed by the programmer only at initialization time of the distributed computing system for performance, but can be used whenever the programmer needs them.

This centralized broker has been implemented using low-level message passing over the NoC of the manycore. A multi-core Central Processing Unit (CPU) provides an identifier referencing the created segment in this broker. Other multi-core CPUs can connect to the created segments using the related identifier at the clone operation.

One-sided: Asynchronous Remote Atomic Operation & RDMA Put & Get Algorithm

This section explains the implementation of the remote atomic and the RDMA operation. The implementation is inspired by a well-known mechanism used in distributed computing, called "active messages." An active message is a low overhead message that acts as a call, with or without returning a value and using a message payload as arguments. Paper [START_REF] Martin | Notifying memories: a case-study on data-flow applications with noc interfaces implementation[END_REF] also uses similar mechanisms to implementation inter-core notifications. The one-sided user API functions take as arguments: a local virtual address that is read or written, a remote target segment, transaction parameters (e.g., operation type, size, stride, geometries) and an event for the completion of the initiated transaction. Call Algorithm 3 (event) /* Blocking mode, wait for the event to occur */ 27: end if 28: Return success Algorithm 2 is used to send active message requests to the job arbiters, presented in Algorithm 4. The Algorithm 2 is executed by the PEs inside each CC, in the AOS library called by the programmer. We assumed that the input segment has already been created or cloned. The provided Algorithm is thread safe, and it can be run on any PE of a CC of the used manycore processor.

The remote atomic, the RDMA Put and Get are usually the critical path of dataintensive applications. All one-sided data transfers are managed by the Algorithm 2. Therefore, it needs to be efficient, thread-safe and programmer-friendly (e.g., management of maximum outstanding jobs with flow-control). The RDMA and remote atomic transactions operate on a window memory segment. Initiating a one-sided operation consists in parsing the targeted segment parameters (Line 6 and 16 in Algorithm 2) such as the requested segment protocol(s) (RDMA or remote atomics in our case), the NoC route, the destination DMA Rx Tag and checking if the read or write transaction is not out-of-bounds of the targeted remote window. Then the transaction is prepared by the initiator PE in a CC, and it takes a slot (Line 9) on the targeted segment atomically. An N-to-N flow-Runtime Implementation of the Distributed Communications and Synchronizations 79 control mechanism has been implemented for remote memory transactions "inter-node" and local memory transactions "intra-node" (array_done_slot Line 11 in Algorithm 2) which provides a back pressure mechanism when the hardware and low-level software is under congestion. Then, the PE sends the request either to the NoC interface or writes the request in the shared local memory. The completion ticket of the initiated transaction is computed and set to an event (Line 24) which can be waited for later, using Algorithm 3. An event is an opaque object that contains the necessary information to provide the programmer with the completion of the related initiated transaction. Indeed, the programmer can give a reference to an event to the algorithm, with a boolean flag "blocking" set to true. The algorithm fills it with the necessary information of the operation and returns immediately (the operation is outstanding). If this boolean flag is set to false, the algorithm will wait until the completion of the operation before returning.

In our implementation, RDMA operations are immediately processed with our software algorithms when the hardware resources are available. Remote atomic operations are processed when all previous RDMA Puts are completed. These operations have a posted variant (without a returned value), which can be very effective for the implementation of reductions, and synchronizations onto distributed manycore architectures.

Event Completion

The completion of an event is associated with an operation, previously initiated by a PE with the programmer. For instance, the operation can be an RDMA or a remote atomic transaction. The completion of AOS events is managed by Algorithm 3.

Algorithm 3 is designed for managing the event completion with fast execution time. An event is a condition that has only two states (true or false) for the programmer. This event contains an address (Line 3 in Algorithm 3) to monitor and compare it with a value (Line 2) using simple condition (Line 6) (e.g., equal, greater, less). Depending on the event type of the associated transaction, the event can complete by getting hardware pending events (Line 11 in Algorithm 3) and accumulate them into the content of address (Line 13). This sequence is required to prevent DMA Rx Tag End-of-Transfer (Eot) counter from saturation. However, this sequence has to be atomic; thus, we use atomic uncached instructions, and we notify all other PEs of the CC when the content of address is updated and visible in the memory hierarchy. This broadcast notifies operation (Line 16 in Algorithm 3) is done using a low-latency control NoC Rx mailbox in barrier mode which leads only to a single posted store in the peripheral space for the processor.

For both low-latency and high-throughput of event processing, Algorithm 3 does not rely on any interruption mechanisms to avoid trashing the instruction/data cache when switching to interrupt handlers, suffering from interrupt noise and interrupt handler control multiplexing and the overhead of context switching.

On more generic operating systems (Linux or Real-Time Operating System (RTOS)), this algorithm could use a preemptive and cooperative multi-thread (Line 19 in Algorithm 3). Nevertheless, in a high-performance environment, the OSs used on the targeted manycore have a simple run-to-completion multi-threading model in the matrix of Compute Clusters (CCs). The AOS library also provides another algorithm to let the programmer test, in a non-blocking way, whether or not the event is complete.

One-sided: RDMA and Remote Atomic Arbiters

The RDMA and remote atomic arbiters are high-performance algorithms that run on each Resource Manager (RM) of each CC of the MPPA ® . The RDMA job arbiter is used to Idle PE // or OS yield possible 20: end while process remote read transactions, that are the Get operations, initiated by the PEs. The remote atomic arbiter is used to process remote atomic transactions, initiated by the PEs. Algorithm 4 serves the request sent by Algorithm 2 for the RDMA. The algorithm uses an efficient Round Robin (RR) arbitrations. The arbitrations are triggered on events (not interrupts) sent by the DMA NoC interface or inter-PE events. These arbiters process requests coming from the NoC or other intra-node PEs.

The RDMA job arbiter, in Algorithm 4, manages the execution of DMA jobs asynchronously. It selects the associated DMA micro-engine, configures the NoC route, writes the DMA micro-engine arguments, starts the DMA micro-engine, and updates the completion job ticket. No starvation is possible as one DMA micro-engine is dedicated to a single job FIFO.

An active message is an operation containing a set of instructions with operands. When the operation is performed, the active message job arbiter sends the result back to the initiator (if any) and updates the completion job ticket. The more complicated part of this software arbiter is that all active messages from an initiator are ordered with all outstanding RDMA writes of this initiator. For the initiator, all outstanding incoming RDMA transactions will complete before the posted remote atomic operation is processed.

Support of Eager Messages with Remote Queues

Classic two-sided Send/Receive operations have a significant overhead due to synchronizations between the sender and receiver nodes, and often require the use of temporary buffers as opposed to zero-copy communication. Besides, real-life implementations present significant challenges [Gor04] for simplicity, programmability, performance, and predictability.

As a primitive of the two-sided protocol, we select the remote queue operations described in [BCL + 95], as it avoids the problems of classic message passing. First, it can be implemented as a simple message queues that are proven to be efficient for fine-grained if DMA micro-engine is ready then 7:

Clear DMA micro-event event Idle PE // or OS yield 24: end while control and coordination of distributed computations. Also known as eager messages, it allows low-latency for small messages. The maximum message size is usually given by an eager limit (usually a small number of bytes) which is implementation-specific [LJW + 04].

From the sender point of view, the local buffer can be immediately reused. On the receive side, these eager messages can either arrive before or after the calling of the receiving primitive. Moreover, remote queues also apply to N-to-1 communication whenever atomicity of enqueue and dequeue operations can be ensured. The N-to-1 capability is essential on massively parallel systems that require run-time orchestration of activities (e.g., master/slave parallel pattern). Finally, remote queues enable efficient communications as they enable synchronization without introducing any locking mechanism from the programmer point of view.

Data Restructuring Support on RDMA Put/Get

Contiguous and strided copies are essential "geometries" in RDMA communications as seen in Figure 5.5. A strided transfer can have an offset between each contiguous data block either on src or dst buffers, or even both. An efficient RDMA API (and the underlying hardware) should be able to perform strided transfers with zero-copy, by automatically incrementing read and write DMA offset at no cost. The implementation of the data restructuring feature uses the DMA micro-engine which runs a handwritten micro-code. The micro-code is a Kalray specific instruction set 2.3.3, written in TCL [O + 89] where the pseudo code is given in Algorithm 5. The implemented Fundamental Mechanisms for Communications and Synchronizations in Distributed Computing micro-code implements a stride-to-stride data transfers where the object size, the number of objects, the stride in bytes between the local object(s), and the stride in bytes between the remote object(s) are specified. 2D transfers are possible using a single iteration of Algorithm 5. However, 3D transfers require as many calls to Algorithm 5 as the depth of the cube to be sent. Algorithm 5 sets the absolute remote offset of the targeted memory window (Line 3). Then a local address is set where the data to be sent shall be read (Line 4). Two loops are used to send the object of size Object_Size in bytes, using 8 bytes coalescing first, and 1 byte for the remaining. The remote offset and the local address are then updated (Lines 14 and 15), and the object is sent as many time as needed, using the Nb_Object input parameter. Once all objects are sent, Algorithm 5 sends the Eot command to the targeted memory window (Line 18) and notifies locally the RM that the operation is complete (Lines 19 and 20). The DMA micro-engine stops (Line 21) until the RM reuses it for another DMA job. Send set absolute Remote_Offset command to the target DMA Rx Tag Increment read_pointer of 8 

Use, Resource Allocation & Configurations

The AOS library performs a complex DMA NoC resource allocation at initialization time. Indeed, as the AOS engine enables relaxed one-sided operations on an MPPA ® chip, a lot of software programmable hardware resources are used to deal with out-of-order completions and to remove software locks. The used resources are the packet-shapers, the DMA microcores, and DMA Rx Tags, all explained in Section 2.3.3. The packet-shaper is a hardware functional unit that builds NoC packets to send them with a specific route over the NoC of the MPPA ® processor.

The DMA NoC interface sharing of resources between other existing runtimes also needs to be managed. For instance, the Distributed Shared Memory (DSM) (Section 3.1.1), the OpenCL runtime and the low-level runtimes of the Kalray 

Resources Used for Enabling One-sided Operations

Managing the resource sharing to enable AOS on a two-sided NoC is complex. We highlight and show the purpose of the resources for each DMA NoC interface of a Node (CC or IO) of MPPA ® in Table 5 On Input/Output Subsystems (IOs), 6 Rx Tags are required for optimizing the bandwidth of the data NoC targeting the DDR. 4 Rx Tags are used for the 4 rows or columns of Compute Cluster (CC) and 2 Rx Tags more are used for the Input/Output Subsystems (IOs) (IO-to-IO and loopback). Indeed, the routes used between IOs and CCs avoid turns by using only the columns or the rows of the NoC. This optimization is applied to avoid as much as possible the temporal sharing of data NoC links and limit NoC congestion.

Two-sided operations

The resource management for two-sided operations is simpler than the one-sided implementation, as the Kalray NoC is already two-sided. As such, Rx Tag resources are dynamically allocated in a software pool at AOS segment creation. At chip level, a centralized broker is in charge of the synchronizations and the forwarding of information such as the route and the allocated Rx Tag in the targeted remote queue. Centralized control and dynamically allocated resources have poor performances but this is not an issue since the segment creation is only perform once; therefore, it is not on the critical path of the application. The implementation of the remote atomic and the remote queue messages reuses the packetshaper in Table 5.1 of the Send Transaction Request, for reducing the consumption of DMA NoC interface. Moreover, for non-atomic messages of the remote queues, it uses the packet-shaper and micro-engine of the one-sided Put operation, also visible in Table 5.1, namely Process the Locally Initiated Put.

Resources Necessary for AOS in a Compute Cluster

The resources used by AOS in a compute cluster are shown in Figure 5.6, which represents the DMA NoC interface configurations. One-sided operations (RDMA and remote atomics) operate on the entire OS and application memory space. The Kalray exokernel is protected from the OS and the applications by checking the configurations of the DMA NoC interface at initialization time. The micro-engines, PEs and the RM can read into the memory and write data in the packet-shapers. The packet-shapers then send data in the NoC with a pre-configured route and destination Tag. The DMA Rx writes in the memory the new incoming data to the window referenced by a Tag in the NoC header packet. On transfer completion, an Eot increments a DMA register counter related to the DMA Rx Tag as seen in Algorithm 3. 

DMA NoC Interface Configurations

Fundamental Mechanisms for Communications and Synchronizations in Distributed Computing

When a notification from a DMA Rx Tag or a DMA micro-engine occurs, the notified processors go out of the idle state, or future execution of the idle instruction will not idle the PE. A clear of the PE wake-up information should be done by software hereafter.

Performance, Results: Latency & Throughput

We use a multi-CCs execution model with a low-level POSIX-like (Pthreads) environment for benchmarking. All measures were made onto an MPPA ® operating at 500 MHz with one or two 1066 MHz DDR3. Each DDR3 bus size is 64-bit wide which leads to a theoretical and maximum memory bandwidth of 8.5 GB/s, and 17.0 GB/s using 2-DDRs. The NoC is 32-bit wide operates at 500 MHz too; therefore, it provides a bandwidth of up to 2.0 GB/s per link. The SMEM of the CC has 1 NoC link providing 2.0 GB/s per link direction. However, we use a typical data NoC payload packet size of 32 flits with a header of 2-flits for a total typical packet size of 34 flits. Thus, it leads to a maximum efficient data transfers throughput of 2 * (32/34), which gives 1.88 GB/s full-duplex. The memory throughput is defined as the memory bandwidth on which the node(s) or processor(s) are reading or writing. The latency is defined as the time between the initiation and the completion of a transaction; thus, it will depend on the size of the transaction. Firstly, for DDR memory accesses, we achieve more than 50% of maximum theoretical throughput for data transfers larger than 4 KB and 94% for 32 KB in all topologies. Secondly, it can be noticed that RDMA puts are better than gets. It is due to remote server contention which is the point of serialization for the configuration of the DMA interfaces. Indeed, on the software point of view, outstanding puts only rely on local flowcontrol whereas outstanding gets rely on remote flow-control. Remote flow-control is more complicated as it requires more software interactions with the DMA NoC interface. We measure that our software implementation of RDMA support reaches more than 70% of the peak hardware throughput for a contiguous data NoC stream size larger than 8 KB.

Memory Throughput

To conclude, the RDMA throughput provides the user application with efficient use of the hardware, when having data stream size greater equal than 8 KB, and manages complex flow-control mechanisms. Providing the programmer with performance and implicit flowcontrol eases the implementation of explicit communications. 

Memory Latency

The software in charge of configuring the DMA NoC interface introduces some latency. Highly-coupled parallel software often leads to poor performance onto massively parallel architectures. Therefore the transaction latency on such architectures is critical when dealing with complex data dependence patterns that imply inter-clusters communications (e.g., low-latency 6-steps Fast Fourier Transform (FFT) or low-latency CNN inference). However, depending on the spatial and temporal memory locality, it is not always possible; and thus, the latency of the transactions becomes important. We model the total roundtrip latency of the RDMA software/hardware engines when there are neither congestion nor user/kernel interruptions. T T (B) is the Time to Transmit B bytes and is given by: T T After the rupture point, this software latency becomes negligible compared to the latency the of DMA micro-engine transfer. When there is no contention, for instance, as observed in curve 1-DDR-4-CCs, we have precisely a curve derivative of 3.76 bytes per cycle after this rupture point. Moreover, after this rupture point, the latency is impacted by the bandwidth of the external memory, that is either the DDR or the SMEM of the CC.

Network-on-Chip Scalability

A strength of NoC-based manycore processors is the ability to scale on non-interferent inter-node data transfers. The communication patterns are the following: each Compute Cluster (CC) initiates an RDMA Put to a neighbor using NoC routes that do not overlap between each other at runtime. When using 1 CC, we use the loopback feature of the NoC interface. No NoC link sharing or point of serialization occur, but the share of the SMEMs for the DMA NoC interface reads and writes. The SMEM is a multi-bank interleaved memory of 16 banks, and each bank can sustain 8 bytes per cycle; therefore, providing a bandwidth of 64 GB/s, this is not the bottleneck in our measurements.

Remote Atomics Performance

We benchmark the latency of the active message engines as they are used for synchronization and reduction operations. Figure 5.11 shows the latency on different matrix size for both asynchronous and blocking calls. In abscissa, we show the number of initiator CCs that are targeting either in the spread or centralized mode the 16 CCs of the manycore. Spread mode means that all initiators change their target CC each time they are sending a request. They all target different CC. It can be understood as a scatter mode with no overloading on receivers. It is quite well load-balanced, and the best performance is expected. Centralized mode means that all initiators target simultaneously the same node, thus overload this node by increasing request processing. It is the case of the reduction pattern for instance. It aims to measure the worst case of all possible active message scheduling schemes at execution.

The best case initiator latency on a posted operation is 230 cycles (418ns), for instance, postadd. The round-trip latency for the completion of a fetchadd operation is 1109 cycles, 2.2µs. Lots of conflicts occur when the 256 PEs send requests to the same cluster. Curve "Async-Centralized-16-PEs" with 16 CCs shows such conflicts as this has a higher execution time. In such a configuration, the N-to-N flow-control is generating much traffic to avoid the corruption of software job FIFOs. The implementation can sustain such contention; however, the latency explodes. An execution time of 17.5µs in asynchronous mode is measured, whereas an execution time of less than a 1µs is measured when there is no congestion.

Remote Queue Throughput

Remote queues provide an elementary support of two-sided communications for small lowlatency atomic messages (1-to-1 and N-to-1). Regarding the benchmark conditions, each CC has a queue where the IO is sending messages to the CCs. Then the CCs gets this message, sent by the IO, and responds using a remote queue message in N-to-1 mode. CCs are running concurrently; therefore, we use the N-to-1 feature for data NoC packet atomicity. The hardware serializes received messages using this N-to-1 feature on the IO side. For small messages, the results show that a simple double-buffering using 2 CCs saturates the number of IOPS for one IO master PE. For messages bigger equal than 128 bytes, the IOPS drops, as the time spent by the IO to send the message increases linearly with the message size.

Such a communication pattern is crucial as it is used in offloading. Therefore, we provide the limitation of such implementation when fine-grained parallelism is required by an offloaded application, where the control is done by a host processor. In our case, the IO is considered as a host processor, that is offloading computations onto the compute matrix (though job queue commands).

Advanced Asynchronous One-Sided Support

This section presents the use of the Asynchronous One-Sided (AOS) in the Kalray Linux Kernel ported onto the Input/Output Subsystem (IO) in Section 5.6.1. Also, we propose the use of AOS in the OpenCL implementation presented in Section 5.6.2.
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Support in the Linux Kernel

In the latest MPPA ® AccessCore toolchain release (> 3.0), Linux, explained in Section 2.4.1, aims to be the primary Operating System (OS) running on the Input/Output Subsystem (IO) of MPPA ® . Indeed a port of the Linux OS has been performed onto 4-core of an Input/Output Subsystem (IO) of MPPA ® . It is possible thanks to the shared L1 data cache of IOs as the Linux OS requires data cache coherency.

AOS was initially designed to operate at a bare-metal level for high-performance. As Linux is a rich OS, it is mandatory to have a driver to access the AOS services. A driver provides clean isolation between the user-land and kernel land, manages concurrent accesses to the real hardware resources and makes it possible for the Linux kernel to check user commands from Input/Output Control (IOCTL) in such a way that it will not corrupt the Linux kernel. The memory swap feature of Linux is not activated in the Kalray port onto the Input/Output Subsystem (IO) of MPPA ® . Therefore, in collaboration with two engineers, Guillaume Thouvenin (for the driver skeleton and tests) and Benjamin Mugnier (user library and tests), the AOS engines were ported in the kernel space of the Kalray Linux.

The driver skeleton consists of the creation of a new driver in the Kalray Linux, the factorization of some of the IOCTLs, finding the proper sequence for initializing the AOS driver at Linux boot time and the deployment of the AOS micro-firmware for efficient scheduling of AOS jobs as in Algorithm 4. The user-space library performs the required IOCTLs to invoke in kernel space (in the driver) the AOS services.

AOS Engines in Linux Kernel Space Most of the work consisted in porting in the Linux kernel space the one-sided and two-sided operations of AOS namely, the RDMA Put/Get operations, the remote queues and the remote atomic operations. The biggest challenges were to deal with the virtual memory address space and the Kalray heterogeneous Linux memory map. The DMA NoC interface does not support IOMemory Management Unit (MMU). The translation between the virtual memory and physical memory for initiating DMA NoC data transfers has to be managed by software. The translation between the virtual and physical address space is done in the kernel space using the virt_to_phys function once the address virtual address has been retrieved in the kernel space. Also, a Continuous Memory Allocator (CMA) allocator is provided for dealing with continuous memory space for efficient big memory buffer data transfers. Otherwise, buffers are split across the paged virtual memory space and a lot a software overhead is added as there is no IOMMU support in the Kalray DMA NoC interface.

Extensions and Support of the Standard async_work_group_copy() in the Kalray OpenCL

As seen in section 4.1.3, the OpenCL standard defines primitives providing explicit memory accesses between the __global memory address space and the __local memory address space. Our new designed AOS engine provides the necessary back-end to implement those standard primitives of OpenCL efficiently. Indeed, the AOS library implements out-of-thebox the required primitives to support standard OpenCL functions: "async_work_group_copy()" and "async_work_group_strided_copy()". The Kalray's OpenCL runtime operates at low-level (bare-hypervised), as such, most of the work was to initialize the AOS engine in the initialization part of the OpenCL runtime. The most complicated part was the interoperability of the AOS engines and the Distributed Shared Memory (DSM) systems, regarding resource sharing and boot synchronizations. In
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collaboration with Romaric Jodin, as the AOS primitives are part of the low-level runtime, we also had to expose these new primitives, and allow them to be called from OpenCL-C kernel. Indeed, OpenCL kernels that are deployed inside the CCs are loaded dynamically; thus, the relocation is performed using a dynamic overlay. Finally, the new support of asynchronous copies in the Kalray OpenCL is now provided with extensions such as 2D and 3D asynchronous buffer copies. Moreover, batched and arbitrary stride-to-stride transfers are also available and part of the Kalray extension. As explained in Section 5.3.6, these functions provide zero-copy asynchronous memory transfers. They are fundamental for performance optimizations on a manycore architectures where the time to access the main memory is high.

Today, async_work_group_copy primitives are the state-of-the-art of the optimization of OpenCL applications onto MPPA ® . Indeed, the asynchronous work-group-copy primitives allow the application developer to pre-fetch data from the __global memory space to the __local memory space to overlap the computations with the communications. The async_work_group_copy primitives give the ability for the developer to bypass the Distributed Shared Memory (DSM) system which yields poor performances when memory access patterns are sparse at the L2 cache geometry. Also, as the Distributed Shared Memory (DSM) system is write allocate at L2 level (contrary to the L1, see Section 4.5.1), it reduces by half the consumed memory bandwidth on write-only memory buffers. As such, the new free bandwidth can be used for other memory transactions, either by Load/Store using the Distributed Shared Memory (DSM) or explicitly using the new asynchronous work-group-copies.

Conclusion

We present the design and illustrate the advantages of a one-sided asynchronous (AOS) communications and synchronizations programming library for the Kalray MPPA ® processor. The motivation is to apply to this and related CPU-based manycore processors the established principles of one-sided communications libraries of supercomputers, in particular: the Cray SHMEM library, the PNNL ARMCI library, and the MPI-2 one-sided communication API subset. The main difference between these communication libraries and the proposed AOS library is that a supercomputer has a symmetric architecture, where the compute nodes are identical, and the working memory is composed of the union of the compute node local memories. Similar to Infiniband low-level API, the AOS programming library supports the Read/Write, Put/Get and Remote Atomics protocols, but these have been designed around the capabilities of an RDMA-capable NoC.

One-sided asynchronous operations are proven to be highly efficient on the MPPA ® NoC thanks to relaxed ordering and easier to use as the initiator is a master on the target memories. Indeed, one-sided communications do not require strict matching whereas the Send/Receive operations do in the two-sided protocol. Our software implementation can sustain more than 70% of the hardware peak throughput when using RDMA Put-Get engines for data transfer sizes greater equal than 8 KB. However, managing resource sharing, flow-control, arbitration and notifications in software has limitations in terms of latency. Based on this implementation and its results, the forthcoming 3rd-generation MPPA ® processor will include hardware accelerations for these critical functions. Very low-latency transfers and peak throughput on small transactions will be obtained, along with respecting important ordering properties for the global memory consistency.

This communications and synchronizations runtime not only provides the user with the best performance on this hardware. It also hides the DMA NoC interface complexity to the programmer without any penalty in efficiency. As explained in Section 5.1, multiple challenges are solved such as complex N-to-N flow control, resource sharing, abstraction of the target processor architecture, and implicit synchronization at memory segment creation. These provide significant ease for the programmer.

The AOS communication and synchronization library [START_REF] Hascoët | Asynchronous one-sided communications and synchronizations for a clustered manycore processor[END_REF] has been deployed in production in the MPPA ® AccessCore toolchain since 2017. It supports diverse application programming of the MPPA ® processor for a range of low-level and in high-level programming environments such as OpenCL, OpenMP, OpenVX (Chapter 9), execution back-ends for static (Chapter 7), and dynamic dataflow (Chapter 8), programming models. The AOS library is also used by Kalray's optimized application libraries like the BLIS [START_REF] Field | Blis: A framework for rapidly instantiating blas functionality[END_REF] framework for high-performance Basic Linear Algebra Subprograms (BLAS), and it is targeted by code generators such as for CNN inference. In 2018, AOS was also deployed in Kalray's networking solutions as one of the foundations for reaching IOPS performance for NVMe use-cases [BYY + 16].

In this chapter, we introduce and provide a new runtime for managing at low-level the threads running on a multi-core processor with shared local memory. The performance of such a multi-threading runtime is crucial, especially when fine-grained parallelism is required. Our New Multi-Threading Runtime (NMTR) is based on lock-free mechanisms [START_REF] Barnes | A method for implementing lock-free shared-data structures[END_REF] [MP92], known to be effective for the implementation of Operating System (OS) kernels, and efficient parallel implementations. In this chapter, we use these techniques to implement a lightweight runtime, adapted to the targeted architecture fitted with shared local memories. These shared local memories support atomic operations in hardware as seen in Section 4.5.4. We explain in this chapter the various implementations of functions and mechanisms operating on the multi-core Central Processing Units (CPUs) of the Multi-Purpose Processor Array (MPPA) ® processor, namely the 2 Input/Output Subsystems (IOs) and the 16 Compute Clusters (CCs). This contribution provides the programmer of the multi-cores with less scheduling and synchronization overheads compared to the state-of-the-art multi-threading runtimes.

The chapter is organized as follows. We present in Section 6.1 the issues to be solved to make the toolchain of the targeted manycore compatible with multi-threading, and the limitations of the target processor when standard codes are executed. Section 6.2 presents in details the new multi-threading runtime and gives the most essential algorithms that were designed to enable efficient multi-threading. The synchronization primitives used by the runtime are presented in Section 6.3, and the multi-thread cooperative scheduler is explained in Section 6.4. In Section 6.5, we provide keys to enable OpenMP based on the GNU Compiler Collection (GCC) libgomp runtime back-end and optimize it. We reduce the used memory of the OpenMP runtime library when its use is ended at the application level. The MPPA ® OpenMP runtime of GCC libgomp depends on our new multi-threading runtime. Section 6.6 explains a new multi-threading mode based on automatic thread yielding onto Direct Memory Access (DMA) job event completion. Section 6.7 presents experimental results evaluating the effect of our contributions on the runtime performances and gives hints to enhance this new multi-threading runtime on MPPA ® .

Controlling and Enabling Threads for a Non-Coherent

Multi-core CPU

The threads are usually managed by a master thread or any other threads having access to the credential or reference to these thread resources. The control of threads is explained in Section 3.1.2, using the Pthread standard. Our New Multi-Threading Runtime (NMTR) provides the most commonly used thread management functions and enables efficient and generic fined-grained multi-threading (e.g., thread creation, synchronization, and semaphores). The internal low-level functions of the runtime are then exposed using the standard Pthread Application Programming Interface (API) that we implemented.

In the targeted toolchain, the Pthread function definitions are given in the newlib opensource library [new]. The newlib is usually built before the final compiler for the targeted machine. As such, newlib provides the definition of most runtime functions or services such as syscalls, input-output operations, errno, memory allocator and the Pthread API definition (a bunch of .h standard files). Our NMTR then implements the Pthread API.

The support of Pthread functions makes it possible to run most Linux multi-threaded applications on a single multi-core Central Processing Unit (CPU) of the Multi-Purpose Processor Array (MPPA) ® which is either an Input/Output Subsystem (IO) or a Compute Cluster (CC). However, out-of-the box multi-thread programs commonly assume a coherent memory hierarchy. As the Compute Clusters (CCs) of the MPPA ® processor do not support a coherent memory hierarchy, the software runtime performs cache management operations at synchronization points, providing software coherency for most multi-threaded programs. However, an off-the-shelf lock-free multi-threaded software, written for performance, will not work as it usually requires a coherent memory hierarchy.

Implementation of the New Multi-Threading Runtime

In this section, we present the diverse states of the thread resource in Section 6.2.1. For performance, the management of false positive, and masked interrupts are explained in Section 6.2.2. Section 6.2.3 presents the basic primitives that are used to control the thread execution.

Logical Thread States

Each executing thread is in a state or a transition at some point during its execution. At the start, threads are pre-booted by the runtime and placed in the idle state. Figure 6.1 shows the typical states of a thread in our NMTR. The states of threads represented in Figure 6.1 are a coarse-grained simplification of the actual thread implementation. Details of the actual thread states and their implementations are explained in Section 6.2. 

Running

Dealing with System False Positives and Masked Interrupts

In this section, difficulties to achieve high-performance implementation for our NMTR are exposed. The problem of interrupts is explained and hints to overcome this issue are suggested. Solutions are then adapted to our proposed NMTR.

An interrupt is an external event that stops the current execution of the running thread, to make it switch to another function handler. An interrupt handler is usually a short procedure. However, the Operating System (OS) must perform a full context switch. When the interrupt handler completes, the initial thread is resumed.

Interrupts Issues

Interrupt-based systems are widely used in computer systems for dealing with external events. As such, interrupts trigger actions, possibly when one or several events occur at some point during the execution. On a large system, many events can happen during the execution. Therefore, dealing with interrupts usually leads to poor performance, because of the following four issues:

1. Instruction and data cache stalls (misses) due to a loss of locality as the core switches to other handlers.

2. Core context switch. Additional latency is due to the spilling of the entire register file memory and reloading another context from memory. Depending on the operating system, multiple switches between the user-space and kernel space must take place.

3. The aggregation of several interrupts in the same interrupt handler that requires additional software control. The core needs to find out what happened: overhead.

4. Thread management overhead. Each thread may be blocked on one or several conditions which must be checked by the scheduler: more overhead.

In high-performance computing, interrupts are known to be the wrong approach for the implementation of effective control of fined-grained external events [START_REF] Cerrato | Supporting finegrained network functions through intel dpdk[END_REF]. For latency optimization, experts would instead use polling to react faster. Furthermore, in the Linux kernel space, such polling mechanisms with disabled interrupts are used to make lowlatency time reaction possible. However, limitations can be reached on such "best effort" implementations regarding real-time computing.

System Masked Interrupts & False Positive

Interrupts can be masked; if this is the case, nothing happens for the core when the interruption occurs. Indeed, the core does not switch to an interrupt handler when the interruption occurs. Masked interrupts consist in waking the core up if it was idled when an external event is generated by one of the following initiators: Direct Memory Access (DMA), Peripheral Component Interconnect Express (PCIE), Input/Output Subsystem (IO)-Memory Management Unit (MMU) or any other IO device. Instead of switching to an interrupt handler, the core polls the memory or the peripherals for an event. In most OSs, such mechanisms can only be performed in kernel space as they require atomicity, ordering, and the control data must be centralized.

Another issue is the handling of false positives. False positives may happen when cores (Processing Elements (PEs)) share the same events of external resources. In this case, when the cores are awakened, they must be robust to data races in control structures and manage the hardware resource sharing correctly. For performance, locks are prohibited, and we use states (shared data) in memory to perform decisions. These states in memory are usually multiple readers and a single writer. At worst, a lock-free atomic operation is used when multiple writers need to perform atomic updates on some particular data structures in memory. Therefore, the main requirements are always to guarantee atomicity and commit order regarding the handling of the completion of external events. Also, the aggregation of events must be performed to avoid the loss of events. The technique consists of processing every pending request before deciding to idle the core, only in this order. The core goes out of idle state when new external events occur.

