
HAL Id: tel-02133371
https://theses.hal.science/tel-02133371v1

Submitted on 18 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Understanding the performance of mutual exclusion
algorithms on modern multicore machines.

Hugo Guiroux

To cite this version:
Hugo Guiroux. Understanding the performance of mutual exclusion algorithms on modern multicore
machines.. Operating Systems [cs.OS]. Université Grenoble Alpes, 2018. English. �NNT : �. �tel-
02133371�

https://theses.hal.science/tel-02133371v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES
Spécialité : Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Hugo GUIROUX

Thèse dirigée par Vivien QUEMA, GRENOBLE INP
et codirigée par Renaud LACHAIZE, UNIV. GRENOBLE ALPES

préparée au sein du Laboratoire Laboratoire d'Informatique de
Grenoble
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Comprendre la performance des algorithmes
d'exclusion mutuelle sur les machines
multicoeurs modernes

Understanding the performance of mutual
exclusion algorithms on modern multicore
machines.

Thèse soutenue publiquement le 17 décembre 2018,
devant le jury composé de :

Monsieur TIMOTHY HARRIS
INGENIEUR, AMAZON A CAMBRIDGE - ROYAUME-UNI, Rapporteur
Monsieur GAËL THOMAS
PROFESSEUR, TELECOM SUD-PARIS, Rapporteur
Monsieur ANDRZEJ DUDA
PROFESSEUR, GRENOBLE INP, Président
Monsieur PASCAL FELBER
PROFESSEUR, UNIVERSITE DE NEUCHATEL - SUISSE, Examinateur
Monsieur VIVIEN QUEMA
PROFESSEUR, GRENOBLE INP, Directeur de thèse
Monsieur RENAUD LACHAIZE
MAITRE DE CONFERENCES, UNIVERSITE GRENOBLE ALPES,
Examinateur

We have arranged the whole system as a society of sequential processes whose
harmonious cooperation is regulated by explicit mutual synchronization statements.

— Edsger W. Dijkstra.

To my wife, Justine. . .

Acknowledgements
First of all, I would like to thank the members of my Ph.D. thesis jury, Dr. Harris, Pr.
Thomas, Pr. Duda and Pr. Felber, which have taken the time to examine my work and
made meaningful comments and remarks before and during the defense. It was an
honour for me to present my work in front of such a prestigious jury. I would also like
to thank my two Ph.D. advisors, Renaud Lachaize and Vivien Quéma, for the long
hours that we spent together discussing research ideas, profound scientific questions
as well as non-scientific related topics. They both taught me to recognize what is a
great research paper, to what standards my work should hold and how to make strong
and interesting scientific work. They were here to support me during the difficult yet
exciting experience that a Ph.D. can be.

Doing this Ph.D. would have been less pleasurable without the member of the ERODS
team, with which I had countless discussions. More precisely, I want to thank (in
alphabetical order): Maha Alsayasneh, Fabienne Boyer, Thomas Calmant, Matthieu
Caneill, Jeremie Decouchant, Amadou Diarra, Didier Donsez, Christopher Ferreira,
Soulaimane Guedria, Olivier Gruber, Mohamad Jaafar, Vikas Jaiman, Vincent Lamotte,
Vania Marangozova-Martin, Muriel Nguimtsa, Nicolas Palix, Noel de Palma, Albin Pe-
tit, Ahmed El Rheddhane and Thomas Ropars. This thesis would not have happened
without the financial support of the LIG and the University Grenoble Alpes.

During this three years, I had the chance to do an internship inside the MLE team
at Oracle Labs Zurich. This experience brought me a lot and opened my mind to
other interesting research topics. First and foremost, I would like to thank Vasileios
Trigonakis for being a friend, helping me and advising me when I needed it. Thanks
to the MLE team and the Oracle Labs: Matthias Branter, Lucas Braun, Laurent Daynès,
Bastian Hossbach, Alexander Ulrich and Alexander Schubert.

A big shout out to all my friends that were here to support me during the three long
years. Without you, I would not have done the Ph.D. that I did, even if you were
not directly involved in my work. All the week-ends and holidays that we spent
together helped me tremendously. A Ph.D. is a long journey, friends and family are
the strong foundation that I needed. Thanks to Fairouz Azzoune, Carla Balbo, Perrine
Blachon, Yoann Blein, Sandro Chionna, Jeanne Detroye, Aurélie Estermann, Clément
Louis, Jennyfer Martinez, Simon Moura, Célia Muffato. Family is important: they
provide a safe environment where anyone can talk openly about their feeling without
being judged. I would like to thank both my family and my in-laws for their support

iii

Acknowledgements

throughout the years. A special thank to my sister, who told me to not always take
things too seriously and enjoy the life that I had, and to my father, who always gives
me invaluable advices and who taught me to always be curious about everything.
Finally, a final word for the person that is the most important in my life: Justine.
Without you, I would not have done this Ph.D., and I would not have accomplished
a lot of things that happened in my life. You were always here to support me and
encourage me in everything that I tried to accomplish. You always believed in me,
even when I was not. Thank you for everything that you did.

Zurich, 05 January 2019 H. G.

iv

Preface
This thesis presents the research conducted in the ERODS team at Laboratoire d’Inform-
atique de Grenoble, to pursue a Ph.D. in Computer Science from the doctoral school
“Mathématiques, Sciences et Technologies de l’Information, Informatique” of the Uni-
versité Grenoble-Alpes. My research activities have been supervised by Vivien Quéma
(ERODS / Grenoble INP) and Renaud Lachaize (ERODS / Université Grenoble Alpes).
Some of the works presented in this thesis have been done in collaboration with
members of the Distributed Programming Laboratory (LPD) of Ecole Polytechnique
Fédérale de Lausanne (EPFL) [69].

This thesis studies and analyzes mutual exclusion lock algorithms on multicore appli-
cations running on NUMA multicore machines.

This work led to the following publications (authors are in alphabetical order):

• Hugo Guiroux, Renaud Lachaize, and Vivien Quéma. “Multicore Locks: The
Case Is Not Closed Yet”. 2016 USENIX Annual Technical Conference, USENIX
ATC 2016, Denver, CO, USA, June 22-24, 2016. Ed. by Ajay Gulati and Hakim
Weatherspoon. USENIX Association, 2016, pp. 649–662

• Rachid Guerraoui, Hugo Guiroux, Renaud Lachaize, Vivien Quéma, and Vasileios
Trigonakis. “Lock – Unlock: Is That All? A Pragmatic Analysis of Locking in
Software Systems”. ACM Transaction on Computer System (2018) (to appear)

Grenoble, Summer 2018 H. G.

v

Abstract
A plethora of optimized mutual exclusion lock algorithms have been designed over
the past 25 years to mitigate performance bottlenecks related to critical sections and
synchronization. Unfortunately, there is currently no broad study of the behavior of
these optimized lock algorithms on realistic applications that consider different perfor-
mance metrics, such as energy efficiency and tail latency. In this thesis, we perform a
thorough and practical analysis, with the goal of providing software developers with
enough information to achieve fast, scalable and energy-efficient synchronization in
their systems. First, we provide a performance study of 28 state-of-the-art mutex lock
algorithms, on 40 applications, and four different multicore machines. We not only
consider throughput (traditionally the main performance metric), but also energy ef-
ficiency and tail latency, which are becoming increasingly important. Second, we
present an in-depth analysis in which we summarize our findings for all the studied
applications. In particular, we describe nine different lock-related performance bottle-
necks, and propose six guidelines helping software developers with their choice of a
lock algorithm according to the different lock properties and the application character-
istics.
From our detailed analysis, we make a number of observations regarding locking
algorithms and application behaviors, several of which have not been previously dis-
covered: (i) applications not only stress the lock/unlock interface, but also the full
locking API (e.g., trylocks, condition variables), (ii) the memory footprint of a lock can
directly affect the application performance, (iii) for many applications, the interaction
between locks and scheduling is an important application performance factor, (iv) lock
tail latencies may or may not affect application tail latency, (v) no single lock is system-
atically the best, (vi) choosing the best lock is difficult (as it depends on many factors
such as the workload and the machine), and (vii) energy efficiency and throughput
go hand in hand in the context of lock algorithms. These findings highlight that lock-
ing involves more considerations than the simple “lock – unlock” interface and call
for further research on designing low-memory footprint adaptive locks that fully and
efficiently support the full lock interface, and consider all performance metrics.

vii

Résumé
Une multitude d’algorithmes d’exclusion mutuelle ont été conçus au cours des vingt
cinq dernières années, dans le but d’améliorer les performances liées à l’exécution
de sections critiques et aux verrous. Malheureusement, il n’existe actuellement pas
d’étude générale et complète au sujet du comportement de ces algorithmes d’exclusion
mutuelle sur des applications réalistes (par opposition à des applications synthétiques)
qui considère plusieurs métriques de performances, telles que l’efficacité énergétique
ou la latence. Dans cette thèse, nous effectuons une analyse pragmatique des méca-
nismes d’exclusion mutuelle, dans le but de proposer aux développeurs logiciels as-
sez d’informations pour leur permettre de concevoir et/ou d’utiliser des mécanismes
rapides, qui passent à l’échelle et efficaces énergétiquement.

Premièrement, nous effectuons une étude de performances de 28 algorithmes d’exclu-
sion mutuelle faisant partie de l’état de l’art, en considérant 40 applications et quatre
machines multicoeurs différentes. Nous considérons non seulement le débit (la mé-
trique de performance traditionnellement considérée), mais aussi l’efficacité énergé-
tique et la latence, deux facteurs qui deviennent de plus en plus importants. Deuxiè-
mement, nous présentons une analyse en profondeur de nos résultats. Plus particuliè-
rement, nous décrivons neufs problèmes de performance liés aux verrous et proposons
six recommandations aidant les développeurs logiciels dans le choix d’un algorithme
d’exclusion mutuelle, se basant sur les caractéristiques de leur application ainsi que
les propriétés des différents algorithmes.

A partir de notre analyse détaillée, nous faisons plusieurs observations relatives à l’in-
teraction des verrous et des applications, dont plusieurs d’entre elles sont à notre
connaissance originales : (i) les applications sollicitent fortement les primitives lo-
ck/unlock mais aussi l’ensemble des primitives de synchronisation liées à l’exclusion
mutuelle (ex. trylocks, variables de conditions), (ii) l’empreinte mémoire d’un verrou
peut directement impacter les performances de l’application, (iii) pour beaucoup d’ap-
plications, l’interaction entre les verrous et l’ordonnanceur du système d’exploitation
est un facteur primordial de performance, (iv) la latence d’acquisition d’un verrou a
un impact très variable sur la latence d’une application, (v) aucun verrou n’est systé-
matiquement le meilleur, (vi) choisir le meilleur verrou est difficile, et (vii) l’efficacité
énergétique et le débit vont de pair dans le contexte des algorithmes d’exclusion mu-
tuelle.

Ces découvertes mettent en avant le fait que la synchronisation à base de verrou ne

ix

Résumé

se résume pas seulement à la simple interface “lock – unlock”. En conséquence, ces
résultats appellent à plus de recherche dans le but de concevoir des algorithmes d’ex-
clusion mutuelle avec une empreinte mémoire faible, adaptatifs et qui implémentent
l’ensemble des primitives de synchronisation liées à l’exclusion mutuelle. De plus, ces
algorithmes ne doivent pas seulement avoir de bonnes performances d’un point de
vue du débit, mais aussi considérer la latence ainsi que l’efficacité énergétique.

x

Contents
Acknowledgements iii

Preface v

Abstract vii

Résumé ix

List of figures xii

List of tables xiii

1 Introduction 1
1.1 Multicore primer . 1

1.2 Mutual exclusion . 3

1.3 Thesis statement . 3

1.4 Contributions . 4

1.5 Outline . 5

2 Background 7
2.1 Locking . 7

2.1.1 Synchronization primitives . 7

2.1.2 Categorizing lock algorithms . 9

2.1.3 Waiting policy . 25

2.2 Related work . 27

2.2.1 Lock algorithm implementations 27

2.2.2 Adaptive algorithms . 28

2.2.3 Studies of synchronization algorithms 28

2.2.4 Energy efficiency . 29

2.2.5 Lock-related performance bottlenecks 30

3 LiTL: A Library for Transparent Lock interposition 31
3.1 Design . 31

3.1.1 General principles . 31

3.1.2 Supporting condition variables . 33

xi

Contents

3.1.3 Support for specific lock semantics 34

3.2 Implementation . 36

3.3 Lookup overhead . 36

3.4 Experimental validation . 37

3.5 Statistical test . 39

4 Study 41
4.1 Study’s methodology . 41

4.1.1 Studied algorithms . 41

4.1.2 Testbed . 44

4.1.3 Studied applications . 45

4.1.4 Tuning and experimental methodology 47

4.2 Study of lock throughput . 50

4.2.1 Preliminary observations . 50

4.2.2 Main questions . 53

4.2.3 Additional observations . 61

4.2.4 Effects of the lock choice on application performance 63

4.3 Study of lock energy efficiency . 65

4.3.1 Energy-efficiency lock behavior . 65

4.3.2 POLY . 67

4.4 Study of lock tail latency . 73

4.4.1 How does tail latency behave when locks suffer from high levels
of contention? . 73

4.4.2 Do fair lock algorithms improve the application tail latency? . . 74

4.4.3 Do lock tail latencies affect application throughput? 74

4.4.4 Implications . 75

4.5 Analysis of lock/application behavior . 78

4.5.1 Summary of the lock/application behavior analysis 78

4.5.2 Guidelines for lock algorithms selection 88

5 Conclusion 95
5.1 Lessons learned . 96

5.2 Future research . 97

Bibliography 100

xii

List of Figures
1.1 A modern multicore NUMA machine. 2

2.1 Principle of the ttas lock algorithm. 10

2.2 Principle of the MCS lock algorithm. 12

2.3 Principle of a Cohort lock algorithm. 14

2.4 Principle of the RCL lock algorithm. 18

2.5 Principle of the Malth_Spin lock algorithm. 21

3.1 Pseudocode for the main wrapper functions of LiTL. 32

3.2 Performance comparison of manually implemented locks vs. LiTL. . . . 35

4.1 For each pair of locks (rowA, colB) at opt nodes, scores of lock A vs lock
B: percentage of lock-sensitive applications for which lock A performs
at least 5% better than B. 56

4.2 Correlation of throughput with energy efficiency (TPP) on various lock-
sensitive applications with various lock algorithms and various con-
tention levels. 68

4.3 Correlation of throughput with energy efficiency (TPP) on various lock-
sensitive applications at one node for the different lock algorithms. . . . 69

4.4 Correlation of throughput with energy efficiency (TPP) on various lock-
sensitive applications at max nodes for the different lock algorithms. . . 70

4.5 For each server application, the bars represent the normalized 99th tail
latency (w.r.t. Pthread) and the dots execution time (lower is better)
normalized (w.r.t. Pthread) of each lock algorithm. 77

4.6 Steps to follow for the application developer to chose a lock algorithm. 92

xiii

List of Tables
3.1 Detailed statistics for the performance comparison of manually imple-

mented locks vs. LiTL. 38

3.2 Percentage of lock pairs (A, B) where, if performance with manually
implemented locks of A is worse, equals or better than B, it is also re-
spectively worse, equals or better than B with transparently interposed
locks using LiTL. 38

3.3 Paired Student t-test to compare manually implemented locks vs. LiTL. 39

4.1 Lock algorithms summary. 43

4.2 Hardware characteristics of the testbed platforms. 44

4.3 Real-world applications considered. 45

4.4 For each application, performance gain of the best vs. worst lock and
relative standard deviation. 52

4.5 Number of applications and number of lock performance sensitive ap-
plications. 53

4.6 For each (lock-sensitive application, lock) pair, performance gain (in %) of
opt nodes over max nodes. 54

4.7 Breakdown of the (lock-sensitive application, lock) pairs according to their
optimized number of nodes. 55

4.8 Statistics on the coverage of locks on lock-sensitive applications. 55

4.9 For each lock, fraction of the lock-sensitive applications for which the
lock yields the best performance for three configurations: one node, max
nodes and opt nodes. 57

4.10 For each lock, at max nodes and at opt nodes, fraction of the lock-sensitive
applications for which the lock is harmful. 58

4.11 For each lock-sensitive application, at max nodes, performance gain, (in
%) obtained by the best lock(s) with respect to each of the other locks. . 60

4.12 For each lock-sensitive application, percentage of pairwise changes in
the lock performance hierarchy when changing the number of nodes. . 62

4.13 Energy-efficiency gain of opt nodes over max nodesbreakdown for lock-
sensitive applications. 66

4.14 Percentage of lock-sensitive applications for which opt nodes is lower, the
same or higher for energy efficiency w.r.t. performance. 66

xv

List of Tables

4.15 Pearson correlation coefficient between throughput and TPP for all lock-
sensitive applications. 71

4.16 Lock-sensitive application performance bottleneck(s) and lock algorithms
choice advice. 79

4.17 Lock algorithm properties. 89

xvi

1 Introduction

For several decades, processor vendors improved performance by increasing CPU fre-
quency. However, physical limitations such as current leakage causing CPU to heat up
limited the increase of frequency over the years. As a consequence, to keep increasing
performance, vendors switched to multicore architectures [104].

As of 2018, multicore machines with tens of cores (e.g., 64 cores) are now widespread.
While previously reserved to server, multicore processors are now embedded into
personal desktop, laptop and even mobiles. Moreover, processor vendors continue to
increase the number of cores per socket, with socket up to 64 cores are rumored to
become available before 2020 [15].

1.1 Multicore primer

Figure 1.1 illustrates a modern multicore machine. Modern multiprocessor machines
are composed of several sockets, each one composed of several homogeneous cores.
Each of these cores is composed of its own set of registers and components (e.g., mem-
ory unit, arithmetic logic unit – ALU), allowing several execution contexts running
in parallel. Cores access memory through a hierarchical organization of private and
shared caches. Generally, there are one (L1) or two (L1 and L2) private caches per core;
a bigger cache (the last level cache – LLC, often L3) is shared between the cores of a
socket. Finally, data is stored in DRAM and menory accesses go through the memory
controller responsible for accesses to the DRAM module where the memory is stored.

Historically, CPU frequency has increased faster than memory frequency, such that
cores stall, waiting for their memory accesses to be fulfilled. A (partial) solution is
to provide bigger and faster caches, yet this is not always enough, especially as the
number of cores on a socket keeps increasing. To distribute the memory load, modern
multicore machines are based on a NUMA (Non-Uniform Memory Accesses) architec-
ture. A NUMA machine is composed of several NUMA nodes, each one composed of

1

Chapter 1. Introduction

Socket Core LLC DRAM Interconnect

Figure 1.1 – A modern multicore NUMA machine.

one socket, one or more memory controllers, upon which one or more DRAM modules
are attached. In order to allow any core to have access to the entire available memory,
sockets are linked together through a high-speed interconnect (e.g., Intel QuickPath
Interconnect [60] or AMD HyperTransport [28]). On such a machine, local memory
accesses (i.e., a memory request is served by a cache/DRAM of the same NUMA node
as the request core) and remote memory accesses (a memory request is served by a
cache/DRAM of a remote NUMA node) do not have the same latency, hence the term
Non-Uniform Memory Access. Besides, the bandwidth of remote memory accesses is
more constrained than the one of local memory accesses.

Because cores rely on caches to improve memory latency, situations might arise where
two cores have the same data in their respective private cache, one core modifies its
own local copy and the second one does not see the modification: there is a cache
coherence problem. To maintain a single, coherent view of the memory, a cache co-
herency protocol is used1. At the granularity of a cache line (generally 64 bytes on a
modern machine), each core tracks the status of a given memory location and com-
municates to other cores when the location is accessed or modified. Maintaining this
coherency is costly, because cache lines need to be exchanged between cores, and on
NUMA machine this leads to costly exchanges through the interconnect.

1This thesis only considers ccNUMA (cache-coherent NUMA) SMP machines.

2

1.2. Mutual exclusion

1.2 Mutual exclusion

To fully exploit the parallelism exposed by a multicore machine, software is now writ-
ten from the beginning with concurrency and parallelism in mind, often leveraging
frameworks and languages that help developers writing concurrent code. However,
efficiently leveraging the available hardware parallelism is often challenging due to
bottlenecks that impede multicore scalability. One of the main factor of poor scalabil-
ity is the consequence of Amdahl’s law.

Theoretically, the scalability of a program is dictated by Amdahl’s law [7], which states
that a program’s scalability is always constrained by its sequential parts. These sequen-
tial parts are most often due to synchronization: in order to avoid inconsistent states,
execution contexts running concurrently must synchronize their access to shared data.
The most popular means of synchronization is mutual exclusion via locking: a critical
section (i.e., the part of code that needs to be executed atomically) is protected by a
lock, serializing accesses to this section. In this context, an efficient way to improve
scalability is to reduce the sequential parts as much as possible. Because the time spent
inside the lock algorithm protecting the critical section might unnecessarily lengthen
the sequential part, studying lock algorithms has been of prime interest to the research
community. Over the past 25 years, a plethora of optimized mutual exclusion (mutex)
lock algorithms have been designed to mitigate these issues [91, 9, 80, 29, 76, 85, 88,
54, 75, 36, 55, 37, 43, 33, 68, 25, 38, 24, 42, 112, 34, 46, 64, 93]. Application and library
developers can choose from this large set of algorithms for implementing efficient syn-
chronization in their software. However, there is currently no detailed study to guide
this puzzling choice for realistic applications.

1.3 Thesis statement

The most recent and comprehensive empirical performance evaluation on multicore
synchronization [33], due to its breadth (from hardware protocols to high-level data
structures), only provides a partial coverage of locking algorithms. Indeed, the afore-
mentioned study only considers nine algorithms, does not consider hybrid waiting
policies (i.e., what a thread does while waiting for a lock), omits emerging approaches
(e.g., load-control mechanism) and provides a modest coverage of hierarchical locks
[38, 25, 24], a recent and efficient approach for NUMA architectures. Generally, most of
the observations highlighted in the existing literature are based on microbenchmarks
and only consider the lock/unlock interface, ignoring other lock-related operations
such as condition variables and trylocks. Besides, in the case of papers that present a
new lock algorithm, the empirical observations are often focused on the specific work-
load characteristics for which the actual lock was designed [61, 72], or mostly based on
microbenchmarks [38, 34]. Finally, existing analyses focus on traditional performance
metrics (mainly throughput) and do not cover other metrics, such as energy efficiency

3

Chapter 1. Introduction

and tail latency, which are becoming increasingly important.

In this thesis, we perform a thorough and practical analysis of synchronization, with
the goal of providing software developers with enough information to design fast,
scalable and energy-efficient synchronization in their systems.

1.4 Contributions

The contributions of this thesis are threefold.

The first contribution is a broad performance study (Sections 4.2 to 4.4) on Linux/x86

(i.e., the Linux operating system running on AMD/Intel x86 64-bit processors) of 28

state-of-the-art mutual exclusion lock algorithms on a set of 40 realistic and diverse
applications: PARSEC, Phoenix, SPLASH2 benchmark suites, MySQL, Kyoto Cabinet,
Memcached, RocksDB, SQLite, upscaledb and an SSL proxy. Among these 40 appli-
cations, we determine that performance varies according to the choice of a lock for
roughly 60% of them, and perform our in-depth study on this subset of applications.
We believe this set of applications to be representative of real-world applications: we
consider applications that not only stress the classic lock/unlock interface to different
extents, but also exhibit different usage patterns of condition variables, trylocks, bar-
riers and that use different number of locks (i.e., from one global lock to thousands
of locks). We consider four different multicore machines and three different metrics:
throughput, tail latency and energy efficiency. In our quest to understand the behav-
ior of locking, when choosing the per-configuration best lock, we improve on average
application throughput by 90%, energy efficiency by 110% and tail latency 12× with
respect to the default POSIX mutex lock (note that, in many cases, different locks op-
timize different metrics). As we show in this thesis, choosing a well performing lock
is difficult, as this choice depends on many different parameters: the workload, the
underlying hardware, the degree of parallelism, the number of locks, how they are
used, the lock-related interfaces that the application stresses (e.g., lock/unlock, try-
lock, condition variables), the interaction between the application and the scheduler,
and the performance metric(s) considered.

Our second contribution is an in-depth analysis of the different types of lock-related
performance bottlenecks that manifest in the studied applications. In particular, we
describe nine different lock-related performance bottlenecks. Based on the insights
of this analysis, we propose six guidelines for helping software developers with their
choice of lock algorithms according to the different lock properties and the application
characteristics. More precisely, by answering to a few questions about the considered
application (e.g., more threads than cores? blocking syscalls?) and by looking at a few lock-
related metrics (e.g., the number of allocated locks, the number of threads concurrently
trying to acquire a lock), the developer is able to understand easily and quickly which

4

1.5. Outline

lock algorithm(s) to choose or to avoid for his specific use case.

Our third contribution is LiTL2, an open-source, POSIX compliant [57], low-overhead
library that allows transparent interposition of Pthread mutex lock operations and
support for mainstream features like condition variables. Indeed, to conduct our study,
manually modifying all the applications in order to retrofit the studied lock algorithms
would have been a daunting task. Moreover, using a meta-library that allows plugging
different lock algorithms under a common API (such as liblock [72] or libslock [33])
would not have solved the problem, as this still requires a substantial re-engineering
effort for each application. In addition, such meta-libraries provide no or limited
support for important features like Pthread condition variables, used within many
applications. Our approach is a pragmatic one: similarly to what is done by previous
works on memory allocators [16, 3, 67, 47], we argue that transparently switching (i.e.,
without modifying the application) lock algorithms (resp. memory allocators) is an
efficient and pragmatic solution.

1.5 Outline

This thesis is organized as follows. Chapter 2 introduces our work, gives some
background on locking and lock algorithms and discusses related works. Chapter 3

presents LiTL, the library we developed to evaluate the lock algorithms on the studied
applications. Chapter 4 studies the throughput, energy efficiency and tail latency of
lock algorithms, and performs a detailed analysis explaining, for each of the studied
applications, which types of locks work well/poorly and why.

Finally, Chapter 5 concludes this thesis and discusses future research directions that
we believe are worth investigating.

2LiTL: Library for Transparent Lock interposition.

5

2 Background

This Chapter provides the necessary background related to the other chapters of this
thesis. We first give a primer of synchronization and locking, as well as describe
existing lock algorithms in Section 2.1, then discuss the related work in Section 2.2.

2.1 Locking

All modern lock algorithms rely on hardware atomic instructions to ensure that a
critical section is executed in mutual exclusion. To provide atomicity, the processor
relies on the cache-coherence protocol of the machine to implement an atomic read-
modify-write operation on a memory address. Previous work [33] demonstrated that
lock algorithm performance is mainly a property of the hardware, i.e., a lock algorithm
must take into account the characteristics of the underlying machine. The design of
a lock algorithm is thus a careful choice of data structures, lock acquisition/release
policies and (potential) load-control mechanisms.

Section 2.1.1 introduces the locking API. Section 2.1.2 proposes a classification of the
lock algorithms into five categories. Section 2.1.3 discusses the various waiting poli-
cies.

2.1.1 Synchronization primitives

Locking is by far the most commonly-used approach to synchronization. Practically
all modern software systems employ locks in their design and implementation. The
main reason behind the popularity of locking is that it offers an intuitive abstraction.
Locks ensure mutual exclusion; only the lock holder can proceed with its execution.
Executions that are protected by locks are known as critical sections. Mutual exclusion
is a way to synchronize concurrent accesses to the critical section, i.e., threads synchro-
nize/coordinate to avoid one thread entering the critical section before the other left

7

Chapter 2. Background

it. In addition, condition variables allow threads to cooperate within a critical section
by introducing a happened-before relationship between them, e.g., for a synchronized
queue protected by a lock, inserting an element inside the queue happens before re-
moving the element.

Mutual exclusion

Lock/unlock. Upon entering the critical section, a thread must acquire the lock via
the lock operation. This operation is blocking, i.e., a thread trying to acquire a lock
instance already held waits until the instance becomes available. When the lock holder
exits the critical section, it must call the unlock operation, to explicitly release the lock.
How to acquire a lock, what to do while waiting for the lock, and how to release the
lock are choices made by a lock algorithm.

Trylock. If a lock is busy, a thread may do other work instead of blocking. In this
case, it can use the non-blocking trylock operation. This operation has a return code
to indicate if the lock is acquired. What a thread does when the trylock does not
acquire the lock is up to the software developer, not the lock algorithm. We observe
that developers frequently use trylock to implement busy-waiting, in order to avoid
being descheduled (the policy used by the Pthread lock algorithm while waiting for a
lock) if the lock is already held. This action is useful when the application developer
knows that the critical section protected by the lock is short, and thus that there is a
high chance for a thread to obtain the lock quickly. If the trylock acquires the lock,
the lock holder must call unlock to release the lock.

Conditions variables

Threads often rely on condition variables to receive notifications when an event hap-
pens (e.g., when data is put inside a queue). A thread that wants to wait on a condition
variable calls wait while holding a lock. As a consequence, the thread releases the lock
and blocks1. When the condition is fulfilled, another thread calls signal or broadcast
to wake any or all blocked threads, respectively. Upon wake-up (and before exiting
from wait), a thread needs to acquire the lock again in order to re-enter the critical
section. Efficiently implementing condition variables on top of locks is non-trivial (see
Section 3.1.2).

1Releasing the lock and blocking is atomic, to avoid loosing a signal and being blocked indefinitely.

8

2.1. Locking

2.1.2 Categorizing lock algorithms

The body of existing work on optimized lock algorithms for multicore architectures
is rich and diverse and can be split into the following five categories. The first two
categories (competitive and direct handoff succession) are based on the succession
policy [34] of the lock algorithm, i.e., how lock ownership is transferred at unlock-
time. These two categories are mutually exclusive. The three other categories regroup
algorithms that either compose algorithms from the first two categories (hierarchical
approaches), change how critical sections are executed (delegation-based approaches),
or improve existing locks with load-control mechanisms. Note that overall these cate-
gories overlap: a given algorithm can fall into several categories.

1) Competitive succession

Some algorithms rely on a competitive succession policy, where the lock holder sets
the lock to an available state, and all competing threads might try to acquire it con-
currently, all executing an atomic instruction on the same memory address. Such
algorithms generally stress the cache-coherence protocol as they trigger cache line in-
validations at unlock-time to all cores waiting for the lock, while ultimately only one
core succeeds in acquiring it. Competitive succession algorithms might allow barging,
i.e., “arriving threads can barge in front of other waiting threads” [34], which, for
applications sensitive to the fairness between threads (e.g., latency sensitive applica-
tions), might lead to unfairness and starvation. Examples of algorithms using a com-
petitive succession policy are simple spinlock [95], Backoff spinlock [9, 80], test and
test-and-set (ttas) lock [9], Mutexee lock [42] and standard Pthread mutex locks2 [68,
57]. Figure 2.1 illustrates the ttas lock algorithm.

2Throughout this manuscript, we refer to the GNU C Library implementation of the Pthread mutex
lock algorithm.

9

Chapter 2. Background

U
T1

CAS

(a) To acquire the lock (the white rectangular box), which is a
memory location having the state Unlocked (e.g., its content is 0),
thread T1 executes an atomic instruction (CAS, compare-and-set) to
change the lock state from Unlocked to Locked (e.g., changing its
content from 0 to 1). Note that T1 is in blue to illustrate the fact
that it is outside the critical section (CS) before executing the CAS
instruction.

L
T1

T2

T3

R

R

(b) T1 has the lock and is inside the CS (a thread inside the CS
is in green). T2 and T3 both try to acquire the lock. However
T1 already holds the lock, thus they wait for the lock to become
Unlocked by looping on a memory load (Read) instruction on the
location of the lock. A red thread is a thread waiting for a lock.

Figure 2.1 – Principle of the ttas lock algorithm.

U
T1

T2

T3

W

R

R

(c) Upon the exit of the CS, T1 releases the lock with a memory
store (Write), writing Unlocked inside the memory location. Note
that on some architectures (e.g., ARM [11]), a memory barrier
might be necessary before the write to avoid memory instructions
inside the CS to be reordered with instructions outside the CS.

U
T1

T2

T3

CAS

CAS

(d) The lock is Unlocked, and T1 is outside the CS. Because both
T2 and T3 were waiting for a change of the lock status, they both
issue a CAS instruction concurrently, trying to acquire the lock.
Due to the semantics of the CAS instruction, only one of the two
threads acquires the lock and enters the CS.

L
T1T2

T3 R

(e) T2 acquired the lock and is inside the CS. T3 still waits for
the lock, and will acquire it when T2 releases it, unless T1 tries
to acquire the lock in the meantime. In such a case, for a ttas
lock, because arriving threads can barge in front of other waiting
threads, T3 will be in competition with T1 to acquire the lock after
T2 releases it.

Figure 2.1 – Principle of the ttas lock algorithm (Cont.).

10

2.1. Locking

2) Direct handoff succession

Direct handoff locks (also known as queue-based locks) are lock algorithms in which
the unlock operation identifies a waiting successor and then passes ownership to that
thread [34]. As the successor of the current lock holder is known, it allows each waiting
thread to wait on a non-globally shared memory address (one per waiting thread).
Then, the lock holder passes ownership with the help of this private memory address,
thus avoiding cache line invalidations to all the other competing cores (contrary to the
competitive succession policy). This approach is also known to yield better fairness.
Besides, this approach generally gives better throughput under contention compared
to simpler locks like spinlock: with direct handoff locks, each thread spins on its own
local variable, avoiding to send cache line invalidations to all other spinning cores
when the lock is acquired/released (contrary to locks based on a global variable).
Examples of direct handoff lock algorithms are: MCS [80, 95], CLH [29, 76, 95].

