
HAL Id: tel-02134576
https://theses.hal.science/tel-02134576

Submitted on 20 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pattern Recognition in the Usage Sequences of Medical
Apps

Chloé Adam

To cite this version:
Chloé Adam. Pattern Recognition in the Usage Sequences of Medical Apps. Neural and Evolutionary
Computing [cs.NE]. Université Paris Saclay (COmUE), 2019. English. �NNT : 2019SACLC027�. �tel-
02134576�

https://theses.hal.science/tel-02134576
https://hal.archives-ouvertes.fr

i

T
hè

se
de

do
ct

or
at

Analyse des Séquences
d’Usage d’Applications

Médicales

Thèse de doctorat de l’Université Paris-Saclay
préparée à CentraleSupélec

École doctorale n◦ 573- Interfaces : Approches
interdisciplinaires : fondements, applications et innovation

Spécialité de doctorat : Mathématiques appliquées

Thèse présentée et soutenue à Gif sur Yvette, le 1er avril 2019, par

Chloé ADAM

Composition du jury :

Paul-Henry COURNÈDE Directeur de thèse

Professeur, CentraleSupélec, Université Paris-Saclay

Antoine ALIOTTI Co-Encadrant

Docteur, GE Healthcare

Thierry ARTIÈRES Rapporteur

Professeur, Ecole Centrale Marseille

Marianne CLAUSEL Rapporteuse

Professeur, Université de Lorraine

Céline HUDELOT Présidente du jury

Professeur, CentraleSupélec, Université Paris-Saclay

Fragkiskos D. MALLIAROS Examinateur

Maı̂tre de Conférences, CentraleSupélec, Université Paris-Saclay

Nicolas THOME Examinateur

Professeur, CNAM Paris

N
N

T
:2

01
9S

A
C

LC
02

7

ii

Acknowledgements

Cette thèse aura été une expérience extrêmement enrichissante. Il me tient à cœur de remercier

toutes celles et ceux sans qui cet aboutissement n’aurait pas été possible.

Tout d’abord, je tiens à exprimer ma reconnaissance à Paul-Henry Cournède, mon directeur de

thèse. Merci pour ta bienveillance à mon égard et la confiance que tu as pu m’accorder tout

au long de cette thèse. Tu n’as cessé de m’encourager, tu m’as écoutée et tu m’as conseillée.

J’ai énormément appris à tes côtés. Sans toi, cette aventure n’aurait pas été aussi instructive,

scientifiquement et sur de nombreux autres aspects.

Je remercierai ensuite Antoine Aliotti, mon manager qui m’a accompagnée depuis mon arrivée

en stage à GE Healthcare puis pendant ces années de thèse. J’aimerais également remercier

Florence Moreau, à l’origine de ce projet. Merci de m’avoir donné l’immense opportunité de

faire cette thèse.

Je tiens à exprimer ma gratitude à Marianne Clausel et Thierry Artières, pour avoir accepté

de rapporter ma thèse. Merci également à Céline Hudelot, Fragkiskos D. Malliaros et Nicolas

Thome, membres de mon jury, pour l’intérêt que vous avez porté à mon travail.

Merci à tous mes collègues des équipes AW et Cloud de GE Healthcare, je pense notamment à

Lorraine qui s’est aventurée de nombreuses fois au fin fond du code du logiciel pour m’aider à

comprendre les fichiers de logs, Guillaume qui a largement contribué à l’amélioration du con-

tenu des logs à mon arrivée ou encore Guy pour la mise en place du processus de récupération

de ces derniers. Merci aussi à Alexandre, Zineb, Mathieu, Laurent, Régis, Laura, Duc, Dreena,

Florian, Véronique, Alyson et bien d’autres pour tous les bons moments passés ensemble, au

bureau ou aux afterworks. Grâce à vous, je garderai un très bon souvenir de mon passage à GE

Healthcare.

Merci aussi à tous les membres du laboratoire MICS, et en particulier de l’équipe Biomathemat-

ics. J’ai adoré travailler à vos côtés, même si je n’ai jamais vraiment réussi à percer au baby-foot,

pratique culte au sein de l’équipe. Merci à Sarah, Véronique, Sylvie et à tous les doctorants :

Antonin, Xiangtuo, Walid, Mahmoud, Mathilde, Andreas, Sylvain. Je tiens à remercier tout

particulièrement Gautier et Benoit, pour votre aide tout au long de ma thèse, les séances de

débogage (en Python et sous Windows en plus !), les dernières relectures... Votre soutien a été

précieux ces derniers mois.

iii

iv

Il me tient également à cœur de remercier Jean-Pierre Lavigne et Judith Sausse respectivement

directeur du CPP de Nancy et directrice des Études de l’École des Mines de Nancy lors de mon

passage dans ces deux établissements. Merci de m’avoir aidée à concilier ma passion, le volley,

et mes études lors de mes années de classes préparatoires et d’école d’ingénieurs. Votre soutien

a été décisif dans les moments difficiles.

Un peu plus éloignées mais tout aussi importantes, je remercie mes amies d’enfance, ren-

contrées pour la plupart sur un terrain de volley : Aurélie, Laure, Pauline, Mélissa, Marie, pour

tous les moments inoubliables passés ensemble. Un petit clin d’œil également aux volleyeuses

en devenir : Eva et Zoé.

Enfin, merci à toi Julie, collègue lors de mes débuts à GE, tu as rapidement pris une place

importante dans ma vie. Toujours présente pour les coups durs et surtout les coups de folie !

Merci d’être là pour moi.

Je terminerai en remerciant mes parents, mon petit frère, Quentin, et ma grand-mère pour leur

soutien infaillible. Merci de m’avoir toujours donné le courage et la force d’aller au bout des

choses.

Merci à tous.

Chloé

Résumé

Les radiologues utilisent au quotidien des solutions d’imagerie médicale pour le diagnostic,

la préparation des interventions chirurgicales ou le traitement de suivi. Les progrès tech-

niques actuels de l’imagerie médicale représentent un énorme défi pour leur flux de travail.

Ils s’attendent à ce que les applications de visualisation avancées permettent de d’analyser

plus rapidement les images des patients.

L’amélioration de l’expérience utilisateur est toujours un axe majeur de l’effort continu visant

à améliorer la qualité globale et l’ergonomie des produits logiciels. L’amélioration de la qualité

du logiciel implique également la réduction du nombre de dysfonctionnements qui provoquent

des interruptions désagréables pour les utilisateurs. Évidemment, les conséquences de ces per-

turbations sont plus ou moins graves selon le domaine d’utilisation. En imagerie médicale,

les pannes de logiciels sont un enjeu crucial puisque la vie des patients est en jeu, en parti-

culier dans les cas de radiologie interventionnelle. Les applications de monitoring permettent

d’enregistrer l’évolution des différents paramètres du logiciel et du système lors de leur utili-

sation et en particulier les actions successives effectuées par les utilisateurs dans l’interface du

logiciel. Ces interactions peuvent être représentées sous forme de séquences d’actions.

Sur la base de ces données, ce travail traite de deux sujets industriels : les pannes logicielles et

l’ergonomie des logiciels. Ces deux thèmes impliquent d’une part la compréhension des modes

d’utilisation, et d’autre part le développement d’outils de prédiction permettant soit d’anticiper

les pannes, soit d’adapter dynamiquement l’interface logicielle en fonction des besoins des

utilisateurs.

Tout d’abord, nous visons à identifier les origines des crashes du logiciel qui sont essentielles

afin de pouvoir les corriger. Bien que l’occurrence d’un crash soit explicitement enregistrée, les

combinaisons d’actions qui l’ont déclenché ne sont pas évidentes. Pour ce faire, nous proposons

d’utiliser un test binomial afin de déterminer quel type de pattern est le plus approprié pour

représenter les signatures de crash. Ces types de patterns tiennent compte de l’ordre et/ou de

la proximité des actions qui les composent. L’amélioration de l’expérience utilisateur par la

personnalisation et l’adaptation des systèmes aux besoins spécifiques de l’utilisateur exige une

très bonne connaissance de la façon dont les utilisateurs utilisent le logiciel. Afin de mettre en

évidence les tendances d’utilisation, nous proposons de regrouper les sessions similaires. Pour

ce faire, nous comparons trois types de représentation de session dans différents algorithmes de

v

vi

clustering. Nous utilisons des indices de validité de cluster pour déterminer la configuration

fournissant la meilleure partition. Les clusters obtenus et les sessions correspondantes sont

ensuite visualisées et interprétées à l’aide d’un outil de process mining.

La deuxième contribution de cette thèse concerne le suivi dynamique de l’utilisation du logi-

ciel. Nous proposons deux méthodes – basées sur des représentations différentes des actions

d’entrée – pour répondre à deux problématiques industrielles distinctes : la prédiction de la

prochaine action et la détection du risque de crash logiciel. Les deux méthodologies tirent parti

de la structure récurrente des réseaux LSTM (Long Short Term Memory) pour capturer les

dépendances entre nos données séquentielles ainsi que leur capacité à traiter potentiellement

différents types de représentations d’entrée pour les mêmes données. Pour aborder la tâche

de surveillance des crashes, nous proposons d’utiliser des vecteurs composés d’actions signi-

ficatives contenues dans les crashes en tant qu’entrées du LSTM – avec l’idée de tirer parti de

sa capacité d’apprendre des informations passées lesquelles sont pertinentes pour détecter les

signatures de crash. La méthode surpasse les méthodes de classification de séquences de l’état

de l’art. À des fins de comparaison, ces baselines sont également alimentées par les signatures

de crash significatives. Compte tenu de l’historique des actions de l’utilisateur dans l’interface,

notre deuxième méthode de suivi vise à prédire la prochaine action de l’utilisateur. Le réseau

neuronal récurrent proposé surpasse les algorithmes de l’état de l’art avec des vecteurs de type

one-hot en entrée. Par ailleurs, nous proposons de donner en entrée du LSTM des embeddings

d’actions. Cette représentation continue est plus performante que la représentation de type

one-hot et sa dimension inférieure réduit en même temps le coût de calcul. Des expériences

sont menées afin de déterminer la meilleure stratégie à la fois sur des ensembles d’entraı̂nement

obtenus par des caractéristiques explicites et sur des ensembles d’entraı̂nement obtenus par des

techniques non supervisées.

Toutes nos approches sont démontrées sur des logs provenant de 50 hôpitaux différents dans

le monde.

Mots-clés: exploration de motifs fréquents; données séquentielles; représentations pour l’ap-

prentissage; représentations d’action; réseaux de neurones récurrents LSTM; représentations

de session; clustering; logs de logiciel; détection des signatures de crash; suivi des risques;

prédiction des actions utilisateurs; logiciel d’imagerie médicale.

Abstract

Radiologists use medical imaging solutions on a daily basis for diagnosis, surgery preparation

or follow-up treatments. Today’s technical advances in medical imaging represent a huge chal-

lenge for their workflows. They expect more advanced visualization applications in order to

deliver effective therapies to patients faster.

Improving user experience is a major line of the continuous effort to enhance the global quality

and usability of software products. The overall software quality amelioration also involves

reducing the number of defects and malfunctions which cause unpleasant interruptions for

users. Obviously, the consequences of these disruptions are more or less severe depending on

the field of use. In radiology, software crashes are a crucial issue since patients’ lives are at

stake, especially in interventional radiology cases. Monitoring applications enable to record

the evolution of various software and system parameters during their use and in particular the

successive actions performed by the users in the software interface. These interactions may be

represented as sequences of actions.

Based on this data, this work deals with two industrial topics: software crashes and software

usability. Both topics imply on one hand understanding the patterns of use, and on the other

developing prediction tools either to anticipate crashes or to dynamically adapt software inter-

face according to users’ needs.

First, we aim at identifying crash root causes. It is essential in order to fix the original defects.

While the occurrence of a crash is explicitly recorded, the patterns of actions that triggered it

are not obvious. For this purpose, we propose to use a binomial test to determine which type

of patterns is the most appropriate to represent crash signatures. These types of patterns take

into account the order and the proximity of the actions composing them. We conclude that

subsquences are the most appropriate formalism to determine crash signatures and apply the

method to a critical case.

The improvement of software usability through customization and adaptation of systems to

each user’s specific needs requires a very good knowledge of how users use the software. In

order to highlight the trends of use, we propose to group similar sessions into clusters. For

this purpose we compare 3 session representations as inputs of different clustering algorithms.

We use cluster validity indices to determine the configuration providing the best partition.

Sessions from the resulting clusters are then visualized and interpreted using a process mining

vii

viii

tool. The resulting clusters show significant differences in terms of workflows and confirm the

ability of this method to highlight characteristic workflows.

The second contribution of our thesis concerns the dynamical monitoring of software use. We

propose two methods – based on different representations of input actions – to address two dis-

tinct industrial issues: next action prediction and software crash risk detection. Both method-

ologies take advantage of the recurrent structure of Long Short Term Memory (LSTM) neural

networks to capture dependencies among our sequential data as well as their capacity to po-

tentially handle different types of input representations for the same data. To address the crash

monitoring task, we propose to use feature vectors composed of significant actions contained

in crash sessions as inputs of the LSTM – with the idea to take advantage of its ability to learn

relevant past information to detect crash patterns. The method outperforms state of the art

sequence classification methods. For a fair comparison, the latter are in addition fed with sig-

nificant crash patterns. Given the history of user actions in the interface, our second monitoring

method aims at predicting the next user action. The proposed recurrent neural network out-

performs state of the art proactive user interface algorithms with standard one-hot vectors as

inputs. Besides, we propose to feed the LSTM with action embeddings. This continuous repre-

sentation performs better than one-hot encoded vector LSTM and its lower dimension reduces

at the same time the computational cost. Experiments are conducted in order to determine the

best strategy both on training sets obtained by explicit characteristics as well as on training sets

obtained by unsupervised techniques.

All our approaches are demonstrated on logs from 50 different hospitals worldwide.

Keywords: frequent pattern mining; sequential data; representation learning; action embed-

dings; LSTM recurrent neural networks; session embeddings; clustering; software log files;

crash signatures detection; risk monitoring; next action prediction; medical imaging software.

Contents

Acknowledgments iii

Résumé v

Abstract vii

Introduction 1

I Data Mining for the Analysis of Software Sessions 7

I.1 Data & Formalism 9

I.1.1 Action Log Files . 9

I.1.2 Formalism . 11

I.1.3 Database . 11

I.1.4 Logs Improvement . 12

I.2 Crash Pattern Mining 13

I.2.1 Research Problem . 13

I.2.2 Frequent Patterns . 15

I.2.2.1 Types of Patterns . 15

I.2.2.2 Significant Patterns . 17

I.2.3 Mining Algorithms . 18

I.2.3.1 Closet . 18

I.2.3.2 Bide . 22

I.2.3.3 Gap-Bide . 28

I.2.4 Methodological Tests . 29

I.2.4.1 Data . 29

I.2.4.2 Impact of Order . 31

I.2.4.3 Impact of Proximity . 33

I.2.4.4 Cohesion . 34

I.2.4.5 Results Summary . 35

I.2.5 Application on a Critical Case . 35

I.2.6 Discussion . 36

I.3 User Workflow Characterization 39

CONTENTS

I.3.1 Research Problem . 39

I.3.2 Data . 41

I.3.3 Sequence Representation . 42

I.3.3.1 Bag-of-Actions with TFIDF . 43

I.3.3.2 Bag-of-Actions with TWIDF . 44

I.3.3.3 Session Embeddings . 45

I.3.3.4 Implementation . 46

I.3.4 Clustering Algorithms . 47

I.3.4.1 K-means . 47

I.3.4.2 Hierarchical Clustering . 48

I.3.4.3 Spectral Clustering . 48

I.3.5 Clusterability . 49

I.3.5.1 Hopkins Statistic . 49

I.3.5.2 Application to our Datasets . 50

I.3.6 Selection of Clustering Evaluation Indices . 50

I.3.6.1 Indices Definitions . 50

I.3.6.2 Comparison of Indices and Selection . 52

I.3.7 Hyperparameters Selection . 54

I.3.7.1 Bag-of-Actions with TWIDF . 54

I.3.7.2 Session Embeddings . 55

I.3.8 Tests of Representations & Clustering Algorithms 57

I.3.8.1 Experiments Overview . 57

I.3.8.2 System 30 (App 1) . 58

I.3.8.3 System 50 (App 2) . 58

I.3.9 Cluster Analysis . 59

I.3.9.1 2D Visualization . 59

I.3.9.2 Cluster Size and Session Length . 60

I.3.9.3 Workflow Characterization . 62

I.3.10 Discussion . 65

II Dynamic Monitoring of Software Use 67

II.1 Sequence Learning 69

II.1.1 Formalism . 69

II.1.2 Recurrent Neural Networks . 70

II.1.3 Methodology . 72

II.2 Crash Risk Monitoring 75

II.2.1 Related Work . 75

II.2.2 Problem Formulation . 76

II.2.2.1 Loss . 77

CONTENTS

II.2.3 Input Representation . 77

II.2.3.1 One-hot Vectors . 77

II.2.3.2 Feature Vectors . 78

II.2.4 Experiments . 78

II.2.4.1 Data . 78

II.2.4.2 Baseline Methods . 79

II.2.4.3 Performance Evaluation . 80

II.2.4.4 Experimental Setup . 80

II.2.4.5 LSTM Tuning . 81

II.2.4.6 Results . 82

II.2.5 Discussion . 84

II.3 User Action Prediction 85

II.3.1 Related Work . 85

II.3.2 Problem Formulation . 87

II.3.2.1 Loss . 88

II.3.3 Input Representation . 88

II.3.3.1 One-hot Vectors . 88

II.3.3.2 Embeddings . 89

II.3.4 Experiments . 90

II.3.4.1 Data . 90

II.3.4.2 Baseline Methods . 92

II.3.4.3 Performance Evaluation . 93

II.3.4.4 Experimental Setup . 93

II.3.4.5 LSTM Tuning . 94

II.3.4.6 Results . 96

II.3.5 Best Training Strategy . 101

II.3.5.1 Known Characteristics . 101

II.3.5.2 Clustering to Improve Prediction . 110

II.3.6 Discussion . 113

Conclusion & Perspectives 115

Appendices 121

Appendix A Session Embeddings Hyperparameters Selection 123

A.1 System 30 (App 1) . 123

A.2 System 50 (App 2) . 125

Appendix B Tests to Define the Best Training Strategy 129

B.1 Indian Systems . 129

B.1.1 Sessions . 129

CONTENTS

B.1.2 Corresponding Number of Tools . 130

B.2 American Systems . 130

B.2.1 Sessions . 130

B.2.2 Corresponding Number of Tools . 131

B.3 Japanese Systems . 131

B.3.1 Sessions . 131

B.3.2 Corresponding Number of Tools . 132

Appendix C Cluster Assignment 133

C.1 System 30 . 133

C.2 System 50 . 134

Appendix D Significant Actions 135

Appendix E t-distributed Stochastic Neighbor Embedding (t-SNE) 137

Publications & Patents 139

Bibliography 140

Introduction

RADIOLOGISTS USE MEDICAL IMAGING SOLUTIONS on a daily basis for diagnosis, surgery

preparation or follow-up treatment. They play an important role in the process of pa-

tient treatment. Radiologists work closely with general practitioners or specialists and provide

them with additional elements that are not detectable by clinical examination, thanks to their

interpretation of images. Their analyses help dissipate doubts or on the contrary, confirm pre-

existing diagnoses by detecting tumors, infections or fractures for example. Radiologists cover

a large variety of specialties: cardiology, neurology, pulmonology, oncology, orthopedics, etc.

using multiple imaging modalities (Computed Tomography, Magnetic Resonance Imaging, 3D

X-ray, Positron Emission Tomography and Positron Emission Tomography - Computed To-

mography). Today’s technical advances in medical imaging represent a huge challenge for the

radiologist workflow. With the decrease in image acquisition time, the amount of data to re-

view increases. In other words, the number of patient exams increases, thus imposing shorter

data interpretation and reporting times. Radiologists expect more advanced visualization ap-

plications to deliver effective patient therapy faster. This translates into more efficient and

reliable image processing algorithms, but also an ever-improving user experience. While they

constitute a significant time in the image review process, the optimization of processing algo-

rithms such as automatic labeling or automatic segmentation is not the focus of our work. Our

objective is the analysis of users workflows and their interaction with the software interface.

Indeed, enabling to streamline diagnostic processes and simplifying repetitive tasks in user

workflows is a permanent concern. Generally speaking, improving user experience is always a

major line of the continuous effort to enhance the global quality and usability of software prod-

ucts. The overall software quality amelioration also involves reducing the number of defects

and malfunctions which cause unpleasant interruptions for users. Obviously, the consequences

of these disruptions are more or less severe depending on the field of use. In our case, software

crashes are a crucial issue since patients’ lives are at stake, especially in interventional radi-

ology cases. Monitoring applications allow to record the evolution of various software and

system parameters during their use and in particular the successive actions performed by the

users in the software interface. These interactions may be represented as sequences of actions.

Based on this data, this work deals with two industrial topics: software crashes and software

usability. Both topics imply on one hand understanding the patterns of use, and on the other

developing prediction tools either to anticipate crashes or to dynamically adapt software in-

1

CONTENTS 2

terface according to users’ needs.

Identifying the root causes of crashes is essential in order to fix the underlying defects. While

several factors such as the number of applications running, the memory availability or the

dataset type are likely to cause crashes, we specifically focus on user workflows in this work.

Numerous questions concerning the origin of crashes need to be addressed. Indeed, we do not

know if crashes result from individual actions or from combinations of actions. Similarly, we

do not know if their order has an impact. Besides, while the occurrence of a crash is explicitly

recorded, we are not aware of the action(s) that triggered it. Answering these questions is even

more challenging given the very high variability in the user sequences leading to crashes. The

issues raised here are of real industrial interest insofar as they correspond to concrete appli-

cation cases. Indeed, it happens that users or some particular hospitals complain about too

many crashes. It is therefore important to be able to understand and target the origin(s) of

the problem, or even to be capable of reproducing crashes, based on their logs. Some works

were proposed on software bug mining [Aggarwal and Han, 2014]. They are mainly based

on the analysis of the source code to highlight buggy program regions based on software be-

havior graphs. Unlike these works, we have at our disposal user workflows and we would

like to highlight the actions in the interface that led to the crash. Other approaches consist in

the mining of frequent patterns in software revision history [Livshits and Zimmermann, 2005].

However, in this case, they made the assumption that error patterns might be represented by

itemsets for which the order of the events composing the pattern is not taken into account. This

is precisely one of our research problems. Indeed, we aim at determining which type of pattern

is the most appropriate to represent crash signatures, and for example determine whether the

order of the actions composing the pattern is important or not. As no off-the-shelf solution

to our specific issue currently exists, we draw extensively on methodologies used in pattern

based sequence classification [Bringmann et al., 2009] where the principle is to use patterns as

features of a classification method. An essential step of this methodology is the selection of the

features which have to be as discriminative as possible of their class. While some works use the

Fisher score [Lo et al., 2009], other design specific selection scores. The earliness of the pattern

might be taken into account [Xing et al., 2008], as well as the proximity of the events compos-

ing the pattern [Zhou et al., 2016]. We propose to use a binomial test to determine which of 4

types of patterns (taking into account or not order and proximity) are the most appropriate to

highlight crash patterns.

Similarly, the improvement of software usability through customization and adaptation of sys-

tems to each user’s specific needs requires a very good knowledge of how they use the soft-

ware. This is the general goal of software application users profiling [Schiaffino and Amandi,

2009]. Explicit information provided by the user as well as implicit information obtained by

the recording of users actions is used to build groups of users. The purpose of obtaining such

profiles differs depending on the field of application. For example, adaptive systems aim at

providing different content to different users [Cawsey et al., 2007], whereas e-commerce ap-

plications take advantage of user profiles to recommend products that the customer is more

CONTENTS 3

likely to buy given his preferences [Adomavicius and Tuzhilin, 2001]. Beyond the creation of

groups of similar users, we aim at highlighting usage trends, which might correspond to dif-

ferent categories of users or not. This valuable information helps to assess the need to maintain

rarely used options, to rethink the content of the user interface or to simplify repetitive actions.

While user knowledge is easy when it comes to a partner hospital, it is less obvious to have

an overview of the habits of use or the characteristic workflow of a random site. The recent

possibility of collecting workflow data from users around the world raises the question of the

automation of information extraction at a larger scale to make business decisions based on data

analysis. Several works were proposed in order to cluster navigational paths coming from web

sessions [Chaofeng, 2009]. In a way very analogous to our problem, they seek to group sessions

in which usage patterns are similar. As these sessions are of different lengths one of the main

challenges relies in the vector representation of the sessions. The standard method consists

in representing sessions as vectors containing the frequency of occurrences of each web page

consulted in a session [Xu and Liu, 2010] and is equivalent to the bag-of-words representa-

tion in text mining, widely used to perform document classification or clustering [Hotho et al.,

2005]. This representation suffers from data sparsity and high dimensionality and therefore, re-

cent works proposed distributed representations of sentences or documents [Le and Mikolov,

2014]. We propose to apply these lower dimensional representations to cluster user sessions

and thus determine characteristic usage workflows.

Proactive management is a way to generally enhance the user experience whether in anticipat-

ing interruptions or in adapting the user interface in real time. Failure prediction systems are

nowadays widely used in various applications [Salfner et al., 2010]. They enable to improve

the availability of the system by anticipating potential disruptions. They generally solve a clas-

sification problem and aim at predicting whether a failure will occur in the near future. In the

same spirit, proactive user interfaces use real-time predictions to anticipate users’ needs and

provide them with more natural interfaces. The concept of adaptive interfaces has been studied

over the last decades [Browne, 2016]. The main reasons for adaptation being that end-users are

heterogeneous. Moreover, usability criteria are not the same for all individuals. While some

changes might be comfortable for some users, they might not be for others. Similarly, differ-

ent users might not have the same preferences. Adaptive systems aim at satisfying each user

needs to consequently increase their operational speed. Another important purpose of such

systems is to reduce the learning time before efficient work might be achieved. Well designed

adaptive interface fulfill all these requirements avoiding confusion that might be caused by

badly planned adaptation systems [Gajos et al., 2006]. In this work we exclusively focus on the

accuracy of the prediction algorithms leaving the design aspects to the ergonomy experts. We

address 2 distinct industrial issues, namely crash risk monitoring as well as next action predic-

tion. To tackle both issues, we take advantage of the recurrent structures of Long Short Term

Memory (LSTM) neural networks. Fisrt introduced by [Hochreiter and Schmidhuber, 1997],

LSTM are particularly appropriate to handle sequential data.

The manuscript is organized in 2 parts as follows. The first part of the proposed methods

CONTENTS 4

aims to provide information for a better understanding of the software use. The second part is

dedicated to real-time monitoring methods.

Part I :

• Chapter I.1 describes the data as well as the general mathematical formalism that will

be used in this work. To conduct our experiments, we have at our disposal logs coming

from 50 hospitals around the world. All experiments will be conducted on the same type

of data. Specific datasets will be used depending on the applications.

• Chapter I.2 presents the methodology proposed to highlight which type of pattern best

represents crash signatures. 4 types of patterns will be tested, taking into account order

and proximity of the actions composing them. We propose to use a binomial test to de-

termine significant patterns. Experiments are conducted on the logs of 5 systems having

an important crash rate. The efficiency of the method is also demonstrated on a currently

critical system that is the subject of a complaint.

• Chapter I.3 tackles the issue of workflow characterization. We propose to compare 3 types

of inputs representation of the user sessions in different clustering algorithms. A cluster

validity index is used to determine which configuration provides the best partition. Ex-

periments are conducted on 2 systems dominated by the use of a particular application,

our goal being to highlight typical workflows among a particular medical specialty. A

process mining visualization tool is used to visualize and interpret the obtained session

clusters.

Part II :

• Chapter II.1 provides a general formalism of sequence learning as well as state of the art

on recurrent neural networks which are particularly efficient for this task. We focused on

Long Short Term Memory recurrent neural networks and present the architecture which

will be used to tackle the crash risk monitoring task (see Chapter II.2) as well as the next

action prediction task (see Chapter II.3).

• Chapter II.2 deals with the monitoring of crash risk. To address this task, we propose to

feed the LSTM with feature vectors composed of significant actions contained in crashes.

The method is compared to state of the art classification algorithms fed with significant

actions as well as significant crash patterns for a fair comparison. Experiments are con-

ducted on 5 systems having an important crash rate.

• Chapter II.3 tackles next action prediction. The predictive system might take the form of

a dynamic toolbar containing in real-time the k next most likely actions the user is go-

ing to need. For this purpose we propose to feed the LSTM with action embeddings. The

method is compared to state of the art sequence prediction algorithms and proves to have

the best performances. For this reason, it is likely to be implemented in future versions of

the software, and thus we tested our method on all 50 systems. Some additional experi-

CONTENTS 5

ments are conducted in order to determine the best training strategy, including training

sets obtained by explicit characteristics as well as training sets obtained by unsupervised

techniques.

We finally conclude by underlying the research and industrial perspectives of this work.

CONTENTS 6

Part I

Data Mining for the Analysis of

Software Sessions

7

Chapter I.1

Data & Formalism

In this study, we investigate practitioner workflows which are recorded in log files. This chap-

ter describes the content of these log files as well as the general formalism we introduced. We

also present the database which will be used to conduct our experiments.

I.1.1 Action Log Files

In our logs, one session corresponds to the analysis of one patient’s series of images. In other

words, each session contains all the necessary actions for the radiologist to provide his medical

diagnosis. During these sessions, the physician’s actions in the user interface are chronolog-

ically recorded in log files, one session after the other. These log files can be recovered via

remote access to hospitals around the world. Each log covers several months of activity and

contains a variable number of sessions depending on the hospital’s workload. Besides, it is im-

portant to mention that hospitals purchase licenses corresponding to their medical specialties,

therefore there is a great variability in the applications used in our database. As illustrated in

Figure I.1.1, each session can be characterized by several attributes listed below:

• Hospital: each session is linked to a hospital whose name and location are known.

• Nature: as will be explained in section I.1.2, our log system allows us to distinguish

normal sessions with a clean exit of the application from crashes in which the session

was prematurely interrupted.

• Logged actions: the interface is split into different zones, and for some of those the actions

are not logged. We know which zones have their actions correctly logged and which don’t

have.

However, the current logs do not allow to record the following information:

• Dataset: we have no information concerning the acquisition modality of the studied im-

ages (Computed Tomography, Magnetic Resonance Imaging, 3D X-ray, Positron Emission

Tomography and Positron Emission Tomography - Computed Tomography) or the meta-

data associated with the image (number of volumes, size, voxel size, etc).

9

CHAPTER I.1. DATA & FORMALISM 10

• User: some sessions might come from generalist practitioners while others might come

from very specialized practitioners in a particular field of medicine implying specific ap-

plication licenses. It is also important to notice that one log file might come from a work-

ing station used by several users as well as from a station belonging to one user only. We

do not have that information.

• Missing actions: as explained previously, we know that certain types of actions do not

appear in the current logs.

The medical application usually launched at the beginning of a session for the image analy-

sis strongly influences the workflow of the session. Indeed the content of the user interface

changes according to the application used. In the current log system only a few number of

application executions are properly logged under their own names (the others appear under a

generic name). Thus, when the application is taken into account in the analysis, we focus on

the applications which are properly logged.

SESSION

Hospital

Nature

(crash?)

Logged

actions

Medical

app

Missing

actions

User

Dataset

type

Known

Unknown

Figure I.1.1: User sessions characterization. Green information is known, red is not, blue is

known in some particular cases.

It should be noted that regulations in medical applications impose many privacy restrictions

regarding patient data, thus making the retrieval of this type of data even more difficult. In-

deed, confidential data protection requires relatively complex and time-consuming procedures

to ensure that the recovery process of log files is completely secure and that they provide no

critical information.