Thread Control

As seen in Section 3.1.2, the pthread_|create|join| yield|exit| primitives are sufficient to control the threads. We implemented these functions on the user-space side to make them light and efficient. Indeed, these functions use neither syscalls nor interrupts which can have a significant overhead.

All of these functions are lock-free. On massively parallel architectures, an efficient lowlevel software is achieved using lock-free software implementation when possible. Indeed, when a lock mechanism is used on a congestion state, the latency in cycles of the critical section is given by the number of cores multiplied by the number of cycles of the critical section itself and the latency to take and release the lock when it is available.

The thread object is an opaque pointer from the programmer point of view. Opaque pointers hide the implementation of the object. Many software libraries use such a technique to hide the manipulated objects from the programmers, like the newlib [new] or most APIs of the well-known Khronos consortium.

We provide the pseudo-code of our implementation of the NMTR in Algorithms 6, 8, and 9. Behavioral and implementation details for all the referenced algorithms are also given.

Thread Creation

The creation of threads is a fundamental operation of the NMTR. This procedure let the programmer execute a function handler onto a PE, for parallel computing. In our NMTR, the thread creation function is always called at the user level, providing competitive performance.

The entry point of the main program is executed on the first PE of each multi-core CPU of MPPA ® , which is in our case the CC or the IO. As explained in Section 2.3.2, CCs have 16 PEs, and IOs have 4 Resource Managers (RMs), denoted NB_CORES.

On each PE, it is currently possible to execute up to 4 software threads, denoted NB_SOFT. There is neither preemption mechanism nor thread migration, meaning that the threads are cooperatively executed on the PE to which it is assigned. The cooperative execution means that there is no preemptive scheduling. The PE releases the running thread only on some specific thread management functions that are explained below in this chapter.

The pseudo code for creating threads from any cores is given in Algorithm 6. This algorithm takes as inputs the address of the function to be executed, the address of the data given to this function, the core ID in the range [0 ... (NB_CORES -1)], and a selection mode that either specifies the core to which the function should be executed or choose the core with fewer threads (AUTOMATIC_SELECTION).

The output of the algorithm is an opaque thread object that contains:

• The ID of the core to which the thread is pinned.

• The ID of the software thread running on this core.

• The state of the thread, such as idle, running, exiting or joinable.

• The ID of a slot in a pre-allocated array to store some internal information related to the thread, such as the stack address, the Thread Local Storage (TLS) address, the user callback address, and the architectural states of the k1-Very Long Instruction Word (VLIW) core.

When the Selection_Mode input is set to automatic (AUTOMATIC_ SELECTION ), the core calling the thread creation algorithm selects the first available thread slot, in order, concerning the number of hardware core. A thread slot is an idle soft-thread resource on a hardware PE that is waiting to execute a function handler.

The main thread operates on core 0 slot 0, which is the entry-point of the program running on the multi-core CPU. When creating threads in automatic mode, this main thread selects new thread resources to be placed on a core in the following order: Slot 0 core [1 ... (NB_CORES -1)], Slot 1 core [0 ... (NB_CORES -1)], Slot 2 core [0 ... (NB_CORES -1)], Slot 3 core [0 ... (NB_CORES -1)]. A very efficient implementation is to use the count-trailing-zero1 instruction followed by a compare-and-swap2 to update atomically and concurrently the thread array element of bits, in a lock-free manner (see Line 15 of Algorithm 6).

The streaming loads (uncached) and atomic operations (uncached) are explained in Section 4.5.4 for the k1-VLIW core. In the described algorithms, the compare-and-swap atomic memory operation has the following semantic: boolean = compare-and-swap(old_value, new_value). For the implementation of both the IO and the CC, the k1-VLIW atomics have the same effect as uncached memory operations, as explained in Section 4.5.4.

Thread Yield

The yield operation let the programmer put the calling thread in idle state. The current thread is placed in idle state and ready to be rescheduled once other threads operating on 100 A Highly Efficient Multi-threading Runtime Algorithm 6 Thread Creation Algorithm (this is a thread safe algorithm). if slot_mask == 0 then

9:
Return failure, no thread slot available Return success the same core are idled, at the exception of the main thread to prevent deadlock. Also, if no other software threads are running on the core, it means that only one thread is currently running on the hardware core, thus, the yield operation simply goes to the scheduler, and the scheduler immediately reschedules this yielding thread. The yield operation is given in Algorithm 7. Before calling the cooperative scheduler, all callee-saved registers, plus other registers such as the stack pointer, the return address, the frame pointer for the debugger, the Thread Local Storage (TLS) pointer (__thread attribute to variables as seen in Section 2.4.2) and the Global Offset Table (GOT) pointer for Position Independent Code (PIC) code are stored in the stack. A basic rule of a thread re-scheduling is that the core must retrieve the same state that it has, before the context switch procedure.

Algorithm 7 Thread Yielding (this is a thread safe function). 

Thread Exit or Return

The thread exit or return allows the programmer to terminate the running thread. This operation changes the thread to the Finished state and calls the yield operation.

The NMTR commits all pending writes in the memory and updates the user-space thread object to Finished state. Then the scheduler, explained below in Section 6.4, cleans and removes the thread from the internal slots (compare-and-swap).

When the scheduler is called, the scheduler sets the state of thread object structure to Exiting state. The Exiting state of a thread makes the join operation possible of the thread object structure. The join operation is explained below.

The exit function is either explicitly called by the calling user thread or implicitly called when the user thread function returns. Once the thread becomes joinable, no interactions between the scheduler and the joinable thread are visible. Indeed, the user-space opaque thread structure contains all the required information for the join operation.

Thread Join

The join function allows any threads that own the thread structure address to join the exited thread. The join operation has a synchronization effect with the joined thread, as well as memory consistency maintenance between the joined threads and the thread initiating the joining operation.
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Synchronization Primitives

Synchronizations are unavoidable in parallel computing to satisfy multi-core Read-After-Write (RAW) data dependencies. The efficiency of the synchronization primitives is one of the keys to enable competitive multi-threading at fine-grained. Algorithm 9 shows the architecture of the synchronization primitives. These primitives are usable at low-level by the NMTR or using the pthread API for the barriers, mutexes, and semaphores.

Algorithm 9 Synchronization Primitive Algorithm (this is a thread safe function).

1: init: The memory updated atomically is already initialized and consistent Firstly, the CPU commits in memory all pending outstanding writes. The core uses a write memory barrier to make it possible (see Line 3 in Algorithm 9).

Secondly, the synchronization function attempts to perform an atomic modification in the memory (see Line 5 in Algorithm 9), on failure, the CPU either yields to another software thread if any or return to the user the try-again information for later calls.

Finally, upon success, the CPU executes a broadcast notification to wake-up all potential PEs waiting to be unlocked by the memory modification performed with a lock-free atomic operation (see Line 14 in Algorithm 9).

As the k1-VLIW core lacks memory coherency support, the runtime invalidates by default the L1 data cache when a lock is taken, when a semaphore token is taken, and when a barrier is completed. Indeed, the lack of hardware L1 data cache coherency means that the software must make sure that future Loads (Reads in the local shared memory) see the modifications of the writes in memory of other (physical) PEs or DMAs.

Cooperative Scheduler

The cooperative scheduler makes it possible to run several logical threads on a single core. When a thread is created, it is placed in one of the internal thread slots. The hardware core can execute up to NB_SOFT threads in a cooperative multi-threading mode. Unlike preemptive scheduling, cooperative scheduling makes the multi-threading very efficient as there are no interrupts. Interrupt issues are explained above in Section 6.2.2.

Each time the thread creation Algorithm 6 creates a new thread, the thread is placed in an internal thread slot and marked as runnable for NMTR. When the PE calls the scheduler presented in Algorithm 10, it will schedule one of the runnable threads whenever a specific condition is satisfied. These conditions are explained in Table 6.1.

When executing the scheduler code, the core operates on the stack of the calling thread of the scheduler (this is not preemptive scheduling). Currently, there are no stack overflow checks; however, as stacks are setup at boot time (known by the NMTR), it is possible to check their current state each time the core enters the scheduler. It could also be possible to protect the stack using the MMU feature of the core; but, it was not done due to the lack of time and work priorities. NMTR operates using a cooperative scheduling policy. Therefore, the scheduler is called only at some specific points in NMTR. These points are listed and explained in Table

Algorithm
6.1. When the scheduler is called from a thread, the scheduler tries to run another thread assigned to this core, if any exists. The thread calling the scheduler is then re-scheduled, if the condition (see Table 6.1) that made it yielded before, becomes true. Another specific case for calling the scheduler is right after the boot and initialization of our new NMTR. The scheduler is called on all cores not running the main() function. Then, if a new thread is created by the programmer, the selected idling core will immediately take this new thread and schedule it.

Scheduler: Condition of Thread Scheduling

The scheduler is local to each PE. Each thread is pinned to a unique PE. The scheduler executes threads in Round Robin (RR) policy. It executes the pinned threads in run-tocompletion mode if any. The thread is descheduled only when it encounters one of the primitives explained in Table 6.1. When no threads are runnable for a given core, the core goes in the idle state. To avoid deadlocks (non-progress of any resources), it is important that the core checks all states of threads assigned to this core, before switching to the idle state.

Our newly NMTR makes it possible to associate an event to a specific condition (see the input of Algorithm 10). If this event is NULL (empty) and the selected thread is runnable, the thread is elected. If the event is not NULL and the selected thread is runnable, then a specific condition is evaluated. This mechanism enables conditioning of the schedulability of a thread on a predefined event occurrence. Indeed we use this feature for enabling thread activation on DMA transfer completions. Custom events can be built with user-defined conditions in memory or with other external events.

Using NMTR to Enable OpenMP Multi-Threading

Our new NMTR makes it possible to run an OpenMP multi-threading runtime, thanks to the provided set of features of our contribution. The needed features are the support of thread creations, the semaphores, and the mutexes.

Configuration & Architecture

The libgomp module of the GNU Compiler Collection (GCC) project has been available since 2006. In Section 6.1, our newlib library is a dependency when building the GCC compiler for generating code for the k1-VLIW processor. As presented in Section 2.3.2, the Compute Cluster (CC) is composed of 16 user PEs, and the Input/Output Subsystem (IO) is composed of 4 RMs with a shared L1 data cache. The OpenMP libgomp runtime back-end of GCC uses the sysconf POSIX standard primitive with the _SC_NPROCESSORS_ONLN argument to request the runtime for the number of available threads. By default, we return NB_CORES in both the Input/Output Subsystem (IO) and Compute Cluster (CC) of the MPPA ® processor, respectively 4 and 16.

The definition of the Pthread API within the newlib library allows the GCC compiler to build the OpenMP runtime. Indeed we use the Pthread execution back-end, based on the Pthread API, to make OpenMP multi-threading possible. In Figure 6.2, the process for building and testing the new multi-threading runtime is presented. First, the GCC is built for generating code for the k1-VLIW core. Then, the newlib and our new multi-threading runtime are compiled. Finally, the OpenMP runtime is built and validated. All of these steps are run automatically each time a developer contributes to the project, integrating all of these tools and runtimes to avoid regressions.

Internal Contributions to GCC libgomp

The OpenMP runtime back-end of GCC, based on the POSIX threads, creates threads using the pthread_create primitive. For performance issues, the OpenMP runtime neither joins nor destroys the created threads. As such, the libgomp places the thread in a wait mode (sem_wait) when a parallel region is ended. On the Linux system, this is not a problem as the memory is usually at least a gigabyte, which means that hundreds of threads can be run. Also, the Linux system can clean up the threads and their used memory when the process is exiting (either on failure or success).

The NMTR does not implement the threads and memory clean up. If the threads started by the OpenMP runtime need to be recycled to do other things, they have to be joined and the memory they used must be freed in order to be recycled for later use. Freeing the memory let the user run legacy OpenMP code at some point, and starts new Pthread threads without using any additional memory. For OpenMP performance, the threads can be left in idle mode, ready to compute the next parallel region.

Destruction of the Parallel Region Threads

The standard OpenMP libgomp runtime of GCC has been modified to make the joining of threads possible. The OpenMP runtime already implements an internal primitive called the gomp_free_thread that makes the master of the OpenMP Team (master of the OpenMP parallel region) send exit messages to the threads of the parallel region. Each master thread stores information about the number of threads that were created for the parallel region in the TLS (See Section 2.4.2). In this TLS memory section, we save the pthread_t opaque pointers that reference the created threads by the OpenMP runtime. On gomp_free_thread call, we then iterate on the saved referenced threads and call the pthread_join primitive on these threads, to clean up all the used memory areas.

Thanks to this contribution, we can now mix OpenMP and pthread multi-threading without any extra memory usage such as the internal stack of threads or thread reference structures. In local memory-based processors, the on-chip memory is scarce and needs to be efficiently managed to reduce the main memory bandwidth, which is one of the main bottlenecks on such chips.

Optimization of the OpenMP Runtime

Another contribution to this runtime for efficient OpenMP is the implementation of a static pool of POSIX synchronization objects that are intensively used by the OpenMP libgomp runtime, each time the master thread encounters an OpenMP parallel region. We implemented a pool of statically allocated mutexes and semaphores, each composed of 32 slots. The allocation and freeing of these resources is performed using a lock-free mechanism based on a 32-bit variable updated atomically by compare-and-swap instructions in memory as in previous algorithms. Each bit set to 1 represents a free slot. When no static slots are available, the runtime automatically switches to the dynamic allocator provided by the newlib library, which is thread-safe.

Auto-threading: Automatic Thread Scheduling on RDMA Completion

Almost all applications optimized for the MPPA ® processor and other DMA-enabled architectures try to overlap communications and computations. To do so, N-buffering techniques are used [START_REF] Zinner | Ros-dma: a dma double buffering method for embedded image processing with resource optimized slicing[END_REF], but they are complicated to implement and validate in real-life applications. Indeed, the explicit writing of software asynchronous DMA transfers by hand is tedious and error-prone. The contribution presented in this section aims to automate the classical double or N-buffering technique of DMA-enabled architectures. The N-buffering technique makes the overlapping of data communications and computations possible. This contribution is inspired by the hyper-threading technology of CPUs (task-parallelism) or hardware multithread of Graphics Processing Units (GPUs) (data-parallelism).

Our contribution instead operates at coarser granularity, as the yielding and re-scheduling operations of a thread is within the hundred of machine cycles whereas, for traditional CPUs and GPUs, it is within the machine cycle. A practical consequence is that memory transfers must be big enough to cover to software overhead of context switching. To understand this section, it is advised to read Chapter 5. The contribution presented in this section is based on the Asynchronous One-Sided (AOS) API and runtime, that are presented in Chapter 5.

Auto-threading: Design and Implementation

The auto-threading mechanism requires support in both our new NMTR and Remote Direct Memory Access (RDMA) communication runtime. As such, the two runtimes need to be compatible with each other. As seen in Section 5.3.3 (AOS library in Chapter 5) in Algorithm 3, it is possible to yield instead of idling the core when the AOS event completion operation is not completed. Firstly, the weak dependency between the two runtimes is explained. Secondly, a typical use-case implementing the automatic yield onto RDMA is presented.

Enabling the Feature with Weak Dependency

Weak dependencies let the developer add objects in an Executable and Linkable Format (ELF) statically and efficiently. In a compiled object file, a 'weak' dependency symbol3 is resolved at compile time statically if the symbol exists within the list of object files given to the linker. If not, the symbol is set to NULL statically. It makes it possible to add statically linked functions to object file very efficiently (the function pointer becomes immediate in the final ELF), and it is configured using the following link flag -Wl,-defsym=foo=toto where 'foo' will take the 'toto' address (case of the GNU Compiler Collection (GCC) linker). With such mechanisms, it is possible to either activate or deactivate at link time some features that are in the hot text path (.text).

A 'weak' dependency function has been implemented in our NMTR that can be overloaded at link time of the ELF.

Interaction with the Asynchronous One-sided Communication Engine

As this 'weak' dependency function is in the multi-threading runtime, the call to the test event function of the asynchronous one-sided API is now possible whenever the user wants to enable it. The call to the function can be seen in Algorithm 10 at Line 25. This function is called to test if a thread shall be re-scheduled or not. The thread becomes schedulable when the data requested by the Asynchronous One-Sided (AOS) communication library is returned and consistent in the memory. If not, the scheduler continues to test events and goes into the idle state when all potential NB_SOFT events are tested unsuccessfully. Each time an event pops in memory or the DMA Network on Chip (NoC) interface, the PE goes out of the idle state of the scheduler, and the PE tries again to test all potential NB_SOFT events.

Thanks this feature, it is possible to write N-buffering techniques automatically only by using more threads on a single core (N B_SOF T = 4 threads at most). We provide a C example in Figure 6.3 to show how to use it in real-life application.

It is also possible to combine the automatic yielding onto RDMA transfers with OpenMP parallel regions. The purpose is to have several (at least 2) OpenMP teams (parallel regions) that are collectively re-scheduled to work together onto the data coming from the DMA. By doing this, the programmer easily implements communication and computation overlapping without coding complex explicit asynchronous RDMA transfers. The completion of RDMA jobs, the allocation of outstanding buffers and the buffer rotation are more straightforward to be performed thanks to the runtime. Indeed when attempting to hide the memory access latency, buffers usually have several states onto which they rotate, namely, the read state, the compute state and the write state, which are not trivial to manage in the application code.

Results, Comparisons and Discussions

Benchmarks

Several benchmarks are used to compare the original multi-thread runtime versus our NMTR. The execution times are measured on the MPPA ® chip, on a single Compute Cluster (CC). We vary the number of Processing Elements (PEs) dynamically during the execution of the benchmark. The results are cross-checked with a sequential reference implementation at the end of the execution. The only change is the multi-thread runtime linked to the benchmark.

Elementary Primitives: Original Runtime Vs NMTR

When 16 PEs are running, the experimental results show that our lock-free NMTR outperforms classical lock-based implementation by a factor of 10 on the barrier synchronization primitives (collective operation). A factor of 15 is shown for the thread create operations, and 22 for the thread join operations.

The barrier is benchmarked by iterating over it ten thousand times in each started threads. No computation is performed between successive calls to the barrier in threads. In Figure 6.4, the overhead latency of the barrier corresponds to one call. A full memory barrier is issued each time a thread enters and leaves the barrier.

For the mutex and semaphore benchmarks, we use both synchronization objects as a locking mechanism to increment a variable in memory. In both multi-threading runtimes, a full memory barrier is performed when entering the synchronization primitive and when leaving it. For both the semaphore and the mutex synchronization mechanisms the new multi-threading runtime is better by a factor of 2. As the locked code section only consists of loading, incrementing, and storing the variable in the shared memory, the latency is mainly induced by the multi-threading runtime itself.

It can be observed in Figure 6.4 that the semaphores and the mutexes of NMTR have different latency, whereas they almost provide the same service. Indeed, a binary semaphore is equivalent to a mutex for the user. The performance difference is due to the implementation of the atomic in memory that is retry-free for the mutex and lock-free for the semaphore. The lock-free implementation of the semaphore uses a compare-and-swap with a loop because it requires a saturation to 0 when no tokens are available. Lock-free guarantees forward progress for one initiator, but the other one needs to retry on failure. The retry-free means that the atomic always succeed; therefore, the throughput is better, providing less overhead at the end. Elementary Primitives: What happens when more than 16 threads are used?

The original runtime does not support more than 16 threads, meaning that only one thread per core is possible. The new runtime of our contribution makes it possible to run up to NB_SOFT per core in both the CC and IO, as seen in previous sections. We run the same benchmark, but more threads are used (×N B_SOF T ) in Figure 6.5. Results with less overhead are observed for the creation and join operations. Figure 6.5 also shows a linear increase of the latency for the mutex and semaphore, but the barrier remains very efficient. Again, the performance is due to efficient the retry-free atomics and the masked interrupts used as events to load and check conditional variables in the memory. 

OpenMP Benchmarks

The original OpenMP runtime starts threads only once and leaves them internally created, waiting on a semaphore, ready to execute jobs for performance. As such, in the benchmark of this section, OpenMP teams of 16 Processing Elements (PEs) are already created, and we measure the speedup obtained onto parallel for regions. In abscissa, we vary the execution time (in machine cycles) of one parallel task of the parallel region. This measure of latency of the parallel task is done outside of the OpenMP region, sequentially, for fair measurements. Hence, the entire overhead of the OpenMP runtime is observed.

The two runtimes (the original one and our new one) are part of the GCC libgomp, but the new runtime implements static memory allocation for both pthread objects and some data structures of the GCC libgomp. Indeed, when the compiler uses our NMTR, as we modified the generic source of OpenMP runtime library of GCC for these optimizations, we automatically benefit from them.

As a result, our new runtime behaves more efficiently than the original one. In Figure 6.6, a gain of more than 10% is shown on fine-grained multi-threading using the OpenMP runtime based on our new multi-threading runtime. The gain is automatic without modifying any source code line. Also, our NMTR makes it possible to use simultaneously pthread and OpenMP multi-threading whereas the original did not.

Toward Higher Performance in the OpenMP Runtime for Fine-Grained Multi-Threading

In the future, the implementation of static pools of internal OpenMP data structures to bypass as much as possible calls to the dynamic memory allocator of the newlib will be considered. Another optimization is to re-implement the generic synchronization code to make it lock-free. The GCC OpenMP libgomp already implements such mechanisms (at some point), using standard builtins as explained in Section 4.5.4. However, some work is still required to make sure that this would be functional and more efficient than the current implementation. Finally, streaming loads for sharing data could also be implemented directly in the libgomp runtime. Such optimization requires much more effort as loads will need to be either explicitly written by hand or by using a named address space 4 as an attribute to pointers to make the compiler generate streaming load on memory accesses through this pointer. Also, it is often required to modify the code so that the loads are schedule earlier as the streaming-load latency for Read-After-Write (RAW) dependency is higher.

Auto-threading

The presented results show the benefice of auto-threading onto RDMA transfers explained in Section 6.6. The data transfers are coded synchronously and are easily readable. We run three benchmarks, namely the copy, vector add and an image filtering operation. These applications are greedy in terms of memory. They show how efficient our new auto-threading mechanism is when yielding onto the completion of RDMA transfers. We measure the main memory bandwidth (external) of the application, that is linear with the execution time. The memory bandwidth of the application is defined as the throughput of the application. Without auto-threading, such synchronous data transfers induce stalls of the thread that initiates the data transfer(s); thus, it has less performance as we see in Table 6.2. Such measures provide the efficiency of the memory throughput which is the purpose of the auto-threading feature, that is, hide the memory access latency. On the vector add benchmark, we show an execution time speedup of 60% when enabling the auto-threading feature. The stall time of the PE onto the waiting of the completion of RDMA transfers is almost reduced to the overhead of a context switch. In this case, the system is not bound by the memory wall as only one PE is used. Performance could be better if we optimized the benchmarked use-case in assembly using classical optimization like Single Instruction, Multiple Data (SIMD) and streaming memory access with packing. The kernel could also be parallelized in the CC, using only one PE to perform the RDMA communications.

Conclusion

This chapter proposes a new implementation to make lightweight multi-threading possible on a multi-core Symmetric Multi-Processor system (SMP). Main problems are explained, and the low-level implementation is provided to overcome the issue of standard locking mechanisms [START_REF] Massalin | A lock-free multiprocessor os kernel[END_REF]. Performance improvements here are mainly due to the lack of optimization in the original runtime. Indeed, the original runtime uses locking mechanisms when atomicity and commit orders are required to accesses a shared resource. We instead use lock-free mechanisms for atomic updates of shared data structures and order the memory accesses to them. This chapter shows that writing such runtime is not a trivial task as it requires mastering the architecture along with managing the memory consistency and coherency of low-level parallel software at the system level.

OpenCL Task-Parallel

This new multi-threading runtime is used in the proof-of-concept of the OpenCL task parallel runtime, but also in the OpenCL data parallel runtime running in production. The OpenCL task parallel model was elaborated in collaboration with Minh Quan during his Ph.D. thesis. In OpenCL data parallel model, each PE of a Compute Cluster (CC) (Compute Unit), is a Work-Group as explained in Section 3.2.2. Such a strategy represents a severe bottleneck regarding the local (__local) memory of the Compute-Unit as it cannot be shared across cores of the same Compute Cluster (CC) (Compute Unit) (64 KB of local memory maximum). The OpenCL task parallel model maps a Work-Group on a single Compute Cluster (CC) meaning that only one PE executes the Work-Group and the threads need to be managed inside the Work-Group. Such a mode allows much bigger local memory size (1 MB), that is useful for advanced data pre-fetching and for keeping the hot data path as close as possible to the PEs within the Compute Cluster (CC). With assembly optimization, larger local memory for asynchronous RDMA prefetching and explicit multithreading inside the CC, Quan and I obtained an execution time three times better than the original OpenCL data parallel, using the OpenCL task parallel mode for a General Matrix Multiply (GEMM) 4096 * 4096 use-case [START_REF] Kågström | GEMM-based level-3 BLAS[END_REF].

Maturity, Standard Tests, and Today's Usages

Our NMTR has high maturity. NMTR supports the most used pthread primitives like mutex, spin, barrier, and semaphores. It also supports the TLS data section that is heavily used in the newlib and the OpenMP runtime of GCC. The runtime also supports the entire C/C++/Fortran OpenMP standard test suite of GCC 4.9. Finally, since late 2017, it is used in most Kalray's products internally, and it is today the default multi-threading runtime since AccessCore 3.0 (Kalray's toolchain name). For instance, it is used in the OpenCL runtime, Kalray Neural Network (KANN) runtime, the OpenVX framework presented in Chapter 9, the Synchronous Parameterized Interfaced Dataflow Embedded Runtime (SPI-DER) runtime presented in Chapter 8, and the Kalray's networking solutions.

CHAPTER 7

Software Synthesis based on a Hierarchical Static Dataflow Model for a Clustered Manycore Processor

This chapter presents a new strategy for mapping a static dataflow programming model the targeted manycore. Indeed, manycore processors are not widely deployed due to their programming complexity, and because applications are not adapted to these architectures. To exploit the performance of complex clustered manycores, the application has to be split and mapped onto the available cores. This task is complex and time consuming. Dataflow programming models inherently make it possible as they represent an application with a set of actors (functions) communicating between each other with First-In-First-Out queues (FIFOs) (data) as already seen in Section 3.3.

Computer system architectures are more and more complex. They often implement more Processing Elements (PEs) and memories. Computer system architectures are hierarchical in terms of memory architectures (caches and local memories) but now also concerning Processing Elements (PEs) architecture (i.e., clusters of cores for instance). It is a way to both increase the computation capabilities and keeps the system under control.

Research on dataflow modeling leads to the continuing introduction of new dataflow models. The hierarchy has been introduced in several dataflow semantics. For instance, static extensions of the Synchronous Dataflow (SDF) model such as the Interface-Based SDF (IBSDF) [START_REF] Piat | Interfacebased hierarchy for synchronous data-flow graphs[END_REF] and the Compositional Temporal Analysis (CTA) models have been proposed to enforce the compositionality of applications. The hierarchy of these models enhances the expressiveness and conciseness of the models while preserving their predictability. A model is compositional if the properties (schedulability, deadlock freeness) of an application graph composed of several sub-graphs are independent of the internal specifications of these sub-graphs [START_REF] Ostroff | Abstraction and composition of discrete real-time systems[END_REF]. IBSDF interfaces are inherited by the Parameterized and Interfaced dataflow Meta-Model (PiMM) meta-model and its application to the SDF programming model called Parameterized and Interfaced SDF (PiSDF) [DPN + 13].

Previous works on Parallel and Real-time Embedded Executives Scheduling Method (PREESM) use the hierarchy feature to ease the application description. IBSDF has first proved to be an efficient way to model dataflow applications [START_REF] Pelcat | Physical Layer Multi-Core Prototyping: A Dataflow-Based Approach for LTE eNodeB[END_REF], and most of the applications developed using PREESM, and the PiSDF programming model uses the hierarchy feature. More recently, Deroui and al. used the hierarchy feature of IBSDF for the fast throughput evaluation of applications [START_REF] Deroui | Relaxed subgraph execution model for the throughput evaluation of ibsdf graphs[END_REF][START_REF] Deroui | Throughput evaluation of dsp applications based on hierarchical dataflow models[END_REF]. Manycore Processor The hierarchy feature is not used so far in the mapping/scheduling and the code generation of PREESM. Hierarchical graphs are flattened before they are processed. Flattening all the hierarchy is problematic to process large dataflow graphs for architectures with hundreds of cores. As seen above, the mapping and scheduling problems are known to be NP-complete. The time to compute the scheduling and the mapping increases exponentially with the number of actors to map and with the number of PEs of the targeted computer. The memory allocation is also an NP-hard problem as already mentioned in Section 3.3.4. The use of flattened graphs may also increase the number of synchronizations between PEs during the execution and thus actively degrade the overall system performances. When Piat and al. defined the IBSDF programming model [START_REF] Piat | Interfacebased hierarchy for synchronous data-flow graphs[END_REF], the main idea was to use the hierarchy levels as code closures. The IBSDF fosters sub-graph composition making sub-graph executions equivalent to imperative language function calls. This idea has not been used so far in the code generators of PREESM.

In this chapter, we show that the hierarchy of the dataflow graphs can be used to program efficiently hierarchical computer system architectures. To do so, we exploit the dataflow graph hierarchy of the Interface-Based SDF (IBSDF) model. The upper hierarchy levels of the IBSDF graph are used for the mapping/scheduling between clusters of the Multi-Purpose Processor Array (MPPA), called the coarse grain mapping/scheduling. The hierarchical approach thus reduces data movements between clusters and increases the arithmetic intensity inside clusters. The arithmetic intensity is the amount of processing done for each byte of data transferred to a Compute Cluster (CC). Maximizing the arithmetic intensity is essential to achieve decent performance for applications running on a clustered architecture like MPPA ® or any other multi-core Central Processing Units (CPUs).

The lower levels of the graph are used for the mapping/scheduling inside the clusters. It is called the fine-grained mapping/scheduling. Repetitions of an actor in the IBSDF graph are analyzed and clustered to generate code including Open Multi-Processing (OpenMP) primitives and for loops. The MPPA ® toolchain compiles this code, and it is executed in parallel inside one cluster. This approach makes the mapping and the scheduling of static dataflow application graphs onto the PEs of a clustered manycore architecture faster, while preserving the parallelism of the application.

The contribution presented in this chapter has been designed, implemented and tested in the open source project PREESM. It has been integrated since the PREESM release 2.3, and it requires the Kalray AccessCore release 2.9 or higher for compilation and execution.

This chapter is organized as follow. First, our strategy for targeting manycore processors using IBSDF graphs is presented in Section 7.1. We detail how the coarse grain and the fine-grained parallelisms of the applications are efficiently exploited in Section 7.2. Then, Section 7.3 presents the graph Clustering transformation. Finally, Section 7.4 presents benchmark results, discusses limitations and provides hints for enhancements.

Hierarchy of IBSDF to Target a Hierarchical Manycore Processor

This section explains how the mapping and scheduling can benefit from the hierarchical feature in IBSDF. We illustrate this contribution with an image processing application. This application and its IBSDF hierarchical dataflow graph are presented in Section 7.1.1. Section 7.1.2 explains the design, the choices, and the implementation in the PREESM tool.

A Hierarchical Dataflow Application

We consider an image processing application described by its IBSDF graph in Figure 7.1. The purpose of this application is to apply a commonly used Sobel image filter and two morphological operators (one Erosion and one Dilation) to detect the edges of the processed image.