Some algorithms do use a globally shared memory address but still use a direct
handoff succession policy. For example, the Ticket lock [91] repeatedly reads a single
memory address in a non-atomic fashion, waiting for its turn to come. The Parti-
tioned Ticket lock [36] uses a hybrid solution, where the same memory address can be
observed by a subset of the competing threads.

Figure 2.2 illustrates the MCS lock algorithm.

11

Chapter 2. Background

L
T1 node

Tail

T1
SWAP

(a) The MCS lock algorithm organizes wait-
ing threads in a single linked list, keeping
track of the tail of the list with a pointer.
At the beginning, the linked list is empty,
i.e., Tail points to nil. T1 wants to acquire
the lock, thus it tries to enqueue itself for
the lock. T1 node (for the linked list) con-
tains a memory location on which T1 spins
while waiting for the lock and by default is
Locked, and a pointer to the next element
(i.e., the next thread node) of the waiting
list. To acquire the lock, T1 uses an atomic
SWAP instruction, which atomically sets Tails
to point to T1 node and retrieves the previ-
ous value of Tail (here nil).

U
T1 node

Tail

T1T1

(b) After the SWAP, Tail points to T1 node.
Because Tail was previously nil, there is no
other thread waiting for the lock nor inside
the CS, thus T1 enters the CS without wait-
ing (T1 memory location is Unlocked as T1
does not wait).

U
T1 node

Tail

L
T2 node

T1T2T1
SWAP

(c) Another thread T2 also wants to acquire
the lock, thus it atomically uses SWAP to up-
date the Tail pointer so that it points to T2
node.

Figure 2.2 – Principle of the MCS lock algorithm.

12

2.1. Locking

U
T1 node

L
T2 node

Tail

T1

T2

R

(d) After the SWAP, because Tail was not pre-
viously nil (it pointed to T1 node), T2 sets
its node to be the successor of the previ-
ous Tail, i.e., T2 node is the successor of
T1 node. It also waits (T2 is in red) for its
memory location (that is Locked) to become
Unlocked before entering the CS. Note that
contrary to a ttas lock (see fig. 2.1), each
thread waiting for a MCS lock waits on
its private memory location, avoiding cache
line invalidations sent to all cores when the
lock state changes (with MCS, cache lines
are exchanged only between the cores of the
unblocked thread and the lock holder).

U
T1 node

Tail

L
T2 node

T1T2

R W
(e) Upon CS exit, T1 sees that it has a suc-
cessor, thus T1 releases the lock by chang-
ing the memory location of T2 node to
Unlocked.

U
T2 node

Tail T1

T2
(f) T2 memory location is Unlocked, thus
T2 enters the CS.

U
T2 node

Tail T1

T2
CAS

(g) Upon CS exit, T2 sees that it has no suc-
cessor, thus it tries to release the lock by set-
ting the Tail pointer back to nil using a CAS
atomic instruction The CAS is necessary to
ensure that both checking that Tail points
to T2 node and changing Tail execute atom-
ically. Otherwise, another thread might try
to acquire the lock while T2 releases it (i.e.,
the other thread switches Tail to point to its
node and sets itself as the successor of T2).

Tail T1 T2
(h) T2 successfully sets Tail to nil, both T1
and T2 are outside the CS.

Figure 2.2 – Principle of the MCS lock algorithm (Cont.). 13

Chapter 2. Background

3) Hierarchical approaches

These approaches aim at providing scalable performance on NUMA machines, by
attempting to reduce the rate of lock migrations (i.e., cache line transfers between last
level caches), which are known to be costly between NUMA nodes. A hierarchical
lock tends to give the lock to a thread running on the same NUMA node as the
thread holding the lock, improving throughput, at the expense of fairness between
threads. This category includes HBO [88], HCLH [75], FC-MCS [37], HMCS [25] and
the algorithms that stem from the lock cohorting framework [38]. A cohort lock is based
on a combination of two lock algorithms (similar or different): one used for the global
lock and one used for the local locks (there is one local lock per NUMA node); in
the usual C-LA-LB notation, LA and LB respectively correspond to the global and the
node-level lock algorithms. The list notably includes C-BO-MCS, C-PTL-TKT and C-
TKT-TKT (also known as HTicket [33]). The BO, PTL and TKT acronyms respectively
correspond to Backoff lock, Partitioned Ticket lock, and standard Ticket lock.

Figure 2.3 illustrates a cohort lock algorithm.

U

U U U U

T1

Lock

(a) A cohort lock algorithm is a hierarchical lock com-
posed of two different lock algorithms: a global one
(represented by a pentagon) and a local one (repre-
sented by a rotated square). There are one local lock
per NUMA node (here 4) and one global lock. Each
lock composing a cohort lock starts in a Ulnocked
state. To acquire the cohort lock, T1 first locks the
local lock attached to the NUMA node on which T1
runs (here the left-most one).

U

L U U U

T1
Lock

(b) T1 is the lock holder of its local lock and it tries
to acquire the global lock.

L

L U U U

T1T2 (c) T1 has both a local lock and the global lock, it
enters the CS.

Figure 2.3 – Principle of a Cohort lock algorithm.

14

2.1. Locking

L

L U U U

T1T2

Lock

(d) T2 also wants to acquire the cohort lock. Because
it runs on the same NUMA node as T1, T2 tries to
acquire the same local lock as T1. The lock is already
taken by T1, thus T2 waits for the lock to become
available.

L

L U U U

T1T2

Lock Unlock

(e) Upon exit of the CS, T1 sees that there is a
waiting thread on its local lock, thus it unlocks
the local lock, which will be acquired by T2.
Because T1 and T2 have the same local lock, T1
does not unlock the global lock, but “gives” it to
T2 (there is no special action here, the global lock
“belongs” to a NUMA node, not to a specific thread).

Note that not all lock algorithms can be used
for the global/local locks: (i) for the local lock
algorithm, it must be possible to know if there
is another waiting thread (also known as cohort
detection), and (ii) the global lock algorithm must
support the scenario where the thread locking the
lock is not the same as the thread unlocking it (also
known as thread-oblivousness).

L

L U U U

T1
T2T3

Lock

(f) A new thread T3 wants to enter the CS. T3 does
not run on the same node as T1 and T2, thus it tries
to acquire its local lock (the second one on the left)
and succeeds.

L

L L U U

T1
T2T3

Lock

(g) T3 sees that its NUMA node is not the holder of
the global lock, thus it waits for the global lock to be
released. Here we see that in the worst case, there
are at most N − 1 waiting threads on the global lock
(where N is the number of NUMA nodes).

L

L L U U

T1
T2T3

Lock

Unlock

(h) Upon CS exit, T2 releases its local lock.

Figure 2.3 – Principle of a Cohort lock algorithm (Cont.).
15

Chapter 2. Background

L

U L U U

T1
T2T3

Lock Unlock

(i) Because there is no other waiting thread on the
local lock of T2, it releases the global lock, which
belongs to T2’s NUMA node.

L

U L U U

T1
T2T3

(j) T3 acquires the global lock. Because it has both a
local lock and the global one, it enters the CS. If there
is no other thread that tries to acquire the cohort lock,
upon CS exit, T3 will first unlock its local lock, then
the global one (similarly to the previous step).

Figure 2.3 – Principle of a Cohort lock algorithm (Cont.).

16

2.1. Locking

4) Delegation-based approaches

Delegation-based lock algorithms are locks in which it is (sometimes or always) nec-
essary for a thread to delegate the execution of a critical section to another thread.
The typical benefits expected from such approaches are improved cache locality for
the operations within the critical section and better resilience under very high lock
contention. This category includes Oyama [85], Flat Combining [55], RCL [72], FFWD
[93], CC-Synch [43] and DSM-Synch [43]. Contrary to other algorithms, delegation-
based algorithms require critical sections to be expressed as a form of closure (e.g., a
function), which is not compatible with the lock/unlock API presented earlier (§2.1.1).

Figure 2.4 illustrates the RCL lock algorithm.

17

Chapter 2. Background

U
Lock T1 context

code
code

...
code
code

CS function

Req 1 ∅ ∅ ∅ ...

Req 2 ∅ ∅ ∅ ...

...
...

...
...

Req n ∅ ∅ ∅ ...

T1

Server

(a) A RCL lock delegates the execution
of the CS to a remote thread (the Server).
The Server monitors an array of requests
(one slot per thread), where each request
is composed of a pointer to the lock pro-
tecting the CS, a pointer to a structure
called the context, which contains the en-
vironment (e.g., variables) with which the
CS must be executed, and a pointer to the
CS function. Each request entry is padded
to fit a cache line to avoid false sharing.
Note that one of the limitations of RCL is
that the CS must be expressed as a func-
tion taking a list of arguments (the con-
text), which is not the initial semantics of
a POSIX mutex lock. As a consequence,
RCL is not transparent w.r.t. the applica-
tion. The Server continuously scans the
array for the slot whose CS function field
is not nil, which indicates that a thread
wants a CS to be executed.
On this figure, T1 wants to execute a CS
protected by a lock (by default Unlocked).

U
Lock T1 context

code
code

...
code
code

CS function

Req 1 ...

Req 2 ∅ ∅ ∅ ...

...
...

...
...

Req n ∅ ∅ ∅ ...

T1

Server

(b) After having set up its context, T1
writes the lock, context and CS function ad-
dresses to their respective pointer fields.

Figure 2.4 – Principle of the RCL lock algorithm.

18

2.1. Locking

U
Lock T1 context

code
code

...
code
code

CS function

Req 1 ...

Req 2 ∅ ∅ ∅ ...

...
...

...
...

Req n ∅ ∅ ∅ ...

T1

Server

R

Server
(c) T1 waits for its request to be fulfiled
(i.e., waiting for the CS to be executed
on its behalf) by waiting for the CS func-
tion pointer to become nil.
Note that the Server serializes all CS ex-
ecutions, even if they acquire different
locks. However, when two requests use
the same lock, only the Server acquires
the lock (avoiding cache line transfers),
the requesting threads wait on their pri-
vate CS function field.

L
Lock T1 context

code
code

...
code
code

CS function

Req 1 ...

Req 2 ∅ ∅ ∅ ...

...
...

...
...

Req n ∅ ∅ ∅ ...

T1

Server
R

CAS
(d) The Server sees a new request (CS
function of T1 is not nil) and first tries
to acquire the lock pointed by the lock
pointer field. RCL still tries to take the
lock atomically in the case of a concur-
rent thread that did not delegate its CS
execution to the Server. The Server suc-
ceeds and enters the CS.

L
Lock T1 context

code
code

...
code
code

CS function

Req 1 ...

Req 2 ...

...
...

...
...

Req n ∅ ∅ ∅ ...

T1
T2

Server

T2 context

R

R (e) While the Server is executing the CS
of T1, another thread T2 requests the
execution of the same CS protected by
the same lock. It sets up its context, its
request fields, and waits on the CS func-
tion pointer for its request to be fulfilled.

Figure 2.4 – Principle of the RCL lock algorithm (Cont.).

19

Chapter 2. Background

U
Lock T1 context

code
code

...
code
code

CS function

Req 1 ∅ ...

Req 2 ...

...
...

...
...

Req n ∅ ∅ ∅ ...

T1
T2

Server

T2 context

R

W

W

(f) The Server finished handling the
request of T1: it writes nil inside T1
CS function pointer, which unblock
T1. The Server also unlocks the lock.

L
Lock T1 context

code
code

...
code
code

CS function

Req 1 ∅ ...

Req 2 ...

...
...

...
...

Req n ∅ ∅ ∅ ...

T1
T2

Server

T2 context

R

CAS

(g) The Server proceeds to the next re-
quest and sees T2’s one. As a con-
sequence, it atomically acquires the
lock, and enters the CS.

U
Lock T1 context

code
code

...
code
code

CS function

Req 1 ∅ ...

Req 2 ∅ ...

...
...

...
...

Req n ∅ ∅ ∅ ...

T1
T2

Server

T2 context

W

W

(h) Finally, the Server finishes T2’s re-
quest, and writes nil to T2’s CS func-
tion pointer to unblock T2.

Figure 2.4 – Principle of the RCL lock algorithm (Cont.).

20

2.1. Locking

5) Load-control mechanisms

This category includes lock algorithms implementing mechanisms that detect situa-
tions in which a lock needs to adapt itself. For example, GLS [10] and SANL [112]
switches between different lock algorithms to cope with changing levels of contention
(i.e., how many threads concurrently attempt to acquire a lock). Other algorithms such
as AHMCS3 [24] and so-called Malthusian algorithms like Malth_Spin and Malth_STP4

[34] adapt the locking scheme (i.e., how a lock is acquired/released) depending on
the contention level. Finally, some algorithms aim to avoid lock-related pathological
behaviors (e.g., preemption of the lock holder to execute a thread waiting for the lock):
MCS-TimePub5 [54] and LC [61] are two examples of such locks.

Figure 2.5 illustrates the Malth_Spin lock algorithm.

U
T1 node

L
T2 node

L
T3 node

L
T4 node

T1

T2 T3 T4

R R R

Tail

PS Head PS Tail

(a) A Malth_Spin lock algorithm is a
modification of the MCS lock algorithm.
The idea of Malth_Spin is to move the
surplus of waiting threads into a pas-
sive set (PS hereafter), where threads in
this set do not compete to acquire the
lock. Malth_spin eventually converges
towards the situation where there is at
most one thread in the CS, one thread
waiting for the lock, and all the other
waiting threads are in the PS or outside
the CS. The PS is maintained as a dou-
ble linked list, where the head and the
tail of this list are tracked with PS head
and PS tail pointers. All modifications
to the MCS algorithm are made inside
the unlock operation, just before releas-
ing the lock.
In this figure, we start with a MCS
lock with three waiting threads (T2, T3,
T4) and one thread inside the CS (T1).
There is no thread in the PS yet, i.e.,
both PS head and PS tail point to nil.

Figure 2.5 – Principle of the Malth_Spin lock algorithm.

3The original AHMCS paper [24] presents multiple versions of AHMCS. In this article, the version
without hardware transactional memory of AHMCS is considered.

4Malth_Spin and Malth_STP correspond to MCSCR-S and MCSCR-STP respectively in the terminol-
ogy of Dave Dice [34]; still we do not use the latter names to avoid confusion with other MCS locks.

5MCS-TimePub is mostly known as MCS-TP. Still, we use MC-TimePub to avoid confusion with
MCS_STP.

21

Chapter 2. Background

U
T3 node

L
T4 node

L
T2 node

T1

T2

T3

T4

R

R

Tail

PS Head PS Tail

(b) Upon CS exit, T1 sees that there is more than
one waiting thread, i.e., T1 node has more than
one successor. As a consequence, T1 puts its suc-
cessor T2 in the PS, which will wait spinning on
its node lock (in the Malth_STP variant, threads
are descheduled while waiting on the PS). Then
T1 gives the lock to T3, which enters the CS. Note
that PS head and PS tail pointers are updated while
T1 still holds the lock, thus there is no need of
atomic instructions/specific care to safely update
them.

U
T3 node

L
T4 node

L
T1 node

L
T2 node

T1

T2

T3

T4

R

RR

Tail

PS Head PS Tail

(c) While T3 is still inside the CS, T1 tries to ac-
quire the lock again, thus it enqueues itself af-
ter T4 (this is part of the MCS algorithm, not
Malth_Spin).

U
T1 node

L
T4 node

L
T2 node

T2

T3 T1

T4

RR

Tail

PS Head PS Tail

(d) Upon CS exit, T3 sees that there is more than
one thread waiting on the lock, thus it moves T4
to the PS and gives the lock to T1 by switching
the state of the memory location of T1’s node to
Unlocked. T1 enters the CS.

Figure 2.5 – Principle of the Malth_Spin lock algorithm (Cont.).

22

2.1. Locking

U
T1 node

L
T3 node

L
T4 node

L
T2 node

T2

T3

T1

T4

R

R

R

Tail

PS Head PS Tail

(e) While T1 is still inside the CS, T3 tries to ac-
quire the lock again.

U
T3 node

L
T4 node

L
T2 node

T2

T1 T3

T4

RR

Tail

PS Head PS Tail

(f) Upon CS exit, T1 sees that there is only one
thread waiting for the lock, thus it switches the
memory location of T3’s node to Unlocked. T3
enters the CS.

U
T3 node

L
T1 node

L
T4 node

L
T2 node

T2

T1

T3

T4

R

R

R

Tail

PS Head PS Tail

(g) While T3 is still inside the CS, T1 tries to ac-
quire the lock again. Note that the algorithm has
reached its stable state: the four previous steps
can be repeated ad infinitum.

Figure 2.5 – Principle of the Malth_Spin lock algorithm (Cont.). 23

Chapter 2. Background

U
T4 node

L
T2 node

T2

T3 T1 T4

R

Tail

PS Head PS Tail

(h) This time, upon CS exit, T1 sees that
there is no other waiting thread. Be-
cause Malth_Spin is work conserving, it
will never leave the lock Unlocked while
there is a waiting thread (even if it is in the
PS). Thus, T1 removes T4 from the PS (by
updating PS head) and switches the mem-
ory location of T4’s node to Unlocked. T4
enters the CS.

U
T2 node

T3 T1 T4 T2

Tail

PS HeadPS Tail

(i) Again, T4 sees that there is no other wait-
ing thread, thus removes T2 from the PS
and switches T2’s node memory location to
Unlocked.

U
T2 node

T3 T1 T4 T2

Tail

PS HeadPS Tail

(j) All threads are outside the CS, and there
is no more thread in the PS.

Figure 2.5 – Principle of the Malth_Spin lock algorithm (Cont.).

24

2.1. Locking

2.1.3 Waiting policy

An important design dimension of lock algorithms is the waiting policy used when
a thread cannot immediately obtain a requested lock [34]. There are three main ap-
proaches.

Spinning

The most straightforward solution for waiting is to continuously check the status of
the lock until it becomes available. However, such a policy might waste energy, and
the time spent waiting on a core might prevent other descheduled threads from pro-
gressing. Processors provide special instructions to inform the CPU microarchitecture
when a thread is spinning. For example, x86 CPUs offer the PAUSE instruction6 that is
specifically designed to avoid branch-misprediction, and which informs the core that
it can release shared pipeline resources to sibling hyperthreads [34].

In case of a failed lock acquisition attempt, different lock algorithms can use differ-
ent (and possibly combine several) techniques to lower the number of simultaneous
acquisitions attempts and the energy consumption while waiting. Using a fixed or
randomized backoff (i.e., a thread avoids attempting to acquire the lock for some time)
lowers the number of concurrent atomic instructions, thus the cache-coherence traffic.
Hardware facilities can also be used to lower the frequency of the waiting thread’s
core (DVFS [106]), or to notify the core that it can enter in an idle state to save power
(via the MONITOR/MWAIT instructions [42]7). Finally, a thread can voluntarily surrender
its core in a polite fashion by calling sched_yield or sleep.

Immediate parking

With immediate parking8, a thread waiting for an already held lock immediately
blocks until the thread gets a chance to obtain the lock9. This waiting policy requires
kernel support (via the futex syscall on Linux) to inform the scheduler that the thread
is waiting for a lock, so that it does not try to schedule the thread until the lock is made
available. At unlock-time, the lock holder is then responsible to inform the scheduler
that the lock is available.

6The MFENCE instruction can also be used and is known to yield lower energy consumption than the
PAUSE instruction on certain Intel processors [42].

7On the x86 platform, MONITOR/MWAIT are privileged instructions, which are accessible for locks run-
ning in privilegied mode, or via a kernel module [8].

8In the remainder of this manuscript, we use blocking and (immediate) parking interchangeably.
9Some locks use timeouts to bound the time a thread spends in the blocked state in order to improve

responsiveness.

25

Chapter 2. Background

Hybrid approaches

The motivation behind hybrid approaches is that different waiting policies have differ-
ent costs. For example, the spin-then-park policy is a hybrid approach using a fixed or
adaptive spinning threshold [63]. It tries to mitigate the cost of parking as the block
and unblock operations are expensive (both in terms of energy and performance). The
spinning threshold is generally equal to the time of a round-trip context switch. Other
techniques mix different spinning policies, such as backoff and sched_yield [33]. Fi-
nally, more complex combinations can be implemented: some algorithms [103, 42]
trade fairness for throughput by avoiding to unpark a thread at unlock-time if there is
another one currently spinning (also known as adaptive unlock).

The choice of the waiting policy is mostly orthogonal to the lock design but, in practice,
policies other than pure spinning are only considered for certain types of locks: the
direct handoff locks (from categories 2, 3 and 5 above), Mutexee and the standard
Pthread mutex locks. However, this choice directly affects both the energy efficiency
and the performance of a lock: Falsafi et al. [42] found that pure spinning inherently
hurts power consumption, and that there is no practical way to reduce the power
consumption of pure spinning. They found that blocking can indeed save power,
because when a thread blocks, the kernel can then put the core(s) in one of the low-
power idle states [6, 59]. However, the process of blocking is costly, because the cost
of the blocking and unblocking operations is high on Linux. Switching continuously
between blocking and unblocking can hurt energy efficiency, sometimes even more
than using pure spinning policies. Thus, there is an energy-efficiency tradeoff between
spinning and parking. Note that we use hereafter the expression parking policy to
encompass both immediate parking and hybrid spin-then-park waiting policies.

In this Section, we provided background on locking, proposed a categorization of
the existing lock algorithms and discussed the importance of the waiting policy of a
lock algorithm. Designing correct and efficient lock algorithms is hard: the number
of design choices (e.g. NUMA-aware, succession policy, waiting policy) is large and
these choices imply trade-offs. The next Section discusses work around lock algorithm
implementations and their effect on performance.

26

2.2. Related work

2.2 Related work

This thesis aims to understand the performance of existing lock algorithms on modern
multicore machines. In this Section, we discuss the large body of work studying the
different aspects of lock algorithms. More precisely, Section 2.2.1 presents work study-
ing the implementation of lock algorithms, and previous approaches to transparently
replace lock algorithms inside applications. Section 2.2.2 discusses the possibility to
dynamically adapt lock synchronization at run-time. Section 2.2.3 considers previous
studies of multicore lock algorithms. Section 2.2.4 covers existing works that highlight
the importance of energy efficiency for both applications and lock algorithms. Finally,
Section 2.2.5 discusses lock-related performance bottlenecks.

2.2.1 Lock algorithm implementations

The design and implementation of the LiTL lock library (presented in Chapter 3) bor-
rows code and ideas from previous open-source toolkits that provide application de-
velopers with a set of optimized implementations for some of the most-established
lock algorithms: Concurrency Kit [4], liblock [73, 71, 72], libslock [33] and lockin
[42, 10]. All of these toolkits require potentially tedious source code modifications
in the target applications, even in the case of algorithms that have been specifically
designed to lower this burden [12, 95, 107]. Moreover, among the above works, vir-
tually none of them provides a simple and generic solution for supporting Pthread
condition variables. One noticeable exception is lockin [42, 10], which only requires
including a header inside the source code of the application and recompile it linked
against a specific shared library. lockin also proposes a condition variable algorithm;
still the proposed algorithm does not circumvent the “thundering-herd” effect for all
lock algorithms (see Section 3.1.2). The authors of liblock [72] proposed an approach
to support condition variables; still we discovered that it suffers from liveness haz-
ards due to a race condition (more details in Section 3.1.2). Indeed, when a thread
T calls pthread_cond_wait, it is not guaranteed that the two steps (releasing the lock
and blocking the thread) are always executed atomically. Thus, a wake-up notification
issued by another thread might get interleaved between the two steps and T might
remain indefinitely blocked.

Several research works have leveraged library interposition to compare different lock-
ing algorithms on legacy applications (e.g., Johnson et al. [61] and Dice et al. [38]).
However, to the best of our knowledge, they have not publicly documented the design
challenges to support arbitrary application patterns (e.g., condition variables), nor dis-
closed the corresponding source code and the overhead of their interposition library
has not been discussed.

27

Chapter 2. Background

2.2.2 Adaptive algorithms

Previous works discuss the possibility to dynamically adapt lock synchronization at
run-time. One way is to dynamically switch between lock algorithms depending on
the contention level. The work by Lim et al. [70] considers switching among three
lock algorithms (TTAS, MCS and a delegation-based one), depending on the level of
contention on the lock instance. SANL [112] switches between local and remote (i.e.,
delegation-based) locking schemes. As explained in Section 2.1.2, delegation-based al-
gorithms require critical sections to be expressed as a form of closure, which is incom-
patible with our transparent approach (i.e., without source code modification). More
recently, Antic et al. [10] proposed GLS, a solution that dynamically switches among
three lock algorithms (Ticket, MCS, Pthread mutex), using Ticket at low contention
levels, MCS at high contention levels, and Pthread when it detects overthreading (i.e.,
more threads than cores). While these approaches confirm our observations that there
is no one-size-fit-all locking algorithm (more details in Section 4.5), their goal is to
make locking easy for a developer, not to choose the best lock algorithm in all cases.
Indeed, they only switch among a few different lock algorithms, whereas, as we will
show with our study, there are more lock algorithms to consider, making the choice
more complex. None of the solutions considers some of the bottlenecks that we ob-
served, like trylock contention, the lock handover effect and bottlenecks related to the
memory footprint of a lock instance (§4.5). For example, all solutions embed all the
different lock data structures into a unique one, inflating the memory layout of a lock
instance: some applications (e.g., dedup) using thousands of lock instances that are
good with a classical low memory footprint Ticket algorithm might not be good with
the Ticket version of GLS, even if GLS never uses lock algorithms other than Ticket.

A second solution is to monitor the load pattern of the application to detect situations
that are subject to pathological behavior. Load control (LC) [61] is a runtime solution,
which dynamically reduces the number of threads trying to acquire the lock at the
same time, to avoid pathological issues (e.g., lock convoy). LC requires kernel modifi-
cations on Linux to measure load accurately and with high resolution (∼ 100µs). This
approach is thus incompatible with our work, where we focus on lock algorithms that
do not require code modifications. As we will show later, our work highlights the need
for low-memory, complete interface (i.e., lock, trylock, and condition variables), fully
adaptive (i.e., from spinlocks all the way to complex HMCS locks) lock algorithms.
Yet, none of the existing solutions answer this need.

2.2.3 Studies of synchronization algorithms

Several studies have compared the performance of different multicore lock algorithms,
from a theoretical angle and/or based on experimental results [9, 80, 65, 19, 95, 33,
71, 38]. Our study (see Chapter 4) encompasses significantly more lock algorithms

28

2.2. Related work

and waiting policies. Moreover, the bulk of these prior studies is mainly focused on
characterization microbenchmarks, while we focus instead on workloads designed to
mimic real applications. Two noticeable exceptions are the work from Boyd-Wickizer
et al. [19] and Lozi et al. [72]; still they do not consider the same context as our
study. The former is focused on kernel-level locking bottlenecks, and the latter is
focused on applications in which only one or a few heavily contended critical sections
have been rewritten/optimized (after a profiling phase). For all these reasons, we
make observations that are significantly different from the ones based on all the above-
mentioned studies.

Some related work discusses the choice of synchronization paradigms and lock algo-
rithms [78, 79, 77]. The proposed guidelines are often a subset of our proposed guide-
lines in Section 4.5.2: because these works only study a smaller set of applications and
lock algorithms, they generally do not cover all the cases we observed.

Other synchronization-related studies have a different scope and focus on concurrent
data structures, possibly based on other facilities than locks. Gramoli [48] studies dif-
ferent concurrent data structures on micro-benchmarks with multiple synchronization
techniques. David el al. [31, 32] evaluate theoretical and practical progress proper-
ties of concurrent search data structures. Brown et al. [20] study the performance of
hardware transactional memory with microbenchmarks on modern NUMA multicore
machines. Finally, Calciu et al. [21] study the tradeoff between message passing and
shared memory synchronization on multicore machines. Similarly to us, they advocate
that software should be designed to be largely independent of the choice of low-level
communication mechanism.

2.2.4 Energy efficiency

Improving energy efficiency in systems and applications has been thoroughly stud-
ied in the past. For example, previous works describe user-level [109, 99, 98, 82, 92,
110] and kernel [86] facilities that both manage and predict power consumption. Prior
works propose trading performance and/or precision for energy. For example, pro-
gramming models [13, 94] allow developers to approximate loops to decrease power
consumption. Compiler techniques [109, 108] and hardware mechanisms [66] trade off
performance for energy. To the best of our knowledge, the work by Falsafi et al. [42]
is the only one studying the energy efficiency of lock algorithms. In this thesis, we
confirm their findings and validate their POLY10 conjecture on significantly more lock
algorithms and applications (see Section 4.3).

10POLY stands for “Pareto optimality in locks for energy efficiency”.

29

Chapter 2. Background

2.2.5 Lock-related performance bottlenecks

Some tools have been proposed to facilitate the identification of locking bottlenecks in
applications [105, 87, 30, 72, 10]. These tools are useful to identify which lock instances
suffer from contention; still they do not help a software developer to choose a lock
algorithm for an application. The proposed tools are orthogonal to our work. We note
that, among them, the profilers based on library interposition could be stacked on top
of LiTL.

Finally, lock-related performance bottlenecks have been previously analyzed. For ex-
ample, many studies [2, 62, 33, 34] point out scalability problems due to excessive
cache-coherence traffic with traditional spinlocks. Scheduling issues like the lock
holder preemption problem have been well studied [65, 34] and some solutions try
to mitigate it [65, 54]. Nonetheless, we discovered lock-related issues that, to the best
of our knowledge, have not been described before (§4.5). Moreover, we are the first
to analyze the impact of lock algorithms on such a large panel of applications, and to
discuss in depth and summarize the many different bottlenecks they exhibit.

SyncPerf [5] is a recent profiler detecting previously undiscussed lock-related perfor-
mance bottlenecks. Similarly to us, the authors of SyncPerf discover that trylocks con-
tention and uncontended lock acquisitions are two bottlenecks affecting application
performance. While this tool is a must-have in the system performance analysis tool
belt, it only considers the Pthread mutex lock, and thus fails at detecting some lock-
related performance bottlenecks. Indeed, as we will show in this manuscript, many
applications benefit from using other locks than Pthread, and these other locks suffer
from bottlenecks unseen with Pthread (e.g., scheduling issues, memory consumption).

30

3 LiTL: A Library for Transparent
Lock interposition

In this Chapter, we present the LiTL library, an open-source, POSIX compliant, low-
overhead library that allows transparent interposition of Pthread mutex lock opera-
tions and support for mainstream features like condition variables. The primary mo-
tivation for using LiTL is to be able to evaluate multiple lock algorithms on a large
number of applications without modifying the source code or recompiling the appli-
cations. However, the advantages of a using a shared library to “wrap” the lock algo-
rithm implementation are broader, and introduce other opportunities such as building
adaptive lock algorithms that can be switched at run-time, using multiple lock algo-
rithm for different lock instances inside the same application, or providing condition
variables to custom locks that are workload specifics. We first describe the design of
LiTL in Section 3.1, discuss its implementation in Section 3.2, evaluate some elemen-
tary costs introduced by LiTL in Section 3.3, and experimentally assess its performance
in Section 3.4.

3.1 Design

We describe the general design principles of LiTL, how it supports condition variables,
and how it can easily be extended to support specific lock semantics. The pseudo-code
of the main wrapper functions of the LiTL library is depicted in Figure 3.1.

3.1.1 General principles

The primary role of LiTL is to maintain a mapping between an instance of the standard
Pthread lock (pthread_mutex_t) and an instance of the chosen optimized lock type
(e.g., MCS_Spin). This mapping is maintained in an external data structure (see details
in §3.2), rather than using an “in-place” modification of the pthread_mutex_t structure.
This choice is motivated by two main reasons. First, for applications that rely on
condition variables, we need to maintain a standard pthread_mutex_t lock instance (as

31

Chapter 3. LiTL: A Library for Transparent Lock interposition

// Return values and error checks omitted for simplicity.

pthread_mutex_lock(pthread_mutex_t *m) {
optimized_mutex_t *om = get_optimized_mutex(m);
if (om == null) {

om = create_and_store_optimized_mutex(m);
}
optimized_mutex_lock(om);
real_pthread_mutex_lock(m); // Acquiring the "real" mutex in order

// to support condition variables.
// Note that there is virtually no
// contention on this mutex.

}

pthread_mutex_unlock(pthread_mutex_t *m) {
optimized_mutex_t *om = get_optimized_mutex(m);
optimized_mutex_unlock(om);
real_pthread_mutex_unlock(m);

}

pthread_cond_wait(pthread_cond_t *c, pthread_mutex_t *m) {
optimized_mutex_t *om = get_optimized_mutex(m);
optimized_mutex_unlock(om);
real_pthread_cond_wait(c, m);
real_pthread_mutex_unlock(m); // We need to release the "real" mutex
optimized_mutex_lock(om); // otherwise if a thread calls
real_pthread_mutex_lock(m); // pthread_mutex_lock, grabs the

// optimized mutex, and tries to
// acquire the "real" mutex, there
// might be a deadlock, as the "real"
// mutex lock is held after
// real_pthread_cond_wait.

}

// Note that the pthread_cond_signal and pthread_cond_broadcast
// primitives do not need to be interposed.

Figure 3.1 – Pseudocode for the main wrapper functions of LiTL.

