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Preface

Our society is moving into the Big Data era, with an incredible amount of data
generated daily. For instance, the world’s largest and most powerful particle collider,
Large Hadron Collider, is expected to produce 50 petabytes of data in 2017. Also
in 2017, a total duration of 300 hours of videos appears on YouTube per minute.
One year earlier, in 2016, around 6000 tweets are tweeted on Twitter per second.
Furthermore, scientists are developing wearable computing device for Body Area
Networks, which can monitor human medical conditions (e.g., heart rate) in real
time. Besides the generation of the data, the reduction of the storage material cost
also contributes to the takeoff of this Big Data era. In March 2015, the price of
storage per GB had dropped to $0.02.

These data can have one or more of the following characteristics. (1) Huge
amounts of records or samples. For instance, the DNA microarrays of all human
beings have more than 7 billion records and will have more and more as time goes on.
(2) Huge amounts of fields. Each piece of record is composed of many fields, which
can be the name, sex, age, and so forth for a demography database or thousands
of probes for a DNA microarray database. (3) The databases are interrelated. For
example, the combination of the DNA microarray database and the demography
database can reveal the correlation or even the causality between genes and physical
expression. (4) Complex data type. The records may contain missing fields because
of, among others, data corruption and privacy constraints, or they have a complex
structure such as articles, images, and videos.

A database can be represented as a table or, using the mathematical terminology,
as a matrix. Each row of this matrix represents a record, and each column a field.
In statistics or in machine learning, the row size is conventionally noted as n, and
the column size d or p. The column size is often understood as the dimension of
the data. While a large n had already been substantially studied by the traditional
statistics (i.e., by sampling), the problem of large d gave birth to the high-dimensional
statistics over the past decade. This subject is still in intense research nowadays and
produces many interesting and useful concepts such as Sparsity, Compressed Sensing,
Lasso, and so forth. A principled approach in this domain is nonparametric statistics,
both frequentist and Bayesian. Then, it remains the cases where both n and d are
large, which are the case I study in this thesis. Nonparametric statistics tells us
that its convergence rates are slower than the standard square root as in parametric
statistics. This disadvantage encourages us to use as much data as possible instead
of just sampling a subset.

My thesis is one of the many responses to this need. It combines recent cutting-
edge technologies from optimization, trace norm minimization, and distributed com-
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ii PREFACE

puting. Of course, it is not a panacea solving all Big Data problems, but it is a
milestone upon which readers can build their own work. To make this disserta-
tion as valuable as possible, I have tried to express more thoughts than necessary.
Although they may be interesting and even open new research directions, do not
hesitate to skip some minor points. In particular, for some facts not indispensable
to understand this dissertation but good to know, I put them as remarks. Readers
can consider them as complementary material for extended reading.

Several groups of people who, in my opinion, may be potential readers of this
dissertation. Firstly, it can interest those Frank-Wolfe theorists. This dissertation
provides an analysis of the cases where the sublinear problem can only be approxi-
mately solved in a nondeterministic way, which includes the estimation of a matrix’s
top singular value/vectors.

Secondly, it can interest those practitioners who need to recover low-rank matrices
frequently and efficiently. Instead of the popular matrix factorization method, this
dissertation provides an alternative way, accompanied by the source code, to solve
this same problem. It can be applied to datasets which are large-scale both in
samples and in dimensions. It can be either distributed or parallel, just like matrix
factorization.

Thirdly, it can interest those Frank-Wolfe developers and Apache SPARK enthu-
siasts. For Frank-Wolfe developers, it provides a template to develop a comprehensive
Frank-Wolfe package. For Apache SPARK enthusiasts, regardless of their adoption
of Frank-Wolfe, my code can undoubtedly inspire them to manage Apache SPARK’s
behaviors better and to use the resources more wisely.

Fourthly, it may interest researchers on distributed learning and deep learning.
Although the current most valuable player in these two domains is stochastic gradient
descent, I certainly see the potential of Frank-Wolfe to shine there. One day, we may
see a new research domain of machine learning.

Finally, if you do not belong to any of the categories above, I still hope you can
find something inspiring here. For example, the introduction to multi-task learning
is quite exotic, which adopts a point of view of econometrics. Some discussion in the
distributed machine learning section is also quite impressive, which is not likely to
see in any scientific publications but is more than relevant in the daily usage.

I have made significant efforts to provide the readers with novel and original
knowledge, just like my many teachers had done for me during my life. Following
their path, I hope my knowledge can be useful to people, to the world, and let the
enthusiasm resonate among young hearts and make the world better.

Wenjie ZHENG

Paris, December 1, 2017
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Abstract

Learning low-rank matrices is a problem of great importance in statistics, machine
learning, computer vision, recommender systems, etc. Because of its NP-hard na-
ture, a principled approach is to solve its tightest convex relaxation: trace norm
minimization. Among various algorithms capable of solving this optimization is the
Frank-Wolfe method, which is particularly suitable for high-dimensional matrices.
In preparation for the usage of distributed infrastructures to further accelerate the
computation, this study aims at exploring the possibility of executing the Frank-
Wolfe algorithm in a star network with the Bulk Synchronous Parallel (BSP) model
and investigating its efficiency both theoretically and empirically.

In the theoretical aspect, this study revisits Frank-Wolfe’s fundamental determin-
istic sublinear convergence rate and extends it to nondeterministic cases. In particu-
lar, it shows that with the linear subproblem appropriately solved, Frank-Wolfe can
achieve a sublinear convergence rate both in expectation and with high probability.
This contribution lays the theoretical foundation of using power iteration or Lanczos
iteration to solve the linear subproblem for trace norm minimization.

In the algorithmic aspect, within the BSP model, this study proposes and ana-
lyzes four strategies for the linear subproblem as well as methods for the line search.
Moreover, noticing Frank-Wolfe’s rank-1 update property, it updates the gradient
recursively, with either a dense or a low-rank representation, instead of repeatedly
recalculating it from scratch. All of these designs are generic and apply to any
distributed infrastructures compatible with the BSP model.

In the empirical aspect, this study tests the proposed algorithmic designs in an
Apache SPARK cluster. According to the experiment results, for the linear subprob-
lem, centralizing the gradient or averaging the singular vectors is sufficient in the
low-dimensional case, whereas distributed power iteration, with as few as one or two
iterations per epoch, excels in the high-dimensional case. The Python package devel-
oped for the experiments is modular, extensible and ready to deploy in an industrial
context.

This study has achieved its function as proof of concept. Following the path
it sets up, solvers can be implemented for various infrastructures, among which
GPU clusters, to solve practical problems in specific contexts. Besides, its excellent
performance in the ImageNet dataset makes it promising for deep learning.
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Résumé

L’apprentissage des matrices de rang faible est un problème de grande importance
dans les statistiques, l’apprentissage automatique, la vision par ordinateur et les
systèmes de recommandation. En raison de sa nature NP-difficile, une des approches
principale consiste à résoudre sa relaxation convexe la plus étroite : la minimisation
de la norme de trace. Parmi les différents algorithmes capables de résoudre cette
optimisation, on peut citer la méthode de Frank-Wolfe, particulièrement adaptée
aux matrices de grande dimension.

En préparation à l’utilisation d’infrastructures distribuées pour accélérer le calcul,
cette étude vise à explorer la possibilité d’exécuter l’algorithme de Frank-Wolfe dans
un réseau en étoile avec le modèle BSP (Bulk Synchronous Parallel) et à étudier son
efficacité théorique et empirique.

Concernant l’aspect théorique, cette étude revisite le taux de convergence dé-
terministe de Frank-Wolfe et l’étend à des cas non déterministes. En particulier, il
montre qu’avec le sous-problème linéaire résolu de manière appropriée, Frank-Wolfe
peut atteindre un taux de convergence sous-linéaire à la fois en espérance et avec
une probabilité élevée. Cette contribution pose la fondation théorique de l’utilisation
de la méthode de la puissance itérée ou de l’algorithme de Lanczos pour résoudre
le sous-problème linéaire de Frank-Wolfe associé à la minimisation de la norme de
trace.

Concernant l’aspect algorithmique, dans le cadre de BSP, cette étude propose et
analyse quatre stratégies pour le sous-problème linéaire ainsi que des méthodes pour
la recherche linéaire. En outre, remarquant la propriété de mise à jour de rang-1 de
Frank-Wolfe, il met à jour le gradient de manière récursive, avec une représentation
dense ou de rang faible, au lieu de le recalculer de manière répétée à partir de zéro.
Toutes ces conceptions sont génériques et s’appliquent à toutes les infrastructures
distribuées compatibles avec le modèle BSP.

Concernant l’aspect empirique, cette étude teste les conceptions algorithmiques
proposées dans un cluster Apache SPARK. Selon les résultats des expériences, pour
le sous-problème linéaire, la centralisation des gradients ou la moyenne des vecteurs
singuliers est suffisante dans le cas de faible dimension, alors que la méthode de la
puissance itérée distribuée, avec aussi peu qu’une ou deux itérations par époque,
excelle dans le cas de grande dimension. La librairie Python développée pour les
expériences est modulaire, extensible et prêt à être déployée dans un contexte indus-
triel.
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Chapter 1

Introduction

IT companies nowadays appear more and more intelligent by not only providing
us with products and information but also predicting our preferences about these
items. Smartphone application stores, such as App Store (iOS)1 and Google Play2,
can recommend the most suitable applications for you. Video distributing or sharing
companies, such as Netflix3 and Youtube4, can recommend videos the most attractive
to you. This impressive service is called recommender system, and it revolutionizes
our modern life.

Beneath these achievements lies the idea of learning low-rank matrices. This
concept of great importance can be explained by simple algebra that any first-year
undergraduate with science major understands. In all these cases, there are two
groups of entities – users and items. These two entities are, in the application store
scenario, the smartphone users and the apps; and, in the video sharing scenario,
the viewers and the videos. The users and the items form a matrix, with each en-
try representing the corresponding user’s rating on the corresponding item. These
ratings can be either collected by studying the user behavior or given explicitly by
users (Figure 1.1). The enormous number of users and items makes the matrix
high-dimensional. Meanwhile, this matrix is also sparse – users cannot learn about
every item in the world let alone rate it. Here comes the question: how can the rec-
ommender system know the user preference on items that the users themselves have
never even heard about? Mathematically, this task is equivalent to filling the missing
values in the sparse rating matrix, which is generally impossible unless we impose
some extra structure on the rating matrix. One of the widely adopted hypotheses
is the low-rank property of the matrix. We suppose that this matrix is low-rank
and hence can be represented by the multiplication of two low-dimensional matrices
(Figure 1.2).5 These low-dimensional matrices are often called user profile and item
profile (or user embedding and item embedding according to the domains). The
intuition behind is that each user or item can be represented by a low-dimensional

1https://itunes.apple.com/us/genre/ios/id36?mt=8
2https://play.google.com/store/apps
3https://www.netflix.com/
4https://www.youtube.com/
5There exist other hypotheses; for example, the rating matrix can be represented by the multi-

plication of two nonnegative matrices.

1

https://itunes.apple.com/us/genre/ios/id36?mt=8
https://play.google.com/store/apps
https://www.netflix.com/
https://www.youtube.com/
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Figure 1.1 – Rating matrix, created by Wikimedia user Moshanin.

Figure 1.2 – Low-rank rating matrix. Source: Apache Github repository

vector characterizing the nature of the user or the item. The rating is nothing else
than the inner product of the vector of the user and the one of the item. A high
inner product implies a high preference, and a low value suggests the contrary. Since
these profile matrices are low-dimensional, we now have much fewer parameters than
the observed ratings and hence are more likely to recover the full rating matrix.

Learning low-rank matrices is not only a central problem in recommender systems
(Koren et al. 2009) but also an important one in statistics, machine learning, and
computer vision. It has led to many successful applications, among which multi-
task learning (Argyriou et al. 2008, Pong et al. 2010), multi-class and multi-label
classification (Goldberg et al. 2010, Cabral et al. 2011, Harchaoui et al. 2012), robust
PCA (Cabral et al. 2013), phase retrieval (Candès et al. 2013) and video denoising
(Ji et al. 2010). These tasks consist in learning a low-rank matrix fit for some specific
purpose. Let `(W ) be the problem-specific convex loss associated with the matrix
W ∈ Rd×m. We intend to solve

min
W∈Rd×m

rank(W )

s.t. `(W ) ≤ µ
(1.1)

for some predetermined constant µ characterizing the tolerance level.

Nonetheless, (1.1) is in general NP-hard (see the introduction in Fazel et al.
2004). To make it tractable, there exist mainly two approaches. The first consists
in explicitly factorizing the matrix W as in Koren et al. (2009). Mathematically,
it considers W = UTV , where U ∈ Rr×d and V ∈ Rr×m, for some small constant
r � min{d,m} representing the estimated rank, and solves

min
U∈Rr×d,V ∈Rr×m

`(UTV ) + regularization. (1.2)
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The constant r can be chosen by cross-validation (Kanagal and Sindhwani 2010).
This optimization is solved by alternating minimization with regard to U and V .
Since the function is convex with regard to U and V separately, there is no difficulty
in conducting the computation. However, this function is nonconvex when consider-
ing U and V as a whole, which may trap the solver at some local minimum. For a
long time, this approach was justified only by its excellent empirical results and easy
implementation upon parallel and distributed infrastructures. Only over the few past
years, it was proved for a few specific problems (e.g., phase retrieval/synchronization,
orthogonal tensor decomposition, dictionary learning, matrix sensing, matrix com-
pletion) that every local minimum must also be global (Ge et al. 2015, Sun et al.
2015, Bandeira et al. 2016, Ge et al. 2016, Bhojanapalli et al. 2016).

The other approach consists in using (1.1)’s tightest convex relaxation, trace
norm minimization (Fazel et al. 2001)

min
W∈Rd×m

‖W‖∗

s.t. `(W ) ≤ µ,
(1.3)

where ‖·‖∗ is the trace norm, defined by the sum of all singular values of the ma-
trix in question. The convexity of (1.3) implies that (1) there is no local mini-
mum and (2) it can be tractably solved by, say, the interior-point method. Besides
the interior-point method, which only applies to low-dimensional W , modern ap-
proaches such as proximal algorithms and Frank-Wolfe algorithms are proposed for
high-dimensional cases. In particular, Frank-Wolfe algorithms are extremely suitable
for high-dimensional cases because of its low (quadratic) computation complexity per
iteration, contrary to proximal methods, which rely on singular value decomposition
entailing high (cubic) computation complexity.

It is well known that the matrix factorization approach (1.2) can be easily and
has been implemented on parallel and distributed infrastructures, whereas there is
limited literature about solving (1.3) under such conditions. Therefore, there is sci-
entific interest to investigate the possibility of solving (1.3) in a parallel or distributed
way. Besides the scientific relevance, this study has practical usages as well. Let us
consider the kind of ` which can be written as a sum of functions: `(·) :=

∑n
i=1 fi(·),

which is a typical scenario in machine learning and statistics. In a machine learning
context, fi can be the loss incurred by the i-th data point. In a statistics context, it
can be the negative log-density of the i-th sample. When n is large, very common
in our big data era, we have to spend a lot of time on the evaluation of the gradient.
The time spent on the gradient is especially a problem for Frank-Wolfe algorithms.
The low computation complexity of Frank-Wolfe algorithms makes the evaluation of
the gradient the most time-consuming task. It is obvious that we can conduct the
gradient evaluation in a parallel or distributed manner. If we can further conduct
Frank-Wolfe algorithms in the same way, we will be able to improve the efficiency
greatly and to develop solvers as efficient as the state-of-the-art ones for the matrix
factorization. Moreover, because of the existence of the regularization path adaption
for Frank-Wolfe which alleviates the computation cost associated with the hyperpa-
rameter choice (Jaggi 2011, Chapter 6), we will be eventually able to outperform
the matrix factorization approach, where the regularization path possibility is not
evident. Therefore, there are both scientific and practical motivations to carry out
this research.
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In response to this motivation, this study aims at exploring the possibility of
executing the Frank-Wolfe algorithm in a star network with the Bulk Synchronous
Parallel (BSP) model. I chose Frank-Wolfe, instead of other solvers, because it is
the algorithm the most friendly to high-dimensional dataset and also because it
can benefit the most from parallelization and distribution. The difference between
parallelization and distribution lies in the hypothesis upon the memory. The former
assumes the availability of a shared memory among all parties, whereas the latter
does not. Since algorithms working in the distributed case also work in the parallel
case, I chose therefore to study the more complex one, the distributed case. The
BSP model in the star network is the most straightforward computation model.
Its behavior is the closest to a serial computation model. In addition, the BSP
model is common across various frameworks, which makes it easy to be adopted by
the industry. In short, this study is a preparation for high-performance computing
(HPC) in trace norm minimization involving datasets both high-dimensional and
huge in size. Its achievement will have an immediate impact on the industry.

Regarding trace norm minimization, there are two other equivalent formulations
with regard to (1.3). Instead of representing it as a constrained optimization problem,
we can use the trace norm as a regularization like

min
W∈Rd×m

`(W ) + λ ‖W‖∗ , (1.4)

where λ is some predefined parameter. This formulation is called trace norm regular-
ization and is the standard form used by proximal methods. The other one switches
the objective function and the constraint in (1.3) and has this form:

min
W∈Rd×m

`(W )

s.t. ‖W‖∗ ≤ θ,
(1.5)

where θ is some predefined parameter. This formulation is called optimization with
trace norm constraint, which is an instance of the generalized matching pursuit
(Locatello et al. 2017), and is the standard form used by Frank-Wolfe methods. All
of these three are mathematically equivalent. In my dissertation, I refer to them
all as trace norm minimization without further distinction, but I will stick to the
formulation (1.5) throughout my thesis for its synergy with Frank-Wolfe.

I consider the kind of objective functions that can be (naturally) decomposed as
a sum of functions: `(·) :=

∑
i fi. Each party i (except for the center) in the star

network holds a unique copy of fi. They communicate with the center to solve (1.5)
by Frank-Wolfe algorithms. The main difficulty here is to solve the linear subprob-
lem in a distributed context. This research was conducted first to design various
strategies to solve the linear subproblem and then to investigate their performance
both experimentally and theoretically.

The outline of my dissertation is as follows. Chapter 2 serves as the prelim-
inary, which presents the information necessary for a better understanding of the
remaining part of my dissertation. The majority of concepts introduced there are
well-established ones, though some extension and innovation are specially made for
the reference in the following chapters. Chapter 3 lays the theoretical foundation of
using power iteration or Lanczos iteration to solve the Frank-Wolfe linear subprob-
lem. It starts with a general formulation which applies to any type of subproblem
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and then shows its relevance with trace norm minimization. This chapter does not
discuss any distributed computing, but its conclusion also applies in my BSP model.
Chapter 4 discusses four generic strategies to conduct the distributed computation
of the Frank-Wolfe linear subproblem. Besides, the method for the line search as
well as the recursive updates are described for several specific objective functions.
The experiment results on Apache SPARK follow immediately.

Contributions

The main contributions of this study are three-fold. In the theoretical aspect, it
generalizes the deterministic sublinear convergence rate and extends it to nondeter-
ministic cases. This generalization is essential for trace norm minimization, for its
linear subproblem cannot be solved with a deterministic precision. Jaggi (2013) has
made the pioneering work in pointing out the necessary Power/Lanczos iterations
needed in each Frank-Wolfe iteration. However, it is extremely concise and uses the
deterministic language, which is inappropriate in a nondeterministic context. This
study repairs this imperfection and makes it rigorous.

In the algorithmic aspect, this study proposes and analyzes four strategies to
solve the linear subproblem as well as methods for the line search under the BSP
model. Moreover, noticing Frank-Wolfe’s rank-1 update property, it updates the
gradient recursively, with either a dense or low-rank representation, instead of re-
peatedly recalculating it from scratch. All of these designs are generic and apply to
any distributed infrastructures compatible with the BSP model. In both the theo-
retical and the algorithmic aspect, several types of matrices (positive semi-definite,
symmetric and asymmetric) are investigated.

In the empirical aspect, this study tests the proposed algorithmic designs in an
Apache SPARK cluster. According to the experiment results, for the linear sub-
problem, centralizing the gradient or averaging the singular vectors is sufficient in
the low-dimensional case, whereas distributed power iteration, with as few as one or
two iterations per epoch, excels in the high-dimensional case. The Python package
developed for the experiments is modular, extensible, and ready to deploy in an in-
dustrial context. The code involves only asymmetric matrices, but the conclusions
drawn from the experiments are general for all types of matrices.

Related work

There have been some efforts to make Frank-Wolfe algorithm distributed. Most of
them study parameters in vector spaces as opposed to matrix spaces as I do. Bellet
et al. (2014) proposed a generic Frank-Wolfe framework for `1-norm minimization,
whereas I target the trace norm minimization problem, where I cannot use the same
technique to solve the linear subproblem as in `1-norm minimization. Wang et al.
(2016) proposed a parallel and distributed version of the Block-Coordinate Frank-
Wolfe algorithm (Lacoste-Julien et al. 2012). Their work is about a specific Frank-
Wolfe used for a specific problem, whereas I work on the standard Frank-Wolfe, and
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my framework is generic. Moharrer and Ioannidis (2017) are particularly interested
in the map-reduce type framework. They identified two properties that can make the
map-reduce applicable. My work has two differences from theirs. On the one hand,
my framework is not specific to a particular implementation and can be implemented
by either map-reduce or message passing. On the other hand, I am particularly
interested in the matrix parameter instead of the vector parameter as in their work.
Concerning the implementation, we share a lot in common. We both use Apache
SPARK (Zaharia et al. 2012a) and map-reduce (Dean and Ghemawat 2008) and make
use of SPARK’s particular properties to accelerate the calculation. For instance,
the core concept, called common information, in their paper also enjoys a recursive
update. Wai et al. (2017a) proposed a decentralized Frank-Wolfe framework for
general problems, which is best when the parameter in each node is sparse, whereas
I do not make this hypothesis. Besides, their network is decentralized, whereas I
apply BSP model on a star network.

Based on the work of Wai et al. (2017a), for the trace norm minimization prob-
lem, the same authors further incorporated a decentralized power method to solve
the FW linear subproblem with the aim of reducing the communication cost (Wai
et al. 2017b). Although we all study trace norm minimization and use the power
method, my work has at least four differences from theirs. First, their algorithm is
based on the Gossip protocol and works on any network topology, whereas I assume
the availability of a master-slaves star network and can hence have much less com-
munication overhead. Second, they proved the convergence in probability for their
Gossip-based algorithm, whereas I prove the convergence in both probability and in
expectation for the master-slave scenario. Third, in their paper, they provided some
primary experiment results with a single-thread MATLAB environment, whereas I
demonstrate my algorithms on a physical cluster and with larger-scale datasets. Last
but not least, they used more than 6 power iterations per FW iteration, whereas I
use as few as 1 or 2 power iterations.



Chapter 2

Background

This chapter prepares the necessary knowledge that will be used later in other chap-
ters. It first reminds the reader of the core concepts in convex optimization. This
knowledge is essential to Frank-Wolfe in that the latter is more built around the con-
vexity than any other algorithms. Meanwhile, this knowledge is also standard, and
anyone having worked on convex optimization has at least studied it once. Although
I have made some extensions, it does not prevent experts from skipping these sections
and referring to them later when needed. After two sections of core concepts, it gives
a detailed presentation on trace norm minimization as well as the various solvers as-
sociated. Then, it introduces multi-task learning, which is the main problem I use
as proof of concept in my experiments. To bring refreshing ideas to the multi-task
learning community, I deliberately adopt the econometrician’s viewpoint. Last but
not least, it presents the general information about distributed machine learning,
including the Bulk Synchronous Parallel and the star network, whose importance in
my dissertation is self-evident. Besides, it includes some of my personal thoughts
about large-scale machine learning.

2.1 Convexity and smoothness

This section describes the convexity and the smoothness, which are essential for
convex optimization. The material is mainly from two classic books – Boyd and
Vandenberghe (2004) and Nesterov (2013). The most important content in this
subsection is the extension of some classical results in Nesterov (2013). In particular,
Corollary 2.1.7 and Theorem 2.1.8 will be the building bricks of the next chapter.

2.1.1 Convex set

A set C is convex if the line segment between any two points in C lies in C, i.e., if
for any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1, we have

θx1 + (1− θ)x2 ∈ C.

7
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We call a point of the form θ1x1 + · · · + θkxk a convex combination of points
x1, . . . , xk, where θ1 + · · · + θk = 1 and θi ≥ 0, i = 1, . . . , k. Obviously, a set is
convex if and only if it contains every combination of its points.

The convex hull of a set S, denoted conv(S), is the set of all convex combinations
of points in S:

conv(S) = {θ1x1 + · · ·+ θkxk|xi ∈ S, θi ≥ 0, θ1 + · · ·+ θk = 1}.

Obviously, a convex hull is convex. Furthermore, it is also the smallest convex set
that contains S. That is, if C is convex and S ⊂ C, then conv(S) ⊂ C.

Notable convex sets include polytopes and simplexes. A polytope is a bounded
solution set of a finite number of linear equalities and inequalities:

P = {x|aTi x ≤ bi, i = 1, . . . ,m, cTj x = dj , j = 1, . . . , p}.

A simplex is a kind of polytope. Let v0, . . . , vk ∈ Rn be k + 1 points affine indepen-
dent, which means that v1 − v0, . . . , vk − v0 are linearly independent. The simplex
determined by them is given by

C = conv{v0, . . . , vk},

i.e., the set of all convex combinations of the k+ 1 points v0, . . . , vk. The dimension
of this simplex is defined as k. We sometimes refer to it as a k-dimensional simplex
in Rn.

2.1.2 Convex function

A function f : Rn → R is convex if its domain domf is a convex set and if for all
x, y ∈ domf and θ with 0 ≤ θ ≤ 1, we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (2.1)

Geometrically, the chord of any two points on the graph lies above the graph of f . A
function f is strictly convex if strict inequality holds whenever x 6= y and 0 < θ < 1.
We say f is concave if −f is convex, and strictly concave if −f is strictly convex.

A convex function is a continuous function (Rudin and others 1964, Chapter 4
Problem 23 in the 3rd edition). However, it is not necessarily differentiable. In fact,
the absolute value function is convex, but it is not differentiable at the origin. In the
case where f is differentiable, we have the following first order condition of convexity
(Boyd and Vandenberghe 2004, Section 2.1.3).

Proposition 2.1.1 (First order condition). A differentiable function f is convex
if and only if

f(y) ≥ f(x) +∇f(x)T (y − x) (2.2)

holds for all x, y ∈ domf , where ∇f is the gradient of f .

If the function f is twice differentiable, we can express the convexity even more
concisely as follows (Boyd and Vandenberghe 2004, Section 2.1.4).
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Proposition 2.1.2 (Second order condition). A twice differentiable function f
is convex if and only if its Hessian is positive semidefinite:

∇2f(x) � 0 (2.3)

for all x ∈ domf .

Remark. Actually, the twice differentiability is already implied in the convexity. In-
deed, if U is an open subset of Rn and f : U → Rm is a convex function, then f has
a second derivative almost everywhere. This is by Alexandrov Theorem (Busemann
and Feller 1936, Aleksandorov 1939).

Similarly, f is concave if and only if ∇2f(x) � 0 for all x ∈ domf . Strict
convexity can be partially expressed by the second order condition. If ∇2f(x) � 0
for all x ∈ domf , then f is strictly convex. The converse, however, is not true: the
function f(x) = x4 is strictly convex but has zero second derivative at x = 0.

2.1.3 Jensen’s inequality

Inequality (2.1) is sometimes called Jensen’s inequality. It can be easily extended
to convex combinations of more than two points: for a convex function f , k points
x1, . . . , xk ∈ domf , and θ1, . . . , θk ≥ 0 with θ1 + · · ·+ θk = 1, we have

f(θ1x1 + · · ·+ θkxk) ≤ θ1f(x1) + · · ·+ θkf(xk).