CHAPTER I.1. DATA & FORMALISM 11

I.1.2 Formalism

The user mouse clicks recorded in log files refer to the corresponding function calls from the

software source code. Therefore, the successive actions appear in the log files as strings of dif-

ferent lengths. To facilitate computations and analysis, we have introduced a formal language

to normalize action representations into strings of the same length, see Table I.1.1.

Let Σ be an alphabet, that is to say a finite set of symbols, and D the dictionary assigning one

user action to a symbol in Σ. A session of length n is an element of Σn. Let X be a session, it

will thus be represented as a word on the alphabet Σ and will be denoted by X = x1x2...xn,

with each xi ∈ Σ, an elementary user action.

In practice, considering the number of potential actions in the medical software of interest in

this study, we choose without loss of generality to work with symbols composed of three letters,

Σ = {<<<,>>>, aaa, aba, ..., zzz}. The symbol <<< stands for the beginning of a session, thus

for all sessions x1 =<<<. Likewise, >>> stands for a clean exit of the software application, that

is to say the end of a session without crash. All the other symbols represent actions.

With these notations we can easily distinguish normal sessions from crashes: a session of length

n is a normal session when xn =>>>, while if xn 6=>>>, it is a crash. The set of normal sessions

will be denoted by S while C will represent the set of crash sessions. Finally, for a finite set Ω,

|Ω|will denote its cardinal.

Σ the finite set of symbols Σ = {<<<,>>>, aaa, aba, ..., zzz}
D the dictionary assigning one user action to a symbol of Σ

X a session, a finite sequence of n symbols over Σ:

X = x1x2...xn where x1 =<<< and xn =>>> or <<<

S the set of normal sessions, where x1 =<<< and xn =>>>

C the set of crashes, where x1 = xn =<<<

|Ω| the cardinal of the finite set Ω

D the complete sequence database, and thus |D| = |S|+ |C|

Table I.1.1: Formalism.

I.1.3 Database

To conduct our experiments we have at our disposal 50 log files, recorded in the same language,

English in this case, coming from hospitals around the world equipped with working stations

having the same software release. As can be seen in Table I.1.2, logs fulfilling the previous

requirements, are mainly coming from India, the United States of America and Japan. Different

subsets of the global database will be used to test the proposed solutions, depending on the

purpose of the tested methods. Thus, logs with the highest crash rates will be used to test

the methods related to crash analysis, whereas works dedicated on usability improvement will

be tested on normal sessions only. Each solution will be tested on several systems in order

CHAPTER I.1. DATA & FORMALISM 12

to ensure that the methods generalize well to all logs. Each dataset will be described in more

detail in the experimental setup description of each experiment.

Country Number of hospitals

INDIA 13

UNITED STATES OF AMERICA 8

JAPAN 5

EGYPT 4

KOREA (REPUBLIC OF) 4

POLAND 4

BELGIUM 2

ROMANIA 2

AUTRALIA 1

BANGLADESH 1

HUNGARY 1

IRELAND 1

NEPAL 1

SINGAPORE 1

SOUTH AFRICA 1

TURKEY 1

Total 50

Table I.1.2: Distribution of hospitals by country (50 log files).

I.1.4 Logs Improvement

An important part of the initial work consisted in a precise inventory of the log file contents

since these logs had never been analyzed before. Various improvements are continually being

made to each new version of the software. For instance, the recording of keyboard shortcuts

which constitute a significant part of the workflow of some users has only been added to the

latest software versions. The time required for these improvements to be rolled out to cus-

tomers and sufficiently used being too long, we were not able to work with the most advanced

version of log files. We decided to work with previous logs with the advantage of having more

sessions available. It is important to note that all the proposed methods in this thesis are com-

pletely adaptable to a richer log content and will certainly work all the better with the latter.

Chapter I.2

Crash Pattern Mining

ASPECIFIC PROBLEM potentially occurring while patient images are reviewed is a software

crash during the practitioner workflow. This is all the more true in the case of interven-

tional applications, for which patient safety is at stake. Therefore, reducing as much as possible

the crash rate of medical applications is a major line of the continuous improvement effort re-

garding the global quality of medical software products. The motivation here is to detect crash

signature to help the software development teams reproduce crashes and focus on specific pro-

gram functions. Thus, in this chapter, we aim at determining the type of pattern which is the

most appropriate to represent these signatures. We discuss the related work in section I.2.1. In

section I.2.2.1, we define 4 types of patterns, according to 2 criteria: the order and the prox-

imity of the actions composing them. We propose to use a binomial test, presented in section

I.2.2.2, evaluating the number of occurrences of a crash pattern in crashes against its total num-

ber of occurrences in both crashes and normal sessions in order to determine which of these

patterns are the most significant in crashes. Sequential pattern mining algorithms [Aggarwal

and Han, 2014], well adapted to our problem, will be presented in sections I.2.3.1, I.2.3.2 and

I.2.3.3. We conducted experiments on 5 systems having a particularly high crash rate to deter-

mine which type of pattern enables to best represent crash signatures. The results are given in

section II.3.4.4. An application to a current investigation is presented in section I.2.5.

I.2.1 Research Problem

In addition to user actions in the software interface, several factors are likely to cause crashes:

system status (number of running applications in the case of a server, memory availability),

hardware characteristics or dataset type may be the root cause of crashes. However, because of

the lack of consistent data, we exclusively focus on the user workflow in this thesis and make

the assumption that crashes are due to user actions.

We aim at identifying the actions or the patterns of actions having a high probability to provoke

crashes, in order to help development teams to focus on some specific functions of bug-prone

actions. Furthermore these relevant crash signatures might be integrated to automatic tests in

order to ensure the quality of the new software releases.

13

CHAPTER I.2. CRASH PATTERN MINING 14

This issue might in the first instance be tackled using techniques that have been proposed for

anomaly detection [Agrawal and Agrawal, 2015] or intrusion detection systems using signature

detection systems [Patcha and Park, 2007]. A traditional signature detection system [Axelsson,

2000] aims at identifying an intrusion irrespective of any knowledge of what the normal situ-

ation looks like and requires a signature to be defined for all types of intrusions, making the

detection of an unknown attack impossible and being therefore inapplicable in our case. On

the contrary, anomaly detection systems compare activities against a normal behavior thus en-

abling to detect anomalies that have never been seen before. For instance, a database of normal

short sequences of system calls may be built and an alarm triggered when the percentage of

mismatch with a new sequence exceeds a certain threshold, considering it as an anomaly [For-

rest et al., 1996, Hofmeyr et al., 1998]. These techniques aim at detecting abnormal behaviors in

order to prevent them from harming systems in real time. In the same spirit we will propose in

Chapter 6 a method enabling to anticipate crashes during the software use. The first goal here

being to find the root causes of crashes, we took inspiration from pattern mining techniques

[Aggarwal and Han, 2014].

The problem of frequent pattern mining has been widely studied and applied to a large vari-

ety of domains [Han et al., 2007]. Some works have in particular been proposed on software

bug mining, see Chapter 18, Section 11 from [Aggarwal and Han, 2014]. One of the proposed

approach is dedicated to the detection of non crashing bugs which are difficult to locate since

no crashing point, hence no backtrace, is available [Liu et al., 2005]. Using software behavior

graphs of program and classification, it is possible to detect suspicious code regions poten-

tially containing logical errors. Always with the same objective, a method proposing to mine

edge-weighted call graph was proposed to take into account the call frequency [Eichinger et al.,

2008]. Both methods tackle the bug detection task using graph mining techniques, which are

widely used for this task, the control flow of programs being often modeled in the form of call

graphs, see Chapter 2, Section 4.3 from [Aggarwal and Wang, 2010].

Unlike these works, we have at our disposal user workflows that led to crashes coming from

systems in use. The difficulty is to detect which patterns triggered the crashes, these combina-

tions of actions being a priori very complex since they were not detected during the verification

phase before the software deployment. The very high variability both in terms of content and

of length of sessions ending with a crash (see section I.2.3) leads to a large number of ques-

tions. Indeed, we do not know if crashes result from individual actions or from combinations

of several actions. In the case of several actions, we do not know their number or whether their

order has an impact. Moreover, we do not know if their proximity has to be taken into account

[Adam et al., 2016]. Similarly, we have no information about the exact moment in the session

at which the crash is triggered.

In view of our problem, we draw extensively on methodologies used in pattern based sequence

classification [Bringmann et al., 2009]. The general principle is to use patterns as features which

can then be used as inputs of conventional classifiers [Cheng et al., 2007, Lo et al., 2009] or for

CHAPTER I.2. CRASH PATTERN MINING 15

rule-based classification [Xing et al., 2008, Zhou et al., 2016]. The success of these methods gen-

erally relies on the step of patterns selection. Indeed, these patterns have to be discriminative

and representative of the class to which they belong. As a large number of patterns is generally

generated from the mining step, the selection might be based on the Fisher score [Duda et al.,

2012]. Popularly used to evaluate the discriminative power of a feature, this score is defined

as:

Fr =

∑c
i=1 ni(µi − µ)2∑c

i=1 niσ
2
i

where ni is the number of data samples in class i, µi is the average feature value in class i, σi
is the standard deviation of the feature value in class i and µ is the average feature value in the

whole dataset. The Fisher score may be combined with a coverage threshold to select patterns

[Cheng et al., 2007, Lo et al., 2009]. In this case, the coverage corresponds to the number of times

each training instance is covered by the selected features. Another methodology proposes to

evaluate the interestingness of a pattern [Zhou et al., 2016] taking into account its support (the

number of sequences in which it appears – see section I.2.2.1) and its cohesion (measuring how

close from each other the actions composing the pattern are – see section I.2.2.1). The earliness

of features might also be taken into account to select patterns for early prediction [Xing et al.,

2008].

I.2.2 Frequent Patterns

I.2.2.1 Types of Patterns

Let X = x1x2 . . . xn be a sequence of n actions. We define 4 types of patterns of size k (con-

taining k symbols) and their inclusion relationships into X . Let α = (α1, . . . , αk) ∈ Σk be a

pattern.

k-itemset

We say that α is a k-itemset of X if for all 1 ≤ i ≤ k, αi ∈ X . It simply implies that all symbols

of the itemset belong toX , irrespective of the order. We will denote a k-itemset by {α1, . . . , αk}.

k-exact subsequence

We say thatα is a k-exact subsequence ofX if there exists i such thatα1α2 . . . αk = xixi+1 . . . xi+k−1,

that is to say that X contains the exact subsequence α1α2 . . . αk. We will denote a k-exact sub-

sequence by α1, . . . , αk.

k-cohesive subsequence

Let W be the sliding window size. We say that α is a k-cohesive subsequence of X if there

exists i, i1, i2, . . . , ik−1, with ij < W for all 1 ≤ j ≤ k − 1, such that:

α1α2 . . . αk = xixi+i1xi+i1+i2 . . . xi+i1+i2+···+ik−1

Here, it means thatX contains the sequence α1α2 . . . αk, but the consecutive terms αi, αi+1 may

CHAPTER I.2. CRASH PATTERN MINING 16

be separated by up to G = W − 2 symbols, where G denotes the maximal gap allowed. We will

denote a k-cohesive subsequence by 〈α1α2 . . . αk〉G.

For example, if X1 = α1α2α3, X2 = α1βα2δα3, X3 = α1βγα2δα3 and X4 = α1βγρα2δα3, the

3-cohesive subsequence with gap G = 2, 〈α1α2α3〉2, is included in X1, X2 and X3 but not in

X4 since the maximal gap authorized between α1 and α2 is exceeded. Note that a cohesive

subsequence of gap equal to zero simply corresponds to an exact subsequence.

k-subsequence

We say that α is a k-subsequence of X if there exist integers 1 ≤ i1 < i2 < · · · < ik ≤ N such

that α1 = xi1 , α2 = xi2 , . . . , αk = xik . In this case the order is taken into account, but two

consecutive symbols of the subsequence might be separated by an indeterminate number of

actions. We will denote a k-subsequence by 〈α1α2 . . . αk〉.

Subpattern and Superpattern

If pattern α is included in pattern β, α ⊂ β, and α 6= β, pattern α is a subpattern of pattern β

and pattern β is a superpattern of pattern α.

Support

Given a dataset composed of |D| sequences in total, the support of a pattern α, denoted sup(α),

is equal to the number of sequences in which it is contained. A pattern α, will be considered

as frequent if it is contained in at least θ|D| sequences, where 0 < θ < 1 is a user specified

minimum support threshold which will be denoted by minsup :

α frequent ⇐⇒ sup(α) ≥ minsup |D|.

Frequent Closed Pattern

Given a mininum support threshold minsup and a dataset containing |D| sequences. If pattern

α is frequent (sup(α) ≥ minsup |D|) and there exists no proper superpattern of α with the same

support, i.e., @ β such that α ⊂ β and sup(α) = sup(β), α is a frequent closed pattern.

Cohesion

A strict measure of the cohesion of a subsequence is given by the maximum gap allowed be-

tween two consecutive terms in the pattern, as defined in section I.2.2.1.

Another concept to evaluate the cohesion of a pattern was proposed in [Zhou et al., 2016] and

measures the proximity of the events that make up the pattern. The length of the shortest

interval of a subsequence α in a sequence X is defined as W (α,X) = min{ie − is + 1|is ≤
ie and α is a subsequence of Xis,ie = xis . . . xie}. The average shortest interval over a dataset D
is then equal to:

W (α) =

∑
X∈DαW (α,X)

|Dα|

whereDα denotes the subset of sequences ofD containing the subsequence α and thus |Dα|, its

cardinal. The cohesion of a pattern α wihtin the dataset D is computed as follows:

CHAPTER I.2. CRASH PATTERN MINING 17

C(α) =
|α|

W (α)

where |α| stands for the length of the pattern α, corresponding to the number of actions in α.

With this definition, C(α) ∈ [0, 1]. Patterns having a cohesion close to 1 are highly cohesive. A

cohesion close to 0 corresponds to patterns largely spread throughout the sequences.

I.2.2.2 Significant Patterns

To detect whether a pattern has a significant impact on causing crashes, we perform a binomial

test. Let α be a pattern and Zα the random variable equal to 1 if a session containing pattern α

crashes and to 0 otherwise:

Zα =

1, if crash

0, otherwise

Zα has a Bernoulli distribution with success parameter pα, the theoretical probability of crash

for a session containing α:

Zα ∼ B(pα).

We want to detect patterns for which the crash probability is significantly higher than the ex-

pected crash probability in the whole database, estimated by p0:

p0 =
|C|

|C|+ |S|

where |C| and |S| stand for the total number of crashes and the total number of normal sessions

respectively. Let:

• Cα denotes {X ∈ C | α ⊂ X} and |Cα| the number of crash sessions containing the pattern

α in the database,

• Sα denotes {X ∈ S | α ⊂ X} and |Sα| the number of normal sessions containing the pat-

tern α in the database,

• Dα denotes {X ∈ D | α ⊂ X} and |Dα| the total number of sessions containing the pattern

α in the database, |Dα| = |Cα|+ |Sα|.

We consider that |Cα| follows a binomial distribution of parameters |Dα| and pα:

|Cα| ∼ B(|Dα| , pα).

We consider the following hypotheses, where p̃ is a threshold probability of crash:

CHAPTER I.2. CRASH PATTERN MINING 18

H0 : pα ≤ p̃;

H1 : pα > p̃.

We take p̃ = rp0, r depending on the dataset and for each pattern, we will test the null hypoth-

esis by calculating the associated p-value:

p-value = PH0(|Cα| > |Cobservedα |).

Should the p-value exceed a given level τ (let’s take τ = 1%). Otherwise, we might reject the

null hypothesis, and conclude that pα is greater than p̃.

This representation enables to take into account both the crash probability of a pattern and its

number of occurrences. We want to give more importance to patterns occurring several times

with a moderate crash probability and exclude patterns occurring only very few times and

having a very high crash probability. Indeed, evaluating p̂α as |Cα|/ |Dα| is not significant in

many situations for which |Dα| is too low.

I.2.3 Mining Algorithms

In this section we introduce the mining algorithms that will be used to conduct our experi-

ments. The Closet algorithm will be used to mine frequent closed itemsets and the Bide al-

gorithm to mine frequent closed subsequences. Cohesive subsequences might be mined with

Gap-Bide, however, as will be explained later, our methodology does not require to mine this

type of patterns. For this reason, we will only briefly describe Gap-Bide and we will detail

Closet and Bide. Table I.2.1 summarizes the mining algorithm that might be used to mine each

type of pattern.

Type of pattern Mining Method

k-itemset Closet [Pei et al., 2000]

k-exact subsequence
Gap-Bide [Li and Wang, 2008]

k-cohesive subsequence

k-subsequence Bide [Wang and Han, 2004]

Table I.2.1: Type of pattern and associated mining method.

I.2.3.1 Closet

First introduced by [Agrawal et al., 1994], frequent itemset mining was developed for market

basket analysis and customers buying habits analysis. By analyzing transactions, the objective

was to find out which items are often purchased together. Many algorithms were proposed,

to name a few: Apriori [Agrawal et al., 1994], FP-growth [Han et al., 2000] and Eclat [Zaki,

2000]. They all rely on the Apriori property: a k-itemset is frequent only if all of its subitemsets are

CHAPTER I.2. CRASH PATTERN MINING 19

frequent (pattern α frequent ⇐⇒ sup(α) ≥ minsup |D|). FP-growth mines the frequent itemsets

without candidate generation using a divide and conquer strategy. The first step consists in

mining frequent itemsets of length 1 by scanning the dataset once. The search space is then

partitioned in projected databases, one for each frequent 1-subitemset. Each database is then

mined recursively. This method thus decomposes the complete dataset into much smaller sets,

which makes it highly efficient. A major challenge of pattern mining is usually the huge num-

ber of frequent patterns, especially when the mininum support threshold is set low. Indeed,

a frequent itemset contains a combinatorial number of frequent smaller subitemsets. To get

around this phenomenon, closed frequent itemset mining algorithms were proposed such as

AClose [Pasquier et al., 1999] or Closet [Pei et al., 2000] which is described below.

First of all, the notions of frequent item list and conditional database which are necessary to

understand the algorithm will be defined. The principle of the algorithm is then provided and

illustrated on an example.

Frequent Item List

Given a transaction database T , and a minimum support threshold minsup, the frequent item list

denoted f list corresponds to all frequent items in support descending order.

Conditional Database

Given a transaction database T and i, a frequent item in T , the i-conditional database, denoted

T |i corresponds to the subset of transactions containing i, with all the infrequent items, item i

and items following i in the f list omitted.

Let X be a frequent itemset and j be a frequent item in X-conditional database, T |X . The jX-

conditional database, denoted T |jX , is the subset of transactions in T |X containing j such that

all local infrequent items (in X-conditional database), item j, and items following j in local

frequent item list, f listX are omitted.

Algorithm

Given a transaction database T and a minimum support threshold minsup, the Closet algorithm

(see Algorithm 1) outputs the complete set of frequent closed itemsets, FCI .

The set of frequent closed itemsets FCI is initialized to an empty set. The database is scanned

to compute the frequent item list f list. The CLOSET subroutine, takes as arguments: a frequent

itemset, X , a transaction database, DB, a frequent item list f list and the complete set of fre-

quent closed itemsets, FCI . It is called for the first time with X = ∅, DB = T , f list and FCI

as inputs.

The subroutine is composed of 3 steps. It first tests if there exists a set of items in f list occurring

in all the transactions of DB. If so, this set, denoted Y is added to the current frequent itemset

X to form a new itemset, X∪Y . If this itemset is not a proper subitemset of any itemset in FCI

with the same support, X ∪ Y is closed and therefore, added to FCI .

The remaining items from f list are then used to compute corresponding conditional databases.

CHAPTER I.2. CRASH PATTERN MINING 20

For each remaining item i from f list (in f list r Y), starting by the last one, if iX (the set com-

posed of item i and items from X) is not a subitemset of any frequent closed itemset from FCI

with the same support, the subroutine CLOSET(iX , DB|i, f listi, FCI) is called, where DB|i
corresponds to the i-conditional database with respect to DB and f listi is the corresponding

frequent item list.

Algorithm 1: Closet [Pei et al., 2000]
Inputs: Transaction database T and minimum support threshold minsup.

Output: The complete set of frequent closed itemsets, FCI .

Initilization:

1. Initialize FCI to ∅;
2. Scan database and compute frequent item list f list;

3. Call CLOSET(∅, T , f list, FCI).

Subroutine CLOSET(X , DB, f list, FCI)

Arguments:

• X : the frequent itemset if DB is an X-conditional database, or ∅ if DB is T ;

• DB : transaction database;

• f list : frequent item list of DB;

• FCI : the set of frequent closed itemsets already found.

Method:

1. Let Y be the set of items in f list such that they appear in all the transactions of DB, add

X ∪ Y to FCI if it is not a proper subitemset of some itemset in FCI with the same

support;

2. Form conditional database for every remaining item in f list (f list r Y) and compute

local frequent item lists for these conditional databases, if there is no remaining item in

f list, test if X is a closet frequent itemset;

3. For each remaining item i in f list starting from the last one, call CLOSET(iX , DB|i,
f listi, FCI) if iX is not a subitemset of any frequent closed itemset already found with

the same support count. DB|i corresponds to the i-conditional database with respect to

DB and f listi is the corresponding frequent item list.

Given the example transaction database T in Table I.2.2 and a minimum support minsup equal

to 0.4, itemsets have to occur in at least 2 transactions to be frequent.

Transaction ID Transaction

1 C,E, F,A,D

2 E,A

3 C,E, F

4 C,F,A,D

5 C,E, F

Table I.2.2: An example transaction database.

CHAPTER I.2. CRASH PATTERN MINING 21

The first step of the Closet algorithm consists in finding frequent 1-itemsets to determine the

frequent item list f list. In the running example f list = (C : 4, E : 4, F : 4, A : 3, D : 2).

As there is no set of items in f list appearing in all transactions of T , FCI remains empty.

The next step consists in the construction of conditional databases of the remaining items in

f list (in the running example, all items remain). We construct 5 conditional databases contain-

ing 5 non-overlap subsets:

• the ones containing item D (denoted T |D);

• the ones containing item A but not D (denoted T |A);

• the ones containing item F but not A, nor D (denoted T |F);

• the ones containing item E but not F , A nor D (denoted T |E);

• the ones containing only item C (denoted T |C).

This results in the conditional databases provided in Table I.2.3.

T |D T |A T |F T |E
C,E, F,A C,E, F C,E C

C,F,A E C,E C

C,F C C

C,E

f listD = (C : 2, F : 2, A : 2) f listA = (C : 2, E : 2, F : 2) f listF = (C : 4, E : 3) f listE = (C : 3)

Table I.2.3: Conditional databases and corresponding frequent item lists for the running exam-

ple.

Starting from the last item in f list, D in the example, we apply the subroutine CLOSET(D,

T |D, f listD, FCI). As {C,F,A} appears in all the transactions of T |D, we form D∪{C,F,A} =

{C,F,A,D} which has a support of 2 and add it to FCI (FCI = ({C,F,A,D} : 2)). As there

is no remaining item in f listD, there is no need to compute further conditional databases for

T |D.

The next item in f list is item A, we apply the subroutine CLOSET(A, T |A, f listA, FCI). As no

set of items appears in all the transactions of T |A, we form A ∪ ∅ = {A}. {A} is a subitemset of

{C,F,A,D} ⊂ FCI but its support is equal to 3, whereras the support of {C,F,A,D} is equal

to 2, therefore {A} is added to FCI , (FCI = ({C,F,A,D} : 2, {A} : 3)). Items C, E and F

are remaining in f listA, meaning that DB|A can be further partitioned into three conditional

databases (T |FA, T |EA, T |CA). As {F,A} is a subitemset of {C,F,A,D} and has the same

support, there is no frequent closed itemset containing F , A without containing D. There is no

need to call CLOSET(FA, DB|FA, f listFA, FCI). As {E,A} is not a subitemset of any frequent

closed itemset, we call CLOSET(EA, T |EA, f listEA, FCI) with T |EA = C and f listEA = ∅.

CHAPTER I.2. CRASH PATTERN MINING 22

As there is no item in f listEA, we form {E,A} ∪ ∅ = {E,A}, which is not a subitemset of any

itemset from FCI , therefore, we add {E,A} to FCI , (FCI = ({C,F,A,D} : 2, {A} : 3, {E,A} :

2)).

As there is no item in f listEA, the T |EA cannot be extented. We move to item F from f list and

call CLOSET(F , T |F , f listF , FCI). C appears in all transactions from T |F , we form {C,F},
which is included in {C,F,A,D}, but has a higher support, therefore we can add {C,F} to

FCI , (FCI = ({C,F,A,D} : 2, {A} : 3, {E,A} : 2, {C,F} : 4)). Item E remains in f listF , after

constructing the conditional database T |FE we call subroutine CLOSET(EF , T |EF , f listEF ,

FCI) and add {C,E, F} to FCI , (FCI = ({C,F,A,D} : 2, {A} : 3, {E,A} : 2, {C,F} :

4, {C,E, F} : 3)).

The last step consists in the call of CLOSET(E, T |E , f listE , FCI). C is included in all transac-

tions of T |E , but {C,E} which has a support of 3 is a subitemset of {C,E, F} and thus is not

closed, however {E} is a closed frequent itemset, we add it to FCI , (FCI = ({C,F,A,D} :

2, {A} : 3, {A,E} : 2, {C,F} : 4, {C,E, F} : 3, {E} : 4)).

Finally, there is no transaction in T |C . C has a support of 4, but is a subitemset of {C,F}which

has the same support, therefore there is no frequent closed itemset containing only C.

The final set of frequent closed itemsets is ({C,F,A,D} : 2, {A} : 3, {A,E} : 2, {C,F} :

4, {C,E, F} : 3, {E} : 4).

I.2.3.2 Bide

Several algorithms have been proposed to mine sequential patterns [Han et al., 2007] when

there is no constraint regarding the number of actions between two consecutive terms of the

pattern. Only the order of the actions matters. One of the most well-known methodologies

consists in pattern-growth used by the PrefixSpan algorithm [Pei et al., 2004] for example which

uses the pattern growth method. As for frequent itemsets mining, closed frequent subsequence

mining algorithms were proposed such as CloSpan [Xifeng et al., 2003] and later Bide [Wang

and Han, 2004]. Instead of returning all the frequent subsequences such as PrefixSpan, they

return the complete set of frequent closed subsequences, defined previously.

We decided to mine frequent subsequences with the Bide algorithm because of its efficiency.

Based on the pattern-growth method, Bide grows prefixes using a BI-Direction Extension pat-

tern closure checking mechanism to mine frequent closed subsequences. In order to describe

the algorithm provided in Algorithm 2, we recall a few definitions provided in the Bide original

paper.

CHAPTER I.2. CRASH PATTERN MINING 23

Sequence ID Sequence

1 CAABC

2 ABCB

3 CABC

4 ABBCA

Table I.2.4: An example sequence database.

Table I.2.4 shows an input sequence database, we set minsup to 0.5, meaning that subsequences

have to appear in at least 2 sequences to be frequent.

We will call prefix a subsequence of interest.

First instance of a prefix

Given a sequence X which contains a prefix of length 1, α = α1, the exact-subsequence of X

starting at the beginning of X to the first appearance of item α1 in X is called the first instance

of prefix α in X . Recursively, the first instance of a prefix of length (k + 1), α1α2 . . . αkαk+1

can be defined from the prefix α1α2 . . . αk (where k ≥ 1) as the exact-subsequence from the

beginning of X to the first appaearance of item αk+1 which also occurs after the first instance

of the prefix α1α2 . . . αk.

In the running example, provided in Table I.2.4, the first instance of AB in CAABC is CAAB.

The first instance of CB in CAABC is also CAAB.

Projected sequence and projected database

Given a sequence X , containing a prefix α = α1α2 . . . αk. The projected sequence Xα with

respect to α corresponds to the remaining part of X after removing the first instance of α.

In the running example, the projected sequence of subsequence AB in sequence CAABC is C.

Given a sequence database D, the projected database Dα with respect to prefix α corresponds

to the complete set of projected sequences with respect to α.

In the running example, the projected database of prefixAB, denoted byDAB , is (C,CB,C,BCA).

Locally frequent items

The frequent items of a projected database Dα of a prefix α, are called locally frequent. They

have to be ordered in a lexicographical order, we take the alphabetical order.

In the running example, if the prefix is AB, its projected database is (C,CB,C,BCA) and

{B : 2, C : 4} is the set of locally frequent items.

According to the Apriori property, in order to find frequent subsequences, a prefix only needs

to be grown using the set of its locally frequent items.

CHAPTER I.2. CRASH PATTERN MINING 24

BI-Directional Extension closure checking scheme

Given a non-closed sequence α = α1α2 . . . αk, there must exist at least one event x′ which can

extend α to form a new sequence α′ having the same support. There are 3 possible extensions:

1. α′ = α1α2 . . . αkx
′

2. α′ = α1α2 . . . αix
′αi+1 . . . αk

3. α′ = x′α1α2 . . . αk

In the first case, x′ is called a forward extension item and α′ a forward extension sequence. In

cases 2 and 3, x′ occurs before αk and thus is called a backward extension item and α′ a backward

extension sequence. When a new frequent prefix is obtained, pattern closure checking needs

to be done in order to ensure that it is closed. Bide performs superpattern and subpattern

checking using respectively forward extension and backward extension event checking and it

is demonstrated that if there is no forward extension item nor backward extension item with respect to

a prefix α, this prefix α is closed, otherwise it is non-closed.

Last instance of a prefix

Given a sequence X containing a prefix α = α1α2 . . . αk, the last instance of α in X is the

exact-subsequence from the beginning of X to the last appearance of the last item of α.

i-th last-in-last appearance with respect to a prefix

Given an input sequence X containing a prefix α = α1α2 . . . αk, the i-th last-in-last appearance

of α in X , denoted by LLi is recursively defined as:

• the last appearance of αi in the last instance of α in X , if i = k;

• the last appearance of αi in the last instance of α in X while LLi must appear before

LLi+1, if 1 ≤ i < k.

The i-th maximum period of a prefix

Given an input sequence X containing a prefix α = α1α2 . . . αk, the i-th maximum period

of α in X is defined as the exact-subsequence between the end of the first instance of prefix

α1α2 . . . αi−1 in X and the i-th last-in-last appearance with respect to α, if 1 < i ≤ k. It is

the exact-subsequence located before the 1st last-in-last appearance with respect to prefix α, if

i = 1.

For example, given a prefix ABC and a sequence X = C1A1A2BC2DA3C3E. The last instance

of ABC is C1A1A2BC2DA3C3. We can then compute:

• the 1st last-in-last appearance LL1 which is equal to A2;

• the 2nd last-in-last appearance LL2 which is equal to B;

• the 3rd last-in-last appearance LL3 which is equal to C3.

Beside, we can compute the following maximum periods:

CHAPTER I.2. CRASH PATTERN MINING 25

• the 1st maximum period MP1 which is equal to C1A1;

• the 2nd maximum period MP2 which is equal to A2;

• the 3rd maximum period MP3 which is equal to C2DA3.

Backward extension items

Given a prefix α = α1α2 . . . αk. If ∃i, 1 ≤ i ≤ k, and item x′ occurs in each of the i-th maximum

periods of the prefix α in D, item x′ is a backward extension item.

The i-th last-in-first appearance with respect to a prefix sequence

Given an input sequence X containing a prefix α = α1α2 . . . αk, the i-th last-in-first appearance

of α in X is denoted as LFi and recursively defined as:

• the last appearance of αi in the first instance of α in X , if i = k;

• the last appearance of αi in the first instance of α in X while LFi must appear before

LFi+1, if 1 ≤ i < k.

i-th semi maximum period of a prefix

Given an input sequence X containing a prefix α = α1α2 . . . αk, the i-th semi maximum period

of α is defined as:

• the exact-subsequence between the end of the first instance of α1α2 . . . αi−1 in X and the

i-th last-in-first appearance with respect α, if 1 < i ≤ k;

• the exact-subsequence in X located before the 1st last-in-first appearance with respect to

α, if i = 1.