32

3.1. Design

explained later in this Section). Second (and regardless of the previous reason), LiTL is
aimed at being easily portable across C standard libraries. Given that the POSIX
standard does not specify the memory layout and contents of the pthread_mutex_t

structure1, it it is non-trivial to devise an “in-place modification” approach that is at
the same time safe, efficient and portable.

The above-mentioned design choice implies that LiTL must keep track of the life-
cycle of all the locks through interposition of the calls to pthread_mutex_init and
pthread_mutex_destroy, and that each interposed call to pthread_mutex_lock must
trigger a lookup for the instance of the optimized lock. In addition, lock instances that
are statically initialized can only be discovered and tracked upon the first invocation
of pthread_mutex_lock on them (i.e., a failed lookup leads to the creation of a new
mapping).

The lock/unlock API of several lock algorithms requires an additional parameter
(called struct hereafter) in addition to the lock pointer, e.g., in the case of an MCS
lock, this parameter corresponds to the record to be inserted in (or removed from) the
lock’s waiting queue. In the general case, a struct cannot be reused nor freed before
the corresponding lock has been released. For instance, an application may rely on
nested critical sections (i.e., a thread T must acquire a lock L2 while holding another
lock L1). In this case, T must use a distinct struct for L2 in order to preserve the
integrity of L1’s struct. In order to gracefully support the most general cases, LiTL sys-
tematically allocates exactly one struct per lock instance and per thread (a static array
is allocated alongside the lock instance, upon the first access to the lock instance),
while taking care of avoiding false-sharing of cache lines among threads. LiTL uses
the default memory allocator (glibc ptmalloc), which has per-thread arenas to avoid
lock contention (since glibc 2.15) [56].

3.1.2 Supporting condition variables

Efficiently dealing with condition variables inside each optimized lock algorithm would
be complex and tedious as most locks have not been designed with condition vari-
ables in mind. Indeed, most lock algorithms suffer from the so-called thundering-
herd effect, where all waiting threads unnecessary contend on the lock after a call
to pthread_cond_broadcast2, which might lead to a scalability collapse. The Linux
Pthread implementation does not suffer from the thundering-herd effect, as it only
wakes up a single thread from the wait queue of the condition variable and directly
transfers the remaining threads to the wait queue of the Pthread lock. However, to
implement this optimization, all the waiting threads must block on a single memory

1In fact, different standard libraries [44, 46] and even different versions of the same library have
significantly different implementations.

2
19 out of 40 of our studied application uses this operation, in most cases to implement barriers.

33

Chapter 3. LiTL: A Library for Transparent Lock interposition

address3, which is incompatible with lock algorithms that are not based on a competi-
tive succession policy.

We therefore use the following generic strategy: our wrapper for pthread_cond_wait

internally calls the actual pthread_cond_wait function. To issue this call, we hold a
real Pthread mutex lock (of type pthread_mutex_t), which we systematically acquire
just after the optimized lock. This strategy (depicted in the pseudocode of Figure 3.1)
does not introduce high contention on the real Pthread lock. Indeed, (i) for workloads
that do not use condition variables4, the Pthread lock is only requested by the holder
of the optimized lock associated with the critical section and, (ii) workloads that use
condition variables are unlikely to have more than two threads competing for the
Pthread lock (the holder of the optimized lock and a notified thread).

A careful reader might suggest to take the Pthread lock only before calling
pthread_cond_wait on it. This approach has been proposed by Lozi et al. [72], but we
discovered that it suffers from liveness hazards due to a race condition. Indeed, when
a thread T calls pthread_cond_wait, it is not guaranteed that the two steps (releasing
the lock and blocking the thread) are always executed atomically. Thus, a wake-up
notification issued by another thread may get interleaved between the two steps and
T may remain indefinitely blocked.

We acknowledge that the additional acquire and release calls to the uncontended5

Pthread lock lengthen the critical section, which might increase the contention (i.e.,
multiple threads trying to acquire the lock simultaneously). However, the large num-
ber of studied applications (40) allows us to observe different critical-section lengths,
and the different threads configurations considered (one node, max nodes and opt nodes)
allow us to observe different probabilities of conflict for a given application.

3.1.3 Support for specific lock semantics

Our implementation is compliant with the specification of the DEFAULT non-robust

POSIX mutex type [57]. More precisely, we do not support lock holder crashes (ro-
bustness), relocking the same lock can lead to deadlock or undefined behavior, and
the behavior of unlocking a lock with a non-holder thread is undefined (it depends on
the underlying lock algorithm).

3This is a restriction of the Linux futex syscall.
4LiTL comes with a switch to turn off the condition variable algorithm at compile time. However, in

order to make fair comparisons, we always use LiTL with the condition variable algorithm turned on for
all the studied applications.

5There is one case where there might be some contention on the Pthread lock: if a thread A is
preempted just after optimized_mutex_unlock and another thread B acquires the lock at the same time,
B will wait on the Pthread lock until A is scheduled again. However, even in this exceptional event, the
contention remains very low.

34

3.1. Design

linear_regression matrix_multiply radiosity_ll s_raytrace_ll

ah
m

cs alo
ck

−ls ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp c−

pt
l−t

kt c−
tkt

−t
kt clh

_s
pin clh
_s

tp clh
−ls

hm
cs

ht
ick

et
−ls

m
alt

h_
sp

in
m

alt
h_

stp m
cs

_s
pin m

cs
_s

tp m
cs

−ls

m
cs

−t
im

ep
ub m

ut
ex

ee
pa

rti
tio

ne
d pt

hr
ea

d

pt
hr

ea
da

da
pt sp

inl
oc

k

sp
inl

oc
k−

ls tic
ke

t
tic

ke
t−

ls
tta

s tta
s−

ls

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

Normalized application throughput
(higher is better)

Figure 3.2 – Performance comparison (throughput) of manually imple-
mented locks (black bars) vs. transparently interposed locks using
LiTL (white bars) for 4 different applications.
The throughput is normalized with respect to the best performing config-
uration for a given application (A-64 machine).

35

Chapter 3. LiTL: A Library for Transparent Lock interposition

The design of LiTL is compatible with specific lock semantics when the underlying
lock algorithms offer the corresponding properties. For example, LiTL supports non-
blocking lock requests (pthread_mutex_trylock) for all the currently implemented
locks except CLH-based locks and HTicket-ls, which are not compatible with the try-
lock non-blocking operation6. Although not yet implemented, LiTL could easily sup-
port blocking requests with timeouts for the so-called “abortable” locks (e.g., MCS-Try
[96] and MCS-TimePub [54]). Moreover, support for optional Pthread mutex behavior
like reentrance and error checks7 could be easily integrated in the generic wrapper
code by managing fields for the current owner and the lock acquisition counter. Note
that none of the applications that we have studied requires a non-DEFAULT POSIX mu-
tex type.

3.2 Implementation

The library relies on a scalable concurrent hash table (CLHT [31]) in order to store,
for each Pthread mutex instance used in the application, the corresponding optimized
lock instance, and the associated per-thread structs. For well-established locking algo-
rithms like MCS, the code of LiTL borrows from other libraries [33, 4, 72, 42]. Other
algorithms (i.e., CLH, C-BO-MCS, C-PTL-TKT, C-TKT-TKT, HMCS, AHMCS, Malthu-
sian, Partitioned, Spinlock, TTAS) are implemented from scratch based on the descrip-
tion of the original papers. The complete list of implemented algorithms is discussed
in Section 4.1.1. For algorithms that are based on a parking waiting policy, our imple-
mentation directly relies on the futex Linux system call.

Finally, the source code of LiTL relies on preprocessor macros rather than function
pointers. We have observed that the use of function pointers in the critical path in-
troduced a surprisingly high overhead (up to a 40% throughput decrease). Moreover,
all data structures of the interposition library as well as the ones used to implement
the lock algorithms are cache-aligned, in order to mitigate the effect of false sharing.
The applications’ data structures are not modified, as our approach aims at being
transparent.

3.3 Lookup overhead

To assess the overhead of performing a lookup in the hash table each time a lock
is accessed, we designed a micro-benchmark in which threads perform concurrent

6The design of the Partitioned (and by extension C-PTL-TKT) lock does not allow implementing a
perfect trylock, i.e., a trylock that never blocks. As a consequence, if two threads try to acquire the lock
simultaneously, one of them spins until the other thread releases the Partitioned lock.

7Using respectively the PTHREAD_MUTEX_RECURSIVE and PTHREAD_MUTEX_ERRORCHECK attributes.

36

3.4. Experimental validation

lookups, varying the number of threads (from 1 to 64) and the number of elements8

(from 1 to 32768). On the A-64 machine (4× 8-cores AMD Opteron 6272 machine,
see Table 4.2 for more details), no matter the number of lock instances, at 1 thread, a
look-up costs 20 cycles, and from 2 to 64 threads, 25 cycles. The 5-cycle difference
is explained by the fact that on the A-64 machine, two siblings cores share some
microarchitectural units of the CPU.

Regardless of the number of lock instances, the number of threads, and the lock algo-
rithm (as only a pointer is stored), the cost is constant and low. In terms of memory
footprint, CLHT stores 3 pairs (pthread lock instance, optimized lock instance) per 64-byte
cache line. Overall, CLHT is a good choice as a hash map, and using a hash map
should not influence the results significantly.

3.4 Experimental validation

In this Section, we assess the performance of LiTL using the A-64 machine. To that
end, we compare the performance (throughput) of each lock on a set of applications
running in two distinct configurations: manually modified applications and unmod-
ified applications using interposition with LiTL. Clearly, one cannot expect to obtain
exactly the same results in both configurations, as the setups differ in several ways,
e.g., with respect to the exercised code paths, the process memory layout and the al-
location of the locks (e.g., stack- vs. heap-based). However, we show that, for both
configurations, (i) the achieved performance is close and (ii) the general trends for the
different locks remain stable.

We selected four applications: linear_regression, matrix_multiply, radiosity_ll and
s_raytrace_ll (see §4.1.3 for the complete list of studied applications). The first two
applications do not use condition variables, thus allowing us to compare LiTL with
manual lock implementation without the extra uncontended Pthread lock acquisition.
Because the two others use condition variables, we compare LiTL with manual lock
implementations and with the condition variable algorithm. These four applications
are particularly lock-intensive: they represent unfavorable cases for LiTL. Moreover,
we focus the discussion on the results under the highest contention level (i.e., when
the application uses all the cores of the target machine), as this again represents an
unfavorable case for LiTL.

Figure 3.2 shows the normalized performance (throughput) of both configurations
(manual/interposed) for each (application, lock) pair. In addition, Table 3.1 summarizes
the performance differences for each application.

8The key and value are both pointers – 8 bytes –, to the original pthread lock instance and to the
LiTL lock instance (plus per-thread structs) respectively.

37

Chapter 3. LiTL: A Library for Transparent Lock interposition

lin
ea

r_
re

gre
ssi

on

m
atr

ix_
m

ulti
ply

ra
diosit

y_ll

s_
ray

tra
ce

_ll
M

an
ua

l # Cases where Manual is better 6 % 13 % 2 % 13 %
Average gain 3 % 1 % 7 % 4 %
Relative standard deviation 2 % 1 % 8 % 4 %

Li
TL

Cases where LiTL is better 22 % 15 % 26 % 15 %
Average gain 3 % 2 % 3 % 3 %
Relative standard deviation 3 % 2 % 3 % 4 %

Table 3.1 – Detailed statistics for the performance comparison of manually
implemented locks vs. transparently interposed locks using LiTL. (A-64
machine).

We observe that, for all four applications, the results achieved by the two versions of
the same lock are very close: the average performance difference is never higher than
8%. Besides, Figure 3.2 highlights that the general trends observed with the manual
versions are preserved with the interposed versions.

lin
ea

r_
re

gre
ssi

on

m
atr

ix_
m

ulti
ply

ra
diosit

y_ll

s_
ray

tra
ce

_ll

Best 97 % 98 % 100 % 98 %
Equals 87 % 93 % 91 % 93 %
Worse 96 % 99 % 98 % 98 %

Table 3.2 – Percentage of lock pairs (A, B) where, if performance with man-
ually implemented locks of A is worse, equals or better than B, it is also
respectively worse, equals or better than B with transparently interposed
locks using LiTL.
We use a 5% threshold, i.e., A is better (resp. worse) than B if A’s perfor-
mance is at least 5% better (resp. worse) than B (A-64 machine).

Table 3.2 compares the relative performance of all lock pairs. The table shows that
in most cases (at least 87%), comparing two manually implemented lock algorithms
leads to the same conclusion as comparing their transparently interposed versions.

38

3.5. Statistical test

Application Cn p-value
linear_regression −1.8 % 0.84
matrix_multiply −0.2 % 0.60
radiosity_ll −3.1 % 0.72
s_raytrace_ll −0.2 % 0.85

Table 3.3 – For each application, the p-value of the paired Student t-test
testing the null hypothesis Meanwith−Meanwithout = C. Cn is C normalized
w.r.t. the performance of the best lock on a given benchmark).

3.5 Statistical test

To assess that the conclusions we draw regarding the choice of a lock and the perfor-
mance of locks with respect to each other (i.e., lock performance hierarchy) are the
same with and without interposition, we use a Student paired t-test. A Student paired t-
test tests if two populations for which observations can be paired have the same mean
(for example, a population of patients before and after taking a medical treatment).

The null hypothesis tested is Meanwith −Meanwithout = 0. However, because the goal is
to assess that the lock performance hierarchy stays the same (not that the means are
the same, i.e., strictly no overhead), Meanwith −Meanwithout = C is used as the null hy-
pothesis, where C is a (per-application) constant. If C is a constant, then it means that
there is a constant overhead, thus the lock performance hierarchy is left unchanged
(contrary to an overhead dependent of the lock algorithm or proportional to the per-
formance, in which case the lock performance hierarchy may change). Ideally, the
constant C should be small enough, meaning that in addition to not affecting relative
lock comparisons, the overhead of using LiTL on absolute performance is low. We
choose C equal to the average throughput difference with and without interposition
for all locks for a given application.

Table 3.3 shows the constant Cn (C normalized w.r.t. the performance of the best
lock on a given benchmark) as well as the t-test’s p-value. For example, for lin-
ear_regression, when removing 1.8% of the maximal throughput (0.03 seconds) to each
interposed configuration, the p-value is 0.84. A p-value must be compared against a
threshold α, upon which we reject/accept the null hypothesis (i.e., in our case, “means
are equal, up to a constant”). The higher the p-value, the lower the risk to incorrectly
reject the null hypothesis. All the tested applications have p-value > 0.05 (the most
commonly used threshold [83]), thus we never reject the null hypothesis, thus the
means can be considered equal (up to a constant C).

As a consequence, based on the results of the above table, we conclude that using
LiTL to study the behavior of locks algorithms only yields very modest differences
with respect to the performance behavior of a manually modified version.

39

4 Study

In this Chapter, we present our lock algorithms study. Section 4.1 presents the stud-
ied lock algorithms, testbed platforms and applications we study, as well as our tun-
ing choices and our experimental methodology. Sections 4.2, 4.3 and 4.4 respectively
present our results for throughput, energy efficiency and tail latency. Section 4.5 pro-
vides an analysis of the lock/application behavior.

4.1 Study’s methodology

In this Section we describe the methodology of our study. Sections 4.1.1, 4.1.2 and 4.1.3
describe the different lock algorithm, testbed platforms and applications. Section 4.1.4
presents our tuning choices and our experimental methodology.

4.1.1 Studied algorithms

We now describe the 28 mutex lock algorithms that are representative of both well-
established and state-of-the-art approaches. Our choice of studied locks is guided by
the decision to focus on portable lock algorithms. We therefore exclude the following
locks that require strong assumptions on the application/OS behavior, code modifi-
cations, or fragile performance tuning: HCLH, HBO, FC-MCS (see Dice et al. [38]
for detailed arguments). We also do not study delegation-based algorithms, because
they require critical sections to be expressed as a form of closure (i.e., functions) [38],
which is incompatible with our transparent approach (i.e., without source code mod-
ification). Finally, we do not consider runtime approaches like LC and GLS, which
require special kernel support and/or monitoring threads.

We use the _Spin and _STP suffixes to differentiate variants of the same algorithm that
only differ in their waiting policy (pure spinning vs spin-then-park). Unless explicitly
specified by the lock algorithm implementation, we use the PAUSE instruction to pause

41

Chapter 4. Study

between spinning loop iterations. The -ls tag corresponds to algorithm implementa-
tions borrowed from libslock [33]. As well, note that the GNU C library for Linux
provides two versions of Pthread mutex locks [45]: the default one uses immediate
parking (via the futex syscall) and the second one uses an adaptive spin-then-park
strategy. The latter version can be enabled with the PTHREAD_MUTEX_ADAPTIVE_NP op-
tion [68]. Our set of algorithms is summarized in Table 4.1 and includes eight compet-
itive succession locks (Backoff, Mutexee, Pthread, PthreadAdapt, Spinlock, Spinlock-
ls, TTAS, TTAS-ls), ten direct handoff locks (ALock-ls, CLH-ls, CLH_Spin, CLH_STP,
MCS-ls, MCS_Spin, MCS_STP, Ticket, Ticket-ls, Partitioned), six hierarchical locks
(C-BO-MCS_Spin, C-BO-MCS_STP, C-PTL-TKT, C-TKT-TKT, HTicket-ls, HMCS), and
four load-control locks (AHMCS, Malth_Spin, Malth_STP, MCS-TimePub).

42

4.1. Study’s methodology

Name Reference Short description
co

m
pe

ti
ti

ve
Backoff [80] Test-and-set (TAS) with exponential bounded backoff if the lock is already held.
Mutexee [42] A spin-then-park (STP) lock designed with energy efficiency in mind.
Pthread [46] TAS with direct parking.
PthreadAdapt [68] An adaptive STP algorithm, performing a number of trylocks (before blocking)

that depends on the number of trylocks performed by the lock holder when it
acquired the lock.

Spinlock [9] Compare-and-set algorithm with busy waiting.
Spinlock-ls [33] TAS algorithm with busy waiting.
TTAS [9] Performs non-atomic loads on the lock memory address before trying to acquire

it atomically with a TAS instruction.
TTAS-ls [33] Similar to TTAS but uses an exponential bounded backoff if the TAS fails.

di
re

ct
ha

nd
of

f

ALock-ls [9] The waiting threads are organized inside a fixed-sized array, i.e., there is a fixed
bound N on the number of waiting threads. A thread waits on one of the private
cache-aligned array slot. At unlock-time, the lock holder wakes the next thread
by changing the content of the slot the next thread waits on.

CLH_Spin [29, 76] Waiting threads are organized as an inverse linked-list, where a thread spins on
the context (i.e., linked-list node) of its predecessor. At unlock-time, the lock
holder wakes up the thread at the head of the waiting list.

CLH_STP [29, 76] Similar to CLH_Spin but uses a STP waiting policy.
CLH-ls [33] Similar to CLH_Spin but uses the PREFETCHW x86 CPU instruction while spinning.
MCS_Spin [80] Waiting threads are organized as a linked-list, where a thread spins on its private

context. At unlock-time, the lock holder wakes up its successor.
MCS_STP [80] Similar to MCS_Spin but uses a STP waiting policy.
MCS-ls [33] Similar to MCS_Spin but uses the PREFETCHW x86 CPU instruction while spinning.
Ticket [91] A thread trying to acquire the lock atomically takes a “ticket” (implemented as an

incrementing counter) and spins while its ticket is not equal to the “next-ticket”
number. At unlock-time, the lock holder increments the “next-ticket” number.

Ticket-ls [33] Similar to Ticket but a thread waits proportionally to the number of threads wait-
ing before him.

Partitioned [36] Similar to Ticket but the “next-ticket” number is implemented inside an array,
where a thread waits on its “ticket” slot (slot = ticket % size(array)).

hi
er

ar
ch

ic
al

C-BO-
MCS_Spin

[38] A thread first tries to acquire a MCS_Spin local lock shared by all threads on the
same NUMA node (the local lock), then competes on the Backoff top lock with
other threads holding their respective local locks.

C-BO-
MCS_STP

[38] Similar to C-BO-MCS_Spin but uses a STP waiting policy.

C-PTL-TKT [38] Similar to C-BO-MCS_Spin but the local locks are Ticket locks and the top lock is
a Partitioned lock.

C-TKT-TKT [38] Similar to C-BO-MCS_Spin but the top and local locks are Ticket locks.
HTicket-ls [33] Similar to C-TKT-TKT but a thread waits proportionally to the number of threads

waiting before him.
HMCS [25] Similar to C-BO-MCS_Spin but the top and local locks are MCS_Spin locks.

lo
ad

-c
on

tr
ol

AHMCS [24] Similar to HMCS, but when a thread tries to acquire the lock, it remembers if the
last time it released the lock there was a thread waiting. If not, it only locks the
top lock because it assumes low contention the lock.

Malth_Spin [34] A variant of the MCS_Spin lock where, when there is contention on a lock, a
subset of the spinning competing threads are put aside temporarily to let the
others progress more easily.

Malth_STP [34] Similar to Malth_Spin but threads use a STP waiting policy.
MCS-
TimePub

[54] A variant of the MCS_Spin lock, in which a waiting thread relinquishes its core if
it detects (heuristically, using timers and thresholds) that the lock holder has been
preempted. At unlock-time, the lock holder might bypass some waiting threads
if it detects they have been preempted.

Table 4.1 – A short description of the 28 multicore lock algorithms we
consider.

43

Chapter 4. Study

4.1.2 Testbed

Name A-64 A-48
Total #cores 64 48

Server model Dell PE R815 Dell PE R815

Processors 4× AMD Opteron 6272 4× AMD Opteron 6344

Microarchitecture Bulldozer / Interlagos Piledriver / Abu Dhabi
Clock frequency 2.1 GHz 2.6 GHz
Last-level cache (per node) 8 MB 8 MB
Introduction date 2011 2012

Interconnect HT3 - 6.4 GT/s per link HT3 - 6.4 GT/s per link
Memory 256 GB DDR3 1600 MHz 64 GB DDR3 1600 MHz
#NUMA nodes (#cores/node) 8 (8) 8 (6)
Network interfaces (10 GbE) 2× 2-port Intel 82599 2× 2-port Intel 82599

OS & tools Ubuntu 12.04 Ubuntu 12.04

Linux kernel 3.17.6 (CFS scheduler) 3.17.6 (CFS scheduler)
glibc 2.15 2.15

gcc 4.6.3 4.6.3

Name I-48 I-20
Total #cores 48 (no hyperthreading) 20 (no hyperthreading)
Server model SuperMicro SS 4048B-TR4FT SuperMicro X9DRW
Processors 4× Intel Xeon E7-4830 v3 2× Intel Xeon E5-2680 v2

Microarchitecture Haswell-EX Ivy Bridge-EP
Clock frequency 2.1 GHz 2.8 GHz
Last-level cache (per node) 30 MB 25 MB
Introduction date 2015 2013

Interconnect QPI - 8 GT/s per link QPI - 8 GT/s per link
Memory 256 GB DDR4 2133 MHz 256 GB DDRR 1600 MHz
#NUMA nodes (#cores/node) 4 (12) 2 (10)
Network interfaces (10 GbE) 2-port Intel X540-AT2 -
OS & tools Ubuntu 12.04 Ubuntu 14.04

Linux kernel 3.17.6 (CFS scheduler) 3.13 (CFS scheduler)
glibc 2.15 2.19

gcc 4.6.4 4.6.3

Table 4.2 – Hardware characteristics of the testbed platforms.

Our experimental testbed consists of four Linux-based x86 multicore servers whose
main characteristics are summarized in Table 4.2. All the machines run the Ubuntu
12.04 OS with a 3.17.6 Linux kernel (CFS scheduler), except the I-20 machine running
an Ubuntu 14.04 OS with a 3.13 Linux kernel. We tried to keep the software config-
uration as similar as possible for the different versions: they all use glibc (GNU C
Library) version 2.15 (2.19 for I-20) and gcc version 4.6.3 (4.6.4 on I-48). We configured
the BIOS of the A-64 and the A-48 machines in performance mode (processor throt-
tling is turned off so that all cores run at maximum speed, e.g., no C-state, no turbo
mode). The BIOS of the I-48 and I-20 machines in performance mode for the through-
put experiments, and in energy-saving mode for the energy-efficiency experiments.
For all configurations, hyper-threading is disabled.

44

4.1. Study’s methodology

4.1.3 Studied applications

Application Benchmark Suite Type
kyotocabinet - database
memcached-old - memory cache
memcached-new - memory cache
mysqld - database
rocksdb - key/value store
sqlite - database
ssl_proxy - ssl reverse proxy
upscaledb - key/value store
blackscholes PARSEC 3.0 financial analysis
bodytrack PARSEC 3.0 computer vision
canneal PARSEC 3.0 engineering
dedup PARSEC 3.0 enterprise storage
facesim PARSEC 3.0 animation
ferret PARSEC 3.0 similarity search
fluidanimate PARSEC 3.0 animation
freqmine PARSEC 3.0 data mining
p_raytrace PARSEC 3.0 rendering
streamcluster PARSEC 3.0 data mining
streamcluster_ll PARSEC 3.0 data mining
swaptions PARSEC 3.0 financial analysis
vips PARSEC 3.0 media processing
x264 PARSEC 3.0 media processing
histogram Phoenix 2 image
kmeans Phoenix 2 statistics
linear_regression Phoenix 2 statistics
matrix_multiply Phoenix 2 mathematical computations
pca Phoenix 2 statistics
pca_ll Phoenix 2 statistics
string_match Phoenix 2 text processing
barnes SPLASH2x physics simulation
fft SPLASH2x mathematical computations
fmm SPLASH2x physics simulation
lu_cb SPLASH2x mathematical computations
lu_ncb SPLASH2x mathematical computations
ocean_cp SPLASH2x physics simulation
ocean_ncp SPLASH2x physics simulation
radiosity SPLASH2x rendering
radiosity_ll SPLASH2x rendering
radix SPLASH2x sorting
s_raytrace SPLASH2x rendering
s_raytrace_ll SPLASH2x rendering
volrend SPLASH2x rendering
water_nsquared SPLASH2x physics simulation
water_spatial SPLASH2x physics simulation
word_count SPLASH2x text processing

Table 4.3 – Real-world applications considered.

Table 4.3 lists the applications we chose for our comparative study of lock performance

45

Chapter 4. Study

and lock energy efficiency. More precisely, we consider (i) the applications from the
PARSEC benchmark suite version 3.0 (emerging workloads) [17], (ii) the applications
from the Phoenix 2.0 MapReduce benchmark suite [90], (iii) the applications from
the SPLASH2x high-performance computing benchmark suite [17]1, (iv) the MySQL
database version 5.7.7 [84] running the Cloudstone workload [100], (v) SSL proxy, an
event-driven SSL endpoint written with the Boost C++ library that processes small
messages, (vi) upscaledb 2.2.0 [26], an embedded key/value running the ham_bench
benchmark, (vii) the Kyoto Cabinet database version 1.2.76 [41], a standard relational
database management system running the included benchmark, (viii) Memcached,
versions 1.4.15 and 1.4.36

2 [81], an in-memory cache system, (ix) RocksDB 4.8 [40], a
persistent key/value store running the included benchmark, and (x) SQLite 3.13 [101],
an embedded SQL database using the dbt2 TPC-C workload generator3. We use re-
mote network injection for the MySQL and the SSL proxy applications. For Mem-
cached, similarly to other setups used in the literature [72, 42], the workload runs
on a single machine: we dedicate one socket of the machine where we run memaslap

to inject network traffic to the Memcached instance, the two running on two distinct
sets of cores. For the Kyoto Cabinet application, like in previous work [34], we redi-
rect calls to rw_lock to classic mutex_lock calls. This might change the synchroniza-
tion pattern of the application, yet this aplication is still interesting to consider be-
cause its performance is known to vary according to lock algorithms [22]. By default,
phoenix launches one thread per available core, and pins each thread to one core.
However, to have the same baseline for all our benchmarks, we decided to disable
pinning in phoenix, leaving to the scheduler the thread placement decisions. Note
that when benchmarks are evaluated in a thread-to-node pinning configuration (see
Section 4.2.3), phoenix is also evaluated on a thread-to-node pinning configuration.

In order to evaluate the impact of workload changes on locking performance and en-
ergy efficiency, we also consider “long-lived” variants of four of the above workloads
(pca, s_raytrace, radiosity and streamcluster) denoted with a “_ll” suffix. The moti-
vation behind these versions is to stress the application’s steady-state phase, where
the locks are mostly acquired/released. By contrast, the short-lived versions allow
us to benchmark the performance of the initialization and cleanup operations of an
application. For each application, we modified it to report throughput (in operations
per seconds, e.g., number of rays traced for an application that renders a 3-D phase)
and use larger input size. We capture the throughput of the “steady-state” phase
exclusively, ignoring the impact of the start/shutdown phases. Note that six of the ap-
plications only accept, by design, a number of threads that corresponds to a power of
two: facesim and fluidanimate from PARSEC, fft, ocean cp, ocean ncp, radix, all from
SPLASH2x. We decide to not include experiments for these six applications on the two

1We excluded the Cholesky application because of extremely short completion times.
2Memcached 1.4.15 uses a global lock to synchronize all accesses to a shared hash table. This lock is

known to be the main bottleneck. Newer versions use per-bucket locks, thus suffer less from contention.
3https://sourceforge.net/projects/osdldbt/

46

https://sourceforge.net/projects/osdldbt/

4.1. Study’s methodology

48-core machines and the 20-core machine, in order to keep the presentation of results
uniform and easy to understand. Besides, we were not able to evaluate the applica-
tions using network injection on the I-20 machine due to a lack of high-throughput
network connectivity.

Some (application,lock algorithm,machine) configurations cannot be evaluated, for the fol-
lowing reasons. First, due to a lack of memory (especially on the A-48, which only has
64 GB of memory), and because some applications allocate too many lock instances
and the memory footprint of some lock algorithms is high: (i) AHMCS with dedup
and fluidanimate on all machines, and (ii) CLH, ALock-ls, TTAS-ls with dedup on
A-48 results are not reported. Second, fluidanimate, Memcached-old, Memcached-
new, streamcluster, streamcluster_ll, vips rely on trylock operations. CLH algorithms
and HTicket-ls do not support trylock, and Partitioned and C-PTL-TKT trylock im-
plementations might block threads for a short time (which can cause deadlocks with
Memcached-*). Those configurations are not evaluated. Finally, most of the studied
applications use a number of threads equal to the number of cores, except the four fol-
lowing ones: dedup (3× threads), ferret (4× threads), MySQL (hundreds of threads)
and SQLite (hundreds of threads). For applications with significantly more threads
than cores (SQLite and MySQL), we exclude results for algorithms using a spinning
waiting policy: these applications suffer from the lock holder preemption issue (see
Section 4.5.1 for more details) up to a point where performance drops close to zero.

4.1.4 Tuning and experimental methodology

For the lock algorithms that rely on static thresholds, we use the recommended values
from the original papers and implementations. The algorithms based on a spin-then-
park waiting policy (e.g., Malth_STP [34]) rely on a fixed threshold for the spinning
time that corresponds to the duration of a round-trip context switch [63]—in this
case, we calibrate the duration using a microbenchmark on the testbed platform. All
the applications are run with memory interleaving (via the numactl utility) in order
to avoid NUMA memory bottlenecks4. Datasets are copied inside a temporary file-
storage facility (tmpfs) before running experiments, to avoid disk I/O. For most of
the experiments, the application threads are not pinned to specific cores. Note that
for hierarchical locks, which are composed of one top lock and one per-NUMA node
bottom lock, a thread always tries to acquire the bottom lock where it is currently
running5. Doing so, cache coherence traffic is limited, which is one of the main reason
behind the design of hierarchical locks. The effect of pinning is nonetheless discussed

4For the Memcached-* experiments where some nodes are dedicated to network injection, memory is
interleaved only on the nodes dedicated to the server.

5Before acquiring a lock, outside the critical section, the thread queries its current node via the rdtscp
instruction. Upon acquisition, a pointer to a local lock is stored inside the lock instance data structure,
which allows the lock holder at unlock time to release the appropriate local lock, even if this thread has
been migrated to another NUMA node while it was inside the critical section.

47

Chapter 4. Study

in Section 4.2.3.

Generally, in the experiments presented, we study both the throughput, the energy-
efficiency impact and the tail latency (here defined as the 99th percentile of client
reponse time) of a lock algorithm for a given level of contention, i.e., the number of
threads of the application. We vary the level of contention at the granularity of a
NUMA node (i.e., 8 cores for the A-64 machine, 6 cores for the A-48 machine, 12 cores
for the I-48 machine and 10 cores for the I-20 machine). Note that for Memcached-old
and Memcached-new, we use one socket of the machine to run the injection threads,
so the maximum number of cores tested is lower than the total number of cores on the
machine: the figures and tables are modified to take this into account.

We consider three metrics: application-level throughput, tail latency, and energy effi-
ciency. More precisely, for throughput, (i) for MySQL, SSL Proxy, upscaledb, Kyoto
Cabinet, RocksDB and SQLite, the application throughput is used as a performance
metric, (ii) for the long-lived applications, progress points are inserted in the source
code of the application, and (iii) for all the other applications, the inverse of the total
execution time is used. For tail latency, we consider the application tail latency, here
defined as the 99th percentile of client response time. We perform energy consump-
tion measurements using the RAPL (Running Average Power Limit) [58] power meter
interface on the two Intel machines (I-48 and I-20). RAPL is an on-chip facility that
provides counters to measure the energy consumption of several components: cores,
package and DRAM. We do not capture energy for our two AMD machines as they
do not have APM (Application Power Management), AMD’s version of RAPL.