Moreover, the inequality extends to infinite sums, integrals, and expected values.
For instance, given a convex function f , for p(x) ≥ 0 on S ⊂ domf with

∫
S p(x) dx =

1, we have

f

(∫
S
p(x)x dx

)
≤
∫
S
f(x)p(x) dx

provided that the above integrals exist.

This idea generalizes naturally to any probability measure with support in domf .
Given a convex function f , if x is a random variable such that x ∈ domf with
probability one, then we have

f(Ex) ≤ Ef(x),

provided that the above expectations exist.

All of these inequalities are called Jensen’s inequality today and are widely used
in many domains,. This fact reflects the importance of convex functions.

2.1.4 Strong convexity

Strong convexity is a condition stronger than the convexity alone and hence entails
better results in convex optimization. We say that a twice differentiable function f
is strongly convex on its domain if there exists an m > 0 such that

∇2f(x) � mI (2.4)
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for all x ∈ domf , where I is the identity matrix. (For matrices A and B, we write
A � B if A−B is positive semidefinite.)

Strong convexity can also be alternatively expressed in the form of the first order
condition (Boyd and Vandenberghe 2004, Section 5.1.2) as follows.

Proposition 2.1.3. A m-strongly convex function f satisfies

f(y) ≥ f(x) +∇f(x)T (y − x) + m
2 ‖y − x‖

2 (2.5)

for all x and y in domf .

It is worth noting that (2.5) does not require that the Hessian of f exist. There-
fore, some people use this inequality instead as the definition of strong convexity.
Furthermore, it gives the geometric interpretation of strong convexity. As a special
case, when m = 0, we recover the first order condition (2.2). If m > 0, the inequality
(2.5) is tighter than (2.2).

2.1.5 Lipschitz continuity

Besides the convexity, another important concept in optimization literature is Lip-
schitz continuity. It describes the smoothness of a function. For a subset Q ⊂ Rn,
a function f is L-Lipschitz continuous on Q (with regard to Euclidean norm ‖·‖) if
there exists a constant L such that

‖f(x)− f(y)‖ ≤ L ‖x− y‖ (2.6)

for all x, y ∈ Q.

With this concept, we shall introduce several classes of functions. We denote by
Cp,kL (Q) the class of functions with the following properties.

• Any f ∈ Cp,kL (Q) is p times continuously differentiable on Q.

• Its kth derivative is Lipschitz continuous on Q with the constant L:∥∥∥f (k)(x)− f (k)(y)
∥∥∥ ≤ L ‖x− y‖ (2.7)

for all x, y ∈ Q.

Obviously, we always have p ≥ k, and we have Cq,kL (Q) ⊂ Cp,kL (Q) for any constant
q ≥ p. In addition, we denote by Cp(Q) the class of functions with p times continuous
derivative on Q.

One of the most important classes in the optimization community is C1,1
L (Q).

However, it is technically painful to verify via (2.7) whether a function belongs to
this class. Therefore, researchers work with its subset C2,1

L (Q) instead since it is
easier to verify whether a function belongs to this subset by using the following
proposition (Nesterov 2013, Lemma 1.2.2).
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Proposition 2.1.4. Let ‖·‖sp be the spectral norm. A function f ∈ C2(Rn) belongs
to C2,1

L (Rn) if and only if ∥∥f ′′(x)
∥∥
sp ≤ L, ∀x ∈ Rn. (2.8)

Remark. The above proposition requires f to be twice continuously differentiable.
Actually, a similar result holds for functions with absolutely continuous1 derivatives.
Let us consider, say, the one-dimensional case and regard the function g below as the
derivative of f . An absolutely continuous function is differentiable almost everywhere
(cf. Rademacher’s theorem in Federer 2014, Theorem 3.1.6; and in Heinonen 2005,
Theorem 3.1). If an absolutely continuous function g is further Lipschitz continuous
with the constant L, then its derivative g′ is essentially bounded2 in magnitude by
the Lipschitz constant L. Conversely, if g is absolutely continuous and satisfies
|g′(x)| ≤ L for almost all x in the domain, then g is Lipschitz continuous with
Lipschitz constant at most L (Gariepy and Ziemer 1995).

The following statement is important, for it gives the geometric interpretation of
functions from C1,1

L (Rn) (Nesterov 2013, Lemma 1.2.3).

Proposition 2.1.5. Let f ∈ C1,1
L (Rn). Then, for any x, y from Rn, we have∣∣f(y)− f(x)−∇f(x)T (y − x)

∣∣ ≤ L
2 ‖y − x‖

2 . (2.9)

The inequality (2.9) gives exactly the opposite direction of the inequality of (2.5).
By combining these two, we can prove many important results in convex optimization
as are shown in the next section.

2.1.6 Lipschitz continuity wrt. an arbitrary norm

This subsection discusses Lipschitz continuity with regard to an arbitrary norm (in-
stead of the Euclidean norm). To simplify the notation, only in this section, I denote
‖·‖ as an arbitrary norm in this subsection, instead of the Euclidean norm.

Before the main result, I have to introduce the concept of dual norm. Let ‖·‖
be an arbitrary norm on a Hilbert space. Its dual norm ‖·‖∗ (on the same space) is
defined by

‖u‖∗ := sup{〈u, x〉 | ‖x‖ ≤ 1}.

For example, the dual norm of ‖·‖p is ‖·‖q, where
1
p + 1

q = 1 and p, q ≥ 1. Given
a matrix X ∈ Rm×n, its spectral norm is defined by

‖X‖sp = max
i∈{1,...,m∧n}

σi(X),

1Let J be an interval in the real line R. A function f : J → R is absolutely continuous on J
if for every positive number ε, there is a positive number δ such that whenever a finite sequence
of pairwise disjoint sub-interval (xk, yk) of J with xk, yk ∈ J satisfies

∑
k(yk − xk) < δ then∑

k |f(yk)− f(xk)| < ε.
2(X,Σ, µ) is a measure space and assume that the function f is measurable. A number a is

called an essential upper bound of f if the measurable set f−1(a,∞) is a set of measure zero, i.e.,
if f(x) ≤ a for almost all x in X.
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where m ∧ n means the minimum of m and n, and its trace norm (a.k.a. nuclear
norm) is defined by

‖X‖tr =

m∧n∑
i=1

σi(X),

where σi(X) is the ith largest singular value of matrix X. The trace norm and the
spectral norm are mutually dual norm of each other (Fazel et al. 2001).

The following definition generalizes the Lipschitz continuity with regard to the
Euclidean norm. It will be used as a condition in the next chapter.

Definition 2.1.1. A function f : Rn → R is called L-Lipschitz continuous with
regard to an arbitrary norm ‖·‖ if there exists a constant L such that

|f(x)− f(y)| ≤ L ‖x− y‖

for all x, y ∈ Rn.

The following theorem gives an equivalent formulation of the above definition
when the function in question is continuously differentiable. It plays an important
role in the demonstration of the sublinear convergence rate for trace norm minimiza-
tion.

Theorem 2.1.6. A continuously differentiable function f : Rn → R is L-Lipschitz
continuous with regard to an arbitrary norm ‖·‖ if and only if the dual norm ‖·‖∗ of
its gradient is inferior to L:

‖∇f(x)‖∗ ≤ L

Proof. The proof is a direct adaption of the one for Lemma 1.2.2 in Nesterov (2013).
The “if” part. For any x, y ∈ Rn we have

f(y) = f(x) +

∫ 1

0
∇f(x+ τ(y − x))T (y − x) dτ

= f(x) +

(∫ 1

0
∇f(x+ τ(y − x)) dτ

)T
(y − x).

The first integral in the above equation is a line integral of a vector field. Since the
vector field is the gradient of a scalar field, the integral is independent to the path
and the fundamental theorem of calculus3 holds.

With the upper bound of the dual norm of the gradient, we have

|f(x)− f(y)| =

∣∣∣∣∣
(∫ 1

0
∇f(x+ τ(y − x)) dτ

)T
(y − x)

∣∣∣∣∣
≤
∥∥∥∥∫ 1

0
∇f(x+ τ(y − x)) dτ

∥∥∥∥
∗
‖y − x‖

≤
∫ 1

0
‖∇f(x+ τ(y − x))‖∗ dτ ‖y − x‖

≤ L ‖y − x‖ .
3The fundamental theorem of calculus along curves states that if f(z) has a continuous indefinite

integral F (z) in a region R containing a parameterized curve γ : z = z(t) for α ≤ t ≤ β, then∫
γ
f(z) dz = F (z(β))− F (z(α)).
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The first inequality is straightforward from the definition of the dual norm and can
be considered as an extension of Cauchy-Schwarz inequality.

The “only if” part. For any x, s ∈ Rn and α > 0, we have∣∣∣∣∣
(∫ α

0
∇f(x+ τs) dτ

)T
s

∣∣∣∣∣ = |f(x+ αs)− f(x)| ≤ αL ‖s‖ .

Dividing this inequality by α and taking the limit as α ↓ 0, by the continuity of the
gradient, we get what we want.

Remark. The continuous differentiability is not necessary. In fact, it holds for all ab-
solutely continuous functions with the modification that the dual norm of its gradient
is essentially bounded by L. To prove this, we can use the Lebesgue differentiation
theorem (Lebesgue 1910) at the last step of the “only if” part.

Remark. This result can be extended to vector-valued function. In this case, the
absolute value in the definition of Lipschitz continuity should be replaced by the
same norm in question, and the dual norm in the theorem should be replaced by the
operator norm. With this extension, we can get analogous results for higher-order
derivatives.

The corollary below is a special case of Theorem 2.1.6 and is the exact form I
will use in the next chapter.

Corollary 2.1.7. A continuous differentiable matrix function f : Rm×n → R is L-
Lipschitz continuous with regard to the trace norm ‖·‖tr if and only if the spectral
norm ‖·‖sp of its gradient is inferior to L.

The following theorem is analogous to Proposition 2.1.5. It extends the result to
the Lipschitz continuity. It will be used to upper bound the global curvature, defined
in the next chapter, of a function.

Theorem 2.1.8. If ∇f is L-Lipschitz continuous with respect to some arbitrary
norm ‖·‖ in dual pairing

‖∇f(x)−∇f(y)‖∗ ≤ L ‖x− y‖ , (2.10)

then ∣∣f(y)− f(x)−
〈
f ′(x), y − x

〉∣∣ ≤ L
2 ‖y − x‖

2 . (2.11)

In particular, since Euclidean norm’s dual norm is itself, Proposition 2.1.5 is a
special case of this theorem.

Proof. The proof is a direct adaption of the one for Lemma 1.2.3 in Nesterov (2013).

For any x, y in the domain we have

f(y) = f(x) +

∫ 1

0

〈
f ′(x+ τ(y − x)), y − x

〉
dτ

= f(x) +
〈
f ′(x), y − x

〉
+

∫ 1

0

〈
f ′(x+ τ(y − x))− f ′(x), y − x

〉
dτ.
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Therefore ∣∣f(y)− f(x)−
〈
f ′(x), y − x

〉∣∣
=

∣∣∣∣∫ 1

0

〈
f ′(x+ τ(y − x))− f ′(x), y − x

〉
dτ

∣∣∣∣
≤
∫ 1

0

∣∣〈f ′(x+ τ(y − x))− f ′(x), y − x
〉∣∣dτ

≤
∫ 1

0

∥∥f ′(x+ τ(y − x))− f ′(x)
∥∥
∗ ‖y − x‖ dτ

≤
∫ 1

0
τL ‖y − x‖2 dτ = L

2 ‖y − x‖
2

2.2 Convex optimization

This section presents some important knowledge about the convex optimization (e.g.,
descent methods, line search). Also, it explains the reason of the equivalence of the
three formulations, described in the Introduction chapter, of trace norm minimiza-
tion. The material in this section is mainly from Boyd and Vandenberghe (2004).
The most important content in this section is the steepest descent. I will make link
between it and Frank-Wolfe algorithms in the next chapter.

2.2.1 Definition

There are two types of convex optimization problems – unconstrained and con-
strained. An unconstrained minimization problem is defined by

min
x
f(x)

for the convex objective function f : Rn → R. A constrained minimization problem
is defined by

min
x∈S

f(x),

where S is a convex set. This section starts with the unconstrained problems and
ends with the constrained problems.

We assume here that the unconstrained problem is solvable, i.e., there exists an
optimal point x∗ such that infx f(x) = f(x∗). We denote this minimal value as p∗

in this section.

Since f is differentiable and convex, a necessary and sufficient condition for a
point x∗ to be optimal is

∇f(x∗) = 0

(Boyd and Vandenberghe 2004, Section 4.2.3). Except for only a few special cases,
where we can solve this equation analytically, we usually resort to an iterative algo-
rithm, which finds a sequence of points x(0), x(1), . . . ∈ domf with f(x(k)) → p∗ as
k →∞.
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2.2.2 Useful inequalities

This subsection presents some useful inequalities without proving them. They are
results directly derived from (2.5) and (2.9) (Boyd and Vandenberghe 2004, Sec-
tion 9.1.2).

If the function f is strongly convex with a constant m > 0 (or the eigenvalues of
its Hessian are lower bounded by m), we have

m
2 ‖x

∗ − x‖22 ≤ f(x)− p∗ ≤ 1
2m ‖∇f(x)‖22 . (2.12)

If the gradient ∇f is M -Lipschitz continuous with regard to the Euclidean norm (or
the eigenvalues of the Hessian are upper bounded by M), we have

M
2 ‖x

∗ − x‖22 ≥ f(x)− p∗ ≥ 1
2M ‖∇f(x)‖22 . (2.13)

This M -Lipschitz condition is also known as the M -smoothness. The above inequal-
ities show the relation between three important quantities in optimization – the
gradient, the primal gap (i.e., f(x)− p∗), and the distance to the optimal point.

For a m-strongly convex, M -smooth function f , we define its condition number
κ := m

M . This quantity characterizes the optimizing difficulty of the function f in
using first-order algorithms.

2.2.3 Descent methods

A first-order algorithm is an algorithm using only the gradient information of the
objective function, such as the gradient descent. A second-order algorithm is an
algorithm using also the Hessian information of the objective function, such as the
Newton method.

We are going to use iterative algorithms to solve the problem. They produce a
sequence x(k), k = 1, 2, . . . by the iterative equation

x(k+1) = x(k) + t(k)∆x(k),

where t(k) > 0 (except when x(k) is optimal) is called the step size at Iteration k.

We focus on descent methods, which means that

f(x(k+1)) < f(x(k)),

except when x(k) is optimal. Inequality (2.2) implies that this is equivalent to making
the search direction ∆x(k) satisfy

∇f(x(k))T∆x(k) < 0,

i.e., it must make an acute angle with the negative gradient. We name such a
direction a descent direction.

Algorithm 1 gives the outline of a general descent method, which contains three
steps – determining a descent direction ∆x, selecting a step size t, and updating. The
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Algorithm 1. General descent method
Input: a convex function f , an initial point x.
repeat

Determine a descent direction ∆x.
Line search. Choose a step size t > 0.
Update. x← x+ t∆x.

until stopping criterion is satisfied.

second step is called the line search since the selection of the step size t determines
where at the ray {x+ t∆x|t ∈ R+} the next iterate will be.

When people talk about the line search, they usually mean the exact line search.
That is, t is chosen to minimize f along the ray {x+ t∆x|t ≥ 0}:

t = arg min
s≥0

f(x+ s∆x).

This optimization is easier to solve than the original one for its single dimensionality.
In some special cases, we have even analytical solutions. Boyd and Vandenberghe
(2004, Section 9.2) also describe a backtracking line search, which is an inexact line
search and can be used when the exact line search is computationally expensive.

2.2.4 Gradient descent

The most popular descent method may be the gradient descent, which uses the neg-
ative gradient directly as the descent direction and enjoys the following convergence
rate (Boyd and Vandenberghe 2004, (9.18)).

Proposition 2.2.1. For an m-strongly convex, M -Lipschitz continuous function f ,
by using the gradient descent with exact line search, we have

f(x(k))− p∗ ≤ ck(f(x(0))− p∗), (2.14)

where c = 1−m/M < 1.

We say that an algorithm converges linearly, if there exists a constant c ∈ (0, 1)
such that

lim
k→∞

∣∣x(k+1) − p∗
∣∣∣∣x(k) − p∗
∣∣ = c.

This number c is called rate of convergence. If c = 1, then we call it sublinear
convergence. Obviously, the proposition above is an example of linear convergence.
We shall see an example of sublinear convergence concerning Frank-Wolfe in the next
chapter.

2.2.5 Steepest descent

Besides the negative gradient, there are many other choices (e.g., Newton method)
for the descent direction. Here, we are going to present a method named steepest
descent.
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Let ‖·‖ be a norm on Rn. We define a steepest descent direction with regard to
the norm ‖·‖ by

∆xsd = arg min
v
{∇f(x)T v| ‖v‖ = 1}.

This direction points toward the point on the unit ball which gives the largest de-
crease in the linear approximation of f .

We can use various norms for this purpose and, with different choices, we get dif-
ferent steepest descent directions. In particular, if we choose ‖·‖2, then the direction
we get is exactly the negative gradient, and it degenerates to gradient descent. Steep-
est descent covers gradient descent as a special instance. Regarding the convergence
rate, steepest descent with line search converges linearly (Boyd and Vandenberghe
2004, Section 9.4.3).

2.2.6 Constrained optimization

This subsection briefly discusses about the constrained optimization. A general con-
strained optimization can take the following form

min
x∈C

f(x),

where C is a convex set and f is a convex function. In most cases, the convex set C
can be explicitly specified like

min
x

f(x)

s.t. gi(x) ≤ 0 ∀i ∈ [m]

hj(x) = 0 ∀j ∈ [n],

where all gi and hj are convex functions. The first group of constraints is called
inequality constraints, while the second group equality constraints.

For equality constraints, we can use themethod of Lagrange multipliers (Lagrange
1811). For inequality constraints, there exist many approaches. The most popular
may be Dantzig’s simplex method for linear programming (LP). It has an exponential
time complexity in the worst case but is efficient for most of the time.

Interior-point methods are another important approach. It uses a barrier function
to encode the constraint set into the objective function. When applied to LP, in
contrast to the simplex method, which moves among the vertices of the simplex, the
interior-point method moves inside the simplex, hence the name. The interior point
method achieves polynomial time complexity.

The interior-point method is a second-order algorithm: it uses Newton direction
for its descent direction. There exist also first-order methods, among which the
projected gradient descent. This method alternates between a gradient descent and
projection step

x← πC(x−∇f(x)),

where πC is a projection operator that projects a point to the constraint set C. The
most used projection may be

πC(z) = arg min
x∈C

1
2‖x− z‖

2
2,
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which finds inside C the closest point to z. Besides the `2-norm, other norms can
also be used to define the projection operator. It is worth mention that this pro-
jection step is itself a constrained quadratic optimization, which can be potentially
expensive.

Proximal gradient descent is another example. With the Lagrange function, we
can reformulate the following optimization problem

min
x

f(x)

s.t. g(x) ≤ t

as
min
x

f(x) + λg(x),

where g can be potentially non-differentiable. Here λ depends on t and is cho-
sen accordingly to make these two optimization problems have the same optimum.
Although this is an indirect way to solve constrained optimization problem by trans-
forming it to an unconstrained problem, it works well when the constraint is “soft”,
such as in Lasso and trace norm minimization, where we often find ourselves solving
the problem with various values of t (or equivalently λ), which further gives birth to
various regularization path algorithms. To cope with the non-differentiability of g,
people use the proximal operator

proxλg(x) := arg min
u

(
g(u) + 1

2λ ‖u− x‖
2
2

)
.

The whole algorithm can be concisely expressed as

x← proxλg(x− λ∇f(x)).

Last but not least, Frank-Wolfe algorithm (Frank and Wolfe 1956) recently be-
came an important first-order algorithm for constrained optimization problems whose
constraint set is bounded. By solving a linear subproblem on the constraint set, it
avoids the potentially expensive computation cost of evaluating the projection oper-
ator or proximal operator.

2.3 Trace norm minimization

This section gives some examples of trace norm minimization and describes the main
methods to solve it.

2.3.1 Lasso vs. trace norm minimization

One of the most popular research topics in recent years is sparse methods. This
includes Lasso (Tibshirani 1996) and trace norm minimization. Lasso considers op-
timization problems of the following form

min
β∈Rd

f(β) + λ ‖β‖1 , (2.15)
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while trace norm minimization considers

min
X∈Rn×d

f(X) + λ ‖X‖tr , (2.16)

where f is a matrix function.

These problems have a common property. They are both the (weighted) sum of
a smooth convex loss function f and a non-smooth norm penalty (e.g., ‖·‖1 , ‖·‖tr).
It is widely known that (2.15) yields a sparse solution (i.e., the optimal point has
few non-zero entries), and that (2.16) yields a low-rank solution (i.e., the optimal
point is a low-rank matrix).

Grave et al. (2011) describe a trace Lasso problem, which solves

min
β∈Rd

‖Xβ − Y ‖22 + λ ‖Xdiag(β)‖tr .

It also uses the trace norm except that its penalty is imposed on Xdiag(β). In this
dissertation, we do not consider it as trace norm minimization.

2.3.2 Low-rank matrix completion

This thesis focuses on the trace norm minimization. Varying the objective function
f , we get various specific problems. The first is the low-rank matrix completion
problem

min
X∈Rn×d

‖PΩ(X − Y )‖2F + λ ‖X‖tr , (2.17)

where Ω ⊂ [n] × [d] is the support4 of Y , PΩ is a projection operator that puts the
coefficients on the complimentary set Ωc to zero, and ‖·‖F is Frobenius norm defined
by

‖A‖F :=

√∑
i,j

a2
ij .

This optimization problem is commonly seen in the recommender system litera-
ture. Indeed, let Y be the user rating matrix, whose rows represent users and whose
columns represent items. Since users do not have the time and the energy to try all
items, this rating matrix is extremely sparse. Ω represents the support where the
ratings exist. One wants to find a matrix X close to Y not only on the support Ω
but also on Ωc. We can prove that, under certain conditions on Y , the solution of
(2.17) is exactly Y .

Indeed, along the line of work (Candès and Recht 2012, Candès and Tao 2010,
Recht 2011, Gross et al. 2010, Gross 2011, Chen et al. 2014), researchers have proven
that, for a d × d matrix Y with rank r, when the observation is exact (i.e., with-
out noise), under certain conditions, one can recover the exact Y with as few as
O(dr log2 d) observations. When r � d (e.g., r is a small constant), we can recover
the whole matrix Y with the observation size growing only linearly with the size of

4The set of the non-zero coefficients.
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Y . They further show that trace norm minimization has the optimal sample com-
plexity in recovering a low-rank matrix. Candès and Plan (2010) prove that, when
the observation is corrupted (i.e., with noise), with the same condition and sample
size as above, trace norm minimization can recover the ground truth matrix but with
an error proportional to the severity of the noise.

2.3.3 Trace regression

Another example is trace regression (Koltchinskii et al. 2011, Bach 2008). Assume
that we observe n independent random pairs (Xi, Yi), i = 1, · · · , n, where Xi are
random matrices with dimension m1 × m2, and Yi are generated in the following
form

Yi = tr(XT
i W ) + ξi, i = 1, · · · , n, (2.18)

where W ∈ Rm1×m2 is an unknown matrix, tr(A) is the trace of matrix A, and the
noise variables ξi’s are independent and have zero means.

The matrices Xi’s are called the design of the regression, which can be either
fixed or random. If they are i.i.d. uniformly distributed on the set

χ = {ej(m1)eTk (m2), 1 ≤ j ≤ m1, 1 ≤ k ≤ m2},

where ek(m) are the canonical basis vector in Rm, (2.18) becomes the matrix com-
pletion problem mentioned in the last subsection. In other words, matrix completion
is a special instance of trace regression.

When the design is nonrandom, people estimate W with the following optimiza-
tion formulation

min
W

1
n

n∑
i=1

(Yi − tr(XT
i W ))2 + λ ‖W‖tr ,

which is also called matrix Lasso. Matrix Lasso is another example of trace norm
minimization.

2.3.4 Solvers

If the matrix size is not too large, the associated optimization can be solved by
semidefinite programming (SDP) for some special cases. For example, we use

min
X∈Rn×d

‖X‖tr

s.t. Xij = Yij ∀(i, j) ∈ Ω

for an exact recovery of the matrix Y . It can be considered as a special case of (2.17).
Fazel et al. (2001, Section 3) show that it can be reformulated as

min
X,R,S

tr(R) + tr(S)

s.t.
[
R X
XT S

]
� 0

Xij = Yij ∀(i, j) ∈ Ω.
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The last equality constraint can be easily expressed as a group of linear matrix
inequalities and hence make it a SDP problem.

SDP problems can be efficiently solved by the interior-point method, and the
latter is provided by various numerical packages such as SDPT3 (Toh et al. 1999)
and SeDeMi (Sturm 1999). However, the second-order nature of the interior-point
method (i.e., requires the computation of the Hessian matrix) makes it not amenable
to matrices with large size. In addition, it is not evident how SDP can solve the more
general (2.17).

For this purpose, Cai et al. (2010) propose a first-order singular value thresholding
algorithm. It alternates between a shrinkage step (Ma et al. 2009, Definition 4) and
a step similar to the gradient descent:{

X ← shrink(Z, τ)

Z ← Z − δ∇f(X),

where the shrinkage operator makes the underlying matrix Z’s all singular values
extracted by τ (it equals 0 if the singular value is already inferior to τ). This method
can handle matrices with size 1000× 1000 or sparse matrices of high dimension but
with a very low rank.

At the same time period, Ma et al. (2009) propose the fixed point continuation
with approximate SVD algorithm. It has a similar form{

X ← shrink(Z, τ)

Z ← X − δ∇f(X)

with the exception that it uses X instead of Z as the starting point in the descent
step.

This shrinkage idea is closely related to the proximal method. Indeed, it is exactly
the proximal operator

proxτ (Z) := arg min
W

{
1
2 ‖W − Z‖

2
F + τ ‖W‖tr

}
(Cai et al. 2010, Theorem 2.1).

Based on the above work, Ji and Ye (2009) and Toh and Yun (2010) indepen-
dantly propose an accelerated version. It is well-known in the optimization commu-
nity that, when the objective function is smooth, the first-order algorithm can be
accelerated to achieve the optimal convergence rate of O( 1

k2
), where k is the number

of iterations (Nesterov 2013). This method is called Nesterov acceleration. Nesterov
and others (2007) and Beck and Teboulle (2009) discover that Lasso can be accel-
erated even though `1-norm is not smooth. Similarly, Ji and Ye (2009) and Toh
and Yun (2010) give the Nesterov acceleration for the trace norm minimization even
though the trace norm is not smooth either.

Because of the use of singular value decomposition (SVD), which incurs cubic
computation complexity, the above algorithms are not amenable to general matrices
with dimension higer than 1000. Hazan (2008), Jaggi et al. (2010) and the more
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recent Garber (2016a) propose to use Frank-Wolfe algorithm to solve trace norm
minimization. It is a first-order algorithm and hence does not need SVD. Its most
expensive operation is the matrix-vector multiplication, which has square complex-
ity as opposed to the cubic complexity of SVD. Therefore, this algorithm naturally
applies in higher dimension. In addition, Giesen et al. (2012) provide for it a reg-
ularization path algorithm. With the same flavor, Dudik et al. (2012) apply the
same algorithms to the regularization formulation instead of constraint formulation.
Lastly, see Mu et al. (2016) for a combined use of both the proximal method and the
Frank-Wolfe method.

