
HAL Id: tel-02132759
https://theses.hal.science/tel-02132759v1

Submitted on 17 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Highlight and execute suspicious paths in Android
malware

Mourad Leslous

To cite this version:
Mourad Leslous. Highlight and execute suspicious paths in Android malware. Cryptography and
Security [cs.CR]. Université de Rennes, 2018. English. �NNT : 2018REN1S090�. �tel-02132759�

https://theses.hal.science/tel-02132759v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L'UNIVERSITE DE RENNES 1
COMUE UNIVERSITÉ BRETAGNE LOIRE

ECOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication
Spécialité : Informatique

« Highlight and Execute Suspicious Paths in Android Malware »

Thèse présentée et soutenue à Rennes, le 18/12/2018
Unité de recherche : IRISA
Thèse N° :

Par

« Mourad LESLOUS »

Rapporteurs avant soutenance :

Yves LE TRAON Professeur, Université du Luxembourg
Wojciech MAZURCZYK Professeur Associé, Université de Technologie de Varsovie

Composition du Jury :

Président : Prénom Nom Fonction et établissement d’exercice (à préciser après la soutenance)

Examinateurs : Hervé DEBAR Professeur, Télécom Sud Paris
Jean-Marie BONNIN Professeur, IMT Atlantique
Pascal BERTHOMÉ Professeur, INSA Centre Val de Loire

Dir. de thèse : Valérie VIET TRIEM TONG Enseignant Chercheur, CentraleSupélec
Co-dir. de thèse : Thomas GENET Maître de conférences, Université de Rennes 1
Encadrant : Jean-François LALANDE Maître de conférences, CentraleSupélec

To my parents

iii

Abstract

The last years have known an unprecedented growth in the use of mobile devices espe-
cially smartphones. They became omnipresent in our daily life because of the features
they offer. They allow the user to install third-party apps to achieve numerous tasks.
Smartphones are mostly governed by the Android operating system. It is today installed
on more than 80% of the smartphones. Mobile apps collect a huge amount of data
such as email addresses, contact list, geolocation, photos and bank account credentials.
Consequently, Android has become a favorable target for cyber criminals. Thus, under-
standing the issue, i.e., how Android malware operates and how to detect it, became an
important research challenge.

Android malware frequently tries to bypass static analysis using multiple techniques
such as code obfuscation and dynamic code loading. To overcome these limitations,
many analysis techniques have been proposed to execute the app and monitor its behav-
ior at runtime. Nevertheless, malware developers use time and logic bombs to prevent
the malicious code from executing except under certain circumstances. Therefore, more
actions are needed to trigger it and monitor its behavior. Recent approaches try to au-
tomatically characterize the malicious behavior by identifying the most suspicious lo-
cations in the code and forcing them to execute. They strongly rely on the computation
of application global control flow graphs (CFGs). However, these CFGs are incom-
plete because they do not take into consideration all types of execution paths. These
approaches solely analyze the application code and miss the execution paths that occur
when the application calls a framework method that in turn calls another application
method.

We propose in this dissertation a tool, GPFinder, that automatically exhibits exe-
cution paths towards suspicious locations in the code by computing global CFGs that
include edges representing explicit and implicit interprocedural calls. It also gives key
information about the analyzed application in order to understand how the suspicious
code was injected into the application. To validate our approach, we use GPFinder to

iv

study a collection of 14,224 malware samples, and we evaluate that 72.69% of the sam-
ples have at least one suspicious code location which is only reachable through implicit
calls.

Triggering approaches mainly use one of the following strategies to run a specific
portion of the application’s code: the first approach heavily modifies the app to launch
the targeted code without keeping the original behavioral context. The second approach
generates the input to force the execution flow to take the desired path without modify-
ing the app’s code. However, it is sometimes hard to launch a specific code location just
by fuzzing the input. For instance, when the application performs a hash on the input
data and compares the result to a fixed string to decide which branch of the condition
to take, the fuzzing program should reverse the hashing function, which is obviously a
hard problem.

We propose in this dissertation a tool, TriggerDroid, that has a twofold goal: force
the execution of the suspicious code and keep its context close to the original one. It
crafts the required framework events to launch the right app component and satisfies
the necessary triggering conditions to take the desired execution path. To validate our
approach, we led an experiment on a dataset of 135 malware samples from 71 differ-
ent families. Results show that our approach needs more refinement and adaptation to
handle special cases due to the highly diverse malware dataset that we analyzed.

Up-to-date and well documented malware datasets are crucial to design better secu-
rity approaches and validate new tools. There exist a handful Android malware datasets
that are dedicated for the research community. However, they rarely detail the working
of their samples. In this dissertation, we give a feedback on the experiments we led
on different malware datasets, and we explain our experimental process. Finally, we
present the Kharon dataset, a collection of well documented Android malware that can
be used to understand the malware landscape.

v

Résumé

Les dernières années ont connu une croissance sans précédent dans l’utilisation des ap-
pareils mobiles, plus particulièrement les smartphones. Ils sont devenus omniprésents
dans notre vie quotidienne à cause des options qu’ils proposent. Ils permettent à l’utili-
sateur d’installer des applications tierces pour accomplir plusieurs tâches. Aujourd’hui,
Android est installé sur plus de 80% des smartphones. Les applications mobiles re-
cueillent une grande quantité d’informations, telles que les adresses mail, la liste des
contacts, la géolocalisation, les photos et les identifiants bancaires. Par conséquent, An-
droid est devenu une cible préférée des cybercriminels. Comprendre le fonctionnement
des malwares et comment les détecter est devenu un défi de recherche important.

Les malwares Android tentent souvent d’échapper à l’analyse statique en utilisant
des techniques telles que l’obfuscation et le chargement dynamique du code. Pour sur-
monter cela, des approches d’analyse ont été proposées pour exécuter l’application et
surveiller son comportement. Néanmoins, les développeurs des malwares utilisent des
bombes temporelles et logiques pour empêcher le code malveillant d’être exécuté sauf
dans certaines circonstances. Par conséquent, plus d’actions sont requises pour dé-
clencher et surveiller leurs comportements. Des approches récentes tentent de carac-
tériser automatiquement le comportement malveillant en identifiant les endroits du code
les plus suspicieux et en forçant leur exécution. Elles se basent sur le calcul des graphes
de flot de contrôle (CFG). Cependant, ces CFG sont incomplets car ils ne prennent pas
en considération tous les types de chemins d’exécution. Ces approches analysent seule-
ment le code d’application et ratent les chemins d’exécution générés quand l’application
appelle une méthode du framework, qui appelle à son tour une autre méthode applica-
tive.

Nous proposons dans ce mémoire un outil, GPFinder, qui extrait automatiquement
les chemins d’exécution qui mènent vers les endroits suspicieux du code, en calculant
des CFG qui incluent les arcs représentant des appels interprocéduraux explicites et
implicites. Il fournit aussi des informations clés sur l’application analysée afin de com-
prendre comment le code suspicieux a été injecté dans l’application. Pour valider notre

vi

approche, nous utilisons GPFinder pour étudier une collection de 14224 malwares An-
droid. Nous évaluons que 72,69% des échantillons ont au moins un endroit suspicieux
du code qui n’est atteignable qu’à travers des appels implicites.

Les approches de déclenchement actuelles utilisent principalement deux stratégies
pour exécuter une partie du code applicatif. La première stratégie consiste à modifier
l’application excessivement pour lancer le code ciblé sans faire attention à son contexte
originel. La seconde stratégie consiste à générer des entrées pour forcer le flot de con-
trôle à prendre le chemin désiré sans modifier le code d’application. Cependant, il est
parfois difficile de lancer un endroit spécifique du code seulement en manipulant les en-
trées. Par exemple, quand l’application fait un hachage des données fournies en entrée
et compare le résultat avec une chaîne de caractères fixe pour décider quelle branche
elle doit prendre. Clairement, le programme de manipulation d’entrée devrait inverser
la fonction de hachage, ce qui est presque impossible.

Nous proposons dans ce mémoire un outil, TriggerDroid, qui a deux buts : forcer
l’exécution du code suspicieux et garder le contexte originel de l’application. Il fournit
les événements framework requis pour lancer le bon composant et satisfait les conditions
nécessaires pour prendre le chemin d’exécution désiré. Pour valider notre approche,
nous avons fait une expérience sur 135 malwares Android de 71 familles différentes.
Les résultats montrent que notre approche nécessite plus de raffinement et d’adaptation
pour traiter les cas spéciaux dus à la grande diversité des échantillons analysés.

Avoir des collections de malwares à jour et bien documentées sont cruciales pour
concevoir des meilleures approches de sécurité et pour valider les nouveaux outils. Il
existe quelques collections de malwares Android dédiées à la communauté de recherche.
Cependant, elles détaillent rarement le fonctionnement de leurs échantillons. Dans ce
mémoire, nous fournissons un retour sur les expériences que nous avons conduites sur
différentes collections, et nous expliquons notre processus expérimental. Finalement,
nous présentons le dataset Kharon, une collection de malwares Android bien documen-
tés qui peuvent être utilisés pour comprendre le panorama des malwares Android.

vii

Résumé étendu de la thèse

Ma thèse de doctorat, commencé en septembre 2015 et qui va être soutenue en décem-
bre 2018, a été co-dirigée par Valérie VIET TRIEM TONG (enseignant-chercheur à Cen-
traleSupélec) et Thomas GENET (Maître de conférences à l’Université Rennes 1), et
co-encadrée par Jean-François LALANDE (Maître de conférences à CentraleSupélec).
Elle se propose de "Mettre en avant et exécuter les chemins suspicieux dans les mal-
wares Android". Elle a été réalisée eu sein des laboratoires de l’Institut National de
Recherche en Informatique et en Automatique (INRIA).

Thématique
Cette thèse porte sur la sécurité des applications Android. L’utilisation des smartphones
a explosé ces dernières années. Ces appareils sont devenus omniprésents dans notre vie
quotidienne. Cela peut être expliqué par la multitude des options que ces appareils pro-
posent, notamment les applications tierces, la connexion Internet mobile et la présence
d’un appareil photo. Les smartphones sont majoritairement gouvernés par le système
d’exploitation Android. En fait, en 2016, Android était installé sur 87% des smart-
phones [1]. D’ailleurs, Android est le système d’exploitation le plus utilisé sur la
planète, bien plus que les systèmes d’exploitation des ordinateurs de bureau. Il est util-
isé sur une variété d’appareils allant des montres connectées aux voitures, en passant par
les smartphones et les télévisions. Android est supporté par plusieurs architectures et
modèles de processeurs. Il est en majorité un logiciel libre et open source, dont le code
est distribué sous le projet AOSP (Android Open Source Project). Les développeurs
à travers le monde développent des applications pour cette plateforme et les mettent
sur des marchés d’application, comme Google Play. En décembre 2017, Le nombre
d’applications sur ce dernier a atteint 3,5 millions [2].

Les smartphones contiennent différents types de données numériques, comme des
photos de vacances, mais aussi des mots de passe des comptes bancaires. Les smart-
phones Android partagent un modèle de sécurité commun. Cela inclut SELinux, l’isola-

viii

tion des applications, les primitives cryptographiques et les mécanismes de sécurité of-
ferts par le noyau Linux [3]. Néanmoins, les smartphones Android sont devenus une
cible favorite des logiciels malveillants, encouragés par sa nature ouverte et son API
riche. Pour distribuer leurs logiciels malveillants, les cybercriminels utilisent des tech-
niques de repackaging : ils injectent le code malveillant dans des applications populaires
légitimes et les distribuent dans des marchés d’applications alternatifs [4], [5]. Par con-
séquent, comprendre comment ces applications malveillantes fonctionnent et les façons
de détecter et atténuer leurs attaques est devenu un défi de recherche de taille.

Pour lutter contre la prolifération des malwares Android, plusieurs approches ont
été proposées. Parmi ces approches, celles qui reposent sur l’analyse statique sont lim-
ités par la difficulté du retro analyse du code [6], [7]. En effet, ces techniques souf-
frent de quelques limitations, particulièrement à cause des données manquantes qui ne
sont disponibles qu’à l’exécution. D’ailleurs, les applications malveillantes utilisent
fréquemment des techniques d’évasion d’analyse statique. Par exemple, elles utilisent
l’obfuscation et le chargement dynamique à partir d’un serveur distant ou d’un fichier
local [8], [9].

D’autres approches d’analyse de malware préfèrent observer le comportement de
ces applications à l’exécution pour surmonter les limitations de l’analyse statique [10].
Cependant, les malwares Android ajoutent des contre-mesures pour échapper aux exé-
cutions qui tentent de les analyser. Par exemple, ils emploient les conditions de dé-
clenchement qui sont faciles à implémenter, et qui protègent le code malveillant en
retardant son exécution une durée configurée au préalable ou en attendant la réception
d’un SMS [11].

Appels implicites
Des approches d’analyse de malware Android récentes essayent de caractériser automa-
tiquement le comportement malveillant en se basant sur une combinaison d’analyse sta-
tique et dynamique [10], [12]–[14]. Elles ont pour objectif de localiser, étudier et exé-
cuter des parties spécifiques du code de l’application afin de surveiller leurs comporte-
ments. Ces approches se basent fortement sur le calcul des graphes de flot de contrôle
(CFG) qui représentent tous les chemins d’exécution présents dans l’application [15].
De tels CFG ne sont utiles que s’ils sont complets, ou au moins dans ce contexte, lorsque
ils contiennent les chemins d’exécution qui mènent vers les parties suspicieuses du code.
Malheureusement, ces approches ne prennent pas en considération tous les types de

ix

chemins d’exécution parce quelles n’analysent que le code de l’application. Par con-
séquent, elles ignorent les chemins d’exécution qui passent par le framework Android.
Les applications Android utilisent fréquemment les callbacks pour différentes raisons,
comme traiter les événements générés par l’interface graphique, les messages de dif-
fusion ou le multithreading. À titre d’exemple, quand une application Android veut
lancer une tâche de fond, elle réimplémente la classe AsyncTack et met le code qui
exécute la tâche dans la méthode doInBackground(). Ensuite, quand elle veut lancer
cette tâche, elle appelle la méthode execute() de la sous-classe qu’elle a réimplémen-
tée d’AsyncTack. Dans ce cas, l’application n’appelle jamais directement la méthode
doInBackground(), c’est le framework Android qui s’occupe de cela, ce qui explique
le nom callback. Ainsi, après création du CFG de l’application, celui-ci sera incomplet,
à cause du callback. Si un code suspicieux se trouve dans une telle méthode qui est
appelée implicitement, il sera considéré comme inatteignable par la plupart des outils
d’analyse statique car ils ne prennent pas le framework Android en considération. Dans
ce manuscrit, nous confirmons que les CFG utilisés par les outils d’analyse de malware
Android actuels sont incomplets car ils ne prennent pas en considération les appels de
flot de contrôle implicites.

Avant de pouvoir proposer notre contribution à ce problème, nous avons besoin de
souligner les propriétés du langage Java et la nature du framework Android qui rendent
la détection des malwares Android difficile. Par conséquent, nous aurons besoin de
concevoir un outil qui prend une application Android et génère les informations néces-
saires comme les endroits suspicieux et le graphe de flot de contrôle global qui prend en
considération les callbacks Java et Android.

Nous proposons dans ce manuscrit une approche qui fournit les chemins d’exécution
qui mènent vers les parties suspicieuses du code d’application en calculant des CFG qui
incluent les appels inter-procéduraux explicites et implicites. Nous implémentons notre
approche dans un outil appelé GPFinder (GroddDroid Path Finder). GPfinder fournit
aussi d’autres informations qui aident à comprendre le code malveillant et comment il a
été inséré dans l’application.

Pour valider notre approche, nous utilisons GPFinder pour étudier une collection
de 14224 applications malveillantes. Nous montrons à la suite de cette étude qu’on
peut améliorer l’analyse de malware Android en incluant les appels implicites dans les
CFG. Nous évaluons que 72.69% des échantillons analysés ont au moins un endroit
suspicieux du code qui n’est accessible qu’à travers les appels implicites. En plus, nous
examinons la structure commune des malwares Android et nous montrons leurs points
d’entrée favoris.

x

Déclenchement du code suspicieux
Les techniques d’analyse qui se basent sur l’observation du comportement des appli-
cations à l’exécution sont confrontées à un autre type de défi : les malwares Android
peuvent ne pas exposer leurs comportements malveillants sauf sous certaines circon-
stances [11], [16]. Le code malveilant peut rester inactif une certaine durée avant de
lancer l’attaque. De plus, de multiples événements système peuvent être utilisés pour
retarder l’exécution du code malveillant. Par exemple, le code malveillant peut atten-
dre la réception d’un SMS, le redémarrage du téléphone ou d’autres événements pour
lancer l’action malveillante. Une inspection manuelle s’avère utile pour analyser un
échantillon et identifier les conditions d’analyse qui donnent une observation réussite
à l’exécution. Néanmoins, cet effort de rétro-ingénierie ne peut pas être appliqué sur
les milliers d’applications chargées quotidiennement sur les marchés d’applications en
ligne. Par conséquent, il faudra d’abord déclencher automatiquement le code suspicieux
pour observer son comportement à l’exécution. Cela aide à mieux comprendre les ac-
tions des malwares et constitue une première étape vers la protection des utilisateurs et
leurs smartphones.

Il existe de nombreux travaux qui portent sur le déclenchement du code suspicieux
des applications Android. Par exemple, Fratantonio et al. ont proposé une nouvelle
approche statique qui aide à détecter les bombes logiques et temporelles qui peuvent
être utilisées pour protéger le code malveillant [11]. Cependant, ils n’évaluent pas
la performance du déclenchement réussi à l’exécution. De la même façon, un outil
appelé HsoMiner a été proposé par Pan X. et al. pour détecter les opérations sensi-
bles cachées en se basant sur les techniques de dissimulation qui servent à échapper
aux outils d’analyse dynamique [16]. Par exemple, les malwares tentent de détecter
si l’appareil sur lequel ils sont exécutés est un émulateur. HsoMiner utilisent ces pro-
priétés pour caractériser les malwares Android, malgré le fait que certains développeurs
d’applications bénignes utilisent ces techniques pour protéger leurs propriétés intel-
lectuelles. HsoMiner ne tente pas lui aussi de déclencher ces conditions de protection
du code malveillant ; il les détecte seulement. Les travaux existants qui portent sur le
déclenchement des malwares Android peuvent êtres classés en deux catégories : ceux
qui stimulent l’application de l’extérieur sans trop modifier son code pour préserver son
intégrité [10], [12], [17], [18], et ceux qui se concentrent sur le déclenchement en mod-
ifiant le code de l’application agressivement sans préserver le contexte originel du code
suspicieux [19], [20].

xi

Le déclenchement du code suspicieux en manipulant seulement les entrées de l’appli-
cation peut ne pas être facile. Par exemple, il est difficile de deviner la valeur à fournir en
entrée de l’application si son hash est comparé avec une constante pour décider s’il faut
lancer le code malveillant. D’autre part, le changement excessif du code de l’application
afin de déclencher le code suspicieux peut avoir pour conséquence d’exposer un com-
portement irréel de l’application.

Pour surmonter les techniques de protection du code, nous allons d’abord les ex-
plorer en concevant un outil qui prend une application Android et déclenche le code
suspicieux qui pourrait présenter un comportement malveillant. Cet outil a besoin
d’explorer les comportements suspicieux à l’exécution pour surmonter les techniques
d’évasion à l’analyse statique. Il a aussi besoin d’analyser les applications dans un
temps raisonnablement cours afin qu’il soit réutilisable dans des vraies situations, par
exemple pour analyser toutes les applications chargées sur un marché d’application.

Nous proposons dans ce manuscrit de déclencher le code suspicieux autant que pos-
sible en préservant le contexte originel de l’application. Notre approche utilise l’analyse
statique pour calculer le graphe de flot de contrôle de l’application issu de GPFinder
et extrait des chemins d’exécution vers les endroits suspicieux. Ensuite, elle trouve
les conditions de déclenchement qui seront impliquées dans ces chemins. Puis, notre
approche utilise les techniques de dépendance de données pour extraire les variables
impliquées dans ces conditions et elle calcule leurs valeurs à l’aide d’un SMT solver.
Nous introduisons des techniques pour choisir les endroits où les modifications seront
insérées pour minimiser l’impact sur le contexte d’application. Nous combinons cela
avec la stimulation extérieure de l’application. Par exemple, si l’application attend un
événement système, nous le fournissons pour la lancer.

Nous implémentons notre approche dans outil appelé TriggerDroid. Il opère di-
rectement sur le bytecode de l’application et ne nécessite pas son code source. Nous
menons une expérience sur un dataset de 135 applications malveillantes de 71 familles
différentes [21]. Les résultats montrent que notre approche nécessite davantage de raf-
finement et d’adaptation pour gérer les cas spéciaux à cause de la grande diversité de
notre dataset analysé.

xii

Collection d’applications malveillantes
Des collections d’applications bien documentées sont cruciales pour concevoir des mei-
lleures approches de sécurité et pour tester les nouveaux outils de détection. Il ex-
iste quelques collections d’applications malveillantes pour Android. Cependant, elles
donnent rarement des détails sur le fonctionnement de leurs échantillons. Dans ce
manuscrit, nous travaillons sur des datasets d’applications malveillantes, ce qui nous
permet d’évaluer l’efficacité des approches proposées. Nous proposons aussi le dataset
Kharon, une collection d’applications malveillantes bien documentées destinées à la
communauté de recherche. Le dataset Kharon aide à comprendre les techniques utilisées
par les applications Android pour attaquer, protéger le code malveillant et communiquer
avec leurs développeurs.

Contributions
Le but final de cette thèse est d’améliorer la sécurité des appareils mobiles et la vie
privée de l’utilisateur en renforçant la détection des malwares Android. Dans ce présent
manuscrit, nous contribuons à exposer le code malveillant et révéler les comportements
malveillants potentiels dans les applications Android. Cette thèse confirme le postulat :

Il est possible d’exposer à l’exécution les comportements suspicieux dissimulés
dans les applications Android malgré la nature événementielle du système Android
et les techniques d’évasion statiques et dynamiques que les malwares Android em-
ploient.

Nous résumons les contributions de cette thèse en ce qui suit :

• Nous explorons le paradigme des callbacks Android et les propriétés héritées du
langage Java et comment cela rend l’analyse des applications Android difficile.

• Nous concevons et implémentons un outil appelé GPFINDER [22] qui prend
une application Android et génère un graphe de flot de contrôle interprocedu-
ral qui prend en considération les propriétés du framework Android, et trouve les
chemins d’exécution nécessaires qui mènent aux endroits suspicieux de l’applica-
tion.

xiii

• Nous explorons les techniques utilisées par les malwares Android pour dissimuler
le code malveillant, et comment cela peut empêcher la détection par les outils
d’analyse automatiques.

• Nous concevons et implémentons un outil appelé TRIGGERDROID qui prend une
application Android et qui déclenche les endroits suspicieux du code qui peuvent
révéler des comportements malveillants de l’application.

• Nous travaillons sur des datasets d’applications malveillantes, ce qui nous permet
d’évaluer l’efficacité des approches proposées.

• Nous proposons Kharon dataset, une collection d’applications malveillantes bien
documentées destinées à la communauté de recherche [23].

xv

Contents

Abstract iii

Résumé v

Résumé étendu de la thèse vii

1 Introduction 1
1.1 Motivating Example . 5
1.2 Goal and Scope of this Dissertation . 7
1.3 Thesis Statement . 7
1.4 Contributions . 8
1.5 Dissertation Outline . 9

2 Technical Background 11
2.1 Android System . 11
2.2 Android Applications . 15

2.2.1 APK . 15
2.2.2 Manifest . 15
2.2.3 Application Components . 16

Activities . 16
Services . 18
Content Providers . 20
Broadcast Receivers . 20

2.2.4 Entry Points . 20
2.3 Android Security Features . 21
2.4 Static Analysis . 21

2.4.1 Control Flow Graph . 22
2.4.2 Data Flow Graph . 22

xvi

2.4.3 Reverse Engineering . 23
2.4.4 Analysis Tools . 24

Intermediate Representations 24
Call Graph Construction . 24

2.5 Conclusion . 25

3 State of the Art 27
3.1 Android Malware . 27

3.1.1 Analysis Escaping Techniques 30
Code Obfuscation . 30
Runtime Analysis Evasion . 31

3.2 Analysis Approaches . 32
3.2.1 Protection Approaches . 32
3.2.2 Detection Approaches . 33

Static Analysis Based Detection Approaches 33
Dynamic Analysis Based Detection Approaches 34

3.2.3 Characterization Approaches 35
3.3 Implicit Inter-procedural Calls . 36

3.3.1 What Are Implicit Calls? . 37
3.3.2 Implicit Calls in the Literature 38

3.4 Triggering Approaches . 41
3.5 Conclusion . 44

4 GPFinder 45
4.1 Approach . 46

4.1.1 Control Flow Graphs Generation 49
4.1.2 Suspicious Code Location . 50
4.1.3 Execution Paths’ Search . 51
4.1.4 GPFinder’s Output . 52

4.2 Experiment . 53
4.3 Findings . 53

4.3.1 Suspicious Code Nature . 53
4.3.2 Entry Points Types . 55
4.3.3 Implicit Edges Presence . 56
4.3.4 Triggering Conditions . 57

4.4 Comparing with Benign Apps . 58

xvii

4.5 Discussions . 59
4.6 Conclusion . 59

5 Triggering Suspicious Code 61
5.1 Motivating Example . 62
5.2 Prior static analysis . 63

5.2.1 Identifying the Suspicious Basic Blocks 65
5.2.2 Triggering Conditions and Variables 65
5.2.3 Path Computation . 68

5.3 Automatic Triggering . 71
5.3.1 Triggering Strategies . 71
5.3.2 Satisfying Triggering Conditions 74
5.3.3 Delicate statements . 76
5.3.4 Malware Alteration and Execution 76

5.4 Implementation . 76
5.5 Evaluation . 80

5.5.1 Experimental Setup . 80
5.5.2 Effectiveness in Reaching a Suspicious Code 80
5.5.3 Importance of Execution Paths 80
5.5.4 Efficiency . 81
5.5.5 Comparison with Other Approaches 81

5.6 Discussions and Perspectives . 82
5.7 Conclusion . 82

6 Dilemma of Malware Datasets 85
6.1 Understanding Malware . 85
6.2 Labeling Malware Families . 86
6.3 Existing Datasets . 86
6.4 Kharon, a Well Documented Dataset 88
6.5 Choices Made in This Dissertation . 90
6.6 Conclusion . 91

7 Conclusion and Perspectives 93
7.1 Conclusion . 93
7.2 Perspectives . 94

7.2.1 Short Term Perspectives . 94

xviii

7.2.2 Long Term Perspectives . 96

Author’s Publications 99

Bibliography 101

xix

List of Figures

2.1 Android stack . 13
2.2 Activity lifecycle . 19
2.3 Inter-procedural CFG example . 22

3.1 Global control flow graph with implicit calls 40

4.1 GPFinder’s architecture . 48
4.2 Suspicious APIs use . 55
4.3 Use of entry points to reach suspicious methods 56

5.1 Inter-procedural CFG of the running example 69
5.2 Data dependency subgraph used by TriggerDroid 73
5.3 Running example’s CFG . 75

xxi

List of Tables

4.1 Partial output of GPFinder . 54

5.1 TriggerDroid’s performance expressed in % 81

xxiii

Listings

1.1 Triggering conditions with implicit calls 6
2.1 Android application’s manifest example 17
3.1 Code obfuscation using Java reflection 31
3.2 Implicit call in a real-world malware 39
4.1 Registration and callback methods . 47
4.2 EdgeMiner rule . 48
4.3 Triggering condition . 58
5.1 Motivating example for TriggerDroid 64
5.2 Running example Java code . 66
5.3 Running example Jimple code . 67
5.4 Triggering conditions for the running example 71
5.5 Constraints on triggering variables sent to the SMT solver 77
5.6 Running example with strategies 2 and 3 78

1

Chapter 1

Introduction

The last years have known an unprecedented growth in the use of mobile devices espe-
cially smartphones; they become omnipresent in our daily life. One of the main reasons
that can explain this, is the number of features that mobile devices offer such as touch
screens and ubiquitous high-speed access to the Internet, in addition to the capabilities
they have such as GPS, compass, accelerometer and gyroscope.