We run each experiment at least 5 times6 and compute the average value. For long-
lived and server workloads, a 30-second warmup phase precedes a 60-second capture
phase, before killing the application. In pratice, for the applications we studied, these
timings are high enough to reach the best stable performance of the application. For
configurations exhibiting high variability (i.e., more than 5% of relative standard de-
viation), we run more experiments, trying to lower the relative standard deviation of
the configuration, to increase the confidence in our results. More precisely, we found
that roughly 15% of the (application, lock algorithm, machine, number of threads) configu-
rations have a relative standard deviation (rel.stdev.) higher than 5%. Besides, 6% of
the configurations have a rel.stdev higher than 10% and 2% higher than 20%. C-BO-
MCS_STP, TTAS and Spinlock-ls are the studied lock algorithms that exhibit the higher
variability: the rel.stdev of these locks is higher than 5% for 20% of the configurations.
Concerning the applications, ocean_cp, ocean_ncp, streamcluster and fft exhibit a high
rel.stdev (roughly 50% of the configurations have a rel.stdev higher than 5%). Finally,
streamcluster, dedup and streamcluster_ll are applications for which some configura-
tions exhibit a very high rel.stdev (higher than 20% in 10% of the cases). In order to

6The number of experiments is choosen as a good sweet-spot between having enough runs to compute
a significant average value and the overall experiment time of our study.

48

4.1. Study’s methodology

mitigate the effects of variability, when comparing two locks, we consider a margin of
5%: lock A is considered better than lock B if B’s performance (resp. energy efficiency
or tail latency) is below 95% of A’s. Besides, in order to make fair comparisons among
applications, the results presented for the Pthread locks are obtained using the same
library interposition mechanism (see Chapter 3) as with the other locks.

Finally, for the sake of space, we do not report all the results for the four studied
machines. We rather focus on the A-64 machine for the different studies and provide
summaries of the results for the other machines, which are in accordance to the re-
sults on the A-64 machine. Nevertheless, the entire set of results can be found in the
companion technical report [50]. We also do not systematically report, for the sake of
readability, the standard deviations as they are low for most configuration. Note that
the raw dataset (for all the experiments, on all machines) of throughput, tail latency
and energy is available online [51], letting the readers perform their own analysis.

49

Chapter 4. Study

4.2 Study of lock throughput

In this Section, we use LiTL to compare the performance (throughput) behavior of the
different lock algorithms on different workloads and at different levels of contention.
Our experimental methodology is described in Section 4.1. In Sections 4.3 and 4.4 we
present the results for energy efficiency and tail latency, respectively.

As a summary, Section 4.2.1 provides preliminary observations that drive the study.
Section 4.2.2 answers the main questions of the study regarding the observed lock
behavior. Section 4.2.3 discusses additional observations, such as how the machine,
the BIOS configuration, and the thread pinning affect the results as well as the per-
formance of Pthread locks. Section 4.2.4 discusses the implications of our study for
software developers and for the lock algorithm research community.

4.2.1 Preliminary observations

Before proceeding with the detailed study, we highlight some important characteristics
of the applications.

Selection of lock-sensitive applications

Table 4.4 shows two metrics for each application and for different numbers of nodes
on the A-64 machine (results for the other machines are available in the companion
technical report [50]): the performance gain of the best lock over the worst one, as well
as the relative standard deviation for the performance of the different locks. Note that
the columns of Table 4.4 cannot be compared to each other. Indeed, the numbers re-
ported are the performance gain and relative standard deviation for the best vs. worst
lock at a given number of nodes, i.e., gain at max nodes compares the performance of
the best vs. worst lock at max nodes, whereas gain at opt nodes compares the perfor-
mance of the best vs. worst lock at their respective optimal number of nodes (where
they perform best).

Besides, the numbers reported at max nodes are generally higher than at opt nodes be-
cause performance gaps between locks tend to increase under high contention, which
is why we chose the A-64 machine: it has the highest number of cores among our dif-
ferent machines. For the moment, we only focus on the relative standard deviations
at the maximum number of nodes (max nodes—highest contention) given in the fifth
column (the detailed results from this table are discussed in Section 4.2.2).

We consider that an application is lock-sensitive if the relative standard deviation for the
performance of the different locks at max nodes is higher than 10% (highlighted in bold
font in the Table). More precisely, we observe that about 60% of the applications are

50

4.2. Study of lock throughput

affected by locks, for all machines except the I-20 where the percentage of application
is slightly lower (49%). Table 4.5 summarizes the results for the four studied machines.
Some applications are lock-sensitive on some machines and not on others. For exam-
ple, fmm is only lock-sensitive on the AMD machines, not the Intel ones. For such
applications, we observe a moderate relative standard deviation at max nodes (30%),
meaning that they are considered lock-sensitive but they are not the applications that
are the most affected by locks. Indeed, we do not observe applications that are highly
affected by locks on one machine and not on another. In the remainder of this study,
we focus on lock-sensitive applications.

Selection of the number of nodes

In multicore applications, optimal performance is not always achieved at the maxi-
mum number of available nodes (abbreviated as max nodes) due to various kinds of
scalability bottlenecks. Therefore, for each (application, lock) pair, we empirically de-
termine the optimized configuration (abbreviated as opt nodes), i.e., the number of nodes
that yields the best performance. For the A-64 and A-48 machines, we consider 1, 2,
4, 6, and 8 nodes. For the I-48 machine, we consider 1, 2, 3, and 4 nodes. For the I-20

machine, we consider 1 and 2 nodes. Note that 6 nodes on A-64 and A-48 correspond
to 3 nodes on I-48, i.e., 75% of the available cores.

Table 4.6 shows for each (application, lock) pair, for the A-64 machine the performance
gain of opt nodes over max nodes and the number of nodes for opt nodes (results for
the other machines are available in the companion technical report [50]). A line full
of black boxes means that the optimal number of nodes is the maximal number of
nodes, i.e., for all locks, the best performance is seen at max nodes (the performance
of the application does not collapse). However, it is still interesting to consider these
applications, because a line full of black boxes does not mean that all locks performs
the same, e.g., for water_nsquared, the gain between the best vs. the worst locks at max
nodes and opt nodes is of 94% (Table 4.4). In addition, Table 4.7 provides a breakdown
of the (application, lock) pairs according to their optimized number of nodes for all
machines.

We observe that, for many applications, the optimized number of nodes is lower than
the max number of nodes. Moreover, we observe (Table 4.6) that the performance gain
of the optimized configuration is often extremely large. We note that the performance
gains for the I-20 is lower than the ones for the other machines, which have more cores.
This confirms that tuning the degree of parallelism has frequently a very strong impact
on performance. We also notice that, for some applications, the optimized number of
nodes varies according to the chosen lock (on pca_ll ALock-ls is optimal at 4 nodes,
Backoff at 8 nodes), the chosen waiting policy (on pca_ll Malth_Spin is optimal at 4

nodes, Malth_STP at 8 nodes) and the workload (Backoff is optimal at 2 nodes on pca

51

Chapter 4. Study

Gain
one

node

R.Dev.
one

node

Gain
max

nodes

R.Dev.
max

nodes

Gain
opt

nodes

R.Dev.
opt

nodes
barnes 10 % 2 % 36 % 8 % 31 % 7 %
blackscholes 11 % 2 % 2 % 1 % 2 % 1 %
bodytrack 1 % 0 % 9 % 2 % 4 % 1 %
canneal 5 % 1 % 7 % 2 % 7 % 2 %
dedup 819 % 57 % 989 % 54 % 819 % 57 %
facesim 9 % 2 % 771 % 67 % 13 % 3 %
ferret 1 % 0 % 349 % 56 % 101 % 25 %
fft 8 % 2 % 11 % 3 % 9 % 2 %
fluidanimate 48 % 11 % 284 % 28 % 127 % 20 %
fmm 17 % 5 % 42 % 10 % 42 % 10 %
freqmine 7 % 2 % 6 % 1 % 6 % 1 %
histogram 7 % 2 % 19 % 5 % 13 % 3 %
kmeans 9 % 3 % 12 % 2 % 12 % 2 %
kyotocabinet 414 % 25 % 2047 % 56 % 414 % 25 %
linear_regression 9 % 3 % 198 % 20 % 49 % 9 %
lu_cb 8 % 2 % 5 % 1 % 5 % 1 %
lu_ncb 26 % 5 % 8 % 2 % 8 % 2 %
matrix_multiply 6 % 2 % 608 % 26 % 169 % 20 %
memcached-new 63 % 15 % 1021 % 53 % 120 % 19 %
memcached-old 73 % 14 % 308 % 50 % 73 % 14 %
mysqld 166 % 42 % 174 % 36 % 122 % 33 %
ocean_cp 19 % 4 % 129 % 14 % 21 % 4 %
ocean_ncp 16 % 4 % 113 % 12 % 14 % 4 %
p_raytrace 2 % 0 % 1 % 0 % 2 % 0 %
pca 5 % 2 % 347 % 32 % 40 % 8 %
pca_ll 6 % 1 % 713 % 44 % 160 % 20 %
radiosity 3 % 1 % 91 % 15 % 13 % 4 %
radiosity_ll 10 % 2 % 2285 % 68 % 176 % 26 %
radix 3 % 1 % 8 % 2 % 8 % 2 %
rocksdb 4 % 1 % 16 % 4 % 16 % 4 %
s_raytrace 9 % 2 % 1898 % 58 % 232 % 31 %
s_raytrace_ll 5 % 1 % 1601 % 63 % 402 % 51 %
sqlite 66 % 19 % 2382 % 102 % 81 % 25 %
ssl_proxy 37 % 6 % 1309 % 59 % 58 % 11 %
streamcluster 14 % 3 % 1122 % 56 % 14 % 3 %
streamcluster_ll 24 % 5 % 1423 % 56 % 35 % 8 %
string_match 5 % 2 % 11 % 2 % 11 % 2 %
swaptions 8 % 2 % 10 % 2 % 10 % 2 %
upscaledb 158 % 22 % 748 % 43 % 197 % 24 %
vips 2 % 1 % 197 % 25 % 5 % 1 %
volrend 7 % 1 % 163 % 22 % 24 % 5 %
water_nsquared 10 % 2 % 94 % 14 % 94 % 14 %
water_spatial 23 % 5 % 98 % 15 % 96 % 15 %
word_count 4 % 1 % 19 % 3 % 12 % 2 %
x264 4 % 1 % 6 % 2 % 5 % 2 %

Table 4.4 – For each application, performance gain of the best vs. worst
lock and relative standard deviation (A-64 machine).

52

4.2. Study of lock throughput

A-64 A-48 I-48 I-20

tested applications 45 % 39 % 37 % 35 %
lock-sensitive applications 28 % 23 % 21 % 17 %
ratio 62 % 59 % 57 % 49 %

Table 4.5 – Number of applications and number of lock performance sen-
sitive applications (all machines).

and at 8 nodes on pca_ll).

4.2.2 Main questions

How much do locks affect applications?

Table 4.4 shows, for each application, the performance gain of the best lock over the
worst one at one node, max nodes, and opt nodes for the A-64 machine. The table also
shows the relative standard deviation for the performance of the different locks.

We observe that the number of nodes affects the performance of applications. At
one node, the impact of locks on lock-sensitive applications is moderate for most
applications. Nonetheless, for the most lock-sensitive ones (upscaledb, MySQL, Kyoto
Cabinet, dedup), we observe that the impact is high. More precisely, most applications
exhibit a gain of the best lock over the worst one that is lower than 30%. In contrast, at
max nodes, the impact of locks is very high for all lock-sensitive applications. More
precisely, the gain brought by the best lock over the worst lock ranges from 42% to
2382%. Finally, at opt nodes, the impact of locks is high, but noticeably lower than
at max nodes. We explain this difference by the fact that, at max nodes, some of the
locks trigger a performance collapse for certain applications (as shown in Table 4.6),
which considerably increases the observed performance gaps between locks. Note
that the collapse is not necessarily related to a given lock, but is also a property of the
application and how the machine behaves We observe the same trends on the A-48,
the I-48 and the I-20 machines (see the companion technical report [50]).

Are some locks always among the best?

Table 4.8 displays, for each machine, the coverage of each lock, i.e., how often it stands
as the best one (or is within 5% of the best) over all the studied applications, over the
different locks. Table 4.9 shows the per-lock results for the A-64 machine. The details
for the other machines are available in the companion technical report [50].

We make the following observations. On the A-64, A-48 and I-48 machines, no lock is
among the best for more than 76% of the applications at one node and for more than

53

Chapter 4. Study

A
pp

lic
at

io
ns

ahmcs

alock-ls

backoff

c-bo-mcs_spin

c-bo-mcs_stp

c-ptl-tkt

c-tkt-tkt

clh_spin

clh_stp

clh-ls

hmcs

hticket-ls

malth_spin

malth_stp

mcs_spin

mcs_stp

mcs-ls

mcs-timepub

mutexee

partitioned

pthread

pthreadadapt

spinlock

spinlock-ls

ticket

ticket-ls

ttas

ttas-ls

de
du

p
-

25
0

12
7

89
90

11
8

11
5

20
0

20
4

22
9

75
95

11
9

11
9

11
0

11
3

10
6

59
17

8
13

6
12

0
12

6
14

7
12

2
14

1
12

5
13

5
19

8
fa

ce
si

m
41

2
90

2
43

9
17

0
12

6
36

4
33

5
89

5
78

91
8

30
4

28
4

71
1

71
94

8
87

1k
26

56
89

5
91

67
72

6
16

0
91

9
45

9
21

1
29

7
fe

rr
et

12
4

15
4

16
83

68
17

3
13

9
11

0
10

2
72

18
3

19
4

17
3

6
17

0
41

flu
id

an
im

at
e

-
71

6
18

-
-

-
-

7
53

12
54

8
7

5
16

13
10

6
64

fm
m

9
6

ky
ot

oc
ab

in
et

27
82

69
17

22
4

35
34

35
49

33
24

29
31

22
36

68
34

49
26

7
55

26
5

20
8

2k
1k

17
9

97
54

1
28

2
lin

ea
r_

re
gr

es
si

on
25

85
35

17
5

15
12

28
39

60
25

33
14

5
21

34
54

8
55

10
8

38
12

20
9

18
22

m
at

ri
x_

m
ul

ti
pl

y
25

28
7

16
m

em
ca

ch
ed

-n
ew

12
14

13
39

6
-

10
-

-
-

7
-

17
33

25
41

6
22

19
-

20
11

2
81

8
61

9
16

4
51

25
9

74
m

em
ca

ch
ed

-o
ld

52
0

19
0

41
8

14
9

15
4

-
15

9
-

-
-

12
4

-
95

5
97

0
56

5
69

5
79

4
52

4
37

0
-

56
9

60
0

1k
34

9
80

6
81

5
33

4
41

4
m

ys
ql

d
-

-
-

-
-

-
-

-
-

-
-

-
-

-
25

-
-

-
-

-
-

-
oc

ea
n_

cp
97

79
11

4
96

11
4

91
83

12
5

12
2

94
99

74
88

75
11

4
82

11
5

44
58

10
3

72
73

23
8

12
8

13
6

65
87

10
1

oc
ea

n_
nc

p
93

87
85

79
10

8
74

83
98

79
83

81
65

83
85

92
95

73
61

65
98

95
82

20
6

11
4

90
58

70
10

4
pc

a
56

64
22

22
29

1
44

46
50

14
8

58
58

46
32

56
15

3
44

25
11

6
36

10
3

44
26

9
11

4
11

0
36

21
0

13
9

pc
a_

ll
76

66
49

3
70

78
77

10
8

43
76

53
26

81
10

6
41

39
12

5
59

11
0

20
39

5
30

3
72

37
30

9
21

8
ra

di
os

it
y

26
69

29
39

10
22

46
ra

di
os

it
y_

ll
13

5
52

2
31

18
10

47
3

13
8

9
51

4
19

19
27

5
40

18
5

70
92

9
58

1
25

9
11

7
75

6
45

4
s_

ra
yt

ra
ce

25
12

96
5

21
24

39
46

0
24

11
12

7
43

6
15

83
88

14
26

9
74

13
4

88
24

0
17

4
s_

ra
yt

ra
ce

_l
l

16
2

23
9

24
6

12
18

3
73

32
19

0
10

7
sq

lit
e

-
-

-
-

41
4

-
-

-
-

-
-

-
-

-
52

2
-

3k
19

6
-

15
4

84
-

-
-

-
-

-
ss

l_
pr

ox
y

44
69

88
34

95
7

65
82

61
1k

79
28

3
70

36
52

90
1k

10
1

73
35

1
87

26
8

19
5

2k
53

5
36

0
15

3
79

1
65

3
st

re
am

cl
us

te
r

2k
2k

3k
2k

4k
1k

2k
-

-
-

1k
-

4k
16

k
3k

16
k

4k
2k

2k
1k

2k
3k

9k
3k

5k
4k

4k
4k

st
re

am
cl

us
te

r_
ll

39
4

26
0

71
1

40
7

1k
23

6
25

3
-

-
-

25
0

-
81

6
4k

56
5

4k
77

4
25

2
26

0
29

0
41

3
45

2
2k

86
0

1k
68

2
89

6
76

2
up

sc
al

ed
b

13
12

5
10

10
5

17
14

13
35

11
14

17
11

32
10

19
15

59
39

57
5

36
8

71
30

15
7

23
7

vi
ps

72
58

26
23

3
42

12
7

10
4

-
-

-
11

1
-

25
1

18
51

18
46

21
20

55
20

21
20

26
37

31
27

32
vo

lr
en

d
52

84
87

72
13

3
48

58
82

12
3

71
52

54
69

12
8

86
10

9
79

82
13

7
83

13
1

16
2

22
2

14
8

74
68

93
10

2
w

at
er

_n
sq

ua
re

d
w

at
er

_s
pa

ti
al

Table 4.6 – For each (lock-sensitive application, lock) pair, performance gain
(in %) of opt nodes over max nodes. The background color of a cell indicates
the number of nodes for opt nodes: 1 2 4 6 8 . Dashes correspond to
untested cases (A-64 machine).

54

4.2. Study of lock throughput

A-64 A-48 I-48 I-20

1 Node 19 % 16 % 1 Node 37 % 1 Node 39 %
2 Nodes 23 % 21 % 2 Nodes 17 % 2 Nodes 61 %
4 Nodes 26 % 23 % 3 Nodes 17 %
6 Nodes 11 % 16 % 4 Nodes 29 %
8 Nodes 21 % 24 %

Table 4.7 – Breakdown of the (lock-sensitive application, lock) pairs according
to their optimized number of nodes (all machines).

.

nodes Coverage A-64 A-48 I-48 I-20

1
[min; max] [39 %; 73 %] [33 %; 71 %] [21 %; 76 %] [42 %; 75 %]
Average 59 % 59 % 51 % 57 %
Relative Standard Deviation 10 % 11 % 14 % 10 %

Max
[min; max] [0 %; 29 %] [0 %; 33 %] [0 %; 47 %] [8 %; 75 %]
Average 14 % 14 % 19 % 42 %
Relative Standard Deviation 8 % 9 % 13 % 16 %

Opt
[min; max] [15 %; 50 %] [4 %; 48 %] [0 %; 53 %] [8 %; 75 %]
Average 30 % 24 % 20 % 43 %
Relative Standard Deviation 9 % 11 % 14 % 16 %

Table 4.8 – Statistics on the coverage of locks on lock-sensitive applications
for three configurations: one node, max nodes, and opt nodes (all machines).
The coverage indicates how often a lock algorithm stands as the best one
(or is within 5 % of the best).

53% of the applications both at max nodes and at the optimal number of nodes. The
results for the I-20 show that the coverage of a given lock algorithm is larger than for
the other machines (75% at one node, max nodes and opt nodes). This can be explained
by the fact that this machine has less cores (and NUMA sockets) than the three others.
Nonetheless, for all machines, no lock algorithm is optimal for all applications. We
also observe that the average coverage is much higher at one node than at max nodes,
and slightly higher at opt nodes than at max nodes. This is directly explained by the
observations made in Section 4.2.2. First, at one node, locks have a much lower impact
on applications than in other configurations and thus yield closer results, which in-
creases their likelihood to be among the best ones. Second, at max nodes, all of the
different locks cause, in turn, a performance collapse, which reduces their likelihood
to be among the best locks. This latter phenomenon is not observed at opt nodes.

Is there a clear hierarchy between locks?

Figure 4.1 shows pairwise comparisons for all locks, at max nodes on the A-64 machine.

We observe that there is no clear global performance hierarchy between locks. More
precisely, for most pairs of locks (row A, col B), there are some applications for which A

55

Chapter 4. Study

ttas−ls
ttas

ticket−ls
ticket

spinlock−ls
spinlock

pthreadadapt
pthread

partitioned
mutexee

mcs−timepub
mcs−ls

mcs_stp
mcs_spin
malth_stp

malth_spin
hticket−ls

hmcs
clh−ls

clh_stp
clh_spin
c−tkt−tkt
c−ptl−tkt

c−bo−mcs_stp
c−bo−mcs_spin

backoff
alock−ls

ahmcs

ah
m

cs

alo
ck

−ls

ba
ck

of
f

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

c−
pt

l−t
kt

c−
tkt

−t
kt

clh
_s

pin

clh
_s

tp
clh

−ls
hm

cs

ht
ick

et
−ls

m
alt

h_
sp

in

m
alt

h_
stp

m
cs

_s
pin

m
cs

_s
tp

m
cs

−ls

m
cs

−t
im

ep
ub

m
ut

ex
ee

pa
rti

tio
ne

d

pt
hr

ea
d

pt
hr

ea
da

da
pt

sp
inl

oc
k

sp
inl

oc
k−

ls
tic

ke
t

tic
ke

t−
ls

tta
s

tta
s−

ls

0%

20%

40%

60%

80%

Score

Figure 4.1 – For each pair of locks (rowA, colB) at opt nodes, scores of lock
A vs lock B: percentage of lock-sensitive applications for which lock A
performs at least 5% better than B. The cell (rowA, colB) color indicates
the score of lock A vs. lock B, i.e., the percentage of applications for which
lock A is at least 5% better than lock B. The more lock A outperforms
B, the more red (dark) the cell is. For example, for roughly 40% of the
applications, AHMCS performs at least 5% better than Backoff at opt nodes.
Similarly, the figure shows that Backoff is at least 5% better than AHMCS
for roughly 35% of the applications. From these two values, we can con-
clude that the two above-mentioned locks perform very closely for 25% of
the applications. (A-64 machine).

56

4.2. Study of lock throughput

Number of nodes
Locks one node max nodes opt nodes
ahmcs 54 % 21 % 50 %
alock-ls 50 % 0 % 23 %
backoff 62 % 23 % 31 %
c-bo-mcs_spin 50 % 12 % 27 %
c-bo-mcs_stp 46 % 11 % 18 %
c-ptl-tkt 62 % 17 % 42 %
c-tkt-tkt 73 % 8 % 38 %
clh_spin 65 % 5 % 30 %
clh_stp 60 % 15 % 20 %
clh-ls 55 % 5 % 35 %
hmcs 50 % 15 % 42 %
hticket-ls 70 % 15 % 40 %
malth_spin 58 % 8 % 27 %
malth_stp 43 % 25 % 29 %
mcs_spin 65 % 19 % 38 %
mcs_stp 61 % 18 % 21 %
mcs-ls 58 % 4 % 31 %
mcs-timepub 57 % 29 % 36 %
mutexee 57 % 14 % 21 %
partitioned 71 % 12 % 42 %
pthread 43 % 21 % 21 %
pthreadadapt 39 % 25 % 21 %
spinlock 73 % 23 % 23 %
spinlock-ls 62 % 15 % 31 %
ticket 69 % 15 % 35 %
ticket-ls 65 % 12 % 31 %
ttas 73 % 12 % 31 %
ttas-ls 54 % 0 % 15 %

Table 4.9 – For each lock, fraction of the lock-sensitive applications for
which the lock yields the best performance for three configurations: one
node, max nodes and opt nodes (A-64 machine).

is better than B, or vice-versa (Figure 4.1). The only marginal exceptions are the cells
having 0% for value. This corresponds to pairs of locks (row A, col B) for which A never
yields better performance than B. The results at max nodes (available in the companion
technical report [50]) exhibit similar trends as the ones at opt nodes. Besides, we make
the same observations (both at opt nodes and max nodes) on the A-48, the I-48 machines
and the I-20 (see the companion technical report [50]).

57

Chapter 4. Study

A-64 A-48 I-48 I-20

Lock Max Opt Max Opt Max Opt Max Opt
ahmcs 58 % 17 % 55 % 50 % 44 % 44 % 46 % 38 %
alock-ls 96 % 46 % 70 % 50 % 53 % 47 % 29 % 29 %
backoff 62 % 38 % 38 % 43 % 53 % 37 % 43 % 36 %
c-bo-mcs_spin 65 % 42 % 62 % 62 % 47 % 32 % 29 % 29 %
c-bo-mcs_stp 82 % 46 % 87 % 83 % 85 % 60 % 80 % 73 %
c-ptl-tkt 58 % 25 % 58 % 53 % 47 % 29 % 29 % 21 %
c-tkt-tkt 58 % 35 % 67 % 52 % 37 % 32 % 14 % 14 %
clh_spin 85 % 35 % 60 % 53 % 86 % 71 % 50 % 50 %
clh_stp 85 % 65 % 93 % 93 % 93 % 93 % 92 % 92 %
clh-ls 85 % 35 % 67 % 60 % 79 % 79 % 58 % 58 %
hmcs 54 % 31 % 38 % 38 % 42 % 32 % 14 % 14 %
hticket-ls 65 % 40 % 50 % 56 % 50 % 36 % 17 % 17 %
malth_spin 73 % 46 % 62 % 52 % 63 % 63 % 43 % 43 %
malth_stp 57 % 46 % 74 % 74 % 60 % 60 % 33 % 33 %
mcs_spin 77 % 31 % 67 % 43 % 53 % 47 % 29 % 29 %
mcs_stp 75 % 57 % 78 % 74 % 75 % 75 % 80 % 73 %
mcs-ls 81 % 42 % 67 % 48 % 58 % 53 % 29 % 29 %
mcs-timepub 50 % 29 % 61 % 48 % 55 % 50 % 47 % 40 %
mutexee 68 % 57 % 74 % 61 % 70 % 60 % 40 % 40 %
partitioned 79 % 33 % 68 % 63 % 71 % 53 % 36 % 36 %
pthread 68 % 61 % 78 % 74 % 70 % 70 % 53 % 47 %
pthreadadapt 68 % 54 % 70 % 70 % 75 % 60 % 53 % 40 %
spinlock 69 % 50 % 81 % 67 % 74 % 63 % 64 % 50 %
spinlock-ls 77 % 46 % 81 % 57 % 74 % 63 % 57 % 36 %
ticket 77 % 50 % 90 % 62 % 89 % 79 % 43 % 36 %
ticket-ls 69 % 42 % 76 % 57 % 68 % 53 % 36 % 29 %
ttas 69 % 38 % 81 % 52 % 74 % 58 % 43 % 36 %
ttas-ls 92 % 54 % 90 % 60 % 84 % 68 % 71 % 57 %

Table 4.10 – For each lock, at max nodes and at opt nodes, fraction of the lock-
sensitive applications for which the lock is harmful, i.e., the performance
gain brought by the best lock with respect to the given lock is greater than
15 % (all machines).

Are all locks potentially harmful?

Our goal is to determine, for each lock, if there are applications for which it yields
substantially lower performance than other locks and to quantify the magnitude of
such performance gaps. Table 4.10 displays, for each machine, the fraction of applica-
tions that are significantly hurt by a given lock at max nodes and at opt nodes. Table 4.11

shows the detailed results at max nodes for the A-64 machine (results for all machines
in the companion technical report [50]).

On the four machines, we observe that, both at max nodes and at the optimal number

58

4.2. Study of lock throughput

of nodes, all locks are potentially harmful, yielding sub-optimal performance for a
significant number of applications (Table 4.10). We also notice that locks are signif-
icantly less harmful at opt nodes than at max nodes. This is explained by the fact that
several of the locks create performance collapse at max nodes, which does not occur at
opt nodes. Moreover, we observe that, for each lock, the performance gap to the best
lock can be significant (Table 4.10).

59

Chapter 4. Study

A
pp

lic
at

io
ns

ahmcs

alock-ls

backoff

c-bo-mcs_spin

c-bo-mcs_stp

c-ptl-tkt

c-tkt-tkt

clh_spin

clh_stp

clh-ls

hmcs

hticket-ls

malth_spin

malth_stp

mcs_spin

mcs_stp
mcs-ls

mcs-timepub

mutexee
partitioned

pthread

pthreadadapt

spinlock

spinlock-ls

ticket

ticket-ls

ttas
ttas-ls

de
du

p
-6

09
5

14
2

14
1

29
13

58
8

59
0

98
8

15
0

13
4

13
5

13
3

13
1

13
3

12
7

84
0

16
8

4
4

3
6

4
5

59
1

fa
ce

si
m

29
8

69
4

33
8

11
5

85
25

8
23

1
68

7
52

70
0

21
9

19
6

53
1

40
71

0
52

77
1

0
23

68
5

56
44

57
2

11
7

71
9

33
7

14
7

22
4

fe
rr

et
31

0
27

0
8

50
0

23
9

22
9

31
2

0
25

2
27

4
27

7
20

9
0

31
7

0
34

9
4

1
31

4
0

1
10

4
30

8
93

8
8

flu
id

an
im

at
e

-2
84

0
53

71
30

12
-

-
-

65
-

31
87

35
86

44
44

76
9

1
7

21
2

13
10

4
18

7
fm

m
41

37
22

16
27

29
15

39
33

38
35

32
21

18
2

0
32

0
25

20
25

23
2

27
19

28
22

32
ky

ot
oc

ab
in

et
9

91
29

0
17

1
24

28
33

48
4

43
12

19
22

22
28

47
4

38
52

39
7

45
40

9
27

6
2k

2k
21

4
89

58
9

33
4

lin
ea

r_
re

gr
es

si
on

17
89

10
34

19
8

14
17

17
64

56
13

29
8

0
22

58
54

4
16

47
16

2
85

31
33

12
34

38
m

at
ri

x_
m

ul
ti

pl
y

9
78

3
14

5
27

54
9

3
12

60
8

59
5

3
28

2
16

8
0

6
44

3
3

5
59

3
59

4
55

m
em

ca
ch

ed
-n

ew
0

20
38

70
87

1
-

10
-

-
-

0
-

35
81

20
58

2
31

17
53

-1
03

19
3

1k
76

4
22

1
80

33
1

11
0

m
em

ca
ch

ed
-o

ld
11

7
54

63
0

1
-

14
-

-
-

6
-2

89
30

7
14

9
19

2
26

4
17

5
10

8
-2

09
22

5
30

5
45

21
6

22
3

33
74

m
ys

ql
d

-
-

-
-

53
-

-
-

-
-

-
-

-
0

-
7

-1
73

10
-

97
10

2
-

-
-

-
-

-
oc

ea
n_

cp
28

17
38

32
47

24
21

41
38

19
31

14
23

27
43

32
30

0
13

31
11

19
12

9
54

55
7

23
34

oc
ea

n_
nc

p
24

17
23

24
31

8
12

27
25

18
13

3
16

19
33

34
11

8
5

26
28

24
11

3
34

22
0

11
31

pc
a

51
57

26
27

34
6

43
47

49
22

1
53

51
41

30
0

57
22

9
39

25
12

4
31

12
1

45
26

6
10

7
10

4
26

20
0

12
8

pc
a_

ll
64

52
0

8
71

3
56

58
66

37
9

31
60

35
14

10
61

36
9

27
26

16
5

41
16

6
51

52
2

33
1

11
6

23
27

3
19

3
ra

di
os

it
y

13
12

4
4

38
8

5
9

0
13

7
8

8
12

0
90

9
0

42
0

0
0

1
54

0
19

34
61

ra
di

os
it

y_
ll

0
41

43
26

1k
37

47
31

1k
49

0
17

68
67

26
2k

57
60

53
5

76
56

9
26

2
2k

1k
58

5
20

0
1k

80
2

s_
ra

yt
ra

ce
0

33
65

37
2k

29
39

46
1k

37
16

31
26

64
0

1k
16

13
28

2
10

3
23

0
12

2
71

4
25

2
41

2
14

5
66

1
51

4
s_

ra
yt

ra
ce

_l
l

10
20

42
39

64
5

11
13

0
2k

5
41

19
37

21
0

2k
10

14
28

4
56

20
1

67
1k

74
4

55
4

17
2

1k
91

6
sq

lit
e

-
-

-
-4

05
-

-
-

-
-

-
-

-
0

-5
91

-
2k

37
5

-3
36

18
1

-
-

-
-

-
-

ss
l_

pr
ox

y
0

17
48

5
79

0
11

26
16

87
9

27
15

9
15

16
35

41
90

0
48

29
31

9
36

29
3

15
3

1k
44

7
27

1
89

59
4

49
9

st
re

am
cl

us
te

r
49

21
13

7
43

19
5

0
15

-
-

-
0

-2
19

1k
12

1
1k

18
8

13
32

8
95

14
2

52
7

12
9

30
2

18
1

21
5

20
6

st
re

am
cl

us
te

r_
ll

65
20

18
8

58
27

7
0

21
-

-
-

15
-2

62
1k

14
4

1k
22

8
28

44
27

80
12

0
54

9
19

6
32

1
17

7
23

2
18

9
up

sc
al

ed
b

8
18

30
9

11
0

16
12

16
28

1
19

8
14

0
5

17
26

7
21

34
10

7
25

21
5

10
9

74
7

49
6

10
6

49
22

6
31

8
vi

ps
48

38
6

18
4

21
95

73
-

-
-

84
-1

96
0

28
1

28
3

2
33

0
2

3
6

16
10

8
14

vo
lr

en
d

2
27

36
19

72
0

7
26

58
17

0
2

18
63

27
47

22
25

80
25

78
10

5
16

2
87

25
15

40
48

w
at

er
_n

sq
ua

re
d

94
48

4
6

10
8

2
35

35
58

14
11

7
6

3
2

9
7

7
4

6
7

0
6

4
6

5
37

w
at

er
_s

pa
ti

al
97

48
1

9
6

3
3

40
39

63
8

4
8

5
9

9
5

10
3

1
0

0
2

1
1

0
0

40

Table 4.11 – For each lock-sensitive application, at max nodes, performance
gain, (in %) obtained by the best lock(s) with respect to each of the other
locks. A gray cell highlights a configuration where a given lock hurts the
application, i.e., the performance gain is greater than 15%. A line with
many gray cells corresponds to an application whose performance is hurt
by many locks. A column with many gray cells corresponds to a lock
that is outperformed by many other locks. Dashes correspond to untested
cases (A-64 machine).