For example, given a prefix ABC and a sequence X = C1A1A2BC2DA3C3E. We have:

• the 1st last-in-first appearance LF1 which is equal to A2;

• the 2nd last-in-first appearance LF2 which is equal to B;

• the 3rd last-in-first appearance LF3 which is equal to C2.

Beside, we can compute the following semi-maximum periods:

• the 1st semi maximum period SMP1 which is equal to C1A1;

• the 2nd semi maximum period SMP2 which is equal to A2;

• the 3rd semi maximum period SMP3 which is equal to ∅.

Backscan

The Backscan method enables to stop growing unecessary patterns if the current subsequence

can not be closed.

Given a prefix α = α1α2 . . . αk. If ∃i, 1 ≤ i ≤ k, and there exists an item x′ which occurs in each

of the i-th semi maximum periods of the prefix α in D, the growth of α can be stopped.

CHAPTER I.2. CRASH PATTERN MINING 26

In the running example, if α = B, item A appears in each of the 1st semi-maximum period of α

in the database, meaning we can stop mining frequent closed subsequences with subsequence

B. However, if α = C, there is no item which appears in each of the 1st semi-maximum periods

of α, meaning we can not stop growing C.

LF1 SMP1

CAABC B CAA

AB1CB2 B1 A

CABC B CA

AB1B2CA B1 A

Table I.2.5: Last-in-first appearances and semi maximum periods of B in the database.

LF1 SMP1

C1AABC2 C1 -

ABCB C AB

C1ABC2 C1 -

ABBCA C ABB

Table I.2.6: Last-in-first appearances and semi maximum periods of C in the database.

Algorithm

Algorithm 2 presents the Bide algorithm. The first step is to find the subsequences of length 1

that are frequent. A projected database Df1 is then built for each frequent 1-subsequence, f1.

Each frequent 1-subsequence is then considered as a prefix and the Backscan method checks if

it can be pruned. If not, the number of backward extensions items BEI is computed and the

subroutine BIDE is called with the projected database Df1, the prefix f1, minsup, the backward

extensions BEI and the set of frequent closed sequences FCS as arguments. This subroutine

calls itself recursively and operates as follows. Projected database Dα of prefix α is scanned to

find its locally frequent items denoted LFI . Among these items, it then computes the number

of forward extensions items FEI (having the same support as α in D). If there is no forward

extensions items nor backward extensions items BEI , α is a closed subsequence and is added

to the set of frequent closed subsequences FCS. Each locally frequent item x′ is then used to

grow the prefix α to form a new prefix, denoted by αx′, whose projected database Dαx′ is built.

For each new prefix αx′, the Backscan methods checks if it can be pruned. If not, the number

of backward extensions items BEI is computed and the subroutine BIDE is called on the new

projected database Dαx′ , the newly formed prefix αx′, minsup, backward extensions BEI and

updated set of frequent closed sequences FCS.

To compute the frequent closed subsequences in the running example, we first find the frequent

subsequences of length 1: F1 = (A : 4, B : 4, C : 4). Table I.2.7 provides for each frequent

subsequence of F1 its projected database.

CHAPTER I.2. CRASH PATTERN MINING 27

DA DB DC

ABC C AABC

BCB CB B

BC C ABC

BBCA BCA A

Table I.2.7: Projected databases DA, DB and DC .

The first prefix to analyze is A. As there is no possible backscan for A in DA, we compute the

number of backward extensions,BEI , which is equal to 0 and callBIDE(DA, A,minsup, BEI, F

CS), with FCS = ∅. The locally frequent items from DA are {A : 4, B : 4, C : 4}. The

number of forward extensions items FEI is equal to 3, meaning that we can not add A to

FCS. We grow A with A and compute the new projected database DAA = (BC). As there is

no possible backscan for AA in DAA, we compute the number of backward extensions items,

equal to 0, and call BIDE(DAA, AA,minsup, BEI, FCS). There is no locally frequent item

in DAA and therefore BEI + FEI is equal to 0, meaning that we can add AA to the fre-

quent closed subsequences FCS. We then move to item B from the locally frequent items

of DA and grow A with B. The corresponding projected database is DAB = (C,BC,C,BCA).

As there is no possible backscan of AB in DAB , and no backward extension items, we call

BIDE(DAB, AB,minsup, BEI, FCS). The locally frequent items from DAB are {B : 2, C : 4}.
As the support of C is equal to 4, FEI > 0 and we can not add AB to FCS. We grow AB with

B and compute the projected database DABB = (CA). There is no possible backscan of ABB

inDABB and no backward extension item, we callBIDE(DABB, ABB,minsup, BEI, FCS). As

there is no locally frequent item in DABB we add ABB to FCS (now FCS = (AA,ABB)) and

move to item C from the locally frequent items of DAB . We grow AB with C and compute

DABC = (A,B). There is no possible backscan of ABC in DABC and no backward extension

item, we call BIDE(DABC , ABC,minsup, BEI, FCS). As there is no locally frequent item in

DABC , we can add ABC to FCS which is now equal to (AA,ABB,ABC). Following the same

methodology on DB and DC will lead to the complete set of frequent closed subsequences

CHAPTER I.2. CRASH PATTERN MINING 28

FCS = (AA,ABB,ABC,CA,CABC,CB).

Algorithm 2: Bide [Wang and Han, 2004]
Inputs: an input sequence database D, a minimum support threshold minsup.

Output: the complete set of frequent closed sequences, FCS.

FCS = ∅;
F1 = frequent 1-subsequences(D, minsup);

for f1 in F1 do
Df1 = projected database(D, f1);

for f1 in F1 do

if !Backscan(f1, Df1) then
BEI = backward extension check (f1, Df1);

call BIDE(Df1, f1, minsup, BEI , FCS);

return FCS;

Subroutine BIDE(Dα, α, minsup, BEI , FCS);

Arguments:

• a projected sequence database Dα;

• a prefix sequence α;

• a minimum support threshold minsup;

• the number of backward extension items BEI ;

• the complete set of frequent closed sequences FCS.

Compute:

LFI = locally frequent items(Dα);

FEI = |{z ∈ LFI| sup(z) = supD(α)}| ;
if (BEI + FEI) == 0 then

FCS = FCS ∪ {α};

for i in LFI do
grow α with i to get a new prefix αi;

Dαi = projected database(Dα, αi);

for i in LFI do

if !BackScan(αi, Dαi) then
BEI = backward extension check (αi, Dαi);
call BIDE(Dαi, αi, minsup, BEI , FCS)

The Bide algorithm was implemented using the prefixspan Python 1 package.

I.2.3.3 Gap-Bide

As cohesive subsequences are included in subsequences, we only mined subsequences and

evaluated the proximity of the actions composing them. However, an extension to the Bide

1https://pypi.org/project/prefixspan/

CHAPTER I.2. CRASH PATTERN MINING 29

algorithm, namely Gap-Bide [Li and Wang, 2008] was proposed to mine frequent closed cohe-

sive subsequence with gap constraints. It proposes two parameters M and G to characterize

the gap constraints, where M stands for the minimal number of symbols that have to be con-

tained between every two consecutive terms of the gap-constrained pattern and G refers to the

maximal number of symbols possibly contained between two consecutive terms.

I.2.4 Methodological Tests

I.2.4.1 Data

Figure I.2.1 shows the crash rate for each system of our global database. Although all these

systems have the same software release, the crash rate varies a lot from one system to another.

To conduct our experiments, we used the 5 systems having a crash rate exceeding 3%. Systems

above this threshold are particularly critical and generally require in-depth investigations.

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

System ID

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Crash rate

Figure I.2.1: Crash rate for each system of the database and in dashed line the critical threshold

of 3%.

More details for each of these 5 systems are given in Table I.2.8. p0 stands for the crash rate,

|D| for the total number of sessions, corresponding to the sum of the number of crashes and

the number of normal sessions (|D| = |C| + |S|). Finally, uac = |Σ| stands for the number of

unique actions in the crash sessions. This quantity differs from one system to another because

the content of the interface and therefore the tools available to the user heavily depend on the

medical applications used by the system in question.

CHAPTER I.2. CRASH PATTERN MINING 30

System ID p0 |D| uac

8 0.080 3445 89

17 0.032 4680 58

20 0.036 2368 61

33 0.032 2033 132

45 0.051 850 155

Table I.2.8: Crash rate p0, total number of sessions |D| and number of unique actions in the

crash sessions uac = |Σ| for each system selected for the analysis.

8 17 20 33 45
System ID

0

100

200

300

400

Le
n
g
th

Crashes Normal sessions

Figure I.2.2: Session length distributions for crashes and normal sessions.

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
5

4
7

4
8

5
0

5
1

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
4

6
5

6
6

6
7

7
0

7
1

7
7

7
8

7
9

8
0

8
6

9
3

9
7

1
0

1
1
2

9
1
3

2
1
5

4

Length

0

5

10

15

20

25

30

35

N
u
m

b
e
r

o
f

cr
a
sh

e
s

Total number of crashes Number of unique crashes

Figure I.2.3: Total number of crashes and number of different crashes as a function of session

length for system 8.

CHAPTER I.2. CRASH PATTERN MINING 31

The high variability of crashes in both content and length is illustrated in Figures I.2.2 and I.2.3.

Figure I.2.2 shows for each system the length distribution of both crashes and normal sessions.

While system 3 presents very short crashes, system 45 contains very long ones. Crashes may

happen at the very beginning of a session as well as after multiple user actions. Figure I.2.3

shows, for system 8, the number of crashes according to the session length, as well as the

number of different crashes of this length. Only some of the short crashes, containing 5 actions

or less, consist of exactly the same workflow. All the other crash sessions are different. This

trend is observed on all other systems.

I.2.4.2 Impact of Order

In this section we aim at determining if the order of the actions composing a crash pattern is

decisive. For this purpose, we conducted 2 experiments, summarized in Table I.2.9. In Ex-

periment 1 we first mine frequent subsequences and then test if corresponding itemsets are

significant too. In Experiment 2 we do the opposite approach, we first mine frequent itemsets

and then test if at least one of the corresponding subsequences has been detected as significant.

Pattern Mined Question

Experiment 1 Significant subsequences Are corresponding itemsets significant too?

Experiment 2 Significant itemsets Is one of the corresponding subsequence significant?

Table I.2.9: Experiments overview.

Experiment 1

To conduct the first experiment, we first mined frequent subsequences with the Bide algorithm

and evaluate for different threshold probabilities the number of significant subsequences, at

a significance level τ = 0.01. The results are provided in Table I.2.10. As can be seen, the

threshold probability to obtain only a few significant subsequences varies a lot from one system

to another. In the case of system 8, 3p0 is enough to obtain 24 significant subsequences whereas

a threshold of 10p0 is necessary to select 65 significant subsequences in the case of system 2.

System ID p0 2p0 3p0 4p0 5p0 6p0 7p0 8p0 9p0 10p0

8 56994 3202 24 0 0 0 0 0 0 0

17 1674 1644 1463 1422 1407 1338 1150 555 157 65

20 190 168 152 133 99 49 25 18 3 1

33 26499 10353 5074 2953 1406 1311 31 31 31 0

45 46007 8076 3475 1329 309 162 40 0 0 0

Table I.2.10: Number of significant subsequences for each system mined with the Bide algo-

rithm with τ = 0.01, minsup = 0.05 and variable threshold probability rp0, r ∈ J1, 10K.

In order to test whether the order of the actions composing the significant subsequences are

decisive, we propose to test if the corresponding itemset of a significant subsequence is signif-

CHAPTER I.2. CRASH PATTERN MINING 32

icant too. To demonstrate our point, we considered the highest threshold probability which

still provides significant subsequences. These configurations are in bold in Table I.2.10. For

example, for system 8, we use the 24 subsequences obtained with a probability threshold equal

to 3p0 since a highest value was too selective and does not return any significant subsequence.

For each of the subsequences in bold in Table I.2.10, we tested if the corresponding itemset

(containing the same actions, regardless of their order) is significant, at the same significance

level τ = 0.01. Results are provided in Table I.2.11. For 4 out of 5 systems (systems 17, 20, 33

and 45) the rate of corresponding significant itemsets is equal to 0. Besides, only 2 out of 24

corresponding itemsets are significant in the case of system 8. Table I.2.12 shows 2 examples of

significant subsequences whose corresponding itemsets are not significant. While correspond-

ing itemsets occur in either the same number or a higher number of crashes, they also appear

in many more normal sessions, thus resulting in a higher p-value.

System ID
number of

significant itemsets

number of

tested subsequences
rate

8 2 24 0.083

17 0 65 0

20 0 1 0

33 0 31 0

45 0 40 0

Table I.2.11: Number of significant itemsets corresponding to significant subsequences for each

system with τ = 0.01. The tested itemsets correspond to the subsequences in bold in Table

I.2.10.

significant subsequence corresponding itemset

System ID |Cα| |Dα| p-value |Cα| |Dα| p-value

example 1 (system 8) 19 47 0.008674 34 164 0.85

example 2 (system 33) 4 4 0.002518 4 7 0.12

Table I.2.12: Examples of non-significant itemsets corresponding to significant subsequences.

Experiment 2

To conduct the second experiment, we first mined frequent itemsets with the Closet algorithm

and evaluated for different threshold probabilities the number of significant subsequences, at a

significance level τ = 0.01. The results are provided in Table I.2.13. Again, the threshold proba-

bility to obtain only a few significant subsequences varies a lot from one system to another. As

a k-itemset corresponds to k! different k-subsequences, the number of determined significant

itemsets is less important than the number of determined significant subsequences in Table

I.2.10. In order to test the impact of the order of the actions, we check for each of the significant

itemsets in bold if at least one of the corresponding subsquences was found in Experiment 1, at

CHAPTER I.2. CRASH PATTERN MINING 33

the same threshold probability.

System ID p0 2p0 3p0 4p0 5p0 6p0 7p0 8p0 9p0 10p0

8 408 15 1 0 0 0 0 0 0 0

17 348 308 265 228 143 60 10 0 0 0

20 17 14 13 10 7 3 3 1 0 0

33 105 7 4 2 1 1 0 0 0 0

45 216 27 6 1 0 0 0 0 0 0

Table I.2.13: Number of significant itemsets for each system mined with the Bide algorithm

with τ = 0.01, minsup = 0.05 and variable threshold probability rp0, r ∈ J1, 10K.

System ID
number of itemsets corresponding

to a significant subsequence

number of

tested itemsets
rate

8 1 1 1

17 10 10 1

20 1 1 1

33 1 1 1

45 1 1 1

Table I.2.14: Number of significant itemsets corresponding to a significant subsequence for each

system with τ = 0.01. The tested itemsets correspond to configurations in bold in Table I.2.13.

As can be seen in Table I.2.14, all the significant itemsets were also found in significant subse-

quences.

Conclusion : Impact of Order

As almost all of the corresponding itemsets of significant subsequences are not significant and

as for the majority of the significant subsequences at least one corresponding subsequence is

significant, we conclude that the order of the actions making up a crash pattern is decisive.

These 2 experiments enabled to discard the itemsets, which is the reason why we do not con-

sider itemsets in the rest of this work.

I.2.4.3 Impact of Proximity

This section aims at testing whether the proximity of the actions composing a crash pattern

is relevant or not. As we discarded the itemsets with the previous experiments, we want to

evaluate which among exact subsequence, cohesive subsquence or subsequence is the most

appropriate type of pattern to represent crash signatures. Indeed, these 3 representations take

into account the order of the actions but differ concerning the proximity of the actions compos-

ing them. For this purpose we evaluate 2 measures on the significant subsequences in bold in

Table I.2.10 : the maximum gap and the cohesion.

CHAPTER I.2. CRASH PATTERN MINING 34

Maximum Gap

We evaluated for each significant subsequence determined in Table I.2.10 the maximum gap of

actions contained between 2 consecutive actions composing the subsequence in the crash ses-

sions in which they appear. Table I.2.15 shows the maximum gap among all the subsequences

and all the crash sessions for each system. These maximum gaps are rather important, varying

between 8 and 62. Figure I.2.4 shows the cumulative histogram of maximum gaps obtained

with the 31 signficant subsequences from system 33. A maximum gap of 20 would only have

detected 23% of the significant patterns. These results suggest that exact and cohesive subse-

quences are not suitable for our task.

System ID maximum gap

8 43

17 55

20 8

33 35

45 62

Table I.2.15: Maximum gap found among the significant subsequences in bold in Table I.2.10

for each system.

10 15 20 25 30 35
Maximum Gap

0.0

0.2

0.4

0.6

0.8

1.0
Cumulative histogram

Figure I.2.4: Cumulative histogram of maximum gaps obtained for the 31 significant subse-

quences of system 33.

I.2.4.4 Cohesion

Table I.2.16 shows the average cohesion of the set of significant subsequences (corresponding

to the selected threshold probability in Table I.2.10). The average cohesion is lower than 0.4 for

4 out of 5 systems and equal to 0.55 in the case of system 20. These results indicate that the

subsequences are composed of actions which are widely spread throughout sessions.

CHAPTER I.2. CRASH PATTERN MINING 35

System ID Average cohesion

8 0.38

17 0.11

20 0.55

33 0.3

45 0.18

Table I.2.16: Cohesion of the significant subsequences in bold in Table I.2.10 for each system.

I.2.4.5 Results Summary

The first experiments consisted in testing the importance of the order of the actions composing

a crash pattern. The goal here was to decide which among itemsets or subsequences are the

most appropriate to represent crash signatures. Results suggested that the order of the actions

is decisive and thus itemsets were discarded.

In order to evaluate the impact of action proximity making up a crash signature we proposed

to evaluate the maximum gaps of significant subsequences. The cumulative histogram of maxi-

mum gaps obtained on system 33 indicates that gap constraints would not enable the detection

of an important part of the significant subsequences. Besides, the low cohesion measures sug-

gest that actions composing significant subsequences are spread throughout crash sessions.

We conclude that subsequences are the most appropriate pattern to represent crash signatures.

I.2.5 Application on a Critical Case

Context

At the time of this writing, this method has been used to investigate a particularly critical

system having a crash rate reaching 6.8% (46 crash sessions and 629 normal sessions). This

system has a recent version of the software and is not one of the 50 systems studied above. The

major challenge in such a case is to be able to reproduce the crash in order to fix bugs. Even

the users of the system in question are generally not able to explain which workflows lead to

crashes. We applied the significant subsequences detection method described in this chapter

to the logs coming from this system and it enabled to highlight some relevant crash signatures,

two examples are given below.

Crash Signatures

Table I.2.17 shows the number of significant subsequences obtained for variable threshold prob-

abilities. We conducted the investigation on the 12 subsequences obtained with a threshold of

2p0. 2 examples of crash signatures are given in Table I.2.18. Both of them were performed 3

times, systematically ending with a crash. While the example on the left contains 4 actions and

is quite cohesive, the example on the right contains 17 actions which are rather spread through-

out the crash sessions as indicated by a cohesion of 0.21. The signatures obtained enabled to

focus on different workflows and were very useful to the investigation and the debugging

CHAPTER I.2. CRASH PATTERN MINING 36

team.

p0 2p0 3p0 4p0 5p0

3461 12 8 0 0

Table I.2.17: Number of significant subsequences for the studied system with the Bide algorithm

with τ = 0.01, minsup = 0.01 and variable threshold probability rp0, r ∈ J1, 5K.

’apps-launch vv’,

’accept’,

’reject’,

’ctc/tracking/buildnextvol’

’apps-launch vv’,

’tool-scalpel’,

’vxwidget/vois/21’,

’tool-auto select toolkey’,

’segmentation/autoselect/smallvessels’,

’menu-main reset pointer’,

’vxwidget/modifypanel2/8’,

’segmentation/autoselect/remove’,

’segmentation/autoselect/add’,

’sliderview/model’,

’sliderview/model’,

’sliderview/model’,

’tool-save state’,

’vxwidget/savestatepanel/103’,

’vxwidget/savestatepanel/101’,

’menu-dynamicitem’,

’ava/tracking/editcenter’

k = 4

|Cα| = 3

|Sα| = 3

cohesion = 0.48

k = 17

|Cα| = 3

|Sα| = 3

cohesion = 0.21

Table I.2.18: Examples of crash signatures obtained with 3p0 threshold probability and signif-

icance level τ = 0.01.

I.2.6 Discussion

In this chapter we identified subsequences as the most appropriate pattern type to represent

crash signatures among 4 types of patterns. As demonstrated on a critical industrial applica-

tion, this method proves to be useful during in-depth investigations. However the fact that

the crash signatures when reproduced do not crash systematically suggests that some crucial

information is currently missing from log files. Indeed, the dataset details (number of volumes,

size, acquisition modality) for example, which is known to be particularly relevant is notably

missing.

CHAPTER I.2. CRASH PATTERN MINING 37

In addition to being used in investigations, the most significant crash signatures might be used

in automatic tests. Indeed, these high probability crash patterns are often complex and would

not have been tested in the usual test routines.

CHAPTER I.2. CRASH PATTERN MINING 38

Chapter I.3

User Workflow Characterization

USER BEHAVIOR MODELING is an important task and has many uses. Indeed, being able

to characterize user workflows might enable to adapt user interface content, simplify

repetitive tasks, reveal some features which are not used as expected and thus need to be in-

vestigated upon. More generally, the knowledge of trends of use provides precious insights for

further marketing or business decisions. In this chapter we aim at grouping similar sessions

and thus determine characteristic workflows. For this purpose we propose to compare differ-

ent session representations as inputs of several clustering algorithms. We discuss the related

work in section I.3.1. We present the data which will be used to conduct our experiments in

section I.3.2. Section I.3.3 describes the session representations we propose to use as inputs

of the clustering algorithms presented in section I.3.4. A preliminary work consisted in the

clusterability assessment of our data which is detailed in section I.3.5. Sections I.3.6 and I.3.7

respectively present the selection of a cluster validity index and of the hyperparameters. Sec-

tion I.3.8 presents the selection of the best configurations session representation – clustering

algorithm and finally section I.3.9 is dedicated to the interpretation of the obtained clusters.

I.3.1 Research Problem

Understanding user behavior based on log files is a challenging task. Indeed, there is a sig-

nificant variability in the workflows of different users to perform the same task [Dev and Liu,

2017]. This might be explained by several factors such as the experience of the user, his working

habits and preferences, the difficulty of the case to be treated or the fact that several combina-

tions of actions might lead to the same final result. Moreover, users might make mistakes thus

adding unintended actions in their workflows corresponding to noise in our data. We pro-

pose to partition our sessions according to their similarities, making the assumption that the

resulting clusters will represent characteristic workflows of our applications.

Works on web sessions clustering [Chaofeng, 2009] or clickstream clustering [Wang et al., 2016]

are very close to our problem. Their goal is to highlight groups of similar navigational paths

based on streams of hyper links or traces of user activities. The methods generally involve

several common steps.

39

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 40

The first one concerns the pre-processing of the input data, so that it can be used in clustering

algorithms. A standard way to represent web sessions is to transform them into feature vectors.

Each unique page stands for a feature, and the corresponding web session vector will contain

a 1 if the web page has been viewed during the session, a 0 otherwise [Dixit and Bhatia, 2015].

This process enables to represent sessions of variable lengths by vectors of the same size, here,

the number of unique pages. In this representation, a new session is started when the time

between two consecutive page accesses exceeds a given threshold. Another technique consists

in analyzing website logs in a definite time interval. Each session is represented by the number

of hits on each page during this time period [Xu and Liu, 2010]. Web sessions might also be

represented by the relevance of each page based on a harmonic mean of the number of visits of

the page and the time spent on it during the session [Sisodia et al., 2017].

This step is generally followed by the choice of a similarity measure between web sessions.

Many distances have been used from sequence dissimilarity measures to classical distances.

The sequence alignment measure [Wang and Zaı̈ane, 2002], the Hamming metric [Dixit and

Bhatia, 2015] or a distance based on the Levenshtein metric [Scherbina and Kuznetsov, 2004]

might be used, as well as common distances such as the Euclidean distance, the squared Eu-

clidean distance [Dixit and Bhatia, 2015] or the Cosine distance [Xu and Liu, 2010].

A wide variety of clustering algorithms have been proposed for different applications [Jain,

2010] over the last decades. Even if a various number of them have been applied to web

sessions clustering, the most commonly used for this application is the partitional algorithm

K-means or adapted versions of it [Wang and Zaı̈ane, 2002, Xu and Liu, 2010, Poornalatha and

Raghavendra, 2011]. Its simplicity of implementation, its convergence speed and the generally

good quality of the resulting clusters are its main assets. To investigate the impact of various

clustering methods, we also propose to test the quality of hierarchical clustering obtained with

different linkage methods as well as spectral clustering which generally provides good results

in non-convex clustering problems, see Chapter 14 in [Friedman et al., 2001].

The final step consists in the evaluation of the obtained partition to find the optimal one. In-

deed, the clustering being an unsupervised learning procedure, there is no a priori knowledge

of the optimal partition [Halkidi and Vazirgiannis, 2001]. Internal and external cluster validity

indices have been proposed for this purpose [Brun et al., 2007]. Internal indices generally mea-

sure the separation between clusters (clusters should be clearly separated) and the cohesion

within clusters (the points contained in the same cluster should be as close to each other as

possible) to assess the partition quality. External criteria are based on known provided class

labels and are therefore unusable in our case. The second approach, internal indices, evaluate

the goodness of the partition without external information and is generally used to select the

optimal number of clusters as well as the most appropriate algorithm. An extensive compar-

ative study of validity indices has been made in [Arbelaitz et al., 2013]. We will present 3 of

them, among the most commonly used: the Silhouette index, the Calinski–Harabasz index and

the Dunn index [Ansari et al., 2011, Wiwie et al., 2015, Sisodia et al., 2017, Gu et al., 2017] in

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 41

section I.3.6.

Another approach draws inspiration from the work done in text mining, where document and

word representations have been proposed for clustering tasks [Aggarwal and Zhai, 2012]. As

in our problem, they have to deal with sentences or texts of different lengths. One of the most

used fixed-length features in text classification or clustering is the bag-of-words representation

which represents a text by a feature vector containing each term frequency. This representation

has the advantage of a high interpretability and is thus widely used. For improved perfor-

mance, the term frequency inverse document frequency (TFIDF) weighting scheme [Salton and

Buckley, 1988] is often applied on the bag-of-words representation, and is a good baseline, in

the case of clustering [Huang, 2008] or classification [Kim et al., 2017]. This weighting scheme

takes into account the number of occurrences of a word in the entire corpus to readjust its count.

If a word appears in a large number of documents, it will be considered as less important and

its frequency will be reduced. An extension of the bag-of-words has been proposed, namely the

term weighted inverse document frequency (TWIDF) [Rousseau and Vazirgiannis, 2013]. This

document representation takes into account the proximity between words using graphes. As

these representations can become very sparse and do not always capture semantics, distributed

representations of documents have been introduced [Le and Mikolov, 2014]. Thanks to the way

they are computed, these document vectors are able to learn the contextual information con-

tained in texts and thus often outperforms bag-of-words representation for which the word

order is not taken into account [Dai et al., 2014, Mijangos et al., 2017]. We propose to apply

these 3 representations, bag-of-words with TFIDF, bag-of-words with TWIDF and distributed

representations, to our user sessions to test which of them is the most appropriate to capture

information among user actions for clustering.

I.3.2 Data

We conduct experiments on sessions for which the same medical application has been launched

in order to avoid the clustering to group sessions at the application level which would not

provide additional information. Thus, filtering sessions where the same application has been

used should enable to detect characteristic workflows of a medical specialty.

Figure I.3.1 shows the total number of launches among the 50 files of our dataset. The general

application launches have been removed since they sometimes correspond to specific applica-

tion launches which were not properly logged. To be sure that we select only sessions in which

a specific application was launched, we focused on applications for which we are sure they

were correctly registered. As illustrated in Figure I.3.1, 4 applications are particularly used. We

propose to conduct our experiments on the 2 most used, the method might then be reproduced

on any log file or application for a specific analysis.

Figure I.3.2 shows the number of launches of each of the 4 most used applications for each sys-

tem in the whole database. We decided to work with systems 30 and 50 since they correspond

to the systems on which respectively app 1 and app 2 were the most used.

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 42

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
4

0
4

1
4

2
4

3
4

4
4

5
4

6
4

7
4

8
4

9
5

0

System ID

0

2000

4000

6000

8000

10000

N
u
m

b
e
r

o
f

la
u
n
ch

e
s

App 1
App 2

App 3
App 4

Figure I.3.2: Number of launches of each of the 4 most used applications, for each system.

App ID System ID |S|
1 30 9433

2 50 2598

Table I.3.1: System ID corresponding to each studied app and corresponding number of sessions

containing at least 4 actions.

Table I.3.1 shows the number of normal sessions |S| which will be used for clustering, for

each selected system. For the reasons previously explained, we filtered only the sessions in

which the studied application was launched. Moreover, we removed sessions containing 4

actions or less since they correspond to basic reviews with no interesting information on the

user workflow.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Application ID

0

5000

10000

15000

20000

25000

N
u
m

b
e
r

o
f

la
u
n
ch

e
s

Figure I.3.1: Number of applications launches in the whole database. General application

launches are not shown here.

I.3.3 Sequence Representation

For the reasons previously explained, user sessions contain different number of actions and can

be of arbitrary length. To overcome this issue, we propose to transform user sessions using 3

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 43

different representations.

I.3.3.1 Bag-of-Actions with TFIDF

Let D = {d1, . . . , dn} be a set of documents and T = {t1, . . . , tm} the set of distinct terms

occurring in D. The Bag-of-Words representation of a document d is:

BoW (d) = (tf(t1, d), tf(t2, d), . . . , tf(tm, d))

where tf(t, d) denotes the frequency of term t in document d. In order to give more importance

to words appearing frequently in a small number of documents and less often in other docu-

ments, than words occurring in every document of the corpus, a weighting scheme tfidf is usu-

ally applied to the Bag-of-Words representation. The term-frequency times inverse document-

frequency as defined in [Huang, 2008] weights the frequency of a term t in a document d ac-

cording to the following equation:

tfidf(t, d) = tf(t, d)× log |D|
df(t)

where:

• df(t) is the number of documents in which term t appears;

• |D| is the number of documents in the corpus.

We propose to apply the weighting scheme tfidf to our problem by replacing words by ac-

tions and documents by sessions. Let S = {s1, s2, . . . , sN} be a set of N user sessions and

Σ = {σ1, σ2, . . . , σua} be the set of possible actions in the user interface, we denote ua = |Σ| its
cardinal. By analogy, the weights of action occurrences will be calculated as follows:

w(σ, s) = f(σ, s)× log |S|
sf(σ)

where:

• f(σ, s) stands for the frequency of action σ in session s;

• |S| is the number of sessions;

• sf(σ) is the number of sessions containing action σ.

As a result, the Bag-of-Actions weighted according to the tfidf representation of a session s will

be:

BoAtfidf(s) = (w(σ1, s), w(σ2, s), . . . , w(σua , s)).

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 44

I.3.3.2 Bag-of-Actions with TWIDF

To capture relationships between words occurring close to each other, the graph-of-words

model [Rousseau and Vazirgiannis, 2013] described in Chapter 2 proposes to represent doc-

uments as graphs in which each word is linked to all the successive words occurring within

a sliding window. Thus, the frequency of a term in a document tf(t, d) is replaced by the

weight of the node associated with the term t in the graph-of-words representation of docu-

ment d. They propose to modify the pivoted normalization weighting version of the tfidf weight-

ing scheme [Singhal et al., 1999] as follows:

twidf(t, d) =
tw(t, d)

1− b+ b× |d|
avdl

∗ log |D|+ 1

df(t)

where:

• tw(t, d) is the indegree of node t in the graph-of-words representation of document d;

• |d| is the document length;

• avdl is the average document length across the corpus;

• |D| is the number of document in the corpus;

• b is set to 0.003.