The IBSDF graph is composed of six actors at the top level of the hierarchy. Three of them, with red borders, are hierarchical actors. Each of the three sub-graph includes a single actor. The actor production and consumption rates are given by a parameter m. This parameter gives the number of execution of the actors. Indivisible data tokens exchanged in this graph are pixel lines of width w. Using the original PREESM workflow, introduced in Section 3.5.1 and represented in Figure 3.12, the Hierarchical Flattening operation replaces hierarchical actors with their sub-graphs.
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In our use-case, when the Hierarchical Flattening is performed, the number of automatically generated actors after the Single-Rate transformation becomes 3 * n * m. The output of the Hierarchical Flattening transformation is the input of the single-rate transformation. The Single-Rate transformation reveals the whole parallelism of the dataflow application. In our case, the Repetition Vector (RV) is used to extract the data-parallelism of the subgraphs. The RV is explained in Section 3.3.4. The actors generated by the Single-Rate and the Hierarchical Flattening transformations have to be mapped on PEs. Precisely, 3 * (n * m + 1) actors and (4 * n * m + 1) communication edges are generated which have to be handled by the scheduler and mapper. Many more would be for complex application graphs.

Strategy: A Trade-off between Levels of Hierarchy

Our new hierarchical approach consists in exploiting the graph hierarchy in the different steps of the development flow instead of systematically flattening it. In the proposed method, we propose to specify whether or not the hierarchical actors should be flattened. In Figure 7.2, the Hierarchical Flattening operation is executed with a certain depth, meaning that the workflow will not flatten all the graph but only up to the specified depth. In the case of the graph presented in Figure 7.1, the depth of the flattening transformation is zero. Therefore, the graph is left unchanged for all actors in the graph. The exploitation of the different levels of parallelism is presented in Section 7.2, and the clustering is presented in Section 7.3. As a summary, the method consists in exploiting several granularities of parallelism captured by nested, non-flattened, hierarchical graphs. We define a clustered actor as a non-flattened hierarchical actor. Clustered actors have larger memory footprints and execution time. They can be mapped onto one core as a single actor. Thus, the complexity to map a single actor is simpler than mapping the equivalent set of actors resulting from a flattening of the graph and its associated single-rate.
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Exploiting Efficiently Two Levels of Parallelism

In the targeted architecture, two levels of parallelism are exploited: the coarse-grained and fine-grained parallelisms. Coarse-grained parallelism is found at the top-level of the hierarchy, where the graph contains clustered actors. Fine-grained parallelism is retrieved in sub-graphs of non-flattened hierarchical actors. In our case, the fine-grained parallelism is extracted from RVs during the software synthesis of hierarchical actors.

This approach aims to simplify the scheduling and mapping for clustered manycore processors but also off-the-shelf Symmetric Multi-Processor system (SMP) processors and multi-core Digital Signal Processor (DSP). Indeed, the software synthesis for hierarchical actors produces For-Loops, for loops like in the C semantics, that are exploited by compiler optimizations to extract the Instruction-Level Parallelism (ILP) (i.e., unroll and jam), or by OpenMP compilation passes that generate parallel code. Therefore, our proposal takes advantage of both high-level parallelism presented in Section 7.2.1 for the Compute Cluster (CC) (but also for the PEs for SMP architectures) using the hierarchical mapping strategy, and low-level parallelization explained in Section 7.2.2 for PE level. Section 7.2.3 explains how the software synthesis of explicit communications is performed. Optimization choices are provided, as well as a comparison to explicit handwritten communications using standard communication libraries.

Our approach lets the programmer select the most adapted hierarchy level. The PREESM programmer may decide what must remain hierarchical and what should be flattened. The scheduling is computed after the Single-Rate operation is applied.

High-Level Hierarchy (Inter-Cluster)

The mapping of the high-level hierarchical actors is used for coarse-grained parallelism granularity. The high-level is applied to inter-cluster parallelism. The coarse-grained mapping is supported by the hierarchy feature of the used dataflow model and has several advantages.

Firstly, the hierarchical actor software synthesis makes it possible to generate memory access automatically coalescing for actors of their sub-graph, whereas flattening the hierarchy generates many smaller data transfers (one for each firing of the actor in the flattened sub-graph). Memory access coalescing is a key to increasing the performance of the memory system. The sizes of the memory transactions are bigger; therefore, fewer memory transactions are required for a given use-case.

Secondly, the hierarchical actor software synthesis reduces the mapping complexity drastically when the number of PEs and actors increases. The CCs of the MPPA ® processor are seen each as a single multi-core CPU, when our new coarse-grained application mapping is used. On a clustered architecture, hierarchical actors are mapped on a CC, whereas actors of sub-graphs are mapped at the core level. Once the parallel region of the CC is ended all contributors merge all results to the Display actor.

The proposed technique provides efficient usage of the on-chip memory and coalescing for data transfers. Moreover, the on-chip and off-chip memory are automatically allocated using the heterogeneous memory static allocator described in [START_REF] Desnos | Distributed memory allocation technique for synchronous dataflow graphs[END_REF]. The used memory allocator supports both distributed memory and shared memory architectures.

Low-Level Hierarchy (Intra-Cluster)

The new support of hierarchical actors mapping and code generation allows both code factorization and more computational efficiency on fine-grained parallel code regions. The low level exploits intra-cluster parallelism. Fine-grained parallelism implies several concurrent computations, where the synchronization and memory consistency need to be managed efficiently. The generated code sections of hierarchical actors are automatically parallelized using OpenMP (if available). The intra-cluster parallelism is automatically extracted from the Repetition Vectors (RVs) of actors that have a potential source of parallelism in subgraphs.

For instance, if a hierarchical actor A consumes N * M tokens and actor B in hierarchical actor A consumes N , an RV of M (see Lines 8, 12, 16 in Figure 7.4) is automatically extracted and printed by the parallel code generator. This new feature allows for the automatic extraction of the RVs in sub-graphs, that contains actors that are a potential source of parallelism. In most cases, the number of loop iterations is known, as the firing of Manycore Processor actors is known thanks to the Directed Acyclic Graph (DAG), but also as the SDF graph is schedulable. The loops are generated in C language using a static finite For-Loop. A For-Loop is sequential, but our new software synthesis adds an "omp parallel for" to get parallelism for any architecture supporting the multi-threading model of OpenMP 3.0.

The parallel section is automatically inserted unlike [CPG + ]. In this case, OpenMP 3.0 is very efficient as the number of For-Loop iterations is known at compile time. Thus thread-level parallelism is used for the hierarchical actors that are mapped onto the CCs. Synchronization points are the fork and join of the OpenMP runtime (see Lines 7, 11, 15 in Figure 7.4). The memory consistency points and the placements of synchronization points are known at compile time. Therefore, at the cluster level, the execution time is predictable, not only for sequential execution but also for parallel execution when using OpenMP 3.0 on finite For-Loops.

Automatic Generation of Explicit Communications between Clusters

On clustered architectures, the efficiency of data communications is crucial. A significant contribution is the use of automatically generated Remote Direct Memory Access (RDMA) explicit memory accesses transfers. We show that explicit Direct Memory Access (DMA) communications outperform the shared memory approach provided by data caches through Load/Store. Moreover, the programmer does not need to know what happens at neither compile-time nor runtime. Indeed, as the application is already broken into pieces, thanks to the dataflow model, the automatic generation of explicit data communications is entirely hidden from the user once the dataflow application is described. Coherency, consistency, and synchronizations are also dealt with automatically by our new PREESM tool.

Our code generation is similar to [HDB + 12], based on OpenMP 3.0, mixed with MPI-3 and using one-sided communications. The main difference is that our parallel code is generated automatically from an IBSDF dataflow graph and not handwritten as in [HDB + 12]. The one-sided communication engine, used in this chapter for targeting the MPPA ® processor is presented in Chapter 5. The one-sided operations make it possible for the Compute Clusters (CCs) to access asynchronously or synchronously the main off-chip memory and other Compute Clusters (CCs) local memories.

Regarding MPPA ® 's new code generation support, the Compute Clusters (CCs) are seen as a single multi-core CPU for mapping at the coarse-grain level. The generated code is very close to the OpenMP mixed with Message Passing Interface (MPI)-3 [HDT + 15] [HDB + 12] using one-sided communications. However, we are here able to automatically generate parallel code using an IBSDF dataflow graph as input.

Concerning inter-cluster parallelism, the synchronizations are performed by explicit transfers directly across CCs at lines 2 and 22 in Figure 7.4. With our current software synthesis, inter-cluster data transfers go to and from the external memory (Double Data Rates (DDRs)).

The Compute Clusters (CCs) perform explicit memory data transfers that are based on highly efficient RDMA Put Get memory accesses thanks to the local memories. In Such code generation pattern has several advantages for an architecture like the MPPA ® but also for other DSPs or general purpose processors. On the MPPA ® , we automatically perform coalesced memory accesses at code generation as shown in Figure 7.4. Memory coalescing means that multiple data transfers are merged in one. It allows both the reduction of main memory data requests (requests traffic) and optimizes the usage of the local memory (local memory). When chaining kernels locally (i.e., IBSDF actors), without any communications other than intra-cluster communications, and synchronizations (shared memory), the execution overhead is very small.

The automatic optimization provided by our code generated limits data movements that are both very time and power consuming. The code generated in Figure 7. 4 illustrates what is done on dataflow applications when both spatial and temporal data locality is exploited.

Automatic Clustering of IBSDF Graph

This section presents the new Clustering operation shown in Figure 7.2, represents the workflow described in this chapter. We explain the design and implementation of the algorithm itself in Section 7.3.1. Section 7.3.2 contents the different heuristics regarding clustering decisions, the clustering rules and the modeling of internal loops. The modeling of internal loops is the intermediate representation that is later used to synthesize parallel loops.

Algorithm: Design and Implementation

The clustering of a dataflow graph groups two adjacent actors (nodes) of the graph. The clustering algorithm is an automation of the Pairwise Grouping of Adjacent Nodes (PGAN) theorized by S. Bhattacharyya in [START_REF] Shuvra S Bhattacharyya | Software synthesis from dataflow graphs[END_REF]. The Clustering operation has a side effect which is the loss of the inherent parallelism expressed in SDF models. When actors are grouped, a nested loop schedule is built as represented in Figure 7.5. The loop iterations are set according to the Repetition Vectors (RVs) of the grouped actors. Thanks to those nested loops, it is possible to make them run in parallel using data parallelism. Manycore Processor

The pseudo-code presented in Algorithm 11 gives the automated process of the Clustering workflow. In practice, only acyclic graphs can be clustered. As shown in Figure 7.2, the Clustering is performed after the Hierarchical Flattening operation, where the level of flattening is specified by the programmer.

Algorithm 11 operates on the entire top level graph. The algorithm retrieves the remaining hierarchical actors off the top level graph, and, it gets each associated graph recursively to flatten everything.

Then the clustering is executed N -1 times. N is the number of actors constituting the sub-graph to be clustered. At Line 9 of Algorithm 11, the 'Get two mergeable actors' process is an external function of the algorithm that follows specific rules and where different strategies can be tested, as explained in Section 7.3.2. Once the sub-graph is completely clustered, a schedule of nested loops is generated. These loops communicate with each other; therefore, memory buffers have to be set in the memory to make it possible. Currently, this static memory allocator uses a single buffer, and a pointer is incremented each time a loop iteration is started. However, more advanced static memory allocation techniques can be used as already presented and implemented in Desnos [Des14].

Hierarchical actors that are neither flattened nor clustered will generate errors in the synthesis workflow. Therefore, after the clustering operation, hierarchical actors are associated with nested loops. These nested loops, their related actor functions, their input buffers, and their output buffers are printed during the software synthesis. Add Loops to the attributes of Actor (for software synthesis) • Select Actors with the smaller memory footprint first Such clustering parameters can then be added as a parameter to the workflow to be tested accordingly depending on the dataflow application graph.

Experimental Evaluation

Our example is an image filtering application consisting of basic image processing steps, namely the sobel, erosion, and dilation kernels. Benchmarks have been run with a VGA resolution (640 * 480) for all architectures. The main purpose of this experimental evaluation is to show that the proposed hierarchical code generation has benefits for both mapping/scheduling as well as for the memory allocation. All benchmarks have been compiled using the GNU Compiler Collection (GCC) using -O3 optimization. No assembly nor intrinsic optimization are used, as the main goal is to show our ability to exploit automatically both the parallelism and the data locality of a dataflow application.

Kalray MPPA ® : Regarding the benchmark environment, the MPPA ® is plugged into the motherboard of an Intel host processor where MPPA ® 's Input/Output Subsystems (IOs) perform Peripheral Component Interconnect Express (PCIE) communications at runtime. Two execution modes are used. The first one uses the software emulated L2 cache where main memory accesses are done by Load-Store. The second uses explicit RDMA operation to perform one-sided memory accesses as presented in Chapter 5. A code sample for one-sided operations is listed in Figure 7.4. We focus our analysis on explicit memory accesses over RDMA, as the software emulated L2 cache provides lower performances because of irregular memory access patterns.

Inside the Compute Cluster (CC), the Kalray's proprietary Operating System (OS) runs an OpenMP implementation based on GNU Compiler Collection (GCC) libgomp as seen in Chapter 6. When the L2 cache is not used, the buffer allocation is done by [START_REF] Desnos | Distributed memory allocation technique for synchronous dataflow graphs[END_REF], the generated code size, the OS size, and the library sizes should never exceed the 2 megabytes of local memory for each CC. If it is the case, both the workflow and the runtime (for advanced users) outcome an error.

Texas Instruments (TI) C66X: Texas Instruments (TI) C66X runs 8 DSP cores at 1 GHz. This Multiprocessor System-on-Chip (MPSoC) has a hardware L2 data cache enabling accesses to the main memory. IO communications are managed before and after running the application. Paper [SJA + 13] presents the efficient bare-metal implementation of OpenMP multi-threading for the TI C66x.

Intel ® Core i7: The Intel ® Core i7 is a high-end Sandybridge architecture operating at 3.6 GHz with a DDR3 technology as main memory. The OS is a Linux system, and the used OpenMP runtime is based on the GCC libgomp library.

Results and Comparisons

This section presents the strong scaling results for three multi-core architectures, but the main focus is given to the Kalray's manycore processor. Table 7.1 presents the measured performances using the hierarchical actor software synthesis presented in 7.2.2. Compared to the single-core execution, a fair speedup is achieved on the TI C66X, with a maximum speedup of 7.2 on 8 cores. The Intel ® Sandybridge off-the-shelf processor also presents fair speedup, up to 4.2, which is fair for an architecture with 4 physical cores (hyper-threaded).

Strong scaling is defined as how the solution time varies with the number of processors for a fixed total problem size. Strong scaling is important as it shows how efficient is the parallel strategy of the application when the number of core increases. Moreover, it shows how efficient is the additional code or the sequential code that is used to control the parallelization of the application. If the multi-threading software runtime has indecent performance, the strong scaling might rapidly saturate and drop due to the overhead of the software thread scheduling. Also, bad strong scaling results can also be due to a fined granularity of the parallel region. Table 7.2 shows mono-cluster (CPU of 16 Very Long Instruction Word (VLIW) cores) results using explicit communications and the distributed shared memory which emulates a software L2 data cache for off-chip memory accesses. As shown in Figure 7.4, the software synthesis that uses explicit memory accesses with RDMA outperforms the shared memory approach over the data cache up to 22%. This table shows speedups of 13.4 when using explicit communications, and 11.2 when data accesses are performed by L2 data cache. Therefore, the scalability is efficient in both cases. .6b plots the application performance in fps, measured when using a variable number of PEs per CC, and a variable number of CCs on the MPPA ® . Using one PE in each of the 16 Compute Clusters (CCs) provides lower fps than using 16 PE of a single CC, because of the intensive usage of the local on-chip memory and Network on Chip (NoC) communications are reduced compared to the multi-cluster approach. However, in our case, this runtime overhead remains low as the parallelism is known statically. It can be noticed that performances in 7.6b for one CC are lower than the ones shown in the mono-cluster configuration of Table 7.2.
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Mono

Furthermore, the IBSDF application description provides as parameters the granularity of the different level of parallelism. The idea is to have a memory allocation and scheduling (mapping) aware of the location of the memory compared to the location of the PEs. Such optimization is crucial as unnecessary data movements and the sharing of data (cache stalls on coherent architectures) will make the performances drop drastically. Parallelism is done using OpenMP 3.0 thanks to the automatically generated omp parallel for compiler directives on finite for loops. Then as the application mapping is solved statically, the number of loop iterations is known by the compiler, and thus it is easier to predict the execution time.

A total speedup of 58.7 is reached when using all 16 PEs of all 16 Compute Clusters (CCs). Although we have some scalability, we hit the memory bandwidth wall (Section 7.4.2) of manycore processors when the 256 Processing Elements (PEs) are competing for the main memory (external). Thus we focus on local memory usage at code generation to save main memory bandwidth.

Comparisons with Flat IBSDF Mapping

Performances Analysis For shared memory architectures Intel and TI C6678 EVM, the flat IBSDF gives the same performances as in Table 7.1. Figure 7.6a performances are lower than 7.6b by 4% when using all processing elements of the manycore. This difference is mainly due to RDMA memory accesses coalescing, which are provided by the hierarchical mapping approach. This phenomenon is well shown by Figure 7.7a when using 8 CCs with 16 cores. The flat state-of-the-art IBSDF mapping makes each core perform RDMA transactions, which increases the ratio communication vs compute by 7.8% concerning our new hierarchical approach.

Memory Wall in Manycore The NoC communication overhead measures the time taken by communications of all compute CCs with the main memory using RDMA. Thenceforth, the measurement considers parallel NoC communications and accumulates only the ones whose delays have an impact on the global processing time of a frame. We measure the critical communication path as the system is massively parallel, and some communications are overlapped with the computation of other CCs. In our hierarchical software synthesis method, Figure 7.7b shows where the bottleneck is when the number of PEs and CCs increases. In Figure 7.7b, the lower is the better as it shows the stalls of PEs on off-chip memory accesses (high memory access latency). In this application, NoC communications are less than 8% when using 1/4 of the processor capabilities (for instance 8 CCs with 8 PEs of the MPPA ® manycore processor). Main memory accesses are starting to become significant when using more than half of the chip capability. Indeed, we have many processing elements that are competing for main memory accesses. The ratio between computation and NoC communications is higher than 30% when all PEs of an MPPA ® processor are used. However, the software synthesis code exploits the on-chip local memory when chaining kernels (sobel, erode and dilation). It reduces significantly the pressure on the main memory that is a huge performance bottleneck (main memory bandwidth). But still, Figures 7. 7a and7.7b are crucial to analyze what needs to be optimized on manycore processors. The key to the performance (and parallel scalability) is to exploit the local memories by chaining kernels locally; otherwise, the application is always going to be IO bound [START_REF] Williams | Roofline: an insightful visual performance model for multicore architectures[END_REF]. Nevertheless, in our example, the communication and computation ratio becomes essential when using all PEs. In the next chapters, we focus on automatic buffer prefetching, also using RDMA. Prefetching is crucial to reach the peak performance of manycores as it reduces the stall duration of PE blocked by Read-After-Write (RAW) data dependencies.

Mapping The mapping problem is NP-complete [START_REF] Brucker | Scheduling algorithms[END_REF]. Its complexity increases exponentially with the numbers of PEs and actors. On a manycore with 256 Processing Elements (PEs), it becomes very complicated for both theoretical mapping algorithms and their implementations. In our case, once the application parallelism is revealed by applying the flattening and single-rate transformation to all hierarchical actors, the resulting graph contains more than 1,000 actors and 800 edges to be mapped on 256 Processing Elements (PEs). Thus, the flat IBSDF graph is scheduled and mapped on the processing elements in 26 minutes. With the hierarchical mapping approach, the process lasts less than one second. On more complex applications, for instance, use cases with more than 10,000 actors, the hierarchical approach is a must-have feature as the mapping time explodes.

Conclusion

In this chapter, we introduce a new technique to exploit both coarse-grained and finegrained parallelism based on a hierarchical dataflow programming model. The main advantage of this strategy is that it provides the transformation workflow with scheduling and code generation simplifications. Our strategy also improves data locality, which is crucial for high-performance and power consumption. Indeed data movements have a significant impact concerning time and energy, especially for embedded MPSoCs.

The fine-grained parallelism is retrieved by applying omp parallel for onto Repetition Vectors (RVs) automatically extracted in a hierarchical actor. We show that this approach matches not only manycore processors with a distributed memory architecture but also multi-core architectures with shared memory.

In the future, System-on-Chip (SoC) will embed more and more heterogeneous PEs and memories. Therefore, the mapping on such architectures will become more and more complex. In our example, we used a low-level image processing application and show significant speedups when the number of PEs increases. The mapping of an application is not a simple problem, and it is becoming more and more involved with increases in architectural complexity (number of PEs, PE heterogeneity within the same SoC, memory hierarchy, hardware accelerators). The hierarchy of dataflow programming models is one of the key assets to program complex architectures like the Kalray MPPA ® manycore processor.

CHAPTER 8

Porting an Embedded Runtime for Executing Reconfigurable Dataflow onto a Clustered Manycore Processor

As shown in Chapter 7, dataflow models can be used at compile time to ease the programming of manycore processors. The programming model used in this work at compile time is the Interface-Based SDF (IBSDF), and its hierarchical semantics. IBSDF interfaces are inherited by the Parameterized and Interfaced dataflow Meta-Model (PiMM) meta-model, and its application to the Synchronous Dataflow (SDF) programming model, called Parameterized and Interfaced SDF (PiSDF) [DPN + 13]. PiSDF extends the semantics of IBSDF by introducing explicit parameters, and a parameter dependency tree. The primary goal is to increase the expressivity of the IBSDF, and thus, to model advanced real-life applications in which much control and decisions have to be handled at runtime. Compared with dynamic dataflow semantics, the PiSDF maintains strong predictability, enforces the conciseness, and readability of application descriptions. The parameters introduced in the PiSDF programming model can be modified at runtime. The dedicated runtime called Synchronous Parameterized Interfaced Dataflow Embedded Runtime (SPIDER) has been developed to execute an application efficiently, described using the PiSDF model, as seen Section 3.5.2. Paper [HPD + 14] shows that SPI-DER outperforms Open Multi-Processing (OpenMP), and the dynamic dataflow compiler Open RVC-CAL Compiler (Orcc), proving that the PiSDF offers an excellent trade-off between dynamicity and predictability. The original implementation of the SPIDER runtime supports shared memory based Multiprocessor Systems-on-Chips (MPSoCs), and experiments have been done on Intel ® Central Processing Units (CPUs) and multi-core Digital Signal Processors (DSPs). Supporting shared memory architectures on the recent PiSDF programming model was challenging and a necessary milestone in this research.

We show in this chapter how we have adapted the SPIDER runtime for executing applications described in PiSDF onto clustered manycore machines. The development part of this work has been done by Hugo Miomandre during his final year internship under the supervision of Karol Desnos and myself for debugging. The internship was partially supported by the Mordred project, funded by the GdR ISIS of the CNRS.

Shared-memory architectures are easier to use than distributed memory architectures models thanks to their global address space, and the provided hardware synchronization mechanisms (usually atomics). The key challenges to target the Multi-Purpose Processor Array (MPPA) ® and more generally clustered manycore architectures are listed below.

Porting an Embedded Runtime for Executing Reconfigurable Dataflow onto a Clustered

Manycore Processor

• Initializations of more than 256 Processing Elements (PEs)

• Sharing of resources

• Finalizations and exits

• Memory allocation (distributed and shared memories)

• Synchronizations (distributed and shared memories)

• Communications (distributed and shared memories)

The proposed extension supports Direct Memory Access (DMA)-enabled architectures implementing One-Sided communications developed during this thesis and described in Chapter 5. The original implementation of SPIDER is designed and partitioned as follow: graph modeling, graph transformation, graph scheduling/mapping, memory allocation, synchronizations, and communications. We will see in this chapter how both the architecture independent front-end and the architecture dependent back-end have been modified to make it fit the Kalray MPPA ® manycore processor.

This chapter is organized as follows. Section 8.1 presents the architecture of the SPI-DER runtime. Optimization heuristics regarding the scheduling are explained in Section 8.2. The management of the distributed memory and explicit memory communications are presented in Section 8.3. Finally, Section 8.4 contains results, explains and compares them with previous results given in Chapter 7.

Architecture of the Distributed Dataflow Runtime

SPIDER operates as an offloading runtime similar to OpenCL or OpenMP 4.0. The main application offloads computations on the acceleration cores. The dataflow runtime has a master/slave approach.

As seen in Section 3.5.2, the master process needs a PiSDF graph description of the application generated by Parallel and Real-time Embedded Executives Scheduling Method (PREESM) and distributes at runtime the computation on the slave PEs, called Local RunTime (LRT).

Such a model offers several advantages such as a centralized control, the ability to trigger the offloading of any dataflow graphs, depending on external events, and to manage error recovery on complex parallel systems.

We contributed two ports. The first one uses shared memory, which runs on a single Input/Output Subsystem (IO) of the MPPA ® processor. The second one uses 16 Compute Clusters (CCs) and one IO of the MPPA ® processor, and it performs automatically explicit DMA communications to handle the distributed local memories of the clustered manycore architecture.

The first porting step consisted in compiling the original SPIDER runtime for the Kalray Very Long Instruction Word (VLIW) core using only the bare-hypervised toolchain. Then, using the pthread Application Programming Interface (API), the SPIDER runs on the main program thread, and up to 3 Local RunTimes (LRTs) running on 3 threads are possible using the multi-threading runtime presented in Chapter 6 onto the Input/Output Subsystem (IO) of MPPA ® . Such support was not as easy as it is on a Linux system because of the stack size limitation, unsupported low-level functions, that needed to be bypassed or reimplemented, differently and the heterogeneous memory map of the Input/Output Subsystem (IO) (two Manycore Processor 1) When an LRT completes a task, the PE running the LRT writes the produced data tokens into shared memory. On completion of the task, the LRT sets its job ID to the completed job ID. A job ID is a 64-bit monotonic counter that identifies the task that is fired on an LRT. The job ID is used to synchronize PEs with each other during the execution. Therefore, the job ID is written in the corresponding slot (related to the PE), in an array of slot in shared memory, precisely the array[LRT number] slot. Each slot has multiple readers and a single writer.

2) Once this LRT is available for further computing, it tries to get a new job from its task job queue.

3) Before the firing of the popped task, the LRT must wait for the completion of preceding tasks. Such constraints are the native data dependency of the application. For that purpose, job messages contain the job ID of each preceding task and the ID of each LRT that executed these jobs. Thus the LRT will compare the expected job counter values, given by the job IDs, and the actual job counter values of the specified remote LRTs.

For convenience, job counter values of all LRTs are stored in a single array explained in (1), accessible as Read-Only to all PEs. Such synchronization mechanisms are quite simple to implement with shared memory architectures. Indeed, the access to these job counters and IDs are performed by Load/Store in the shared memory, respecting the memory consistency rules of the targeted architecture. As already seen in Chapter 4.4, the memory consistency is guaranteed by the special full memory barrier instruction to prevent data races.

A Word on the SPIDER Implementation for the Texas Instruments (TI) Keystone II On previous SPIDER implementations [HPD + 14], designed for the PEs of the TI Keystone II architecture, this synchronization mechanism uses hardware queues to manage data dependencies. The TI Keystone II implements many hardware queues, making the synchronization of large dataflow graphs possible (few thousands of vertices at a time). Such hardware specific implementation shows that the SPIDER architecture provides a proper partitioning of the key actions of the runtime, and allow these actions to be accelerated by hardware specific features of the targeted platform.

Implementation of a Distributed Synchronization Protocol

The objective of the new synchronization algorithm is to both distribute the control of synchronizations and bound the number of Network on Chip (NoC) communications per data dependency necessary to fire an actor (run its associated task sequentially).

The proposed algorithm built on the "observer design pattern" [START_REF] Gamma | Design patterns: elements of reusable object-oriented software[END_REF], where the observers are the LRTs waiting for the completion of a preceding actor and the notifier is the LRT executing this actor. The operating principle of the algorithm is based on three key actions:

Register: When an LRT pops a new job from its queue, it scans the set of preceding actors in the job descriptor (sent by the SPIDER GRT running on the Input/Output Subsystem (IO)), and sends a notification request to each LRT executing the preceding actors. A notification request encapsulates both the ID of its sender LRT, and the awaited job ID.

Notify: On job completion, an LRT updates its job counter, then process all its pending notification requests with an awaited ID lower than the new job counter value. Software flow control is performed to avoid data corruption on congestion.

Peek: Optionally and for optimization purpose, after sending all its notification requests, an LRT can check, once and on its own, the job counter values of all LRTs that have not yet answered.

The goal of a peek, which consists of a remote 8-byte load in a remote memory over the NoC, is to avoid waiting for a notification from a busy LRT whose job counter is already greater than the awaited value.

The remote 8-byte load is part of the set of primitives provided by the Asynchronous One-Sided (AOS) distributed communication API. As the latency of the Peek operation is high, typically more than a thousand of cycles (see Figure 5.11), the written transaction performs several asynchronous calls for the overlapping of as many transactions as possible (along with the coalescing of information within bit-fields).

Using these actions, each data dependency requires at most five communications through the NoC: two to send a notification request, one to send a notification, and two for a Peek. Hence, a finite number of NoC communications per dependency is needed, which fulfills the communication bounding goal. The algorithm flow-chart in Figure 8.2 details the distributed synchronization protocol. The protocol implements an all-to-all (LRTs) synchronization mechanism. The left part of the diagram describes the observer LRT a popping a new job from its job queue and the right part explains the notification sequence when LRT b processes pending notification requests. To simplify the figure, the peek action was omitted. The protocol requires three synchronization vectors for each LRT, allocated in the local memory of the PE: Sem contains the LRTs IDs of sent but pending notification request. Req registers the LRTs IDs of received notification requests. Val contains the job counter values awaited by LRTs Manycore Processor registered in Req. The size of each array corresponds to the total number of LRTs in the system Nb LRT .

Answer Notification Requests

Optimized Heuristic-based Scheduling

This section focuses on mapping and scheduling. It is complicated to be handled at runtime when using the commonly used methods. The Section 8.2.1 defines the problem and its bottleneck, and Section 8.2.2 describes a solution using a simple and efficient mechanism when targeting massively parallel architectures.

Prohibitive Complexity and Footprint

The original scheduler implemented in SPIDER is a LIST scheduling heuristic described in [START_REF] Kwok | High-performance algorithms for compile-time scheduling of parallel processors[END_REF]. When the input parameters of a dataflow graph are set dynamically, the GRT analyzes the data exchange rates in the PiSDF graph and generates an equivalent Single-Rate Directed Acyclic Graph (DAG) graph, exposing explicitly all data parallelism. Actors of the DAG are obtained by duplicating actors of the PiSDF graph as many times as their number of firings; themselves obtained analytically from data consumption and production rates [START_REF] Edward | Synchronous data flow[END_REF]. Then, the GRT handles the mapping and scheduling of each actor, taking into account the dependencies of the DAG and mapping constraints if any. A mapping constraint can be some user defined task assignments to specific PEs, and the local memory usage on clustered architectures.

The issue, with the LIST scheduler, is that its complexity becomes prohibitively large when targeting a processor with hundreds of PEs. Indeed, it is O(A.log(A) + P.(A + E)) [START_REF] Kwok | High-performance algorithms for compile-time scheduling of parallel processors[END_REF], where A and E are the number of actors and dependencies in the DAG (vertices and edges), and P is the number of cores. As already seen, manycore architectures implement hundreds of cores and require many parallelisms to be useful. Therefore, the number of DAG actors to be scheduled in parallel increases roughly linearly with the number of PEs. Consequently, the complexity of the LIST scheduling increases quadratically with the number of PEs, making it a bottleneck for runtime scheduling.

Lightweight Scheduling, Simpler is Faster

We replaced the original LIST scheduler with a less complex scheduling algorithm based on a specialized Round Robin (RR) heuristics. Firstly, the new algorithm was designed to reduce the memory footprint and the latency of job scheduling decisions. The main idea is to increase as much as possible the dispatch rate of the job, in other words: the performance in Input/Output Operation per Seconds (IOPSs) of the GRT (scheduler). The classical RR heuristic iterates circularly on a list of LRTs, and sends jobs to the first available LRT.

This heuristic lowers the scheduling complexity down to O(A + E), as a topological ordering of actors is required. However, we found that the evaluation of the actor execution time and the job fairness distribution to LRTs were no longer required, as a lot of LRTs are available, and, at least one LRT is always ready to compute.