There exist also numerous solvers that transform the trace norm minimization
problem into the matrix factorization problem via the variational characterization
of trace norm. Although this kind of solvers is amenable to large-scale problems
and achieves good accuracy, their theoretical convergence has long been under doubt
because of the non-convexity of its objective function. Only very recently, it is proved
for a few specific objectives (e.g., phase retrieval/synchronization, orthogonal tensor
decomposition, dictionary learning, matrix sensing, matrix completion) that every
local minimum must also be global (Ge et al. 2015, Sun et al. 2015, Bandeira et al.
2016, Ge et al. 2016, Bhojanapalli et al. 2016), but it remains as an open question
for the general problem.

Another approach consists in searching for a low-rank matrix solution directly at
the Riemannian manifold (Meyer et al. 2011, Vandereycken 2013) without using the
convex relaxation. Lastly, Pong et al. (2010) derive a reduced dual formulation for
this problem and solves it with gradient projection.

2.4 Multi-task learning

This section describes multi-task learning (MTL) (Caruana 1998), which will be the
problem in my experiment session (namely multi-task least square and multinomial
logistic regression). For a comprehensive exposition, I refer to the SDM 2012 tutorial
(Zhou et al. 2012). They have also developed a package MALSAR, which contains
various multi-task learning algorithms (Zhou et al. 2011a).

In contrast to the majority of multi-task learning literature, this thesis gives the
introduction from an econometrician’s point of view. For those who are not familiar
with the econometrics, I recommend to skip the first subsection and to use Zhou
et al. (2012) as an alternative.

2.4.1 Motivation and approaches

Multi-task learning is different from single task learning or independent task learning.
While the latter learn one task at a time, the former learns all tasks at the same time
– hence the name. If the various tasks are uncorrelated, there will be no interest to
learn them all together. Multi-task learning is aimed at capturing the relatedness
among tasks in order to improve the generalization capacity of every single task.
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This approach is especially useful when there are insufficient samples for each
single task. Although we can use sparse methods, the deficit of data is still embar-
rassing, for the convergence rate in high dimensional statistics is not always as fast
as in low-dimensional statistics. Multi-task learning brings out another idea. Since
there are a lot of interrelated databases5, by linking them all together, we have a
chance to get better results.

This idea is not restricted to the machine learning community. Statisticians,
especially biometricians and econometricians, have used panel data or longitudinal
data long ago (Laird and Ware 1982, Liang and Zeger 1986, Zeger and Liang 1986,
Singer and Willett 2003, Diggle 2002). They use the fixed effects model or the ran-
dom effects model to capture the variation caused by individuals and time. This is
equivalent to linking several databases of different time (resp. of different individu-
als). By using the multi-task terminology, we can define the prediction for a specific
time (resp. individual) as a task.

The above research domain is an excellent illustration of one of the two common
approaches in multi-task learning – shared parameters. It uses the same set of
parameters for each database, with the addition of one extra parameter for each
single database. This technique greatly reduces the number of parameters and makes
the previously data deficit situation data sufficient.

Sometimes, these shared parameters can appear as latent parameters. All databases
share a common set of (latent) parameters, which transform the raw features to la-
tent features. The number of latent features is sufficiently small, so that there will
not be many (unshared) task-specific parameters mapping the latent features to the
prediction. This is especially true for the neural network if we assume that each
neuron at the output layer corresponds to a task (Caruana 1998). Other examples
include shared parameter Gaussian process (Lawrence and Platt 2004) and common
latent representation in nonparametric Bayesian models (Zhu et al. 2011).

The second approach is to add constraints on the parameters. Each task still
has its own parameters, but the parameters of each task must be interrelated. The
interrelation is imposed by adding a regularization term to the empirical risk. This
approach is typically machine learning, and I have not found any equivalence in
econometrics.

Evgeniou and Pontil (2004) assume that all tasks are related in that the models
of all tasks come from a particular distribution. They hence suggest to penalize the
deviation of each task from the mean

min
W

Loss(W ) + λ

T∑
t=1

∥∥∥∥∥wt − 1
T

T∑
s=1

ws

∥∥∥∥∥ ,

where each wt is a column of W and corresponds to a task.

5See the third property of Big Data era in the preface.
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Another way to capture the task relatedness is to constrain all parameters to share
a common set of features. Zhou et al. (2011b) propose to use `1,2-norm regularization

min
W

Loss(W ) + λ

p∑
i=1

‖Wi‖2 ,

where Wi is the ith row of the matrix W . Each Wi represents the weight for the
ith feature across the tasks, and its `2-norm should not be too large. We sum these
norms as the penalty, so that the solution will have few features. In other words,
this approach imposes group sparsity – selecting few (common) features.

Besides the above regularization, people also use trace norm minimization (2.16).
For example, Argyriou et al. (2008) use the trace norm as a proxy of `1,2 norm, since
group sparsity implies low-rank. In addition, low-rank matrices are an implicit way
to impose the structure of shared latent parameters. Indeed, a low-rank matrix can
be decomposed into two smaller-sized matrices. One can be the task-shared map
from the raw features to the latent features, while the other can be the task-specific
map from the latent features to the task prediction. More concretely, let us consider
the prediction of the effect of a single drug on patients as one task. Since the drugs
all have similar components, the effect of each drug can be see as the inner product
between the effect of the (few) components and the percentage of the components in
this drug. Therefore, the parameter matrix is a low-rank matrix, and the trace norm
minimization naturally applies. Papers using trace norm minimization for multi-task
learning include Ji and Ye (2009) and Pong et al. (2010).

2.4.2 Taxonomy

After a discussion on the approaches in last subsection, this subsection discusses the
taxonomy of multi-task learning. According to the different nature of the tasks, it
can be categorized as multi-class learning, multi-label learning, and general multi-task
learning (Zhou et al. 2011a).

Multi-class learning consists in classifying several classes simultaneously. Given
several or even many classes, we have to answer whether a sample belongs to a given
class. Instead of replying yes or no for each class, which is the approach of multiple
binary classification, multi-class learning replies directly which class the sample is
from.

In multi-label learning, each instance can have multiple labels (e.g., a man can
simultaneously be handsome, rich and intelligent). If we consider the prediction of
whether an instance has a specific label as one task, then the prediction of all labels
this instance has is multi-label learning. If each instance is allowed to have only one
label, it becomes multi-class learning.

In the above examples, the prediction is binary – belonging to a class or not
or having a label or not. More generally, we have regression problems, where the
prediction is a real number. Considering all these types of tasks, we call them all
multi-task learning. In summary, multi-class learning is a special type of multi-label
learning, and multi-label learning is a special type of multi-task learning.
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2.4.3 Multi-task least square

In this and the next subsection, I will describe two instances of multi-task learning
that I will use for my experiments. The first is multi-task least square regression
defined by

min
W

1
2 ‖XW − Y ‖

2
F

s.t. ‖W‖tr ≤ θ,
(2.19)

where Xn×d is the design matrix, a.k.a. the features, Yn×m is the response matrix,
andWd×m is the parameter matrix. This problem is considered in Pong et al. (2010)
and Toh and Yun (2010).

It can be considered as multiple least square regressions. Indeed, each row of X is
a sample/record, each column of W is the weight for a single task, and each column
of Y is the output of this task. The optimization (2.19) indicates the existence of
m databases (X, yj), j = 1, . . . ,m, where yj is the jth column of the matrix Y . The
prediction of each yj corresponds to a single task, which is equivalent to infer each
column wj ofW . The objective function is the sum of all tasks’ empirical error, with
equal importance on each task. In order to impose the relatedness of all tasks, we
use the trace norm constraint. That is, all wj ’s should be related so that they form
a low-rank matrix.

2.4.4 Multinomial logistic regression

The response is a real value in the previous subsection, whereas it is binary in this
subsection. In particular, we consider multi-class learning problems. Here, we discuss
a specific model – multinomial logistic regression – which is the generalization of the
traditional 2-class logistic regression model.

Multinomial logistic regression has several interpretations, among which I present,
in this thesis, the likelihood one. This interpretation relies on the assumption of in-
dependence of irrelevant alternatives (IIA), which states that the odds of preferring
one class over another do not depend on the presence or the absence of other “ir-
relevant” alternatives. This assumption allows the choice among m alternatives to
be modeled as m − 1 independent binary choices: one alternative is chosen as the
“pivot” (or reference), and the other m− 1 are compared against it, one at a time.

Suppose that Xn×d is the feature matrix, and that there are m classes noted by
1, 2, . . .m, with Cn×1 indicating the class of each sample. Using the mth class as the
pivot class, we model the likelihood ratio of all classes against the pivot one:

ln
Pr(Ci = j)

Pr(Ci = m)
= Xiwj , ∀i = 1, . . . , n, j = 1, . . . ,m− 1,

where Xi is the ith row of X. The above probability should be understood as
conditional probability (conditioned on X). Since the likelihood ratio is in (0,+∞),
the left-hand side takes value from R, which means that the above formula are well-
defined. Besides, the likelihood of each class is separately defined, which is coherent
with the IIA assumption.
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By rearranging the terms, we get

Pr(Ci = j) = Pr(Ci = m)eXiwj , ∀i = 1, . . . , n, j = 1, . . . ,m− 1.

Since the probability measure sums to 1, we get

Pr(Ci = m) =
1

1 +
∑m−1

j=1 eXiwj
,

which gives the other probabilities

Pr(Ci = j) =
eXiwj

1 +
∑m−1

j=1 eXiwj
, ∀i = 1, . . . , n, j = 1, . . . ,m− 1.

Furthermore, we can suppose that the parameter of the pivot class wm = 0, which
unifies the formula for all classes.

The negative log-likelihood takes this form

− ln

n∏
i=1

Pr(Ci) =

n∑
i=1

−XiwCi + ln

m∑
j=1

eXiwj

 . (2.20)

In some literature, it is also reformulated as

− ln
n∏
i=1

Pr(Ci) =
n∑
i=1

ln
m∑
j=1

eXiwj−XiwCi

=
n∑
i=1

ln

1 +
m∑

j 6=Ci

eXiwj−XiwCi

 .

(2.21)

Defining WC in such a way that the ith column of WC is equal to WCi , we can
reformulate (2.20) in a more concise matrix form

1T · ln(eXW · 1)− tr(XWC), (2.22)

where 1 is a vector whose coefficients are all 1, and the exponential and logarithmic
function are defined elementwisely.

For multinomial logistic regression, people usually add a regularization term such
as ‖W‖2F and solve it with generalized iterative scaling (Darroch and Ratcliff 1972) or
with iteratively reweighted least squares (Bishop 2006), by means of gradient-based
optimization algorithms such as L-BFGS (Malouf 2002), or by specialized coordinate
descent algorithms (Yu et al. 2011). In my thesis, however, I will use the trace norm
‖W‖tr as the constraint, as in Dudik et al. (2012) and Liu and Tsang (2017).

2.5 Distributed machine learning

This section describes distributed machine learning. Besides some general ideas such
as parallel and distributed computing, large-scale machine learning, and frameworks,
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Figure 2.1 – (a), (b): a distributed system. (c): a parallel system. Figure from
Wikimedia user: Miym.

it defines Bulk Synchronous Parallel and the star network, which are the premise of
my study.

This section contains some of my personal reflection, which makes it slightly less
rigorous. It is thus preferable to consider this section as a brief introduction into
this domain and brainstorming, instead of being taken as a formal research work or
an academic reference.

2.5.1 Parallel vs. distributed computing

Distributed machine learning uses distributing technologies to solve machine learn-
ing problems. It is often confused with another term, parallel computing, in that
distributed computing is often parallel. There is a significant overlap between these
two terms, and distributed computing indeed has a lot of “parallel” flavor.

However, many researchers including me use a narrow sense of parallel computing
to make it apart from distributed computing. We refer with parallel computing to the
scenario where all processors exchange states via a shared memory and by distributed
computing to the scenario where each processor has its own private memory (a.k.a.
distributed memory) and exchanges the states by passing messages.

This definition captures the logic layer of the problem instead of the underlying
concrete complex physical systems. A multi-core laptop using two cores and one
memory (with memory coherence) is parallel computing. Several computers using
distributed shared memory (DSM) is also parallel computing, even though this mem-
ory is split among several computers and may suffer from severe race conditions. A
group of computers, each managing its own memory and communicating by message
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passing, is distributed computing. A single computer using two GPUs (each with
its own memory) is also distributed computing. Furthermore, each core of the CPU
can have its own cache, which is also a type of distributed computing if two caches
need to pass messages to each other. Regardless of the actual physical computation
object, we can call them all nodes or workers algorithmically without distinction.

With this logic layer, we can develop algorithms (both parallel and distributed)
oblivious to the underlying physical infrastructure. Like all kinds of abstraction layers
in computer science, this simplifies the description and development of algorithms
and makes them applicable in various physical infrastructures. The performance
depends on the underlying infrastructures though. Furthermore, by an analysis of the
computation and communication/coordination complexity, we can have a rough idea
of the performance on various physical infrastructures before the algorithm has even
been implemented, which further eases the choice of the infrastructures. Conversely,
if our job needs us to work on a specific infrastructure (working constraint), it will
still be helpful to describe the algorithms on top of the logic layer, so that other
researchers can hence draw inspiration for their own problems.

2.5.2 Large-scale machine learning

The previous subsection explains the broad applicability of distributed machine
learning, whereas this subsection will focus on the use of clusters of commodity
machines for large-scale machine learning. The majority of the material comes from
Chih-Jen Lin’s talk, When and When Not to Use Distributed Machine Learning6,
in the 2nd International Winter School on Big Data as well as from my personal
reflection.

In traditional machine learning, where the bottleneck is the data, the scarcity of
data gives birth to various sophisticated algorithms for the fullest use. Nowadays, the
emergence of large volume of data, much more than can fit into an average memory,
makes the memory and the computational resources the bottleneck, which raises the
challenge of large-scale machine learning.

There are several approaches to this challenge. First of all, if the dataset is too
large to fit into an average memory, we can just buy a sufficiently large, say, 1TB
memory. It then becomes a traditional machine learning problem, with the possibility
of parallel computing to accelerate the computation. The second approach is out-
of-core learning, which refers to algorithms relying on the trick of the efficient write
and read of data stored in slow bulk memory such as hard drives. A typical DRAM
has an approximate transfer rate of 2-20GB/s, whereas a typical SSD has a rate of
50-200MB/s. The hard drive is therefore one to two orders of magnitude slower but
still one to two orders of magnitude faster than the 1-40MB/s of LAN data rate.
By smartly accessing from the disk only one subset of the data at a time, we can
further reduce the time used for data loading. GraphChi (Kyrola et al. 2012) is a
typical example of this approach. The third approach is distributed computing: if
one memory is not enough, then we use many memories. The remaining problem is

6https://www.csie.ntu.edu.tw/~cjlin/talks/bigdata-bilbao.pdf

https://www.csie.ntu.edu.tw/~cjlin/talks/bigdata-bilbao.pdf
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to design algorithms that do not incur significant communication cost among these
memories.

In the machine learning community, some believe that distributed machine learn-
ing is not necessary for large-scale machine learning, claiming that the memory is
becoming cheaper and cheaper and that there are few available datasets impossible
to fit into a sufficiently large memory. Disagreeing with them, I will argue, in the
remaining of this subsection, that distributed machine learning is still relevant and
will continue to be so.

On the one hand, there are problems where the data are naturally distributed.
Let us consider a multinational corporation owning data centers in several countries,
with each data center collecting data continuously for the training of the model at the
headquarter. Every week, the data centers do the data warehousing: extract, trans-
form, load (ETL) the data, and then send them to the headquarter. The headquarter
combines the new data with the old ones (dropping outdated data if necessary) and
then retrain the model. This workflow not only needs significant work and particular
coordination but also is doomed to result in offline algorithms. If we had used dis-
tributed machine learning, the ETL could have been done on the fly in a streaming
manner, and an online algorithm could have been used. With distributed learning,
a lot of workforces can be saved, and the model immediately and continuously ben-
efits from the new data, which enables the corporation to take immediate actions.
This advantage explains why streaming is one of the development focuses in Apache
SPARK 2.0. As a second example, let us consider wireless body area network for
medical care, where an immediate response to the health condition is critical. If
we collect the data to a data center and analyze it later, we may already miss the
timing, and the data collected has thus no longer any value. If we allow the various
sensors to communicate with each other and to do some primary analysis, they may
be able to detect some abnormalities and even to take measures.

On the other hand, distributed machine learning has several advantages compared
with parallel machine learning on a single supercomputer. Firstly, it loads the data
from the memory faster. If we have N machines, then the data transfer rate is N
times the one of a single machine, which gives us a significant speed up. There are
two reasons behind this speed up. The first reason is that the time to solve large-
scale machine learning problem is often determined by the data loading instead of
the model training. Given a dataset of l samples, the data loading time complexity
will be l × Cload, where Cload is a constant related to the transfer rate, and the
model training time complexity is lq × Crun, where Crun is a constant related to
the operation and q ≥ 1. Since in large-scale machine learning, we tend to use
algorithms scaling linearly with the sample size (i.e., q = 1), the dominating factor
will depend on the constants uniquely. If we run the model training algorithm only
once, the model training time is highly likely to be outweighed by the data loading
time. See Chih-Jen Lin’s talk, as mentioned at the beginning of this subsection, for
more explanation.

The second reason of the speed up is about data reloading. Usually, we run
the model training algorithm several times (e.g., with different hyperparameters),
which justifies the need to load the entire dataset into the memory. However, the
reality is often the contrary, and we have to occasionally reload the dataset, say,
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during the prototyping. It is worth noting that we do not load the data into the
memory directly but via some scientific software (e.g., Matlab, R, Python, Julia).
If the software in question crashes or, for whatever reasons, we have to restart the
software, the memory controlled by the software will all be released, in which case
we have to reload the dataset again. This is particularly true for the Julia language,
whose workflow requires building an execution environment gradually and does not
allow the “remove” of variables from the memory.7

If we intend to get the same transfer rate in a single machine as in the distributed
one, we will have to resort to some unusual architectures (e.g., multiple hard drives
and multibus), which require money, time, and expertise. Distributed machine learn-
ing provides, alternatively, a cheap software-level solution. By using distributed file
systems, we can easily scale up the transfer rate through widely available commodity
machines.

The second advantage of distributed machine learning over using a single high-
memory computer is less interference among multiple users. We all have the experi-
ence of sharing a supercomputer among the colleagues, and the supercomputer has
all the time several researchers running applications on it. Occasionally, because of
careless design (you can never be careful enough to avoid all caveats), some applica-
tion just eats up all the memory, which causes the failure of all applications on that
supercomputer. This failure can result in data/model loss and significant amounts of
time wasted. Alternatively, with a cluster of commodity machines, we can allocate
to each researcher the number of machines according to his memory requirement, so
that the accidents of his applications will not destroy other researchers’ work.

The above discussion also leads to the third advantage – fault tolerance. In a
cluster, the failure of one machine should not impede the entire work. When a
failure occurs, you only need to either restart the failed machine or transfer its work
to the other ones. This fault tolerance is particularly important in the industry,
where the program is supposed to work 24 hours a day and 7 days a week without
interruption, which is unlikely to achieve with a supercomputer.

So far, I have given several arguments to support the use of clusters of commodity
machines for large-scale machine learning, and more can be found in Peteiro-Barral
and Guijarro-Berdiñas (2013, Section 2.2). I did not say that the cluster of com-
modity machines is definitely the only choice in the future; I simply said that it is
still relevant in both laboratories and industries. If, in laboratories, the disadvantage
of supercomputers can be mitigated by good practices, in industries, the low-cost,
highly responsive, fault tolerant cluster is an excellent response to the large-scale
machine learning challenges.

I will conclude this subsection with an anecdote. During NIPS 2016 held in
Barcelona, I met a Belgian researcher, who was doing some research for a bank. The
bank wanted to do some machine learning on Apache SPARK, so they contacted this
researcher. They wanted him to prototype the algorithms on a small-scale cluster,

7In Julia, if we give another definition to an existing function, the latter will coexist with the
new one – for multiple dispatch – instead of being replaced. During the prototyping phase, we try
various constructions and discard the undesired ones either by restarting the software or by creating
a new namespace. Either way, we will have to reload the dataset, which, consequently, costs us
more time for the data loading than the model training.
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say 8 machines, so that they can later deploy directly these algorithms on a large-
scale cluster inside the bank. The moral of this story is that the academy should
still study efficient algorithms working on clusters of commodity machines simply
because of the industrial need.

2.5.3 Algorithm taxonomy

This subsection studies the taxonomy of the distributed machine learning algorithms.
The majority of the material comes from Xing et al. (2015b).

One approach towards distributed machine learning is to modify an existing non-
distributed sequential algorithm so that it can run on a distributed infrastructure.
In this case, the logic of the distributed algorithm is the same as its counterpart, and
we say that it is serializable. In other words, the algorithm will get the same results
as its counterpart, and its theoretical convergence is also guaranteed. The downside
of this approach is that it often incurs high communication cost, for its counterpart
supposes that it has easy access to all parts of the memory.

The other approach is to develop novel distributed algorithms, which may not
have obvious equivalent non-distributed counterparts. This approach takes the com-
munication cost into account from the very beginning of the algorithms design, and
we are thus more likely to get algorithms with low communication cost. However,
the theoretical convergence of the algorithm is not apparent, and we should make
extra effort to study it. One may question the possibility of two different algorithms
having the same result. To understand this, one may recall that machine learning
algorithms often have the aim to find a unique solution (e.g., a local or global op-
timum) in the space, and that this solution is often an attractor in a vector field.
Although the different algorithms may take different paths, they can still reach the
same destination, as the old proverb, “all roads lead to Rome”, claims.

Big data can have either large-scale data, or large-scale model (i.e., parameter), or
both. Similarly, there are two types of parallelisms in distributed machine learning –
data parallelism and model parallelism. The former partitions the data into multiple
nodes, with each node storing the whole model, while the latter partitions the model
into multiple nodes, with each node storing the entire dataset. These two parallelisms
are not mutually exclusive: one can apply both parallelisms simultaneously.

One central decision during the development of distributed machine learning
algorithms is the bridging model, which dictates the way to bridge computation
with inter-machine communication (Xing et al. 2015b). Programs following the Bulk
Synchronous Parallel (BSP) model (Figure 2.2) alternate a computation phase and a
communication phase, with the communication phase serving as a barrier separating
the successive computation phases. We then call each computation phase an epoch
as opposed to the term iteration commonly used in optimization.

The BSP model often entails a serializable algorithm and is the principal way
to adapt an existing sequential algorithm to make it distributed. In spite of its
straightforwardness, its downside is also evident: quick nodes must wait for slow
nodes. This waiting can still happen even with balanced workload and nodes of
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Figure 2.2 – Bulk Synchronous Parallel (BSP) Bridging model. The nodes wait at
the end of every epoch for each other, and then exchange information during the
synchronization barrier. Figure from Xing et al. (2015b).

Figure 2.3 – Stale Synchronous Parallel (SSP) Bridging model. Figure from Xing
et al. (2015b).

equal capacity. Indeed, it is impossible to eliminate this problem via the balance of
workload, for the waiting nodes in one epoch can differ from the waiting nodes in
another.

In contrast to BSP, the Asynchronous Parallel model lets each node work at
its maximal speed. They send messages to each other when appropriate but never
stop to wait for messages from other nodes. This model accelerates the computation
(no wait) but can suffer from reduced per computation gain. It can even make
the algorithm give an incorrect answer because some nodes may rely on “outdated”
information from other nodes. This error can be arbitrarily large to the extent that
the power of the attractor is overwhelmed by the induced error.

Sitting in the middle is the Stale Synchronous Parallel (SSP) model (Figure 2.3),
where, compared with BSP, nodes may advance ahead of each other up to s iterations
apart (where s is called the staleness threshold). Nodes getting too far ahead are
forced to stop until slower nodes catch up. Like Asynchronous Parallel execution,
information is exchanged asynchronously and continuously between nodes without
the need for synchronization barriers. The advantage of SSP is that it behaves like
Asynchronous Parallel execution most of the time but can also stop nodes, when
needed, to ensure the convergence. An excellent work concerning SSP’s convergence
can be found in Tsitsiklis et al. (1986).
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Figure 2.4 – Diagram of different network topologies. Figure from Wikimedia user:
Malyszkz.

Another important aspect is the topology of the communication network. This
term network stated here should be considered as a logical network instead of a
physical one. Figure 2.4 shows various topologies of networks, among which the star
network is the most relevant to my work. The center of a star network is often
called master/server, and the other nodes are often called slaves/clients. Passing
messages from the master to the slaves is called broadcast, and passing messages
from the slaves to the master is called convergecast.8 The associated algorithm is
often called centralized machine learning algorithm. On the contrary, a decentralized
machine learning algorithm works on a partially connected mesh network, where no
node plays a leading role.

2.5.4 Frameworks

Researchers find that many parallel/distributed machine learning algorithms follow
a similar “template”. Instead of developing for each algorithm separately, we can
develop an abstract framework which various individual algorithms can be fit into.
This layer of abstraction frees the algorithm designers from nasty message passing
details and fault tolerance management.

The first such framework is Google’s MapReduce (Dean and Ghemawat 2008),
which provides Map and Reduce functional (a.k.a. higher-order function) and hence
gets its name. By feeding functions to these functionals, algorithm designers can eas-
ily invent and implement distributed algorithms. The original MapReduce uses hard
drives to store computational states, which appears to be extremely slow. Apache
SPARK (Zaharia et al. 2012a) takes this step further and uses Resilient distributed
datasets (RDD) (Zaharia et al. 2012b) to make the computation in-memory, which
gives nearly 100x speedup.

8The same terminology also applies to a tree network in a similar way.
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Meanwhile, there have come out various type of frameworks. Pregel (Malewicz
et al. 2010) and GraphLab (Low et al. 2012) are used for machine learning based
on the graph representation. If SPARK is a Jack of all trades, ParameterServer
(Li et al. 2014) and its associated OS Petuum (Xing et al. 2015a) is specialized on
machine learning problems with large-scale parameters, and it can be 10-100x faster
than SPARK. Tensorflow (Abadi et al. 2016), supported by Google, becomes one
of the most popular frameworks nowadays, especially for its usage in deep learning.
There are more, but here I restrain myself from further development.



Chapter 3

Frank-Wolfe Algorithms

This chapter is a centralized place to discuss Frank-Wolfe algorithms. It starts with
a not-so-brief presentation of the state of the art, which includes the majority of
research on Frank-Wolfe. Then, it describes the basic form of Frank-Wolfe to make
the readers familiar with this algorithm as well as understand the intuitive idea
behind. After this lightweight introduction is the presentation of the comprehensive
general form, which includes most Frank-Wolfe variants as its special cases. Finally, it
proceeds to the most important part – the nondeterministic convergence rate, which
applies to, among others, solving the linear subproblem of trace norm minimization
with power iteration.

The pedagogical writing style of this chapter does not highlight my contributions
enough. To compensate this inconvenience, I list my discoveries about Frank-Wolfe
here. The most important one is the sublinear convergence rate in expectation and
with high probability for trace norm minimization. The second important is the
general form of Frank-Wolfe, which serves as a guideline to develop a heavy-duty
package. The third is the link between Frank-Wolfe and the steepest descent. The
fourth, a minor one, is the clarification of the effect of Lipschitz continuity on the
finiteness of the global curvature. I refer the readers to Section 3.1.2 for a detailed
explanation.

3.1 Introduction

The Frank-Wolfe algorithm (a.k.a. conditional gradient method) is a first-order
projection-free algorithm designed for constrained convex optimization problems of
the following form

min
x∈D

f(x), (3.1)

where D is a convex constraint set (usually compact) in a finite-dimensional space
(e.g., Rn) and f is a differentiable convex function. It does not require any pro-
jection like in projected gradient descent or proximal methods, where the projec-
tion/proximal operator may be expensive to compute. Instead, it proposes to min-

35
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imize a linear function over the constraint set, which, in many cases, has efficient
solvers.