By analogy, we propose to improve session representations by capturing relationships between

actions sharing the same context. The graph construction process is described in Figure I.3.3.

The whole session is browsed, linking the current action by an edge to theW −1 next following

actions in the sequence, W being the length of the sliding window used to browse the user

sessions. If the edge does not exist yet, a new edge is created. In this case we worked with

directed unweighted graphs, since we are only interested in the indegree of nodes. In the

example given in Figure I.3.3, the action ufb which would have a frequency of 1 in the tfidf

weighting scheme will have a weight of 3, equal to its indegree in the twidf scheme.

Thus, the actions occurrences weights with twidf will be computed using a graph-of-actions, as

follows:

wg(σ, s) =
tw(σ, s)

1− b+ b× |s|
avsl

× log |S|+ 1

sf(σ)

where:

• tw(σ, s) is the indegree of the node σ in the graph-of-actions representation of a session s;

• |s| is the number of actions contained in s;

• avsl is the average length of sessions across the dataset;

• |S| is the number of sessions;

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 45

sliding window

mva dja ija ufb ndb oea dvc qwb dna qwb

mva

dja

ija

ufb

ndb

oea

dvcqwb

dna

Figure I.3.3: Graph-of-Actions construction with a sliding window of length 4 from the exam-

ple sequence on the left. The frequency of an action is replaced by the indegree of its corre-

sponding node to compute the Bag-of-Actions representation with twidf weighting scheme.

• b is set to 0.003 (as in [Rousseau and Vazirgiannis, 2013]).

Consequently, the Bag-of-Actions weighted according to the twidf representation of a session s

will be:

BoAtwidf(s) = (wg(σ1, s), wg(σ2, s), . . . , wg(σua , s)).

I.3.3.3 Session Embeddings

Although Bag-of-Words based on the twidf weighting scheme in a way takes into account the

relationship between words, this representation is sparse and grows with the size of the vocab-

ulary. Distributed representations of words, which can be extended to documents, enable to

overcome these limitations.

Doc2Vec

An approach to represent a document is to average the distributed representations of the words

it contains, however this technique has proven to be less effective than document embeddings

[Dai et al., 2014]. We propose to apply the Doc2Vec algorithm [Le and Mikolov, 2014] to tackle

our clustering task. Although two architectures have been proposed to compute paragraph

vectors with Doc2Vec, namely Distributed Memory model of Paragraph Vectors (PV-DM) and

Distributed Bag-of-Words version of Paragraph Vector (PV-DBOW), we will only present the

PV-DBOW architecture since it provides better results for our task. The PV-DBOW architec-

ture, illustrated in Figure I.3.4, trains a feedworward network to predict words constituting the

paragraph based on the corresponding paragraph id. If we apply this to our case, the model

will work as follows. Let S = {s1, . . . , sN} be a dataset of N sessions and si = xi1 . . . xini be

the sequence of ni actions of the ith sequence. The PV-DBOW model trains a feedforward neu-

ral network to map a session si to the actions it contains. One-hot encoded sessions si with

i ∈ J1, NK and actions xir with r ∈ J1, nK are respectively used as inputs (s) and outputs (y) of

the following equations:

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 46

h = sW

y = Φ(hW ′)

with E the embedding size, W ∈ RN×E are the input weights, h ∈ RE the hidden layer and Φ

the softmax function. W ′ ∈ RE×ua represents the output layer. Paragraph vectors are trained

using stochastic gradient descent to minimize the following loss (the gradient being obtained

with backpropagration):

L(W,W ′) =

N∑
i=1

ni∑
j=1

l(xij ,Φ(siWW ′))

where l stands for the cross-entropy. At the end of the training process, final weights W will

give the embeddings representation. Actions occurring less than frequency mincount will be

ignored for training.

input

xi1

. . .

xir

. . .

xini

si

output

W ∈ RN×E W ′ ∈ RE×ua

ith session embedding

Figure I.3.4: Distributed Bag-of-Words version of Paragraph Vectors (PV-DBOW).

I.3.3.4 Implementation

We used a Python feature extraction function to compute Bag-of-Actions with TFIDF weight-

ing scheme and our own Python implementation of Bag-of-Actions with TWIDF weighting

scheme, using NetworkX [Hagberg et al., 2008] to represent sessions as graphs. Embeddings

were computed using the Gensim package [Rehurek and Sojka, 2010]. Unless otherwise speci-

fied, default PV-DBOW parameters were used and the network was trained during 5 epochs.

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 47

I.3.4 Clustering Algorithms

This section briefly describes each clustering algorithm we will use to discover user sessions

clusters. Given a dataset S of N sequences represented as vectors in an F−dimensional space,

the process of clustering S consists in partitioning S = {s1, s2, . . . , sN} ∈ RF into K disjoint

groups: CK = {c1, c2, . . . , cK}, with ck 6= ∅, ∀ k. S =
⋃

ck∈CK
ck and ck ∩ cl = ∅, ∀k 6= l. ck is called

a cluster. The centroid of a cluster ck corresponds to its mean vector and is equal to:

ck =
1

|ck|
∑
si∈ck

si

where |ck| stands for the number of elements in cluster k. Besides, we will denote the Euclidean

distance between objects si and sj by dE(si, sj).

I.3.4.1 K-means

K-means is one of the most widely used clustering algorithms. It aims at partitioning data into

clusters by minimizing the sum of squared Euclidean distances between the data points and

the centroid of the clusters as described in Algorithm 3.

Algorithm 3: K-means.
Input: The number of clusters K and the dataset composed of N elements

S = {s1, s2, . . . , sN} ∈ RF .

Steps:

1. Initialization of K centroids.

2. For each i ∈ J1, NK, assign each element si to the closest centroid.

3. Compute the objective function also called inertia:

J =

K∑
k=1

∑
sj∈ck

dE(sj , ck)
2

Stop if J is below a given threshold ε.

4. Compute the centroid of each cluster with CK = {c1, c2, . . . , cK}.
5. Repeat steps 2, 3 and 4 until CK no longer changes.

We used a threshold ε = 0.0001 and K-means++ initialization scheme [Arthur and Vassilvit-

skii, 2007], which spreads out the initial cluster centers. It initializes the centroids using the

following steps:

1. Choose one center c1, uniformly at random from S.

2. Choose a new center ci, in S with probability:

ζ(s)2∑
s∈S ζ(s)2

, ∀s ∈ S.

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 48

ζ(s) denotes the shortest distance from point s to the closest center that has already been

chosen.

3. Repeat step 2 until K centers have been chosen.

As K-means is highly dependent on the initialization of the centroids, each of the results pre-

sented corresponds to the best partition obtained in terms of inertia J over 100 runs.

I.3.4.2 Hierarchical Clustering

Agglomerative hierarchical clustering merges at each construction step the closest pair of clus-

ters into larger and larger clusters. At the beginning, each point has its own cluster, hierarchical

clustering process continues until all the the points are agglomerated together into one cluster.

The obtained dendrogram might then be cut at different heights, corresponding to different

numbers of clusters. Let ci and cj represent 2 clusters and dE(s, s′) the pairwise observation

distance between an element s in cluster ci and an element s′ in cluster cj . We used the follow-

ing linkage methods to compute the dissimilarity d(ci, cj) between ci and cj :

• dSingle(ci, cj) = min
s∈ci,s′∈cj

dE(s, s′);

• dAverage(ci, cj) = 1
|ci||cj |

∑
s∈ci

∑
s′∈cj dE(s, s′);

• dComplete(ci, cj) = max
s∈ci,s′∈cj

dE(s, s′);

• dWard(ci, cj) =
|ci||cj |
|ci|+|cj |dE(ci, cj).

Hierarchical clustering based on Single, Average and Complete linkages respectively mini-

mizes the minimum, the average and the maximum distance between pairwise observations.

Hierarchical clustering works slightly differently with the Ward linkage and minimizes the

sum of squared differences within all clusters. As described in Algorithm 4, the most similar

clusters are successively merged using one of the above linkage methods.

Algorithm 4: Agglomerative hierarchical clustering.
Input: The number of clusters K and the dataset composed of N elements

S = {s1, s2, . . . , sN} ∈ RF .

Steps:

1. Find the most similar pair of clusters ci and cj using one of the linkage methods.

2. Merge clusters ci and cj .

3. Repeat steps 1 and 2 until only one cluster remains.

I.3.4.3 Spectral Clustering

Spectral clustering [Von Luxburg, 2007] uses graph partitioning and performs a low-dimensional

embedding of the affinity matrix of input data points. This step is followed by a K-means algo-

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 49

rithm as described in Algorithm 5.

Algorithm 5: Spectral clustering.
Input: The number of clusters K and the dataset composed of N elements

S = {s1, s2, . . . , sN} ∈ RF , η a parameter to fix the number of neighbors to consider.

Steps:

1. Construct the η-nearest neighbor similarity graph by connecting node ni corresponding

to session si to the node nj corresponding to session sj if nj is among the η nearest

neighbors of ni.

2. Compute the weighted adjacency matrix W , diagonal degree matrix D with the degrees

d1, . . . , dN on the diagonal and Laplacian L = D −W .

3. Compute the first K eigenvectors u1, . . . , uK of L.

4. Let U ∈ RN×K be the matrix having u1, . . . , uk for columns.

5. Cluster the rows yi ∈ RK , for i ∈ J1, NK using the K-means algorithm.

We selected η = 5 since it provided good results for both systems according to several cluster

validity indices.

I.3.5 Clusterability

I.3.5.1 Hopkins Statistic

In order to assess the cluster tendency of our datasets, we propose to use the Hopkins statistic

[Lawson and Jurs, 1990]. This test compares the nearest-neighbor distribution of uniformly ran-

domly distributed artificial data points to that of randomly selected real points of our dataset.

Let Z be a real dataset of N points. The Hopkins statistic is computed as follows:

1. Sample uniformly m points from Z : (p1, p2, . . . , pm).

2. Generate a simulated dataset Zrand of m points: (q1, q2, . . . , qm) drawn from a random

uniform distribution, following the same range of variation as Z .

3. For each pi ∈ Z , find its nearest neighbor pj ∈ Z and compute the distance wi between pi
and pj .

4. For each qi ∈ Zrand , find its nearest neighbor qj inZ and compute the distance ui between

qi and qj .

The Hopkins statistic is obtained using the following formula:

H =

∑m
i=1 ui∑m

i=1 ui +
∑m

i=1wi
.

To evaluate a consolidated value ofH , the previous process is usually repeated over r runs and

the average value of the statistic is then:

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 50

Hav =
1

r

r∑
i=1

Hi.

A value of Hav close to 1 indicates the clusterability of the dataset. Indeed, if the dataset con-

tains clusters, the value of
∑m

i=1 ui will be significantly higher than
∑m

i=1wi. On the contrary,

if Z were uniformly distributed,
∑m

i=1 ui and
∑m

i=1wi would be close and consequently Hav

would be about 0.5. In other words, if the value of Hav is significantly higher than 0.5 we

can reject the null hypothesis H0 (Z is uniformely distributed) and conclude that the dataset

contains meaningful clusters.

I.3.5.2 Application to our Datasets

We selected m as the closest integer to N/10 as in [Banerjee and Dave, 2004] and ran the Hop-

kins statistic over r = 1000 repetitions, for each input representation, on each dataset. Bag-

of-Actions weighted according to the TWIDF scheme were computed using a sliding window

W of size 5 and session embeddings were computed using the PV-DBOW architecture with

default parameters (embedding size E equal to 50, mincount equal to 5). Results are presented

in Table I.3.2.

App ID BoAtfidf BoAtwidf Emb

1 0.99 0.99 0.91

2 0.98 0.98 0.91

Table I.3.2: Average Hopkins statistic Hav for each dataset and each input representation.

Table I.3.2 shows that all our datasets have a value of the Hopkins Statistic which is close to 1,

it means that we can reject the null hypothesis and ensures that our datasets are significantly

clusterable, regardless of the input representation.

I.3.6 Selection of Clustering Evaluation Indices

In order to evaluate the effectiveness of the input representations as well as the clustering al-

gorithms, we propose to use an internal cluster validity index. In this section we detail 3 of the

most commonly used indices [Wiwie et al., 2015, Gu et al., 2017]. These indices measure the

cohesion of the clusters (distances within clusters or intra-variance) as well as the separation

(distances between clusters or inter-variance). They differ in how they combine these 2 aspects.

I.3.6.1 Indices Definitions

The Silhouette index

For each observation the Silhouette index [Rousseeuw, 1987] computes the average distance

between clusters using the average dissimilarity a between the observation and all the points of

the cluster to which it belongs, as well as the minimum dissimilarity b between the observation

and all the points from the clusters to which it does not belong. The Silhouette index value of a

partition of K clusters is defined as:

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 51

Sil(CK) =
1

N

∑
ck∈CK

∑
si∈ck

b(si, ck)− a(si, sk)

max{a(si, ck), b(si, ck)}

where:

• a(si, ck) = 1
|ck|
∑

sj∈ck dE(si, sj);

• b(si, ck) = min
cl∈CK\ck

{
1
|cl|
∑

sj∈cl dE(si, sj)
}

.

A value of the Silhouette index close to 1 means that observations are well-clustered whereas a

value of -1 indicates poorly clustered observations.

The Calinski-Harabasz index

The Calinski-Harabasz index [Caliński and Harabasz, 1974] uses the global centroid of the

dataset, defined as follows:

s =
1

N

∑
si∈S

si.

To evaluate the quality of a partition of K clusters, it computes a ratio of Between Cluster

Scatter Matrix (BCSM) and Within Cluster Scatter Matrix (WCSM):

CH(CK) =
BCSM

K − 1

N −K
WCSM

.

where:

• BCSM =
∑

ck∈C |ck|dE(ck, s)
2 evaluates the distance from the centroids to the global

centroid,

• WCSM =
∑

ck∈C
∑

si∈ck dE(si, ck)
2 evaluates the distances from the points of a cluster

to its centroid.

For compact and well separated clusters the between-clusters dispersion mean (BCSM) should

be maximized and the within-cluster dispersion should be minimized, thus high values of

Calinski-Harabasz indicate good partitioning.

The Dunn index

The Dunn index [Dunn, 1974] uses the minimum distance between each point of a cluster

and all the other points from other clusters combined with the maximum cluster diameter as

following:

D(CK) =
minck∈CK{mincl∈CK\ck{δ(ck, cl)}}

maxck∈CK{∆(ck)}

where:

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 52

• δ(ck, cl) = min
si∈ck,sj∈cl

{dE(si, sj)};

• ∆(ck) = max
si,sj∈ck

{dE(si, sj)}.

For a suitable partition of the dataset, the Dunn index should be maximized.

Since these 3 indices do not always behave in the same way, they will be compared on our data,

see Section I.3.6.2 and the most appropriate will be selected to conduct our experiments.

I.3.6.2 Comparison of Indices and Selection

A problem with clustering validity indices is that they each capture specific aspects and do

not all return the same optimal partition. We propose to compare the behavior of the 3 indices

presented in Section I.3.6, namely the Silhouette score (Sil), the Calinski–Harabasz score (CH)

and the Dunn index (D) on session embeddings of size 50 obtained with the PV-DBOW archi-

tecture. We illustrated on a specific example the potential antagonist conclusions that can be

drawn according to the type of index considered. Figure I.3.5 shows 2-dimensional plots ob-

tained with the t-SNE visualization algorithm [Maaten and Hinton, 2008] (see Appendix E) of

the partitions obtained with K-means, Hierarchical Clustering with Single Linkage and Hier-

archical Clustering with Complete Linkage. Each method was set to return 3 clusters. Table

I.3.3 shows the number of sessions contained in each cluster, for each algorithm as well as the

associated cluster validity indices.

Cluster 1 Cluster 2 Cluster 3 Sil CH D

K-means 1428 933 237 0.50 4152.74 0.47

HC Single Linkage 4 1 2593 0.81 111.37 0.12

HC Complete Linkage 96 18 2484 0.60 936.05 0.60

Table I.3.3: Number of sessions contained in each cluster for each clustering algorithm and

associated cluster validity index score.

As illustrated, the Calinski–Harabasz score suggests that the best partition is obtained with

the K-means algorithm. On the contrary, the Silhouette score gives the partition obtained with

Hierarchical Clustering with Single Linkage as the best partition and the Dunn index is maxi-

mized when Hierarchical Clustering with Complete Linkage is used. As described previously,

the Dunn index is based on extreme data points and the Silhouette score takes separation into

account by evaluating the minimal average distances to all others clusters. Thus, both indices

do not take into account all datapoints and behave poorly in the case of highly unbalanced

clusters. On the other hand, the Calinski–Harabasz score evaluates the partition quality using

the sum of the squares of the distances between the global centroid and each of the clusters

centroid and the sum of the squares of the distances between the cluster centroid and all the

data points contained in it. Calinski–Harabasz tends to prefer more balanced partitions and

was therefore chosen to conduct our experiments.

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 53

K-Means

Sil= 0. 50−CH= 4152. 74−D= 0. 47

HC Single Linkage

Sil= 0. 81−CH= 111. 37−D= 0. 12

HC Complete Linkage

Sil= 0. 60−CH= 936. 05−D= 1. 53

Figure I.3.5: Silhouette score (Sil), Calinski–Harabasz score (CH) and Dunn index (D) values in

the case of K-means Clustering, Hierarchical Clustering with Single Linkage and Hierarchical

Clustering with Complete Linkage obtained with embeddings as inputs. Plots were obtained

using t-SNE [Maaten and Hinton, 2008].

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 54

I.3.7 Hyperparameters Selection

Bag-of-Actions with TWIDF weighting scheme and session embeddings require hyperparam-

eters selection. This section presents the influence of some algorithmic parameters we tuned to

improve the clustering quality.

I.3.7.1 Bag-of-Actions with TWIDF

Bag-of-Actions weighted according to the TWIDF scheme needs the window sizeW to be spec-

ified. To find the optimal window size, we used the K-means algorithm. Figures I.3.6 and I.3.7

show the maximum Calinski–Harabasz score obtained for partitions containing k ∈ J2,KK

clusters:

max
k∈J2,KK

{CH(Ck)}.

We used K = 10 and tested values of W in J2, 10K for both systems. For each k, K-means was

run 100 times and only the best partition in terms of inertia was evaluated.

2 3 4 5 6 7 8 9 10
Window Size

1240

1260

1280

1300

1320

1340

1360

1380

m
a
x
k

{ CH
(C

k
)}

Calinski-Harabasz

Figure I.3.6: Maximal Calinski–Harabasz score obtained for k ∈ J2,KK and TWIDF window

size W ∈ J2, 10K in the case of system 30 (App 1) and the K-means algorithm.

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 55

2 3 4 5 6 7 8 9 10
Window Size

200

250

300

350

400

450
m
a
x
k

{ CH
(C

k
)}

Calinski-Harabasz

Figure I.3.7: Maximal Calinski–Harabasz score obtained for k ∈ J2,KK and TWIDF window

size W ∈ J2, 10K in the case of system 50 (App 2) and the K-means algorithm.

The maximum Calinski–Harabasz value is reached for a value ofW = 7 for system 30 and for a

value of W = 9 for system 50. We conducted experiments using W = 7 for both systems since

results obtained on system 50 with W = 7 are quite equivalent to those obtained with W = 9.

This value was tested for the other algorithms and provided good results.

I.3.7.2 Session Embeddings

Session embeddings computed with the PV-DBOW architecture of the Doc2Vec algorithm rely

on several hyperparameters to be customized. We focused on the embedding size as well as

on the mincount value representing the threshold under which words with lower frequency

are ignored from the vocabulary. Again, Figures I.3.8 and I.3.9 show the maximum Calinski–

Harabasz score obtained for partitions containing k clusters, with k ∈ J2,KK clusters.

We usedK = 10, and tested the embeddings sizeE in [50, 350] with a step of 50 and the mincount

value in {1, 5, 10, 15, 20}. As previously, for each k, K-means was run 100 times and only the

best partition in terms of inertia is evaluated.

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 56

1 5 10 15 20
Min Count

50
10

0
15

0
20

0
25

0
30

0
Em

be
dd

in
gs

 S
ize

KMeans

0

4000

8000

12000

16000

20000

Figure I.3.8: Maximal Calinski–Harabasz score obtained with k ∈ J2,KK,

maxk∈J2,KK{CH(Ck)} for embedding size E in [50, 350] with a step of 50 and the mincount value

in {1, 5, 10, 15, 20} in the case of system 30 (App 1).

1 5 10 15 20
Min Count

50
10

0
15

0
20

0
25

0
30

0
Em

be
dd

in
gs

 S
ize

KMeans

0

1500

3000

4500

6000

Figure I.3.9: Maximal Calinski–Harabasz score obtained with k ∈ J2,KK,

maxk∈J2,KK{CH(Ck)} for embedding size E in [50, 350] with a step of 50 and the mincount value

in {1, 5, 10, 15, 20} in the case of system 50 (App 2).

Figures I.3.8 and I.3.9 suggest that an embedding size of 150 and minimum count of 1 pro-

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 57

vide results equivalent to those obtained with larger values and seem therefore appropriate.

Appendix A shows the results obtained for the 4 other clustering algorithms which were eval-

uated. Individual hyperparameters selection might easily be re-run in the case of a specific

analysis.

I.3.8 Tests of Representations & Clustering Algorithms

I.3.8.1 Experiments Overview

Our objective is to find the most appropriate session representation and clustering algorithm.

For this purpose we will test each of the 3 input representations given in Table I.3.4 with each of

the 5 clustering algorithms listed in Table I.3.5. Hierarchical Clustering with Single Linkage was

not tested since preliminary experiments showed poor results and highly unbalanced clusters

due the chaining phenomenon often occurring with this type of clustering.

Input Representation Notation Parameters

Bag-of-Actions with TFIDF BoAtfidf -

Bag-of-Actions with TWIDF BoAtwidf W = 7

Embeddings with Doc2Vec Emb
E = 150

mincount = 1

Table I.3.4: Input representation, notations and parameters used for experiments.

Clustering Algorithm Notation Parameters

K-means KM
K-means++ initialization.

Best partition over 100 runs.

Hierarchical Clustering Linkage:

- Average HCA

- Complete HCC

- Ward HCW

Spectral Clustering SC

η = 5

Best partition over 100 K-means runs.

K-means++ initialization

Table I.3.5: Clustering algorithms, notations and parameters used for experiments.

Each algorithm has been tested for number of clusters k with k ∈ J2, 10K. Figures I.3.10 and

I.3.11 respectively show the results obtained for system 30 (App 1) and system 50 (App 2). Each

algorithm is followed by the value of k returning the highest value of the Calinski–Harabasz

score, for Bag-of-Actions with TFIDF weighting scheme, Bag-of-Actions with TWIDF scheme

and Embeddings, according to the following notation:

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 58

ALGORITHM [argmaxBoAtfidf
k {CH(Ck)}), argmaxBoAtwidf

k {CH(Ck)}, argmaxEmbk {CH(Ck)}]

I.3.8.2 System 30 (App 1)

KM [3, 2, 8] HCA [4, 9, 9] HCC [5, 9, 10] HCW [2, 2, 9] SC [9, 9, 2]
0

500

1000

1500

2000

2500

3000

3500

4000

B
oA

BoAtfidf BoAtwidf Emb

0

5000

10000

15000

20000

E
m
b

Calinski-Harabasz

Figure I.3.10: System 30 (App 1). Comparison of the 3 input representations with 5 cluster-

ing algorithms. Brackets contain the value of k returning the highest value of the Calinski–

Harabasz score for each input representation.

I.3.8.3 System 50 (App 2)

KM [2, 4, 7] HCA [2, 10, 6] HCC [2, 4, 10] HCW [2, 4, 7] SC [2, 7, 8]
0

200

400

600

800

1000

B
oA

BoAtfidf BoAtwidf Emb

0

1000

2000

3000

4000

5000

6000

7000

E
m
b

Calinski-Harabasz

Figure I.3.11: System 50 (App 2). Comparison of the 3 input representations with 5 cluster-

ing algorithms. Brackets contain the value of k returning the highest value of the Calinski–

Harabasz score for each input representation.

While BoAtwidf provides better results than BoAtfidf on system 30, it is the contrary on sys-

tem 50. However, in both cases, session embeddings is the most appropriate representation

and outperforms Bag-of-Actions based representations with all clustering algorithms. K-means

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 59

provides the best partition which is constituted of 8 clusters in the case of system 30 (App 1)

and 7 clusters in the case of system 50 (App 2). The next section aims at interpreting the clusters

obtained.

I.3.9 Cluster Analysis

I.3.9.1 2D Visualization

Figures I.3.12 and I.3.13 show the best partitions obtained for system 30 and system 50, with

the K-means algorithm and session embeddings as inputs. The left figure shows the two-

dimensional PCA plot while the right figure shows a two-dimensional t-SNE plot.

PCA t-SNE

Figure I.3.12: 2-dimensional plots obtained with PCA on the left and t-SNE on the right for

the best partition obtained with the K-means algorithm and session embeddings as inputs for

System 30 (App 1).

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 60

PCA t-SNE

Figure I.3.13: 2D plots obtained with PCA on the left and t-SNE on the right for the best

partition obtained with the K-means algorithm and session embeddings as inputs for System

50 (App 2).

I.3.9.2 Cluster Size and Session Length

Figures I.3.14 and I.3.15 show the session length distribution as well as the number of sessions

contained in each cluster for system 30 and system 50 (the length of a session corresponding

to the number of actions it contains). Cluster 0 corresponds to the statistics obtained with the

whole dataset, for reference. In both cases, 1 or 2 very small clusters seem to contain particu-

larly long sessions: cluster 8 contains 9 sessions in the case of system 30 and clusters 4 contains

18 sessions in the case of system 50. The other clusters contain a more balanced number of

sessions.

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 61

0 (9433) 1 (1787) 2 (1339) 3 (1969) 4 (888) 5 (1533) 6 (300) 7 (1608) 8 (9)
Cluster ID (number of sessions contained)

0

20

40

60

80

100

120

140

Le
n
g
th

Figure I.3.14: System 30 session length distribution for each cluster. In parenthesis, the number

of sessions contained in each cluster. Cluster 0 represents the whole dataset.

0 (2598) 1 (256) 2 (629) 3 (432) 4 (18) 5 (596) 6 (542) 7 (125)
Cluster ID (number of sessions contained)

0

20

40

60

80

100

Le
n
g
th

Figure I.3.15: System 50 session length distribution for each cluster. In parenthesis, the number

of sessions contained in each cluster. Cluster 0 represents the whole dataset.

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 62

I.3.9.3 Workflow Characterization

We propose to characterize each cluster using a process mining visualization tool, namely the

Inductive Visual Miner [Leemans, 2017] which is available in the ProM framework 1. The prin-

ciple is to represent all the sessions contained in a cluster by a process tree. Each node stands

for a user action and the weighted edges represent transitions from one action to the other.

Thus, this model enables to represent each workflow performed in a cluster from its beginning

to its end using multiple branches in case of variations in the navigation path. To facilitate the

visualization, only the most frequent nodes and paths are filtered (we take a threshold of 0.4 –

meaning that events occuring in less than 40% of the sessions are discarded). We focused our

analysis on the clusters obtained on system 30 in which an oncology application is used. Physi-

cians use this application to find a tumor or to ensure that there is none. For this purpose they

use tools dedicated to the navigation through images and the discovery of a tumor is generally

characterized by the use of a measuring tool to determine its size. For this system in particular

we observe 2 clusters: 1 and 3 containing very short sessions compared to the other clusters

(see Figure I.3.14). Figure I.3.16 shows the characteristic workflows obtained for these 2 clus-

ters. They seem to correspond to easy images reviews, since there is no loop in the workflows.

They slightly differ from each other by the use of zoom (amm) and rotate (all) tools. Indeed,

these analysis tools are most frequently used in cluster 3. Moreover, we observe that when

these analysis tools are used, the discovery of the tumor, associated to the measure distance

tool (amf) tends to be done at the beginning of the session (cluster 3) while it is rather done at

the end when they are less used (cluster 1). This difference might correspond to two different

users (we do not know how many users are working on the same system) or to the quality of the

images the user is reviewing. Indeed, if the images were taken very precisely, the tumor might

be straightforwardly detected and the remaining actions probably correspond to the verifica-

tion of the absence of other anomalies, while otherwise some preliminary actions are needed

to find the proper location of the tumor. Figure I.3.17 shows the process tree obtained for clus-

ter 4. Loops can be observed meaning that the users repeat several steps during the images

review. In fact, the used tool suggests that he compares an exam to a previous one (ald). These

workflows probably correspond to follow-up exams. The same analysis performed on cluster 6

containing longer sessions shows that users of this clusters tend to not properly exit the current

session and reload images probably from the next patient in the same session, which is not the

recommended way to process. This type of information is very precious since it might help to

know on which features to focus during user training for example.

1http://promtools.org

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 63

Figure I.3.16: System 30. Cluster 1 (on the left) and cluster 3 (on the right) workflow represen-

tations.

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 64

Figure I.3.17: System 30. Cluster 4 workflow representation.

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 65

I.3.10 Discussion

In this chapter we tackled the user sessions clustering task. For this purpose we proposed to

compare 3 different input representations coming from the text mining field, the first 2 being

based on the well-known bag-of-words model whereas the last one consists in distributed rep-

resentations. These different session transformations were tested with 5 clustering algorithms.

Experiments conducted on 2 systems showed that in both cases, the K-means algorithm fed

with session embeddings returned the best partitions. We used the Paragraph Vector based on

Distributed Bag-of-Words architecture from the Doc2vec algorithm to compute session embed-

dings. Further improvements might involve the evaluation of other types of embeddings such

as sequence to sequence autoencoders [Sutskever et al., 2014] or recent work based on deep

clustering [Caron et al., 2018]. In depth cluster analysis using process mining visualization tools

enabled to confirm the consistency of the different clusters although complementary informa-

tion such as the images reviewed would help to improve this interpretation. The knowledge

provided by this study is valuable in particular for application specialists who work closely

with customers to improve the software. Indeed, this method is useful to have an overview of

users’ habits and from there, either to give them feedback in order to allow them to optimize

their software use or to accordingly bring modifications to the software features and interface.

CHAPTER I.3. USER WORKFLOW CHARACTERIZATION 66

Part II

Dynamic Monitoring of Software Use

67

Chapter II.1

Sequence Learning

USER WORKFLOWS might be represented as sequential data and thus can be used to perform

sequence prediction tasks. In this part we aim at dynamically monitoring software use.

Given user history of actions in the interface, we will address two distinct industrial issues:

software crash risk detection (see Part II, Chapter 2) and next action prediction (see Part II,

Chapter 3). Both proposed methods take advantage of the recurrent structure of Long Short

Term Memory neural networks to capture dependencies among our sequential data as well as

their capacity to potentially handle different types of input representations for the same data.

II.1.1 Formalism

Let Σ be the set of possible actions in the user interface and ua its cardinal. A user sequence of

length n is an element of Σn. We will denoteX = x1x2x3 . . . xn, with each xi ∈ Σ an elementary

user action and Ψ(X) a function over Σn onto Σ′, a set of possible classes. Let uc be the cardinal

of Σ′. For a user sequence X of length n and for r ∈ J1, nK, we will denote by Xr, the prefix

sequence of length r: Xr = x1x2 . . . xr−1xr. By abuse of notation we denote similarly the

random variables in Σ or Σr and their actual realizations. As can be seen in Figure II.1.1, the

problem of sequence prediction consists in computing the probability for each possible class

in Σ′ to be the next event class given an input prefix Xr. We will consider specifically two

examples. In Chapter II.2 we take:

Ψ(X) ≡ S(X) =

1, if session X ends with a crash

0, otherwise

and in Chapter II.3, we consider:

Ψ(X) ≡ Ψk(X) = xk.