Secondly, memory usage is optimized by interleaving the PEs from different CCs in the list on which our RR algorithm iterates. In each Compute Cluster (CC), 16 PEs share a local memory and a NoC interface. The goal is to prevent too many jobs from being sent simultaneously to PEs on the same CC. As such, it provides higher on-chip memory usage and reduces the pressure on the local memory of the CC. Indeed, multiple tasks starting their execution try to synchronize themselves with their predecessor actors, and allocate local memory in the CC for their input and output buffers (see Section 8.3). Therefore, the scatter of jobs among CCs prevents and reduces the wait time to access shared Compute Cluster (CC) resources.

Thirdly, the specialized RR algorithm uses a flow control mechanism to avoid overflowing job queues. The GRT sends a job to an LRT only if the remote job queue contains enough space to receive the job. For that purpose, LRTs send their job counter value to the GRT on job completion. The statically configurable size of job queues has to be large enough to prevent starvation of the LRTs, but small enough to keep the memory footprint under control.

Finally, the RR scheduler was tuned to take into account the available memory in the Compute Cluster (CC). When the task of an actor is scheduled, the required amount of memory for its execution is computed, and the scheduler does not send it to an LRT that is not able to run it due to the lack of local memory. The measurement of memory space available in the local memory of the CC, associated with each PE, is done off-line but can be performed at runtime, while initializing the SPIDER.

Managing the Distributed Memory at Runtime

Section 8.3.1 explains issues encountered when dealing with the array of local memories of the MPPA ® processor. The MPPA ® architecture implements neither global cache hierarchy nor cache coherence at any levels. As such it is challenging to control and move data explicitly by software, which is also pointed out in the paper [START_REF] Williams | Roofline: an insightful visual performance model for multicore architectures[END_REF] regarding DMA-enabled processors. Section 8.3.2 explains the memory allocator in each Compute Cluster (CC), and the handling of the corner and unsupported cases (deadlock, congestion).

Distributed Local Memories instead of Caches

Once an LRT pops a new job, it needs to allocate memory to accommodate the input and output buffers of the corresponding actor. As the original SPIDER was implemented for shared memory architectures, where PEs (LRTs) access the main memory, usually DDR technology in embedded systems, through their data cache, the SPIDER GRT uses a single global memory allocator. Data pointers on globally allocated data tokens of the FIFOs are sent to the LRT job queues, and LRTs can access data tokens using Load/Store instructions. The hardware data cache does the communication automatically (implicitly) by refilling the requested data from the main memory into the cache close to the PEs. However, memory consistency operations at synchronization points are still required (full memory barrier).

On a local memory based manycore architecture, the memory in the multi-core Compute Clusters (CCs) needs to be allocated by each local runtime, as well as the movement of data. Once again, the movement of data is performed by the Asynchronous One-Sided (AOS) communication API, using the Remote Direct Memory Access (RDMA) Put/Get protocol as shown in Figure 8.1.

Linear (contiguous) Get operations are used to read the input FIFOs of the actor from the DDR to the on-chip local memory of the CC. When the execution of the scheduled actor completes locally in the Compute Cluster (CC), linear (contiguous) Put operations are initiated by the LRT to write back the data in the DDR memory. RDMA fences are then issued to get the completion of the multi-CC Read-After-Write (RAW) data dependency.

Furthermore, distributed local memories are limited, thus making the control software more complicated and error-prone. In such a case, memory resources may be exhausted Manycore Processor frequently, but do not necessarily impose the termination of the application. For instance, a memory allocation may fail for an actor A when another actor B, executed in the same CC, uses all the available local memory. On completion of the execution of actor B, its memory can be reused, possibly after sending output buffers back to the main external memory (off-chip). Then actor A may successfully perform its memory allocation in the local memory.

Thread-safe Local Memory Allocator

The flow-chart in Figure 8.3 describes a new algorithm to allocate space in the local memory of a clustered manycore architecture. Such allocation procedure ensures that all scheduled jobs on an LRT running in a CC manage to allocate their required memory, as long as it does not exceed the maximum capacity of the local memory space of the CC (see Section 8.2). When the firing conditions of a mapped actor are fulfilled, the LRT attempts to allocate its buffers using the algorithm in Figure 8.3.

Cluster-level Shared Memory

Start alloc

Release lock As multiple cores may compete for local memory space, a CC level lock, based on atomic instructions, is required to prevent the memory allocator from data structure corruption. The critical section of this algorithm also protects a shared counter, Nb ActiveLRT that represents the number of actors (task) currently executed on the Processing Elements (PEs) concurrently within the CC. If the number of active LRT is greater than zero and a memory allocation fails, the LRT should release the lock, and try again later. If not, a deadlock is detected as no other LRT is currently using CC memory, and there is no reason for more memory to be available during a future allocation attempt. The deadlock detection is an expendable safety feature if, as presented in Section 8.2, the scheduling The top performance obtained for the static execution is 217 fps. For this video resolution, the reconfigurable PiSDF graph, executed with SPIDER, peaks at 47 fps. Besides the SPIDER runtime overhead, the difference between the performance of the static and reconfigurable executions are mostly due to the lack of memory optimization in the reconfigurable implementation (dynamic). In the reconfigurable version, many copy calls (memcpy in C) are performed to create the image slices in the Split actor and to merge processed slices into a contiguous buffer before Display. Thanks to compile-time optimizations, these memcpy calls are replaced with pointer and DMA offset operations in the static version reducing the memory transfers by a factor of 3 (memory bandwidth reduction of the memory accesses).

DEADLOCK Exit

Success

Conclusion

This chapter presents an implementation of a runtime manager that leverages reconfigurable dataflow graphs on manycore architectures. To the best of our knowledge, this is the first online mapping, and scheduling of a parametric dataflow application onto a clustered manycore architecture.

At first, we ported the runtime on a single multi-core CPU, namely the Input/Output Subsystem (IO) of the MPPA ® for legacy. We then expanded the runtime globally on the MPPA ® processor. The master GRT runtime operates on the IO and the slaves on the CC. For that, our runtime supports distributed memories and manages explicit cores data communications using RDMA, queues, and remote atomic operations for synchronizations. Furthermore, some scheduling methods based on efficient heuristics are introduced to let the master runtime feed all the slaves mapped on the Processing Elements (PEs) of the Compute Clusters (CCs). New memory allocation algorithms were also specifically designed to provide efficient usage of the on-chip memory and for catching memory allocation errors, if any, as memory is a critical resource on manycore processors with local memories. Experiments on the Kalray MPPA ® processor demonstrate the feasibility of such a runtime, its potential concerning application performances, and energy efficiency.

However, such distributed runtime was challenging to implement, debug and validate. Indeed, the highly concurrent environment, with several multi-core CPUs, and with different memory maps is difficult to analyze. For instance, the implementation of flow control, the lack of hardware memory coherency, the management of explicit communications and memory allocation were all challenging. However, the final solution is today operational with high software maturity.

As already seen in previous chapters, the programming of Direct Memory Access (DMA)enabled processors is challenging and difficult [START_REF] Williams | Roofline: an insightful visual performance model for multicore architectures[END_REF]. To make it easier, this chapter describes the first OpenVX implementation for the Kalray Multi-Purpose Processor Array (MPPA) ® processor.

OpenVX [G + 17] is a standard developed by the Khronos group for cross-platform acceleration of computer vision and deep learning applications. It is a domain specific Application Programming Interface (API) (like a Domain Specific Language (DSL)) that abstracts the architecture complexity (heterogeneity) of the processor. Moreover, OpenVX is a serious candidate for application engineers who need high-performance embedded software for vision and learning applications. All optimizations are performed automatically by the proposed framework for a wide range of application kernels. OpenVX aims to be at a much higher level than other standards such as OpenCL, OpenMP or academic models like Interface-Based SDF (IBSDF) or Parameterized and Interfaced dataflow Meta-Model (PiMM), which require a clear understanding of the application and its manual parallelization. OpenVX vendors perform all optimization work to make the application run efficiently.

The Khronos OpenVX standard [G + 17] uses a graph-based approach to ease the design of computer vision pipelines and decrease the time to market. The graph-based computing may optimize sequences of kernels at graph level to get the best out of the hardware capabilities. The graph-level approach makes it possible to optimize at high-level of sequences of kernels, and at low-level, to use stream memory accesses or use vector instructions (Single Instruction, Multiple Data (SIMD)). Both low-level and high-level optimizations are up to the OpenVX vendors.

In the computer vision domain, open-source libraries, like OpenCV, are also designed for rapid prototyping onto general purpose parallel processors. However, in these libraries, the computation is performed explicitly at each function call; therefore, it is impossible to perform global optimization over several functions. For instance, it is impossible to group kernels to increase data locality. Such optimizations are of utmost importance for performance optimization as it reduces the memory traffic, a bottleneck in most High-Performance Computing (HPC) systems.

Our OpenVX implementation targets low latency and parallel graph execution to enable reactive embedded systems. Each compute-intensive kernel is distributed on the en-tire Compute Cluster (CC) matrix of the MPPA ® processor. Low latency implementations (also called batch-1) are very different from high throughput implementations. High throughput implementations are usually based on the pipelining of the graph execution, which is not very complicated. In our case, we do not use graph pipelining optimization. Instead, we distribute each node on all available computing resources. We automatically perform the scheduling, the memory allocations, and the data transfers to satisfy multicluster Read-After-Write (RAW) dependencies.

Our OpenVX framework has been written from scratch, starting from the specification and the Khronos API provided in https://github.com/KhronosGroup/ OpenVX-Registry. The implementation is based on the multi-threading runtime and the asynchronous onesided API that are both presented in Chapters 5 and 6 respectively. Section 9.1 presents the OpenVX standard, third-party implementations, and compares OpenVX with OpenCL. Section 9.2 explains the back-end for offloading computations from the Input/Output Subsystem (IO) to the Compute Clusters (CCs) of the MPPA ® processor. The dynamic optimization is described in the vxVerifyGraph, Section 9.3

Requirements and Positioning

In Section 9.1.1, we explain the main ideas of the OpenVX standard such as the different objects, and the architecture itself. In Section 9.1.2, we describe existing third-party implementations that are either academic or commercial. Implementations details are given as well as the design strategies and runtime dependencies. Section 9.1.3 explains differences between OpenCL and OpenVX.

OpenVX Standard and Example

The OpenVX standard [G + 17] is a graph-based API designed by the Khronos group for developing computer vision and deep learning applications on embedded platforms. The standard is usually implemented and proposed by hardware manufacturers in their programming environments. OpenVX is not only designed for a Central Processing Unit (CPU)-Graphics Processing Unit (GPU) target like OpenCL but is also reminiscent of dataflow programming models. Indeed OpenVX has already shown its efficiency for the programming of a host associated or not with remote computing resources like Nvidia ® GPUs or FPGA using CUDA ® or OpenCL respectively.

As seen in Section 3.3, dataflow programming models are architecture-agnostic, highly valuable for exposing high-level optimization opportunities and enabling automatic deployment of applications on a wide variety of embedded platforms [START_REF] Edward | Synchronous data flow[END_REF]. The OpenVX programming model is a Single-Rate (SR) specialization of the Synchronous Dataflow (SDF) programming model [START_REF] Shuvra S Bhattacharyya | Synthesis of embedded software from synchronous dataflow specifications[END_REF][START_REF] Edward | Synchronous data flow[END_REF] where production and consumption rates of the graph nodes (the actors) are equals. So a specific strength of OpenVX is to expose the graph structure of the entire processing pipeline, to enable implementations to perform high-level optimizations, and to allow vendors to get the most out of their machines.

Figure 9.1 shows an example of OpenVX code. In this example, we removed error checks to simplify the code, but a real application would check the return values by the creations, verify, releases and process OpenVX functions.

A context describes the accelerator device where the computation is going to be offloaded. The standard includes very few platform-specific functions and data structures. One of these functions creates the platform description using as an input a platform-specific structure. The structure platform at Line 2 of the code Figure 9.1, described the config- Once the context is created, the OpenVX graph is created with a direct reference to the parent context. This is required for the static optimization passes during the vxVerifyGraph function. The compiler needs to know the platform to perform the proper optimization choices. The OpenVX graph is composed of vertices and edges. The vertices are called OpenVX Nodes. The developer can select nodes in a list of standard kernels [G + 17], and supported by the platform thanks to the vendor. The edges correspond to OpenVX buffers (Images, LUTs, Arrays, and Pyramids for instance) and link the vertices which produce and consume data.

Two kinds of buffers exist: the user buffers, allocated and accessible from the memory space of the OpenVX host application; and the virtual buffers, that contain data exchanged between the vertices of the graph. Virtual buffers cannot be accessed by the host application, and they may be suppressed by using kernel fusion optimization techniques. In the code of Figure 9.1, only the input and output images are user buffers (Lines 5 and 9).

Once the graph is created, it has to be verified and compiled. To do so, the user explicitly calls the vxVerifyGraph function. On success, the user calls the vxProcessGraph function to execute one iteration of the OpenVX graph explicitly. In OpenVX, there exists functions to access the data of the OpenVX objects (Images and Arrays for instance). Instead, we chose to add custom vendor-specific nodes to manage the Input-Output of the graph, namely vxuFReadImage and vxuFWriteImage. They respectively fill up the input image and write the output image data to the hard-drive disk or a stubbed display function over Peripheral Component Interconnect Express (PCIE) [START_REF] Ajanovic | Pci express 3.0 overview[END_REF].

Third Party Implementations & Optimizations

An implementation of the OpenVX standard is provided by all Intellectual Property (IP) and chip vendors who target computer vision applications. OpenVX implementations are also available from GPUs and Field-Programmable Gate Array (FPGA) vendors, and they use the offloading foundations of CUDA ® or OpenCL programming models.

Seminal OpenVX optimizations techniques are described in [RVD + 14]: Inter-Process Communication (IPC) aggregation, pipelining, data prefetching, SIMD execution, and multiple levels of block tiling. All of these optimizations are the basics of efficient parallel implementations [START_REF] Williams | Roofline: an insightful visual performance model for multicore architectures[END_REF], and they are applied to third-party OpenVX frameworks presented in this section.

The Nvidia ® VisionWorks framework, presented in [START_REF] Brill | Nvidia visionworks toolkit[END_REF] implements OpenVX using CUDA for GPU offloading. The Advanced Micro Devices (AMD) open-source framework described in [START_REF] Giduthuri | Openvx: a framework for accelerating computer vision[END_REF] uses either OpenCL for GPU offloading or the host CPU for computations. AMD kernels use SIMD and streaming Load/Store to access sparse data at CPU level efficiently. Also, they use OpenCL to offload kernels onto GPU when available. Both frameworks target GPU-based accelerators or the host processor.

The ADRENALINE framework presented in [START_REF] Tagliavini | Optimizing memory bandwidth in openvx graph execution on embedded many-core accelerators[END_REF] [THMB15] features a series of optimization techniques including kernel fusion, overlap tiling by recomputing halo regions (ghost regions [START_REF] Berg | Ghost cell pattern[END_REF]), and double buffering for overlapping computation and communications. ADRENALINE provides a virtual prototyping platform, currently implementing a single cluster and a host CPU. Their runtime is built on OpenCL 1.1 [G + 11] with an extension to exploit the on-chip memory efficiently, avoiding round trips to the main memory (external) whenever possible.

By comparison with ADRENALINE, our work focuses on OpenVX graph optimizations in a standalone mode (without external CPU), and targets low latency execution times using multiple clusters. The standalone mode let our framework compile on-the-fly, with a call to vxVerifyGraph at runtime, the OpenVX graph onto the target processor, when a configuration parameter of the OpenVX application changes. We instantiate a multi-core host CPU on one Input/Output Subsystem (IO) CPU, accelerated by up to 16 Compute Clusters (CCs), and we use asynchronous inter-cluster Remote Direct Memory Access (RDMA) transfers to exchange halo regions and use the main memory (external).

While OpenCL can also be used to deploy kernels onto the 16 CCs, this standard does not support local memory sharing between kernels. Indeed, all __global data are committed back to the main memory, and __local data does not persist between kernels. Such optimization feature makes kernel fusion optimization impossible; therefore, the main memory bandwidth becomes the main performance bottleneck. Vendor-specific extensions could be used to reuse memory between OpenCL kernels as in [START_REF] Tagliavini | Adrenaline: an openvx environment to optimize embedded vision applications on many-core accelerators[END_REF], but these are non-standard and not part of the Kalray OpenCL offer. Moreover, the Kalray OpenCL host runtime requires Linux which cannot be used for efficient, soft real-time systems because of process scheduling jitter and system call overhead. + 18], is a programming language (close to OpenVX) designed to exploit modern processors efficiently for tensor and computer vision applications. The Halide frond-end implements hardware independent computations like a parser, a scheduler, and an optimizer (memory allocation, synchronization, distribution). The execution part of our new distributed OpenVX framework could be a back-end for Halide to target the MPPA ® processors.

Halide [VZT

OpenVX and OpenCL

OpenVX and OpenCL have a different role. OpenVX implements predefined kernels for computer vision and neural network applications, whereas OpenCL does not. Some OpenVX implementations are built on top of OpenCL. Indeed as mentioned above, the OpenVX implementation of AMD uses OpenCL to offload onto GPUs the computation of OpenVX kernels. Therefore, OpenCL is used at a lower level of implementation.

Moreover, as mentioned in Section 3.2.2, OpenCL exploits the memory hierarchy of the machine with the keywords __global, __local and __private, making OpenCL software challenging to write, and architecture dependent for the optimizations.

OpenVX hides the machine complexity from the programmer. Indeed, the OpenVX can be seen as an optimized library (like a DSL) for executing a Directed Acyclic Graph (DAG) of predefined kernels (functions). The standard also let the user add his/her own kernels. However, custom kernels are much more challenging to integrate and optimize automatically during the OpenVX graph optimization.

Finally, OpenCL defines the control-flow during the execution, whereas in OpenVX, the control-flow (control-path) is derived from the graph that is compiled and executed.

The OpenVX standard separates the control-path (kept implicit) from the data-path, providing inherently much more effective when exploited and implemented by System-on-Chip (SoC) manufacturers.

A Low-Level Distributed Offloading Engine

The offloading of computations from a host to one or several accelerators is not a trivial task. In the case of the MPPA ® processor, the accelerators are the 16 Compute Clusters (CCs). As mentioned in Section 9.1.1, OpenVX is built as an acceleration programming API where the user application runs on a host CPU, and the described application graph can be executed anywhere: GPU, FPGA, and/or custom accelerators. With the MPPA ® Multiprocessor System-on-Chip (MPSoC), one IO is the host and the CCs run the compute-intensive parts of the application graph.

Therefore, an offloading engine has been designed. Its design is inspired from the OpenACC [START_REF] Wienke | Openacc-first experiences with real-world applications[END_REF] runtime back-end of GNU Compiler Collection (GCC). OpenACC is the base of another famous offloading standard programming API, called OpenMP 4.0. As we target efficient and light-weight embedded computing, the offloading from a Linux Operating System (OS) running on the Input/Output Subsystem (IO) have been excluded.

We first describe the architecture of this offloading engine in Section 9.2.1. We provide key feature to performance in Section 9.2.2, and we explain the relationship between the OpenVX framework built on top of it in Section 9.2.3.

Architecture of the Offloading Engine

The offloading engine is responsible for the deployment of self-synchronizing computations. On the IO, the offloading engine operates in user-space of the multi-threading runtime presented in Chapter 6. OpenMP multi-threading is used to parallelize the distributed kernels inside each CC. Figure 9.2 shows the offloading engine architecture on which the OpenVX distributed framework is built.

The architecture of the offloading engine lies on the RDMA Network on Chip (NoC) of the MPPA ® processor. The main memory is the Double Data Rate (DDR) memory that is accessed using one-sided operations for the CC. The IO has direct access to this memory using Load-Store. The use of the main memory is mandatory as most of the time compiled using the Position Independent Code (PIC) compile flag, and embedded in the host program (in the Input/Output Subsystem (IO)), so that the accelerators, namely the CCs can access the object file. The dynamic overlay is a major feature for time-predictable memory access of the CPU to the .text section. Indeed, the global system caches for accessing the instructions are not time-predictable and very difficult to analyze. Therefore, using a dynamic overlay is important in recent OpenVX Safety-Critical specifications (realtime performance and deterministic) presented in [START_REF] Giduthuri | The OpenVX Safety Critical[END_REF].

3) Local buffer allocation associated to an identifier. The pre-allocation of buffers makes it possible to have an array of, off-line allocated, static pointers with associated identifiers. These memory areas are used to store the statically allocated data, that is performed by the distributed memory allocator presented in Section 9.3.3.

4) Execute kernel with arguments (name and arguments).

The execution of kernels consists in sending the name of the function to be run, and its arguments. All sent jobs and commands are executed in order, by the selected CCs of the created execution platform. The execution of a kernel is always asynchronous for the host. The completion of the running kernels is provided to the host using a computation pipeline barrier. The barrier waits for the completion of outstanding kernels, running in the selected Compute Clusters (CCs). 5) Multi-cluster synchronization, synchronous or asynchronous collective. Asynchronous collectives regarding the host make the synchronization of a pool of Compute Clusters (CCs) within the pipeline possible, without any intervention of the host. It provides efficient synchronization mechanisms, controlled by the host CPU, to deal with multicluster Read-After-Write (RAW) dependencies in the main memory (external). All of the above features are available through new primitives that have been designed for our needs. They are all executed by the host multi-core CPU, asynchronously to avoid stalls, and atomically to prevent data races. However, sent jobs and commands are processed in the execution order on the CCs side. Thus, pipeline barriers are provided to ensure the completion of all outstanding jobs and commands that were dispatched to the targeted CCs. In this way, transactions are always pipelined in job queues for execution efficiency with regards to the host. The offloading engine provides software flow-control mechanisms for the job queues to prevent data corruption when the multi-cluster system is congested.

The implementation does not implement locking mechanisms in the data path. Efficient software runtime implements separated control and data path. Functions like code relocation, pre-booting of OpenMP thread teams, memory allocations, and system initializations are performed once when the host starts the application. In the data path, the application uses pre-computed routes, a pre-loaded piece of code, and statically allocated memory buffers that make high-performance implementation possible.

As a result, at 500 MHz, the measured Input/Output Operation per Second (IOPS) from the host point of view is 731.3 kilo IOPS, meaning an asynchronous request to a CC takes 681 machine cycles on average. Such a throughput is enough for our OpenVX acceleration framework, built on top of this new offloading engine.

Integration and Usage in the OpenVX Framework

The OpenVX application runs on the host multi-core CPU and uses an acceleration API. The OpenVX context references the number of CCs in range [0, 15] and the number of PEs in range [0, 15] inside each compute cluster of an MPPA ® processor. For the MPPA ® , we propose an example of platform specific implementation in Figure 9.3. The parallelization relies on OpenMP3 # pragma omp parallel for work sharing between cores inside a CC and uses the RDMA NoC API [START_REF] Hascoët | Asynchronous one-sided communications and synchronizations for a clustered manycore processor[END_REF] to perform intercluster data transfers and main memory accesses.

Online Optimizations: vxVerifyGraph

The framework for running OpenVX applications on stand-alone clustered manycore processors is based on a distributed runtime execution environment. Starting from [START_REF] Wahib | Scalable kernel fusion for memorybound gpu applications[END_REF], which targets Load/Store CPU+GPU architectures with shared memory, we adapt and automate optimizations for both Load/Store (synchronous, intra-cluster) and RDMA (asynchronous, inter-cluster) types of memory accesses.

Optimization Workflow

The workflow specifies the automatic steps performed during the OpenVX graph dynamic optimization vxVerifyGraph. The workflow is executed onto the embedded host; thus, graph optimization can be done at runtime if external parameters change. As shown in Figure 9.4, the workflow takes as input the OpenVX application and produces computation commands for one or several accelerators.

IR Graph Building

Scheduling Kernel Fusion a) IR Graph Building provides the internal Intermediate Representation (IR), a Single-Rate (SR) Directed Acyclic Graph (DAG) on which the next passes of the optimization workflow operate. The graph builder takes user buffers which are OpenVX objects, looks for adjacent nodes using a Depth-First Search (DFS) and propagates object properties to buffers and nodes, such as image sizes and configuration parameters of OpenVX kernels.

Memory Allocation

Several errors may be detected and dealt with during the graph building process: unconnected buffers or nodes, cycles, multiple buffer writers, and the absence of input or output buffers for the OpenVX application. When errors are detected, the graph building results in failure giving the user the list of implicated nodes or buffers.

b) Scheduling is based on a topological sort of the Single-Rate (SR)-DAG presented in [KL95]. It is performed to enforce the graph dependencies for kernel executions, and its complexity is O(n). In practice, we implemented the Algorithm 1 presented in Section 3.3.

c) Kernel Fusion is the critical optimization that let kernels reuse data already copied in the on-chip memory (local memories). This optimization aims at reducing the main memory (external) bandwidth. Adjacent kernels (nodes) are fused to make this optimization possible. Kernel fusion opportunities are identified by a simple constraint satisfaction algorithm that ensures memory allocation feasibility. The schedule is updated after each kernel fusion. The complexity of the fusion optimization algorithm is O(n) where n is the number of kernels. The kernel fusion optimization is presented in details in Section 9.3.2.

d) Memory Allocation pass is performed by an allocator of distributed memory operating on the schedule (once the fusion optimization is completed). As explained in 9.3.3, virtual buffers are allocated in the main memory (external) or the internal on-chip memories (local memories).

e) Command Generation performs the computation of arguments for the RDMA-based tiling engine. The commands are saved in lookup tables. The runtime of the RDMA-based tiling engine running the compute clusters is presented in 9.4. The basic tiling principle is to split a buffer (1D or 2D) into tiles and to distribute them onto the computing resources. Once commands are generated, the vxProcessGraph consists in sending commands to the CCs as seen in Section 9.2. The commands are sent asynchronously, but their executions are scheduled in order across the matrix of CCs.

Automatic Kernel Fusion Optimizations

As explained in Chapter 7, the kernel fusion optimization consists in grouping two adjacent kernels together to avoid temporary buffers being copied to the external memory. Again, this technique is inspired by the Pairwise Grouping of Adjacent Nodes algorithm [START_REF] Shuvra S Bhattacharyya | Synthesis of embedded software from synchronous dataflow specifications[END_REF].

However, in this chapter, the grouping or kernel fusion algorithm is different. The kernel fusion optimization operates at a multi-cluster level as each kernel is distributed on the entire CC matrix to achieve low latency.

As each vertex of the SR-DAG is distributed on all available CCs, it makes data dependency between fused kernels a multi-dimensional problem as shown in Figure 9.7. Fusion decisions are based on the following constraints: the pattern type of kernel to fuse, the amount of local memory required, and the type of input and/or output buffers have to be virtual (see Section 9.1.1). The real buffers cannot be fused because in the OpenVX specification, these buffers should stay accessible by the host application. The O(n) fusion optimization pass, takes the main graph schedule as an input and produces a new schedule that represents the new fused kernels. This new schedule is then placed in the main graph schedule until all fusion opportunities are applied to the application graph. The scheduling policy consists of executing fused kernels in depth first. The supported patterns of kernel fusion are any combinations of point-to-point operator kernels using overlap tiling or not.

The fusion optimization avoids recomputing halo regions and removes useless memory copies for the management of halo regions. However, it is involved regarding inter-cluster data transfers and the memory allocation of input and output tiles, as buffers need to be padded on the borders for halo exchange (see borders of distributed tiles in Figure 9.7).

Moreover, for the debugging of the scheduling optimizations of the graph, we have implemented a stubbed function over PCIE to visualize the OpenVX computation graph defined by the user. If not disabled by the platform description already presented and shown in Figure 9.3. It allows the user to check the described graph and successful optimization, as well as, the schedule of the nodes. The USER_INPUTS boxes are the input buffers and the USER_OUTPUTS boxes are the output buffers of each graph. These buffers are real buffers that can be accessed by the host application. Kernel fusion decisions are shown by a blue box over the kernels in Figure 9.5. On the left graph, three fusion optimizations have been automatically found, and on the right graph, one fusion optimization has been performed.

Distributed Static Memory Allocation

The distributed memory allocator manages the memory consumed by the virtual buffers of the OpenVX application. User buffers are already allocated at object creation (buffers). The distributed memory allocation operates after the scheduling and the kernel fusion passes. The allocator has two memory pools which are the array of symmetric local memories and the main memory. The memory allocation is mainly governed by the graph schedule, through the lifetime of virtual objects, the kernel fusion decisions, the kernel dependency patterns, spills in the main memory for user buffers, and also the N-buffering and tiling configurations parameters usually depending on image sizes.

By default, the runtime automatically spills buffers to the main memory (external) during the computation when the local memories are full.

The RDMA-based tiler, described in Algorithm 12, spills and tiles images that do not fit into the available local memories. Inside each compute cluster, a memory area of 1.4 megabytes is reserved at the OpenVX context creation. This memory buffer size is configured in the OpenVX platform's specific files of the framework itself but is easily tunable to target any RDMA-enabled clustered manycores. This memory area contains temporary multidimensional buffers (virtual buffers of the OpenVX standard) that are allocated by a first-fit memory allocator giving buffer offsets in the local memory of each CC. The first-fit algorithm takes buffers related to vertices in their schedule list order and recycles the memory once their live range has ended. On classical OpenVX applications, 4 buffers are allocated in each local memory before being reused.

Finally, the memory allocation is guaranteed to succeed as the kernel fusion optimization pass is aware of the available size remaining in the local memories when fusing kernels. Indeed, when the kernel fusion requires too much memory, the fusing optimization pass chooses the RDMA-based tiler to spill on the main memory. The RDMA-based tiler splits the computation automatically to make it fit in the local memories, thanks to Algorithm 12.

Explicit RDMA-based Communication Engines

A Tiling & Fusion RDMA Engine

The RDMA-based tiler operates at runtime (graph execution) inside each CC concurrently, distributing the execution of each OpenVX node across the entire matrix of compute clusters. This technique is essential to achieve low-latency execution moreover, is unlike classic dataflow graph execution, where actors are mapped to different CCs [dDAB + 13, CDG + 14]. Algorithm 12 receives commands through the job queues as seen in Figure 9.2 when the host application calls vxProcessGraph. Command arguments are the input and output images, tile geometries, halo geometries, the N-buffering configuration to absorb main memory latency; the start compute offset in images stored in the main memory (external) for each CC and the number of CCs that execute the kernel concurrently. Halo geometries are provided by a hand-written oracle, which is used during the scheduling. 

InTilesEvent[FetchIdx] ← Async.
Get Stride-to-Dense from (In-Img+NbTileStartOff+i) to InTiles [FetchIdx] 28: end if 29: end for 30: Async. Fence /* Memory Consistency, Mandatory for Global Read-After-Write Dependencies */ 31: Synchronize NbNodes Clusters /* Ordered with Fences */ Firstly, the distributed tiler either retrieves input tiles from the main memory using N-buffering (Line 7) and sets local multidimensional input pointers (Lines 4 and 5) to previous local output buffers of a previously executed kernel when it is "fused" with the current one.

Secondly, the master thread of the CC calls the compute kernel (Line 17). It performs intra-cluster parallelization with OpenMP compilation directives.

Thirdly, the output is either copied back to the main memory for OpenVX user buffers (Line 22) or remains local, if the next kernel is fused with the current one. When the next kernel is fused, depending on kernel fusion patterns, halo exchanges are initiated to adjacent compute clusters to satisfy inter-cluster data dependencies (Line 19).

Finally, memory consistency operations are initiated to memories that have outstanding writes (Line 30) before the multi-cluster synchronization (Line 31).

Tiling & Fusion Optimizations

This section illustrates the multi-cluster tiling, and the tiling combined with the fusion optimization at the multi-cluster level.

Tiling

Figure 9.6 shows the tiling distribution for a 2D stencil computation using 4 CCs. A typical use case would be an edge detector followed by morphological operators. Steps 1, 3, and 5 a copy data from/to the main memory from/to the local memories of the CCs, which is shown in Algorithm 12 at Lines 7 and 22. Red arrows show main memory (external) spaced [START_REF] Hascoët | Asynchronous one-sided communications and synchronizations for a clustered manycore processor[END_REF] transfers with the local memories (on-chip memory). The Algorithm 12 performs automatic data prefetching to hide the main memory access latency. As explained in [START_REF] Williams | Roofline: an insightful visual performance model for multicore architectures[END_REF], reducing latency by software and hardware prefetching is a key to performance. Memory accesses are often the bottleneck in high-performance computing.