Before proceeding on, let us first view some concrete examples of the above
optimization problem. When D is an `1-norm ball in Rn, it becomes the well-known
Lasso (Tibshirani 1996, Koh et al. 2007). When D is an `∞-norm ball, the coefficients
of its solution have a high probability of being integers instead of any arbitrary real
numbers (Mangasarian and Recht 2011). When D is the trace norm ball, it becomes
the trace norm minimization (Candès and Recht 2012, Candès and Tao 2010). When
D is the ball induced by the matrix’s max-norm, it becomes max-norm minimization
(Goemans and Williamson 1995, Srebro et al. 2005, Lee et al. 2010).

Of course, Frank-Wolfe is not the only tool to solve these problems, but there are
lots of research on this approach. Here is an non-exhaustive list of problems solved
by Frank-Wolfe: Fukushima (1984), LeBlanc et al. (1985), Ouyang and Gray (2010),
Lacoste-Julien et al. (2012), Ping et al. (2016).

To demonstrate the popularity of Frank-Wolfe as well as the research lineage,
in the remaining of this section, I describe the state of the art. Due to the length
and the limited knowledge of the author, I cannot discuss all of them in detail (I
apologize in advance in case I forget some important papers). Instead, I recommend
readers to use them as road signs to discover the work meeting their needs the most.
If you are already familiar with all of them but still unsatisfied, there are also my
contributions listed at the end of this section.

3.1.1 State of the art

The Frank-Wolfe algorithm (hereinafter Frank-Wolfe) was first proposed by Frank
and Wolfe in 1956 (Frank and Wolfe 1956). It was used to minimize a quadratic
function over a polytope by minimizing its (linear) supporting plane over the same
polytope. This invention was right after the Danzig’s simplex method for linear pro-
gramming and well before the now well-known interior-point method. Its alternative
name, conditional gradient method, was coined by Levitin and Polyak (1966).

Recently, Clarkson (2010) restudied this old algorithm and renewed people’s in-
terest within the machine learning community. He showed that Frank-Wolfe can be
extended to optimize smooth convex function over the simplex. Moreover, it has
a close relationship with the sparse greedy approximation and the coreset concept
widely used in machine learning. Hazan (2008) used Frank-Wolfe to minimize a con-
vex function over the bounded semidefinite cone. This work initialized researchers’
interest in using Frank-Wolfe in some other spaces (e.g., matrix spaces) than Eu-
clidean space. Based on this idea, Jaggi (2013) further extended it by allowing the
constraint set to be arbitrary convex and compact sets. In particular, it can be a
convex hull of a set with finite or infinite number of elements.

Regarding the convergence rate, it is shown, in the above literature, that Frank-
Wolfe converges in the order of O(1

t ), where t is the iteration number. Garber and
Hazan (2015) showed that, if the constraint set is strongly convex, Frank-Wolfe can
converge at a rate of O( 1

t2
). The various balls induced by `p-norms (p > 1), Schatten
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p-norms (p > 1) and group norms are examples of strong convexity. The above
rates are called sublinear rate and are considered slow (see Section 2.2.4). It is
therefore interesting to find out whether Frank-Wolfe can achieve linear rate when
the objective function is further strongly convex (see Section 2.1.4) as many other
first-order algorithms do. In response to this question, researchers have tried various
approaches.

Wolfe (1970) sketched a proof, and Guélat and Marcotte (1986) proved in detail
that (1) Frank-Wolfe converges linearly provided that the optimum point is not
located on the boundary of the constraint set and that (2) a variant of Frank-Wolfe
using the away step converges linearly once it arrives at the smallest face containing
the optimum point.

However, this analysis has two drawbacks. First, it relies on the strict comple-
mentarity assumption (Wolfe 1970), which may not be satisfied in certain cases. This
drawback was pointed out by Damla Ahipasaoglu et al. (2008), Kumar and Yıldırım
(2011), Ñanculef et al. (2014), and they proposed therefore to use Robinson’s condi-
tion (Robinson 1982) instead. This condition is weaker than the strict complemen-
tarity (see Ñanculef et al. 2014, Section 4 for a discussion). Damla Ahipasaoglu et al.
(2008) and Kumar and Yıldırım (2011) proved that Frank-Wolfe with the away step
converges linearly, and Ñanculef et al. (2014) proved the same thing for a Frank-Wolfe
variant with the pairwise step (Mitchell et al. 1974).

The second drawback is that the linear convergence rate is local: if the initial
point is far away from the optimum point, the convergence rate can be much slower.
Levitin and Polyak (1966, Section 6) and later works (Demianov and Rubinov 1970,
Dunn 1979) proved the global linear convergence rate under the assumption that the
constraint set is strongly convex and the assumption that the norm of the gradient
is bounded away from zero. This assumption is very restrictive (see Garber and
Hazan 2015, the end of Section 1.1 for a discussion). To improve their results,
Garber and Hazan (2013a) proved that a modified Frank-Wolfe equipped with a
local linear optimization oracle (instead of the global one) can achieve the global
linear convergence rate, and they also provided some ways to construct this oracle.

Concerning Frank-Wolfe with away steps itself, the recent works of Beck and
Shtern (2015), Lacoste-Julien and Jaggi (2015), Pena et al. (2016) established global
linear convergence results when the objective function is strongly convex with Lip-
schitz continuous gradient and when the domain is a convex hull of a finite set of
atoms. They also found that the performance of away steps is closely related to the
geometry of the constraint set. To describe the geometry, Lacoste-Julien and Jaggi
(2015) constructed the pyramidal width, Beck and Shtern (2015) constructed the
vertex-facet distance, and Pena et al. (2016) construct the restricted width. Both Beck
and Shtern (2015) and Pena et al. (2016) are “inspired by and relied upon key ideas
and results” first introduced in a preliminary workshop version of Lacoste-Julien and
Jaggi (2015) (Pena and Rodriguez 2015). Lacoste-Julien and Jaggi (2015) also gave
an affine invariant proof of the global linear convergence rate for away-step Frank-
Wolfe and pairwise Frank-Wolfe. Later, Pena and Rodriguez (2015) constructed the
facial distance, which unifies all the three previous constructions.
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There are further studies built on these works. Beck and Shtern (2015) applied
it to a special type of non-convex functions. Freund and Grigas (2016) studied the
effect of the step size. Mairal (2013) provided a unified viewpoint for several first-
order optimization algorithms including Frank-Wolfe. Freund et al. (2017) provided
an in-face variant. A recent work of Gidel et al. (2016) even used it for saddle point
problem.

Besides proving faster convergence rates under stronger conditions, we can also
move towards the opposite direction by proving slower rates under weaker conditions.
Recently, Xu (2017) proved some results for objective functions having uniformly
continuous Fréchet derivatives. The convergence rate is O( 1

tσ−1 ) when the objective
function has a bounded curvature of order σ ∈ (1, 2], and it becomes O( 1

tν ) when its
Fréchet derivative is ν-Hölder continuous for ν ∈ (0, 1].

Another approach to accelerate the computation other than proving faster con-
vergence rate is to reduce the computation cost. Lan and Zhou (2016) proposed
Conditional Gradient Sliding by skipping some gradient evaluations, and they proved
that the original sublinear rate still holds.

Like many other descent algorithms, researchers have also invented stochastic
versions of Frank-Wolfe (Lafond et al. 2015, Ouyang and Gray 2010, Hazan and
Luo 2016, Goldfarb et al. 2017, Liu and Tsang 2017). For instance, Ouyang and
Gray (2010) applied Stochastic Frank-Wolfe to the dual of SVM. Hazan and Luo
(2016) invented the Stochastic Variance-Reduced Frank-Wolfe based on the vari-
ance reduction trick (Johnson and Zhang 2013, Mahdavi et al. 2013) and Stochastic
Variance-Reduced Conditional gradient Sliding based on the Conditional Gradient
Sliding algorithm (Lan and Zhou 2016). Goldfarb et al. (2017) proposed the Away-
step Stochastic Frank-Wolfe and the Pairwise Stochastic Frank-Wolfe and proved
that they all converge linearly in expectation with the technique of empirical pro-
cesses and concentration inequalities. Liu and Tsang (2017) proposed a stratified
progressive sampling method; in their work, the batch size used to calculate the
stochastic gradient grows with the iteration, and the data are sampled in a stratified
way according to the structure of the problem.

As to the online convex optimization (Hazan and others 2016) which intends to
minimize the regret in lieu of the empirical risk, related researches can be viewed in
Hazan and Kale (2012), Garber and Hazan (2013a,b), Garber et al. (2015). Also see
Garber’s PhD disseratation (Garber 2016b) for a full exposition.

3.1.2 Contributions

The major contribution of my work included in this chapter is the introduction of
some new concepts into the Frank-Wolfe machinery. It consists of the cases where
the linear subproblem is solved approximately in expectation and/or with high prob-
ability. These machinery address the situation where the linear subproblem cannot
be approximately solved deterministically. Under these conditions, I prove that the
correspondent Frank-Wolfe converges (sublinearly) in expectation and/or with high
probability.
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In particular, I prove that, for the trace norm minimization, if the linear sub-
problem is solved by power iteration, Frank-Wolfe converges in expectation and with
high probability, and that the required number of power iterations grows linearly or
quadratically according to the type of results desired. This is the first time that a
rigorous convergence theory is established for Frank-Wolfe on the trace norm mini-
mization problem.

This contribution is inspired by Jaggi (2011), who has already pointed out the
type of results expectable. However, the extreme conciseness and the adoption of
deterministic language therein makes it inappropriate in the nondeterministic con-
text. I address this little imperfection and express it rigorously. One step further, I
study for the general matrices, symmetric matrices, and positive semidefinite matri-
ces. Except for the symmetric case, which is treated heuristically, all other cases are
proven to enjoy the conclusion mentioned above.

There are also other minor contributions in this chapter:

• Drawing inspiration from Goldfarb et al. (2017), I give a general form of Frank-
Wolfe (Algorithm 3), which makes most variants its special cases. This general
form, made possible by the functional programming paradigm, may help the
development of a Frank-Wolfe package.

• I point out the link between Frank-Wolfe and the steepest descent when the
constraint set is an atomic norm ball (Section 3.2.4). As far as I know, I am
the first to find this link.

• I clarify the effect of Lipschitz continuity on the finiteness of the global curva-
ture (Theorem 3.4.1). The idea is already in Jaggi (2013) and Lacoste-Julien
and Jaggi (2015). I only centralize the separated results and make it more
digestible to the readers.

3.2 An invitation to Frank-Wolfe algorithms

This section presents the basic form of Frank-Wolfe algorithms and some concepts
associated, which are the basis to understand all other variants. The concept of du-
ality gap is essential to prove the sublinear convergence rate of Frank-Wolfe whether
it is for deterministic cases as in Jaggi (2013) or for nondeterministic cases as in my
dissertation. The concept of atomic norm makes Frank-Wolfe even more relevant in
today’s science and is the most important content in this section. It not only al-
lows Frank-Wolfe to be as widely applicable as possible but also highlights the cases
where the linear subproblem can be efficiently solved. Moreover, it helps address
the relation between Frank-Wolfe and steepest descent, which is one of my minor
contributions.
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Figure 3.1 – Illustration of one step of Frank-Wolfe (Jaggi 2011), made by Stephanie
Stutz.

3.2.1 Basic form

Let us consider the optimization problem (3.1). A standard Frank-Wolfe algorithm
consists of the following steps in each iteration. First, since f is a convex function,
we can calculate its supporting plane on the point x, and then we minimize along
this plane over the constraint set and denote this solution as s. Since the supporting
plane is a linearization of the original objective function, we usually call this step
solving the linear subproblem (or the linear approximation problem). In many cases,
this problem can be efficiently solved, much more efficient than projecting back to
the constraint domain. Then, we compute a convex combination of the current
point x and the destination point s according to the step size γ. This combination
constitutes the new x in the next iteration. Jaggi (2013, Theorem 1) showed that
this algorithm converges in the order of O(1

t ) when the step size is chosen as 2
2+t

or by the line search (t is the iteration number). The basic form of Frank-Wolfe is
summarized in Algorithm 2, and an illustration is shown in Figure 3.1.

Algorithm 2. Basic form of Frank-Wolfe (1956)
Input: Objective function f , constraint set D and an initial point x ∈ D
repeat

s← arg mins∈D 〈s,∇f(x)〉 . solve the linear subproblem
γ ∈ [0, 1] . choose a step size
x← (1− γ)x+ γs. . the update is a convex combination

until stopping criterion is satisfied.
Output: x, f(x)
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Figure 3.2 – Unit balls of some atomic norms (Chandrasekaran et al. 2010). In each
sub-figure, the set of atoms is graphed in red and the unit ball of the associated
atomic norm is graphed in blue. In (a), the atoms are the unit-Euclidean-norm
one-sparse vectors, and the atomic norm is the `1-norm. In (b), the atoms are the
2×2 symmetric unit-Euclidean-norm rank-one matrices, and the atomic norm is the
trace norm. In (c), the atoms are the vectors {−1,+1}2, and the atomic norm is the
`∞-norm.

3.2.2 Duality gap and certificate

The duality gap is an important concept in optimization. It is usually defined as
the difference between the minimum of the primal problem and the maximum of the
dual problem. Here, instead, we give a lightweight definition of duality gap, which
Jaggi (2011) named the “poor-man’s duality [gap]”:

g(x) := max
s∈D
〈x− s,∇f(x)〉 . (3.2)

The convexity of f implies that the linearization f(x) + 〈s− x,∇f(x)〉 always
lies below the graph of f , which further implies that g(x) ≥ f(x) − f(x∗), where
x∗ is the minimum point of f . The difference f(x) − f(x∗) is called suboptimality
error, and the fact that it is upper bounded by g(x) implies that the duality gap is a
certificate.1 For a more detailed introduction of the concept of duality gap, see Jaggi
(2011, Section 2.2).

While the minimum f(x∗) is generally unknown especially for problems from the
real life, the duality gap g(x) for the current point x is easy to calculate. Indeed,
it is a by-product when solving the linear subproblem. If, furthermore, the duality
gap decreases to zero, we can use it as a stop criterion in Algorithm 2. Jaggi (2013,
Theorem 2) showed that, under suitable conditions, the duality gap converges to 0
in the order of O(1

t ) just like the suboptimality error.

3.2.3 Atomic norms

This subsection presents the atomic norm and shows how efficient Frank-Wolfe can
be when the constraint set is an atomic norm ball.

1In optimization, a certificate is a function that upper bounds the suboptimality error.
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Given a vector space X and a subset K, let us define the Minkowski functional
(Thompson 1996) ΩK : X → [0,+∞] with regard to K by

ΩK(x) := inf{t ≥ 0 : x ∈ tK},

which is also called the gauge of K (Rockafellar 2015). Usually, we assume that
0 ∈ K and that the set {t ≥ 0 : x ∈ tK} is nonempty for all x’s, so that ΩK is finite
everywhere (inf ∅ = +∞ by convention).

One can prove that, if K is absolutely convex, that is, if it is convex and balanced
(i.e., tK ⊂ K,∀ |t| ≤ 1), the Minkowski functional becomes a seminorm. If, further-
more, K is bounded, it becomes a norm. For example, if we let K be the unit `2-ball
in Rn, ΩK will be exactly the Euclidean norm ‖·‖2. Once it is a norm, its dual norm
is given by Ω∗K(y) := supx∈K 〈x, y〉 provided that X is an inner product space.

Now, let A ⊂ X be a set of atoms, whose meaning will be clear soon. Let us
suppose that A satisfies the following conditions:

1. A is bounded;

2. for every x ∈ A, we have −x ∈ A;

3. 0 is in the interior of conv(A)2.

Through the definition of norm, we can easily prove that Ωconv(A)(·) is a norm.
Chandrasekaran et al. (2010) defines it as atomic norm. The dual norm of the
atomic norm has an extremely simple expression: Ω∗conv(A)(·) = supx∈A 〈x, ·〉, where
the supremum is taken on the atom setA instead of on the entire convex hull. Indeed,
since the inner product is linear, the extreme value must be achieved at the extreme
points (viz. atoms). With slight abuse of notation, we also note the atomic norm as
ΩA(·) and its dual norm as Ω∗A(·).

Now let us view some examples (Figure 3.2). If A is {±ei, i = 1, . . . , n} of Rn,
then the associated atomic norm is exactly the `1-norm. If A is the set of sign-vectors
(whose entries take on value of ±1), then the associated atomic norm is the `∞-norm.
If A is the set of all rank-1 matrices, then the associated atomic norm is the trace
norm. I refer to Chandrasekaran et al. (2010) for more examples.

The shape of the trace norm ball above is a bit confusing and is asked several
times in various places (e.g., Stack Exchange). Here, I give a detailed but still concise
presentation about it. Indeed, this trace norm ball is a convex hull of two ellipses.

To see this, let
[
a b
b c

]
be a symmetric unit-Euclidean-norm rank-one matrix, which

means {
ac = b2

a2 + 2b2 + c2 = 1.

A slight transformation yields{
(a− 1

2)2 + b2 = 1
4

a+ c = 1
or

{
(a+ 1

2)2 + b2 = 1
4

a+ c = −1.

2Convex hull. See Page 8 for the definition.
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The solution set is essentially two planes cutting two cylinders respectively.

Geometry tells us that, if we use the atomic norm ball as the constraint set, we
shall get solutions with few atoms (e.g., sparse vectors, low-rank matrices) (Chan-
drasekaran et al. 2010). This property is very useful when the measurements are
not sufficient to recover the model in under-determined situations. This technique is
widely used in compressed sensing and other sparse recovery tasks.

It remains the question how to solve this kind of optimization problems. Chan-
drasekaran et al. (2010) finds that they can generally be transformed into SDP prob-
lems. However, as pointed out in Section 2.3.4, SDP software cannot handle large
number of parameters. That is how Frank-Wolfe comes to help. Indeed, the lin-
ear subproblem becomes arg mins∈A 〈s,∇f(x)〉, and the duality gap is essentially
〈x,∇f(x)〉+ Ω∗A(−∇f(x)).

When A has only 2n atoms (e.g., the `1-norm ball), it can be solved by at most
2n inner products. When the number of atoms are infinite, it may also exist efficient
algorithms. For instance, the trace norm ball has infinite atoms (two ellipses). How-
ever, we know that its dual norm is the spectral norm (Section 2.1.6). Noticing that
the spectral norm is the largest singular value, we have many algorithms to calculate
it. In general, whenever we have efficient algorithms to calculate the dual norm of
the atomic norm in question, we can use Frank-Wolfe. I refer the reader to Jaggi
(2013, Table 1) for more examples.

Besides the fact that Frank-Wolfe is suitable for this task, it also has other merits.
For instance, Frank-Wolfe takes in only one atom per iteration, which means that
its solution path is sparse. Jaggi (2013, Lemma 3) showed that the suboptimality
error of any solution involving s atoms is lower bounded by O(1

s ), which implies that
Frank-Wolfe is optimal in the sense of sparsity (up to a constant factor).

3.2.4 Similarity with steepest descent

When the atomic norm ball is the constraint set, Frank-Wolfe is similar to the steep-
est descent equipped with the same atomic norm. As mentioned in Section 2.2.5,
in unconstrained optimization, the steepest descent requires a predefined norm. It
chooses the direction which minimizes the support plane over the unit norm ball, and
then it descends along this direction. In particular, if it chooses the atomic norm
defined by A, the algorithm can be described as a loop of{

s← arg min
s∈A
〈s,∇f(x)〉

x← x+ γs.

This is very similar to Frank-Wolfe, which can be expressed as a loop of{
s← arg min

s∈A
〈s,∇f(x)〉

x← (1− γ)x+ γs,

except for the update step. In the steepest descent, s is a direction, whereas, in
Frank-Wolfe, s is a destination. Frank-Wolfe takes a convex combination of the
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Figure 3.3 – Illustration of the away step and the pairwise step (Lacoste-Julien and
Jaggi 2015). (left) The FW algorithm zig-zags when the solution x∗ lies on the
boundary. (middle) Adding the possibility of an away step attenuates this problem.
(right) As an alternative, a pairwise FW step.

current iterate and the destination and makes it the next iterate, which thus ensures
that the iterate stays always inside the constraint set. To my best knowledge, I am
the first to discover this link.

3.3 Frank-Wolfe variants

This section describes the general form of Frank-Wolfe algorithms, which can express
away step, pairwise step, stochastic variant, approximate subproblem, and so forth.
It is made possible via the combination of both functional and procedural program-
ming paradigm. With this minor contribution of mine, a comprehensive Frank-Wolfe
package can be easily made.

3.3.1 General form

This subsection presents the general form of Frank-Wolfe (Algorithm 3). It can sum-
marize most variants except the fully-corrective one. Besides, it offers a guideline to
program a Frank-Wolfe package. The description of the algorithm adopts a combi-
nation of both the procedural and the functional paradigm. It appears much more
sophisticated than the basic form (Algorithm 2) because I have integrated various
possible variants into a single algorithm.

Let us analyze Algorithm 3 step by step. The algorithm needs a few inputs
(Line 1–8). The quantity µ is a probability measure specifying the initial point,
which is usually initiated as a Dirac measure concentrated on a single atom. In
other words, there exists an atom a ∈ A so that µ({a}) = 1. With the optimization
process going on, this measure gradually becomes less concentrated. GEO, LMO and SSO
are all oracles (a.k.a. virtual functions in the programming terminology) and will be
concretized during the runtime. The quantities η1 and η2 are small values specifying
the required precision in the oracles. The variables flag_away and flag_pair are
flags taking boolean values (i.e., True or False), which dictates whether to use
away-step, pairwise step, or the vanilla direction.
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Algorithm 3. General form of Frank-Wolfe:
FW(A, µ, η1, η2, GEO, LMO, SSO, flag_away, flag_pair)

1: input: A: atom set
2: µ: probability measure on A
3: η1, η2 > 0: approximation error
4: GEO: gradient evaluation oracle
5: LMO: linear minimization oracle
6: SSO: step size oracle
7: flag_away: away flag
8: flag_pair: pairwise flag
9: Init: x←

∫
A xµ(dx) . initial point

10: S ← {x ∈ A : µ(x) > 0} . initial active set
11: repeat
12: h← GEO(x, η1) . evaluate the gradient
13: s← LMO(h,A, η2) . solve the linear subproblem
14: dF ← s− x . vanilla direction
15: if flag_away or flag_pair then
16: v ← arg maxv∈S 〈h, v〉
17: dA ← x− v . away direction
18: end if
19: if flag_pair then
20: d← s− v, and γmax ← µ(v) . choose the pairwise direction
21: else if flag_away and

〈
h, dA

〉
<
〈
h, dF

〉
then

22: d← dA, and γmax ← µ(v)
1−µ(v) . choose the away direction

23: else
24: d← dF , and γmax ← 1 . choose the vanilla direction
25: end if
26: γ ← SSO(x, d, γmax) . choose a step size
27: x← x+ γd . update the iterate
28: VRU() . update the representation of x
29: until stopping criterion is satisfied.
30: output: x
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Algorithm 4. Vertex Representation Update (VRU, Goldfarb et al. 2017)

if d == dF then . vanilla direction is chosen
µ(u)← (1− γ)µ(u), ∀u ∈ S
µ(s)← µ(s) + γ
if µ(s) == 1 then

S ← {s}
else

S ← S ∪ {s}
end if

else if d == dA then . away direction is chosen
µ(u)← (1 + γ)µ(u), ∀u ∈ S
µ(v)← µ(v)− γ
if µ(v) == 0 then

S ← S \ {v}
end if

else . pairwise direction is chosen
µ(v)← µ(v)− γ
µ(s)← µ(s) + γ
S ← S ∪ {s}
if µ(v) == 0 then

S ← S \ {v}
end if

end if

Given the measure µ, we can immediately calculate the associated point x (Line 9).
Since we use a Dirac measure as input, along with the fact that Frank-Wolfe takes
in at most one atom each iteration, µ is always a finite measure and can be hence
computed exactly (ignoring the precision limit of the floating-point representation).
The reverse is generally not true, except for some special situations (e.g., simplex).
The active set is just the support of the measure µ (Line 10). When A forms an
atomic norm ball, we can also use the origin as the initial point. Indeed, we can add
the origin as an extra atom without the risk of violating the nice property of A to
form a norm.

Once we get the initial point x, we can ask for the gradient at this point via the
gradient evaluation oracle (Line 12). This oracle can return either the exact gradient
or a perturbed one if a nonzero η1 is given. The latter is often called the stochastic
gradient and widely used in various optimization applications.

Then, we request the destination atom s via the linear minimization oracle
(Line 13). It takes the gradient, the atoms, and an extra argument η2, which indi-
cates the quality of the solution that the oracle is expected to give. When η2 = 0, it
means that the exact solution is expected. When η2 6= 0, it may have different mean-
ings depending on how the oracle is concretized. Naturally, the vanilla Frank-Wolfe
direction is s− x (Line 14).

If we wish to use the away-step or the pairwise step variant, we will have to
calculate arg maxv∈S 〈h, v〉 (Line 15–25). The atom obtained is the one yielding the
largest ascent direction and is what we may want to remove from our current active
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Table 3.1 – Virtual functions and concrete functions

Virtual functions Concrete functions
GEO EGE, SGE . . .
LMO ELS, ALS . . .
SSO DSS, CSS, LSS . . .

set. By removing this atom, the iterate is pushed onto the face (if it is a simplex)
opposite to the atom in question; it is hence called the away step. In general, an
away step uses either the away direction or the vanilla direction, depending on which
direction looks more “efficient”. On the contrary, a pairwise step always combines
the vanilla step and the away step together, which makes the maximal use of the
available resources. Empirically, it often outperforms the away step (Lacoste-Julien
and Jaggi 2015).

Then, we should choose a step size via the step size oracle (Line 26). It takes a
starting point, a direction and a maximal step size allowed (the minimal step size
is of course zero). This can be done by the line search or, in some literature (e.g.,
Jaggi 2013), they use a default step size 2

t+2 , where t is the number of iteration. I
recommend Freund and Grigas (2016) for an extensive study on the choice of step
size.

Once the iterate moves (Line 27), the measure µ changes too. VRU (Algorithm 4)
ensures that µ is updated accordingly. It is worth mentioning that, because of
numeric precision, the equality may not be precisely satisfied. Some quantities which
should be zero may end up with strict positive values. This numeric issue should be
taken into account during the implementation.

3.3.2 Variants as special cases of the general form

This subsection shows how to use the above presented general form to express various
concrete Frank-Wolfe examples. In particular, the virtual functions (a.k.a. oracles)
will all be replaced by concrete functions. To help the readers recall the pairing, I
have made Table 3.1.

First, let us introduce some concrete algorithms for GEO. Algorithm 5 takes the
current iterate as input and outputs the (exact) gradient at this point. If f =

∑n
i=1 fi,

then its time complexity is proportional to n. We can also consider inexact gradient
information as in Jaggi (2013, Section 3). When a perturbed gradient is enough, we
can use the stochastic gradient evaluation (Algorithm 6) to accelerate the computa-
tion. If each fi is an independent stochastic process from the same distribution, it can
be done by sampling a subset of {fi}ni=1. Then, the time complexity is proportional
to the size of this subset. This approach is extensively used in stochastic Frank-Wolfe
(Lafond et al. 2015, Ouyang and Gray 2010, Hazan and Luo 2016, Goldfarb et al.
2017, Liu and Tsang 2017). For an inexact but non-stochastic gradient evaluation, I
refer to the δ-model of d’Aspremont (2008).

