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Résumé – Bases neuronales de binding dans des représentations

symboliques

Le travail présenté dans cette thèse fait partie d’un programme de recherche qui vise à comprendre comment le cerveau

traite et représente les structures symboliques dans des domaines comme le langage ou les mathématiques. L’existence de

structures composées de sous-éléments, tel que les morphèmes, les mots ou les phrases est très fortement suggérée par les

analyses linguistiques et les données expérimentale de la psycholinguistique. En revanche, l’implémentation neuronale

des opérations et des représentations qui permettent la nature combinatoire du langage reste encore essentiellement

inconnue. Certaines opérations de composition élémentaires permettant une représentation interne stable des objets

dans le cortex sensoriel, tel que la reconnaissance hiérarchique des formes, sont aujourd’hui mieux comprises[120].

En revanche, les modèles concernant les opérations de liaisons(binding) nécessaires à la construction de structures

symboliques complexes et possiblement hiérarchiques, pour lesquelles des manipulations précises des composants doit

être possible, sont encore peu testés de façon expérimentale et incapables de prédire les signaux en neuroimagerie.

Combler le fossé entre les données de neuroimagerie expérimentale et les modèles proposés pour résoudre le

problème de binding est une étape cruciale pour mieux comprendre les processus de traitements et de représentation des

structures symboliques. Au regard de ce problème, l’objectif de ce travail était d’identi�er et de tester expérimentalement

les théories basées sur des réseaux neuronaux, capables de traiter des structures symboliques pour lesquelles nous avons

pu établir des prédictions testables, contre des mesures existantes de neuroimagerie fMRI et ECoG dérivées de tâches de

traitement du langage.

Nous avons identi�é deux approches de modélisation pertinentes. La première approche s’inscrit dans le

contexte des architectures symboliques vectorielles (VSA), qui propose une modélisation mathématique précise des

opérations nécessaires pour représenter les structures dans des réseaux neuronaux arti�ciels. C’est le formalisme

de Paul Smolensky[172], utilisant des produit tensoriel (TPR) qui englobe la plupart des architectures VSA

précédemment proposées comme, par exemple, les modèles d’Activation synchrones[170], les représentations réduites

holographique[158], et les mémoires auto-associatives récursives[35].

La seconde approche que nous avons identi�ée est celle du "Neural Blackboard Architecture" (NBA), développée par

Marc De Kamps et Van der Velde[187]. Elle se démarque des autres en proposant une implémentation des mécanismes

associatifs à travers des circuits formés par des assemblages de réseaux neuronaux. L’architecture du Blackboard

repose sur des changements de connectivité transitoires des circuits d’assemblages neuronaux, de sorte que le potentiel

de l’activité neurale permise par les mécanismes de mémoire de travail après un processus de liaison, représente

implicitement les structures symboliques.

Dans la première partie de cette thèse, nous détaillons la théorie derrière chacun de ces modèles et les comparons,

du point de vue du problème de binding. Les deux modèles sont capables de répondre à la plupart des dé�s théoriques

posés par la modélisation neuronale des structures symboliques, notamment ceux présentées par Jackendo�[99].

Néanmoins, ces deux classes de modèles sont très di�érentes. Le TPR de Smolenky s’appuie principalement sur des

considérations spatiales statiques d’unités neurales arti�cielles, avec des représentations explicites complètement

distribuées et spatialement stables mises en œuvre par des vecteurs. La NBA en revanche, considère les dynamiques

temporelles de décharge de neurones arti�ciels, avec des représentations spatialement instables implémentées par des

assemblages neuronaux.

Dans la deuxième partie de la thèse, nous testons empiriquement le principe de superposition qui stipule que l’activité
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associé à une structure est la somme des activités de ses parties. Ceci est une des hypothèses les plus cruciales du

TPR de Smolensky. A�n d’obtenir un ensemble de données pertinent pour tester ce principe, nous avons créé une

expérience IRMf dans laquelle les participants lisaient ou entendaient des pseudomots composés de deux syllables CV.

Nous avons employé un approche de décodage de l’activité BOLD a�n d’analyser comment ces bisyllabes sont encodées

dans diverses régions cérébrale. Nous avons obtenu de bon scores de classi�cation dans certaines régions sensorielles et

nous avons reproduit des e�ets connus, tel que les représentations semi-locales superposées induites par la rétinotopie.

Dans le cas des régions auditives, nous avons trouvé un faible évidence en faveur de la superposition dans les zones

supérieures dans la hiérarchie de traitement auditif. Nous avons montré que la classi�cation des items bi-syllabiques

dans les régions 44 et 45 de Broca etait signi�cative et que l’ensemble de ces régions montrait des preuves en faveur de

la superposition.

De plus, nous avons trouvé des résultats qui militent contre l’existence de représentations superposées dans la zone

de la forme visualle des mots (VWFA), ce qui est cohérent avec les recherches antérieures sur la représentations de

mots entiers dans cette région[75]. Nous avons également véri�é qu’il était possible de décoder les représentations

auditives dans la VWFA, suggérant que cette région est impliquée aussi bien dans le traitement de la parole que des

mots écrits[205]. Toutefois, un résultat surprenant a été l’absence totale de généralisation des modèles de décodage

utilisés d’une modalité sensorielle à une autre. Ce maque de généralisation pourrait être interprété comme un manque de

sensibilité dû à la variabilité du signal des représentations, ou encore comme l’absence de représentations amodales pour

un pseudo-mot bi-syllabique simple. En dehors des zones sensorielles, nous avons observé dans la plupart des régions

avec des scores de classi�cation signi�catifs, une variabilité extrême des scores de précision pour des items individuels,

de sorte que peu d’entre eux avaient des scores particulièrement élevés, alors que la plupart restaient de façon uniforme

à un niveau de chance. Ce pattern particulièrement précis pourrait s’expliquer par le manque de parcimonie et la faible

variabilité dans la distribution spatiale des valeurs des vecteurs neuraux sous-jacents aux représentations neuronales,

pour lesquels nous n’avons par chance, capturé quelques segments déviants. Au regard de ces résultats, nous pensons

qu’il serait intéréssant dans une perspectives future de tester le principe de superposition avec des signaux BOLD, en

utilisant des résolutions spatiales plus élevées comme celles obtenues par des techniques récentes telles que l’IRMf

laminaire[111].

Nous nous sommes également intéressés à la dynamique temporelle des liaisons qui pourrait être détectée dans les

mesures de neuro-imagerie IRMf et ECoG. Etant donné que le TPR de Smolensky n’a pas de prédictions particulières

sur la dynamique temporelle neurale ou sur les décharges neuronales biologiques, nous nous sommes focalisés sur

les prédictions de la NBA. Dans la deuxième partie de la thèse, nous avons créé une nouvelle implémentation de la

NBA basée sur les techniques de densité de population, qui nous a permis de faire des prédictions temporelles de haute

résolution de la dynamique neurale liée au processus de liaison. Une partie importante de ce travail a été réalisée en

collaboration avec Marc De Kamps.

Nos simulations s’appuient sur la dynamique des modèles de point de décharges des neurones : Les neurones qui

Leaky-integrate-and-re (LIF) et adaptive-exponential-integrate-and-re (AdEx). Plutôt que de simuler des milliers de

neurones en décharges, nous avons utilisé des techniques de densité de population (PDT) pour modéliser la dynamique

au niveau de la population. Bien que liée aux modèles basés sur les taux de décharge, pour les PDTs la correspondance

avec les quantités de population moyennées de neurones en décharge peut être montrée rigoureusement. En particulier,

nos simulation montrent que les dynamiques transitoires sont capturées avec plus de précision par les PDT que par les

modèles basés sur les taux de décharge. Le contraste entre les modèles LIF et ADEx nous ont permis de démontrer que,

bien qu’ils ne soient pas di�érenciés par la dynamique moyenne, leur paramétrisations ont de fortes implications pour

le timing et le contrôle des événements de traitement des phrases.

Nous montrons que notre implementation de l’architecture NB, avec des paramètres réglés unqiauement pour

répondre à des contraintes opérationnelles, reproduit qualitativement les pro�ls d’activités neuronales de deux
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expériences de neuro-imagerie, utilisant l’EcoG[141] et l’IRMf[153], et mettant en oeuvre des opérations de binding

linguistique. En même temps que la �exibilité partiellement explorée de la NBA pour représenter des structures d’arbres

binaires arbitraires et des schémas d’analyse, ces résultats en font un outil prometteur pour l’exploration des hypothèses

linguistiques et une prise en compte quantitative subtile des mesures de neuroimagerie multi-échelles.
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Summary – Neural bases of variable binding in symbolic representations

The aim of this thesis is to understand how the brain computes and represents symbolic structures, such like those

encountered in language or mathematics. The existence of parts in structures like morphemes, words and phrases

has been established through decades of linguistic analysis and psycholinguistic experiments. Nonetheless the neural

implementation of the operations that support the extreme combinatorial nature of language remains unsettled. Some

basic composition operations that allow the stable internal representation of sensory objects in the sensory cortex,

like hierarchical pattern recognition, receptive �elds, pooling and normalization, have started to be understood[120].

But models of the binding operations required for construction of complex, possibly hierarchical, symbolic structures

on which precise manipulation of its components is a requisite, lack empirical testing and are still unable to predict

neuroimaging signals.

In this sense, bridging the gap between experimental neuroimaging evidence and the available modelling solutions

to the binding problem is a crucial step for the advancement of our understanding of the brain computation and

representation of symbolic structures. From the recognition of this problem, the goal of this PhD became the identi�cation

and experimental test of the theories, based on neural networks, capable of dealing with symbolic structures, for which

we could establish testable predictions against existing fMRI and ECoG neuroimaging measurements derived from

language processing tasks.

We identi�ed two powerful but very di�erent modelling approaches to the problem. The �rst is in the context of the

tradition of Vectorial Symbolic Architectures (VSA) that bring precise mathematical modelling to the operations required

to represent structures in the neural units of arti�cial neural networks and manipulate them. This is Smolensky’s

formalism with tensor product representations (TPR)[172], which he demonstrates can encompass most of the previous

work in VSA, like Synchronous Firing[170], Holographic Reduced Representations[158] and Recursive Auto-Associative

Memories[35].

The second, is the Neural Blackboard Architecture (NBA) developed by Marc De Kamps and Van der Velde[187],

that importantly di�erentiates itself by proposing an implementation of binding by process in circuits formed by

neural assemblies of spiking neural networks. Instead of solving binding by assuming precise and particular algebraic

operations on vectors, the NBA proposes the establishment of transient connectivity changes in a circuit structure

of neural assemblies, such that the potential �ow of neural activity allowed by working memory mechanisms after a

binding process takes place, implicitly represents symbolic structures.

The �rst part of the thesis develops in more detail the theory behind each of these models and their relationship from

the common perspective of solving the binding problem. Both models are capable of addressing most of the theoretical

challenges posed currently for the neural modelling of symbolic structures, including those presented by Jackendo�[99].

Nonetheless they are very di�erent, Smolenky’s TPR relies mostly on spatial static considerations of arti�cial neural

units with explicit completely distributed and spatially stable representations implemented through vectors, while the

NBA relies on temporal dynamic considerations of biologically based spiking neural units with implicit semi-local and

spatially unstable representations implemented through neural assemblies.

For the second part of the thesis, we identi�ed the superposition principle, which consists on the addition of the

neural activations of each of the sub-parts of a symbolic structure, as one of the most crucial assumptions of Smolensky’s

TPR. To obtain a relevant dataset to test this principle, we created an fMRI experiment where participants perceived

bi-syllabic CVCV pseudoword items in auditory and visual modalities, looking for sensory independent representations,
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and used decoding techniques to analyse how these were encoded in diverse brain regions. We achieved high accuracy

scores in our decoding models for representations in sensory areas and reproduced known e�ects like the superposed

semi-local representations induced by retinotopy. In the case of auditory regions we found weak evidence in favour

of superposition in areas higher in the auditory processing hierarchy. We show that bi-syllabic item classi�cation is

signi�cant in regions 44 and 45 of the Broca’s complex and that the whole complex portrays evidence in favour of

superposition.

Moreover we found evidence against superposed representations in the visual word form area (VWFA), which

is coherent with previous evidence of whole word representations in that region[75]. We also veri�ed that it was

possible to decode auditory representations form the VWFA, providing additional evidence to the literature body

claiming that this region can be modulated by speech as well as reading[205]. We were surprised by a global lack of

generalization from decoding models trained in one sensory modality to the other, which can be either interpreted as a

lack of sensitivity due to variability of the representations signal or as the absence of amodal representations for simple

bi-syllabic pseudowords. We observed in most regions with signi�cant classi�cation scores, outside of sensory areas,

extreme variability in the accuracy scores of individual items, such that few had particularly high scores while most

remained uniformly at chance level. This particular accuracy pattern could be explained by lack of sparsity and low

variability in the spatial distribution of values of the neural vectors underlying the neural representations, for which

we captured only some deviant segments by chance. From this we still think that it would be worth to further test the

superposition principle with BOLD signals but only if taking advantage of higher spatial resolutions as those o�ered by

recent techniques like laminar fMRI[111].

Wewere also interested in the temporal dynamics of bindingwhich could be re�ected in fMRI and ECoG neuroimaging

measurements. As Smolensky’s TPR do not have particular predictions on neural temporal dynamics or biological

neural spiking, we decided to focus on predictions of the NBA. So for the second part of the thesis we created a new

implementation of the NBA based on population density techniques, that allow us to make temporal high resolution

predictions of neural dynamics linked to the binding process. A large amount of work, done in collaboration with Marc

De Kamps, was needed to actually implement the NBA.

Our simulations are based on the dynamics of spiking point model neurons: leaky-integrate-and-�re (LIF) and

adaptive-exponential-integrate-and-�re (AdEx) neurons. Rather than simulating thousands of spiking neurons, we

use population density techniques (PDTs) to model dynamics at the population level. Although related to rate based

models, for PDTs the correspondence to population-averaged quantities of spiking neurons can be shown rigorously.

In particular transient dynamics are captured more accurately than by rate based models. Contrasting LIF and AdEx

models allowed us to demonstrate that, although they are not importantly di�erentiated by average dynamics, their

parametrization have strong implications for the timing and control of phrase processing events.

We demonstrate that an NBA implementation, only tuned to operational constraints, qualitatively reproduces

the neural activity patterns of at least two neuroimaging experiments involving linguistic binding at di�erent spatio-

temporal scales. With the sole implementation of the binding mechanism we qualitatively reproduce temporal segments

of the neural dynamics of sentence comprehension from intracortical recordings (ECoG) patterns[141]. Our model

also replicates sub-linear patterns of hemodynamic responses caused by phrase constituency manipulations[153] and

produces an alternative hypothesis to explain it, based on the number of binding operations executed during phrase

processing. These results, alongside the partially explored �exibility of the NBA to represent arbitrary binary tree

structures and parsing schemes, makes it a promising tool for linguistic hypothesis exploration and future re�ned

quantitative accounts of multi-scale neuroimaging measurements.
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1 Theories of variable binding

In this chapter we introduce the binding problem in neuroscience.

We also explain two main modelling approaches to the problem, namely

Smolensky’s tensor product representations and the Neural Blackboard

Architecture (NBA).

1.1 Approaching the binding problem in language

neuroscience

The binding problem

We want to understand how the brain computes and represents symbolic

structures, such like those encountered in language. The existence of parts

in structures like morphemes, words and phrases has been established

through decades of linguistic analysis and psycholinguistic experiments.

Nonetheless the neural implementation of the operations that support the

extreme combinatorial nature of language remains unsettled. Some basic

composition operations that allow the stable internal representation of sensory

objects in the sensory cortex, like hierarchical pattern recognition, receptive

�elds, pooling and normalization, have started to be understood[120]. But

models of the binding operations required for construction of complex symbolic

structures on which precise manipulation of its components is a requisite, lack

empirical testing and are still unable to predict neuroimaging signals.

The term binding was introduced into the neuro-scienti�c community

by von der Malsburg[196] during the �rst explorations of neural phase

synchronization. At this �rst stages of the study of binding, the term was

really being used to study “feature binding”, which just consists on association

of concepts to form an object internal representation that will not have its

properties confused with another object. An example would be to not confuse

the colors of a "blue square" and a "red circle" presented together on a screen.

Binding was also motivated by the empirical discovery of the distributed and

segmented encoding of features along the cortex. For example color and shape,

in the case of vision, are robustly integrated during perception, but can be

independently impaired by brain damage, which implies that the two features
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are represented independently in the cortex, even though we perceived them

in unity.

If we consider the binding problem in generality, as presented by

Feldman[65], it has several sub-problems from which “feature binding” is

one of them. The current work is motivated instead by the “variable binding”

sub-problem. Feldman[65] presents “variable binding” as an abstract high

level cognitive faculty, mainly required by symbolic thought. As explained by

Marcus et al.[120], it consists on creating a transitory link between two pieces

of information: a variable (like Z in a equation, or a placeholder like noun in a

phrase) and an arbitrary instantiation of that variable (like a number to replace

Z in the equation, or a word that corresponds to the noun placeholder). It goes

beyond the extensively studied sensory, attention and short-term memory

phenomena of “feature binding”, that only require appending features to a bag

or set, to avoid confusion with other simultaneous representations.

The need for “variable binding” is to run logical inference on data structures

that encode relationships between their items. For example the sentence “Mary

owns a book" allows to establish a relation of the type own(Mary, book) that

implies owner(book, Mary), such that we can later ask the question “Who owns

this book?”, which would not be answerable under a simpler “feature binding”

mechanism that would just confuse the three words in a bag as just belonging

to the same group. To implement this in language, most linguistic theories

propose that there are types of words, named grammatical categories, like

’noun’ and ’verb’, that are instantiated during sentence comprehension to be

combined under a �nite set of constraints. These instantiated word types

would point to each other to form a graph data structure, a tree, on which

query and join operations can be performed, and they would also point to their

corresponding speci�c words. Then solving “variable binding” in language,

requires a biologically feasible implementation of a pointer mechanism that

can link instantiated grammatical categories and their corresponding words.

For the rest of this work, whenever we use the term binding for simplicity, we

will really be referring to the more speci�c “variable binding” sub-problem.

Additional challenges for the neural implementation of

language processing

In "Foundations of Language", Jackendo� presents four important challenges

that any proposal for the neural implementation of language processing must

face[98], from which “variable binding” is only one of them. These challenges

are the massiveness of binding, the problem of 2, the problem of variables

(“variable binding”) and the short and long term encoding problem.

The massiveness of binding is related to the combinatorial explosion that is

encountered in symbolic structures like language, suggesting the impossibility

to store in advance all combinations in memory. The problem of 2 is related to

the representation of the same component, for example the same word, in the
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same structure but with a di�erent purpose or meaning, for example to denote

two di�erent objects. A concrete example would be the word "ball" in "the

blue ball and the red ball". The problem of variables is to propose a mechanism

to manipulate a symbolic structure to extract partial information from it, for

example to ask "where did the children go?" and extract "the park" from the

sentence "the children went to the park". The short and long term memory

encoding problem is related to the fact that the brain has to be able to represent

in short term memory transitory new formed structures to perform certain

cognitive operations, as well as structures that will be stored and retrieved from

long term memory. It is necessary to explain how both mechanisms operate

together to completely account for the encoding of symbolic structures.

The basic properties of any model considered must at least be able to

answer Jackendo�’s challenges, besides providing the neural mechanism to

instantiate symbolic representations and perform binding.

Summary ofmodels identified to approach the bindingproblem

We identi�ed two powerful but very di�erent modelling approaches to

the problem. The �rst is in the context of the tradition of Vectorial

Symbolic Architectures (VSA) that bring precise mathematical modelling

to the operations required to represent structures in the neural units of

arti�cial neural networks and manipulate them. This is Smolensky’s formalism

with tensor product representations (TPR)[172], which he demonstrates can

encompass most of the previous work in VSA, like Synchronous Firing[170],

Holographic Reduced Representations[158] and Recursive Auto-Associative

Memories[35].

The second, is the Neural Blackboard Architecture (NBA) developed by

Marc De Kamps and Van der Velde[187], that importantly di�erentiates itself

by proposing an implementation of binding by process in circuits formed by

neural assemblies of spiking neural networks. Instead of solving binding by

assuming precise and particular algebraic operations on vectors, the NBA

proposes the establishment of transient connectivity changes in a circuit

structure of neural assemblies. The potential �ow of neural activity allowed by

working memory mechanisms after a binding process takes place, implicitly

represents symbolic structures.

Both modelling approaches considered in this work, namely Smolensky’s

tensor framework and the Neural Blackboard Architecture, satisfy Jackendo�’s

challenges[98].

1.2 Smolensky’s tensor product representations
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The integrated connectionist/symbolic cognitive architecture

(ICS)

In the Harmonic Mind[172], Smolensky presents an integrationist view of

the current theoretical approaches to model cognition. On one hand, the

brain architecture seems to be best represented by a purely connectionist

approach, in which interconnected neural units parallely process vectorial

representations. On the other hand, symbolic architectures and computation

has been behind the most successful models to explain the mind and its

related behaviors[160; 84; 170; 158; 35]. These two di�erent approaches have

been put at odds by the eliminativists, that claim we do not need anything

besides purely connectionist models to account for cognition. On the other

hand the implementationalists claim we only need symbolic computation to

develop cognitive theories. Smolensky argues instead for what he calls a

split-level architecture, in which the highest symbolic computational provides

functionally relevant structure, while the lowest connectionist computational

level provides physically relevant structures.

Similar to a previous proposal of Marr[122] called the Purely Symbolic

Architecture (PSA), Smolensky provides a framework on which, with

tensor algebra in his case, the gap between the connectionist and symbolic

levels is �lled to explain all aspects of symbolic thought in cognition.

This is accomplished by establishing an equivalence or isomorphism

between the constituents in symbolic and vectorial representations. Also

a correspondence is established between tensor algebraic operations and

algorithms implementable in feed-forward and symmetric recursive neural

networks. This isomorphism is then codi�ed in what Smolensky refers to as

tensor product representations.

Representations Principle of ICS and implementation of basic

tensor product representations

The main assumption of the representation principle in ICS is that cognitive

representations are implemented by widely distributed neural activity patterns

(activation vectors), which have a global structure that can be described with

the discrete data structures of symbolic cognitive theory. Three basic structural

operations are proposed to act on the symbols or constituents of symbolic

structures: combination by superposition, variable binding by tensor products

and embeddings with recursively de�ned role vectors.

Combinations by superposition mean that parts of a structure are

represented by vectors with the same dimension, that are then simply added

together to create the complete structure vector, as illustrated for the phonemes

of the word "cat" in Figure 1.1.

This addition operation raises the question of how complete information

about individual components can be extracted from the �nal vectorial structure.

In particular there is an issue to determine order of the constituents, because
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Figure 1.1: Superposition

illustration from Smolensky’s

Harmonic Mind: This plot was

taken from Smolensky’s Harmonic

Mind. It illustrates the neural

activation vectors corresponding

to the bindings of each of the

phonemes of the word "cat", such

that their sum would constitute

the activation vector of the word

according to the superposition

principle. Phonemes are considered

as Fillers and node positions in the

structure tree as Roles

addition is a commutative operation. To address this issue Smolenky proposes

that each constituent is formed by the binding, through a tensor product, of a

symbol or content vector, called a Filler, with a slot of the complete symbolic

structure called a Role.

The idea of Role vectors is similar to the notion of "frame" introduced by

Minsky in 1975[135], which corresponds to the assignment of a �xed set of

atomic elements to a �xed set of atomic roles. The nature of the Role vectors

could be based on positional roles that denote absolute coordinates of a graph

structure, like a vector representing the second node of the left branch in a tree.

Alternatively they could be based on contextual roles, such that properties are

bound together, like if we had the tensor product of an Adjective and a Noun

to denote that the Adjective modi�es the speci�c Noun. How we de�ne the

roles that will be part of the binding of a symbol is an open question. Currently

positional roles are considered as a plausible explanation for the tree node

positions of syntactic trees, while contextual roles are considered plausible to

bind semantic concepts to relevant semantic contexts.

By assuming linear independence between the Filler vectors and between

the Role vectors, it is possible to secure perfect recovery of a Filler vector

by computing the inner product of the corresponding Role vector with the

complete structure vector. It is also possible then to recover Role vectors by

the inner product of their bound Filler vectors. Nonetheless if the same Filler

is bound to more than one Role, like the word "star" in the sentence "The big

star above the small star", the linear combination of all the respective Roles

would be retrieved instead of a speci�c one.
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Enforcing linear independence importantly restricts the amount of neural

units necessary to be greater than the number of concepts encoded and not

enforcing it would create intrusion, where the extracted Filler vector will also

contain a linear combination of all other Filler vectors. Nonetheless there

is a graceful degradation of the encoded representations with the degree of

dependency of the Role or Filler vectors, that degrades as the square root of N

for the N dimensional space given by N neural units. The expected intrusion

(EI) has the form given in Equation 1.1. This graceful degradation also implies

a graceful saturation of a connectionist network of �xed size with N neural

units, such that the exact most conservative estimate of the expected total

magnitude of intrusions for m bindings also grows as the square root of N.

EI =

√

2

π(N − 1)
(1.1)

The mathematical form of a tensor product representation is provided in

Equation 4.1. In Figure 1.2 we illustrate the tensor product of a Filler and a

Role vector, which operates in a similar way to an outer product, multiplying

each item of the �rst vector by each item of the second vector to determine

the value of the neural units.

Structure = Filler1 ⊗ Role1 + ... + Fillern ⊗ Rolen (1.2)

Figure 1.2: Tensor product

illustration: The tensor product

operates like the outer product

of a Role and a Filler vector, of

dimensions 4 and 3 respectively

in the �gure. Then each neural

unit in the resulting binding neural

activation vector, of dimension 12 in

this case, encodes the multiplication

of one component of the Role by

one component of the Filler. The

neural activation vectors of multiple

bindings would be summed

according to the superposition

principle.

another important property of Role vectors is that they permit the de�nition

of recursive embeddings. Hierarchical tree structures, as those proposed by
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phrase grammars in language, require de�nition of roles at each level of the

proposed trees and need to have the �exibility to implement as many levels

as the faculty of language allows. Nonetheless there are several ways to

implement such hierarchies from which Smolensky emphasize two. First

the possibility to have local representations, with dedicated neural units, for

each level of the tree. Second to have completely distributed representations

that use all neural units for all levels, by binding tree level Role vectors to

their corresponding upper level nodes in the tree hierarchy. In the case of

asymmetric branches that would create a dimensionality di�erence in the

Roles outer products, a dummy Role vector is introduced to rebalance the tree

branches.

Local, semilocal and distributed representations

An important property of the ICS tensor product representations is that they

have the �exibility to accommodate any degree of locality, which means that

they can be made local, semilocal or completely distributed. The locality of

a representation consist on the amount of neural units that are employed by

the di�erent Filler and Role vectors. Representations that correspond to a one-

to-one mapping between possible elements represented and neural unit sets

are purely local representation. If only the Role vectors have a local structure,

then these would be role register or semilocal representations, for which an

example would be roles modelling the position of an image with respect to

the eyes, since there are inverse hemispheric projections in primary visual

areas of the two eyes. Finally in fully distributed representations all neural

units can be recruited for any representation.

There are three important examples in the previous literature of fully

distributed representations, supporting the idea of Parallel Distributed

Processing (PDP): the coarse coding representations of Hinton McClelland

and Rumelhart[169], that focus on the many-to-many relation between visual

positions and the activation of receptive �elds; the conjunctive coding of

McClelland and Kawamoto[128] that consist on three-way conjunctions of the

learned features of nouns, verbs and semantic roles; and the wickelfeatures

of Rumelhart and McClelland[168] that employed the 1-neighbour context

decomposition to learn the binding of phonetic segments as Fillers to phonetic

contexts as Roles to represent the past tense of english verbs.

It is important to understand which is the degree of locality of

representations in a cognitive domain, because local and distributed networks

di�er in several properties. In the case of linear networks there is a

transformation from any local representation to its distributed version and

vice-versa, but this is not the case with non linear activation functions like

those describing saturation and adaptation phenomena in neurons. Neural

damage would have di�erent e�ects depending on network locality since

distributed representations are more resilient to local damages. Learning of
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distributed patterns by networks could be more challenging and take more

time, due to the interference of synergy of the concepts representations. There

is better generalization of representation patterns in the case of distributed

representations due to the similarity that can be established with unseen

patterns, while in a local network representations must be orthogonal. Finally

there is an important di�erence in the representational capacity of the

network, since "N" neural units can only support "N" local representations,

but a distributed network can maintain a higher number of representations

for which exactness decrease gracefully.

Generalization of tensor product representations to accomodate

previous vectorial symbol architectures (VSA)

One of the most powerful features of Smolensky’s tensor product

representations is that he can encompass most of the previous work in vectorial

symbol architectures (VSA), like Synchronous Firing[170], Holographic

Reduced Representations[158] and Recursive Auto-Associative Memories[35].

In Chapter 7 of the Harmonic Mind, Smolensky performs an in-depth

analysis of the typology of previous vectorial symbol architectures (VSA) in

the literature to show how they can be accommodated by tensor product

representations. Some models, like the parietal cortex model of Pouget and

Sejnowski[160] and the propositional information models of Halford, Wilson

and Phillips[84], are simply equivalent to tensor product representations.

Other important models, including Synchronous Firing[170], Holographic

Reduced Representations[158] and Recursive Auto-Associative Memories[35],

can be considered as tensor product representations if we generalize them by

inclusion of postprocessing operations from tensor algebra.

The Synchronous Firing[170] model became important for its biological

plausibility and the e�ciency of employing time as an additional neural

resource. It is also the simplest model to accommodate, since it does not require

additional tensor algebra operations, but only reconsidering conceptually the

neural resources and the nature of Role vectors. Using time as a neural resource

simply requires that we de�ne time slot Role vectors alongside semantic Role

and Filler vectors. Shastri et al[170] proposes to implicitly bind a semantic

role like "giver" to a semantic �ller like "John", by explicitly binding both

of them to a common formal role representing a time slot, which di�ers

from previous considerations of contextual/semantic roles formulated to bind

directly "giver" to "John". The roles distinction is portrayed in equations 1.3 and

1.4, that correspond to contextual and formal role considerations respectively.

Formalizing this model with tensor product representations facilitates its

comparison to other models and makes its extension from local to completely

distributed representation almost trivial.
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giver ⊗ John, contextual/semantic role (1.3)

giver ⊗ timeslot1 + John ⊗ timeslot1, formal role (1.4)

In the case of Holographic Reduced Representations[158], developed to

model human memory, they are of interest because they predict empirical

results on how people relate structured elements. In this model Filler/Role

bindings are achieved by employing a vector operation called circular

convolution instead of a tensor product. For Filler and Role vectors of

dimension n, this operation is attractive because the dimensionality of the

output vector remains as n, while a traditional tensor product would produce

an output vector with dimensionality n2. Since the requirements of tensor

products grow exponentially with the depth of trees in hierarchical structures,

circular convolution is a more economical operation in terms of neural

resources, at the cost of renouncing to exact or general-purpose representations

to have instead inexact or special-purpose representations. To accommodate

this model and others based on vector reduction operations, Smolensky

introduces the tensor contraction linear operator from tensor calculus, to

be applied to the �nal symbolic representations, and proves that circular

convolution is just a particular case of tensor contractions.

In the case of the autoencoder model of Recursive Auto-Associative

Memories[35] (RAAM), it is of interest because of its capacity to learn

which Role vectors allows the relevant structures received as input to be

encoded, while displaying in some cases the same fully parallel processing

implementable with standard tensor product representations. Smolenky

demonstrates that the encoded representations in the middle layer of the

RAAMmodel can be reproduced by tensor product representations by applying

a squashing (sigmoidal) function element-by-element to a contraction of the

superposition of the bindings performed with the RAAM input vectors.