Steps 2 and 4 perform the computations in parallel in each used CCs. Step 1

Step 2

Step 3

Step 4

Step 5 Tiling can be improved as the main memory bandwidth wall is a bottleneck. The fusion optimization is proposed here to tackle this problem. When fused kernels are executed, each CC stores tiles that are automatically reused from one kernel to the next. Therefore, the N-buffering N variable of Algorithm 12 is always set to 1 when fusing to maximize the on-chip memory usage, minimize data transfers, and save main memory bandwidth. We exploit inter-cluster RDMA data transfers to reduce the number of external memory accesses. Step 1

Tiling Combined with Fusion

Step 2

Step 3

Step 4

Step 5 Thanks to the fusion optimization, we gain a factor of 2 on the data copied in the main memory. Indeed, the main memory bandwidth (external) is often a performance bottleneck for manycore architectures [START_REF] Williams | Roofline: an insightful visual performance model for multicore architectures[END_REF].

The RDMA-based tiler (Algorithm 12) can be used straight out of the box by other architectures supporting asynchronous one-sided communications, such as OpenCL async_work_group_copy(), Message Passing Interface (MPI)-3 one-sided operations, or even the low-level onto the eDMA feature of the Texas Instruments (TI) Keystone II.

Complex Distribution and Memory Access Patterns

DMA-enabled architectures have always been challenging to program, mainly because all data transfers are explicit.

Dealing with Irregular Memory Accesses

Irregular memory accesses happen in some OpenVX standard kernels like geometrical transformations. These irregular memory access patterns are difficult to predict during the verification and optimization of the graph in vxVerifyGraph. Therefore, the proposed tiling solutions presented in Section 9.4 cannot be used for such problems. There exist two types of geometrical transformations which are the affine and the perspective transformations in OpenVX.

The warp affine transformation is defined by 2 * 3 matrix. It translates pixel coordinates from the input to the output image. Let us consider M the transformation matrix, O and I respectively the output and input image. We use the formula provided as follows and presented in the Warp Affine section of [G + 17]:

xt = M 1,1 * x + M 1,2 * y + M 1,3 yt = M 2,1 * x + M 2,2 * y + M 2,3 O(x, y) = I(xt, yt)
The warp perspective transformation is defined with a 3 * 3 matrix. It translates and rotates pixel coordinates from the input to the output image. Let us consider M the transformation matrix, O and I respectively the output and input image. We use the formula provided as follows and presented in the Warp Perspective section of [G + 17]: The matrix M is provided by the OpenVX user, thus unknown, meaning that memory access patterns can be irregular.

xt = M 1,1 * x + M 1,2 * y + M 1,3 yt = M 2,1 * x + M 2,2 * y + M 2,3 zt = M 3,1 * x + M 3,2 * y + M
The computation of the coordinates is performed using floating point operations and converted back to integers once computed. The computed coordinates are used to access the input pixel and write this accessed input pixel on the (x, y) coordinates of the output image.

We show an example of a geometrical transformation in Figure 9.8. The transformation is a rotation using the warp perspective. When there is no correspondence between the output pixel and the input pixel, a black pixel is set. Irregular memory patterns are challenging to manage on DMA-enabled architectures. As such when the data movements depend on the input data itself, it is hard to handle efficiently. Such a problem usually requires a global cache system. Kalray provides at lowlevel an implementation of the Distributed Shared Memory (DSM) system where the PEs of the CCs matrix have direct access to the main memory using the Memory Management Unit (MMU) that is presented in Section 2.4.5. However, the current DSM system is not acceptable in our proposed OpenVX framework because of the following issues:

• It requires at least 500 kilobytes of local memory to operate, and the local memory is a critical resource for performance.

• It cannot be unplugged dynamically when a kernel of a graph does not need it.

• It does not implement prefetching mechanisms.

Our contribution to the efficient execution of these OpenVX kernels is to implement a cache of 2D tiles in Algorithm 13. The tile geometry is set with the TileWidth and TileHeight parameter at Line 1, at initialization time. Furthermore, arguments of this algorithm define the geometry of the 2D tiles that are cached with parameters CacheWidth and CacheHeight. The goal of such a system is to fetch on demand and depending on the transformation, the input pixel to be placed in the output pixel. The cache of tiles is dedicated to the geometrical transformations, but the idea can be applied to other use-cases.

Such configurability let the graph verification pass of OpenVX analyze the geometrical transformations and configure the cache accordingly to get a high rate of hits in fetched tiles.

Algorithm 13 runs on each PE of each CC running the geometrical transformation concurrently. As in Section 9.4, the output image is tiled inside the CC, and each PE operates on an image tile. The parallelization of a sub-tile inside one CC is managed by OpenMP. Moreover, the loop presented in Line 7 of Algorithm 13 is tiled to provide a better locality of 2D tiling at the global level of the explicit cache of tiles.

Black pixels in Figure 9.8 (top of the right image) corresponds to computed input coordinates that were out of the input image geometry. The condition observed in Line 9 of Algorithm 13 manages this corner case. Initialization of the output image to black could be done at initialization time; but, for performance, it is performed while iterating on the output pixels, on-the-fly. This optimization avoids accessing the entire output tile at initialization time, thus reducing memory accesses.

With such an algorithm architecture, fined tuning could be done during the verify graph process to configure the cache with the following parameters: line width and height, tile offset of in the image (middle, end, beginning, custom). We tuned our new cache of 2D tiles to fetch in lines for x translations and y translations for affine transformations, but further prospection and effort could be done for perspective transformations.

Implementation of Distributed Reduction and Dynamic List Update

The Harris corner detection is part of the OpenVX standard, and it is used to detect key points within an image. For instance, these points can later be used for motion vector estimation.

The Harris corner detection algorithm requires the implementation of reductions when running in parallel. Reductions are explained in Section 3.1.3. In parallel computing, when we consider a distributed machine with local memories like the Kalray MPPA ® , the parallel implementation of reduction is not easy. The Asynchronous One-Sided (AOS) library (Chapter 5) has been developed to solve this problem, thanks to remote atomic operations. Indeed remote atomic operations are powerful to deal with atomic updates of variables in distributed memory systems fitted with local memories (only).

The Harris corner detection performs a reduction at some points during the execution to compute the maximum value of an image. This image is split across the array of local object) mapped in the main memory (external) as well. Thanks to this algorithm, it is possible to combine efficiently the contribution of several CCs.

Results & Discussions

Optimizations performed by the framework are fully automated. They do not require any user inputs. This section shows the impact of automatic optimization passes regarding fusion and prefetching on the execution time. The graph verification and scheduling were done offline for benchmarking. The entire distributed framework (workflow, runtime, and kernels) has been implemented in standard C99 for efficient execution in embedded systems, and without any complex library dependency but the C library.

Before explaining the results, we highlight three cases of speedups:

• Sub-linear: means that the parallelization is below the theoretical speedup when increasing the number of cores. Such a low speedup is due to several known parallel programming problems, which are the Amdhal's law (some part of the application cannot be run in parallel), the overhead of the extra software control for the parallelization, and the data transfers used to spread data across the available cores.

• Linear: means that the cores are well exploited, and the speedup increases linearly with the number of cores. The application is embarrassingly parallel usually when the computations are independent (no data dependency between cores and the NoC communications are not stressed).

• Super-linear: means that the speedup factors are above the number of cores. Such a speedup is usually misunderstood as it somehow breaks classical speedup laws that bound the maximum theoretical speedup of parallel applications, like the Amdhal's law. However, super-linear speedups can be obtained in a few cases, usually in HPC. It can be observed while focusing optimizations onto memory accesses [START_REF] Williams | Roofline: an insightful visual performance model for multicore architectures[END_REF], while eliminating costly stalls on the main memory accesses, and exploiting shared on-chip memories very efficiently.

Performances Analysis

We use single-channel images (VX_DF_IMAGE_U8) for benchmarking with image sizes corresponding to VGA (480p) and full HD (1080p). Strong scaling is shown when varying the number of CCs, and the number of PEs is set to 16 within each CC. The operating chip frequency is 500 MHz. It uses a single DDR3 channel running at 1333 MHz. The power consumption of the chip varies from 4 to 12 Watts, depending on the use case and the optimizations applied (fusion, prefetching and core-level optimization). We use point operator kernels using tiling or overlap tiling techniques with either halo regions inter-cluster data transfers or spilling, depending on the optimization level.

Benefits of Asynchronous RDMA Prefetching

Figures 9.9 and 9.10 compare the execution latency of a single kernel using synchronous strided-to-dense RDMA main memory accesses compared to asynchronous accesses implementing N-buffering (see bench_N_BUFF results). Five kernels (copy, conv3x3, threshold, dilate, or ) have been evaluated. We found that asynchronous RDMA prefetch is a musthave for performance, as long as the main memory is not the bottleneck. Our RDMA prefetching mechanism provides up to 80% better performance than the blocking memory accesses. Quasi-linear speedups are obtained for up to 8 clusters before becoming memory bound with the main memory (external memory). 

Automatic Kernel Fusion

Figures 9.11 and 9.12 compare results with tiling with prefetch, and tiling with prefetch combined with kernel fusion. As seen in Figure 9.12 for full HD images with the edge_detect_pipeline (Median, Sharr and Magnitude pipeline), the kernel fusion optimizer can fuse the kernels when the execution platform integrates 10 CCs and more.

Indeed, with this edge_detect_pipeline, the entire data set fills all available local memories, when the number of CCs is higher than 10, making the fusion optimization possible (Figure 9.7). Similar speedups are also noticed for other cases for both image resolutions (full HD and VGA).

Data copies in the main memory (external) are avoided, thus providing an extra speedup of 25 % in this case compared to the spilling N-buffering version. 

Super-linear Speedup at Multi-Cluster Level

In the edge_detect_pipeline of Figure 9.12, super-linear speedups are observed. On full HD images (1080p), 1 compute cluster provides 4.62 Frames per second (fps) and the 16cluster version with kernel fusions, asynchronous strided inter-cluster halo regions exchange provides 78.07 fps, for a speedup of 16.9. As already seen, super-linear speedups are usually misunderstood as they contradict the classical theoretical speedup law's. On complex memory hierarchy processors, super-linear speedups are achieved by optimizing memory accesses at multiple levels of the memory hierarchy. Several parameters need to be taken into account. These parameters are memory access locality (shared cache or local sharedmemory), multiple levels of tiling geometries, and asynchronous prefetching mechanisms. On the Kalray MPPA ® processor, such speedup is obtained thanks to the exploitation of the on-chip local memories, and the use of asynchronous (strided) inter-cluster data transfers, which eliminate main memory access stalls.

The main memory (external) bandwidth wall needs to be avoided to fully exploit the processing capabilities of low-power massively parallel architectures [START_REF] Williams | Roofline: an insightful visual performance model for multicore architectures[END_REF]. Other cases, filtering_pipeline (Sobel, Magnitude, Erode & Dilate) and box_closing_pipeline (Conv3x3, Erode & Threshold) have both speedups of 15.1 on full HD images.

Irregular Memory Accesses Performance

With this contribution, we let geometrical transformation algorithms run on the targeted clustered manycore processor. As already explained, irregular access patterns are difficult to manage on clustered architectures. In Figures 9.13 and 9.14, we show the multi-clusters throughput (fps) for geometrical transformations. In the CC, all PEs run in parallel the 2D explicit cache of tiles. Although we observe at best a speedup of 10 with full HD images for the translation, the performance for the Warp Perspective transformation is poor. Indeed the Warp Affine transformation (translation) still has more regular memory access patterns (better data locality). More advanced static analysis during the vxGraphVerify process could be done to configure the 2D explicit cache of tiles better. Still, the mechanism is generic and always working, only fine-tuning is now required to carefully set the input parameters of to 2D explicit cache of tiles (offset, 2D dimension, local tiling). Such optimization is not the purpose of this thesis.

In a mono-cluster implementation, when the platform-specific attribute nb_pe_per_cluster is in the range [1,16], the performance also shows little speedups in Figures 9. 15 VGA Images.

Performance of the Harris Feature Point Detection

In Table 9.1, we show the multi-clusters performance for the detection of feature points within an image. The current implementation has limitations. It can be observed in Table 9.1 that all cluster combinations are not supported. There is currently a limitation as only the fusion optimization part has been implemented, and not the generic implementation that makes the execution of the Harris corner detector possible independently of the amount of memory available in multiple CCs. Such a feature should be implemented in the future.

Still, inside each CC, 16 PEs are processing the local tile concurrently. At the multicluster level we show a speedup of 5.6 between 2 CCs and 16 CCs of V GA images (theoretical is 8). A speedup of 1.85 is observed between 8 CCs and 16 CCs (theoretical is 2). No super-linear speedups are observed in this benchmark, as only the fusion optimization has been implemented, and also, as the algorithm requires reductions. Reductions are se- quential at the memory system point of view. Thus, it implies additional synchronizations with remote atomic operations. It is hard to get linear speedups with such constraints. 

Benchmark

Conclusion

In this chapter, we describe the implementation and benchmark the experimental results of the first OpenVX framework for the Kalray MPPA ® processor second generation. The framework is built for the low-latency execution of OpenVX application graphs. Implemented on top of the AOS API (see Chapter 5), and the new multi-threading runtime (see Chapter 6), the entire framework has been written from scratch in C, starting from the API specification provided by the Khronos group (around 20 thousand lines of code). The main focus is put here on the throughput of the explicit data communications for enabling low-latency execution of an OpenVX graph. The strategy consists in mapping each OpenVX node of the graph on all available Compute Clusters (CCs) for the acceleration matrix of MPPA ® . The parallelization of each OpenVX kernel (node) is fully automated from the point of view of the user of OpenVX.

On massively parallel architectures, one of the main performance bottlenecks is the main memory bandwidth (external memory). The main memory (external) also features long memory access latencies. Our framework automatically addresses these two bottlenecks by exploiting the on-chip local memories as much as possible (kernel fusion), and by operating RDMA engines in asynchronous mode (data prefetching).

The framework performs automated optimizations, including kernel fusion, kernel execution tiling, and N-buffering of external memory transfers. The kernel fusion technique eliminates intermediate buffers and main memory (external) accesses. Thus, it saves main memory bandwidth that is most of the time the performance bottleneck [START_REF] Williams | Roofline: an insightful visual performance model for multicore architectures[END_REF].

One of the main contributions is the automatic distribution of OpenVX nodes on the available local memories of the CCs. Thanks to such a feature, we can reach low-latency execution. However, this strategy requires asynchronous inter-cluster RDMA transfers to handle multi-cluster RAW dependencies, which are complicated to implement.

The results are measured using the real MPPA ® hardware. We show some linear and super-linear speedups at the multi-cluster level, which demonstrate that the MPSoC is well exploited.

Moreover, another significant contribution in this Chapter is the design of an offloading engine presented in Section 9.2. This engine offers a very efficient entry point from the host to offload and control the multi-core CPUs (Compute Clusters (CCs)) of the MPPA ® MPSoC. Thanks to this contribution, the usefulness and the ease of use of this engine, it is today the back-end of several optimized libraries offloaded from the IO to the CCs. These libraries are the BLIS [START_REF] Field | Blis: A framework for rapidly instantiating blas functionality[END_REF] framework, the FFTW library, internal projects targeting embedded systems, and our new low-latency OpenVX implementation.

Lattice Boltzmann Method (LBM) Algorithm and Background

The 3D-stencil is a Lattice Boltzmann Method (LBM) used in simulations. The LBM is widely used in computational fluid dynamics for incompressible and weakly compressible flows as explained in paper [START_REF] Succi | The lattice Boltzmann equation: for fluid dynamics and beyond[END_REF]. For instance, LBM algorithms are used to simulate oceans, failure of nuclear reactors, and volcano eruptions.

A lattice is a structured geometrical shape composed of points or objects in space. Such stencil applications cannot fit in the local memory and must be stored in the main memory (external).

An LBM model is characterized by its stencil type, denoted Dd Qq, where d is the number of space dimensions (one, two or three) and q is the number of Particle Distribution Function (PDF), as explained in [START_REF] Cao | Physical symmetry and lattice symmetry in the lattice Boltzmann method[END_REF]. Physically, an LBM time step on a lattice node is broken into a collision and a propagation step, also known as the streaming step.

The collision applies a predefined physical model on the lattice distribution vectors. The propagation updates these new distribution values for each node. The most used stencil types are D2Q5, D2Q9, and D3Q19 (see Figure 10.1) or D3Q27. The nodes are the points from 1 to 18 and the center point in Figure 10.1. Nodes can also be found at the corners of the cube, but they are not dependencies for the D3Q19 stencil, they are for the D3Q27 stencil. In this section, we explain an implementation of a 3D-stencil onto a Direct Memory Access (DMA)-enabled manycore processor. From a programming point of view, LBM applications are easy to implement and well-suited for parallelization on modern multi-/manycore platforms. However, LBMs are known for their low arithmetic intensity, and their high memory bandwidth. Indeed, the entire data set, usually a gigabyte of data, has to be streamed in the processor most of the time for computing a single step of the simulation algorithm. The execution time highly depends on the memory access schedule and the theoretical bandwidth of the main memory (external memory).

The initial implementation uses the Kalray OpenCL data parallel programming model presented in Section 3.2.2. The Kalray OpenCL model uses the Distributed Shared Memory (DSM) (see Section 2.4.5) to support direct memory access to the off-chip Double Data Rate (DDR) memory. However, such direct memory accesses using the DSM are synchronous, and cache effects are also a bottleneck. The bottleneck is due to the software managed cache, aliasing conflicts, and the small number of pages that can be cached in the local memories (on-chip memories).

Hence, using explicit asynchronous transfers between off-chip and on-chip memories aims to boost performance, to reduce the overheads and the execution time. However, it implies important code re-structuration, as well as new communication primitives and algorithms.

Most existing LBM implementations on Graphics Processing Unit (GPU) employ the fused two-lattice approach as the most comfortable and most computationally efficient method. In particular, OpenCL Processor Array LBM (OPAL) from [START_REF] Obrecht | Performance Evaluation of an OpenCL Implementation of the Lattice Boltzmann Method on the Intel Xeon Phi[END_REF] implements a one-step two-lattice 3D LBM solver based on the D3Q19 stencil. OPAL is designed to be portable and straightforward on GPUs, accelerators, and other OpenCL-enabled devices.

Optimizing a 3D LBM Stencil Application on Top of Asynchronous

One-Sided (AOS)

We take the D3Q19 LBM application from OPAL presented in paper [START_REF] Obrecht | Performance Evaluation of an OpenCL Implementation of the Lattice Boltzmann Method on the Intel Xeon Phi[END_REF] as a reference configuration. The data dependencies are shown in Figure 10.1. We propose in this section a generic 3D LBM streaming algorithm with domain decomposition. We detail index and halo size calculation for any configuration of the stencil distribution in Figure 10.3. For each iteration, the entire data set is streamed in the local memories. As for the OpenCL implementation, this sequence is repeated as many time as required (fixed number of iterations). We optimize memory accesses by pre-fetching 3D tiles using Algorithm 14. A 3D tile is a convex polyhedron bounded by six quadrilateral faces. Moreover, other optimization parameters can be tuned, even on other architectures, such as the DdQq, the halo size, and the number of time steps T for the LBM simulation.

Supporting 3D Data Transfers in the AOS Library

Efficient 3D-stencil computations on a DMA-enabled processor implies 3D data movement support at low-level. Therefore, the AOS Application Programming Interface (API) of Chapter 5 has been slightly extended to support generic 2D and 3D data transfers easily.

2D transfers directly use Put and Get primitives presented in the Section 5.3.6. In the case of 3D buffers, new 3D transfer primitives based on Put and Get have been developed [START_REF] Dupont De Dinechin | Kalray MPPA Asynchronous One-Sided Library[END_REF]. The 3D transfer primitives have been implemented over the 2D transfer ones at low-level. Indeed a 3D transfer is a sequence of 2D transfers. This is basically a "for loop" over the 2D transfer proposed by Algorithm 5 and illustrated in Figure 5.5.

Implementation Architecture

Firstly, the LBM kernel of OPAL is rewritten in C99 code. Given the similarity between OpenCL-C and standard C99, the porting process is easier. Therefore, the one-step twolattice method is re-applied using a pull scheme, as in the original OPAL. The pull scheme means that the CPUs use remote reads (Get) and remote write (Put) to access the data.

Secondly, two instances of the 3D lattice grid (LatticeEven, LatticeOdd ), each containing L x ×L y ×L z nodes, are allocated in the main memory (external) and are accessed in a nodewise layout. For consistency, the distribution values of a lattice are stored consecutively. for compactness; however, the local post-collision 3D tiles are placed in the second grid. These two global grids are then swapped before starting the processing of the next time step (for out-of-place computing in the main memory). The algorithm uses multiple CCs at the number of N B_CC and exploits all Processing Elements (PEs) in each CC. The multi-threading is enabled using the POSIX API (create, join), introduced in Section 3.1.2). As there are 16 CCs available on MPPA ® , each CC is then responsible for M 16 subdomains. Depending on the value of M , there might be K trailing subdomains (K ∈ [0..15]). If K > 0, the algorithm must perform an extra step to copy, update and put back these K trailing subdomains by K CCs, while the other CCs are waiting. A synchronization barrier (Line 14) at the end of each time step is needed between all CCs to avoid data races at the next time step. This procedure is then repeated as many times as the number of timesteps.

Prol

The double-buffering (2-depth) pipeline in Algorithm 14 is the simplest to overlap communication and one compute-step.

As the computation is faster than the data transfers, deeper pipelines such as triple-or quadruple-buffering provide better overlapping of the communication and the computation. However, deeper pipelines require more local memory space in the CC.

In Figure 10.1, we show how a 3-depth pipeline behaves. Note that the time spent in GET and PUT is considered negligible (non-blocking) and transfers are executed in the background. However, the time spent in COMPUTE depends on the speed of the core, while the WAIT time depends on how fast the memory system serves the RDMA transfer requests and how they are hidden entirely or partially by the COMPUTE function.

Local and Remote Management of Copy-index

Here, we present the computation of the copy indexes, subdomain sizes, and halo cutoff managements depending on geometric positions of the subdomains. Adding a ghost layer surrounding the computational domain is a common technique to simplify the implementation of the streaming step at boundary cells, as seen in [START_REF] Mattila | Comparison of implementations of the lattice-Boltzmann method[END_REF]. However, we choose not to use this approach in our work, mainly to minimize the main memory allocation and avoid wasting bandwidth and storage for moving ghost cells.

However, in our 3D decomposition algorithm, this decision requires careful calculation of copy parameters for the subdomain indexes. The pre-collision 3D tile S embeds two additional halo layers for each dimension (F d ). Its computational space begins at (1, 1, 1) and ends at (F x -2, F y -2, F z -2) included. Halo layers are shown in Figure 10.2. They are the 3D tiles placed all around the internal darker green 3D tile that is copied into the local memories of the CC. When fetching a non-boundary subdomain (main block + halo) from main memory to S, the arrival point of data at the local buffer is set to (0, 0, 0), and the remote point is computed as the global beginning position of the subdomain minus one (back-off) in each dimension ((m d × C d ) -1).

A boundary subdomain can have up to three missing sides, depending on its location, as it can be observed in Figure 10.3. Consequently, the halo layer of these missing sides needs to be pruned from the copied 3D tile. The remote read-point and local write-point must also be adjusted as well.

Results and Discussions

Benchmarking Environment

The pipelined 3D LBM algorithm is implemented on the MPPA ® second generation platform using POSIX threads (see Chapter 6) and asynchronous 3D primitives from AOS (see Chapter 5). By default, MPPA ® -256 cores are set to run at 400 MHz, and LP-DDR3 frequency is configured at 1066 MHz, i.e., ∼8.5 GB/s peak per DDR.

Note that MPPA ® embeds two DDR interfaces (North and South) and the current OpenCL runtime only uses one DDR and exposes 1 GB of available main device memory, while the MPPA ® AOS library exposes both single and double-DDRs modes.

Different cubic cavity sizes, varying from 64 to 224, are used in our tests, with some exceptions. Problem sizes larger than 160 cannot be run in OpenCL on MPPA ® due to the 1 GB device memory limit (OpenCL provider's limitation). Local work-group size in OPAL OpenCL is always set to 32 × 1 × 1, as it delivers the best performance in most of the cases.

In single-DDR mode (POSIX and OpenCL), both LatticeEven and LatticeOdd are allocated on the North DDR. In double-DDRs mode (POSIX-only), the LatticeEven buffer is allocated on the North DDR, and the LatticeOdd is on the South DDR.

The effective throughput of the double-DDRs mode can be considered as twice as one of the single-DDR mode; thus 2× performance is expected.

We present below execution times of the OPAL kernel rewritten with our new POSIX pipelined algorithm on the MPPA ® -256, called OPAL_async, in 3-depth and 4-depth pipelines, and following the local two-lattice method on various cavity sizes. These tests are further run in both single-and double-DDRs modes. All these runs are checked for correctness against the original OPAL code on GPU.

LBM performances are measured in Mega Lattice Updates per Second (MLUPS). Therefore, it measures the speed of the system to compute lattice objects per seconds, precisely the speed to update a point presented in Figure 10.2.

Pipelined 3D LBM Stencil on MPPA ®

As seen in Figure 10.4, the OPAL_async algorithm outperforms the OpenCL version by more than 30% in the single-DDR mode (from 12 MLUPS to 16±1 MLUPS). Furthermore, we notice that the configuration with less Halo Bandwidth (HBW) (3-depth, 36% HBW) delivers higher performance than the 4-depth configuration (43% HBW). While consuming memory bandwidth, halo cells are copied because of the read-dependency between neighbors. It does not contribute to the final performance. Figure 10.4 shows that the less memory bandwidth the halo cells take up, the more performance we obtain.

Such a result leads us to think that the HBW of 2D/3D-stencil computations aimed to reach Exascale, like weather forecast, ocean simulation and computational fluid dynamics, should be lessened on future clustered manycore processors. For this to happen, these manycore chips should embed larger local memory on each CC (compute unit) to tear down the useless part of halo exchange due to domain decomposition. Finally, Figure 10.4 also shows the expected 2× speedup for using two DDRs instead of one. 

Performance Extrapolation

For a better understanding of the benefit of our pipeline algorithm, we modified the OPAL_async code to be able to work with arbitrary depths. Different pipeline depths were then tried out (1, 2, 4, 6, 8), to see if increasing the number of asynchronous buffers improves the performance. Thus, the node size is reduced to 8×8×8 to make the storage of up to eight subdomains possible in the local memory of one CC. Moreover, instead of using all the 16 CCs, we now vary this number of CCs and set the domain size to 128 3 to study the strong scalability of the algorithm. We use only the double-DDRs mode to obtain the best performance.

In Figure 10.5, as expected, the 1-depth code (blue line) is slower than other versions with communication-computation overlapping. However, we obtain exactly the same performance as the double-buffering case when using more than two buffers (4,6,8). The performance line scales from 1 CC to 8 CCs, then reaches almost a stable value of between 20-22 MLUPS from 8 CCs to 16 CCs.

To explain this, we added the sustained throughput of 3D transfer (red line) from the Kalray unit test dedicated to 3D asynchronous copy. This test only does some ping-pong copies to the DDR and does not perform any calculation (Arithmetic Intensity (AI) = 0 flops/byte explained in the Roofline model [START_REF] Williams | Roofline: an insightful visual performance model for multicore architectures[END_REF]). We observe that the native 3D copy reaches the maximum throughput with as few as four CCs (6GB/s), then remains the same for higher numbers of CCs. Therefore, four CCs are enough to saturate the DDR bandwidth. Unlike the 3D unit test, our LBM code performs real computation on the copied data. Its Arithmetic Intensity (AI) is about 350/(2 * 19 * 4) = 2.3 flops/byte, which means that each CC spends more time working on a 3D data node. The result explains in in which B is the effective memory bandwidth in GB/s. To take into account the additional cost of halo copy in our decomposition algorithm, we multiply P by (1 -HBW ), the effective part of bandwidth (main node) which generates the real performance:

P h = 6.0 × 10 9 19 × 2 × 4 × 10 6 × 8 3 10 3 = 20.2 M LU P S (10.2)
The formula for P h shows a little performance gain to perform asynchronous transfers on clustered manycore processors as for today.

However, it can be seen that the overlapping gain time is small compared to the wait time for data due to the DDR3 bottleneck. It also demonstrates the memory-bound property of general stencil computations. We think that newer memory technologies like DDR4 and High Bandwidth Memory (HBM) will be a performance boost on these architectures.

The scale-down of the 3D throughput versus the peak 17GB/s of two DDRs is caused by the fact that strided copies (2D/3D) must read data from a lot of different DDR memory banks. Furthermore, these copies are poorly aligned due to the access pattern of the application (Q = 19 floats). This efficiency factor of 3D transfers can be compared to the linear copies (contiguous). A correlation, computed by the lm function in R, from 1 to 8 CCs would give the performance expectation of our streaming algorithm if we were not bounded by the memory bandwidth (affine gray line). These results confirm that our pipelined LBM algorithm is strongly scalable, but is quickly memory-bound on MPPA ® . Indeed, the performance of the designed algorithm is limited by the hardware memory bandwidth when 8 CCs or more are used.

Our results also show that the imbalance between computing power and data throughput is one of the most substantial drawbacks of actual clustered manycore processors, and demonstrate the interest of future memory technologies with high-bandwidth.

A Low-Latency Distributed Fast Fourier Transform

In this contribution, we use multiple CCs to parallelize the well-known FFT algorithm, contrary to [START_REF] Hascoet | Implementation of a fast fourier transform algorithm onto a manycore processor[END_REF] where the computation targets only one CC. Distributing the FFT computation over several CCs reduces the execution time; thus, its execution latency.

Fast Fourier Transform

Fourier analysis converts time (or space) to frequency (or wavenumber) and vice versa. Fourier analysis has many scientific applications in physics, signal processing, imaging, probability theory, statistics, cryptography, numerical analysis, acoustics, geometry, and other areas.

The Fast Fourier transform (FFT) [START_REF] Heideman | Gauss and the history of the fast fourier transform[END_REF] algorithms compute the Discrete Fourier Transform (DFT) while reducing the complexity from N 2 to N log 2 (N ). Let us consider a complex 1D array of N values. The raw DFT is defined by the following formula:

X(f ) = N -1 k=0 x k e -2iπkf /N = N -1 k=0 x k W kf N (10.3) W N = e -2iπ/N (10.4)

Computing Techniques of Fast Fourier Transform

The FFT algorithms [START_REF] James | An algorithm for the machine calculation of complex fourier series[END_REF] re-factor formula 10.3, and they are known as the: Radix-2, Radix-4, and the Six-Steps FFT. FFT algorithms compute the same values as the DFT except for possible rounding errors. These FFT algorithms can be used independently or combined, providing several trade-offs concerning computational complexity, memory requirement, and parallelism. The challenge here is to find the optimal combination of FFT algorithms for execution on the MPPA ® . Below, we discuss the FFT algorithms which have been used or tested in this work.

Radix-2

The Radix-2 algorithm is applied to inputs whose sizes are powers of 2. Its complexity is 

X(f ) = N 2 -1 k=0 x 2k W 2kf N + N 2 -1 k=0 x 2k+1 W (2k+1)f N (10.5)

Radix-4

The Radix-4 algorithm is applied to inputs whose sizes are powers of 4. Its complexity is 34 8 N log 4 (N ). Note that by default a complex multiplication requires four multiplications and two additions. For this reason, the Radix-4 algorithm might be more suitable regarding performance as it requires fewer multiplications than the Radix-2 algorithm. The Radix-4 Decimation-In-Frequency equation is given by the following formula [START_REF] Cheng | Autoscaling radix-4 fft for tms320c6000[END_REF]:

X(f ) = N 4 -1 k=0 x (k) + x (k+ N 4 ) (-i) f + x (k+ 2N 4 ) (-1) f + x (k+ 3N 4 ) (i) f W kf N (10.6)

Six-Steps

The Six-Steps method [START_REF] Spinean | Implementation study of fft on multi-lane vector processors[END_REF] is another way of computing FFTs. Whereas the Radix-2 and Radix-4 algorithms are sequential, this method provides an efficient way to parallelize the FFT computations by splitting them into smaller ones. The six steps are:

1. Transpose, Transposition of the matrix interpretation of the complex 1D input.

2. Fast Fourier Transform, Independent FFT computations provide the maximum degree of parallelism.

3. Transpose, Transposition of the matrix interpretation.

4. Twiddle Correction, Complex multiplication by each corresponding Twiddle factor on the entire complex matrix with the coefficient e -2iπ * row * line matrixSize .