Most smartphones permit the user to install third-party software components called
applications; or apps for short. They allow the user to achieve virtually every daily need
like searching the web, emailing, gaming, chatting with other people, taking photos
and publishing them in social media, checking the weather forecast, planning trips and
making bank transactions, in addition to the basic phone operations like making calls
and exchanging SMSs. Combining all these functionalities, smartphones can be seen
as replacements for many traditional tools such as alarms, cameras, paper calendars
and newspapers, music players, radios, calculators, CDs and video tapes. Apps are
distributed in online markets or stores. Some of them are official like Google Play and
Apple App Store, while others are third-party. Third-party app stores can be general
like Amazone Appstore, but they can also target specific segments of the market like by
country. For example Tencent MyApp is a popular app store in China and SK T-Store
is a key app store in order to access the Korean market.

Smartphones carry much information about the user. Apps collect data like email
addresses, contact list, geolocation, photos and bank account credentials for benign pur-
poses like subscribing and accessing different services, and sometimes for questionable
purposes such as displaying targeted ads and selling the user’s information to their part-
ners. Cross referencing information collected about the user may also deduce even more
information that he does not necessary agree to share with these apps. For instance, apps
can deduce the locations of the user’s home and work place from the access points he

2 Chapter 1. Introduction

connects to during the work hours versus in the evening.
Smartphones are mostly governed by the Android operating system. For instance,

Android dominated 87% of the smartphone market in the second quarter of 2016 [1].
In fact, Android is the most installed operating system on the planet, even more than
desktop OSs. The main competitor OS of Android is IOS, the Apple mobile operating
system. There exist also other mobile OSs, but most of them have been discontinued
like Symbian, BlackBerry OS, Firefox Os and Ubuntu Touch. Android is installed on
a wide variety of hardware such as connected watches, cars and TVs, but mainly on
smartphones. It is mostly free and open source and it is distributed under the Android
Open Source Project (AOSP). The wide adoption of Android today is due to its open
source nature, but also because of its support of a multitude of hardware thanks to the
underlying Linux kernel. Developers from around the world are uploading applications
to the Google Play store. For instance, in December 2017, it has reached 3.5 million
applications [2].

Devices that run Android share a common platform-level security model that in-
cludes SELinux, application isolation, cryptographic primitives and the security mecha-
nisms offered by the Linux kernel. In addition, many Android devices include advanced
locking mechanisms, like fingerprint, iris scanning, and face recognition.

Naturally, Android has become a favorable target for cyber criminals because of the
wide range of information smartphones contain, and also due to the low cost of mal-
ware deployment on many devices. Recent reports showed that malware of numerous
types are targeting Android for different purposes, like stealing information or charging
the user by sending premium SMS texts [3]. Malware authors prefer the easy method
of repackaging/piggybacking to distribute their code: they inject the malicious code in
popular applications and redistribute them in alternative markets [4], [5]. Thus, under-
standing the issue, i.e, how Android malware operates and how to detect it, became an
important research challenge.

To counter Android malware spread, many detection approaches were proposed.
Some of them use the Android permission mechanism in order to detect malware [24],
[25]. Nevertheless, recent studies showed that permissions alone are not sufficient to
detect malware because app authors tend to ask for more permission than their apps
really need [26], [27].

There exist other detection approaches that do more complex work basing on static
analysis [6], [7]. Nevertheless, static analysis tools use code manipulation techniques
that require efforts to reverse and understand the code. Often, these techniques suffer

Chapter 1. Introduction 3

from limitations, especially because of the missing data that is only available at run-
time. For instance, Android malware frequently tries to bypass static analysis vetting
using multiple techniques like code obfuscation and dynamic code loading where the
malicious code is downloaded from a remote server or loaded from a local file [8], [9].

To overcome these limitations, many dynamic analysis techniques were proposed.
They execute the app and monitor its behavior at runtime. Nevertheless, this approach
can also suffer from other limitations. Malware developers add countermeasures to
escape execution environments that may be used to detect malware. For instance, they
prevent the malicious code from executing except under certain circumstances such as
in a specific country, or after a certain system event, a reception of a command from a
remote server, or after a specific duration [11].

Indeed, it is difficult to observe the behavior of a suspicious code if it is protected
by logic bombs. Therefore, more actions are needed to trigger it and monitor its behav-
ior. Many recent approaches try to automatically characterize the malicious behavior
by combining static and dynamic analyses, where a first static analysis identifies the
most suspicious locations in the code and then a particular run of the application targets
the execution of the code previously identified as suspicious [12], [19], [28], [29]. In
other words; they aim at locating, studying and executing specific parts of the applica-
tion in order to expose any suspicious behavior. These approaches strongly rely on the
computation of application global Control Flow Graphs (CFGs) that represent all exe-
cution paths in the program [15]. Such CFGs are useful only when they are complete,
or at least in this context, when they contain the necessary execution paths towards the
suspicious code. In this thesis, we claim that the CFGs used by the aforementioned
state-of-the-art approaches are incomplete because they do not take into consideration
all types of execution paths. They solely analyze the application code, which leads to
miss execution paths that pass through implicit control flow calls, i.e., those that occur
when the application calls a framework method that calls another application method.
This callback mechanism is used a lot in Android because of its event-driven nature.

We propose in this dissertation an approach to build control flow graphs for Android
applications taking into consideration explicit but also implicit interprocedural calls.
We show through our experiments that many applications have suspicious code that is
reachable only through implicit calls.

Triggering approaches mainly use one of the following strategies to run a specific
portion of the application’s code: they either heavily modify the app to launch the tar-
geted code, some times by extracting the targeted code and launching it in a dummy

4 Chapter 1. Introduction

program [20], or they keep the application code unmodified and use some fuzzing meth-
ods on the app input to force the execution flow to take the desired path [12]. The first
method that heavily modifies the app has a major drawback; the targeted code can lose
its original context, and therefore, it does not represent anymore the malicious behavior
originally embedded in the app. The second triggering method tries to conserve the ap-
plication code integrity but it is sometimes hard to launch a specific code location just by
fuzzing the input. For instance, when the application performs a hash on the input data
and compares the result to a fixed string to decide which branch of the condition to take,
the fuzzing program should reverse the hash function, which is virtually an impossible
problem.

To reveal the malicious behaviors of Android applications, we propose in this dis-
sertation an approach that forces malware to launch the targeted locations of its code
by combining the two aforementioned triggering strategies. The aim of our approach
is twofold: force the execution of the suspicious code and keep its context close to the
original one. It crafts the required framework events to launch the right app compo-
nent, and satisfies the necessary triggering conditions to take the desired execution path.
This approach relies on static analysis techniques that compute control flow paths, and
exploits slicing methods to find the best places to modify variables involved in the trig-
gering conditions. The experiments that we led show that our approach, while promising
in suspicious code triggering, needs more refinement and adaptation to handle special
cases due to the highly diverse malware dataset that we analyzed.

Up-to-date and well documented malware datasets are crucial to design better se-
curity approaches and validate new tools. There exist a handful of Android malware
datasets that are dedicated for the research community. However, they rarely detail the
working of their samples. In addition, there exist hundreds of articles online explaining
new discovered malware. However, they are mostly destination to the public. They are
rarely detailed enough so the researcher can get a clear idea on how the malicious ac-
tion is exactly launched and how it operates. In this dissertation, we give a feedback on
the experiments we led on different malware datasets, and we explain our experimental
process. We also present the Kharon dataset, a collection of well documented samples
that can be used to understand the malware landscape.

This chapter is structured as follows: we first present our motivating example for
our work and why we are targeting particular challenges that prevent malicious code
from triggering in automated analysis environments. Then, we explain the dissertation
goal and scope. Next, we formulate the thesis statement. And finally, we present the
dissertation outline.

1.1. Motivating Example 5

1.1 Motivating Example
In this section, we present an example that motivates our research work and explains
two major points that we tackle in this dissertation. Listing 1.1 shows why triggering
the suspicious code is important for dynamic analysis tools that detect Android malware
based on its runtime behavior. The second point this listing is showing is the importance
of implicit interprocedural calls to trigger the suspicious code.

In this example, the suspicious code that sends the location to a given phone num-
ber (line 31) is protected by several conditions that should be satisfied in order to
launch it. In order to trigger this suspicious code, the application must receive an
SMS-RECEIVED intent (a communication message in Android terminology), which trig-
gers the onReceive method beginning at line 1. First, the application verifies if the
received intent’s action is really due to an SMS reception (line 3). Then, to extract the
received message and sender number, the app checks if the intent’s bundle is not null
at line 6. Next, the app verifies if the PDU object i.e. the content of the message is not
empty at line 9. At line 20, the app checks if the sender number equals a certain stored
number. Finally, it verifies if the message content contains a specific command (line 23)
in order to decide if the location should be sent back or not.

The conditions that protect the malicious code are of different types: some of them
check an intern value (sender number, message content) and others check the event that
triggered the broadcast receiver. Randomly fuzzing the application (the two parameters:
context and intent) would have little chance to trigger the malicious behavior. The app
checks the content of two strings (sender and message at lines 20 and 6 respectively).
This makes the chance of randomly guessing the right sender number and message
content minimal.

Android applications make heavy use of callbacks in Android for different reasons
like UI events handling, broadcast messages handling, multithreading, etc. For exam-
ple, method doInBackground() in Listing 1.1 is implemented by the application but
invoked by the Android framework. This method does not have an explicit call inside
the application code. Therefore, the CFG that is build solely by analyzing the app code
may not contain an incoming control flow edge starting from the application itself and
going to doInBackground(). This is why such methods are called callbacks. If a ma-
licious code is located in a method which is implicitly called, it will be considered as
unreachable by tools that analyze only the application code. Thus, we have to analyze
additional code outside the application, namely the Android framework to figure out
implicit calls and build a reliable CFG.

6 Chapter 1. Introduction

1 public void onReceive(Context context, Intent intent) {
2 if (intent.getAction()
3 .equals("android.provider.Telephony.SMS_RECEIVED"))
4 {
5 Bundle bundle = intent.getExtras();
6 if (bundle != null) {
7 // Get message and sender
8 Object[] pdus = (Object[]) bundle.get("pdus");
9 if (pdus.length == 0) {

10 return;
11 }
12 SmsMessage[] messages = new SmsMessage[pdus.length];
13 StringBuilder sb = new StringBuilder();
14 for (int i = 0; i < pdus.length; i++) {
15 messages[i] = SmsMessage.createFromPdu((byte[])

pdus[i]);gitageBody());
16 }
17 String num = messages[0].getOriginatingAddress();
18 String message = sb.toString();
19 // Check sender
20 if(!num.equals("987654321"))
21 return;
22 // Check message content
23 if(message.equals("collect")){
24 MailTask mt = new MailTask("", ((Context) this))
25 mt.execute(new Integer[0]);
26 }
27 }
28 }
29 }
30 public void run(String arg) {
31 tm = getSystemService (Context.TELEPHONY_SERVICE);
32 String location = getLocationStr();
33 SmsManager sm = SmsManager.getDefault();
34 sm.sendTextMessage(num, null, location, null, null);
35 }

LISTING 1.1: Triggering conditions with implicit calls

1.2. Goal and Scope of this Dissertation 7

1.2 Goal and Scope of this Dissertation
In this dissertation, we explore how malware benefits from the Android framework call-
back driven paradigm and Java language nature to make detection by automatic security
analysis tools challenging. We also show the way Android malware evades detection
by static vetting tools and runtime analysis environments. This dissertation confirms
the thesis that it is possible to expose malicious behaviors of Android applications even
when they use code protection techniques and misuse Android callback mechanism.
First, we need to design a tool that takes an Android application, and generates the
necessary information about it, such as the suspicious code locations and the interpro-
cedural CFG that takes into consideration Android and Java’s callblack paradigm, which
is necessary to execute the targeted code. Then, to circumvent malicious code protec-
tion techniques, we need to design a tool that takes an Android application and triggers
the suspicious code that may present a malicious behavior. This tool needs to expose the
suspicious behaviors at runtime to circumvent static analysis evasion techniques, It also
needs to analyze applications in a reasonably short time to make it reusable in real-life
situations like analyzing apps uploaded to an online app market.

Note that by triggering the suspicious code in an Android application we do not
mean to judge the maliciousness of the application. In the present dissertation, we
merely expose the suspicious hidden behaviors, and it is up to a human analyst or an
automatic tool to judge whether the exposed behavior is malicious or not. For example,
privilege escalation code may be classified as malicious in some situations if it is used to
root the phone and take control of the user’s device to install harmful software. The same
privilege escalation code may be classified as benign if it is present in an application
designed and well-known to be used to root the phone for benign purposes like installing
new ROMs or uninstalling stock apps.

1.3 Thesis Statement
This dissertation confirms the thesis that:

It is possible to expose the hidden suspicious behaviors of Android application at
runtime despite the Android framework event driven paradigm and the static and
dynamic evasion techniques that Android malware tends to use.

8 Chapter 1. Introduction

More precisely,

TS-1 It is possible to build interprocedural control flow graphs that are useful for secu-
rity analysis purposes despite the Java language callbacks and the Android frame-
work event-driven model.

TS-2 It is possible to trigger the suspicious code in Android applications at runtime
and expose their real intentions despite the static and dynamic techniques that
Android malware uses to escape automatic security analysis tools.

1.4 Contributions
The final goal of this thesis is to improve the security of mobile devices and thus the
privacy of users by enhancing Android malware detection. In the present dissertation,
we contribute to exposing suspicious code and thus revealing potential malicious be-
haviors in Android applications. We resume the contributions of this dissertation in the
following:

• We explore the callback driven paradigm of the Android framework and the prop-
erties inherited from the Java language, and how this makes Android application
analysis challenging.

• We design and implement a tool called GPFinder [22] that takes an Android appli-
cation, generates an interprocedural control flow graph taking into consideration
the Android framework properties, and finds all execution paths that lead to the
targeted code locations in the app [22].

• We explore the techniques used by Android malware to protect the harmful code
and hide the malicious behavior, and how this can prevent detection by automatic
vetting tools.

• We design and implement a tool called TriggerDroid that takes an Android ap-
plication and triggers the suspicious code locations that can reveal any malicious
behaviors of the application.

• We give a feedback on the experiments we led on different malware datasets, and
we explain our experimental process.

1.5. Dissertation Outline 9

• We present the Kharon dataset, a collection of well documented Android malware
that can be used to understand the malware landscape.

1.5 Dissertation Outline
The goal of this thesis is to trigger and expose Android applications’ suspicious behav-
iors. To achieve this purpose, we structured this dissertation as follows: In Chapter 2,
we present in a glance the important information about the Android platform that is
necessary to understand our contributions in the domain of Android malware security.

In Chapter 3, we present the most relevant works that address the subject of im-
plicit interprocedural calls in Android, the techniques Android malware uses to escape
detection, and how to expose harmful behaviors despite these protections.

In chapter 4, we highlight the importance of Control Flow Graphs in order to an-
alyze Android application. We show that CFGs built for Android application may be
incomplete because of the heavy use of Android callbacks. We also present our tool
called GPFinder, which is able to build CFGs for Android applications taking into ac-
count Android callbacks and implicit interprocedural calls. It also finds execution paths
towards suspicious code locations in the application, which allows launching them if
needed.

In Chapter 5, we investigate the techniques of preventing the malicious code from
executing in runtime analysis environments, which are used by Android malware to
escape detection by automatic vetting tools. We show the importance of exposing the
real intent of Android applications in order to detect malicious behaviors and protect the
end user from harmful programs. We present our tool called TriggerDroid which is able
to take an Android application, trigger the suspicious code locations and expose its real
behavior. Unlike other existing approaches, TriggerDroid tries to expose the application
malicious behavior and keep the app’s original context at the same time.

In Chapter 6, we explain the dilemma of Android malware datasets between large
scale collections with few details about the samples, and small collections with highly
documented reports. We point out the labeling inconsistency issue and evaluate the most
important existing datasets. Then, we present Kharon dataset, our well documented
collection of malware. Finally, we explain why we chose certain datasets to test our
security tools.

We conclude the dissertation in Chapter 7 with some perspectives.

11

Chapter 2

Technical Background

In this chapter we present the necessary technical background to understand the chal-
lenges facing Android malware detection, and to position our contributions that are
presented later in this dissertation. We explain in the following sections the Android
operating system and its architecture, Android application and their components, the
mechanisms put to secure the Android ecosystem, and some principles of software anal-
ysis.

2.1 Android System
Android is an open source operating system designed initially for touch screen devices
such as smartphones and tablets, and it is the most used OS on smartphones today [1].
It was created in 2003 by a company called Android inc. and was bought by Google
in 2005. The first commercially available smartphone equiped with Android was an-
nounced in 2008. 1 Android was extended later for smart watches, connected objects,
TVs and cars.

Since its creation, Android has known many major releases with feature introduc-
tions and bug fixes. Its versions are named by alphabetical order on deserts like Cupcake
and Donut, with the last version being 9.0 codename Pie.

Android is based mainly on touch input like swiping, tapping, pinching and reverse
pinching to interact with the underlying software. It also supports physical devices like
keyboards and mice, and takes feedback from internal hardware like accelerometers and
gyroscopes. It is developed using 5 programming languages: Assembly, C, C++, Java
and Kotlin. The kernel is programmed mainly in C, libraries in C++, and the other

1beta.techcrunch.com/2008/09/23/t-mobile-officially-announces-the-g1-android-phone

12 Chapter 2. Technical Background

applications in Java and Kotlin. In this section, we will explain the different layers of
the Android stack as depicted in Figure 2.1.

Linux Kernel. Android was developed on top of a customized Linux kernel to manage
processor, memory and inputs/outputs as shown in Figure 2.1. However, Android adds
some low-level mechanisms to optimize it for the user, like energy consumption, perfor-
mance amelioration and security enhancements. For instance, Android uses Anonymous
Shared Memory (ashmem) instead of the POSIX SHM allocator because it frees shared
memory units under pressure. Android also added a set of patches to the Linux kernel
to manage the energy such as wakelocks. Depending on the wakelock, it prevents the
system from entering energy saving mode. For example, WAKE_LOCK_SUSPEND prevents
the system from entering suspend mode.

Memory. Android memory is generally smaller than its desktop system counterparts.
Thus, Android exercises an aggressive strategy to free it. Android sets a limit on the
heap size of apps. The actual size limit depends on the device and the available RAM.
Applications receive an OutOfMemoryError when they reach their heap size limit. Ba-
sically, applications are suspended when the user changes the focus to other apps or quit
them. When the memory has low free space, Android starts to kill apps in the back-
ground. The system begins by killing processes that are less used. Dues to the low
RAM space, Android tries to share memory pages between processes. The latter are
forked from the Zygote process that starts when the system boots, and it loads common
framework code and resources to share with new processes. Sharing memory is done
also by mapping most static data into a process to allow pagination out of the memory
when needed.

Binder. Android does not use SysV IPC. Instead, it uses Binder for this purpose2.
It is an IPC and RPC mechanisms similar to DBUS3. It follows a client-server model
where the client initiates the communication and waits for a response from the server.
The client has a proxy and the server has a thread pool to handle requests. Binder
calls are synchronous, i.e., the client waits for a response from the server to continue
its execution. There is no asynchronous communication by default. In addition, data is
serialized with the transmission.

2https://elinux.org/Android_Binder
3https://www.freedesktop.org/wiki/Software/dbus/

https://elinux.org/Android_Binder
https://www.freedesktop.org/wiki/Software/dbus/

2.1. Android System 13

Dialer Email Calendar Camera ...

System Apps

Window

Activity Location Package Notification

Java API Framework

TelephonyResource

Managers
Content Providers

View System

...

Webkit OpenMAX AL Libc

OpenGL ESMedia Framework

Native C/C++ Libraries Android Runtime

Android Runtime (ART)

Core Libraries

Audio Bluetooth Camera Sensors ...

Hardware Abstraction Layer (HAL)

Audio Binder (IPC) Display

Drivers

Power Management

Keypad Bluetooth Camera

Shared Memory USB WIFI

Linux Kernel

FIGURE 2.1: Android stack

14 Chapter 2. Technical Background

Hardware Abstraction Layer. Android uses a Hardware Abstraction Layer (HAL)
which provides a standard interface to interact with hardware components like Bluetooth
and camera. For example, when an Android application wants to get data from a sensor,
it makes a call to the corresponding function in the HAL, which in turn communicates
to the sensor driver. The driver triggers the sensor and sends the data back to the HAL,
so it can be passed to the Android application. This gives a complete abstraction and
control over the device’s sensors regardless of the vendor.

Android Runtime. Android uses a application runtime environment, ART, to execute
applications which are written in java and compiled into Datvik bytecode. ART was in-
troduced as preview in Android 4 and it replaced entirely the old Dalvik VM in Android
5.0. ART uses Ahead-Of-Time (AOT) compilation that translates application bytecode
upon installation. It is basically designed to run on ARM architecture. It uses registers
instead of a stack for battery saving and performance purposes.

Dalvik Bytecode. Android applications’ code is compiled into Dalvik bytecode and
stored in .dex files. They include (but not limited to) a header, sections for identifiers
of string, types, method prototypes, a section for class definitions and a section for data.
Dalvik bytecode approximately imitates real architecture instructions, but it operates on
a register-based runtime environment. Dalvik instructions can operate on 16, 32 and
64-bit data. For example, if we take the instruction move-wide/from16 vAA, vBBBB:

• move: A base opcode that moves a register’s value.

• wide: A suffix indicating that the opcode operates on 64-bit data.

• from16: A suffix indicating that source register is 16-bit long.

• vAA: The destination register.

• vBBBB: The source register.

Java API Framework. Android platform provides a wide set of APIs written in Java
to enable code reuse. For example, the Resource Manager provides access for resources
outside of the code like layouts and graphics. While the Activity Manager is responsible
for managing the app components’ lifecycle and activity stack.

2.2. Android Applications 15

Native Libraries. Many core components of the Android framework are written in
C/C++ because they need native libraries to operate. It is worth noting that the core
libraries do not actually performs much of the actual work and are essentially Java
wrappers around C/C++ based libraries. Applications also can include native code to
access native platform libraries.

2.2 Android Applications
Android applications are distributed in archives ending with .apk extension. They in-
clude a .dex file that contains the compiled application code, in addition to resource
files, native libraries, and an application manifest. Android apps are mainly programmed
in Java compiled into Dalvik bytecode, but they can contain C/C++ code via a native
development kit (NDK) for high performance code like graphical rendering engines and
to access low level mechanisms specific to the hardware architecture4. In addition, Goo
language is also supported on this platform alongside with Kotlin, a newly introduced
programming language.

2.2.1 APK
Android apps are distributed on online app markets like Google Play, Amazon Appstore
and F-Droid under the APK (Android Package) file format. It is basically a zip file
containing the compiled code and the assets needed to run the application. Note that a
new format of application file called Android App Bundles was introduced in Android
9. It is basically a dynamic format where the user can download only the necessary part
of the application adapted for his language, CPU architecture, screen size, etc. Android
App Bundles use the same bytecode as APK, they are just a new way of delivery the
application to the end user to save space.

2.2.2 Manifest
The application manifest is an XML file that describes the essential information about
the app. It includes among others:

• The app’s package name.

4https://developer.android.com/ndk/guides/

https://developer.android.com/ndk/guides/

16 Chapter 2. Technical Background

• App components.

• Permissions that the app needs.

• Hardware and software features the app requires.

Listing 2.1 shows an example of manifest file. For instance, it contains the app package
name (line 5), the targeted SDK version and the minimum SDK version required for the
app to work properly (line 7), the permission the app needs (lines 10 and 12), in this
case reading and writing to the microSD card. In addition, this manifest file contains
also an activity (line 22) and a service (line 29) components that we will explain later.

2.2.3 Application Components
The essential building blocks of Android apps are: activities, services, content providers,
and broadcast receivers. They cooperate and may have independent lifecycles. These
components constitute possible entry points for their application, form which the sys-
tem or other apps can launch it. In this section, we present the app components and how
they work.