We display the extension of the basic tensor products of Equation 1.5, with

the contraction operator in Equation 1.6, followed by the element-by-element

application of a function in Equation 1.7. Then the generalized tensor product

is the element-by-element application of some function to the contraction

over some pair of indices of the (superposition) addition of the tensor products

representing the bindings of Filler and Role vectors. The basic tensor product

representations are then just the speci�c case where the function is the

identity and the contraction is the trivial contraction that do not perform a

dimensionality reduction. Generalizing tensor product representations to allow

post-processing by contraction and/or squashing allows to subsume under

one formalism all alternatives in the literature, while keeping the principles

of binding by tensor product and superposition of symbolic representations

intact, since the generalization only add post-processing steps.
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∑
i

Filleri ⊗ Rolei, Basic Tensor Products (1.5)

C[∑
i

Filleri ⊗ Rolei], with Contraction (1.6)

F[C[∑
i

Filleri ⊗ Rolei]], with element-by-element Function (1.7)

How Jackendo�’s problems are answered by tensor product

representations in ICS

First, “The massiveness of binding” is addressed by the binding operation

de�ned with tensor products alongside the graceful saturation of inexact

representations. Second, “The problem of variables” is handled by the linear

independence assumption between Filler vectors and between Role vectors

that permits unbinding with the inner product, with a graceful degradation of

information when the linear independence assumption is violated. Third, “The

Problem of 2” is managed by binding the same Filler vector to di�erent Role

vectors, nonetheless if we were interested in querying the Role of a repeated

Filler we would have problems, since we would recover the linear combination

of all the corresponding Role vectors. Finally, learning the Filler and Role

vectors in neural networks is analogous to a long term memory mechanism,

while implementing the tensor product operations would permit instantiating

in short term memory new symbolic structures from the binding of Filler and

Role vectors. Moreover the generalization of tensor products to account for

memory related models like Holographic Reduced Representations and RAAM,

demonstrates its �exibility to model diverse memory related mechanisms.

1.3 The Neural Blackboard Architecture (NBA)

Neural models of language

To understand how the cognitive faculty of language operates, we need to

take into account, not only the underlying supporting structures, but also

their dynamics. This means that we have to consider simultaneously the

grammars given by linguistic theory and a temporal component to give birth

to computational mechanisms, like automaton models, capable of explaining

behavior[83]. To extend this into neuroscience we have to go even further

and also provide reasonable implementation models, corresponding to the

biological components of the brain. This implementation is necessary to be

able to go beyond behavioral measurements and ultimately test computational

hypotheses directly against the currently available spatio-temporal neural

measurements.

A good example of success in this direction is the computational theory of

visual receptive �elds[113] which has made impressively accurate predictions



neural bases of variable binding in symbolic representations 17

about the shape of the biological visual �elds in the retina. Knowledge of

these basic units of visual perception has even recently allowed to correlate the

mechanisms behind deep convolutional neural networks to visual pathways[80;

58] and has in�uenced our understanding of higher-level visual phenomena

such as visual illusions[57]. Although expecting at the moment something

similar in the case of language might sound overambitious, we must note that

basic phonetic features have already been decoded in the Superior Temporal

Gyrus from electrocorticography (ECoG)[133].

Numerous Arti�cial Neural Networks (ANNs) have been implemented,

motivated by biological principles in the brain[18; 39; 134; 200; 173],

to model particular aspects of brain language function or to reproduce

behavior in speci�c language tasks. Nonetheless they lack dynamic

biological considerations necessary to match their output with neuroimaging

measurements, and except for Vector Symbol Architectures (VSA)[172], they

are di�cult to integrate into a general framework for the implementation of

complete language functions.

More relevant to our work are previous e�orts to model language function

with more biologically plausible Spiking Neural Networks (SNNs)[94; 166;

18; 121; 56; 162; 161; 72; 123], that would eventually allow to establish a

mechanistic link between neural measurements and computational linguistic

hypothesis. Contrary to the VSA and the Neural Blackboard Architecture

(NBA)[187], these do not follow a general theoretical framework, to address all

the neural challenges of a complete language function implementation, that

can also provide a mechanistic explanation for the most basic computational

components and behaviors.

In most models, biological details necessary to match high temporal

resolution in-vivo neural patterns of language processes have been kept out

of scope. This has been a reasonable strategy considering the computational

cost of building circuits with detailed neural models based on simulations

of each neuron. Nonetheless recent developments like population density

techniques[47] now permit to simulate state-of-the-art temporally detailed

dynamics of circuits of neural populations.

In this work we will go beyond previous SNN simulations that were limited

in scope to describe language function and temporal resolution of the neural

dynamics. We will implement a temporally detailed spiking neural network

circuit inspired by the Neural Blackboard Architecture[187]. The circuit

implementation will be capable of realizing the binding operation for any

level of language processing and for any grammar theory and parsing scheme,

but we will focus on its application to the syntactic structure of phrases.

Introduction to the Neural Blackboard Architecture

Van der Velde and De Kamps[190] argue in favour of a small world network

model that, thanks to transient changes in its connectivity, allows the
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formation of complex structures. Binding takes place in the Neural Blackboard

Architecture by conditionally co-activating neural assemblies representing

grounded concepts and instances of variable types, which is a process driven

by a control mechanism. The co-activation of the neural assemblies activates

a working memory mechanism that last for a short period of time, to permit

future activation of one bound neural assembly by its pair.

In this framework, working memory acts as a control that reduces

inhibition on paths of neural �ow necessary to maintain the bindings

established by the initial transient co-activation, such that pointers have been

declared implicitly between the co-activated concepts. Data structures are

implicitly encoded by the short lived reinforced paths of neural activity �ow.

Then query operations are possible by reactivating nodes - included in the

query - that induce co-activation of answer nodes, thanks to the reinforced

connectivity. This successive co-activation of neural assemblies referred as

"binding by process", leads to a short-term lived graph that implicitly encodes

the �nal data structure.

The level of abstraction of the NBA allows to apply it to several cognitive

functions like motor control, attention and symbolic thought. In the case

of syntactic parsing during language comprehension, one needs a grammar

to specify the necessary variable type relations and some parsing scheme

to determine the bindings’ timing. The NBA provides a circuit with nodes

that can be readily interpreted in terms of spiking neural populations. This

can be conceptually linked to the notion of cell assemblies, whose existence

and functional relevance, as computational units, is supported on substantial

biological evidence[95].

Circuits of the architecture

A complete illustration of the blackboard architecture is provided in Figure

1.3. Nodes in Figures 1.3.A and 1.3.B represent neural cell assemblies

that can be interpreted as linked spiking neural populations. There are

several previous implementations of sub-circuits of the NBA with varying

degrees of biological plausibility, the latest relying mostly on Wilson Cowan

population dynamics[52]. Some of the previous simulations attempted to

address diverse aspects of language processing, such as ambiguity[67] and

learning control from syntactic stimuli[188]. Other simulations addressed

circuit implementation issues like how to develop a connectivity matrix with

randomly connected networks[189] and how to implement a central pattern

generator sub-circuit for sequential activation [191].

We will focus on providing a summary of the Neural Blackboard

Architecture operation from a perspective relevant to variable binding. For

a deeper review of the NBA circuit and mechanisms we recommend reading

a recent paper with a circuit design and examples that focus on sentence

processing[48], as well as the original framework proposal introducing abstract
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combinatorial structures[187].

A “Gating Circuit”, illustrated in Figure 1.3.A, is the most basic component

of the NBA, from which all other circuits are built. The main idea is that neural

activity would �ow from the assembly X to the assembly Y, but is blocked by

the Gate Keeper (GK) assembly, which is also excited by assembly X. So to

allow directional activity �ow from X to Y, a Control (Ctl) assembly has to

inhibit the GK assembly. Notice that it is trivial to extend the gating circuit for

bidirectional control of activity �ow as illustrated in Figure 1.3.B. Introducing

bidirectional conditional control signals is what gives the NBA the possibility

of implementing separately queries like ’what follows X?’ or ’what follows

Y?’.

Another basic mechanism of the NBA is a proposal for working memory

(WM). Persistent neural activity in response to stimuli is considered to be the

neural process underlying active (working) memory, and its implementation

is hypothesized to be based on excitatory reverberation[199]. Based on this,

the NBA considers a Delay Activity[45] mechanism as a biologically plausible

implementation of WM. It consists on a neural assembly, that after being

excited beyond a certain threshold, achieved by the coactivation of input

populations, will maintain a constant amount of activation for a short period

of time. By maintaining its activity, WM acts as a short lived bidirectional link

between two assemblies. This process can be equated to the creation of an

implicit pointer from one assembly to the other, such that future reactivation

of one assembly can be driven from the other to perform query operations.

The respective “Memory Circuit” is shown in Figure 1.3.B.

Two bidirectional “Gating Circuits” connected by a “Memory Circuit”

form a “Compartment Circuit” capable of implementing variable binding and

query operations. The key point of this circuit is that Main assemblies (MA),

representing grounded concepts or instances of variables types, activate Sub

assemblies (SA), if a control signal driven by another mechanism allows it.

Then co-activation of SAs is what realizes a temporary binding of MAs by

activating WM. So one “Compartment Circuit” models speci�cally the neural

activity of a variable binding operation. It is operated by a mechanism that

drives control signals simultaneously in multiple “Compartment Circuits”

to instantiate binary tree like data structures on which query/unbinding

operations can be performed later.

Finally, a “Connection Matrix”, portrayed in Figure 1.3.C, allows the

implementation of a complete “Blackboard”. It contains variable type relations

learned by the “Blackboard” as sets of mutually inhibitory “Compartment

Circuits” that enable the selection of the “Compartment Circuits” requested

by the control mechanism. We portray the “Blackboard” as a regular

grid for illustrative purposes, although there is already a proof of concept

implementation with randomly connected networks[189]. Also implementing

a general syntactic control mechanism should be feasible, as suggested

by the Feed-forward arti�cial neural networks employed in previous
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Figure 1.3: The Neural Blackboard architecture: A. Gating circuit that allows the implementation of conditional

neural activity transfer between Neural assemblies X and Y through a gate assembly. The gate keeper assembly (GK) is

activated by the X assembly and then inhibits the gate assembly (G). To let information �ow through the gate assembly,

a control assembly (Ctl) must therefore inhibit the gate keeper assembly. B. Architecture of a single compartment circuit

of a connection matrix. Six gating circuits are arranged in a way that makes conditional bidirectional neural activity

�ow between two main assemblies possible. Control assemblies regulate the direction of information �ow and allow

the activation of sub assemblies. The two sub assemblies excite the working memory assembly which, once activated,

encode the binding of the main assemblies and allow activation to �ow between them if the controls allow it too. C.

Each connection matrix contain n by m compartment circuits that encode the same relationship type between the

same pair of assembly categories. There are m available assemblies for one category and n available assemblies for the

complementary category and only one cell circuit can activate its working memory assembly to link two particular

assemblies due to mutual row and column inhibition of cells in the connection matrix. The size of the connection matrix

e�ectively represents memory limitations. A blackboard is composed of an arbitrary number of connection matrices

that encode di�erent relationship types for a pair of assembly categories. D. A blackboard is composed of multiple

connection matrices, where each of them is de�ned by two node categories and a relationship type between them. E.

Example of a possible tree structure that can be represented based on the speci�ed connection matrices.
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NBA simulations [188] and recent state of the art feed-forward network

architectures that have shown top performance for diverse language parsing

tasks [6]. Moreover a more recent proposed extension of the NBA, that imitates

the motor circuit of the marine mollusk Tritonia diomedea, shows how to

generate patterns for sequential activation control[191]. Simulating these

higher level mechanisms is a task out of the scope of this work, since we

focus speci�cally on reproducing the neural signatures of variable binding

operations.

Instantiation of symbolic representations with the NBA

The level of abstraction of the NBA allows to apply it to several cognitive

functions like motor control, attention and symbolic thought. In the case

of syntactic parsing during language comprehension, one needs a grammar

to specify the necessary variable type relations and some parsing scheme

to determine the bindings’ timing. In contrast to VSA, the NBA provides a

circuit with nodes that can be readily interpreted in terms of spiking neural

populations. This can be conceptually linked to the notion of cell assemblies,

whose existence and functional relevance, as computational units, is supported

on substantial biological evidence[95].

Applying the NBA to syntactic processing in language consists of two

simple assumptions. First, equating the parsing mechanism to the control

mechanism that coordinate binding events of words and word types and phrase

types. Second, determining the number of compartment circuits necessary to

instantiate a complete syntactic structure and the content of MA nodes from

a grammar theory. The NBA has the �exibility to test any arbitrary parsing

mechanism and an important variety of alternative theories of grammar based

on binary trees. For example dependency grammars that assume multiple

direct word bindings instead of the hierarchical phrase bindings modelled in

this work have been employed in previous simulations[188].

To understand how a sentence is processed in the NBA, let us consider

�rst the simplest case of binding two words, like “Sad student”, belonging

to grammatical categories instantiated in the MAs of one “Compartment

Circuit”, such that one MA is an “Adjective” corresponding to “sad” and the

other one is a “Noun” corresponding to “student”. The MAs activate with

timings corresponding to word presentation, re�ecting processing of the word

grammatical category. Then an assumed parsing mechanism determines that a

link operating on “Adjective” and “Noun” types is necessary in the blackboard,

driving activity in several “Compartment Circuits” from which only one, that

we consider as the recruited “Compartment Circuit”, completes co-activation

of SAs to drive WM and realize binding between the word types. To process a

complete phrase this process is repeated by recruiting more “Compartment

Circuits”, realizing an implicit representation in the cortex of the whole phrase

through the activation of the Working Memory neural assemblies.
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How Jackendo�’s problems are answered by the Neural

Blackboard Architecture

First, “The massiveness of binding” is addressed by instantiation of variable

types as assemblies that are bound to grounded concepts and other variable

types instances, allowing the creation of combinatoric structures on demand.

Second, “The problem of variables” is handled by the previously explained co-

activation mechanism capable of creating pointers from grounded concepts to

variable type instances. Third, “The Problem of 2” is managed by having

multiple neural assemblies that instantiate the same variable type in the

architecture but that can occupy di�erent parts of the same data structure.

Finally a working memory mechanism is provided, that allows transient short-

term co-activations of concepts to be maintained without interfering with the

possibility of storing related data structures in the long term in other parts of

cortex with other mechanisms.

1.4 Summary and comparison of themodelling approaches

On one hand Smolensky proposes that the brain employs explicit active

encodings, in neural units, of “uni�ed” data structures produced by tensor

products acting as binding operations on spatially stable, unique and linearly

independent neural unit vectors. These data structures can be later queried

with inner products acting as unbinding operations. The latter are resilient

to squashing functions, like those proposed by Plate, that can importantly

decrease the number of neural units necessary for the �nal representation

as the tensors increase in dimensionality with more complex structures.

Representations in this model can be completely distributed and nothing is

clari�ed about the encoding of parallel representations in memory. Smolensky

o�ers in great detail implementations of VSA with feedforward and symmetric

recursive ANNs[172] and has recently shown how to extend the framework

with an optimization scheme to instantiate input representational vectors[173].

Nonetheless, no important operational consideration is given to time, although

it is possible to employ it as a tensor for vector encoding purposes, as is done

for Synchronous Firing. This limits the neural dynamics predictions of the

framework and its interpretation with SNNs.

On the other hand the Neural Blackboard Architecture proposes that the

brain encodes complete symbolic structures implicitly, encoded by the activity

of short term memory mechanisms. A circuit of neural assemblies on which

neural activity �ows conditioned by control and memory mechanisms allows

both binding and query operations. Since the NBA explicitly de�nes the

architecture and operation of the circuits, it is straightforward to implement

them with SNNs. By representing the bound concepts as speci�c neural

assemblies the NBA induces local representations and by allowing arbitrary

selection of mutually inhibitory competing sub-circuits (Compartment circuits)
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makes the representations themselves dynamic and spatially unstable.

From the description of these models we can appreciate that they approach

the problem very di�erently, which motivates experimenting with both of

them. They employ di�erent practical neural implementations and simulations.

Also they assume di�erent properties of the internal neural representations

of concepts. In Table 1.1 we present together all the di�erent aspects of

both modelling approaches. Smolenky’s TPR relies mostly on spatial static

considerations of arti�cial neural units with explicit completely distributed

and spatially stable representations implemented through vectors, while the

NBA relies on temporal dynamic considerations of biologically based spiking

neural units with implicit semi-local and spatially unstable representations

implemented through neural assemblies. Another di�erence between models

is how they handle multiple parallel representations in memory. Smolensky

do not propose any particular mechanism, although using the same neural

units for this would work with the creation of memory slot roles. The NBA

handles parallel representations in memory explicitly, by keeping separate

neural assemblies assigned to each structure, but then its capacity is limited by

the size of blackboard and the dynamics introduced by the mutual inhibition

of compartment circuits in a connection matrix.

Aspect Smolensky’s TPR NBA

About modelling:

Neural simulation Arti�cial NN Spiking NN

Temporal dynamics Not included Included

Representation Neural unit vectors Neural assemblies

Parallel repr model Memory slot roles? Separate neural assemblies

Representation properties:

Declaration Explicit Implicit

Spatial stability Static (temporally stable) Dynamic (temporally unstable)

Locality Distributed or local Local

Operation implementation:

Composition of bindings Superposition (addition) Compartment recruitment

Binding Tensor product Working memory assembly activation

Unbinding Inner product Reactivation of bound neural assemblies

Table 1.1: Modelling approach comparison: We present all binding related

aspects studied in this work about Smolensky’s tensor product representations

and the Neural Blackboard Architecture.





2 Methodological background

In this chapter we provide a quick summary of methodological

details useful to better understand the superposition experiment analysis

(BOLD-fMRI related methodology) and the implementation of the Neural

Blackboard Architecture (neural simulation related methodology).

2.1 BOLD-fMRI

The BOLD-fMRI signal

The �rst studies of BOLD-fMRI, that showed how sensory stimulation

modulated a blood oxygenation level dependent contrast date back to

1992[146]. BOLD-fMRI is one of the most common neuroimaging techniques,

that captures non-invasively indirect measures of neural activity in a

whole brain volume, with a high spatial resolution (1-3mm3) and a low

temporal resolution (1-3 seconds). This technique takes advantage of the

fact that "ferrous iron on the heme of deoxyhemoglobin is paramagnetic,

but diamagnetic in oxyhemoglobin"[36]. This means that a strong magnetic

�eld can detect changes in the concentration of oxygen in the blood stream,

which is modulated by neural activity. The shape of the modulation of oxygen

concentration due to changes on neural activity is called the hemodynamic

response function (HRF). Boynton et al.[22] showed that a double gamma basis

function, applied with a linear regression model, could capture well the HRF.

Although the HRF can take up to 30 s to completely develop, it was shown that

the response of two stimuli add linearly if their presentation is separated by

at least 2 seconds[30]. We show an example double gamma basis function[76]

in Figure 2.1.
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Figure 2.1: Canonical Double

gamma basis function

(HRF)[76]: The HRF �rst shows a

quick increase from 1 to 5.2s, then

"undershoots", drops below baseline,

from 5.2 to 12.2s, and �nally comes

back to baseline from 12.2 to 30s.

BOLD-fMRI preprocessing

To acquire brain images, a subject is introduced in an MRI scanner and from

the pulse sequences of an acquisition protocol, images, formed by "voxels"

of a certain volume, for example 1.5mm3, are reconstructed. The obtained

datasets are preprocessed with a variety of pipelines, some of which have

been extensively evaluated[177]. Common pipeline steps are: slice timing
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correction, motion correction, spatial co-registration, spatial normalization

and spatial smoothing. Since the brain volumes are acquired by slices in

di�erent time points, it is necessary to extrapolate to a common time point

the measurements of all slices which leads to slice timing correction. Subject

movements during the acquisition have to be taken into account to build a voxel

time series that correctly represents spatial location, so motion correction is

implemented. Functional images that contain the BOLD signal are commonly

co-registered with a T1 anatomical scan of the subject to be able to extract

voxels corresponding to anatomical structures like gray matter and allow

normalization. Then anatomical images from subjects are projected into the

space of a reference image, such that group level activations can be estimated

by compensating an important portion of inter-subject variability[85]. Finally

and optionally, the resulting images are smoothed with a Gaussian kernel to

increase the local signal-to-noise ratio (SNR), due to spatial correlation of voxel

activations. More details on di�erent preprocessing steps can be consulted in

Lindquist review1. 1 M. A. Lindquist. The statistical analysis of
fmri data. Statistical Science, pages 439–464,
2008

E�ects estimation in univariate analysis

After preprocessing, traditionally BOLD time series are analysed with a

General Linear Model (GLM)[71]. This practice remained because it was

demonstrated that BOLD responses to stimuli add approximately linearly if

the stimuli presentation is separated for at least 2 seconds[30]. To �t the

GLM, a design matrix is produced in which di�erent conditions are modelled

with di�erent regressors. In each condition, the onsets and durations of the

corresponding events are modelled as a stepwise constant (boxcar) signal, that

is then convolved by an HRF like the one shown in Figure 2.1. In Figure 2.2 we

show the construction of an example design matrix with four conditions. A

GLM model, described by Equation 2.1 and illustrated in Figure 2.3, is applied

separately to each voxel.

0s 10s 20s 30s 40s 50s 60s 70s 80s

x0

x1

x2

x3

Individual task response
Stimuli presentation

Figure 2.2: Illustration of a

design matrix: Event onsets from

four fMRI experimental conditions

are convolved with the HRF to

approximate the BOLD response.

Y = X β + ǫ, (2.1)

The design matrix corresponds to the X in the GLM estimation and the β

(betas) corresponds to the estimated amplitude of the BOLD response of each

condition in a voxel. The betas of all voxels considered together are called
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Figure 2.3: GLMmodel: The signal

in each voxel is modelled as a linear

combination of the time series given

in the design matrix plus noise.

"beta maps", which are then employed to compare conditions across the brain.

The comparison is done by testing if a particular linear combination of betas,

called a contrast, is di�erent from 0. Staying with the four conditions example,

a contrast vector c ∈ R
4 would be de�ned as c = [+1, 0,−1, 0] to test in

which voxels there is a signi�cant positive di�erence between the �rst and

third conditions[114]. From this contrast, a t, z or F statistic map, normally

called statistical parametric maps, will be computed and then thresholded at

some level of p-value signi�cance to interpret the surviving spatial clusters

of activations in the brain. We illustrate the computation of the p-value for a

z-test in Figure 2.4.

Figure 2.4: Classical z-test: In

a z-test a gaussian distribution

provides the reference for which

we can estimate the accumulated

probability of a particular value α,

such that we can compute its p-

value.

Alternatively to this way of computing p-values, it is also possible to employ

non parametric approaches in which, under some theoretical constraints, we

can estimate the empirical distribution of the contrast of permuted condition

labels and observe the probability of the real labels on that distribution. More

details on the statistical analysis of fMRI data can also be consulted in Lindquist

review2. 2 M. A. Lindquist. The statistical analysis of
fmri data. Statistical Science, pages 439–464,
2008

Decoding of activation maps

The GLM mass univariate fMRI analysis is a forward model. Forward models,

also called encoding models, model brain responses following a stimulus.

Inverse models, also called decoding models, go in the opposite direction, they

predict stimuli from brain images. A scheme of these concepts is shown in

Figure 2.5.

Figure 2.5: Encoding and

decoding scheme: We provide a

scheme showing how decoding and

encoding models relate to brain

activations and stimulus.

With decoding models we explore the possibility that the spatial neural

activity patterns, re�ected in the amplitude of estimated BOLD responses in

voxels, carry distributed information beyond the overall activity of individual

voxels. This type of multivariate approach, has been very in�uential in the

analysis of fMRI data [192]. It was named initially as "multivoxel pattern

analysis" [143] and later as “multi-variate pattern analyses” [88]. It has been

shown that the relationship between stimuli and beta maps can be captured

appropriately by linear models, considering that non-linear models tend to

have a similar performance as the linear ones[136]. Moreover employing
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linear models can give better insights into how each individual feature (voxel)

contribute to the �nal prediction[87].

A commonly used decodingmodel in fMRI is linear support vector machines

(SVMs), that from a set of "support vector" points draw an hyperplane to

maximize the "margin" distance between the hyperplane and the nearest data

points from two classes of points. The SVM expresses the hyperplane as the

coordinates of a vector orthogonal to the hyperplane, such that the absolute

magnitude of each coordinate or "coe�cient" related to a feature (voxel) can

indicate how important the feature is for the separation of classes. In Figure 2.6

we illustrate a particular mathematical formulation of the SVM called NuSVM,

in which the number of support vectors selected by the algorithm is controlled

by the "nu" parameter in the model.

a) small nu

b) large nu

Figure 2.6: NuSVM example: We

present two classes as blue and

brown points. The NuSVM learns

a hyperplane, a line in this two

dimensional case, to discriminate

the two classes. The nu parameter

permits to regularize the algorithm

by controlling the number of

support vectors selected. For small

value of nu, few observations

are selected as support vectors,

while for a large value of nu, all

observations are selected.

A decoder is evaluated by its capacity to predict correctly a stimulus or

condition from a given set of voxel activations (from beta maps). In the case of

classi�cation of balanced conditions, the typical evaluation metric is accuracy,

computed from the number of correctly classi�ed samples over all samples.

Accuracy of a trained model should be evaluated on left out unseen data to

secure we correctly capture true generalization performance of the model. This

is necessary due to the risk of over�tting or over-learning the particularities

of the samples selected to train the model instead of the general trend.

A common procedure to select the best model, to optimize generalization

accuracy, is to perform K-fold cross-validation[7]. This procedure consists on

dividing the dataset in "K" data segments, such that iteratively a segment will be

left out as unseen data to evaluate the accuracy of a model, which was trained

on the rest of the data. The selection of model parameters (hyperparameters),

like nu in a NuSVC classi�er, should also be cross-validated to avoid the

introduction of a positive bias in the generalization accuracy of the model,

with a nested cross-validation scheme[33].

After we have estimated the generalization accuracy of the model, it

is desirable to be able to assess its signi�cance, in particular considering

the possibility of �nding accuracy scores slightly better than chance. This

veri�cation is important due to the possible biases and �uctuations that can be

introduced in the accuracy scores by noise in fMRI data and the small sample

sizes normally available. A typical procedure to achieve this is to randomly

exchange condition labels on the data points, to obtain permuted labels, and

train a new model on the permuted labels. The empirical distribution obtained

from the accuracy on the "N" permuted label sets allows to compute a p-value,

by assessing how extreme is the accuracy of the model trained on the real

labels.

Another problem we face with fMRI data is that of feature (voxel) selection.

Considering the curse of dimensionality, which explains that we need an

amount of samples that grow exponentially with the number of features

considered, and the small sample sizes commonly available, we are encouraged

to diminish the amount of features (voxels) considered by a model as much as
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possible.

There are two ways to deal with this problem. The �rst is by "�ltering",

which consists on selecting features based on some procedure unrelated to

the accuracy score of the trained model. A typical way of doing this in fMRI is

by ranking voxels according to scores obtained from univariate tests, like an F

test to detect any di�erence between all conditions in a voxel. The second is by

"wrapping", for which we consider subsets of features as an hyperparameter of

the model and then decide on the best subset in the same way that we would

select other hyperparameters of the model, by nested cross-validation.

2.2 Neural simulation

We assume that the Neural Blackboard Architecture (NBA) lives in the cortex,

and seek a good compromise between realistic modelling of the cortical

dynamics and the tractability of the simulation. State-of-the-art simulations

of larger cortical structures are based on point model neurons that allow the

inclusion of biological details such as synaptic dynamics and adaptation, but are

restricted to about the size of a cortical column [159]. For larger scale networks,

such as ours, a population-based approach is currently the only feasible

approach. The two choices are: rate based models or population density

techniques (PDTs). In rate based models, the population is described by a single

variable, usually related to the population �ring rate or average membrane

potential of neurons in the population. A prominent example is the Wilson-

Cowan equation [201], which describes the dynamics of the population activity

as a �rst order linear di�erential equation driven by inputs. Another example is

the Jansen-Rit model [100], which is primarily motivated by phenomenological

considerations. In both examples, the relationship with the underlying neural

state is unclear. We have opted for PDTs, also a population based approach,

but one where the relationship with the dynamics of a group of spiking point

model neurons can be made rigorous. Although they are computationally more

expensive than rate based models, they are easier to manage than a full-blown

model using spiking neurons, which would need hundreds of thousands of

neurons at the scale of the cortical network considered here. We will brie�y

set out the assumptions that we use in modelling populations and describe

the numerical methods involved.

Consider a leaky-integrate-and-�re (LIF) neuron, which is characterized by

a single state variable: the membrane potential. If the neuron has a potential

di�erent from its equilibrium potential, or when it experiences an external

drive, for example generated by a synaptic current, the potential evolves

according to:

τ
dV

dt
= −(V − Vrev) + I(t). (2.2)

Here V is the membrane potential in V, τ the membrane time constant in s,

Vrev the reversal potential and I(t) and external current, which may comprise
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contributions from other neurons in the form of spikes, and therefore may

be stochastic. If the membrane is driven far above the equilibrium potential,

at a potential Vth, the threshold, the neuron spikes. We assume it will be

inactive for an absolute refractive period τre f and then �nds itself reset to

the equilibrium potential after that. This scenario is easy to simulate: using a

simulator like NEST [74], or BRIAN [176], one can create populations of LIF

neurons. In the simplest case a population is driven by synthetically generated

input spike trains, where the spike train events are created by a random

generators. The default assumption is that inter-spike intervals are Poisson

distributed, although this can be extended to non-Markov processes [108]. It is

clear that I(t) in Eq. 2.2 now should be considered as a stochastic variable and

that the threshold crossings of LIF neurons themselves are stochastic events

as a consequence. Fig. 2.7 A demonstrates a simple scenario: a population

of 10000 LIF neurons, driven by a stochastic input - Poisson generated spike

trains, where each LIF neuron experiences about 800 input spikes per second.

The simulation shows a spike raster of the population response: �rst nothing:

although each LIF neuron receives input spikes and as a consequence has its

membrane potential driven up, none of the neurons have reached threshold;

then a spike volley: most neurons hit threshold at approximately the same time;

followed by a period of relative silence: only interrupted by a few stragglers;

at last a gradually achieved �nal neural state of asynchronous random �ring.

More complex networks can be formed by feeding the output spikes of one

population into other populations.

This is a fascinating but unwieldy process and statistical methods have

been used to describe it at the population level [175; 105; 150]. A population

is described by a density function, which expresses how the population is

distributed over state space. For LIF neurons this is a function ρ(V), where

ρ(V)dV is the fraction of neurons with their membrane potential in interval

[V, V + dV) (when we integrate the density function over a certain state

interval, we will refer to the result as the amount of mass in that interval).

The initial distribution of the neurons in the population must be chosen, but

the evolution of the density is tractable. It is clear that neurons move through

state space due to the deterministic neural dynamics, Eq 2.2 for LIF neurons,

and also go transitions due to the input spikes. The collective contribution of

the stochastic process to the evolution of the density pro�le can be modelled

using a Poisson master equation [73]; the contribution of the deterministic

dynamics can be modelled using an advection equation (see [150] for a lucid

explanation).

As a consequence, the process of simulating thousands of neurons is now

replaced by modelling the evolution of a density which is given by a single

equation:

∂ρ

∂t
−

1

τ

∂

∂v
(ρv) =

∫

dhp(h)ν(ρ(v − h)− ρ(v)), (2.3)
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Here p(h) is the distribution of synaptic e�cacies, ν the frequency of

the incoming spike trains, ρ the density function, t the time since start of

simulation and v the membrane potential. Mass that is being pushed across

threshold corresponds to neurons spiking; consequently the �ring rate of the

population can be calculated directly from the mass �ux across threshold.

E�cient and stable simulation methods are available [145; 44; 46; 96], and

remarkably, the process of solving Eq. 2.3 is computationally less expensive

for LIF neurons than the direct simulation using NEST [145]. The process of

keeping track of a single density function, and the communication between

populations using �ring rates rather than individual spikes, frees the modeller

from keeping track of thousands of spikes per second and leads to simpler

simulations. Figure 2.7 shows the very close correspondence between direct

simulations of LIF spiking neurons and population density results. It shows,

�rst, that the simulation results indeed are very close to that of the spiking

simulation, and second, that Wilson-Cowan dynamics must be tuned in a way

that PDTs do not: the correct steady state activation must be provided to the

Wilson-Cowan dynamics in the form of a sigmoid, while in PDTs the correct

steady state �ring rate is calculated from �rst principles - input �ring rate,

synaptic e�cacies and neural parameters - without any need for tuning.

The population density formalism can be extended to higher dimensional

models. For example, the adaptive-exponential-integrate-and-�re neuron

(AdEx) [27] is a two dimensional model that has the membrane potential

and an adaptivity parameter as a variable. Consequently, the state space is

two dimensional. The motivation behind this model is that �rst, it includes

adaptation, and second that it is the e�ective approximation of the complex

conductance-based processes that take place in a real neuron. The equations

of the model are:

We consider the AdEx model as presented by Brette and Gerstner [27],

which describes individual neurons by the following equations:

Cm
dV

dt
= −gl(V − El) + gle

(V−VT )
∆T (2.4)

τw
dw

dt
= a(V − El)− w

Where Cm is the membrane capacitance, gl the leak conductance, El the

leak potential (equivalent to the reversal potential for the LIF), VT a threshold

potential, ∆T a shape parameter for the spike, τw the adaptation time constant,

a the subthreshold adaptation parameter, V the membrane potential and w

the adaptation parameter. Upon a spike, the neuron is undergoes a transition

in w: w → w + b, where b is the spike adaptation parameter. We use the

parameters given by Brette and Gerstner (2005).