5. Fast Fourier Transform, Independent FFT computations provide the maximum degree of parallelism.

6. Transpose, Transposition of the matrix interpretation.

This algorithm provides both embarrassing parallelism and data locality during the FFT steps (2) and (5), which means that it is very suitable for parallel implementations and efficient on-chip memory usage. Moreover, this method can make the use of either the Radix-2 or the Radix-4 algorithms possible during FFT steps.

Real to Complex FFT

A real N -point FFT computation can be folded into a complex N 2 -point FFT. The idea is to store at the input of the FFT computation the even part in the real indexes and the odd part in the imaginary indexes. Then the FFT is performed, and the output samples are combined together in order to extract the N -point FFT final result with the following formulas:

X(f ) = 1 2 (x (f ) + x ( N 2 -f ) ) -i(x (f ) -x ( N 2 -f ) )e -2iπ f N f ∈[0, N 2 [ (10.7) X(f ) = 1 2 (x (0) + x (0) ) -i(x (0) -x (0) ) f = N 2 (10.8)
This process is very efficient, as it reduces the number of operations for a real N-point FFT of a real signal almost by half.

Distributed Fast Fourier Transform Implementation

Strategy Overview and Positioning

We position our work versus previous contributions [START_REF] Hascoet | Implementation of a fast fourier transform algorithm onto a manycore processor[END_REF] and we explain the lowlevel implementation of the low-latency distributed FFT over the RDMA Network on Chip (NoC) of the Kalray manycore processor.

Unlike [START_REF] Hascoet | Implementation of a fast fourier transform algorithm onto a manycore processor[END_REF], the new implementation distributes the work on all available CCs. In [START_REF] Hascoet | Implementation of a fast fourier transform algorithm onto a manycore processor[END_REF], the algorithm is designed using fixed-point operations to reduce the memory footprint to fit the 2 megabytes of local memory. Such optimization is possible because the targeted project did not require floating-point precision. Moreover, despite the careful management of the fixed-point implementation, a Symmetric Multi-Processor system (SMP) implementation in a single CC is a lot simpler than a distributed implementation over several CCs. However, this step is taken in our new implementation.

Our distributed FFT implementation is also based on the six-step method. The six-step method let us distribute the work on several CCs.

To the best of our knowledge, this FFT implementation is the first to break the limitation of the single CC implementation using the SMP model. Thanks to this contribution, it is possible to run complex floating-point FFTs of size greater than 2 16 , for instance, 2 18 and 2 20 (the million points FFT), on an MPPA ® second generation.

Slices of the matrix of the six-step method are mapped in each CC. A constraint is that the matrix must be squared; thus, it leads to supporting FFT sizes matching the power of 4. The parallelization in the CC is managed using the same mechanism already proposed in [START_REF] Hascoet | Implementation of a fast fourier transform algorithm onto a manycore processor[END_REF], but single precision floating-point numbers are used instead of integer in fixed-point.

Architecture of the Implementation

All steps are illustrated in Figure 10.6, which shows precisely the distribution of a 256-point complex FFT on 4 CCs. A first step consists in interpreting the input, a one-dimensional array of complexes, as a matrix. The 256-point input is interpreted as a 16 * 16 square matrix. We slice the matrix into identical block sizes, that are copied from the main memory (external DDR memory) to the local memories of the CCs.

Secondly, we transpose the matrix using inter-cluster asynchronous RDMA transfers (stride-to-stride). Transposing a matrix distributed on several CCs requires that each CC communicates with all other CCs participating in the computation of the FFT. As such an all-to-all communication pattern has to be performed.

Then each CC executes in parallel using the SMP model independent FFTs of size √ 256 = 16 considering our example in Figure 10.6. We perform a transposition at CCs level. The twiddle correction is then computed. The twiddle correction multiplies each value of the distributed matrix by a corresponding complex factor computed by e -2iπ * row * line matrixSize . The row and line are respectively the numbers of rows and lines of the interpreted global matrix. However, we computed off-line these coefficients as the transcendent functions, namely the cos and sin functions of the math library, have a significant cost.

Finally, we repeat a pass of embarrassingly parallel FFTs and a distributed transposition. The final distributed transposition keeps the sparse memory accesses on-chip, instead The implementation provides a speedup of almost 2 compare to the cached Load/Store one, on a single-core. A matrix of size 256 * 256, at 500 MHz, is transposed in 0.57 millisecond (3.7 bytes/cycle). The streaming-based implementation is 0.31 millisecond (6.7 bytes/cycle). In the CC, the streaming Load/Store pipeline has an efficiency of 84 % of the peak hardware memory throughput. Results are independent of the matrix content, and the read and write buffers are invalidated by software at the L1 cache level before transposing the matrix. The measurements are performed using an average of the execution times over a thousand executions.

Memory Footprint

Each CC, part of the parallel processing of the distributed FFT, allocates two buffers for the FFT data elements. These two buffers are used to deal with the matrix transposition which relies on double buffering. Otherwise, fined-grained multi-cluster synchronizations are required; that is very time consuming for MPPA ® . Indeed, each synchronization costs at least 2.2 microseconds (see Chapter 5).

Efficient fined-grained synchronizations would make it possible to remove the second transposition buffer and instead use far smaller buffers to accommodate temporary tiles for the transposition. Many synchronizations are needed to avoid data races.

Moreover, the twiddles of the twiddle correction of the distributed six-step FFT are precomputed. However, we only compute the first twiddle of each row and the rotating twiddle, to make on-line twiddle computation possible using the homothety math technique. This optimization reduces the memory footprint.

Then if we consider a distributed FFT in blocks of size Size, the small FFTs run in each PE of the CC is of size √ Size. Thus, we also compute off-line the twiddles of this small FFT. These twiddles are quite light in terms of memory footprint. For instance, considering a million point FFT, the size of the FFT run in each PE is only 1024-point.

A summary of the formula to be used to compute the memory footprint in each CC is given in Table 10 

Floating-point Single Instruction, Multiple Data (SIMD) Instructions

The k1 Very Long Instruction Word (VLIW) core implements SIMD operators to process efficiently single precision complex multiplications. Indeed a complex multiplication is defined as:

(A r + iA i ) * (B r + iB i ) = (A r B r -A i B i ) + i(A r B i + A i B r ). The real part, C r = (A r B r -A i B i )
, is computed using a floating-point instruction implementing a dual multiply and subtract in one cycle. The imaginary part C i = (A r B i + A i B r ) is obtained using a floating operator with cross dual multiply and addition. The register width of the k1 VLIW core is 32-bit. A single precision floating-point number can fit. Moreover, for 64-bit SIMD operations, it is possible to work on register pairs (Section 2.3.2). Figure 10.7 shows the elementary vectorized instructions to perform a complex multiplication on the k1 VLIW core. As the compiler usually has difficulties to generate such instructions, we wrote the code using inline assembler, as it avoids dealing with the register allocation, the stack management, and the Application Binary Interface (ABI). The ABI is a hardware-dependent format that defines the rules to manage data structure, calls to routines in a machine code point-of-view. Using inline assembler or intrinsics still, let the compiler optimize what is placed. Intrinsics would have been better, but they are not supported by the GNU Compiler Collection (GCC) toolchain in this case. The f cma (Floating-Point Cross Multiply-Add) and the f dms (Floating-Point Multiply-Subtract) provide 3 floating point operations each per cycle. Such SIMD optimizations make a theoretical speedup of 3 possible, but in practice, it is not the case because of memory hierarchy stalls and the Load/Store Unit bandwidth. million-point FFT the transposition steps take more than 65 % of the total execution time (126 FFT/second of 2 20 -point).

Limitations & Conclusion

With this new implementation, the largest FFT is a million single-precision complex points (2 20 ) on a full MPPA ® processor, This is currently a limitation, and some work is already on-going to use the main memory (external). The applied technique is the same as the one used in the OpenVX framework (see Chapter 9). Using the main memory (external) is possible thanks to the contribution of Chapter 5 that drastically decreased the complexity of programming the MPPA ® processor along with providing performance. However, AOS has its limitation that is well seen in such benchmarks. Indeed, in this FFT implementation, fined-grained communications over NoC are required, making the implementation behave poorly for small FFTs.

However, this implementation is the first to break the limit of 2 16 floating-point FFT limit for executing on the MPPA ® processor. We show that an all-to-all communication pattern, implemented by the flat distributed matrix transpose, is possible. Finally, FFT, and in particular huge FFTs, are known to be complicated to implement efficiently due to the irregular memory access patterns. They are even more challenging on distributed local memory architectures like MPPA ® , where all data movements, computation distributions, and synchronizations are performed by software (DMA).

A version of this FFT is proposed and available on GitHub. Usage requirements are provided on the GitHub website: https://github.com/kalray/Benchmark_FFT 10.3 Distributed Runtime for CNN Inference CNN applications are state-of-the-art for today computer vision and artificial intelligence applications. In the future, CNNs will be unavoidable for embedded computing. CNN applications are both data and compute intensive. Thus, CNNs are the typical benchmarks to evaluate embedded computing platforms for car manufacturers and high-performance systems.

of automatic RDMA communications and multicast operations. The code generator provides information like the number of CC used, and the local memory size to be allocated in each CC to execute the CNN inference.

Here, we use the MPPA ® in acceleration mode over the Peripheral Component Interconnect Express (PCIE), with an external Intel ® host x86. Each CC implements a function handler that is executed for running the generated code. We list, in execution order, the performed steps to deploy and enable such a back-end runtime for the MPPA ® processor.

• The x86 host boots the MPPA ® over the PCIE, and the controller of MPPA ® creates control queues to communicate with the host.

• The controller allocates the array of the weights and input for neurons (usually an image) in the main memory (external), and notifies the host over PCIE queues. Then, the host x86 sends the weights of the CNN application.

• The controller initializes the distributed runtimes like the AOS library (see Chapter 5) and our multicast engine to send the weights efficiently to the CC.

• Each CC initializes its runtime, allocates an array of memory to store copies of the input neurons and the weights (see Figure 10.10).

• Each CC and the controller creates and clones the memory windows (see Chapter 5) to make each node able to access the memory of other nodes. The memory window is defined as AOS segments where RDMA Put and Get operations are performed. The communication paths are used for inter-cluster data transfers to satisfy the data transfers/exchanges of the mapped sequence of CNN layers.

• When the system is ready and synchronized, the input data are sent to the main memory (external), the generated code is executed, and finally, the output data is copied to the x86 host.

Multicast Engine

CNN implementations copy all weights (network parameters) in the on-chip memory of the System-on-Chip (SoC) in charge of computing the CNN inference. The Kalray NoC supports multicast operations, handled by software. We wrote a DMA micro-code that reads linear buffers (same as Algorithm 5 but for linear transfers), and we computed custom multicast routes to deliver the data elements to the proper CCs. Multicasted elements are delivered on the CC side on a preconfigured and ready Rx data tag with an end-of-transfer (End-of-Transfer (Eot)) for the completion on the DMA NoC interface of this CC. Figure 10.11 shows the topology of the multicast data transfers onto the CCs. Such a data communication scheme reduces the transfer time by 3. Thanks to this contribution, we measure a cumulated in-coming data bandwidth of 24 gigabytes per second in the 16 CCs using a single DDR3.

As seen in Chapter 5, using 16 CCs the best unicast measured bandwidth is 8 gigabytes per second for the main memory (external DDR3).

Results & Comparisons

We compare here our MPPA ® CNN framework implementation to the Nvidia Tegra X1 Maxwell architecture, using the famous GoogleNet [SLJ + 15] network in inference mode.

The FFT implementation shows linear speedup inside one CC and near linear speedup when distributing the computation of several CCs. FFTs are known to have non-contiguous memory access patterns. The six-step method splits an FFT into many smaller FFTs and provides embarrassingly parallelism and data locality during FFT steps. However, this method needs at some points a global transposition of the data set. When using multiple CCs, the overhead of the software implementation of inter-clusters RDMA transfers is significant, and it drastically bounds the speedup.

As this bottleneck has been identified, future generations of the MPPA ® processor will accelerate DMA NoC configurations. Such a feature will reduce the inter-clusters communication time; and thus, speed up the overall timing latency of the application.

The distributed runtime for the execution of low-latency CNN applications is part of a collaborative work done with two Kalray's engineers. The targeted use-case is the GoogLeNet CNN, in inference mode. We show that the MPPA ® processor features enough computing power considering both memory bandwidth (off-chip, on-chip, multicast) and processing with SIMD and streaming memory accesses, to compete with Nvidia's Maxwell embedded GPU.

Despite the hardware technology differences, for instance, the 20nm, the DDR4 and 690 MHz operating frequency for the Nvidia GPU and the 28nm, the DDR3 and the 500 MHz for the Kalray MPPA ® , the final implementation is competitive thanks to the VLIW cores that provide efficient Instruction-Level Parallelism (ILP), the inter-cluster asynchronous RDMA transfers, and the multicast operations (avoid the bandwidth wall).

CHAPTER 11

Conclusions

The programming of clustered manycore processors with distributed local memories is challenging, especially when these local memories are small. However, such machines are serious competitors concerning low-power computing. Explicit software communication is painful, engineering time consuming, fastidious, and error-prone. That is why automatic tools and software runtime that carry out all of these issues are required.

In this thesis, we proposed novel techniques applied to clustered manycore architectures like the Kalray Multi-Purpose Processor Array (MPPA) ® that is at the center of the work. The presented techniques leverage the challenges of data movements and explicit parallelism at the metal level on the MPPA ® processor. As the MPPA ® processor is a local memory based architecture implementing a partitioned global address, it makes our contributions even more challenging to be designed, implemented, debugged and validated. We also proposed higher level tools and frameworks to make the programming of the MPPA ® processor more accessible using both static and dynamic dataflow models. Dataflow models provide the user with an intuitive way of expressing application parallelisms, that can enable many optimizations, thanks to the model analyzability. Finally, we presented a distributed framework for the execution of OpenVX graphs at low-latency, and also, low-level implemented parallel applications running on the Kalray MPPA ® processor.

Throughout this work, one of the most difficult thing to perform when developing in a massively parallel environment is understanding why it fails. As such, the complexity of the developed system is limited by my capacity to debug, observe and understand the problem to make the contribution work.

Summary of our Contributions

This section summarizes our main contributions. Some of them have production maturity, and others do not. These contributions are all running on or for targeting the Kalray MPPA ® processor. Most of these contributions could be generalized to any clustered manycore architectures.

In Chapter 5, a new communication technique and Application Programming Interface (API) has been designed and implemented at bare-hypervised level to reach highthroughput and low-latency. In the contribution, we explain in details the runtime initialization and the allocation of the hardware Direct Memory Access (DMA) Network on Chip (NoC) resources. The distributed communication runtime provides asynchronous one-sided communication with a relaxed memory consistency model at the multi-cluster level. The runtime initialization is quite complicated, but the execution part has been refactorized many times to converge to a high-performance and light-weight implementation. Results show nearly peak hardware throughput when using data transfers of size greater than 4 kilobytes. On the Kalray 3rd MPPA ® generation, part of the proposed software engines are performed in hardware, making the Input/Output Operation per Second (IOPS) throughput almost 20 times better than our software implementation. Indeed, this contribution helped both the hardware functional specification and the hardware implementation specification.

In Chapter 6, a new highly efficient multi-threading runtime is proposed. The runtime is implemented in the Kalray bare-metal toolchain right over the Kalray's exokernel. The runtime enables POSIX threads and OpenMP multi-threading to make efficient fine-grained threading possible. Results show a reduction of the execution times of up to 22 compared to the state-of-the-art. Such improvements are made possible thanks to the use of lock-free implementations, at the cost of complexity. The contribution has a high maturity level as it is used in many Kalray's products as the main multi-threading runtime running in the Compute Clusters (CCs) and Input/Output Subsystems (IOs) for the MPPA ® processor. Moreover, this runtime also passes the entire C/C++/Fortran test-suite of the libgomp of the GNU Compiler Collection (GCC) project.

Chapter 7 presents a strategy to statically map an academic dataflow programming model efficiently on a manycore architecture with multiple levels of parallelism. Designed and implemented in the Institute of Electronics and Telecommunications of Rennes (IETR), the Parallel and Real-time Embedded Executives Scheduling Method (PREESM) framework uses a dataflow graph compilation technique that systematically flattens all graph hierarchy in the first compilation pass. This process often ends up in producing many actors to be mapped on cores, which is problematic on manycore architecture as the optimal mapping and scheduling problem is known to be NP-complete. Therefore, we proposed in this thesis a technique that consists in keeping/exploiting the graph hierarchy, and performing only a hierarchical mapping at coarse-grained. The fine-grained parallelism, inside the hierarchy, is retrieved by generating parallel for-loops using OpenMP multi-threading. Such a technique reduces the mapping complexity and preserves application parallelism. Experimental results show a mapping time reduction of more than 1000, and 6 % better performances than the systematic flattening.

Chapter 8 presents an embedded reconfigurable dynamic dataflow runtime for a clustered manycore architecture. The original runtime, designed and implemented by the Video Analysis and Architecture Design for Embedded Resources (VAADER) team at IETR, was introduced in 2014 [HPD + 14]. As clustered manycore architectures feature distributed local memories with a partitioned global address space, this embedded reconfigurable dataflow runtime had to be deeply modified to make explicit inter-process communications possible (automatically). The master runtime, that schedules and distributes the work of the dataflow application, is statically mapped onto a host multi-core Central Processing Unit (CPU) (IO) and the workers are placed on the matrix of CCs. Each core of the MPPA ® processor triggers the inter-process communications automatically when jobs are sent to them by the host runtime. Among the main contributions, the scheduler and the memory allocator have been redesigned. A light-weight scheduling heuristic is introduced to let the host keep up with the high degree of parallelism of manycores, and to provide efficient use of the on-chip local memories. Finally, as the local memories are small with 1.5 megabytes at most, a parallel deadlock avoidance algorithm is added to avoid local memory starvation and for sharing the memory between the cores inside one CC.

In Chapter 9, a new distributed framework for executing low-latency OpenVX applications on a clustered manycore processor is proposed. OpenVX is a modern and standard API that is defined by the Khronos Group for describing computer vision and inference neural network applications. OpenVX is built as an acceleration programming API where the computation is described by a Directed Acyclic Graph (DAG). As Directed Acyclic Graphs (DAGs) are used to express the computation, and a verification pass has to be issued before the actual processing of the OpenVX graph, it is possible to perform many optimizations during this verification. Our framework is an embedded runtime, that operates in user-space, running on the manycore processor host. The framework does not require any external resources or offline analysis to operate. It runs standalone. On the MPPA ® processor, the front-end OpenVX framework is mapped on a host (IO) which deals with the OpenVX buffers and graphs described in the application by the developer. The tasks are offloaded on the acceleration matrix of CCs. Therefore, if the OpenVX graph changes, or if an external event changes a parameter, the user can retrigger the graph verification. It will reoptimize the overall execution of the computing graph pipeline automatically. To minimize the execution time, each kernel is automatically distributed on all available CCs of MPPA ® . In the proposed framework, it is possible to specify at the creation of the OpenVX context a list of CCs, the number of cores in each CC, and to disable optimization passes. By default, this distributed framework performs automatic scheduling and static memory allocation of the graph execution, and fully automated optimization such as automatic and explicit Remote Direct Memory Access (RDMA) prefetching and kernel fusion. Pre-fetching and kernel fusion are the keys of performance on manycore machines as they respectively enable the overlapping of the computations and the communications, and avoid the main memory bandwidth wall which is one of the most significant problems in high-performance implementations. Such automated optimizations allow the user to reach super-linear speedups at the multi-clusters level, showing that the manycore architecture is efficiently exploited.

In Chapter 10, new distributed low-level implementations of diverse applications are described: a 3D stencil application, a Fast Fourier Transform (FFT), and a custom runtime for low-latency execution of inference Convolutional Neural Network (CNN) applications. The parallelization strategy and mapping of each use-case is explained as well as its implementation. Classical hand-written optimizations are used to reach competitive performances. At the core level, a manual pipeline of streaming memory accesses is used to provide efficient sparse memory accesses. Single Instruction, Multiple Data (SIMD) instructions are also exploited. At the multi-core level, explicit Pthread and OpenMP are then used for parallelizing each kernel inside each CC. At the multi-cluster level, distributed and asynchronous one-sided communications are leveraged to both pre-fetch data from the main memory (hide the high external memory access latency) and perform inter-cluster communication to avoid the main memory bandwidth wall. All optimizations described in this chapter are done manually. Experimental results show linear speedups when the main memory bandwidth no longer bounds the performances.

Future work

Some contributions listed below of this thesis deserve to be enhanced either by adding functionalities, or removing current limitations, or entirely re-designed due to the lack of time and for proof-of-concept work. Others will need more engineering efforts to reach a higher maturity, required for production software. 11.2.1 Fundamental Mechanisms for Programming Manycores: Asynchronous One-Sided (AOS)

Relaxed Remote Atomic Operations Currently, remote atomic operations are strictly ordered with respect to RDMA operations on a memory segment. Such a feature is useful for programmers and makes data transfers and synchronization transactions efficient on distributed local memory architectures. The programmer performs locally posted asynchronous operations, and the core can switch immediately to the next computation. The ordering is ensured by the runtime proposed in Chapter 5.

In some cases, such an ordering is not useful. For instance, when implementing endto-end software flow-control mechanisms or when trying to synchronize several initiators with each other as fast as possible, the ordering feature can result in a significant software overhead. For this purpose, the solution is to provide relaxed (unordered) remote atomic operations. The ordering could be requested by a specified flag when calling the remote atomic operation. Such a feature is quite complicated to implement. It will require more hardware resources on the DMA NoC interface of MPPA ® to handle the completion and the remote notification.

Efficient Collective Operations, with Broadcast

Efficient collective operations (like barrier or broadcast operations) are complex to design and implement on distributed memory architectures. Collective operations define concurrent communications between several CPUs, usually in a distributed environment. Collective operations are usually state-full. Each participant of the distributed communication has to be aware of the states of all participants in the communication.

For instance, collective operations ease the implementation of global barriers and broadcast operations. Broadcast operations are essential to reduce the pressure on the main memory, but it depends on how they are implemented. For instance in this thesis, in the case of the targeted manycore architecture, data can be read only once, and all participants receive them. However, collectives are challenging to implement because of resources sharing, lock-free mechanisms to make it efficient, and the high concurrency.

The support of collectives over the NoC of the MPPA ® processor will be a significant advance, in the software stack for developing and optimizing parallel distributed applications.

Large Scale Asynchronous One-Sided: Multi-MPPA Support Asynchronous one-sided communications are only supported on a single MPPA ® chip. The current implementation has not been designed to scale with multiple MPPA ® chips. However, redesigning the way the hardware resources are shared would make the support of asynchronous one-sided communications possible over multiple MPPA ® chips. As the implementation will be even more concurrent, such distributed software development will require time and careful design. Moreover, the debugging of such implementation is very complex and will require more instrumentations to let the designer understand what happens.

should support the data parallel and the task parallel modes. The two modes could switch at runtime, depending on use-cases. However, the host would have to compile the OpenCL kernels off-line. Otherwise, the IO of MPPA ® should run a compiler. With such a feature, efficient and fine-grained offloading of computations from the IO of MPPA ® to the CCs could be done. It should ease the programming of MPPA ® for application engineers.

Moreover, standard extensions, like the one presented in Section 5.6.2, have to be supported to provide software engineers with optimization tools.

A vendor specific feature for efficient exploitation of the distributed local memories of the MPPA ® processor has to be available: the exposition of inter-CCs communications in the compute kernel of OpenCL at runtime.

Parallelization Techniques

Off-chip RDMA-based Time-skewing Time-skewing techniques reduce the main memory bandwidth by restructuring memory accesses of an application to increase data locality in iterative stencil applications. Many works, such as polyhedral optimizations use and exploit time-skewing techniques, but they are all based on Load/Store memory accesses. Such optimizations could also be applied to dataflow programming in a tool like PREESM or an embedded dataflow runtime like Synchronous Parameterized Interfaced Dataflow Embedded Runtime (SPIDER).

Automatic off-chip RDMA-based time-skewing has never been attempted. Such a contribution could break the current limitation of kernel fusion optimizations that are used in the proposed OpenVX low-latency implementation (see Chapter 9).

The idea is to write an explicit tiling algorithm which performs automatic time-skewing. The algorithm is given a number of steps which should be computed, before spilling the entire data-set in the main memory (external).

Such an algorithm is complex to design as it implements multi-dimensional memory access patterns, asynchronous inter-CCs communications in a highly concurrent environment, and it must be flexible enough to execute various computations at the different skewed steps.

Toward a Warp Inspired Execution Model

On Graphics Processing Units (GPUs), a warp is a parallel code section that is executed temporally in parallel. All cores that are participating in the execution of a warp execute the same instruction at each clock cycle (Single Instruction, Multiple Threads (SIMT)). As there is hardware multi-threading onto GPUs, when a warp accesses to a location of data in the memory hierarchy, the stall on the Read-After-Write (RAW) dependency make the entire warp switch to another warp in the clock cycle. Therefore, thousands of threads are used to overlap computations and communications by Load/Store on GPUs thanks to this hardware multi-threading.

On MPPA ® , such hardware multi-threading is not possible but a warp inspired execution model could be made possible at a higher level of granularity. The (hardware) multi-threading of GPUs is done on Load/Store transactions, whereas the (software) multithreading on MPPA ® could be done on DMA transactions. The idea would consist in starting several structured teams (groups) of POSIX threads (it could be OpenMP teams), and the master thread of each team performs DMA transactions with the main memory. On the completion of the DMA transaction, the entire team of threads is rescheduled by the multi-threading runtime. Such a contribution is quite challenging to design as it involves low-level runtime implementation, asynchronous communications, and updates of shared variables using lock-free mechanisms for performance.

Final Conclusion

This thesis gave me the opportunity to work on software runtimes for helping with the programming of a new generation of clustered manycore architectures. Throughout this work, I proposed, developed, and validated fundamental low-level mechanisms for programming new clustered manycore architectures with local memories. The complexity of these architectures should be hidden by programming models allowing the application engineers to optimize their applications. However, exotic programming models are complicated to be pushed into mainstream programming due to software legacy and portability. I believe that standard, well-documented, and high-level APIs (like OpenMP, OpenVX, Vulkan, and new programming models) are a competitive answer to abstract these architectures. As vendors usually implement these APIs, they likely provide application engineers with the best possible performance of the platform. One of the biggest challenges is to make these high-level programming models and tools (like compilers) able to reach peak performance of the platform, to make the life of application engineers easier, and to provide a faster time to market.

ANNEXE A

French Summary

Le monde de l'informatique est vaste et il a changé nos modes de vie depuis maintenant des décennies. Depuis l'invention du transistor dans les années 50 jusqu'aux tous nouveaux téléphones intelligents, voitures autonomes et maisons intelligentes, le monde que nous connaissons aujourd'hui est devenu dépendant des systèmes informatiques. Ces exemples font partie de ce qui est couramment appelés les "systèmes informatiques embarqués". Ces systèmes visent à remplir des fonctions spécifiques dans un environnement restreint avec diverses contraintes telles que l'énergie, le coût, la place, la durée de vie et les performances. Ajouté à cela, depuis l'émergence des machines de calcul et de l'informatique, le besoin en calcul n'a jamais cessé de grandir. En terme de puissance de calcul, la demande des applications modernes est de plus en plus énorme. L'automatisation, la rapidité d'exécution et les services fournis permettent plus de facilité, souplesse et économie de diverses manières.

Cependant l'informatique (embarquée) moderne est de plus en plus difficile à appréhender pour les ingénieurs et les utilisateurs des systèmes informatiques. C'est d'autant plus vrai pour les ingénieurs amenés à programmer la machine à niveau relativement bas (assez proche de la machine). Les systèmes informatiques modernes sont très concurrentiels et hétérogènes ce qui rend leur utilisation difficile. Pour palier à ce problème, des méthodes et modèles de calcul existent afin de réduire cette complexité et abstraire le plus possible l'architecture de la machine de calcul utilisée. Cela est encore plus vrai en ce qui concerne les systèmes informatiques parallèles et embarqués qui seront au centre des travaux présentés.

Dans cette thèse, des modèles de calcul tels que les modèles flux de données sont utilisés, mais aussi des interfaces de programmation d'applications sont exploitées et implémentées en partant de rien, de la machine à nu (le métal). Grâce à elles, il est possible de réduire considérablement les temps de développement des logiciels informatiques déployés sur des machines parallèles complexes. Comme les applications embarquées parallèles tendent à devenir dynamiques mais toujours avec des parties statiques, et avec de fortes contraintes en termes de performance, à savoir en cadence et latence, il est nécessaire que l'outillage servant au développement de ces applications soit robuste, efficace, utilisable (le plus facilement possible pour l'ingénieur non expert de la machine), observable et débogable. comme il est classiquement trouvé sur les processeurs parallèles. Les mémoires locales du processeur MPPA ® impliquent une gestion explicite par logiciel de la communication entre la/les mémoire(s) externe(s) et interne(s) de la machine. Ces mémoires sont toutes inter connectées par un réseau sur puce capable de véhiculer jusqu'à 4 octets par cycle dans les deux sens. Cette gestion explicite de la communication est un vrai défi pour les ingénieurs logiciels. Cependant une telle caractéristique rend le processeur MPPA ® très efficace en terme de rapport de puissance de calcul et d'énergie, mais également stable concernant ses temps de calcul pour une application donnée.

A.1.2 Mémoires et protocoles de communication

Dans les systèmes embarqués, la mémoire est une ressource précieuse. Même si la plupart de la surface en silicium d'un processeur est de la mémoire (en moyenne 80%), celle-ci doit être gérée et utilisée avec précaution. Il existe différentes mémoires dans les systèmes informatiques modernes. La file de registres est une petite mémoire dans les coeurs de calcul où l'exécution courante se passe. Les registres ont une très faible latence d'accès qui est de l'ordre du cycle machine. Il est ensuite trouvé différents niveaux de mémoire sur puce qui servent à éponger et réduire les attentes de réponse du système de mémoire externe. En effet, les mémoires externes mettent un temps élevé à répondre, comparé à la fréquence de fonctionnement des processeurs. Dans cette thèse, une partie importante des travaux consiste à utiliser efficacement le système mémoire sur puce avec notamment l'utilisation de communications explicites ou par le pré-chargement de données au travers de la hiérarchie de cache.

Comme les communications explicites sont incontournables pour programmer le processeur MPPA ® de Kalray et plus généralement les machines implémentant des mémoires locales, deux protocoles de communication fondamentaux sont mis en avant. La première est la communication bilatérale. Le MPPA ® expose un réseau sur puce qui permet de communiquer seulement de manière bilatérale. C'est à dire que la communication peut être initiée seulement si le receveur et le transmetteur sont tous les deux prêts : données consistantes, ressources matérielles configurées, et synchronisées. La communication bilatérale a donc une caractéristique de correspondance très stricte entre l'émetteur et le receveur. Cela peut parfois être handicapant concernant l'optimisation de la communication notamment sur l'ordre. La seconde est la communication unilatérale qui permet à l'initiateur de la communication d'être maître sur une ou plusieurs mémoires distantes. La communication unilatérale permet la relaxation du système mémoire, c'est à dire que le système mémoire offre la capacité d'ordonnancer les transactions mémoires dans le désordre afin d'être plus performant. L'ordre et les synchronisations avec le système mémoire sont assurés par des opérations dédiées à cet effet, faites a posteriori. Ces opérations ont pour but de maintenir la consistance mémoire entre plusieurs initiateurs. Typiquement, garantir que les écritures et lectures d'un coeur et d'un périphérique en mémoire seront correctement ordonnées, afin que l'un, puisse voir les écritures de l'autre dans une mémoire (partagée ou distribuée).

A.2 Les modèles de programmation parallèle

Les modèles de programmation parallèle permettent d'abstraire plus ou moins la machine sur laquelle s'exécute le programme. Certains modèles sont relativement proches du matériel alors que d'autres sont de haut niveau. Très souvent, plus le modèle de programmation est loin de la machine d'exécution, moins l'utilisateur a le contrôle sur ce qui s'exécute sur la machine. Les travaux présentés mettent l'accent sur des modèles multitâches et modèles d'accélérations d'applications.