Activities

An activity is basically a software component that have a graphical interface. It is used
to display information and interact with the user. It is not meant to store persistent
information because it can be paused at any moment if another activity is brought to
foreground. Activities can take all the device screen. When another activity is launched,
the current one will be pushed into a back stack. Code starting at line 22 in Listing 2.1
constitutes an example of declaring a main activity that can be launched by clicking on
the application launcher icon.

To create an activity, we need to instantiate a sub-class of Activity and implement
callbacks to be launched when the activity is created, paused, or destroyed for example.
The graphical interface can be put in a separated XML file in the resource directory and
linked to the activity, or it can be implemented in the activity code.

When an activity is launched, it can be in one of the following states:

Resumed The activity is on the first layer and it has the user focus.

2.2. Android Applications 17

1 <?xml version="1.0" encoding="utf-8"?>
2 <manifest
3 xmlns:android="http://schemas.android.com/apk/res/android"
4 android:versionCode="1" android:versionName="1.0"
5 package="com.example.myapp">
6

7 <uses-sdk android:minSdkVersion="15" android:targetSdkVersion="26" />

8

9 <uses-permission
10 android:name= "android.permission.READ_EXTERNAL_STORAGE"/>
11 <uses-permission
12 android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
13

14 <application
15 android:allowBackup="true"
16 android:icon="@mipmap/ic_launcher"
17 android:roundIcon="@mipmap/ic_launcher_round"
18 android:label="@string/app_name"
19 android:supportsRtl="true"
20 android:theme="@style/AppTheme">
21

22 <activity android:name=".MainActivity">
23 <intent-filter>
24 <action android:name="android.intent.action.MAIN" />
25 <category android:name="android.intent.category.LAUNCHER" />
26 </intent-filter>
27 </activity>
28

29 <service android:name=".MyService" />
30 </application>
31 </manifest>

LISTING 2.1: Android application’s manifest example

18 Chapter 2. Technical Background

Paused Another activity has taken the user focus. It is partially transparent and it does
not cover the whole screen. It stays attached to the window manager.

Stopped The activity is on the background and not visible at all. It is still attached to
the window manager.

When the state of an activity changes, the latter is notified by several callbacks that
can be overridden to accomplish specific tasks. The following methods are the principle
callbacks:

onCreate() The activity has been created freshly.

onStart() The activity is going to be visible.

onResume() The activity has become visible. It is resumed now.

onPause() Another activity will take the focus and this one will be paused.

onStop() The activity is no longer visible, it is stopped now.

onDestroy() The activity will be destroyed.

Figure 2.2 represents the lifecycle of the Activity, and shows transitions from a state
to another and the callback methods called at each transition.

Services

A service is a component that executes in background to perform long-running tasks
that could slow down the user experience. It does not offer a graphical interface. An
application component can be attached to a service to perform a background task. A ser-
vice can perform network transmission, play music, do file input/output, or interact with
a content provider. Code at line 29 in Listing 2.1 constitutes an example of declaring a
service in the manifest file.

Services have two forms:

Started When a component starts it with a startService() call. It can run indefi-
nitely in order to perform its task, and stop with a startService() call. The
service must implement onStartCommand() in order to be started.

2.2. Android Applications 19

Activity
launched

onCreate()

onStart()

onResume()

onRestart()

Activity
launched

onPause()

App process
killed

onStop()

Activity
Shut down

onDestroy()

User navigates
to the activity

Apps with higher priority
need memory

User navigates
to the activity

The activity is finishing or
being destroyed by the system

Another activity comes
into foreground User returns

to the activity

The activity is
no longer visible

FIGURE 2.2: Activity lifecycle

20 Chapter 2. Technical Background

Binded If a component binds with it by calling binService(). It offers a server-client
interface to interact with it and to communicate with IPC. It runs as long as a
binded component exists. The service must implement onBind() in order to be
binded.

Content Providers

Content providers are components used to share data like files, databases and web pages
with other components or applications. They manage the access to structured data and
provide the mechanisms to define their security. Applications can use content providers
to manage their own data. Content providers must be subclasses of ContentProvider
and implement a set of API methods that allow other applications to perform transac-
tions. In order to access content providers’ data, applications must use a ContentReso-
lver in their Context and communicate with the content provider as clients.

Broadcast Receivers

They are components that respond to messages broadcasted in the system announcing
that some event has occurred, for example the battery is low or a picture was taken. They
do no display a use interface, but they can create notifications in the status bar. Broad-
cast receivers are only gateways to other components, and they can not perform heavy
operation. They are implemented as sub-classes of BroadcastReceiver, and broad-
cast messages are delivered as Intents, the Android inter-component communication
message format. The app should declare the necessary permissions in the manifest to
intercept the desired intents. In addition, the broadcast receiver should register for the
type of intents it wants to receive in the manifest or dynamically at runtime.

2.2.4 Entry Points
Unlike C program that have one main method that constitutes the only entry point to
launch the program, Android application does not have a main method and can have
multiple entry points that are called by the Android framework. Entry points can be
methods from the app components, such as:

Activity.onCreate(): To create a new activity.

Service.onStartCommand(): To start a service.

2.3. Android Security Features 21

Service.onBind(): To bind with a service.

BroadcastReceiver.onReceive(): To receive a broadcasted Intent.

2.3 Android Security Features
Android system comes with several security features to protect the user from harm-
ful software. For instance, it uses Security-Enhanced Linux (SELinux) to enforce the
mandatory access control [30], [31]. This is applied to all processes even those with
root privileges. SELinux has to modes: a permissive mode; where permission denials
are logged by not enforced, and an enforcing mode; where permission denials are both
logged and enforced. Android sets SELinux in enforcing mode by default.

Android implements sandboxing, where apps are executed in a sandbox, an iso-
lated space that prevents the app from accessing to the rest of the system’s resource it is
allowed to. Android uses a permission mechanism, where apps must request them to ac-
cess sensitive data like the contact list, or certain system features such as the microphone
and the camera. Permissions must be declared in the manifest and should be approved
by the user. For instance, android.permission.SEND_SMS allows the application to
send SMS messages. As of Android 6.0, the user isn’t notified of the permissions at
installation time. Instead, he gets a pop-up at runtime to approve the permission that the
app is trying to use.

In addition, Android uses some other kernel hardening features like Kernel Address
Space Layout Randomization (KASLR) and post-init read-only memory5.

2.4 Static Analysis
In this section we present some static analysis notions that are necessary to understand
our contributions.

5Introduce post-init read-only memory, http://linux-kernel.2935.n7.nabble.com/PATCH-
v2-0-4-introduce-post-init-read-only-memory-td1247973.html, accessed on October 26,
2018.

http://linux-kernel.2935.n7.nabble.com/PATCH-v2-0-4-introduce-post-init-read-only-memory-td1247973.html
http://linux-kernel.2935.n7.nabble.com/PATCH-v2-0-4-introduce-post-init-read-only-memory-td1247973.html

22 Chapter 2. Technical Background

S1

S2

S3

S4

S5

S6

Method 1 Method 2

Intra-procedural edge

Inter-procedural edge

FIGURE 2.3: Inter-procedural CFG example

2.4.1 Control Flow Graph
Control flow graphs (CFGs for short) represent all the possible execution scenarios of
the program, where nodes are program statements and edges are transitions between
these statements [32]. There are two different types of edges in a CFG: those that
represent transitions to next statements in the same method, and those that represent
interprocedural calls to other methods. Interprocedural CFG (ICFG) should include
both types of call. Figure 2.3 depicts an ICFG of a software of 2 methods. A call
graph, on the other hand, contains only the interprocedural calls, where nodes represent
program methods.

2.4.2 Data Flow Graph
Data flow graph (DFG) is a directed graph that shows data dependencies between pro-
gram instructions. It is based on reaching definitions, where for a given instruction,
there is an earlier instruction whose target variable can reach the given one without an
intervening assignment. For example, in the following code:

1 S1 : y := 3
2 S2 : x := y

S1 is a reaching definition for S2. However, in the following example:
1 S1 : y := 3
2 S2 : y := 4
3 S3 : x := y

2.4. Static Analysis 23

S1 is not a reaching definition for S3, because S2 kills its reach, where the value defined
in S1 is overridden in S2 and cannot reach S3.

These are the data flow equations used to find the reaching definitions for a given
basic block S:

• REACHin[S] =
∪

p∈pred[S]
REACHout [p]

• REACHout [S] = GEN[S]∪ (REACHin[S]−KILL[S])

The set of reaching definitions going into S is the union of all the reaching definitions
from S’s predecessors, pred[S]. pred[S] consists of all basic blocks that precede S in the
control flow graph. The reaching definitions coming out of S are computed by adding the
reaching definitions of its predecessors except the reaching definitions whose variable
is killed by S plus the new definitions generated within S.

We define the GEN and KILL sets for any given basic block S as follows:

• GEN[d : y← f (x1, · · · ,xn)] = {d} , the set of definitions available in a basic block.

• KILL[d : y← f (x1, · · · ,xn)] = DEFS[y]−{d}, the set of definitions killed in the
basic block.

Using reaching definitions, a data dependency graph can be drawn, where nodes
constitute program statements and edges link each node with its reaching definitions.

2.4.3 Reverse Engineering
According to the Institute of Electrical and Electronics Engineers (IEEE), reverse engi-
neering is:

“The process of analyzing a subject system to identify the system’s compo-
nents and their interrelationships and to create representations of the system
in another form or at a higher level of abstraction.” [33]

In malware analysis, reverse engineering is sometimes useful to understand the func-
tioning of the malware in order to detect variations of it and to revert the damage done
to the host machines. Reverse engineering of Android applications can be done by
transforming its bytecode into a human readable representation such as Java, Smali 6,
or Jimple [34].

6https://github.com/JesusFreke/smali/wiki

24 Chapter 2. Technical Background

2.4.4 Analysis Tools
Analyzing Android malware is easier if we use dedicated tools and frameworks for two
reasons: first, because these tools transform Dalvik bytecode to human readable formats,
and second, because they implement a set of ready-to-use state-of-art static analysis
algorithms to perform several tasks on the application bytecode. In this section, we
present the major Android applications’ static analysis tools used along this dissertation.

Intermediate Representations

Java virtual machines are stack based. The Dalvik VM, instead, uses a register-based
architecture that requires fewer and more complex instructions. It is designed for sys-
tems with small memory and slower computing speed. Therefore, Dalvik bytecode is
not suitable for static analysis. Several intermediate representation have been proposed
to analyze Android applications. Smali7 is an intermediate representation that is used
by numerous tools such as Apktool.

Jimple is another intermediate representation. It is the main IR proposed in Soot [35].
It has a 3-address representation of the form: x = y op z, to keep the instruction as
simple as possible. The stack is eliminated and replaced by local variables representing
stack positions, that are preceded by the sign dollar. There are essentially 11 Jimple
instructions, such as assignStmt, invokeStmt, gotoStmt and returnStmt. Jimple
uses typed and named local variables to improve analysis and generate code. Compared
to Smali, the Jimple ecosystem is supported by many research papers and by the rich
Soot framework. A study shows that the Soot framework and the Jimple intermedi-
ate representation are the most used framework and IR respectively by Android static
analysis works published between 2011 and 2015 [36]. For all these reasons, we chose
Jimple as our main intermediate representation throughout this dissertation to perform
transformation and analysis of Dalvik bytecode.

Call Graph Construction

As explained earlier, interprocedural control flow graphs are basically call graphs with
nodes expended to represent method CFGs. Therefore, the main challenge in construct-
ing ICFG is the program call graph. Since we use Soot are our basic static analyzer in
this dissertation, we make use of the available callgaph construction algorithm in Soot.

7https://github.com/JesusFreke/smali

https://github.com/JesusFreke/smali

2.5. Conclusion 25

It implements several pointer analysis algorithms, such as CHA [37], RTA [38] and
VTA [39]. In addition, Spark is a points-to analysis that was integrated in Soot and used
to construct the callgraph and interprocedural control flow graph for application [40].
In C, points-to analysis should handle different problems, analysis of stack-directed
pointers (via operator &) and analysis of heap-directed pointers (via operator new). Java
point-to analysis should only handle heap-directed pointers. C programs have just one
entry point method which is the main function. On the other hand, Java programs could
have multiple entry points like initializes and finalizes, thread start methods, and meth-
ods called by reflection. In addition, Java programs can contain native methods that
influence the call graph but their code is not visible to the analyzers. Spark implements
subset-based [41] and equality-based [42] analyses. It is a flow-insensitive analyzer,
accepts as input the Jimple 3-address representation, and supports field-sensitive and
field-based analyses. Spark execution constitutes 3 phases:

Pointer assignment graph construction The graph consists of three types of nodes:
allocation sites, simple variables, and field derefenrences. The analyzer starts
from the main method and adds methods that are reachable from it until it gets all
reachable methods.

Pointer assignment graph simplification Merging nodes that are known to have the
same points-to set can help to simplify the pointer assignment graph. Especially,
nodes in a strongly-connected component will have equal points-to sets, and will
be merged to a single node.

Points-to set propagation Several points-to set propagation algorithms are implemented
in Spark, like a naive iterative algorithm and worklist algorithm.

2.5 Conclusion
In this chapter, we explained the Android platform, Android applications, and the prin-
cipals of static analysis necessary to understand the rest of this dissertation. In the next
chapter we present the main state-of-the-art woks that cope with implicit calls and mal-
ware triggering in Android.

27

Chapter 3

State of the Art

Understanding the fundamentals of Android and its applications is useful to compre-
hend our contributions. Nevertheless, we do not start from the basics of Android in
our contributions. Instead, we start from existing works that are trying to solve certain
security issues in Android. In this chapter, we explore the threat that malware consti-
tutes to the Android system and to the user. We discover the most relevant categories
of malware that targets this platform and the techniques that were proposed in the last
years to fight against the spread of malware by understanding how it works, detecting
its presence, and protecting the platform and the user from its harmfulness. Then, we
show the importance of control flow graphs to many Android malware analysis tools.
We show that the quality of these CFGs is crucial for the security tools that are based
on them. Next, we tackle the question of runtime analysis of Android malware. More
precisely, why triggering the suspicious code can be crucial to detect any harmful inten-
tion that malware authors may hide in their applications? We present some of the most
recent and relevant work on the subject.

3.1 Android Malware
According to Sophos, the number of Android malicious apps has risen to 3.5 billion in
20171. In addition, a lot of information can be extracted from Android devices with-
out breaking much security mechanisms [43]. For instance, shared resources between
Android apps cause leaking sensitive information about the user. In addition, apps with
zero permission can get sensitive information using side channels.

1https://nakedsecurity.sophos.com/2017/11/07/2018-malware-forecast-the-
onward-march-of-android-malware/

https://nakedsecurity.sophos.com/2017/11/07/2018-malware-forecast-the-onward-march-of-android-malware/
https://nakedsecurity.sophos.com/2017/11/07/2018-malware-forecast-the-onward-march-of-android-malware/

28 Chapter 3. State of the Art

In this section we will cover the most important categories of Android malware, or
Potentially Harmful Application (PHA). A PHA, according to Google, is an app that
puts users, user data, or devices at risk [3]. This kind of applications is different from
the applications used intentionally by the user to disable some built-in security features
and provide some functionality, like rooting the devices or disabling SELinux.

We would like to stress that many advanced malware families can be classified in
different categories simply because they deploy several techniques to disguise the mali-
cious code, gather useful information about the use, make money and/or leak sensitive
information to remote entities. For instance, PoisonCake is a malware that sends pre-
mium SMS messages, collects phone data and uploads it to a remote server2. Conse-
quently, it falls into two different malware categories; SMS fraud and spyware.

These are the most relevant Android PHA categories up to the moment of writing
this lines:

Backdoor A malware that allows a remote script or program to be executed on the
device. However, the executed code can be of any other PHA category. For ex-
ample, GhostCtrl is a malware that tricks the user to install it and then it connects
to a remote server to get commands to execute3. It can record audio, video, and
run shell commands among other actions.

Spyware An application that transmits user data without his consent to a third party.
The transferred data can include SMSs, call logs, photos, contact list, web nav-
igation history, etc. For example, Skygofree is a spyware that starts recording
audio depending on the location of the device, for example when a person enters
his office4.

Denial of service An application that participates in a denial-of-service attack. For
example, WireX is a botnet created to generate a DDos traffic. It was available
on Google Play store. It was detected in August 2017 and took down thanks to a
collaboration of several companies like Akamai, Cloudflare, Flashpoint, Google,
Oracle Dyn, RiskIQ, and Team Cymru5.

2http://blog.avlyun.com/2014/12/1978/poisoncake-in-the-romenglish-version/
3https://blog.trendmicro.com/trendlabs-security-intelligence/android-

backdoor-ghostctrl-can-silently-record-your-audio-video-and-more/
4https://www.kaspersky.com/blog/skygofree-smart-trojan/20717/
5https://blogs.akamai.com/2017/08/the-wirex-botnet-an-example-of-cross-

organizational-cooperation.html

http://blog.avlyun.com/2014/12/1978/poisoncake-in-the-romenglish-version/
https://blog.trendmicro.com/trendlabs-security-intelligence/android-backdoor-ghostctrl-can-silently-record-your-audio-video-and-more/
https://blog.trendmicro.com/trendlabs-security-intelligence/android-backdoor-ghostctrl-can-silently-record-your-audio-video-and-more/
https://www.kaspersky.com/blog/skygofree-smart-trojan/20717/
https://blogs.akamai.com/2017/08/the-wirex-botnet-an-example-of-cross-organizational-cooperation.html
https://blogs.akamai.com/2017/08/the-wirex-botnet-an-example-of-cross-organizational-cooperation.html

3.1. Android Malware 29

Hostile downloader An application that downloads other harmful applications. It may
be harmless per se but the fact that it allows other malware to be installed makes
it malicious.

SMS fraud An application that sends premium SMS messages without the user con-
sent. ExpensiveWall is an example of this category of malware6. It was down-
loaded more than 1 million times from Google Play.

Call fraud An application that charges the user by making premium calls without his
consent. An example of this PHA category is MouaBad.p7.

Phishing An application that pretends to be from a legitimate source in order to steal
the user credentials such as credit card credentials and online login information.
Roaming Mantis, for example, is a malware that uses DNS hijacking to infect
Android smartphones. It redirects users to malicious IP addresses to install tro-
janized applications8.

Privilege escalation An app that breaks a security functionality like sandboxing or dis-
ables SELinux to gain more privileges, for example to prevent its removal. If it
roots the phone, it can be classified in the rooting category.

Ransomware An app that takes control of the device or user data by locking the phone
or encrypting the data and asking for a ransom to release it. For example, Sim-
plocker encrypts users multimedia files stored in the SD card and asks a ransom
to decrypt them9.

Rooting A privilege escalation app that roots the device without user consent. This is
different from rooting apps that power users download intentionally to root their
phones. For example, SpyDealer is a spyware that uses tooting techniques to
enable subsequent data theft10.

6https://blog.checkpoint.com/2017/09/14/expensivewall-dangerous-packed-
malware-google-play-will-hit-wallet/

7https://blog.lookout.com/mouabadp-pocket-dialing-for-profit/
8https://securelist.com/roaming-mantis-uses-dns-hijacking-to-infect-android-

smartphones/85178/
9https://www.zscaler.com/blogs/research/analyzing-android-simplocker-

ransomware
10https://researchcenter.paloaltonetworks.com/2017/07/unit42-spydealer-

android-trojan-spying-40-apps/

https://blog.checkpoint.com/2017/09/14/expensivewall-dangerous-packed-malware-google-play-will-hit-wallet/
https://blog.checkpoint.com/2017/09/14/expensivewall-dangerous-packed-malware-google-play-will-hit-wallet/
https://blog.lookout.com/mouabadp-pocket-dialing-for-profit/
https://securelist.com/roaming-mantis-uses-dns-hijacking-to-infect-android-smartphones/85178/
https://securelist.com/roaming-mantis-uses-dns-hijacking-to-infect-android-smartphones/85178/
https://www.zscaler.com/blogs/research/analyzing-android-simplocker-ransomware
https://www.zscaler.com/blogs/research/analyzing-android-simplocker-ransomware
https://researchcenter.paloaltonetworks.com/2017/07/unit42-spydealer-android-trojan-spying-40-apps/
https://researchcenter.paloaltonetworks.com/2017/07/unit42-spydealer-android-trojan-spying-40-apps/

30 Chapter 3. State of the Art

Spam An app that sends unwanted commercial ads to user contacts, or uses the device
as an email spam relay.

Trojan An app that pretends to be harmless but performs some harmful operations
in the background without the user consent. This category of apps can also be
classified in another category depending on the harmful actions they do.

3.1.1 Analysis Escaping Techniques
Android malware uses multiple techniques to bypass security tools. It uses code obfus-
cation to escape static analysis based tools. In addition, it employs several mechanisms
to escape runtime vetting solutions. Most of these techniques were initially used to pro-
tect author intellectual property, but they have been broadly used by malware authors to
evade detection and defeat signature based anti-viruses. Evasion techniques have even
been used to automatically generate Android malware that are unrecognizable by most
anti-viruses. For instance, G. Meng et al. has proposed a framework that leverages
genetic algorithms to generate new malware samples using an initial set of attack and
evasion features [44]. They tested the generated samples on 57 off-the-shelf anti-viruses
tools and 9 academic solutions, and showed that only 30% of the samples were detected.

Code Obfuscation

Malware uses several code obfuscation methods available from off-the-shelf tools like
ProGuard, DexGuard, APK Protect, HoseDex2Jar and Bangcle. For example, ProGuard
is included by default in Android SDK11. It replaces class, method and variable names
with new names like a.a(). But it can also use a custom dictionary. DexGuard is a
commercial and more advanced and sophisticated version of ProGuard12. It replaces
class and method names with non ASCII characters and encrypts strings. In contrast to
the other tools, Bangcle is an online service that modifies application heavily13. It can
even encrypt the bytecode and load it dynamically at runtime.

Code obfuscation is one of most used evasion techniques because of its simplicity.
Reflection, for instance, is an advanced feature of the Java language that allows to dy-
namically change the execution flow. It is slower than a simple method invoke, but it is

11https://www.guardsquare.com/en/products/proguard
12https://www.guardsquare.com/en/products/dexguard
13https://www.bangcle.com/

https://www.guardsquare.com/en/products/proguard
https://www.guardsquare.com/en/products/dexguard
https://www.bangcle.com/

3.1. Android Malware 31

1 String var1 = "Y29tcGxldGUuY2xhc3NwYXRoLmFuZC5Gb28="; // Foo
2 Object foo = Class.forName(new String(Base64.decode(var1,

Base64.DEFAULT))).newInstance();
3

4 String var2 = "aGVsbG8="; // hello
5 Method m = foo.getClass().getDeclaredMethod(new

String(Base64.decode(var2, Base64.DEFAULT))), new Class<?>[0]);
6 m.invoke(foo); // foo.hello()

LISTING 3.1: Code obfuscation using Java reflection

used by malware to protect the sensitive parts of their code in order to make it difficult to
detect by static analysis tools. The character string containing class and method names
can be obfuscated or encrypted. Listing 3.1 shows an example of object instantiation
and method call using reflection. To make matters worse, the class and method names
are obfuscated in this case, which increases the difficulty of understanding the code.
This can make manual inspection slow and automatic analysis challenging.

Several works were proposed to tame reflection in Android apps. Some approaches
operate on the bytecode without the need to run the application in order to find what
methods are called by reflection. For instance, Zhang et al. propose Ripple, a static
reflection analysis tool for Android that resolves reflective calls to improve data leak
detection [45]. Similarly, Li et al. proposed DroidRA, a tool that reduces resolution of
reflective calls to a composite constant propagation problem [46]. It operates statically
on the Jimple code and does not execute it.

In contrast to the other works, S Rasthofer et al. proposed a tool called Harvester
that runs slices of the code in order to extract obfuscated values [20]. The goal of Har-
vester, therefore, is not to keep the original context of the apps. It merely extracts run-
time values that an analyst or a tool can use to eliminate obfuscation and bring runtime
information into the static analysis world.

Runtime Analysis Evasion

To escape runtime analysis tools, Android malware uses time and system events to delay
the execution of the malicious actions. These techniques are rarely used by benign
apps to hide their intents. Therefore, the presence of triggers is an good indication that
the app needs further scrutiny [11]. BadNews, for instance, is a malware that waits

32 Chapter 3. State of the Art

for commands from a remote server and performs actions depending on them, such
as downloading and installing an APK file or creating a notification with a URL to
open [23].

Android malware can also delay the malicious code execution using time bombs.
For instance, MobiDash is another malware, an adware that has 3 states, None, Waiting
and WaitingCompleted [23]. After installation, the malware enters the None state, and
changes its state to Waiting when certain system events occur like a device reboot. Mo-
biDash then starts waiting for a pre-configured duration that can go up to several days.
After, it changes its internal state to WaitingCompleted and launches the malicious code
that shows unwanted ads whenever the user turns on the screen.

Runtime analysis evasion has already drawn the attention of the research commu-
nity. For example, in a recent study, M Wong et al. showed that 80% of their 2000
analyzed malware samples have runtime evasion techniques. Consequently, authors
propose Tiro, a tool that can automatically detect and reverse runtime based obfuscation
techniques. Several other works were proposed to mitigate runtime obfuscation mecha-
nisms. For instance, G. Suarez-Tangil et al. proposed a method to detect malicious code
even if it is obfuscated at runtime [47]. They suggest that malware may load code from
assets, images, etc. or use an obfuscated string to connect to a URL for example. Au-
thors inject faults in the suspicious parts of the app (images, videos, strings, databases
etc.), and if the behavior changes from the original one they conclude that this part is
malicious.

3.2 Analysis Approaches
Due to the sensibility of the data that mobile devices carry and the economical dan-
ger of security breaches on these devices, several research projects were started and
hundreds of articles were published in the last decade about Android security. In this
section, we explain the most relevant Android application security approaches proposed
in the literature that are connected to our contributions. These approaches fall into three
categories: protection, detection and characterization approaches.