We illustrate the dynamics of the neuron in Fig. 2.8. The direction of the

dynamics is shown by arrows, the speed of the dynamics by the size of the cells:

big cells implies fast dynamics as the cells represent equidistant time steps.

This shows that at w = 0 dynamics are leaky, i.e. towards the equilibrium,
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Figure 2.7: LIF dynamics: A. A spike raster showing an LIF population undergoing a jump response. Neurons are at

equilbrium at t = 0. From t = 0 each neuron receives a Poisson distributed input spike train (λ = 800 Hz, h = 0.03,

i.e. an input spike raises the PSP by 3% of the di�erence between threshold and equilibrium potential, τ = 50 ms,

following [150]). B. Firing rate calculated from the PDT method (solid curve), compared to �ring rate from spiking

neuron simulation (red markers). C. The density calculated by the PDT method (solid curve) at t = 0.3 s, compared

to a histogram of the membrane potential over the population at the same time. D.Wilson-Cowan prediction for the

�ring rate, compared to PDT result. Importantly, Wilson-Cowan output must be tuned: the steady state value to which

it converges is not predicted by the Wilson-Cowan equations, but must be provided as a sigmoid. In contrast, the

PDT method calculates the �ring rate from �rst principles, and agrees well with the spiking neuron simulation, within

statistics.

except at high values of V, on the right, which corresponds to spike generation.

At high values of w, there are two e�ects: stronger leak (larger cells) and a

lower (more negative) equilibrium potential, which makes it harder for a cell

at high w to be driven across threshold, precisely the e�ect one expects due

to adaptation. At low w, the opposite happens: cells become more excitable.

For very low w values, which can not be reached under cortical conditions, at

least not for the parameters we used, there is the theoretical probability of a
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Overview of AdEx dynamics.

Right: a heat plot of the density

pro�le during simulation. On the
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the adaptivity parameter. Note

that the right �gure constitutes

a considerable reduction of state

space compared to left. For the

connectivity parameters we use, the

state space on the right is the part of

state space reachable by dynamics.

rebound (neuron always spikes).

A density function now lives in this two dimensional space: ρ(V, w). The

evolution equation is a direct generalization of Eq. 2.3. For a model with n

state variables ~V, a point model takes the form:

τ
d~V

dt
= ~F(~V) (2.5)

and the density equation:

∂ρ

∂t
+

∂

∂~V
·
(~Fρ)

τ
=

∫

dhp(h)ν(ρ(~V −~h)− ρ(~V)) (2.6)

, where~h represents the e�ect of an input spike.

We represent the density function by a heat plot on state space: the highest

values or white, low values are red. We are able to simulate the density function

by a method analogous to that of [47; 96], generalized to two dimensions. In

Fig. 2.8 we show the result of a simulation: the density function as a �xed

point in time. As before, we can calculate the �ring rate of the population by

calculating the the �ux across threshold (which is still given by V = Vthreshold,

i.e. the right hand side of the grid).

The simulation software, MIIND, is publicly available3. The LIF version of 3 http://miind.sf.net

the algorithm has been available for some time [49], while the two dimensional

version has become available recently.

http://miind.sf.net




3 Objectives

Bridging the gap between experimental neuroimaging evidence and the

available modelling solutions to binding, is a crucial step for the advancement

of our understanding of the brain computation and representation of symbolic

structures. From the recognition of this problem, the goal of this PhD became

the identi�cation and experimental test of the theories, based on neural

networks, capable of dealing with symbolic structures, for which we could

establish testable predictions against existing fMRI and ECoG neuroimaging

measurements derived from language processing tasks.

We identi�ed two powerful but very di�erent modelling approaches to

the problem: Smolensky’s tensor product representations and the Neural

Blackboard Architecture (NBA). In the case of Smolensky’s tensor products,

we considered the superposition principle to be one of its crucial assumptions,

so we decided to acquire a new fMRI dataset to test it in di�erent brain regions.

In the case of the NBA, we built a new simulation to be able to perform

predictions on the temporal dynamics and spatial patterns of binding observed

in the neuroimaging literature.

Objectives outline:

1. Test the superposition principle of Smolensky’s tensor product

representations with BOLD-fMRI

(a) Design experimental manipulation for the acquisition of a two-syllabic

pseudoword representations BOLD-fMRI dataset.

(b) Extract pseudoword representation patterns with traditional univariate

techniques

(c) Develop tests with decoding algorithms to provide evidence in favour or

against superposition in brain Regions of Interest and study the locality

of those representations.

2. Test the neural activity and temporal dynamics predicted by the

Neural Blackboard Architecture

(a) Implement a compartment circuit simulation with spiking neural

networks employing population density techniques
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(b) Tune the implemented circuit only for correct binding operation

(c) Generate the neural activity of selected stimuli from fMRI and ECoG

experiments

(d) Evaluate the qualitative similarity between the NBA circuit predictions

and the results reported by the fMRI and ECoG experiments



Part II

Testing the superposition

principle with bi-syllabic

pseudowords
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4 The superposition principle with BOLD-fMRI

In this chapter we introduce the problem of testing the superposition

principle, that depend on Smolensky’s tensor product representations,

with BOLD-fMRI and how bi-syllabic pseudowords are modelled.

4.1 BOLD-fMRI interpretation of superposition and

vectorial representations

The superpositionprinciple: In Smolensky’s Integrated Connectionist/Symbolic

architecture (ICS)[172], the neural activation of a symbolic structure is given

by the union of the Filler/Role bindings belonging to the symbolic structure.

The set of Fillers that can be assigned, as well as the set of Roles will depend

on the modelled stimuli. We could consider for example phonemes as Fillers,

to be assigned to node positions in a tree structure as Roles, to �nally form

morphemes and words as the resulting symbolic structure. Smolensky

proposes to employ the linear operation of addition as the union operator of

the bindings, such that the neural activity of an abstract symbolic structure is

given by Equation 4.1. We present a concrete example in Equation 4.2, where

the word "cat" is formed by adding the bindings of the phoneme Fillers "k",

"ae" and "t", with their respective positional Roles in a tree structure.

Structure = Filler1 ⊗ Role1 + ... + Fillern ⊗ Rolen, Abstract representation

(4.1)

Scat = Fk ⊗ R0 + Fae ⊗ R10 + Ft ⊗ R11, Example word

(4.2)

S f igu = Ff i ⊗ Rle f t + Fgu ⊗ Rright, Example pseudoword

(4.3)

In this work we will consider pseudowords composed of the combination of

two syllables of one consonant and one vowel (CVCV). We present in Equation

4.3 the modelled representation of the pseudoword "�gu" as an example.

Moreover in Figure 4.1 we show the BOLD-fMRI interpretation of neural

vectors. The main idea is that BOLD activity in voxels is meant to represent
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the aggregated neural activity of a set of neural units from the representations

neural vectors. Aggregation of neural activity implies an important loss of

information that could impede decoding of the representations if the values of

neural activations are similarly distributed in di�erent segments of the neural

vector established for each voxel.

Figure 4.1: Illutration of

superposed tensor product

representation in BOLD-fMRI:

We present the example neural

vectors of the syllables "na"

and "gu" bound to the left and

right positions of a bi-syllabic

pseudoword. We illustrate how

the level of BOLD activity should

re�ect the aggregated activity

of a segment of the neural units

that form a representation. The

superposition principle consists

on the sum of the vector values

from each binding, to obtain the

�nal total activity in a voxel. The

voxel values of the pseudoword

"nagu" correspond to the plots of

the neural vectors and those of the

pseudoword "guna" were derived in

a similar way. Due to the e�ect of

aggregation, only one voxel in the

example permits di�erentiating the

two pseudowords.

Stability, uniqueness and intrusion of vectorial representations: An

important assumption behind tensor product representations is that the

hypothesized Filler and Role vectors have been learned by the cortex and

are �xed to a speci�c set of neural units and values. Nonetheless there are

some biological and theoretical factors that could go against this assumption.

It is known that there is state-dependent adaptation in the cortex[103] and

�ring thresholds can be altered according to arousal state[129], which can also

complexify the behavior of neurovascular coupling[101; 125]. Moreover there

is evidence for the existence of cell assemblies in parts of the cortex, like the

hippocampus, where neural spiking is importantly a�ected by local network

interactions[86], and the formation and dissolution of dynamic cell assemblies

have been demonstrated during cognitive processing[24].

These possibilities could increase importantly the variability of the unit

neural activity or even imply the existence of more than one pattern assigned

to a particular Filler or Role vector. An analogy of how this type of e�ects

would operate against pattern identi�cation is changing gaze position with

respect to visual stimuli presentated on a screen. Not accounting for gaze

position would give the impression of multiple representation patterns for
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the same image, even though retinotopic representations are very stable and

precise relative to other activations in the cortex, because the activation vectors

would change spatial location (change neural units) from trial to trial.

Smolensky also proposes that the neural activation vectors of the Fillers

and Roles should be linearly independent in the best case to allow for exact

unbinding operations in the cortex, although linear independence is not a

strict demand, because there is a graceful degradation as the correlation

between vectors increases on a distributed representation. Nonetheless even

if it was the case that underlying distributed neural unit representations

were linearly independent, this do not imply that the aggregated activity

of arbitrary segments of those neural units would remain independent, or

even di�erentiable from each other to the necessary degree to detect it with

the signal to noise ratio of the BOLD signal. For example in Figure 4.1 we

illustrate the possibility of not being able to di�erentiate the pseudowords

"nagu" and "guna" in their voxel activations, which was the case of Voxel 2

in the plot, even though their underlying Filler and Role neural vectors are

linearly independent.

Locality and sparsity of vectorial representations: The tensor

framework proposed by Smolensky allows for the possibility of completely

distributed representations and encourages it, since distributed representations

have several advantages in terms of pattern generalization and memory

e�ciency over local representations. From the neurobiological point of view,

it seems likely that there are broadly distributed representations when we

are able to �nd with coarse random sampling neurons tuned to speci�c

experimental stimuli. Consider for example the work by [4], that characterizes

the receptive �eld of a set of sampled neurons to moving dots. Spatially

broadly distributed representations would be an advantage for BOLD-fMRI

detection of neural patterns, since it increases the amount of voxels that would

contain information about the patterns. Nonetheless this would only be the

case if the spatial distribution of activation values across neural units is not

uniform, such that we can capture higher random spatial di�erences between

the aggregated activity patterns of the neural units.

Another property that would help pattern identi�cation with BOLD-fMRI

is having enough sparsity in the distributed representations to augment

di�erences in the aggregated activity or even cause semilocal representations.

A trivial example of semi local representations would be the inversed

hemispheric retinotopic projections of the visual information shown to the

di�erent eyes. From the neurobiological point of view, it seems likely that

there is certain degree of sparsity. Olshausen et al. shows how a coding

strategy that maximizes sparseness is su�cient to account for important

properties of the mammalian primary visual cortex, which are considered to

be spatially localized, oriented and bandpass, comparable to the basis functions

of wavelet transforms[149]. In the neuroscienti�c literature the actual degree
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of sparseness related to neural representations is still debated, sometimes even

only one neuron is found to be responsive to very speci�c stimuli, giving rise

to the hypothesis of grandmother cells. An interesting debate on this account

is developed by Bowers et al.[21], in which it is made clear that the degree of

sparsity observed depends on the experimental stimuli de�ned and will vary

across neural areas. The neural sampling methodologies employed so far in

humans have not been able to completely characterize the degree of sparsity,

because they are still not capable of capturing the separated neural activity of

complete local neural populations.

Stimuli selected to test superposition on syntactic operations: There

are few explorations in the neuroimaging literature about composition

operations. Additive models of composition for sensory stimuli, similar to

the superposition principle in tensor product representations, have been

tested with multi unit neural recordings in monkeys. It seems that the

composition operations employed by the brain depend importantly on the

features considered. For example in the monkey’s inferotemporal cortex,

evidence was provided for conjunctive non additive models in the case

of shapes composition[10], but when considering jointly shape and color

in the same region, evidence for linearly additive composition was found

instead[131].

More work has been done with sensory stimuli on other animal models,

but testing speci�cally for symbolic representations is more complicated due

to the limited measurement techniques that we have for the human brain. In

the case of BOLD-fMRI there are already some studies employing a variety

of machine learning techniques, that have tried to approach the problem in

di�erent cognitive domains. Decoding methods, classifying stimuli conditions

from BOLD signals, have been used to demonstrate a compositional code

similar to superposition for rule representations in the human prefrontal

cortex[165]. In the case of language, Mitchell et al. tested an additive model

of semantic features with encoding models, that predicted the BOLD brain

images associated to English nouns[137], but no similar work has been done

for syntactic features yet.

In this work we were interested in testing the additive model proposed by

superposition on syntactic operations of language, which in most levels of

language processing are hypothesized to depend on hierarchical tree structures.

The idea of assuming positional Roles representing nodes of trees is relatively

uncontroversial at the phonological and morphological level of language

processing and previous work have been successful in characterizing the

neural representations of isolated syllables with BOLD-fMRI[62]. Moreover

several neural activity e�ects spread in the fronto-temporal language network,

linked to phonological manipulations and pseudowords processing, have been

reviewed in various metanalysis[195; 178]. Taking all this into account, we

decided to test superposition of the syntactic representations of bi-syllabic
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pseudowords with decoding techniques in BOLD-fMRI, for which modelled

representation examples were given in Equation 4.3 and Figure 4.1.

4.2 Fromneural unit recordings toBOLD-fMRImeasures

of aggregated activity

In Smolensky’s Integrated Connectionist/Symbolic architecture (ICS)[172], the

implementation of symbolic representations is done through the activation of

neural units that form part of a neural network. This means that Smolensky’s

tensor product representations have a straight interpretation on the spiking

activity of Multi Unit Activity recordings (MUA) of neurons.

To test properties of Smolensky’s proposal with other neuroimaging

techniques like BOLD-fMRI, that re�ect aggregated neural activity, it is

important to verify that there is a linear mapping between the underlying

neural activity and the aggregated activity. So we need a correspondence

between the spatial location and neural activity values with respect to single

neural unit measurements. Moreover, since in this work we want to test the

additive model brought forward by superposition, it is important that the

mapping from neural activity to BOLD remains approximately linear.

Regarding spatial localization of the signals, Siero et al. studied the spatial

properties of the hemodynamic (BOLD) signal at 7T and recon�rmed its spatial

correspondence with intracortical (ECOG) time series in the motor cortex for

a �nger tapping task[171]. They managed to decode spatially the tapping of

di�erent �ngers and found that the spatial correlation between signals for the

di�erent �ngers is high (on average R=0.54) and their maxima co-localized

within 3 mm distance.

In the case of the mapping of neural activity values to aggregated activity,

Cardoso et al. designed a visual task, in which drifting sine-wave gratings were

presented passively to monkeys during 3-4 s while they �xated[32]. With this

task they demonstrated high predictability (0.94 R squared) of a component

of the BOLD hemodynamic response, the cerebral blood volume (CBV), from

direct neural measurements (MUA and LFP). Nonetheless the BOLD signal

itself is more complex, it depends on the coupling between cerebral blood

volume (CBV), cerebral blood �ow (CBF) and oxygen concentration measures

(CMRO2), where the last two have been linked to adaptation and other non-

linear e�ects[139]. For example Toyoda et al.[181], employing chequerboard

visual stimuli with durations between 1 and 8 seconds, showed that the

contribution of the oxygen extraction fraction (OEF) to the BOLD signal,

which is a measure related to CMRO2, can be four to seven times greater than

the contribution attributed to the CBV under the range of plausible parameters

of neural activity and adaptation. But they also showed that the contribution

ratio of OEF over CBV can be compensated with the experimental design,

since the ratio decreases as the duration of the stimuli increases.

Despite this complexity of the BOLD signal, a consensus is emerging on a
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linear relationship for long duration stimuli of enough intensity[8; 9; 29; 89;

110; 124; 152; 184]. Important exceptions exist, but often they are related to

sensory stimuli of short-duration[5; 174; 193; 204], or low-intensity that do

not overcome the activity threshold necessary to generate an hemodynamic

response[193]. For example, strong evidence of a linear relationship between

BOLD and MUA, for long-duration sensory stimuli with varying stimulation

frequency, was provided by Devonshire et al.[53]. They studied regions

inside and outside of the cortex and demonstrated the e�ect with electrical

stimulation of the entire whisker pad on the left of a rat’s snout, during 40

s with di�erent pulse frequencies. All the mentioned evidence points to the

idea that it is reasonable to interpret and test neural unit level representations

with BOLD-fMRI, as long as temporal variables of the experimental design like

length of stimulation or inter-stimuli intervals are manipulated to minimize

the in�uence of BOLD non-linearities.



5 The syllables superposition experiment

In this chapter we present the two tasks of the experimental design,

the Bold-fMRI data acquisition, preprocessing and processing, and

the analysis methods employed to assess the likelihood of superposed

representations in the Regions of Interest considered.

5.1 Experimental design

Participants: Five native French speakers participated in the experiment

(two females with ages 22 and 32 and three males with ages 23, 26 and 36). All

subjects had high school background from French universities (Bac) and were

right handed with a Laterality Quotient (LQ) of at least 40 (mean 70, SD 20.98),

as measured by the Edinburgh Handedness Inventory[147]. The experiment

was conducted at the NeuroSpin center and all subjects came on four di�erent

days, for a total of four scanning sessions. The experiment was sponsored

by the Unicog lab U-992 in NeuroSpin, and received ethical approval by the

regional ethical committee (Comite de Protection des Personnes, hopital de

Bicetre). All subjects gave written informed consent and received 80 euros for

their participation.

Introduction to the experimental design: Two experimental designs

were developed; a language localizer[118], to identify in each subject language

processing regions, and a pseudoword representations design to obtain brain

representations of the syntactic union of two syllable combinations devoid

of semantic content. All experimental tasks were implemented with python

scripts exploiting the capabilities of the Expyriment python library[107].

For both designs, visual and auditory sensory modalities were used for

stimulation, since in language regions we aim to �nd abstract representations

insensitive to sensory modality. Visual Stimuli consisted of text, projected

one word at a time in rapid serial visual presentation (RSVP), on a translucent

screen with a digital light processing projector (PTD7700E, panasonic, frame

rate: 60 Hz, resolution of 1024 x 768), with a viewing distance of 89 cm.

Auditory Stimuli were delivered through MRI-compatible headphones (MR

confon), and the volume was adjusted for each participant to a comfortable



48 martín pérez-guevara

hearing level.

Language Localizer

Stimuli: The stimuli consisted in blocks of three phrases and blocks of three

non language stimuli that varied in implementation with the sensory modality.

These blocks were presented in an alternated fashion with the purpose of

extracting brain areas processing language from the contrast of these block

categories[118]. Visual stimuli was text presented in the screen with a �xed

point Inconsolata font1. The text comprised 0.72 degrees of vertical visual 1 https://fonts.google.com/specimen/Inconsolata

angle and a maximum of 5.8 degrees of horizontal visual angle, with the

longest word having 14 letters. The visual non language stimuli was formed

by replacing words in the phrases with consonant strings, for example "the

cat" could be replaced by "ztr pfg". Auditory stimuli consisted on the same

phrases digitally recorded at 22.05 kHz in a quiet room by a male speaker.

Phrase recordings had a mean duration of 2.33 seconds (SD, 0.41 s), giving a

total average duration of 7 seconds for a block made of three sequences. To

generate the control auditory non language stimuli, the phrase recordings

were scrambled with the multiband approach suggested by Ellis and Lee[60],

but with python code using the Brain Hears software[66].

Task and trial structure: The subjects were instructed to read or listen

attentively to all stimuli presented. Each trial consisted on presenting one of

the blocks designed, which were the grouped phrases or non language stimuli.

Each block contained three phrases or three consonant strings, the �rst made

of 9 units, the second of 10 units and the last of 9 units. A �xation cross was

presented before the presentation of each phrase or string, for 500 ms, followed

by a blank screen for 500 ms. In the visual case, each text unit was presented

regularly for 200 ms, which is not the case in the auditory modality that has

variable sequence duration. Between the presentation of the three stimuli a

blank screen was presented for 600 ms. At the end of the presentation of the

three stimuli a blank screen was presented for 7 seconds waiting for the next

trial (the next block). There were 4 runs of acquisition and in each of them 90

trials were presented. In Figure 5.1 we show an example of a sequence in the

visual modality.

CVCV Pseudowords presentation

Stimuli: The "CV" syllables "�", "gu" and "na" were selected to form all

possible "CVCV" pseudowords from their combinations: "��", "�gu", "�na",

"gu�", "gugu", "guna", "na�", "nagu" and "nana". These syllables were selected

under two constraints. The �rst was that all syllabic combinations could

not lead to word formation, such that we could assume similar sensory

and language processing of symmetric representations like "�gu" and "gu�",

expecting only syllable position e�ects. The second was that we wanted to
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Figure 5.1: Visual trial of the

language localizer: Each black

square represents the screen at

a di�erent time point. Only

one example phrase and consonant

string is shown, which comprises

only one third of a block stimuli.

improve auditory discriminability, so we maximized the featural distance

between consonants and between vowels. We selected one velar consonant

"gu", one labio-dental "�" and one alveolar "na" with their respective high-back

tongue "u", high-front tongue "i" and low-back tongue "a" vowels. The e�ect of

featural distances in auditory representations was demonstrated in the cortex

by the work on phonetic organization of spatial patterns of Bouchard et al[20].

The pseudowords were presented in a visual and auditory modality. In

the visual case they were presented as text in the screen with a �xed point

Inconsolata font. We decided to make the text as big as possible to increment

expected retinotopic e�ects but also tried to avoid the stimuli perception to

be too tiring for the subjects, so �nally the pseudowords were presented as

lower-case text centered on the screen, spanning maximum 2.39 degrees of

vertical visual angle and maximum 5.05 degrees of horizontal visual angle.

For the auditory stimuli, three tokens of the syllables ’gu’, ’na’ and ’�’ were

recorded at 22.05 kHz in a sound-proof room by a male speaker. They were

edited to have the same duration, by cutting some of the periods inside the

vocalic part. They were then concatenated to generate the nine bisyllabic

experimental stimuli. These stimuli all had a duration of 660ms. Probe stimuli,

required by the task, consisted on smaller upper-case text spanning 0.6 degrees

of vertical visual angle and 1.68 degrees of horizontal visual angle for the visual

modality and modi�ed recordings of the syllables with 10% higher pitch for

the auditory modality.

Task and trial structure: The task consisted on keeping the pseudowords

in memory for a possible comparison with a second pseudoword. The

instruction given to the subjects was to �xate a green dot and to keep in

memory a following pseudoword, until the arrival of a red dot that signalled
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the end of the trial. From time to time the subjects had to make a comparison

with a second pseudoword presented in the middle of the trial, in which

case, con�rmation of a positive match was indicated with a right hand button

press and of a negative match with a left hand button press. We included the

matching task to make sure subjects were complying with the task and paying

attention to the stimuli, but we did not include a matching task on each trial

to try to maximize the amount of stimuli presented in a session.

We show the structure of a trial from the visual modality in Figure 5.2.

The green dot appeared for 0.5 seconds followed by a �ashing presentation

of the pseudoword, in the visual case, to be kept in memory for 3.2 seconds

with a 0.25 seconds jitter. We decided to present the visual pseudowords for

only 0.2 seconds to minimize the in�uence of saccades in the estimation of

brain activations. The pseudowords were �ashed twice for 0.1 seconds to

increase visual response. In the matching task trials, the second pseudoword

was presented for 0.5 seconds followed by a response and rest period of 6.5

seconds. At the end of the trial the red dot was presented for 0.5 seconds

followed by a 2.5 seconds resting period. Each imaging run consisted of 45

trials (5 per pseudoword), where the order of presentation of the pseudoword

conditions was shu�ed. In total there were 8 runs in a session, with two

auditory sessions and two visual sessions, for a total of 80 trials per condition

per modality. Only nine trials were randomly selected to contain a second

pseudoword to perform a matching task. In the auditory case the trial structure

is identical except for the 660 ms duration of the pseudowords recordings, in

which case the memory time was reduced to 2.8 seconds to have the same trial

total duration as in the visual case.

Figure 5.2: Visual trial example

of the pseudoword matching

task: A green dot is presented for

500 ms, followed by a pseudoword

�ashed twice for a total presentation

duration of 200 ms. It has to be

kept in memory for a period of

3200 ms with a 250 ms jitter. Nine

times in a run a second upper-

cased pseudoword is presented for

comparison during 500 ms with a

response period of 6500 ms.

5.2 Data acquisition and processing

Imaging: The acquisition was performed with a 3 Tesla Siemens Prisma

Fit system equipped with a thirty two channels coil. Anatomical images

were taken using a 3D Gradient-echo sequence and voxel size of 1x1x1 mm.

Functional images were acquired as T2*-weighted echo-planar image volumes

(Multi-Band EPI C2P fromMinnesota University). TheMultiBand EPI consisted

on the parallel acquisition of 4 slices at a time, reconstructed by a parallel

imaging reconstruction algorithm[34]. Eighty transverse slices covering the
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whole brain were obtained with a TR of 1.5 s and a voxel size of 1.5 x 1.5 x

1.5 mm (TE = 26.8 ms, �ip angle = 70, no gap). Moreover accurate timing

of stimuli presentation relative to FMRI acquisition was achieved with an

electronic trigger at the beginning of each run.

Acquisition sessions: Each subject had four sessions of scanning with a

similar structure. The �rst two sessions included the visual version of the

pseudoword matching task and the last two sessions the auditory version.

Each scanning session lasted 78 min and 6 sec with an anatomical scan and 10

functional runs structured as follows:

1. Anatomical T1 (1 volume, 7 m 46 s)

2. Pseudoword matching task "Visual/Auditory" (253 volumes, 6 m 54 s)

3. Pseudoword matching task "Visual/Auditory" (253 volumes, 6 m 54 s)

4. Pseudoword matching task "Visual/Auditory" (253 volumes, 6 m 54 s)

5. Pseudoword matching task "Visual/Auditory" (253 volumes, 6 m 54 s)

6. Language localizer task "Visual" (435 volumes, 11 m 27 s)

7. Pseudoword matching task "Visual/Auditory" (253 volumes, 6 m 54 s)

8. Pseudoword matching task "Visual/Auditory" (253 volumes, 6 m 54 s)

9. Pseudoword matching task "Visual/Auditory" (253 volumes, 6 m 54 s)

10. Pseudoword matching task "Visual/Auditory" (253 volumes, 6 m 54 s)

11. Language localizer task "Auditory" (435 volumes, 11 m 27 s)

Data preprocessing: The OASIS-30 Atropos template atlas from

Mindboggle2 was used as reference for normalization and segmentation 2 http://www.mindboggle.info/data.html

of the subjects anatomy. The methodology behind this atlas is based on state

of the art algorithms from the Advanced Normalization Tools (ANTS) and a

cohort of 101 manually segmented subjects, giving very precise probabilistic

maps and anatomical ROIs[104]. A transformation between this template and

one provided by ICBM in MNI space was also performed for MNI coordinate

reports and visualization. The ICBM 2009a Nonlinear Asymmetric template

was considered[42].

After normalization and segmentation of each subject anatomy. The

functional runs of all tasks were slice timed with SPM with reference to the 1st

slice (default SPM behavior) and realigned with respect to the 3rd volume of

the �rst acquired run of the �rst session. Realignment was performed with FSL

MCFLIRT algorithm and co-registration was also performed with FSL but with

the FLIRT algorithm employing a boundary based registration that takes into

account previously performed white matter segmentation of the anatomy[79].

All preprocessing steps were implemented with the Nipype software[78].

Data processing: Two General Linear Model (GLM) estimations were

performed, one on the non-smoothed, non-normalized and realigned

functional images and the second on the smoothed version of the same
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images, with a 6 mm Gaussian kernel. The non-smoothed beta maps derived

were employed for decoding, while the smoothed beta maps were employed

for parametric statistical tests. The GLM was implemented with the Nistats3 3 https://github.com/nistats/nistats

software, which is part of the Nipy and Nilearn[2] ecosystem. A glover HRF

was employed for the estimation with an additional cosine drift model to

high-pass �lter above 1/128Hz.

The language localizer was modelled with two regressors for the block

conditions, alongside motion regressors extracted from the realignment

preprocessing step. Statistical estimation of a contrast between the two block

conditions was performed on the smoothed images to extract the language

network.

In the case of the pseudoword matching task, each pseudoword condition

was modelled with one regressor, alongside left and right motor events derived

from the behavioral responses and motion regressors extracted from the

realignment preprocessing step. The condition beta maps corresponding to the

smoothed images were employed for statistical estimation of motor contrasts

and syllable position e�ects, for which a �xed e�ect model was considered

across runs and sessions in each subject. To obtain statistical e�ects of syllable

position, we modelled the conditions as two factors (left and right position),

with three levels (syllables �, gu and na). We estimated contrast vectors for

the e�ect of left position, e�ect of right position and interaction of left and

right positions, by employing the contrasts vector speci�cation procedure of

Henson and Penny[91].

It has been shown that taking into account trial-to-trial variability is

desirable for multivoxel pattern analysis (MVPA)[1; 140]. As we wanted to look

into the representational patterns of the di�erent pseudowords, we decided to

also estimate one beta map per trial, following the same methods employed for

beta-series analysis[40]. This is also desirable to capture attention modulated

variability in the voxel patterns of the pseudowords, since the task do not

allow us to verify the processing integrity of each trial but only to motivate

subjects engagement.

5.3 Data analysis

All data analysis was performed employing diverse Python scienti�c open

source libraries[148]: Numpy[198], Pandas[130], Matplotlib[93], Ipython[156],

Scikit-Learn[155] and the neuroimaging library Nilearn[2].

Regions of Interest (ROIs)

Sensory-Motor regions: In Figure 5.3 we display the contours of primary

sensory-motor regions, taken from the cytoarchitectonic SPM toolbox[59],

projected on the anatomy of Subject 1 alongside the gray matter mask, the

brain glass template contours were adapted to the T1 anatomy of the subject.
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Notice that the primary regions are broad, since we considered any voxel with

non zero probability to be part of the region, and cover both hemispheres.

L R

Visual hOc1 region
Auditory Te10 region
Auditory Te11 region
Auditory Te12 region
Motor 4a region

Figure 5.3: Sensory-motor

regions projected on Subject 1

anatomy: Contours are shown

for the projected primary Visual,

Auditory and Motor regions,

alongside the subject extracted gray

matter. The brain glass template

contours were adapted to the T1

anatomy of the subject.Language regions: Two sets of language regions were selected for the

analysis. The �rst set of regions, shown in Figure 5.4, was selected to evaluate

the quality of the language localizer contrasts from a study done by Mahowald

and Fedorenko[118]. In this study activation parcels were derived from similar

language localizer acquisitions in hundreds of subjects, covering the whole

fronto-temporal language network.

L R

PostTemp
AntTemp
AngG
IFG
IFGorb
MFG

Figure 5.4: Language localizer

parcels projected on Subject 1

anatomy: Contours are shown

for the projected language localizer

parcels reported by Mahowald and

Fedorenko. The brain glass template

contours were adapted to the T1

anatomy of the subject.
The second set of regions is shown in Figure 5.5. Diverse regions, also

covering the fronto-temporal language network, that have been directly linked

to binding or constituency e�ects, from di�erent sources, were selected to

facilitate the analysis and interpretation of the results4. 4 Besides the ROIs �nally considered, we
explored peaks of pseudoword phonetic and
morphological e�ects from various meta-
analysis[195; 178]. The e�ects reported were
numerous and spread across thewhole fronto-
temporal network. We veri�ed that the
ROIs covered most of the e�ects and opted
to perform the analysis in a smaller set of
bigger ROIs than what would be obtained
from spheres centered at the reported e�ect
peaks. It could be argued that we are missing
speci�c e�ects, but since we will implement a
searchlight selection procedure of voxels, any
speci�c e�ects should be selected inside their
containing ROIs for the decoding models

First we considered the left visual word form area (VWFA) that has been

linked to binding of visual and verbal representations in both words and

pseudowords, for early stages of language processing[41; 194; 50; 75; 205]. The

VWFA was built as a 4 mm sphere centered at the x=-46, y=-61 and z=-10 in

MNI space[50].