A.2.1 Interfaces de programmation d'applications

Les interfaces de programmation d'applications sont aujourd'hui très réputées car elles permettent d'exploiter les caractéristiques matérielles et logicielles exposées par les vendeurs ou développeurs logiciels de la machine visée. L'interface de programmation d'applications Pthread et OpenMP sont standard et permettent d'exploiter le parallélisme sur un modèle de mémoire partagée et symétrique. Ce modèle a pour but d'exploiter efficacement une machine parallèle et symétrique. Il donne un contrôle assez fin sur les coeurs de calcul, ce qui permet de contrôler à bas niveau le cycle de vie des tâches et leurs ressources. Les environnements d'exécution multitâches utilisent principalement des mécanismes d'exclusions mutuelles (verrous) afin de gérer le partage de ressources entre les différents coeurs de calcul. OpenCL, OpenMP4 et Vulkan sont des interfaces de programmation standard qui offrent la possibilité de déployer un calcul ou une portion de calcul (lourde) sur un accélérateur. Le but est de décharger la machine sur laquelle tourne l'application principale d'un calcul gourmand en ressources (calcul et mémoire) pour l'accélérer sur une ou plusieurs ressources de calcul externes. OpenCL et Vulkan sont globalement assez proches de la machine visée car ils exposent des caractéristiques spécifiques à l'architecture telles que la hiérarchie mémoire, le nombre de coeurs, la taille des mémoires locales, et des accélérations spécifiques au calcul visé.

A.2.2 Modèles de flux de données

Les modèles de flux de données sont très intéressants pour la description d'applications qui sont contrôlées par le mouvement des données. Le principe de base d'un modèle de flux de données correspond à un graphe où les noeuds représentent des calculs sur les données d'entrée et produisent une ou plusieurs sorties. Les arcs représentent les connections entre ces noeuds qui décrivent donc les dépendances du calcul à réaliser. Beaucoup de modèles de flux de données existent, mais la plupart sont des modèles non standard. Dans cette thèse, des modèles de flux de données, développés par Institute of Electronics and Telecommunications of Rennes (IETR) dans l'équipe Video Analysis and Architecture Design for Embedded Resources (VAADER) seront exploités afin d'utiliser le plus efficacement possible une architecture massivement parallèle. Le premier modèle est un flux de données hiérarchique et statique qui permet un réglage fin des différents niveaux de parallélisme possibles dans les architectures modernes. Le second modèle de flux de données réconcilie les modèles de flux de données dynamiques non déterministes et le pleinement statique. Appelé Parameterized and Interfaced dataflow Meta-Model (PiMM), ce modèle compositionable donne la possibilité de reconfiguration dynamique des graphes composant l'application. Cette reconfiguration peut être effectuée une seule fois par itération de graphe, ce qui donne au modèle plus de prédictibilité.

A.3 Environnement d'exécution bas niveau pour architectures massivement parallèles

Cette section décrit les deux principaux environnements d'exécution bas niveau proposés dans cette thèse et qui seront ensuite utilisés dans toutes les autres contributions de Environnement d'exécution bas niveau pour architectures massivement parallèles 199 cette thèse, mais aussi dans la plupart des produits logiciels fonctionnant sur le processeur MPPA ® deuxième génération de Kalray à partir de 2017.

A.3.1 Environnement distribué pour la communication asynchrone unilatérale

Les principaux travaux de recherche sur la communication unilatérale (one-sided communications en Anglais) sont principalement liés à la communication visant à échanger des données entre des noeuds de calcul qui ont d'énormes mémoires, soit plusieurs gigaoctets de mémoire. L'état de l'art de ces systèmes de communication résulte donc à des propositions d'interface de la communication de plusieurs mégaoctets. Cela n'est pas acceptable pour une architecture massivement parallèle avec des mémoires locales de 2 mégaoctets. Cette contribution, qui est la principale brique sur laquelle repose les autres contributions de cette thèse, permet de faire de la communication asynchrone très efficace sur le processeur MPPA ® qui implémente un réseau connecté de mémoires locales distribuées. Les principaux défis de cette contribution sont la gestion du partage de ressources matérielles, l'asynchronisme de l'implémentation et le fait que l'environnement distribué de communication soit hautement concurrentiel. En effet, l'émulation de communications asynchrones unilatérales sur un réseau du puce capable de communiquer seulement de manière bilatérale implique une forte assistance logicielle. Cette assistance logicielle met en oeuvre de l'ordonnancement de tâches de transferts, des mécanismes de contrôle de flux basés sur des crédits logiciels, et partage des données de contrôle sans mécanisme d'exclusion mutuelle. L'absence de mécanisme d'exclusion mutuelle permet d'atteindre une haute performance sur le logiciel multitâche grâce à l'utilisation des opérations atomiques du coeur et des périphériques.

Cet environnement expose la machine MPPA ® comme un réseau de mémoires où n'importe quel noeud multi-coeurs peut avoir accès à n'importe quelles mémoires au travers du réseau sur puce. Cette communication peut être initiée de manière asynchrone afin de pouvoir masquer les latences de communication avec du calcul. L'accès à la mémoire distante est possible en ouvrant une fenêtre mémoire contiguë sur la mémoire locale. Cette fenêtre peut ensuite être clonée pour faire le lien entre les deux participants à la communication, qui est illustrée sur la Figure A.2. Cette action est synchronisante, ce qui rend l'utilisation de l'environnement de communication plus simple vis à vis des éventuelles situations de course à l'initialisation des applications distribuées sur le processeur MPPA ® . Une fois que le canal de communication unilatéral est établi, l'utilisateur peut initier des communications asynchrones fournissant une haute bande passante en fonction de l'état global du système (contention du réseau sur puce, de l'initiateur ou du serveur). L'environnement distribué de communication permet aussi de synchroniser efficacement différents noeuds multi-coeurs grâce à l'émulation logicielle d'opérations atomiques dans les mémoires locales distantes des noeuds. Ces opérations ont la propriété d'être strictement ordonnées avec les transactions mémoires asynchrones en vol sur la fenêtre mémoire distante visée. Cela permet à l'initiateur de poster toutes les opérations localement sans avoir à attendre les complétions de celles-ci. L'ordre est géré automatiquement à distance par l'environnement de communication proposé dans cette contribution.

L'implémentation logicielle étant dans le chemin critique de la performance, l'environnement permet d'atteindre 70% de la performance crête du processeur pour des transferts mémoires supérieurs ou égaux à 8 kilo octets. Sur la prochaine génération du processeur MPPA ® , certaines parties du logiciel de cet environnement seront matérialisées pour atteindre la crête du processeur sur des petites transactions mémoires. La preuve de concept est évaluée dans Parallel and Real-time Embedded Executives Scheduling Method (PREESM) qui est un outil graphique qui permet de décrire des applications de flux de données conçu par l'équipe VAADER au sein du laboratoire IETR. Originalement, le processus de compilation d'un graphe de flux de données hiérarchique applicatif était systématiquement mis à plat. La mise à plat d'un graphe flux de données hiérarchique consiste à remplacer les acteurs hiérarchiques par leurs graphes correspondants. Cette mise à plat peut produire beaucoup d'acteurs qui devront ensuite être placés et ordonnancés sur les coeurs de la plateforme. Dans cette contribution, la mise à plat n'est plus nécessaire (mais toujours possible) ce qui permet d'avoir moins d'acteurs à placer et à ordonnancer sur la plateforme visée. Cela provoque une perte de parallélisme, mais celui-ci est ensuite exploité par la génération de boucle à itération finie et parallèle. Le groupage d'acteurs permet de construire cette représentation, et un ordonnancement d'acteurs à exécuter de manière séquentielle et itérative. Cette représentation est ensuite récupérée au moment de la code génération pour l'architecture visée. Des directives de compilation OpenMP sont automatiquement générées afin de récupérer le parallélisme perdu en amont. Les résultats montrent une immense réduction du temps de placement et ordonnancement en utilisant cette méthode, ainsi qu'un gain en performance qui est du à la fusion de certains accès à la mémoire principale. Cette fusion est apportée par la passe de groupage d'acteurs dans les sous graphes qui n'ont pas été mis à plat. L'environnement est proprement architecturé en langage C++ avec une partie plateforme spécifique, un ordonnanceur, un manageur de mémoires partagées dans les noeuds multicoeurs, et des mécanismes abstraits de communications et synchronisations. Dans cette contribution, le processeur MPPA ® de Kalray implémentant un réseau de mémoire distribuée est visé. Le maître de SPIDER est placé sur un multi-coeurs ayant accès aux entrées/sorties et les travailleurs sont placés sur les coeurs des multi-coeurs de la matrice d'accélération. Comme SPIDER a été développé sur un modèle de mémoires partagées, l'environnement doit être modifié et adapté sur un modèle de mémoires distribuées. Le principal défi est la gestion explicite de la communication, qui sur l'architecture à mémoire partagée se fait automatiquement par le coeur au travers de son unité de chargement et déchargement de données, alors que sur MPPA ® , elle doit se faire de manière explicite par des transferts Direct Memory Access (DMA) logiciels. Ces transferts explicites sont utilisés pour véhiculer les données de contrôle des queues de commandes, ainsi que pour transférer les données d'entrées et de sorties des acteurs placés par le maître sur les coeurs des noeuds multi-coeurs de la matrice d'accélération. De nouveaux placeur et ordonnanceur sont proposés afin d'optimiser la cadence d'envoi des commandes, mais aussi afin d'utiliser plus efficacement la mémoire locale des noeuds multi-coeurs. La mémoire locale est une ressource précieuse, donc l'heuristique de placement est modifiée pour prendre en compte le taux d'utilisation des mémoires locales dynamiquement à l'exécution. L'idée principale est de réduire la contention sur les demandes d'allocations de données qui permettent l'exécution de l'acteur dans le noeud multi-coeurs. Les résultats sont prometteurs car ils montrent des facteurs d'accélérations proches de la limite théorique donnée par la loi l'Amdahl.

A.5 Un environnement standard distribué pour la vision et applications sur architectures massivement parallèles

Un nouvel environnement distribué pour l'exécution d'applications au standard OpenVX est proposé dans ces travaux. L'environnement distribué donne la possibilité à un utilisateur de faire fonctionner des applications OpenVX qui sont automatiquement parallélisées sur un processeur massivement parallèle. Cette section présente aussi plusieurs applications implémentées à bas niveau. Les méthodes de parallélisation sont expliquées mais également la façon dont elles ont été adaptées à un processeur massivement parallèle qui embarque des mémoires locales.

A. L'intelligence de cet environnement repose sur l'optimisation automatique de l'exécution de la chaine de calcul décrite par le graphe OpenVX acyclique dirigé. Cela signifie donc que l'environnement est capable de placer, ordonnancer et optimiser automatiquement les tâches de calcul depuis l'hôte multi-coeurs sur la matrice d'accélération, et tout cela est fait à l'exécution de l'application de manière autonome et embarquée. Le processus qui permet de faire cela est décrit par la Dans l'environnement, la représentation interne du graphe de calcul est d'abord construite à partir de la description standard OpenVX. L'ordonnancement est un tri topologique qui est raffiné avec une passe de fusion de noeuds de calcul afin d'éviter le plus possible les copies de données en mémoire principale. En effet la fusion de noeuds, illustrée par la Figure A.4, permet de sauver de la bande passante sur la mémoire externe qui est le principal bouchon de performance des applications sur les architectures massivement parallèles. Si la fusion n'est pas possible, un algorithme de tuilage automatique est appelé et celui-ci implémente du pré chargement automatique de tuiles afin de masquer les latences d'accès à la mémoire principale (masquer la communication avec du calcul automatiquement). Les causes d'impossibilité de faire de la fusion de noeuds sont par exemple les formes de tuiles non supportées, les échanges inter noeuds multi-coeurs très difficiles, ou encore le manque de mé-moires locales adressable directement depuis les coeurs des noeuds multi-coeurs. Lorsque les optimisations sont finies, le processus de vérification du graphe OpenVX lance l'allocation statique des zones mémoires distribuées dans les mémoires locales des noeuds multi-coeurs de la matrice d'accélération. Ensuite, les commandes de calcul sont générées puis envoyées à la matrice d'accélération au moment du lancement de l'exécution du graphe fait par l'utilisateur OpenVX.

Puisque le besoin des applications embarquées (voitures autonomes par exemple) requière des systèmes les plus réactifs possibles, l'implémentation vise une exécution très basse latence. Pour répondre à ce besoin, chaque noeud du graphe OpenVX applicatif est distribué automatiquement sur toute la matrice d'accélération. Les résultats montrent des facteurs d'accélération supers linéaires au niveau multi-noeuds multi-coeurs, ce qui indique que la hiérarchie mémoire du processeur MPPA ® de Kalray est bien utilisée.

A.5.2 Applications et environnements embarqués distribués à la main

Il est présenté plusieurs applications qui sont implémentées à bas niveau sur le processeur massivement parallèle dans cette section. Les travaux réinvestissent les environnements d'exécution proposés afin d'optimiser les applications implémentées à bas niveau sur la machine visée. Tout d'abord, chaque application est expliquée, caractérisée, et ses méthodes propres de parallélisation sont abordées. Trois applications sont visées. La première est une application de stencil 3D utilisée dans les simulations numériques pour prédire par exemple la météo ou encore simuler les phénomènes océanographiques. Ensuite, une implémentation distribuée de la transformée de Fourier est proposée. Celle-ci est fondamentale dans le traitement du signal. La dernière contribution est un environnement d'exécution très spécifique permettant de faire fonctionner des réseaux de neurones en inférence.

Les travaux permettent à l'utilisateur de déployer automatiquement l'application optimisée à bas niveau sur MPPA ® . Les optimisations misent en oeuvre sont basées sur les communications asynchrones unilatérales explicites et l'environnement multitâche proposé dans les noeuds multi-coeurs de la machine massivement parallèle. Les optimisations effectuées se concentrent sur le pré chargement de données, la restructuration des accès mémoires dans les mémoires externes afin d'augmenter la localité spatiale et temporelle. De plus, la fusion des différents processus de calcul est exploitée pour éviter le bouchon de bande passante des mémoires externes.

A.6 Conclusion

La programmation des processeurs embarqués parallèles et hétérogènes est un énorme défi. Les mémoires locales du processeur MPPA ® font de lui une machine très efficace en termes de rapport de puissance de calcul et d'énergie. Cependant, la programmation d'une telle architecture est difficile pour les ingénieurs logiciels. Pour faciliter les développements et la maturation des applications logicielles sur ce type de processeur, différents outils ont été proposés et adaptés à l'architecture MPPA ® .

Dans cette thèse, plusieurs approches sont exploitées. Premièrement, le problème de la communication explicite très efficace et relativement simple à utiliser par l'ingénieur logiciel sur MPPA ® a été proposée, implémentée et validée. La parallélisation dans les noeuds multi-coeurs a été ensuite proposée par un environnement multitâche très efficace du fait qu'il utilise des mécanismes de synchronisation transactionnelle et sans exclusions mutuelles. Ces deux contributions ont ensuite permis d'élaborer des systèmes plus complexes mais cependant elles devaient être de maturité suffisamment élevées pour être utilisées dans les prochaines contributions. Basée sur un modèle de flux de données hiérarchique et statique, une génération de code automatique visant le processeur MPPA ® est réalisée. Cette contribution met en avant l'exploitation d'un modèle de calcul hiérarchique pour viser une architecture implémentant plusieurs niveaux hiérarchiques de parallélisme. Un environnement d'exécution de modèle de flux de données dynamique, proposé par l'équipe VAADER dans le laboratoire IETR, a été porté et adapté sur le MPPA ® . Cet environnement permet de placer et ordonnancer des applications de flux de données paramétriques à l'exécution sur MPPA ® de manière autonome. Un nouvel environnement distribué pour permettre l'exécution d'applications OpenVX sur un processeur massivement parallèle a été proposé. OpenVX est une interface de programmation standard et moderne qui permet de déployer du calcul sur un ou plusieurs accélérateurs depuis un hôte pour les applications de vision par ordinateur et de réseaux de neurones en inférence. L'environnement a été construit en partant de rien, uniquement de la spécification des fonctions du consortium Khronos et vise une exécution du graphe OpenVX très basse latence (implémentation hautement concurrentielle et asynchrone). L'environnement effectue l'optimisation de l'application automatiquement à l'exécution en appliquant des techniques telles que le pré chargement de données pour masquer les latences d'accès aux mémoires externes, ainsi que la fusion de noeuds de calcul pour éviter les copies de données en mémoire externe et éviter les problèmes de bande passante mémoire. En effet, sur les architectures massivement parallèles, le bouchon de performance est souvent situé sur la bande passante de la mémoire externe au processeur. C'est pour cela que des méthodes de fusion de calcul avancées sont appliquées afin d'augmenter la localité temporelle et spatiale de l'application. Diverses implémentations d'applications embarquées et hautes performances ont été aussi proposées et automatiquement optimisées sur le processeur MPPA ® d'un point de vue utilisateur. Ces applications, telles que le stencil 3D et la transformée de Fourier distribuée, sont très concurrentielles et difficiles à mettre en oeuvre.

Pour conclure, toutes les contributions qui sont présentées dans cette thèse ont été réalisées sur la véritable machine MPPA ® seconde génération, testées et validées. De tels travaux ont impliqué des séances de déboguages intensives pour comprendre pourquoi la contribution ne fonctionnait pas afin de faire fonctionner la proposition finale. C'est pourquoi, tous les systèmes, applications, et librairies optimisées, présentés dans ces travaux de thèse sur MPPA ® ont été limités par ma capacité à les observer.
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 3 4 shows how the data-parallel model of the Kalray's OpenCL is mapped onto the MPPA ® architecture. The memory model is also observed, and it is noticed that the local memory of the Compute Clusters (CCs) is used as a local memory (__local, __private) and the rest as a cache of pages for letting the Distributed Shared Memory (DSM) operating to access the global memory in the Double Data Rate (DDR) (__global).... De v i c e ( MP P A b o a r d )

  is the set of Firing Conditions of the actor. When the Firing Conditions (F C) of an actor v ∈ V are satisfied, the computation of actor v can be triggered. It is usually called the firing of an actor.
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 3103 Figure 3.10 -PiMM Semantics (Source [Des14])

1:

  Input: Set_of_Vertices { Vertices composing a Graph } of a DAG 2: Output: Set_of_List_of_Sorted_Vertices { { } } 3: while Set_of_Vertices Not Sorted do
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 313 Figure 3.13 -Internal Structure of the SPIDER Runtime

  [GL04]. The rise of Partitioned-Global-Address-Space (PGAS) languages like Co-Array Fortran [NR98] [MCASJ09], UPC and of Global Arrays motivated the development of one-sided communication layers, notably GasNet from Berkeley and Aggregate Remote Memory Copy Interface (ARMCI) from PNNL. Partitioned-Global-Address-Space (PGAS) languages and Global Arrays combine the SPMD execution model, one-sided communications, and collective operations.
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 5 Implementation of the Distributed Communications and Synchronizations 81 Algorithm 4 RDMA Engine Algorithm (this is a sequential task, communicating with distributed software) 1: while true do 2: List_Job_Fifo = Get pending job fifos 3: for Job_Fifo in List_Job_Fifo do 4: /* Transactions are ordered per fifo */ DMA micro-engine = get associated micro-engine to Job_Fifo 6:

Algorithm 5

 5 DMA Micro-engine Pseudo Code for Data Restructuring on a Window Memory Segment 1: Input Local_Offset, Remote_Offset, Object_Size, Nb_Object, Local_Stride, Re-mote_Stride 2: if Object_Size != 0 and Nb_Object != 0 then 3:

4 : 5 : 7 :

 457 Set local read_pointer to Local_Offset (read pointer in local memory) for i in 1 .. Nb_Object do 6: for j in 1 .. (Object_Size / 8) do Read and Send 8 bytes /* 8 bytes coalescing */ 8:

  Each hardware resource is configured at initialization time of the AOS engine or in the control path of the AOS engine. Indeed the configuration of hardware resources is not in the data transfer path for performance. The following configuration parameters need to be set by the software operating in the AOS initialization function, for each of the used DMA NoC interface resources. The resources configurations are listed below: • DMA Packet-shapers [0..7] -Destination DMA Rx Tag in the range [0..255]
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 5 Figure 5.7 and Figure 5.8 shows both DDR(s) and inter-cluster SMEM reads and writes, respectively called Gets, and Puts. The throughput is measured onto the memory on which the CCs are reading and writing. The size of the RDMA transactions in abscissa and the number of CCs are varying, showing different saturation points. All throughput benchmarks were with asynchronous RDMA transactions to saturate the software in charge of configuring the DMA NoC interfaces. Thus software flow-control is heavily used to prevent the local or remote FIFOs from getting corrupted.
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 57 Figure 5.7 -RDMA Get (Read) Throughput GB/s (Asynchronous)

Figure 5 . 8 -

 58 Figure 5.8 -RDMA Put (Write) Throughput GB/s (Asynchronous)
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 59510 Figure 5.9 -RDMA Get (Read) Latency µs (Blocking)

  (B) = IP T + HLT + SP T + B/3.76 + CT . Let IP T be the Initiator Processing Time described in Algorithm 2, SP T the Server Processing Time explained in 5.3.4, HLT the Hardware Latency Time for the NoC link/router and micro-engine memory accesses, CT the Completion Time described in Algorithm 3 and the transfer time B/3.76 with B the number of bytes to transfer. 3.76 bytes per cycles is the efficient data transfer bandwidth considering a NoC header of 2 flits with a payload of 32 flits. Typical cost in cycles are respectively: T T (B) = 500 + 100 + 300 + B/3.76 + 200 = 1100 + B/3.76.

Figure 5 . 9 and

 59 Figure 5.10 show round-trip latency using different compute matrix geometries that are reading or writing into DDR(s) or one SMEM. The minimum latency is 2.2µs. When transfer sizes are greater than 10 KB, we observe the point of rupture.

Figure 5 .

 5 Figure 5.11 -Active Message Latency
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 61 Figure 6.1 -Specific States & Transitions of Threads in the NMTR

1∼0ULL 2 : 4 :

 24 : init: 64bit_slot_mask_addr = ∼(((∼0ULL) << (NB_SOFT*NB_CORES)) | 1) 64bit_slot_obj_alloc_addr = Input: Function_data_addr, Function_addr, Selection_Mode, Core_ID 3: Output: Thread_Object { Core_ID, Thread_ID, Core_State, Static_Memory_Slot_ID } Static Thread_Object_Table[NB_CORES * NB_SOFT] 5: slot_mask = load-uncached(&64bit_slot_mask_addr) 6: slot_object_alloc_mask = load-uncached(&64bit_slot_obj_alloc_addr) 7: while true do 8:

1: 6 : 9 :

 69 Comes from the user code 2: Broadcast notify to all PEs /* Avoid deadlock when one thread runs on this core */ 3: Get the Stack pointer in the core context 4: Decrement the Stack pointer by the size of the register file 5: Write core registers' content at the Stack pointer address (save context) Call the cooperative scheduler 7: Get the return value of the scheduler which is the current thread's Stack Pointer 8: Read the new core context from memory at the Stack pointer (restore context) Increment of the Stack pointer by the size of the register file 10: Goes to the user code We benchmarked the low-level primitive for yielding a thread in a CC of MPPA ® at 204 machine cycles. All Load/Store operations have been programmed as uncached to prefetch data in advance and eliminate L1 misses during the context switch and for accessing the shared variables within the scheduler.
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 62 Figure 6.2 -Build and Test Process for the Integration of the New Multi-threading Runtime in the Software Toolchain
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 65 Figure 6.5 -Performance Comparisons of Thread Creation, Join and Basic Synchronization Primitives on 64 Threads
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 66 Figure 6.6 -Performance of the OpenMP GCC libgomp, Based on our New Multi-threading Runtime with 16 Threads Running
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 71 Figure 7.1 -IBSDF Graph: Edges Detection and Denoising
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 72 Figure 7.2 -New PREESM Workflow for Clustering and Parallel Loop Generation
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 73 Figure 7.3 -Gantt Chart of the Hierarchic Scheduling

Figure 7 .

 7 Figure 7.3 shows the inter-cluster parallelism at the top-level of hierarchy. The Read frame actor reads the images in a file stored on a hard drive disk, using stubbed system calls (open, read, and close). The CCs run concurrently in parallel the mapped hierarchical actors, Sobel, Dilation, Erosion hierarchical actors, and perform inter-cluster synchronizations. The Split does not copy any data but makes it possible to split the work of the CCs from 1 to n. Then the data are copied in the local memory of the CCs and computed. Once the parallel region of the CC is ended all contributors merge all results to the Display actor.The proposed technique provides efficient usage of the on-chip memory and coalescing for data transfers. Moreover, the on-chip and off-chip memory are automatically allocated using the heterogeneous memory static allocator described in[START_REF] Desnos | Distributed memory allocation technique for synchronous dataflow graphs[END_REF]. The used memory allocator supports both distributed memory and shared memory architectures.

  Figure 7.4, RDMA accesses are done with put and get primitives at lines 19 and 4 respectively. The wait primitives ensure the RDMA transaction completion at lines 5 and 20.
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 74 Figure 7.4 -Generated Code Example inside the CCs of the Manycore Processor

Algorithm 11 Loops = Create loop 6 : 7 : 9 : 13 :

 1167913 Pseudo Code of the Clustering Algorithm 1: Input: Top-Level Acyclic Graph: G(E,V) 2: Output: Acyclic Graph 3: List of HierarchicalActors = Build list of all Hierarchical Actors of G(E,V) 4: for Actor in List of HierarchicalActors do 5: SubGraph = Getting associated graph of Actor FlatSubGraph = Flattening of the SubGraph (until no more hierarchy) 8: while FlatSubGraph not contain 1 Actor do TupleOfActors = Get two mergeable actor(FlatSubGraph) 10: FlatSubGraph = Construct the new graph (FlatSubGraph) 11: Add TupleOfActors in the Loops Model in right order 12: end while Memory = 0 (Initialization of number of bytes consumed of Actor) 14: for TupleActor in Loops do 15:Memory += Allocate internal working memory for the TupleActor 16:

18 :

 18 Add Memory to the attributes of Actor (for software synthesis) 19: end for 20: Return G(E,V) 7.3.2 Clustering Rules, Heuristics and Loop Modeling This section explains what has been automated regarding the clustering decisions and rules. The Clustering workflow has been split into two main parts. The first part is the algorithm explained in Section 7.3.1. It links the clustering process with the rest of the framework, and it calls the clustering decision method (Line 9 of Manycore Processor • Select Actors with the bigger Repetition Vector (RV) first • Select Actors with the smaller Repetition Vector (RV) first • Select Actors with the bigger memory footprint first for minimizing the communication (most promising [CSWZ16])
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 76 Figure 7.6 -MPPA ® Matrix Result in fps
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 77 Figure 7.7 -MPPA ® Matrix Results Ratios between NoC Communications and Processing Time (lower is better, lower means more PEs efficiency). Communication Overheads Relative to Total Execution Time.
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 82 Figure 8.2 -Algorithms for Distributed Synchronizations for the Actor Firings. The number of requests is the number of input First-In-First-Out queues (FIFOs) of the next actor.
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 83 Figure 8.3 -Algorithm for the Local Memory Allocation in the CC.
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 91 Figure 9.1 -Example of an OpenVX Application.

  struct _vx_platform platform = { /* use 8 clusters to process the graph starting from cluster 2 */ . cluster_id_list = { 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } , /* use 8 clusters */ . nb_cluster = 8 , /* 16 PEs per cluster used by the OpenMP runtime */ . nb_pe_pe r_cluster = 16 , /* output OpenVX graph for debug */ . dump_dotty_graph = 1 , /* need kernel fusion for performance */ . d i s a b l e _ k e r n e l _ f u s i o n _ o p t i m i z a t i o n = 0 , }; ... /* build the context with requested MPPA specific OpenVX platform */ vx_context context = v x C r e a t e C o n t e x t F r o m P l a t f o r m (& platform ) ;

Figure 9 . 3 -

 93 Figure 9.3 -Example of the Support Platform Description of the MPPA ® Processor

Figure 9 . 4 -

 94 Figure 9.4 -OpenVX Verify Graph Workflow -vxVerifyGraph [G + 17]

Figure 9 . 5 -

 95 Figure 9.5 -Example of a Graph Display from the IO, Schedule and Fusion Optimizations

Figure 9 .

 9 Figure 9.5 shows an example of an OpenVX graph schedule, dumped by the host. The USER_INPUTS boxes are the input buffers and the USER_OUTPUTS boxes are the output buffers of each graph. These buffers are real buffers that can be accessed by the host application. Kernel fusion decisions are shown by a blue box over the kernels in Figure9.5. On the left graph, three fusion optimizations have been automatically found, and on the right graph, one fusion optimization has been performed.

Algorithm 12 2 : 4 : 5 : 9 : 15 : 17 :else 21 :

 122459151721 An Automatic Distributed RDMA-based Overlap Tiler Concurrently Operating onto Multiple Compute Clusters. 1: Input: InImg, Width, Height, NbTotalTiles, N, TileWidth, TileHeight, HxIn/Out, HyIn/Out, NbTileStartOff, NbTiles Output: OutImg 3: /* Set multidimensional pointers in local memory */ Set InTiles[N][TileHeight+2*HyIn][TileWidth+2*HxIn] Set OutTiles[N][TileHeight+2*HyOut][TileWidth+2*HxOut] 6: for i := 0 to N-1 step 1 /* Warm up the pipeline */ do for i := N to NbTiles+N step 1 /*Pipeline Loop */ do 10: ProcIdx := (i-N)%N /* Compute Buffer Index */ 11: FetchIdx := i%N /* Prefetch Buffer Index */ 12: /* Wait for DMA Transactions Completions */ 13: Wait Get InTilesEvent[ProcIdx] 14: /* Only one wait if in-place computation */ Wait Put OutTilesEvent[ProcIdx] 16: /* Compute Tile i-N in Parallel in the Node */ OutTile[ProcIdx] := Kernel(InTiles[ProcIdx)]) 18: if OutImg is local then 19: Async. Puts of halo regions to adjacent compute clusters for fused kernels dependencies 20: if i < NbTiles+N then 22: OutTiles[ProcIdx] ← Async. Put Dense-to-Stride to (Out-Img+NbTileStartOff+i) from OutTiles[ProcIdx] /* Write to Main Memory *Prefetch Tile i from Main Memory */ 26: if i < NbTiles then 27:

Figure 9 . 6 -

 96 Figure 9.6 -Automated Multi-clusters Tiling

Figure 9 .

 9 Figure 9.7 shows the tiling combined with kernel fusion optimization, also using a 2D stencil computation with 4 CCs. Steps 1 and 5 perform copy from/to the main memory. At step 3, the black arrows represent strided inter-cluster asynchronous RDMA transfers, also shown Line 27 of Algorithm 12.When fused kernels are executed, each CC stores tiles that are automatically reused from one kernel to the next. Therefore, the N-buffering N variable of Algorithm 12 is always

Figure 9 . 7 -

 97 Figure 9.7 -Automated Multi-clusters Tiling Combined with Fusion

3 , 3 O

 33 (x, y) = I xt zt , yt zt To compute the output O, we iterate on the output pixel coordinates x and y. We compute the coordinates xt, yt and zt of the input pixels I in the following cases: • Warp Affine: O(x, y) = I(xt, yt) • Warp Perspective: O(x, y) = I xt zt , yt zt
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 98 Figure 9.8 -Example of Geometrical Transformation, namely a Rotation.

Figure 9 . 9 -

 99 Figure 9.9 -Automatic Tiling Engine Performance. VGA Images. Simple Tiling vs Tiling with N-Buffering (N_BUF = N-Buffering = Prefetch).
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 910 Figure 9.10 -Automatic Tiling Engine Performance. Full HD Images. Simple Tiling vs Tiling with N-Buffering (N_BUF = N-Buffering = Prefetch).

Figure 9 .