3.2.1 Protection Approaches
Enforce the security measures in the first place on Android platform is a good idea
to fight against malicious software. Thus, numerous works were proposed about this

3.2. Analysis Approaches 33

subject [48]–[53]. For instance, G. Tuncay et al. try to solve the problem caused by cus-
tom permissions because Android treats them as it does with system permissions, even
though they are from different trust levels [54]. Authors propose a system called Cusper
that handles custom permissions securely. Similarly, to prevent apps from colluding to
achieve inter-app malicious behaviors, S. Rasthofer et al. proposed DroidForce, a tool
that checks inter-app data flows and operates in the app space without rooting the de-
vice [55]. It injects security enforcement into applications using Soot, where in every
sensitive operation, a request is sent to the Policy Decision Point (PDP). Consequently,
if the permission is denied, the application skips to the next instruction. Android is an
agile system where applications can access each other’s components, but it gives rise
to security concerns. In [56], C. Yagemann et al. proposed a tool that can intercepts
intents in Android system and handles them with a user app. Thus, it can block and
allow intents through configurable policies.

Indeed, these techniques help to strengthen Android security mechanisms. However,
they do not address permission misuse and vulnerability exploitation. Thus, detection
approaches are needed to limit malware proliferation.

3.2.2 Detection Approaches
Most of the state-of-the-art works on Android security fall in this category. Malware
detection is important because of the need to protect users from the huge number of
Android malware uploaded to Internet every day. Detection approaches can be split into
two types depending on the used analysis technique: static or dynamic.

Static Analysis Based Detection Approaches

Static analysis based tools can be very practical because of the relatively quicker pro-
cessing time. Thus, several approaches try to detect Android malware using static fea-
tures like code structure, permissions, meta-information and package properties [57]–
[63].

Sensitive data leaks have causes significant privacy and security concern. V Avdi-
ienko et al. proposed a tool called MUDFLOW that detects malware basing on wrong
handling of sensitive information [64]. Similarly, S. Arzt et al. proposed FlowDroid, a
tool that looks for data leaks by following information flows from sinks, such as socket,
backward to sources, like where a method writes to a socket [6]. Flowdroid is not path
sensitive, and app components (Activity, Service, Content provider, Broadcast receiver)

34 Chapter 3. State of the Art

are called in undefined (asynchronous) order from a dummy main method. In addition,
implicit data flows are ignored; those that are related to control flow dependencies. Most
Android data flow analysis systems use a list of sources and sinks to manage their data
security policy. Consequently, a lack of information about sensitive sources or sinks
may lead to a security breach. For instance, if Android adds a new way to send infor-
mation, it should be integrated in the sinks list. Otherwise, malware can use it to leak
data. FlowDroid is configured to use Susi to get the list of sources and sinks for its taint-
ing process. Susi is a tool that uses supervised machine learning algorithm to classify
methods to sources, sinks and neither [65].

Other static app features have also been used to detect malware. For instance,
DROIT analyzes meta-information on the market store and the Android manifest, and
scans them on different anti-virus engines (learning process) that classify apps as benign
and malicious [66]. It uses natural language processing techniques to classify apps by
different machine leaning algorithm like: Random forest, k-Nearest neighbors, Deci-
sion trees, AdaBoost, Bagging, and Naïve bayes. The code structure has also been used
to classify apps. RiskRanker, for instance, divides potential risks that an app may con-
stitute into three categories: high-, medium-, and low-risk, depending on code patterns
like socket writing and message format [67]. Another tool that uses code structure to
classify malware into families is Dendroid [68]. It represents the code as a grammar
and uses Vector Space Model (VSM) to represent the samples. It calculates similari-
ties between apps using those vectors, and clusters them using a dendogram. Similarly,
Drebin uses machine learning on static features such as permissions, API calls and net-
work addresses to detect malware [57]. And DroidSieve collects information on API
calls, code structure and permissions to detect families of malware using the machine
learning algorithm Extra Trees [69].

Dynamic Analysis Based Detection Approaches

Dynamic analysis tools have the advantage of data that are only available at runtime.
In addition, they help to dynamically analyze malware behavior if the code is obfus-
cated. Thus, they are effective in detecting some advanced malicious behaviors [13],
[58], [70]–[72]. For instance, S. Dash et al. proposed a tool called DroidScribe that
classifies malware into families by observing exclusively the runtime behavior of the
sample [73]. ProcHarvester is another runtime analysis tool that detects procfs side-
channel information leaks by launching triggering events and using machine learning to
detect leaks [74].

3.2. Analysis Approaches 35

Dynamic analysis is very helpful to analyze malware with obfuscated code, but it is
generally slower compared with the fast static analysis. This explains why there are less
dynamic analysis based security tools compared with their static analysis counterparts.
However, they can be used to characterize malware, which we will explain in the next
section.

3.2.3 Characterization Approaches
Characterizing malware and its behavior is an intrinsic part of understanding malware
effectively. This is particularly useful where the analyzed application is not straightfor-
ward to detect as malware. In this case, understanding the app’s characteristics could
help for better classification. In [7], S. Poeplau et al. study this issue in benign and ma-
licious apps. They discovered that many Google Play apps are vulnerable to malicious
code injection through dynamic loading. The authors propose to add mandatory checks
in the operating system to vet the externally loaded code before execution. Besides, mal-
ware authors tend to inject their code in benign apps to facilitate the malware creation
process and to disguise it. In [75], Li Li et al. locate the packages responsible for mali-
cious behaviors in piggypacked (repackaged) apps. They automatically rank potentially
malicious packages by identifying the original app (carrier), the injected malicious code
(rider), and switching code (hook). This characterization is useful to understand how
malware authors repackage their code in benign app. To achieve this, the authors made
a directed graph of dependency (calls between packages) where the wight represent the
number of calls.

Other existing approaches base their characterization on runtime information. For
example, Yan et al. propose DroidScope, a virtual machine introspection based analysis
tool that uses a virtualized OS and instruments the Dalvik VM in order to track taints
applied to the app [76]. It is built on top of QEMU [77] and aims at reconstructing the
semantic of high level information about the app. Another characterization tool that uses
virtual machine introspection is CopperDroid [10]. It aims at better understanding of
the malware behavior at runtime by adding a layer above Qemu to intercept syscalls and
construct Android specific objects. CopperDroid reconstructs the app behavior outside
of the operating system. It looks for suspicious actions like accessing personal info,
executing external applications, altering the file system, and making calls. Further-
more, new approaches were proposed to provides a comprehensive view of malwares
behaviors on the new Android runtime (ART). For instance, Malton is an on-device

36 Chapter 3. State of the Art

non-invasive analysis platform for ART [78]. It performs multi-layer monitoring and
information flow tracking at runtime.

Due to the importance of better understanding malware and its behavior, our con-
tributions are focused on the characterization part. Since control flow graphs help to
understand malware, the next section will be on how to build better CFGs for Android
apps.

3.3 Implicit Inter-procedural Calls
Several recent works try to automatically characterize malicious behavior [12], [19],
[28], [29]. They leverage a combination of static and dynamic analyses. A first static
analysis of the code identifies the most suspicious locations in the code and then a
particular run of the application targets the execution of the code previously identified
as suspicious.

For instance, FlowDroid [6] which detects data leaks by following information
flows, uses a dummy main method to simulate the Android life cycle and invoke all
the application entry points. In Flowdroid, only method calls can be the origin of a
taint. Thus, Flowdroid relies on interprocedural control flow graphs to properly prop-
agate taints. Similarly, ConDroid launches the suspicious code in apps to reveal any
malicious activities [28]. It searches execution paths from entry points, such as life-
cycle methods and input events, to the suspicious code locations. Then, it performs
an adaptive concolic execution. It instruments the app and modifies variable values,
in order to observe the application’s behavior. ConDroid also uses the application’s
interprocedural control flow graph to perform the concolic execution. GroddDroid is
another tool that automatically triggers and monitors the suspicious code in Android
apps [19]. It locates the code considered as suspicious, which may be protected or hid-
den (ciphered, encoded, obfuscated or dynamically loaded), or when it has a call to a
sensitive API method such as sending an SMS [79]. GroddDroid also exhibits execution
paths from the entry points to the suspicious code. Then, it instruments the app by forc-
ing the necessary branches in the execution path to reach the malicious code when the
malware is executed. Furthermore, researchers have discovered that malware targeting
desktop systems keep their high-level properties of code, such as the call graphs [80],
[81]. In [82] for instance, H. Gascon et al. use application’s call graph to detect new
variations of known malware by machine learning.

3.3. Implicit Inter-procedural Calls 37

These approaches strongly rely on a good computation of global control flow graphs
that represent all execution paths in the program [15]. Such CFGs are useful only when
they contain the necessary execution paths that lead towards suspicious code locations.
Unfortunately, the CFG construction methods that these tools use do not take into con-
sideration all types of execution paths. They merely analyze the application code, which
induces missing paths that pass though the Android framework.

3.3.1 What Are Implicit Calls?
Android application code is compiled into Dalvik bytecode, as we mentioned earlier.
Dalvik bytecode can be translated into Jimple intermediate representation [34] by Soot
[35]. This makes it easy to build a CFG for each method independently at the granularity
of a Jimple statement, where an oriented edge between a node A and a node B indicates
that statement B is to be executed immediately after statement A .

Building method CFGs constitutes an important step towards accurate static analy-
sis. However, we are interested in the global or interprocedural CFG that contains all
execution scenarios for a given application, because it shows how the malicious code is
protected, and how it can be launched. The global graph is constructed by connecting
all the method CFGs, i.e., by adding edges representing interprocedural calls. There
exist two types of interprocedural calls: explicit and implicit.

Explicit Call: A method a() explicitly calls a method b() if the code of a() contains
a call (an invoke statement) of b(). For example, in Listing 3.2 line 11, statement
run(content) is an explicit call of method MailTask.run(String). In this case, We
can build an edge from the node representing the invoke statement run(content) in
method doInBackground() towards the node containing the first statement in the CFG
of method run(String). This is represented by a solid arrow on the right part of Fig-
ure 3.1

Implicit Call: A method a() implicitly calls a method b() when the following condi-
tions hold:

1. a() contains a call (an invoke statement) of a method c() which is defined in the
Android framework.

2. c() invokes b() either directly or through a sequence of method calls in the frame-
work that ends by an invocation of b().

38 Chapter 3. State of the Art

For example, method doInBackground() in Listing 3.2 is implemented in the ap-
plication code but invoked by the Android framework. This method does not have an
incoming control flow edge starting from the application itself, and that is why such
methods are called callbacks. If a malicious code is located in a method which is im-
plicitly called, it will be considered as unreachable by most existing static analyzers
since they do not take into account the Android framework.

Listing 3.2 shows an example of code extracted from a real-world spyware14 that
sends sensitive information such as the device ID and the contact list to a remote server.
The entry point of this malware sample is ClientActivity.onCreate(). The most
interesting part of code is mainly the malicious statements HttpSend.postData(url,
localArrayList) appearing in method run(String). This statement leaks sensitive
information previously retrieved by calling context.getSystemService("phone")
.getDeviceId(). The main goal of dynamic analysis is thus to observe this applica-
tion executing the suspicious method run(String). Method doInBackground() is
implicitly called when MailTask.execute() is executed.

Obviously, the CFG of this code which is depicted in Figure 3.1 could be incom-
plete if we do not take into consideration the implicit call going from MailTask.
execute(new Integer[0]) (line 5) to MailTask.doInBackground() (line 9). Fur-
thermore, running directly MailTask.execute() by instrumenting the application with-
out finding a complete path from an entry point is meaningless since the suspicious
method will be isolated from its context and could not have access to objects built in
ClientActivity.onCreate(). A standalone analysis of the app code could not reveal
the existence of such a call. Consequently, we have to analyze additional code outside
the application, namely the Android framework to determine implicit calls and build a
reliable interprocedural CFG.

3.3.2 Implicit Calls in the Literature
Being able to take into account implicit calls appears to be a key point for improving re-
cent works on static analysis of Android malware. For instance, Flowdroid [6] achieves
static taint-analysis of Android applications and relies on CFGs which are computed
from various sources, including layout XML files, executable code and the manifest
file. This work should benefit from our computation of a global CFG that takes the
framework into account. In the same way, Lillack et al. use taint analysis to know

14SHA-256: 45d21e32698d1536a73e42c1e5131c29ca94b9d9d1bd5c744bd74ffc2af6853e

3.3. Implicit Inter-procedural Calls 39

1 public class ClientActivity extends Activity {
2 protected void onCreate(Bundle bundle) {
3 /* ... */
4 MailTask mt = new MailTask("", ((Context) this))
5 mt.execute(new Integer[0]);
6 }
7 }
8 public class MailTask extends AsyncTask {
9 protected String doInBackground (Integer... args) {

10 /* ... */
11 run(content);
12 return "doInBackground:" + this.content;
13 }
14 public void run(String arg) {
15 /* ... */
16 String str2 = ((TelephonyManager)

context.getSystemService("phone")). getDeviceId();
17 ArrayList localArrayList = new ArrayList();
18 localArrayList.add(new BasicNameValuePair("imei", str2));
19 localArrayList.add(new BasicNameValuePair ("count", Integer.

toString(i)));
20 localArrayList.add(new BasicNameValuePair("notebook", "Number:" +

i + "\r\n" + str1));
21 String url = "######.com/MailTask.php";
22 HttpSend.postData(url, localArrayList);
23 }
24 }

LISTING 3.2: Implicit call in a real-world malware

40 Chapter 3. State of the Art

Void onCreate(Bundle arg7)
String doInBackground

(Integer... paramVarArgs) void run(String paramString)

mt.execute(new Integer[0])

super.onCreate(arg7) Integer[] arrayOfInteger =
new Integer[1];

run(this.content)

String str1 = ""

HttpSend.postData
(url, localArrayList)

Android
Framework

...

... ...

... ...

FIGURE 3.1: Global control flow graph with implicit calls

3.4. Triggering Approaches 41

which parts of an Android application are influenced by the platform’s configuration,
e.g. when Bluetooth is activated [83] . Klieber et al. [84] rely on FlowDroid for intra-
component taint analysis, and on Epicc [85] for inter-component analysis. This work
handles calls that occur when an activity calls another one to propagate the taint. Never-
theless, authors do not propose a solution for other types of implicit calls, which leads to
imprecise results. Graa et al. aimed at to make FlowDroid handle the control flows that
leak information implicitly [86]. They mainly focused on implicit flows that occur due
to conditional branches. Nevertheless, they also did not take into consideration implicit
calls generated by the Android framework.

Some approaches have made attempts to handle some callbacks. Wu et al. [87] build
callback graphs for synchronous callbacks, like for classes AsyncTask and Handler, in
addition to application components, namely Activity, Service, Broadcast Receiver, and
Content Provider. Authors focus only on main classes and methods, and neglect other
callbacks that may be called by the framework. In [88], authors use lifecyle callbacks
of Android applications to build a model of the application and then detect malicious
behaviors. This approach focuses only on lifecyle callbacks and does not handle other
types of implicit calls. Furthermore, in [89], authors perform context-sensitive anal-
ysis of callbacks and statically generate GUI models for Android. However, Android
framework defines thousands of callbacks, but the authors of this paper focus only on
the lifecycle and interactions of user event-driven components.

None of these works is able to handle most of the implicit calls due to the Android
framework itself. Hence, Android malware can easily leverage implicit calls to escape
these approaches that lack for precision. In Chapter 4, we present our approach to cope
with implicit calls in the Android.

3.4 Triggering Approaches
Purely static analysis tools have become less effective because recent malware is using
code obfuscation techniques like reflection and string encryption. Dynamic analysis is
needed in this situation to complete the vetting process. Thus, approaches of the last ten
years try to reach the point in the code where the code seems to be obfuscated or dynam-
ically loaded, in order to observe it at runtime [10], [12]–[14]. Techniques that rely on
monitoring the runtime behavior face another type of challenges. Android malware may
not expose its real behavior except under narrow conditions [11], [16]. The malicious
code can stay dormant for a specific duration before executing the payload. In addition,

42 Chapter 3. State of the Art

several system events can be used to differ launching the malicious code. For instance,
the malicious code can wait for an SMS reception, a reboot of the phone, or any other
event to launch the malicious actions. A manual inspection can be useful to reverse a
sample and identify the experimental conditions to get a successful observation at ex-
ecution time. This reversing effort cannot be applied for the thousands of applications
uploaded every day to the different online application stores. Consequently, to observe
the malicious code executing, it should be triggered in the first place.

Some previous works have already worked on the specific problem of triggering An-
droid malware behaviors. Fratantonio et al. have proposed a new static approach that
helps to detect the triggering conditions that have great chances to protect the malware
payload [11]. Nevertheless, authors do not evaluate the performance of successful trig-
gering at execution. Android malware are known to use different techniques to hide their
malicious code. A tool called HsoMiner has been proposed by Pan X. et al. to detect
unknown hidden sensitive operations basing on code hiding techniques [16]. Malware
tends to used triggering conditions that are unrelated to the malicious code, like check-
ing the date then sending an SMS. Malware tries to detect if the device is an emulator
before launching the malicious actions to avoid analysis by security tools. HsoMiner
uses these properties to characterize Android malware, even though few benign devel-
opers do use code hiding techniques to secure their apps and protect their intellectual
properties.

Depending on the operational method, recent triggering works can be classified into
two categories. The first category focus on triggering the targeted code from outside
the application. They solely stress the user interface or apply changes to the underlying
environment by injecting framework events and/or intercepting API calls and modifying
them. For instance, in [90], A. Salem proposes to detect and stimulate Android repack-
ages malware using active learning. He uses a simple method to stimulate apps which
emulates the user-app interaction by starting the main activity, retrieving its UI elements
and interacting with them randomly. Some tools aim at launching the malicious code by
instrumenting the graphical user interface. In [17], S. Hao et al. presents PUMAscipt,
a scripting language that automates Monkey15 execution and collects runtime informa-
tion or triggers changes in the environment. It exposes a programmable interface with
a script language to interact with the app and customize the dynamic analysis. Cop-
perDroid also stimulates the app, but by sending events like location updates and SMS

15A program that runs on the emulator or the device and generates pseudo-random user events such as
clicks and gestures

3.4. Triggering Approaches 43

reception [10]. It analyzes the system calls generated by the application in order to cap-
ture the objects that are involved in these events. CopperDroid uses a classical static
extraction of the possible events from the Manifest. A more recent approach, called
Fuzzdroid [18], has obtained more precise experiments. It builds iteratively the execu-
tion environment that helps the path to be steered towards the malicious code. Similarly,
in [12], authors propose IntelliDroid, a tool that aims at finding the required inputs and
their occurrence order to trigger the suspicious code at execution time. These inputs
are injected using low-level device-framework events in order to preserve the context of
the application’s execution. IntelliDroid computes the dependencies between the used
variables that compose the conditions on the execution path. It also collects the possible
definition of the required objects in the code and their associated value at runtime.

These approaches fail to trigger some complex logic bombs where reversing a condi-
tion is not straightforward, for example, when a triggering condition compares a hashed
value of an input value against a stored value. Obviously, reversing a hash function to
guess the right input to provide is a hard problem.

The second category of triggering approaches focuses on triggering the targeted
code with little attention paid to the application context. For example, A. Abraham et
al. proposed GroddDroid, an analysis framework that triggers suspicious code mixing
UI stimulation and bytecode alteration [19]. However, GroddDroid merely replaces if
statements with gotos to force the control flow to take a certain branch. Applications
analyzed by this method generally know a lot of crashes due to brute manner of control
flow steering. Harvester is an extreme example of tools that do not pay attention to the
application’s context. It extracts and executes slices of the code [20]. However, the main
purpose of Harvester is to extract obfuscated runtime values.

These techniques can be useful for testing purpose, but they can expose unrealistic
behaviors by removing part of the code that are necessary to understand the application’s
overall behavior. This partial view of the app’s behavior can mislead the analysis tool
and extract partial or even wrong information.

Works presented in this section either focus on launching the targeted code without
preserving the original context or preserving the application context but fail to trigger
non simple conditions. In Chapter 5, we present our approach to trigger the suspicious
code in Android applications while preserving most of the application’s original context.

44 Chapter 3. State of the Art

3.5 Conclusion
In this chapter we explored the most relevant works on Android application’s security.
We focused especially on approaches that try to enhance the characterization of An-
droid malware. Then, we also explored the state-of-the-art works that aim at solving
the problem of implicit calls and incomplete control flow graphs. We will present our
contribution to the subject of CFG and execution paths in Chapter 4. I addition, we
presented recent works that aim at triggering the suspicious code in Android applica-
tions. We will also present our contribution to suspicious code triggering and malware
characterization in Chapter 5.

45

Chapter 4

GPFinder

Several Android malware detection approaches rely on the computation of application
global control flow graphs (CFGs) that represent all execution paths in the program in
order to automatically characterize the malicious behavior [12], [19], [28], [29]. They
perform a static analysis of the application in order to locate the suspicious code loca-
tions. Then, they launch a specific execution of the app in order to trigger the targeted
code previously identified as suspicious. Such CFGs are useful only when they con-
tain the necessary execution paths towards the suspicious code. Unfortunately, these
approaches do not take into consideration all types of execution paths because they only
analyze the application code, which leads to miss paths that pass though the Android
framework.

In this chapter, we present our approach on how to automatically exhibit execu-
tion paths towards suspicious locations in the code by computing global CFGs that
include edges representing explicit and implicit interprocedural calls. We implemented
our approach in a tool called GPFinder (GroddDroid Path Finder) as the main prac-
tical outcome of this work. GPFinder helps security analysts retrieve execution paths
that may trigger the malicious code, even when they pass through Android framework’s
callbacks. It also gives key information about the analyzed application in order to un-
derstand how the suspicious code was injected into the application.

To validate our approach, we use GPFinder to study a collection of 14,224 malware
samples, and we show that including implicit calls to build CFGs improves the analy-
sis. We evaluate that 72.69% of the samples have at least one suspicious code location
which is only reachable through implicit calls. Furthermore, we investigate the common
structures of Android malware, we highlight their favorite entry points and how they use
implicit calls.

This chapter is structured as follows. Section 4.1 explains the design of GPFinder,

46 Chapter 4. GPFinder

and how it operates, and it discusses how the Android framework can be mined to com-
plete applications’ CFGs with implicit interprocedural calls. Next, Section 4.2 details
how GPFinder benefit from these CFGs to study the inner structure of an Android mal-
ware set. Then, Section 4.3 shows the important findings of this experiment. In Sec-
tion 4.4, we analyze a dataset of benign applications and compare the findings with
those of the malicious applications. We discuss the results in Section 4.5 and conclude
the chapter in Section 4.6.

4.1 Approach
We showed in Section 3.3 that many security tools rely on global CFGs to launch suspi-
cious codes found in Android applications. These CFGs should contain all the necessary
execution paths towards the suspicious code in order to reach them. This means, in addi-
tion to method CFGs and explicit interprocedural call, global CFGs should also include
implicit calls, i.e., those that are generated by methods implemented by the application
and invoked by the Android framework (callback methods). For this purpose, we need
to analyze the Android framework, because these calls pass through its API. Analyzing
solely the application code could not reveal the existence of such calls.

Implicit calls pass through the Android framework using pairs of methods registration-
callback. A callback method is a method implemented in the apps code, it overrides a
framework method and can be called by the framework. A registration is a method im-
plemented in framework space. It communicates the availability of a callback to the
framework. It calls the callback method directly or through a sequence of method calls
inside the framework space. Listing 4.1 shows a pair of registration-callback methods
(sort(List,Comparator) - compare(Object,Object)) that generate an implicit
call. In this example, process) does not call directly compare, but it calls the registra-
tion method sort which is implemented in the Android framework. Method compare
is called, in this case, by the framework.

In order to find if there exist an implicit call between two methods in the application
code, we need to analyze the Android framework. We can manually figure out some
implicit calls, but not all of them. We need to automatize the process of analyzing the
Android framework to get the list of all possible implicit calls.

Cao et al. were already concerned about the lack of these callbacks in global
CFGs [91]. They have implemented their approach in a tool called EdgeMiner. It per-
formed a static analysis on the 24,089 classes of the Android framework and extracted

4.1. Approach 47

1 void process(){
2 List<Integer> list = new ArrayList<Integer>();
3 ...
4 MalComp mal = new MalComp();
5 Collections.sort(list, mal);
6 }
7 ...
8 class MalComp implements Comparator {
9 int compare(Object arg0, Object arg1) {

10 /*- Do bad stuff */
11 return 0;
12 }
13 }

LISTING 4.1: Registration and callback methods

a list of 5,125,472 registration-callback pairs responsible for implicit control flow calls.
These summaries are under the form of registration#callback#position, where
the registration and the callback are the involved methods, and the integer position
denotes the place of the registration’s argument responsible for calling the callback
method.

In this dissertation, we use EdgeMiner to get the list of all possible implicit calls
that pass through the Android framework. We combine the analysis of the Dalvik class
hierarchy with the EdgeMiner generated summaries in order to compute a global CFG
with implicit edges. With a global CFG computed by our tool GPFinder, we intend
to find all execution paths leading towards targeted methods in the application byte-
code, especially the suspicious ones. The overall architecture of GPFinder is depicted
in Figure 4.1. It shows how GPFinder takes in input an Android application and the
framework summaries and generates the global control flow graph and other useful in-
formation about the analyzed application.

For instance, the following generated EdgeMiner’s summary shows an implicit calls
between the registration method (sort(List,Comparator)) and the callback method
(compare(Object,Object)). The link between these two methods is the second pa-
rameter Comparator of the registration method which is of the same type as the call-
back class. This information is given by the position 2 indicated in the following
EdgeMiner summary.

48 Chapter 4. GPFinder

App

Android
Framework

Summaries

EdgeMiner

GPFinder

App CFG with
explicit and
implicit calls

Paths’
information

CFG generation

Suspicious code location

Execution paths’ search

FIGURE 4.1: GPFinder’s architecture

java.util.Collections: void sort(java.util.List,java.util.Comparator)
java.util.Comparator: int compare(java.lang.Object,java.lang.Object)
2

LISTING 4.2: EdgeMiner rule

4.1. Approach 49

Note that if the position equals zero, it means that the defining class of the callback
method should be the same as the defining class of the registration method.