Second we considered the left hemispheric regions derived from neural

activation clusters related to phrase constituency e�ects, observed in the

experiment of Pallier et al.[154]. In this experiment two groups of clusters

were found to respond di�erently to constituency manipulations in phrases

and jabberwocky stimuli. Some regions responded only to semantic coherence

from phrase stimuli, namely the anterior superior temporal sulcus (aSTS), the

temporal pole (TP) and the temporo parietal junction (TPJ). Other regions

responded also to syntactic coherence from the jabberwocky stimuli that
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contained pseudowords to minimize semantic content, namely the posterior

superior temporal sulcus (pSTS) and the inferior frontal gyrus pars triangularis

and pars orbitalis (IFGtri and IFGorb)[154].

Finally we considered Broca’s complex for its long standing link to binding

operations in language[82]. We took the Broca 44 and 45 regions from the

cytoarchitectonic SPM toolbox[59], which are broad due to non zero probability

consideration of voxels in the probabilistic map.

L R

VWFA
TP
aSTS
pSTS
TPJ
IFGorb
IFGtri
Broca 44 and 45

Figure 5.5: Language regions of

interest projected on Subject 1

anatomy: Contours are shown

for the projected left hemispheric

language regions of interest. We

include the VWFA, the 6 regions

reported by Pallier et al. related to

constituency e�ects and the joint

Broca 44 and 45 regions taken from

the cytoarchitectonic SPM toolbox.

The brain glass template contours

were adapted to the T1 anatomy of

the subject.

Sanity checks

To verify the integrity of the language localizer acquisitions, we compared

the thresholded activations of the contrasts (word sequence over non words

sequence), with the parcels of Mahowald and Fedorenko. These parcels

represent probable activation derived from thresholded maps at p < 0.001

for hundreds of subjects, so not being able to cover them with our language

localizer could signal problemswith the acquisition and limit our interpretation

of syllabic representations in the derived language network.

In the case of the pseudoword matching task runs, we validated the

estimated activation maps in two ways. First we veri�ed the statistical e�ect

of the left vs right motor response contrast and checked that we could decode

left and right response activation maps derived from the GLM estimation.

Second we looked for expected retinotopic e�ects of the centered text in the

visual modality, that implied a separation of the statistical e�ects of the �rst

syllable position and second syllable position in the right and left hemispheres

respectively.

Sensory-Motor Classification methods

Classification of motor responses: Motor classi�cation was simply

performed on the average beta maps of each session derived from the smoothed

images GLM model, masked by the motor 4a region of the cytoarchitectonic

maps. We standardized voxel activations to form the features used for training

a nonlinear SVC classi�er based on a radial basis functions kernel with default

parameters from the Scikit-Learn[155] software. We employed the multiclass

One Vs Rest (ovr) classi�cation strategy, such that the decision function is
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based on one classi�er per condition, with a Leave One Out Cross Validation

(LOOCV) procedure based on sessions.

Sensory and language classification methods

Classification models: In each Region of Interest (ROI), we trained three

decoding models: the �rst identifying full bi-syllabic pseudowords (CVCV

model), the second identifying only �rst position syllables (CV1 model) and

the third identifying only second position syllables (CV2 model). Chance on

the CV1 and CV2 models was 33.33% for the three conditions "�", "gu" and "na",

and 11.11% on the CVCV model for the nine pseudoword conditions. Moreover

we trained one model per sensory modality, so we trained one model on the

visual stimuli and one model on the auditory stimuli for each ROI, except for

the visual and auditory regions. In all models we tested generalization to the

opposite sensory modality.

Searchlight and voxel selection procedure for ROI analysis: The ROIs

that we considered had thousands of voxels (features), which could impact

negatively the performance of the classi�ers, so we �rst decided to select

promising voxels by running a Searchlight[61] classi�cation procedure on a

5 millimeter radius spheres. We ran the searchlight on a selection of voxels

in the gray matter mask of each subject constrained by additional statistical

considerations. For all regions we considered only voxels on which a 3 mm

sphere centered on them contained at least one statistical e�ect of syllable in

�rst position, of syllable in second position or position interaction with a p-

value < 0.001. For language regions we also constrained the 3 mm voxel sphere

to contain at least one statistical e�ect of the language network contrast with

a p-value < 0.001. For the searchlight classi�ers we employed the average beta

maps of each session from the non smoothed images GLM model. We ran in

each sphere the three classi�er models for each sensory modality dataset. The

classi�ers accuracy was assigned to the center voxel of each sphere, resulting

in three accuracy maps. Then voxels from each map were ranked and the top

"n" voxels of each map alongside a 3 mm sphere around them were taken as

features for the �nal ROI classi�er. The number "n" of top voxels to consider

was cross validated in a parameter grid search of the ROI classi�ers, taking

values from 1 to 40 in sensory regions and from 1 to 20 in language regions.

Classification procedure: For all classi�cation models, we employed the

multiclass One Vs Rest (ovr) classi�cation strategy, such that the decision

function is based on one classi�er per condition. A Leave One Out Cross

Validation (LOOCV) procedure based on sessions was implemented for all

trained classi�ers, taking into account activation maps from the 720 trials

of each sensory modality. We took into account only the voxels (features)

selected by the previously explained searchlight preprocessing procedure in
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an ROI. The trials in the training set were employed to standardize the beta

activation values of all trials inside each feature. The standardized features

were then passed to a NuSVC linear classi�er, for which we performed a grid

search for the best value of the "nu" parameter taken from 0.2, 0.5 and 0.8,

alongside the number "n" of top voxels.

To estimate p-values for accuracy and other values taken from the classi�er,

we retrained a model 100 times with the same dataset but shu�ed labels

(shu�ed models)5. From each classi�cation model we extracted confusion 5 Taking into account only a 100 permutations
introduced a limited precision of 10−2 in the
estimation of p-values, such that 0.01 is the
best threshold that can be tested. This had to
be done to reduce the computational time that
was, already for a 100 permutations, around 2
hours for each model per ROI in a parallelized
setup on a machine with an 8 cores 3 Ghz
AMD CPU

matrices and the model coe�cients for further analysis.

Structural tests of representations

Null distributions for interpretation of representations tests: We

will test the superposition principle and the locality of representations by

interpreting measurements taken from the confusion matrix and coe�cient

weights of the NuSVC linear classi�ers. Since the classi�er has particular

biases, it is important that we de�ne appropriately a null distribution, such

that we can assess how extreme or signi�cant are the obtained measurements

for a given dataset and condition labels. As was done to evaluate the classi�ers

accuracy, we built the null distribution by repeating the measurement in the

results of the 100 shu�ed models, in which the same dataset was employed

but condition labels were uniformly shu�ed. For demonstration here we

took the shu�ed models of an example dataset corresponding to the selected

voxels for the visual hOc1 region classi�er of Subject 4. As an additional

check, we trained a 100 NuSVC classi�ers with a fake white noise dataset of

same dimension as the example dataset (white noise models), such that an

alternative null distribution was generated using the same 100 label shu�es

of the shu�ed models. In the following paragraphs we demonstrate that the

null distribution given by the shu�ed models is similar to that of the white

noise models.

Reminder of the implications of the superposition principle: The

superposition principle predicts that neural representations (voxel activations)

should follow Equation 5.1. This means that the activation value of a

pseudoword at a voxel is the sum of the activation value of a syllable bound

to the �rst position and the activation value of the other syllable bound to the

second position. Thenwe expected the representation patterns of pseudowords

sharing syllables in the same position to be more similar to each other than

completely unrelated pseudowords. Moreover we expected pseudowords

sharing syllables in di�erent positions to not be more similar to each other

than to other unrelated pseudowords, since the neural activity of a syllable is

meant to change after being bound to its position according to Smolenky’s

framework.
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Activation = Syllable × Position1 + Syllable × Position2 + Noise (5.1)

Testing superposition with confusion matrices: In Figure 5.6 we

identify each of the cells of a classi�er confusion matrix according to the

relationship between the syllables of the true and predicted pseudowords.

Besides the diagonal of the confusion matrix, that represents predicting the

same original pseudoword label, encoding the accuracy of the condition, we

have three more types of cells: when the pseudowords have a syllable in the

same position (overlapping syllables); when there is a shared syllable but in a

di�erent position (shared syllables); and when there are no common syllables

between pseudowords (di�erent syllables).

Syllables comparison
Same
Overlapping
Shared
Different fifi fig

u
fin

a
gu

fi
gu

gu
gu

na na
fi

na
gu

na
na

fifi

figu

fina

gufi

gugu

guna

nafi

nagu

nana

Accuracy
Position overlap
Crossed overlap
No overlap

Figure 5.6: Cell types in

the confusion matrix of a

pseudoword classi�er: The

diagonal represents the same

true and predicted pseudoword.

The rest of the pairs correspond

to pseudowords that have an

overlapping syllable in one position

(Overlapping), a common non

overlapping syllable (Shared) or no

common syllables (Di�erent)

The representation similarity structure given by the linear terms in the

superposition equation should be re�ected in the confusion between conditions

in a linear classi�er, which means that we can compare the mean confusion

of the di�erent cell groups to provide evidence for or against superposed

representations. The principle predicts that the mean confusion between

conditions with overlapping syllables should be higher than between those

sharing syllables with no overlap or with di�erent syllables. In Figure 5.7 we

show how the mean confusion of the di�erent cell groups are related in the

case of the null distributions. We provide evidence in favour of superposition

if the mean confusion values of the cell groups in a tested model are located

above the diagonal of both plots in the Figure 5.7.

Also we have to verify that mean confusion values of a tested model have

a distance from the center reference higher than chance, which is given by

the vector (0.11, 0.11, 0.11) that describes equal confusion for all pseudoword

categories. To make this con�rmation, we computed the empirical distribution

of distances between the mean confusion vectors of the shu�ed models and

the chance vector, from which we calculate a p-value for the vector of a tested
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model. We observe in the Figure 5.7 plots that the projected distribution of

the cell groups mean confusion of the shu�ed models is similar to that of

white noise models, so we consider sensible to take the empirical distribution

of shu�ed models as reference to estimate p-values.

Figure 5.7: Superposition test: We

present the relationship between

the mean confusion of cell groups

representing overlapping syllables,

shared syllables and di�erent

syllables. The red dots correspond

to example shu�ed models taken

from the classi�er of the visual

hOc1 region of Subject 4. The green

dots correspond to the white noise

models using the same shu�ed

labels as the example shu�ed

models. If the mean confusion

values of a tested model is re�ected

as a dot above the black line in both

plots, then we have evidence for

superposition.

Locality of syllable representations: We also tested if representations

of syllables in di�erent positions are partitioned (semilocal representations),

which is expected for example in visual areas due to the hemispheric separation

of syllable positions given by retinotopy. Smolensky’s framework propose that

completely distributed representations are more likely to be implemented due

to their memory e�ciency over local representations. Moreover if this was the

case, our BOLD-fMRI voxel decoding should be more a�ected by the neural

sparsity encoding considerations mentioned in the Introduction Section 4.1.

From ranking the feature (voxel) coe�cients of the linear classi�ers of the

CV1 and CV2 models we can get an idea of the level of partition of position

related information in a region. Based on the voxel selection procedure, we

have that the voxels selected for both models are the same or at least one set

of voxels is completely contained in the other. Thanks to this we can take the

"N" best voxels subset of each model and then look at the proportion of shared

voxels between the two sets. We expect an statistically extreme overlap of the

best voxels subsets in case of distributed representations, while we expect less

overlap than that given by chance in the case of semilocal representations. We

can obtain the null distribution for the overlap of each N best voxels subset

from the shu�ed CV1 and CV2 models.

We show in Figure 5.8 several curve distributions to demonstrate how our

argument operates in practice: a red distribution derived from an example

CV1 and CV2 shu�e models taken from the visual hOc1 region of Subject

4; a green distribution derived from the corresponding white noise models.
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and a theoretical blue curve distribution that illustrates the overlap in subsets

taken from two ordinary lists, that share voxel indexes, uniformly permuted to

create fake random voxel rankings, which re�ects our intuition of the amount

of overlap that can be achieved by random uniform permutations of rankings;

Figure 5.8: Locality test: Each

curve in the plot represents the

proportion of overlap between

best voxel subsets from CV1 and

CV2 models. The blue curve

distribution represents repeated

overlap comparison of uniform

random permutations of an index

list to create fake random rankings.

The red curve distribution was

derived from an example set of

shu�ed models taken from the

visual hOc1 region of Subject

4. The green curve distribution

was derived from shu�ed models

trained on Gaussian noise data

with the same shu�ed labels as the

example set.

As we can appreciate from the green curve distribution, the amount of

overlap introduced by an SVM model trained on white noise is quite di�erent

from the intuition given by a simple uniform random permutation of rankings,

suggesting the need to estimate an empirical distribution from each SVM

model. We also observe that the shu�ed models null distribution behave

similar to the white noise models null distribution, so it is sensible to use

the empirical distribution of the shu�ed labels to estimate p-values of the

low deviation, towards semilocal representations, or high deviation, towards

distributed representations. We will test the overlap deviation for each "N"

best voxel subset of the target CV1 and CV2 models.





6 Experimental results

In this chapter we report the data analysis results. We comment on the

successful pass of all required sanity checks and analyse the properties of

pseudoword representations in the selected brain regions. In particular

we will demonstrate evidence in favour of superposition in anterior brain

regions and other interesting e�ects.

6.1 Behavioral performance

Four subjects (1 to 4), had a behavioral performance above 97% in both

visual and auditory CVCV Pseudowords presentations, while Subject 05, that

reported concentration span issues over all the acquisition, had a lower overall

performance of 90%. Note that due to the experimental design structure,

in which we only query few random samples, small score decrements can

imply distraction over an important task segment. Subjects 01 and 04 reported

in the second auditory session that the volume was not high enough to be

comfortable, although this did not re�ect on their behavioral performance. So

we consider all subjects data apt to neuroimaging interpretation, with caution

over Subject 05. Behavioral performance details are provided in Table 6.1.

Subject Visual (%) Auditory (%) Overall (%)

01 97.22 97.22 97.22

02 100.00 98.61 99.31

03 97.92 97.22 97.57

04 99.31 99.31 99.31

05 92.36 88.89 90.62

Table 6.1: Behavioral

performance on the

Pseudowords matching task:

Performance correspond to

correctly identifying if the

pseudowords were the same

or di�erent, with no answer

considered as incorrect. Visual

and Auditory headers refer to the

sensory modality of the task, where

overall is the mean performance of

both modalities.

6.2 Sanity checks

Language localizer activations: The contours of the language localizers’

contrasts, thresholded at p-value < 10e-3, for both auditory and visual

modalities are presented in Figure 6.1. We also show in Figure 6.2 the coverage

of Mahowald et al. parcels[118] by the thresholded language localizers for all
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Subject 1 Subject 2 Subject 3

Subject 4 Subject 5

Visual modality
Auditory modality

Figure 6.1: Language localizers:

We show left and right hemispheric

contours of the language localizer

contrast of word sequences

over control stimuli (consonant

strings or scrambled recordings),

thresholded at a p-value < 10e-3.

Statistical images are projected

in the anatomical space of each

subject.

subjects. We observe a left lateralization of the detected language network

with more than 40% coverage of all the language parcels, which covers the

fronto-temporal language system that has been well depicted in previous

imaging studies[118; 63; 51; 16]. There is variability between the modalities,

that particularly disfavours activations of the visual one, in which the subjects

can get distracted from perceiving and processing the stimuli more easily,

than in the auditory case. This could be expected from the intrinsic variability

of di�erent experimental designs in language localizers as demonstrated by

Mahowald et al.[118]. Subjects 1 and 5 have a de�cient coverage that will

diminish our capacity to interpret syllabic representation e�ects along their

cortex. In particular Subject 5, who reported concentration problems, have an

extremely de�cient coverage of the language network.

Subject
01
02
03
04
05

Figure 6.2: Language localizer

parcel coverage: We show the

parcel coverage of each language

localizer for the 6 language parcels

derived by Mahowald et al. in

both hemispheres. Each subject

is represented in a radial chart to

emphasize the overall coverage

of the language localizers of each

subject. Also the left and right

hemisphere parcels have been

arranged symmetrically in the

radial charts.
Motor activations: We veri�ed the integrity of the activation maps of the

CVCV Pseudowords presentation with statistical tests portraying the left and

right hand button press contrast. Z score maps of the left over right button

press contrast, for all subjects, are shown in Figure 6.3, con�rming a good

statistical separation of hand responses.

We also veri�ed that we can employ a Support Vector Classi�er (SVC) to
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Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
L R

-13

-6.3

0

6.3

13 L R

-9.3

-4.7

0

4.7

9.3 L R

-11

-5.7

0

5.7

11 L R

-22

-11

0

11

22 L R

-7.9

-3.9

0

3.9

7.9

L R

-12

-6

0

6

12 L R

-9.2

-4.6

0

4.6

9.2 L R

-10

-5.2

0

5.2

10 L R

-20

-9.9

0

9.9

20 L R

-8.9

-4.4

0

4.4

8.9

Left
hand
Right
hand

Figure 6.3: Button press e�ects:

We show the left button press

over right button press contrast Z

scores from the auditory modality,

thresholded at p < 10e-4, for

all subjects. Statistical images

correspond to the anatomical space

of each subject.distinguish left and right button press average activation maps derived from

the CVCV Pseudowords presentation General Linear Model (GLM) runs. There

were in total 32 maps for each condition corresponding to one map per run

per session (8 runs in 4 sessions). As can be seen in Table 6.2, we achieve

high classi�cation scores of right and left button press events for all subjects.

Moreover, the classi�cation generalize across sensory modalities.

(Train, Test) (V, V) (A, A) (V, A) (A, V) (V-A, V-A)

Subject (%) (%) (%) (%) (%)

01 84.38*** 93.50*** 80.84*** 76.94*** 90.88***

02 95.38*** 92.50*** 84.03*** 93.03*** 95.31***

03 98.00*** 99.00*** 93.91*** 98.75*** 100.00***

04 97.38*** 99.50*** 97.50*** 98.72*** 100.00***

05 86.62*** 77.62*** 90.12*** 74.28*** 93.56***

Table 6.2: Classi�cation of

left and right button press

maps of CVCV Pseudowords

presentation: "V" corresponds

to the Visual modality and "A"

to the Auditory modality. "V-A"

corresponds to pooling together

both datasets for training and

testing.
chance: 50%
* : p < 10e-2,
** : p < 10e-3,
*** : p < 10e-4
Bonferroni corrected for 25 similar tests
performed

Visual activations: From the statistical tests performed in the GLM beta

maps, of syllable position e�ects and position interaction, we observed that

the statistical e�ects (any syllable di�erence) in left and right syllable position

in the Visual hOc1 region corresponded to inversed hemispheric projections.

In the experimental design we asked the subjects to �xate a centered green

dot before stimuli presentation. The inversed hemispheric e�ect can be seen

in Figure 6.4, where Subjects 1 and 4 have the clearest retinotopic activations.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
L R L R L R L R L R

First
Syllable
Second
Syllable

Figure 6.4: Retinotopic e�ect:

We show �rst and second syllable

position e�ects masked by the

Visual hOc1 region, thresholded at

a p-value < 0.005. Statistical images

correspond to the anatomical space

of each subject.
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6.3 Superposed semi-local representations in Visual

region (hOc1)

CVCV CV1 and CV2 (1 or 2)

Subject
01
02
03
04
05

fifi
figu

fina

gufi

gugu guna

nafi

nagu

nana

0.03 0.14 0.25

(1) fi

(1) gu

(1) na

(2) fi

(2) gu

(2) na

0.07 0.23 0.39

Figure 6.5: Accuracy in Visual-

h0c1: Chance baseline has been

substracted from all accuracy scores.

Chance is 11.11% for the CVCV

model. Chance is 33.33% for the

CV1 and CV2 models. We show

at the left the CVCV accuracy and

at the right the CV1 and CV2

accuracy together. (1) denotes the

CV1 model and (2) denotes the CV2

model. The accuracy score points

are denoted with stars whenever

they are signi�cant with p-value <

0.05

We obtained signi�cant classi�cation scores for almost all condition

categories in all subjects, with subject 4 having an exemplary performance,

distinguishing signi�cantly all conditions in all classi�ers. We show in Figure

6.5 accuracy scores from which chance baseline was substracted for each

condition. All the classi�ers were trained on the visual stimuli and were not

able to generalize to auditory stimuli, as would be expected from primary

visual areas. Signi�cant scores are marked with a star in case of a p-value <

0.05. We observe, from the relative area of accuracy above chance, that we

could decode syllables in each position and pseudowords best in Subjects 1

and 4. Moreover Subject 5, that reported problems with attention, had the

worst classi�er performance.

Subject
01
02
03
04
05
All

Figure 6.6: Superposition test

in Visual-h0c1: We present

the relationship between the

mean confusion of cell groups

representing overlapping syllables,

shared syllables and di�erent

syllables. The smaller cyan dots

correspond to the shu�ed models

of all subjects. All other dots

correspond to subjects. A star

means signi�cance with a p-value

< 0.05. The pattern of all Subjects

support superposition, where

Subjects 1 and 4 and the group are

signi�cant.

We also observe in Figure 6.6, evidence in favour of superposed

representations, as all subjects have a higher mean confusion values on

pseudowords with position overlapping syllables. Subjects 1 and 4, that

had the highest classi�cation scores, as well as the group as a whole have

a signi�cant mean confusion vector, with signi�cance given by a p-value

< 0.05. We also observe in Figure 6.7 signi�cant segments of semi-local
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representations in all Subjects except Subject 5. The best segment belongs to

Subject 4 that had the most accurate models. More details about decoding

performance in this region can be veri�ed in the Appendix section A.1.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure 6.7: Locality test in visual

regions: We show in black the

overlap of the "N" best voxel sets

given by the two syllable position

classi�ers. In red we show the

overlap distribution given by the

shu�ed models. In green we denote

segments of signi�cantly inferior

overlap with a p-value < 0.05 with

respect to the shu�ed distribution.

6.4 Superposed semi-local representations in anterior

auditory regions (Te12)

L R

Auditory Te10 region
Auditory Te11 region
Auditory Te12 region

Figure 6.7: Auditory regions projected on Subject 1 anatomy: Contours

are shown for the projected auditory regions. Area Te12 extends from Te10

towards anterior regions while Te11 extends to posterior regions. The brain

glass template contours were adapted to the T1 anatomy of the subject.

We trained separate models for the auditory hierarchy of regions, shown

in Figure 6.4. We observed signi�cant classi�cation results in all regions

for all Subjects. In all CVCV models there were 5 or less pseudowords with

individual signi�cant accuracy scores and 4 or less syllables with signi�cant

scores considering the CV1 and CV2 models together. Nonetheless the level of

classi�cation in auditory areas was far less than that obtained in visual areas

and for any subject only �ve or less pseudowords had an individual signi�cant

accuracy score. In Figure 6.8 we show the high variability in accuracies in

some conditions with respect to others in the CVCV models of all regions.

The more anterior auditory region Te12 shows evidence in favour of

superposition at the group level, contrary to Te10 and Te11 that show no

particular pattern. We show in Figure 6.9 the pattern change with respect

to superposition from region Te10 to Te12. Moreover while region Te10
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Te12 CVCV Te10 CVCV Te11 CVCV

Subject
01
02
03
04
05

fifi
figu

fina

gufi

gugu guna

nafi

nagu

nana

0.030.070.11

fifi
figu

fina

gufi

gugu guna

nafi

nagu

nana

0.030.070.11

fifi
figu

fina

gufi

gugu guna

nafi

nagu

nana

0.030.070.11

Figure 6.8: CVCV accuracy in auditory regions: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for all pseudoword conditions. The
accuracy points are denoted with stars whenever they are signi�cant. Signi�cance represents a p-value < 0.05 derived from the shu�ed models. We present �rst the most
anterior region and last the most posterior region.

Te12 superposition test Te10 superposition test

Subject
01
02
03
04
05
All

Figure 6.9: Superposition test pattern change from Te10 to Te12: We present the relationship between the mean confusion of cell groups representing overlapping
syllables, shared syllables and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the
mean confusion values of a tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with
a p-value < 0.05

displays signi�cant segments of distributed representations in Subject 5 and 1,

region Te12 changes in behavior to display important segments of semi-local

representations in all Subjects except Subject 4. We show in Figure 6.10 the

locality test pattern changes in Subjects 1 and 5 from Te10 to Te12. Region

Te11 shows no particular distinctions from Te10.

In summary more anterior auditory regions seem to encode semi-local

superposed representations of syllables. More details on the locality test plots

of regions Te10 and Te12 can be veri�ed in the Appendix Figures A.36 and

A.42 respectively. More details on the decoding models of the regions Te10,

Te11 and Te12 can be checked in the Appendix sections A.12, A.13 and A.14

respectively.
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Te12 Sub 1 Te12 Sub 5 Te10 Sub 1 Te10 Sub 5

Figure 6.10: Locality comparison between Te10 and Te12: We show in black the overlap of the "N" best voxel sets given by the two syllable position classi�ers. In red
we show the overlap distribution given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05 with respect to the
shu�ed distribution.

6.5 Superposed distributed representations in Broca’s

complex

We observed signi�cant classi�cation scores (p < 0.05) in all Subjects and

sensory modalities for Broca 44 and Broca 45, except for the auditory dataset

of Subject 4 in Broca 44. In all CVCV models there were 5 or less pseudowords

with individual signi�cant accuracy scores and 4 or less syllables with

signi�cant scores considering the CV1 and CV2 models together. No model

generalized from the sensory modality in which they were trained to the other.

Both Broca regions have some signi�cant subject or group e�ect in favor of

superposition in at least one sensory modality, while the rest of non signi�cant

patterns are coherent with superposition as well. In Figure 6.11 we show the

signi�cant patterns in favour of superposition for the visual modality in Broca

44 and the auditory modality in Broca 45.

Broca 44 visual Broca 45 auditory

Subject
01
02
03
04
05
All

Figure 6.11: Superposition tests in the Broca’s complex: We present the relationship between the mean confusion of cell groups representing overlapping syllables,
shared syllables and di�erent syllables. The smaller cyan dots correspond to the shu�edmodels of all subjects. All other dots correspond to subjects. If the mean confusion
values of a tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

In the case of the locality test, in the visual modality, Subject 2 displays

a segment of signi�cant distributed representations in Broca 44 and in the
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auditory modality Subjects 3 and 5 in Broca 44 and Subject 1 in Broca 45.

We show the distributed representation segments of the subjects in Figure

6.12. Alongside the signi�cant segments appreciated there are no subjects

displaying strong patterns of semi-local representations, which lead us to

interpret representations in the whole Broca complex as distributed. More

details on the locality test plots of Broca 44 in visual and auditory modalities

and Broca 45 in the visual and auditory modalities, can be veri�ed in the

Appendix Figures A.27, A.63, A.30 and A.66 respectively. More details on the

decoding models can be checked in the Appendix sections A.9, A.21 A.10 and

A.22 respectively.

Broca 44 Sub 2 Vis Broca 44 Sub 3 Aud Broca 44 Sub 5 Aud Broca 45 Sub 1 Aud

Figure 6.12: Distributed representations in Broca’s complex: We show in black the overlap of the "N" best voxel sets given by the two syllable position classi�ers. In
red we show the overlap distribution given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05 with respect to the
shu�ed distribution.

6.6 Weak evidence for non additive representations in

the VWFA

CVCV visual CVCV auditory

Subject
01
02
03
04
05

fifi
figu

fina

gufi

gugu guna

nafi

nagu

nana

0.03 0.07 0.11

fifi
figu

fina

gufi

gugu guna

nafi

nagu

nana

0.030.060.09

Figure 6.13: Accuracy in VWFA:

Chance baseline has been

substracted from all accuracy

scores. Chance is 11.11% for the

CVCV model. We show at the

left the CVCV model of the visual

modality and at the right the CVCV

model of the auditory modality.

The accuracy score points are

denoted with stars whenever they

are signi�cant with p-value < 0.05

We observed that few Subjects had signi�cant accuracy scores in the CVCV

model, with few signi�cant pseudoword individual accuracies, as can be seen

in Figure 6.13. There seems to be a bias in the models towards pseudowords

containing the syllable "�", which is particularly emphasized by the accuracy
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score patterns of Subjects 1 and 4 in the auditory CVCV model. No model

generalized from the sensory modality in which they were trained to the other.

Although not signi�cant, patterns of the superposition test suggest evidence

against superposition in this area, supporting instead a non additive model. We

observed in Figure 6.14 that the mean confusion between pseudowords with

overlapping syllables is less than that of pseudowords with shared syllables or

di�erent syllables for all Subjects. We did not �nd substantial patterns in the

locality test to support semi-local or distributed representations. More details

on the visual and auditory decoding models can be checked in the Appendix

sections A.2 and A.11 respectively.

Subject
01
02
03
04
05
All

Figure 6.14: Non additive

representations in VWFA:

We present the relationship

between the mean confusion of cell

groups representing overlapping

syllables, shared syllables and

di�erent syllables. The smaller cyan

dots correspond to the shu�ed

models of all subjects. All other

dots correspond to subjects. If the

mean confusion values of a tested

model is re�ected as a dot above

the black line in both plots, then

we have evidence for superposition.

A star means signi�cance with a

p-value < 0.05

6.7 Bimodal distribution of pseudoword accuracy scores

A recurrent pattern in the pseudoword accuracy scores of the CVCV models

with signi�cant overall accuracy was that some of the pseudowords (4 or

more) would have a non signi�cant accuracy very close to chance levels, while

the signi�cant ones seemed to have extremely better accuracy values. This

motivated us to verify the distribution of pseudoword accuracy scores from the

CVCV models of regions that demonstrated evidence in favor of superposition,

namely the auditory region Te12 and Broca’s complex. In Figure 6.15 we show

that is possible a bimodal distribution describes the accuracy scores according

to their signi�cance. From the three regions there were in total 24 signi�cant

models (with p-value < 0.05) and from these models we considered separately

the accuracies of pseudowords that were signi�cant, shown in red, and those

that were not, shown in blue.
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Figure 6.15: Possible bimodal

distribution of accuracy scores

in superposition regions:

From the regions Te12, Broca

44 and Broca 45 we considered

all Subject CVCV models for

which the overall accuracy was

signi�cant with a p-value < 0.05.

In total there 24 models were

signi�cant. From these models we

considered separately the individual

accuracies of pseudowords that

were signi�cant with a p-value <

0.05, in red, and those that were

not, in blue. A bimodal distribution

appears to describe the accuracy

scores categories. The black line

indicates the 0.11 chance level of

classi�cation.

6.8 Final remarks

So far we have not mentioned results related to the language constituency

regions extracted by Pallier et al., namely aSTS, TP, TPJ, pSTS, IFGorb and

IFGtri. The reason can be veri�ed in the decoding model details provided in

Appendix A. All these regions have very low accuracy scores, with only few

subjects showing signi�cant accuracy scores in a few conditions, which adds

di�culties to the interpretation of any patterns in the locality or superposition

tests. Moreover their superposition tests are inconsistent, for example Subject

4 has a signi�cant value against superposition in the visual modality of IFGorb,

but every other Subject, although not signi�cant, follow a pattern that would

be congruent instead with superposition. We show this inconsistency in Figure

6.16. It seems that we were not able to decode well the bi-syllabic pseudoword

representations in any region along the temporal lobes and we did not �nd

any CVCV, CV1 or CV2 model that generalized their predictive power across

sensory modalities.

Subject
01
02
03
04
05
All

.

Figure 6.16: Inconsistent

evidence in IFGorb: We present

the relationship between the

mean confusion of cell groups

representing overlapping syllables,

shared syllables and di�erent

syllables. The smaller cyan dots

correspond to the shu�ed models

of all subjects. All other dots

correspond to subjects. If the mean

confusion values of a tested model

is re�ected as a dot above the black

line in both plots, then we have

evidence for superposition. A star

means signi�cance with a p-value <

0.05

To summarize, although we were not successful at decoding in several

language regions, we found several e�ects of representations in anterior

regions, namely the auditory Te12, Broca 44 and Broca 45 shown in Figure
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6.8. All this regions provided evidence in favour of superposition and

demonstrated support for di�erent levels of locality in representations, where

Te12 strongly supported semi-local representations while Broca’s complex

pointed at distributed representations. Moreover we found in these regions

evidence for a bimodal distribution of the particular pseudoword accuracy

scores. Finally we provided weak evidence for non additive representations in

the VWFA and modulation of the region by auditory stimuli.

L R

Broca 44
Broca 45
Auditory Te12

Figure 6.16: Superposition regions projected on Subject 1 anatomy:

Contours are shown for the projected superposition regions. The brain glass

template contours were adapted to the T1 anatomy of the subject.





7 Discussion

In this chapter we interpret the results obtained from the analysis of

sensory and language related representations of pseudowords. Then we

comment on the decisions and limitations of the experimental design.

Finally we provide our perspective for further experimentation to test

Smolensky’s superposition principle and other properties of tensor

product representations.