69

CHAPTER II.1. SEQUENCE LEARNING 70

x1 x2x3 . . . xr

c1

c2

. . .

ci

. . .

cuc

xr+1?

prediction

Figure II.1.1: Sequence prediction task.

These values define an output probability distribution over Σ′ where P(Ψ(X) = ci|Xr) denotes

the probability of class i to be the next event class given Xr. Thus in the case of crash monitor-

ing, P(S(X)|Xr) denotes the probability that the session will crash given prefix Xr and in the

case of next action prediction, P(Ψr+1(X)|Xr) denotes the probability for each user action to be

the next one given prefix Xr.

The prediction corresponds to the event class having the highest value and is given by:

ŷr = argmax1≤i≤uc P(Ψ(X) = ci|Xr).

This formulation also enables to predict the k most likely classes, as it might be of interest in

some applications.

II.1.2 Recurrent Neural Networks

Numerous algorithms have been proposed to tackle the sequence prediction task [Gueniche

et al., 2013]. Many of them make the Markovian assumption and only use the last events to

compute a prediction. Recurrent neural networks [Jozefowicz et al., 2015] are composed of a

recurrent hidden state which depends on the hidden state at the previous time, making them

particularly well adapted to sequential data. Given a sequence x̃ = (x̃1, . . . , x̃T), recurrent

neural networks update the hidden state by iterating from t = 0 to T using the previous hidden

state and the current input:

ht =

0, if t = 0

frec(ht−1, x̃t), otherwise

where frec stands for a nonlinear function such as a logistic sigmoid with an affine transforma-

tion. However, recurrent neural networks are difficult to train since they suffer from vanishing

CHAPTER II.1. SEQUENCE LEARNING 71

and exploding gradient problems [Bengio et al., 1994]. Therefore they are only able to cap-

ture short term dependencies. To overcome these difficulties, Hochreiter and Schmidhuber

proposed the Long Short Term Memory (LSTM) architecture [Hochreiter and Schmidhuber,

1997]. This type of recurrent neural networks has proved to be particularly effective for the

sequence learning task. Indeed, in addition to the usual hidden state present in standard re-

current neural network, an LSTM has a cell state in which it is able to store parts of the past

information it learned as relevant while standard recurrent neural networks are not able to dis-

tinguish which information is useful and which information is not. The LSTM does so using

three gates, namely the input gate, the forget gate and the output gate. Each of them is com-

posed of a sigmoid layer which controls the memory that will be added or removed from the

cell state. Although many LSTM variants have been proposed [Greff et al., 2016], we use the

architecture with peephole connections [Gers and Schmidhuber, 2000]. Introduced by Gers and

Schmidhuber, peephole connections correspond to connections from the cell to the gates and

enable to better learn precise timings giving the cell a way to control the gates.

The LSTM model with one hidden layer is trained to map an input sequence x̃ = (x̃1, . . . , x̃T)

to an output sequence ỹ = (ỹ1, . . . , ỹT) from t = 1 to T by iterating over the following equations

[Sak et al., 2014], the cell and the hidden states being initialized to zero vectors:

ft = σ(Wfxx̃t +Wfhht−1 +Wfcct−1 + bf) forget gate

it = σ(Wixx̃t +Wihht−1 +Wicct−1 + bi) input gate

c̃t = γ(Wcxx̃t +Wchht−1 + bc) new candidate

ct = ft � ct−1 + it � c̃t cell state

ot = σ(Woxx̃t +Wohht−1 +Wocct + bo) output gate

ht = ot � γ(ct) hidden state

ỹt = φ(Whyht + by) prediction

x̃t ∈ RDx , and ỹt ∈ RDy , where Dx and Dy are respectively input and output dimensions.

f, i, o respectively stand for the forget, the input and the output gates. c and h are respectively

the cell and the hidden states which are of the same size as the gates: ft, it, ot, ct, ht ∈ RH , where

H is the size of the hidden state of an LSTM unit.

The symbol W is used to denote weight matrices (e.g., Wfx is the matrix of weights from the

forget gate to the input). Wfx,Wix,Wcx,Wox ∈ RH×Dx , Wfh,Wih,Wch,Woh ∈ RH×H and

Wfc,Wic,Woc are diagonal weight matrices in RH×H for peephole connections. The b terms

denote bias vectors (e.g., bi is the input gate bias vector) and bf , bi, bc, bo ∈ RH . The matrix of

weights from the hidden state to the prediction, Why, and the prediction bias, by, are respec-

tively in RDy×H and RDy .

� denotes the element-wise product. σ stands for the sigmoid function, γ is the cell input and

output activation function, tanh here. φ denotes the network output activation used to obtain

CHAPTER II.1. SEQUENCE LEARNING 72

the final prediction probability distribution, the softmax function in our case.

As described in the equations, the forget gate f , composed of a sigmoid layer will determine

which information will be removed from the cell state. To do so, it looks at the previous hidden

and cell states and the current input values ranging between 0 and 1 to decide whether the

information should be removed or not. On the same scheme, the input gate i is responsible

for deciding which information will be stored in the cell state. The current cell state is then

obtained by discarding information the forget gate decided to remove from the previous cell

state and by adding new information based on the filtering of the input gate regarding the

current cell candidate. The output gate o then looks at the new cell state, the previous hidden

state and the current input to select useful information to compute the new hidden state as

well as the final prediction ỹt. For classification problems, the model is generally trained to

minimize average cross-entropy loss.

These mechanisms make LSTMs an effective solution for sequence prediction problems in data

science industry: speech recognition [Graves and Jaitly, 2014], search query prediction on key-

board [Cao et al., 2017] or translation tasks [Wu et al., 2016] to cite a few.

II.1.3 Methodology

LSTM cell LSTM cell LSTM cell

x̃r−1 x̃r x̃r+1

ỹr−1 ỹr ỹr+1

cr−2 cr−1 cr

hr−2 hr−1 hr

user actions

predictions dynamic toolbar crash monitoring

embeddings feature vectors

Figure II.1.2: The proposed LSTM neural network for user action prediction and crash moni-

toring.

We propose to tackle two sequential problems using Long Short Term Memory neural networks

[Adam et al., 2019]. The crash monitoring task, framed in pink, and the next action prediction

task, framed in gray in Figure II.1.2. The specificity is that two different representations of the

sessions will be used as inputs of the network: feature vectors for the crash monitoring task

and action embeddings for the user action prediction task. Reasons for these choices, related

work, as well as detailed methodologies to each application, namely crash risk detection and

CHAPTER II.1. SEQUENCE LEARNING 73

user action prediction, will be presented in more details in the dedicated chapters.

CHAPTER II.1. SEQUENCE LEARNING 74

Chapter II.2

Crash Risk Monitoring

ANTICIPATING software crashes might enable to save a precious amount of time in particu-

lar in the case of interventional applications, in which patient’s safety is put at stake. In

this chapter we introduce a real-time crash risk monitoring method, computing a crash proba-

bility at each new user action. Should this probability exceed a certain threshold, an automatic

backup system could be triggered – thus allowing the user not to lose their work in progress.

Several factors such as the system status (number of applications running, memory availabil-

ity, dataset type, etc.) are likely to cause failures. In this work, we make the assumption that

crashes are caused by patterns of practitioners’ actions in the user interface. Motivated by the

above, we turn to LSTM networks to dynamically monitor the sequence of user actions, by

taking advantage of their recurrent structures and by adapting the representation of user se-

quences as LSTM inputs. Section II.2.1 presents the related work. The problem formulation is

given in section II.2.2. Section II.2.3 presents the input representation. Experiments are con-

ducted on 5 systems having an important crash rate. Results are provided in section II.2.4.

II.2.1 Related Work

To tackle the issue of crash prediction, we draw extensively on methodologies used for the

sequence classification task [Xing et al., 2010], since we aim at labeling user sessions as nor-

mal sessions or sessions that might end with a crash, in real-time. We particularly focus on

pattern based classification [Bringmann et al., 2009] which is adapted to our sequential action

logs. The general principle is to use patterns as features which can then be used as inputs of

classifiers. The method ordinarily involves the three following steps: pattern mining (detect

frequent patterns), feature selection (select the ones with the best predictive power) and finally

the classifier construction. These steps largely differ in existing works. Indeed, various kinds

of patterns might be mined including itemsets [Cheng et al., 2007] as well as subsequences

[Lo et al., 2009]. The cohesion of the patterns might also be taken into account. Thus, [Zhou

et al., 2016] propose to define the interestingness of patterns by evaluating their support as

well as the cohesion of the items making up the pattern. As we concluded in Part I, Chapter

2 that subsequences of user actions were more appropriate than itemsets (for which the order

75

CHAPTER II.2. CRASH RISK MONITORING 76

of the actions is not taken into account) and cohesive-subsequences (for which a maximal gap

constraint is imposed between consecutive actions of the subsequence), we propose to reuse

subsequences as features of our classifiers. While the Fisher score combined with a coverage

threshold to determine the most discriminative patterns might be used [Lo et al., 2009, Cheng

et al., 2007], the earliness of the pattern is also taken into account to select features for early pre-

diction [Xing et al., 2008] and only select features appearing frequently and early in the training

sequences. We propose to select significant patterns among the crashes using the binomial test

described in Part I, Chapter 2. The last step consists in the training of a classification method.

This task may involve rule based classification such as in [Zhou et al., 2016, Xing et al., 2008]

or state-of-the-art supervised learning classifiers, such as support vector machines or decision

trees [Lo et al., 2009, Cheng et al., 2007].

Recent works also proposed to apply deep learning algorithms, and in particular LSTM net-

works to anomaly dectection [Du et al., 2017] and failure prediction [Zhang et al., 2016]. In the

latter case, they use sequence alignment algorithm to perform pattern recognition among their

system logs. These patterns are then fed to an LSTM which outperforms standard classifica-

tion methods (Logistic Regression, SVM and Random Forest). Unlike what is proposed in this

work, we suggest to only use patterns coming from the crash class as features, since they are

the most discriminative, while [Zhang et al., 2016] use both normal and abnormal entries.

For our specific problem, we do not know precisely when a crash is triggered. Therefore, we

propose to use feature vectors composed by significant crash probability individual actions as

inputs of an LSTM neural network, making the assumption that its ability to learn long term

dependencies will enable the detection of crash patterns.

II.2.2 Problem Formulation

Let Σ be the set of possible actions in the user interface and ua its cardinal. A user sequence of

length n is an element of Σn. We will denoteX = x1x2x3 . . . xn, with each xi ∈ Σ an elementary

user action. For a user sequence X of length n and r ∈ J1, nK, we will denote by Xr, the prefix

sequence of length r: Xr = x1x2 . . . xr−1xr. We denote by S(X) the class of session X :

S(X) =

1, if session X ended with a crash;

0, otherwise.

The objective is to determine a model Cr:

Cr : Σr → [0, 1]

Xr 7→ P(S(X) = 1|Xr)

where P(S(X) = 1|Xr) denotes the probability of session X to eventually crash, given that its

prefix sequence of length r is Xr. The highest crash probability predicted during the session

will be used for model evaluation (see also Figure II.2.1). The family of models C = (Cr)r≥1

defines a dynamic model for crash risk detection.

CHAPTER II.2. CRASH RISK MONITORING 77

user session x1 x2 . . . xn−1 xn S(X)

crash probability P(S(X)|X1) . . . P(S(X)|Xn−1) Pmax

evaluated prediction

Figure II.2.1: Evaluation of crash risk monitoring: the highest crash probability predicted dur-

ing the session will be used for the score computation.

II.2.2.1 Loss

The LSTM− FV model is the dynamical model (Cr)r≥1, predicting at each user action i a crash

probability ỹi. For each session X , an elementary binary cross entropy loss is computed:

Lc(X) = −
nX∑
i=1

(yi log ỹi + (1− yi) log(1− ỹi))

where nX stands for the total number of actions in session X and:

yi =

{
1 if the i-th action is followed by a crash,

0 otherwise.

Finally the network is trained by minimizing the complete loss Lc:

Lc =
∑
X∈T

Lc(X)

where T denotes the training set.

II.2.3 Input Representation

We propose two types of LSTM models for the crash risk detection task: one-hot encoded

vectors and feature vectors.

II.2.3.1 One-hot Vectors

The first model, called LSTM− 1HOT, uses as inputs one-hot vectors whose dimension is

equal to the number of possible elementary actions. Let x ∈ Σ be an elementary action. We clas-

sically define its one-hot representation x1HOT ∈ {0, 1}ua , with only one component different

from 0, as follows:

x1HOTk =

{
1, if x = ak

0, otherwise

where ak, for k ∈ J1, uaK are all the possible elementary actions in Σ and x1HOT
k the k-th com-

ponent of the one-hot vector.

CHAPTER II.2. CRASH RISK MONITORING 78

II.2.3.2 Feature Vectors

We also propose an LSTM model fed with feature vectors, xFV ∈ NFτ , we call it LSTM− FV.

This representation is inspired by pattern based sequence classification methods [Xing et al.,

2010, Zhou et al., 2016]. The principle is to transform user sessions into a vector of features.

At each new user action, feature vectors are incrementally updated, by counting the number of

occurrences of each feature in the current prefix Xr (see Figure II.2.2).

x1 x2 x3 . . . xr

fv(X1)

fv(X2)

fv(X3)

Figure II.2.2: Feature vector computation.

To select actions which will be used as features we propose to use the binomial test described

in Part I, Chapter 2 to determine significant crash actions with a threshold τ . Here, only the

actions having a p-value smaller than the significance level τ will be selected.

II.2.4 Experiments

II.2.4.1 Data

Table II.3.3 shows the crash rate for each system in the database. As in Part I, Chapter 2, we

will test our method on the 5 systems having a crash rate higher than 3 %. Since systems with

crash rates above this value are generally subject to complaints, the proposed solution could be

implemented temporarily on these systems, pending the resolution of the bug.

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
4

0
4

1
4

2
4

3
4

4
4

5
4

6
4

7
4

8
4

9
5

0

System ID

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Crash rate

Figure II.2.3: Crash rate for each system of the database, in gray the critical threshold of 3 %.

As crashes occurring after a long range of actions are more disturbing for the users, we only

kept normal sessions and crashes containing at least seven user actions to conduct our exper-

CHAPTER II.2. CRASH RISK MONITORING 79

iments. Shorter sessions were removed since we are not particularly interested in monitoring

crash risk for them. Table II.2.1 shows for each studied system the resulting number of sessions

as well as the associated crash rate p0. The crash rate remains slightly the same except for sys-

tem 20, where it decreases to 1.6% while it was higher than 3% with all the sessions, indicating

an important number of very short crashes.

System ID |D7| p0

8 2746 7.5

17 3710 3.5

20 2032 1.6

33 1716 3.4

45 697 4.9

Table II.2.1: Total number of sessions containing 7 actions or more |D7| for each studied system

and associated crash rate.

II.2.4.2 Baseline Methods

To assess the performance of LSTM− FV fed with feature vectors, we compare to state-of-

the-art supervised learning methods including Support Vector Machine such as in [Lo et al.,

2009, Cheng et al., 2007] and Random Forest classifier. Note that the Random Forests classifier

was preferred to Decision Trees since it provided better results. For fair comparison to the

LSTM network, which is able to handle long term dependency among sequential data, each

baseline will be fed with 2 types of input representations.

Inputs

As for the LSTM network, baselines will be fed with feature vectors composed of elementary

actions performed in crashes being significant at level τ . This type of inputs will be denoted FV.

To make the comparison more meaningful, we propose a second type of inputs where crash

patterns are added to the feature vector composed of elementary actions being significant. As

for the elementary actions, only the patterns being significant are added to elementary actions

to compose the features. This second type of inputs will be denoted FVP. This results in the

following 4 baseline methods.

Support Vector Machine with Feature Vectors (SVM− FV): a support vector machines model

using feature vectors composed of elementary actions being significant.

Support Vector Machine with Patterns in Feature Vectors (SVM− FVP): a support vector

machines model using feature vectors composed of significant elementary actions and patterns.

Random Forest with Feature Vectors (RF− FV): a random forest classifier using feature vec-

tors composed of elementary actions being significant.

CHAPTER II.2. CRASH RISK MONITORING 80

Random Forest with Patterns in Feature Vectors (RF− FVP): a random forest classifier us-

ing feature vectors composed of significant elementary actions and patterns.

II.2.4.3 Performance Evaluation

ROC curves

As can be seen in Table II.2.1, the crash rate amounts to a few percents meaning that the sessions

prematurely ended by a crash actually account for a very small portion of the total number of

sessions. Many techniques were developed to tackle the challenge of skewed data in classi-

fication problems: sampling, ensemble methods, synthetic sample generation, etc. [Chawla,

2005]. As in our case not all errors are equal, we have decided to evaluate our results using the

area under ROC curves [Fawcett, 2004]. We predict a crash when Pmax = max(ỹi) ≥ Pthresh.

The ROC curve is thus obtained by varying Pthresh from 0 to 1. ROC curves show the trade-off

between the True Positive Rate, denoted TPR, indicating the rate of detected crashes and the

False Positive Rate, denoted FPR, indicating the rate of normal sessions announced as crashes.

FPR and the TPR are computed as follows:

• FPR =
FP

FP + TN

• TPR =
TP

TP + FN

where TP, FP, TN and TP respectively stand for the number of True Positives, False Positives,

True Negatives and True Positives (see Table II.2.2 for details). In the general case, we want to

avoid unnecessary backups for memory reasons in the case of normal sequences and we accept

to suffer from some crashes. This translates into a low False Positive Rate and a satisfying True

Positive Rate.

Actual

Crash Normal Session

Predicted
Crash True Positive (TP) False Postitive (FP)

Normal Session False Negative (FN) True Negative (TN)

Table II.2.2: Confusion matrix.

In the case of interventional radiology, on the other hand, we would prefer a true positive rate

close to 1.

II.2.4.4 Experimental Setup

We conducted experiments on each system individually, and used for each system the 80% old-

est sessions for training and the 20% most recent for the test set. Results presented correspond

to the average AUC obtained after 10 runs.

Baselines

In order to make the baselines as competitive as possible, we use a grid search approach. In

order to select the significant actions we set the threshold probability to p0 (the higher threshold

CHAPTER II.2. CRASH RISK MONITORING 81

probability was too selective) and tuned the significance threshold τ with τ ∈ {0.01, 0.02, 0.05, 0.1},
the penalty parameter C of the Support Vector Machines classifier with C ∈ {0.1, 10, 100, 1000}
and the maximum depth of the treesm in the Random Forest classifier withm ∈ {25, 50, 75, 100}.
In the case of SVM− FVP and RF− FVP there is an additional hyperparameter to tune cor-

responding to the threshold probability rp0 to select significant patterns. For that, we set the

significance threshold to 0.01 and tuned the threshold probability rp0 with r ∈ J1, 10K. We

mined the frequent subsequences from crash sessions with the Bide algorithm and set the sup-

port minsup to 5%.

We use a linear kernel in the Support Vector Machine classifier (other kernels were providing

worse results) and 100 trees in the Random Forest classifier. We report the best results obtained

on the test set.

The Support Vector Machine classifier with probability estimates and Random Forest classifier

are the implementations of the Scikit-Learn Python package [Pedregosa et al., 2011].

LSTM

LSTM− FV is trained and implemented in Tensorflow [Abadi et al., 2015] with the RMPSProp

optimizer [Tieleman and Hinton, 2012]. The LSTM networks used with one-hot vectors and

feature vectors have the same architecture. Hidden and cell states are initialized to zero at the

beginning and reset at the beginning of every user session. We use minibatches of size B = 32.

Network weights are initialized using a Glorot initialization procedure [Glorot and Bengio,

2010] and are unrolled for T = 200 steps. To prevent the LSTM network from over-fitting,

we use early stopping [LeCun et al., 2015] and interrupt learning when the validation error

(computed on 20% of the training samples) does not decrease for 10 epochs.

We selected the dimension of the hidden state as well as the significance threshold on the test

set. The objective here is to provide default hyperparameters values which might be used in the

future. The selection of the number of units and that of the significance threshold are presented

in section II.2.4.5.

II.2.4.5 LSTM Tuning

We first selected the optimal dimension of the hidden state on LSTM− 1HOT and then the

significance threshold τ providing the best results for LSTM− FV.

LSTM-1HOT

Table II.2.3 shows the average area under the curve obtained on the 5 studied systems for the

dimension of the hidden state H varying between 25 and 300. As observed, the best results are

obtained with H = 50 which is selected to conduct the following experiments.

CHAPTER II.2. CRASH RISK MONITORING 82

H 25 50 100 150 200 250 300

Average AUC 0.681 0.683 0.662 0.661 0.646 0.662 0.652

Table II.2.3: Average area under the curve obtained on the 5 systems studied with

LSTM− 1HOT and dimension of hidden state H varying between 25 and 300.

LSTM-FV

Table II.2.4 shows the average area under the curve obtained on the 5 systems studied for a

threshold probability equal to p0 and a significance threshold τ varying between 0.01 and 0.1.

The number of corresponding significant actions is provided in Appendix D. The best results

are obtained with τ = 0.01. This value will be used for the rest of the experiments.

τ 0.01 0.02 0.05 0.1

Average AUC 0.763 0.749 0.739 0.722

Table II.2.4: Average area under the curve obtained on the 5 studied systems with LSTM− FV

and significance threshold τ varying between 0.01 and 0.1.

Threshold probability of 2p0 is too selective in the case of single actions and the very small

number of significant actions does not allow the LSTM network to work as well as with features

selected at threshold probability of p0.

II.2.4.6 Results

Table II.2.5 shows the results obtained on the 5 systems with the 6 different methods. The

baselines fed with additional patterns in feature vectors perform better than the baselines fed

feature vectors composed of significant actions only. LSTM− FV provides the best results

on systems 8, 17 and 20 but it turns out that LSTM− 1HOT does slightly better on system 33.

Moreover, the Random Forest Classifier fed with additional patterns is more efficient on system

45 for which very few sessions are available for training. On average, LSTM− FV provides the

best results. The LSTM network fed with one-hot encoded actions does not seem appropriate

for this task.

For both systems containing the highest number of crashes (59 crashes in test for system 8

and 42 crashes in test for system 17), the LSTM− FV model returns the best area under the

curve. As explained previously, ideally, we would like our method to detect a satisfying rate of

crashes without triggering too many false alarms. This means that we seek a model returning

a True Positive Rate as high as possible in the region shaded in gray in Figures II.2.4 and II.2.5.

As can be seen on Figure II.2.5, LSTM− FV performs the best in the desired region. In this

case, LSTM− FV is able to detect 65% of the crashes while maintaining a False Positive Rate

approximating 10%. However, Figure II.2.4 shows an example where the LSTM− FV is not

able to take a clear advantage over other methods. ROC curves indicate that only 40% of the

crashes are anticipated when ensuring a false alarm rate of 20%.

CHAPTER II.2. CRASH RISK MONITORING 83

System ID SVM− FV SVM− FVP RF− FV RF− FVP LSTM− 1HOT LSTM− FV

8 0.536 0.618 0.640 0.655 0.509 0.666

17 0.834 0.835 0.845 0.849 0.704 0.877

20 0.900 0.901 0.897 0.905 0.860 0.909

33 0.601 0.631 0.631 0.663 0.740 0.738

45 0.709 0.720 0.717 0.731 0.600 0.627

Table II.2.5: AUC for each of the studied systems. The best values obtained for each system are

in bold.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curves

SVM-FV = 0.520
RF-FV = 0.644

SVM-FVP = 0.621
RF-FVP = 0.654

LSTM-1HOT = 0.512
LSTM-FV = 0.676

Figure II.2.4: ROC curves obtained for system 8. The gray area corresponds to the region where

we want a high TPR.

CHAPTER II.2. CRASH RISK MONITORING 84

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curves

SVM-FV = 0.833
RF-FV = 0.838

SVM-FVP = 0.833
RF-FVP = 0.846

LSTM-1HOT = 0.713
LSTM-FV = 0.882

Figure II.2.5: ROC curves obtained for system 17. The gray area corresponds to the region

where we want a high TPR.

II.2.5 Discussion

To tackle the crash detection task, we proposed to feed an LSTM network with feature vectors

composed of significant actions present in crashes. This representation outperforms on average

baselines approaches. The average area under the curve obtained on the 5 systems is promising

considering the scarcity of crashes in our datasets. As underlined by James Smith1, “The dirty

secret of software is that you cannot fix every single bug”. Crash monitoring is thus a critical

issue in all industrial codes.

Even if the priority is to understand the origin of the crashes and to highlight the crash signa-

tures allowing to solve bugs, our future work will aim at increasing the performance of crash

risk detection by combining user workflows and system parameters evolution logs.

1https://softwareengineeringdaily.com/2016/03/31/applic/

Chapter II.3

User Action Prediction

IN ORDER TO SPEED UP RADIOLOGISTS’ WORKFLOW AND DIAGNOSIS, software developers

aim at providing them with an interface increasingly adapted to their patterns of use, de-

spite the very strong variability in workflows which depend on their experiences and special-

ties. Our objective in this chapter is to develop methods for the prediction of next user action,

which allows the enrichment of the interface with diverse features such as adaptive display

or task automation [Adam et al., 2017a]. In our study, practitioners’ workflows are structured

around key actions which will be called Tools throughout the presentation of the method. This

particular type of actions corresponds to the main steps of the patient images review. Indeed,

the use of a Tool in the interface often triggers the appearance of more specific option panels.

Our work focuses on the prediction of the next Tool that the user will use during his diagnosis.

This prediction solution might take the form of a dynamic toolbar, proposing in real-time the

k most likely next Tools needed by the user. The efficiency of the system is crucial if the soft-

ware is used on a portable device with a reduced size user interface, which is more and more

frequent. As a matter of fact, with fewer default options available, the prediction system must

be as accurate as possible to avoid additional actions for the user to reach the Tool he intends

to use. In many medical applications, the slightest time saving may be decisive. We present

the related work in section II.3.1. The problem formulation is detailed in section II.3.2. The

input representations are described in section II.3.3. We conducted experiments on 50 systems,

whose results are provided in section II.3.4. Finally, we compare several training strategies in

section II.3.5.

II.3.1 Related Work

Many sequence prediction algorithms have been provided in the Proactive User Interfaces re-

search field [Hartmann and Schreiber, 2007]. They focus on online help, interface adaptation,

content prediction or task automation, in order to simplify the interaction of the user with

the interface via highlighted fields, hints, minimization of the interface to some specific func-

tions, etc. For that purpose, an algorithm able to predict the next actions of the user based on

his interaction history would be beneficial. Wide range of algorithms, mainly based on Markov

85

CHAPTER II.3. USER ACTION PREDICTION 86

models have been proposed and applied to this domain. For instance, the Incremental Probabilis-

tic Action Modeling method [Davison and Hirsh, 1998] makes the assumption that each action

depends only on the last action and uses a first order Markov model which is updated after

each prediction. Later, the Jacobs Blockeel [Jacobs and Blockeel, 2002] and ActiveLeZi [Gopalrat-

nam and Cook, 2007] algorithms used mixed order approach to compute the most likely next

action, whereas FxL [Hartmann and Schreiber, 2007] computes a prediction score by assign-

ing different weights on different Markov order models. Quite recently, the Frequency Vector

method [Moon et al., 2016] computes a prediction for the next user action by combining a fre-

quency model with an embedded vector representation model. This method slightly improves

FxL algorithm and outperforms Incremental Probabilistic Action Modeling algorithm as well as a

recurrent neural network on datasets containing user behavior logs.

More generally, the prediction of the next item of a sequence is used in a wide variety of applica-

tions such as statistical language modeling, text analysis, web page recommendation, weather

or time series forecasting, or customer purchases prediction [Begleiter et al., 2004]. State-of-

the-art methods such as Back-Off N-Gram Models [Katz, 1987] or All-Kth-Order-Markov models

[Pitkow and Pirolli, 1999] assume the Markovian property, that is to say that the next item de-

pends only on the last occurring items. Hence, they do not use the whole information contained

in the sequence.

Another approach consists in tackling the sequence prediction task as a classification problem

using a multilayer perceptron for example [Zhao et al., 2017]. However, this type of technique

still computes a prediction by only exploiting a fixed number of the previous actions.

To capture longer dependencies, we have focused on recurrent neural networks [Graves, 2013].

Lately applied to analogous sequence learning problems in the domain of Natural Language

Processing (NLP), Recommender Systems or Web Search, they respectively perform next word

prediction [Zaremba et al., 2014, Sundermeyer et al., 2012], purchased items prediction [Tan

et al., 2016, Donkers et al., 2017] and user clicks on search engine results prediction [Borisov

et al., 2016, Zhang et al., 2014]. In particular, we have worked with the Long Short Term

Memory architecture, originally formulated by Hochreiter and Schmidhuber [Hochreiter and

Schmidhuber, 1997]. This type of neural networks has proved to be particularly effective for

this task. Indeed, in addition to the usual hidden state present in standard recurrent neural

network, the LSTM network has a cell state in which it is able to store the parts of the past

information it learnt as relevant. It does so using three gates, each of them composed of a sig-

moid layer which controls the memory that will be added or removed from the cell state, as

detailed in Part II, Chapter I, section II.1.2. To the best of our knowledge, LSTM recurrent net-

works have never been applied to the specific task of user action prediction. As we will present

below, we propose a first model where the input action is encoded by a one-hot vector [Sun-

dermeyer et al., 2012], which is the classic approach. This representation grows with the size of

the vocabulary, in the case of NLP tasks for example, becoming computationally demanding.

Moreover, the one-hot representation does not take into account possible similarities between

CHAPTER II.3. USER ACTION PREDICTION 87

words. Distributed representations of words enable to overcome these limitations [Mikolov

et al., 2013]. Thanks to the way they are computed, these lower-dimensional continuous vec-

tors capture meaningful information about words. Thus, in the embedded space, words that

often appear one after the other would be close to each other. Such representation is widely

used in language modeling [Zaremba et al., 2014]. Similarly this distributed representation has

been applied in the Recommender System field [Borisov et al., 2016, Greenstein-Messica et al.,

2017] making the assumption that items occurring in the same context will also be spatially

close in the embedded space. Here, we propose to apply this technique, which turns out to

improve the performance of user action prediction task.

II.3.2 Problem Formulation

Let Σ be the set of possible actions in the user interface and ua its cardinal. A user sequence of

length n is an element of Σn. We will denoteX = x1x2x3 . . . xn, with each xi ∈ Σ an elementary

user action. For a user sequence X of length n and r ∈ J1, rK, we will denote by Xr, the prefix

sequence of length r: Xr = x1x2 . . . xr−1xr.

We consider a practitioner’s session X of indefinite length and Xr ∈ Σr, the current prefix

sequence of length r. The objective is to determine a model Ar:

Ar : Σr → [0; 1]ua

Xr 7→ (P(xr+1 = a1|Xr), · · · ,P(xr+1 = aua |Xr))

where ai, for i ∈ J1, uaK, are all the possible elementary actions in Σ and P(xr+1 = ai|Xr)

denotes the probability of the (r + 1)-th action in sequence X to be ai, given that the prefix

sequence of length r is Xr. The next action prediction at time r is denoted by ŷr and thus given

by

ŷr = argmax1≤i≤ua (P(xr+1 = ai|Xr)) . (II.3.1)

It may also be of interest to predict the k most probable actions, corresponding to the k highest

probabilities given byAr. The family of modelsA = (Ar)r≥1 defines a dynamic model for next

action prediction.

As explained previously, we are only interested in predicting a particular type of actions, called

Tools. The problem can be redefined as follows. Let ΣT be the set of possible Tools, ΣT ⊂ Σ, and

let ut be its cardinal. An example of user sequence could be denoted by x1x2x
T
3 x4 . . . x

T
r−2xr1xr,

where xTi ∈ ΣT . As described in Figure II.3.1, a prediction will be computed at each user action

but only the predictions being made when a Tool is used (actions in yellow) will be evaluated

(cf. Equation II.3.2). To each x ∈ Σ, we will associate its one-hot vector representation for an

arbitrary ordering of the actions in our database, so that in the following each element in Σ will

be considered as an element in {0; 1}ua .