 9 Figure 9.11 -Automatic RDMA-based Kernel Fusion Performance. VGA Images. Tiling with N-Buffering (N_BUF = N-Buffering = Prefetch) vs Kernel Fusing (FUSION).
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 912 Figure 9.12 -Automatic RDMA-based Kernel Fusion Performance. Full HD Images. Tiling with N-Buffering (N_BUF = N-Buffering = Prefetch) vs Kernel Fusing (FUSION).
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 913 Figure 9.13 -RDMA-based 2D Explicit Cache of Tiles Performance.VGA Images.

  and 9.16. The best-observed speedup is for the XY translation where we show a speedup of 14 between 1 and 16 PEs running the 2D explicit cache of tiles.

Figure 9 . 14 -Figure 9 . 15 -

 914915 Figure 9.14 -RDMA-based 2D Explicit Cache of Tiles Performance.Full HD Images.
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 916 Figure 9.16 -Mono-Cluster RDMA-based 2D Explicit Cache of Tiles Performance.Full HD Images.
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 10 Figure 10.1 -LBM D3Q19 Stencil
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 104 Figure 10.4 -OPAL_async vs. OPAL OpenCL on MPPA ® for duration = 1000 steps.

Figure 10 .

 10 Figure 10.5 the MLUPS performance which reaches its upper bound for 8 CCs, instead of 4 CCs. Another precise way to interpret the performance of 20-22 MLUPS is to apply the performance estimation formula presented by McIntosh-Smith & al. [MSBCP14]: P = B × 10 9 19 × 2 × 4 × 10 6 (M LU P S) (10.1)
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 105 Figure 10.5 -Performance extrapolation of OPAL_async with 8 × 8 × 8 subdomains with the first eight CCs correlation represented by a gray line for 1000 timesteps and cavity size 128.

10 2 N

 2 log 2 (N ). The Radix-2 Decimation-In-Time equation is listed below [Che00]:

Figure 10 . 9 -

 109 Figure 10.9 -Execution Time of Distributed Multi-Cluster FFT.The Higher, The Better.

  Exécution d'applications de flux de données pour architectures massivement parallèles 201 proposé une adaptation d'un environnement d'exécution embarqué pour ordonnancer à l'exécution un modèle de flux de données paramétré et reconfigurable. A.4.1 Stratégie pour ordonnancer efficacement un modèle statique de flux de données hiérarchiques Le placement et l'ordonnancement de tâches sur une architecture massivement parallèle n'est pas trivial. Il a été démontré que le placement et l'ordonnancement est un problème NP-complet. Cela signifie donc que le problème ne peut pas être résolu de manière optimale en un temps polynomial. En effet le temps de placement et ordonnancement augmente de manière exponentielle avec le nombre de coeurs et le nombre de tâches à placer sur ces coeurs de calcul. Basée sur un modèle de flux de données hiérarchique et statique, la stratégie pour placer et ordonnancer une application parallèle exploite les deux niveaux de hiérarchie de parallélisme de la plateforme et la hiérarchie du modèle de calcul. Le modèle flux de données hiérarchique et statique implémente des acteurs qui sont des calculs atomiques et indivisibles. Ces acteurs sont inter-connectés par des arcs qui contiennent des données. La hiérarchie du modèle permet d'associer un acteur à un sous graphe flux de données.

A. 4 . 2

 42 Portage et adaptation d'un environnement d'exécution embarqué pour placer et ordonnancer un modèle flux de données paramétré et dynamiqueLes systèmes embarqués complexes qui utilisent des modèles de flux de données tendent de plus en plus vers la reconfigurabilité dynamique. Le modèle de flux de données permet d'exploiter la reconfiguration partielle ou totale de l'application, et donc de son parallélisme interne. Appelé Synchronous Parameterized Interfaced Dataflow Embedded Runtime (SPIDER) et proposé par l'équipe VAADER dans le laboratoire IETR, cet environnement d'exécution embarqué permet de placer et ordonnancer à l'exécution un méta modèle de flux de données paramétrique sur une plateforme parallèle. L'environnement a été initialement implémenté pour supporter les architectures parallèles symétriques à mémoire partagée. SPIDER adopte une approche maître et travailleur où l'ordonnanceur fonctionne sur le maître et les travailleurs exécutent les commandes de calcul envoyées par le maître.

FigureFigure A. 4 -

 4 Figure A.4 -Automatisation de la fusion de noeuds standard OpenVX à l'exécution
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  The user interface is a point-and-click graph edition interface. It allows the developer to design IBSDF or PiSDF application graphs. The vertices of the model are then linked to C/C++ functions. Once the graph is completed the user gives a scenario and the top level application graph entity. The scenario describes the targeted architecture and its properties like the speed of the memory, the size of data type, the number of cores and how they are interconnected.

	User Interface	Hierarchical Flattening	Single Rate Transform	Scheduling Mapping	Memory Allocation	Software Synthesis
	Figure 3.12 -Typical PREESM's Rapid Prototyping Workflow
	Each step of the workflow is described as follows.		
	• User Interface.					

  Fundamental Mechanisms for Communications and Synchronizations inDistributed Computing

CHAPTER 5

This chapter introduces fundamental mechanisms for communications and synchronizations applied to distributed computing on manycore processors. Manycore processors are composed of multiple Symmetric Multi-Processor system (SMP) machines also called clusters, which are a group of Processing Elements (PEs) sharing a coherence domain or a local memory. Inside an SMP machine, the communication and synchronization are handled by the Load, Store, Atomics, and Fence operations as explained in Section 4.3.1. At the level of multiple SMPs, where distributed computations and memories are found, the need for communicating and synchronizing is fundamental. Sections 4.2, 4.3.2, and 4.3.3 present mechanisms to communicate and synchronize programs distributed across clusters, such as the Remote Direct Memory Access (RDMA) Put and Get operations, the Atomic operations, the Send/Receive operations over channels and the Fence operations

[START_REF] Nieplocha | High performance remote memory access communication: The armci approach[END_REF]

. Modern communication technologies like Infiniband

[START_REF] Shanley | Infiniband Network Architecture[END_REF] 

and recent evolutions of Peripheral Component Interconnect Express (PCIE)

[START_REF] Ajanovic | Pci express 3.0 overview[END_REF] 

also implement these operations, as they provide the foundation mechanisms for distributed communications and synchronizations.

  .3. Once Fundamental Mechanisms for Communications and Synchronizations in Distributed Computing the segment is created and cloned, Put operations and remote atomic operations can be performed. Put operations are performed asynchronously, and their remote completions are guaranteed by the Fence operation or other remote atomic operations.

	Multi-core	Multi-core
	CPU A		CPU B
	Create Window		Clone Window	Blocking Async. Put
				Async. Put
	Blocking			Fetchadd
				Blocking
	Fetchadd		
	processing			Async. Put
			Blocking	Fence
	Process Get	RDMA Put/Get Read after write	Get

Figure 5.3 -RDMA Put and Get Operations with Remote Atomics on Window Memory Segments

The

  Fundamental Mechanisms for Communications and Synchronizations in Distributed Computing RDMA functions are Put and Get operations, and remote atomic operations postadd, poke, fetchclear, fetchadd and peek. A fence operation is provided for the remote completion of outstanding RDMA transactions of a targeted memory segment. Remote cluster ID */ 7: amsg = Prepare active message transaction /* RDMA, Remote atomic or Fence */ 8: Write memory barrier /* Commits outstanding user stores in local shared memory */ 9: slot = atomic fetch add array_slots[node_id] /* Shared array in the cluster */ 10: /* Flow-control: verify the number of outstanding transactions to avoid corruption */ 11: while (slot + 1) >= (array_done_slots[node_id] + FIFO_SIZE) do

	Algorithm 2 Active Message Initiator Algorithm (thread safe algorithm)
	1: Input: segment, operation, parameters, blocking
	2: Output: event
	3: if not_valid(segment) or not_valid_op(operation, parameters) then
	4:	Return failure
	5: end if
	6: node_id = load_target_node_id(segment) /* 12: Idle PE /* OS yield possible */
	19: else
	20:	job_fifo[(slot + 1) % FIFO_SIZE] = amsg /* Write job in local shared memory */
	21:	Write memory barrier
	22:	Broadcast notify to all PEs /* Local shared memory of this cluster */
	23: end if
	24: event = prepare_event(segment, slot)
	25: if is_blocking(blocking) then
	26:	

13: end while 14: /* Check local or remote transaction */ 15: if is_remote_transaction(segment, amsg) then 16: route = compute_route(segment) /* Compute network route */ 17: Tx_configure(route) /* Tx hardware resource is protected by a lock */ 18: Tx_send_message_notify(amsg) /* Remote memory in another cluster */

  Fundamental Mechanisms for Communications and Synchronizations in Distributed ComputingAlgorithm 3 Active Wait Event Algorithm (thread safe algorithm)

	1: Input: event
	2: value = get_event_check_value(event)
	3: address = get_event_check_address(event)
	4: while true do
	5:	test_value = uncached load at address
	6:	if Evaluate condition value with test_value then
	7:	Read memory barrier /* Core & DMA coherence */
	8:	Return success /* Exit */
	9:	end if
	10:	if is_event_has_pending_dma_eot(event) then
	11:	eot = atomic load and clear on the End-of-Transfer (Eot) counter of the Rx Tag
	12:	if eot > 0 then
	13:	Atomic fetch add uncached eot at address
	14:	Write memory barrier
	15:	/* Force PEs to re-evaluate conditions */
	16:	Broadcast notify to all PEs
	17:	end if
	18:	end if
	19:	

  Send End-of-Transfer (Eot) command to the target DMA Rx Tag 19: Increment local DMA micro-engine event 20: Broadcast a notification to all local PEs of the CC 21: Stop DMA micro-engine

	9:	end for
	10:	for j in 1 .. (Object_Size % 8) do
	11:	Read and Send 1 bytes /* Send remaining bytes */
	12:	Increment read_pointer of 1
	13:	end for
	14:	Send set relative Remote_Stride command to the target DMA Rx Tag
	15:	Add relative Local_Stride to local read_pointer
	16:	end for
	17: end if
	18:	

  Neural Network (KANN) framework are important examples requiring interoperability tests. Each Compute Cluster (CC) contains one DMA NoC interface that can access by read and write operations the local memory of the CC as explained in Section 2.3.3. On the Input/Output Subsystem (IO), 8 DMAs NoC interfaces are available for accessing the local memories of the IO (Shared Memory (SMEM)-Low and SMEM-High) and the external DDR off-chip memory by read and write operations.As seen in Section 2.3.3, each DMA NoC interface has a limited range of hardware resources. To summarize, 8 packet-shapers, 256 DMA Rx Tag resources, and 8 DMA microengines are available in a single DMA NoC interface. As such, on a single MPPA ® chip, 18 nodes are implemented, with 16 Compute Clusters (CCs) and 2 Input/Output Subsystems (IOs) where the one-sided and two-sided asynchronous communication features are implemented using the following set of hardware DMA NoC resources.

  .1.

	For One MPPA ® Chip	IO DMA NoC Resources per Interface (8 Interfaces per IO)	CC DMA NoC Resources per Interface (1 Interface per CC)
	Return of RDMA Get Operations	6 Rx Tags DDR-SMEM Low or SMEM High	18 Rx Tags
	Incoming RDMA Put Operations	6 Rx Tags DDR or SMEM High 6 Rx Tags SMEM Low	18 Rx Tags
	Get Job Fifo	1 Rx Tag	1 Rx Tag
	Return of Active Message Data	6 Rx Tags DDR-SMEM Low or SMEM High	18 Rx Tags
	Active Message Job FIFO	1 Rx Tag	1 Rx Tag
	Return of Active Message Flow-control	1 Rx Tag	1 Rx Tag
	Send Transaction Request	1 Packet-Shaper	1 Packet-Shaper
	Serve Get Requests	1 Packet-Shaper	1 Packet-Shaper
	of other Nodes	1 Micro-engine	1 Micro-engine
	Process the Locally	1 Packet-Shaper	1 Packet-Shaper
	Initiated Put	1 Micro-engine	1 Micro-engine
	Serve Active Messages of other Nodes	1 Packet-Shaper	1 Packet-Shaper

Table 5

 5 One Rx Tag is required for each possible initiator Node for full-duplex (Put/Get) of the 18 Nodes (16 CCs and 2 IOs) within this Node. It is necessary to obtain a relaxed memory consistency model for the RDMA operations at multi-nodes level. The ordering and the memory consistency of the AOS library are explained in section 5.2.2.

.1 -NoC Resources used by the AOS library for each of the Compute Cluster (CC) and each of the Input/Output Subsystem (IO) Composing an Entire MPPA ® Processor Computing

Table 5 .

 5 2 shows the internal compute matrix NoC bandwidth using different matrix sizes and stream sizes. The peak input-output throughput of the 16CCs is given by 2 * 16 * 3.76 bytes per cycles. Operating at 500 MHz, it provides 60.2 GB/s peak bandwidth. Our new RDMA engine can reach more than 88% of peak performance for inter-node transfers with a size of 16 KB.

	Transfer Sizes 1KB 4 KB 16KB 64KB 256 KB Nb Cluster(s)
	1	0.7	2.7	3.5	3.8	3.8
	4	2.7	11.0	14.2	15.2	15.4
	8	5.5	21.8	28.3	30.5	30.8
	16	10.7	42.8	56.3	60.2	60.2

Table 5 .

 5 2 -NoC Bandwidth of the Compute Matrix in GB/s

  AllFundamental Mechanisms for Communications and Synchronizations in Distributed Computing

					Active Message Engine Scaling Latency	
		100	Async-Spread-1-PE Async-Centralized-1-PE Blocking-Spread-1-PE Blocking-Centralized-1-PE Async-Spread-16-PEs Async-Centralized-16-PEs Blocking-Spread-16-PEs Blocking-Centralized-16-PEs				
	Time (us)	10					2.2 us Round-Trip (1109 cycles)
		1	0.951 MIOPS Server (526 cycles)				
			2.174 MIOPS Initiator (230 cycles)				
		0.1	2	4	6	8	10	12	14	16
					Number of Cluster(s) Initiators		

Table 5 .

 5 3 shows IOPS of one RM of the IO that is receiving a request from a CC and is sending back a new job command to the responding CC. The benchmarks were carried out using different data NoC packet sizes (Bytes) without any batching.

	Packet Size in Bytes 16 B 32 B 64 B 128 B 248 B Nb Cluster(s)
	1	675	670	600	425	350
	2 to 16	740	725	725	575	550

Table 5 . 3 -

 53 Performance of the Remote Queues in Kilo IOPS

2 :

 2 Input: Opaque Object Address 3: Write memory barrier /* Stalls the core until all write accesses are completed */ 4: while true do

	6:	if boolean is true then
	7:	break
	8:	else if is an asynchronous call then
	9:	Return try again flag
	10:	end if
	11:	

5:

boolean = Execute in memory an atomic operation /* Lock-free for performance */ Call the yield operation /* the scheduler is called */ 12: end while 13: Full memory barrier /* Stalls the core until all read/write accesses are completed */ 14: Broadcast notify to all PEs /* force all core to re-evaluate conditions */ 15: Return success

  10 Cooperative Scheduler Algorithm (this is a thread safe function)

	1: Input: an opaque Event, Thread_Object { Core_ID, Thread_ID, Core_State,
		Static_Memory_Slot_ID }
	2: if Thread_Object.Core_State is Finished then
	3:	/* Thread Returned or Exited */
	4:	while true do
	5:	slot_mask = load-uncached(&64bit_slot_mask_addr)
	6:	Thread_ID = count-trailing-zero(slot_mask)
	7:	if compare-and-swap(&64bit_slot_mask_addr, slot_mask,
		slot_mask | (1ULL<<Thread_ID)) then
	8:	break
	9:	end if
	10:	end while
	11:	
	12:	Broadcast notify to all PEs
	13:	Streaming-store to write Exiting State to Thread_Object.Core_State
	14:	Broadcast notify to all PEs
	21:	New_Thread_ID = (i % NB_SOFT)*NB_CORES+Thread_Object.Core_ID
	22:	if New_Thread_ID is Runnable then
	23:	if New_Thread_ID event is NULL then
	24:	Return success and Return New_Thread_ID stack pointer
	25:	else if Specific test event handler on Event is true then
	26:	Return success and Return New_Thread_ID stack pointer
	27:	end if
	28:	end if
	29:	end for
	30:	Nb_Soft_Thread = NB_SOFT /* Will need to check all soft threads now */
	31:	Core idle state /* Woken-up by the doorbell */
	32: end while
	Scheduler: Condition Invocation

Write memory barrier /* Stalls the core until all write accesses are completed */ 15: end if 16: /* Cur_Slot_Thread in range [0 ... NB_SOFT -1] */ 17: Cur_Slot_Thread = Threads_ID / NB_CORES 18: Nb_Soft_Thread = NB_SOFT -1 /* to support core idle */ 19: while true do 20:

for i in (Cur_Slot_Thread+1) ... (Cur_Slot_Thread + Nb_Soft_Thread) do

Table 6 .

 6 1 -Scheduler Condition Call on Standard Primitives for Cooperative Multi-Threading

	Standard Primitive	Scheduler Condition Call
	pthread_yield	On the primitive call as it release the CPU
	pthread_mutex_lock	On the primitive call, if the lock is already taken
		On the primitive call, if the number of
	pthread_barrier_wait	contributors to the barrier
		is not reached
		On the primitive call, if the semaphore
	sem_wait	do not have any available
		tokens
	pthread_cond_wait	On the primitive call, if the condition is not satisfied (blocked)
	pthread_exit	On the primitive call, the thread is destroyed unconditionally
	Thread handler returns	In C/C++ on the return statement, the thread is destroyed unconditionally

Table 6 .

 6 

	1 Cluster -1 PE	Auto-threading	Auto-threading	Auto-threading
	Benchmark	Disable	2 Thread	4 Threads
	Size data set	GB/s	GB/s	GB/s
	copy 4 Mega Bytes	2.8	3.03	3.04
	vector add 4 Mega Words	1.0	1.59	1.6
	Filter 1x1 -1080p 4 x 8-bit channels	0.348	0.404	0.400

2 -Auto-threading Throughput on Three Different Use-cases

Table 7 .

 7 

1 -Frames per second (fps) and Speedups for TI DSP and Intel Processor

Table 7 .

 7 2 -fps and Speedups for one MPPA ® Cluster

	-cluster	MPPA ® 400 MHz	MPPA ® 400 MHz
	MPPA ®		L2 Cache		RDMA
	Nb Cores	FPS	Speedup	FPS	Speedup
	1	3.6	1.0	3.7	1.0
	2	6.9	1.9	7.4	2.0
	4	13.3	3.7	14.5	3.9
	8	24.4	6.8	27.4	7.4
	16	40.5	11.2	49.4	13.4

MPPA ® Results The application mapping is performed at the CC level. CCs are considered as multi-core CPU to map clustered actors, and we exploit sub-graph parallelism inside CCs when possible to obtain thread-level parallelism. Manycore Processor

Table 9 .

 9 1 -Multi-cluster Performance of the Harris Corner Detection of OpenVX on MPPA ® in fps

		Video VGA	Video HD	Video Full HD
	Harris Corners	640 x 480	1280 x 720	1920 x 1080
	Number of Clusters	(fps)	(fps)	(fps)
	2	136	-	-
	4	247	-	-
	6	336	124	-
	8	454	162	-
	10	484	190	-
	12	575	230	-
	14	575	231	-
	16	770	295	124

Table 10

 10 

	.1 -3-depth pipeline (triple-buffering) which allows a 2-step distance between GET and
	WAIT, but only a 1-step distance between PUT and WAIT, thus the PUT transfer will not be well
	overlapped (m: index of subdomain to compute, i: index of local buffer slot; G = GET; P = PUT;
	W = WAIT; C = COMPUTE; WCP = {WAIT + COMPUTE + PUT}; WG = {WAIT + GET}).

  Algorithm 15 Out-of-place Distributed Transposition Algorithm Operation on All CCs

	1: Input: In_M, T_W, T_H, NB_CC
	2: Output: O_M	
	3: Synchronize all compute cluster // Weak synchronization, no ordering
	4: cid = ID current cluster	// ID in range 0 and (NB_CC-1)
		// Interleave RDMA transfer across clusters
	5: for j in cid ... (NB_CC -1 + cid) do
	6:	if j == cid then	
	7:	Optimized local transpose	// Streaming memory accesses
	8:	Continue	// Go next iteration
	9:	end if	
	10:	for i in 0 ... (T_H-1) do	
	11:	Size = size of a float-complex	
	12:	target_cid = cid % NB_CC	
	13:	Async. Put (	
		In_M+Size*T_W/NB_CC*j+Size*j, // Local address
		j,	// Target cluster ID
		O_M+Size*T_W/NB_CC*cid+Size*T_W*j, // Remote address
		Size,	// Object size
		T_W/NB_CC,	// Number of objects
		Size*T_W,	// Local stride
		Size)	// Remote stride
	14:	end for	
	15:		

Async. Postadd to CC of ID j // Asynchronous posted remote atomic 16: end for 17: Wait NB_CC -1 contribution of remote atomics = 8 bytes) loads and stores. The internal loop issues 16 sequential streaming loads, and then 16 sequential streaming stores, in the same order as they were loaded. In theory, this makes it possible to move 8 bytes per cycle without any PE stalls on the memory hierarchy. In practice, if there is no memory contention, aligned memory accesses, and no Read-After-Write (RAW) core stalls due to poor software implementation, moving 8 bytes per cycle is possible.

Table 10 . 2 -

 102 .2. Thus, using 16 CCs, the biggest FFT size with local memory (on-chip memory) of 2 megabytes is 2 20 = 1048576 as the memory is 8 * 2 * 1048576/16 + Summary of the Memory Footprint of the Distributed FFT on Several CCs

	√	1048576 *

  5.1 Environnement embarqué distribué pour l'exécution d'applications OpenVX à basse latenceOpenVX est une interface de programmation moderne et standard proposée par Khronos qui permet de déployer des applications de vision par ordinateur ou de réseaux de neurones en inférence (exécution d'un réseau déjà entrainé) sur un ou plusieurs accélérateurs. OpenVX est donc une interface de programmation en accélération où l'application fonctionne sur un hôte et le calcul est déporté sur l'accélérateur. La principale caractéristique de l'OpenVX comparée aux autres interfaces de programmation telles que l'OpenCV, est que le calcul est décrit par un graphe acyclique dirigé. Ce graphe est ensuite explicitement vérifié par une fonction du standard, et le vrai calcul est ensuite lancé par une autre fonction depuis l'hôte embarquant l'application OpenVX.L'environnement distribué permettant le support de l'OpenVX sur le processeur MPPA ® de Kalray est une nouvelle implémentation au C99 en partant de la spécification de l'interface Un environnement standard distribué pour la vision et applications sur architectures massivement parallèles 203 de programmation du standard de Khronos. La seule dépendance est celle de la librairie C, son mécanisme d'allocation de zone mémoire dynamique ainsi que d'un éditeur de lien dynamique fonctionnant du côté de la matrice d'accélération massivement parallèle. Une caractéristique importante de l'environnement est qu'il est totalement autonome. En effet, l'environnement fonctionne sans assistance externe. Il a seulement besoin d'un hôte multicoeurs où est placé l'environnement qui implémente l'interface de programmation OpenVX. Le calcul intensif est ensuite déployé automatiquement sur les différents noeuds multi-coeurs de la plateforme massivement parallèle visée. Vérification et optimisation du graphe OpenVX applicatif -vxVerifyGraph [G + 17]

	IR Graph Building	Scheduling	Kernel Fusion	Memory Allocation	Command Generation
	Figure A.3 -				

Available at https://github.com/preesm/preesm

available at https://github.com/preesm/spider

https://www.silexica.com

Standard GNU Compiler Collection (GCC) builtin: __builtin_ctz

Standard GCC atomic: __atomic_compare_exchange

https://gcc.gnu.org/onlinedocs/gcc-4.7.1/gcc/Function-Attributes.html

https://gcc.gnu.org/onlinedocs/gcc/Named-Address-Spaces.html

Acknowledgments

To my family, my love ones, my friends, and my colleagues.

I express my sincerest thanks to my supervisors for their advice and time, Jean-François Nézan, Benoît Dupont de Dinechin, and Karol Desnos.

I wish to thank Alain Girault and François Irigoin for their hard work on reviewing this manuscript. I thank all my work colleagues for their technical support on the software side: Pierre Guironnet de Massas, Benoît Dupont de Dinechin, Samuel Jones, Patrice Gerin (special thanks to the simulator without which I would be still debugging my first contribution), Frederic Blanc, Karol Desnos, Minh Quan Ho, Marius Gligor, Julien Villette; and on the hardware side: Vincent Ray, Nicolas Brunie, and Alexandre Blampey.

Acknowledgments

Fundamental Mechanisms for Communications and Synchronizations in Distributed

Rules Grouping together two actors that are adjacent is not a sufficient constraint. The two actors must also meet the following constraint.

Let's consider, the grouping of actor A and B (AB in this order), where B depends on A. The union of the successors of A and the predecessors of B must be empty. More formally: P redecessors(B) ∪ Successors(A) = ∅. When such a constraint is satisfied, the two actors can be merged. We consider rA and rB as the Repetition Vector (RV) of actor A and B respectively. As shown in [START_REF] Shuvra S Bhattacharyya | Software synthesis from dataflow graphs[END_REF], the formal and factorized forms for representing the two new clustered actors is represented as follow:

Where the GCD function computes the greatest common divisor.

Loop Modeling

The outcome of the clustering algorithm is a sequence of For-Loops. A For-Loop implements a scalar that represents the number of iterations and the function to be run iteratively. When considering the previous example that was grouping the A and B actors, we show here the generated loops in Figure 7.5. rA and rB are static meaning that the gcd variable is statically evaluated and computed by the clustering workflow. The gcd variable is the greatest common divisor of rA and rB. The input and output pointers need to be set according to the loop iterations. Indeed the buffers, precisely the pointers ptr_a or ptr_b in Figure 7.5, are given to the generated low-level functions within the C code software synthesis back-end. Such loops are very similar to the OpenCL data-parallel mode, where the work-group uses the global id and local id to address the memory. However, OpenCL computes these ids dynamically whereas our new software synthesis does it statically. However, the input is a static Interface-Based SDF (IBSDF) graph and not an OpenCL code.

Heuristics On complex graphs, the efficiency of the clustering depends on the merging order of actors. As of today, we implemented a simple clustering method that takes randomly two nodes (actors) and makes sure they respect the defined rules explained previously. It is a big limitation that is due to work priorities of this thesis. However, it is possible to implement other heuristics that can bring better loop builds regarding the parallelism degree and memory usage. Some ideas that could be tested are listed below: uration for the Kalray MPPA ® processor. This platform-specific object is explained in Section 9.2.

Algorithm 13 A Reconfigurable 2D Explicit Cache of Tiles for Geometrical Transformations. Each PE of a CC implements its own 2D cache. 9.6, but for one kernel only. Our implementation is derived from the classical MapReduce programming model used in the parallel multi-cluster implementation.

In the Harris corner detection algorithm, a maximum value is computed. As this computation is spread on all the available CCs, each CC computes its own local maximum value and sends it to all other CCs computing the distributed Harris corner detection node. Therefore, an all-to-all CCs data communication is performed to send all CCs the contribution of each CC.

We use asynchronous RDMA Put operations followed by posted remote atomic (postadd ) operations to unlock all remote CCs. Thus, after posting these operations, each CC waits on the variable to be unlocked. As RDMA operations are ordered with posted remote atomic operations, when the CC is unlocked, it immediately performs the local computing of the maximum value of each contributor (the other CCs).

Finally, the Harris corner detector outputs a list of coordinates of points that need to be written back in the main memory (external), to be directly accessible by the host, hosting the OpenVX user application. Each CC has to write its local list of found coordinates. The list sizes are different, and they depend on the image content. Therefore, we use the remote atomic named fetchadd (see Chapter 5) on a counter mapped in the main memory. This counter is initialized to 0 at the beginning of the execution by the host. The fetched value in the CC is then used to write at a proper offset in the list (OpenVX vx_array CHAPTER 10

Applications and Experimental Results for a Clustered Manycore Processor

In this chapter, three embedded and high-performance applications are presented. They have been implemented to evaluate the two runtimes introduced in Chapters 5 and 6. Using these two runtimes, the three applications have been implemented by hand onto the targeted clustered manycore architecture. We compare the results with the state-of-the-art using the new contributions of both applications and runtimes.

The chapter focuses on parallelization methods to exploit efficiently clustered manycore architectures like the Kalray Multi-Purpose Processor Array (MPPA) ® processor. Each Compute Cluster (CC) is an omniscient multi-core Central Processing Unit (CPU) that is aware of the current state of the application running in parallel in the other CCs. This model is similar to the Bulk Synchronous Parallel (BSP) execution model [KEHS + 15] (flat model). It avoids the classical master/slave approach. Indeed, the master can quickly become a bottleneck when fine-grained parallelism is required, as seen in Chapter 6.

The first application (Section 10.1) is a 3D-stencil used in numerical simulations, for instance, fluid simulation for the weather forecast, wind, and ocean. The second one (Section 10.2.1) is the Fast Fourier Transform (FFT), that is used in most signal processing applications. We show in this chapter the first implementation of a distributed Fast Fourier Transform (FFT) implementation on MPPA ® . The third application, currently part of the Kalray Neural Network (KANN) framework, is a distributed runtime for executing inference Convolutional Neural Network (CNN) applications at low-latency.

Macro Pipeline for the Computation of a 3D Stencil

Section 10.1.1 presents the application. Section 10.1.2 introduces an implementation of the targeted 3D stencil application. Section 10.1.3 explains the contribution for optimizing this 3D stencil application.

The presented work is part of the Ph.D. thesis of Minh Quan Ho, who wrote the new implementation, and myself for the communication runtime, the debugging and technical discussions.

Asynchronous One-Sided with Kernel Bypass onto Linux

Generic and robust Linux drivers are complicated and have significant overheads. Therefore, when optimizing the execution time of the communications of a Linux application, the Linux driver is often the bottleneck. State-of-the-art optimizations use kernel bypass techniques to access the DMAs from the user-space directly.

Such optimizations are complex and dangerous, but they provide the user with low overhead implementations. Indeed, kernel bypass techniques imply many constraints such as the sharing of resources with other Linux processes and the driver itself, but also careful management of the memory regarding both the Linux virtual memory and the memory map of the peripherals.

Standard Optimized Runtimes for Manycores

Optimization of the Standard GCC OpenMP Runtime Library

The libgomp runtime provided by the GCC project is a generic implementation of the OpenMP runtime. It uses the POSIX multi-threading backend. Therefore, the multithreading runtime presented in Chapter 6 optimizes the implementation of the POSIX thread primitives. However, the standard OpenMP runtime of GCC is not. For instance, the OpenMP runtime of GCC does not implement lock-free mechanisms to update shared variables. This runtime also uses intensively the dynamic memory allocator which is quite slow.

The first contribution could be the bypassing of some primitives of the POSIX threads used inside the GCC OpenMP runtime. Directly mapped atomic instructions could replace these primitives. Moreover, atomic instructions could be used to update concurrently shared variables inside the OpenMP runtime of GCC. Finally, an important optimization could be the static memory allocation of internal memory resources of the OpenMP runtime. Indeed, the dynamic memory allocations performed by the OpenMP runtime has a significant overhead on fine-grained multi-threading. OpenMP 4.0 Support for MPPA ® OpenMP has been widely used in both rapid parallel implementations and high-performance parallel implementations. Moreover, OpenMP is very appreciated for production software as the parallelization only consists in inserted few compilation directives in the original code. Indeed, in production software, the modification of the code costs a lot. As such OpenMP is well suited to parallelize applications efficiently at a reduced cost.

With a modern GCC or Low-Level Virtual Machine (LLVM) compiler, it is possible to support OpenMP 4.0. It will be a significant advance in the software stack for offloading computation from a Linux or a Real-Time Operating System (RTOS) to the acceleration matrix of CCs.

A High Efficient Light-Weight OpenCL for MPPA ®

The current OpenCL support of MPPA ® uses an open-source front-end that requires a Linux system. In some embedded systems and high-performance designs, Linux is banished. Therefore, the need for a light-weight and high efficient (Linux independent) OpenCL support is essential.

The idea is to build on top of the bare-metal distributed offloading runtime, presented in Section 9.2, a new OpenCL front-end. The OpenCL runtime and compiler front-end 
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