4.1.1 Control Flow Graphs Generation
Global CFGs of Android applications need to include the necessary edges in order to be
useful for security analysis tools. In other words, global CFGs need to have: Method
CFGs, explicit interprocedural calls, and implicit interprocedural calls. GPFinder first
generates one CFG per application method. Then, it uses the Spark [40] module of
Soot to generate explicit interprocedural calls and connect method CFGs. Spark is a
flow-insensitive and implements a points-to analysis using the subset-based [41] and
equality-based [42] approaches.

Next, GPFinder finds implicit interprocedural calls between method and uses them
to add more edges into the application global control flow graph. GPFinder finds im-
plicit interprocedural calls as follows:

For each pair (invoke(b()), a()) where b() is a framework
method and a() is a method overridden in the application code,
GPFinder add an edge from node invoke(b()) to node a()

i f f .
There is a rule registration#callback#position in EdgeMiner
summaries where b() equals or overrides registration and a()
overrides callback.

A method x() overrides a callback or a registration method when the follow-
ing matching conditions hold:

(a) Name: The overriding method in the application code has the same name as in
the EdgeMiner rule.

(b) Defining class: The defining class of x() is a subclass of the one defining the
corresponding callback or registration method.

(c) Return type: The type returned by x() is a subtype of the one returned by the
corresponding callback or registration method.

(d) Arguments: Each argument of x() is the same or a subtype of the corresponding
argument of the callback / registration method.

50 Chapter 4. GPFinder

(e) Position: If the position p = 0, the callback class must be the same or a
subtype of the registration class. If p > 0, the callback class must be the same
as the pth argument of the registration method.

Matching application and framework methods with their EdgeMiner counterparts is
not straightforward because of the inheritance mechanism of the Java language. A class
can implement different interfaces and override a class. The overridden class may also
implement different interfaces and override another class, etc. This recursive inheritance
relation that a Java class might have makes matching a method with the registration or
callback method of an EdgeMiner rule challenging. For instance, in order to match the
registration and callback methods shown in Listing 4.1 with their counterparts in the
EdgeMiner rule shown in Listing 4.2, we need to ensure that:

1. The defining class Collections of the registration method is the same in the
application code as well as in the EdgeMiner rule (Condition (b)).

2. The MalComp class is indeed a subtype of the Comparator class of the callback
method (Condition (b)).

3. The returned type void of the registration method is the same in the application
code and in the EdgeMiner rule (Condition (c)).

4. The returned type int of the callback method is the same in the application code
and in the EdgeMiner rule (Condition (c)).

5. The registration method in the application code sort has identical parameter
types (List, Comparator) as in the EdgeMiner rule (Condition (d)).

6. The callback method in the application code compare has the same parameter
types (Object, Object) as is the EdgeMiner rule (Condition (d)).

7. The class of the registration method in the application code MalComp is a sub-
type of the second parameter of the registration method in the EdgeMiner rule
(Comparator) (Condition (e)).

4.1.2 Suspicious Code Location
GPFinder automatically locates the suspicious code in the application’s bytecode. The
manner of locating suspicious code is borrowed from GroddDroid which uses a heuristic

4.1. Approach 51

function to score the statements of the application [19]. Every method of the applica-
tion gets an initial risk score of 0, and the more it uses sensitive APIs the more its score
increases. The sensitive API methods are divided into categories related to network-
ing, telephony, cryptography, binary code execution, SMS, and dynamic code loading.
Nevertheless, it is possible to remove or add any method, class or category to this list.
GPFinder sets a risk score for each category and computes the total risk of each ap-
plication method by adding the risk scores of the API methods it calls. Methods with
non-zero scores are considered as suspicious and become subject of further analysis.
We slightly modified the scoring function presented in GroddDroid to get better results.
These are the adopted scores of the suspicious API categories:

• Binary code execution: 6

• Dynamic code loading: 8

• Cryptography: 3

• Networking: 3

• Telephony: 8

• SMS: 50

This method of locating the suspicious code is perfectible. In this dissertation, we
used the heuristic function presented in GroddDroid. Indeed, the manner suspicious
code is tagged is important for the results, but this dissertation does not intent to con-
tribute on this subject. In the last months, an intern was recruited in our research team
to test and improve this heuristic function. Nevertheless, it was after the publication of
the GPFinder’s work.

4.1.3 Execution Paths’ Search
After locating the suspicious code, GPFinder tries to find a path per suspicious loca-
tion. It takes into consideration the global CFG of the application and the entry points
that can be used to launch the application. For example, it can be launched using
Activity.oncreate to start a user interface when the user clicks the application’s
icon. Applications also launch with BroadcastReceiver.onReceive which can be
configured to start when a system events occurs like an SMS reception, a competed

52 Chapter 4. GPFinder

boot of the phone, or when the user unlocks the screen. We will return to detail Android
application entry points in Section 4.3.2.

GPFinder details the sequence of method calls, and points out how many conditions
protect the malicious code. It uses a breadth-first search algorithm to find execution
paths.

4.1.4 GPFinder’s Output
GPFinder gives valuable information within a relatively short analysis time for the secu-
rity experts. It automatically locates the most suspicious code, computes all execution
paths towards these suspicious sites and gives insights on how the malware is protected
by potential triggering conditions. GPFinder generates for each analyzed application:

• A global CFG that include method CFGs and interprocedural edges representing
explicit and explicit calls.

• Scored nodes on the CFG representing suspicious code statements.

• Execution paths that lead to the suspicious code locations inside the application.

For example, we analyzed a spyware that sends sensitive information like the device
ID and the contact list to a remote server1. Table 4.1 presents a part of the GPFinder’s
output generated after analyzing this sample. The analysis took 13.6 seconds. GPFinder
found 24 instructions related to the telephony API, 92 instructions related to the net-
working API, and 11 instructions related to the SMS API. This constitutes a total of 127
suspicious instructions distributed in 13 suspicious methods.

GPFinder exhibited 22 execution paths in the global CFG, starting from entry points
and leading towards methods considered as suspicious. GPFinder finds multiple execu-
tion paths for some methods. This helps to choose the best path if we want to execute
the code. These execution paths contains a total of 14 implicit edges, presented in Ta-
ble 4.1 by the arrow⇝. For each execution path, GPFinder points out the implicit
calls, the type and number of suspicious instructions, and how many conditions protect
the suspicious code.

Using the output and the global CFG generated by GPFinder, we can get a better
view of the malware’s structure. For instance, this particular piece of malware listens
to system events to launch the onReceive method unbeknownst to the user. Then, it

1SHA-256: 45d21e32698d1536a73e42c1e5131c29ca94b9d9d1bd5c744bd74ffc2af6853e

4.2. Experiment 53

collects sensitive information about him, and creates a new thread using the AsyncTask
class to send this data to the attacker via SMS (Path 1 in Table 4.1).

4.2 Experiment
In order to measure the use implicit calls by Android malware and to better understand
the structure of Android malware, we performed an analysis that takes as input a collec-
tion of 14,224 detected malware samples randomly chosen from a database provided by
koodous.com. On this malware set, we exhibit all possible execution paths starting form
entry points and leading to malicious code locations. The malicious code is here auto-
matically located by a heuristic detailed hereafter, which means that the targeted code is
suspicious. This experiment gives an overview of the malware features such as favorite
entry points, most frequent malicious code types, the average number of execution paths
leading to malicious code locations, the average number of triggering conditions pro-
tecting the malicious code from dynamic analysis, and the average number of implicit
calls protecting the malicious code from static analysis.

This experiment was launched on an Intel® Xeon® E5-2630 v3 server, with 8 cores,
32G of RAM and Ubuntu as operating system. The global CFG computation takes an
average time of 94.23 seconds per sample of an average APK size of 190 kB. The overall
experiment took around 2 weeks, and the application were analyzed one after another.

4.3 Findings
Analyzing this big malware dataset gave us valuable information and insights on how
Android malware is built and how it operates. In this section, we explore the most
important findings.

4.3.1 Suspicious Code Nature
This experiment showed some malware properties that can characterize their overall
usage of the Android API. In the whole malware set, we found 159,053 suspicious
methods, which correspond to 4.5% of the total methods in the dataset. This means
an average of 11.18 suspicious methods per application. Figure 4.2 depicts the ratio of
APKs (in orange) found in the malware collection that have a positive risk score divided

54 Chapter 4. GPFinder

Apk: 45d21e32698d1536a73e42c1e5131c29ca94b9d9d1bd5c744bd74ffc2af6853e.apk
Size: 50,112 bytes
Suspicious: true
CFG info: methods: 86, nodes: 1,891, edges: 2,322
13 suspicious method(s) for a total of 127 suspicious instructions (’telephony’: 24,
’network’: 92, ’sms’: 11)
Analysis time 13.6 sec
14 Implicit transitions in the executions paths towards suspicious methods
• com.duoji.app.mian.MyReceiver: void onReceive(Context,Intent)
⇝ com.duoji.app.mian.Shell: Object doInBackground(Object[])
• com.duoji.app.mian.ClientActivity: void onCreate(Bundle)
⇝ com.duoji.app.mian.MailTask: Object doInBackground(Object[])
• com.duoji.app.mian.Shell: void run(String)
⇝ com.duoji.app.mian.SendMessageasync: Object
doInBackground(Object[])
• com.duoji.app.mian.App: void chkIsFirstRun(Context)
⇝ com.duoji.app.mian.HttpSend: Object doInBackground(Object[])
• Other implicit calls . . .
Details of 22 execution paths towards suspicious methods
Path 1 with 8 conditions towards a suspicious method of type(s) {’sms’: 2}
com.duoji.app.mian.MyReceiver: void onReceive(Context,Intent) (En-
try point)
⇝ com.duoji.app.mian.Shell: Object doInBackground(Object[])
→ com.duoji.app.mian.Shell: String doInBackground(Integer[])
→ com.duoji.app.mian.Shell: void run(String)
⇝ com.duoji.app.mian.SendMessageasync: Object
doInBackground(Object[])
→ com.duoji.app.mian.SendMessageasync: String
doInBackground(Integer[])
→ com.duoji.app.mian.SendMessageasync: void
sendMsg(SmsManager,String, String) (Suspicious)
Path 2 with 1 condition towards a suspicious method of type(s) {’telephony’: 2,
’network’: 9}
com.duoji.app.mian.ClientActivity: void onCreate(Bundle) (Entry
point)
⇝ com.duoji.app.mian.MailTask: Object doInBackground(Object[])
→ com.duoji.app.mian.MailTask: String doInBackground(Integer[])
→ com.duoji.app.mian.MailTask: void run(String) (Suspicious)
Other paths . . .
→ = Explicit call ⇝ = Implicit call

TABLE 4.1: Partial output of GPFinder

4.3. Findings 55

FIGURE 4.2: Suspicious APIs use

by categories of suspicious code (cf. Section 4.1.2 for suspicious code categories).
The results show clearly how malware is using the telephony API mainly to collect
information about the user like the IMEI and the phone number and send them to remote
servers.

4.3.2 Entry Points Types
Android applications can be launched by a number of events, such as when the app
launcher is pressed, an Intent is received, etc. Consequently, an application does not
have only one entry point but a set of entry points like lifecycle callbacks (onX() meth-
ods). There exist mainly seven entry lifecycle callbacks belonging to three main cat-
egories: Callbacks allowing to create, start or resume an Activity, those enabling to
create, start or bind a Service, and lastly a callback (BroadcastReceiver: void
onReceive) that wakes up the application when it is notified by a system event.

Among these entry points, we evaluate which ones are the most used to reach the
suspicious code. The results of this experiment which are depicted in Figure 4.3 (in or-
ange) reveal that malware prefer BoadcastReceiver.onReceive(Context, Intent)
and Activity.onCreate(Bundle) over other entry points. The use of the latter is
common as it enables to launch applications using their launcher icon. Nevertheless, the

56 Chapter 4. GPFinder

FIGURE 4.3: Use of entry points to reach suspicious methods

heavy usage of onReceive() allows triggering malicious actions whenever the app re-
ceives an Intent broadcast like BOOT_COMPLETED or SMS_RECEIVED. These entry points
constitute an easy way to add a malicious package to a benign application without huge
modifications of app because the malicious code tends to be independent of the benign
one [92].

4.3.3 Implicit Edges Presence
Implicit edges play an important role in order to increase the accuracy of malware detec-
tion tools that rely on CFGs. This is confirmed by the results of our study where 47.82%

4.3. Findings 57

(almost the half) of the reachable suspicious methods are reachable only through im-
plicit interprocedural calls. More globally, 72.69% of malware have at least one suspi-
cious piece of code hidden behind implicit calls without any alternative execution path.
These results confirm the necessity of including implicit interprocedural calls in the
phase of building application CFGs, since they almost doubled the number of reached
suspicious methods in our analyzed malware dataset. Obviously, an analysis tool that
relies on application CFGs to reach targeted code without taking into consideration this
type of calls could miss a significant part of the malicious behavior.

We have also focused on the nature of implicit calls, and we discovered that one of
the most used implicit calls is due to the pair of registration-callback: (Thread.start(),
Runnable.run()). Such callbacks are used to launch a thread from the main applica-
tion. They can be used to perform heavy asynchronous tasks like downloading data from
Internet or encrypting files, which may slow down activities and affect the user experi-
ence or force Android to kill the application. We find also that many callbacks from the
Handler class are used. A Handler can be used to schedule messages and runnables to
be executed later and to enqueue an action to be performed on a different thread. Once
again, using an handler helps create an execution separated from the main thread. We
also found a callback of a different nature: (setOnClickListener(), onClick())
which is related to elements of the graphical interface suggesting that malware may be
triggered by actions performed by the end user.

4.3.4 Triggering Conditions
Android malware use a clever technique to hide their harmful behavior. They use con-
ditions along the execution path to deviate any runtime analysis tool from reaching the
malicious code. For instance, we found in this experiment an average of 12.34 condi-
tions per path leading to suspicious code location. These conditions are a mix of nec-
essary checks for the app to work, and triggering conditions that prevent the malicious
code from running except in specific situations. Most of the conditions that are in the
execution paths are just ordinary, nevertheless some of them are interesting from a se-
curity point of view. Indeed, some conditions are used by malware to trigger malicious
actions. Listing 4.3 shows a triggering condition example where the IMEI of the device
is sent to a remote server if the incoming system event is due to an SMS reception. This
condition is extracted from the malware sample presented in section 4.1.4.

58 Chapter 4. GPFinder

1 public void onReceive(Context paramContext, Intent intent) {
2 if(!intent.getAction().equals("android.

provider.Telephony.SMS_RECEIVED")) {
3 /* ... */
4 localArrayList.add(new BasicNameValuePair("imei", "IMEI"));
5 new HttpSend("http://up.#######.com/", localArrayList).execute(new

Integer[0]);
6 }
7 /* ... */
8 }

LISTING 4.3: Triggering condition

We will return to the triggering conditions issue in Chapter 5 to show in details
how malware use them to prevent its code from being detected by automatic analysis
environments.

4.4 Comparing with Benign Apps
In order to compare the findings obtained by studying the malware dataset, we analyzed
a collection of 2,311 goodware samples provided by AndroZoo [93]. This helps to em-
phasis the difference between the characteristics of malicious and benign applications.
We did the same analysis on these benign applications as the one performed on the ma-
licious ones. The analysis took an average time of 86.29 seconds per app, and the apps
were of an average size of 80 Kb.

The results are depicted in blue in Figure 4.2, where it shows the usage of sensitive
API calls in the analyzed benign application set. We note that malicious applications
use overall more suspicious calls than the benign ones. However, the proportions are
bigger for suspicious API calls such as those used for encryption. These methods are
often used by malware to decrypt binary code in order to load it dynamically and to
encrypt personal data before sending it to remote servers.

The use of entry points is depicted in blue in Figure 4.3. The main information
that we can extract from this figure is the difference in usage of BroadcastReceiver:

4.5. Discussions 59

void onReceive (Context, Intent) between benign and malicious apps. As men-
tioned before, malware rely a lot on system events to launch malicious actions unbe-
knownst to the user.

4.5 Discussions
The conducted experiments have shown the importance of having useful CFGs that
include implicit calls for malware security tools. To connect different method CFGs,
GPFinder uses API summaries generated by EdgeMiner which is built for Android ver-
sion 4.2. Thus, for a better results, it should be updated. However, as we showed in
Section 4.3.3, the most used implicit calls are related to multitasking and message ex-
change, which have not changed a lot since Android 4.2 as far as we know.

Our experiments show that we can almost double the coverage of suspicious code by
including implicit calls while building global CFGs, although, there is no other accurate
implicit calls tool to compare GPFinder to. Thus, we do not have statistics about the
accuracy of our tool, but it depends on the used summaries, in this case the EdgeMiner’s
ones.

Implicit calls can easily be used by Android malware to hide their code. This is
not specific to Android malware nor to Android, but it is a feature of the Java language.
However, Android heavily uses event-driven callbacks, a characteristic that can be easily
exploited by malware authors.

4.6 Conclusion
This chapter presented GPFinder, a practical solution to help security experts to under-
stand and analyze Android malware. GPFinder determines the suspicious code loca-
tions in Android applications. Then, for each method in the bytecode considered as
suspicious, GPFinder exhibits all execution paths that start from an entry point and lead
to that method. For this purpose, GPFinder is the first approach able to take the Android
framework itself into account by computing a global control flow graph with implicit
edges related to the callback mechanism.

We have evaluated, on a collection of 14,224 Android malware samples, how im-
plicit interprocedural calls are used by malware. Our experiments show that 72.69% of

60 Chapter 4. GPFinder

malware have at least one suspicious piece of code hidden behind implicit calls with-
out any alternative execution path. We demonstrated that we can almost double the
coverage of suspicious code by including implicit calls while building global CFGs.
Our experiments have shown that conditional statements are used along the executions
paths. Some of them are used specifically to prevent the suspicious code from running
and thus escaping detection by runtime analysis tools. We will discuss this particular
issue in details in the next chapter.

61

Chapter 5

Triggering Suspicious Code

In the previous chapter, we tackled the question of execution paths in Android applica-
tions. We showed that control flow graphs should contain the necessary paths towards
the suspicious code, and we demonstrated its importance for runtime analysis tools.
We proposed to complete CFGs by adding implicit interprocedural calls. In this chap-
ter, we explore the issue of launching the suspicious code inside Android applications
automatically, and how we use our previous work on execution paths to achieve this.

Some previous works have already worked on the subject of triggering Android
malware behaviors. They can be classified into two categories depending on how they
handle the triggering protections. The first category of approaches solely stress the user
interface or change the underlying environment by injecting framework events and/or
intercepting API calls and modifying them [12], [17], [18]. This approaches fail to trig-
ger certain complex logic bombs. For instance, when the malware uses a hash function
to process an input and compares it to an internally stored value. Obviously, it becomes
tedious to guess the input to provide in order to get the right hashed value and thus
bypass the triggering condition. The second category of triggering approaches aim at
executing some slices of code without preserving the application context [20]. Such
techniques can be useful for testing purpose, but they can expose an unrealistic behav-
ior by removing part of the code that are necessary to understand the overall malicious
behavior. This partial view of the app’s behavior can mislead the analysis tool and ex-
tract partial or wrong information. For example, sending data over the network is not
a malicious action per se, but writing the localization coordinates history to a file and
sending it to a remote server once the phone is online could be considered as a malicious
activity. Thus, such approaches can cause a loss of the original malicious context.

We believe that a hybrid approach would obtain at least, similar triggering results

62 Chapter 5. Triggering Suspicious Code

while preserving the context of the original malicious code. Events that start the execu-
tion paths are still required, but we think that the conditions that protect the malicious
code can be influenced by overloading the variables that are associated to them. With
such a strategy, we avoid complex computation of objects or inputs (like Android In-
tents). We propose in this dissertation to trigger as much as possible the suspicious code
while doing our best to preserve the application context i.e. the rest of the code that
encompass the suspicious code. Our approach uses a combination of static and dynamic
analysis techniques. The former are used to compute the control flow paths that enable
to reach the identified suspicious basic blocks. This analysis also collects the triggering
conditions that will be involved at runtime on the identified control flow paths. Then,
we introduce data dependency techniques for extracting constraints on the variables that
are involved in the triggering conditions. Possible values of the variables are then com-
puted with an SMT solver. We propose to slightly modify the variables involved in the
triggering conditions in the malware bytecode in order to push the execution towards
the suspicious code.

We implemented our approach in a tool called TriggerDroid. It works directly on
the application’s bytecode, without the need of the source code. Our experiments use
a dataset of 135 state-of-the-art malware samples (different varieties), covering 71 dif-
ferent malware families [21]. Results show that our approach, while promising in sus-
picious code triggering, needs more refinement and adaptation to handle special cases
due to the highly diverse malware dataset that we analyzed. Our evaluations quantify
how much the supposed suspicious code of malware samples can be successfully exe-
cuted using this approach. We also present the performance results compared with other
approaches, while analyzing a highly diverse malware dataset.

This chapter is structured as follows. First, Section 5.1 introduces a motivating
example that explains why executing malicious code behind triggering condition is a
difficult task. Section 5.2 presents the static analysis part of our approach and Sec-
tion 5.3 explains how the suspicious code is triggered. In Section 5.5, we detail our
implementation, and present the results that we obtained. We discuss our approach and
present our future work in Section 5.6 and, finally, conclude the chapter in Section 5.7.

5.1 Motivating Example
In this section, we present a motivating example that shows the importance of care-
fully considering the triggering conditions when the goal is to execute the payload of a

5.2. Prior static analysis 63

malware.
Listing 5.1 gives an example of malware that starts when an SMS is received. It

checks the content of the message and, depending on of the result, it decides whether
it sends back the location of the device or not. In this example, there exist many con-
ditions that must be satisfied in order to execute the code that sends the location back.
In order to trigger the slice of code starting at line 35, the application must receive an
SMS-RECEIVED intent (communication message in Android terminology), which trig-
gers the onReceive method beginning at line 2. First, the code checks if the smartphone
is not an emulator (line 5). Then, it verifies if the received intent’s action is indeed due
to an SMS reception (line 9). To extract the received message and sender number, the
app checks if the intent’s bundle is not null at line 11. Then, the app verifies if the PDU
object i.e. the content of the message is not empty at line 15. Then it verifies if the hash
of the message content equals an internally stored value (line 26). Finally, at line 31,
the malware waits for 1 hour before sending the location back to the sender number.

In this listing, the malicious code (lines 35 to 38) is protected by several conditions
that are not straightforward to trigger. These conditions are of different natures: some
check an intern value (like the hash of message content), others check the environment
(like the intent’s action). The malware also stay dormant for a while to escape any short
analysis runtime environment.

Randomly fuzzing the application (the two parameters context and intent) would
have a slight chance to trigger the malicious behavior, because the app checks the hash
of a message. Relying only on external fuzzing cannot trigger the malicious code of
this application because of the MD5 sum comparison. Obviously, reversing the hash
function is virtually impossible. On the other hand, relying solely on application internal
modification cannot execute the malicious code without heavy modifications or crashing
the application. It should receive a valid SMS in order to extract the message and the
sender number.

In the next sections, we present our approach to cope with this triggering problem.
We aim throughout this dissertation at triggering the malicious code while preserving
the most important information about the suspicious code and its context.

5.2 Prior static analysis
Our suspicious code triggering approach, implemented in a tool called TriggerDroid,
follows these four steps.

64 Chapter 5. Triggering Suspicious Code

1 String SMS_RECEIVED = "android.provider.Telephony.SMS_RECEIVED";
2 public void onReceive(Context context, Intent intent) {
3

4 // Check if the device is an emulator
5 if(isEmulator())
6 return;
7

8 // Make sure the received intent is due to an SMS reception
9 if (intent.getAction().equals(SMS_RECEIVED)) {

10 Bundle bundle = intent.getExtras();
11 if (bundle != null) {
12

13 // Get message and sender
14 Object[] pdus = (Object[]) bundle.get("pdus");
15 if (pdus.length == 0) { return; }
16

17 SmsMessage[] messages = new SmsMessage[pdus.length];
18 StringBuilder sb = new StringBuilder();
19 for (int i = 0; i < pdus.length; i++) {
20 messages[i] = SmsMessage.createFromPdu((byte[])

pdus[i]);gitageBody());
21 }
22 String num = messages[0].getOriginatingAddress();
23 String message = sb.toString();
24

25 // The message should be "collect"
26 if(md5sum(message).equals("0788a6922bd5f9f130e7ed8980193bab")){

27

28 // Stay dormant for 1 hour
29 long duration = 3600000L // 1 hour
30 try{
31 Thread.sleep(duration);
32 } catch(InterruptedException e){return;}
33

34 // Send the location back
35 tm = getSystemService (Context.TELEPHONY_SERVICE);
36 String location = getLocation();
37 SmsManager sm = SmsManager.getDefault();
38 sm.sendTextMessage(num, null, location, null, null);
39 }
40 }
41 }
42 }
43 }

LISTING 5.1: Motivating example for TriggerDroid

5.2. Prior static analysis 65

1. locate all suspicious sites s in the bytecode;

2. For all s, select an execution path p towards s that minimizes the number of trig-
gering conditions;

3. Alter the bytecode to push the control flow along the path p;

4. Run p.

These steps will be explained in detail in the next sections.

5.2.1 Identifying the Suspicious Basic Blocks
TriggerDroid transforms the Dalvik bytecode (.dex files) of the processed application
into Jimple [94], a stackless intermediate representation of the bytecode. The Jim-
ple language uses a 3-address representation where most instructions use the template
x = y op z with op, one of 19 available operations in Jimple. x,y,z are typed and
explicitly declared variables, prefixed with a $ symbol. For the bytecode interpreter
or the compiler, they represent stack positions. Lastly, the control structures for and
while are replaced with simple if and goto statements. A running example code is
given in Listing 5.2 and the corresponding Jimple code is given in Listing 5.3.

TriggerDroid identifies some basic blocks as suspicious using a scoring algorithm
based on the evaluation of the API classes [79]. We have already explained this in Sec-
tion 4.1.2. The score points out the basic blocks that invoke at least one method of a po-
tentially suspect API as for instance javax.crypto.android.telephony.Telepho-
nyManager or android.net.Network. For example, TriggerDroid identifies as suspi-
cious the line 13 of Listing 5.2 as it relies on the use of android.telephony.SmsMa-
nager. In this listing as in the rest of the figures or listings, suspicious code is high-
lighted in red.