60

4.2. Study of lock throughput

4.2.3 Additional observations

Impact of the number of nodes

Table 4.12 shows, for each application on the A-64 machine, the number of pairwise
changes in the lock performance hierarchy when the number of nodes is modified.
We observe that, for all applications, the lock performance hierarchy changes signif-
icantly according to the chosen number of nodes. Moreover, we observe the same
trends on the A-48, I-48 and I-20 machines (see the companion technical report [50]).

Impact of the machine

We look at the number of pairwise lock inversions observed between the machines
(both at max nodes and at opt nodes). For a given application at a given node configura-
tion, we check whether two locks are in the same order or not on the target machines.
We observe that the lock performance hierarchy changes significantly according to
the chosen machine. Interestingly, we observe that there is approximately the same
number of inversions between each pair of machines, roughly 30% for all configura-
tions. The detailed results for each pair of machines are available inside the companion
technical report [50].

A note on Pthread locks

The various results presented in this Section show that the current Linux Pthread locks
perform reasonably well (i.e., are among the best locks) for a significant share of
the studied applications, thus providing a different insight than recent results, which
were mostly based on synthetic workloads [33]. Beyond the changes of workloads,
these differences could also be explained by the continuous refinement of the Linux
Pthread implementation. It is nevertheless important to note that on each machine,
some locks stand out as the best ones for a higher fraction of the applications than
Pthread locks. Finally, we note that Pthread locks and PthreadAdapt locks exhibit
similar performance.

Impact of thread pinning

As explained in Section 4.1, all the previously-described experiments were run with-
out any restriction on the placement of threads (i.e., a thread might be scheduled on
any core of the machine), leaving the corresponding decisions to the Linux scheduler.
However, in order to better control cores allocation and improve locality, some develop-
ers and system administrators use pinning to explicitly restrict the placement of each
thread to one or several core(s). The impact of thread pinning can vary greatly accord-

61

Chapter 4. Study

% of pairwise changes between configurations
Applications 1/2 2/4 4/8 1/2/4/8

dedup 11 % 4 % 13 % 18 %
facesim 17 % 43 % 85 % 97 %
ferret 0 % 71 % 25 % 85 %
fluidanimate 7 % 6 % 23 % 30 %
fmm 37 % 13 % 19 % 50 %
kyotocabinet 15 % 12 % 14 % 30 %
linear_regression 48 % 46 % 47 % 88 %
matrix_multiply 41 % 26 % 45 % 72 %
memcached-new 53 % 18 % 0 % 64 %
memcached-old 77 % 73 % 0 % 95 %
mysqld 24 % 29 % 14 % 38 %
ocean_cp 46 % 45 % 69 % 94 %
ocean_ncp 54 % 51 % 56 % 90 %
pca 41 % 50 % 29 % 92 %
pca_ll 31 % 40 % 47 % 94 %
radiosity 10 % 50 % 51 % 81 %
radiosity_ll 67 % 26 % 15 % 90 %
s_raytrace 7 % 69 % 28 % 96 %
s_raytrace_ll 4 % 87 % 20 % 97 %
sqlite 29 % 19 % 45 % 81 %
ssl_proxy 62 % 13 % 21 % 77 %
streamcluster 66 % 29 % 32 % 93 %
streamcluster_ll 61 % 34 % 30 % 95 %
upscaledb 41 % 17 % 14 % 54 %
vips 1 % 3 % 83 % 83 %
volrend 19 % 28 % 39 % 85 %
water_nsquared 20 % 21 % 13 % 49 %
water_spatial 6 % 9 % 12 % 26 %

Table 4.12 – For each lock-sensitive application, percentage of pairwise
changes in the lock performance hierarchy when changing the number of
nodes. For example, in the case of the facesim application, there are 17 %
of the pairwise performance comparisons between locks that change when
moving from a 1-node configuration to a 2-node configuration. Similarly,
there are 97 % of pairwise comparisons that change at least once when
considering the 1-node, 2-node, 4-node and 8-node configurations. (A-64
machine).

62

4.2. Study of lock throughput

ing to workloads and can yield both positive and negative effects [33, 74]. In order to
assess the generality of our observations, we also performed the complete set of exper-
iments on the A-64 machine with an alternative configuration in which each thread is
pinned to a given node, leaving the scheduler free to place the thread among the cores
of the node. Note that for an experiment with a N-node configuration, the complete
application runs on exactly the first N nodes of the machine. We chose thread-to-node
pinning rather than thread-to-core pinning because we observed that the former gen-
erally provided better performance for our studied applications, especially the ones
using more threads than cores. The detailed results of our experiments with thread-
to-node pinning are available in the companion technical report [50]. Overall, we
observe that all the conclusions presented in this Chapter still hold with per-node
thread pinning.

Impact of BIOS configuration

The experiments presented in this Section were all ran with the BIOS configured in
performance mode, for all machines. In performance mode: (i) processor throttling is
turned off, so that all cores always run at full speed (i.e., maximum available frequency,
Intel Turbo Boost / AMD Turbo Core deactivated), and (ii) idle power saving proces-
sor C-states are deactivated, thus cores are always immediately available to execute
threads (i.e., they never need to be resumed from a low-power mode). In addition,
for the I-48 and I-20 machines, we also executed the throughput experiments with
the BIOS configured in energy-saving move. In such a configuration, processor throt-
tling and idle power saving C-states are activated, letting the hardware and the kernel
manage the processors’ state, aiming at reducing power consumption. We observe
quantitative throughput differences between the two configurations. However, chang-
ing the BIOS configuration does not only affect lock performance but also application
performance. Yet, a full study of the impact of the BIOS configuration modes on the
performance of applications falls out of the scope of this thesis. Nonetheless, we ob-
serve that all the conclusions presented in this Chapter still hold when the BIOS is
configured in energy-saving move.

4.2.4 Effects of the lock choice on application performance

The results of our study have several implications for both the software developers
and the lock algorithm research community. First, we observe that the choice of a
lock algorithm should not be hardwired into the code of applications: applications
should always use standard synchronization APIs (e.g., the POSIX Pthread API), so
that one can easily interpose the implementation of the lock algorithm.

Second, the Pthread library should not provide only one lock algorithm (i.e., the
Pthread lock algorithm) to software developers as it is currently the case. It is a “good

63

Chapter 4. Study

generic solution”; still Pthread locks certainly do not bring the best performance for
every application.

Third, the research community should perform further research on optimized lock al-
gorithms. Specifically, there is a need for dynamic approaches to lock algorithms that
automatically adapt to the running workload and its environment (e.g., the machine,
the collocated workloads). Besides, previous work only focused on the lock/unlock
API, while we observe that applications also stress trylocks, barriers and condition
variables, thus future research needs to consider complete locking APIs (more details
in Section 4.5). Finally, metrics other than throughput are becoming more and more
important, and as a consequence, when designing a new lock algorithm, researchers
should not only consider throughput, but all performance metrics, including latency
and energy efficiency (as we will see in details in Sections 4.3 and 4.4).

64

4.3. Study of lock energy efficiency

4.3 Study of lock energy efficiency

In this Section, we perform experiments on the I-48 and I-20 machines in order to eval-
uate the energy efficiency of the different lock algorithms. In Sections 4.2 and 4.4,
we present the results for throughput and tail latency, respectively. We are inter-
ested in energy efficiency as defined by Falsafi et al. [42]: energy efficiency represents
the amount of work produced for a fixed amount of energy and can be defined as
throughout per power (abbreviated TPP thereafter, in #operations/second

watt = #operations/second
joule/second =

#operations/joule). Higher TPP represents better energy efficiency. As explained in
Section 4.1, we use Intel’s RAPL facility to measure the energy consumption of sev-
eral components: cores, chip package and DRAM. Moreover, the BIOS for the energy
experiment is configured in energy saving mode.

This Section is structured as follows. First, Section 4.3.1 discusses the results of the
energy-efficiency study. We also discuss the similarities and differences between per-
formance and energy-efficiency observations drawn from the study. Next, Section 4.3.2
discusses and validates the POLY conjecture previously introduced by Falsafi et al. [42],
stating that energy efficiency and throughput go hand in hand with locks.

4.3.1 Energy-efficiency lock behavior

For the sake of brevity, we do not describe all the individual results for energy effi-
ciency, available in the companion technical report [50]. Overall, we observe that all
the conclusions presented in Section 4.2 about throughput still hold with energy ef-
ficiency. More precisely, we observe that: (i) 50% of the applications are lock-sensitive
with respect to energy efficiency, (ii) the optimized number of nodes for many ap-
plications is lower than the max number of nodes, (iii) the energy-efficiency gap is
often large between different kinds of locks, (iv) the impact of locks on lock-sensitive
applications is moderate at one node, and very high at both opt nodes and max nodes,
(v) no lock is among one of the bests for more than 83% of the lock-sensitive applica-
tions at one node and for more than 61% both at max nodes and opt nodes, (vi) there is no
clear global performance hierarchy among locks, (vii) all locks are potentially harmful,
both at max nodes and opt nodes, yielding sub-optimal energy efficiency for a significant
number of applications, (viii) the lock performance hierarchy changes significantly ac-
cording to the chosen number of nodes. We observe, similarly to performance, that
the I-20 exhibits less pronounced trends than the I-48 machine. Compared to the four
twelve-core NUMA sockets of the I-48 machine, the I-20 machine only has twenty
cores, divided into two NUMA sockets. As a consequence, the max node configuration
for the I-20 uses half the threads than the I-48. Thus, some bottlenecks leading to
collapse when using a high number of threads are not observable on the smaller I-20

machine.

65

Chapter 4. Study

I-48 I-20

≥ +5 % 64 % 38 %
≤ −5 % 4 % 9 %
between −5 % and +5 % 32 % 53 %

Table 4.13 – Percentage of lock-sensitive applications for which the energy-
efficiency gain of opt nodes over max nodes is at least 5% higher than the
performance gain, at least 5% lower than the performance gain or between
+5% and -5% of the performance gain (I-48 and I-20 machines.)

I-48 I-20

lower opt nodes 25 % 11 %
same opt nodes 74 % 87 %
higher opt nodes 1 % 2 %

Table 4.14 – Percentage of lock-sensitive applications for which opt nodes is
lower, the same or higher for energy efficiency w.r.t. performance. We use
a 5% tolerance margin, i.e., if the application performance at opt nodes is
N1 and the energy efficiency at opt nodes is N2, and N1 6= N2, we look the
performance at N2 and the energy efficiency at N1, and if the performance
or the energy-efficiency difference is lower than 5%, we consider that the
application’s opt nodes is the same for performance and energy efficiency.
(I-48 and I-20 machines).

We observe similar general trends between performance and energy efficiency. How-
ever, looking at the detailed results and comparing them allows us to discover new
interesting facts. The following observations are made from the results on the I-48

machine. The results for the I-20 machine are discussed at the end of the Section.

We first observe that the set of lock-sensitive applications for throughput is almost the
same as the set with respect to energy efficiency. In other words, changing the lock
algorithm affects the throughput if and only if it affects the energy efficiency. This
insight simplifies the monitoring/profiling and optimization process of such applica-
tions.

Table 4.13 shows the gain difference of opt nodes over max nodes between energy ef-
ficiency and throughput. The gain between opt nodes and max nodes for energy
efficiency is generally higher than the one for throughput. We observe that on the
I-48, the gain for energy efficiency is higher for at least half of the lock-sensitive ap-
plications, and the same for 32% of the lock-sensitive applications. Intuitively, for
energy efficiency, wasting resources while waiting behind locks costs both in terms of
throughput and wasted energy.

Table 4.14 shows the percentage of lock-sensitive applications where opt nodes is lower,
the same or higher while considering energy efficiency w.r.t. throughput. On the I-

66

4.3. Study of lock energy efficiency

48, 25% of the lock-sensitive applications collapse at a lower number of nodes with
energy efficiency than with throughput, 74% at the same number of nodes, and 1% at
a higher number of nodes. We can conclude that, when throughput collapses, energy
efficiency generally starts collapsing at a similar degree of parallelism.

The results on the I-20 machine are similar (available in the companion technical re-
port [50]).

4.3.2 POLY

The POLY conjecture introduced by Falsafi et al. [42] states that “energy efficiency and
throughput go hand in hand in the context of lock algorithms”. More precisely, POLY
suggests that “locks can be optimized to improve energy efficiency without degrading
throughput”, and that “[the insights from] prior throughput-oriented research on lock
algorithms can be applied almost as-is in the design of energy-efficiency locks”. The
POLY conjecture could explain why we observe similar trends between our perfor-
mance and energy-efficiency results. In this Section, our goal is to test this conjecture
on a large number of lock algorithms and applications (the initial paper about POLY
considered 3 lock algorithms and 6 applications).

Figure 4.2 shows the correlation between performance and energy efficiency. Fig-
ures 4.3 and 4.4 show the detailed results respectively at one node and max nodes for
each lock-sensitive application (results at one node and max nodes for the I-20 machines
are available in the companion technical report [50]). The energy efficiency (in TPP –
throughput per power, see Section 4.3) and the throughput are normalized w.r.t. the
best performing (resp. energy-efficient) lock for each (machine, application, type, node)
configuration. Both at one node and max nodes, most data points fall on, or very close
to a linear regression between the two variables (the blue diagonal line). Even at max
nodes where locks throughput and energy efficiency are more disparate (e.g., for ap-
plications like linear_regression or s_raytrace), i.e., the choice of a lock significantly
affects application throughput/energy efficiency, there is clearly a linear correlation
between the two.

Based on Figure 4.2, Malth_STP and (to a lesser extent) MCS-TimePub are outliers.
These two algorithms use complex load-control algorithms: (i) Malth_STP parks a
subset of the threads, while the others always spin for a few cycles before acquiring
the lock ; (ii) MCS-TimePub allows spinning threads to bypass parked ones). The
“exotic” behaviors of these locks most probably explain why the throughput and the
energy consumption are not so well correlated with respect to other locks. Besides, on
Figure 4.3, MySQL and (to a lesser extent) SQLite are outliers. These are the only two
applications launching thousand of threads, stressing heavily the Linux scheduler. We
conjecture that the overhead of context switches (due to both lock parking and thread

67

Chapter 4. Study

■■■
■

▰▰▰▰◀◀◀◀
◐◐◐◐ ◠◠

◠

◠

◰◰◰
◰
□□□ □▱▱▱▱◁

◁

◁
◁

◑◑◑◑
◡◡◡◡◱◱◱◱▢▢▢

▢
▲

▲

▲

▲
◂◂◂◂◒◒

◒
◒

◢◢◢
◢
◲◲◲
◲▣▣

▣
▣

△△△△◃◃

◃
◃

◓◓

◓◓

◣◣

◣

◣

◳◳

◳

◳

▤▤
▤

▤

▴▴
▴▴

◄◄◄◄
◔◔◔◔

▰

▰
▰

▰

◀
◀◀
◀

◐

◐

◐

◐

◠

◠

◠

◠

◰

◰

◰

◰

□

□

□

□

▱
▱
▱

▱

◁
◁
◁◁◑
◑
◑

◑

◡

◡

◡

◡

◱

◱

◱

◱

▢

▢

▢

▢

▲

▲

▲

▲

◂

◂

◂

◂

◒

◒

◒

◒

◢

◢

◢

◢

◲

◲

◲

◲

▣

▣
▣
▣

△

△

△

△

◃◃

◃

◃◓◓

◓
◓

◣

◣
◣

◣

◳
◳

◳

◳

▤
▤

▤

▤

▴
▴

▴

▴

◄

◄

◄
◄

◔

◔
◔◔

■■

■

■

▰▰

▰

▰

◀◀

◀

◀

◐
◐

◐

◐

◠◠◠◠◰

◰

◰

◰

□□

□
□

▱▱

▱
▱

◁◁◁◁◑◑

◑

◑

◡◡

◡

◡

◱◱

◱

◱

▢

▢

▢

▢

▲▲▲▲◂◂

◂

◂

◒◒◒◒◢◢

◢

◢

◲◲

◲

◲

▣▣▣▣△△

△

△

◃◃◃◃◓◓◓◓◣◣

◣

◣

◳◳

◳

◳

▤

▤

▤
▤

▴▴

▴

▴

◄◄

◄

◄

◔◔

◔

◔
■■

■
■

▰
▰

▰
▰

◀

◀

◀

◀

◐◐◐◐

◠

◠

◠

◠

◰

◰

◰

◰

□
□

□

□

▱
▱

▱
▱

◁

◁◁
◁

◑
◑

◑◑

◡◡
◡◡

◱
◱◱

◱

▢

▢
▢

▢

▲

▲
▲

▲

◂

◂
◂

◂

◒

◒◒
◒

◢
◢
◢

◢

◲

◲

◲

◲

▣

▣▣
▣

△

△
△

△

◃

◃◃
◃

◓

◓
◓◓

◣

◣

◣

◣

◳

◳

◳

◳

▤

▤
▤

▤

▴

▴▴

▴

◄

◄

◄

◄

◔

◔

◔

◔

■■■

■

▰▰

▰

▰
◀◀◀◀◐

◐

◐
◐

◠

◠

◠

◠

◰◰
◰◰□
□

□

□
▱▱▱▱

◁

◁

◁◁

◑◑◑

◑

◡◡
◡◡

◱◱◱
◱

▢▢

▢

▢▲▲

▲

▲

◂◂◂

◂
◒

◒

◒

◒

◢
◢◢

◢

◲
◲

◲◲

▣
▣

▣▣

△
△

△

△

◃
◃

◃
◃

◓◓◓

◓
◣

◣

◣

◣

◳

◳

◳

◳

▤
▤

▤▤

▴▴

▴

▴

◄
◄
◄◄

◔
◔

◔◔

◠◠◠ ◠

▲

▲▲

▲

◒◒
◒

◒

◲
◲

◲

◲

▣

▣▣

▣◃

◃
◃

◃

◓◓◓

◓

■
■
■

■

▰

▰

▰

▰
◀◀

◀◀

◐

◐
◐◐

◠

◠

◠

◠

◰◰
◰

◰

□

□
□

□

▱

▱
▱

▱

◁

◁
◁◁

◑

◑
◑

◑

◡

◡
◡

◡

◱

◱◱

◱

▢
▢

▢

▢

▲

▲

▲

▲

◂

◂◂

◂

◒

◒◒
◒

◢

◢

◢

◢

◲

◲◲

◲
▣

▣
▣
▣

△

△

△

△

◃

◃
◃

◃

◓

◓

◓◓

◣

◣

◣

◣

◳

◳

◳

◳

▤

▤

▤

▤

▴

▴

▴

▴

◄

◄

◄

◄

◔

◔

◔

◔

■■■■▰
▰▰

▰

◀

◀

◀

◀

◐
◐

◐

◐
◠

◠

◠

◠

◰◰◰◰□□
□□▱▱

▱

▱

◁

◁◁◁

◑
◑

◑

◑

◡◡
◡
◡◱◱◱◱

▢

▢

▢

▢

▲▲

▲
▲

◂
◂◂

◂

◒

◒◒◒

◢
◢
◢

◢

◲◲

◲

◲

▣

▣

▣

▣

△△

△

△

◃

◃

◃

◃

◓

◓

◓

◓

◣

◣

◣

◣

◳

◳

◳

◳

▤▤

▤

▤

▴▴

▴

▴

◄◄

◄

◄

◔
◔

◔

◔

■■■■

▰▰

▰

▰

◀
◀

◀
◀

◐
◐◐
◐◠

◠

◠

◠

◰◰
◰

◰

□
□□

□

▱
▱

▱

▱

◁

◁
◁
◁

◑

◑
◑
◑

◡
◡◡◡

◱
◱
◱

◱
▢

▢

▢
▢

▲

▲▲

▲

◂

◂

◂
◂

◒

◒
◒
◒

◢
◢

◢

◢

◲

◲

◲

◲

▣

▣

▣

▣

△

△

△

△

◃

◃

◃

◃

◓

◓

◓

◓

◣

◣

◣

◣

◳

◳

◳

◳

▤

▤

▤
▤

▴

▴

▴

▴

◄

◄

◄

◄

◔

◔

◔

◔

■
■■
■

▰

▰

▰

▰

◀

◀

◀

◀

◐

◐

◐
◐
◠

◠

◠

◠

◰

◰

◰

◰

□

□
□

□

▱

▱

▱

▱

◁

◁◁◁

◑

◑

◑

◑

◡◡
◡◡

◱

◱
◱

◱
▢

▢

▢

▢

▲

▲

▲▲

◂

◂

◂

◂

◒

◒◒◒

◢

◢

◢

◢

◲

◲

◲

◲

▣

▣

▣

▣

△

△

△

△

◃

◃

◃
◃

◓

◓

◓

◓

◣

◣

◣
◣

◳

◳

◳

◳

▤

▤

▤
▤

▴

▴

▴
▴

◄

◄

◄

◄

◔

◔

◔

◔

■■
■

■

▰▰
▰

▰

◀◀

◀

◀

◐

◐

◐

◐

◠

◠

◠

◠

◰◰
◰

◰

□
□□

□

▱▱

▱

▱

◁

◁◁◁

◑◑

◑

◑

◡◡◡
◡◱

◱

◱

◱

▢

▢

▢

▢

▲

▲

▲

▲

◂◂◂

◂

◒

◒◒◒

◢◢
◢

◢

◲◲

◲

◲

▣

▣

▣

▣

△
△

△

△

◃

◃

◃

◃

◓

◓

◓

◓

◣

◣

◣

◣

◳

◳

◳

◳

▤

▤

▤

▤

▴

▴

▴

▴

◄

◄

◄

◄

◔

◔

◔

◔

■■■■▰
▰

▰

▰

◀

◀

◀

◀

◐

◐

◐
◐

◠

◠

◠

◠

◰◰
◰

◰

□

□

□

□

▱

▱

▱

▱

◁

◁◁
◁

◑

◑

◑

◑

◡◡
◡◡

◱

◱

◱
◱

▢

▢

▢
▢

▲

▲

▲

▲

◂
◂

◂

◂

◒

◒◒
◒

◢◢

◢

◢

◲

◲

◲

◲

▣

▣

▣

▣

△

△

△

△

◃

◃

◃

◃

◓

◓

◓

◓

◣

◣

◣
◣

◳

◳

◳◳

▤

▤

▤

▤

▴

▴

▴

▴

◄

◄

◄

◄

◔

◔

◔

◔

◠◠

◠

◠

▲

▲

▲▲

◒

◒◒
◒

◲

◲

◲

◲

▣

▣

▣

▣

◃

◃

◃

◃

◓

◓

◓

◓

■

■
■

■

▰

▰▰▰

◀

◀

◀

◀

◐

◐

◐

◐

◠

◠

◠

◠

◰

◰

◰
◰

□
□

□

□

▱

▱▱

▱

◁

◁◁
◁

◑

◑
◑
◑

◡

◡◡

◡

◱

◱

◱
◱

▢

▢▢

▢

▲

▲

▲

▲

◂

◂

◂◂

◒

◒◒
◒

◢

◢

◢
◢

◲

◲

◲
◲

▣

▣
▣

▣

△

△

△△
◃

◃
◃

◃

◓

◓
◓

◓

◣

◣

◣◣

◳

◳

◳◳

▤

▤
▤

▤

▴

▴
▴

▴

◄

◄
◄

◄

◔

◔
◔

◔

■

■

■

■

▰▰▰

▰
◀

◀

◀

◀

◐

◐

◐

◐

◠

◠

◠
◠

◰

◰◰

◰

□

□□

□

◡

◡

◡

◡

▢

▢

▢

▢

▲

▲

▲▲

◂

◂

◂

◂

◒

◒

◒

◒

◢

◢

◢

◢

◲

◲

◲

◲

▣

▣

▣

▣

△

△
△

△

◃

◃

◃
◃

◓

◓

◓

◓

◣

◣

◣

◣

◳

◳

◳◳

▤

▤

▤

▤

▴

▴

▴

▴

◄

◄

◄

◄

◔

◔

◔

◔

■

■

■

■

▰▰▰

▰

◀

◀

◀

◀

◐◐

◐

◐

◠

◠

◠
◠

◰

◰
◰

◰

□

□
□□

◡

◡
◡

◡

▢

▢

▢

▢

▲

▲

▲▲

◂

◂

◂

◂

◒

◒

◒
◒

◢

◢

◢

◢

◲

◲

◲

◲

▣

▣

▣

▣

△△
△

△

◃

◃

◃

◃

◓

◓

◓

◓

◣

◣

◣

◣

◳

◳

◳◳

▤

▤

▤

▤

▴

▴

▴

▴

◄

◄

◄

◄

◔

◔

◔

◔

■
■■

■
▰

▰
▰

▰

◀

◀
◀

◀

◐
◐◐

◐

◠

◠◠
◠

◰

◰
◰

◰

□□□

□
▱

▱▱

▱

◁

◁◁◁

◑
◑
◑

◑

◡
◡◡

◡

◱◱◱

◱
▢

▢▢

▢▲

▲

▲

▲

◂

◂◂

◂

◒

◒
◒◒

◢

◢◢

◢

◲

◲
◲

◲

▣

▣

▣▣

△

△
△

△

◃

◃
◃◃

◓

◓
◓
◓

◣

◣

◣

◣

◳

◳

◳

◳

▤

▤
▤

▤

▴

▴▴

▴

◄◄◄

◄

◔

◔
◔

◔

■■■

■

▰▰▰

▰

◀◀◀◀◐◐◐

◐

◠◠◠

◠

◰◰◰

◰

□□□

□

◡◡◡

◡

▢▢▢

▢

▲▲▲▲ ◂◂◂

◂

◒◒
◒

◒

◢◢◢

◢

◲◲◲
◲

▣▣▣▣△△△

△

◃◃◃◃◓◓◓◓◣◣◣

◣

◳◳◳
◳

▤▤▤

▤

▴▴▴

▴

◄◄◄◄◔◔◔◔

■ ■■

■

▰ ▰
▰

▰

◀

◀ ◀

◀

◐
◐◐

◐
◠

◠

◠◠

◰
◰
◰

◰□

□□□

▱
▱▱

▱

◁

◁

◁

◁

◑
◑
◑

◑

◡

◡◡

◡

◱

◱◱

◱

▢
▢
▢

▢

▲

▲

▲

▲

◂
◂◂

◂

◒

◒

◒

◒

◢
◢◢

◢

◲
◲

◲

◲

▣

▣

▣

▣

△
△
△

△

◃
◃

◃

◃

◓

◓

◓

◓

◣
◣

◣◣

◳◳

◳
◳

▤
▤

▤

▤

▴
▴

▴

▴

◄ ◄

◄

◄

◔ ◔

◔

◔

■

■

■
■

▰

▰

▰▰

◀◀◀
◀ ◐◐◐◐◠◠◠◠◰

◰◰◰
□□□□

▱

▱

▱
▱

◁

◁

◁◁

◑

◑

◑
◑

◡◡◡◡◱◱◱◱
▢▢▢▢▲▲▲▲ ◂◂◂◂
◒◒◒◒◢◢◢◢
◲◲

◲◲

▣▣▣▣△△△△◃◃
◃◃◓◓◓◓
◣◣◣◣◳◳◳◳▤▤▤

▤
▴▴
▴
▴◄◄◄◄

◔

◔

◔
◔

■

■
■
■

▰

▰

▰
▰

◀◀◀◀

◐◐◐◐ ◠◠
◠◠

◰◰◰◰
□□□

□

▱

▱

▱
▱

◁

◁

◁
◁

◑

◑

◑
◑

◡
◡◡◡

◱◱◱◱

▢
▢

▢▢

▲
▲

▲▲

◂
◂

◂◂
◒

◒
◒◒

◢

◢◢◢
◲

◲◲◲

▣▣▣
▣△△△△ ◃◃◃◃
◓◓◓◓◣◣◣◣◳◳◳
◳▤▤▤▤
▴▴▴▴◄◄◄◄

◔

◔

◔
◔

▰

▰

◀
◀

◐

◐

◠
◠

◰

◰

□

□

▱

▱

◁
◁

◑

◑

◡

◡

◱

◱
▢

▢

▲
▲◂ ◂

◒

◒

◢

◢

◲
◲

▣
▣

△

△

◃◃
◓
◓

◣
◣◳
◳▤

▤

▴

▴

◄
◄

◔
◔

■

■

▰

▰

◀

◀

◐

◐

◠◠

◰

◰

□

□

▱

▱

◁◁

◑

◑

◡

◡

◱

◱

▢

▢

▲▲

◂

◂

◒◒

◢

◢

◲

◲

▣▣

△

△

◃◃◓◓◣

◣

◳

◳
▤

▤

▴

▴

◄

◄

◔

◔

■

■▰

▰

◀

◀

◐

◐

◠

◠

◰

◰

□

□

▱

▱

◁

◁

◑

◑

◡

◡

◱

◱

▢

▢

▲

▲

◂

◂

◒

◒

◢

◢◲

◲

▣

▣

△

△

◃

◃

◓

◓
◣

◣

◳

◳

▤

▤

▴

▴
◄

◄

◔

◔

■
■
▰▰
◀◀
◐
◐

◠

◠

◰
◰

□□
▱

▱

◁

◁

◑
◑

◡
◡

◱
◱▢

▢
▲▲
◂

◂

◒

◒

◢
◢◲◲▣▣△△◃

◃

◓◓◣

◣

◳
◳
▤

▤

▴
▴

◄◄◔◔

■

▰

◀

◐
◠

□

◡

▢

▲

◂◒
◢

◲

▣
◃

◓

◣
◳

▤▴◄
◔
■

▰

◀

◐

◠

□

◡

▢

▲

◂

◒

◢
◲

▣◃

◓

◣

◳

▤▴
◄
◔

■
■
▰
▰

◀

◀

◐◐

◠

◠

◰◰□□
▱
▱

◁

◁

◑
◑

◡
◡

◱◱▢
▢▲

▲

◂ ◂◒

◒

◢◢
◲◲
▣

▣

△△
◃

◃

◓

◓

◣

◣

◳

◳

▤

▤

▴▴◄

◄

◔

◔

■■▰▰◀

◀

◐
◐◠

◠

◰◰□□▱▱
◁

◁

◑◑◡◡
◱◱▢▢▲

▲

◂
◂◒

◒

◢
◢◲◲
▣

▣

△△

◃

◃

◓

◓

◣◣◳◳▤▤▴▴◄◄◔◔

■■

▰

▰

◀

◀

◐
◐◠

◠

◰◰□□

▱

▱
◁

◁

◑

◑

◡◡◱◱▢

▢

▲

▲

◂
◂◒

◒

◢

◢
◲
◲

▣

▣

△

△

◃

◃

◓

◓

◣

◣

◳

◳

▤

▤

▴

▴

◄

◄

◔

◔

■■▰

▰

◀

◀

◐

◐

◠

◠

◰
◰

□

□▱

▱

◁

◁

◑

◑

◡◡◱
◱▢

▢

▲

▲

◂

◂

◒

◒

◢

◢

◲

◲

▣

▣

△

△

◃

◃

◓

◓

◣

◣

◳

◳

▤

▤

▴

▴

◄

◄

◔

◔

■■▰▰◀◀◐
◐
◠

◠

◰◰□□▱
▱◁

◁

◑◑◡◡◱◱▢▢
▲

▲

◂◂◒

◒

◢◢◲◲▣
▣

△△
◃

◃

◓
◓

◣
◣
◳◳▤▤▴▴◄◄◔◔■

■
▰

▰
◀

◀

◐

◐

◠

◠

◰
◰
□
□
▱

▱
◁

◁

◑
◑
◡

◡
◱

◱
▢

▢
▲

▲
◂

◂
◒

◒

◢
◢
◲

◲
▣

▣

△
△

◃

◃

◓◓◣
◣◳

◳▤▤
▴

▴
◄
◄◔◔◠

◠

▲

▲

◒

◒

◲

◲

▣

▣

◃

◃

◓

◓

■

■

▰

▰

◀

◀

◐

◐

◠
◠
◰
◰

□

□

◡
◡

▢

▢

▲

▲

◂

◂

◒

◒

◢

◢

◲

◲

▣

▣

△△

◃

◃

◓

◓

◣

◣

◳

◳
▤

▤

▴

▴

◄

◄

◔

◔

■

■

▰ ▰

◀

◀

◐

◐

◠

◠

◰

◰

□

□

◡

◡
▢

▢

▲

▲

◂

◂

◒

◒

◢

◢

◲

◲

▣

▣

△△

◃

◃

◓

◓

◣

◣

◳

◳

▤

▤

▴

▴

◄

◄

◔

◔

■

■

▰

▰

◀

◀

◐

◐

◠

◠

◰

◰

□

□

▱

▱

◁

◁

◑

◑

◡

◡

◱

◱

▢

▢

▲

▲

◂

◂

◒

◒

◢

◢

◲

◲

▣

▣

△

△

◃
◃
◓◓

◣

◣

◳

◳

▤

▤

▴

▴

◄

◄

◔

◔

■

■

▰

▰

◀
◀
◐

◐

◠◠◰

◰

□

□

◡

◡

▢

▢

▲▲◂

◂

◒◒◢

◢

◲
◲
▣▣△

△

◃◃◓◓◣
◣
◳

◳
▤

▤

▴

▴

◄◄◔◔

■

■

▰

▰

◀◀◐◐◠◠◰◰□□

▱

▱

◁

◁

◑

◑

◡◡◱◱▢▢▲▲◂◂◒◒◢◢◲◲▣▣△△◃◃◓◓◣◣◳◳▤▤▴▴◄◄

◔
◔

■

■

▰

▰

◀◀
◐◐◠◠
◰◰□□

▱

▱

◁

◁

◑

◑

◡◡
◱

◱
▢▢ ▲

▲
◂

◂
◒

◒ ◢◢ ◲
◲

▣▣△△◃◃◓◓◣◣◳◳▤▤▴▴◄◄

◔

◔

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Normalized Throughput

N
or

m
al

iz
ed

 T
P

P

Lock algorithm
■

▰
◀
◐

◠
◰
□

▱
◁
◑
◡

◱
▢

▲
◂
◒
◢
◲
▣
△

◃

◓
◣
◳
▤
▴
◄
◔

ahmcs
alock-ls
backoff
c-bo-mcs_spin
c-bo-mcs_stp
c-ptl-tkt
c-tkt-tkt
clh_spin
clh_stp
clh-ls
hmcs
hticket-ls
malth_spin
malth_stp
mcs_spin
mcs_stp
mcs-ls
mcs-timepub
mutexee
partitioned
pthread
pthreadadapt
spinlock
spinlock-ls
ticket
ticket-ls
ttas
ttas-ls

Figure 4.2 – Correlation of throughput with energy efficiency (TPP) on var-
ious lock-sensitive applications with various lock algorithms and various
contention levels (all machines).