Then, let us have a close look at LMO(h,A, η2). This oracle is problem dependent.
For instance, if A has finite elements, we can use the simplex method. When it is
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Algorithm 5. Exact gradient evaluation: EGE(x)
Require: ∇f
Input: x
Output: ∇f(x)

Algorithm 6. Stochastic gradient evaluation: SGE(x, η)

Require: Stochastic gradient f ′(a, b) := ∇f(a) + bξ, where ξ ∼ N (0, 1)
Input: x, η
Output: f ′(x, η)

infinite, it may require some domain specific knowledge. In case the exact solution is
computationally expensive, we can use an approximate solution. Algorithm 7 shows
how it should look like for an exact linearization solver. Algorithm 8 shows how an
approximate linearization solver looks like (Jaggi 2013).

Algorithm 7. Exact linearization solver: ELS(h, A)
Input: h, A
Output: arg mins∈conv(A) 〈s, h〉

Algorithm 8. Approximate linearization solver: ALS(h, A, η)
Input: h, A, η
Find s ∈ conv(A) s.t. 〈s, h〉 ≤ mins∈conv(A) 〈s, h〉+ η
Output: s

Finally, we have SSO. For Frank-Wolfe, the line search (Algorithm 9: LSS) is
always preferred, especially when it has a closed form. Besides the line search,
we can use the default step size 2

2+t defined in Jaggi (2013) (Algorithm 10: DSS).
However, it often results in fluctuations. Another approach is to use constant step
size (Algorithm 11: CSS). Freund and Grigas (2016) prove that Frank-Wolfe converges
to a neighborhood of the optimum point when CSS is used.

Algorithm 9. Line search step: LSS(x, d, γmax)
Input: x, d, γmax

Output: arg minγ∈[0,γmax] f(x+ γd)

Algorithm 10. Default step size: DSS(γmax)
Require: t
Input: γmax

Output: 2
2+t ∧ γmax

Algorithm 11. Constant step size: CSS(γmax)
Require: c
Input: γmax

Output: c ∧ γmax



3.4. DETERMINISTIC AND NONDETERMINISTIC CONVERGENCE RATES49

GEO provides the freedom to use the exact or the stochastic gradient; LMO provides
the freedom to solve the linear subproblem exactly or approximately; SSO provides
the freedom to choose the step size; flag_away and flag_pair provide the freedom
to use away-step or pairwise Frank-Wolfe. With their combination, we can express
many Frank-Wolfe variants except for fully-corrective Frank-Wolfe.

For example,

FW({0,±ei}ni=1, δ0, 0.1, 0, SGE, ELS, LSS, True, False)

expresses solving Lasso via stochastic away-step Frank-Wolfe by solving the exact
linear subproblem and using the line search step size. It is not restrictive for us to use
the unit ball here since we can always scale the feature space so that the constraint
set is a unit ball.

For fully-corrective variant, replace all contents in the loop after the linear mini-
mization oracle by Algorithm 12.

Algorithm 12. Fully-corrective variant
Replace Line 14–28 in Algorithm 3 by
x← arg minx∈conv(S∪{s}) f(x)
update S accordingly

3.4 Deterministic and nondeterministic convergence rates

This section presents the sublinear convergence rate of Frank-Wolfe and my efforts
to extend it. It starts with the deterministic rate when the subproblem is solved ap-
proximately but deterministically, which is a classic result about Frank-Wolfe. Then,
to present my contributions, it introduces the stochastic approximate linearization
solvers, which solve the subproblem approximately and nondeterministically. Lastly,
it proves that, when the approximate linearization solvers are used, Frank-Wolfe con-
verges sublinearly in expectation or with high probability. Along the presentation,
I also gives a proof of the boundedness of the global curvature when the objective
function is Lipschitz continuous.

3.4.1 Deterministic convergence rates

In this subsection, I will present the sublinear convergence rate of Frank-Wolfe under
the least restrictive condition, which is enough for the remaining of this dissertation.
This dissertation is not an encyclopedic analysis of all convergence rates. For readers
curious to learn all about the theory, Section 3.1.1 serves as a guide.

For a convex and differentiable function f : Rn → R, we define its global curvature
with regard to a compact domain D as

CfD := sup
x, s ∈ D
γ ∈ [0, 1]

y = x+ γ(s− x)

2
γ2

(f(y)− f(x)− 〈y − x,∇f(x)〉). (3.3)
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This definition is slightly different from the curvature in differential geometry, which
is defined as the length of the second derivative.

Curvature is a local property and varies through affine transformation of the
space, whereas global curvature is a global property characterizing both the function
f and the domain D and is invariant to affine transformation. To see this, let y = λy′

and x = λx′. Then, the domain becomes 1
λD, without affecting γ, and we have

f(y)− f(x)− 〈y − x,∇f(x)〉)
=f(λy′)− f(λx′)−

〈
λ(y′ − x′),∇λx′f(λx′)

〉
=f(λy′)− f(λx′)−

〈
λ(y′ − x′), 1

λ∇x′f(λx′)
〉

=f(λy′)− f(λx′)−
〈
y′ − x′,∇x′f(λx′)

〉
.

Indeed, f(y)−f(x)−〈y − x,∇f(x)〉 is the Bregman divergence Df (y, x) between
y and x. It represents the error to approximate f(y) by the linearization of f at
x. When the function f is itself linear, the (global) curvature becomes 0. When
f(x) = 1

2 ‖x‖
2
2 on Rn, the Bregman divergence is exactly the squared Euclidean

distance, and global curvature is the squared (Euclidean) diameter of the domain D.

More generally, Theorem 3.4.1 gives an upper bound about the global curvature.
This theorem is proved in Jaggi (2013, Lemma 7) with ambiguous statement and
claimed in Lacoste-Julien and Jaggi (2015) without proof.

Theorem 3.4.1. Let fbe a convex and differentiable function with its gradient ∇f
being L-Lipschitz continuous on D with regard to some arbitrary norm ‖·‖ in dual
pairing, then

CfD ≤ Ldiam‖·‖(D)2, (3.4)

where diam‖·‖ is the diameter of a set according to the norm ‖·‖.

Proof. Use the proof in the appendix of Jaggi (2013, Lemma 7) and replace the
reference (Nesterov, 2004, Lemma 1.2.3) therein by Theorem 2.1.8. Here, for the
self-completeness, I reproduce the proof.

By Theorem 2.1.8, we have that for any x, y ∈ D,

f(y)− f(x)− 〈y − x,∇f(x)〉 ≤ L
2 ‖y − x‖

2 .

Observing that for any x, s ∈ D, we have that also y := x + γ(s − x) ∈ D and
1
γ2
‖y − x‖2 = ‖s− x‖2, we can therefore upper bound the curvature as

Cf ≤ sup
x,s,γ

2
γ2

L
2 ‖y − x‖

2 = sup
x,s

L ‖s− x‖2 ≤ Ldiam‖·‖(D)2,

which is the claimed bound.

From this, we can see that global curvature incorporates both the geometry of
the function and the constraint set. It characterizes the smoothness of the problem,
and it is thus natural that global curvature is affine invariant.
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The upper boundedness of the global curvature is important in that it is the con-
stant in the sublinear convergence rate. The following proposition shows that after
O(1

ε ) many iterations, the iterate xt of Frank-Wolfe is an ε-approximate solution.
We call this convergence rate sublinear, which is generally considered slow. Besides
the convergence rate, we observe that it is proportional to the global curvature. This
illustrates that the global curvature reflects the complexity of the problem.

Proposition 3.4.2 (Theorem 1 of Jaggi (2013)). Let f be a differentiable convex
function with a finite global curvature CfD on the constraint set D. Let {xt}t≥0 be
the iterates of Frank-Wolfe, and δ ≥ 0 be a small constant. The iterates generated by

Frank-Wolfe using ηt =
δCfD
t+2 in Algorithm 8: ALS (Algorithm 7: ELS if δ = 0) satisfy

f(xt)− f(x∗) ≤
2CfD
t+ 2

(1 + δ), ∀t > 0, (3.5)

if any of the following three methods are used:

1. using Algorithm 10: DSS (default step size) as the step size oracle;

2. using Algorithm 9: LSS (line search step size) as the step size oracle;

3. Algorithm 12: fully-corrective Frank-Wolfe is used.

The proof can be found in Jaggi (2013, Appendix A) and will be omitted here.
We shall see a generalization of this proposition soon, and the proof for that gener-
alization is valid here too.
Remark. Among the above results is missing Algorithm 11: CSS (constant step size).
In fact, Freund and Grigas (2016) proves that it converges to a neighborhood of the
optimum instead of to the optimum itself.

3.4.2 Stochastic approximate linearization solver

The approximate linearization solver requires that the error must be inferior to η,
which is unrealistic in some cases. Imagine that we are calculating the largest eigen-
value of a positive semi-definite matrix via the power iteration. If the initial vector is
unfortunately independent of the eigenvector associated with the largest eigenvalue,
we can by no means get the correct largest eigenvalue. This difficulty motivates
us to find a stochastic approximate linearization solver and to establish dedicated
convergence theory for it. From this section on, if not explicitly mentioned, I use the
vanilla direction, and I suppose that the gradient is exact.

Definition 3.4.1. Let 〈·, ·〉 be the inner product of the space in question and random
variable x ∈ D the iterate. For any η ≥ 0, we say that the linear subproblem
is approximately solved deterministically if we find a deterministic relation s∗ :=
s∗(x) ∈ D subject to

〈s∗,∇f(x)〉 ≤ min
s∈D
〈s,∇f(x)〉+ η. (3.6)

It is solved in expectation if we find a random variable ŝ subject to

〈E[ŝ|x],∇f(x)〉 ≤ min
s∈D
〈s,∇f(x)〉+ η. (3.7)
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It is solved with high probability if, for any α > 0, we find a random variable ŝ subject
to

Pr

(
〈ŝ,∇f(x)〉 > min

s∈D
〈s,∇f(x)〉+ η

)
< α. (3.8)

Here, we take the exact gradient. Algorithmically, it is not a big issue to use the
stochastic gradient; my theorem will only cover the exact gradient case though. (3.6)
is exactly the one used in Algorithm 8: ALS. (3.7) means sometimes the error of the
output ŝ may be lower than η; other times it may be higher than η; but, in average,
the expectation conditional on the current iterate is lower than η. Algorithm 13:
SALS1 uses this solver. (3.8) means that the probability of the solution failing to get
an error lower than η is lower than ε. In practice, by the law of total probability, we
can enforce a stronger condition by using the conditional probability:

Pr

(
〈ŝ,∇f(x)〉 > min

s∈D
〈s,∇f(x)〉+ η

∣∣∣x) < α. (3.9)

Algorithm 14: SALS2 uses this solver.

Algorithm 13. Stochastic approximate linearization solver I:
SALS1(h, A, η)
Input: h, A, η
Find s ∈ D := conv(A) s.t. 〈E[s|h], h〉 ≤ mins∈D 〈s, h〉+ η
Output: s

Algorithm 14. Stochastic approximate linearization solver II:
SALS2(h, A, η, α)
Input: h, A, η, α
Find s ∈ D := conv(A) s.t. Pr (〈s, h〉 > mins∈D〈s, h〉+ η) < α
Output: s

3.4.3 Nondeterministic convergence rates

With these stochastic solvers, I can extend Proposition 3.4.2. The following theo-
rem means that, if the linear subproblem is solved in expectation, Frank-Wolfe will
converge in expectation; and that, if the linear subproblem is solved with high prob-
ability, Frank-Wolfe will converges with high probability. It constitutes, along with
the next two sections, my major contribution presented in this chapter.

Theorem 3.4.3. Let f be a differentiable convex function with a finite global cur-
vature CfD on the constraint set D. Let {xt}t≥0 be the iterates of Frank-Wolfe, and
δ ≥ 0 be a small constant. Suppose that we use Algorithm 10: DSS (default step size)
as the step size oracle, which gives γt = 2

t+2 . The following statements are true.

1. If Algorithm 13: SALS1(∇f , A, δC
f
D

t+2 ), t ≥ 0 are used as the linear minimization
oracle, then the algorithm converges sublinearly in expectation

E[f(xt)]− f(x∗) ≤
2CfD
t+ 2

(1 + δ), ∀t > 0. (3.10)
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2. For any α ∈ [0, 1] and any finite horizon T , if Algorithm 14: SALS2(∇f , A,
δCfD
t+2 ,

α
T ), t = 1, . . . , T are used as the linear minimization oracle, then the

algorithm converges sublinearly in probability over a finite horizon

Pr

(
f(xt)− f(x∗) >

2CfD
t+ 2

(1 + δ), t = 1, . . . , T

)
≤ α. (3.11)

3. For any α ∈ [0, 1], if Algorithm 14: SALS2(∇f , A, δCfD
t+2 ,

α
2t ), t > 0 are used

as the linear minimization oracle, then the algorithm converges sublinearly in
probability over an infinite horizon

Pr

(
f(xt)− f(x∗) >

2CfD
t+ 2

(1 + δ), t > 0

)
≤ α. (3.12)

Proof. Let us begin with the first statement. The proof is a direct adaption of Jaggi
(2013, Lemma 5 and Theorem 1). For any step xt+1 := xt + γt(st − xt) with the
destination point st generated by LMO, we have

f(xt+1) ≤ f(xt) + γt〈st − xt,∇f(xt)〉+
γ2t
2 C

f
D

by the definition of global curvature.

Take conditional expectation on both sides, we get

E[f(xt+1)|xt] ≤ f(xt) + γt〈E[st|xt]− xt,∇f(xt)〉+
γ2t
2 C

f
D

≤ f(xt) + γt

(
min
s∈D
〈s− xt,∇f(xt)〉

)
+ γtηt +

γ2t
2 C

f
D

= f(xt) + γt

(
min
s∈D
〈s− xt,∇f(xt)〉

)
+

γ2t
2 C

f
D(1 + δ)

= f(xt)− γtg(xt) + γ2
tC

where g(xt) is the duality gap at xt and C :=
CfD
2 (1 + δ).

Define b(x) := f(x) − f(x∗) ≤ g(x), which is the suboptimality error. By sub-
tracting f(x∗) on both sides, we get

E[b(xt+1)|xt] ≤ b(xt)− γtg(xt) + γ2
tC

≤ b(xt)− γtb(xt) + γ2
tC

= (1− γt)b(xt) + γ2
tC.

Now, we shall use induction over t to prove the sublinear convergence in expec-
tation (3.10), i.e.,

E[b(xt)] ≤ 4C
t+2 , t = 1, 2, ...

When t = 1, we have γ0 = 2
0+2 = 1 and x1 = s0 ∈ D. For any x ∈ D, we have

b(x) ≤ CfD
2 < C < 4

3C. This proves the case of t = 1.
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If it is true for t, then

E[b(xt+1)] = E[E[b(xt+1)|xt]]
≤ (1− γt)E[b(xt)] + γ2

tC

≤
(

1− 2
t+2

)
4C
t+2 +

(
2
t+2

)2
C.

Simply rearranging the terms gives

E[b(xt+1)] ≤ 4(t+1)C
(t+2)2

< 4(t+1)C
(t+1)(t+3) = 4C

t+3 .

This concludes the convergence in expectation.

Now, let us prove the convergence with high probability. For any α ≥ 0, SALS2
generates a finite sequence for the finite horizon, so that each subproblem fails with
the probability α

T ; it generates an infinite sequence for the infinite horizon, so that
each subproblem fails with the probability α

2t . Therefore, with probability 1− α, all
subproblems are solved for both the finite horizon and the infinite horizon. This is
all what we need for the convergence in probability.

In (3.11) and (3.12), the time index t is inside the probability measure, which
means that all these inequalities are simultaneously satisfied. For finite horizons, this
is not a big difference. However, for the infinite horizon, it is a much stronger result
than moving t > 0 out of the probability measure.

Although this theorem claims only for DSS, it is not difficult to prove its validity
for the line search and the fully-corrective variant. Indeed, when using the line
search Frank-Wolfe, each descent must be lower than when using the default step
size. Therefore, it converges no less than the above rate. For the fully-corrective
Frank-Wolfe, the descent is even lower. Indeed, it can be regarded as a search over
the entire subspace generated by the active set.

This theorem is a generalization of Proposition 3.4.2. To see this, either let st
be deterministic about xt, or let the parameter α be 0 in the theorem. It recovers
Proposition 3.4.2 as a special case.

Remark. Among these step size oracles is missing the constant step size. In fact,
one can prove that, under appropriate conditions, Frank-Wolfe converges to a neigh-
borhood of the optimum in expectation and with high probability with the help of
Freund and Grigas (2016, Theorem 5.1).

3.5 Frank-Wolfe for trace norm minimization

In this section, we consider the trace norm minimization problem, which is a special
case of (3.1). In particular, we are in a matrix space with the inner product defined
by 〈A,B〉 := Tr(ATB), where Tr is the trace of a matrix. Let f be a convex
differentiable matrix function. We consider the optimization
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• on the general matrix space

min
W∈Rm×n

f(W )

s.t. ‖W‖tr ≤ θ,
(3.13)

• on the symmetric matrix space

min
W∈Sn

f(W )

s.t. ‖W‖tr ≤ θ,
(3.14)

where Sn := {W ∈ Rn×n : W T = W},

• and on the positive semidefinite (PSD) matrix cone

min
W∈Sn+

f(W )

s.t. ‖W‖tr ≤ θ,
(3.15)

where Sn+ := {W ∈ Sn : W � 0}.

I separate these three cases because they each entail a different linear subproblem.
Although they are all treated with power iteration, each of them requires a slightly
different micro-management.

They each have their applications. For example, (3.13) is useful for recommender
systems (Koren et al. 2009), multi-task learning (Caruana 1998) and so forth; (3.14)
is useful for learning a Boltzmann machine (Ackley et al. 1985, Ping et al. 2016),
where the weights may be symmetric, and for approximating a Hessian matrix, which
is symmetric but not necessarily PSD; (3.15) is useful for metric learning (Yao et al.
2014, Liu et al. 2015, Huo et al. 2016), where any PSD matrix W defines a distance
through the form DW (x1, x2) := (x1 − x2)TW (x1 − x2), and for low-rank output
kernel learning (Dinuzzo and Fukumizu 2011), where the kernel is PSD. Besides,
some researchers transform (3.13) to (3.15) via the method described in Page 20.

It may be worth mentioning that the above three constraint sets are not the only
possibilities. We may impose orthogonality, normality, or instability as well (Higham
1988). I will only study the above three scenarios in my dissertation though.

3.5.1 General matrix space

The linear subproblem associated with (3.13) is

min
Q∈Rm×n, ‖Q‖tr≤θ

〈Q,∇f(W )〉 . (3.16)

If θ = 1, the minimum will be the negative of the dual norm of the gradient
−‖∇f(W )‖sp (recall that the spectral norm is the dual norm of the trace norm). Let
σ1 ≥ σ2 ≥ . . . ≥ σm∧n ≥ 0 be the singular values of the gradient; the optimum is just
−σ1. Notice that∇f(x) has its singular value decomposition∇f(x) =

∑m∧n
i=1 σiuiv

T
i ,
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Algorithm 15. Solve subproblems in Rm×n

1: Input: ∇f(W ), θ,K
2: A← ∇f(W )
3: v ∼ Unif(Sn) . uniformly sample on the unit sphere
4: for k = 1, . . . ,K do . power iteration
5: u← Av
6: u← u

‖u‖2
. left singular vector

7: v ← ATu
8: v ← v

‖v‖2
. right singular vector

9: end for
10: u← Av
11: u← u

‖u‖2
. left singular vector once more

12: Output: Q← −θuvT

where ui and vi are the left and right singular vectors associated with σi. To achieve
the optimum, it suffices to take Q = −u1v

T
1 . If θ 6= 1, we will take Q = −θu1v

T
1 ,

and the optimum is −θσ1.

It remains the question how to calculate the singular vectors u1, v1 numerically.
For this purpose, I adapt the power iteration algorithm, so that it can calculate the
largest singular value and the associated singular vectors now.3 The same algorithm
is also documented in Edo Liberty ’s lecture note.4

Without loss of generality, we can suppose that m ≥ n. The algorithm (Algo-
rithm 15) starts with sampling a random vector uniformly on the sphere and uses
it as the initial guess of the right singular vector (Line 3). Then, the algorithm
multiplies it with the gradient repeatedly to update the guess of the left and right
singular vectors as well as normalizes them (Line 4–11). The number of iterations
K will be determined in the next section.

The intuition behind is that ∇f(W )T∇f(W ) is a positive semidefinite matrix
of size n × n, whose largest eigenvalue is the square of the largest singular value
of ∇f(W ), and we can apply the classic power iteration on it. Here, I initiate
the right singular vector instead of the left one. If m < n, we may initiate the
left singular vector instead. This is equivalent to applying the power iteration on
∇f(W )∇f(W )T , which is also a positive semidefinite matrix.

3.5.2 Symmetric matrix space

The linear subproblem associated with (3.14) is

min
Q∈Sn, ‖Q‖tr≤θ

〈Q,∇f(W )〉 . (3.17)

3Power iteration is originally used to calculate the largest eigenvalue and the associated eigen-
vector of a positive semidefinite matrix. See Section 3.6.1 for the detail.

4http://www.cs.yale.edu/homes/el327/datamining2013aFiles/07_singular_value_
decomposition.pdf

http://www.cs.yale.edu/homes/el327/datamining2013aFiles/07_singular_value_decomposition.pdf
http://www.cs.yale.edu/homes/el327/datamining2013aFiles/07_singular_value_decomposition.pdf
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For the symmetric matrix space, there is some difficulty: the gradient matrix may
not be symmetric. As a counter example, let f(X) = 1

2(x2
11 + 2x2

12 + 3x2
21 + 4x2

22),

and then ∇f(X) =

[
x11 2x12

3x21 4x22

]
is not symmetric except for the origin. This

inconvenience makes the solution to (3.17) inevident.

However, if f satisfies f(X) = f(XT ) not only for symmetric matrices but also
for any X ∈ Rn×n, then its gradient will be symmetric. Indeed, for any i, j, take the
partial gradient on both sides

∂

∂xij
f(X) =

∂

∂xij
f(XT ).

According to the chain rule, the right-hand side equals to [∇f(XT )]ji. If X is sym-
metric, then it is equal to [∇f(X)]ji. The gradient is then symmetric for symmetric
matrices.

With this condition, we get ∇f(X) =
∑n

i=1 σiviv
T
i for any symmetric X, where

σ1 ≥ σ2 ≥ . . . ≥ σn are the eigenvalues, and vi are eigenvectors (with a little abuse of
notation). Contrary to the singular values, eigenvalues are not necessarily positive.
The key here is the eigenvalue with the largest absolute value, which can be either
σ1 or σn. If σ1 has the largest absolute value, we can take Q = −θv1v

T
1 ; otherwise,

we can take Q = θvnv
T
n . The optimum is −θσ1 and θσn respectively (in the latter

case, σn must be negative).

For symmetric matrices, the power iteration does not necessarily get us the eigen-
value with the largest absolute value. Consider the matrix diag{1,−1}, which has
eigenvectors (1, 0)T and (0, 1)T . If we take (1, 1) as the initial vector for power iter-
ation, we will get (1,−1)T and (1, 1)T alternately, which means that power iteration
does not converge. However, if we suppose that the matrix has only one eigen-
value with the largest absolute value, we can prove that power iteration converges.
Therefore, let us suppose that the set of all W s whose gradient ∇f(W ) has multiple
eigenvalues with the largest absolute value is a null set (i.e., measure equal to 0).5

The algorithm (Algorithm 16) starts with sampling a random vector uniformly
on the sphere and uses it as the initial guess of the eigenvector (Line 3). Then, the
algorithm multiplies it with the gradient repeatedly as well as normalizes it (Line 4–
7). Lastly, it uses the sign of vT∇f(W )v as an estimator of the sign of the eigenvalue
(Line 8). If the estimated eigenvalue is positive, we will return −θvvT (the negative
direction is the descent direction). Otherwise, we will return θvvT (the positive
direction is the descent direction).

3.5.3 Positive semidefinite cone

The linear subproblem associated with (3.15) is

min
Q∈Sn+, ‖Q‖tr≤θ

〈Q,∇f(W )〉 . (3.18)

5This problem cannot be solved by combining every two power iterations as a pair, which makes
the algorithm converge but not necessarily to an eigenvector.
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Algorithm 16. Solve subproblems in Sn

1: Input: ∇f(W ), θ,K
2: A← ∇f(W ) . A is symmetric
3: v ∼ Unif(Sn) . uniformly sample on the unit sphere
4: for k = 1, . . . ,K do . power iteration
5: v ← Av
6: v ← v

‖v‖2
7: end for
8: Output: Q← − sgn(vTAv)θvvT . the opposite sign of the eigenvalue

For the positive semi-definite cone, the situation is even more complicated. With
the condition the same as the above, the gradient is symmetric but not necessarily
positive semi-definite. As a counter example, taking f(X) = 1

2 [(x11 − 1)2 + x2
22],

the gradient is thus ∇f(X) = diag{x11 − 1, 1}, and then ∇f
([

0 0
0 1

])
=

[
−1 0
0 1

]
,

which is not a positive semi-definite matrix.

However, we do not need the gradient to be positive semi-definite; the symmetry
suffices. Indeed, we shall pick the smallest eigenvalue σn and the associated eigen-
vector vn. If σn is negative, we shall take Q = θvnv

T
n ∈ Sn+, and the optimum will

be θσn as above. Otherwise, we shall let Q = 0 be the origin, and the optimum will
thus be 0.

It remains the problem of obtaining the smallest eigenvalue instead of the largest
eigenvalue. For this, we transform the smallest eigenvalue to the largest by transform-
ing a symmetric matrix to a positive semidefinite one. Indeed, if f is a continuous
differentiable and is L-Lipschitz continuous with regard to the trace norm, then ac-
cording to Theorem 2.1.6, ‖∇f(W )‖sp ≤ L, which implies that the largest eigenvalue
in absolute value is less than L. Therefore, LI − ∇f(W ), where I is the identity
matrix, is a positive semidefinite matrix, and its eigenvector associated to the largest
eigenvalue is the one associated to the smallest eigenvalue of the original matrix.

The algorithm (Algorithm 17) starts with transforming the gradient to a positive
semidefinite matrix. Then, it samples a random vector uniformly on the sphere

Algorithm 17. Solve subproblems in Sn+
1: Input: ∇f(W ), L, θ,K
2: A← LI −∇f(W ) . A is PSD
3: v ∼ Unif(Sn) . uniformly sample on the unit sphere
4: for k = 1, . . . ,K do . power iteration
5: v ← Av
6: c← ‖v‖2
7: v ← v

c
8: end for
9: if c ≤ L then . the smallest eigenvalue is larger than 0
10: v ← 0 . return the origin
11: end if
12: Output: Q← θvvT
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and uses it as the initial guess of the eigenvector (Line 3). Then, the algorithm
multiplies it with the gradient repeatedly as well as normalizes it (Line 4–8). The
number of iterations K will be determined in the next section. If the eigenvalue of
the transformed matrix is smaller than L, which implies that the eigenvalue of the
original matrix is positive, we shall take Q = 0 (Line 9–11). Otherwise, we just take
θvvT (Line 12).

3.6 Nondeterministic convergence rates for trace norm
minimization

The previous section presented algorithms solving the linear subproblem associated
with trace norm minimization but without proving anything about the convergence
rate. In this section, I prove that, for general matrix space (3.13) and positive
semidefinite cone (3.15), with carefully chosen number of power iterations, Frank-
Wolfe converges sublinearly both in expectation and with high probability. For sym-
metric matrix space (3.14), the convergence remains an open question. These results
are the most important contribution of this chapter, and they lay the theoretical
foundation of combining power iteration and Frank-Wolfe to solve trace norm mini-
mization, which is one of the premises of the next chapter. I will start with a brief
introduction of power iteration and Lanczos iteration. Then, I will use the classic
results about power iteration described in Kuczyński and Woźniakowski (1992) to
prove my theory.