CHAPTER II.3. USER ACTION PREDICTION 88

workflow x1 xT2
. . . xr−1 xTr

predictions ŷ1 ŷ2 . . . ŷr−1 ŷr

evaluated predictions

Figure II.3.1: Evaluation of user action prediction: actions in yellow represent Tools and thus

are the only predictions we will focus on.

II.3.2.1 Loss

Both the LSTM− 1HOT and LSTM− EMB models are trained to minimize the following

weighted average cross-entropy loss L, which enables the LSTM network to only focus on

the Tools prediction. For each session X ∈ T , of length nX , the elementary loss is given by:

L(X) = −
nX−1∑
i=1

δxi+1(ΣT)

ua∑
j=1

x(i+1)j log ỹij

where nX represents the number of actions in the session X and:

• x(i+1)j is the j-th component of the ua-dimensional one-hot vector encoding the (i+ 1)-th

action of session X ;

• ỹij is the j-th component of the ua-dimensional probability distribution predicted at time

step i by the LSTM (corresponding to model Ai defined in section II.3.2);

• δx(ΣT) =

{
0, x /∈ ΣT ;

1, x ∈ ΣT .

Finally, the complete loss on the whole training set is computed as follows:

L =
∑
X∈T

L(X)

where T denotes the training set.

II.3.3 Input Representation

We propose two types of LSTM models for the next action prediction task: one-hot encoded

vectors and action embeddings.

II.3.3.1 One-hot Vectors

The first one, called LSTM− 1HOT, uses as inputs one-hot vectors whose dimension is equal

to the number of possible elementary actions. Let x ∈ Σ be an elementary action. We classically

define its one-hot representation x1HOT ∈ {0, 1}ua , with only one component different from 0,

CHAPTER II.3. USER ACTION PREDICTION 89

as follows:

x1HOT
k =

{
1, if x = ak

0, otherwise

where ak, for k ∈ J1, uaK, are all the possible elementary actions in Σ and x1HOT
k the k-th com-

ponent of the one-hot vector.

II.3.3.2 Embeddings

The second model, called LSTM− EMB, uses action embeddings as inputs: xEMB ∈ RE where

E denotes the embedding size. The objective is to replace the one-hot encoding representation

of actions, which is high dimensional and sparse with its corresponding distributed represen-

tation. To compute action embeddings we have used the Continuous Bag-Of-Words (CBOW)

architecture [Mikolov et al., 2013]. Let X = x1 . . . xn be a sequence of actions and xr a tar-

get action, the CBOW model trains a feedforward neural network to map its context actions

contained in a window of size w to the target action xr. Pairs of actions (xr+c, xr) with xr+c

corresponding to averaged one-hot encoded vectors of actions contained in context c ∈ [−w,w]

are respectively used as inputs (x) and outputs (y) of the following equations:

h = xW

y = φ(hW ′)

With E the embedding size, W ∈ Rua×E is the hidden layer weight matrix, h ∈ RE the hidden

layer and φ the softmax function. W ′ ∈ RE×ua represents the output layer. Final weights of W

will give the embedding representation. As it was more efficient in our case, this architecture

was preferred to the other possible Word2Vec architecture, namely Skip-gram which trains a

feedforward neural network to predict context words based on a word contained in the context.

CHAPTER II.3. USER ACTION PREDICTION 90

input : xi ∈ {0, 1}ua

output : x ∈ {0, 1}ua

xr−w

. . .

xr−1

xr+1

. . .

xr+w

xr

hidden : h ∈ RE

W W ′

i-th action embedding

Figure II.3.2: CBOW model.

As in our case there are only very few actions occurring in the test set which have never been

performed in the training set, we assigned all the out-of-vocabulary actions to the same value

in the one-hot encoded vectors and to an averaged vector of all distributed representations of

actions in the case of embeddings. However, more sophisticated methods were proposed to

handle unseen data representation. For example, embeddings of an unseen word might be

induced by its nearest neighbors [Tafforeau et al., 2015].

II.3.4 Experiments

II.3.4.1 Data

We conducted experiments on all 50 systems from the database to ensure the effectiveness of

the proposed methods in all types of cases. Table II.3.3 shows the number of normal sessions

|S| for each system. Table II.3.4 shows the number of unique actions ua and unique Tools ut
for each system. Finally, Table II.3.5 shows the number of performed actions Na and Tools

Nt for each system. These values are highly variable depending on the hospital. Indeed, the

workload is not the same on all systems. While some systems are continuously used, others are

occasionally used for specific cases. Besides, the content of the user interface changes according

to the medical application which is launched for image analysis. As a result, generalist systems

purchasing licenses of many applications are most likely to have a number of unique actions

which is more important than a very specialized system.

CHAPTER II.3. USER ACTION PREDICTION 91

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

System ID

0

2000

4000

6000

8000

10000

12000

14000
Number of Normal Sessions

Figure II.3.3: Number of normal sessions for each system in the database.

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

System ID

0

100

200

300

400

500

600

700
Number of Unique Actions / Tools

|ΣT| |Σ|

Figure II.3.4: Number of unique actions ua and unique Tools ut for each system in the database.

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

System ID

0

20000

40000

60000

80000

100000

120000

140000
Number of Performed Actions / Tools

Nt Na

Figure II.3.5: Number of performed actions Na and Tools Nt for each system in the database.

CHAPTER II.3. USER ACTION PREDICTION 92

II.3.4.2 Baseline Methods

The prediction performance of the LSTM networks is compared to two other sequential pre-

diction methods and to a Multilayer Perceptron neural network considered as a standard clas-

sification method. These baselines were selected among all the existing algorithms since they

provided the best results.

FxL [Hartmann and Schreiber, 2007].

The FxL algorithm assumes that higher order Markov Chains yield more reliable results and

computes a prediction score by combining different orders. It does so by multiplying the fre-

quency of an action by the length of the context after which it occurred:

P (xi|xi−n, . . . , xi−1) =
score(xi)∑
x∈Σ score(x)

score(xi) =

n∑
j=1

w(j)C(xi−j . . . xi−1xi)

where:

• C(x) is the number of times the exact subsequence x appears in the training set;

• xi is the i-th action in the given sequence;

• w(j) is the weight assigned to the Markov chain of order j, w(j) = j.

We chose FxL as baseline since it was the best performing method among the Proactive User

Interfaces state-of-the-art algorithms [Hartmann and Schreiber, 2007].

Markov Chains with Backing-Off (MCBO) [Katz, 1987]

The MCBO model of order n uses the last n actions to predict the next action:

P (xi|xi−n . . . xi−1) =

C(xi−n . . . xi−1xi)

C(xi−n . . . xi−1)
if C(xi−n . . . , xi) > 0

P (xi|xi−n+1 . . . xi−1) otherwise

where:

• C(x) is the number of times the exact subsequence x appears in the training set;

• xi is the ith action in the given sequence.

Whenever the path composed of the last n actions has not been observed in training, it backs

off to the estimate corresponding to models with smaller histories, in this case, the path com-

posed of the n− 1 actions, etc. The backing-off enables to ensure a prediction after each action.

Indeed, even if the path of the lowest order model has not been seen in the training, the model

simply returns the most used action in the training. We chose this method since it was working

particularly well on our data, providing results comparable to FxL.

CHAPTER II.3. USER ACTION PREDICTION 93

Multilayer Perceptron (MLP) [Zhao et al., 2017]

For comparison, we have also implemented a fully connected MLP neural network composed

of 2 hidden layers. We use a sigmoid activation function for the hidden layers and a softmax

activation output layer. The MLP inputs consist of one-hot encoded vectors of the n = 5 last

actions that were used.

Note that in order not to put these models at a competitive disadvantage, they were trained

to predict the next Tool occurring after the last n actions (even if it occurs several actions after-

wards) rather than the next action. The LSTM model is trained to predict next action regardless

its type, the weighted loss naturally leads the LSTM to be efficient on Tools.

II.3.4.3 Performance Evaluation

The four models will be evaluated only on their ability to predict Tools. The prediction accuracy

is computed by dividing the number of correct predictions by N te
t , the total number of used

Tools in the sessions of the test set:

Top1 =
1

N te
t

∑
1≤i≤Nte

t

1(yi = ŷi) (II.3.2)

where yi is the observed used tool and ŷi corresponds to the prediction, obtained by taking the

argmax of the probability vector predicted by the LSTM model as detailed in Equation II.3.1.

We also define a score considering a prediction as correct if one of the k actions predicted with

maximal probabilities correspond to the true Tool. We denote by Âki the set of all these actions,

obtained by taking the k highest probabilities in the the probability vector predicted by the

LSTM network:

Topk =
1

N te
t

∑
1≤i≤Nte

t

1
(
yi ∈ Âki

)
.

Indeed, our prediction system might take the form of a dynamic toolbar containing in real-time

the k most likely next Tools needed by the user.

II.3.4.4 Experimental Setup

Training and Test Sets

We have conducted experiments on each system individually. As we work with ordered data,

we have used for each system the 80% oldest sessions for training and the 20% most recent for

the test set.

Model Averaging

To reduce generalization error, we perform model averaging. We divide the training set into

k = 10 non-overlapping subsets. On trial i, the i-th subset is used as the validation set. The k

models output distributions are averaged to compute final predictions.

CHAPTER II.3. USER ACTION PREDICTION 94

Implementation

We use our own Python implementation for FxL and the Markov Chains with Backing-Off

models. The predictions obtained for the best MCBO and FxL of order 1 ≤ n ≤ 7, on the

corresponding validation set of the 10 averaged models were used. Higher orders are too

expensive at running time. The MLP as well as the LSTM network are defined and trained

in Tensorflow [Abadi et al., 2015] with the RMPSProp optimizer [Tieleman and Hinton, 2012].

The MLP is composed of 2 hidden layers, each of size 100. The LSTM networks used with one-

hot vectors and embeddings have the same architecture. Hidden and cell states are initialized

to zero at the beginning and reset after every minibatch of size B = 32. The weights of both

networks are initialized using Tensorflow initialization for weights [Glorot and Bengio, 2010]

and are unrolled for T = 100 steps. They both have one layer of H = 50 units, see section

II.3.4.5. The embeddings are computed using the Gensim [Rehurek and Sojka, 2010] Python

package. The results presented are obtained with embedding size E = 100, and a context

window of size W = 20, see section II.3.4.5.

Regularization

To prevent the networks (both MLP and LSTM) from over fitting we use early stopping [LeCun

et al., 2015] and interrupt them from learning when the validation error does not decrease for

10 epochs.

II.3.4.5 LSTM Tuning

This section presents experiments conducted on 2 systems to select the dimension of hidden

state in the LSTM network fed with one-hot encoded actions. Experiments on other systems

showed the same tendency. The same LSTM architecture is then used to select the embeddings

parameters.

LSTM-1HOT

Tables II.3.1 and II.3.2 show Top1 prediction accuracy obtained with values of the dimension

of hidden state H comprised between 25 and 300 for systems 1 and 2. The dimension of the

hidden state impacts only slightly the performance score.

H 25 50 100 150 200 250 300

Top1 0.586 0.590 0.587 0.589 0.581 0.589 0.571

Table II.3.1: Dimension of hidden state H and corresponding score Top1 for system 1.

H 25 50 100 150 200 250 300

Top1 0.573 0.579 0.581 0.577 0.579 0.578 0.583

Table II.3.2: Dimension of hidden state H and corresponding score Top1 for system 2.

We decided to continue the experiments with H = 50 since this value seems to be a fair com-

CHAPTER II.3. USER ACTION PREDICTION 95

promise for both systems.

LSTM-EMB

Figures II.3.6 and II.3.7 show the Top1 score obtained with embedding size E between 50 and

200 and a context window size W between 5 and 50 for systems 1 and 2. We selected E = 100

and W = 20 to conduct our experiments.

5 10 15 20 30 40 50
Window Size

5
0

1
0
0

1
5
0

2
0
0

E
m

b
e
d
d
in

g
s

S
iz

e

System 1

0.592

0.596

0.600

0.604

0.608

Figure II.3.6: Top1 score for system 1, E ∈ [50, 100, 150, 200] and W ∈ [5, 10, 15, 20, 30, 40, 50].

5 10 15 20 30 40 50
Window Size

5
0

1
0
0

1
5
0

2
0
0

E
m

b
e
d
d
in

g
s

S
iz

e

System 2

0.570

0.576

0.582

0.588

0.594

0.600

Figure II.3.7: Top1 score for system 2, E ∈ [50, 100, 150, 200] and W ∈ [5, 10, 15, 20, 30, 40, 50].

CHAPTER II.3. USER ACTION PREDICTION 96

II.3.4.6 Results

0.0

0.2

0.4

0.6

0.8

1.0
Top1

0.0

0.2

0.4

0.6

0.8

1.0
Top2

0.0

0.2

0.4

0.6

0.8

1.0
Top3

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
4

0
4

1
4

2
4

3
4

4
4

5
4

6
4

7
4

8
4

9
5

0

System ID

0.0

0.2

0.4

0.6

0.8

1.0
Top4

FxL MCBO MLP LSTM-1HOT LSTM-EMB

Figure II.3.8: Top1, Top2, Top3, and Top4 prediction accuracy for each of the 50 systems.

CHAPTER II.3. USER ACTION PREDICTION 97

Figure II.3.8 shows the Top1, Top2, Top3, and Top4 predictions accuracy obtained individually

on each system of the database. For the sake of robustness of the industrial solution and to save

computational time, we used the same values of H , E and mincount for all the systems. A way

to improve each system prediction accuracy would be to individually select the best values on

each validation set.

The LSTM− EMB fed with action embeddings, outperforms the other models on each dataset

and provides consistently higher prediction accuracy over FxL in the case of Top1 score all

the more when the prediction score of FxL is low. Table II.3.3 shows the average gain from

LSTM− EMB over FxL for different intervals of values of the Top1 score obtained with FxL.

While the gain is equal to 3.8% when FxL returns prediction accuracy greater than 0.7, the gain

is on average equal to 12.4% when FxL performance is lower than 0.4.

Top1 Fx < l Score Average gain from LSTM− EMB over FxL

<0.4 12.4 %

(0.4, 0.5] 12.3 %

(0.5, 0.6] 9.3 %

(0.6, 0.7] 6.0 %

>0.7 3.8 %

Table II.3.3: Average gain from LSTM− EMB over FxL for different intervals of scores provided

by FxL.

Figure II.3.9 illustrates an example of the results that were obtained for system 2, on each in-

dividual Tool. LSTM− EMB provides equivalent or better predictions than FxL for every Tool,

and in particular, it is able to predict with better accuracy some rare Tools.

CHAPTER II.3. USER ACTION PREDICTION 98

to
o
l
2
3

to
o
l
2
2

to
o
l
2
1

to
o
l
2
0

to
o
l
1
9

to
o
l
1
8

to
o
l
1
7

to
o
l
1
6

to
o
l
1
5

to
o
l
1
4

to
o
l
1
3

to
o
l
1
2

to
o
l
1
1

to
o
l
1
0

to
o
l
9

to
o
l
8

to
o
l
7

to
o
l
6

to
o
l
5

to
o
l
4

to
o
l
3

to
o
l
2

to
o
l
1

0

500

1000

1500

2000

2500

3000
N

u
m

b
e
r

o
f

O
cc

u
rr

e
n
ce

s
in

 T
e
st

0.0

0.2

0.4

0.6

0.8

1.0

T
op

1
 S

co
re

LSTM-EMB
FxL

Figure II.3.9: Top1 prediction accuracy for FxL and LSTM− EMB on each Tool for system 2.

On average, the LSTM− EMB method outperforms FxL by 8.8% on the Top1 score and by

5.7% on the Top4 score (see Table II.3.4). It also does consistently better than the Markov Chains

with Backing-Off (+ 6.3% on the Top1 score and + 5.9% on the Top4 score) and the Multilayer

Perceptron neural network (+5.4 % on the Top1 score and +4.1 % on the Top4 score).

model FxL MCBO MLP LSTM− 1HOT LSTM− EMB

Top1 0.569 0.594 0.603 0.648 0.657

Top2 0.725 0.745 0.759 0.806 0.814

Top3 0.807 0.814 0.830 0.871 0.877

Top4 0.855 0.852 0.871 0.906 0.911

Table II.3.4: Average results on the 50 systems for Top1, Top2, Top3, and Top4 predictions

accuracy.

Besides, it slightly improves the LSTM− 1HOT network by 0.9% on average on Top1 score and

by 0.6% on Top4 score, using only 85% of the training and prediction time of LSTM− 1HOT,

as can be seen in the Table II.3.5. As shown in Figure II.3.10, training time is reduced on each

system with action embeddings instead of one-hot encoded vectors as inputs of the LSTM

network. Note that the training time presented for each system in Figure II.3.10 and average

training time presented in Table II.3.5 takes into account the embeddings training time and thus

makes the LSTM network fed with action embeddings easier to deploy.

CHAPTER II.3. USER ACTION PREDICTION 99

Model Average Training Time for 1 Model (seconds) Ratio

LSTM− 1HOT 349.24 1

LSTM− EMB 295.32 0.85

Table II.3.5: Average training time in seconds of LSTM models. Training time for LSTM− EMB

includes embeddings computation with Gensim [Rehurek and Sojka, 2010].

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

System ID

0

100

200

300

400

500

600

700
Training Time (s)

LSTM-EMB LSTM-1HOT

Figure II.3.10: Training time for 1 LSTM model. Training time for LSTM− EMB includes em-

beddings computation with Gensim [Rehurek and Sojka, 2010].

As shown on Figure II.3.8, Top1 prediction results present a high variability in the predictive

efficiency of the 5 methods which is attenuated with Top3 and Top4 scores. To try to explain

these differences we propose to visualize the correlation between Top1 score obtained with

LSTM− EMB and system characteristics we have at our disposal. Thus, Figure II.3.11 shows

the scatter matrix plots of Top1 scores obtained with LSTM− EMB on the 50 systems against

the total number of sessions |S|, the number of unique actions ua and unique Tools ut, their total

number of performed actions NA and the total number of performed Tools NT .

CHAPTER II.3. USER ACTION PREDICTION 100

0.5

0.6

0.7

0.8

0.9

T
op

1

70000
80000
90000

100000
110000
120000
130000
140000

N
A

5000
10000
15000
20000
25000
30000
35000
40000

N
T

200

300

400

500

600

u
a

20

30

40

50

60

70

u
t

0
.5

0
.6

0
.7

0
.8

0
.9

Top1

2000

4000

6000

8000

10000

12000

|S
|

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
1

1
0

0
0

0
1

2
0

0
0

0
1

3
0

0
0

0
1

4
0

0
0

0

NA

5
0

0
0

1
0

0
0

0
1

5
0

0
0

2
0

0
0

0
2

5
0

0
0

3
0

0
0

0
3

5
0

0
0

4
0

0
0

0

NT

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

ua

2
0

3
0

4
0

5
0

6
0

7
0

ut 2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

1
2

0
0

0

|S|

Figure II.3.11: Top1 scores obtained with LSTM− EMB on the 50 systems against the total

number of normal sessions |S|, the number of unique actions ua and unique Tools ut, their total

number of performed actions NA and the performed total number of Tools NT .

We notice that the Top1 score tends to be higher when the number of unique actions ua and

the number of unique Tools ut is small. Moreover, it increases when the total number of normal

sessions |S| grows. This observation leads us to the next section concerning the best training

strategy of our LSTM model. Since the prediction accuracy is improved with the number of

sessions it is interesting to test if gathering sessions coming from different hospitals in the

training set enables to improve the prediction accuracy.

CHAPTER II.3. USER ACTION PREDICTION 101

II.3.5 Best Training Strategy

So far we trained one model per system. In this section we aim at identifying the best training

strategy. Indeed, the model might benefit from additional training sessions or on the contrary it

could be more efficient by being trained on a specific group of sessions. For this purpose we will

test models trained on different training sets, some of them obtained by session characteristics

which are known such as the medical application which is used, the hospital they come from or

the corresponding country. Section II.3.5.1 presents the experiments conducted to test whether

training sets based on such criteria enable to improve prediction accuracy. Another approach

consists in using unsupervised clustering techniques to highlight groups of similar sessions to

use for the training. This approach is detailed in section II.3.5.2.

II.3.5.1 Known Characteristics

In this section we consider two possible approaches. The first one consists of a global model

that would not distinguish between different medical applications. To be the most efficient,

should the model be trained:

• only on the hospital’s own logs? The underlying assumption would be that user habits

on a system are more pertinent to train the model than additional sessions from other

systems containing more variability in user workflows.

• on several hospital logs coming from the same country? Here the idea is that radiologists

from the same geographical region might tend to have similar habits of use (medical

education, medical advance of the country, country health structure, country medical

culture, etc.) and that additional sessions will help the model better generalize.

The second approach defines the training sessions according to the medical application. As for

the global model, the same questions might be addressed in the case of a particular medical

application.

Should we restrict the training set to a single hospital or enrich it with additional sessions in

which this application has been launched in other hospitals?

As is shown in Table II.3.6 we have at our disposal 50 logs mainly coming from India (13

systems), United States of America (8 systems) and Japan (5 systems). We use logs coming

from these 3 most represented countries to conduct our experiments. Table II.3.7 shows the

system IDs corresponding to the systems which will be tested for each selected country.

CHAPTER II.3. USER ACTION PREDICTION 102

Country Number of hospitals

INDIA 13

UNITED STATES OF AMERICA 8

JAPAN 5

EGYPT 4

KOREA (REPUBLIC OF) 4

POLAND 4

BELGIUM 2

ROMANIA 2

AUTRALIA 1

BANGLADESH 1

HUNGARY 1

IRELAND 1

NEPAL 1

SINGAPORE 1

SOUTH AFRICA 1

TURKEY 1

Table II.3.6: Country distribution. We will use Indian, American and Japanese log files to

conduct our experiments.

Country System ID

INDIA 1, 10, 12, 15, 18, 21, 22, 23, 26, 30, 31, 32, 46

UNITED STATES OF AMERICA 11, 16, 20, 25, 35, 39, 41, 45

JAPAN 3, 6, 34, 36, 40

Table II.3.7: System IDs of studied countries.

Methodology

Each hospital sessions are divided into training (80% oldest sessions) and test (20% most recent

sessions) sets. Each system will be tested separately on its own test set, with different training

sets. We use the LSTM model fed with action embeddings described in section II.3.3.2. We

denote by:

• Ti, the set of training sessions of hospital i;

• T ki , the subset of training sessions of hospital i in which application k was launched;

• HC , the set of hospitals from country C and |HC | its cardinal;

• TC =
⋃
i∈HC Ti, the set composed of all the training sessions from all the hospitals from

country C;

CHAPTER II.3. USER ACTION PREDICTION 103

• T kC =
⋃
i∈HC T

k
i , the subset composed of the training sessions from all the hospitals in

country C, in which application k was launched.

And thus:

• MTi denotes the model trained on Ti;

• MT ki denotes the model trained on T ki ;

• MTC denotes the model trained on TC ;

• MT kC denotes the model trained on T kC .

For each hospital of each selected country we first tested if the predictions would benefit of a

model trained on additional sessions coming from the same country. For each group of hospital

HC we selected the 2 most used applications to compare the different training strategies in the

case of a specific application. Table II.3.8 summarizes the experiments which will be conducted.

global 1 application

1 hospital MTi MT ki
group of |HC | hospitals MTC MT kC

Table II.3.8: Experiments overview. We tested the models with C successively equal to India,

USA, Japan.

We used Top1 score to evaluate global models:

Top1 =
1

N te
t

∑
1≤i≤Nte

t

1(yi = ŷi).

We recall that N te
t is the total number of used Tools in the sessions of the test set. We also define

a specific score to evaluate the predictions made when the application k was launched:

TopAppk1 =
1

N teAppk
t

∑
1≤i≤NteAppk

t

1(yi = ŷi)

where N teAppk
t denotes the number of Tools performed in test sessions where application k was

launched.

Results: Indian Hospitals

Figure II.3.12 shows the Top1 score obtained for each Indian system. The prediction acccuracy

of models trained on each system individual logs is compared to the one obtained with a model

trained on all the Indian systems. Hospitals 31 and 32 benefit from a model trained on addi-

tional sessions. Hospitals 1, 10 and 46 slightly have a better prediction accuracy with the model

trained only on their own sessions. There is no noticeable difference for the other systems.

CHAPTER II.3. USER ACTION PREDICTION 104

1 10 12 15 18 21 22 23 26 30 31 32 46
System ID

0.0

0.2

0.4

0.6

0.8

1.0
Top1

MTi MTIndia

Figure II.3.12: Top1 score obtained for each Indian system. The performance of a model trained

on each system own logs is compared to that of a model trained on all the sessions performed

in Indian hospitals.

Table II.3.9 shows the total number of applications runs for the group of Indian hospitals. Gen-

eral application runs were removed since they might correspond to specific applications that

were not properly logged. Apps 1 and 2, which were the most executed, will be used to con-

duct the experiments. Details about the number of sessions used for training and test for each

application, as well as the number of corresponding Tools are available in Appendix B.

App ID Runs

1 13586

2 2045

3 399

4 1500

Table II.3.9: Total number of application runs in Indian hospitals group HIndia.

Figure II.3.13 shows TopApp1
1 and TopApp2

1 prediction accuracy for each Indian system in the

case of test sessions in which App1 and App2 were launched. Systems with no performance

evaluation did not have enough sessions in which the concerned application was used to train

the model. As can be observed, system 32 predictions for App1 are the most accurate with the

global model trained on the sessions coming from all Indian hospitals. However there are only

14 Tools in the test set. Besides, the model trained only on sessions where App1 is launched

completely fails to predict the next Tool due to the very small training dataset, marked with

an asterisk. Concerning the predictions for App2, except for system 18, the model trained only

on each hospital’s own sessions where the application was launched is less effective than the

other models. The most appropriate model seems to be the global model trained on additional

CHAPTER II.3. USER ACTION PREDICTION 105

sessions. Again, predictions made with the specific model, present very bad results for system

10 which has too few training sessions for the concerned application.

1 10 12 15 18 21 22 23 26 30 31 32* 46
System ID

0.0

0.2

0.4

0.6

0.8

1.0
TopApp1

1

MTi

MTIndia

MT 1
i

MT 1
India

1 10* 12 15 18 21 22 23 26 30 31 32 46
System ID

0.0

0.2

0.4

0.6

0.8

1.0
TopApp2

1

MTi

MTIndia

MT 2
i

MT 2
India

Figure II.3.13: TopApp1
1 and TopApp2

1 scores obtained for each Indian system. The performance

of global and specific models trained on each system own logs is compared to that of global

and specific models trained on all the sessions performed in Indian hospitals. Systems having

small but trainable datasets are signaled with an asterisk.

Results: American Hospitals

Figure II.3.14 shows the Top1 score obtained for each American system. The prediction acccu-

racy of models trained on each system individual logs is compared to the one obtained with a

model trained on all the American systems. Only system 45 slightly benefits from the model

trained on additional sessions.

CHAPTER II.3. USER ACTION PREDICTION 106

11 16 20 25 35 39 41 45
System ID

0.0

0.2

0.4

0.6

0.8

1.0
Top1

MTi MTUSA

Figure II.3.14: Top1 score obtained for each American system. The performance of a model

trained on each system own logs is compared to that of a model trained on all the sessions

performed in American hospitals.

Table II.3.10 shows the total number of runs of applications for the group of American hos-

pitals. Apps 3 and 4 which were in this case the most executed will be used to conduct the

experiments. As previously, details about the number of sessions used for training and test for

each application, as well as the number of corresponding Tools is available in Appendix B.

App ID Runs

1 2

2 2207

3 4513

4 1946

Table II.3.10: Total number of applications runs in American hospitals group HUSA.

Figure II.3.15 shows TopApp3
1 and TopApp2

1 prediction accuracy for each American system in

the case of sessions where App3 and App2 were launched. While predictions of hospital 35 on

sessions in which App3 was launched are better when the model is trained only on its own

sessions in which the application was launched, system 45 benefits from additional sessions.

Regarding App2, when the application is used on a system, the model trained only on sessions

where it was launched systematically returns poorer predictions. Three systems (11, 20 and

39) take advantage from additional sessions where the application was used, two systems (16

and 25) have better predictions with a model trained on additional mixed sessions. Finally, two

systems (35 and 41) have more accurate predictions when the model is trained only on their

own logs.

CHAPTER II.3. USER ACTION PREDICTION 107

11 16 20 25 35 39 41 45
System ID

0.0

0.2

0.4

0.6

0.8

1.0
TopApp3

1

MTi

MTUSA

MT 3
i

MT 3
USA

11 16* 20 25 35 39 41* 45
System ID

0.0

0.2

0.4

0.6

0.8

1.0
TopApp2

1

MTi

MTUSA

MT 2
i

MT 2
USA

Figure II.3.15: TopApp3
1 and TopApp2

1 scores obtained for each Indian system. The performance

of global and specific models trained on each system own logs is compared to that of global

and specific models trained on all the sessions performed in Indian hospitals. Systems having

small but trainable datasets are signaled with an asterisk.

Results: Japanese Hospitals

3 6 34 36 40
System ID

0.0

0.2

0.4

0.6

0.8

1.0
Top1

MTi MTJapan

Figure II.3.16: Top1 score obtained for each Japanese system. The performance of a model

trained on each system own logs is compared to that of a model trained on all the sessions

performed in Japanese hospitals.

Figure II.3.16 shows the Top1 score obtained for each Japanese system. Again, the prediction

accuracy of models trained on each system individual logs is compared to that obtained with a

model trained on all the Japanese systems. For each system, the prediction accuracy is the same

CHAPTER II.3. USER ACTION PREDICTION 108

whether the model is trained on hospital’s own logs or on additional sessions. Table II.3.11

shows the total number of runs of applications on Japanese sessions. Apps 2 and 4 which were

in this case the most executed will be used to conduct the experiments. More details about the

number of sessions used for training and test for each application, as well as the number of

corresponding Tools are available in Appendix B. Only 2 systems are concerned by App2. While

there is no difference between the 4 models for hospital 6, hospital 34 gets better prediction

when the model is trained specifically on sessions where App2 was launched. The predictions

made when App4 is launched are better for 2 systems (6 and 40) when the model is trained

on their own sessions, hospital 34 benefits from additional sessions but has only few sessions

where the concerned application is used.

App ID Runs

1 11

2 2434

3 144

4 466

Table II.3.11: Total number of applications runs in Japanese hospitals group HJapan.

3 6 34 36 40
System ID

0.0

0.2

0.4

0.6

0.8

1.0
TopApp2

1

MTi

MTJapan

MT 2
i

MT 2
Japan

3 6 34* 36 40
System ID

0.0

0.2

0.4

0.6

0.8

1.0
TopApp4

1

MTi

MTJapan

MT 4
i

MT 4
Japan

Figure II.3.17: TopApp2
1 and TopApp4

1 scores obtained for each Indian system. The performance

of global and specific models trained on each system own logs is compared to that of global

and specific models trained on all the sessions performed in Indian hospitals. Systems having

small but trainable datasets are signaled with an asterisk.

Discussion

Among the 26 hospitals studied, only 2 Indian systems benefit from additional sessions from

other hospitals, in the case of the global score. Additional sessions involve a significantly heav-

CHAPTER II.3. USER ACTION PREDICTION 109

ier training time and yet rarely improves significantly the prediction accuracy. Therefore, the

models trained on hospitals own sessions are the most appropriate in this case.

Concerning specific scores, only some American hospitals and one Japanese hospital take ad-

vantage of the model trained only on sessions where a particular application was launched.

For the others, it appears that the best prediction on specific sessions are obtained with global

models.

In both cases, there is no real gain when the model is trained on sessions coming from other

systems, meaning the variability from one system to another is too important and disrupts the

LSTM recurrent neural network more than it improves it. Regarding the calculation cost gen-

erated by this solution we recommend to train one global model for each hospital, with its own

data.