68

4.3. Study of lock energy efficiency

■▰◀◐◠◰□▱◁◑◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄◔

■▰

◀
◐

◠
□

◡
▢

▲

◂
◒◢◲

▣
◃◓◣
◳▤

▴

◄
◔

■
▰◀◐◠◰□▱

◁
◑

◡◱▢▲
◂

◒

◢◲▣△◃◓◣◳▤
▴◄◔

■
▰

◀◐

◠
◰□

▱

◁

◑

◡◱

▢

▲

◂

◒

◢
◲

▣

△

◃◓

◣

◳▤
▴◄◔

■▰◀◐◠◰□▱◁◑
◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄◔

■

▰

◀◐◠◰□

▱◁◑

◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄

◔

▰

◀

◐◠

◰
□

▱◁◑

◡
◱▢▲◂◒◢◲

▣△◃◓◣◳▤▴◄

◔

■
▰

◀
◐◠□◡

▢▲
◂◒

◢◲▣◃◓
◣

◳

▤▴

◄◔

■▰
◀◐◠◰□▱

◁

◑
◡

◱▢
▲

◂

◒

◢◲

▣

△

◃
◓

◣
◳

▤

▴◄◔

■▰

◀

◐◠◰□
◡

▢▲
◂◒

◢◲
▣

△◃

◓
◣◳

▤▴
◄◔

■
▰

◀◐◠◰□

▱◁◑

◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄
◔

■▰◀◐◠◰□▱◁◑◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄◔

◠

▲◒

◲

▣◃◓

■▰◀◐◠◰□▱◁◑◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄◔

■
▰

◀

◐◠◰□
◡

▢▲

◂◒
◢

◲
▣

△
◃

◓
◣
◳

▤▴
◄◔

■
▰

◀◐

◠◰
□

▱

◁

◑
◡◱

▢▲
◂

◒

◢
◲

▣

△

◃
◓

◣◳

▤
▴◄◔

■▰
◀
◐

◠

◰□▱

◁

◑◡◱▢▲◂

◒

◢◲
▣

△

◃
◓◣◳▤▴
◄◔

■▰◀◐◠◰□▱◁◑◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄◔

■
▰◀

◐

◠

◰□

▱

◁

◑

◡◱
▢

▲
◂

◒

◢
◲

▣

△

◃◓
◣◳

▤▴◄◔

■▰◀◐◠◰□▱◁◑
◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄◔

■▰◀◐◠
◰□▱◁◑◡◱▢▲◂◒◢◲▣△

◃
◓◣◳▤▴◄◔

◠

▲

◒

◲
▣
◃
◓

■▰◀◐◠◰□◡▢▲◂◒◢◲▣△◃◓◣◳▤▴◄◔

water_spatial

volrend water_nsquared

ssl_proxy streamcluster streamcluster_ll upscaledb vips

radiosity radiosity_ll s_raytrace s_raytrace_ll sqlite

memcached-new memcached-old mysqld pca pca_ll

bodytrack dedup ferret kyotocabinet linear_regression

50% 100%

50% 100%

50% 100% 50% 100% 50% 100%

50%

100%

50%

100%

50%

100%

50%

100%

50%

100%

50%

100%

Normalized Throughput

N
or

m
al

iz
ed

 T
P

P

L o c k a lg o rith m

■

▰

◀

◐

◠

◰

□

▱

◁

◑

◡

◱

▢

▲

◂

◒

◢

◲

▣

△

◃

◓

◣

◳

▤

▴

◄

◔

ahmcs

alock-ls

backoff

c-bo-mcs_spin

c-bo-mcs_stp

c-ptl-tkt

c-tkt-tkt

clh_spin

clh_stp

clh-ls

hmcs

hticket-ls

malth_spin

malth_stp

mcs_spin

mcs_stp

mcs-ls

mcs-timepub

mutexee

partitioned

pthread

pthreadadapt

spinlock

spinlock-ls

ticket

ticket-ls

ttas

ttas-ls

Figure 4.3 – Correlation of throughput with energy efficiency (TPP) on var-
ious lock-sensitive applications at one node for the different lock algorithms
(I-48 machine).

69

Chapter 4. Study

■▰◀◐

◠

◰□▱◁◑
◡◱▢▲◂◒◢◲▣△◃◓

◣◳
▤▴◄◔

■
▰

◀
◐

◠
□◡

▢
▲

◂

◒

◢◲▣
◃
◓

◣
◳

▤ ▴
◄◔

■▰◀
◐

◠

◰□
▱

◁

◑

◡
◱▢▲ ◂

◒

◢◲
▣△◃◓

◣
◳

▤▴◄◔

■

▰
◀

◐

◠

◰
□

▱

◁

◑

◡
◱

▢▲ ◂

◒

◢
◲

▣△◃
◓

◣◳

▤
▴

◄◔

■▰
◀

◐

◠

◰□
▱

◁

◑
◡◱▢

▲
◂

◒
◢◲

▣
△

◃◓
◣◳▤
▴◄◔

■

▰

◀◐◠◰□

▱◁◑

◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄

◔

▰

◀

◐◠

◰□▱
◁

◑

◡
◱

▢▲◂◒
◢◲

▣

△

◃
◓◣◳

▤▴

◄

◔

■▰

◀

◐◠
□

◡

▢▲
◂◒

◢◲▣◃◓

◣◳

▤▴
◄◔

■

▰
◀

◐

◠

◰
□

▱

◁

◑

◡

◱

▢
▲

◂

◒

◢
◲

▣△
◃
◓

◣◳
▤
▴

◄◔

■

▰

◀◐◠

◰

□
◡

▢
▲
◂

◒
◢◲▣

△

◃◓◣◳▤▴
◄◔

■

▰

◀◐◠◰□

▱◁◑

◡◱▢▲◂◒◢◲▣△◃◓◣◳▤▴◄

◔

■▰

◀

◐

◠

◰□▱

◁

◑◡◱▢

▲

◂

◒

◢

◲
▣

△

◃◓
◣◳

▤▴

◄◔

◠

▲
◒

◲

▣◃◓

■
▰◀◐

◠

◰□
▱

◁

◑

◡

◱
▢

▲

◂

◒

◢◲

▣△◃
◓

◣◳

▤
▴

◄
◔

■

▰

◀◐◠

◰

□

◡

▢
▲
◂
◒
◢◲▣

△

◃◓◣◳▤▴
◄◔

■
▰◀

◐

◠

◰
□

▱

◁

◑
◡◱

▢

▲
◂

◒

◢
◲

▣
△

◃
◓

◣◳

▤
▴

◄◔

■▰◀
◐

◠

◰
□

▱

◁

◑
◡
◱▢▲ ◂

◒

◢◲
▣
△

◃◓

◣◳

▤▴◄◔

■▰

◀
◐

◠

◰□▱

◁

◑

◡

◱

▢▲

◂

◒

◢
◲

▣△◃◓

◣◳

▤
▴

◄
◔

■
▰◀

◐

◠

◰□
▱

◁

◑
◡◱

▢

▲

◂

◒

◢
◲

▣

△

◃◓
◣
◳

▤ ▴◄
◔

■
▰◀◐

◠

◰□▱

◁

◑
◡◱▢

▲ ◂

◒

◢

◲▣△
◃◓

◣◳

▤▴◄◔

■
▰

◀

◐

◠

◰□
▱

◁

◑
◡◱

▢

▲

◂

◒

◢
◲

▣

△

◃
◓

◣◳

▤
▴

◄◔

◠

▲

◒◲

▣◃
◓

■
▰

◀

◐

◠

◰
□◡

▢

▲

◂

◒

◢

◲▣

△

◃◓◣◳

▤

▴
◄◔

water_spatial

volrend water_nsquared

ssl_proxy streamcluster streamcluster_ll upscaledb vips

radiosity radiosity_ll s_raytrace s_raytrace_ll sqlite

memcached-new memcached-old mysqld pca pca_ll

bodytrack dedup ferret kyotocabinet linear_regression

50% 100%

50% 100%

50% 100% 50% 100% 50% 100%

50%

100%

50%

100%

50%

100%

50%

100%

50%

100%

50%

100%

Normalized Throughput

N
or

m
al

iz
ed

 T
P

P

L o c k a lg o rith m

■

▰

◀

◐

◠

◰

□

▱

◁

◑

◡

◱

▢

▲

◂

◒

◢

◲

▣

△

◃

◓

◣

◳

▤

▴

◄

◔

ahmcs

alock-ls

backoff

c-bo-mcs_spin

c-bo-mcs_stp

c-ptl-tkt

c-tkt-tkt

clh_spin

clh_stp

clh-ls

hmcs

hticket-ls

malth_spin

malth_stp

mcs_spin

mcs_stp

mcs-ls

mcs-timepub

mutexee

partitioned

pthread

pthreadadapt

spinlock

spinlock-ls

ticket

ticket-ls

ttas

ttas-ls

Figure 4.4 – Correlation of throughput with energy efficiency (TPP) on
various lock-sensitive applications at max nodes for the different lock algo-
rithms (I-48 machine).

70

4.3. Study of lock energy efficiency

I-20 I-48

bodytrack - 0.98
dedup 1.00 1.00
ferret 0.98 0.96
kyotocabinet 0.89 0.88
linear_regression 0.96 0.98
memcached-new 0.99 0.91
memcached-old 1.00 0.97
mysqld - 0.55
pca 0.97 0.96
pca_ll 0.95 0.91
radiosity 0.98 0.98
radiosity_ll 0.89 0.94
s_raytrace 0.97 0.95
s_raytrace_ll 0.94 0.98
sqlite 0.98 0.94
ssl_proxy - 0.95
streamcluster 0.97 0.99
streamcluster_ll 0.91 0.98
upscaledb 0.91 0.87
vips 0.97 0.96
volrend - 0.96
water_nsquared 1.00 0.99
water_spatial 0.99 1.00

Table 4.15 – Pearson correlation coefficient between throughput and TPP
for all lock-sensitive applications. Dashes mark applications that are not
lock-sensitive (or not evaluated due to a lack of high-throughput network
connectivity, see Section 4.1.3) on the I-20 machine. (I-48 and I-20 ma-
chines).

preemption) slightly breaks the correlation between throughput and energy.

To quantitatively assess the correlation between energy efficiency and performance,
we compute the Pearson correlation coefficient (PCC). The PCC is the value of the
slope of a linear regression between two variables: the closer to 1, the greater the cor-
relation between the variables. Intuitively, it quantifies the dispersion of the different
configurations around the diagonal blue line. Table 4.15 shows the PCC on I-48 and
I-20 for all the studied lock-sensitive applications. We observe that except MySQL that
has a low PCC (0.55), all other configurations have a PCC at least equal to 0.87, which
indicates a strong correlation between the performance and energy efficiency. More
generally, the PCC across all configurations (3.1k experiments) is 0.95, an almost
perfect correlation coefficient.

MySQL, upscaledb, Kyoto Cabinet and radiosity_ll have a PCC lower than 0.9. We

71

Chapter 4. Study

observe that these four applications are highly contended. Looking at the detailed
results, we observe that lock algorithms that use a parking waiting policy generally
have a lower performance-to-energy-efficiency ratio (PtE ratio thereafter) than spin-
ning algorithms. For example, for MySQL, algorithms using a fixed threshold for the
spinning loop part of the spin-then-park waiting policy (e.g., C-BO-MCS_STP with a
PtE of 0.89), have a lower PtE than algorithms that do adaptive spin-then-park (e.g.,
Mutexee with a PtE of 1.28), and even lower than algorithms that do spinning (e.g.,
MCS-TimePub7 with a PtE of 1.34). Intuitively, these results are expected, because at
high levels of contention, parking locks can save energy compared to spinning, but
spinning might still result in higher throughput [42].

To conclude, we can state that the POLY conjecture holds on our experimental
testbeds, i.e., for lock algorithms, energy efficiency and throughput go hand in hand.

7MySQL is highly multi-threaded (hundreds of threads), and, as a consequence, MCS-TimePub is the
only spinning lock algorithm that we study because it has a preemption tolerance mechanism. With
other spinning algorithms the application throughput drops close to zero.

72

4.4. Study of lock tail latency

4.4 Study of lock tail latency

In this Section, we are interested in the effect of lock algorithms on the application
quality of service (QoS). More precisely, the QoS metric that we consider is the appli-
cation tail latency, here defined as the 99th percentile of client response time. Note that
in Sections 4.2 and 4.3 we discussed the results for throughput and energy efficiency,
respectively. Understanding the relationship between throughput and tail latency al-
lows us to understand, for example, if some lock properties (i.e., the fairness of FIFO
locks) that improve the tail latency of lock acquisitions indeed improve the applica-
tion tail latency. This analysis also enables us to understand which locks to choose
to improve the tail latency of an application, sometimes at the (controlled) expense of
throughput.

To perform this analysis, we capture the 99th percentile of the client response time on
the A-64 machine for the seven server applications among the lock-sensitive applica-
tions that we have studied: Kyoto Cabinet, Memcached-new, Memcached-old, MySQL,
SQLite, SSL Proxy, upscaledb. We further captured throughput and energy-efficiency
metrics. Note that, as we discuss in Section 4.3.2, throughput and energy efficiency
are correlated, thus we do not clutter the plots with energy-efficiency information and
only show throughput. We have also performed the same experiments on the I-48

machine (our largest Intel multicore machine) and made similar observations as the
ones described hereafter for the A-64 machine.

Figure 4.5 reports for each application and each lock algorithm at opt nodes the nor-
malized (w.r.t. Pthread) 99th tail latency, as well as the normalized (w.r.t. Pthread)
execution time (black squares). The results at one node and max nodes are available in
the companion technical report [50]). Locks are sorted by increasing tail latency. Note
that we plot execution time (rather than throughput) so that “lower is better” for both
displayed metrics (latency and execution time). However, in the text we talk about
throughput (as the inverse of the execution time) for homogeneity with the other Sec-
tions.

4.4.1 How does tail latency behave when locks suffer from high levels of
contention?

At max nodes, the maximum tail latency is generally higher than at opt nodes and one
node. For example, for Kyoto Cabinet, at max nodes, the tail latency of CLH_STP is 5×
higher than Pthread, while it is of roughly 1.6× higher than Pthread at one node and
opt nodes. The tail latency skyrockets at max nodes: locks suffer from extreme levels
of contention and threads wait for a long time to acquire locks. On average, when in-
creasing the number of threads (from one node to max nodes), the request execution time
increases 3.3× and the tail latency increases 22.9×. Similarly, from opt nodes to max

73

Chapter 4. Study

nodes, the request execution time increases 3.4× and the tail latency increases 21.0×.
The experiments with a single thread for all the studied applications except MySQL
and SQLite8 are available in the companion technical report [50]. Overall, we found
that, on the studied applications with a single-threaded configuration, the choice of a
lock has very little effect on the throughput or the tail latency of the application.

4.4.2 Do fair lock algorithms improve the application tail latency?

On the one hand, FIFO locks (cf. Section 2.1.2) promise fairness among threads ac-
quiring a lock. On the other hand, unfair locks might increase tail latencies by letting
some threads wait for long durations before acquiring the lock. Interestingly, we ob-
serve that fairness affects the tail latency for only two applications: Kyoto Cabinet and
upscaledb. For them, we observe low tail latency with almost all FIFO locks. More-
over, all hierarchical locks, which by design do not strictly impose fairness, exhibit
roughly the same tail latencies, which are higher than the tail latencies of FIFO locks.
Still, for the four other studied applications, we do not observe a correlation between
lock fairness and application tail latency.

The main distinction among the group of applications where fair lock algorithms im-
prove the application tail latency and where they do not is how an operation (e.g., a
request) uses locks. If an operation is mainly implemented as a single critical section,
then lock properties that affect lock acquisition tail latencies and throughput also af-
fect the application, which is the case for upscaledb and Kyoto Cabinet. For example,
for upscaledb, at opt nodes, we measured that 90 % of the response time is consumed
either while waiting for a single global lock, or inside the critical sections. On the con-
trary, for Memcached-new, which is one of the applications where fair lock algorithms
do not necessarily improve the application tail latency, roughly 45 % of the response
time is spent either waiting for locks or inside critical sections (55 % of the response
time is spent in parallel code sections). Besides, Memcached-new uses more than one
lock while processing a request, and two different threads might use different locks to
process different requests: locks are thus less stressed. To summarize, we observe that,
on the seven studied applications, lock properties affect application tail latency only
for applications where an operation is mainly implemented as a single critical section.

4.4.3 Do lock tail latencies affect application throughput?

Some lock algorithms explicitly try to trade fairness for higher throughput. For ex-
ample, hierarchical locks prefer to give a lock to a thread on the same NUMA node
than to a thread executing on another node. Interestingly, in practice, we observe that

8Running MySQL or SQLite with a single thread totally changes the workload, thus numbers cannot
be compared with other configurations with more threads.

74

4.4. Study of lock tail latency

this property, which directly affects tail latency and throughput of lock acquisitions,
effectively affects the application tail latency and throughput for only two applica-
tions: upscaledb and Kyoto Cabinet. For these applications, we generally observe that
hierarchical locks lead to higher tail latency and higher throughput. For example, for
upscaledb at opt nodes, increasing the tail latency from 100µs to 1000µs increases the
throughput by 26 % (using MCS vs. HMCS). Using Ticket and C-TKT-TKT on Kyoto
Cabinet, at opt nodes, increasing the tail latency by 3×, leading to a 33 % throughput
increase. At max nodes, Mutexee exhibits 80 % higher tail latency than Pthread, but
improves throughput by 60 %. Applications where the tail latency is affected by the
lock fairness property of some locks (§4.4.2) are the same applications that are affected
by the fairness/throughput tradeoff property.

For the other applications where an operation is “large”, i.e., an operation consists of
many critical sections and/or whose critical sections are protected by different lock
instances accessed by different threads, we observe that lower application tail latency
is correlated with higher application throughput. In such cases, the tail latencies of
individual locks are in the scale of hundreds of µs and do not have a significant weight
in the operation latencies. Thus, the lock tail latency does not directly influence the
application tail latency and throughput.

Among the 7 server applications for which we studied tail latency, we obtained unex-
pected results for Memcached-old. This application is known to suffer from extreme
levels of contention (see Section 4.5): the main bottleneck is a single global lock serial-
izing most requests. One might expect that lock properties should directly affect the
application throughput and tail latency. However, Memcached-old uses the trylock op-
eration to acquire a lock. Interestingly, most of the lock algorithms have been designed
to optimize the lock/unlock operation, not the trylock one, and in practice, there is no
such thing as a “fair trylock”, even for locks that promise FIFO lock acquisitions.

4.4.4 Implications

Contrary to throughput (see Section 4.2.2), studying tail latency allows us to draw
simpler conclusions, as the results are more stable across applications and machines.
We observe two groups of applications that behave differently regarding tail latency.

If an operation is mostly implemented as a single critical section, then lock properties
that affect lock acquisition tail latency and throughput affect application tail latency
and throughput. In practice, low tail latency can be achieved with FIFO locks. If
throughput is more important and a developer is inclined to trade tail latency for
throughput, hierarchical locks are a good choice.

In contrast, for applications with “larger” operations that consist of many critical sec-
tions and/or the critical sections are protected by different lock instances accessed

75

Chapter 4. Study

by different threads, the tail latency of locks does not necessarily affect the appli-
cation tail latency. For such applications, a developer should choose a lock that best
improves the application throughput: the tail latency improvements will follow.

Interestingly, we observe in our set of studied applications that software developers
use the trylock operation to implement busy waiting, while the original operation is
designed to allow a developer to write a fallback code if the locking attempt fails.
Because the trylock is only a one-shot attempt to acquire a lock, there is actually no
lock algorithm that provides a fair trylock. We believe that developers use trylocks
this way because the default Pthread lock operation is blocking: a developer knows
when a critical section is short, and thus would like to avoid the overhead of a thread
blocking if the lock is unavailable. Pragmatically, the trylock operation should not be
used this way, but this demonstrates the need to extend the Pthread lock API with a
lock operation informing the lock algorithm that a thread should busy wait and not
block, e.g., pthread_mutex_busylock9.

9There is a function named pthread_spin_lock that allows spining on a lock instance, but this func-
tion only accepts a pthread_spinlock_t lock, not a pthread_mutex_t lock. Thus, there is no way to either
spin or block on the same lock instance.

76

4.4. Study of lock tail latency

ex
e=

30
3%

ex
e=

29
0%

0.
17

m
s

●
●

●●
● ● ●●

●

● ●
●●

●
●●

●

●

●

●
● ●

●
●

●
●

1.
59

m
s

●

●

●

●● ●
●

●●
●

●● ●●
●●

●

●●●● ●

18
0.

81
m

s● ●
●

●

●
●

●

2.
72

m
s

●
●

●
● ● ●●●

●

●
● ●●

●●

●

●●

●

●

●

●
●●● ●

● ●

la
t=

36
4%

la
t=

55
9%

4.
96

m
s

●
●

●
●

●

● ●
●

●

●

●

● ●

●
●

●
●● ●

●
● ●

la
t=

21
3%

la
t=

62
6%

la
t=

31
7%

la
t=

12
55

%

20
.2

2m
s

●

●
●

●

● ● ●

la
t=

48
9%

95
6.

93
m

s

●● ●

● ●

●●
●

●

●● ●

● ●

●
●

● ●

●

●

●

●●● ●
●● ●

upscaledb

sqlite ssl_proxy

memcached−old mysqld

kyotocabinet memcached−new

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp
tic

ke
t

pa
rti

tio
ne

d

m
cs

−t
im

ep
ub

tic
ke

t−
ls

clh
_s

tp

m
cs

_s
tp

clh
_s

pin tta
s

alo
ck

−ls

clh
−ls

m
cs

_s
pin

m
cs

−ls

tta
s−

ls

sp
inl

oc
k−

ls

m
alt

h_
stp

sp
inl

oc
k

m
alt

h_
sp

in

c−
tkt

−t
kt

c−
pt

l−t
kt

ba
ck

of
f

pt
hr

ea
d

ah
m

cs
hm

cs

pt
hr

ea
da

da
pt

ht
ick

et
−ls

m
ut

ex
ee

m
cs

−t
im

ep
ub

m
cs

_s
tp

c−
bo

−m
cs

_s
tp

pt
hr

ea
da

da
pt

m
ut

ex
ee

pt
hr

ea
d

m
alt

h_
stp

sp
inl

oc
k−

ls
tic

ke
t
tta

s

m
cs

_s
tp

tta
s−

ls

sp
inl

oc
k

c−
bo

−m
cs

_s
pin

pt
hr

ea
da

da
pt

m
alt

h_
sp

in

m
alt

h_
stp

c−
bo

−m
cs

_s
tp

m
ut

ex
ee

clh
_s

tp

pt
hr

ea
d
hm

cs

c−
tkt

−t
kt

c−
pt

l−t
kt

alo
ck

−ls

tic
ke

t−
ls

clh
−ls

ht
ick

et
−ls

pa
rti

tio
ne

d

clh
_s

pin

m
cs

_s
pin

m
cs

−ls

m
cs

−t
im

ep
ub

ba
ck

of
f

ah
m

cs

tta
s

tic
ke

t−
ls

tta
s−

ls

m
cs

−ls
tic

ke
t

c−
bo

−m
cs

_s
tp

m
alt

h_
stp

alo
ck

−ls

c−
bo

−m
cs

_s
pin

m
cs

_s
tp

c−
tkt

−t
kt

hm
cs

m
ut

ex
ee

pt
hr

ea
da

da
pt

m
cs

−t
im

ep
ub

sp
inl

oc
k−

ls

pt
hr

ea
d

ba
ck

of
f

m
cs

_s
pin

sp
inl

oc
k

ah
m

cs

m
alt

h_
sp

in

m
ut

ex
ee

pt
hr

ea
d

m
cs

_s
tp

c−
bo

−m
cs

_s
tp

m
cs

−t
im

ep
ub

m
alt

h_
stp

pt
hr

ea
da

da
pt

c−
bo

−m
cs

_s
pin

c−
bo

−m
cs

_s
tp

ba
ck

of
f

pa
rti

tio
ne

d

m
cs

_s
pin

tic
ke

t−
ls

clh
_s

pin

m
cs

−t
im

ep
ub

m
cs

−ls

alo
ck

−ls

clh
−ls
tic

ke
t

c−
pt

l−t
kt

c−
tkt

−t
kt

ah
m

cs
hm

cs

ht
ick

et
−ls

tta
s−

ls

m
alt

h_
stp

m
alt

h_
sp

in
tta

s

sp
inl

oc
k

sp
inl

oc
k−

ls

pt
hr

ea
d

m
cs

_s
tp

pt
hr

ea
da

da
pt

clh
_s

tp

m
ut

ex
ee

m
cs

−ls

m
cs

−t
im

ep
ub

tic
ke

t−
ls

c−
tkt

−t
kt

sp
inl

oc
k−

ls
tta

s

tta
s−

ls

sp
inl

oc
k
tic

ke
t

m
cs

_s
pin

hm
cs

m
cs

_s
tp

ah
m

cs

pt
hr

ea
da

da
pt

m
alt

h_
stp

alo
ck

−ls

m
ut

ex
ee

pt
hr

ea
d

m
alt

h_
sp

in

c−
bo

−m
cs

_s
tp

ba
ck

of
f

c−
bo

−m
cs

_s
pin

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

0%

50%

100%

150%

200%

N
or

m
al

iz
ed

 9
9t

h
la

te
nc

y
w

.r.
t.

pt
hr

ea
d

● Execution time
Legend

Tail latency

Figure 4.5 – For each server application, the bars represent the normalized
99th tail latency (w.r.t. Pthread) and the dots execution time (lower is
better) normalized (w.r.t. Pthread) of each lock algorithm (A-64 at opt
nodes).

77

Chapter 4. Study

4.5 Analysis of lock/application behavior

In order to understand the performance of a lock algorithm on a given application, we
perform a detailed analysis that explains, for each of the studied applications, which
types of locks work well/poorly and why. We highlight that a lock can have many
side-effects on the performance of an application.

In Section 4.5.1, we give general insights that we draw from our analysis by presenting,
for every application, the performance bottleneck it suffers from, and which lock(s) to
prefer or to avoid when running it. We found that, beyond the pure performance of
a lock algorithm under high contention, different applications stress different aspects
of a lock algorithm (e.g., memory footprint, scheduler preemption tolerance). In Sec-
tion 4.5.2, we present seven properties shared by the studied lock algorithms, which,
when cross-referenced with the performance bottlenecks of an application and a set
of general guidelines that we provide, can help a developer to predict whether a lock
algorithm performs well or poorly on a given application.

Note that the above-mentioned analysis was performed on the A-64 machine, and was
performed with the aim to find the main (lock-related) performance bottlenecks. For
each bottleneck, we explain if it is more common at opt nodes or max nodes. Nonetheless,
the observations made in Sections 4.2 and 4.3 are not specific to lock performance on
the A-64 machine. Thus, we think that the conclusions of this Section can be applied
to different machines, and not only to throughput but also to energy efficiency.

4.5.1 Summary of the lock/application behavior analysis

In this Section, we give general insights that we draw from the detailed analysis of the
different lock-sensitive applications. Table 4.16 lists, for each lock-sensitive application
its main performance bottleneck with respect to locking (in column 2). We also recom-
mend which family of lock algorithms (i.e., lock algorithms sharing a similar property)
to prefer or avoid for each of the studied applications (detailed in Section 4.5.2). For
example, we observed that the performance bottleneck of fluidanimate is due to a high
number of uncontended lock acquisitions. As a consequence, it is better to use a light
lock algorithm, i.e., a lock that can be acquired very quickly when there is no other
thread trying to acquire it at the same time (e.g., with only one atomic CPU instruc-
tion). Overall, we identified 9 performance bottlenecks across 22 applications, that
can be summarized into four categories: lock contention, scheduling issues, memory
footprint and memory contention.

78

4.5. Analysis of lock/application behavior

Performance Bottleneck(s) Advice
facesim scheduling issue: lock handover avoid FIFO locks
radiosity lock contention: high avoid light or parking locks
radiosity_ll lock contention: extreme prefer hierarchical locks
ferret scheduling issue: lock handover avoid FIFO locks
streamcluster lock contention: extreme (mixing

trylocks and locks)
prefer locks with a

contention-hardened trylock
operation

dedup kernel lock contention inside the
page fault handler

prefer locks with small memory
footprint

vips scheduling issue: lock handover avoid FIFO locks
fluidanimate page fault memory erase page prefer light locks

lot of uncontended lock
acquisitions

pca memory contention prefer locks lowering memory
traffic

linear_regression lock contention: high avoid light or parking locks
s_raytrace lock contention: high avoid light or parking locks
s_raytrace_ll lock contention: high avoid light or parking locks
ocean_cp/ncp scheduling issue: lock handover avoid light or FIFO locks

lock contention: high
water_spatial page fault memory erase page prefer locks with small memory

footprint
water_nsquared
fmm page fault memory erase page prefer locks with small memory

footprint
volrend lock contention: extreme prefer hierarchical locks
mysql lock contention: extreme prefer parking locks

memory contention
scheduling issue: lock holder

preemption
ssl_proxy lock contention: extreme prefer hierarchical locks
kyotocabinet lock contention: extreme prefer hierarchical locks
upscaledb lock contention: extreme prefer hierarchical locks
memcached-old lock contention: extreme (with

trylocks)
prefer locks with a

contention-hardened trylock
operation

memcached-new lock contention: high avoid light or parking locks
sqlite scheduling issue: lock holder

preemption
prefer parking locks

Table 4.16 – Lock-sensitive application performance bottleneck(s) and lock
algorithms choice advice.

79

Chapter 4. Study

Lock contention

One of the key performance factors of a lock algorithm is how well it behaves under
contention, i.e., its performance when a set of threads tries to acquire the same lock
instance at the same time. Depending on their design, lock algorithms achieve their
best performance at different levels of contention. For example, lock algorithms like
Spinlock and TTAS are simple enough so that acquiring the lock under a low level
of contention is only a matter of a few cycles. However, this simplicity leads to a
performance collapse under higher levels of contention. On the contrary, algorithms
like MCS or HMCS are designed to perform best under high levels of contention, at
the expense of a high cost to acquire the lock when there is no other thread competing
to acquire it. We observe four different performance bottlenecks depending on how
many threads concurrently try to acquire a lock instance and how they try to acquire
it: high levels of contention, extreme levels of contention, trylock contention and many
uncontended lock acquisitions. Note that lock contention can be observed both at opt
nodes and max nodes.