7.1 Results interpretation

We expected, from well known retinotopic e�ects in the primary visual cortex

[180], to see an hemispheric partition of left and right syllable position e�ects,

such that left syllable e�ects would be emphasized in the right hemisphere

and right syllable e�ects in the left hemisphere. This was the case, but we

could also appreciate in the images that some subjects did not manage to

completely follow the �xation instruction, since e�ects of both positions were

present together in both hemispheres. It could have been useful to have eye

tracking recordings to be able to account in visual areas for gaze position

when evaluating representations, nonetheless this was not crucial for us since

superposition of representation in visual areas is known and was just looked

for as a quality check of the activation maps. The size of the text presented

in the Pseudowords matching task, around �ve horizontal degrees, allowed us

to induce enough spatial spread in the voxel activations, due to retinotopic

mapping. Thanks to this we obtained high classi�cation results across all

pseudoword conditions, even while ignoring e�ects of gaze movement.

In the case of auditory representations, since we maximized the featural

distance between consonants and between vowels[20], we expected to be

able to decode syllables with higher accuracies than the ones we observed.

Nonetheless other experiments in which syllable representations have been

decoded employed fast sparse protocols that allowed presentation of syllables

during a silence gap[62]. Our decision of not employing a di�erent acquisition

protocol across sensory modalities, to have comparable results in abstract

representations, compromised our capacity to perform decoding in the auditory

cortex.
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Still our decoding results are coherent with evidence of hierarchical

organization of the auditory and speech pathways. Previous evidence suggest

that speech-speci�c responses to isolated syllables are only observed in later

stages of processing[90; 112; 183], and we decode syllables better on the

Te12 more anterior region of the primary auditory areas. Moreover we

were able to demonstrate evidence in favour of superposition and semi-local

representations in this region.

We also found evidence for superposition in the Broca’s complex (Broca 44

and Broca 45), that had the best signi�cant accuracy scores from the language

related regions tested. It has been shown through a series of neuroimaging

studies pooled in a meta-analysis[206], that Broca 44 is consistently engaged

with syntactic binding operations, alongside the posterior superior temporal

sulcus (pSTS) and the superior temporal gyrus (STG). In the same metaanalysis

it is argued that Broca 44 is a pure syntactic processor, while pSTS and

STG integrate syntactic and semantic information. The fact that we also

�nd evidence for distributed representations in the Broca’s complex turns it

into the most promising region to further test Smolensky’s tensor product

representations.

In the rest of the language regions extracted from the study of Pallier et

al.[154], for which semantic and syntactic coherence e�ects of constituency

were demonstrated, we were not able to �nd any clear patterns to report and

most accuracy scores were insigni�cant. In the case of the regions aSTS, TP and

TPJ that were only sensitive to semantic coherence, not �nding pseudoword

representations could be expected. On the other hand pSTS, IFGorb and IFGtri

were also sensitive to syntactic coherence, so we considered the possibility

of �nding pseudoword representations. The fact that we did not �nd any

signi�cant representations in these regions could be explained by the claims of

the meta-analysis of Zaccarella et al.[206], in which IFG was not particularly

linked to binding operations and pSTSwas linked to the integration of syntactic

and semantic information that we lack in pseudowords. Moreover Matchin

et al.[126] demonstrate that pSTS, IFGtri and IFGorb might be related to top-

down syntactic prediction instead of basic syntactic combination. Since we are

presenting pseudowords in isolation we would not expect top-down syntactic

predictions to take place.

The VWFA, linked to binding of visual and verbal representations in both

words and pseudowords, for early stages of language processing[41; 194; 50;

75; 205], showed evidence against superposition or in favor of non additive

models. This result goes in hand with the study of Glezer et al.[75] that argues

against theories of sublexical representation in the VWFA. Moreover the fact

that we found signi�cant accuracy scores in the auditory modality supports

previous evidence about speech modulation of the VWFA[205].

One important clari�cation to make regarding evidence against

superposition is that such evidence do not necessarily immediately discards

Smolensky’s model of generalized tensor product representations, but only
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its basic version, in which the �nal composition step of symbolic structures

is given by addition. In the generalized version other operations are allowed

to take place after construction of the �nal symbolic structure, like tensor

contractions, exempli�ed by the memory e�cient holographic reduced

representations of Plate[158]. More analysis of the origin of the non additive

pattern observed in the VWFA will be necessary to completely discard

application of Smolensky’s framework to its internal representations.

We observed an extreme variability between pseudowords with signi�cant

and non signi�cant accuracy scores. We con�rmed this variability by simply

plotting the histograms of the separate distributions of signi�cantly and

non signi�cantly classi�ed conditions. We found an approximate bimodal

distribution. This result is di�cult to interpret without more detailed

inspection of the decoding models. Other factors related to model training

could in�uence this result, like the bias introduced for not doing a nested

cross validation or the greedy voxel spheres selection approach implemented.

Nonetheless we think this result can be explained by a lack of sparsity or

variability in the spread of neural activations of the underlying neural unit

patterns. Lacking variability in the spatial distribution of activations decreases

the probability of �nding substantial di�erences in the aggregated neural

activity values of voxels. An example in which underlying neural patterns

lead to aggregated activity in voxels that can not di�erentiate pseudoword

conditions is shown in Figure 7.1.

A �nal unexpected result was the complete lack of generalization between

sensory modalities in all classi�cation models. This can be accommodated by

two di�erent interpretations. On one hand it is possible that noise in BOLD-

fMRI measurements or non unique spatial assignment of neural vectors to

neural units do not let us generalize across datasets. On the other hand it

is also possible that there are no amodal abstract representations for simple

stimuli like bi-syllabic pseudowords. We would require further tests of stability,

outliers and to assess generalization across more datasets to con�rm which is

the case.

7.2 Limitations of the experimental design andmethodology

With the objective of testing the superposition principle on syntactic

operations of language, we opted for the simplest stimuli we could use as

a �rst approach, namely two-syllabic pseudowords. Nonetheless even with

this simple stimuli, due to the nature of BOLD imaging, our experiment su�ered

from several methodological limitations.

Following Devonshire et al.[53] guidelines to counteract possible non-

linearities in the mapping from neural activity to the BOLD response, we

designed a task to keep a pseudoword in memory to prolong its duration

and tried to extend ISI as much as possible, 7 seconds, to still preserve a

good sample size of the 9 stimuli conditions, 40 samples per condition per
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Figure 7.1: Illutration of

superposed tensor product

representation in BOLD-fMRI:

We present the example neural

vectors of the syllables "na"

and "gu" bound to the left and

right positions of a bi-syllabic

pseudoword. We illustrate how the

level of BOLD activity should re�ect

the aggregated activity of a segment

of the neural units that form a

representation. The superposition

principle implies the sum of the

vector values from each binding to

give the �nal total activity in a voxel.

The voxel values of the pseudoword

"nagu" correspond to the plots of

the neural vectors and those of the

pseudoword "guna" were derived

in a similar way. Due to the e�ect

of aggregation, no voxel in the

example permits di�erentiating the

two pseudowords, even though the

neural unit patterns are linearly

independent between Roles and

between Fillers.

session. Nonetheless this is far from the actual long stimuli durations of 40

s at which linearity was ensured[53]. We consider testing in the future the

modulation of BOLD responses to the target stimuli instead of using heuristics

to setup design parameters, which will be important to test this kind of model

assumptions, that are sensitive to the underlying neural interpretation of the

BOLD response.

Regarding the task, the fact that we did not probe every trial limited

our capacity to assess attention modulation and outliers of the internal

representations. Considering that we did not �nd a uniform increase in

accuracy across the di�erent pseudoword conditions, it could have been useful

to assess if the variability in representations could be explained by correlates

of attention.

In the case of the decoding methodology, there are several decisions that

were made heuristically to save computational resources. For example we

did not smooth the data to avoid inducing additional voxel correlations that

would complicate interpretation of the feature coe�cients of the classi�er

and to better exploit any extreme e�ects in particular voxels, but we could

have explored the e�ect of di�erent smoothing kernel sizes. Also for the

searchlight voxel selection procedure we �xed the radius of the spheres to 5

mm, which means a 2 voxel radius for our acquisition parameter to search

for local e�ects, and passed the complete spheres to the classi�er. Instead

we could have also determined empirically how this radius a�ects classi�ers

performance. Moreover the fact that we performed a grid search without

a nested cross validation could have introduced a small positive bias in the
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classi�cation results[33]. To improve classi�cation accuracy and compensate

the high number of features in the classi�ers, a 100 or more, we decided to ask

the same subjects to come for several sessions to increase our sample size, such

that we would have at least 80 samples per condition per sensory modality,

but with respect to the number of features in classi�ers this remains a very

small sample size.

7.3 Future perspective

In this work we selected the simplest stimuli possible as a �rst approach to

test the superposition principle in syntactic operations of language, but it will

be interesting to go further and test superposition in more complex syntactic

stimuli like pseudoword lists and jabberwocky phrases. Nonetheless this would

increase the challenges faced when working with BOLD-fMRI by introducing

additional variables in the experimental design like stimuli duration, length in

terms of number of words and rate of word presentation.

All this additional experimental factors have been shown to induce

nonlinear BOLD responses. Saturation from long phrase reading and nonlinear

modulation from word presentation rate have been demonstrated[164].

Nonlinear e�ects of presentation rate have been shown to be similar in

words and pseudowords and spatially heterogeneous across brain regions[132].

Also nonlinear e�ects of stimuli duration have been shown to be spatially

heterogeneous[17]. If we expect representations of multiple words to be

completely distributed we also have to be careful about the rate of presentation

due to possible neural adaptation e�ects[103]. It will be necessary to study in

detail the optimal setup of the mentioned experimental parameters, to diminish

or correct the nonlinearities that can a�ect evidence for additive linear models

of composition like the superposition principle.

In our experiment we only found evidence for superposition in a small

set of regions located close to each other, namely Broca’s complex and the

anterior primary auditory region Te12. Considering that there is spatial

heterogeneity of BOLD activation patterns across the brain, the best path

of action would be to focus future acquisition of images in speci�c brain

regions. Focusing on acquiring only a sub-volume of the cortex can facilitate

improving spatial and temporal resolution of the BOLD signal. Moreover the

uneven classi�cation of individual pseudowords conditions, that we interpret

as lack of variability in the spatial distribution of neural activations at the

3T 1.5 mm isometric resolution analysed, suggest to attempt similar and

new experiments at higher imaging resolutions. For example high resolution

laminar imaging with boundary based surface registration has been shown

to reveal internal visual representations discernible with the bare eyes[111].

In addition, focusing on speci�c regions facilitates the design of functional

localizer paradigms to better segment target regions for analysis and reduction

of the amount of voxels (features) provided to decoding models.
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Also exploring sub-volumes of anterior brain regions in future experiments

suggest to rely more on speech than reading. Since we also found evidence for

superposition in auditory regions linked to later stages of speech processing

(Te12), it will be interesting to study in detail how the properties of auditory

representations change from non additive to superposed and from semi-local

to completely distributed. Lack of consideration of the problems introduced by

the fMRI acoustic noise greatly diminished the performance of our classi�ers.

Future experiments should carefully pilot the e�ect of fast sparse protocols on

the study of the properties of representations like the superposition principle,

since they add their own constraints to the experimental design[157]. Studying

in detail superposition and hierarchical processing of individual pseudowords

in auditory regions with laminar fMRI, might be a good �rst step before

continuing the analysis to the Broca’s complex with pseudoword lists and

jabberwocky.

Regarding our �ndings in the VWFA, we consider running future tests

on this region to con�rm in more detail the non additive nature of its

representations will be interesting. For future experiments, considering the

small size of the VWFA, we recommend also designing a localizer task to

delineate with more certainty its location in individual subjects.

Besides further testing the superposition principle, it will also be important

to better assess the stability of representations, which we considered was a

weakness in our work. We had signi�cant classi�cation scores, but these were

still quite low, only around 20%, to evaluate individual representations. We

were not able for example, to determine if the bimodal distribution of accuracy

scores could be explained by outliers or attention modulation e�ects. Since

neural �ring thresholds are known to alter according to arousal state[129],

it will be important to include in future tasks processing con�rmation of

individual stimuli and assessment of attention modulation.

In conclusion, we think we have provided enough evidence for the

superposition principle in anterior brain regions to motivate further

experimentation based on Smolensky’s tensor product representations.

We expect to have illustrated well the great challenges behind testing

experimentally even the simplest assumptions of this theoretical model.

Considering the contrast between the maturity of theoretical models and the

lack of empirical tests of their most basic assumptions, we hope to incentivize

more work in the experimental direction.



Part III

The neural dynamics of

binding in language with

the Neural Blackboard

Architecture
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8 Language binding e�ects in neuroimaging and the

Neural Blackboard Architecture

In this chapter we present some language neuroimaging studies

of binding that we consider important and interesting to attempt

reproduction with simulation of the Neural Blackboard Architecture

(NBA). We also introduce the application of the NBA to syntactic

representations in phrases.

8.1 Some language neuroimaging studies of binding

Most linguistic theories assume a constituency property that allows to combine

and replace smaller phrases in larger phrases. Since solving variable binding

requires an explanation of how to implement links between bits of information

- like words and word types - to create basic data structures, like phrases in

language, it is likely to also explain how to create links between such basic

structures.

Behavioral evidence for constituents in phrases has been around for

a while[15; 3], with more recent studies demonstrating the reuse of

recently heard syntactic structures through syntactic priming experimental

paradigms[19; 23]. But only recently we have started to characterize the

detailed neural correlates of constituency and word binding with diverse

brain-imaging techniques [141; 64; 25; 54; 12; 153; 11; 117].

We selected The ECoG analysis of Nelson et al.[141] as the �rst study to

compare to our model. It is one of the only two studies so far demonstrating

spatially speci�c and temporally detailed neural dynamics of phrase processing,

made possible by analyses of intracranial neurophysiological data taken from

epileptic patients. Moreover it is the �rst one to characterize the speci�c

patterns of phrase-structure formation, possibly revealing the �rst neural

signatures of variable binding related operations. Nelson et al. refer to them

as "merge" operations that combine syntactic objects (word types and phrase

types). In the study words were presented sequentially to patients in a screen

to be read under a Rapid Serial Visual Presentation paradigm. The task was

to keep a phrase of up to 10 words in memory to compare it just after with a
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probe sentence composed of 2 to 5 words. We will show that simulation of the

NBA portion responsible for variable binding, while only tuned for correct

operation, generates strikingly similar temporal patterns of neural activity

when aggregating the binding operations corresponding to complete phrase

processing, assuming the phrase grammar and bottom-up parsing scheme

employed by Nelson et al. in their analyses.

As a second study, we selected an fMRI experiment [153] to portray the

capacity of the model to capture results from multiple neuroimaging spatio-

temporal scales. In this experiment, trials with lists of 12 words obtained by

concatenating phrases of a given length, were presented to healthy subjects.

Conditions were formed from all combinations of m by n that give 12, satisfying

the form n phrases of m words, like 2 phrases of 6 words. Besides normal

words, the design also included pseudoword conditions that maintained

morphological markers and closed-class (function) words. This allowed the

authors to demonstrate a clear separation of syntactic and semantic binding

neural activation patterns in language related regions, which is interesting to

us, since syntactic speci�c patterns are the closest to the abstract considerations

of binding of our model, assuming the same phrase grammar and parsing

scheme employed for comparison with the ECoG results. The authors found a

sub-linear pattern of neural activation as the number of constituents increase,

which could not be explained by a simple "accumulation" model motivated by

measurements of sequence learning tasks in awake macaque monkeys. The

Neural Blackboard Architecture predicts this sub-linear e�ect from the circuit

recruitment process required by the number of binding operations, alongside

expected patterns of hemodynamic peak onset di�erences from delay activity

considerations.

8.2 The Neural Blackboard Architecture (NBA) applied

to language

The details presented in this section are a literal reminder of those already

developed in subsections 1.3 and 1.3 of Chapter 1, so in case that chapter was

consulted recently we recommend skipping to the next chapter 9. What we

present here are only the key aspects of the Neural Blackboard Architecture

that must be understood to follow details of the circuit implementation

presented in the following chapters. To understand more details about the

properties of neural representations in the NBA please consult section 1.3 of

Chapter 1.

There are several previous instantiations of sub-circuits of the NBA with

varying degrees of biological plausibility, the latest relying mostly on Wilson

Cowan population dynamics[52]. Some of the previous simulations attempted

to address diverse aspects of language processing, such as ambiguity[67] and

learning control from syntactic stimuli[188]. Other simulations addressed

circuit implementation issues like how to develop a connectivity matrix with
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randomly connected networks[189] and how to implement a central pattern

generator sub-circuit for sequential activation [191]

In the following paragraphs we summarize the main abstract mechanisms

and assumptions behind the NBA to implement binding operations. A complete

illustration of the blackboard architecture is provided in Figure 8.1. For a

deeper review we recommend reading a recent paper with a circuit design

and examples that focus on sentence processing[48], as well as the original

framework proposal introducing abstract combinatorial structures[187].

Figure 8.1: The Neural Blackboard architecture: A. Gating circuit that allows the implementation of conditional

neural activity transfer between Neural assemblies X and Y through a gate assembly. The gate keeper assembly (GK) is

activated by the X assembly and then inhibits the gate assembly (G). To let information �ow through the gate assembly,

a control assembly (Ctl) must therefore inhibit the gate keeper assembly. B. Architecture of a single compartment

circuit of a connection matrix. Six gating circuits are arranged in a way that makes conditional bidirectional neural

activity �ow between two main assemblies possible. Control assemblies regulate the direction of information �ow and

allow the activation of sub assemblies. The two sub assemblies excitep the working memory assembly which, once

activated, encode the binding of the main assemblies and allow activation to �ow between them if the controls allow it

too. C. Each connection matrix contain n by m compartment circuits that encode the same relationship type between

the same pair of assembly categories. There are m available assemblies for one category and n available assemblies for

the complementary category and only one cell circuit can activate its working memory assembly to link two particular

assemblies due to mutual row and column inhibition of cells in the connection matrix. The size of the connection matrix

e�ectively represents memory limitations. A blackboard is composed of an arbitrary number of connection matrices

that encode di�erent relationship types for a pair of assembly categories. D. A blackboard is composed of multiple

connection matrices, where each of them is de�ned by two node categories and a relationship type between them. E.

Example of a possible tree structure that can be represented based on the speci�ed connection matrices.
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Nodes in Figures 8.1.A and 8.1.B represent neural assemblies that can be

interpreted as linked spiking neural populations. The most basic component

of the NBA is a “Gating Circuit” illustrated in Figure 8.1.A. The main idea

is that neural activity would �ow from the assembly X to the assembly Y,

but is blocked by the Gate Keeper (GK) assembly, which itself is excitepd by

assembly X. So to allow directional activity �ow from X to Y, a Control (Ctl)

assembly has to inhibit the GK assembly. Notice that it is trivial to extend the

gating circuit for bidirectional control of activity �ow as illustrated in Figure

8.1.B. Introducing bidirectional conditional control signals is what gives the

NBA the possibility of implementing separately queries like ’what follows X?’

or ’what follows Y?’.

Another basic component of the NBA is a proposal for working memory

(WM). Persistent neural activity in response to stimuli is considered to be the

neural process underlying active (working) memory, and its implementation

is hypothesized to be based on excitatory reverberation[199]. Based on this,

the NBA considers a Delay Activity[45] mechanism as a biologically plausible

implementation of WM. It consists on a neural assembly, that after being

excited beyond a certain threshold, achieved by the co-activation of input

populations, will maintain a constant amount of activation for a short period

of time. By maintaining its activity, WM acts as a short lived bidirectional link

between two assemblies. This mechanism can be considered as the creation of

an implicit pointer from one assembly to the other, such that future reactivation

of one assembly can be driven from the other to perform query operations.

This conforms a “Memory Circuit” as depicted in Figure 8.1.B.

Two bidirectional “Gating Circuits” connected by a “Memory Circuit”

form a “Compartment Circuit” capable of implementing variable binding and

query operations. The key point of this circuit is that Main assemblies (MA),

representing grounded concepts or instances of variables types, activate Sub

assemblies (SA) if a control signal driven by another mechanism allows it. Then

co-activation of SAs is what realizes a temporary binding of MAs by activating

WM. So one “Compartment Circuit” models speci�cally the neural activity of

a variable binding operation. It is operated by a mechanism that drives control

signals simultaneously in multiple “Compartment Circuits” to instantiate

binary tree like data structures on which query/unbinding operations can be

performed later.

As might be evident by now, applying the NBA to syntactic processing in

language consists of two simple assumptions. First, equating the parsing

mechanism to the control mechanism that coordinate binding events of

words and word types and phrase types. Second, determining the number of

compartment circuits necessary to instantiate a complete syntactic structure

and the content of MA nodes from a grammar theory. In this work we will

only employ a phrase grammar and bottom-up parsing scheme following

theoretical assumptions of selected neuroimaging experiments. Nonetheless, a

promising feature of the NBA is that it has the �exibility to test any arbitrary
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parsing mechanism incorporating top-down considerations and an important

variety of alternative theories of grammar based on binary trees. For example

dependency grammars that assume multiple direct word bindings instead of

the hierarchical phrase bindings modelled in this work have been employed

in previous simulations[188].

To understand how a sentence is processed in the NBA, let us consider

�rst the simplest case of binding two words, like “Sad student”, belonging

to grammatical categories instantiated in the MAs of one “Compartment

Circuit”, such that one MA is an “Adjective” corresponding to “sad” and the

other one is a “Noun” corresponding to “student”. The MAs activate with

timings corresponding to word presentation, so we are assuming that words

were recognized to motivate their corresponding instantiated grammatical

categories before we attempt to link them. Then an assumed parsing

mechanism determines that a link operating on “Adjective” and “Noun” types is

necessary in the blackboard, driving activity in several “Compartment Circuits”

from which only one, that we consider as the recruited “Compartment Circuit”,

completes co-activation of SAs to drive WM and realize binding between the

word types.

In the case of a complete phrase, like “Fat sad student”, if we are assuming

the instantiation of phrase types that form a hierarchical tree theorized by

a phrase grammar, then the time at which the binding of the instantiated

grammatical categories of “sad student” takes place would be the time at which

a “Noun Phrase” is activated and bound to the “Adjective” corresponding to

“Ten”.

Finally, a “Connection Matrix”, portrayed in Figure 8.1.C, allows the

implementation of a complete “Blackboard”. It contains variable type relations

learned by the “Blackboard” as sets of mutually inhibitory “Compartment

Circuits” that enable the selection of the “Compartment Circuits” requested

by the control mechanism. We portray the “Blackboard” as a regular

grid for illustrative purposes, although there is already a proof of concept

implementation with randomly connected networks[189]. Nonetheless in

this work we will ignore the “Connection Matrix” dynamics by considering

the “Compartment Circuits” as individual isolated circuits, since we lack

information to form hypothesis about the size of the Blackboard, total number

of Connection matrices and other important parameters. Simplifying our

simulation by ignoring the “Connection Matrix” dynamics should only a�ect

substantially predictions on language processing variables unrelated to binding,

like memory constraints, which we do not explore in this work.

To implement a general syntactic control mechanism, although challenging,

should be feasible, as suggested by the Feed-forward arti�cial neural networks

employed in previous NBA simulations [188] and recent state of the art

feed-forward network architectures that have shown top performance for

diverse language parsing tasks [6]. Moreover a more recent proposed

extension of the NBA, that imitates the motor circuit of the marine mollusc
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Tritonia diomedea, shows how to generate patterns for sequential activation

control[191]. Nonetheless we considered that simulating the higher level

mechanisms of control is a task out of the scope of this work, since we

focus speci�cally on reproducing the neural signatures of variable binding

operations.



9 Simulation setup of the Neural Blackboard Architecture

In this chapter we present the architectural decisions of the simulation,

how we determined the diverse parameters of the Compartment Circuit

of the Neural Blackboard Architecture (NBA) and the experiments

performed to tune the circuit for correct binding operation.

9.1 NBA simulation

Previous simulations of the NBA approximate the mean activity of neural

assemblies with Wilson Cowan dynamics [67]. Nonetheless, as explained

in Chapter 2 Section 2.2, direct simulations of leaky-integrate-and-�re (LIF)

neurons [150] have di�erent transient behaviour than the dynamics described

by the Wilson Cowan equations.Since we are interested in modelling the

transient dynamics of variable binding in order to compare the simulation

with real temporally detailed patterns of intracortical neural measurements

like ECoG, we feel the need to model spiking neuron dynamics is important.

The decision to use AdEx, rather than LIF neurons has two motivations:

�rst, adaptation is ubiquitous and its inclusion has a substantial impact

on the dynamical range allowed within the constraints of the blackboard

architecture. Second, it has been shown that 2D models, like AdEx, can

already predict correctly 96% of the spikes of detailed conductance models[27].

Also, this model reproduces many known electro-physiological features, as

can be appreciated in the spike-frequency adaptation review of Benda et al.

[13; 14]. Our approach is consistent with a trend towards simpler, geometrically

motivated 2D models that preserve the essence of more complex biophysically

motivated models [97].

AdEx is now available in MIIND. To our knowledge this is the �rst time

that the AdEx model will be employed to approximate the neural dynamics of

a circuit of this magnitude reproducing cognitive function.

In the case of Delay Activity (DA) populations like Working Memory (WM),

we decided as a �rst approach to model such a mechanism phenomenologically.

We plan to address the di�erent alternatives to model persistent cortical

activity with interacting neural populations in future work. As suggested by de

Kamps[45] not onlymodels of recurrent excitation but also recurrent inhibition
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can account for this phenomena. In the current simulation, a constant �ring

rate for DAs is kicked o� by a speci�ed level of input, resulting in activation

that is sustained for a predetermined period of time. Contrary to previous

simulations [186], we do not consider Sub-Assemblies (SAs) as DA populations.

We �nd that SAs can show rich and interesting dynamics just by ful�lling

their function of mediating activation for WM.

We model Main-Assemblies (MAs) as receiving input from DA populations,

representing word types in some cases, and WM populations representing

phrase types in other cases. We do this to satisfy the assumptions of a phrase

grammar that requires representation of deep tree hierarchical structures, so

that we can separate the notion of a phrase resulting from previous word

type bindings stored in WM, from the recruitment of MAs representing

word grammatical category instantiations that take place during sentence

processing. Note that for other grammar types, like dependency grammars

considered in previous NBA simulations[186], to consider words as nodes in

their syntactic representations, we only need to model word types for the MAs

of the necessary compartment circuits.

9.2 Compartment circuit parameters

The compartment circuit contains two di�erent types of neural populations.

Arti�cial neural populations following a boxcar event model, shown in Figure

9.1.B and biological neural populations following LIF or AdEx neural models.

We took LIF parameters from Omurtag et al. (2000) [150] and AdEx parameters

from Brette and Gertsner [26].

As a �rst step we wanted to only explore the general behavior of the circuit

of neural populations following well studied sets of parameters. Nonetheless

it is clear that studying the neural dynamics of speci�c brain regions might

require adapting the parameters of the neural models to local measurements.

Each neural population is either excitatory or inhibitory; this means that

a population that is excitatory (inhibitory) on one population is excitatory

(inhibitory) on others as well, respecting Dale’s law.

The dynamics of most populations are given by the PDTs and ultimately

determined by the underlying model of spiking neurons. These neural

populations comprise a pair of Main Assemblies (MA), a pair of Sub Assemblies

(SA), six Gate Assemblies (G) and six Gate Keeper Assemblies (GK).

Nonetheless there are a few other populations for which we simpli�ed

the simulation to the phenomenological level with an imitation of Delay

Activity, which means that, after transient stimulation, a population retains its

activation above a certain threshold for a given period of time. For instance,

the biophysical mechanisms of WM are still not understood completely, but its

characterization as Delay Activity is relatively uncontroversial. We modelled

in this way, Control assemblies (Ctl), Working memory assemblies (WM),

Event Input Assemblies (Inp) and a Baseline Assembly (B) that drives baseline
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Figure 9.1:Compartment circuit example: A. Details of the Compartment Circuit implementation. Only half of

the circuit is shown since the design is symmetric. The baseline (B) and Event input (Inp) populations are part of the

simulation and not of the original abstract circuit proposal. B. The behavior of the arti�cial neural populations and their

selected parameters is shown

neural activity of all completely simulated neural populations. A complete

diagram of the compartment circuit with example parameter values for LIF

populations is given in Figure 9.1.

We use a boxcar event model for persistent activity. This model requires

speci�cation of the starting point of events, the persistent �ring rate of the

population and the duration of the persistent activity. In the case of the Delay

Activity of WM we also have to provide a kicko� input rate threshold that

automatically triggers the boxcar event instead of providing a start time point.

The duration of persistent activity was pragmatically set up long enough

for the neural dynamics to reach steady state and allow the formation of all

required bindings between phrase types and word types. Finally the persistent

activity rate and kicko� rate threshold were arbitrarily selected from possible

parameter range values as a result of simulations of the circuit dynamics that

will become clear in the following section.

Selecting �ring rates to tune the compartment circuit is a complex task

given the contrast between the extremely simpli�ed circuit and real neural

networks that contain multiple types of neurons with diverging behavior

across cortical layers [202]. Wohrer et al [202] show, from measurements in

rat cortex, that the actual �ring rate distributions of neural networks do not

di�er much between resting state and evoked activity. The small di�erence

would come from very few neurons that manage to drive up the mean �ring
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rate in recordings while most neurons in the population are almost silent, some

with rates as low as 0.1 Hz [102], whose activity might not even be picked up

by most recording devices. Although theoretical analysis of the distribution

of �ring rates in randomly recurrently connected networks of LIF neurons

near the �uctuation-driven regime suggests considering mean �ring rates

around 6.4 Hz [167]. Based on the review of Wohrer et al. [202], particularly

on the �ring rate in motor areas of behaving macaques, we decided to kickstart

biological neural populations activity up to a conservative baseline �ring rate

of 1 Hz and study the neural dynamics of circuit input �ring rates of up to

10Hz.

There are two parameters governing transmission of neural activity

between neural populations. First, the synaptic e�cacy of connections, which

was setup to be uniform across the circuit under the lack of appropriate

hypothesis to tinker it in a detailed manner. According to London [116],

current understanding of synapses is limited and contextual measurements and

parametrization of e�cacy might be more appropriate than �xing individual

connection parameters. For example recent evidence [28] shows that synaptic

e�cacy might be modulated by attention processes. In the study of Briggs [28]

neurons of the thalamus were stimulated while measuring evoked responses

from corresponding monosynaptically connected neurons in primary visual

cortex. With this procedure the authors showed that, the percentage of shocks

that evoke a postsynaptic response, the average e�cacy, ranged from 28%

to 36% depending on the type of neurons considered and the attention state.

Considering the possible e�cacy variability in cortex, we decided to verify,

through simulations of a sub-circuit, the sensitivity of the circuit temporal

dynamics to low (10%) and high (30%) values of synaptic e�cacy, where

percentages are taken with respect to the di�erence between equilibrium and

threshold potential, for both LIF and AdEx populations.

The second parameter governing transmission of neural activity was

the number of connections between a pair of neural populations. Unlike

synaptic e�cacy, the number of connections were determined from a series

of simulation experiments. First the number of connections from baseline

persistent activity was set such that, during rest, the circuit steady state activity

would stabilize around 1 Hz. The number of baseline connections necessary is

a function of input �ring rate, synaptic e�cacy and neural model, such that a

lower synaptic e�cacy required a higher number of connections. Then the

number of connections coming from excitatory populations was determined

such that bidirectional gating circuits would have a stable steady state �ring

rate when both Gs allow neural activity to be transmitted. Finally the number

of connections coming from inhibitory nodes were setup high enough to block

neural activity �ow in a gating circuit, which means that GKs driven by MAs

would be able to completely inhibit activity in Gs. Our simple approach to

neural rate transmission ignores many intricacies like activity regimes that

might allow rich internal computations. [151]. Also connections distribution



neural bases of variable binding in symbolic representations 93

might have an impact in spike based communication [144]. Still we decided to

keep connections between populations as simple and homogeneous as possible

for a �rst approach.

9.3 Simulation experiments performed

Since it is possible to tune the circuit to reproduce a wide range of �ring

rate absolute values under which circuit dynamics are similar and stable, we

simply aimed at picking reasonable parameter values such that the circuit

would maintain overall modest �ring rate values with respect to the literature

of neural measurements. To setup parameters and compare in detail the

compartment circuit dynamics for LIF and AdEx neural populations, four

simulation experiments were performed taking di�erent sub-circuits into

account. A diagram of each sub-circuit is shown in Figure 9.2.