5.2.2 Triggering Conditions and Variables
As we saw earlier in this chapter, Android malware can implement triggering conditions
in order to evade possible dynamic analysis. In our motivating example of Listing 5.1,
the malware has three triggering conditions: it tests if the device is an emulator, if an
SMS has been received and if the hash of its content equals a certain stored string. As
TriggerDroid intends to execute the payload, it extracts the triggering conditions in the

66 Chapter 5. Triggering Suspicious Code

1 void h() {
2 int w, x, y, z;
3 w = -f();
4 x = f();
5 if (x > 2) {
6 y = 2 * x;
7 if (y > 10) {
8 z = g();
9 if (z > 0 && z == w) {

10 return;
11 }
12 SmsManager manager = SmsManager.getDefault();
13 manager.sendTextMessage("1234", null, String.valueOf(x),

null, null);

14

15 }
16 }

LISTING 5.2: Running example Java code

5.2. Prior static analysis 67

1 void h()
2 {
3 com.example.dexman.eg2.MainActivity $r0;
4 int $i0, $i1, $i2;
5 android.telephony.SmsManager $r1;
6 java.lang.String $r2;
7 $r0 := @this: com.example.dexman.eg2.MainActivity;
8 $i0 = virtualinvoke $r0.<com.example.dexman.eg2.MainActivity: int

f()>();
9 $i0 = neg $i0;

10 $i1 = virtualinvoke $r0.<com.example.dexman.eg2.MainActivity: int
f()>();

11 if $i1 <= 2 goto label2;
12 $i2 = 2 * $i1;
13 if $i2 <= 10 goto label2;
14 $i3 = virtualinvoke $r0.<com.example.dexman.eg2.MainActivity: int

g()>();
15 if $i3 <= 0 goto label1;
16 if $i3 != $i0 goto label1;
17 return;
18 label1:
19 $r1 = staticinvoke <android.telephony.SmsManager:

android.telephony.SmsManager getDefault()>();
20 $r2 = staticinvoke <java.lang.String: java.lang.String

valueOf(int)>($i1);
21 virtualinvoke $r1.<android.telephony.SmsManager: void

sendTextMessage(java.lang.String, java.lang.String,
java.lang.String, android.app.PendingIntent,
android.app.PendingIntent)>("1234", null, $r2, null, null);

22 label2:
23 return;
24 }

LISTING 5.3: Running example Jimple code

68 Chapter 5. Triggering Suspicious Code

Jimple representation of the bytecode. The if and switch statements are extracted using
a part of the grammar of Soot [35]:

ifStmt −→ if conditionExpr goto label ;
conditionExpr −→ imm1 condop imm2 ;
condop −→ ≤ | ≥ |= | ̸= ;
imm −→ variable | constant ;

We define as Triggering Condition (TC) an IF statement that may drive the execu-
tion away from the payload of the malware. For a given path p of the control flow graph
that starts from an entry point and reaches a suspicious basic block, a triggering con-
dition is an IF statement belonging to the path where either its then or else branches
end outside the execution path. Formally, a node n is a triggering condition for the path
p iff n is an IF statement and its post-dominator also belongs to the path p. Obvi-
ously, an IF statement that is not in the path cannot be a triggering condition. An IF
statement that is in the path but whose post-dominator is also in the path is noted “Non
TC”, because the control flow stays in the path regardless which branch the execution
takes. Finally, we call triggering variables the variables used by at least one triggering
condition. In Listing 5.3, $i1 and $i2 are triggering variables.

Figure 5.1 sums up the different triggering conditions that TriggerDroid has to cope
with. Our running example (function h()) is represented on the bottom left part of the
figure. An execution path, p ,is highlighted in pink from the entry point A.onCreate()
to the suspicious basic block (red node). On the path p, most of the nodes are triggering
conditions (TC) because they can steer the flow out of the path. The two encountered
nodes of the activity A are not triggering conditions because all their branches stay in p.

Triggering conditions play an essential role to steer the code towards the suspicious
basic blocks. They can be identified once the paths that leads to the suspicious code has
been extracted.

5.2.3 Path Computation
TriggerDroid computes execution paths towards the suspicious basic blocks based on
the interprocedural control flow graph (CFG) computed from the Jimple representation
of the bytecode as explained in Chapter 4. This CFG represents the possible execution
paths of the whole application including the implicit transitions that may be due to calls
that pass though the Android framework.

For a given suspicious basic block whose s is the first statement, if E denotes all en-
tries points of the application, TriggerDroid returns a path p from an entry point e ∈ E

5.2. Prior static analysis 69

Activity A
A.onCreate()

Service S
S.onStart()

Class M
g()

Class M
M.h()

Non TC

Non TC

TC

TC

TC

TC

FIGURE 5.1: Inter-procedural CFG of the running example

70 Chapter 5. Triggering Suspicious Code

towards s. While we base our path search on GPFinder, we do not aim at finding all
possible execution paths towards a given suspicious basic block. We only search a path
that minimizes the number of modifications to be done on the application code. Trig-
gerDroid implements a variant of the classical path search algorithm A ⋆ to compute a
path that appears to be the quickest one that lead to the suspicious code with a minimal
cost. Intuitively, TriggerDroid searches for the path with few triggering variables. It
explores a set of possible paths by backward computation and returns the one that min-
imizes the cost function f (n) = g(n, p)+ h(n) where g(n, p) denotes the cost function
to join the node n in the current path p being computed, and h(n) denotes an estimation
function of the cost to join an entry point e ∈ E from the node n. Intuitively, the cost
g(n, p) = ∑p cost(n, p) increases with the difficulty to cope with the triggering condi-
tions to reach the node n in the current path p. The scores have been chosen to prioritize
paths that minimize the alterations to be done on the application.

cost :

∣∣∣∣∣∣∣∣∣∣
(n, p) 7−→ 1 if n is not a triggering condition
(n, p) 7−→ 30 if n is a triggering condition

dealing with one variable
(n, p) 7−→ 50 if n is a triggering condition

dealing with two variables

The cost function g(n, p) expresses that the cost of a simple instruction is negligi-
ble compared with a triggering condition. It expresses also that it is less difficult to
cope with a triggering condition dealing with two variables than with two triggering
conditions dealing with one variable each.

The cost estimation h(n) to join an entry point e ∈ E from a node n is defined as
follows. h(n) = 0 if n belongs to an entry point method (as OnStart(), OnCreate(),
OnReceive(), . . .). h(n) = 5 if n is not in an entry method but it is part of a class that
contains an entry point method. If n belongs to a class without entry point, h(n) = 10.
The main difference between our implementation and the classical implementation of
A ⋆ is that the cost of a node g(n, p) may vary depending on the path being computed.
In addition, our algorithm searches a path towards any entry point. Thus, it may have
more than one final node to chose from.

For our running example (Listing 5.2 and 5.3), TriggerDroid computes the path p
represented in pink. The cost of the path p (cf. Figure 5.1) is 92 because 3 triggering
conditions are involved in h() and 2 non triggering conditions are involved in A. The
extracted triggering conditions on the identified path p are given in Listing 5.4. These

5.3. Automatic Triggering 71

1 Triggering conditions to reach the target:
2

3 Triggering condition 1 with one triggering variable ($i1)
4 if $i1 <= 2 goto staticinvoke
5 <android.util.Log: int i(java.lang.String,java.lang.String)>
6 in <com.example.dexman.eg2.MainActivity: void h()>
7

8 Triggering condition 2 with one triggering variable ($i2)
9 if $i2 <= 10 goto staticinvoke

10 <android.util.Log: int i(java.lang.String,java.lang.String)>
11 in <com.example.dexman.eg2.MainActivity: void h()>
12

13 Triggering condition 3 with one triggering variable ($i3)
14 if $i3 <= 0 goto staticinvoke
15 <android.util.Log: int i(java.lang.String,java.lang.String)>
16 in <com.example.dexman.eg2.MainActivity: void h()>

LISTING 5.4: Triggering conditions for the running example

conditions check the value of one variable each ($i1, $i2 or $i3).

5.3 Automatic Triggering
Once TriggerDroid has statically computed an execution path p that joins a suspicious
code location, it slightly alters the bytecode of the application in order to force the
execution to stay in p.

5.3.1 Triggering Strategies
TriggerDroid injects in the code new statements that update the values of the triggering
variables; i.e those that appear in the triggering conditions. These new statements drive
the execution when a triggering condition is encountered and keep the execution on the
path. The new values are assigned to variables to satisfy the triggering conditions. We
point out three triggering strategies:

72 Chapter 5. Triggering Suspicious Code

Strategy 1: All triggering conditions are replaced by GOTO statements. This was al-
ready implemented in GroddDroid [19]. It is a simple strategy that tries to force the
execution of the desired conditional branches independently of the execution context.
This may lead to situations where the variables’ values become inconsistent for the op-
erations to be executed and it makes the application crash.

Strategy 2: Assignment statements v = rvalue are inserted right before the corre-
sponding triggering condition. This helps to keep the execution environment consistent
with the execution. It adds new assignment statements in the bytecode that override the
previous values of variables occurring in the triggering conditions. Values are chosen
to keep the execution along the desired path and the new assignments are added just
before the concerned triggering condition. For example on Figure 5.3, if we insert the
assignments $i1 = 3, $i2 = 11 and $i3 = 0 one by one before each triggering conditions,
the execution will take and stay on the path with the pink color.

Strategy 3: Assignment statements v = rvalue are inserted after the reaching def-
inition of the corresponding triggering variables. This helps to limit the modifications
done on the malware to what is strictly necessary and increase the consistency. Strategy
3 also adds new assignment statements in the bytecode. Only the location of these new
statements differs from Strategy 5.3.1. The second strategy does not care of data de-
pendencies, it modifies variables values appearing in the triggering conditions whereas
these variables may depend on each others which may leads to inconsistencies in the ex-
ecution context. On the contrary, Strategy 5.3.1 takes into consideration the triggering
conditions that are influenced by common variables involved in a chain of computation.
In this case, Strategy 3 adds the required new assignments just after the definition of the
variables. In the bytecode, a variable can be used much later after it has been defined.
An instruction defines a variable, when it declares, initializes or changes the value of
this variable. An instruction uses a variable when it employs this variable in other man-
ner. If a variable v is defined at point T belonging to an execution path that later reaches
a node U where v is used without being overwritten by another value in the path, then
(T , U) forms a definition-use pair and v is a reaching definition at U . Definition-use
pairs record direct data dependencies and form a data dependency graph. TriggerDroid
relies on a subgraph of the data dependency graph where nodes defining variables by
method invocation or any expressions using more than one variable are not linked to the
others.

5.3. Automatic Triggering 73

if $i3 != $i0 goto label1

if $i3 <= 0 goto label1

if $i1 <= 2 goto label2

if $i2 <= 10 goto label2

$i0 = $r0.f()

$i3 = $r0.g()

$i0 = neg $i0

$i2 = 2 * $i1

 dependencies in g() dependencies in f()

$i1 = $r0.f()

FIGURE 5.2: Data dependency subgraph used by TriggerDroid

74 Chapter 5. Triggering Suspicious Code

Figure 5.2 depicts the data dependency subgraph used by GroiddDroid on our run-
ning example. For the statement if $i2 <=10 goto label2, TriggerDroid finds the
following data flow: if $i2<=10 goto label5→ $i2 = 2* $i1→ $i1 = $r0.f().
For example, the definition in statement $i1 = $r0.f() is a reaching definition of $i1
at statements if $i1 <= 2 goto label2 and $i2 = 2 * $i1.

TriggerDroid uses connected component of this data dependency subgraph depicted
in green and blue in Figure 5.2. Each connected component of the data flow is a group
of triggering condition where a variable may influence the triggering conditions. For ex-
ample, conditions if $i1 <= 2 goto label2 and if $i2 <= 10 goto label2 are
in the same connected component since they have a common data dependency (reaching
definition in $i1 = virtualinvoke $r0.f()).

5.3.2 Satisfying Triggering Conditions
Triggering conditions should be satisfied by modifying the values of their variables
according to the chosen strategy. A triggering variable occurs in an if statement on
the form x op y where x, y are variables or constants and op belongs to {≤;≥;=; ̸=}.
Consequently, the constraints can be represented as combinations of linear equation on
variable representing primitive types (integers, floats, booleans and strings). The same
remark applies for the switch statements. Thus, TriggerDroid can pass the constraints
to an external SMT solver to find the variables’ values that satisfy them.

Strategy 2 takes each TC one by one, and solves them independently of the others.
The output is a set of variable values for each triggering condition. For instance, the
solver returns $i1 = 3, $i2 = 11 and $i3 = 0 for the running example. These values are
inserted just before the triggering conditions, as represented in Figure 5.5.

For strategy 3, each statement group of a connected data flow component generates
a constraint group, and thus an independent SMT program. Each node of the connected
components generate a constraint, except function calls. For example, the SMT program
#1 (resp. #2) of Listing 5.5, corresponds to the upper (resp. lower) connected compo-
nent of Figure 5.2. In the first SMT program, only one triggering condition is crossed by
the pink path of Figure 5.3. Thus, $i3 != $i0 and $i0 = neg $i0 are dropped1. In
the second SMT program, triggering conditions if $i1 <= 2 goto label2 and if

1Note that variable names have subindexes in the SMT program when a variable is killed and rede-
fined: the constraint would be $i01 = $i00.

5.3. Automatic Triggering 75

$r0 := @this

label2:
return

Class M
M.h()

if $i1 <= 2
goto label2

$i0 = $r0.f()

$i0 = neg $i0

$i1 = $r0.f()

$i2 = 2 * $i1;

$i3 = $r0.g()

if $i2 <= 10
goto label2

if $i1 <= 2
goto label2
if $i1 <= 2
goto label2
if $i1 <= 2
goto label2

if $i3 <= 0
goto label1

$r1.sendTextMessage(...)

if $i3 != $i0
goto label1

Label1:

$r2 = java.lang.String.valueOf($i1)

$r1 = SmsManager.getDefault()

return

FIGURE 5.3: Running example’s CFG

76 Chapter 5. Triggering Suspicious Code

$i2 <= 10 goto label2 are solved together with $i2 = 2 * $i1. Consequently,
the SMT solver returns one variable assignment that satisfies both of them, $i1 = 6.

5.3.3 Delicate statements
During the static analysis, a special procedure collects “delicate statements”. These
statements may crash the application if a modification of their variables’ values gener-
ates an exception. A simple example of such statement is $i2 = 2/$i1. In this case,
$i1 should be different from 0. Delicate statements are collected in order to add con-
straints to pass to the SMT solver when computing new values for the variables. To
this stage, we have implemented only delicate statements that are related to division by
zero. Other types could be null pointer references and string manipulation methods like
indexOf and substring.

5.3.4 Malware Alteration and Execution
The Insertion of the new statements concludes TriggerDroid’s static part. These state-
ments are on the form x = v where x is a triggering variable and v is a suitable value for
x computed by the SMT solver. In strategy 2, these new statements are put just before
each triggering conditions. Comparing to strategy 2, strategy 3 modifies the variables
according to the chosen place in the data flow graph. Listing 5.6 presents the bytecode
of our running example when TriggerDroid applies strategy 2 and 3.

At this stage, the malware is ready to be executed by TriggerDroid for the cho-
sen suspicious basic block. TriggerDroid runs the malware, combined with additional
techniques presented in the next section that helps to simulate AOSP events and the
graphical interface manipulation [19]. Then, TriggerDroid monitors the execution in
order to check if the suspicious code is executed or not.

5.4 Implementation
TriggerDroid extends Soot [35] to perform the static analysis phase. It operates directly
on the application bytecode represented using the Jimple language. For solving the
SMT programs, TriggerDroid relies on the SMT solver Z3 [95].

In order to know if the targeted code has been triggered or not, TriggerDroid instru-
ments the bytecode of the application in order to output the information in the logging

5.4. Implementation 77

1 // SMT Program #1:
2 (declare-const $i30 Int)
3 (assert (<= $i30 0))
4 (check-sat)
5 (get-model)
6

7 // Solution of program #1:
8 sat
9 (model

10 (define-fun $i30 () Int
11 0)
12)
13

14 // SMT Program #2:
15 (declare-const $i10 Int)
16 (declare-const $i20 Int)
17 (assert (not (<= $i10 2)))
18 (assert (= $i20 (* 2 $i10)))
19 (assert (not (<= $i20 10)))
20 (check-sat)
21 (get-model)
22

23 // Solution of program #2:
24 sat
25 (model
26 (define-fun $i10 () Int
27 6)
28 (define-fun $i20() Int
29 12)
30)

LISTING 5.5: Constraints on triggering variables sent to the SMT solver

78 Chapter 5. Triggering Suspicious Code

1 void h()
2 {
3 com.example.dexman.eg2.MainActivity $r0;
4 int $i0, $i1, $i2;
5 android.telephony.SmsManager $r1;
6 java.lang.String $r2;
7 $r0 := @this: com.example.dexman.eg2.MainActivity;
8 $i0 = virtualinvoke $r0.<com.example.dexman.eg2.MainActivity: int

f()>();
9 $i0 = neg $i0;

10 $i1 = virtualinvoke $r0.<com.example.dexman.eg2.MainActivity: int
f()>();

11 $i1 = 3; // Strategy 2
12 $i1 = 6; // Strategy 3
13 if $i1 <= 2 goto label2;
14 $i2 = 2 * $i1;
15 $i2 = 11; // Strategy 2
16 if $i2 <= 10 goto label2;
17 $i3 = virtualinvoke $r0.<com.example.dexman.eg2.MainActivity: int

g()>();
18 $i3 = 0; // Strategy 2 and 3
19 if $i3 <= 0 goto label1;
20 if $i3 != $i0 goto label1;
21 return;
22 label1:
23 $r1 = staticinvoke <android.telephony.SmsManager:

android.telephony.SmsManager getDefault()>();
24 $r2 = staticinvoke <java.lang.String: java.lang.String

valueOf(int)>($i1);
25 virtualinvoke $r1.<android.telephony.SmsManager: void

sendTextMessage(java.lang.String, java.lang.String,java.lang.String,
android.app.PendingIntent, android.app.PendingIntent)>("1234", null,
$r2, null, null);

26 label2:
27 return;
28 }

LISTING 5.6: Running example with strategies 2 and 3

5.4. Implementation 79

system (Logcat). TriggerDroid also monitor the app crashes by filtering the logs gener-
ated by Dalvik VM crashes.

Data Dependency. TriggerDroid computes the data dependency of each method in
application. Then, it computes interprocedural dependency. There are two types of data
dependency between methods. The first one is due to arguments passed to the method
at the call site. All statements that depend on an argument in the called method depend
also on the corresponding argument at the call site. The second type of interprocedural
data dependency is due to the method return. Any statement that depends on a return
of called method at a call site depend also on the return value in the body of the called
method. This way, we make sure that the data inside the application is interdependent
even between different methods.

Upfront Triggers. In some cases, triggering a basic block in Android applications de-
pends on the triggering of another code somewhere else in the application. For instance,
broadcast receivers can be declared statically in the application’s manifest to receive
events and launch their onReceive methods. Nevertheless, they can also be registered
dynamically in the code of the application. We cannot trigger a non registered broad-
cast receiver. For this matter, TriggerDroid detects the dynamically registered broadcast
receivers and launches first the code that registers them. Then, it sends the event that
triggers the concerned broadcast receiver. We call this TriggerDroid’s mechanism “
upfront triggers”.

Sleep Time Reduction. As we saw in Listing 5.1, malware can wait for a while before
launching their payload in order to escape runtime analysis tools. TriggerDroid detect
this evasion technique and reduce the waiting time to 50 ms if it is greater than that. It
inserts a new assignment for the variable used in the sleep method.

Framework event injection. TriggerDroid uses a mix of methods to inject Android
framework events in order to trigger the desired app component. It can inject events
like incoming and outgoing calls and SMS, install and uninstall application, etc. Tig-
gerDroid uses a vanilla Android build on both physical devices and emulators. In the
case of physical devices, TriggerDroid install an helper application to stimulates frame-
work events like making a call, or broadcasting an SMS_RECEIVED intent. On emulators,
TriggerDroid uses the preexisting telnet method to inject these events.

80 Chapter 5. Triggering Suspicious Code

5.5 Evaluation
To evaluate our malware triggering approach, we led an experiment on a state-of-the-art
Android malware dataset and compared the results with some existing approaches.

5.5.1 Experimental Setup
We selected a Android malware dataset that contains 135 varieties that belong to 71 mal-
ware families, as explained in [21]. This dataset is diverse enough to represent the most
known Android malware families existing at the time when we launched our experi-
ment. We took one malware sample from each variety and performed the static analysis
part of the methodology and then launched our analysis using the early mentioned three
triggering strategies.

A malware sample can contain several suspicious basic blocks. Each time we find
a basic block recognized as suspicious, we assign to this basic block one or more cate-
gories among: binary execution, cryptography, SMS, telephony, and networking.

5.5.2 Effectiveness in Reaching a Suspicious Code
The triggering performance of our approach is depicted in Table 5.1. The first column
contains the suspicious code categories. The second column represents a launch of the
application without any modification done on its code. The other columns represent a
triggering strategy each. The results show that some suspicious code categories have
better triggering rate than others. Strategy 3, which is our main one, has a better trig-
gering rate than the other strategies except Strategy 1, which merely replaces if and
switch statements with simple gotos. Nevertheless, Strategy 3 results in fewer crashes
in the application after the code modification than Strategy 1. Clearly, launching the
application without any code modification has the least crash rate. Strategy 3 stands
between the two approaches, launching the app without any code modification and get
few crashes and a low triggering rate, or highly modifying the app code and get a lot of
crashes and a high triggering rate.

5.5.3 Importance of Execution Paths
We integrated our previous work, GPFinder, to build control flow graphs that include
explicit and implicit interprocedural calls. This helped to obtain paths for suspicious

5.5. Evaluation 81

Original Strategy 1 Strategy 2 Strategy 3
Trigg Crash Trigg Crash Trigg Crash Trigg Crash

SMS 21.1 5.3 21.1 31.6 21.1 10.5 21.1 15.8
Binary 33.3 11.1 50.0 0.0 11.1 11.1 37.5 0.0
Crypto 25.0 25.0 33.3 33.3 0.0 25.0 25.0 25.0
Telephony 43.5 2.2 52.5 5.0 38.6 6.8 41.9 7.0
Network 16.2 8.1 32.0 16.0 22.9 5.7 25.0 9.4
Average 27.82 10.34 37.78 17.18 18.74 11.82 30.1 11.44

TABLE 5.1: TriggerDroid’s performance expressed in %

basic blocks, but also for their upfront triggers if they exist. Android application often
use off-the-shelf libraries to use just few packages from them. This makes a big part
of the library code unreachable from the application’s entry points. Even with this fact,
we succeeded to find execution paths more than 60% of the existing suspicious basic
blocks.

5.5.4 Efficiency
This experiment was launched on a Intel® i7 laptop with 4 cores and 16 Go of RAM. The
analysis of each application is timed out after 20 minutes. This includes the static anal-
ysis, a launch without any modification on the application and the 3 triggering strategies
mentioned in Section 5.3.1. For each triggering strategy and suspicious basic block, the
application is launched and keeps running for 20 seconds.

5.5.5 Comparison with Other Approaches
While our triggering approach is promising, it perform at the moment of writing this
dissertation less than some existing approaches like FuzzDroid, which has a triggering
rate of 62.34%. This results may be explained by the high diversity of our dataset,
that represent most of the existing Android malware families and their varieties. We
also discovered several bugs in our implementation, and we are working to fix them.
In addition, there are numerous special cases where the application crashes at the start
even without any code modification, because of an incompatible API version or because
of the newly added Android runtime permissions. This mechanism requires manual
activation of some permissions even when they are declared in the app manifest.

82 Chapter 5. Triggering Suspicious Code

5.6 Discussions and Perspectives
In this section we will talk about the limits and challenges that our approach faces. We
talk also about the future work that we will conduct to improve our approach.

First, we want to emphasize that this implementation and the proposed approach do
not intended to tell whether the executed code is malicious or not. It merely aims at
launching the suspicious code, and it is up to the runtime monitoring tool or the analyst
to decide if the sample is malicious.

By proposing TriggerDroid, we aimed at maximizing the triggering rate of suspi-
cious code without sacrificing the original context of the malware sample. Obviously,
our triggering approach has a lower triggering rate than some existing state-of-the-art
approaches. TriggerDroid faces at the moment of writing this dissertation some bugs
in its code. Some are due to the unstable underlying Soot static analysis framework.
Another issue that faces TriggerDroid is the multitude of special cases that need careful
inspection and code adaptation.

The overall code that analyzes, instruments and launched applications is working
fine. Meanwhile, we are working to fix TriggerDroid’s bugs and handle special cases in
order to improve the triggering rate. We believe that this approach is promising and it is
worth further improvement.

5.7 Conclusion
In this chapter, we proposed a novel approach to trigger suspicious code in Android ap-
plications in order to monitor their runtime behavior. In contrast to other existing code
triggering approaches, ours aims at reaching high triggering rate of suspicious code
while preserving the original context of the application. We implemented our approach
in a tool called TriggerDroid that operates directly on the application’s bytecode and
does not need its source code. TriggerDroid uses a hybrid code triggering method. It
crafts the necessary framework events to trigger entry points, and minimizes the modi-
fications done on the application code to steer the execution towards the targeted code.
We conducted an experiment on a set of malware from 71 different malware families
and 135 varieties. Results show that our approach, while promising, needs more bug
fixes and special case handling. Our future work is to improve the code quality of our
implementation to cope with the highly diverse dataset that we have chosen in order

5.7. Conclusion 83

for our approach to be able to deal with the huge number of malware samples that are
uploaded to Internet every day.

85

Chapter 6

Dilemma of Malware Datasets

During my thesis, I had to collect a lot of Android malware samples to conduct rep-
resentative experiments. Indeed, up-to-date and well documented malware datasets are
crucial to design better security approaches and validate new tools. Many existing works
simply take random malware samples, analyze them and give a success rate. However,
the experiment would not be accurate if it is performed on a few randomly selected sam-
ples. There exist a handful Android malware datasets that are dedicated for the research
community. The goal of this chapter is to give a feedback on the experiments we led on
malware datasets and to explain our experimental process.