3.6.1 Power iteration vs. Lanczos iteration

Concerning calculating the eigenvalues and eigenvectors, Power iteration and Lanczos
iteration (Lanczos 1950) are the two dedicated tools for this purpose. They are
mainly invented for positive semidefinite matrices.

The best way to understand the commonness and difference of these two methods
is via theKrylov subspace. For an n×n positive semi-definite matrixA and a vector b,
the associated order-r Krylov subspace is defined by Kr(A, b) = span{b, Ab,A2b, . . . ,
Ar−1b}. It is easy to see that the Krylov subspace contains some information about
the matrix A. In particular, when the order-n Krylov subspace has dimension n, it
becomes exactly the column space ofA, which implies that it contains full information
about A. Of course, our task is not to replicate A but to estimate the largest
eigenvalue σ1, which is partial information about A. Therefore, we can expect to
obtain an accurate estimator of the eigenvalue from a low-order Krylov subspace.

With the notion of Krylov space, the estimator via power iteration can be ex-
pressed as

φ(A, b, r) :=
〈Ax, x〉
〈x, x〉

with x = Ar−1b, (3.19)

and the Lanczos iteration can be expressed as

ψ(A, b, r) := max

{
〈Ax, x〉
〈x, x〉

: 0 6= x ∈ Kr(A, b)
}

(3.20)
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(Kuczyński and Woźniakowski 1992). Power iteration uses only the last vector in
the generating vectors of the Krylov subspace, whereas Lanczos iteration uses the
entire subspace. If the Krylov subspace is the entire space (i.e., has the dimension
n), it becomes the definition of the eigenvalue. This is why Lanczos iteration is more
accurate than power iteration (also more computationally expensive).

It remains the question how accurate these methods are for the estimation of the
largest eigenvalue. If we take b = vn, the eigenvector associated with the smallest
eigenvalue, the Krylov space will be one-dimensional span{vn}. It is clearly not
possible to find the largest eigenvalue, no matter how many iterations we do. This
failure implies that a fixed initial vector b is not a good idea. It is preferred to use
randomly initiated vector b, so that the chance that it takes “bad” value is zero. The
intuition is that b should (almost surely) not be linearly independent of v1.

Moreover, with the order of the Krylov subspace fixed, it is obvious that the
more correlated b and v1 are, the more accurate the estimator will be. In particular,
if b = v1, order-1 Krylov subspace is enough to get the exact eigenvalue. This
randomness implies that the accuracy of the estimator itself is a random variable
and must be evaluated accordingly. We define the average relative error of the
estimator ξ as

e(ξ) :=

∫
ξ

∣∣∣∣ξ − σ1

σ1

∣∣∣∣µ(dξ), (3.21)

and the probabilistic ε relative failure as

e′(ξ) := µ

{
ξ :

∣∣∣∣ξ − σ1

σ1

∣∣∣∣ > ε

}
, (3.22)

where µ is the underlying probability of ξ.

It is clear that it is the direction of b that determines the Krylov subspace, not
its length. Without loss of generality, we can therefore sample b on the unit sphere.
The following proposition is from Kuczyński and Woźniakowski (1992, Theorem 3.1,
3.2, 4.1, 4.2), which shows that, with sampling b on the unit sphere Sn uniformly,
the power iteration has roughly an error in the order of O(1

r ), and the Lanczos
iteration has roughly an error in the order of O( 1

r2
), regardless of the distribution of

the eigenvalues, where r is the order of Krylov subspace.

Proposition 3.6.1. Let An×n be any positive semi-definite matrix, b be a random
vector sampled uniformly on the unit sphere Sn.

• When n ≥ 8, for power iteration with order-r Krylov subspace, the average
relative error

e(φ) ≤ lnn

r − 1
, (3.23)

the probabilistic ε relative failure

e′(φ) ≤
√
n(1− ε)r−1/2. (3.24)

• For Lanczos iteration with order-r Krylov subspace, the average relative error

e(ψ) ≤ 3

(
lnn

r − 1

)2

, (3.25)
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the probabilistic ε relative failure

e′(ψ) ≤ 2
√
ne−

√
ε(2r−1). (3.26)

In my dissertation, I use only the results about power iteration and build the
theory only for it; an extension to Lanczos iteration is evident though.

3.6.2 General matrix space

Theorem 3.4.3 states that, if the linear subproblem is solved in expectation and/or
with high probability, Frank-Wolfe will also converge in expectation and/or with high
probability. Proposition 3.6.1 states that, for positive semidefinite matrices, power
iteration indeed solves the subproblem in expectation and with high probability. By
combining these two results and making some adaption for the general matrices, I
get the following theorem.

Theorem 3.6.2. Suppose that m ≥ n and f : Rm×n → R is L-Lipschitz continuous
with regard to the trace norm, differentiable, convex, and has finite global curvature
CfD. b0, b1, b2, . . . , are independently sampled from the unit sphere Sn. At Iteration
t of Frank-Wolfe, solve the linear subproblem by Algorithm 15 with the initial vector
bt and Kt power iterations. The following statements are true.

1. If Kt ≥ Lθ(t+2) lnn

δCfD
for any t, then (3.10) holds.

2. If Kt ≥
Lθ(t+2) ln nT

α

δCfD
for any t, then (3.11) holds.

3. If Kt ≥
Lθ(t+2)(t ln 2+ln n

α
)

δCfD
for any t, then (3.12) holds.

Proof. To simplify the notation, I omit the time subscript t. Denote A := ∇f(W )
as the gradient matrix and σ ≤ L as the largest singular value.

Let us start with the first statement. Applying Proposition 3.6.1 to ATA, we get

E
∣∣∣∣vTATAv − σ2

σ2

∣∣∣∣ ≤ lnn

K
.

Therefore,

E
∣∣∣∣‖Av‖2σ

− 1

∣∣∣∣ ≤ E
∣∣∣∣‖Av‖2σ

− 1

∣∣∣∣ ∣∣∣∣‖Av‖2σ
+ 1

∣∣∣∣ = E

∣∣∣∣∣‖Av‖22σ2
− 1

∣∣∣∣∣ ≤ lnn

K
.

Rearranging the terms, we get

σ − E ‖Av‖2 ≤
L lnn
K .

Therefore,

E
〈
uvT , A

〉
= E[uTAv] = E

[
vTATAv

‖Av‖2

]
= E ‖Av‖2 ≥ σ −

L lnn

K
.
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Multiplied on both sides with θ, it shows that the sublinear problem is solved with

an error of θL lnn
K . To make it less than δCfD

t+2 , we only need K ≥ Lθ(t+2) lnn

δCfD
. Since

the subproblem is appropriately solved in expectation, by Theorem 3.4.3, this proves
the first statement.

Now let us prove the second and third statement together. Also according to
Proposition 3.6.1, for any ε > 0, we have

Pr

{∣∣∣∣vTATAv − σ2

σ2

∣∣∣∣ > ε

}
≤
√
n(1− ε)K .

Using the same computation as above, we get

Pr
{〈
−θuvT , A

〉
> −θσ + εLθ

}
= Pr {−‖Av‖2 > −σ + εL}
≤ Pr {−‖Av‖2 > −σ + εσ}

= Pr

{∣∣∣∣‖Av‖2σ
− 1

∣∣∣∣ > ε

}
= Pr

{∣∣∣∣vTATAv − σ2

σ2

∣∣∣∣ > ε

}
≤
√
n(1− ε)K .

Or equivalently, for any α̃ ∈ (0, 1), we have

Pr

{〈
−θuvT , A

〉
> −θσ + Lθ

[
1−

(
α̃√
n

)1/K
]}
≤ α̃.

In order to make the error less than δCfD
t+2 , we need Lθ

[
1−

(
α̃√
n

)1/K
]
≤ δCfD

t+2 . Rear-

ranging the terms, we get

K ≥
Lθ(t+ 2) ln n

α̃

δCfD
.

By replacing α̃ by either α
T or α

2t , the subproblem is appropriately solved with high
probability, either in finite horizon or infinite horizon. By Theorem 3.4.3, this proves
the second and third statement.

This theorem implies that to get the nondeterministic convergence rate, we should
increase the number of power iterations per Frank-Wolfe iteration t. For the con-
vergence in expectation and the one with high probability in finite horizon, linearly
growing number of power iterations O(t) suffices. For the convergence with high
probability in infinite horizon, quadratically growing number of power iterations
O(t2) suffices.

Note that the independence condition of b0, b1, b2, . . . cannot be omitted. In fact,
if we let ξ = b0 = b1 = b2 = · · · , Wt will be a function of bt, which makes bt no
longer independent of Wt. Hence, the assumption of Proposition 3.6.1 can no longer
be satisfied.
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3.6.3 Positive semidefinite cone

Theorem 3.4.3 states that, if the linear subproblem is solved in expectation and/or
with high probability, Frank-Wolfe will also converge in expectation and/or with high
probability. Proposition 3.6.1 states that, for positive semidefinite matrices, power
iteration indeed solves the subproblem in expectation and with high probability.

Nonetheless, as we have seen in the previous sections, the gradient is generally
not positive semidefinite, even for positive semidefinite matrices. Therefore, Propo-
sition 3.6.1 still cannot be applied directly, but, after making some adaption, we can
prove the following theorem.

Theorem 3.6.3. Suppose that f : Sn+ → R is L-Lipschitz continuous with re-
gard to the trace norm, differentiable, convex, and has finite global curvature CfD.
b0, b1, b2, . . . , are independently sampled from the unit sphere Sn. At Iteration t of
Frank-Wolfe, solve the linear subproblem by Algorithm 17 with the initial vector bt
and Kt power iterations.

1. If Kt ≥ 2Lθ(t+2) lnn

δCfD
for any t, then (3.10) holds.

2. If Kt ≥
2Lθ(t+2) ln nT

α

δCfD
for any t, then (3.11) holds.

3. If Kt ≥
2Lθ(t+2)(ln n

α
+t ln 2)

δCfD
for any t, then (3.12) holds.

Proof. Let us begin with the first statement. Algorithm 17 applies the power iteration
to the transformed gradient. According to Proposition 3.6.1, we have

E
∣∣∣∣vT (LI −∇f(W ))v − (L− σn)

L− σn

∣∣∣∣ ≤ lnn

K

before v has ever been moved to 0, where σn is the smallest eigenvalue. By simply
rearranging the terms, we get

E
∣∣vT∇f(W )v − σn

∣∣ ≤ 2L lnn
K .

Then, according to the different values of σn, we have two cases, each of which
corresponds to a different treatment. To simplify the notation, let us denote ζ :=〈
vvT ,∇f(W )

〉
= vT∇f(W )v. If σn < 0, it is obvious that

E |ζ ∧ 0− σn| ≤ E |ζ − σn| .

If σn ≥ 0, then

E |ζ ∧ 0− 0| = E |ζ − 0| 1{ζ<0} + E |0− 0| 1{ζ≥0}

≤ E |ζ − σn| .

Therefore, in both cases, the linear subproblem (3.18) is approximately solved with

an error of 2Lθ lnn
K in expectation. In order to make it less than δCfD

t+2 , we only need
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K ≥ 2Lθ(t+2) lnn

δCfD
. Since the subproblem is appropriately solved in expectation, by

Theorem 3.4.3, this proves the first statement.

Now, let us prove the second and the third statement. Also according to Propo-
sition 3.6.1, for any ε > 0, we have

Pr

{∣∣∣∣vT (LI −∇f(W ))v − (L− σn)

L− σn

∣∣∣∣ > ε

}
≤
√
n(1− ε)K .

By rearranging the terms, we get

Pr
{∣∣vT∇f(W )v − σn

∣∣ > 2Lε
}
≤
√
n(1− ε)K .

Here again we have two cases. If σn < 0, then

|ζ ∧ 0− σn| ≤ |ζ − σn| a.s.

So
Pr {|ζ ∧ 0− σn| > 2Lε} ≤

√
n(1− ε)K .

If σn ≥ 0, then

Pr{|ζ ∧ 0− 0| > 2Lε} = Pr{ζ ∧ 0 > 2Lε}+ Pr{ζ ∧ 0 < −2Lε}
= 0 + Pr{ζ < −2Lε}
≤ Pr{ζ < σn − 2Lε}
≤
√
n(1− ε)K .

Therefore, in both cases, the linear subproblem (3.18) is approximately solved
with an error at most 2Lθε and with a probability no less than 1−

√
n(1− ε)K . Or

equivalently, for any α̃ ∈ (0, 1), it is solved with an error at most 2Lθ[1 − ( α̃n )1/K ]
and with a probability no less than 1− α̃.

To make this error less than the desired precision:

2Lθ

[
1−

(
α̃

n

)1/K
]
≤
δCfD
t+ 2(

α̃

n

)1/K

≥ 1−
δCfD

2Lθ(t+ 2)

1

K
ln
α̃

n
≥ ln

(
1−

δCfD
2Lθ(t+ 2)

)
.

Using the fact that ln(1 + x) ≤ x, we can ask for the sufficient condition:

1

K
ln
α̃

n
≥ −

δCfD
2Lθ(t+ 2)

.

By simply rearranging the terms, we get

K ≥
2Lθ(t+ 2) ln n

α̃

δCfD
.
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By replacing α̃ by either α
T or α

2t , the subproblem is appropriately solved with
high probability, either in finite horizon or infinite horizon. By Theorem 3.4.3, this
proves the second and third statement.

This theorem implies that, to get the nondeterministic convergence rate, we
should increase the number of power iterations per Frank-Wolfe iteration t. For
the convergence in expectation and the one with high probability in finite horizon,
linearly growing number of power iterations O(t) suffices. For the convergence with
high probability in infinite horizon, quadratically growing number of power iterations
O(t2) suffices.

Note that the independence condition of b0, b1, b2, . . . cannot be omitted. In fact,
if we let ξ = b0 = b1 = b2 = · · · , Wt will be a function of bt, which makes bt no longer
independent of Wt and, consequently, violates the assumption of Proposition 3.6.1.

3.7 Conclusion

Trace norm minimization is a problem of great importance in machine learning,
statistics, computer vision and so forth. Many researchers solve it with Frank-Wolfe
algorithms without a sound theoretic basis. In this chapter, I laid the theoretical
foundation of using power iteration (as well as Lanczos iteration) to solve the linear
subproblem in Frank-Wolfe algorithms, indirectly making their work rigorous.

I studied the general matrix space, symmetric matrix space, and the positive
semidefinite matrix cone and provided heuristic or nonheuristic algorithms, which is
the first time these problems are so thoroughly studied. Each of these three cases
corresponds to important applications: we can foresee works using Frank-Wolfe to
solve high-dimensional trace norm minimization problems in, among others, multi-
task learning, recommender systems, Boltzmann machine, metric learning, and kernel
learning.

The only drawback in this work is that I failed to prove the nondeterministic
convergence for symmetric matrix space: the theoretical convergence of using Algo-
rithm 16 for the subproblem remains an open question.
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Chapter 4

Distributed Frank-Wolfe for Trace
Norm Minimization

After a long preparation of the theoretical foundation of using power iteration to solve
the linear subproblem of Frank-Wolfe, we finally move on to the exciting part of this
study – distributed Frank-Wolfe. This study will empower you to use Frank-Wolfe
on datasets large both on dimensions and samples.

In this chapter, I will show you how to conduct each step of Frank-Wolfe (i.e.,
solving the linear subproblem, determining the step size, and updating the iterate)
within the Bulk Synchronous Parallel model. Concerning the linear subproblem, like
in the previous chapter, I will discuss three cases – general matrix space, symmetric
matrix space, and positive semidefinite cone. I have designed distributed versions
for all of them. Regarding the update, relying on the property of rank-1 update
per Frank-Wolfe iteration, I have designed efficient ways to calculate the gradient
recursively. As to the step size, a distributed version of the line search is sometimes
feasible.

The above ideas are empirically evaluated on two problems: multi-task least
square and multinomial logistic regression, both of which belong to the general matrix
scenario. I have developed a package for these problems and evaluated the proposed
algorithms on Apache SPARK.

4.1 Introduction

Frank-Wolfe is an important algorithm to solve trace norm minimization. Each
of its iterations solves a simple linear subproblem, which has a closed-form solu-
tion expressed by the eigenvector (resp. singular vectors) associated with the ex-
treme eigenvalue (resp. singular value) of the gradient. By using power iteration,
whose complexity is characterized by matrix-vector multiplications, we can solve
high-dimensional (i.e., lots of parameters) machine learning problems.

67
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However, there are two difficulties about this approach. First, for high-dimensional
problems, we often need a massive dataset. Although trace norm minimization looks
for a low-rank solution, which is by nature less demanding about the data volume,
it is still tempting to use the entire dataset when it is available, especially when we
are not sure about the low-rank nature of the ground truth. Such kind of massive
datasets raises challenges for the computation of the gradient. Its time complexity is
proportional to the sample size, which can potentially be one billion. Concerning the
space complexity, it is preferred to store the whole dataset in the memory during the
entire optimization process so that the gradient can be recomputed efficiently. These
two aspects challenge both the memory capacity and the computation power of the
computer. Second, the subproblem becomes difficult to solve or store in the memory
when the dimensions are extremely large. The time complexity of the calculation of
the matrix-vector multiplication for a matrix of size 106 × 106 will be 1012, which
is both computationally prohibitive and expensive to fit in the memory of a single
machine.

I propose here a distributed Frank-Wolfe algorithm for trace norm minimization.
Although it is a distributed algorithm, many of the ideas fit directly in a parallel
infrastructure (i.e., shared memory) and can be even more efficient than a naive
parallel algorithm. My algorithms are a response to the above two difficulties. They
can be generally1 categorized as data parallel algorithms (see Page 31) in that the
data are split among several nodes. Splitting the data is equivalent to splitting
the loss function. Mathematically, let f be the loss function characterized by the
entire dataset. For the i-th portion of the dataset, we denote its correspondent loss
function as fi. Naturally, we have f =

∑
i fi, which is common in statistics and

machine learning. Then, each node calculates the gradient of fi, denoted as ∇fi,
locally. Since the derivative is a linear operator, we have ∇f =

∑
i∇fi, which

implies that we can sum all local gradients to get the whole gradient. While this
is straightforward in a parallel system, it can be communicationally expensive in a
distributed system when the gradient has high dimensions. Therefore, three other
low communication cost strategies are designed for this purpose.

At first glance, this simple data parallelism may not be able to handle the second
challenge, where the parameter dimension is extremely large. I shall show that, with
a particular implementation (which I called low-rank representation) incorporating
the parameters into the data, this difficulty vanishes. In other words, the parameter
is digested by the data and then be distributed among the nodes.

In particular, I consider the Bulk Synchronous Parallel (BSP) model in a star
network. The central node of the network is called master, and the other nodes
are called slaves, with the slave i holding the function fi. The slaves communicate
with the master to solve the trace norm minimization problem via Frank-Wolfe in a
distributed manner. Like in the centralized Frank-Wolfe, the distributed Frank-Wolfe
consists of three steps: solving the linear subproblem, determining the step size, and
updating. They are executed with the concerted effort of the master and the slaves
(Algorithm 18). They initialize the parameter matrix with 0 (Line 1) and then enter
the Frank-Wolfe loop. In each loop, a.k.a. epoch, they solve the linear subproblem
approximately with a precision η (Line 3), determine the step size (Line 4), and

1There exist tricks to integrate the parameters into data.
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Algorithm 18. General form of distributed Frank-Wolfe
1: Master & Slaves: W ← 0 . initialize the parameter matrix W with 0
2: repeat
3: Master & Slaves: Q← Subproblem(f , W , η)
4: Master & Slaves: Determine step size γ
5: Master & Slaves: W ← (1− γ)W + γQ
6: until stopping criterion is satisfied.
7: Output: W

update it accordingly (Line 5). They repeat this process until the stopping criterion
is met (Line 6). In my dissertation, I consider a fixed number of epochs.

Among the three steps above, the linear subproblem is the most difficult since no
slave knows the entire gradient. A naive solution is to centralize all local gradients
to the master, which is obviously communicationally expensive. In my dissertation,
I study four strategies – gradient centralizing, average mixture, distributed power
iteration, and distributed power iteration with warm start – for this problem and
discuss their advantages and disadvantages. Recalling that the subproblem comes
with slightly different flavor depending on the scenario, I will investigate the general
matrix space

min
W∈Rd×m

f(W )

s.t. ‖W‖tr ≤ θ,
(4.1)

the symmetric matrix space

min
W∈Sd

f(W )

s.t. ‖W‖tr ≤ θ,
(4.2)

and the positive semidefinite cone

min
W∈Sd+

f(W )

s.t. ‖W‖tr ≤ θ.
(4.3)

The four strategies are adapted for all three scenarios.

Having noticed that, in each Frank-Wolfe update, W increases its rank by 1, I
developed much more efficient ways to carry out the three Frank-Wolfe steps. Instead
of calculating the gradient from scratch in each epoch, I store the gradient and some
auxiliary information so as to update the gradient in a recursive way. This trick
significantly reduces the computational cost per Frank-Wolfe epoch and makes it
outperform other descent methods. In particular, I will study two concrete cases:
multi-task least square and multinomial logistic regression. The recursive update
trick applies to both cases by varying the auxiliary information stored. Moreover,
as we shall see, it is possible to conduct the line search in a distributed manner for
multi-task least square, where the auxiliary information also helps.

To store the auxiliary information, we have two options, which I call dense rep-
resentation and low-rank representation. The former consists in storing everything
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as dense matrices, whereas the latter tends to store them as low-rank matrices.
These two representations are a trade-off regarding the dataset and the computation
resources. The former is more suitable for datasets with average dimensions and
clusters with few cores but large memory size, whereas the latter is more suitable
for datasets with high dimensions and clusters with many cores but average memory
size.

To illustrate the feasibility of the above ideas, I have conducted some experiments
on Apache SPARK. I have tested the four aforementioned strategies for multi-task
least square and multinomial logistic regression via the dense representation. The
results show that, in low dimension, gradient centralizing and average mixture suf-
fice, whereas, in high dimension, distributed power iteration with or without warm
start outperform. Although these experiments are conducted on SPARK, the ex-
periment results are expectable on other infrastructures. Meanwhile, surprisingly,
one or two power iterations per epoch is already enough: increasing the number
of power iterations has little or no marginal gain. This result appears to be much
more optimist than the linearly or quadratically increasing iteration number stated
in Theorem 3.6.3.

This chapter is organized as follows. Section 4.2 describes the four strategies
for the linear subproblem. Section 4.3 presents how to update the gradient in a
recursive manner to avoid the expensive gradient evaluation. Since this technique is
problem dependent, I shall discuss multi-task least square and multinomial logistic
regression in particular. Section 4.4 introduces and compares the dense and low-
rank representation. Section 4.5 presents the implementation. Section 4.6 shows the
experiments.

4.1.1 Related works

There has been some effort to make Frank-Wolfe algorithm distributed. Bellet et al.
(2014) proposed a generic Frank-Wolfe framework for `1-norm minimization. Wang
et al. (2016) proposed a parallel and distributed version of the Block-Coordinate
Frank-Wolfe algorithm (Lacoste-Julien et al. 2012). Wai et al. (2017a) proposed a
decentralized Frank-Wolfe framework for general problems, which is best when the
parameter in each node is sparse. My work focuses on standard Frank-Wolfe for
trace norm minimization and uses the BSP model in a star network. Moharrer and
Ioannidis (2017) are particularly interested in the map-reduce type framework. They
identified two properties that can make the map-reduce applicable. My work has two
differences from theirs: on the one hand, without being implementation-picky, my
framework can be implemented by either map-reduce or message passing; on the
other hand, I am particularly interested in matrix parameter instead of vector pa-
rameter as in their work. Concerning the implementation, we share a lot in common:
we both use SPARK and map-reduce and make use of SPARK’s particular proper-
ties to accelerate the calculation. For instance, the core concept, called common
information in their paper, also enjoys a recursive update.

Based on the work of Wai et al. (2017a), for the trace norm minimization prob-
lem, the same authors further incorporated a decentralized power method to solve
the FW linear subproblem with the aim of reducing the communication cost (Wai
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et al. 2017b). Although we all study trace norm minimization and use the power
method, my work has six differences from theirs. First, their algorithm is based
on the Gossip protocol and works on any network topology, whereas I assume the
availability of a master-slaves star network and can hence have much less commu-
nication overhead. Second, they transform asymmetric matrices to symmetric ones
via the method documented in Fazel et al. (2001) (see Page 20 of this dissertation
as well), whereas I work on asymmetric matrices directly, which entails less memory
and communication overhead. Third, they prove the convergence in probability for
their Gossip-based algorithm, whereas I prove the convergence in both probability
and in expectation for the master-slave scenario. Fourth, they are more interested in
the matrix completion application with the use of MovieLens100k dataset2, whereas
I am more interested in the multi-task learning application with the use of the Ima-
geNet dataset (Deng et al. 2009). Fifth, in their paper, they provide some primary
experiment results with a single-thread MATLAB environment, whereas I demon-
strate my algorithm on a physical cluster and with larger-scale datasets. Last but
not least, they use more than 6 power iterations per FW iteration, whereas I use as
few as 1 or 2 power iterations.

Multinomial logistic regression is an important problem in machine learning, and
researchers have applied Frank-Wolfe to it (on a single machine). Dudik et al. (2012)
proposed a lifted coordinate descent algorithm, which is equivalent to Frank-Wolfe.
Their experiments on both synthetic dataset and a subset of ImageNet illustrate that,
regarding the throughput, Frank-Wolfe is as good as accelerated proximal gradient
(Toh and Yun 2010) and iterative rescaling and alternating minimization, if not
better than. Liu and Tsang (2017) targeted the particular structure of the multi-class
classification problem and proposed a stratified progressive sampling Frank-Wolfe.
Their experiments illustrate that their methods outperform stochastic Frank-Wolfe
and stochastic variance-reduction Frank-Wolfe regarding throughput on most real
datasets.

4.1.2 Contributions

This chapter is composed of my contributions.

• I designed distributed strategies to solve the linear subproblem of trace norm
minimization. These strategies work for the general matrix space, the symmet-
ric matrix space, and the positive semidefinite cone.

• For two concrete models – multi-task least square and multinomial logistic
regression, I designed dedicated recursive update schemes, which avoid the
expensive full gradient evaluation at each epoch. This technique significantly
accelerates the algorithms, and it works both on a distributed system and on
a typical single-node system.

• In distributed systems, we need to store the parameters in each node. Regard-
ing the manner to store the gradient, I designed two representations – dense
and low-rank. The former is adept at the datasets with medium parameter

2http://grouplens.org/datasets/movielens/100k/

http://grouplens.org/datasets/movielens/100k/
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size or at the clusters with a low node/memory ratio, whereas the latter is
adept at the datasets with large parameter size or at the cluster with a high
node/memory ratio.

• To carry out my study in a systematic way, I developed a PySpark package,
which is modularized and extensible. Through this package, users can imple-
ment their own objective functions by following the API and profit from my
research fruit. In particular, I have implemented the objective functions for
multi-task least square and multinomial logistic regression.

4.2 Distributing strategies

This section presents four distributing strategies to solve the linear subproblem.
As we have seen in Section 3.5, for trace norm minimization, the subproblem is
to calculate the eigenvector (resp. singular vectors) associated with the extreme
eigenvalue (resp. singular value). The four strategies thus consist in calculating
these eigenvectors (resp. singular vectors) in a distributed setting.

These strategies were initially proposed by Aurélien Bellet in an unofficial meeting
in LIP6/UPMC and then concretized and made feasible by me afterward. All of
these four strategies require (logically) a star network, whose center node is called
master and other nodes slaves. Although the algorithms follow a BSP model, it is
evident that it will not hurt the algorithms substantially by ignoring some untimely
information sent from a few slow slaves.