Figure 9.2: Sub-circuit simulation

topologies: For better visualization

baseline activity nodes are excluded

from the topologies. A. Single

neural population driven by baseline

activity. This topology reminds

of the fact that all MA, SA, G and

GK populations are driven initially

in the same way by a persistent

baseline �xed rate. B. Chain

of populations where activity is

temporally interrupted by a control

node. C. Excitatory loop between

SAs when Working Memory is

activated. D. Excitatory loop broken

thanks to GKs inhibition.

The �rst simulation simply consists of the activity of one neural population

driven by a �xed activity rate of 1 Hz. We used this simulation to explore the

necessary number of baseline connections to drive baseline activity in the

circuit to approximately 1 Hz. The second simulation allowed us to explore how

neural activity �ows through a chain of neural populations being regulated

by a control mechanism. The third simulation explores how neural activity is

enhanced by a closed loop between a MA and SA, since it will be the case in

the memory sub-circuit that activity is allowed to �ow bidirectionally once

the WM delay activity is unleashed. Finally the fourth simulation consists on

adding GKs to the closed loop sub-circuit of the second simulation to explore

how many inhibitory connections are necessary to keep activity from �owing

in the circuit unless the control mechanism allows it.

After determining reasonable parameter values, we simulated the complete

circuit, shown in Figure 9.1, for both LIF and AdEX neural populations. Then

we compared the resulting neural patterns of the MA, SA, G and GK neural

populations to binding and constituency e�ects available in the neuroimaging

literature.

We simulated the binding activity related to the processing of complete

phrases, by assuming a syntactic tree structure given by a phrase grammar
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and the order of control events given by a bottom up parsing scheme. As a �rst

simpli�ed approximation to the NBA dynamics, we instantiated the required

compartment circuits independently to represent the complete assumed tree

structure and temporally align their neural signals according to input onsets.

Like this we obtained entire phrase neural time series, by summing activity

across similar node categories of the multiple independent compartment

circuits instantiated. We used this procedure to simulate the neural activity

of simple phrases, corresponding to increasing size right branching tree

structures, to be compared with two di�erent neuroimaging signals.

First, we showed similarities between the activity of simple phrases

and ECoG time series patterns of binding revealed by Nelson et al[141].

We naively compared the �ring rates of our simulation directly to the

patterns observed in ECoG recordings, considering the correlation that exist

between the high gamma power of local �eld potential signals and �ring

rates[163; 119]. Nonetheless a quantitative comparison would require a more

careful consideration, employing recent models tuned to electro-physiological

measurements that o�er a way to translate neural activity to local �eld

potentials[127; 81].

Second, we concatenated simple phrases to reproduce the stimuli of Pallier

et al. (2011)[153]. Then we convolved the stimuli neural time series with

the Glover Hemodynamic Response Function[77]. This allowed us to make a

qualitative comparison with the hemodynamic constituency e�ects depicted

by Pallier et al. (2011)[153].

Since the quantitative level of neural activity can be easily tuned for a wide

range of parameter values with similar behavior, when comparing the circuit

neural dynamics with the neuroimaging literature, we only focused on the

qualitative neural temporal patterns observed.



10 Simulation outcomes

In this chapter we present the outcome of the circuit tuning

experiments, the phrase syntactic processing patterns of the simulator

after tuning and how we reproduce diverse evidence from BOLD-fMRI

and ECoG neuroimaging experiments.

10.1 Sub-circuit simulations

Experiment 1: Simple neural population

In the �rst experiment we explored the steady state rate and temporal behavior

of the di�erent neural models with di�erent synaptic e�cacies. As indicated

in the circuit topology of Figure 10.1, neural populations were driven by a

persistent 1 Hz input rate. We show the steady state rate as a function of

the number of baseline connections in the top plots of each neural model in

Figures 10.1 and 10.2. In the bottom plots we display the respective �ring rate

dynamics for di�erent number of connections.

In the case of a LIF population, by manipulating the number of connections,

we can tune to any value the steady state rate. For all synaptic e�cacy

values, the �ring rate increases smoothly until achieving the steady state

at approximately 200 ms. The AdEx population has a di�erent temporal

behavior. An immediate transient peak of activity on initial stimulation is

driven down by adaptation, achieving a steady state at approximately 600 ms.

The adaptation e�ect, on a 30% synaptic e�cacy, limits the range of values

that the steady state rate can take by manipulating the number of connections.

As explained in the Methods section 9.2, binding takes place in the

Compartment Circuit when the kicko� input rate threshold of the Working

Memory (WM) population is reached. The total input rate of WM depends on

the sum of the �ring rate of both Sub-Assemblies in the Compartment Circuit,

which themselves are driven by separate input events. Since steady state rate

values are limited in the AdEx model with high synaptic e�cacy, operation of

the circuit would be more constrained with non simultaneous input events,

than in the low synaptic e�cacy case.

Because we wanted to explore the behavior of the Compartment circuit

for all possible timings of input events, we decided to restrict all remaining
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Figure 10.1: LIF Baseline neural

dynamics: The plots at the top

show how the steady state rate of

a neural population relates to the

number of baseline connections for

a baseline input of 1Hz. The plots

at the bottom show the temporal

dynamics for di�erent number of

baseline connections.

simulations to a 10% synaptic e�cacy. We also �xed the number of baseline

connections to 115 and 1646, for LIF and AdEx populations respectively, since

these values best approximated the desired 1Hz steady state �ring rate under

a 10% synaptic e�cacy.

Experiment 2: Neural activity flow and control release

For the second experiment wewanted to understand how �ring rate, in the Sub-

assemblies of the Compartment Circuit, would varywith the timing of the onset

of input and control events. To accomplish this we employed the sub-circuit

topology presented in Figure 10.3. In this topology the Gate (G) population is

permanently inhibited by a Control (Ctl) population with persistent activity,

such that the Sub-Assembly (SA) can not be driven by the Main-Assembly

(MA) until a control event, that inhibits the Control population, takes place.

For this experiment, the number of excitatory connections was �xed to 9 for

LIF populations and 20 for AdEx populations. The e�ect of modifying the

number of excitatory connections will be explored in Experiment 3 in Results

section 10.1.

We considered two possible persistent rates for the input event, 10 Hz or

20 Hz for the LIF model and 20 Hz or 30 Hz for the AdEx model. We needed

higher input rates for the AdEx model since adaptation induces smaller steady

state rates with respect to the LIF model. There are three possible extreme
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Figure 10.2: AdExBaseline neural

dynamics: The plots at the top

show how the steady state rate of

a neural population relates to the

number of baseline connections for

a baseline input of 1Hz. The plots

at the bottom show the temporal

dynamics for di�erent number of

baseline connections.

cases of timing between the input and control events; When the input event

takes place at 0 ms and the control event at 1000 ms (Input First); When both

events start at 1000 ms (Simultaneous); And when the control event starts

at 0 ms followed by the input event at 1000 ms (Control First). These timing

of events are extreme cases because 1000 ms is enough time for the neural

populations to achieve a steady state rate after any event initiated at 0 ms.

Any other timing in which populations have still not achieved a steady state

before the arrival of the second event would produce neural dynamics with

patterns in between the extreme cases. For language stimuli, timing cases can

be interpreted as di�erent types of parsing mechanisms, where Control First

corresponds to a predictive (top-down) one and Simultaneous and Input First

to a reactive (bottom-up) one. We show in Figure 10.3 the �ring rate time

series of the Sub-Assembly (SA) for all possible event timing cases and input

�ring rates.

First we observe that the input rate do not change the relative behavior of the

timing cases but only increase the steady state rate and transient �uctuations.

We see that the timing cases do not modify the �nal steady state rate, which
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Figure 10.3: Neural dynamics of

input and control events: Weplot

the temporal dynamics of the Sub

Assembly population corresponding

to the sub-circuit topology shown.

9 and 20 excitatory connections

are assumed for the LIF and AdEx

models respectively. We show the

time series after 1000 ms, time at

which all neural populations have

achieved a steady state rate from

their initial events at time 0. For

each neural model two constant

input rates are simulated for the

input events, 10 Hz and 20 Hz for

LIF, and 20 Hz and 30 Hz for AdEx.

There are three possible extreme

cases of timing between the input

and control events; When the input

event takes place at 0 ms and the

control event at 1000 ms (Input

First); When both events start at

1000 ms (Simultaneous); And when

the control event starts at 0 ms

followed by the input event at 1000

ms (Control First).

only depends on the input rate, but in�uence the maximum rate of the transient

activity �uctuations. In the case of AdEx, the speed at which the steady state is

approximated is also a�ected by the timing cases, for example the Simultaneous

case takes approximately 400 ms more than the Control First case, to achieve

the steady state, for a 30 Hz input rate. The steady state rate is in most cases

and neural models the lowest �ring rate, with some short transient exceptions.

Moreover the timing cases have di�erent relative behaviors depending on the

neural model, as can be seen from the Control First case that has the lowest

transient rates for AdEx but the highest ones for LIF.

Successful binding in the Compartment Circuit depends on the sum of

activity of two SAs, that reaches the kicko� threshold rate of the Working

Memory (WM) population. Assuming activity of SAs is driven by two separate

input events, like two words to be bound presented 200 ms apart, the timing

of the two input events and the timing cases of their respective control events
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will determine the possible range of values for the WM kicko� threshold. We

can also think the other way around and say that the range of values of the

WM kicko� threshold constrain the possible timing of all events.

An example scenario, illustrated in Figure 10.3 for a LIF population with

20 Hz input, would be that the onset of input events correspond to the onset

of word presentation, 200 ms apart, where the timing of the �rst SA input

event follows the Input First case and the timing of the second SA input event

follows the Control First case. In that scenario any WM kicko� threshold

between 16 Hz and approximately 44 Hz would be reached by the sum of the

15 Hz steady state rate of the �rst SA and the �ring rate of the second SA

achieving a transient maximum of approximately 29 Hz.

Since we wanted to consider all possible event timings when studying the

Compartment Circuit dynamics, we took from this experiment the cases with

the highest transient rates for each neural model, to later analyse the circuit

parameter space. We see in Figure 10.3 that the Control First case has the

highest transient rate for the LIF model, while the Simultaneous case has the

highest transient rate for the AdEx model.

Experiment 3: Circuit operation according to the parameter

space

In a third experiment, we studied the parameter space of the input rate, the

number of excitatory connections and the WM kicko� activation threshold,

to understand the operational, event timing related, constraints of the

Compartment Circuit when attempting to instantiate binding under di�erent

regions of the parameter space. As shown in Figure 10.4, to explore the circuit

behavior, we have to consider the Sub-Assembly (SA) temporal dynamics

presented in Results section 10.1 and a sub-circuit topology representing an

excitatory loop between two SAs.

As shown in the Compartment Circuit diagram of Figure 9.1 of Methods

section 9.2, once the Working Memory (WM) Delay activity is unleashed, both

Gate Keepers (GKs) are inhibited, creating an excitatory loop between the Sub-

Assemblies (SAs). Beyond a certain number of excitatory connections, there is

the possibility of runaway activity in the excitatory loop, which motivates a

constraint in the parameter space of the Compartment Circuit. The excitatory

loop activity considered is only driven by the 1 Hz baseline input rate, as

would be the case in the circuit once the input events stop driving activity in

Main-Assemblies (MAs) and as a consequence in SAs. In Figure 10.4 we plot

the space of excitatory connections up to 11 connections and 21 connections

for LIF and AdEx respectively, values at which we observed runaway activity

in the excitatory loop.

Alongside the excitatory loop baseline steady state rate curve of the SA,

we also plot the input driven maximum transient �ring rate and steady state

rate of an SA, according to the di�erent events’ timing behavior presented in
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Figure 10.4: Excitatory loop

and WM activation parameter

regions: At the top the two sub-

circuit topologies from which SA

�ring rate curves are derived. Rate

curves consist on �ring rate as a

function of the number of excitatory

connections for a given input rate

of 10 Hz and 25 Hz for the LIF and

AdEx models respectively. From the

chained neural population topology

we consider the highest maximum

transient rate and the steady state

rate. From the excitatory loop

topology we consider the steady

state rate driven only by baseline

activity. We color the regions

between the curves to indicate

the di�erent WM activation cases

determined by the value of the WM

"half" kicko� threshold rate. The

four parameter regions refer to the

possible combination of input and

control events that would allow

binding to take place if the WM

"half" kicko� threshold falls in the

region: The perpetual activation

region implies that WM will get

permanently reactivated; The

�exible activation region implies

that all events cases can produce

binding; The constrained activation

region implies that only some

combination of events’ timings

can permit binding; Finally the

impossible region implies that no

binding can take place for the given

WM kicko� rate.

Results section 10.1. The �ring rate curves correspond to an input of 10 Hz

and 25 Hz for LIF and AdEx populations respectively. All the �ring rate curves

correspond to the activity of only one SA, so whenever we represent the WM

kicko� rate threshold in Figure 10.4, we refer to the "Half" kicko� threshold.

For example the convenient "Half" kicko� rate threshold of 6 Hz, marked with

a green line in the LIF Model plot, implies a total WM kicko� rate threshold

of 12 Hz.

From the relationship between the three �ring rate curves, we can establish

four parameter regions with di�erent implications for the behavior of the

Compartment Circuit: First, below the excitatory loop baseline steady state

rate, we have a parameter region for which WM would be continuously

reactivated. The initial activation of WM leads to the excitatory loop steady

state rate, so if the kicko� threshold is below it, WM will be reactivated

perpetually. We call this the WM perpetual activation region; Second, in the

area between the loop steady state and the input steady state curves, all input

and control event timing cases will lead to activation of WM, which can be

explained by the steady state rate being the lowest transient rate. We call

this the WM �exible activation region; Third, in the region between the input

driven maximum transient rate and the steady state rate curves, activation

of WM will not take place for some timings of input and control events. The

higher the WM kicko� threshold in this region, less input and control event
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timing cases can activate WM. We call this the WM constrained activation

region; Finally, above the input driven highest maximum transient rate, it

is clear that activation of WM can not be achieved under any circumstance,

which is why we denote it as the WM impossible activation region.

To understand the constrained activation region, it helps to take a look

back at Figure 10.3 of Results section 10.1. Consider the AdEx model with a 30

Hz input rate. We can see that a WM kicko� rate of 14 Hz would be reached

by adding the steady state of one SA and the transient rate of any events’

timing case for the second SA. If we raise the WM kicko� rate to 20 Hz then

we would need the events driving the second SA activity to follow the Input

First or Simultaneous timing cases, while raising it further to 25 Hz would

leave the Simultaneous case as the only option.

We still do not know the parameter variability allowed by the cortex to

implement the circuit, so we consider the proportion between the constrained

and �exible activation parameter regions as a indicator of the di�culty to

operate the Compartment Circuit under the di�erent neural models. Based on

this, we observe in Figure 10.4 that the AdEx model is more likely to induce

constraints in the timing of input and control events to perform the bindings

necessary to represent complete structures in cortex. To allow the most �exible

behavior exploration of the Compartment Circuit, when simulating language

processing, we decided to select parameters in the �exible activation region.

We selected a combination of 10 Hz and 20 Hz input rates, 8 and 20 excitatory

connections and 10 Hz and 9 HzWMkicko� rates for LIF and AdEx populations

respectively.

Experiment 4: Inhibition of undesired activity spill

In the fourth experiment, we tuned the amount of inhibitory connections

between Gate Keepers (GKs) and Gates (Gs) to avoid undesired spill of neural

activity from the Main Assemblies (MAs) to the Sub-Assemblies (SAs). We

wanted any spill to be practically insigni�cant for any number of excitatory

connections and arbitrary input activity �uctuations to which the AdEx model

is sensitive. We decided to study this with the sub-circuit topology of Figure

10.5.

We plot, in Figure 10.5, the maximum transient �ring rate of the SA as

a function of the number of inhibitory connections for a varied number of

excitatory connections. If the amount of inhibitory connections is not enough,

transient activity of the SA will be increased beyond its baseline activity,

denoted with a black line. We determined how many inhibitory connections

are necessary by looking at the amount of inhibitory connections at which

the maximum �ring rate becomes practically insensitive to the number of

excitatory connections. It is clear from the plots that, after a certain number

of inhibitory connections, unidirectional activity will be allowed only by

controlled inhibition of the GKs. From these experiment observations, we
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Figure 10.5: Inhibition to avoid

excitatory loop: The sub-circuit

topology at the right depicts the

inhibition of Gates (Gs) by the

Gate Keepers (GKs) that are driven

themselves by the Main and Sub

Assemblies (MA and SA) to avoid

an excitatory loop between them.

Activity in the sub-circuit is driven

only by a 1 Hz baseline rate.

Each curve in the plots represent

how the maximum transient rate

of SA for a given number of

excitatory connections varies as we

increase the number of inhibitory

connections. We present one plot

for each neural model (LIF and

AdEx). The maximum �ring rate

is employed instead of the steady

state rate to observe sensitivity to

transient rate �uctuations.

decided to set the number of inhibitory connections to 70 and 250 for LIF and

ADEX populations respectively.

10.2 Complete compartment circuit simulations

After selecting a set of parameters in line with the previous experiments, we

analysed the behavior of the complete compartment circuit simulation. The

dynamics of the compartment circuit can be summarized by a combination of

the input events that drive activity in Main-Assemblies (MAs) and the control

events that inhibit Gate Keepers (GKs) such that activity can �ow from MAs

to Gates (Gs) and from the latter to Sub-Assemblies (SAs). In Table 10.1 we

present a summary of the parameters taken for LIF and AdEx simulations and

in Figure 10.6 we present the temporal dynamics of the compartment circuit

for a complete and incomplete binding.

Parameter LIF AdEx

baseline connections 115 1646

excitatory connections 8 20

inhibitory connections 70 250

Input rate (Hz) 10 20

WM/Ctl rate (Hz) 10 20

Table 10.1: Complete simulation

parameters

First, we show the baseline dynamics of the circuit when no event takes

place in part A of �gure 10.6. In this case all neural populations are only

receiving an input baseline rate of 1 Hz. So the di�erent populations just

re�ect with their �ring rate the architecture of the circuit. Gs show a low rate

of activation due to GKs inhibition, while GKs show the highest rate driven by

MA and baseline activity. MAs show an activation close to the approximated

1 Hz baseline as well as SAs that have been isolated in the circuit thanks to
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Figure 10.6: Pro�les of neural activity: A. Neural activation driven only by baseline input. B. Neural activation of

the circuit when only one MA is activated by a word event or WM at 500 ms. Shows the neural activity related to an

erroneous control signal at 800 ms. It is possible to see that the steady state of neural activity is resilient to a slip of

control, going to the appropriate levels of neural activity once the control activity is over. C. Neural activity of the

Compartment Circuit for a successful binding. The second MA gets activated at 800 ms alongside the controls. Since

both MAs are active, the SAs manage to activate WM to instantiate the binding of the MAs. Two interesting dynamics

arise from the binding: The �rst is that a spike of activity in SAs, GKs and Gs takes place due to the sudden inhibitory

activity of WM on the GKs; The second is that the memory circuit internally raises its baseline activity due to the

excitatory loop formed.

GKs inhibition.

Second, we show the activity of the circuit for an incomplete binding in

part B of Figure 10.6. This means that only one MA is driven by an input event,
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after which a Control (Ctl) event allows activity �ow from both MAs to SAs,

even though there is no binding to be done. Due to stimulation of the MA, the

GK �ring rate raises to stop activity to �ow to the SA until the control event

takes place to inhibit the GK. As only one SA is driven by input, the total rate

contribution to the WM population do not achieve the WM kicko� threshold

rate necessary to perform a binding. Both neural models display a transient

spike of neural activity in the SA, G and memory sub-circuit GKs during the

time window the control permits activity to �ow to the SA. In the case of the

AdEx dynamics, shown in Figure 2.8, there is the possibility of an activity

rebound after inhibition, in which neurons will respond more vigorously than

if they would not have been inhibited, re�ected in the GKs after control stops.

Third, we show the circuit dynamics of a successful binding in part C of

Figure 10.6. When both MAs are driven by an input event and a control event

takes place. In this case the added activity of the SAs reaches the WM kicko�

threshold and kickstarts the Delay activity of WM. Then activity in the SAs

and Gs of the memory sub-circuit raise to a new baseline due to the excitatory

loop created byWM inhibition of GKs, which also generates an initial transient

spike of activity in SAs. A similar behavior to this one, simulating sentence

parsing, was also reported by previous work with the NBA[67]. Finally, after

the WM Delay activity stops, the LIF model activity goes back to baseline, but

the AdEx model exhibits a �nal transient rise of �ring rate in the GKs of the

memory sub-circuit, similar to that of the GKs a�ected by control inhibition

release.

10.3 Simulation of complete phrase processing

With the neural dynamics of several isolated Compartment Circuits, simulated

independently of each other, we approximated the binding of complete phrases.

As explained in the Introduction section 8.2, we simpli�ed the simulation of the

Blackboard by ignoring mutually inhibitory Compartment Circuits dynamics

determined by a ConnectionMatrix. The right branching hierarchical structure

that corresponds to an example phrase of 4 words, determined by a phrase

grammar, is shown in Part A of Figure 10.7. In this example only three

Compartment Circuits are necessary to realize all the bindings that would

correspond to the phrase processing, and the exact input event onsets were

taken from the LIF simulation. The onset of input events driving Main

Assemblies that represent word grammatical categories were matched to word

presentation onsets spaced 600 ms apart from each other. In the case of phrasal

nodes, we assumed that their input event onset corresponds to the previous

realization of a binding, determined by the moment at which their respective

Working Memory population was activated. In this way, phrasal nodes can be

represented by activity in the Main-Assemblies of a Compartment Circuit and

be bound to other word grammatical categories or phrasal nodes.

We needed to prolong the Main-Assemblies and Working Memory activity
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Figure 10.7: Sentence processing example: A. Tree structure hypothesized for a given 4 words phrase. It is shown

how compartment circuits correspond to sections of the tree structure and how the nodes corresponding to grammatical

categories of words processed or phrase nodes are instantiated in time under a bottom-up parsing approach. B. Blackboard

time series that correspond to the simulated processing of the considered tree structure and time of activation of the

nodes. The separate activity of the LIF populations of each compartment circuit are shown separately, followed by their

summary and total activity. C. Same as B but for AdEx populations.

long enough to instantiate all the necessary bindings, so in this example we

assumed WM and input events to last 2300 ms for all simulations. As indicated
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in the second phrasal node (PN2) of the tree example, if input events were

active for less than 1972 ms then activation of the �rst word MA would cease

before the accompanying phrasal node MA comes into play to realize the last

binding. In the Compartment Circuit simulation presented in Figure 10.6, there

was a di�erence in timing of WM activation between the LIF and the AdEx

neural models, that was not easy to see in the plots. The Working Memory

population became active 86 ms after all input and control events take place

in the LIF simulation, while in the AdEx simulation this only took 42 ms.

This time di�erence originates in the faster initial transient response of the

AdEx dynamics in contrast to the LIF dynamics, that can be seen in Figures

10.2 and 10.1 respectively. By contrasting the LIF and AdEx complete phrase

simulations in Figure 10.7 we can better appreciate how this di�erence adds

up to accelerate phrase processing in the AdEx model.

To later compare the phrase processing simulation with neuroimaging

patterns, we �rst substracted baseline activity from the time series of each

neural population in each Compartment Circuit. Then we summed the aligned

time series of the same neural population category belonging to di�erent

Compartment Circuits. Finally, to obtain total neural activity of phrase

processing, we summed activity from all the non phenomenological neural

populations and the Working Memory population, such that they would all be

equally weighted under the absence of a more detailed hypothesis about the

neural population sizes and their spatial distribution in the cortex.

10.4 �alitative reproduction of ECoG pa�erns

As presented in the Introductory section 8.1, the ECoG analysis of Nelson

et al.[141] is the �rst to characterize the speci�c temporal patterns of

phrase-structure formation from intracranial neurophysiological data, possibly

revealing the �rst neural signatures of binding operations. Nelson et al.

demonstrate two patterns that are of particular interest to our simulations: �rst,

the average temporal dynamics of processing increasing size right branching

phrases. Second, the average neural dynamics for hypothesized number of

pending binding operations, during phrase processing, under a bottom-up

parsing approach. In Figure 10.8 we show the aggregated neural activity

predicted by our LIF and AdEx simulations, alongside the temporal dynamics

of phrase processing presented by Nelson et al., from the mean high gamma

power of the intracortical recordings.

As can be seen in the top plots, our simulations suggest the existence

of four qualitatively di�erent segments of neural dynamics: �rst, as words

are presented to the circuit, input events drive activity in Main-Assemblies

(MAs) corresponding to the grammatical categories of words. The activity of

all the MAs accumulate but still do not change the activity of other neural

populations on the Compartment Circuits, since for parsing a right branching

tree under a bottom up parsing scheme, control events that allow bindings, do
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Figure 10.8: Simulation

comparison with intracortical

(EcoG) recordings: In the top

plots we show phrase processing

for the LIF and AdEx simulations.

We denote with arrows the four

segments of neural dynamics

identi�ed in the simulations;

The Main Assemblies (MAs)

activity increase the segment; The

accumulated binding operations

segment; The Main Assemblies

(MAs) activity release segment; And

the Working Memory (WM) release

segment. We denote with red bars

the magnitude of Working Memory

activity in the circuit that depends

on phrase length and remains at the

end of phrase processing. In the

bottom plots we identify, in Figures

modi�ed from Nelson et al., the

segments of intracortical recordings

that resemble the simulation and

denote with red bars the possible

Working Memory related activity

that remains at the end of phrase

processing.

not occur until the last word is presented. The second segment correspond

to the succession of bindings that take place after the last word of the phrase

is processed. The neural activity allowed by the control events creates a

transient rise in activity that stabilizes with the accumulated Delay activity of

the Working Memory populations and the still ongoing input activity. The
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third segment is characterized by the gradual drop of input related activity.

And the fourth segment corresponds to the �nal drop of Working Memory

activity, such that all the neural populations return to their baseline steady

state rate.

We see in the bottom plots of Figure 10.8, modi�ed from the Figures in

Nelson et al., that we can qualitatively identify the three initial segments

predicted by the simulation in the high gamma power time series. We

observe an initial increase in neural activity, for which a later onset and

higher magnitude of the peak appear to depend on phrase length, as would

be explained by the �rst segment of the simulation based on an increase of

activity in Main Assemblies (MAs). The following transient �uctuations of the

ECoG time series could be identi�ed with the binding related segment and the

�nal activity drop with the release of MA activity. In the simulation, because

we deactivate MAs on discrete time steps, we observe plateaus of MA activity,

while the ECoG time series suggest a more abrupt drop after bindings have

taken place, which complicates distinguishing the neural �uctuations related

to the binding operations, from those related to the MAs activity release. In

the longer 6 words phrase "Ten sad students of Bill Gates", there is a middle

sentence high transient �uctuation that is not expected from a bottom up

parsing scheme.

We indicate with red bars, that the activity drop of the ECoG time series

stops at a higher level than the initial baseline, which is compatible with the

hypothesized ongoing Working Memory (WM) activity of the simulation. The

AdEx model distinguishes itself from the LIF model, during WM inactivation,

by predicting a �nal burst of activity due to the inhibition release of the

Gate Keepers in the memory circuit. Nonetheless, due to the task of the

ECoG experiment, which requires retaining in memory the phrase for later

comparison with another phrase, we should not be able to observe the �nal

drop of WM activity predicted by the simulation, as is the case.

In Figure 10.9 we show, in the top plots, the simulation time series aligned

on the last word onset, to demonstrate the neural activity �uctuations linked

to the number of accumulated and executed binding operations, which Nelson

et al. refer to as the number of nodes closing. In the bottom plots we show

modi�ed Figures from Nelson et al., where the e�ect is demonstrated in the

case of middle sentence operations and sentence end operations.

10.5 �alitative reproduction of BOLD-fMRI pa�erns

As explained in the Introductory section 8.1, we also reproduced patterns

from an experimental design employed to show constituency e�ects with

BOLD-fMRI[153]. Stimuli, presented to a subject in a trial, consisted of a list

of phrases with the same number of words (constituents), such that in total 12

words would be presented. All phrases correspond to right branching trees

according to the phrase grammar considered by the authors. The conditions
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Figure 10.9: E�ect of number

of executed binding operations:

In the top plots we show the

phrase processing time series of

the LIF and AdEx simulations,

aligned on the onset of the last

word. We denote with arrows the

segment of transient rise and drop

of neural activity hypothesized to

be linked to the number of executed

pending binding operations, which

we refer to as number of nodes

closing in the plots, following

terminology from Nelson et al.

In the bottom plots we show,

in Figures modi�ed from Nelson

et al., the intracortical recordings

e�ect of executed pending binding

operations at the middle and end of

phrases.

were one list of 12 unconnected words (c01), 6 phrases of 2 words (c02), 4

phrases of 3 words (c03), 3 phrases of 4 words (c04), 2 phrases of 6 words (c06)

and 1 phrase of 12 words (c12).

Besides normal words, the design also included pseudoword conditions

that maintained morphological markers and closed-class (function) words.

We will compare our simulation with the pseudoword e�ects of Pallier et al,

since they provide syntactic speci�c patterns that can be interpreted closer to

the abstract binding operations of our simulation. Moreover we continue to

assume the same phrase grammar and bottom-up parsing scheme employed

for comparison with the intracortical recordings of Nelson et al. To simulate

the Pallier et al. stimuli, we added the repeated neural time series of each of

the right branching trees in a condition. So, for example, to simulate the 4
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phrases of 3 words condition (c03), we aligned and summed, based on word

onsets, the neural activity of 4 simulations of a 3 words phrase.

In the standard analysis of BOLD-fMRI time series, events are modelled

as a constant stepwise function that re�ects the duration of the stimuli,

called a boxcar model. The boxcar model events are then convolved by an

Hemodynamic Response Function (HRF), for which we considered the HRF

proposed by Glover[77], available in the python open source package Nistats
1. The convolved events are then used in a general linear model (GLM) to 1 https://github.com/nistats/nistats

obtain a peak estimate of hemodynamic responses for the di�erent conditions,

as was the done in the Pallier et al. study.

Figure 10.10: Hemodynamic

interpretation of the simulation:

At the top and middle plots we

show the rescaled time series of

the LIF and AdEx simulations

respectively, alongside the HRF

convolved time series. At the

bottom we show a boxcar event

of 3600 ms and its convolution, as

was employed by Pallier et al. to

estimate the amplitude of responses

for the di�erent conditions from

the BOLD-fMRI time series. we

considered the HRF proposed by

Glover, available in the open source

python package Nistats.

We generated a prediction of hemodynamic responses from our simulations

by rescaling the conditions’ time series by the maximum �ring rate of all

conditions and then convolving them with the HRF. We present the predicted

hemodynamic responses in the top and middle plots of Figure 10.10. Since in

the Pallier et al. study, 12 words are presented every 300 ms, we considered

the last word onset of 3600 ms as the duration of the stimuli for a traditional

boxcar event model, shown in the bottom plots, to compare it with our models.

We mark the HRF peak and its onset with black lines on all the HRF convolved

time series.

We observe that the neural time series would predict in all cases a peak

onset displaced many seconds with respect to the traditional boxcar event that

only represents the duration of the stimuli. Looking at the time series, this

would be expected, since the HRF peak onset depends on the center of mass of

the accumulated neural activity, which continues several seconds after the last

word onset in our simulations. The peak onset in the LIF and AdEx models

follow a super-linear increase with respect to the number of constituents, at



neural bases of variable binding in symbolic representations 111

odds with with sub-linear patterns reported by Pallier et al. Also the LIF neural

model introduces an slightly longer onset delay with respect to the AdEx

neural model, due to its slower activation of Working Memory populations.

Figure 10.11: Hemodynamic

peak magnitudes comparison

with BOLD-fMRI experiment:

The top plots show the number

of bindings executed for each

condition alongside the rescaled

Hemodynamic Response Function

(HRF) amplitudes of each of the

Compartment Circuit neural

populations. We demonstrate

that the hemodynamic pattern

of the neural populations in the

simulation follow closely the

number of bindings executed. In

the bottom plots we contrast the

pattern of the total neural activity

in the simulation alongside the

sub-linear patterns reported by

Pallier et al. in the pSTS, IFGorb

and IFGtri brain regions.

In the case of the HRF peak amplitudes, we show in Figure 10.11 that both

LIF and AdEx models predict a sub-linear pattern of peak amplitudes as a

function of the number of constituents. We demonstrate in the top plots

that the HRF magnitudes of added neural activity in all neural populations

of the Compartment Circuit follow the pattern given by the number of

executed bindings in a condition. It is unlikely then, that the sub-linear

pattern appreciated in the HRF amplitudes would be qualitatively changed by

manipulating other parameters of the circuit, like the duration of the input to

Main-Assemblies and Working Memory that could modify qualitatively the

peak onsets pattern.