This chapter is structured as follows. First, we describe our work on a set of mal-
ware that has been reverse engineered for gaining technical understanding on attack
vectors. Then, we describe the most important existing datasets. Next, we present
Kharon dataset, a collection of well documented Android malware. Finally, we explain
our dataset choices to test our own security tools.

6.1 Understanding Malware
Understanding the nature of malware is crucial to build better security tools and test
them. In [92], authors aimed at understanding techniques used by malware authors to
repackage the malicious code inside benign apps. They list several useful properties
that characterize samples using repackaging and help to detect them. In addition, there
exist hundreds of articles online explaining new discovered malware. However, they
are mostly presented for nontechnical people. They are rarely detailed enough so the
researcher can get a clear idea on how the malicious action is exactly launched and how
it operates. We believe that a good malware explanation should include at least these
points:

86 Chapter 6. Dilemma of Malware Datasets

• What are the malicious actions and how are they executed? With code snippets if
necessary (classes, methods).

• How are they triggered? With enough details about the triggering conditions in
order to reproduce them experimentally.

• How is the malicious code injected in piggybacked apps?

• Is the code obfuscated and how, if any?

• Does the malware communicate with a server, and how, if any?

6.2 Labeling Malware Families
New malware samples appear every day. With this continual evolution in the malware
landscape, antivirus tools give different names or labels to the same malware on a fam-
ily association. It is a challenging task to make all vendors agree on a single naming
convention for each new malware. For instance, VirusTotal1 uses about 58 antivirus
solutions to scan malware. They give different naming for malware and some times
they mislabel it. This makes automatic malware gathering for research purposes a non-
trivial task. In [96] and [97], researcher have already pointed out the inconsistencies in
malware labeling between different vendors. Similarly, M Hurier et al. has pointed the
inconsistencies in Android malware labeling and proposed a tool called Euphony to ho-
mogenize labels coming from different antivirus tools [98]. These label inconsistencies
should be kept in mind when conducting an experiment on Android malware.

6.3 Existing Datasets
Several Android malware datasets were proposed in the last years to fill the need for a
ground truth where research tools and approaches can be tested and reproduced. How-
ever, they were built for different purposes and in different time spans. The following
are the main ones.

1https://www.virustotal.com

https://www.virustotal.com

6.3. Existing Datasets 87

Genome. This is an old Android malware dataset proposed by X. Jiang et al [99]. Its
malware samples were discovered in 2010 and 2011. It contains 1,260 samples grouped
in 49 families. Samples were collected from different sources such as VirusShare,
Google Play and other third party security companies. Authors focus on the installation,
activation, actions and permissions use of the malware. However, the exact necessary
conditions to trigger the malware are not given in the paper. This dataset was public
and accessible to researchers worldwide, but it is not online any more due to resource
limitations. In addition, it does not represent today’s Android malware landscape.

AMD. Android Malware Dataset (AMD) is a large collection of malware discovered
between 2010 and 2016 [21]. It came as a solution for the obsolete Genome dataset.
It contains 24,650 malware samples from 135 varieties which belong to 71 families.
Samples were categorized automatically, then a few samples from each variety were
manually inspected. Next, short reports that describe each malware variety were gener-
ated. However, the descriptions of malware families are very brief. They do not detail
how they operate, protect their malicious code and trigger it.

Koodous. Koudous2 is a collaborative platform dedicated to Android malware re-
search where any registered user can upload, download, rate or add a description to
an app. It is based on the social interactions between analysts over the dataset. All the
apps on the platform are not necessarily malicious. They come with a report given by
Androguard3, DroidBox4 and other scanning tools. The analysis reports are very basic
and do not explain the samples nor say from which family they are, which makes it
difficult to choose samples to conduct an experiment on them.

Contagio. It is a public dataset created in 2011 and updated from time to time. Mal-
ware generally is supported by a blog post and a link to downloaded it along site with
a link to an article that talks about it. Contagio gives little information details about the
malware and do not update its database frequently.

AndroZoo. Allix et al proposed a collection of millions of Android applications to
the research community in order to engage in reproducible experiments [93]. Samples

2https://koodous.com/
3https://github.com/androguard/androguard
4https://github.com/pjlantz/droidbox

https://koodous.com/
https://github.com/androguard/androguard
https://github.com/pjlantz/droidbox

88 Chapter 6. Dilemma of Malware Datasets

are analyzed by different antivirus tools to detect malicious ones. Authors collect apps
regularly from different sources such as Google Play, Anzhi5, AppChina6, Genome and
others. They provide an API to download apps. However, apps which are detected
as malicious do not have detailed description of their actions nor how they are trig-
gered. Later, Li et al. added a collection of pairs of repackaged and original apps to
the dataset [5]. From our experience, many samples from this repackaged collection are
merely adware, which is ambiguous to detect because they only add external libraries
for ads that can be found on benign apps. This was confirmed by Salem et el. in [100].

DroidBench. Arzt et al. proposed a dataset to evaluate the effectiveness of taint-
analysis tools on Android [6]. They implement different types of data leaks using im-
plicit information flows, callbacks and reflection. The dataset comes with the source
code of each sample. Samples are categorized depending on the data leak mechanism
they use. However, samples are written by the authors and do not necessarily repre-
sent real-word malware cases. In addition, they focus on information leaks and do not
address code protections nor triggering techniques.

Despite all these datasets, Android malware goes rapidly out of date due to the
continually evolving attack techniques. In addition, The aforementioned datasets do not
detail how exactly malware works and how it hides its code. They give little help to
understand the malware’s internals.

6.4 Kharon, a Well Documented Dataset
Driven by the need for a well documented Android malware collection, we proposed
the Kharon dataset [23]. This dataset has been manually dissected and documented. We
were able to detail the malware behavior, the used triggering techniques and the location
of the malicious code. Every sample was reversed and executed on a real device, and a
graph is generated that represents the interactions between objects at the OS level, like
the created files, processes and network sockets. The collection contains at the moment
about 19 malware families. Its construction has required a huge amount of manual
work to reverse the code and analyze samples statically and dynamically. This way, the

5http://www.anzhi.com
6http://www.appchina.com

http://www.anzhi.com
http://www.appchina.com

6.4. Kharon, a Well Documented Dataset 89

analyst can get a profound understanding of the malware samples. These are the main
malware samples presented by Kharon:

BadNews. It is a remote administration tool discovered in 20137. The executed ma-
licious action depends on the commands received from a distant server, which can
be downloading an APK, opening a URL, etc. It starts when a BOOT_COMPLETED or
PHONE_STATE intent is received. It does not execute any malicious action before wait-
ing for 4 hours and receiving a command from the remote server.

SimpleLocker. It is a ransomware discovered in 2014 that encrypts user files present
in the SD card and asks for a ransom to decrypt them8. It encrypts files with AES in
CBC mode with PKCS#7 padding. SimpleLocker communicates with its server through
the Tor network to receive orders. The malware sends sensitive information about the
user’s device to its server to check later if the user has paid the ransom. It starts after
rebooting the phone, then it launches tasks that run continually in background.

DroidKungFu1. It is a remote admin tool discovered in 2011 that is able to install
other apps without user consent9. It uses different exploits to break Android security
measures and escalate privileges. It starts after reception of a BOOT_COMPLETED intent
and waits for few hours. Then, it launches several temptations to break the security
system and becomes root. Next it installs a fake Google search app as a system app,
which can receive remote server’s commands to install, remove or start applications, or
even open a web page.

MobiDash. It is an adware discovered in 2016 disguised as a card game10. It displays
unwanted adds each time the user turns on the screen. It waits up to 24 hours after the
phone restart before launching the malicious actions.

7https://blog.lookout.com/the-bearer-of-badnews
8https://nakedsecurity.sophos.com/2014/06/06/cryptolocker-wannabe-

simplelocker-android/
9https://www.csc2.ncsu.edu/faculty/xjiang4/DroidKungFu.html

10https://blog.avast.com/2015/02/03/apps-on-google-play-pose-as-games-and-
infect-millions-of-users-with-adware/

https://blog.lookout.com/the-bearer-of-badnews
https://nakedsecurity.sophos.com/2014/06/06/cryptolocker-wannabe-simplelocker-android/
https://nakedsecurity.sophos.com/2014/06/06/cryptolocker-wannabe-simplelocker-android/
https://www.csc2.ncsu.edu/faculty/xjiang4/DroidKungFu.html
https://blog.avast.com/2015/02/03/apps-on-google-play-pose-as-games-and-infect-millions-of-users-with-adware/
https://blog.avast.com/2015/02/03/apps-on-google-play-pose-as-games-and-infect-millions-of-users-with-adware/

90 Chapter 6. Dilemma of Malware Datasets

SaveMe. It is a spyware discovered in 2015 that presents itself as an SMS and contact
list backup application11. It asks the user his name and phone number, and sends them
to a remote server alongside with other device’s sensitive information and the contact
list. In addition, it sends SMS messages and makes calls to a numbers provided by the
server. To spread the malware, SMS messages are sent to all the user’s contact with a
link to download it. Finally, to avoid its removal, the malware simply deletes its icon
from the launcher so make user forget about its presence.

WipeLocker. It is a malware discovered in 2014 that wipes off the SD card12. It
blocks some social apps with a fullscreen message stating "Obey or be hacked". It
also sends this message to all contacts, and intercepts incoming messages and respond
to them automatically with the same message. WipeLocker starts after rebooting the
phone and asks for admin rights.

Cajino. It is a spyware discovered in 2015 that receives commands through the Baidu
Cloud Push service. I was downloaded from Google Play more than 50,000 times. It
leeks SMS messages, contacts, device information, phone number and list of all files. In
addition, the malware can remove files, record sound and send SMS messages depend-
ing on the received commands.

Kharon dataset has helped us to think about advanced protection mechanisms that
malware uses to hide its malicious intents. For instance, we noticed that implicit calls
has a negative effect on dynamic execution because they do not appear on CFGs. Kharon
is not meant to conduct large scale security tools testing. It is rather better at under-
standing malware details so that one can build a good detection approach. Indeed, this
collection of malware is very detailed and diverse. However, malware samples goes old
and new ones appear on the landscape on a regular basis. Thus, a need for a continually
updated and well documented dataset persists.

6.5 Choices Made in This Dissertation
We use two datasets that we build to conduct experiments to evaluate our newly designed
tools.

11https://blog.lookout.com/socialpath
12http://www.virqdroid.com/2014/09/android-wipelocker-obey-or-be-hacked.html

https://blog.lookout.com/socialpath
http://www.virqdroid.com/2014/09/android-wipelocker-obey-or-be-hacked.html

6.6. Conclusion 91

GPFinder. It was designed to build CFGs that include explicit and implicit calls, and
provide execution paths towards targeted code. This pushed us to look for a big and di-
verse malware dataset to test our tool. Indeed, Kharon was a well documented dataset.
However, its small size discouraged us from using it to evaluate GPFinder. We opted for
using a big malware collection from Koudoos that contained more than 14k randomly
selected samples because we didn’t have an idea about the their families. This way, we
were almost certain that the dataset is diverse enough to represent many malware fam-
ilies. In addition, Koodous was updating his collection regularly, which was important
for us since new malware was released every day. We have published online the list of
samples we used for this experiment alongside with the detailed results13 [22].

TriggerDroid. The goal of TriggerDroid is to trigger suspicious code that may be
present in Android applications. Consequently, we needed a highly diverse dataset to
test if it works in most of the cases. By the time we started developing TriggerDroid,
AMD was released, so we decided to use it in our experiment. To cover all possible cases
in this dataset, we took a sample from each variety of in each family of malware, for a
total of 135 varieties covering 71 families. This high diversity caused a lot of special
cases which needed careful inspection. That kept the triggering rate of TriggerDroid
relatively low, which we explained in the previous chapter.

6.6 Conclusion
In this chapter we explained the dilemma of Android malware datasets between large
scale collections with few details about the samples, and small collections with highly
documented reports. We pointed out the labeling inconsistency issue and discovered
the most important existing datasets. Then, we presented Kharon, our well documented
collection of malware. Finally, we explained why we chose certain datasets to evaluate
our contributions.

13http://kharon.gforge.inria.fr/gpfinder.html

http://kharon.gforge.inria.fr/gpfinder.html

93

Chapter 7

Conclusion and Perspectives

7.1 Conclusion
This dissertation is focused on exposing real intents of Android application by triggering
any suspicious code. First, we presented the important background information about
the Android ecosystem that is necessary to understand our contributions in the field of
Android malware security. We explained the Android platform, how application are
put together, how they communicate with the Android operating system, and how the
execution flow passes between their components.

Then, we presented the most relevant categories of malware that targets this plat-
form. We showed the techniques that were proposed in the last years to fight against
the spread of malware by understanding how it works, detecting its presence, and pro-
tecting the platform and the user from its harmfulness. In addition, we demonstrated
the importance of control flow graphs to many Android malware analysis tools. We
showed that the quality of these CFGs is crucial for the security tools that are based on
them. Furthermore, we tackled the question of runtime analysis of Android malware.
More precisely, why triggering the suspicious code can be crucial to detect any harmful
intention that malware authors may hide in their applications?

Next, we highlighted the importance of Control Flow Graphs in order to analyze
Android application. We showed that CFGs built for Android applications may be in-
complete because of the heavy use of Android callbacks. We also presented our tool,
GPFinder, that is able to build CFGs for Android applications taking into account An-
droid callbacks and implicit interprocedural calls. It also finds execution paths towards
suspicious code locations, which allows launching them if needed.

After, we investigated the techniques of preventing the malicious code from execut-
ing in runtime analysis environments, which are used by Android malware to escape

94 Chapter 7. Conclusion and Perspectives

detection by automatic vetting tools. We showed the importance of exposing the real
intent of Android applications in order to detect malicious behaviors and protect the end
user from harmful programs. We presented our tool, TriggerDroid, that is able to take
an Android application, trigger the suspicious code locations and expose its real behav-
ior. Unlike other existing approaches, TriggerDroid aims at exposing the application
malicious behavior and preserving the app’s original context at the same time.

Finally, we discussed the different datasets that were used in our experiments, and
we presented the Kharon dataset, a detailed manually reversed dataset.

7.2 Perspectives

7.2.1 Short Term Perspectives
The triggering rate of TriggerDroid is low compared with some other existing ap-
proaches. We have several possible tracks to patch it and improve the triggering of
suspicious code. This includes:

Framework events We rely on framework events to launch entry point methods. This
includes broadcasting intents like SMS_RECEIVED and BOOT_COMPLETED, and di-
rectly starting some components, which is the case for activities and services in
particular. If for some reason the targeted component does not start, when the
intent broadcasting requires an admin privilege for instance, we will have a small
chance to trigger the suspicious code.

Condition altering We modify conditions by inserting new variable assignments be-
fore them depending on the selected strategy, as explained in Section 5.3.1. We
do take delicate statements that may crash the app into consideration. However,
we check only statements that perform division to avoid division by zero. In ad-
dition, we do not check the possible negative effects of our alteration in other
methods. This could also be a possible cause of the low trigger rate.

CFG completeness Our CFGs are generated only from the bytecode present in the
.dex file. We do not analyze any dynamically loaded bytecode nor native code.
This could have a negative impact on the completeness of the CFG. Consequently,
some suspicious code could be unreachable. For example, when attackers use
automatic packers that hide the payload by packing it and then unpacking it at
runtime.

7.2. Perspectives 95

Over approximated paths While studying information flows in Linux systems, L Geor-
get et al. pointed out that some control flow paths are impossible to take, because
of the contradictory conditions they have [101]. For instance, if we check if(b)
to do some task, and later we check again if(b), it would be impossible to take
the path if(b) then → if(b) else without modifying the value of b in be-
tween. We could have similar situations in Android programs. Thus, this could
be a possible factor of keeping our triggering rate low.

Bugs in TriggerDroid We are already aware of the presence of some bugs in the imple-
mentation of TriggerDroid. However, some bugs are tedious to track because they
do not crash the analysis program. In addition, these only happen on few samples.
Thus, they are difficult to reproduce on small code and require to investigate the
full code of the faulty sample. We are actively working on this track.

Buggy malware Because of easiness of developing and publishing Android malware
nowadays, we found some samples that are very badly developed. Sometimes
they crash at the start. With many samples, it could be nontrivial to know if the
triggering method does not work or it is because of the sample.

Blocking code Some times, a method that takes a while is called in the middle of the
selected execution path. This can prevent the targeted code from launching in a
short analysis time. TriggerDroid does not handle this case which could partici-
pate in preventing suspicious code triggering.

Complex objects Until now, we handle only simple variable types, such as integers,
boolean, strings .etc. However, some conditions depend on complex objects. Take
the example of if(A.equals(B)) with A and B two complex objects. This is trans-
lated into Jimple approximately like this: $b1=A.equals(B); if ($b1) then
goto labelX. To take the "then" branch; TriggerDroid forces the condition by
inserting right before it this assignment $b1=true;. This indeed bypasses the
condition, but it may cause negative effects later in the execution path since A and
B are not equal.

We are currently investigating all the aforementioned tracks to improve the triggering
rate of our approach.

Sometimes when we do not succeed to trigger malicious code in a large scale dataset,
we find it difficult to know if the sample is not functioning at all because of a bad

96 Chapter 7. Conclusion and Perspectives

development or an incompatibility, or it is because our method fails to trigger it. This
may seems trivial for few samples where we can manually check them. However, when
the dataset gets bigger, an automatic approach is needed to cope with it. A possible track
could be to find an optimal environment where the malware runs without any crash, then
try to modify its code to trigger the suspicious parts.

7.2.2 Long Term Perspectives
Our static analysis work presented in this dissertation is done on the bytecode available
inside the .apk file at the analysis time. This method can miss any code that is down-
loaded dynamically from a remote server at runtime, it does not analyze it statically.
Nevertheless, TriggerDroid is configured to mark dynamic code loading as suspicious,
and it launches the part of the application that loads code. Any good monitoring tool
can catch and analyze the code loaded at runtime. TriggerDroid is deliberately designed
to not classify the executed code and let this task to other tools. It solely makes sure that
the targeted code location was indeed triggered, in this case, the code that dynamically
loads another code. However, TriggerDroid can be extended to catch and analyze the
dynamically loaded code. Indeed, all the pieces that analyze the bytecode, modify it,
launch the application and checks if the targeted code was launched are implemented in
TriggerDroid. We believe that adding a module to analyze dynamically loaded code is
feasible.

Similarly, CFGs are built only from the .dex bytecode. A possible extension of our
work could be to analyze native and dynamically loaded code to complete the CFG. For
instance, we could add a module that adjusts the CFG on the fly to add method CFGs
and interprocedural edges when a bytecode class is dynamically loaded.

Malicious code protections have evolved over time since the apparition of the first
Android malware. However, as far as we know, there is no large scale study that high-
lights evolution of these protection mechanisms. We believe that this part of the litera-
ture is not well studied and it merits further investigations, because it can help to design
better analysis and detection solutions.

Nowadays, collecting a large scale dataset is not a hard problem. Nevertheless,
giving sufficient information about its samples is indeed a non-trivial task. Since we
had some experiment with malware dataset, we believe that a good one should include
for each malware at least information about: the nature of the malicious actions. How
are they triggered? Is the malware obfuscated? Is it piggybacked inside another app?
What are the platform versions on which this malware can be executed? etc. This can

7.2. Perspectives 97

be done manually only for few samples because of the huge required effort. However,
we believe that analysis techniques are quite mature to give a lot of information about
malware. This kind of dataset could be existing but, as far as we know, there is no public
one. For instance, Google is known for having rich reports about Android applications.
This includes static and dynamic features, and developer relationships to detect non-
harmful applications that are created by a developer that may have been previously
associated with the creation of a malware [102].

99

Author’s Publications

These are the publications of the author during his PhD thesis:

1. Mourad Leslous, Valérie Viet Triem Tong, Jean-François Lalande, Thomas Genet.
GPFinder: Tracking the Invisible in Android Malware. 12th International Con-
ference on Malicious and Unwanted Software, Oct 2017, Fajardo, Puerto Rico.
IEEE Conputer Society, 12th International Conference on Malicious and Un-
wanted Software, 2017.

2. Mourad Leslous, Jean-François Lalande, and Valérie Viet Triem Tong. "Poster:
Using Implicit Calls to Improve Malware Dynamic Execution." 37th IEEE Sym-
posium on Security and Privacy. 2016. Publisher: IEEE Computer Society.

3. Valérie Viet Triem Tong, Aurélien Trulla, Mourad Leslous, Jean-François La-
lande. Information flows at OS level unmask sophisticated Android malware.
14th International Conference on Security and Cryptography, Jul 2017, Madrid,
Spain. SciTePress, 6, pp.578-585, 2017

4. Nicolas Kiss and Jean-Francois Lalande and Mourad Leslous and Valérie Viet
Triem Tong. Kharon Dataset: Android Malware under a Microscope. USENIX
Association. The LASER Workshop: Learning from Authoritative Security Ex-
periment Results. 2016 May 26:1.

5. Valérie Viet Triem Tong, Jean-François Lalande, Mourad Leslous. Challenges
in Android Malware Analysis. ERCIM News, ERCIM, 2016, Special Theme:
Cybersecurity, pp.42-43.

6. Jean-François Lalande, Valérie Viêt Triem Tong, Mourad Leslous, Pierre Graux.
Challenges for Reliable and Large Scale Evaluation of Android Malware Anal-
ysis. SHPCS 2018 - International Workshop on Security and High Performance
Computing Systems, Jul 2018, Orléans, France. IEEE Computer Society, pp.1-3

101

Bibliography

[1] IDC, Smartphone os market share, 2016 q2, http://www.idc.com/prodserv/
smartphone-os-market-share.jsp, Accessed: 2016-10-21, 2016.

[2] Statista, Number of available applications in the google play store from decem-
ber 2009 to december 2017, 2018.

[3] Google, Android security : 2017 year in review, https://source.android.
com/security/reports/Google_Android_Security_2017_Re- port_
Final.pdf, 2018.

[4] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti, and M.
Rajarajan, “Android security: A survey of issues, malware penetration, and de-
fenses”, IEEE Communications Surveys Tutorials, vol. 17, no. 2, pp. 998–1022,
2015, ISSN: 1553-877X. DOI: 10.1109/COMST.2014.2386139.

[5] L. Li, D. Li, T. F. Bissyandé, J. Klein, Y. Le Traon, D. Lo, and L. Cavallaro, “Un-
derstanding android app piggybacking: A systematic study of malicious code
grafting”, IEEE Transactions on Information Forensics and Security, vol. 12,
no. 6, pp. 1269–1284, 2017.

[6] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “FlowDroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps”, in 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
ser. PLDI ’14, Edinburgh, United Kingdom: ACM, 2014, pp. 259–269.

[7] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna, “Execute this!
analyzing unsafe and malicious dynamic code loading in android applications.”,
in Network and Distributed System Security (NDSS) Symposium, vol. 14, 2014,
pp. 23–26.

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://source.android.com/security/reports/Google_Android_Security_2017_Re- port_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Re- port_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Re- port_Final.pdf
https://doi.org/10.1109/COMST.2014.2386139

102 Bibliography

[8] A. Apvrille and R. Nigam, Obfuscation in android malware, and how to fight
back, https : / / www . virusbulletin . com / virusbulletin / 2014 / 07 /
obfus-cation-android-malware-and-how-fight-back, 2014.

[9] V. Rastogi, Y. Chen, and X. Jiang, “Droidchameleon: Evaluating android anti-
malware against transformation attacks”, in Proceedings of the 8th ACM SIGSAC
symposium on Information, computer and communications security, ACM, 2013,
pp. 329–334.

[10] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid: Automatic re-
construction of android malware behaviors.”, in NDSS, 2015.

[11] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and G. Vigna,
“Triggerscope: Towards detecting logic bombs in android applications”, in Se-
curity and Privacy (SP), 2016 IEEE Symposium on, IEEE, 2016, pp. 377–396.

[12] M. Y. Wong and D. Lie, “Intellidroid: A targeted input generator for the dynamic
analysis of android malware.”, in NDSS, vol. 16, 2016, pp. 21–24.

[13] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-based
malware detection system for android”, in Proceedings of the 1st ACM work-
shop on Security and privacy in smartphones and mobile devices, ACM, 2011,
pp. 15–26.

[14] H. Gunadi and A. Tiu, “Efficient runtime monitoring with metric temporal logic:
A case study in the android operating system”, in International Symposium on
Formal Methods, Springer, 2014, pp. 296–311.

[15] F. E. Allen, “Control flow analysis”, in Proceedings of a Symposium on Com-
piler Optimization, Urbana-Champaign, Illinois: ACM, 1970, pp. 1–19. DOI:
10.1145/800028.808479.

[16] X. Pan, X. Wang, Y. Duan, X Wang, and H. Yin, “Dark hazard: Learning-
based, large-scale discovery of hidden sensitive operations in android apps”, in
Proceedings of the ISOC Network and Distributed System Security Symposium
(NDSS), 2017.

[17] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma: Programmable
ui-automation for large-scale dynamic analysis of mobile apps”, in Proceedings
of the 12th annual international conference on Mobile systems, applications,
and services, ACM, 2014, pp. 204–217.

https://www.virusbulletin.com/virusbulletin/2014/07/obfus- cation-android-malware-and-how-fight-back
https://www.virusbulletin.com/virusbulletin/2014/07/obfus- cation-android-malware-and-how-fight-back
https://doi.org/10.1145/800028.808479

Bibliography 103

[18] S. Rasthofer, S. Arzt, S. Triller, and M. Pradel, “Making malory behave mali-
ciously: Targeted fuzzing of android execution environments”, in Proceedings
of the 39th International Conference on Software Engineering, ser. ICSE ’17,
Buenos Aires, Argentina: IEEE Press, 2017, pp. 300–311, ISBN: 978-1-5386-
3868-2. DOI: 10.1109/ICSE.2017.35. [Online]. Available: \url{https:
//doi.org/10.1109/ICSE.2017.35}.

[19] A. Abraham, R. Andriatsimandefitra, A. Brunelat, J.-F. Lalande, and V. Viet
Triem Tong, “Grodddroid: A gorilla for triggering malicious behaviors”, in 10th
International Conference on Malicious and Unwanted Software, IEEE Com-
puter Society, 2015.