As explained previously, sessions can be characterized by 3 attributes (country, hospital and

medical application). Experiments showed that specific training sets based on application runs

do not enable to significantly improve prediction accuracy. This might be explained by the fact

that application launches are not sufficiently representative to highlight groups of similar ses-

sions among sessions corresponding to a specific application (see Figure II.3.18). We propose to

use clustering techniques in an attempt to make a finer grouping of sessions to train the model

on. Indeed, the obtained clusters might correspond to similar clinical cases inside a particu-

lar application or to users common preferences or habits of use which cannot be highlighted

otherwise.

Sessions

Hospital

Country

Medical

App

Clinical

case

Preferences

Experience

Clusters

Unsupervised

Figure II.3.18: User sessions characterization. Green characteristics are known, blue ones are

not and may be highlighted with clustering techniques.

CHAPTER II.3. USER ACTION PREDICTION 110

II.3.5.2 Clustering to Improve Prediction

This section aims at testing whether the prediction accuracy might be improved by training the

LSTM on groups of sessions obtained by clustering techniques since the previous experiments

showed that clusters simply based on the type of applications runs were not particularly rel-

evant. We conduct our experiments on the 2 systems (30 and 50) studied in Part I, Chapter

3 since they correspond to systems with an important number of sessions in which a specific

application is launched.

Methodology

We propose to reuse session embeddings as inputs of the KMeans clustering algorithm, as this

configuration provided the best results in Part I, Chapter 3. As presented in Figure II.3.19, a

global model MTi trained on all the sessions from system i will be used to perform predictions

from the beginning of the session until the s-th action is reached. From this action, predictions

will be done by models independently trained on clusters. The reason for this choice is that

we cannot determine in which cluster the session can be classified before enough actions were

executed by the user. There is generally no specific user id allowing us to identify the proper

cluster beforehand. We denote by Mci the model trained on the sessions from cluster ci with

i ∈ J1,KK, K standing for the total number of clusters.

x1 xT2
. . . xs−1 xs . . . xTn−1 xn

s

predictions made
with MTi

predictions made
with Mci

Figure II.3.19: Models used to perform prediction, before and after the switching value s. Ac-

tions in yellow correspond to Tools.

We use a Random Forest classifier to dynamically assign the current prefix Xr to a cluster. As

can be seen in Figure II.3.20, at each new user action, the prefix embeddings are inferred from

the model used to compute session embeddings.

CHAPTER II.3. USER ACTION PREDICTION 111

x1 xT2 x3 . . . xr

infer(X1)

infer(X2)

infer(X3)

Figure II.3.20: Prefix inference for cluster assignment.

The switching value s will be chosen as the smallest value providing a satisfying classification

accuracy. To evaluate the classification we made a first experiment by clustering all the sessions

where App1, for system 30 and App2, for system 50 were launched. After this step, all the

prefixes may be labeled by the cluster number to which they belong. To test the classifier

ability to reassign a prefix to the proper cluster, we use the prefixes of 80% oldest sessions as

training set and the prefixes of the 20% remaining sessions as test set. We tested values of

s ∈ J5, 15K and k ∈ J2, 5K. Figures II.3.21 and II.3.22 show the results for systems 30 and 50,

when K = 2. Results obtained for greater values of K are available in Appendix C. As they

were less good, we decided to work with K = 2, unlike in Part I, Chapter 3 where the optimal

number of clusters was determined with the Calinski–Harabasz score. The classifier ability to

reassign a prefix to the corresponding cluster is better in the case of system 30. It is important to

notice that the higher the value of s, the fewer predictions are concerned, prefixes are becoming

longer and thus easier and easier to reassign to a cluster. As there is a significant gain for the

system 50 (Figure II.3.22) in the classifier accuracy between s equal to 10 and s equal to 11, this

value then remaining relatively the same between s = 11 and s = 15, we decided to work with

s = 11 for both systems.

3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

s

0.75

0.80

0.85

0.90

0.95

1.00
Accuracy - K= 2

Figure II.3.21: System 30 evaluation of prefix assignment to clusters with K = 2 with Random

Forest classifier and switching value s ∈ J3, 15K.

CHAPTER II.3. USER ACTION PREDICTION 112

3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

s

0.76

0.77

0.78

0.79

0.80

0.81
Accuracy - K= 2

Figure II.3.22: System 50 evaluation of prefix assignment to clusters with K = 2 with Random

Forest classifier and switching value s ∈ J3, 15K.

Results of next action prediction based on clustering

Table II.3.12 shows the results obtained on systems 30 and 50. The prediction accuracy obtained

by the LSTM trained on all the sessions MTi is compared to that obtained with models trained

separately on 2 clusters. After the switching value, at each new user action, the current prefix is

assigned to a cluster and the model which has been trained on this cluster is used to perform the

prediction. Both training strategies are evaluated only on sessions where a specific application

has been used (App1 for system 30 and App2 for system 50).

Details

System ID MTi Mci∈J1,2K MTi Mc1 Mc2

30 0.666 0.643 0.693 (1994) 0.611 (18) 0.578 (1517)

50 0.855 0.869 0.857 (133) 0.933 (30) 0.8 (5)

Table II.3.12: Prediction accuracy of the model trained on the whole training set MTi and of

the model trained on clusters Mci∈J1,2K . Details provide the prediction accuracy obtained with

each model and values between parentheses represent the number of Tools in the test set for

each model.

Training on clusters improves the prediction accuracy of system 50 but not that of system 30. If

we analyze the predictions provided by each model more in details, we see that in the case of

system 50, until the switching value, MT50 provides the same prediction accuracy than on the

whole test set, however, the predictions done with Mc1 on 30 Tools have an accuracy equal to

0.933 which improves the global accuracy. Here, the training on cluster 1 worked as expected

and enabled to refine predictions of the ends of the sessions. In the case of system 30, the

accuracy given by MT30 until the switching value is reached is significantly higher than the

global accuracy equal to 0.666, meaning that the prediction done at the end of the sessions

by the global model are less accurate. However the model trained on clusters did not help the

LSTM networks to improve their performances after the switching value, returning even worse

CHAPTER II.3. USER ACTION PREDICTION 113

values than the global model.

II.3.6 Discussion

This chapter was dedicated to the next action prediction task. To tackle this issue, we pro-

posed to take advantage of Long Short Term Memory recurrent neural networks and their

ability to capture long range terms dependencies among user actions. As an alternative to the

classic one-hot encoded inputs, we proposed to feed the LSTM network with action embed-

dings. This input representation enables the LSTM to outperform baseline approaches and to

slightly improve LSTM performance taking as inputs one-hot encoded vectors. This lower di-

mensional distributed representation reduces at the same time the computational cost, making

this method easier to deploy.

We tested different training strategies to determine the best method to train the LSTM network.

Adding training sessions to a system’s logs was not relevant, training on groups determined

by the type of application was not relevant either. A final attempt was done by training the

models on groups obtained by unsupervised clustering techniques, showing promising results

for one of the tested system. We therefore recommend to use the logs specific to each system

for the training of the model. An improvement in model performance could be achieved by

using a larger number of sessions from the system in question, as suggested by the study of the

correlation between the total number of sessions for each system and the Top1 accuracy score.

So far, we only tested whether augmentating the dimension of the training set for one global

system would improve the predictive performances. However, a very promising idea would

also be to train jointly specific models for each system. A promising strategy for this purpose

would be in the frame of hierarchical Bayesian neural networks [Joshi et al., 2017, Lacoste et al.,

2018]: each system would have its own model with specific parameters but a joint distribution,

as in classical Bayesian hierarchical models. More generally, when facing the prediction task

for a new system, transfer learning methodologies [Pan et al., 2010] should be used in order to

benefit from user sessions in slightly different contexts.

The proposed solution was tested on logs from 50 hospitals around the world, covering various

medical specialties and proved to be effective on each of them. The prediction system returns

an accuracy of 0.657 on average when one Tool is proposed and 0.911 when 4 Tools are pro-

posed to the user, making this solution very attractive. Prototypes will be implemented to be

validated with radiologists. Besides, the action prediction category might easily be expanded

to other types of user actions, in addition to the Tools, keeping the same methodology.

While Long Short Term Memory neural networks have proven to be particularly powerful to

solve sequence learning problems in recent years, some works claim that Attention networks

are a very interesting alternative from a computational point of view. They propose to replace

the recurrent nature of LSTM networks by self-attentions mechanisms [Yu et al., 2018]. This

idea could be tested in our studycase.

CHAPTER II.3. USER ACTION PREDICTION 114

Conclusion & Perspectives

This work addresses several critical issues regarding the global usability of a medical imaging

software, based on the recorded history of user interaction with the interface described as ele-

mentary actions. Some solutions were proposed but do not always constitute definite answers

and sometimes raise further questions. In this chapter we summarize the different contribu-

tions of this work. We then move to possible improvements and potential extensions.

Contributions

Crash Pattern Mining

We have studied the issue of software crashes from two perspectives. The first one aims at

understanding the root causes of the crashes.

For this purpose we proposed to use a binomial test to determine which types of patterns are

the most appropriate to represent crash signatures. We compared 4 types of patterns, taking

into account proximity and/or order of the actions composing them. We concluded that sub-

sequences of actions are the most appropriate for this task. This type of pattern takes into

account the order of the actions, but does not impose any constraint on the number of actions

comprised between 2 consecutive actions composing the pattern.

Contrary to our expectations, some determined crash signatures contain up to several dozen

actions that are spread throughout the session. The initial hypothesis was rather that it was

a few actions which triggered the crashes. These crash patterns are even more challenging to

detect since they correspond to signatures that were not tested during the verification phase

before the software deployment. While the primary purpose of this solution is to help resolve

complaints, crash signatures could also be integrated into automatic tests for future versions.

Although the crash signatures, when reproduced, do not always lead to crashes, they are of

great help and make it possible to better target their origins.

Workflow Characterization

The overall improvement of the software interface requires a good knowledge of how it is used

by its users. While we may have this information in the case of a close collaboration with a

partner hospital, it is generally not possible to have this knowledge for all sites.

We proposed to use clustering algorithms in order to group similar sessions, making the as-

115

CHAPTER II.3. USER ACTION PREDICTION 116

sumption that sessions contained in each cluster will represent one characteristic workflow.

We compared 3 different session representations as inputs of several clustering techniques.

We used a cluster validity index to determine the best partition. K-means algorithm fed with

session embeddings obtained with Doc2Vec algorithm provided the best results. In order to

visualize the sessions of each cluster we took advantage of a process mining tool.

This methodology enables to have an overview of the workflow trends for specific groups of

users of a system. The information obtained in this way can be used for different purposes.

For example, it makes it possible to highlight behaviors that were not expected. Sometimes the

software is used differently from the way it was designed for. In these cases, it means either

that the interface has to be accordingly modified or that the training courses given to users have

to be readjusted. Besides, the observation of repetitive tasks may lead to simplifications or to

the grouping of several actions into a single one.

Software Monitoring

As it is not possible to reduce the crash rate to zero, we propose to monitor the crash risk in real-

time. The objective here was to compute a crash probability at each new user action. Should

this probability exceed a certain threshold, an automatic backup system might be triggered,

thus avoiding the user to lose his current work.

For this purpose we proposed to take advantage of the recurrent structure of Long Short Term

Memory neural networks. We fed the LSTM with feature vectors composed of significant ac-

tions occurring in crash sessions. As we deal with highly imbalanced data, we evaluate our

method using the area under ROC curves. Our method outperforms state-of- the-art classifiers

fed with significant crash patterns in addition, for fair comparison. It is able to predict a satis-

fying rate of crashes while avoiding too many false alerts which would be quite disturbing in

user workflows.

Another very attractive way to improve user experience is to provide them with adaptive inter-

faces, increasingly adapted to their preferences. By anticipating their needs in real-time, such

interfaces enable to streamline user workflows and therefore improve their efficiency.

In our specific case, some actions in the interface are key actions in user workflows. We pro-

pose to focus on this category of actions called Tools in this work. The users might benefit from

a dynamical toolbar containing in real time the k most likely Tools he his going to need. The

prediction accuracy of such a dynamical toolbar is even more important for portable devices

having a reduced screen size. Indeed, efficient predictions might avoid supplementary actions

to reach the desired Tool. To tackle this task, we proposed to feed the LSTM with action em-

beddings. This method outperforms state-of-the-art sequence prediction algorithms as well as

an LSTM fed with one-hot encoded vectors. We conducted experiments to determine the best

training strategy. We concluded that the best training set is composed of each system’s specific

sessions, additional sessions from systems of the same country or in which the same applica-

tions was executed did not generally improve the prediction accuracy, suggesting that there is

CHAPTER II.3. USER ACTION PREDICTION 117

a high variability in terms of use between users of different systems. For this reason, we also

tested a training strategy where training sets are obtained by clustering on each system’s spe-

cific sessions. The idea here was to refine the predictions with models trained on specific sets.

This method has proven to be effective for one of the two systems studied.

Perspectives

Crash Pattern Mining

Even if the significant subsequences of user actions from crash sessions allow to better target

the origin of crashes, the problem is not fully resolved. It is hoped that the enrichment of the

log content will allow the determination of more accurate crash signatures. Besides, other areas

of research might be exploited. For example, user workflow might be coupled to hardware

characteristics or system status to highlight crash signatures as well as system configurations

being more likely to lead to defects.

Workflow Characterization

In order to determine trends of use we compared three session representations as inputs of

clustering algorithms. Further improvements might involve the comparison of embeddings

computed with Doc2Vec to other types of sessions embeddings. For example, an extension

of Doc2Vec, namely Doc2VecC [Chen, 2017] was recently proposed. They represent docu-

ments by averaging the embeddings of the words it contains. They apply a corruption mech-

anism making the embeddings of common and non-discriminative words close to zero. This

method matches and sometimes outperforms Doc2Vec representations on document classifi-

cation tasks. In these representations, the order of the actions is not taken into account. Even

if in our application, there is a natural order in which actions are performed, inherent to the

workflow, it might be interesting to evaluate the performance of embeddings obtained with se-

quence to sequence autoencoders [Sutskever et al., 2014]. With this methodology, a reccurrent

neural network is trained to predict the next action at each time step. The hidden state at the

end of the session is then used as the session embeddings. Deep clustering [Caron et al., 2018]

reuses the principle of sequence to sequence autoencoders and proposes to cluster the embed-

dings at each iteration in the training and to dynamically readjust the embeddings values by

adding a clustering metric evaluation in the global loss of the network. This approach should

apply well to our case and might be worth explored.

Software Monitoring

The limited performance of the LSTM fed with feature vectors to predict crashes of the software

suggests that there is room for improvement. Similarly, the dynamical toolbar containing in real

time the k most likely next Tools will be all the more attractive with increased predictive perfor-

mance. We took advantage of the recurrent structure of LSTMs which have proven to be very

adapted for sequence learning, even though alternatives exist. For example, recent works pro-

posed attention networks. They replace sequential processing by an attention mechanism able

to learn which information is relevant given a particular context. These self-attention mecha-

CHAPTER II.3. USER ACTION PREDICTION 118

nisms have some advantages over recurrent networks [Vaswani et al., 2017] such as reduced

complexity by layer and they are easily parallelizable thus implying lower training costs.

Here again, other input represensations might be tested, for example the efficiency for this pre-

diction task of embeddings computed with the GloVe algorithm [Pennington et al., 2014] might

be compared to those obtained with Word2Vec. This algorithm computes word representations

using a word-word cooccurrence matrix and a weighting function that assigns lower weights

to distant pairs of words. This methodology is proving to be more effective for some datasets.

Besides, our solutions assume that the user has already used the software for some time. An

important issue which still needs to be adressed is the prediction for new users who do not

yet have a usage history. Many solutions have been proposed to tackle the cold start problem

in particular in the recommender systems field [Lika et al., 2014]. Naive methods propose to

recommend items on their popularity [Park and Chu, 2009], while warm start methods ask new

users to rate a few items to compute first recommendations [Contardo et al., 2015].

Finally, we have not yet fully taken advantage of the fact that our software are deployed world-

wide, in many different contexts. One technical reason for this was the fact that the data of a

large number of systems were only available in the last stage of this work. Our first attempt

was to consider a global model trained on the sessions of a whole country for example. Other

more refined approaches based on transfer learning [Pan et al., 2010] seem more pertinent to

tackle the diversity of contexts. For example we could imagine specific models for each spe-

cific system, but not trained independently, the frame of hierarchical Bayesian neural networks

[Joshi et al., 2017, Lacoste et al., 2018] seems a very promising perspective in this regard.

Temporal Dimension

All of this work does not take into account the time dimension. However, more sophisticated

models might be developed by adding this information. Some pattern mining algorithms that

explicitely consider time have been proposed [Chen et al., 2003] and take into account the

time intervals between two consecutive items. Such methods might be applied to tackle crash

signatures detection.

In the same way, in the case of software monitoring we could consider models that not only

predict the next event but also the date at which the event will occur [Xiao et al., 2017]. Other

works use time to improve the predictions themselves [Li et al., 2017], arguing that time inter-

vals between events carry important information about the sequence.

Conclusion

This work is in line with the trend towards the development of artificial intelligence tools for

health, in particular for diagnosis assistance. Medical imaging solutions especially have been

very successful, sometimes performing better than humans. However, one of the dangers of

these approaches in a field such as medicine is the black box aspect and the lack of explain-

ability of algorithms [Castelvecchi, 2016]. This results in the loss of control of the process by

medicine. In our work, we solve this problem by providing a detailed understanding of the

CHAPTER II.3. USER ACTION PREDICTION 119

radiologist’s workflow and use this analysis to help gain efficiency by intervening at specific

points of the process which remains fully controlled by the radiologists: we help but do not

replace.

CHAPTER II.3. USER ACTION PREDICTION 120

Appendices

121

Appendix A

Session Embeddings Hyperparameters

Selection

We provide here the results obtained with the Agglomerative Hierarchical Clustering algo-

rithm with Average, Complete and Ward linkages as well as with the Spectral Clustering al-

gorithm. Each figure shows the maximal Calinski–Harabasz score obtained when varying the

embedding size and the mincount value representing the threshold under which words with

lower frequency are ignored from the vocabulary.

A.1 System 30 (App 1)

1 5 10 15 20
Min Count

50
10

0
15

0
20

0
25

0
30

0
Em

be
dd

in
gs

 S
ize

Average

0

4000

8000

12000

16000

20000

Figure A.1: Maximal Calinski–Harabasz score obtained with k ∈ J2,KK, maxk∈J2,KK{CH(Ck)}
for embedding size E in [50, 350] with a step of 50 and the mincount value in {1, 5, 10, 15, 20} in

the case of system 30 (App 1) and the Agglomerative Hierarchical clustering with the Average

linkage algorithm.

123

APPENDIX A. SESSION EMBEDDINGS HYPERPARAMETERS SELECTION 124

1 5 10 15 20
Min Count

50
10

0
15

0
20

0
25

0
30

0
Em

be
dd

in
gs

 S
ize

Complete

0

4000

8000

12000

16000

20000

Figure A.2: Maximal Calinski–Harabasz score obtained with k ∈ J2,KK, maxk∈J2,KK{CH(Ck)}
for embedding size E in [50, 350] with a step of 50 and the mincount value in {1, 5, 10, 15, 20} in

the case of system 30 (App 1) and the Agglomerative Hierarchical clustering with the Complete

linkage algorithm.

1 5 10 15 20
Min Count

50
10

0
15

0
20

0
25

0
30

0
Em

be
dd

in
gs

 S
ize

Ward

0

4000

8000

12000

16000

20000

Figure A.3: Maximal Calinski–Harabasz score obtained with k ∈ J2,KK, maxk∈J2,KK{CH(Ck)}
for embedding size E in [50, 350] with a step of 50 and the mincount value in {1, 5, 10, 15, 20}
in the case of system 30 (App 1) and the Agglomerative Hierarchical clustering with the Ward

linkage algorithm.

APPENDIX A. SESSION EMBEDDINGS HYPERPARAMETERS SELECTION 125

1 5 10 15 20
Min Count

50
10

0
15

0
20

0
25

0
30

0
Em

be
dd

in
gs

 S
ize

Spectral

0

4000

8000

12000

16000

20000

Figure A.4: Maximal Calinski–Harabasz score obtained with k ∈ J2,KK, maxk∈J2,KK{CH(Ck)}
for embedding size E in [50, 350] with a step of 50 and the mincount value in {1, 5, 10, 15, 20} in

the case of system 30 (App 1) and the Spectral clustering algorithm.

A.2 System 50 (App 2)

1 5 10 15 20
Min Count

50
10

0
15

0
20

0
25

0
30

0
Em

be
dd

in
gs

 S
ize

Average

0

1500

3000

4500

6000

Figure A.5: Maximal Calinski–Harabasz score obtained with k ∈ J2,KK, maxk∈J2,KK{CH(Ck)}
for embedding size E in [50, 350] with a step of 50 and the mincount value in {1, 5, 10, 15, 20} in

the case of system 50 (App 2) and the Agglomerative Hierarchical clustering with the Average

linkage algorithm.

APPENDIX A. SESSION EMBEDDINGS HYPERPARAMETERS SELECTION 126

1 5 10 15 20
Min Count

50
10

0
15

0
20

0
25

0
30

0
Em

be
dd

in
gs

 S
ize

Complete

0

1500

3000

4500

6000

Figure A.6: Maximal Calinski–Harabasz score obtained with k ∈ J2,KK, maxk∈J2,KK{CH(Ck)}
for embedding size E in [50, 350] with a step of 50 and the mincount value in {1, 5, 10, 15, 20} in

the case of system 40 (App 2) and the Agglomerative Hierarchical clustering with the Complete

linkage algorithm.

1 5 10 15 20
Min Count

50
10

0
15

0
20

0
25

0
30

0
Em

be
dd

in
gs

 S
ize

Ward

0

1500

3000

4500

6000

Figure A.7: Maximal Calinski–Harabasz score obtained with k ∈ J2,KK, maxk∈J2,KK{CH(Ck)}
for embedding size E in [50, 350] with a step of 50 and the mincount value in {1, 5, 10, 15, 20}
in the case of system 50 (App 2) and the Agglomerative Hierarchical clustering with the Ward

linkage algorithm.

APPENDIX A. SESSION EMBEDDINGS HYPERPARAMETERS SELECTION 127

1 5 10 15 20
Min Count

50
10

0
15

0
20

0
25

0
30

0
Em

be
dd

in
gs

 S
ize

Spectral

0

1500

3000

4500

6000

Figure A.8: Maximal Calinski–Harabasz score obtained with k ∈ J2,KK, maxk∈J2,KK{CH(Ck)}
for embedding size E in [50, 350] with a step of 50 and the mincount value in {1, 5, 10, 15, 20} in

the case of system 50 (App 2) and the Spectral clustering algorithm.

APPENDIX A. SESSION EMBEDDINGS HYPERPARAMETERS SELECTION 128

Appendix B

Tests to Define the Best Training

Strategy

This appendix provides for each system of each studied group of hospitals (India, United States

of America and Japan) the number of sessions used as training and test sets as well as the

corresponding number of Tools for each of the 2 most executed applications.

B.1 Indian Systems

B.1.1 Sessions

all sessions App1 App2

hospital training test training test training test

1 4488 1123 2 0 137 72

10 3416 855 3 1 31* 61

12 9616 2405 0 0 0 0

15 4997 1250 0 0 209 6

18 3800 951 0 0 1017 223

21 3791 948 0 0 0 0

22 4432 1109 1 0 8 2

23 5646 1412 0 0 0 0

26 8812 2204 0 0 238 39

30 7825 1957 5816 1380 0 0

31 3509 878 0 0 0 0

32 4374 1094 108* 11 0 0

46 4399 1100 3148 549 0 0

Table B.1: Number of training and test sessions for the whole dataset and specific subsets, for

each Indian hospital. Too small training sets are shown in italics. Small but trainable training

sets are signaled with an asterisk.

129

APPENDIX B. TESTS TO DEFINE THE BEST TRAINING STRATEGY 130

B.1.2 Corresponding Number of Tools

all sessions App1 App2

hospital training test training test training test

1 6932 1867 0 0 878 578

10 8984 2169 2 1 99 129

12 10322 2759 0 0 0 0

15 9794 2569 0 0 545 19

18 7311 1978 0 0 2356 795

21 10980 2554 0 0 0 0

22 9039 2239 1 0 0 0

23 3954 990 0 0 0 0

26 5070 1147 0 0 627 64

30 16999 4054 15853 3529 0 0

31 4679 961 0 0 0 0

32 6453 1768 70 14 0 0

46 5933 1282 5160 987 0 0

Table B.2: Number of Tools in training and test sessions for the whole dataset and specific

subsets, for each Indian hospital.

B.2 American Systems

B.2.1 Sessions

all sessions App3 App2

System ID training test training test training test

11 1428 358 322 66 107 33

16 1181 296 561 145 41* 15

20 1825 457 7 2 233 58

25 2349 588 880 216 292 84

35 4712 1178 695 142 577 186

39 1482 371 395 94 160 24

41 1186 297 340 58 54* 26

45 645 162 259 82 0 0

Table B.3: Number of training and test sessions for the whole dataset and specific subsets,

for each American hospital. Too small training sets are shown in italics. Small but trainable

training sets are signaled with an asterisk.

APPENDIX B. TESTS TO DEFINE THE BEST TRAINING STRATEGY 131

B.2.2 Corresponding Number of Tools

all sessions App3 App2

Hospital training test training test training test

11 11549 2933 4326 929 652 228

16 12263 2948 8152 2030 200 49

20 17096 3805 42 64 1644 326

25 12446 3496 3480 1036 289 44

35 13658 3627 958 206 591 208

39 11238 2882 3881 1058 790 89

41 6814 1719 1599 482 115 89

45 7885 2365 3731 1416 0 0

Table B.4: Number of Tools in training and test sessions for the whole dataset and specific

subsets, for each American hospital.

B.3 Japanese Systems

B.3.1 Sessions

all sessions App2 App4

hospital training test training test training test

3 2521 631 0 0 0 0

6 2869 718 1754 452 139 33

34 2944 737 208 13 76* 15

36 1693 424 0 0 0 0

40 1709 428 1 0 111 23

Table B.5: Number of training and test sessions for the whole dataset and specific subsets,

for each Japanese hospital. Too small training sets are shown in italics. Small but trainable

training sets are signaled with an asterisk.

APPENDIX B. TESTS TO DEFINE THE BEST TRAINING STRATEGY 132

B.3.2 Corresponding Number of Tools

all sessions App2 App4

hospital training test training test training test

3 33714 8862 0 0 0 0

6 11933 3006 452 1331 1077 413

34 13076 4052 637 126 482 181

36 19363 4634 0 0 0 0

40 12408 2633 23 0 1514 294

Table B.6: Number of Tools in training and test sessions for the whole dataset and specific

subsets, for each Japanese hospital.

Appendix C

Cluster Assignment

This appendix provides the classification accuracy according to the switching values with 3

and 4 clusters.

C.1 System 30

3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

s

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy - K= 3

Figure C.1: System 30 evaluation of prefix assignment to clusters with K = 3 with Random

Forest classifier and switching value s ∈ J3, 15K.

3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

s

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy - K= 4

Figure C.2: System 30 evaluation of prefix assignment to clusters with K = 4 with Random

Forest classifier and switching value s ∈ J3, 15K.

133

APPENDIX C. CLUSTER ASSIGNMENT 134

C.2 System 50

3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

s

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy - K= 3

Figure C.3: System 50 evaluation of prefix assignment to clusters with K = 3 with Random

Forest classifier and switching value s ∈ J3, 15K.

3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

s

0.0

0.2

0.4

0.6

0.8

1.0
Accuracy - K= 4

Figure C.4: System 50 evaluation of prefix assignment to clusters with K = 4 with Random

Forest classifier and switching value s ∈ J3, 15K.

Appendix D

Significant Actions

To tackle the crash monitoring task, we propose to feed the LSTM with feature vectors counting

the number of occurrences of significant actions from crash sessions. Table D.1 provides the

number of significant actions at different significance threshold.

τ

System ID 0.01 0.02 0.05 0.1

8 21 22 24 29

17 26 26 28 30

20 17 20 23 23

33 20 23 31 41

45 18 21 32 35

Table D.1: Number of significant actions for significance threshold τ between 0.01 and 0.1.

135

APPENDIX D. SIGNIFICANT ACTIONS 136

Appendix E

t-distributed Stochastic Neighbor

Embedding (t-SNE)

In order to represent our clustering results in two dimensions we took advantage of the t-SNE

algorithm [Maaten and Hinton, 2008] that we will describe in this appendix.

Contrary to Principal Component Analysis, t-SNE is a non linear method dimensionality re-

duction algorithm. It enables to represent in 2 or 3 dimensions multi-dimensional data. The

principle of t-SNE is to model similar objects from high-dimensiomal data by close points in 2

dimensions with a high probability. Similarly, dissimilar objects from high-dimensional data

will be represented by distant points in 2 dimensions with a high probability. It does so by min-

imizing the Kullback-Leibler divergence between the joint probabilities of high-dimensional

137

APPENDIX E. T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING (T-SNE) 138

data and low-dimensional representations, as described in Algorithm 6.

Algorithm 6: Simple version of t-Distributed Stochastic Neighbor Embedding [Maaten

and Hinton, 2008].
Inputs: Dataset X = {x1, x2, . . . , xn}, cost function parameters: perplexity Perp,

optimization parameters: number of iterations T , learning rate η, momentum α(t).

Output: Low-dimensional data representation Y (T) = {y1, y2, . . . , yn}.

begin
Compute pairwise affinities pi|j using:

pi|j =
exp(−||xi − xj ||2/2σ2

i)∑
k 6=i exp(−||xi − xk||2/2σ2

i)

where σi is the variance of the Gaussian centered on point xi (see details about σi
selection with Perp in original paper);

Set pij =
pj|i+pi|j

2n ;

Sample initial solution Y (0) = {y1, y2, . . . , yn} from N (0, 10−4I).

for t = 1 to T do
Compute low-dimensional affinities qij using:

qij =
(1 + ||yi − yj ||2)−1∑
k 6=l(||yk − yl||2)−1

;

Compute gradient of the Kullback-Leibler divergence δC
δY between P and the

Student-t based joint probability distribution Q using:

δC

δyi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ||yi − yj ||2)−1;

Set Y (t) = Y (t−1) + η δCδY + α(t)(Y (t−1) − Y (t−2)).

Publications & Patents

This work resulted in the following publications:

• [Adam et al., 2016] C. Adam, A. Aliotti, P.-H. Cournède. Learning from user workflows

for the characterization and prediction of software crashes. In 2016 IEEE 16th International

Conference on Data Mining Workshops (ICDMW), pages 1023–1030.

• [Adam et al., 2019] C. Adam, A. Aliotti, F. D. Malliaros, P.-H. Cournède. Dynamic moni-

toring of software use with recurrent neural networks. Submitted.

Besides, two patents applications were submitted in the United States:

• [Adam et al., 2017a] C. Adam, A. Aliotti, T. Almecija. Adaptive User interface for medical

software.

• [Adam et al., 2017b] C. Adam, A. Aliotti, T. Almecija, P.-H. Cournède. Determining and

using a ‘gold standard’ for adaptive user interfaces.

139

APPENDIX E. T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING (T-SNE) 140

Bibliography

[Abadi et al., 2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Cor-

rado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,

G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga,

R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar,

K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg,

M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale machine learning on

heterogeneous systems. Software available from tensorflow.org.

[Adam et al., 2017a] Adam, C., Aliotti, A., and Almecija, T. (2017a). Adaptive user interface for

medical software - Application in the United States.

[Adam et al., 2017b] Adam, C., Aliotti, A., and Almecija, T. (2017b). Determining and using a

‘gold standard’ for adaptive user interfaces - Application in the United States.