Pallier et al. reported constituent sub-linear responses in the language areas

TP, aSTS, pSTS, TPJ, IFGorb and IFGtri, but only the regions pSTS, IFGorb

and IFGtri showed a similar response pattern when minimizing the semantic

content of phrases with pseudowords. Since our simulation puts aside semantic

considerations, we consider this type of experimental manipulation to be a

better re�ection of the binding activity modelled in the Compartment Circuit.

In the bottom plots of Figure 10.11, we show the similarity between the HRF

magnitude pattern of the total neural activity in the simulation models with

what is reported by Pallier et al. in the pSTS, IFGorb and IFGtri brain regions.





11 Discussion

In this chapter we discuss results obtained from the Neural Blackboard

Architecture simulation and comment on future perspectives of the

framework for further experimental work.

11.1 The neural models and circuit architecture

Regarding the neural model parameter values, we considered those from

Omurtag[150] and Brette et al.[26] for a �rst approximation of the neural

dynamics. We left for future work consideration of values based on

electrophysiological recordings from speci�c brain regions. For example,

there are di�erent adaptation constants along the cortex, that could change

the AdExmodel dynamics. Since we have compared the simulation with neural

activity in speci�c brain regions like aSTS, pSTS, IFGtri and IFGorb, it would

be reasonable to �t the simulations to their speci�c biological reality.

In the case of the Compartment Circuit assumptions, we made many

simpli�cations that should be revised in future work. We approximated

baseline dynamics with a low constant input rate instead of considering the

natural oscillatory activity of the cortex, homeostatic mechanisms in cortical

circuits[182] and balanced networks[203]. Also we adopted homogeneous

synaptic connections instead of testing di�erent synaptic distributions that

could have an impact in the neural dynamics. Moreover, if we allowed random

connectivity to shape the Compartment Circuit architecture our capacity to

control its dynamics with the number of connections would be restrained.

The explicit simulation of Delay Activity in Working Memory was left out

of the current work due to its �exible and still debated implementation[43; 68].

Studying it could reveal important neurobiological limitations on the way we

assess the relative proportion of neural activity between Main-Assemblies and

Working Memory. Also it could provide a more limited set of hypothesis about

the spatio-temporal memory limitations of the Neural Blackboard Architecture,

to be contrasted with neuroimaging and psycholinguistic evidence.

Out of two options, we took the decision to allow the existence of excitatory

loops after Working Memory activation, although this permits the possibility

of unstable runaway neural activity. Neural activity related to these excitatory
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loopswas regulated in theWorkingMemory sub-circuit by careful tuning of the

number of excitatory connections and the number of inhibitory connections

that would close the loops. The second option was to introduce in the

Working Memory sub-circuit a bidirectional control mechanism similar to that

employed to regulate communication between Main-Assemblies (MAs) and

Sub-Assemblies (SAs). Nonetheless the second approach implies additional

complexity in the number of nodes, connections and events that we have

to consider for the circuit operation. Since we do not really know what is

closer to the biological reality of the cortex, we decided to show how the less

complex architecture that includes excitatory loops could be made stable, but

consideration of a more complex architecture would also be possible.

To our knowledge, this is also the �rst time complex neural models like AdEx

are simulated alongside LIF for variable binding and language function related

circuits. In contrast to previous simulations [189; 188; 67; 191], we employed

population density techniques implemented in the MIIND software[49], that

allowed us to approximate the transient �uctuations of the di�erent binding

related events. Thanks to this, we found that the circuit implementation and

neural dynamics interpretation can depend on the underlying neural model in

non trivial ways. For example we observed that in a LIF model there was a non-

consequential trade-o� between synaptic e�cacy and number of excitatory

connections to control the steady state rates of the circuit. On the other hand

the AdEx model was very sensitive to changes in synaptic e�cacy due to

adaptation e�ects, to the point of making us unable to control the magnitude

of the steady state rate of the circuit for high synaptic e�cacy values. If the

physical reality of the cortex was closer to an AdEx model with high synaptic

e�cacies we would then need to restrict our hypothesis about the circuit

operation with input and control events to a subset of the possibilities explored

in our simulation. Adaptation in the AdEx model also had an important e�ect

in the case of lower synaptic e�cacies, making coordination of input and

control events more restricted in a larger portion of the circuit parameter

space. Since we have to take into account the possibility of random variation

of those parameters in the cortex, this e�ect can be crucial to understand limits

and constraints of language processing in di�erent brain regions.

Another important distinction observed between the AdEx and LIF model

was how dynamics after inhibition are qualitatively di�erent under the

in�uence of adaptation. While in the LIF circuit, neural activity on a population

would smoothly recover back to its steady state after inhibition stops, that of

an AdEx circuit would show a renovated burst of activity due to adaptation

decreasing during the inhibition period. The e�ect might be strong enough

to suggest it as a predictive marker for certain events in the circuit, like the

release of Working Memory activity.

Moreover, characterizing the Working Memory activation parameter

regions was important to understand the reliability of the circuit if exposed to

noisy input rates, arbitrary timing coordination of events, control mistakes
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or anticipatory control signals. Although for a bottom-up parsing approach,

we can safely assume control events to take place after input events, this

might not be the case for other parsing strategies like top-down, that could be

implemented with anticipatory control events. Since some parameter regions

restrict the timing of input and control events, we might get insights into the

possible set of parsing mechanisms directly from the anatomical structure of

the cortex that constrain the parameter boundaries.

Finally, the question of how a Compartment Circuit and the Neural

Blackboard Architecture could be formed during brain development and

modi�ed by learning is still work in progress, partially tackled in a previous

study[189]. Demonstrating how neural mechanisms approximated by the

architecture can be implemented with biological realistic Hebbian or STDP

rules alongside random connectivity constraints, during development and

learning, would be an important avenue of future research.

11.2 Circuit implications of the linguistic hypothesis

A strength of the current simulation is its �exibility to predict the neural

activity of diverse grammar theories and parsing schemes, which we only

explore partially in this work. We could in principle, without circuit

modi�cation, predict the binding activity for any structure that can be

represented by a binary tree. This is the case of the phrase grammar of

the minimalist program of Chomsky[38], that represent phrases as binary

trees, and also the case of other theories like dependency grammars[142] that

represent grammatical relations between words. Nonetheless in the case of

dependency grammars, as they do not require a hierarchical representation, we

would not need to assume that the Working Memory of an executed binding

drives the Main-Assembly of another Compartment Circuit.

Because we only modelled a bottom-up parsing scheme, we considered

activation of the Main-Assemblies corresponding to phrase nodes only after

the binding that produces the corresponding phrase took place. For example,

for the phrase "the black cat" we would create an input event for the phrase

node of "black cat" after "black" and "cat" have been bound. If we consider

instead a pure top-down parsing scheme, that implies prediction of future

bindings, or the generalized left corner parsing scheme proposed by Hale[83],

there would be three additional mechanistic options to consider: First, we

could start input events for Main-Assemblies representing the phrase nodes

before their corresponding bindings and only start the control event after

the bindings have been con�rmed; Second, we could start the control events

beforehand, which is an option explored in the simulation, and still make

input events follow the corresponding bindings; Third, we could go ahead

and perform bindings ahead of time, that would need to be deactivated by an

error signal provided by the parsing mechanism. This last option would allow

to simulate the possibility of multiple parallel phrase representations, from
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which only one survives at the end.

A simpli�cation was made regarding the Compartment Circuit selection

mechanism in the Neural Blackboard Architecture. We did not model the

dynamic inhibition of competing Compartment Circuits belonging to the

same Connection Matrix. To do it we would require an hypothesis about

the size of the Neural Blackboard, governed by memory limitations and

the total number of possible grammatical category combinations given by a

grammar. Forming such an hypothesis was out of the scope of this work,

so we opted to assume the simplest selection mechanism possible based

on uniform random selection, which is how we justify simply recruiting

Compartment Circuits as needed. Nonetheless we are only able to ignore

the inhibitory activity of competing Compartment Circuits in complete

Connection Matrices because we are not planning to explore the e�ects

of memory limits under time compressed sentence processing scenarios or

memory tasks. Otherwise important deviations in background neural activity

due to depletion of available Compartment Circuits and additional inhibitory

activity would become a crucial factor for the simulation. We plan to explore

this in future work, to try to reproduce temporal bottleneck e�ects shown

by Vagharchakian et al. on hemodynamic responses, based on a BOLD-fMRI

experiment with an experimental design containing compressed speech and

reading conditions[185].

With respect to the parsing mechanism, we only model its interface with

the Compartment Circuit that implements binding, through the assumed

control signals. We considered that understanding how a parsing algorithm is

learned and implemented by the cortex, such that it can provide the respective

control signals, was a separate research question. Previous work has shown

the feasibility to implement a parsing mechanism with neural networks in

connection to the Neural Blackboard Architecture[188], for a limited set of

possible syntactic structures.

As can be inferred from this discussion, there is already great potential for

exploration of linguistic hypothesis with the current simulation developed, but

there are also many open questions left for future development. We believe

that taking into account more experimental evidence from psycholinguistics

and neuroimaging studies is necessary to guide future re�nements of the

circuit architecture and simulation.

11.3 �alitative reproduction of neuroimaging evidence

Comparison of our simulation with neuroimaging measurements revealed

striking qualitative similarities, even though the circuit was only tuned for its

correct operation, with respect to binding execution. We aggregated the time

series of the simulation in the simplest way possible, uniformly, under the

lack of more precise hypothesis about the spatial distribution of the Neural

Blackboard Architecture in the cortex. Although we interpreted reports of
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the high gamma power of Local Field Potentials and hemodynamic responses

separately, there is the potential to integrate all these di�erent measurements

as coherent quantitative evidence thanks to recent e�orts on modelling their

relationship[92].

High gamma power has been shown to be correlated to the �ring rate time

series of spiking neurons from in-vivo recordings[163], andwe decided tomake

a direct qualitative comparison between the �ring rate of the simulation and

high gamma power time series. Nonetheless a future quantitative comparison

would require a more precise mapping from the simulation �ring rates to local

�eld potentials, as has been done recently[127; 81].

An important discrepancy between the simulation and the high gamma

power time series, was that the simulation segments of neural activity

identi�ed with binding and Main-Assemblies transient activity drop were not

as clearly separable in the intracortical recordings. Moreover the data seem to

suggest an immediate Main-Assemblies transient drop after a binding event

takes place, instead of the paced inactivation assumed during the simulation.

This would suggest the addition to the Compartment Circuit of a feedback

mechanism from the Working Memory populations to the Main-Assemblies

to knock out their unnecessary activity once binding has been established. It

would be an e�cient strategy from an energetic point of view at the cost of

extra complexity in the circuit architecture.

We also observed a middle phrase activity drop in the intracortical time

series of the longest phrase, which was not coherent with a bottom-up parsing

hypothesis. In the phrase "Ten sad students of Bill Gates" the activity drop

took place after "Ten sad students", and was compensated immediately after

to bind the remaining phrase "of Bill Gates". Two possibilities arise from

this observation: The obvious �rst one is to consider an alternative parsing

mechanism combining a bottom-up and top-down approach, a generalized left

corner parsing scheme, to explain the �uctuation; The second one is di�culties

of the Compartment Circuit to sustain local activity in Main-Assemblies for

prolonged periods of time, such that they need to be reactivated if a binding has

still not taken place. If this was the case, we could also explain the previously

explained apparent immediate Main-assemblies activity drop after binding

as a side e�ect of an imminent deactivation that was going to take place

independently of binding.

To approximate hemodynamic responses, we resorted to a naive

approximation that has to be interpreted with caution since the relationship

between neural activity, cerebral blood �ow and blood oxygenation can be

non-linear under certain circumstances[70; 31] and better represented by

the balloon model than the gamma function considered in this work[197].

A more precise translation from �ring rates to an hemodynamic response

would allow a quantitative �t of simulation parameters and to test linguistic

hypothesis. At the moment we show that the simulation could be adapted

to other hemodynamic peak onset patterns and that it naturally reproduces
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magnitude patterns, although we do not attempt to tune the simulation to

reproduce the relative di�erences between conditions.

Regarding the hemodynamic peak onsets, our �rst observation was that

persistent neural activity in Main-Assemblies and Working Memory can

substantially delay the onset of the hemodynamic response, with respect to

that given by a traditional boxcar model event. Such a large delay demonstrates

the importance of modelling neural dynamics to avoid an event model

misspeci�cation. It has been reported that parametric estimation of gamma

based models, used for General Linear Model estimation to analyse BOLD-

fMRI experiments, quickly deteriorates as model misspeci�cation increases

[115]. To realize a future quantitative comparison between the generated

simulation time series and hemodynamic measurements, we would need to

�t a new linear model for each simulation hypothesis to the available BOLD

time series, looking for the best �t.

The super-linear increase pattern of peak onset we observed was not

coherent with sub-linear patterns reported by Pallier et al. Nonetheless

the peak onset of our simulation depends on the input events and Working

Memory durations, that were arbitrarily set to a constant duration. The Neural

Blackboard Architecture does not provide a particular hypothesis on the timing

of the deactivation of Main-Assemblies and Working Memory, which is why

durations were simply set to a pragmatic constant that secured binding of the

last phrasal node with the �rst word of the longest phrase. Comparison of

our simulation with intracortical recordings in results section 10.4 suggested

a quicker drop of the Main-Assemblies activity after binding operations were

executed, instead of the current choice of persistent activity for a constant

amount of time after binding. Modifying the simulation to drop activity in

Main-Assemblies after binding, would permit emulating sub-linear patterns of

peak onset as necessary to reproduce the hemodynamic measurements.

Regarding the hemodynamic peak amplitudes, future quantitative

comparison of the levels of neural activity between the word list condition

(c01) and rest of the conditions in which binding takes place, could give

insights into the relative proportion of Main-Assemblies activity and the rest

of populations in the circuit. At the moment, the simulation’s initial slope of

hemodynamic peak amplitude increase was lower than that reported by Pallier

et al, which can be interpreted as an underestimation of the binding related

populations contribution to the total neural activity. Pallier et al. initially

hypothesized a linear pattern of peak amplitudes instead of the sub-linear

one observed. Their initial hypothesis was based on a simple "accumulation"

model where each new word presented would add a constant amount of neural

activity until a binding was not possible, leading to a sudden drop of activity

back to baseline. After their �ndings, the authors revised their hypothesis to

propose instead a model that assigns a logarithmic increase of activity to each

new word presented. Nonetheless our simulation suggest another explanation

for the sub-linear pattern as a direct re�ection of the number of binding
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operations executed during phrase processing. It turns out that the type of

stimuli employed by the authors consisted exclusively of right branching trees

and that their concatenation lead to a sub-linear increase of number of binding

operations, which is why our simulation is at a �rst sight coherent with the

logarithmic word activity addition model. Then our simulation suggest the

possibility that assigning a logarithmic increase of activity to the next word

presented in a phrase is an artefact of the experimental design, due to missing

consideration of other syntactic tree structures for phrases containing the

same number of words.

11.4 Future perspective

Even though the current simulation can still be improved in many ways, we

would like to emphasize with this work the quick progress in the development

of biologically plausible models of cognition. New computational methods

like population density techniques have made it tractable to approximate, at a

circuit scale, point neural models as complex as the adaptive exponential. With

an additional modelling e�ort at the level of the neural populations, we could

close the gap that has delayed physical mechanistic testing of computational

linguistic hypothesis with direct neuroimaging measurements. Taking into

account cytoarchitectonic details, tailored to di�erent brain regions, would

allow to study the spatial distribution in the cortex of the Neural Blackboard

Architecture and other circuit alternatives. Modelling these details would allow

better physical reproduction of temporally and spatially detailed signals, like

Local Field Potentials (LFP)[127; 81] and hemodynamics (BOLD)[31]. Moreover,

it would also be possible to integrate the evidence from multiple spatio-

temporal scales in a coherent way, such as has been done in the literature,

taking as example recent work linking LFP and BOLD signals[92].

We selected two experiments that we considered best characterized key

neuroimaging evidence of binding in phrase processing. Moreover we

think these experiments, coming from di�erent spatio-temporal scales and

experimental designs, demonstrate the potential of our simulations to integrate

varied experimental paradigms. Many other experiments could inform

di�erent parameters and circuit assumptions from the ones explored in

this work. For example we could look at processing speed and memory

constraints of the Neural Blackboard architecture with the BOLD-fMRI

manipulation of Vagharchakian et al.[185] based on compressed speech and

reading conditions. Creating a database of such neuroimaging experiments

alongside psycholinguistic behavioral evidence would create the opportunity

to incrementally and systematically test linguistic computational hypothesis

and their brain implementation.

As we commented in Discussion section 11.2, the current implementation

of the Compartment Circuit allows us to test any grammar theory providing

binary tree representations, combined with any parsing scheme that
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determines the timing of input and control events in the circuit. Although

we focused on one parsing scheme and grammar, it is evident that we can

explore all other alternatives in the future. This means that as we re�ne

the boundary of the circuit parameters and operating assumptions, we can

obtain for any corpus the neural activity of all its phrases for all the di�erent

linguistic hypothesis available. From such arti�cial dataset we could motivate

experimental designs and tests that would be optimal to explore the linguistic

hypothesis space. For example controlling for diverse variables like phrase

length or number of syllables, we could estimate the likelihood of a phrase

grammar versus a dependency grammar theory, by comparing a set of phrases

that maximize neural activity di�erences between the theories with respect to

a set of control phrases.

We think that the proposed framework could lead to quick progress in

our understanding of language function if accompanied by the most recent

neuroimaging techniques. We would imagine a setting in which intracortical

recordings can be systematically positioned with information coming from

quick and reliable fMRI language localizer paradigms[118]. From a language

localizer and anatomical scans, it would be possible to take advantage of

3d printing techniques, already tested in non-human primates[37], to make

frames perfectly adapted to the skull of patients, with electrodes precisely

positioned at the peaks of hemodynamic e�ects. Moreover recent advances in

laminar fMRI[111] are an exciting possible addition for the tuning of models

approximating cortical columns with cytoarchitectonic constraints, which we

propose to extend our simulations.

In conclusion we hope to have demonstrated that we are close to producing

biologically realistic mechanistic neural models of cognitive function. In

particular to provide new ways of testing linguistic hypothesis integrating

evidence from varied neuroimaging techniques with di�erent spatio-temporal

scales. With this work we expect to inspire further e�orts in this direction.



Part IV

Concluding remarks
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12 Final remarks

12.1 Summary of findings

In the experimental part of this work, we identi�ed the superposition principle

to be one of the crucial assumptions of Smolensky’s basic tensor product

representations. To test the superposition principle we created and fMRI

dataset from which we could extract spatial representations of bi-syllabic

pseudowords in visual and auditory sensory modalities.

The decoding analysis in sensory brain regions revealed the highest

accuracy scores and reproduced known e�ects like the superposed semi-local

representations induced by retinotopy. In the case of auditory regions we

found weak evidence in favour of local superposed representations in anterior

areas higher in the auditory processing hierarchy. Decoding on language

related regions only revealed signi�cant classi�cation in Broca’s complex (44

and 45), for which we could provide evidence in favour of superposition and

more distributed representations. Finding superposed representations in Broca

is interesting, since this region has been shown in a meta-analysis of fMRI

studies[206] to be consistently engaged with syntactic binding manipulations.

We were also able to provide evidence against superposition or in favour of

non additive models in the visual word form area (VWFA), which is coherent

with previous evidence of whole word representations in that region[75].

There were also other �ndings not directly related to the superposition

principle. We veri�ed that it was possible to decode auditory representations

form the VWFA, providing additional evidence to the literature body claiming

that this region can be modulated by speech as well as reading[205]. Moreover

we were surprised by a global lack of generalization from decoding models

trained in one sensory modality to the other, which can be either interpreted

as a lack of sensitivity due to variability of the representations signal or as the

absence of amodal representations for simple bi-syllabic pseudowords. Finally

we observed in most regions with signi�cant classi�cation scores, except

Visual, extreme variability in the accuracy scores of individual items, such

that few had particularly high scores while most remained closer to chance

level. We demonstrate this e�ect with an approximate bimodal distribution of

the accuracy scores and we think this pattern could be explained by lack of

sparsity and low variability in the spatial distribution of values of the neural
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vectors underlying the neural representations.

In the modelling part of this work, we created a new implementation

of the Neural Blackboard Architecture (NBA) based on population density

techniques, that allowed us to make temporal high resolution predictions of

neural dynamics linked to the binding process. Our simulations were based

on the dynamics of spiking point model neurons: leaky-integrate-and-�re

(LIF) and adaptive-exponential-integrate-and-�re (AdEx) neurons. Contrasting

LIF and AdEx models allowed us to demonstrate that, although they are not

importantly di�erentiated by average dynamics, their parametrization have

strong implications for the timing and control of phrase processing events.

We also showed that an NBA implementation, only implementing the

binding mechanism and tuned to operational constraints, qualitatively

reproduces the neural activity patterns of at least two neuroimaging

experiments involving linguistic binding at di�erent spatio-temporal scales.

We qualitatively reproduced three out of four predicted temporal segments

of the neural dynamics of sentence comprehension revealed by intracortical

recordings (ECoG)[141]. Moreover our simulation provides a similar drop of

neural activity related to the moment at which a binding operation takes place,

by activating the working memory mechanism, and an increasing activity

baseline that depend on the number of bindings performed. We also reproduce

qualitatively sub-linear patterns of hemodynamic responses caused by phrase

constituency manipulations[153]. Our simulation provides an alternative

hypothesis to explain the sub-linear pattern, based on the number of binding

operations executed during phrase processing. Alongside these results, we

illustrate the �exibility of the NBA to represent arbitrary binary tree structures

and parsing schemes, which makes it a promising tool for linguistic hypothesis

exploration and future re�ned quantitative and integrated accounts of multi-

scale neuroimaging measurements.

12.2 Global perspectives

In this work we parallely explored two modelling approaches to the binding

problem. We selected these approaches for how powerful they are to

handle several aspects of language modelling: like answering Jackendo�’s

challenges[98], being able to represent multiple levels of hierarchical language

processing and �exibly implement multiple linguistic hypothesis. Alongside

being quite powerful, both approaches appear to be importantly distinct in

their underlying assumptions, as we explained in Chapter 1 Section 1.4. In

Table 12.1 we provide a reminder of the comparison.

Although there seem to be many di�erences between the modelling

approaches, we think that the computational operations supporting bindings,

binding and unbinding are the truly fundamental di�erences between them.

The other di�erences are linked to implementational issues that most likely

will converge as we better understand the structural and functional properties
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Aspect Smolensky’s TPR NBA

About modelling:

Neural simulation Arti�cial NN Spiking NN

Temporal dynamics Not included Included

Representation Neural unit vectors Neural assemblies

Parallel repr model Memory slot roles? Separate neural assemblies

Representation properties:

Declaration Explicit Implicit

Spatial stability Static (temporally stable) Dynamic (temporally unstable)

Locality Distributed or local Local

Operation implementation:

Composition of bindings Superposition (addition) Compartment recruitment

Binding Tensor product Working memory assembly activation

Unbinding Inner product Reactivation of bound neural assemblies

Table 12.1: Modelling approach comparison: Wepresent all binding related

aspects studied in this work about Smolensky’s tensor product representations

and the Neural Blackboard Architecture.

of cortical circuits. There are several aspects related to implementation details

that could and should be reconciled to properly compare the approaches

in future work. Two in particular that we thought about are the basic

representational units assumed by the models and the inclusion of temporal

dynamics in Smolensky’s framework.

Neurons are still considered by most models as simple compartment

units although their superior information processing power has been known

for some time[106]. In this regard both approaches might require a

reinterpretation of their implementation. In the case of the Neural Blackboard

Architecture (NBA), its fundamental mechanisms are based on the idea of a

gating circuit and a short term memory device. Although these mechanisms

have been interpreted at the level of a circuit of neural assemblies and

reverberating activity, an alternative implementation at the cellular level for

gating[109] and synaptic short term memory[138] have been demonstrated

in the literature. This means that it could be possible to reimplement the

functionality of complete Compartment Circuits of a Blackboard with few

neurons to bring its implementation at the neural unit level. In the case of

Smolensky’s framework themapping of cellular activity to theoretical values of

the neural units is not clear and several alternatives based on the computational

complexity of a single neuron should be considered in the future.

The NBA provide a clear temporal depiction of the control and memory

mechanisms necessary to implement binding. On the other hand Smolensky

presents in the Harmonic mind[172], the implementation of tensor products

abstractly as matrix multiplication, were the matrix coe�cients are interpreted
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as synaptic weights in a layered network. The problem with this interpretation

is the in�nite possible concrete network con�gurations that are equivalent

and that the dynamics of computation in real networks is ignored. Recent

work from Smolensky on a dynamic optimization scheme to instantiate

input representational vectors[173] could help bridge the gap on temporal

predictions to compare it with the NBA.

For future experimental designs, besides the intricacies that can be

introduced by the particular neuroimaging modalities employed, there are

three aspects that should be emphasized. First, that future work should

still focus on simple syntactic structures, namely syllable combinations to

form pseudowords, short pseudoword lists and short jabberwocky phrases. It

seems clear from recent meta-analysis[206] that limiting the semantic content

of stimuli importantly reduce the number of brain regions involved in its

processing. For example only Broca 44 is constantly involved in purely

syntactic operations while the the posterior superior temporal sulcus (pSTS)

and the superior temporal gyrus (STG) seem to be involved with syntactic

and semantic integration[206]. Second, based on the previous point and our

�nding of superposition in Broca’s complex and auditory regions, future

experiments should focus speci�cally on anterior brain regions, including

auditory areas higher in the processing hierarchy and Broca’s complex.

Focusing in speci�c regions would also facilitate targeted acquisition with

di�erent neuroimaging modalities that have less spatial coverage but high

temporal resolution like intracortical recordings (ECoG). Third, the stage at

which abstract representations arise in the brain, which we were not able

to demonstrate with simple bi-syllabic stimuli, should be explored in more

detail. The process of formation of abstract representations could be linked to

audiovisual integration and related cognitive phenomena in language like the

McGurk e�ect[179].

Regarding the available linguistic computational hypothesis, it is important

to seriously consider simultaneously grammar alternatives like Phrase

structure grammars and Dependency grammars and parsing schemes like

bottom-up, top-down and generalized-left corner parsing. Both modelling

approaches have the capacity to interpret the diversity of linguistic hypothesis

and their test is intrinsically related to the hypothesis considered. For very

simple stimuli like bi-syllabic stimuli, this do not seem to be a crucial issue, but

processing of jabberwocky phrases is already subject to highly divergent

linguistic theories and we can not avoid assuming one or another when

matching model predictions with neuroimaging measurements. Incrementally

testing the di�erent linguistic hypothesis alongside the modelling approaches

would be an important complementary extension to the e�orts of this work.

Finally we would like to emphasize the recent advances in neuroimaging

techniques that will provide even richer evidence to future experimental

e�orts, like laminar fMRI[111] and increasingly available intracortical (ECoG)

recordings. Also there are diverse theoretical and computational advances in
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the simulation of neural cortical columns that allow to reproduce complex

neural signals like Local Field Potentials (LFP)[127; 81], hemodynamics

(BOLD)[31] and their relationship[92]. Perhaps soon it will be possible to

produce precise mechanistic predictions of neural signals out of linguistic

computational hypothesis and that future work should aim to arrive to such

reality.

12.3 Conclusion

Neuroscienti�c models of language have matured, while empirical tests of

their assumptions have been left behind. New neuroimaging techniques and

the recent possibility to simulate some of their corresponding neural signals

should not be ignored and lead to a new wave of experiments capable of

mechanistically testing linguistic computational hypothesis. We think we

have been able to give a glance at the value of the approaches considered,

namely Smolensky’s tensor product representations and the Neural Blackboard

Architecture, and the challenges we face to test them empirically. In this work

we have covered just a small segment of the path leading to understanding of

variable binding in symbolic structures and hope to motivate more work in

this direction.





13 Other contributions during the PhD

Other experimental work not included in the manuscript

In addition to the experimental work presented, there are several other projects

that were conducted or are currently in progress, but were not included in

this manuscript.

During my master thesis I performed an empirical investigation, using

fMRI, of the brain regions involved in representing the syntax of mathematical

formula, manipulating their complexity and using structural repetition

priming, which was �nished during the �rst months of the PhD, but I decided

then to focus completely on the binding problem for the PhD and this

manuscript. Also as part of the tests of the superposition principle, we had the

idea to also run a two-digit numbers version of the bi-syllabic pseudowords

experiment. Nonetheless decoding of the number conditions was not sensitive

enough, so I decided to concentrate on language stimuli for the rest of PhD

and this manuscript.

There is currently work in progress on the analysis of an ECoG dataset of

a phrase and word list reading task, to better understand the timing of events

related to the temporal segments and neural assemblies predicted by the Neural

Blackboard Architecture. We are employing supervised learning techniques to

characterize time segments linked to di�erent grammatical features, possibly

connected to the dynamics of some NBA neural assemblies. We are considering

grammatical features from alternative grammar theories, a phrase grammar

and a dependency grammar, such that we can also explore tests to empirically

evaluate the likelihood of these theories. We are also exploring the application

of unsupervised learning techniques, based on time series alignment with

dynamic time warping, to extract clusters of electrodes with similar neural

signatures related to binding dynamics.

Contributions to a study in Pediatric neuro-oncology

As a side project, I carried a substantial contribution to the statistical analysis

and methodological development of a clinical study where we investigated the

relationships between the changes in di�erent cognitive scores and radiation

dose distribution in 30 children treated for a posterior fossa tumor. We showed

two cases for which there was a relationship between the radiation dose in



132 martín pérez-guevara

speci�c brain areas and particular cognitive decline. From my participation I

was recognized as third author of the published study[55]

Children treated for posterior fossa tumor with cranial radiation therapy

often su�er from cognitive impairments. Radiotherapy might speci�cally

impact brain regions implicated in di�erent cognitive functions. Therefore,

identifying regional e�ects of radiotherapy on cognitive functions may help to

propose speci�c rehabilitation interventions adapted to the risk of cognitive

impairment.

Open source so�ware development and assistance to open

science initiatives

I contributed as well code to several Python open source libraries linked to

machine learning and statistical analysis in neuroimaging: Nilearn, Nipype

and Pypreprocess. In the process I became one of the main contributors of

the Nistats library that o�ers an alternative for complete statistical analysis of

BOLD-fMRI datasets. This experience lead me to also get involved with open

science data standards initiatives linked to open sharing of raw BOLD-fMRI

datasets (BIDS) and open sharing of statistical results (NIDM), due to which I

participated in several coding sprints in Paris and Stanford.



A Appendix. Superposition experiment ROIs decoding and

tests

A.1 Visual-h0c1 (Visual dataset)

CVCV CV1 and CV2 (1 or 2)

Subject
01
02
03
04
05

fifi
figu

fina

gufi

gugu guna

nafi

nagu

nana

0.03 0.14 0.25

(1) fi

(1) gu

(1) na

(2) fi

(2) gu

(2) na

0.07 0.23 0.39

Figure A.1: Accuracy in Visual-h0c1: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the
CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2
model. The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.30** 0.23** 0.29** 0.19* 0.19* 0.15 0.16* 0.12 0.20** 0.20**

02 0.17 0.20* 0.21* 0.16 0.15 0.09 0.23** 0.15* 0.12 0.17**

03 0.25* 0.19 0.21* 0.14 0.17** 0.12 0.19** 0.14* 0.11 0.17**

04 0.41** 0.45** 0.44** 0.31** 0.31** 0.35** 0.39** 0.33** 0.24** 0.36**

05 0.20* 0.23** 0.16 0.14 0.20** 0.16* 0.15* 0.14 0.11 0.17**

Table A.1: Accuracy Visual-h0c1 CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.49** 0.45** 0.39* 0.44** 0.56** 0.42** 0.43** 0.47**

02 0.44** 0.44** 0.44** 0.44** 0.47** 0.39* 0.33 0.40**

03 0.45** 0.40* 0.43** 0.43** 0.38 0.47** 0.40* 0.42**

04 0.73** 0.58** 0.54** 0.62** 0.75** 0.70** 0.64** 0.70**

05 0.42* 0.44** 0.43** 0.43** 0.41 0.42** 0.41** 0.41**

Table A.2: Accuracy Visual-h0c1 CV1 and CV2: * p-value < 0.05, ** p-value

< 0.01.