High levels of contention. A high number of threads (between approx. 10 to 40

threads on A-64) are waiting to acquire the same lock instance at the same time. To
measure the contention level on a lock, we take regular snapshots of the application
state, looking at how many threads are currently waiting for a lock. More precisely,
each time a thread requests a lock, it puts the lock address inside a private cache-
aligned memory location, and all such locations are read by a background thread every
second. This provides us with a low-overhead approximation of the real number of
threads waiting for a lock, with respect to a more straightforward yet costly approach
where a counter is atomically incremented before waiting for a lock and decreased
when the lock is acquired. Radiosity, linear_regression, s_raytrace, s_raytrace_ll are
the four lock-sensitive applications that suffer from this performance bottleneck.

Radiosity is parallelized using per-core distributed task queues, where each thread can
steal work from another task queue. Radiosity allocates a large number of locks (4k);
still only two locks are highly contended. With HMCS, one of the best locks for this ap-
plication, on average, 60% of all the total threads wait on one of the two stressed locks,
while there is virtually no contention on the other 4k locks. For linear_regression, we
observe that there is only one lock inside the application that protects a distributed
task queue. This lock suffer from high levels of contention (65% of the threads wait-
ing on the lock). S_raytrace and s_raytrace_ll render a 3-D scene partitioned among
threads and there is a global task queue protected by a single lock. Still, the contended
lock is not the global task queue lock, but a lock protecting a single counter used to
implement a global unique identifier generator. For the short-lived version (resp. for
the long-lived version), on average, 40% (resp. 60%) of the threads are waiting for
the same lock (using HMCS, one of the best lock algorithms). When using an atomic

80

4.5. Analysis of lock/application behavior

fetch_and_add, we observe a 1.8× (resp. 3×) performance improvement for the short-
lived version.

For high levels of contention, lock algorithms that rely on local spinning (e.g., MCS)
or on a hierarchical approach (e.g., AHMCS) are well suited (see Section 2.1.2). Light
lock algorithms (e.g., Spinlock) and lock algorithms using a parking waiting policy
must be avoided when possible.

Extreme levels of contention. A very high number of threads (more than 40 on A-
64) are waiting to acquire the same lock instance. This phenomenon can be observed
on seven of the lock-sensitive applications: radiosity_ll, volrend, MySQL, SSL Proxy,
Kyoto Cabinet, upscaledb.

Radiosity_ll, the long lived version of radiosity, also suffers from lock contention. Con-
trary to the short lived version, radiosity_ll puts more pressure on the locks10. Volrend
suffers from lock contention on the lock instances protecting different distributed task
queues, as well as on a lock instance used to implement a barrier that separates the
computation steps. These task queue locks (as well as the barrier lock) suffer from
extreme levels of contention, especially the barrier lock that suffers from spikes of con-
tention when all the threads wait for the barrier at the same time. MySQL suffers from
lock contention on a lock that protects the page cache, a data structure that serves as an
in-memory cache for the SQL table data stored on disk. This lock is heavily stressed:
we observe on average 50 threads (on a 64-core machine) competing for the same lock
instance, resulting in 40% of the thread lifetimes spent waiting to acquire this lock.
The SSL Proxy application implements a reverse SSL proxy using OpenSSL via the
Boost ASIO library. This application is subject to a huge performance collapse: the op-
timized number of nodes is one. In this application, the main bottleneck is a lock pro-
tecting the error queue of OpenSSL, which suffers from extreme levels of contention
(on average 85% of the threads wait on the same lock). Similarly to Zemek [111], we
found that the problem comes from an inefficient usage of the OpenSSL library by the
Boost ASIO library. Indeed, the original lock that the OpenSSL library requests is a
reader-writer lock; still Boost ignores it and uses a classic mutex lock, lowering the
potential degree of parallelism. Kyoto Cabinet is a straightforward implementation of
a database. As explained by Afek et al. [1], the most contended lock instance is the
lock protecting the global hash table storing the data. Indeed, all database operations
(create/insert/update/delete/lookup) need to acquire the same lock, which becomes
highly contended. Upscaledb is an in-memory key/value store tailored for efficiency
of analytical functions. Contrary to popular database engines like InnoDB for MySQL
that use fine-grained locking (generally one lock for a row/set of rows), upscaledb

10The short-lived version is launched with a BF [53] refinement epsilon of (1.5e− 3) and the long-lived
version is launched with a BF refinement epsilon of (1.5e− 5). With a lower epsilon, computations are
refined more frequently, creating more tasks.

81

Chapter 4. Study

uses only one lock instance to protect the whole database. Such a poor design choice
explains why upscaledb does not scale: indeed we observe that all of the threads
spend 98% of their execution time waiting for the lock.

For these applications, the well-performing lock algorithms are the ones designed to
support extreme levels of contention, such as AHMCS, HMCS and the cohort locks.

Trylock contention. Some of the studied applications (e.g., Memcached-old, stream-
cluster) use the (non-blocking) trylock operation to acquire a lock instance. However,
most of the existing papers on lock algorithms focus on the design and evaluation
of lock operations with blocking semantics. Trylock is a non-blocking operation, and
we observe that an algorithm that optimizes the (blocking) lock operation can have a
totally different behavior for its trylock operation. In fact, most algorithms (even the
more elaborate ones, e.g., AHMCS) have a trylock operation as simple as the one of
the simplest algorithm (Spinlock), which consists of a simple atomic instruction on a
single memory address. As an example, the MCS trylock operation is a compare-and-set
on the tail pointer of the waiter’s linked list.

Streamcluster, and its long-lived version streamcluster_ll, are examples of applications
that stress trylocks. Streamcluster heavily relies on a custom barrier implementation
to synchronize threads between the different phases of the application. This barrier im-
plementation uses a mix of trylock and lock operations, as well as condition variables.
During Streamcluster execution, 30% of the threads are on average either inside a try-
lock or a lock invocation. Because streamcluster mixes locks and trylocks, we observe
that algorithms having a contention-hardened trylock operation, like HMCS, exhibit
better application performance. Such algorithms include rather complex trylock imple-
mentations, with tens of instructions. On the contrary, poor-performing algorithms,
like Spinlock, have extremely simple trylock implementations (i.e., Spinlock simply
does one compare-and-set instruction). As a result, an uncontested trylock costs on
average 220 cycles with HMCS and 170 cycles with C-BOMCS (two well-performing
locks in Streamcluster), while it costs 60 cycles with Spinlock and 80 cycles with MCS
(two poor performing locks when trylock is heavily contended). Another example
where trylock is important is Memcached-old. Instead of calling the Pthread mutex
lock operation, Memcached-old relies on trylock to improve reactivity for short criti-
cal sections. The most contended lock is a global lock protecting the cache hash-table
(item_global_lock), followed by the lock protecting the in-house memory allocator
(cache_lock). As a results, on average 80% of the threads wait behind one of these
locks. These results illustrate that contention-hardened trylocks can play an important
performance role under high levels of contention.

Among the studied algorithms, only a few algorithms (HMCS, cohort locks, Parti-
tioned and MCS-TimePub) implement a trylock operation performing well under high

82

4.5. Analysis of lock/application behavior

levels of contention. For example, the HMCS and the cohort locks implement a trylock
in a hierarchical manner, leading to better performance on NUMA machines11.

Many uncontended lock acquisitions. One of the applications (fluidanimate) creates
a large number of lock instances (500k locks). These locks are used to protect each cell
of the grid, and are only used by one or two threads at the same time: most of the
time a thread acquires the lock without any competition. More precisely, fluidanimate
calls pthread_mutex_lock 5 billions times and half of the acquisitions are immediate,
while for the other half a thread waits only because there is another thread inside the
critical section, never because there are other waiting threads.

While the main performance bottleneck of facesim is related to memory (see below),
we found that, similarly to the SyncPerf study [5], as lock are rarely contended, an im-
portant performance factor is the best-case critical path, i.e., the time to acquire a lock
instance when it is not contended. We observe that the “lightest” lock algorithms (i.e.,
the ones with a short code path for acquisition in the absence of contention) exhibit
very good performance (e.g., Backoff, Spinlock, Ticket, TTAS, which require roughly
40 cycles to acquire a lock under no contention). On the contrary, lock algorithms
like cohort locks or HMCS (that require roughly 190 cycles to acquire an uncontended
lock) perform the worst, because a thread needs to acquire two locks (the NUMA-local
lock and the global one) most of the time, hampering the execution.

For application highly sensitive to the time spent acquiring a lock instance in the
absence of contention, we recommend to use the “lightest” lock algorithms, such as
Backoff, Spinlock, Ticket or TTAS.

Scheduling issues

The performance of some of the studied applications mainly depends on how well
a given lock algorithm behaves with respect to scheduling choices. We observe two
different performance bottlenecks related to scheduling: the lock holder preemption
effect and the lock handover effect.

Lock holder preemption. The lock holder preemption effect is a well-known issue [18]
with lock algorithms using a spinning waiting policy. It happens when a thread A
waiting for a lock instance preempts a thread B that is the lock holder. Doing so, A
runs on a core waiting for B to release the lock instance, while the rescheduling of B is

11The trylock algorithms for HMCS and cohort algorithms acquire the per-socket lock instance, and
if successful, try to acquire the global lock instance. The Partitioned lock first checks non-atomically if
there is another thread waiting for the lock, then does a classic (blocking) mutex lock acquisition. The
MCS-TimePub trylock runs an adaptive algorithm that is long, thus lowering the number of concurrent
atomic instructions.

83

Chapter 4. Study

delayed because of A, thus delaying B to finish the critical section, and release the lock
instance for A. This pattern is highly inefficient. In the worst scenario, this can lead to
lock convoy: while the lock holder is descheduled, each thread progresses and eventu-
ally tries to acquire the lock instance, spinning, thus delaying the rescheduling of the
lock holder. This issue is usually observed in highly-threaded applications, where the
scheduler has to frequently decide which thread to run on which core. This effect is
more likely to be seen at max nodes; still some applications are already highly-threaded
at opt nodes (e.g., MySQL and SQLite). Note that all kinds of spinning algorithms are
affected by this phenomenon: the simplest ones (e.g., TTAS), FIFO (e.g., MCS_Spin)
and hierarchical approaches (e.g., HMCS). In fact, lock holder preemption is mainly
a property of the program concurrency-design, not the lock design. The lock holder
is more likely to be preempted inside critical sections with applications composed of
long critical sections and that over-subscribe threads to cores (e.g., databases).

MySQL and SQLite are two highly-threaded applications suffering from the lock holder
preemption effect. MySQL uses a large thread pool (hundreds of threads) to handle
queries from clients. SQLite creates a server that listens for client requests on a Unix
socket and uses a globally shared work queue protected by a single lock instance;
still many other lock instances are used to synchronize internal data structures. The
benchmark used (see Section 4.1.3) creates hundreds of threads.

In order to mitigate this effect, it is recommended to choose lock algorithms using a
parking waiting policy. Indeed, with this policy, when a thread waits for too long, it
deschedules itself, and the scheduler does not schedule it back until the lock instance
has been released. In particular, we recommend Malth_STP, because, thanks to its
concurrency control mechanism, it is able to put aside some threads and let others
progress. The smaller set of running threads allows lowering the pressure put on
the lock instances, and as a consequence the overall performance of the application is
improved. Another well-performing lock is the MCS-TimePub lock algorithm, which
is specifically designed to mitigate the lock holder preemption effect. Interistingly, some
operating system provide a mechanism (e.g., schedctl in Solaris) to give hints to the
OS scheduler when a thread is inside a critical section in order to avoid preempting it.

Lock handover. This phenomenon (also known as the lock waiter preemption prob-
lem [97]) happens with algorithms that use a direct handoff succession policy (see
Section 2.1.2). When a thread waiting in line for a lock is preempted, all other waiting
threads after this one are delayed. Worse, these threads spinlock their entire timeslice,
postponning the rescheduling of the descheduled thread. In principle, this problem is
unlikely to appear on platforms that do not use more threads than cores. In practice,
lock waiter preemption actually occurs quite often even when there are never more
threads than cores. Indeed, the Linux CFS scheduler sometimes migrates two (or
more) threads on the same core, thus leading to situations where the next-acquiring

84

4.5. Analysis of lock/application behavior

thread is preempted, and where other waiting threads spin uselessly. These migra-
tions are mainly observed when there are many blocking calls inside the application
(e.g., condition variables, I/O). This phenomenon is more likely to happen at max
nodes.

There are six of the lock-sensitive applications that suffer from the lock handover effect:
facesim, ferret, vips, ocean_cp and ocean_ncp, streamcluster. Facesim creates one
thread per core that implements a fork-join computation model [17]. The applications
uses a barrier to synchronize the successive fork-join phases, implemented with a
mutex lock and a condition variable. When threads wait on the condition variable,
they might be migrated by the scheduler so that when they are unblocked (i.e., when
leaving pthread_cond_wait) they are scheduled on the same core. There are 10×
more migrations for a poor performing lock algorithm (MCS, 40k) than for the MCS-
TimePub lock algorithm (4k): with a poor performing lock, threads have more chances
to share the same core. Note that a straightforward solution to “fix” facesim is to pin
each thread to a distinct core, thus avoiding inefficient migrations. For example, with
MCS pinning improves performance and yields roughly the same results as MCS-
TimePub, one of the best performing locks.

Ferret is parallelized using a pipeline model with 6 stages, where the four middle
stages use a thread-pool to handle requests. Ferret is subject to the lock handover
effect: treads are migrated because they stress the condition variables propagating
work through the stages. To assess the impact of this effect, we compute the lock
handover latency, i.e., the time delta between when a thread releases the lock and
when the next thread that was waiting for the lock acquires it. The lock handover
latency is on average 15× higher with MCS than with Spinlock (30M instead of 2M
cycles). As a comparison, on a micro-benchmark that does not suffer from the lock
handover effect (1 thread pinned on each core, all trying to acquire the same lock), the
average lock handover latency is of 460 cycles with MCS, and 46k with Spinlock.

Vips automatically builds a parallel image processing pipeline, each stage being sup-
ported by an independent pool of threads. Threads are migrated inside vips after page
faults and calls to condition variables.

Ocean_cp and ocean_ncp are applications simulating large-scale ocean movements.
We observe that the main bottleneck in the ocean applications is a barrier implemented
with condition variables and used to synchronize the different phases of the simula-
tion.

Streamcluster heavily relies on a barrier to synchronize the threads, and the barrier
implementation uses a mix of trylock and lock operations, as well as condition vari-
ables.

For applications suffering from the lock handover effect, FIFO algorithms using a wait-

85

Chapter 4. Study

ing policy based on pure spinning (e.g., Ticket, MCS) should be avoided in such cases.

Memory footprint

A less known category of locking performance bottlenecks is related to the memory
footprint of a lock instance. Indeed, not all lock algorithms occupy the same space in
memory, and if many lock instances are allocated by the application, it can become a
critical performance factor. We observe two different performance bottlenecks related
to the memory footprint of a lock, which depend on the memory allocation pattern.

Erasing new memory pages inside the page fault handler. With applications like
fmm, fluidanimate, water_spatial and water_nsquared, one thread creates and initial-
izes all the lock instances at the beginning of a run, allowing all other threads to use
them. More precisely, water_spatial creates 125k lock instances, water_nsquared 32k,
fmm 2k and fluidanimate 500k. The allocating thread requests memory pages from
the kernel, that are erased (i.e., filled with zeros) upon the first access. For an applica-
tion with many lock instances, a lock algorithm with a big memory footprint triggers
many memory page requests to the kernel, each of them needing to be erased. For
example, with fmm, a poor performing lock (AHMCS) triggers 17% (400k) more page-
faults than a well-performing lock (Spinlock). Water_spatial is another good example
of an application where this effect has a severe impact on performance: the execution
time difference between Spinlock (a well-performing lock) and AHMCS (a bad per-
forming lock) can be explained by the difference of the time spent erasing pages (1 vs
19 seconds). This bottleneck is observed both at opt nodes and max nodes, and happens
during the initialization phase of the application. One way to alleviate the bottleneck
is to rewrite the application to allocate locks concurrently (though this might cause
other issues, see the next bottleneck description). Another way is to reduce the ratio
of the initialization time over the steady-state time by increasing the steady-state time.
However, this is not always possible. For example, the number of allocated locks for
water_nsquared is proportional to the input size, upon which the steady-state time
depends. In such applications, we thus recommend to use lock algorithms that have
a low memory footprint (e.g., Spinlock, Ticket) to decrease the number of pages that
need to be erased.

Applications that need to control their memory footprint can benefit from dynami-
cally allocating per-node data structures of hierarchical locks upon first access [64]. It
benefits to applications where locks are in fact rarely acquired by threads from multi-
ple NUMA nodes. However, it leads to more dynamic allocations to be made, which
might introduces kernel lock contention inside the page fault handler (see below).

86

4.5. Analysis of lock/application behavior

Kernel lock contention inside the page fault handler. On some applications, at both
opt nodes and max nodes, all threads are constantly creating new lock instances, putting
pressure on the memory allocator (i.e., malloc). Internally, malloc requests pages of
memory to the kernel (via brk and mmap), which generates page faults when the pages
are first accessed. The page fault handler tries to insert the new page into a process-
shared data structure (the virtual address space data structure), protected by a single
reader/writer lock [27]. The contention on this kernel lock becomes more performance
critical than the one on the application-level locks, because all threads need exclusive
write access to the data structure, and the lock is generally kept for a long time.

Dedup is an example of application where there is kernel lock contention inside the
page fault handler. Through its lifetime, dedup creates a very large number of locks
(266k), which puts a huge pressure on the memory allocator. To measure the impact
of the lock algorithm memory footprint on the performance of dedup, we compare
CLH-ls, which has a huge memory footprint, with Pthread, which has a low memory
footprint. Using CLH-ls, we observe an increase of the number of calls to mmap by a fac-
tor of 96 and an increase of the number of calls to brk by a factor of 46. Moreover, we
observe that using the Pthread lock algorithm, at opt nodes, dedup spends 3.3 seconds
(30%) of the total execution time inside the kernel page fault handler, whereas with
CLH-ls it spends 80 seconds (80%) of the total execution time. One can argue that the
performance bottleneck has been introduced by the design of our transparent interpo-
sition design, which requires one dynamic memory allocation per lock instance, even
if the original POSIX lock instances were not dynamically allocated (i.e., the instance
is on the stack), or allocated in batches. However, dedup by itself, i.e. without LiTL,
continuously stresses the memory allocator, because it continuously allocates chunks
of data, each containing a lock instance. Indeed, when we modify the source code
of dedup to increase the allocated size of a lock instance that protects a chunk from
concurrent modifications, without LiTL, we still observe a performance decrease of
60%.

As a consequence, the fewer memory pages are used when allocating lock instances,
the fewer insertions of new pages inside the virtual address space are made, and thus
the lower contention on this lock is observed. We thus recommend lock algorithms
having a low memory footprint like Spinlock or Backoff for such applications.

Memory contention

Lock algorithms can have significant side effects on applications that are primarily
affected by other kinds of bottlenecks, like main memory contention.

Pca (and its long-lived version pca_ll) is a good example of such a phenomenon. Vali-
dating the observations on pca from the original paper [90], we found that pca suffers

87

Chapter 4. Study

either from lock contention (for algorithms that do not support high levels of con-
tention, e.g., Spinlock) or memory controller saturation12 (for the others, e.g., Pthread).
For example, with Pthread (pca suffers from memory controller saturation), we ob-
serve a 44% performance increase when we interleave the memory pages of the appli-
cation, i.e., when the memory pages of the application are allocated in a round-robin
fashion on all the NUMA nodes of the machine. This is a clear indicator that, with-
out interleaving, the memory controller of one NUMA node becomes overwhelmed,
receiving too many requests from all the threads. Besides, even with interleaving, the
memory bottleneck does not fully disappear. Indeed, we observe an increase from 0.4
stalled cycles per instruction (SPI) outside locking primitives with Malth_Spin (one of
the best locks) to 2.25 SPI with MCS13 (a bad performing lock). However, note that the
stalled cycles are observed inside the parallel code sections of pca. By being somewhat
“too” fast, MCS allows many threads to run in parallel, thus increasing the memory
contention of the parallel code sections of pca. More precisely, the number of stalled
cycles due to memory accesses, which account for 98% of all stalled cycles, is 20×
higher with MCS than with Malth_Spin. Note that this phenomenon is more likely
to appear at max nodes, because memory contention exists when a large number of
threads access memory concurrently.

In such cases, we recommend lock algorithm that reduce the number of concurrently
running threads in the application, thus the number of concurrent memory accesses
(e.g., Malth_Spin).

4.5.2 Guidelines for lock algorithms selection

In Section 4.5.2, we describe the different properties of the studied lock algorithms, and
in Section 4.5.2 we discuss guidelines to help a developer choosing a lock algorithm
for a given application.

Lock properties

Knowing the performance bottleneck of an application, a developer can now decide
which lock algorithms to use in an application. Table 4.17 summarizes the main prop-
erties of each lock algorithm. Overall, we identified seven properties shared by the

12While experimentally assessing the performance overhead of LiTL (see Section 3.4), we noticed a
corner case with pca. More precisely, we observe that, most of the time, LiTL improves the performance
w.r.t. the manually implemented version. This performance difference comes from the condition variable
algorithm of LiTL that lengthens the critical section. Indeed, as pca and pca_ll suffer from memory
contention, longer critical sections lower the number of threads running in parallel outside the critical
sections, thus improving performance. However, the best locks with LiTL are also among the best
manually implemented locks.

13A careful reader may argue that MCS should not cause heavy cache coherence traffic, because it uses
local spinning: MCS should be mostly spinning on the L1 cache and triggers cache coherence traffic only
when the lock holder releases the lock to the next waiting thread.

88

4.5. Analysis of lock/application behavior

lig
ht

hier
ar

ch
ica

l lock

co
nten

tio
n-h

ar
den

ed
try

lock

par
kin

g

FIF
O

low
m

em
ory

fo
otp

rin
t

low
m

em
ory

tra
ffi

c

backoff
mutexee
pthread
pthreadadapt
spinlock
spinlock-ls
ttas
ttas-ls
alock-ls
clh-ls x
clh_spin x
clh_stp x
mcs-ls
mcs_spin
mcs_stp
partitioned
ticket
ticket-ls
c-bo-mcs_spin
c-bo-mcs_stp
c-ptl-tkt
c-tkt-tkt
hmcs
hticket-ls x
ahmcs
malth_spin
malth_stp
mcs-timepub

Table 4.17 – Lock algorithm properties. The algorithms are grouped by
categories as defined in Section 2.1.2. For example, ahmcs does not use a
parking waiting policy, nor does it have a low memory footprint. However,
it is a hierarchical lock algorithm. Some lock algorithms do not support
the trylock operation and thus cannot be run with applications that use
this operation: we denote these cases by a cross sign.

locks without the property locks with the property x trylock not supported

89

Chapter 4. Study

studied lock algorithms that have an impact on performance. We also describe how
the different design properties described in Section 2.1.2 are related to these “behav-
ioral” properties. We first present properties related to different levels of contention,
then properties that can affect scheduling, and finish with properties related to mem-
ory.

1. Light: lock algorithms having a short code path to acquire the lock when uncon-
tended. Algorithms such as Spinlock, Backoff or TTAS have this property, where
an uncontended lock acquisition is almost only an atomic instruction. Algo-
rithms using a context such as MCS or CLH are generally heavier, because they
need to setup the context before acquiring the lock, even if there is no contention.
We also observe that there is no hierarchical lock that is light: cohort lock algo-
rithms acquire both local and global locks, and even AHMCS, which implements
a fast path; still needs to acquire one uncontended MCS lock. Finally, all existing
load-control lock algorithms are heavy, because the load control decision is on
the critical path.

Note that for applications where a single thread acquires a lock, biased lock-
ing [35] can improve performance. This technique can be used to enhance any
lock algorithm with an atomic-free fast path, and switches to the default lock
algorithm upon the first lock acquisition by a second thread.

2. Hierarchical lock: lock algorithms designed to take into account NUMA architec-
tures, where the cost of accessing a lock instance from a different socket is higher
than the one when the lock instance is already inside a cache of the local socket.
This category is the same category as described in Section 2.1.2.

3. Contention-hardened trylock: lock algorithms with a trylock operation tolerating
moderate to high levels of contention. We observe that some applications use
the trylock operation to do busy-wait, i.e., the trylock operation is continuously
called in a loop until the lock is acquired. In practice, a large number of atomic
instructions are executed concurrently, flooding the memory interconnect with
cache-coherence traffic. Here, lock algorithms that lower the cache-coherence
traffic are the ones that perform the best. We observe that hierarchical locks have
a contention-hardened trylock, because a thread needs to trylock both the local
and the global lock14. We also observe that algorithms like MCS-TimePub and
Partitioned have a contention-hardened trylock because their trylock operation
takes time (i.e., the operation consists of one atomic instruction and a significant
number of non-atomic instructions), thus lowering the cache-coherence traffic.

4. Parking: lock algorithms using a spin-then-park or a direct parking waiting pol-
icy (see Section 2.1.2).

14With the exception of AHMCS, where the trylock can be directly made on the top MCS lock.

90

4.5. Analysis of lock/application behavior

5. FIFO: lock algorithms imposing an order on the acquisitions of a lock instance
according to the thread arrival times, i.e., if a thread A tries to acquire the same
lock instance as B before B, A enters the critical section before B. Note that some
lock algorithms leave some degree of freedom regarding this order, i.e., a thread
might enter the critical section before another thread that had been waiting for
a longer amount of time (e.g., with the cohort lock algorithms that favor threads
running on the same socket as the lock holder). This category regroups a subset
the lock algorithms using a direct handoff succession policy (see Section 2.1.2).

6. Low memory footprint: lock algorithms having a low memory footprint. All locks
that need a context (e.g., MCS, CLH, Malthusian) have a high memory footprint,
because each thread needs its own context per lock held (or being acquired).
Besides, hierarchical lock algorithms also have a high memory footprint because
one lock instance is composed of one top lock instance, and one instance per
NUMA node, but the footprint can be lowered by dynamically allocating per-
node data structures of hierarchical locks upon first access [64].

7. Low (memory) interconnect traffic: lock algorithms that only induce a moderate
traffic on the memory interconnect of the machine. Algorithms using a load-
control mechanism sensitive to the concurrency level (e.g., Malthusian) reduce
the number of threads running concurrently, thus the pressure on the memory
interconnect. Surprisingly, lock algorithms that perform both poorly under con-
tention and which do not flood the interconnect with cache-coherence messages
(e.g., Backoff, TTAS-ls) are good choices to lower the memory interconnect uti-
lization.

Choice guidelines

Figure 4.6 shows a series of steps to follow in order to select which lock algorithm
to use with each application. The steps are questions the developer needs to answer
that help select a small subset of lock algorithms. A box with a white background
represents a question and a box with a gray background suggests the developer to
select or avoid some locks. For example, for upscaledb, the developer starts by asking
if the application has more threads than cores. Upscaledb does not have more threads
than cores. Next, the application is profiled to know if it performs many calls to the
scheduler (e.g., with I/O, conditions variables), which might lead to thread migrations.
Upscaledb does not call the scheduler often, so the developer can still consider FIFO
algorithms. Moving forward, upscaledb does not create many lock instances, does not
use the trylock operation and does not suffer from memory contention. We are now
at the last step, where the developer has to chose a lock algorithm regarding the levels
of contention the lock instances inside upscaledb suffer from. Remember that because
upscaledb does not have more threads than cores, and does not call the scheduler
often, the developer should choose an algorithm that uses a spinning waiting policy.

91

Chapter 4. Study

More threads
than cores?

Stress the scheduler
(e.g., IO, condition variables?)

Many lock instances? (1k)

Application suffers
from memory contention?

Levels of contention?

Lock operation?

Avoid spinning
algorithms

Avoid FIFO
algorithms

Prefer spinning
algorithms

Prefer low memory
footprint algorithms

Prefer algorithms
that induce a moderate usage
of the memory interconnect

Light
lock algorithms

Local spinning
lock algorithms

Hierarchical lock
algorithms

Hierarchical trylock
algorithms

yes

no
yes

no

yes

no

yes

no

low

moderate

high

lock

trylock

start

Figure 4.6 – Steps to follow for the application developer to chose a lock
algorithm.

92

4.5. Analysis of lock/application behavior

We observe that upscaledb suffers from extreme levels of contention. Therefore the
developer should choose a hierarchical spinning lock algorithm, for example AHMCS.

A word of caution: these guidelines are cursory, because carefully tuning a lock al-
gorithm is highly dependent on a given workload and machine. They give a hint to
the developer for the choice of a lock, and mostly target applications in which lock
access patterns are stable (e.g., the most contended lock is always the same and it
always suffers from a constant level of contention). Many lock bottlenecks can be sup-
pressed by redesigning the application with smaller critical sections, or by using more
scalable synchronization primitives, such as lock-free data structures. Besides, some
techniques enhancing lock algorithms (e.g., lazy lock allocation [64], biased locking
[35]) can be beneficial to adapt a given lock that is not initially the best for a given
workload. Finally, for applications where the access pattern of a lock varies during the
workload, adaptive lock algorithm such as GLK [10] can be used.

Note also that these guidelines do not cover all the possible configurations. For ex-
ample, if an application allocates many lock instances, and these instances suffer from
extreme levels of contention, there is no hierarchical lock algorithm having a low mem-
ory footprint. Nonetheless, we propose these guidelines based on our analysis of the
set of studied applications: they cover each application, and we believe that the set is
large enough to be representative.

93

5 Conclusion

There is a large number of lock algorithms for multicore machines, leaving developers
with the cumbersome task of choosing which algorithm to use for an application. One
of the main reasons for this complexity is that there were no clear guidelines and
methodologies helping developers to select an appropriate lock for their workloads.

This thesis has presented a broad study of the throughput, tail latency and energy effi-
ciency of 28 lock algorithms with 40 applications on Linux/x86 and four different mul-
ticore machines. More precisely, we considered, (i) applications from three benchmark
suites, as well as six real-world applications; (ii) lock algorithms from four categories
(competitive, direct handoff, hierarchical, load-control, as defined in Section 2.1.2) with
different waiting policies (spinning and spin-then-park); (iii) four multicore machines
that differed in vendors (AMD, Intel), number of cores (20, 48, 64), NUMA topology
(single-hop, I-48/I-20, vs. multiple-hop distance between nodes, A-64/A-48); (iv) mul-
tiple pinning (without pinning vs. thread-to-node pinning); (v) multiple BIOS config-
uration (performance vs. energy saving). In the quest to understand lock behavior,
when choosing the best lock, for these 40 applications, application throughput and en-
ergy efficiency have been improved (on average) by respectively 90% and 110% with
respect to the default POSIX mutex lock.

For this study, we designed LiTL, an interposition library allowing the transparent
replacement of lock algorithms used for Pthread mutex locks. To be compatible with
a wide range of applications, LiTL proposes a novel and efficient algorithm to support
condition variables, a synchronization mechanism frequently used in practice. Besides,
LiTL is not only compatible with locks that use the classical lock/unlock API, but also
with lock algorithms requiring an additional per-thread structure to keep per-thread
metadata (14 out of 28). In practice, LiTL has an overhead low enough to be used to
compare the performance of lock algorithms.

From our study, we draw several conclusions, several of which have not been previ-
ously discovered: applications not only stress the lock/unlock interface, but also the

95

Chapter 5. Conclusion

full locking API (e.g., trylocks, condition variables), the memory footprint of a lock
can directly affect the application performance, for many applications, the interaction
between locks and scheduling is an important application performance factor and lock
tail latencies may or may not affect application tail latency. We also confirm previous
findings [33, 42] on a larger number of applications, machines, and lock algorithms: no
single lock is systematically the best, choosing the best lock is difficult (as it depends
on the application, the workload, the machine, etc), and energy efficiency and through-
put go hand in hand in the context of lock algorithms (i.e., improving the throughput
necessarily improves the energy efficiency). Finally, from the insights of our in-depth
analysis of lock-related performance bottlenecks, we gave guidelines for the choice of
a lock algorithm based on given application characteristics, such as the number of lock
instances, the levels of lock contention or if the application is over-threaded or not.

5.1 Lessons learned

Below, we highlight five main implications of this work on the research community.

First, lock-related research cannot simply focus on one of the many functions of lock-
ing. As we have seen, many applications not only the lock/unlock, but also other
synchronization primitives such as condition variables and trylocks. For example, half
of the applications use conditions variables to synchronize threads, e.g., dedup uses
condition variables to implement a synchronized task queue. Memcached (among
others), uses a trylock to protect very short critical sections, with the aim to avoid
costly descheduling of threads waiting for a lock. Lock designers must offer a full
suite of lock, unlock, trylock, condition variables, and maybe even barriers, and
reader-writer locks.

Second, the effect of the memory footprint of locks as well as the importance of the
lock-scheduler interactions has been underestimated. We observed that the lock holder
preemption and the lock handover effects frequently occur in practice, even on a ded-
icated machine. However, many locks have been designed with the hypothesis that
the scheduler decisions do not affect lock performance. Lock designers should not
ignore the OS scheduler and design their lock to deal with sub-optimal scheduling
decisions.

Third, some locks improve performance at the expense of a bigger memory footprint.
For example, AHMCS stores lock acquisition statistics, MCS stores per-thread contexts,
and hierarchical locks store per-node local locks. This is often necessary in order to
reduce the number of cache line transfers involved in lock acquisitions/releases. How-
ever, some applications create thousands of lock instances, thus the memory footprint
of the locks becomes problematic (e.g., incurring cache thrashing, page faults due to
memory allocation). Lock designers must keep in mind that the memory footprint

96

5.2. Future research

of their lock affects performance, and thus should either keep it the lowest possible,
or rely on techniques such as lazy allocations [64] when possible.