[Adam et al., 2016] Adam, C., Aliotti, A., and Cournède, P.-H. (2016). Learning from user

workflows for the characterization and prediction of software crashes. In 2016 IEEE 16th

International Conference on Data Mining Workshops (ICDMW), pages 1023–1030.

[Adam et al., 2019] Adam, C., Aliotti, A., Malliaros, F. D., and Cournède, P.-H. (2019). Dynamic

monitoring of software use with recurrent neural networks. Submitted.

[Adomavicius and Tuzhilin, 2001] Adomavicius, G. and Tuzhilin, A. (2001). Using data mining

methods to build customer profiles. Computer, 34(2):74–82.

[Aggarwal and Han, 2014] Aggarwal, C. C. and Han, J. (2014). Frequent pattern mining.

Springer.

[Aggarwal and Wang, 2010] Aggarwal, C. C. and Wang, H. (2010). Managing and mining graph

data. Springer.

[Aggarwal and Zhai, 2012] Aggarwal, C. C. and Zhai, C. (2012). A survey of text clustering

algorithms. In Mining text data, pages 77–128. Springer.

[Agrawal et al., 1994] Agrawal, R., Srikant, R., et al. (1994). Fast algorithms for mining associ-

ation rules. In Proc. 20th int. conf. very large data bases, VLDB, volume 1215, pages 487–499.

[Agrawal and Agrawal, 2015] Agrawal, S. and Agrawal, J. (2015). Survey on anomaly detec-

tion using data mining techniques. Procedia Computer Science, 60:708–713.

141

BIBLIOGRAPHY 142

[Ansari et al., 2011] Ansari, Z., Azeem, M., Ahmed, W., and Babu, A. V. (2011). Quantitative

evaluation of performance and validity indices for clustering the web navigational sessions.

WCSIT.

[Arbelaitz et al., 2013] Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M., and Perona,

I. (2013). An extensive comparative study of cluster validity indices. Pattern Recognition,

46(1):243–256.

[Arthur and Vassilvitskii, 2007] Arthur, D. and Vassilvitskii, S. (2007). K-means++: The ad-

vantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on

Discrete algorithms, pages 1027–1035. Society for Industrial and Applied Mathematics.

[Axelsson, 2000] Axelsson, S. (2000). Intrusion detection systems: A survey and taxonomy.

Technical Report 99-15, Department of Computer Engineering, Chalmers University.

[Banerjee and Dave, 2004] Banerjee, A. and Dave, R. N. (2004). Validating clusters using the

Hopkins statistic. In Proceedings IEEE International Conference, Fuzzy systems, volume 1, pages

149–153.

[Begleiter et al., 2004] Begleiter, R., El-Yaniv, R., and Yona, G. (2004). On prediction using vari-

able order Markov models. Journal of Artificial Intelligence Research, 22:385–421.

[Bengio et al., 1994] Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term depen-

dencies with gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166.

[Borisov et al., 2016] Borisov, A., Markov, I., de Rijke, M., and Serdyukov, P. (2016). A neural

click model for web search. In Proceedings of the 25th International Conference on World Wide

Web, pages 531–541. International World Wide Web Conferences Steering Committee.

[Bringmann et al., 2009] Bringmann, B., Nijssen, S., and Zimmermann, A. (2009). Pattern-

based classification: a unifying perspective. In A. Knobbe J. Furnkranz (Eds.), LeGo’09, Pro-

ceedings of the ECML PKDD 2009 Workshop ‘From Local Patterns to Global Models’.

[Browne, 2016] Browne, D. (2016). Adaptive user interfaces. Elsevier.

[Brun et al., 2007] Brun, M., Sima, C., Hua, J., Lowey, J., Carroll, B., Suh, E., and Dougherty,

E. R. (2007). Model-based evaluation of clustering validation measures. Pattern recognition,

40(3):807–824.

[Caliński and Harabasz, 1974] Caliński, T. and Harabasz, J. (1974). A dendrite method for clus-

ter analysis. Communications in Statistics-theory and Methods, 3(1):1–27.

[Cao et al., 2017] Cao, J., Greenberg, A., Sharma, A., Su, Y., Nicholas, K., Mohsin, M., Jurewicz,

J., Huang, W., Sharifi, M., Sidhom, B., et al. (2017). Search query predictions by a keyboard.

US Patent 9,720,955.

[Caron et al., 2018] Caron, M., Bojanowski, P., Joulin, A., and Douze, M. (2018). Deep clustering

for unsupervised learning of visual features. In European Conference on Computer Vision.

BIBLIOGRAPHY 143

[Castelvecchi, 2016] Castelvecchi, D. (2016). Can we open the black box of AI? Nature News,

538(7623):20.

[Cawsey et al., 2007] Cawsey, A., Grasso, F., and Paris, C. (2007). Adaptive information for

consumers of healthcare. In The adaptive web, pages 465–484. Springer.

[Chaofeng, 2009] Chaofeng, L. (2009). Research on web session clustering. Journal of Software,

4(5):460–468.

[Chawla, 2005] Chawla, N. V. (2005). Data mining for imbalanced datasets: An overview. In

Data mining and knowledge discovery handbook, pages 853–867. Springer.

[Chen, 2017] Chen, M. (2017). Efficient vector representation for documents through corrup-

tion. 5th International Conference on Learning Representations.

[Chen et al., 2003] Chen, Y.-L., Chiang, M.-C., and Ko, M.-T. (2003). Discovering time-interval

sequential patterns in sequence databases. Expert Systems with Applications, 25(3):343–354.

[Cheng et al., 2007] Cheng, H., Yan, X., Han, J., and Hsu, C.-W. (2007). Discriminative frequent

pattern analysis for effective classification. In 2007 IEEE 23rd International Conference on Data

Engineering, pages 716–725. IEEE.

[Contardo et al., 2015] Contardo, G., Denoyer, L., and Artières, T. (2015). Representation learn-

ing for cold-start recommendation. In ICLR 2015 Workshop.

[Dai et al., 2014] Dai, A. M., Olah, C., and Le, Q. V. (2014). Document embedding with para-

graph vectors. NIPS Deep Learning Workshop.

[Davison and Hirsh, 1998] Davison, B. D. and Hirsh, H. (1998). Predicting sequences of user

actions. In Notes of the AAAI/ICML 1998 Workshop on Predicting the Future: AI Approaches to

Time-Series Analysis, pages 5–12.

[Dev and Liu, 2017] Dev, H. and Liu, Z. (2017). Identifying frequent user tasks from applica-

tion logs. In Proceedings of the 22nd International Conference on Intelligent User Interfaces, pages

263–273. ACM.

[Dixit and Bhatia, 2015] Dixit, V. S. and Bhatia, S. K. (2015). Refinement and evaluation of web

session cluster quality. International Journal of System Assurance Engineering and Management,

6(4):373–389.

[Donkers et al., 2017] Donkers, T., Loepp, B., and Ziegler, J. (2017). Sequential user-based re-

current neural network recommendations. In Proceedings of the Eleventh ACM Conference on

Recommender Systems, pages 152–160. ACM.

[Du et al., 2017] Du, M., Li, F., Zheng, G., and Srikumar, V. (2017). Deeplog: Anomaly detec-

tion and diagnosis from system logs through deep learning. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security, pages 1285–1298. ACM.

BIBLIOGRAPHY 144

[Duda et al., 2012] Duda, R. O., Hart, P. E., and Stork, D. G. (2012). Pattern classification. John

Wiley & Sons.

[Dunn, 1974] Dunn, J. C. (1974). Well-separated clusters and optimal fuzzy partitions. Journal

of cybernetics, 4(1):95–104.

[Eichinger et al., 2008] Eichinger, F., Böhm, K., and Huber, M. (2008). Mining edge-weighted

call graphs to localise software bugs. In Joint European Conference on Machine Learning and

Knowledge Discovery in Databases, pages 333–348. Springer.

[Fawcett, 2004] Fawcett, T. (2004). ROC graphs: Notes and practical considerations for re-

searchers. Machine learning, 31(1):1–38.

[Forrest et al., 1996] Forrest, S., Hofmeyr, S. A., Somayaji, A., and Longstaff, T. A. (1996). A

sense of self for Unix processes. In Proceedings IEEE Symposium on Security and Privacy, pages

120–128. IEEE.

[Friedman et al., 2001] Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of statis-

tical learning, volume 1. Springer series in statistics New York, NY, USA.

[Gajos et al., 2006] Gajos, K. Z., Czerwinski, M., Tan, D. S., and Weld, D. S. (2006). Exploring

the design space for adaptive graphical user interfaces. In Proceedings of the working conference

on Advanced visual interfaces, pages 201–208. ACM.

[Gers and Schmidhuber, 2000] Gers, F. A. and Schmidhuber, J. (2000). Recurrent nets that time

and count. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Net-

works. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium,

volume 3, pages 189–194. IEEE.

[Glorot and Bengio, 2010] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of

training deep feedforward neural networks. In Proceedings of the Thirteenth International Con-

ference on Artificial Intelligence and Statistics, pages 249–256.

[Gopalratnam and Cook, 2007] Gopalratnam, K. and Cook, D. J. (2007). Online sequential pre-

diction via incremental parsing: The active Lezi algorithm. IEEE Intelligent Systems, 22(1).

[Graves, 2013] Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850.

[Graves and Jaitly, 2014] Graves, A. and Jaitly, N. (2014). Towards end-to-end speech recogni-

tion with recurrent neural networks. In International Conference on Machine Learning, pages

1764–1772.

[Greenstein-Messica et al., 2017] Greenstein-Messica, A., Rokach, L., and Friedman, M. (2017).

Session-based recommendations using item embedding. In Proceedings of the 22nd Interna-

tional Conference on Intelligent User Interfaces, pages 629–633. ACM.

BIBLIOGRAPHY 145

[Greff et al., 2016] Greff, K., Srivastava, R. K., Koutnı́k, J., Steunebrink, B. R., and Schmidhuber,

J. (2016). LSTM: A search space odyssey. IEEE transactions on neural networks and learning

systems.

[Gu et al., 2017] Gu, X., Angelov, P. P., Kangin, D., and Principe, J. C. (2017). A new type of

distance metric and its use for clustering. Evolving Systems, 8(3):167–177.

[Gueniche et al., 2013] Gueniche, T., Fournier-Viger, P., and Tseng, V. S. (2013). Compact Pre-

diction Tree: A lossless model for accurate sequence prediction. In ADMA (2), pages 177–188.

[Hagberg et al., 2008] Hagberg, A., Swart, P., and S Chult, D. (2008). Exploring network struc-

ture, dynamics, and function using NetworkX. Technical report, Los Alamos National Lab-

oratory, Los Alamos, NM (United States).

[Halkidi and Vazirgiannis, 2001] Halkidi, M. and Vazirgiannis, M. (2001). Clustering validity

assessment: Finding the optimal partitioning of a data set. In Data Mining, 2001. ICDM 2001,

Proceedings IEEE International Conference on, pages 187–194. IEEE.

[Han et al., 2007] Han, J., Cheng, H., Xin, D., and Yan, X. (2007). Frequent pattern mining:

current status and future directions. Data Mining and Knowledge Discovery, 15(1):55–86.

[Han et al., 2000] Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns without candidate

generation. In ACM SIGMOD record, volume 29, pages 1–12. ACM.

[Hartmann and Schreiber, 2007] Hartmann, M. and Schreiber, D. (2007). Prediction algorithms

for user actions. In In Hinneburg, A., editor, Proceedings of Lernen Wissen Adaption, pages 349–

354.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long Short-

Term Memory. Neural computation, 9(8):1735–1780.

[Hofmeyr et al., 1998] Hofmeyr, S. A., Forrest, S., and Somayaji, A. (1998). Intrusion detection

using sequences of system calls. Journal of computer security, 6(3):151–180.

[Hotho et al., 2005] Hotho, A., Nürnberger, A., and Paaß, G. (2005). A brief survey of text

mining. In LDV Forum-GLDV J. Comput. Linguistics Lang. Technol., volume 20, pages 19–62.

[Huang, 2008] Huang, A. (2008). Similarity measures for text document clustering. In Pro-

ceedings of the sixth New Zealand computer science research student conference (NZCSRSC2008),

Christchurch, New Zealand, pages 49–56.

[Jacobs and Blockeel, 2002] Jacobs, N. and Blockeel, H. (2002). Sequence prediction with mixed

order Markov chains. In Proceedings of BNAIC’02-Belgian-Dutch Conference on Artificial Intel-

ligence, pages 147–154.

[Jain, 2010] Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern recognition

letters, 31(8):651–666.

BIBLIOGRAPHY 146

[Joshi et al., 2017] Joshi, A., Ghosh, S., Betke, M., Sclaroff, S., and Pfister, H. (2017). Personaliz-

ing gesture recognition using hierarchical bayesian neural networks. In 30th IEEE Conference

on Computer Vision and Pattern Recognition (CVPR 2017).

[Jozefowicz et al., 2015] Jozefowicz, R., Zaremba, W., and Sutskever, I. (2015). An empirical ex-

ploration of recurrent network architectures. In International Conference on Machine Learning,

pages 2342–2350.

[Katz, 1987] Katz, S. (1987). Estimation of probabilities from sparse data for the language

model component of a speech recognizer. IEEE transactions on acoustics, speech, and signal

processing, 35(3):400–401.

[Kim et al., 2017] Kim, H. K., Kim, H., and Cho, S. (2017). Bag-of-Concepts: Comprehending

document representation through clustering words in distributed representation. Neurocom-

puting, 266:336–352.

[Lacoste et al., 2018] Lacoste, A., Oreshkin, B., Chung, W., Boquet, T., Rostamzadeh, N.,

and Krueger, D. (2018). Uncertainty in multitask transfer learning. arXiv preprint

arXiv:1806.07528.

[Lawson and Jurs, 1990] Lawson, R. G. and Jurs, P. C. (1990). New index for clustering ten-

dency and its application to chemical problems. Journal of chemical information and computer

sciences, 30(1):36–41.

[Le and Mikolov, 2014] Le, Q. and Mikolov, T. (2014). Distributed representations of sentences

and documents. In Proceedings of the 31st International Conference on Machine Learning, vol-

ume 32, pages 1188–1196.

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature,

521(7553):436–444.

[Leemans, 2017] Leemans, S. (2017). Inductive visual miner manual. Technical report.

[Li and Wang, 2008] Li, C. and Wang, J. (2008). Efficiently mining closed subsequences with

gap constraints. In Proceedings of the 2008 SIAM International Conference on Data Mining, pages

313–322. SIAM.

[Li et al., 2017] Li, Y., Du, N., and Bengio, S. (2017). Time-dependent representation for neural

event sequence prediction. arXiv preprint arXiv:1708.00065.

[Lika et al., 2014] Lika, B., Kolomvatsos, K., and Hadjiefthymiades, S. (2014). Facing the cold

start problem in recommender systems. Expert Systems with Applications, 41(4):2065–2073.

[Liu et al., 2005] Liu, C., Yan, X., Yu, H., Han, J., and Philip, S. Y. (2005). Mining behavior

graphs for backtrace of noncrashing bugs. In Proceedings of the Fifth SIAM International Con-

ference on Data Mining, pages 286–297.

BIBLIOGRAPHY 147

[Livshits and Zimmermann, 2005] Livshits, B. and Zimmermann, T. (2005). DynaMine: find-

ing common error patterns by mining software revision histories. In ACM SIGSOFT Software

Engineering Notes, volume 30, pages 296–305. ACM.

[Lo et al., 2009] Lo, D., Cheng, H., Han, J., Khoo, S.-C., and Sun, C. (2009). Classification of soft-

ware behaviors for failure detection: a discriminative pattern mining approach. In Proceed-

ings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 557–566. ACM.

[Maaten and Hinton, 2008] Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-

SNE. Journal of machine learning research, 9:2579–2605.

[Mijangos et al., 2017] Mijangos, V., Sierra, G., and Montes, A. (2017). Sentence level matrix

representation for document spectral clustering. Pattern Recognition Letters, 85:29–34.

[Mikolov et al., 2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estima-

tion of word representations in vector space. International Conference on Learning Representa-

tions Workshop.

[Moon et al., 2016] Moon, C., Medd, D., Jones, P., Harenberg, S., Oxbury, W., and Samatova,

N. F. (2016). Online prediction of user actions through an ensemble vote from vector rep-

resentation and frequency analysis models. In Proceedings of the 2016 SIAM International

Conference on Data Mining, pages 90–98. SIAM.

[Pan et al., 2010] Pan, S. J., Yang, Q., et al. (2010). A survey on transfer learning. IEEE Transac-

tions on knowledge and data engineering, 22(10):1345–1359.

[Park and Chu, 2009] Park, S.-T. and Chu, W. (2009). Pairwise preference regression for cold-

start recommendation. In Proceedings of the third ACM conference on Recommender systems,

pages 21–28. ACM.

[Pasquier et al., 1999] Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L. (1999). Discovering

frequent closed itemsets for association rules. In International Conference on Database Theory,

pages 398–416. Springer.

[Patcha and Park, 2007] Patcha, A. and Park, J.-M. (2007). An overview of anomaly detec-

tion techniques: Existing solutions and latest technological trends. Computer networks,

51(12):3448–3470.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,

Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,

Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830.

[Pei et al., 2000] Pei, J., Han, J., Mao, R., et al. (2000). Closet: An efficient algorithm for mining

frequent closed itemsets. In ACM SIGMOD workshop on research issues in data mining and

knowledge discovery, volume 4, pages 21–30.

BIBLIOGRAPHY 148

[Pei et al., 2004] Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., and

Hsu, M.-C. (2004). Mining sequential patterns by pattern-growth: The prefixspan approach.

IEEE Transactions on knowledge and data engineering, 16(11):1424–1440.

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. (2014). Glove: global

vectors for word representation. In Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP), pages 1532–1543.

[Pitkow and Pirolli, 1999] Pitkow, J. and Pirolli, P. (1999). Mininglongestrepeatin g subse-

quencestopredict worldwidewebsurfing. In Proc. USENIX Symp. On Internet Technologies and

Systems, page 1.

[Poornalatha and Raghavendra, 2011] Poornalatha, G. and Raghavendra, P. S. (2011). Web user

session clustering using modified K-means algorithm. In International Conference on Advances

in Computing and Communications, pages 243–252. Springer.

[Rehurek and Sojka, 2010] Rehurek, R. and Sojka, P. (2010). Software framework for topic mod-

elling with large corpora. In In Proceedings of the LREC 2010 Workshop on New Challenges for

NLP Frameworks.

[Rousseau and Vazirgiannis, 2013] Rousseau, F. and Vazirgiannis, M. (2013). Graph-of-word

and TW-IDF: new approach to ad hoc IR. In Proceedings of the 22nd ACM international confer-

ence on Information & Knowledge Management, pages 59–68. ACM.

[Rousseeuw, 1987] Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation

and validation of cluster analysis. Journal of computational and applied mathematics, 20:53–65.

[Sak et al., 2014] Sak, H., Senior, A., and Beaufays, F. (2014). Long Short-Term Memory recur-

rent neural network architectures for large scale acoustic modeling. In Interspeech, pages

338–342.

[Salfner et al., 2010] Salfner, F., Lenk, M., and Malek, M. (2010). A survey of online failure

prediction methods. ACM Computing Surveys (CSUR), 42(3):10.

[Salton and Buckley, 1988] Salton, G. and Buckley, C. (1988). Term-weighting approaches in

automatic text retrieval. Information processing & management, 24(5):513–523.

[Scherbina and Kuznetsov, 2004] Scherbina, A. and Kuznetsov, S. (2004). Clustering of web

sessions using Levenshtein metric. In Industrial Conference on Data Mining, pages 127–133.

Springer.

[Schiaffino and Amandi, 2009] Schiaffino, S. and Amandi, A. (2009). Intelligent user profiling.

In Artificial Intelligence An International Perspective, pages 193–216. Springer.

[Singhal et al., 1999] Singhal, A., Choi, J., Hindle, D., Lewis, D. D., and Pereira, F. (1999). AT&T

at TREC-7. In 7th Conference on Text Retrieval, pages 239–252.

BIBLIOGRAPHY 149

[Sisodia et al., 2017] Sisodia, D. S., Verma, S., and Vyas, O. P. (2017). Augmented intuitive dis-

similarity metric for clustering of web user sessions. Journal of Information Science, 43(4):480–

491.

[Sundermeyer et al., 2012] Sundermeyer, M., Schlüter, R., and Ney, H. (2012). LSTM neural

networks for language modeling. In Thirteenth Annual Conference of the International Speech

Communication Association.

[Sutskever et al., 2014] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence

learning with neural networks. In Advances in neural information processing systems, pages

3104–3112.

[Tafforeau et al., 2015] Tafforeau, J., Artières, T., Favre, B., and Bechet, F. (2015). Adapting lex-

ical representation and OOV handling from written to spoken language with word embed-

ding. In Interspeech 2015.

[Tan et al., 2016] Tan, Y. K., Xu, X., and Liu, Y. (2016). Improved recurrent neural networks

for session-based recommendations. In Proceedings of the 1st Workshop on Deep Learning for

Recommender Systems, pages 17–22. ACM.

[Tieleman and Hinton, 2012] Tieleman, T. and Hinton, G. (2012). Lecture 6.5-RMSPROP: Di-

vide the gradient by a running average of its recent magnitude. COURSERA: Neural networks

for machine learning, 4(2):26–31.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,

A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. In Advances in Neural

Information Processing Systems, pages 5998–6008.

[Von Luxburg, 2007] Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and

computing, 17(4):395–416.

[Wang et al., 2016] Wang, G., Zhang, X., Tang, S., Zheng, H., and Zhao, B. Y. (2016). Unsu-

pervised clickstream clustering for user behavior analysis. In Proceedings of the 2016 CHI

Conference on Human Factors in Computing Systems, pages 225–236. ACM.

[Wang and Han, 2004] Wang, J. and Han, J. (2004). BIDE: Efficient mining of frequent closed se-

quences. In Proceedings. 20th International Conference on Data Engineering, pages 79–90. IEEE.

[Wang and Zaı̈ane, 2002] Wang, W. and Zaı̈ane, O. R. (2002). Clustering web sessions by se-

quence alignment. In Database and Expert Systems Applications, 2002. Proceedings. 13th Inter-

national Workshop on, pages 394–398. IEEE.

[Wiwie et al., 2015] Wiwie, C., Baumbach, J., and Röttger, R. (2015). Comparing the perfor-

mance of biomedical clustering methods. Nature methods, 12(11):1033.

[Wu et al., 2016] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun,

M., Cao, Y., Gao, Q., Macherey, K., et al. (2016). Google’s neural machine translation system:

Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144.

BIBLIOGRAPHY 150

[Xiao et al., 2017] Xiao, S., Yan, J., Farajtabar, M., Song, L., Yang, X., and Zha, H. (2017). Joint

modeling of event sequence and time series with attentional twin recurrent neural networks.

arXiv preprint arXiv:1703.08524.

[Xifeng et al., 2003] Xifeng, Y., Jiawei, H., and Afshar, R. (2003). CloSpan: Mining Closed Se-

quential Patterns in Large Data Base. In Proc. of the 3rd SIAM Int’l Conf. on Data Mining. San

Franciso, USA.

[Xing et al., 2008] Xing, Z., Pei, J., Dong, G., and Yu, P. S. (2008). Mining sequence classifiers

for early prediction. In Proceedings of the 2008 SIAM International Conference on Data Mining,

pages 644–655. SIAM.

[Xing et al., 2010] Xing, Z., Pei, J., and Keogh, E. (2010). A brief survey on sequence classifica-

tion. ACM SIGKDD Explorations Newsletter, 12(1):40–48.

[Xu and Liu, 2010] Xu, J. and Liu, H. (2010). Web user clustering analysis based on kmeans

algorithm. In 2010 International Conference on Information Networking and Automation (ICINA).

[Yu et al., 2018] Yu, A. W., Dohan, D., Luong, M.-T., Zhao, R., Chen, K., Norouzi, M., and Le,

Q. V. (2018). QANet: Combining Local Convolution with Global Self-Attention for Reading

Comprehension. ICLR.

[Zaki, 2000] Zaki, M. J. (2000). Scalable algorithms for association mining. IEEE transactions on

knowledge and data engineering, 12(3):372–390.

[Zaremba et al., 2014] Zaremba, W., Sutskever, I., and Vinyals, O. (2014). Recurrent neural

network regularization. arXiv preprint arXiv:1409.2329.

[Zhang et al., 2016] Zhang, K., Xu, J., Min, M. R., Jiang, G., Pelechrinis, K., and Zhang, H.

(2016). Automated IT system failure prediction: A deep learning approach. In International

Conference on Big Data, pages 1291–1300. IEEE.

[Zhang et al., 2014] Zhang, Y., Dai, H., Xu, C., Feng, J., Wang, T., Bian, J., Wang, B., and Liu,

T.-Y. (2014). Sequential click prediction for sponsored search with recurrent neural networks.

In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pages 1369–1375.

[Zhao et al., 2017] Zhao, Y., Chu, S., Zhou, Y., and Tu, K. (2017). Sequence prediction using

neural network classiers. In International Conference on Grammatical Inference, pages 164–169.

[Zhou et al., 2016] Zhou, C., Cule, B., and Goethals, B. (2016). Pattern based sequence classifi-

cation. IEEE Transactions on Knowledge and Data Engineering, 28(5):1285–1298.

Titre: Analyse des Séquences d’Usage d’Applications Médicales

Mots clés: exploration de motifs fréquents; représentations pour l’apprentissage; représentations d’action;
réseaux de neurones récurrents LSTM; clustering.

Résumé:
Les radiologues utilisent au quotidien des so-
lutions d’imagerie médicale pour le diagnostic.
L’amélioration de l’expérience utilisateur est un axe
majeur de l’effort continu visant à améliorer la qualité
globale et l’ergonomie des produits logiciels. Les
applications de monitoring permettent en particulier
d’enregistrer les actions successives effectuées par
les utilisateurs dans l’interface du logiciel. Ces in-
teractions peuvent être représentées sous forme de
séquences d’actions. Sur la base de ces données, ce
travail traite de deux sujets industriels: les pannes
logicielles et l’ergonomie des logiciels. Ces deux
thèmes impliquent d’une part la compréhension des
modes d’utilisation, et d’autre part le développement
d’outils de prédiction permettant soit d’anticiper les
pannes, soit d’adapter dynamiquement l’interface
logicielle en fonction des besoins des utilisateurs.
Tout d’abord, nous visons à identifier les origines
des crashes du logiciel qui sont essentielles afin de
pouvoir les corriger. Pour ce faire, nous proposons
d’utiliser un test binomial afin de trouver les pat-
terns fréquents et nous comparons différents types

de patterns afin de déterminer celui qui est le plus
approprié pour représenter les signatures de crash.
L’amélioration de l’expérience utilisateur par la per-
sonnalisation et l’adaptation des systèmes aux be-
soins spécifiques de l’utilisateur exige une très bonne
connaissance de la façon dont les utilisateurs utilisent
le logiciel. Afin de mettre en évidence les tendances
d’utilisation, nous proposons de regrouper les ses-
sions similaires. Nous comparons trois types de
représentation de session dans différents algorithmes
de clustering. La deuxième contribution de cette thèse
concerne le suivi dynamique de l’utilisation du logi-
ciel. Nous proposons deux méthodes – basées sur
des représentations différentes des actions d’entrée –
pour répondre à deux problématiques industrielles
distinctes : la prédiction de la prochaine action et
la détection du risque de crash logiciel. Les deux
méthodologies tirent parti de la structure récurrente
des réseaux LSTM pour capturer les dépendances
entre nos données séquentielles ainsi que leur ca-
pacité à traiter potentiellement différents types de
représentations d’entrée pour les mêmes données.

Title: Pattern Recognition in the Usage Sequences of Medical Apps

Keywords: frequent pattern mining; representation learning; action embeddings; LSTM recurrent neural net-
works; clustering.

Abstract:
Radiologists use medical imaging solutions on a daily
basis for diagnosis. Improving user experience is a
major line of the continuous effort to enhance the
global quality and usability of software products.
Monitoring applications enable to record the evolu-
tion of various software and system parameters dur-
ing their use and in particular the successive actions
performed by the users in the software interface.
These interactions may be represented as sequences
of actions. Based on this data, this work deals with
two industrial topics: software crashes and software
usability. Both topics imply on one hand understand-
ing the patterns of use, and on the other developing
prediction tools either to anticipate crashes or to dy-
namically adapt software interface according to users’
needs. First, we aim at identifying crash root causes.
It is essential in order to fix the original defects. For
this purpose, we propose to use a binomial test to
determine the frequent patterns and compare several

types of patterns to determine the most appropriate
to represent crash signatures. The improvement of
software usability through customization and adapta-
tion of systems to each user’s specific needs requires
a very good knowledge of how users interact with the
software. In order to highlight the trends of use, we
propose to group similar sessions into clusters. We
compare 3 session representations as inputs of differ-
ent clustering algorithms. The second contribution of
our thesis concerns the dynamical monitoring of soft-
ware use. We propose two methods – based on differ-
ent representations of input actions – to address two
distinct industrial issues: next action prediction and
software crash risk detection. Both methodologies
take advantage of the recurrent structure of LSTM
neural networks to capture dependencies among our
sequential data as well as their capacity to potentially
handle different types of input representations for the
same data.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Acknowledgments
	Résumé
	Abstract
	Introduction
	I Data Mining for the Analysis of Software Sessions
	Data & Formalism
	Action Log Files
	Formalism
	Database
	Logs Improvement

	Crash Pattern Mining
	Research Problem
	Frequent Patterns
	Types of Patterns
	Significant Patterns

	Mining Algorithms
	Closet
	Bide
	Gap-Bide

	Methodological Tests
	Data
	Impact of Order
	Impact of Proximity
	Cohesion
	Results Summary

	Application on a Critical Case
	Discussion

	User Workflow Characterization
	Research Problem
	Data
	Sequence Representation
	Bag-of-Actions with TFIDF
	Bag-of-Actions with TWIDF
	Session Embeddings
	Implementation

	Clustering Algorithms
	K-means
	Hierarchical Clustering
	Spectral Clustering

	Clusterability
	Hopkins Statistic
	Application to our Datasets

	Selection of Clustering Evaluation Indices
	Indices Definitions
	Comparison of Indices and Selection

	Hyperparameters Selection
	Bag-of-Actions with TWIDF
	Session Embeddings

	Tests of Representations & Clustering Algorithms
	Experiments Overview
	System 30 (App 1)
	System 50 (App 2)

	Cluster Analysis
	2D Visualization
	Cluster Size and Session Length
	Workflow Characterization

	Discussion

	II Dynamic Monitoring of Software Use
	Sequence Learning
	Formalism
	Recurrent Neural Networks
	Methodology

	Crash Risk Monitoring
	Related Work
	Problem Formulation
	Loss

	Input Representation
	One-hot Vectors
	Feature Vectors

	Experiments
	Data
	Baseline Methods
	Performance Evaluation
	Experimental Setup
	LSTM Tuning
	Results

	Discussion

	User Action Prediction
	Related Work
	Problem Formulation
	Loss

	Input Representation
	One-hot Vectors
	Embeddings

	Experiments
	Data
	Baseline Methods
	Performance Evaluation
	Experimental Setup
	LSTM Tuning
	Results

	Best Training Strategy
	Known Characteristics
	Clustering to Improve Prediction

	Discussion

	Conclusion & Perspectives
	Appendices
	Appendix Session Embeddings Hyperparameters Selection
	System 30 (App 1)
	System 50 (App 2)

	Appendix Tests to Define the Best Training Strategy
	Indian Systems
	Sessions
	Corresponding Number of Tools

	American Systems
	Sessions
	Corresponding Number of Tools

	Japanese Systems
	Sessions
	Corresponding Number of Tools

	Appendix Cluster Assignment
	System 30
	System 50

	Appendix Significant Actions
	Appendix t-distributed Stochastic Neighbor Embedding (t-SNE)
	Publications & Patents
	Bibliography