4.2.1 Gradient centralizing

As the name suggests, gradient centralizing consists in centralizing all local gradients
from the slaves to the master. Once the gradients are centralized and summed, the
master can solve the subproblem with whatever classic algorithms. Algorithm 19
describes this strategy, whose description is generic and thus applicable to all three
scenarios: (4.1), (4.2), and (4.3).

Centralizing the gradients is not equivalent to centralizing the samples. The
gradient contains only the local information of the objective function (and hence
these of the samples). We are therefore not able to recover the objective function
by gradients at few points except in some extremely simple cases. Besides, the
gradient has fixed size (i.e., it does not increase with the number of samples), and
it is normally much smaller than the dataset. In general, for a gradient matrix of
size d×m, this strategy requires one communication round and dm communication
volume per epoch.

4.2.2 Average mixture

Average mixture (Mcdonald et al. 2009, Zinkevich et al. 2010) is a common strategy
in distributed machine learning. For a statistic of interest on the whole dataset,
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we can estimate it by the (weighted) average of the statistics in question on the
local datasets. If the statistic is a linear functional, this estimator will be equal to
the global statistic; it is not, otherwise (see Jensen’s inequality in Section 2.1.3).
This strategy helps to reduce the variance but not the bias (Mcdonald et al. 2009,
Zinkevich et al. 2010).

For our problem, we can calculate the local solution Qi at each slave and then
calculate their average at the master. However, the resulted solution matrix may
no longer be of rank-one. Indeed, it, almost surely, has a rank equal to the number
of the slaves. Recalling that, in Frank-Wolfe, each update is precisely a rank-one
matrix, we lose consequently the most remarkable property of Frank-Wolfe algo-
rithms. Moreover, this excess of ranks will result in more communication volume at
the update step.

Alternatively, we choose not to average the solution but the eigenvectors / sin-
gular vectors instead. However, these vectors can be either positive or negative (i.e.,
its opposite direction), which can essentially cancel each other. We need therefore to
ensure that these vectors are more or less in the same direction, which can be done
by, say, normalizing the coefficient with the largest absolute value to 1. Indeed, if
all vectors are close to each other, their coefficients with the largest absolute value
will be likely at the same place. This normalization will essentially align them to
the same direction. Of course, after this average, the obtained eigenvector / singular
vectors may no longer have unit length and thus require one more normalization.

Let us define the function apogee(x) := xarg maxi{|xi|} as the entry of x with
the largest absolute value.3 In the general matrix scenario (Algorithm 20), the
slaves divide both the (local) left and right singular vector by the apogee of the right
singular vector (Line 2–3), and then the master uses the averaged and normalized
version (Line 4–6). In the other two scenarios (Algorithm 21), the slaves divide the
(local) eigenvector by its apogee (Line 2), and then the master uses the averaged and
normalized version (Line 3–5). It is worth mentioning that the master needs ci for
the estimation of the sign of the eigenvalue, which allows it to take the sign opposite
to the one of the eigenvalue. For positive semidefinite cone Sd+, the evaluation and
communication of ci is optional because they are always non-positive.4 All three
scenarios require one round of communication and d+m communication volume per
epoch, which is much cheaper than gradient centralizing.

Since this strategy is a variance reduction technique, the higher the sample-
parameter ratio, the higher the precision of this strategy will be; and the more slaves
are used, the less precise this strategy will be (because of more bias). As an extreme
case, when the sample size on each slave is not sufficient for each slave to learn

3This is not equal to the `∞-norm, since it can be negative.
4If it is positive, just take 0 as in Algorithm 17.

Algorithm 19. Gradient centralizing
Slave i: ∇fi(W ) ⇑ . slaves send all local gradients to the master
Master: Calculates Q ⇓ . master sends the update to all slaves
Note: ⇑ stands for convergecast. ⇓ stands for broadcast. See Page 32 for the
definition.
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independently, their eigenvectors / singular vectors can be very far away from each
other, which will break this strategy.

Algorithm 20. Average mixture for Rd×m

1: Slave i: solve singular vectors ui, vi of interest
2: Slave i: ci ← apogee(vi)
3: Slave i: ui, vi ← ui/ci, vi/ci ⇑
4: Master: u, v ←

∑
i u

i,
∑

i v
i

5: Master: u, v ← u/ ‖u‖2 , v/ ‖v‖2
6: Master: Q← −θuvT ⇓

Algorithm 21. Average mixture for Sd and Sd+
1: Slave i: solve eigenvector vi and eigenvalue ci of interest
2: Slave i: ci, vi ← ci, vi/ apogee(vi) ⇑
3: Master: c, v ←

∑
i c
i,
∑

i v
i

4: Master: v ← v/ ‖v‖2
5: Master: Q← − sgn(c)θvvT ⇓

4.2.3 Distributed power iteration

Gradient centralizing is accurate but communicationally expensive, whereas average
mixture is communicationally cheap but may be inaccurate when the per-slave sam-
ple size is not enough. Distributed power iteration allows us to achieve the precision
of gradient centralizing while still maintaining a moderate communication cost.

By analyzing the computation procedure of power iteration, we can find that it
is composed of two alternating phases – matrix-vector multiplication and normal-
ization. Since matrix multiplication is a linear operator, we can execute it locally,
sum them and normalize it at the master, and then send it back to the slaves; this
strategy is what I mean by distributed power iteration here.

Algorithm 22 describes the general matrix scenario, which is a distributed way
to do the same thing as in Algorithm 15. The power iteration comes in pairs,
with each pair composed of a left matrix multiplication (Line 4) and a right matrix
multiplication (Line 7). With one calculating the left singular vector and the other
calculating the right singular vector, each pair needs two rounds of communication.
In the description, the algorithm starts with the right singular vector, uniformly
sampled from the sphere (Line 2). This choice is optional: we can start with the left
singular vector. In practice, it is preferred to start with a vector in lower dimension,
which will lead to a better result.

Algorithm 23 describes the symmetric matrix scenario, which is a distributed
way to do the same thing as in Algorithm 16. Here, we need to store the eigenvector
of the last iteration v′ (Line 5). By calculating the inner product of v and v′, we are
actually evaluating v′TAv′ as in Algorithm 16.

Algorithm 24 describes the positive semidefinite matrix scenario, which is a dis-
tributed way to do the same thing as in Algorithm 17. We suppose here that each
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Algorithm 22. Distributed power iteration for Rd×m

1: Slave i: Ai ← ∇fi(W )
2: Master: v ∼ Unif(Sm) ⇓.
3: for k = 1, . . . ,K do
4: Slave i: ui ← Aiv ⇑ . left multiplication
5: Master: u←

∑
i u

i

6: Master: u← u
‖u‖2

⇓
7: Slave i: vi ← ATi u ⇑ . right multiplication
8: Master: v ←

∑
i v
i

9: Master: v ← v
‖v‖2

⇓
10: end for
11: Master & Slaves: Q← −θuvT

Algorithm 23. Distributed power iteration for Sd

1: Slave i: Ai ← ∇fi(W )
2: Master: v ∼ Unif(Sd) ⇓.
3: for k = 1, . . . , 2K do
4: Slave i: vi ← Aiv ⇑
5: Master & Slaves: v′ ← v . store the old eigenvector
6: Master: v ←

∑
i v
i

7: Master: v ← v
‖v‖2

⇓
8: end for
9: Master & Slaves: Q← − sgn(vT v′)θvvT

Algorithm 24. Distributed power iteration for Sd+
1: Slave i: Ai ← LiI −∇fi(W ) . make it positive semidefinite
2: Master: v ∼ Unif(Sd) ⇓
3: for k = 1, . . . , 2K do
4: Slave i: vi ← Aiv ⇑
5: Master: v ←

∑
i v
i

6: Master: c← ‖v‖2
7: Master: v ← v

c ⇓
8: end for
9: if c ≤

∑
i Li then . the smallest eigenvalue is positive

10: Master: v ← 0 ⇓ . return the origin
11: end if
12: Master & Slaves: Q← θvvT

local fi is Li-Lipschitz continuous with regard to the trace norm, so that f is
∑

i Li-
Lipschitz continuous. Equivalent, letting L :=

∑
i Li, we can also multiply LI at the

master instead of doing it locally at each slave.

All of these algorithms in this subsection need 2K communication rounds and
K(d+m) communication volume.
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4.2.4 Distributed power iteration with warm start

One may ask that, if we do several matrix-vector multiplications within each com-
munication round, whether the algorithms will converge faster? Unfortunately, the
modified version is not equivalent to the original one, and it may lead to a statistical
bias. However, this idea is closely related to the idea of warm start, which consists in
using the average-mixture eigenvector / singular vectors as the initial guess, instead
of sampling from the unit sphere. It can be expected that the warm-start guess
is closer to the true eigenvector / singular vectors, and thus it needs fewer power
iterations afterward.

The detailed description is omitted; one just inserts the average mixture algo-
rithms (removing the last line) into the correspondent distributed power iteration
by replacing the second line. This algorithm needs 2K + 1 (one for warm start)
communication rounds and m+K(d+m) communication volume. See Table 4.1 for
a summary.

Comm. volume Comm. rounds
central dm 1
avgmix d+m 1
power K(d+m) 2K
pow/ws m+K(d+m) 1 + 2K

Table 4.1 – The cost to solve the subproblem of a matrix of dimension d ×m in a
distributed setting. 2K is the number of power iterations. central stands for gra-
dient centralizing. avgmix stands for average mixture. power stands for distributed
power iteration. pow/ws stands for distributed power iteration with warm start.

4.3 Recursive update

The expensive gradient evaluation motivates the parallel or distributed gradient com-
putation. In addition to this approach, this section presents a recursive way to update
the gradient instead of repeatedly evaluating it from scratch. Since each Frank-Wolfe
epoch only adds a rank-one matrix to the solution, which implies that the new gra-
dient will not be too far away from the old one, by updating the gradient recursively,
we can significantly reduce the computation cost.

Since this update scheme varies according to the problem, I will discuss, for
illustration, two specific problems: multi-task least square and multinomial logistic
regression. It is applicable to both non-distributed system, as in this section, and
the distributed system, as in the next section. Last but not least, not only does this
trick apply to the gradient, but also the line search step size (if available) benefits
from it, which will be illustrated in multi-task least square.
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4.3.1 Multi-task Least square

The intuition of multi-task least square is described in Section 2.4.3, and we will
proceed directly to the computation here.

Recall that the objective function is

f(W ) = 1
2 ‖XW − Y ‖

2
F = 1

2

∑
i,j

(Xiwj − yij)2, (4.4)

where Xn×d and Yn×m are data records; Wd×m is the regression coefficients, which
is supposed to be a low-rank matrix (i.e., rank(W ) � d ∧m); Xi is the i-th line of
X; wj is the j-th column of W ; and yij is the (i, j)-th entry of Y .

Its gradient can be expressed as

∇f(W ) = XT (XW − Y ) =
∑
i

(XT
i Xi)W −

∑
i

XT
i Yi, (4.5)

where Yi is the i-th line of Y . It bears both a concise matrix formulation and a
summation formulation.

For multi-task least square, there exists a closed form for the line search step
size. Let Q be the solution provided by the linear minimization oracle (LMO). The
line search step size is the solution of

arg max
γ∈[0,1]

{f̃(γ) := f(W + γ(Q−W ))}. (4.6)

The one-dimensional function f̃ is a composition of a convex function and an affine
mapping and thus is itself a convex function (Boyd and Vandenberghe 2004, Sec-
tion 2.2.2).

Taking derivative on γ, by the chain rule, we get

d
dγ f̃(γ) =

〈
XTX(W + γ(Q−W ))−XTY,Q−W

〉
=
〈
XTXW −XTY,Q−W

〉
+ γ

〈
XTX(Q−W ), Q−W

〉
.

Making it equal to zero, we get the line search step size

γ =
〈−∇f(W ), Q−W 〉

〈XTX(Q−W ), Q−W 〉
=

〈∑
iX

T
i Yi −

∑
i(X

T
i Xi)W,Q−W

〉〈∑
iX

T
i Xi(Q−W ), Q−W

〉 . (4.7)

It is a generalization of (3.11) in Jaggi (2011); indeed, by letting W = I, we recover
the formula described therein. Since the step size should be in [0, 1], but the step size
given above can exceed one (it cannot be negative because it is a descent direction),
we will have to take γ ∧ 1.

The gradient is a polynomial of W , which gives us the opportunity to update it
recursively.

In particular, the gradient at the next epoch is

XTX((1− γ)W + γQ)−XTY,
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Algorithm 25. Recursive update for multi-task least square

1: Φ, Ψ← XTX, XTY . constant matrices
2: A← 0 . A := XTXW
3: a, b← 0, 0 . a, b :=

〈
XTXW,W

〉
,
〈
XTY,W

〉
4: loop
5: Send A−Ψ to LMO . the gradient
6: Get u, v from LMO . uvT = Q
7: B ← (Φu)vT . B := XTXQ
8: c, d, e← 〈B,Q〉 , 〈Ψ, Q〉 , 〈A,Q〉
9: γ ← e−a−d+b

c−2e+a ∧ 1 . line search step size
10: A← (1− γ)A+ γB . update A
11: a← (1− γ)2a+ 2γe+ γ2c . update a
12: b← (1− γ)b+ γd . update b
13: end loop

or equivalently

(1− γ)XTXW + γXTXQ−XTY.

If we have the value of XTXW at the current epoch, then by simply calculating
XTXQ, we can obtain the value of XTXW at the next epoch. Subtracting XTY ,
which is constant across the epochs, we get the gradient of the next epoch. The
computation of XTXQ is much cheaper than XTXW since Q is a rank-one matrix.
Supposing Q = uvT , we can calculate the matrix-vector multiplication of XTX and
u and then the outer product of XTXu and v. This trick incurs O(d2 + dm) time
complexity instead of O(d2m) as in the full gradient evaluation.

It is the same for the line search step size. To calculate the current step size, we
have to evaluate

〈
XTXW,W

〉
,
〈
XTY,W

〉
,
〈
XTXQ,Q

〉
,
〈
XTY,Q

〉
, and

〈
XTXW,Q

〉
(equal to

〈
XTXQ,W

〉
). While the 3rd, 4th and 5th must be calculated at each

epoch, the 1st and 2nd can be stored and updated recursively. Supposing that we
have already the five quantities above, the 1st and 2nd quantity of the next epoch
can be updated by〈

XTX((1− γ)W + γQ), (1− γ)W + γQ
〉

=(1− γ)2
〈
XTXW,W

〉
+ 2γ(1− γ)

〈
XTXW,Q

〉
+ γ2

〈
XTXQ,Q

〉
,

and 〈
XTY, (1− γ)W + γQ

〉
= (1− γ)

〈
XTY,W

〉
+ γ

〈
XTY,Q

〉
.

However, the benefit of this update is marginal, which does not reduce the computa-
tion complexity. One meaningful benefit may be that it avoids the materialization of
Q by using its low-rank property. Whether we use this update or not, the complexity
is always O(dm).

The algorithm is summarized in Algorithm 25, which is presented as a separated
thread communicating with the LMO. In other words, it receives the output of the
LMO (Line 6) and sends the gradient to the LMO (Line 5). Despite its particular form,
one can easily integrate it into any Frank-Wolfe variants.
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4.3.2 Multinomial logistic regression

The intuition of multinomial logistic regression and its three forms of the objective
function are presented in Section 2.4.4, and I will therefore proceed directly to the
computation of the gradient in this subsection.

Let us take the objective function

− ln

n∏
i=1

Pr(Ci) =

n∑
i=1

−XiwCi + ln

m∑
j=1

eXiwj

 (4.8)

as the starting point. Ignoring the outermost summation, it is composed of two
parts. Let us first consider the second part. By the chain rule, we get

d

dW
ln
∑
j

eXiwj =
XT
i e

XiW∑
j e

Xiwj
, (4.9)

where the exponential of a vector is defined component-wisely.

Define the softmax function from Rn to Rn+ as softmax(x) := exp(x)∑
i exp(xi)

. Each
component of its value is in [0, 1], and the sum is equal to 1. We call it softmax
because it has a close relation with the max function. Indeed, when λ → +∞,
softmax(λx) tends to the max function (i.e., with the component with the largest
value equal to 1, and 0 for others); when λ = 0, softmax(λx) becomes a vector with
all components equal. It is a smooth alternative to the max function. By denoting
the line vector Si := softmax(XiW ), (4.9) can be expressed compactly as XT

i Si.

Now let us consider the first part of (4.8). Let Ci be the class number of the i-th
sample, denote the line vector Yi = Yi(j) := 1[j==Ci]. Then,

d

dW
XiwCi = XT

i Yi.

Combining the above two parts, we get

∇f(W ) =
∑
i

XT
i (Si − Yi) = XT (S − Y ), (4.10)

where S := [S1;S2; . . . ;Sn] and Y := [Y1;Y2; . . . ;Yn] are line vector stacking (i.e.,
matrices with line vectors Si and Yi respectively). Just like (4.5), for multinomial
logistic regression, we also get both a concise matrix formulation and a summation
formulation.

We may also want to get the line search step size. However, it does not have a
closed form for multinomial logistic regression because γ appears both in and outside
the exponential in the derivative, which makes it impossible to solve the equation.

Although the gradient is not a polynomial of W , we can still obtain a recursive
update, for it is the composition of a general function and a polynomial. Algorithm 26
shows the update scheme. To update the XW , we can use the one-rank property of
Q as in multi-task least square. However, to calculate XTS, we are still faced with
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Algorithm 26. Recursive update for multinomial logistic regression
1: A← 0 . A := XW
2: loop
3: S ← softmax(A) . softmax is defined line-wisely
4: Send XT (S − Y ) to LMO . gradient
5: Get u, v from LMO . uvT = Q
6: A← (1− γ)A+ γ(Xu)vT . update A
7: end loop

a matrix-matrix multiplication. In general, S cannot be a low-rank matrix, and the
complexity of the update is consequently O(ndm) unless X is a low-rank or sparse
matrix. Without further conditions, the benefit of the recursive update is limited in
multinomial logistic regression.

4.4 Dense vs. low-rank representation

The previous section describes how to do the recursive update on a single machine,
and this section will discuss how to do it in a distributed system. According to
the manner we store variables, it can be categorized into two solutions – dense
representation and low-rank representation. The former is for datasets with medium-
sized parameters, and the latter is for datasets with large-sized parameters.

Both the dense representation and the low-rank representation are problem spe-
cific. I will first discuss the multi-task least square and then multinomial logistic
regression in each representation. Throughout this section, I suppose that there are
N data samples distributed to M slaves, with each slave hosting n := N

M samples.

4.4.1 Dense representation

For multi-task least square, the gradient can be expressed as a summation across
the samples as in (4.5). With a little abuse of notation, we can generalize it by
considering Xi and Yi as matrices correspondent to the data of the i-th slave, and the
equation (4.5) still holds. This viewpoint shift suggests a straightforward adaption
of Algorithm 25, as described in Algorithm 27.

Algorithm 27 uses an important trick to calculate the line search step size (Line 9–
10). The formula for the line search step size (4.7) is not linear with regard to the
dataset, but its numerator and denominator are. By summing the numerators and
denominators respectively via the master, we finish the task.

To avoid the heavy notation, I will drop the subscript i during the complexity
analysis. The initialization of XTX and XTY needs O(nd2 + nmd) operations and
O(d2 +md) space (Line 1). The evaluation of the gradient needs O(md) operations
(Line 5). During the LMO procedure, all strategies except gradient centralizing re-
quire some computation. Supposing that they all use power iteration either locally
or distributedly, each pair of power iteration will take O(md) time complexity. The
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Algorithm 27. Dense representation for multi-task least square

1: Slave i: Φi, Ψi ← XT
i Xi, X

T
i Yi . O(nd2 + nmd)

2: Slave i: Ai ← 0
3: Slave i: ai, bi ← 0, 0
4: loop
5: Slave i: Send Ai −Ψi to LMO . O(md)
6: Slave i: Get u, v from LMO
7: Slave i: Bi ← (Φiu)vT . O(d2 +md)
8: Slave i: ci, di, ei ← 〈Bi, Q〉 , 〈Ψi, Q〉 , 〈Ai, Q〉 . O(md)
9: Slave i: αi, βi ← ei − ai − di + bi, ci − 2ei + ai ⇑
10: Master: γ ←

∑
i αi∑
i βi
∧ 1 ⇓

11: Slave i: Ai ← (1− γ)Ai + γBi . O(md)
12: Slave i: ai ← (1− γ)2ai + 2γei + γ2ci
13: Slave i: bi ← (1− γ)bi + γdi
14: end loop

Algorithm 28. Dense representation for multinomial logistic regression
1: Slave i: Ai ← 0
2: Slave i: Si ← 1

mE . E is a matrix whose all entries equal to 1
3: Slave i: Send XT

i Si −XT
i Yi to LMO . O(nd+md)

4: loop
5: Slave i: Get u, v from LMO
6: Slave i: Ai ← (1− γ)Ai + γ(Xiu)vT . O(nd+ nm)
7: Slave i: Si ← softmax(Ai) . O(nm)
8: Slave i: Send XT

i (Si − Yi) to LMO . O(nmd)
9: end loop

update of XTXW (including the computation of XTXQ) needs O(d2 +md) opera-
tions (Line 7). The line search (Line 9–10) takes one communication round, and the
communication volume is O(1). Regarding the computation cost, it will take O(md)
operation to calculate those inner products (Line 8). Here again, the recursive up-
date of those inner products are optional, which may not reduce the computation
time and only reduces the space by avoiding materializing Q. It does not reduce the
space complexity though, which is lower bounded by O(d2 +md).

For multinomial logistic regression, Algorithm 28 is a straightforward adaption of
Algorithm 26 with one exception: I put the gradient evaluation of the first epoch out
of the loop, as an initialization (Line 2–3). This change is because it is much cheaper
to calculate at the first epoch. Indeed, at the first epoch, S = 1

mE , where E is a
matrix whose all entries equal to 1. Therefore, to calculate XTS, we only need to
multiply XT to the first column of S (O(nd) operations) and then replicate it m− 1
times (O(md) operations). To calculate XTY , since Y is a sparse matrix with only n
non-zero entry, we need O(nd) operations. To sum up, the whole initialization needs
O(nd + md) operations. On the contrary, the gradient evaluation in the following
epochs needs (O(nmd)) operations each, which is much more expensive and also
more expensive than the quadratic complexity of multi-task least square. Regarding
the space complexity, it needs O(nd+md) to store XW and the gradient.
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4.4.2 Low-rank representation

The major disadvantage of the dense representation is that it has to generate the
gradient matrix for each slave, which incurs a total space complexity of O(Mmd).
If either m and d are huge (e.g., ≥ 106) or there are many slaves (e.g., ≥ 1000), this
can be prohibitively expensive. That said, can we use Frank-Wolfe if the gradient
itself is not generated?

If it were a general gradient descent method, it would be impossible without
generating the gradient. However, for Frank-Wolfe, the answer is yes: we can do
that. The intuition is that what we want is not the gradient itself, but its extreme
eigenvector / singular vectors. Since we shall use power iteration to get these vectors,
we can use any representation of the gradient allowing us to do power iteration.

The gradient XT (XW −Y ) of multi-task least square and XT (S−Y ) of multino-
mial logistic regression both have the form of a d×n matrix XT being multiplied by
another n×m matrix. If n� d∧m, then the gradient is a low-rank matrix, and the
low-rank decomposition is explicitly given with no cost. As the name suggests, the
low-rank representation keeps this decomposition as the gradient, instead of evalu-
ating it and carrying it as a dense matrix. For the power iteration, we can multiply
the guessed vector with these two low-rank matrices of the low-rank representation
successively, which needs O(nd+ nm) operation per iteration.

To use this representation, the other parts of the algorithm should be designed
accordingly. In more detail, multi-task least square is described in Algorithm 29.
The main difference compared with Algorithm 27 is that here we store XW instead
of XTXW (Line 2), which requires O(nm) space complexity and is coherent to the
low-rank representation. Although the high dimension of W is troublesome at the
first place, XW successfully assimilates W into the data and is then distributed
across the nodes. For the line search update, (4.7) can be reformulated as

γ =
〈Y −XW,XQ−XW 〉
〈XQ−XW,XQ−XW 〉

. (4.11)

The recursive update scheme is analogous to Algorithm 27.

Algorithm 30 describes the low-rank representation for the multinomial logistic
regression, which is not much different from Algorithm 28. Since we cease to calculate
XTS, the computation complexity becomes quadratic instead of cubic, which is an
accidental benefit brought by the low-rank representation.

Apparently, the low-rank representation can also be used for parallel systems,
and it provides not only the parallel preparation of gradients but also parallel power
iterations.

4.4.3 Comparison

Table 4.2 is a summary of all complexities. For multi-task least square, the dense
representation will use O(Md(d + m)) space and O(d(d + m)) time, ignoring the
expensive initialization; and the low-rank representation will use O(N(d+m)) space
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Algorithm 29. Low-rank representation for multi-task least square
1: Slave i: Xi, Yi
2: Slave i: Ai ← 0 . Ai := XiW
3: Slave i: ai, bi ← 0, 0 . ai, bi := 〈XiW,XiW 〉 , 〈XiW,Yi〉
4: loop
5: Slave i: Send (Xi, Ai − Yi) to LMO . O(nd)
6: Slave i: Get u, v from LMO
7: Slave i: Bi ← (Xiu)vT . Bi := XiQ, O(nd+ nm)
8: Slave i: ci, di, ei ← 〈Bi, Bi〉 , 〈Yi, Bi〉 , 〈Ai, Bi〉 . O(nm)
9: Slave i: αi, βi ← ei − ai − di + bi, ci − 2ei + ai ⇑
10: Master: γ ←

∑
i αi∑
i βi
∧ 1 ⇓

11: Slave i: Ai ← (1− γ)Ai + γBi . O(nm)
12: Slave i: ai ← (1− γ)2ai + 2γei + γ2ci
13: Slave i: bi ← (1− γ)bi + γdi
14: end loop

Algorithm 30. Low-rank representation for multinomial logistic regression
1: Slave i: Xi, Yi
2: Slave i: Ai ← 0 . XiW
3: loop
4: Slave i: Si ← softmax(Ai) . O(nm)
5: Slave i: Send (Xi, Si − Yi) to LMO . O(m)
6: Slave i: Get u, v from LMO
7: Slave i: Ai ← (1− γ)Ai + γ(Xiu)vT . O(nd+ nm)
8: end loop

and O(n(d+m)) time, which suggests that, when the sample size of each slave n is
smaller than the feature dimension d, the low-rank representation is cheaper in both
space and time complexity. Therefore, for CPU clusters, whose cores are limited
and memory is abundant, it is preferable to use the dense representation, especially
for low dimensional data; for GPU clusters, whose cores are abundant and memory
is limited, it is preferable to use the low-rank representation, especially for high
dimensional data.

For multinomial logistic regression, the low-rank representation is almost always
better than the dense representation except when the data are in low dimension and
when lots of power iterations are required.

4.5 Implementation

The four distributed strategies described in Section 4.2 are generic: they do not
depend on any model or any infrastructure. The independence of the model implies
that they apply to either multitask least square, or multinomial logistic regression,
or any other loss functions. The independence of the infrastructure implies that they
apply to any physical computation units and communication protocol.
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Multi-task least square Multinomial logistic regression
Dense Low-rank Dense Low-rank

Memory O(d2 +md) O(nd+ nm) O(nd+md) O(nd+ nm)
Initialization O(nd2 + nmd) 0 O(nd+md) 0

Update O(d2 +md) O(nd+ nm) O(nmd) O(nd+ nm)
Power O(md) O(nd+ nm) O(md) O(nd+ nm)

Line search O(md) O(nm) — —

Table 4.2 – The space and time complexities of various operations for different repre-
sentations and problems. n is the sample size on a single slave, d and m are the row
and column size of W . “Memory” represents the space complexity to store the vari-
ables. “Initialization” is the time complexity of the initialization of these variables.
Since low-rank representation uses the raw data at the first epoch, its complexity is
zero. “Update” represents the time complexity of the update of the variables and the
preparation of the gradient at each epoch. “Power” represents the time complexity
of each power iteration. “Line search” represents the extra time complexity of the
line search at each epoch if applicable.