Fourth, despite the fact that lock algorithms affect performance in many ways (as dis-
cussed previously), most of the existing profiling tools only give a coarse-grained view
of the effect of locks on performance. For example, the Free-lunch Profiler [30] mea-
sures the time spent inside critical sections, which does not give enough information
on how to avoid such bottlenecks. One exception is SyncPerf [5], which focuses on
lock acquisition patterns, but ignores aspects such as memory footprint and schedul-
ing interactions. Therefore, lock profiling tools should not only focus on the general
effects of locks on performance, but also profile the interactions of all synchroniza-
tion primitives with scheduling and memory, and the threads’ lock access patterns.

Fifth, different lock instances inside the same applications serve different purpose, or
applications go through phases. Thus, lock access patterns differ, and choosing one
lock at the beginning of the application for all lock instances will certainly be sub-
optimal in many cases. Previous work [70, 10] proposed to switch the lock algorithm
by a given lock instance at run time. However, these solutions do not consider the
full spectrum of lock-related performance bottlenecks presented in Section 4.5. As a
consequence, there is a need for dynamic and more complete approaches to better
control locks’ behaviors.

5.2 Future research

In the light of the results presented in this thesis, we describe four research directions
that would be interesting to follow.

Multicore performance

Application performance on multicore machines not only depends on locking, but also
on other factors such as the OS scheduler (pinning strategies, scheduling policies, ...),
memory policy, memory allocation, compiler, library version, kernel configuration, etc.
Finding the optimal point in this multi-dimensional configuration space is hard: even
choosing a lock algorithm is very difficult. Before designing a solution to this problem,
we need to fully and deeply understand the determinants of each dimension, i.e., what
are the main factors affecting the performance. As future work, it would be interesting
to explore the scheduling and memory allocation dimensions, two of the dimensions
(besides locks) that impact the most the performance of the studied applications.

Besides, modern multicore applications have evolved and now require to handle work-
loads at the nanosecond and microsecond scale. Yet, current scheduling and memory
allocation techniques are still not able to cope with such time scales [14]. More research

97

Chapter 5. Conclusion

is needed towards understanding and designing solutions for the needs of scheduling
and memory allocation of modern applications. Moreover, the interactions between
locking, scheduling and memory allocation still need to be explored.

Delegation algorithms

Recent lock implementations leverage delegation to execute critical sections [74, 112,
93]. Delegation has been shown to be highly efficient under very high levels of con-
tention. However, delegation requires to dedicate core(s) to only execute critical sec-
tions and require to re-engineer the application (critical sections need to be expressed
as functions). Further research is needed to design delegation-based solutions that
not only work well for the specific case it was designed (a single application suffering
from high levels of contention running on a dedicated machine), but with all other sit-
uations that we encountered during our study (e.g., over-threading, usage of different
lock operations such as trylocks).

Automatic and dynamic solutions

Choosing the right lock algorithm is hard, and this choice might change at run time. In
Section 4.5.2 we provided guidelines to facilitate this choice. However, these guidelines
suppose that all lock instances in the application exhibit the same access pattern, which
must be consistent during the execution (i.e., no phases). GLS [10] and SANL [112]
are two solutions that automatically and dynamically change the lock algorithms used
with respect to the contention levels and the number of running threads (per-lock
instance). Yet, these solution do not consider many parameters affecting performance
are not accounted considered (memory, scheduling, ...). Moreover, for solution like
SANL that uses a delegation based lock, the critical sections of the application still
need to be re-engineer, thus the solution is not transparent. A natural following of our
work would be to automate the choice of a lock algorithm by integrating our guidelines
inside a tool that select the best-suited lock algorithm. Besides, leveraging techniques
traditionally used by transparent N : M scheduling runtimes [102] might allow to
transparently delegate the execution context of a running thread, thus transparently
supporting delegation based algorithms.

Leveraging transactional memory

Transactional memory (TM) offers a clean and composable abstraction for concurrent
programming on multicore machines. While research on transactional memory has
been prolific, in some occasions it has been deemed to be a “research toy” due to too
high overheads and too strong restrictions [23]. However, recent works [39] offer to
dynamically switch between TM implementations with respect to the running work-

98

5.2. Future research

load, keeping the best of each implementation. Besides, recent lock algorithms such
as AHMCS-HTM [24] and techniques such as lock elision [89] leverage transactional
memory to improve locking performance, especially for low levels of contention. We
believe that mixing transactional memory and locking is a promising research direc-
tion towards lock algorithms supporting all kinds of access patterns and execution
environments.

Availability

The source code of LiTL and the data sets of our experimental results are available
online [51]. The figures and tables for all the machines are available in the companion
technical report [50].

99

Bibliography

[1] Yehuda Afek et al. “Amalgamated Lock-Elision”. Distributed Computing - 29th
International Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings.
Ed. by Yoram Moses. Vol. 9363. Lecture Notes in Computer Science. Springer,
2015, pp. 309–324.

[2] Anant Agarwal et al. “Adaptive Backoff Synchronization Techniques”. Pro-
ceedings of the 16th Annual International Symposium on Computer Architecture.
Jerusalem, Israel, June 1989. Ed. by Jean-Claude Syre. ACM, 1989, pp. 396–406.

[3] Martin Aigner et al. “Fast, multicore-scalable, low-fragmentation memory allo-
cation through large virtual memory and global data structures”. Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pitts-
burgh, PA, USA, October 25-30, 2015. Ed. by Jonathan Aldrich et al. ACM, 2015,
pp. 451–469.

[4] Samy Al Bahra. Concurrency Kit. http://concurrencykit.org/. 2015.

[5] Mohammad Mejbah Ul Alam et al. “SyncPerf: Categorizing, Detecting, and
Diagnosing Synchronization Performance Bugs”. Proceedings of the Twelfth Euro-
pean Conference on Computer Systems, EuroSys 2017, Belgrade, Serbia, April 23-26,
2017. Ed. by Gustavo Alonso et al. ACM, 2017, pp. 298–313.

[6] AMD. BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 15h Models
00h-0Fh Processors. http://support.amd.com/TechDocs/42301_15h_Mod_00h-
0Fh_BKDG.pdf. 2010.

[7] Gene M. Amdahl. “Validity of the single processor approach to achieving large
scale computing capabilities”. American Federation of Information Processing So-
cieties: Proceedings of the AFIPS ’67 Spring Joint Computer Conference, April 18-20,
1967, Atlantic City, New Jersey, USA. Vol. 30. AFIPS Conference Proceedings.
AFIPS / ACM / Thomson Book Company, Washington D.C., 1967, pp. 483–
485.

[8] Nikos Anastopoulos et al. “Facilitating efficient synchronization of asymmetric
threads on hyper-threaded processors”. 22nd IEEE International Symposium on

101

http://concurrencykit.org/
http://support.amd.com/TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf
http://support.amd.com/TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf

Bibliography

Parallel and Distributed Processing, IPDPS 2008, Miami, Florida USA, April 14-18,
2008. IEEE, 2008, pp. 1–8.

[9] Thomas E. Anderson. “The Performance of Spin Lock Alternatives for Shared-
Memory Multiprocessors”. IEEE Trans. Parallel Distrib. Syst. 1.1 (1990), pp. 6–
16.

[10] Jelena Antic et al. “Locking Made Easy”. Proceedings of the 17th International
Middleware Conference, Trento, Italy, December 12 - 16, 2016. ACM, 2016, p. 20.

[11] ARM. In what situations might I need to insert memory barrier instructions? http://
infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka14041.html.
2011.

[12] Marc Auslander et al. Enhancement to the MCS Lock for Increased Functionality and
Improved Programmability. U.S. Patent Application Number 20030200457 (aban-
doned). 2003.

[13] Woongki Baek et al. “Green: a framework for supporting energy-conscious
programming using controlled approximation”. Proceedings of the 2010 ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2010, Toronto, Ontario, Canada, June 5-10, 2010. Ed. by Benjamin G. Zorn et al.
ACM, 2010, pp. 198–209.

[14] Luiz André Barroso et al. “Attack of the killer microseconds”. Commun. ACM
60.4 (2017), pp. 48–54.

[15] Noah Beck et al. “’Zeppelin’: An SoC for multichip architectures”. 2018 IEEE
International Solid-State Circuits Conference, ISSCC 2018, San Francisco, CA, USA,
February 11-15, 2018. IEEE, 2018, pp. 40–42.

[16] Emery D. Berger et al. “Hoard: A Scalable Memory Allocator for Multithreaded
Applications”. ASPLOS-IX Proceedings of the 9th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, Cambridge,
MA, USA, November 12-15, 2000. Ed. by Larry Rudolph et al. ACM Press, 2000,
pp. 117–128.

[17] Christian Bienia. “Benchmarking Modern Multiprocessors”. PhD thesis. Prince-
ton University, 2011.

[18] Mike W. Blasgen et al. “The Convoy Phenomenon”. Operating Systems Review
13.2 (1979), pp. 20–25.

[19] Silas Boyd-Wickizer et al. “Non-scalable Locks are Dangerous”. Proceedings of
the Linux Symposium. Ottawa, Canada, 2012.

[20] Trevor Brown et al. “Investigating the Performance of Hardware Transactions
on a Multi-Socket Machine”. Proceedings of the 28th ACM Symposium on Par-
allelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific
Grove, CA, USA, July 11-13, 2016. Ed. by Christian Scheideler et al. ACM, 2016,
pp. 121–132.

102

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka14041.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka14041.html

Bibliography

[21] Irina Calciu et al. “Message Passing or Shared Memory: Evaluating the Delega-
tion Abstraction for Multicores”. Principles of Distributed Systems - 17th Interna-
tional Conference, OPODIS 2013, Nice, France, December 16-18, 2013. Proceedings.
Ed. by Roberto Baldoni et al. Vol. 8304. Lecture Notes in Computer Science.
Springer, 2013, pp. 83–97.

[22] Irina Calciu et al. “NUMA-aware reader-writer locks”. ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP ’13, Shenzhen,
China, February 23-27, 2013. Ed. by Alex Nicolau et al. ACM, 2013, pp. 157–166.

[23] Calin Cascaval et al. “Software transactional memory: why is it only a research
toy?” Commun. ACM 51.11 (2008), pp. 40–46.

[24] Milind Chabbi et al. “Contention-conscious, locality-preserving locks”. Proceed-
ings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2016, Barcelona, Spain, March 12-16, 2016. Ed. by Rafael
Asenjo et al. ACM, 2016, 22:1–22:14.

[25] Milind Chabbi et al. “High performance locks for multi-level NUMA systems”.
Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2015, San Francisco, CA, USA, February 7-11, 2015.
Ed. by Albert Cohen et al. ACM, 2015, pp. 215–226.

[26] Christoph Rupp. Upscaledb. https://upscaledb.com/. 2017.

[27] Austin T. Clements et al. “RadixVM: scalable address spaces for multithreaded
applications”. Eighth Eurosys Conference 2013, EuroSys ’13, Prague, Czech Republic,
April 14-17, 2013. Ed. by Zdenek Hanzálek et al. ACM, 2013, pp. 211–224.

[28] HyperTransport Technology Consortium et al. “HyperTransport I/O link spec-
ification”. Revision 1 (2008), pp. 111–118.

[29] Travis S. Craig. Building FIFO and Priority-Queuing Spin Locks from Atomic Swap.
Tech. rep. TR 93-02-02. University of Washington, 1993.

[30] Florian David et al. “Continuously measuring critical section pressure with
the free-lunch profiler”. Proceedings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages & Applications, OOPSLA 2014,
part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014. Ed. by Andrew P.
Black et al. ACM, 2014, pp. 291–307.

[31] Tudor David et al. “Asynchronized Concurrency: The Secret to Scaling Concur-
rent Search Data Structures”. Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating Systems, ASP-
LOS ’15, Istanbul, Turkey, March 14-18, 2015. Ed. by Özcan Özturk et al. ACM,
2015, pp. 631–644.

103

https://upscaledb.com/

Bibliography

[32] Tudor David et al. “Concurrent Search Data Structures Can Be Blocking and
Practically Wait-Free”. Proceedings of the 28th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA,
USA, July 11-13, 2016. Ed. by Christian Scheideler et al. ACM, 2016, pp. 337–
348.

[33] Tudor David et al. “Everything you always wanted to know about synchroniza-
tion but were afraid to ask”. ACM SIGOPS 24th Symposium on Operating Systems
Principles, SOSP ’13, Farmington, PA, USA, November 3-6, 2013. Ed. by Michael
Kaminsky et al. ACM, 2013, pp. 33–48.

[34] Dave Dice. “Malthusian Locks”. Proceedings of the Twelfth European Conference
on Computer Systems, EuroSys 2017, Belgrade, Serbia, April 23-26, 2017. Ed. by
Gustavo Alonso et al. ACM, 2017, pp. 314–327.

[35] Dave Dice et al. “Quickly Reacquirable Locks” (2006).

[36] David Dice. “Brief announcement: a partitioned ticket lock”. SPAA 2011: Pro-
ceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, San Jose, CA, USA, June 4-6, 2011 (Co-located with FCRC 2011). Ed. by
Rajmohan Rajaraman et al. ACM, 2011, pp. 309–310.

[37] David Dice et al. “Flat-combining NUMA locks”. SPAA 2011: Proceedings of the
23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures, San
Jose, CA, USA, June 4-6, 2011 (Co-located with FCRC 2011). Ed. by Rajmohan
Rajaraman et al. ACM, 2011, pp. 65–74.

[38] David Dice et al. “Lock Cohorting: A General Technique for Designing NUMA
Locks”. TOPC 1.2 (2015), 13:1–13:42.

[39] Diego Didona et al. “ProteusTM: Abstraction Meets Performance in Transac-
tional Memory”. Proceedings of the Twenty-First International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS ’16,
Atlanta, GA, USA, April 2-6, 2016. Ed. by Tom Conte et al. ACM, 2016, pp. 757–
771.

[40] Open Source Facebook. Rocksdb. http://rocksdb.org/. 2017.

[41] FAL Labs. Kyoto Cabinet. http://fallabs.com/kyotocabinet/. 2011.

[42] Babak Falsafi et al. “Unlocking Energy”. 2016 USENIX Annual Technical Confer-
ence, USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016. Ed. by Ajay Gulati
et al. USENIX Association, 2016, pp. 393–406.

[43] Panagiota Fatourou et al. “Revisiting the combining synchronization technique”.
Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, PPOPP 2012, New Orleans, LA, USA, February 25-29, 2012. Ed.
by J. Ramanujam et al. ACM, 2012, pp. 257–266.

[44] Rich Felker. musl libc. https://www.musl-libc.org/. 2017.

104

http://rocksdb.org/
http://fallabs.com/kyotocabinet/
https://www.musl-libc.org/

Bibliography

[45] Free Software Foundation FSF. pthread_mutex_lock GNU C library implementation.
https://sourceware.org/git/?p=glibc.git;a=blob;f=nptl/pthread_mutex_lock.c;
hb=HEAD. 2017.

[46] Free Software Foundation FSF. The GNU C Library. https ://www.gnu.org/
software/libc/manual/. 2017.

[47] Sanjay Ghemawat et al. TCMalloc: Thread-Caching Malloc. https://github.com/
gperftools/gperftools/. 2017.

[48] Vincent Gramoli. “More than you ever wanted to know about synchronization:
synchrobench, measuring the impact of the synchronization on concurrent al-
gorithms”. Proceedings of the 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2015, San Francisco, CA, USA, February
7-11, 2015. Ed. by Albert Cohen et al. ACM, 2015, pp. 1–10.

[49] Rachid Guerraoui et al. “Lock – Unlock: Is That All? A Pragmatic Analysis of
Locking in Software Systems”. ACM Transaction on Computer System (2018).

[50] Hugo Guiroux. Thesis figures and tables. https://github.com/multicore-locks/
litl/blob/master/paper/journal/appendix_journal.pdf. 2018.

[51] Hugo Guiroux et al. LiTL source code and data sets. https : / / github . com /
multicore-locks/. 2016.

[52] Hugo Guiroux et al. “Multicore Locks: The Case Is Not Closed Yet”. 2016
USENIX Annual Technical Conference, USENIX ATC 2016, Denver, CO, USA, June
22-24, 2016. Ed. by Ajay Gulati et al. USENIX Association, 2016, pp. 649–662.

[53] Pat Hanrahan et al. “A rapid hierarchical radiosity algorithm”. Proceedings of
the 18th Annual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH 1991, Providence, RI, USA, April 27-30, 1991. Ed. by James J. Thomas.
ACM, 1991, pp. 197–206.

[54] Bijun He et al. “Preemption Adaptivity in Time-Published Queue-Based Spin
Locks”. High Performance Computing - HiPC 2005, 12th International Conference,
Goa, India, December 18-21, 2005, Proceedings. Ed. by David A. Bader et al. Vol. 3769.
Lecture Notes in Computer Science. Springer, 2005, pp. 7–18.

[55] Danny Hendler et al. “Flat combining and the synchronization-parallelism
tradeoff”. SPAA 2010: Proceedings of the 22nd Annual ACM Symposium on Par-
allelism in Algorithms and Architectures, Thira, Santorini, Greece, June 13-15, 2010.
Ed. by Friedhelm Meyer auf der Heide et al. ACM, 2010, pp. 355–364.

[56] IEEE. mallopt(3) man page. http://man7.org/linux/man-pages/man3/mallopt.
3.html. 2017.

[57] IEEE. pthread_mutex_lock(3p) man page. http://man7 .org/linux/man- pages/
man3/pthread_mutex_lock.3p.html. 2017.

[58] Intel. Intel 64 and IA-32 Architectures, Software Developer’s Manual, Volume 3B:
System Programming Guide, Part 2. 2016.

105

https://sourceware.org/git/?p=glibc.git;a=blob;f=nptl/pthread_mutex_lock.c;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=nptl/pthread_mutex_lock.c;hb=HEAD
https://www.gnu.org/software/libc/manual/
https://www.gnu.org/software/libc/manual/
https://github.com/gperftools/gperftools/
https://github.com/gperftools/gperftools/
https://github.com/multicore-locks/litl/blob/master/paper/journal/appendix_journal.pdf
https://github.com/multicore-locks/litl/blob/master/paper/journal/appendix_journal.pdf
https://github.com/multicore-locks/
https://github.com/multicore-locks/
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/mallopt.3.html
http://man7.org/linux/man-pages/man3/pthread_mutex_lock.3p.html
http://man7.org/linux/man-pages/man3/pthread_mutex_lock.3p.html

Bibliography

[59] Intel. Intel Xeon Processor E7-4800/8800 v3 Product Families. http://www.intel.
com/content/dam/www/public/us/en/documents/datasheets/xeon-e7-v3-
datasheet-vol-1.pdf. 2015.

[60] Intel. Introduction to the intel quickpath interconnect. https ://www.intel .com/
content/www/us/en/io/quickpath- technology/quick- path- interconnect-
introduction-paper.html. 2009.

[61] Ryan Johnson et al. “Decoupling contention management from scheduling”.
Proceedings of the 15th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS 2010, Pittsburgh, Pennsylva-
nia, USA, March 13-17, 2010. Ed. by James C. Hoe et al. ACM, 2010, pp. 117–
128.

[62] Alain Kägi et al. “Efficient Synchronization: Let Them Eat QOLB”. Proceedings
of the 24th International Symposium on Computer Architecture, Denver, Colorado,
USA, June 2-4, 1997. Ed. by Andrew R. Pleszkun et al. ACM, 1997, pp. 170–180.

[63] Anna R. Karlin et al. “Empirical Studies of Competitive Spinning for a Shared-
Memory Multiprocessor”. Proceedings of the Thirteenth ACM Symposium on Op-
erating System Principles, SOSP 1991, Asilomar Conference Center, Pacific Grove,
California, USA, October 13-16, 1991. Ed. by Henry M. Levy. ACM, 1991, pp. 41–
55.

[64] Sanidhya Kashyap et al. “Scalable NUMA-aware Blocking Synchronization Prim-
itives”. 2017 USENIX Annual Technical Conference, USENIX ATC 2017, Santa
Clara, CA, USA, July 12-14, 2017. USENIX Association, 2017, pp. 603–615.

[65] Leonidas I. Kontothanassis et al. “Scheduler-Conscious Synchronization”. ACM
Trans. Comput. Syst. 15.1 (1997), pp. 3–40.

[66] Konstantinos Koukos et al. “Towards more efficient execution: a decoupled
access-execute approach”. International Conference on Supercomputing, ICS’13, Eu-
gene, OR, USA - June 10 - 14, 2013. Ed. by Allen D. Malony et al. ACM, 2013,
pp. 253–262.

[67] Bradley C. Kuszmaul. “SuperMalloc: a super fast multithreaded malloc for 64-
bit machines”. Proceedings of the 2015 ACM SIGPLAN International Symposium on
Memory Management, ISMM 2015, Portland, OR, USA, June 13-14, 2015. Ed. by
Antony L. Hosking et al. ACM, 2015, pp. 41–55.

[68] Kaz Kylheku. What is PTHREAD_MUTEX_ADAPTIVE_NP? http://stackoverflow.
com/a/25168942. 2014.

[69] Ecole Polytechnique de Lausanne. Distributed Programming Laboratory (LPD).
2018. (Visited on 06/08/2018).

[70] Beng-Hong Lim. “Reactive synchronization algorithms for multiprocessors”.
PhD thesis. Massachusetts Institute of Technology, Cambridge, USA, 1995.

106

http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e7-v3-datasheet-vol-1.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e7-v3-datasheet-vol-1.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e7-v3-datasheet-vol-1.pdf
https://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
https://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
https://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://stackoverflow.com/a/25168942
http://stackoverflow.com/a/25168942

Bibliography

[71] Jean-Pierre Lozi. “Towards more scalable mutual exclusion for multicore archi-
tectures. (Vers des mécanismes d’exclusion mutuelle plus efficaces pour les ar-
chitectures multi-cœur)”. PhD thesis. Pierre and Marie Curie University, Paris,
France, 2014.

[72] Jean-Pierre Lozi et al. “Fast and Portable Locking for Multicore Architectures”.
ACM Trans. Comput. Syst. 33.4 (2016), 13:1–13:62.

[73] Jean-Pierre Lozi et al. “Remote Core Locking: Migrating Critical-Section Execu-
tion to Improve the Performance of Multithreaded Applications”. 2012 USENIX
Annual Technical Conference, Boston, MA, USA, June 13-15, 2012. Ed. by Gernot
Heiser et al. USENIX Association, 2012, pp. 65–76.

[74] Jean-Pierre Lozi et al. “The Linux scheduler: a decade of wasted cores”. Pro-
ceedings of the Eleventh European Conference on Computer Systems, EuroSys 2016,
London, United Kingdom, April 18-21, 2016. Ed. by Cristian Cadar et al. ACM,
2016, 1:1–1:16.

[75] Victor Luchangco et al. “A Hierarchical CLH Queue Lock”. Euro-Par 2006, Par-
allel Processing, 12th International Euro-Par Conference, Dresden, Germany, August
28 - September 1, 2006, Proceedings. Ed. by Wolfgang E. Nagel et al. Vol. 4128.
Lecture Notes in Computer Science. Springer, 2006, pp. 801–810.

[76] Peter S. Magnusson et al. “Queue Locks on Cache Coherent Multiprocessors”.
Proceedings of the 8th International Symposium on Parallel Processing, Cancún, Mex-
ico, April 1994. Ed. by Howard Jay Siegel. IEEE Computer Society, 1994, pp. 165–
171.

[77] Paul E. McKenney. “Is Parallel Programming Hard, And, If So, What Can You
Do About It? (v2017.01.02a)”. CoRR abs/1701.00854 (2017). arXiv: 1701.00854.

[78] Paul E. McKenney. “Pattern Languages of Program Design 2”. Ed. by John M.
Vlissides et al. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1996. Chap. Selecting Locking Designs for Parallel Programs, pp. 501–531.

[79] Paul E. McKenney. “Selecting Locking Primitives for Parallel Programming”.
Commun. ACM 39.10 (1996), pp. 75–82.

[80] John M. Mellor-Crummey et al. “Algorithms for Scalable Synchronization on
Shared-Memory Multiprocessors”. ACM Trans. Comput. Syst. 9.1 (1991), pp. 21–
65.

[81] Memcached. http://memcached.org/. 2017.

[82] Thannirmalai Somu Muthukaruppan et al. “Price theory based power man-
agement for heterogeneous multi-cores”. Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, Salt Lake City, UT, USA, March
1-5, 2014. Ed. by Rajeev Balasubramonian et al. ACM, 2014, pp. 161–176.

[83] Regina Nuzzo. “Scientific method: Statistical errors”. Nature 506.7487 (2014),
pp. 150–152.

107

https://arxiv.org/abs/1701.00854
http://memcached.org/

Bibliography

[84] Oracle Corporation. MySQL. https://www.mysql.com/. 2017.

[85] Y. Oyama et al. “Executing Parallel Programs with Synchronization Bottlenecks
Efficiently”. Proceedings of the International Workshop on Parallel and Distributed
Computing For Symbolic And Irregular Applications (PDSIA’99). World Scientific,
1999.

[86] Venkatesh Pallipadi et al. “The ondemand governor”. Proceedings of the Linux
Symposium. Vol. 2. 00216. sn. 2006, pp. 215–230.

[87] Lennart Poettering. Measuring Lock Contention. http : / / 0pointer . de / blog /
projects/mutrace.html. 2011.

[88] Zoran Radovic et al. “Hierarchical Backoff Locks for Nonuniform Communi-
cation Architectures”. Proceedings of the Ninth International Symposium on High-
Performance Computer Architecture (HPCA’03), Anaheim, California, USA, February
8-12, 2003. IEEE Computer Society, 2003, pp. 241–252.

[89] Ravi Rajwar et al. “Speculative lock elision: enabling highly concurrent multi-
threaded execution”. Proceedings of the 34th Annual International Symposium on
Microarchitecture, Austin, Texas, USA, December 1-5, 2001. Ed. by Yale N. Patt et
al. ACM/IEEE Computer Society, 2001, pp. 294–305.

[90] Colby Ranger et al. “Evaluating MapReduce for Multi-core and Multiprocessor
Systems”. 13st International Conference on High-Performance Computer Architecture
(HPCA-13 2007), 10-14 February 2007, Phoenix, Arizona, USA. IEEE Computer
Society, 2007, pp. 13–24.

[91] David P. Reed et al. “Synchronization with Eventcounts and Sequences”. Com-
mun. ACM 22.2 (1979), pp. 115–123.

[92] Haris Ribic et al. “Energy-efficient work-stealing language runtimes”. Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS ’14, Salt
Lake City, UT, USA, March 1-5, 2014. Ed. by Rajeev Balasubramonian et al. ACM,
2014, pp. 513–528.

[93] Sepideh Roghanchi et al. “ffwd: delegation is (much) faster than you think”.
Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai, China,
October 28-31, 2017. ACM, 2017, pp. 342–358.

[94] Adrian Sampson et al. “EnerJ: approximate data types for safe and general
low-power computation”. Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2011, San Jose, CA, USA,
June 4-8, 2011. Ed. by Mary W. Hall et al. ACM, 2011, pp. 164–174.

[95] Michael L. Scott. Shared-Memory Synchronization. Synthesis Lectures on Com-
puter Architecture. Morgan & Claypool Publishers, 2013.

108

https://www.mysql.com/
http://0pointer.de/blog/projects/mutrace.html
http://0pointer.de/blog/projects/mutrace.html

Bibliography

[96] Michael L. Scott et al. “Scalable queue-based spin locks with timeout”. Proceed-
ings of the 2001 ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPOPP’01), Snowbird, Utah, USA, June 18-20, 2001. Ed. by Michael
T. Heath et al. ACM, 2001, pp. 44–52.

[97] Jianchen Shan et al. “APPLES: Efficiently Handling Spin-lock Synchroniza-
tion on Virtualized Platforms”. IEEE Trans. Parallel Distrib. Syst. 28.7 (2017),
pp. 1811–1824.

[98] Kai Shen et al. “Power containers: an OS facility for fine-grained power and en-
ergy management on multicore servers”. Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’13, Houston, TX, USA - March 16 - 20,
2013. Ed. by Vivek Sarkar et al. ACM, 2013, pp. 65–76.

[99] Karan Singh et al. “Real time power estimation and thread scheduling via per-
formance counters”. SIGARCH Computer Architecture News 37.2 (2009), pp. 46–
55.

[100] Will Sobel et al. Cloudstone: Multi-platform, multi-language benchmark and measure-
ment tools for web 2.0. 2008.

[101] SQLite Consortium. SQLite. https://www.sqlite.org/. 2017.

[102] Srinath Sridharan et al. “Adaptive, efficient, parallel execution of parallel pro-
grams”. ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014. Ed. by
Michael F. P. O’Boyle et al. ACM, 2014, pp. 169–180.

[103] Sun Microsystems. Multithreading in the Solaris Operating Environment. http :
/ / home . mit . bme . hu / ~meszaros / edu / oprendszerek / segedlet / unix / 2 _
folyamatok_es_utemezes/solaris_multithread.pdf. 2002.

[104] Herb Sutter. “The free lunch is over: A fundamental turn toward concurrency
in software”. Dr. Dobb’s journal 30.3 (2005), pp. 202–210.

[105] Nathan R. Tallent et al. “Analyzing lock contention in multithreaded applica-
tions”. Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, PPOPP 2010, Bangalore, India, January 9-14, 2010. Ed.
by R. Govindarajan et al. ACM, 2010, pp. 269–280.

[106] Jons-Tobias Wamhoff et al. “The TURBO Diaries: Application-controlled Fre-
quency Scaling Explained”. Software Engineering & Management 2015, Multikon-
ferenz der GI-Fachbereiche Softwaretechnik (SWT) und Wirtschaftsinformatik (WI),
FA WI-MAW, 17. März - 20. März 2015, Dresden, Germany. Ed. by Uwe Aßmann
et al. Vol. 239. LNI. GI, 2015, pp. 141–142.

[107] Tianzheng Wang et al. “Be my guest: MCS lock now welcomes guests”. Proceed-
ings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2016, Barcelona, Spain, March 12-16, 2016. Ed. by Rafael
Asenjo et al. ACM, 2016, 21:1–21:12.

109

https://www.sqlite.org/
http://home.mit.bme.hu/~meszaros/edu/oprendszerek/segedlet/unix/2_folyamatok_es_utemezes/solaris_multithread.pdf
http://home.mit.bme.hu/~meszaros/edu/oprendszerek/segedlet/unix/2_folyamatok_es_utemezes/solaris_multithread.pdf
http://home.mit.bme.hu/~meszaros/edu/oprendszerek/segedlet/unix/2_folyamatok_es_utemezes/solaris_multithread.pdf

Bibliography

[108] Qiang Wu et al. “A Dynamic Compilation Framework for Controlling Micro-
processor Energy and Performance”. 38th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO-38 2005), 12-16 November 2005, Barcelona,
Spain. IEEE Computer Society, 2005, pp. 271–282.

[109] Fen Xie et al. “Compile-time dynamic voltage scaling settings: opportunities
and limits”. Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation 2003, San Diego, California, USA, June 9-11,
2003. Ed. by Ron Cytron et al. ACM, 2003, pp. 49–62.

[110] Chao Xu et al. “Automated OS-level Device Runtime Power Management”. Pro-
ceedings of the Twentieth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’15, Istanbul, Turkey, March
14-18, 2015. Ed. by Özcan Özturk et al. ACM, 2015, pp. 239–252.

[111] Konrad Zemek. Asio, SSL, and scalability. https://konradzemek.com/2015/08/
16/asio-ssl-and-scalability/. 2015.

[112] Mingzhe Zhang et al. “Scalable Adaptive NUMA-Aware Lock”. IEEE Trans.
Parallel Distrib. Syst. 28.6 (2017), pp. 1754–1769.

110

https://konradzemek.com/2015/08/16/asio-ssl-and-scalability/
https://konradzemek.com/2015/08/16/asio-ssl-and-scalability/

	Acknowledgements
	Preface
	Abstract
	Résumé
	List of figures
	List of tables
	Introduction
	Multicore primer
	Mutual exclusion
	Thesis statement
	Contributions
	Outline

	Background
	Locking
	Synchronization primitives
	Categorizing lock algorithms
	Waiting policy

	Related work
	Lock algorithm implementations
	Adaptive algorithms
	Studies of synchronization algorithms
	Energy efficiency
	Lock-related performance bottlenecks

	LiTL: A Library for Transparent Lock interposition
	Design
	General principles
	Supporting condition variables
	Support for specific lock semantics

	Implementation
	Lookup overhead
	Experimental validation
	Statistical test

	Study
	Study's methodology
	Studied algorithms
	Testbed
	Studied applications
	Tuning and experimental methodology

	Study of lock throughput
	Preliminary observations
	Main questions
	Additional observations
	Effects of the lock choice on application performance

	Study of lock energy efficiency
	Energy-efficiency lock behavior
	POLY

	Study of lock tail latency
	How does tail latency behave when locks suffer from high levels of contention?
	Do fair lock algorithms improve the application tail latency?
	Do lock tail latencies affect application throughput?
	Implications

	Analysis of lock/application behavior
	Summary of the lock/application behavior analysis
	Guidelines for lock algorithms selection

	Conclusion
	Lessons learned
	Future research

	Bibliography