Subject
01
02
03
04
05
All

Figure A.2: Superposition test in Visual-h0c1: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared
syllables and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion
values of a tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.3: Locality test in Visual-h0c1: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null
distribution given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of
signi�cantly higher overlap with a p-value < 0.05
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A.2 VWFA (Visual dataset)

CVCV CV1 and CV2 (1 or 2)

Subject
01
02
03
04
05

fifi
figu

fina

gufi

gugu guna

nafi

nagu

nana

0.03 0.07 0.11

(1) fi

(1) gu

(1) na

(2) fi

(2) gu

(2) na

0.07 0.18

Figure A.4: Accuracy in VWFA: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.21* 0.11 0.16 0.16* 0.11 0.07 0.11 0.10 0.20** 0.14*

02 0.10 0.24** 0.21* 0.07 0.16* 0.09 0.06 0.07 0.10 0.12

03 0.17 0.10 0.11 0.07 0.15 0.10 0.09 0.11 0.07 0.11

04 0.07 0.16 0.10 0.10 0.14 0.12 0.15* 0.10 0.04 0.11

05 0.14 0.11 0.17 0.11 0.14 0.19* 0.11 0.16* 0.07 0.13*

Table A.3: Accuracy VWFA CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.45 0.31 0.31 0.35 0.57** 0.28 0.30* 0.38**

02 0.42 0.36* 0.33 0.37* 0.33 0.29 0.40** 0.34

03 0.38 0.35 0.31 0.34 0.34 0.34 0.37 0.35

04 0.36 0.30 0.35 0.34 0.35 0.39* 0.32 0.35

05 0.44** 0.33 0.26 0.35 0.54 0.30* 0.22 0.35

Table A.4: Accuracy VWFA CV1 and CV2: * p-value < 0.05, ** p-value <

0.01.

Subject
01
02
03
04
05
All

Figure A.5: Superposition test in VWFA: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.6: Locality test in VWFA:We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.3 TP (Visual dataset)

CVCV CV1 and CV2 (1 or 2)

Subject
01
02
03
04
05

fifi
figu

fina

gufi

gugu guna

nafi

nagu

nana

0.03 0.08 0.13

(1) fi

(1) gu

(1) na

(2) fi

(2) gu

(2) na

0.07 0.18

Figure A.7: Accuracy in TP: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and
CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The
accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.19 0.20* 0.17 0.14 0.12 0.11 0.11 0.10 0.15* 0.14**

02 0.24** 0.11 0.11 0.12 0.19* 0.09 0.15 0.12 0.11 0.14*

03 0.10 0.12 0.23** 0.06 0.10 0.17* 0.19* 0.16* 0.14 0.14**

04 0.11 0.12 0.12 0.17* 0.15 0.10 0.09 0.11 0.15* 0.13

05 0.16 0.26** 0.10 0.16 0.11 0.11 0.14 0.07 0.09 0.13*

Table A.5: Accuracy TP CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.40 0.37 0.38* 0.38* 0.46** 0.38 0.38* 0.41**

02 0.53** 0.40** 0.31 0.42** 0.55 0.30 0.25 0.37*

03 0.55 0.25 0.28 0.36 0.43* 0.32 0.40** 0.38**

04 0.53 0.31 0.30* 0.38** 0.44* 0.33 0.32 0.36

05 0.56 0.27 0.33** 0.38** 0.54 0.30 0.27 0.37*

Table A.6: Accuracy TP CV1 and CV2: * p-value < 0.05, ** p-value < 0.01.

Subject
01
02
03
04
05
All

Figure A.8: Superposition test in TP: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables and
di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a tested
model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.9: Locality test in TP: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.4 TPJ (Visual dataset)

CVCV CV1 and CV2 (1 or 2)

Subject
01
02
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04
05
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nafi
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nana

0.03 0.15 0.27

(1) fi

(1) gu

(1) na

(2) fi

(2) gu

(2) na

0.07 0.18

Figure A.10: Accuracy in TPJ: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and
CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The
accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.45** 0.11 0.17 0.06 0.09 0.11 0.00 0.00 0.06 0.12

02 0.23 0.21 0.12 0.15 0.12 0.17** 0.03 0.05 0.11 0.13*

03 0.16 0.09 0.24** 0.12 0.15 0.17* 0.07 0.17* 0.11 0.14**

04 0.06 0.14 0.16 0.23* 0.06 0.14 0.16* 0.20* 0.10 0.14*

05 0.14 0.11 0.11 0.17 0.12 0.20* 0.05 0.11 0.11 0.13*

Table A.7: Accuracy TPJ CVCV: * p-value < 0.05, ** p-value < 0.01.



140 martín pérez-guevara

(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.45 0.26 0.30 0.34 0.56 0.16 0.28 0.33

02 0.39 0.38** 0.33 0.37* 0.40 0.31 0.37 0.36

03 0.40 0.35 0.38* 0.38* 0.46** 0.32 0.34 0.37*

04 0.51 0.32* 0.19 0.34 0.40 0.31 0.36 0.36

05 0.49 0.31 0.28 0.36 0.45 0.26 0.30 0.33

Table A.8: Accuracy TPJ CV1 and CV2: * p-value < 0.05, ** p-value < 0.01.

Subject
01
02
03
04
05
All

Figure A.11: Superposition test in TPJ:We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables and
di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a tested
model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.12: Locality test in TPJ: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.5 aSTS (Visual dataset)

CVCV CV1 and CV2 (1 or 2)

Subject
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05
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(2) fi
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0.07 0.19

Figure A.13: Accuracy in aSTS: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and
CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The
accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.30** 0.15 0.10 0.15 0.16* 0.10 0.14 0.05 0.15* 0.14**

02 0.10 0.17* 0.10 0.21* 0.12 0.15 0.09 0.15 0.10 0.13*

03 0.17 0.28** 0.19 0.16 0.10 0.11 0.09 0.06 0.06 0.14

04 0.21* 0.25** 0.09 0.16* 0.17* 0.16* 0.05 0.11 0.10 0.15**

05 0.14 0.20 0.12 0.14 0.17 0.05 0.11 0.15* 0.12 0.13*

Table A.9: Accuracy aSTS CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.39 0.38* 0.35 0.37 0.38 0.33 0.34 0.35

02 0.47 0.35** 0.33 0.38** 0.42* 0.39* 0.38** 0.40**

03 0.56 0.28 0.28 0.38* 0.61* 0.33* 0.20 0.38*

04 0.46 0.38** 0.29 0.38** 0.38 0.40* 0.38* 0.39**

05 0.57 0.25 0.25 0.35 0.45 0.33* 0.35 0.38*

Table A.10: Accuracy aSTS CV1 and CV2: * p-value < 0.05, ** p-value <

0.01.

Subject
01
02
03
04
05
All

Figure A.14: Superposition test in aSTS: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.15: Locality test in aSTS: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.6 pSTS (Visual dataset)

CVCV CV1 and CV2 (1 or 2)

Subject
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05
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Figure A.16: Accuracy in pSTS: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.20 0.16 0.16 0.07 0.12 0.16* 0.10 0.11 0.09 0.13*

02 0.14 0.28** 0.16 0.10 0.14 0.07 0.10 0.09 0.14 0.13*

03 0.12 0.23* 0.14 0.14 0.12 0.19** 0.20** 0.20** 0.14* 0.16**

04 0.24* 0.16 0.19* 0.14 0.09 0.11 0.11 0.05 0.19* 0.14**

05 0.20 0.14 0.06 0.12 0.06 0.15 0.16** 0.06 0.11 0.12

Table A.11: Accuracy pSTS CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.47 0.35* 0.36** 0.39** 0.58 0.28 0.23 0.36*

02 0.42 0.36 0.33 0.37 0.44** 0.37 0.35 0.39**

03 0.45 0.35** 0.37** 0.39** 0.54* 0.33* 0.22 0.36*

04 0.44* 0.32 0.37 0.37* 0.42 0.30 0.34 0.35

05 0.50 0.29 0.28* 0.36 0.54 0.31 0.23 0.36

Table A.12: Accuracy pSTS CV1 and CV2: * p-value < 0.05, ** p-value <

0.01.

Subject
01
02
03
04
05
All

Figure A.17: Superposition test in pSTS: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.18: Locality test in pSTS: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.7 IFGorb (Visual dataset)

CVCV CV1 and CV2 (1 or 2)
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Figure A.19: Accuracy in IFGorb: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.23** 0.16 0.11 0.19** 0.14 0.11 0.07 0.04 0.14* 0.13**

02 0.20 0.19* 0.09 0.09 0.14 0.19** 0.10 0.17** 0.11 0.14**

03 0.20* 0.07 0.11 0.11 0.12 0.14 0.14 0.16* 0.12 0.13*

04 0.21 0.17 0.15 0.11 0.15 0.12 0.10 0.11 0.11 0.14*

05 0.15 0.17 0.20 0.14 0.05 0.05 0.11 0.11 0.06 0.12

Table A.13: Accuracy IFGorb CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.50* 0.31 0.34* 0.38** 0.42 0.34 0.30 0.35

02 0.41 0.36 0.36 0.38* 0.53 0.28 0.30* 0.37*

03 0.39 0.34 0.35 0.36 0.42 0.30 0.39* 0.37*

04 0.44* 0.34 0.31 0.36 0.49* 0.32 0.30 0.37*

05 0.49 0.34* 0.32 0.38* 0.51 0.27 0.27 0.35

Table A.14: Accuracy IFGorb CV1 and CV2: * p-value < 0.05, ** p-value <

0.01.

Subject
01
02
03
04
05
All

Figure A.20: Superposition test in IFGorb: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.21: Locality test in IFGorb: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.8 IFGtri (Visual dataset)

CVCV CV1 and CV2 (1 or 2)
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Figure A.22: Accuracy in IFGtri: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.14 0.16 0.15 0.15 0.06 0.14 0.15 0.11 0.06 0.12

02 0.17 0.25** 0.11 0.16 0.04 0.15 0.10 0.15 0.17** 0.15**

03 0.12 0.24* 0.12 0.14 0.04 0.10 0.09 0.14 0.12 0.12

04 0.19 0.19 0.09 0.20* 0.10 0.14 0.11 0.07 0.07 0.13

05 0.34* 0.10 0.14 0.07 0.11 0.07 0.10 0.09 0.01 0.12

Table A.15: Accuracy IFGtri CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.53 0.32 0.26 0.37* 0.58** 0.27 0.28 0.38*

02 0.46** 0.32 0.37* 0.38** 0.43* 0.35 0.37 0.38*

03 0.40 0.31 0.38* 0.36 0.59* 0.31 0.20 0.36

04 0.43* 0.36 0.42** 0.40** 0.43* 0.34* 0.35 0.38**

05 0.51 0.23 0.24 0.33 0.50 0.26 0.25 0.34

Table A.16: Accuracy IFGtri CV1 and CV2: * p-value < 0.05, ** p-value <

0.01.

Subject
01
02
03
04
05
All

Figure A.23: Superposition test in IFGtri: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.24: Locality test in IFGtri: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.9 Broca-44 (Visual dataset)

CVCV CV1 and CV2 (1 or 2)
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Figure A.25: Accuracy in Broca-44: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.17* 0.17* 0.23** 0.10 0.21** 0.15 0.12 0.12 0.15 0.16**

02 0.25** 0.21** 0.06 0.20* 0.20** 0.14 0.14 0.19* 0.12 0.17**

03 0.07 0.15 0.25** 0.16 0.15 0.14 0.14 0.05 0.15* 0.14**

04 0.25** 0.11 0.15 0.03 0.14 0.30** 0.17* 0.05 0.28** 0.16**

05 0.14 0.19 0.21** 0.16 0.12 0.10 0.10 0.11 0.10 0.14*

Table A.17: Accuracy Broca-44 CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.43 0.34 0.35 0.37* 0.40 0.37 0.35 0.38*

02 0.41* 0.39* 0.38* 0.39** 0.40 0.41** 0.32 0.38*

03 0.40 0.32 0.37 0.36* 0.34 0.36 0.43** 0.38*

04 0.43* 0.38 0.42** 0.41** 0.47** 0.33 0.40** 0.40**

05 0.39 0.36 0.35 0.36 0.41 0.35 0.40** 0.39*

Table A.18: Accuracy Broca-44 CV1 and CV2: * p-value < 0.05, ** p-value

< 0.01.

Subject
01
02
03
04
05
All

Figure A.26: Superposition test in Broca-44: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.27: Locality test in Broca-44: We show in black the overlap of the N best voxels subsets of the CV1 and CV2models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.10 Broca-45 (Visual dataset)

CVCV CV1 and CV2 (1 or 2)
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Figure A.28: Accuracy in Broca-45: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.20 0.19* 0.15 0.10 0.15 0.16 0.16* 0.10 0.12 0.15**

02 0.21* 0.31** 0.11 0.12 0.17* 0.12 0.17* 0.15 0.19** 0.17**

03 0.11 0.23** 0.19 0.14 0.12 0.21** 0.14 0.06 0.06 0.14**

04 0.26** 0.16* 0.12 0.06 0.14 0.24** 0.20** 0.07 0.25** 0.17**

05 0.07 0.25** 0.29** 0.14 0.09 0.14 0.20** 0.10 0.07 0.15**

Table A.19: Accuracy Broca-45 CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.42* 0.34 0.35 0.37 0.46 0.33 0.36 0.38**

02 0.40 0.33 0.38* 0.37* 0.40* 0.37 0.33 0.37*

03 0.43 0.33 0.31 0.36 0.38 0.35 0.45** 0.39**

04 0.39 0.40* 0.38* 0.39* 0.46* 0.33 0.37* 0.39*

05 0.51 0.28 0.25 0.34 0.44* 0.38** 0.42** 0.41**

Table A.20: Accuracy Broca-45 CV1 and CV2: * p-value < 0.05, ** p-value

< 0.01.

Subject
01
02
03
04
05
All

Figure A.29: Superposition test in Broca-45: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.30: Locality test in Broca-45: We show in black the overlap of the N best voxels subsets of the CV1 and CV2models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.11 VWFA (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)
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Figure A.31: Accuracy in VWFA: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.17 0.23** 0.20* 0.12 0.12 0.11 0.11 0.10 0.12 0.14*

02 0.17 0.11 0.20* 0.12 0.12 0.11 0.05 0.07 0.09 0.12

03 0.16 0.11 0.15 0.12 0.11 0.07 0.11 0.05 0.09 0.11

04 0.21* 0.20* 0.20* 0.16 0.10 0.11 0.17** 0.09 0.14 0.15**

05 0.17 0.09 0.17 0.11 0.14 0.11 0.12 0.10 0.10 0.12

Table A.21: Accuracy VWFA CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.36 0.33 0.41* 0.37 0.38 0.35 0.36 0.36

02 0.58* 0.25 0.24 0.36 0.34 0.35 0.30 0.33

03 0.49 0.30 0.24 0.34 0.56* 0.22 0.23 0.34

04 0.45* 0.37* 0.28 0.37* 0.42 0.27 0.35 0.34

05 0.46* 0.31 0.29 0.36 0.45 0.26 0.27 0.33

Table A.22: Accuracy VWFA CV1 and CV2: * p-value < 0.05, ** p-value <

0.01.

Subject
01
02
03
04
05
All

Figure A.32: Superposition test in VWFA:We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.33: Locality test in VWFA:We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.12 Auditory-Te10 (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)
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Figure A.34: Accuracy in Auditory-Te10: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for
the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the
CV2 model. The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.24** 0.24** 0.15 0.20* 0.15 0.14 0.12 0.09 0.11 0.16**

02 0.19 0.14 0.14 0.10 0.14 0.16* 0.17** 0.09 0.05 0.13*

03 0.25** 0.21* 0.20** 0.10 0.16* 0.12 0.19** 0.16* 0.12 0.17**

04 0.21** 0.14 0.14 0.07 0.19** 0.19** 0.16* 0.09 0.09 0.14**

05 0.12 0.16 0.09 0.19* 0.16* 0.14 0.06 0.14 0.16 0.14*

Table A.23: Accuracy Auditory-Te10 CVCV: * p-value < 0.05, ** p-value <

0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.45* 0.37* 0.33 0.38** 0.44* 0.38* 0.41* 0.41**

02 0.49** 0.29 0.32 0.37* 0.38 0.39* 0.36 0.38*

03 0.47 0.36* 0.33 0.39* 0.50** 0.34 0.40** 0.42**

04 0.40 0.39** 0.36 0.38* 0.40 0.34 0.35 0.37

05 0.34 0.42* 0.38* 0.38* 0.43* 0.36 0.34 0.38**

Table A.24: Accuracy Auditory-Te10 CV1 and CV2: * p-value < 0.05, **

p-value < 0.01.

Subject
01
02
03
04
05
All

Figure A.35: Superposition test in Auditory-Te10: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared
syllables and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion
values of a tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.36: Locality test in Auditory-Te10: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap
null distribution given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of
signi�cantly higher overlap with a p-value < 0.05
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A.13 Auditory-Te11 (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)

Subject
01
02
03
04
05

fifi
figu

fina

gufi

gugu guna

nafi

nagu

nana

0.030.070.11

(1) fi

(1) gu

(1) na

(2) fi

(2) gu

(2) na

0.07

Figure A.37: Accuracy in Auditory-Te11: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for
the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the
CV2 model. The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.16 0.17 0.11 0.14 0.17* 0.09 0.12 0.10 0.16* 0.14*

02 0.15 0.21* 0.17 0.14 0.14 0.14 0.11 0.11 0.09 0.14*

03 0.24** 0.20* 0.21** 0.21** 0.10 0.10 0.12 0.12 0.09 0.16**

04 0.20 0.16 0.10 0.25** 0.11 0.10 0.09 0.10 0.11 0.14*

05 0.09 0.10 0.06 0.16* 0.15 0.16* 0.09 0.16* 0.19* 0.13*

Table A.25: Accuracy Auditory-Te11 CVCV: * p-value < 0.05, ** p-value <

0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.41 0.35 0.38* 0.38* 0.45* 0.37 0.41* 0.41**

02 0.46 0.32 0.32 0.37* 0.43 0.36* 0.40** 0.40**

03 0.43** 0.33 0.36 0.37* 0.41* 0.40* 0.40** 0.41**

04 0.45* 0.39* 0.42** 0.42** 0.46* 0.30 0.35 0.37*

05 0.49 0.28 0.35* 0.37* 0.44* 0.39** 0.33 0.38**

Table A.26: Accuracy Auditory-Te11 CV1 and CV2: * p-value < 0.05, **

p-value < 0.01.

Subject
01
02
03
04
05
All

Figure A.38: Superposition test in Auditory-Te11: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared
syllables and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion
values of a tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05
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Figure A.39: Locality test in Auditory-Te11: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap
null distribution given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of
signi�cantly higher overlap with a p-value < 0.05
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A.14 Auditory-Te12 (Auditory dataset)
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Figure A.40: Accuracy in Auditory-Te12: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for
the CV1 and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the
CV2 model. The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.21* 0.23** 0.10 0.19* 0.24** 0.20** 0.11 0.12 0.10 0.17**

02 0.19* 0.16 0.19* 0.25** 0.15 0.12 0.11 0.14 0.09 0.16**

03 0.23** 0.15 0.19* 0.14 0.17* 0.11 0.19** 0.16* 0.14 0.16**

04 0.21** 0.14 0.11 0.05 0.17* 0.14 0.10 0.15 0.09 0.13*

05 0.09 0.17 0.12 0.11 0.15 0.17* 0.12 0.11 0.14* 0.13*

Table A.27: Accuracy Auditory-Te12 CVCV: * p-value < 0.05, ** p-value <

0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.40 0.42** 0.33 0.38* 0.40 0.44** 0.40* 0.41**

02 0.44** 0.40** 0.36 0.40** 0.43 0.38** 0.40** 0.40**

03 0.46* 0.36* 0.37** 0.39** 0.38 0.37 0.43** 0.39**

04 0.38 0.36 0.35 0.36* 0.45** 0.31 0.30 0.35

05 0.38 0.35 0.35 0.36 0.41 0.35 0.36 0.37

Table A.28: Accuracy Auditory-Te12 CV1 and CV2: * p-value < 0.05, **

p-value < 0.01.

Subject
01
02
03
04
05
All

Figure A.41: Superposition test in Auditory-Te12: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared
syllables and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion
values of a tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.42: Locality test in Auditory-Te12: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap
null distribution given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of
signi�cantly higher overlap with a p-value < 0.05
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A.15 TP (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)

Subject
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0.07 0.17

Figure A.43: Accuracy in TP: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and
CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The
accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.19 0.11 0.21* 0.05 0.11 0.11 0.06 0.15* 0.07 0.12

02 0.14 0.15 0.16 0.20** 0.14 0.11 0.14 0.10 0.12 0.14*

03 0.19 0.12 0.20** 0.15 0.12 0.11 0.19* 0.17** 0.14 0.16**

04 0.20 0.14 0.20 0.16 0.09 0.05 0.15 0.07 0.17** 0.14*

05 0.12 0.23** 0.16 0.14 0.10 0.14 0.14 0.10 0.12 0.14*

Table A.29: Accuracy TP CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.45* 0.31 0.31 0.36 0.44 0.32 0.34 0.37**

02 0.44** 0.40** 0.35 0.39* 0.42* 0.33 0.39* 0.38*

03 0.45 0.34* 0.28 0.36 0.54 0.29 0.29* 0.37*

04 0.41 0.36 0.34 0.37 0.37 0.36 0.41** 0.38*

05 0.42 0.33 0.39** 0.38* 0.40 0.33 0.36 0.37*

Table A.30: Accuracy TP CV1 and CV2: * p-value < 0.05, ** p-value < 0.01.

Subject
01
02
03
04
05
All

Figure A.44: Superposition test in TP:We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables and
di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a tested
model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.45: Locality test in TP: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.16 TPJ (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)

Subject
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Figure A.46: Accuracy in TPJ: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and
CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The
accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.23 0.16 0.14 0.00 0.23 0.07 0.00 0.05 0.16 0.12

02 0.20 0.16 0.12 0.24** 0.10 0.07 0.06 0.09 0.05 0.12

03 0.16 0.15 0.09 0.10 0.10 0.09 0.16* 0.15* 0.06 0.12

04 0.16 0.11 0.10 0.04 0.16 0.11 0.07 0.11 0.16* 0.12

05 0.09 0.14 0.15 0.23* 0.14 0.07 0.11 0.14 0.06 0.12*

Table A.31: Accuracy TPJ CVCV: * p-value < 0.05, ** p-value < 0.01.



164 martín pérez-guevara

(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.49 0.30 0.22 0.34 0.51 0.15 0.34 0.33

02 0.56* 0.30 0.26 0.37* 0.61** 0.33* 0.25 0.40**

03 0.55 0.30* 0.28 0.38** 0.47** 0.34 0.33 0.38**

04 0.56 0.24 0.25 0.35 0.45* 0.33 0.40* 0.39**

05 0.53 0.25 0.23 0.34 0.49 0.36* 0.30 0.38**

Table A.32: Accuracy TPJ CV1 and CV2: * p-value < 0.05, ** p-value < 0.01.

Subject
01
02
03
04
05
All

Figure A.47: Superposition test in TPJ:We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables and
di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a tested
model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.48: Locality test in TPJ: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.17 aSTS (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)

Subject
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Figure A.49: Accuracy in aSTS: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1 and
CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model. The
accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.19* 0.16 0.07 0.16 0.17* 0.10 0.12 0.12 0.14 0.14*

02 0.20 0.17 0.14 0.16 0.17* 0.09 0.17 0.11 0.14 0.15**

03 0.15 0.14 0.10 0.14 0.14 0.07 0.15* 0.12 0.07 0.12

04 0.14 0.07 0.11 0.19* 0.11 0.11 0.12 0.20** 0.19* 0.14*

05 0.30* 0.14 0.14 0.11 0.10 0.15* 0.07 0.10 0.06 0.13

Table A.33: Accuracy aSTS CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.44 0.33* 0.35 0.37 0.40 0.39 0.42** 0.40**

02 0.47** 0.35 0.37* 0.40** 0.40 0.31 0.38* 0.36

03 0.40 0.33 0.39 0.38* 0.55 0.30 0.28 0.38*

04 0.45* 0.31 0.36** 0.37** 0.40 0.38* 0.40* 0.39**

05 0.52 0.33* 0.22 0.36 0.58 0.27 0.22 0.36

Table A.34: Accuracy aSTS CV1 and CV2: * p-value < 0.05, ** p-value <

0.01.

Subject
01
02
03
04
05
All

Figure A.50: Superposition test in aSTS: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.51: Locality test in aSTS: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.18 pSTS (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)
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Figure A.52: Accuracy in pSTS: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.21* 0.23* 0.11 0.19* 0.05 0.23** 0.12 0.06 0.15* 0.15**

02 0.14 0.15 0.16 0.12 0.15 0.14 0.16* 0.09 0.15 0.14*

03 0.12 0.11 0.15 0.15 0.17* 0.21** 0.16* 0.05 0.12 0.14**

04 0.16 0.15 0.26** 0.16 0.16 0.12 0.14 0.10 0.14* 0.16**

05 0.15 0.12 0.16 0.20* 0.14 0.10 0.14 0.10 0.10 0.13*

Table A.35: Accuracy pSTS CVCV: * p-value < 0.05, ** p-value < 0.01.



168 martín pérez-guevara

(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.49 0.33* 0.35** 0.39** 0.40 0.28 0.43** 0.37*

02 0.43 0.35* 0.36 0.38* 0.42* 0.38* 0.42* 0.41**

03 0.53 0.28 0.28 0.36* 0.42** 0.40* 0.40** 0.41**

04 0.42* 0.39* 0.37 0.39** 0.40 0.38** 0.36* 0.38**

05 0.59 0.29 0.22 0.37* 0.49** 0.26 0.37 0.37*

Table A.36: Accuracy pSTS CV1 and CV2: * p-value < 0.05, ** p-value <

0.01.

Subject
01
02
03
04
05
All

Figure A.53: Superposition test in pSTS: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.54: Locality test in pSTS: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.19 IFGorb (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)
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Figure A.55: Accuracy in IFGorb: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.24* 0.16 0.16 0.11 0.09 0.19** 0.15* 0.06 0.06 0.14*

02 0.24* 0.11 0.10 0.07 0.12 0.14 0.14 0.09 0.14 0.13

03 0.11 0.11 0.17* 0.20* 0.19** 0.14 0.09 0.19* 0.10 0.14**

04 0.17 0.15 0.15 0.15 0.14 0.10 0.06 0.05 0.11 0.12

05 0.15 0.15 0.20* 0.21* 0.09 0.14 0.14 0.10 0.09 0.14**

Table A.37: Accuracy IFGorb CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.47* 0.30 0.31 0.36 0.41 0.32 0.35 0.36

02 0.39 0.40** 0.37* 0.39** 0.48 0.33 0.33 0.38*

03 0.43* 0.40** 0.35 0.39** 0.58** 0.24 0.29 0.37

04 0.48 0.26 0.36* 0.37* 0.50 0.31 0.31* 0.37*

05 0.42 0.37* 0.38* 0.39** 0.51 0.26 0.31 0.36

Table A.38: Accuracy IFGorb CV1 and CV2: * p-value < 0.05, ** p-value <

0.01.

Subject
01
02
03
04
05
All

Figure A.56: Superposition test in IFGorb: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.57: Locality test in IFGorb: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.20 IFGtri (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)
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Figure A.58: Accuracy in IFGtri: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.19 0.14 0.09 0.19* 0.11 0.16* 0.14 0.14 0.19* 0.15**

02 0.28** 0.16 0.14 0.10 0.14 0.15 0.19** 0.11 0.09 0.15**

03 0.19 0.17 0.14 0.21* 0.14 0.09 0.19** 0.11 0.05 0.14*

04 0.23* 0.17 0.14 0.16 0.16 0.19** 0.16* 0.07 0.09 0.15**

05 0.15 0.16 0.23* 0.11 0.09 0.10 0.10 0.05 0.09 0.12

Table A.39: Accuracy IFGtri CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.44* 0.38* 0.33 0.38** 0.40 0.31 0.37** 0.36*

02 0.59* 0.26 0.28 0.38* 0.53 0.34* 0.27 0.38*

03 0.34 0.39* 0.40* 0.38 0.53 0.31 0.28 0.38**

04 0.53** 0.36* 0.33 0.41** 0.54 0.30 0.26 0.37

05 0.38 0.35 0.35 0.36 0.36 0.36 0.35 0.36

Table A.40: Accuracy IFGtri CV1 and CV2: * p-value < 0.05, ** p-value <

0.01.

Subject
01
02
03
04
05
All

Figure A.59: Superposition test in IFGtri: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.60: Locality test in IFGtri: We show in black the overlap of the N best voxels subsets of the CV1 and CV2 models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.21 Broca-44 (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)
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Figure A.61: Accuracy in Broca-44: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.19* 0.17 0.21* 0.11 0.14 0.20* 0.07 0.10 0.15 0.15**

02 0.10 0.19* 0.17* 0.14 0.20** 0.14 0.11 0.11 0.16* 0.15**

03 0.23* 0.17 0.16 0.15 0.16 0.07 0.09 0.15* 0.09 0.14*

04 0.15 0.11 0.20* 0.10 0.09 0.15 0.12 0.10 0.10 0.12

05 0.19 0.12 0.14 0.14 0.19* 0.15 0.12 0.10 0.12 0.14**

Table A.41: Accuracy Broca-44 CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.40 0.38* 0.40* 0.39* 0.47 0.30 0.37* 0.38**

02 0.38 0.38 0.40* 0.39** 0.43** 0.38* 0.39* 0.40*

03 0.40 0.40* 0.36 0.38** 0.47* 0.40** 0.34 0.40*

04 0.49 0.30 0.28 0.36 0.45 0.35* 0.33 0.38**

05 0.36 0.41* 0.34 0.37* 0.33 0.32 0.44** 0.36

Table A.42: Accuracy Broca-44 CV1 and CV2: * p-value < 0.05, ** p-value

< 0.01.

Subject
01
02
03
04
05
All

Figure A.62: Superposition test in Broca-44: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05
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Figure A.63: Locality test in Broca-44: We show in black the overlap of the N best voxels subsets of the CV1 and CV2models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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A.22 Broca-45 (Auditory dataset)

CVCV CV1 and CV2 (1 or 2)
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Figure A.64: Accuracy in Broca-45: Chance baseline has been substracted from all accuracy scores. Chance is 11.11% for the CVCV model. Chance is 33.33% for the CV1
and CV2 models. We show at the left the CVCV accuracy and at the right the CV1 and CV2 accuracy together. (1) denotes the CV1 model and (2) denotes the CV2 model.
The accuracy score points are denoted with stars whenever they are signi�cant with p-value < 0.05

Condition �� �gu �na gu� gugu guna na� nagu nana Mean

Subject

01 0.09 0.16 0.17 0.11 0.11 0.24** 0.09 0.10 0.25** 0.15**

02 0.12 0.17 0.24** 0.19* 0.11 0.12 0.17* 0.14 0.20* 0.16**

03 0.16 0.11 0.15 0.25** 0.17 0.12 0.15* 0.06 0.19* 0.15**

04 0.21* 0.11 0.15 0.06 0.16* 0.12 0.15 0.09 0.14 0.13*

05 0.17 0.24** 0.19* 0.12 0.15 0.19** 0.10 0.10 0.06 0.15**

Table A.43: Accuracy Broca-45 CVCV: * p-value < 0.05, ** p-value < 0.01.
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(1) � (1) gu (1) na (1) Mean (2) � (2) gu (2) na (2) Mean

Subject

01 0.40 0.41* 0.42* 0.41** 0.43* 0.33 0.39 0.38**

02 0.42* 0.38 0.36 0.39* 0.45* 0.40** 0.44** 0.43**

03 0.50 0.35* 0.26 0.37* 0.43* 0.33 0.41* 0.39*

04 0.41* 0.39* 0.40** 0.40** 0.50 0.31 0.23 0.35

05 0.56** 0.28 0.23 0.36 0.47* 0.36* 0.33 0.39*

Table A.44: Accuracy Broca-45 CV1 and CV2: * p-value < 0.05, ** p-value

< 0.01.

Subject
01
02
03
04
05
All

Figure A.65: Superposition test in Broca-45: We present the relationship between the mean confusion of cell groups representing overlapping syllables, shared syllables
and di�erent syllables. The smaller cyan dots correspond to the shu�ed models of all subjects. All other dots correspond to subjects. If the mean confusion values of a
tested model is re�ected as a dot above the black line in both plots, then we have evidence for superposition. A star means signi�cance with a p-value < 0.05

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Figure A.66: Locality test in Broca-45: We show in black the overlap of the N best voxels subsets of the CV1 and CV2models. In red we show the overlap null distribution
given by the shu�ed models. In green we denote segments of signi�cantly inferior overlap with a p-value < 0.05. In magenta we denote segments of signi�cantly higher
overlap with a p-value < 0.05
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