As mentioned in the previous section, the recursive update avoids repeated calcu-
lation of the gradient from scratch and hence accelerates the computation. Despite
that the specific scheme of recursive update depends on the model (viz. loss func-
tion) in question, it is still oblivious to the underlying infrastructure: it can be
implemented for any physical computation units and communication protocol.

These different layers of abstraction give us the maximal freedom and make it
widely applicable. In this section, I will briefly discuss several infrastructures and
then focus on a specific one – clusters of commodity machines deployed with Apache
SPARK.

4.5.1 Infrastructure

The word infrastructure in this section has a strict meaning, which indicates the
physical computation units involved and the communication protocol among them.
As mentioned in Section 2.5, the hypothesis of distributed machine learning is the
unavailability of a shared memory: each unit has its own local memory. These units
can be several commodity machines connected in a local area network (LAN), or
thousands of personal computers connected into the Internet, or several CPUs with
unshared caches on the same motherboard, or several independent video cards on
the same motherboard. In my thesis, I am particularly interested in commodity
machines in LAN. Other infrastructures can also be interesting and have their own
application situations though.

For a cluster of commodity machines in LAN, they can communicate with each
other by message passing. Indeed, a Message Passing Interface (MPI) exists for
distributed computing application, and the earliest distributed machine learning re-
searches also benefit a lot from MPI. Nevertheless, with the prevalence of distributed
machine learning, researchers find some common patterns across various applications,
which gives birth to frameworks. For example, Google’s map-reduce framework only



4.5. IMPLEMENTATION 85

Figure 4.1 – Different protocols possible.

requires the researcher to implement the map function and the reduce function,
which can already express a wide range of machine learning algorithms. In addition,
it relieves the researchers from annoying tasks such as fault tolerance. I refer to
Section 2.5.4 for more examples of frameworks.

It is possible to implement my distributed Frank-Wolfe framework with either
MPI or frameworks. Concerning general Frank-Wolfe research, different researchers
have made different choices. Bellet et al. (2014) use MPI for Lasso type of problems,
whereas I choose a map-reduce framework, precisely Apache SPARK, for the im-
plementation. A concurrent research project of Moharrer and Ioannidis (2017) also
expresses their algorithms via map-reduce and implements it on Apache SPARK.
They give a condition on the expressibility of algorithms via map-reduce and, with a
device called common information, their algorithms can be expressed with a relatively
simple and easy-to-update data structure. My recursive update scheme described in
the previous section has the same flavor. Nevertheless, instead of Lasso type of prob-
lems as in Moharrer and Ioannidis (2017) as well as in Bellet et al. (2014), I focus
on trace norm minimization.

SPARK assumes a master/slaves-like star network and can imitate the BSP
model, which is coherent to the nature of my distributed Frank-Wolfe algorithms.
Although SPARK provides a rich API containing many functions (e.g., join), I im-
plement my algorithms on SPARK with only the map function and the reduce func-
tion, which are already enough to express my algorithms in their integrity. With the
popularity and accessibility of SPARK, my implementation can benefit all SPARK
users over the world, and enthusiasts of Frank-Wolfe can conveniently test my im-
plementation.

Rigorously, SPARK is more complicated than a trivial master/slaves clusters. In
SPARK, several entities could be regarded as slaves: machines, cores and partitions
are all potential slave candidates. At the high level, each machine can be seen as a
slave, which employs its cores as sub-slaves to do the work in parallel; or, at the low
level, each core can be seen as a slave, which is directly responsible to the master for
completing the tasks due; or, at the data structure level, each partition can be seen
as a (passive) slave, which forms a queue, waiting for the cores to serve them.

In addition to the nuance of master/slaves interpretation, SPARK may also trans-
fer data across slaves, which cannot happen in a genuine master/slaves infrastruc-
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Figure 4.2 – Design pattern of the framework

ture. To make the entire system resilient, SPARK automatically transfers the tasks
of failed or extremely slow machines to the remaining working machines. My al-
gorithms are simple and straightforward, but specific cares should be taken for the
underlying infrastructure during the implementation.

4.5.2 Package

SPARK is a framework, which can express many algorithms with a single support.
My ambition to build a distributed Frank-Wolfe framework (as a package based on
SPARK) implies that it should support many models (viz. loss functions) without
significant modification of itself. This brings challenges. As mentioned earlier, re-
cursive updates can accelerate the computation. Nevertheless, recursive updates are
model specific: each model needs its own implementation, which contradicts the phi-
losophy of frameworks, which must be stable and generic. To solve this problem, I
resort to design patterns.

The idea is to break the framework/package into two parts: one for the generic
distributed Frank-Wolfe framework, which is model agnostic; the other is a library
of various models, which is not generic. These two parts link with each other via an
interface.

The model interface has stats, update, linesearch, and loss as virtual meth-
ods. Each concrete subclass of the abstract model class implements the stats
method, which initializes some variables (used for recursive updates) including the
gradient, and the update method, which updates these variables after each epoch.
It can also optionally implement the linesearch method, which provides line search
information, and the loss method, which provides the objective function value. The
model is purely implemented in the Python language, and SPARK knowledge is
thus not required to implement new models. I have currently two model modules
available: multi-task least square and multinomial logistic regression.

The generic Frank-Wolfe framework manipulates the interface via the model mod-
ule’s virtual methods. The framework itself implements all four aforementioned
strategies as well as the method to determine the step size. If the model in question
implements the linesearch method, it can delegate the job to the model. This part
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is written in PySpark (SPARK’s Python API), and extensive knowledge of SPARK
is required to extend it.

Currently, my package5 contains the dense representation for both multi-task
least square and multinomial logistic regression. The implementation is roughly
the same as described in the previous section with one exception: for multinomial
logistic regression, my code has cubic complexity for the initialization instead of
quadratic because I have not yet done any optimization in using the special properties
described.

4.6 Experiments

In this section, I present the results of the experiments. My implementation is made
in the way that the algorithms are as fast as possible; indeed, it is fast, but the main
goal of these experiments is not to show that I have made the fastest system in the
world. Instead, they serve as a proof of concept, which verifies the feasibility of the
algorithms and shows insight on the possible behavior when they are implemented
in other systems.

This section is organized as follows. I first explain the experiment environment
and then present the experiment results about multi-task least square and multino-
mial logistic regression, where the latter includes the ImageNet dataset. Lastly, I
measure the time needed for various computation steps, when using different numbers
of cores.

4.6.1 General settings

I have run my implementation on a small cluster with 5 identical machines, with
SPARK deployed in the standalone mode. One machine is used for the driver, and
the other four for the executors. Each machine uses 2 Intel Xeon E5645 CPUs; each
CPU has 6 physical cores; each core has 2 threads. Therefore, I have 96 logical cores
available in total with each core being able to serve as an independent computation
unit. The main frequency of the CPU is 2.40GHz. Each machine has 64G RAM
with DDR3 at 1600MHz. My SPARK deployment is configured to use 60G, and
the executors thus use 240G in total. The network card has a speed of 1Gb/s. The
SPARK version is 1.6. Python version is 3.5.1. The BLAS version does not enable
multithreading. The SPARK cluster is configured to use all 96 logical cores unless
otherwise stated.

I tested all four distributing strategies. The label central stands for the gradient
centralizing. The label avgmix stands for average mixture. The label power# stands
for power iteration, where the placeholder # stands for the iteration number of power
method, with each power iteration taking 2 communication rounds. In my experi-
ments, I tested only power1 and power2 because I found that this small number of
power iterations is already sufficient. The label powlog stands for power iteration

5https://github.com/WenjieZ/distributed-frank-wolfe

https://github.com/WenjieZ/distributed-frank-wolfe


88 CHAPTER 4. DISTRIBUTED FRANK-WOLFE

using a logarithmically increasing communication rounds with regard to the epoch.
The label pow#ws stands for power iteration with warm start, where # has the same
meaning as above.

4.6.2 Multi-task least square

The first experiment is about multi-task least square. I tested it on two synthetic
datasets6: one small dataset containing 105 samples, 300 features, and 300 tasks;
and one large dataset containing 105 samples, 1000 features, and 1000 tasks. In both
datasets, the ground truth W has a rank of 10 and a trace norms equal to 1. It
is generated by multiplying two arbitrary orthogonal matrices on a sparse diagonal
matrix. X is generated randomly, with each coefficient following a Gaussian distri-
bution. Y is obtained accordingly without further applying noise. The algorithm
uses for its hyperparameter θ the same value as the ground truth (viz. 1) and uses
the line search step size.

The experiment results are shown in Figure 4.3 and Figure 4.4. The first quick
observation is that the program is fast – each epoch only takes seconds. The second
is that the algorithm converges well. Then, let us have a detailed analysis of the
performance.

Figure 4.3 shows the result for the low-dimensional dataset. Regarding the num-
ber of epochs, the strategy central is the most efficient as expected because it solves
precisely the linear subproblem. The strategy pow1ws is almost equally good; we can
hardly distinguish any difference between these two curves. The strategy power2
has one more round of communication than pow1ws but is slightly worse. The strat-
egy power1 is worse than power2 as expected because the more power iterations are
run, the more accurately the subproblem will be solved. We can also notice that
powlog first follows power1 and then catches up with power2. The strategy avgmix
has good performance at the beginning but loses to other methods (except power1)
later. Regarding the runtime, despite the high communication volume, central is
still the fastest. This can be explained by the fact that central needs the least
rounds of communication and that this advantage outweighs the disadvantage of
communication volume for low-dimensional data.

Figure 4.4 shows the result for the high-dimensional dataset. Regarding the
number of epochs, all methods except avgmix behave similarly as in the previous case.
This time, avgmix preforms significantly worse than other strategies because, with
the increase of the dimension, the local gradient becomes a less accurate estimator
of the global gradient. Regarding the runtime, central takes nearly twice the time
of other strategies. The burden of communication volume finally outweighs the
advantage of few communication rounds. Except for avgmix and central, the other
strategies have similar performance vs. runtime behavior.

6There is no real datasets in this experiment because I have yet found any datasets containing
thousands of tasks. The lack of these kinds of datasets makes an Apache SPARK implementation
less appealing, but the experiment conducted on the synthetic data still sheds light upon the possible
behavior of these distributing strategies when they are implemented for other types of clusters.
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Figure 4.3 – The dataset contains 100,000 samples, 300 features and 300 tasks.
Estimation error indicates the normalized Euclidean distance between the estimated
parameter matrix W and the ground truth.
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Figure 4.4 – The dataset contains 100,000 samples, 1000 features and 1000 tasks.
Estimation error indicates the normalized Euclidean distance between the estimated
parameter matrix W and the ground truth.
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From these two datasets, we observe a regime shift about the relative behavior
of central. When the dataset is low-dimensional, central is optimal; when the
dataset is high-dimensional, central is not. For square parameter matrices W , the
dimension threshold on Apache SPARK is somewhere between 300 and 1000. This
threshold is system specific: for other systems penalizing more the communication
volume and less the communication rounds, this threshold can be earlier.

4.6.3 Multinomial logistic regression

The second experiment is about multinomial logistic regression. I tested it on a
synthetic dataset and a real dataset – ImageNet. The former is described in this
subsection, and the latter will be in the next. The synthetic data, both the training
set and the test set, have 105 samples, 1000 features, and 1000 classes. The generation
of W and X is the same as multi-task least square, and the class is chosen as the
one yielding the highest score. I tested the algorithms for various choices of θ, and I
used fixed step size 0.01 for these experiments.

The experiment results are shown in Figure 4.5, 4.6, and 4.7. Although, the
general behaviors of these results are similar to the ones in multi-task least square
regression, there are some remarkable properties to point out here. Firstly, we hardly
notice any difference between the training set and the test set. With a close look,
the results on the test set are tinily worse than the ones on the training set. This dif-
ference is logical and universal in all machine learning problems. The tiny difference
here and the nearly identical shapes (i.e., increasing and decreasing simultaneously)
imply that Frank-Wolfe algorithms are not likely to overfit the training set.

Secondly, the behavior of the objective function and the one of the misclassifi-
cation rate may not always be the same. In the experiment of θ = 10, the strategy
central’s objective function value is lower than power1, but its misclassification
rate is higher. This implies that, although maximum likelihood estimator is efficient
(i.e., achieves the Cramér-Rao lower bound), a higher likelihood (i.e., lower objec-
tive function) does not necessarily imply a better classification when the domain is
constrained.

Besides, powlog works especially well regarding the runtime. At the early stage,
when there is no performance difference between power1 and power2, powlog follows
power1. At the later stage, when power1 is not accurate enough to solve the linear
subproblem, powlog follows power2. It ends with the same error as power2, but with
slightly less time.

4.6.4 ImageNet

The ImageNet dataset comes from the ILSVRC2012 challenge (Russakovsky et al.
2015), which has 1,281,167 pictures and 1000 classes. Since the dataset is composed
of only photos without features, I used the learned features extracted from ResNet50
(He et al. 2016). The implementation of ResNet50 used in the experiment is provided
by Keras (Chollet 2015), which contains 2048 features. My experiment uses 24 cores,
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Figure 4.5 – Multinomial logistic regression: θ = 10. The error stands for the Top-5
misclassification rate.
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Figure 4.6 – Multinomial logistic regression: θ = 50. The error stands for the Top-5
misclassification rate.
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Figure 4.7 – Multinomial logistic regression: θ = 100. The error stands for the Top-5
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Figure 4.9 – power1’s performance on ImageNet. The blue dashed curve is the
normalized objective function on the training set. The red dashed curve is the Top-5
misclassification rate on the training set. The blue solid curve is the normalized
objective function on the test set. The red solid curve is the top-5 misclassification
rate on the test set. Test error reaches nearly 0.13 after 900 epochs.

and the hyperparameter θ is chosen arbitrarily to be 30 without much caring about
the performance.

Generally, Frank-Wolfe works well. Within only 200 epochs (several hours), the
misclassification rate has dropped to 0.3 for certain strategies (Figure 4.8). Besides,
we observe the same opposite behaviors between the objective function value and
the misclassification rate as previous. Moreover, the strategy power1, with as few
as one power iteration, outperforms all other strategies. These results illustrate how
powerful Frank-Wolfe can be in solving real life problems.

Careful readers may discover that, in the loss vs. epoch subplot, power2 out-
performs central. They may think that this contradicts the fact that central is
the most accurate solution of the linear subproblem. Moreover, this abnormality
does not appear in the above experiments, which strengthens their doubt. However,
this phenomenon can happen, and it is normal. The main reason is that, unlike
the multi-task least square, multinomial logistic regression cannot do the line search.
In consequence, the optimal step size for one strategy may not be the optimal one
for another. We might have consequently chosen a step size that is suboptimal for
central.

Figure 4.9 shows the experiment where power1 is run for more than 800 epochs,
with the hyperparameter θ = 400. The Top-5 misclassification rate on the test set
has almost reached 0.13, which is already very close to the optimal value because
the pretrained ResNet50 provided by Keras, itself, has a rate of 0.12.
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4.6.5 Impact of number of cores and partitions

My distributing strategies work in a master/slaves network. It is hence natural
to investigate the impact of the number of slaves on the performance. Although
this idea seems straightforward, special attention should be payed to the nuance of
actual systems. As mentioned in Section 4.5.1, for Apache SPARK, there are several
concepts (viz. machine, core, partition) that can be mapped to the concept of slave.
There are thus three configurations that we can investigate. In my dissertation, I
only investigate two of them: cores and partitions.7

A principled way in scientific experimentation is to vary a single variable when
controlling all others. Nonetheless, this method cannot be applied as is here, for it
is inappropriate to use more cores than partitions. Instead, I either vary the number
of cores in controlling the total number of partitions or vary the number of cores in
controlling the number of partitions per core.

The experiment is conducted on the multi-task least square high-dimensional
dataset and a subset of the ImageNet dataset with 105 samples. The runtime is
measured for various unit operations involved in any kinds of computation or com-
munication. There are four types of behaviors about the runtime when increasing
the number of cores. They are I) decreasing, II) increasing, III) firstly decreasing
and then increasing, and IV) no much difference.

Table 4.3 presents the runtime for multi-task least square when using one par-
tition per core. The type I behavior occurs for the initialization and the type II
behavior occurs for all other operations. This result is coherent with the complexity
analysis in Table 4.2, which says that the initialization complexity scales with the
number of samples, while other operations do not. By increasing the number of cores,
each core processes fewer samples, and hence the initialization is faster. Meanwhile,
for other operations, each core takes up the same size of memory and has the same
workload no matter how many cores used; this disadvantage makes the parallelism
useless.

Table 4.4 presents the runtime for multi-task least square when using 96 partitions
fixed. When using fewer cores than partitions, each core has to process more than
one partition. Naturally, this circumstance favors the use of more cores, and the
experiment result conveys the same message. Then, let us temporarily ignore the

7The number of cores can be configured by SPARK’s –total-executor-cores property. The
number of partitions can be configured within the program.

Table 4.3 – Multi-task least square: partition = core.

96 48 32 24 16 8
init 42 66 143 165 316 996

line search 1.0 0.8 0.6 0.5 0.4 0.3
update 2.1 1.1 1.0 0.9 0.9 0.7

warm start 1.1 0.9 0.6 0.5 0.4 0.2
dist. power 1.9 1.2 0.9 0.7 0.6 0.4
centralize 10.0 5.0 3.0 2.8 2.0 1.0
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Table 4.4 – Multi-task least square: 96 partitions fixed.

96 48 32 24 16 8
init 42 31 31 34 36 49

line search 1.0 1.3 2.0 2.0 2.0 2.3
update 2.1 2.5 3.0 3.3 4.0 6.0

warm start 1.1 2.0 2.0 2.2 2.0 2.0
dist. power 1.9 2.0 2.1 3.2 3.5 4.0
centralize 10.0 9.0 8.8 9.2 9.0 9.0

Table 4.5 – Multinomial logistic regression: partition = core

96 48 36 24 12 8
init 27 39 53 86 258 511

update 5.0 4.3 4.5 4.8 5.9 6.5
warm start 2.0 1.0 1.1 1.0 1.0 1.0
dist. power 2.0 1.9 1.8 1.6 1.8 2.0
centralize 25.8 13.3 10.2 7.7 4.3 3.6

Table 4.6 – Multinomial logistic regression: 96 partitions fixed

96 48 36 24 12 8
init 27 22 25 25 30 37

update 5.0 6.0 7.8 8.6 10.9 14.1
warm start 2.0 2.4 3.0 3.3 3.9 4.0
dist. power 2.0 2.6 4.0 4.0 4.9 6.1
centralize 25.8 26.8 27.0 27.4 24.6 25.0

96-core case. The initialization, line search, update, and distributed power iteration
are all accelerated by using more cores. However, the runtime for the gradient
centralization is generally constant. This is due to huge communication overhead
on the one hand and is because having more cores does not either help or damage
the performance on the other hand. The runtime for the warm start is also almost
constant. I have currently no explanation for that, but it is not an error of time
measuring. Figure 4.10 confirms that, when more cores are used, the warm start
time for each partition also increases. Concerning the 96-core case, the runtime is
contrary to the intuition because 96 is the number of logical cores, but we have only
48 physical cores actually.

Table 4.5 presents the runtime for multinomial logistic regression when using one
partition per core. The behaviors of the initialization and of the gradient central-
ization are the same as in Table 4.3. Nevertheless, type I behavior, instead of type
II, occurs for the update. In fact, for multinomial logistic regression, the update
complexity scales with the sample size per core, as shown in Table 4.2. Therefore,
the more cores we use, the quicker the update will be. In addition to this new behav-
ior, type III behavior also occurs. The runtime for the distributed power iteration
first decreases and then increases with the increase of the number of cores. Com-
pared with the pure type II behavior in Table 4.3, I suspect this type III behavior
is actually a hybrid combination of both type I behavior and type II behavior. The
cause of the potential type I component may be due to the fact that the memory
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complexity scales with the sample size per core for multinomial logistic regression
(see Table 4.2).

Table 4.6 presents the runtime for multinomial logistic regression when using 96
partitions fixed. It can be explained in the same way as Table 4.4, and thus I do not
make any further explanation here.

4.7 Conclusion

This chapter explored the feasibility of executing Frank-Wolfe on a distributed in-
frastructure. It not only solved the Frank-Wolfe subproblem in a distributed manner
but also proposed a recursive update scheme, which significantly accelerates the al-
gorithm. Besides, it also provided ideas to conduct the line search in the same
distributed infrastructure.

For the recursive update, some auxiliary information is stored, either as dense
matrices or as low-rank matrices. I have developed an Apache SPARK package and
done experiments to illustrate the feasibility of the dense representation through the
multi-task least square and the multinomial logistic regression problem. Nonetheless,
I have not had the luxury to experiment with the low-rank representation.

Experiments show that, in low dimension, gradient centralizing and average mix-
ture suffice, whereas, in high dimension, distributed power iteration with or with-
out warm start outperform. Furthermore, one or two power iterations are already
enough, which is a much more encouraging fact than as stated in the previous chap-
ter.
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2 cores per machine

12 cores per machine

Figure 4.10 – It shows what is happening in a single machine during one second of
warm start. The machine in the upper penal uses 2 cores, and the machine in the
lower penal uses 12 cores.



Chapter 5

Conclusion

The goal of this research was to investigate the possibility of executing the Frank-
Wolfe algorithms for the trace norm minimization problem in a star network via the
bulk synchronous parallel (BSP) model. This research was composed of three parts.

• In the first part, I studied the theoretical foundation of using power iteration
(or Lanczos iteration) to solve Frank-Wolfe’s linear subproblem. I discovered
that, although the subproblem cannot be solved in a deterministic manner, it
can be solved in expectation and with high probability, which leads to what I
called the nondeterministic sublinear convergence rate.

• In the second part, I studied the possibility to execute Frank-Wolfe on a dis-
tributed infrastructure. In particular, I have designed strategies to solve the
subproblem, to conduct the line search, and to update. Meanwhile, I discovered
that the rank-one update of Frank-Wolfe is especially suitable for the recursive
update of the gradient, which significantly accelerates the computation.

• In the third part, I tested my approach on the problem of multi-task least
square and of multinomial logistic regression on Apache SPARK. The exper-
iments show that, among the four strategies to solve the subproblem in a
distributed manner, gradient centralizing and average mixture are better in
low-dimensional cases, and distributed power iteration with or without warm
start outperforms in high-dimensional cases.

This research has several important implications.

• Researchers have been using power iteration or Lanczos iteration to solve the
Frank-Wolfe subproblems for trace norm minimization. Although the empirical
results are generally satisfying, few questioned the theoretical soundness of
these methods. As we have seen in this dissertation, the subproblems can be
solved only in expectation and with high probability. The convergence theory
of Frank-Wolfe should therefore adopt, as in this dissertation, a probabilistic
language. Although I treated only the simplest cases (i.e., sublinear rate for
convex objectives), similar results may be expected for all cases (e.g., linear
rate for strongly convex objectives with several Frank-Wolfe variants). In this
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way, I laid the theoretical foundation for Frank-Wolfe when the subproblem
can only be solved in expectation or with high probability.

• It is well known that the key to the Frank-Wolfe subproblem for trace norm
minimization is the top eigenvector or the top singular vectors, but there is
little analysis as detailed as in my dissertation. This dissertation studied it
systematically by further dividing the problem into three cases – the asymmet-
ric matrix space, the symmetric matrix space, and the positive semidefinite
cone. In some of these cases, the answer is not as straightforward as we previ-
ously thought. The detailed analysis of these cases in this dissertation will be
a handy tool when we apply Frank-Wolfe to recommender systems, multi-task
learning, Boltzmann machine, metric learning, kernel learning, and so forth.

• Since Frank-Wolfe is computationally cheap, the evaluation of the gradient
becomes the bottleneck. With the parallel or distributed algorithms in this
dissertation, we can further accelerate this approach and make it match the ef-
ficiency of the parallel or distributed matrix factorization approach. Because of
the possibility of the regularization path algorithm for Frank-Wolfe, which al-
leviates the burden of hyperparameter choice, we can eventually achieve better
efficiency than matrix factorization.

• My experiments involve only the cluster of commodity machines and Apache
SPARK, but the proposed algorithms work for any infrastructure compatible
with the BSP model and the star network topology. The BSP model and the
star network topology may be the most popular configuration and are widely
available, especially in industries. My solutions can thus be reproduced on
various infrastructures, such as GPU clusters and Google’s TPU clusters, and
be naturally integrated into the research or the service of other groups. Mean-
while, in the experiments, we observed a phase transition – distributed power
iteration can be better or worse according to the dimension of the dataset.
The same phenomenon can happen for other infrastructure as well, though the
phase transition can be at a different point.

• As the experiment on ImageNet shows, as few as one or two power iterations are
already enough for the convergence of Frank-Wolfe. Although the theoretical
reason is still unclear, the excellent empirical performance encourages us to use
Frank-Wolfe for deep learning. For instance, we can use Frank-Wolfe for the
weight of every layer, which can potentially revolutionize how we train artificial
neural network.

This study is mainly a proof of concept improving our understanding of the nature
of Frank-Wolfe and its behavior when implemented on distributed infrastructures.
Following the path its sets up, we can foresee the use of Frank-Wolfe to solve various
problems in the academia and the industry.



Afterword

Doing a PhD is like rolling an immense boulder up to a hill, only to watch it come
back to hit me, repeating this action for eternity.

Estragon: Let’s go.

Vladimir: We can’t.

Estragon: Why not?

Vladimir: We are doing a PhD.

Here, I would like to thank all who have helped me or given knowledge to me
in my life. If it had not been for those who had made me the person I am now, I
would not have had the motivation to finish my PhD. I wanted to show them that
the education I had received from them and the help they had given me were so
powerful that I could use it to make a positive impact, however little it was, on the
knowledge tree. I felt the calling of using the acquired knowledge for the benefit of
human being, so that they could be satisfied with their achievement and would feel
the glory. It would not be exaggerating to say that this dissertation was dedicated
to all who had helped me in various ways.

This dissertation was my first and maybe the last opportunity to thank them.
Indeed, I had wanted to include an ultra-comprehensive name list here, but finally
gave up because of some technical difficulties. On the one hand, I do not have a
flawless memory: forgetting someone important in an ultra-comprehensive list will
be unforgivable. On the other hand, many people are unknown to me: what are the
names of those in the school canteens who have been giving me extra food because I
am too thin? Therefore, in hoping that the missing ones could “automatically” feel
my gratitude, I decided to write down only the names of the pivotal persons.

Among those teachers or professors, there are four who have the far most influence
on me. I would like to thank Weidong Yin for the enlightenment on programming,
which has been one of my greatest weapons since. I would like to thank Cheng Xu
for showing me how mathematics can be used in a flexible and magical way, which is
also what I alway strive to achieve. I would like to thank Ke Xu for solving many of
my doubts toward the society and the world, and I appreciate our email exchange.
I would like to thank Arnak Dalalyan for guiding me to the world of statistics and
machine learning, which has been my favorite domain since, and for the precious
scientific training I received from him.
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They represent all who have helped me, in a form or another, and have played a
positive role in my life. To dedicate this thesis to them, I tried my best to make it
as valuable as possible. If there still remains any mistake or flaw in this thesis, the
author, I, is the only person to blame because of his laziness and procrastination.
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