[20] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden, “Harvesting runtime data
in android applications for identifying malware and enhancing code analysis”,
Technical Report TUD-CS-2015-0031, EC SPRIDE, Tech. Rep., 2015.

[21] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth analysis of cur-
rent android malware”, in International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, Springer, 2017, pp. 252–276.

[22] M. Leslous, V. Viet Triem Tong, J.-F. Lalande, and T. Genet, “GPFinder: Track-
ing the Invisible in Android Malware”, in 12th International Conference on Ma-
licious and Unwanted Software, Fajardo, Puerto Rico: IEEE Conputer Society,
Oct. 2017. [Online]. Available: https://hal-centralesupelec.archives-
ouvertes.fr/hal-01584989.

[23] N. Kiss, J.-F. Lalande, M. Leslous, and V. V. T. Tong, “Kharon dataset: Android
malware under a microscope”, in The LASER Workshop: Learning from Au-
thoritative Security Experiment Results (LASER 2016), San Jose, CA: USENIX
Association, 2016, pp. 1–12, ISBN: 978-1-931971-35-5. [Online]. Available:
\url{https : / / www . usenix . org / conference / laser2016 / program /
presentation/kiss}.

[24] Z. Aung and W. Zaw, “Permission-based android malware detection”, Interna-
tional Journal of Scientific and Technology Research, vol. 2, no. 3, pp. 228–234,
2013.

[25] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru, and
I. Molloy, “Using probabilistic generative models for ranking risks of android
apps”, in Proceedings of the 2012 ACM conference on Computer and commu-
nications security, ACM, 2012, pp. 241–252.

https://doi.org/10.1109/ICSE.2017.35
\url{https://doi.org/10.1109/ICSE.2017.35}
\url{https://doi.org/10.1109/ICSE.2017.35}
https://hal-centralesupelec.archives-ouvertes.fr/hal-01584989
https://hal-centralesupelec.archives-ouvertes.fr/hal-01584989
\url{https://www.usenix.org/conference/laser2016/program/presentation/kiss}
\url{https://www.usenix.org/conference/laser2016/program/presentation/kiss}

104 Bibliography

[26] V. Moonsamy, J. Rong, and S. Liu, “Mining permission patterns for contrasting
clean and malicious android applications”, Future Generation Computer Sys-
tems, vol. 36, pp. 122–132, 2014.

[27] C.-Y. Huang, Y.-T. Tsai, and C.-H. Hsu, “Performance evaluation on permission-
based detection for android malware”, in Advances in Intelligent Systems and
Applications-Volume 2, Springer, 2013, pp. 111–120.

[28] J. Schütte, R. Fedler, and D. Titze, “Condroid: Targeted dynamic analysis of an-
droid applications”, in 2015 IEEE 29th International Conference on Advanced
Information Networking and Applications, 2015, pp. 571–578. DOI: 10.1109/
AINA.2015.238.

[29] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smartdroid:
An automatic system for revealing ui-based trigger conditions in android appli-
cations”, in 2nd ACM workshop on Security and privacy in smartphones and
mobile devices, ACM, 2012, pp. 93–104.

[30] S. Smalley and R. Craig, “Security enhanced (se) android: Bringing flexible mac
to android.”, in NDSS, vol. 310, 2013, pp. 20–38.

[31] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Taylor, S. J. Turner,
and J. F. Farrell, “The inevitability of failure: The flawed assumption of secu-
rity in modern computing environments”, in Proceedings of the 21st National
Information Systems Security Conference, vol. 10, 1998, pp. 303–314.

[32] F. E. Allen, “Control flow analysis”, in Proceedings of a Symposium on Com-
piler Optimization, Urbana-Champaign, Illinois: ACM, 1970, pp. 1–19. DOI:
10.1145/800028.808479. [Online]. Available: \url{http://doi.acm.
org/10.1145/800028.808479}.

[33] E. J. Chikofsky and J. H. Cross, “Reverse engineering and design recovery: A
taxonomy”, IEEE software, vol. 7, no. 1, pp. 13–17, 1990.

[34] R. Vallee-Rai and L. J. Hendren, “Jimple: Simplifying java bytecode for analy-
ses and transformations”, 1998.

[35] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan, “Soot -
a java bytecode optimization framework”, in 1999 Conference of the Centre for
Advanced Studies on Collaborative Research, Mississauga, Ontario, Canada:
IBM Press, 1999, pp. 13–.

https://doi.org/10.1109/AINA.2015.238
https://doi.org/10.1109/AINA.2015.238
https://doi.org/10.1145/800028.808479
\url{http://doi.acm.org/10.1145/800028.808479}
\url{http://doi.acm.org/10.1145/800028.808479}

Bibliography 105

[36] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau, J.
Klein, and L. Traon, “Static analysis of android apps: A systematic literature
review”, Information and Software Technology, vol. 88, pp. 67–95, 2017.

[37] J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented pro-
grams using static class hierarchy analysis”, in European Conference on Object-
Oriented Programming, Springer, 1995, pp. 77–101.

[38] D. F. Bacon and P. F. Sweeney, “Fast static analysis of c++ virtual function
calls”, ACM Sigplan Notices, vol. 31, no. 10, pp. 324–341, 1996.

[39] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon,
and C. Godin, Practical virtual method call resolution for Java, 10. ACM, 2000,
vol. 35.

[40] O. Lhoták and L. Hendren, “Scaling java points-to analysis using spark”, in
Compiler Construction, G. Hedin, Ed., Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2003, pp. 153–169, ISBN: 978-3-540-36579-2.

[41] L. O. Andersen, “Program analysis and specialization for the c programming
language”, PhD thesis, University of Cophenhagen, 1994.

[42] B. Steensgaard, “Points-to analysis in almost linear time”, in Proceedings of
the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, ACM, 1996, pp. 32–41.

[43] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A. Gunter, and
K. Nahrstedt, “Identity, location, disease and more: Inferring your secrets from
android public resources”, in Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, ACM, 2013, pp. 1017–1028.

[44] G. Meng, Y. Xue, C. Mahinthan, A. Narayanan, Y. Liu, J. Zhang, and T. Chen,
“Mystique: Evolving android malware for auditing anti-malware tools”, in Pro-
ceedings of the 11th ACM on Asia conference on computer and communications
security, ACM, 2016, pp. 365–376.

[45] Y. Zhang, Y. Li, T. Tan, and J. Xue, “Ripple: Reflection analysis for android apps
in incomplete information environments”, Software: Practice and Experience,
vol. 48, no. 8, pp. 1419–1437, 2018.

106 Bibliography

[46] L. Li, T. F. Bissyandé, D. Octeau, and J. Klein, “Droidra: Taming reflection to
support whole-program analysis of android apps”, in Proceedings of the 25th In-
ternational Symposium on Software Testing and Analysis, ACM, 2016, pp. 318–
329.

[47] G. Suarez-Tangil, J. E. Tapiador, F. Lombardi, and R. Di Pietro, “Alterdroid:
Differential fault analysis of obfuscated smartphone malware”, IEEE Transac-
tions on Mobile Computing, vol. 15, no. 4, pp. 789–802, 2016.

[48] Y. Chen, Y. Zhang, Z. Wang, L. Xia, C. Bao, and T. Wei, “Adaptive android
kernel live patching”, in Proceedings of the 26th USENIX Security Symposium
(USENIX Security 17), 2017.

[49] C. Ren, P. Liu, and S. Zhu, “Windowguard: Systematic protection of gui security
in android”, in Proc. of the Annual Symposium on Network and Distributed
System Security (NDSS), 2017.

[50] G. Costa, P. Gasti, A. Merlo, and S.-H. Yu, “Flex: A flexible code authentication
framework for delegating mobile app customization”, in Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security, ACM,
2016, pp. 389–400.

[51] J. Seo, D. Kim, D. Cho, I. Shin, and T. Kim, “Flexdroid: Enforcing in-app priv-
ilege separation in android.”, in NDSS, 2016.

[52] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. v. Styp-Rekowsky, “Box-
ify: Full-fledged app sandboxing for stock android”, 2015.

[53] X. Wang, K. Sun, Y. Wang, and J. Jing, “Deepdroid: Dynamically enforcing
enterprise policy on android devices.”, in NDSS, 2015.

[54] G. S. Tuncay, S. Demetriou, K. Ganju, and C. A. Gunter, “Resolving the predica-
ment of android custom permissions”, in ISOC Network and Distributed Sys-
tems Security Symposium (NDSS), 2018.

[55] S. Rasthofer, S. Arzt, E. Lovat, and E. Bodden, “Droidforce: Enforcing com-
plex, data-centric, system-wide policies in android”, in Availability, Reliability
and Security (ARES), 2014 Ninth International Conference on, 2014, pp. 40–49.

[56] C. Yagemann and W. Du, “Intentio ex machina: Android intent access control
via an extensible application hook”, in European Symposium on Research in
Computer Security, Springer, 2016, pp. 383–400.

Bibliography 107

[57] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens,
“Drebin: Effective and explainable detection of android malware in your pocket.”,
in Ndss, vol. 14, 2014, pp. 23–26.

[58] H. Fu, Z. Zheng, S. Bose, M. Bishop, and P. Mohapatra, “Leaksemantic: Identi-
fying abnormal sensitive network transmissions in mobile applications”, in IN-
FOCOM 2017-IEEE Conference on Computer Communications, IEEE, IEEE,
2017, pp. 1–9.

[59] A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti, A. Zand, C. Kruegel,
and G. Vigna, “Obfuscation-resilient privacy leak detection for mobile apps
through differential analysis”, in Proceedings of the ISOC Network and Dis-
tributed System Security Symposium (NDSS), 2017, pp. 1–16.

[60] K. Xu, Y. Li, and R. H. Deng, “Iccdetector: Icc-based malware detection on
android”, IEEE Transactions on Information Forensics and Security, vol. 11,
no. 6, pp. 1252–1264, 2016.

[61] R. Slavin, X. Wang, M. B. Hosseini, J. Hester, R. Krishnan, J. Bhatia, T. D.
Breaux, and J. Niu, “Toward a framework for detecting privacy policy violations
in android application code”, in Proceedings of the 38th International Confer-
ence on Software Engineering, ACM, 2016, pp. 25–36.

[62] X. Chen and S. Zhu, “Droidjust: Automated functionality-aware privacy leakage
analysis for android applications”, in Proceedings of the 8th ACM Conference
on Security & Privacy in Wireless and Mobile Networks, ACM, 2015, p. 5.

[63] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E.
Bodden, D. Octeau, and P. McDaniel, “Iccta: Detecting inter-component privacy
leaks in android apps”, in Proceedings of the 37th International Conference on
Software Engineering-Volume 1, IEEE Press, 2015, pp. 280–291.

[64] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer, and E.
Bodden, “Mining apps for abnormal usage of sensitive data”, in Proceedings
of the 37th International Conference on Software Engineering-Volume 1, IEEE
Press, 2015, pp. 426–436.

[65] S. Arzt, S. Rasthofer, and E. Bodden, “Susi: A tool for the fully automated
classification and categorization of android sources and sinks”, University of
Darmstadt, Tech. Rep. TUDCS-2013-0114, 2013.

108 Bibliography

[66] A. Martín, A. Calleja, H. D. Menéndez, J. Tapiador, and D. Camacho, “Adroit:
Android malware detection using meta-information”, in Computational Intelli-
gence (SSCI), 2016 IEEE Symposium Series on, IEEE, 2016, pp. 1–8.

[67] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: Scalable and
accurate zero-day android malware detection”, in Proceedings of the 10th inter-
national conference on Mobile systems, applications, and services, ACM, 2012,
pp. 281–294.

[68] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and J. Blasco, “Dendroid: A
text mining approach to analyzing and classifying code structures in android
malware families”, Expert Systems with Applications, vol. 41, no. 4, pp. 1104–
1117, 2014.

[69] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto, and L. Cav-
allaro, “Droidsieve: Fast and accurate classification of obfuscated android mal-
ware”, in Proceedings of the Seventh ACM on Conference on Data and Appli-
cation Security and Privacy, ACM, 2017, pp. 309–320.

[70] S. Mutti, Y. Fratantonio, A. Bianchi, L. Invernizzi, J. Corbetta, D. Kirat, C.
Kruegel, and G. Vigna, “Baredroid: Large-scale analysis of android apps on real
devices”, in Proceedings of the 31st Annual Computer Security Applications
Conference, ACM, 2015, pp. 71–80.

[71] F. Maggi, A. Valdi, and S. Zanero, “Andrototal: A flexible, scalable toolbox and
service for testing mobile malware detectors”, in Proceedings of the Third ACM
workshop on Security and privacy in smartphones & mobile devices, ACM,
2013, pp. 49–54.

[72] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smartdroid:
An automatic system for revealing ui-based trigger conditions in android appli-
cations”, in Proceedings of the second ACM workshop on Security and privacy
in smartphones and mobile devices, ACM, 2012, pp. 93–104.

[73] S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam, M. Ahmadi, J. Kinder, and
L. Cavallaro, “Droidscribe: Classifying android malware based on runtime be-
havior”, in Security and Privacy Workshops (SPW), 2016 IEEE, IEEE, 2016,
pp. 252–261.

Bibliography 109

[74] R. Spreitzer, F. Kirchengast, D. Gruss, and S. Mangard, “Procharvester: Fully
automated analysis of procfs side-channel leaks on android”, in Proceedings
of the 2018 on Asia Conference on Computer and Communications Security,
ACM, 2018, pp. 749–763.

[75] L. Li, D. Li, T. F. Bissyandé, J. Klein, H. Cai, D. Lo, and Y. L. Traon, “Automat-
ically locating malicious packages in piggybacked android apps”, in Proceed-
ings of the 4th International Conference on Mobile Software Engineering and
Systems, IEEE Press, 2017, pp. 170–174.

[76] L.-K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os and dalvik
semantic views for dynamic android malware analysis.”, in USENIX security
symposium, 2012, pp. 569–584.

[77] F. Bellard, “Qemu, a fast and portable dynamic translator.”, in USENIX Annual
Technical Conference, FREENIX Track, vol. 41, 2005, p. 46.

[78] L. Xue, Y. Zhou, T. Chen, X. Luo, and G. Gu, “Malton: Towards on-device non-
invasive mobile malware analysis for art”, in 26th USENIX Security Symposium
(USENIX Security 17), 2017.

[79] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining api-level features for ro-
bust malware detection in android”, in Security and Privacy in Communication
Networks, ser. LNICST, vol. 127, Sydney, NSW, Australia: Springer Interna-
tional Publishing, 2013, pp. 86–103.

[80] X. Hu, T.-c. Chiueh, and K. G. Shin, “Large-scale malware indexing using
function-call graphs”, in Proceedings of the 16th ACM conference on Computer
and communications security, ACM, 2009, pp. 611–620.

[81] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X.-y. Zhou, and X. Wang,
“Effective and efficient malware detection at the end host.”, in USENIX security
symposium, vol. 4, 2009, pp. 351–366.

[82] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck, “Structural detection of an-
droid malware using embedded call graphs”, in Proceedings of the 2013 ACM
workshop on Artificial intelligence and security, ACM, 2013, pp. 45–54.

[83] M. Lillack, C. Kästner, and E. Bodden, “Tracking load-time configuration op-
tions”, in 29th ACM/IEEE International Conference on Automated Software En-
gineering, ser. ASE ’14, Vasteras, Sweden: ACM, 2014, pp. 445–456, ISBN:
978-1-4503-3013-8. DOI: 10.1145/2642937.2643001.

https://doi.org/10.1145/2642937.2643001

110 Bibliography

[84] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android taint flow
analysis for app sets”, in 3rd ACM SIGPLAN International Workshop on the
State of the Art in Java Program Analysis, ser. SOAP ’14, Edinburgh, United
Kingdom: ACM, 2014, pp. 1–6, ISBN: 978-1-4503-2919-4. DOI: 10 . 1145 /
2614628.2614633.

[85] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. Le Traon,
“Effective inter-component communication mapping in android with epicc: An
essential step towards holistic security analysis”, in 22Nd USENIX Conference
on Security, ser. SEC’13, Washington, DC, USA: USENIX Association, 2013,
pp. 543–558, ISBN: 978-1-931971-03-4.

[86] M. Graa, N. Cuppens-Boulahia, F. Cuppens, and A. Cavalli, “Detecting control
flow in smarphones: Combining static and dynamic analyses”, in 4th Interna-
tional Symposium on Cyberspace Safety and Security, Melbourne, Australia:
Springer Berlin Heidelberg, 2012, pp. 33–47, ISBN: 978-3-642-35362-8. DOI:
10.1007/978-3-642-35362-8_4.

[87] T. Wu, J. Liu, Z. Xu, C. Guo, Y. Zhang, J. Yan, and J. Zhang, “Light-weight,
inter-procedural and callback-aware resource leak detection for android apps”,
IEEE Transactions on Software Engineering, vol. 42, no. 11, pp. 1054–1076,
2016, ISSN: 0098-5589. DOI: 10.1109/TSE.2016.2547385.

[88] M. Junaid, D. Liu, and D. Kung, “Dexteroid: Detecting malicious behaviors
in android apps using reverse-engineered life cycle models”, Computers and
Security, vol. 59, pp. 92 –117, 2016, ISSN: 0167-4048. DOI: http://doi.org/
10.1016/j.cose.2016.01.008.

[89] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev, “Static control-flow analysis
of user-driven callbacks in android applications”, in Proceedings of the 37th
International Conference on Software Engineering-Volume 1, IEEE Press, 2015,
pp. 89–99.

[90] A. Salem, “Stimulation and detection of android repackaged malware with ac-
tive learning”, arXiv preprint arXiv:1808.01186, 2018.

[91] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna, and Y.
Chen, “EdgeMiner: Automatically detecting implicit control flow transitions
through the android framework”, in The 2015 Network and Distributed System
Security, San Diego, CA, USA, 2015.

https://doi.org/10.1145/2614628.2614633
https://doi.org/10.1145/2614628.2614633
https://doi.org/10.1007/978-3-642-35362-8_4
https://doi.org/10.1109/TSE.2016.2547385
https://doi.org/http://doi.org/10.1016/j.cose.2016.01.008
https://doi.org/http://doi.org/10.1016/j.cose.2016.01.008

Bibliography 111

[92] L. Li, D. Li, T. F. Bissyandé, J. Klein, Y. Le Traon, D. Lo, and L. Cavallaro, “Un-
derstanding android app piggybacking: A systematic study of malicious code
grafting”, IEEE Transactions on Information Forensics and Security, vol. 12,
no. 6, pp. 1269–1284, 2017.

[93] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo: Collecting
millions of android apps for the research community”, in 13th International
Conference on Mining Software Repositories, ACM, 2016, pp. 468–471.

[94] R. Vallee-rai and L. Hendren, “Jimple: Simplifying java bytecode for analyses
and transformations”, Jan. 2004.

[95] L. de Moura and N. Bjørner, “Z3: An efficient smt solver”, in Tools and Algo-
rithms for the Construction and Analysis of Systems, C. R. Ramakrishnan and
J. Rehof, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 337–
340, ISBN: 978-3-540-78800-3.

[96] A. Mohaisen and O. Alrawi, “Av-meter: An evaluation of antivirus scans and
labels”, in International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, Springer, 2014, pp. 112–131.

[97] F. Maggi, A. Bellini, G. Salvaneschi, and S. Zanero, “Finding non-trivial mal-
ware naming inconsistencies”, in International Conference on Information Sys-
tems Security, Springer, 2011, pp. 144–159.

[98] M. Hurier, G. Suarez-Tangil, S. K. Dash, T. F. Bissyandé, Y. L. Traon, J. Klein,
and L. Cavallaro, “Euphony: Harmonious unification of cacophonous anti-virus
vendor labels for android malware”, in Proceedings of the 14th International
Conference on Mining Software Repositories, IEEE Press, 2017, pp. 425–435.

[99] X. Jiang and Y. Zhou, “Dissecting android malware: Characterization and evo-
lution”, in 2012 IEEE Symposium on Security and Privacy, IEEE, 2012, pp. 95–
109.

[100] A. Salem and A. Pretschner, “Poking the bear: Lessons learned from probing
three android malware datasets”, in Proceedings of the 1st International Work-
shop on Advances in Mobile App Analysis, ACM, 2018, pp. 19–24.

[101] L. Georget, M. Jaume, F. Tronel, G. Piolle, and V. V. T. Tong, “Verifying the
reliability of operating system-level information flow control systems in linux”,
in Formal Methods in Software Engineering (FormaliSE), 2017 IEEE/ACM 5th
International FME Workshop on, IEEE, 2017, pp. 10–16.

112 Bibliography

[102] Google, Android security : 2016 year in review, https://source.android.
com/security/reports/Google_Andro- id_Security_2016_Report_
Final.pdf, 2017.

https://source.android.com/security/reports/Google_Andro- id_Security_2016_Report_Final.pdf
https://source.android.com/security/reports/Google_Andro- id_Security_2016_Report_Final.pdf
https://source.android.com/security/reports/Google_Andro- id_Security_2016_Report_Final.pdf

Titre : Mettre en avant et exécuter les chemins suspicieux dans les malwares Android

Mots clés : Android, malware, analyse, CFG, condition de déclenchement

Résumé : Android est installé sur plus de 80%
des smartphones aujourd’hui. Ses applications
recueillent beaucoup d'informations sur
l'utilisateur. Par conséquent, il est devenu une
cible favorite des cybercriminels. Des approches
récentes tentent de caractériser
automatiquement le comportement malveillant
en forçant l'exécution du code suspicieux. Elles
se basent sur les CFG. Néanmoins, Ces CFG
ne sont pas complets car ils ne prennent pas en
considération les chemins d'exécution qui
passent par le framework. Nous proposons dans
ce mémoire un outil, GPFinder, qui extrait
automatiquement les chemins d'exécution qui
mènent vers les endroits suspicieux du code. Il
fournit aussi des informations clés sur les
applications analysées. Nous utilisons GPFinder
pour étudier une collection de 14224
échantillons de malwares.

Les approches de déclenchement de malware
actuelles soient elles modifient excessivement
l'application et perdent son contexte, soient
elles manipulent les entrées de l'application
sans modifier son code. Cependant, toutes les
conditions de déclenchement ne sont pas
faciles à contourner en manipulant seulement
les entrées. Nous proposons dans ce mémoire
un outil, TriggerDroid, qui a pour objectif de
forcer l'exécution du code suspicieux et garder
son contexte proche de l'originel. Il génère les
événements framework requis pour lancer le
bon composant de l'application, et il satisfait les
conditions de déclenchement nécessaires pour
prendre les chemins d'exécution voulus. Afin
de valider notre approche, nous menons une
expérience sur un ensemble de 135
échantillons de malware de 71 familles
différentes.

Title : Highlight and Execute Suspicious Paths in Android Malware

Keywords : Android, malware, analysis, CFG, triggering condition

Abstract : Android is installed on more than
80% of today's smartphones. Its apps collect a
huge amount of user data. Consequently, it has
become a favorable target for cyber criminals.
Thus, recent approaches try to automatically
characterize the malicious behavior by forcing
the execution of the suspicious code. They
strongly rely on CFGs. However, these CFGs
are incomplete because they do not take into
consideration execution paths that pass through
the framework. We propose in this dissertation a
tool, GPFinder, that automatically exhibits
execution paths towards suspicious locations
and gives key information about the analyzed
applications. We use GPFinder to study a
collection of 14,224 malware samples.

Current malware triggering approaches either
heavily modify the app and lose its context, or
fuzz the input without modifying the app's code.
However, not all triggering conditions can be
bypassed solely by fuzzing the input. We
propose in this dissertation a tool, TriggerDroid,
that has a twofold goal: force the execution of
the suspicious code, and keep its context close
to the original one. It crafts the required
framework events to launch the right app
component, and satisfies the necessary
triggering conditions to take the desired
execution path. To validate our approach, we
led an experiment on a dataset of 135 malware
samples from 71 different families.

	Abstract
	Résumé
	Résumé étendu de la thèse
	Introduction
	Motivating Example
	Goal and Scope of this Dissertation
	Thesis Statement
	Contributions
	Dissertation Outline

	Technical Background
	Android System
	Android Applications
	APK
	Manifest
	Application Components
	Activities
	Services
	Content Providers
	Broadcast Receivers

	Entry Points

	Android Security Features
	Static Analysis
	Control Flow Graph
	Data Flow Graph
	Reverse Engineering
	Analysis Tools
	Intermediate Representations
	Call Graph Construction

	Conclusion

	State of the Art
	Android Malware
	Analysis Escaping Techniques
	Code Obfuscation
	Runtime Analysis Evasion

	Analysis Approaches
	Protection Approaches
	Detection Approaches
	Static Analysis Based Detection Approaches
	Dynamic Analysis Based Detection Approaches

	Characterization Approaches

	Implicit Inter-procedural Calls
	What Are Implicit Calls?
	Implicit Calls in the Literature

	Triggering Approaches
	Conclusion

	GPFinder
	Approach
	Control Flow Graphs Generation
	Suspicious Code Location
	Execution Paths' Search
	GPFinder's Output

	Experiment
	Findings
	Suspicious Code Nature
	Entry Points Types
	Implicit Edges Presence
	Triggering Conditions

	Comparing with Benign Apps
	Discussions
	Conclusion

	Triggering Suspicious Code
	Motivating Example
	Prior static analysis
	Identifying the Suspicious Basic Blocks
	Triggering Conditions and Variables
	Path Computation

	Automatic Triggering
	Triggering Strategies
	Satisfying Triggering Conditions
	Delicate statements
	Malware Alteration and Execution

	Implementation
	Evaluation
	Experimental Setup
	Effectiveness in Reaching a Suspicious Code
	Importance of Execution Paths
	Efficiency
	Comparison with Other Approaches

	Discussions and Perspectives
	Conclusion

	Dilemma of Malware Datasets
	Understanding Malware
	Labeling Malware Families
	Existing Datasets
	Kharon, a Well Documented Dataset
	Choices Made in This Dissertation
	Conclusion

	Conclusion and Perspectives
	Conclusion
	Perspectives
	Short Term Perspectives
	Long Term Perspectives

	Author's Publications
	Bibliography

